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Abstract

My thesis covers several topics in the quantization and renormalization of gauge fields,

ranging from the application of Dirac constraint procedure on the light front, to the manipu-

lation of Faddeev-Popov method to enable use of the transverse-traceless gauge in first order

gravity. Last, I study renormalization group ambiguities and carry out a new characterization

method for models with one, two and five couplings.

In chapter 2 we apply the Dirac constraint procedure to the quantization of gauge theories

on the light front. The light cone gauge is used in conjunction with the first class constraints

that arise and the resulting Dirac brackets are found. These gauge conditions are not used to

eliminate degrees of freedom from the action prior to applying the Dirac constraint procedure.

This approach is illustrated by considering Yang-Mills theory and the superparticle in a 2 + 1

dimensional target space.

We consider the first order form of the Einstein-Hilbert action and quantize it using the path

integral in chapter 3. Two gauge fixing conditions are imposed so that the graviton propagator

is both traceless and transverse. It is shown that these two gauge conditions result in two

complex Fermionic vector ghost fields and one real Bosonic vector ghost field. All Feynman

diagrams to any order in perturbation theory can be constructed from two real Bosonic fields,

two Fermionic ghost fields and one real Bosonic ghost field that propagate. These five fields

interact through just five three point vertices and one four point vertex.

Finally in chapter 4 we study the ambiguities inherent in renormalization when using mass

independent renormalization in massless theories that involve two coupling constants. We re-

view how unlike models in which there is just one coupling constant there is no renormalization

scheme in which the β-functions can be chosen to vanish beyond a certain order in perturba-

tion theory, and also the β-functions always contain ambiguities beyond first order. We examine

how the coupling constants depend on the coefficients of the β-functions beyond one loop order.

A way of characterizing renormalization schemes that doesn’t use coefficients of the β-function

is considered for models with one, two and five couplings. The renormalization scheme ambi-

guities of physical quantities computed to finite order in perturbation theory are also examined.

The renormalization group equation makes it possible to sum the logarithms that have explicit

dependence on the renormalization scale parameter µ in a physical quantity R and this leads to

iii



a cancellation with the implicit dependence of R on µ through the running couplings, thereby

removing the ambiguity associated with the renormalization scale parameter µ. It is also shown

that there exists a renormalization scheme in which all radiative contributions beyond lowest

order to R are incorporated into the behavior of the running couplings and the perturbative

expansion for R is a finite series.

Keywords: gauge theory, Dirac constraint formalism, first order gravity, transverse trace-

less gauge, renormalization scheme ambiguities, multiple couplings
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In existential mathematics that experience takes the form of two basic equations:

The degree of slowness is directly proportional to the intensity of memory;

the degree of speed is directly proportional to the intensity of forgetting.

Milan Kundera
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Chapter 1

Introduction

In this thesis we study three topics: the Dirac Constraint Formalism in quantum field theory,

quantization of first order gravity using the transverse-traceless gauge, and the renormalization

ambiguity. This chapter provides a review of all three topics.

1.1 Dirac Constraint Formalism

In this section I review the Dirac Constraint Formalism [1-7]. Dirac Constraint Formalism is

a generalization of classical Hamiltonian formalism to treat systems with constraints. More

specifically, when the definition of the canonical momentum gives rise to a constraint, it would

be inadequate to quantize the system using Hamiltonian Mechanics. Paul Dirac introduced

Dirac Brackets to fix the unphysical degrees of freedom contained by the constraints which

allows the system to undergo canonical quantization.

In the Hamiltonian procedure, from the canonical momenta and the Lagrangian we can define

1



2 Chapter 1. Introduction

the naive canonical Hamiltonian

H0 = piq̇i − L(qi, q̇i). (1.1)

If the Lagrangian is at most linear in at least one coordinate, the canonical momenta

pi =
∂L
∂q̇i

(1.2)

are not invertible to the velocities and are constrained to be functions of the coordinates, making

the variable basis overcomplete. This makes it impossible to move to the Hamiltonian approach

as velocities in the Lagrangian cannot be eliminated in favour of momenta. Such a canonical

momentum condition would imply a “primary” constraint

χi(qi, pi) = 0. (1.3)

The primary constraints must hold regardless of time; this leads to the consistency condition

d
dt
χi(qi, pi) = {χi,H}PB = 0. (1.4)

Here we use Poisson brackets

{A, B}PB =
∑

i

(
∂A
∂qi

∂B
∂pi
−
∂A
∂pi

∂B
∂qi

)
. (1.5)

and H is the extended Hamiltonian

H = H0 + ciχi(qi, pi). (1.6)

The constraints coming from the definition of canonical momenta eq. (1.2) are called primary

constraints. The consistency condition eq. (1.4) could lead to additional constraints. These
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additional constraints generated by the consistency conditions of primary constraints are called

secondary constraints. We could incorporate secondary constraints into the extended Hamil-

tonian and use further extended Hamiltonian to check the consistency condition eq. (1.4) for

secondary constraints, this could lead to tertiary constraints.

Constraints χi can be divided into first class constraints φi and second class constraints θi.

First class constraints have weakly vanishing Poisson brackets with other constraints (i.e., they

vanish if the constraints themselves vanish)

{φi, χi} ≈ 0. (1.7)

A constraint is second class if it is not first class.

After classifying constraints into first and second class, we can write our extended Hamiltonian

as

H = H0 + ciχi(qi, pi) = H0 + aiφi + biθi. (1.8)

Therefore we have

d
dt
φi(qi, pi) = [φi,H] (1.9)

= [φi,H0 + a jφ j + b jθ j]

= [φi,H0] + a j[φi, φ j] + b j[φi, θ j]

≈ [φi,H0]

≈ 0,
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d
dt
θi(qi, pi) = [θi,H] (1.10)

= [θi,H0 + a jφ j + b jθ j]

= [θi,H0] + a j[θi, φ j] + b j[θi, θ j]

≈ [θi,H0] + b j[θi, θ j]

≈ 0,

From consistency condition eq. (1.10) we can fix b j but we can not fix ai. This means for each

first class constraint there is an arbitrary ai in Hamiltonian. In order to fix these arbitrariness

we can introduce a gauge condition γi for each first class constraint φi. In fact, one can exploit

constraint formalism to systematically find all the local gauge symmetries for any given theory

[8]. Each primary first class constraint leads to a gauge symmetry.

Dirac introduced Dirac brackets as replacements of Poisson brackets to eliminate all constraints

from the theory, namely

[A, B]∗ = [A, B] −
∑

i, j

{A, θi}d−1
i j {θ j, B} (1.11)

where

d−1
i j = {θi, θ j} = −{θ j, θi} (1.12)

is an anti-symmetric matrix. Here i and j must be even. Therefore we always have an even

number of second class constraints.

In fact, any pair of a first class constraint and its associated gauge condition make up a second

class constraint while the intrisic arbitrariness in the first class constraint is fixed by the gauge
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condition. In this sense, we can treat

Θi = {φi, θi, γi} (1.13)

as a large, complete set of second class constraints, and if

D−1
i j = [Θi,Θ j], (1.14)

then one can have the modified Dirac brackets

[A, B]∗ = [A, B] −
∑

i, j

{A,Θi}D−1
i j {Θ j, B}. (1.15)

In Chapter 2 we apply Dirac Constraint Formalism to light front quantization of Yang-Mills

theory and 2 + 1 dimensional superparticle.

1.2 First Order Gravity and Transverse Traceless Propaga-

tor

First order gravity has been of great interest to physicists working on the quantization of grav-

ity. Employing the first order Einstein-Hilbert (1EH) action has the advantage over the sec-

ond order form of the action (2EH) that the interaction vertices are simplified [9-14]. It has

been shown that the first and second order forms of the EH action are equivalent both clas-

sically and quantum mechanically. In Chapter 3 of my thesis I consider the realization of

transverse-traceless gauge in first order gravity. Having a propagator that is both transverse

and traceless ensures that only the physical degrees of freedom associated with the tensor field

propagate. It is analogous to the Landau gauge in quantum electrodynamics. To obtain such
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a traceless-transverse propagator, one must employ a non-quadratic gauge fixing Lagrangian

[15-19] which is not encountered in the usual Faddeev-Popov procedure [20,21]. In this section

I provide the context of first order gravity and non-quadratic gauge fixing.

1.2.1 First Order Gravity

The second order Einstein-Hilbert (2EH) action is

S =

∫
dd x
√
−ggµνRµν(Γ), (1.16)

where

Γλµν =
1
2

gλσ
(
gµσ,ν + gνσ,µ − gµν,σ

)
, (1.17)

and

Rµν(Γ) = Γρµρ,ν − Γρµν,ρ − ΓσµνΓ
ρ
σρ + ΓρµσΓσνρ. (1.18)

The 1EH action has the form

L1EH = hµν
(
Gλ
µν ,λ +

1
d − 1

Gλ
µλG

σ
νσ −Gλ

µσGσ
νλ

)
(1.19)

= Gλ
µν

(
−hµν,λ

)
+

1
2

Mµν
λ
πτ
σ (h)Gλ

µνG
σ
πτ,

where

hµν =
√
−ggµν, (1.20)

Gλ
µν = Γλµν −

1
2

(
δλµΓ

σ
νσ + δλνΓ

σ
µσ

)
. (1.21)
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and

Mµν
λ
πτ
σ (h) =

1
2

[
1

d − 1

(
δνλδ

τ
σhµπ + δ

µ
λδ

τ
σhνπ + δνλδ

π
σhµτ + δ

µ
λδ

π
σhντ

)
(1.22)

−
(
δτλδ

ν
σhµπ + δτλδ

µ
σhνπ + δπλδ

ν
σhµτ + δπλδ

µ
σhντ

)]

2EH action is equivalent to the first order Einstein-Hilbert (1EH) action at classical level. At

quantum level, Fernando has derived a set of Feynman rules from 1EH action and computed the

two point function to one loop order [13]. The computational result is in complete agreement

with that of 2EH.

The classical equivalence can be shown by obtaining the equation of motion from eq. (1.19)

hµν,λ = Mµν
λ
πτ
σ (h)Gσ

πτ (1.23)

from which we can use eq. (1.22) and hµλhλν = δνµ to derive

Hπτ,λ ≡ −hπµhτνh
µν
,λ + hτµhλνhµν,π + hλµhπνhµν,τ

= 2
(

1
d − 1

hπτGσ
λσ − hλσGσ

πτ

)
. (1.24)

Contracting Eq. (1.24) with hτλ we have

Gσ
πσ = −

d − 1
2(d − 2)

hµνhµν,π (1.25)

and so by Eq. (1.24)

Gρ
πτ =

1
2

hρλ
(
−

1
d − 2

hπτhµνh
µν
,λ − Hπτ,λ

)
. (1.26)

We can insert Eq. (1.26) into the Lagrangian of eq. (1.19) and obtain

L1EH = −
1
2

hµν,λ
(
M−1

)
λ
µν
σ
πτ(h)hπτ,σ . (1.27)
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This is just the second-order EH Lagrangian L2EH. This demonstrates that classically, L1EH

and L2EH are equivalent.

The path integral associated with the 1EH action, when using conventional gauge fixing, is

Z1EH =

∫
DhµνDGλ

µν∆FP(h) exp i
∫

dd x
[
L1EH +Lg f

]
. (1.28)

If we make the shift

Gλ
µν → Gλ

µν +
(
M−1

)
λ
µν
σ
πτ(h)hπτ,σ , (1.29)

it is found that

Z1EH =

∫
DhµνDGλ

µν∆FP(h) exp i
∫

dd x
[
1
2

Gλ
µνM

µν
λ
πτ
σ (h)Gσ

πτ +
1
2

hµν,λ
(
M−1

)
λ
µν
σ
πτ(h)hπτ,σ +Lg f

]
.

(1.30)

To study the behavior of this path integral, it’s convenient to break hµν(x) into the Minkowski

metric ηµν and a perturbation term φµν(x)

hµν(x) = ηµν + φµν(x). (1.31)

We now make the shift

Gλ
µν → Gλ

µν +
(
M−1

)
λ
µν
σ
πτ(h)hπτ,σ (1.32)

in the path integral of eq. (1.28). We then find that

Z1EH =

∫
DhµνDGλ

µν∆FP(h) exp i
∫

dd x
[
1
2

Gλ
µνM

µν
λ
πτ
σ (h)Gσ

πτ +
1
2

hµν,λ
(
M−1

)
λ
µν
σ
πτ(h)hπτ,σ +Lg f

]
.

(1.33)

The expansion of eq. (1.31) can now be made in eq. (1.30). Since M is linear in hµν, it follows

that

Mµν
λ
πτ
σ (η + φ) = Mµν

λ
πτ
σ (η) + Mµν

λ
πτ
σ (φ). (1.34)
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Consequently, any Feynman diagrams contributing to Green’s functions with only the field φµν

on external legs and which involve the field Gλ
µν on internal lines, necessarily will have the

field Gλ
µν appearing in a closed loop. But the propagator for the field Gλ

µν is independent of

momentum and hence the loop momentum integral associated with any loop coming from the

field Gλ
µν is of the form ∫

ddkP(kµ), (1.35)

where P(kµ) is a polynomial in the loop momentum kµ. If we use dimensional regularization

[51, 52] then such loop momentum integrals vanish.

Consequently, for Green’s functions involving only the field φµν on external legs, the only con-

tribution to Feynman diagrams come from the last two terms in the argument of the exponential

in eq. (1.30); from eq. (1.27) we see that this is just the generating functional associated with

−L2EH and so these Green’s functions can be derived by using either the first order or the

second order form of the EH action.

The M−1 appeared in the action can be expanded as

(
M−1

)
(η+φ) = M−1(η)−M−1(η)M(φ)M−1(η)+ M−1(η)M(φ)M−1(η)M(φ)M−1(η)− . . . . (1.36)

After obtaining expansion eq. (1.36), instead of making the shift eq. (1.29), we can now make

Gλ
µν → Gλ

µν +
(
M−1

)
λ
µν
σ
πτ(η)hπτ,σ (1.37)

so our path integral now becomes

Z1EH =

∫
DhµνDGλ

µν∆FP(h) exp i
∫

dd x
[
1
2

Gλ
µνM

µν
λ
πτ
σ (η)Gσ

πτ −
1
2
φ
µν
,λ M−1λ

µν
σ
πτ(η)φπτ,σ

+
1
2

(
Gλ
µν + φαβ,ρ

(
M−1

)
ρ
αβ
λ
µν(η)

) (
Mµν

λ
πτ
σ (φ)

) (
Gσ
πτ +

(
M−1

)
σ
πτ
ξ
γδ(η)φγδ,ξ

)
+Lg f

]
.(1.38)
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This 1EH generating functional can be used to compute Green’s functions with only the two

propagators < φφ >, < GG > and the three point functions < GGφ >, < Gφφ > and < φφφ >.

In eq. (1.38), theLg f and ∆FP(h) are to be fixed altogether through a Faddeev–Popov procedure,

which I will introduce in next subsection.

1.2.2 Faddeev–Popov Procedure in a Nutshell

We start by introducing the standard Faddeev–Popov procedure [20,21]. If we consider an

ordinary generating functional

Z =

∫
d~h exp

(
−~hT M˜ ~h

)
=

πn/2

det1/2 M˜
(1.39)

If there exists a matrix A(0) such that

M˜ A˜ (0)~θ = 0 (1.40)

for any vector ~θ, then M˜ has vanishing eigenvalues and the path integral eq. (1.39) is ill defined.

Faddeev and Popov [24] proposed we insert

1 =

∫
d~θδ(F˜ (~h + A˜ (0)~θ) − ~p) det(F˜ A˜ (0)) (1.41)

into path integral eq. (1.39), and then make a change of variable

~h→ ~h − A˜ (0)~θ (1.42)

so our path integral eq. (1.39) now becomes

Z =

∫
d~θ

∫
d~hδ(F˜~h − ~p) det(F˜ A˜ (0)) exp

(
−~hT M˜ ~h

)
. (1.43)
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To absorb the δ(F˜~h − ~p), we can further insert

1 = π−n/2
∫

d~p e
−~pT N˜ ~pdet1/2(N˜ ) (1.44)

so eq. (1.43) becomes

Z = π−n/2
∫

d~θ
∫

d~h det(F˜ A˜ (0))det1/2(N˜ ) exp
[
−~hT

(
M˜ + F˜ T N˜ F˜

)
~h
]
. (1.45)

We can further introduce Grassmann “ghost” fields ~c and ~̄c [22-25] and a Nielsen-Kallosh ghost

~k [26,27] to absorb det(F˜ A˜ (0)) and det1/2(N˜ )

Z = π−n/2
∫

d~θ
∫

d~h
∫

d~̄c
∫

d~c
∫

d~k

exp
[
−~̄cF˜ A˜ (0)~c − ~kT N˜~k − ~hT

(
M˜ + F˜ T N˜ F˜

)
~h
]
. (1.46)

As a result of det M˜ vanishing, an “infinity” is incurred in eq. (1.39). However, this infin-

ity is parametrized by the integral over the “gauge function” ~θ which can be absorbed into a

normalization factor.

1.2.3 Faddeev–Popov Procedure for Second Order Gravity

The second order Einstein-Hilbert action takes the form

S = −

∫
dd x

(
hλσMλσ,µνhµν

)
(1.47)

where

Mλσ, µν =
k2

2

[
1
2

(
ηµληνσ + ηνληµσ

)
− ηµνηλσ

]
−

1
4

[
kµkληνσ + kνkληµσ + kµkσηνλ + kνkσηµλ

]
+

1
2

[
kµkνηλσ + kλkσηµν

]
, (1.48)
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if we restrict ourselves to terms quadratic in the quantum field hµν.

Applying Faddeev–Popov procedure we have just introduced, according to eq. (1.46), the

gauge fixing Lagrangian for second order Einstein-Hilbert gravity is

Lgf = −hλσF λσ
α NαβF µν

β hµν (1.49)

where

F˜~h = F λσ
α hλσ

=

[
1
α

kαηλσ +
1
β

(
kλδσα + kσδλα

)
+

1
γ

kαkλkσ

k2

]
hλσ (1.50)

and the “Nielsen-Kallosh” factor is

Nαβ = ξηαβ + ζ
kαkβ

k2 . (1.51)

1.2.4 Pursuit of Transverse Traceless Propagator

A transverse traceless propagator DTT
µν,λσ(k) satisfies

ηµνDTT
µν, λσ(k) = 0 (1.52)

kµDTT
µν, λσ(k) = 0. (1.53)

The propagator Dλσ, αβ for the spin-two field with this gauge fixing Lagrangian can be computed

via

Dλσ, αβ
(
Mαβ, µν + Fρ,αβNρδFδ,µν

)
=

1
2

(
δλµδ

σ
ν + δλνδ

σ
µ

)
≡ ∆̄λσ

µν . (1.54)
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In order to perform this computation, we can introduce basis in tensor space

T 1
λσ, µν = ηµληνσ + ηνληµσ (1.55a)

T 2
λσ, µν = ηµνηλσ (1.55b)

T 3
λσ, µν =

1
k2

(
kµkληνσ + kµkσηνλ

)
+ (µ↔ ν) (1.55c)

T 4
λσ, µν =

1
k2

(
kµkνηλσ + kλkσηµν

)
(1.55d)

T 5
λσ, µν =

1
k4

(
kµkνkλkσ

)
(1.55e)

so our gauge fixing Lagrangian eq. (1.49) can be described by the basis

Lgf = −hλσ
{
ξ + ζ

α2 T 2
λσ, µν +

ξ

β2 T 3
λσ, µν

+
ξ + ζ

α

(
2
β

+
1
γ

)
T 4
λσ, µν

+

[
ξ + ζ

γ

(
4
β

+
1
γ

)
+

4ζ
β2

]
T 5
λσ, µν

}
k2hµν. (1.56)

Explicit calculation is performed in d dimensions for propagator Dµν,λσ(k) in tensor space

Dµν, λσ(k) =
1
k2

5∑
i=1

CiT i
µν, λσ, (1.57)

The analytical result is

C1 = 1 (1.58a)

C2 = −
2

d − 2
(1.58b)

C3 =

(
β2

4ξ
− 1

)
(1.58c)

C4 =
2

d − 2

[
1 +

βγ

α(β + γ) + γ(α + β)

]
(1.58d)

C5 = −
β2

ξ
+

1
ξ + ζ

(αβγ)2

[α(β + γ) + γ(α + β)]2

+
2

d − 2
(d − 3)α(β + 2γ) − 2βγ
α(β + γ) + γ(α + β)

. (1.58e)
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The limit α→ 0 leads to a traceless propagator which is however not transverse. The limit β→

0 leads to a transverse propagator that is not traceless. These two limits do not commute. This

means we cannot have a transverse traceless propagator via ordinary gauge fixing procedure.

1.2.5 Non-quadratic Gauge Fixing and Transverse Traceless Gauge

In this subsection we introduce non-quadratic gauge fixing and the resulting transverse trace-

less gauge.

Into eq. (1.39) we can insert two factors of “1”

1 =

∫
d~θ1δ(F˜ (~h + αA˜~θ1) − ~p) det(αF˜ A˜ (0)) (1.59a)

1 =

∫
d~θ2δ(G˜ (~h + αA˜~θ2) − ~q) det(αG˜ A˜ (0)) (1.59b)

as well as another “1” of the form

1 = π−n
∫

d~p d~q e
− 1
α ~p

T N˜~qdet(N˜ /α). (1.60)

Similar to eq. (1.45), now we have

Z = π−n
∫

d~θ1d~θ2

∫
d~h det(αF˜ A˜ (0)) det(αG˜ A˜ (0))

× det

N˜
α

 exp
{
−~hT M˜ ~h −

1
α

[
F˜ (~h + αA˜ (0)~θ1)

]T

N˜
[
G˜ (~h + αA˜ (0)~θ2)

]}
. (1.61)

We now complete the square and make the shift ~h→ ~h − αA˜ (0)~θ1, then let ~θ = ~θ2 − ~θ1 and use ~θ
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to replace ~θ2, our generating functional becomes

Z =

(
α

π

)n ∫
d~θ1

∫
d~θ

∫
d~h det(F˜ A˜ (0)) det(G˜ A˜ (0))

× det(N˜ ) exp
{
−~hT

(
M˜ +

1
α

F˜ T N˜ G˜
)
~h

− ~hT F˜ T N˜ G˜ A˜ (0)~θ
}
. (1.62)

We drop the infinite normalization factors and make the shift to diagonalize the exponential in

~h and ~θ

~h→ ~h −
1
2

(
M˜ +

1
α

F˜ T N˜ G˜
)−1 (

F˜ T N˜ G˜ A˜ (0)
)
~θ, (1.63)

we can obtain

Z =

∫
d~θ

∫
d~h det(F˜ A˜ (0)) det(G˜ A˜ (0)) det(N˜ )

× exp
{
−~hT

(
M˜ +

1
α

F˜ T N˜ G˜
)
~h

+
1
4
~θT

(
A˜ (0)T

G˜ T N˜ T F˜
) (

M˜ +
1
α

F˜ T N˜ G˜
)−1

×

(
F˜ T N˜ G˜ A˜ (0)

)
~θ
}
, (1.64)

where

~hT F˜ T N˜ G˜~h = hµνFT
µν, αNαβGβ, λσhλσ (1.65)

and

FT
µν, α = g1ηµν∂α + ηµα∂ν (1.66a)

Gβ, λσ = g2ηλσ∂β + ηλβ∂σ (1.66b)

Nαβ = ηαβ. (1.66c)
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Now the non-quadratic gauge fixing has been performed, we can then invert the quadratic form

M˜ + 1
α

F˜ T N˜ G˜ and solve for the propagator in tensor space as in eq. (1.57), in this case the

resulting coefficients are

C1 = 1 (1.67a)

C2 = −2
(g2 − g1)2 + 2(g1 + 1)(g2 + 1)α

(d − 1)(g2 − g1)2 + 2(d − 2)(g1 + 1)(g2 + 1)α
(1.67b)

C3 = α − 1 (1.67c)

C4 = 2
(g2 − g1)2 +

[
4(g1 + 1)(g2 + 1) − g1 − g2 − 2

]
α

(d − 1)(g2 − g1)2 + 2(d − 2)(g1 + 1)(g2 + 1)α
(1.67d)

C5 =
[
(d − 1)(g2 − g1)2 + 2(d − 2)(g1 + 1)(g2 + 1)α

]−1

×
{
4α

[
(g1 + g2)(d − 4) + (2g1g2 + 1)(d − 3) −

(
g2

1 + g2
2

)
(d − 1)

]
+ 2(d − 2)

[
(g1 − g2)2 − α2(4(g1 + 1)(g2 + 1) − 1)

]}
(1.67e)

Fortunately, from eq. (1.67) it is found that if we take the limit α → 0, with g2 , g1, the

propagator becomes transverse and traceless, and is independent of g1 and g2. However, the

limits g2 → g1 and α → 0 do not commute. If we set g2 = g1, the resulting propagator is

not transverse nor traceless even for α = 0. This is another verification of the impossibility

of obtaining the transverse and traceless propagator using the quadratic gauge fixing where

g1 = g2.

This concludes the introduction for Chapter 3. In Chapter 3 we will make the most out of

our knowledge from this section to quantize first order gravity using a transverse traceless

propagator.



1.3. Renormalization Scheme Dependence and Renormalization Group Summation 17

1.3 Renormalization Scheme Dependence and Renormaliza-

tion Group Summation

In quantum field theory, renormalization is the process that eliminates divergences arising in

the computation of radiative effects. In perturbation theory the process of renormalization in-

duces a dependence on arbitrary parameters that absorbs divergences. The requirement that

physical processes have to be independent of these parameters leads to the renormalization

group (RG) equations [28-30]. One of these arbitrary parameters is the renormalization mass

scales parameter µ, irrespective of the renormalization scheme (RS) being used. Ambiguities

in perturbative computation arise from the presence of both the unphysical parameter µ and

finite renormalization. Especially in Quantum Chromodynamics (QCD), by varying renormal-

ization scheme, one can widely vary the results of higher loop calculations. In this section I

will introduce existing strategies physicists have developed to minimize the renormalization

scale dependence. In principle there is no dependence on µ or the renormalization scheme, but

this is true only for the exact result; at finite order there is explicit and implicit dependence

on both sources of arbitrariness. There are attempts in the literature to reduce dependence

on the arbitrary parameters that arise in perturbation theory [37-44]. We will show how the

renormalization group equation can be used to completely cancel the implicit and explicit de-

pendence on µ and to choose a renormalization scheme so that the perturbative expansion of

the calculated value any physical quantity terminates at finite order.
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1.3.1 Renormalization Scheme Dependence

In M̄S scheme, the form of QCD cross section Re+e− is given by

Re+e− = 3

∑
i

q2
i

 (1 + R) (1.68)

where R is given by a perturbative expansion

R = Rpert =

∞∑
n=0

rnan+1 =

∞∑
n=0

n∑
m=0

Tn,mLman+1 (T0,0 = 1) (1.69)

with

L = b ln
(
µ

Q

)
(1.70)

and Q is the centre of mass momentum.

In the renormalization group equation, the explicit dependence of R on the renormalization

scale parameter µ is compensated for by implicit dependence of the “running coupling” a(µ)

on µ,

µ
∂a
∂µ

= β(a) = −ba2
(
1 + ca + c2a2 + . . .

)
. (1.71)

Here b and c are scheme independent [31] while the cn(n ≥ 2) are scheme dependent. For mass-

independent renormalization [32,33], different renormalizations schemes have their couplings

a and a related by [34]

a = a + x2a2 + x3a3 + . . . (1.72a)

≡ F(a)
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From the equation β(a) = β(a)F′(a), we can solve for [35]

c2 = c2 − cx2 + x3 − x2
2 (1.72b)

c3 = c3 − 3cx2
2 + 2(c2 − 2c2)x2 + 2x4 − 2x2x3 (1.72c)

etc.

Plenty of strategies have been developed to minimize the dependence of perturbative results

on both µ and on general scheme dependency. It is worth noticing that if the exact result

for R were known, all such dependency should disappear [36]. One of the most well known

strategies is “principle of minimal sensitivity” (PMS ) [37], in which the parameters µ and ci

are chosen to minimize the variations of Re+e− when these parameters themselves are altered.

Another method involves the “principle of maximum conformality” (PMC) [38-40]. In PMC a

different renormalization mass scale is introduced at each order of perturbation theory to absorb

all dependence on the coefficients ci. In the “fastest apparent convergence” (FAC) approach

[41-44], it is proposed that one should introduce “effective charges” to minimize contributions

beyond a given order in perturbation theory.

1.3.2 Renormalization Group Summation

An alternative approach to manage scheme dependence is “renormalization group summation”

(RG
∑

) [45-48]. In RG
∑

the RG equation with one loop RG functions permits summation of

all “leading-log” (LL) contributions to the sum in eq. (1.69), two loop RG functions permits

summation of all “next-to-leading-log” (NLL) contributions etc. As expected, RG
∑

reduces

the dependence of any calculation on the scale parameter µ, which one might anticipate as
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upon including higher order logarithmic effects, one should be closer to the exact result, which

is fully independent of µ. After all we should keep in mind that in perturbation theory any

computation to finite order is scheme dependent.

In order to sum LL, NLL etc. contributions to R in eq. (1.69) we use the groupings

S n(aL) =

∞∑
k=0

Tn+k,k(aL)k (1.73)

so the RG equation

(
µ
∂

∂µ
+ β(a)

∂

∂a

)
R = 0 (1.74)

with β(a) given by eq. (1.71) and R given by eq. (1.69) leading to a set of nested differential

equations of S n(u)

S ′0 − (S 0 + uS ′0) = 0 (1.75a)

S ′1 − (2S 1 + uS ′1) − c(S 0 + uS ′0) = 0 (1.75b)

S ′2 − (3S 2 + uS ′2) − c(2S 1 + uS ′1) − c2(S 0 + uS ′0) = 0 (1.75c)

S ′3 − (4S 3 + uS ′3) − c(3S 2 + uS ′2) − c2(2S 1 + uS ′1) − c3(S 0 + uS ′0) = 0 (1.75d)

etc.

And the associated boundary conditions are

S n(0) = Tn,0 ≡ Tn. (1.76)
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With these boundry conditions, one can solve for S n(u) [46,47]

wS 0 = T00 (w = 1 − u) (1.77a)

w2S 1 = T10 − cT00 ln |w| (1.77b)

w3S 2 = T20 − (2cT10 + c2T00) ln |w| + (c2 − c2)T00(w − 1) + c2T00 ln2
|w| (1.77c)

w4S 4 = T30 − c3T00 ln3
|w| +

1
2

(6c2T10 + 5c3T00) ln2
|w| − 2c(c2 − c2)T00(w ln |w| − (w − 1))

− 3c(T20 − (c2 − c2)T00) ln |w| + (−2c2T10 − c(2c2 − c2)T00)(w − 1) + (−c3 + 2cc2 − c3)T00(
w2 − 1

2
)

(1.77d)

etc.

where the S i(i = 0, 1 . . . 4) are the LL, NLL, N2LL and N3LL contributions to R.

Now I introduce another way of organizing the sum of eq. (1.69). Instead of computing the LL,

NLL etc. sums in turn, one can use the RG equation to show that all logarithmic contributions

to R can be expressed in terms of the log-independent contributions. By using this summation,

the explicit dependence of Re+e− on µ occurring in eq. (1.69) through L is exactly cancelled by

the implicit dependence on µ through the running coupling a(µ) [49].

Instead of using

R = RΣ =

∞∑
n=0

an+1S n(aL) (1.78)

by directly substituting eq. (1.69) into eq. (1.74) one find that

Tii = Ti−1,i−1 (1.79a)

T21 = (c + 2T10) (1.79b)

2T32 = (2cT11 + 3T21) (1.79c)



22 Chapter 1. Introduction

and

T31 = c2 + 3T20 + 2cT10 (1.79d)

etc.

Instead of the grouping of eq. (1.73) we can introduce

An =

∞∑
k=0

Tn+k,nan+k+1 (1.80)

so R can be rearranged as

R = RA =

∞∑
n=0

An(a)Ln. (1.81)

Substituting eq. (1.81) into the RG equation (1.71), we get the recursive relation for An(a)

An(a) = −
β(a)
bn

d
da

An−1(a). (1.82)

One now can introduce η = ln µ

Λ
where Λ is a universal scale. Definition of η [37,50] is

associated with the boundary condition on eq. (1.69) so that

η =

∫ a(η)

aI

dx
β(x)

(aI = a(η = 0) = const.). (1.83)

By eqs. (1.71,1.82) we find that

An(a(η)) =
−1
bn

d
dη

An−1(a(η)) =
1
n!

(
−

1
b

d
dη

)n

A0(a(η)). (1.84)

Together, eqs. (1.81,1.84) lead to

RA =

∞∑
n=0

1
n!

(
−

L
b

)n dn

dηn A0(a(η)) (1.85)
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= A0

(
a
(
η −

1
b

L
))
. (1.86)

With the definitions of η and L, eq. (1.86) becomes

RA = A0

(
a
(
ln

Q
Λ

))
. (1.87)

Eq. (1.87) is an exact equation that expresses R in terms of its log independent contributions

and the running coupling a evaluated at ln Q
Λ

with all dependence of R on µ, both implicit and

explicit, removed. This disappearance of dependence on µ is to be expected as µ is unphysical.

In Chapter 4 the removal of µ dependence in eq. (1.87) will play an important role in a new

characterization method to be introduced.
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Chapter 2

Light Front Quantization with the Light

Cone Gauge

2.1 Introduction

The idea of light front quantization was originally introduced by Dirac [1]. This idea is based

on the introduction of a set of light front coordinates, and plays a practical role as an alternative

to ordinary equal-time quantization. Light front quantization has received consistent attention

since its invention. It is applied to a theory in the reference frame with infinite momentum

[2], and has played an important role in a wide range of areas such as gauge theories [3-11],

supersymmetry [12], general relativity [13-16] and superstrings [17].

In the standard quantization procedure, a particular gauge is introduced to eliminate variables

occurring in the original gauge invariant action before the resulting reduced action is quantized

under the specific gauge. However, by following the Dirac constraint formalism to quantize

28
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gauge systems [18-19], one should first identify and classify all constraints in a system, then

introduce a gauge condition to accompany each of the first class constraints. These gauge

conditions are not used to eliminate degrees of freedom from the action prior to applying the

Dirac constraint procedure.

We apply this procedure to light front quantization using light-front variables. It is worth notic-

ing that, applying Dirac constraint formalism does not necessarily result in the same quantized

theory that arises if the light cone gauge is used at the outset to eliminate “superfluous” degrees

of freedom before applying the Dirac procedure. We illustrate this by considering Yang-Mills

theory and the superparticle in a 2 + 1 dimensional target space.

2.2 Yang-Mills Theory and the Light-Cone

The light front coordinates we use for a covariant vector aµ(µ = 0, 1, . . . ,D − 1) with gµν =

diag(+,− . . .) in Yang-Mills theory are

a± =
1
√

2
(a0 ± aD−1)

ai = aµ(µ = 1 . . .D − 2).

(2.1)

After applying the light front coordinates, we have

a · b = a+b− + a−b+ − aibi. (2.2)



30 Chapter 2. Light Front Quantization with the Light Cone Gauge

Adopting these notations, the well-known Yang-Mills (YM) action under light front coordi-

nates now becomes

S Y M =

∫
dd x

(
−

1
4

Fa
µνF

aµν

)
=

∫
dd x

(
1
2

Fa+−Fa+− + Fa+iFa−i −
1
4

Fai jFai j

)
(2.3)

where

Faµν = ∂µAaν − ∂νAaµ + εabcAbµAcν. (2.4)

This action, along with actions in which Aaµ is coupled with spinor and/or scalar fields, has

been studied in a number of papers [3-11], mostly by imposing the following gauge condition

to reduce the number of independent fields in the initial action

Aa+ = 0 (2.5)

and making use of any resulting equation of motion that does not contain the “time” derivative

∂+ f ≡ ḟ . (2.6)

In my thesis, I will instead apply the Dirac constraint formalism [18-19] to the Yang-Mills ac-

tion of eq. (2.3), with imposition of gauge conditions in conjunction with first class constraints

that arise during Dirac procedure. This has been considered when applying path integral quan-

tization to the action of eq. (2.3) [11]. This approach has been previously used to analyze the

spin-two action (i.e., linearized gravity) in ref. [15]. It is also worth mentioning that following

the methodology in Appendix the first class constraints arising from the action of eq. (2.3) lead

to a generator of the usual gauge transformation

δAa
µ = Dab

µ θ
b ≡

(
∂µδ

ab + εapbAp
µ

)
θb (2.7)
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despite the presence of second class constraints.

From the action of eq. (2.3), we compute the canonical momenta in our system

πa
i = ∂LY M/∂Ȧai = Fa−i (2.8a)

πa
+ = ∂LY M/∂Ȧa+ = 0 (2.8b)

πa
− = ∂LY M/∂Ȧa− = Fa+−. (2.8c)

Following standard Hamiltonian mechanics, these canonical momenta result in the canonical

Hamiltonian

Hc =
1
2
πa
−π

a
− +

1
4

Fai jFai j − Aa+
(
Dabiπb

i + Dab−πb
i

)
. (2.9)

Next we shall identify and classify constraints from the canonical momenta. Eq. (2.8a) is a

second class primary constraint

θa
i = πa

i − Fa−i. (2.10)

From the primary constraint of eq. (2.8b)

φa
1 = πa

+ (2.11a)

and the canonical Hamiltonian of eq. (2.9) we obtain the secondary constraint

φa
2 = Dabiπb

i + Dab−πb
−; (2.11b)

φa
1 and φa

2 are both first class therefore no further constraints arise.

The constraints of eqs. (2.10,2.11) have the Poisson bracket (PB) algebra

{
φa

2, φ
b
2

}
= εabcφc

2 (2.12a){
φa

2, θ
b
i

}
= εabcθc

i (2.12b){
θa

i (x), θb
j (y)

}
= −2δi jDab−δ(x − y), (2.12c)
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Constraints are classified into first class and second class also via their Poisson brackets.

Eq. (2.12c) is the only non-vanishing Poisson bracket on the constraint plane, (i.e., when all

the constraints themselves equal to zero), therefore identifies the only second class constraint.

Upon having these Poisson brackets between constraints, by eq. (2.12c), we can eliminate the

second class constraint θa
i by defining the Dirac bracket (DB)

{M,N}∗ = {M,N} −
{
M, θa

i (z)
} −1

2Dab−
z
δ(z − w)

{
θb

i (w),N
}
. (2.13)

As in eq. (A.7), we define the generator of the gauge transformation that leaves S Y M of eq. (2.3)

invariant to be

G = µa
1φ

a
1 + µa

2φ
a
2 (2.14)

with µa
1 determined in terms of µa

2 by those terms in eq. (A.11) at least linear in φA,

(
µ̇a

1φ
a
1 + µ̇2φ

a
2
)

+
{
µa

1φ
a
1 + µa

2φ
a
2,Hc

}
− δµa

1φ
a
1 = 0 (2.15)

which by eqs. (2.9, 2.12) leaves us with

G =
(
µ̇a

2 + εabcAb+µc
2

)
φa

1 + µa
2φ

a
2. (2.16)

From eq. (2.16) we find the gauge transformation of eq. (2.7) with θa = µa
2, as expected.

The first class constraints φa
I of eqs. (2.11a,b) are accompanied by gauge conditions γa

I so that

together φa
I and γa

I form a set of second class constraints. Here we will use the same gauge

conditions that were suggested in ref. [11], and will proceed to find the resulting DB.

The constraint of eq. (2.11a) suggests the gauge condition

γa
1 = Aa+ (2.17)
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while that of eq. (2.11b) suggests either

γa
2I = Aa− (2.18a)

or

γa
2II = ∂iAai. (2.18b)

Having already eliminated θa
i of eq. (2.10) by defining the DB of eq. (2.13), we can now elim-

inate φa
1 and γa

1 by the “second stage” DB

{M,N}∗∗ = {M,N}∗ −
[{

M, πa
+(z)

}∗ δ(z − w)
{
Aa+(w),N

}∗
− (M ↔ N)

]
. (2.19)

In the same way φa
2 and γa

2I give rise to a “third stage” DB. This involves using

{
γa

2I , φ
b
2

}∗∗
= −Dab−δ(x − y) (2.20a){

φa
2, φ

b
2

}∗∗
= εabcφc

2 −
[
εapmθm

i (x)
] −1

2Dpq δ(x − y)
[
−εbqnθn

i (y)
]
. (2.20b)

When forming the DB to eliminate γa
2I and φa

2, we set φa
2 and θa

i to zero in eq. (2.20b) and so

our third stage DB is

{M,N}∗∗∗ = {M,N}∗∗ −
[
{M, φa

2(z)}∗∗
−1

Dab−
z
δ(z − w){γa

2I(w),N}∗∗ − (M 
 N)
]
. (2.21)

Computing the third stage DB when using the gauge condition γa
2II of eq. (2.18b) in conjunction

with the first class constraint φa
2 of eq. (2.11b) is more involved. Eq. (2.20b) still holds, but now

we also have {
γa

2II , γ
b
2II

}∗∗
=

1
2
∂k 1

Dab−∂
kδ(x − y) (2.22)

as well as {
γa

2II , φ
b
2

}∗∗
= −∂iDabiδ(x − y) −

1
2
∂i 1

Daq− δ(x − y)εbqrθr
i (y). (2.23)
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Again, in eqs. (2.20b, 2.22, 2.23) we can set φa
2 = θa

i = 0 when forming the DB to eliminate

γa
2II and φa

2.

Since 
1
2∂

k 1
Dab−∂

k −∂iDabi

−Dabi∂i 0


−1

=


0 − 1

Dab−∂ j

− 1
∂iDabi −1

2
1

∂iDapi∂
k 1

Dpq−∂
k 1

Dab j∂ j

 (2.24)

we find that

{M,N}∗∗∗ = {M,N}∗∗ −
[ {

M, γa
2II(z)

}∗∗ −1
∂ jDab j δ(z − w){

φb
2(w),N

}∗∗
− (M 
)N

]
−

[ {
M, φa

2(z)
}∗∗ (−1

2

)
1

∂iDabi∂
k 1
Dpq−∂

k 1
Dab j∂ j δ(z − w)

{
φa

2(w),N
}∗∗ ]. (2.25)

One example from eq. (2.25) is that

{
Aai(x), Ab j(y)

}∗∗∗
=

1
2

[
− δi j 1

Dab− +
1

Dap−∂
i 1
Dpqk∂k Dqb j + Dapi 1

∂kDpqk∂
j 1
Dqb−

− Dapi 1
∂kDpqk∂

m 1
Dqr−∂

m 1
Drs`∂`

Dsb j
]
δ(x − y). (2.26)

We can also derive {
∂iAai, Ab j

}∗∗∗
= 0 (2.27)

which is consistent with the gauge condition of eq. (2.18b). In the U(1) limit, eq. (2.26) reduces

to {
Ai(x), A j(y)

}∗∗∗
=

1
2

(
−δi j +

∂i∂ j

∂k∂k

)
1
∂−
δ(x − y). (2.28)

We thus see that applying the Dirac canonical analysis to YM theory right from the outset (i.e.,

only introducing constraints after the first class constraints which follow from the initial YM
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action when written in light front coordinates) yields different DB than what arises when the

light cone gauge is used to eliminate degrees of freedom from the YM action before employing

the Dirac formalism.

There is a similar treatment of the spin two action in a manner consistent with the approach

used here with YM theory in ref. [15].

We now turn to examining the superparticle in the light cone gauge.

2.3 The Superparticle and the Light Cone

The superparticle [20] has Bosonic variables xµ(τ) and Fermionic variables θ(τ); its action is

written as

S =

∫
dτ

1
2e

(
ẋµ + iθ̇γµθ

) (
ẋµ + iθ̇γµθ

)
. (2.29)

A discussion of its constraint structure appears in ref. [21] (see also ref. [22]). Quite often, the

light cone gauge conditions

x+ = p+τ (2.30a)

γ+θ = 0 (2.30b)

are used [17] to eliminate degrees of freedom from the action of eq. (2.29) prior to applying

Dirac’s formalism; here we will instead use the gauge conditions of eq. (2.30) in conjunction

with the first class constraints arising from eq. (2.29).

The spinor θ has different properties in every dimension of the target space; we restrict our

attention to 2 + 1 dimensions to specify our discussion. We keep our conventions consistent
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with ref. [21], so that

γ0 = σ2 γ1 = iσ3 γ2 = iσ1 (2.31)

γµγν = ηµν + iεµνλγλ

C = −γ0 (2.32)

θ = Cθ
T

= (−γ0)(θ+γ0)T

so that

θ =


U

d

 =


U∗

d∗

 . (2.33)

With these light cone coordinates, we find our action eq. (2.29) becomes

S =

∫
dτ
2e

[(
ẋ0 + i(U̇U + ḋd)

)2
−

(
ẋ1 − i(U̇d + ḋU)

)2
−

(
ẋ2 + i(U̇U + ḋd)

)2
]

(2.34)

so that the momenta conjugate to e, xµ, U and d are

Pe = 0 (2.35a)

pµ =
1
e

(
ẋ0 + i(U̇U + ḋd),−ẋ1 + i(U̇d + ḋU),−ẋ2 − i(U̇U + ḋd)

)
(2.35b)

πU = −idp1 + iU p+ (2.35c)

πd = i(dp− − U p1) (2.35d)

where p± ≡ p0 ± p2. We can see that eqs. (2.35a,c,d) are primary constraints. Following ref.

[21], we treat σ1 = πU + idp1 − iU p+ as a second class constraint and eliminate it by defining

the DB

{M,N}∗ = {M,N} − {M, σ1}
1

2ip+

{σ1,N} . (2.36)
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With this DB, the constraint σ2 = πd − idp− + iU p1 satisfies

{σ2, σ2}
∗ = 2ip2/p+. (2.37)

Since the canonical Hamiltonian is

Hc =
e
2

p2, (2.38)

we see that the primary constraint of eq. (2.35a) leads to the secondary first class constraint

p2 = 0, (2.39)

and hence by eq. (2.37), we see that once σ1 has been taken to be second class, σ2 becomes

first class. (The roles of σ1 and σ2 can be reversed.)

It is at this stage we introduce gauge conditions to accompany the first class constraints that

have been derived. In conjunction with

φ1 = pe, φ2 = p2, φ3 = σ2 (2.40a,b,c)

we introduce the respective gauges

γ1 = e − 1, γ2 = x+ − p+τ, γ3 = γ+θ = U. (2.41a,b,c)

From the first class constraints of eq. (2.40), one can use the approach of ref. [23] to derive a

generator of a set of Bosonic and Fermionic gauge transformations. the Fermionic ones being

half of the so-called κ-symmetry transformations of ref. [24]. (The other half can be generated

by reversing the rules of σ1 and σ2.)

Together, φI and γI in eqs. (2.40,2.41) constitute a set of second class constraints that can be
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eliminated by forming a “second stage” DB. This involves inverting the matrix

M =
{
(γ1, φ1, γ2, φ2, γ3, φ3)T , (γ1, φ1, γ2, φ2, γ3, φ3)

}∗
(2.42)

=



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 2p− −U/p+ −2iU p1/p+

0 0 −2p− 0 0 0

0 0 U/p+ 0 i/2p+ −p1/p+

0 0 2iU p1/p+ 0 −p1/p+ 2ip2/p+



.

To find M−1, we use the identity
A B

C D


−1

=


∆−1 −∆−1BD−1

−D−1C∆−1 D−1 + D−1C∆−1BD−1

 (∆ = A − BD−1C)

and U2 = 0 (since U is Grassmann); we arrive at

M−1 =



0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 −1/2p− 0 0

0 0 1/2p− 0 −iU/p− 0

0 0 0 −iU/p+ −2ip2/p− −p1/p−

0 0 0 0 −p1/p− 1/2ip−



. (2.43)

From the resulting DB, it follows, for example that

{
x1, x2

}∗∗
=

{
x1, x2

}∗
−

{
x1,ΦT

}∗
M−1

{
Φ, x2

}∗
=

p1τ

p−
+

iUdp0

2p+ p−
. (2.44)
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where ΦT = (γ1, φ1, γ2, φ2, γ3, φ3)T . This result serves to illustrate how using the light cone

gauge conditions of eq. (2.41) in conjunction with the first class constraints of eq. (2.42) (ar-

rived at by applying Dirac’s canonical procedure to the initial action of eq. (2.29)) leads to

results different from those obtained by using eq. (2.41) to eliminate fields from eq. (2.29) and

only then applying the Dirac procedure (as is normally done).

These considerations can also be applied to string theories. For the Bosonic string, the action

is [25]

S =

∫
dτdσ

(
1
2
√
−g gabxA

,axA,b

)
. (2.45)

The canonical momenta associated with gab and xA are

IPab = 0 (2.46a)

pA =
√
−g

(
g00xA,0 + g01xA,1

)
(2.46b)

which lead to the secondary first class constraints

ΣS =
1
2

(
p2

A + x2
A,1

)
(2.47a)

Σp = pAxA
,1 (2.47b)

both of these in principle should be accompanied by a suitable gauge condition. However, the

usual practice is to use a single gauge condition (the “light cone gauge”) and then using this to

simplify the initial action of eq. (2.45). Only at this stage is the Dirac procedure invoked. A

similar approach is generally used with the superstring. (A discussion of the canonical structure

of the superstring appears in ref. [26].)
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2.4 Discussion

The Dirac procedure for treating the canonical structure of dynamical systems which have a

local gauge invariance is well defined; all constraints are first obtained and then classified, and

those which are first class are then paired with suitable gauge conditions. All superfluous de-

grees of freedom arising on account of there being a local gauge symmetry are then eliminated

by replacing the PB by a DB defined using both the first and second class constraints and the

gauge conditions. This procedure can be tedious especially for such common theories, as YM

theory on the light front and the superparticle (as was done above). Both of these systems are

commonly simplified by using a “light cone” gauge condition to eliminate superfluous degrees

of freedom at the outset from the classical action, and then using Dirac’s procedure. However,

we derive the DB in a way that is to fully consistent with the Dirac procedure; superfluous

degrees of freedom are not eliminated at the outset. The two procedures lead to different quan-

tum theories from what is obtained if one were to use the DB to define a quantum mechanical

commutator.

2.5 Appendix

In refs.[19,23] it is shown how to obtain the generator of a gauge transformation for systems in-

volving exclusively first class constraints. In fact, a really interesting aspect of Dirac constraint

formalism is that it allows us to derive a complete gauge generator of any theory, through de-

riving all first class constraints. Here we will extend this discussion to include the situation in

which there are also primary second class constraints so that one can consider the light front
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formulation of Yang-Mills theory.

In the presence of primary second class constraints θα and first class constraints φAi (where i

denotes the generation of the constraint-primary is i = 1, secondary is i = 2 etc.), then suppose

we have the PB algebra {
θα, θβ

}
= ∆αβ, (A.1)

as well as

{φA, φB} = CC
ABφC + Cα

ABθα (A.2)

and

{φA, θα} = Cβ
Aαθβ + +CB

AαφB. (A.3)

We then can define the DB

{M,N}∗ = {M,N} − {M, θα}∆−1
αβ

{
θβ,N

}
. (A.4)

Upon using the constraints θα and φAi , the canonical Hamiltonian HC can be defined

HC = piq̇i − L(qi, q̇i); (A.5)

this leads to the extended Hamiltonian

HE = HC +
∑
α

Uαθα +
∑

Ai

VAiφAi . (A.6)

If the sum over Ai in eq. (A.6) is restricted to having i = 1 (i.e., just the primary constraints)

then HE reduces to HT , the total Hamiltonian.

We now can consider the generator

G =
∑

Ai

µAiφAi (A.7)
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of “gauge” transformations that leave the extended action S E invariant, that is the change in-

duced by G on a dynamical quantity f is given by

δ f = { f ,G} . (A.8)

The change in the extended action is given by

δS E =

∫
dt δ

(
piq̇i − HE

)
∫

dt
[
δpiq̇i + piδq̇i − {HC,G} (A.9)

−
∑
α

(δUαθα + Uα {θα,G})

−
∑

Ai

(
δVAiφAi + VAi

{
φAi ,G

})
.

But now into eq. (A.9) we can substitute

δpiq̇i + piδq̇i = −
∂G
∂qi q̇

i +
d
dt

(
pi
∂G
∂pi

)
− ṗi ∂G

∂pi
(A.10)

=
d
dt

(
pi
∂G
∂pi
−G

)
+

[(
∂

∂t
+ U̇α

∂

∂Uα

+ V̇Ai

∂

∂VAi

)
µB j

]
φB j

yielding

δS E =

∫
dt

[ ( D
Dt
µBi

)
φBi + UαµAi

(
DB j

Ai
φB j + Dγ

Ai
θγ

)
(A.11)

−
∑
α

(
δUαθα − UαµB j

(
Cγ

B jα
θγ + CC

B jα
φC

))
−

∑
Ai

(
δVAiφAi − VAiµB j

(
CCk

B jAi
φCk + Cγ

B jAi
θγ

)) ]
.

In eq. (A.11), we have dropped all surface terms, defined

D
Dt

=
∂

∂t
+ U̇α

∂

∂Uα

+ V̇Ai

∂

∂VAi

(A.12)



2.5. Appendix 43

and have used the fact the φAi are all first class so that

{
φAi ,HC

}
= DB j

Ai
φB j + D j

Ai
θ j. (A.13)

In eq. (11), we can arrange for δS E = 0 by choosing δUα so that all coefficients of θα vanish,

and by having the µBi satisfy a differential equation that answers that the coefficients of φBi sum

to zero. Upon having [19,23] δVAi = VAi = 0(i ≥ 2), S E reduces to S T , the total action, and G

becomes the generator of gauge transformations that leave

S C =

∫
dtL(qi, q̇i) (A.14)

invariant, as S T and S C have the same dynamical content.

We can replace eq. (A.8) with

δ f = { f ,G}∗ (A.15)

as by eq. (A.3), { f ,G}∗ and { f ,G} differ by an expression that is at least linear in θα; in eq. (A.11)

this term can be absorbed into δUα. The advantage of using the DB over the PB in finding δ f

is that we can set θα = 0 at the outset of any calculation.

It would be interesting to see how the approach of ref. [27] to finding gauge symmetries could

be adapted to the case in which second class constraints are present.
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Chapter 3

Quantizing the Palatini Action using a

Transverse Traceless Propagator

3.1 Introduction

It has been shown with both Yang-Mills (YM) action and the Einstein-Hilbert (EH) action for

gravity, that by using the first order form of the action, there is only a single vertex arising from

the classical action and this is independent of momentum [1, 2, 3, 4, 5]. This simplifies the

computation of loop diagrams, even though the number of propagating fields is increased.

It has also been shown that imposing both the conditions of tracelessness and transversality on

the spin two propagator associated with the EH action requires use of a non-quadratic gauge

fixing Lagrangian [6, 7, 8, 9, 10]. Such gauge fixing results in the need to consider the contri-

butions of two complex Fermionic ghosts and one real Bosonic ghost analogous to the usual

complex “Faddeev-Popov” ghosts.

47
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In this chapter of my thesis we consider how the full first order Einstein-Hilbert (1EH) action

can be used in conjunction with the transverse-traceless (TT) gauge. We will show that the

spin two propagator is TT only if the gauge fixing parameter α is allowed to vanish. This

limit for α results in a well defined set of Feynman rules with two propagating Bosonic fields,

two complex Fermionic ghost fields, one real Bosonic ghost, three three-point vertices for the

Bosonic fields and four ghost vertices.

3.2 The TT gauge for the 1EH Action

The Einstein-Hilbert action in first order (Palatini) form

S =

∫
dd x
√
−ggµνRµν(Γ) (3.1)

when written in terms of the variables

hµν =
√
−ggµν (3.2a)

and

Gλ
µν = Γλµν −

1
2

(
δλµΓ

σ
νσ + δλνΓ

σ
µσ

)
(3.2b)

becomes

S =

∫
dd xhµν

(
Gλ
µν ,λ +

1
d − 1

Gλ
λµG

σ
σν −Gλ

µσGσ
νλ

)
. (3.3)

This “Palatini” form of the action facilitates a canonical analysis of S [11]. The diffeomorphism

invariance of S in Eq. (3.1) leads to the local gauge transformations

δhµν = hµλ∂λθν + hνλ∂λθµ − ∂λ(hµνθλ) (3.4a)
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δGλ
µν = −∂2

µνθ
λ +

1
2

(
δλµ∂ν + δλν∂µ

)
∂ρθ

ρ − θρ∂ρGλ
µν

+ Gρ
µν∂ρθ

λ −
(
Gλ
µρ∂ν + Gλ

νρ∂µ
)
θρ (3.4b)

The term bilinear in h and G in Eq. (3.3) does not lead to a well defined propagator, irrespec-

tive of the choice of gauge fixing. However, upon making an expansion of hµν about a flat

background

hµν = ηµν + φµν(x) (ηµν = diag(+ − − − . . . )) (3.5)

the term bilinear in φ and G arising from Eq. (3.3) does have a well defined propagator once an

appropriate gauge fixing is chosen. These bilinear terms are the first order form of the action

for a spin two field [11].

In order to have a TT propagator for the spin two field we must consider a general gauge fixing

Lagrangian that is not quadratic [6]. If the classical Lagrange density appearing in Eq. (3.3) is

L(hµν,Gλ
µν), then this entails inserting into the generating functional

Z[ jµν, J
µν
λ ] =

∫
DφµνDGλ

µν exp i
∫

dd x
(
L(η + φ,G) + jµνφµν + Jµνλ Gλ

µν

)
(3.6)

two factors of “1”

1 =

∫
Dθi δ

(
F˜ i(φ + A˜θi) − pi

)
det( F˜ iA˜); (i = 1, 2) (3.7)

where φ = (φµν,Gλ
µν). The gauge transformations of Eq. (3.4) are of the form

δiφ = A˜θi (3.8)

and the gauge fixing conditions are

F˜ iφ = 0. (3.9)
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Insertion of a third factor of “1” that is of the form

1 =
1

(πα)d

∫
Dp1Dp2 exp

−i
α

∫
dd x(pT

1 N˜ p2) det( N˜ ) (3.10)

into Eq. (3.6) leads to

Z[ j] =
∫
Dφ det( F˜1A˜) det( F˜2A˜) det( N˜ /πα)

∫
Dθ1Dθ2

exp i
∫

dd x
{
L(φ) − 1

α

[
F˜1(φ + A˜θ1)

]T
N˜

[
F˜2(φ + A˜θ2)

]
+ jT · φ

}
; (3.11)

where j ≡ ( jµν, J
µν
λ ).

Since the gauge transformation of Eq. (3.8) leaves L(φ), Dφ and det( F˜ iA˜) invariant [12, 13],

we can make the shift

φ→ φ − A˜(θ+ + εθ−) (3.12)

in Eq. (3.11) (θ± ≡ (θ1 ± θ2)/2) leaving us with

Z[ j] =

∫
DφDθ− det( F˜1A˜) det( F˜2A˜) det( N˜ )

exp i
∫

dd x
{
L(φ) −

1
α

[
F˜1(φ + A˜(1 − ε)θ−)

]T

N˜
[

F˜2(φ − A˜(1 + ε)θ−)
]

+ jT · φ
}
. (3.13)

A factor 1/(πα)d/2
∫
Dθ+ has been absorbed into the normalization of Z. We now choose the

gauge fixing to be

F˜ iφ = gi∂ρφ
µ
µ + ∂µφ

µ
ρ (3.14a)

and

N˜ = ηµν/2. (3.14b)
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The gauge fixing contribution of Eq. (3.13) becomes

[
F˜1(φ + A˜(1 − ε)θ−)

]T
N˜

[
F˜2(φ − A˜(1 + ε)θ−)

]
= ( F˜1φ)T N˜ ( F˜2φ) + (ε2 − 1)

{[
θT
− +

1
2
φT

(
−(1 + ε) F˜ T

1 N˜ F˜2 + (1 − ε) F˜ T
2 N˜ F˜1

)
A˜(

(A˜T F˜ T
1 N˜ F˜2A˜)−1/(ε2 − 1)

)] [
A˜T F˜ T

1 N˜ F˜2A˜
]

[
θ− +

1
2

(
(A˜T F˜ T

1 N˜ F˜2A˜)−1/(ε2 − 1)
)

A˜T
(
−(1 + ε) F˜ T

2 N˜ F˜1 + (1 − ε) F˜ T
1 N˜ F˜2

)
φ

]}
−

1
4(ε2 − 1)

φT
(
−(1 + ε) F˜ T

1 N˜ F˜2 + (1 − ε) F˜ T
2 N˜ F˜1

)
A˜(A˜T F˜ T

1 N˜ F˜2A˜)−1A˜T

(
−(1 + ε) F˜ T

2 N˜ F˜1 + (1 − ε) F˜ T
1 N˜ F˜2

)
φ (3.15)

(In Eq. (3.15) we use the convention ∂T = −∂.)

Provided ε , ±1, the shift in θ−

θ− → θ− −
1
2

(
(A˜T F˜ T

1 N˜ F˜2A˜)−1/(ε2 − 1)
)

A˜T
(
−(1 + ε) F˜ T

2 N˜ F˜1 + (1 − ε) F˜ T
1 N˜ F˜2

)
φ (3.16)

can be made to diagonalize Eq. (3.15) in θ− and φ. In Refs. [6, 7, 8] and eq. (1.53) above, ε =

±1 and a shift in φ was used to diagonalize the gauge fixing, but as such a shift is not a gauge

transformation, L(φ) is not invariant under this transformation and new vertices involving φ

and θ− must be introduced. We take ε , ±1 in order to be able to make a shift in θ− that

eliminates mixed propagators for these fields without introducing extra vertices.

Together Eqs. (3.15) and (3.16) result in

Z[ j] =

∫
DφDθ− det( F˜1A˜) det( F˜2A˜) det( N˜ )

exp i
∫

dd x
{
L(φ) −

1
α

( F˜1φ)T N˜ ( F˜2φ) −
1

α(ε2 − 1)
θT
−(A˜T F˜ T

1 N˜ F˜2A˜)θ−

+
1

4α(ε2 − 1)
φT

(
−(1 + ε) F˜ T

1 N˜ F˜2 + (1 − ε) F˜ T
2 N˜ F˜1

)
A˜(A˜T F˜ T

1 N˜ F˜2A˜)−1

A˜T
(
−(1 + ε) F˜ T

2 N˜ F˜1 + (1 − ε) F˜ T
1 N˜ F˜2

)
φ + jT · φ

}
. (3.17)
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The integral over θ− can now be evaluated in Eq. (3.17); it results in a contribution

det −1/2( F˜1A˜) det −1/2( N˜ ) det −1/2( F˜2A˜). (3.18)

We now treat the last term in Eq. (3.17) as an interaction term. Due to its structure, the two

fields φ that occur explicitly (A˜ also is φ dependent on account of Eq. (3.4)) are contracted

with a propagator for φµν and a factor of X˜ where

Xµν,λσ ≡

(
−(1 + ε) F˜ T

2 N˜ F˜1 + (1 − ε) F˜ T
1 N˜ F˜2

)
µν,λσ

=
1
2

(g1 − g2)
(
∂µ∂νηλσ − ηµν∂λ∂σ

)
+ ε

[
g1g2ηµνηλσ∂

2 +
g1 + g2

2

(
∂µ∂νηλσ + ηµν∂λ∂σ

)
+

1
4

(
∂µ∂ληνσ + ∂ν∂ληµσ + ∂µ∂σηνλ + ∂ν∂σηµλ

)]
(3.19)

by Eq. (3.14).

We know from Refs. [6, 7, 8] and eq. (1.59) above that as α → 0, the propagator for the field

φµν that comes from L(φ) − 1
α
( F˜1φ)T N˜ ( F˜2φ) is transverse and traceless in the limit α → 0

provided g1 , g2. Only terms of order α are not transverse and traceless. Thus, on account

of the structure of Eq. (3.19), the contribution of the vertex coming from the last term in Eq.

(3.17) vanishes as α→ 0, even though this vertex is proportional to 1/α. There is one exception

to this; when a sequence of these vertices lies in a ring, then a finite contribution arises in the

limit α→ 0. To see this in more detail, write this last term in Eq. (3.17) as

1
α
φTV˜φ =

1
α
φT(X˜ TA˜)

(A˜T F˜ T
1 N˜ F˜2A˜)−1

4(ε2 − 1)
A˜TX˜φ. (3.20)

A ring in which a sequence of these vertices occurs results in a contribution proportional to

Tr
{[

1
α

X˜ TA˜(A˜T F˜ T
1 N˜ F˜2A˜)−1A˜TX˜

]
D˜

[
1
α

X˜ TA˜(A˜T F˜ T
1 N˜ F˜2A˜)−1A˜TX˜

]
D˜

. . .
[

1
α

X˜ TA˜(A˜T F˜ T
1 N˜ F˜2A˜)−1A˜TX˜

]
D˜
}
, (3.21)
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where D˜ is the propagator of φ. From Eq. (3.19) it is apparent that since when α → 0 D˜ is

transverse and traceless, then X˜ D˜ is of order α; since we have a factor of 1/α for each factor of

X˜ D˜ on account of these vertices occurring in a ring, we can let

lim
α→0

1
α

X˜ D˜ = X˜ D˜ (0). (3.22)

Furthermore, a contribution of a closed loop of these vertices can be written as

det −1/2
[
X˜ TA˜(A˜T F˜ T

1 N˜ F˜2A˜)−1A˜TX˜ D˜ (0)
]

= det 1/2( F˜1A˜) det 1/2( N˜ ) det 1/2( F˜2A˜) det −1/2(A˜TX˜ D˜ (0)X˜ TA˜). (3.23)

Together Eqs. (3.18) and (3.23) reduce Eq. (3.17) to

Z[ j] = lim
α→0

∫
Dφ det( F˜1A˜) det( N˜ ) det( F˜2A˜) det −1/2(A˜TX˜ D˜ (0)X˜ TA˜)

exp i
∫

dd x
{
L(φ) −

1
α

( F˜1φ)T N˜ ( F˜2φ) + jT · φ

}
(3.24)

provided g1 , g2. The functional determinants in Eq. (3.24) can be exponentiated using

“ghost” fields; det( F˜ iA˜) (i = 1, 2) using complex Fermionic “Faddeev-Popov” ghosts ci [14, 15,

16, 17], det( N˜ ) by a complex Fermionic Nielsen-Kalosh ghost [18, 19] and det −1/2(A˜TX˜ D˜ (0)A˜)

by a real Bosonic ghost ζ. By Eq. (3.4a), it follows that

(A˜θ)µν =
[
∂µηνρ + ∂νηµρ − ∂ρηµν +

(
φµ

σ∂σηνρ + φν
σ∂σηµρ + ∂ρφµν

)]
θρ. (3.25)

Using Eqs. (3.19) and (3.25) and the propagator for φ given in Ref [6] we find that the contri-

bution that is bilinear in the ghost ζis given by

4p2ζµ
{
ε2 p2ηµν +

[(
g1g2(d − 2)2 − (g1 + g2)(d − 2)

)
(ε2 − 1) − 1

]
pµpν

}
ζν (3.26)

which becomes

4p4ε2ζµη
µνζν. (3.27)
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when

g1 = −g2 =
1

(d − 2)
√

1 − ε2
. (3.28)

Similarly, the vertex for φµν(p) – ζα(q) – ζβ(r) comes from

1
2

{[
(d − 2)g1(ε − 1)2 + (d − 2)g2((ε + 1)2 − 2

]
qµqα

(
pβqν + rβqν − 2qβrν

)
+ ε2q2qµ

[
2rνηαβ − pβηαν + rβηαν

]
+ q2

(
2rνqαηµβ − pβqαηµν − rβqαηµν

) [
g1(ε + 1)2 + g2(ε − 1)2 − 2g1g2(d − 1)(ε + 1)2

]
+ ε2q2ηµν

(
2rνqβ − pβqν − rβqν

)}
+ (µ↔ ν) + (α↔ β; q↔ r). (3.29)

Finally, a vertex for φµ1ν1(p) – φµ2ν2(q) – ζα(r) – ζβ(s) can also be worked out. The vertices φ –

φ – ζ – ζ and φ – ζ – ζ are both quartic in the external momenta.

The two complex “Faddeev-Popov” ghosts c1 and c2 and the real Bosonic ghost ζ reduce to a

single complex Fermionic Faddeev-Popov ghost c = c1 + ic2 if we deal with a quadratic gauge

fixing Lagrangian when F˜1 = F˜2.

If we now define Mµν
λ
πτ
σ (h) by the equation

hµν
(

1
d − 1

Gλ
λµG

σ
σν −Gλ

σµG
σ
λν

)
=

1
2

Mµν
λ
πτ
σ (h)Gλ

µνG
σ
πτ (3.30)

then the shift

Gλ
µν → Gλ

µν + M−1λ
µν
σ
πτ(η) φπτ,σ (3.31)

in L(φ) in Eq. (3.17) leads to

L(φ) = −
1
2
φ
µν
,λ M−1λ

µν
σ
πτ(η) φπτ,σ +

1
2

Gλ
µνM

µν
λ
πτ
σ (η)Gσ

πτ

+
1
2

(
Gλ
µν + φ

αβ
,ξ M−1ξ

αβ
λ
µν(η)

)
Mµν

λ
πτ
σ (φ)

(
Gσ
πτ + M−1σ

πτ
ζ
γδ(η)φγδ,ζ

)
(3.32)
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so that off diagonal propagators φ−G are eliminated. However, two new momentum dependent

vertices now arise. They are φ − φ − φ and φ − φ −G.

With the gauge fixing of Eq. (3.14) we find from Ref. [6] that the propagator for the field Gλ
µν

is

λ
µν

ρ
πτ =

1
4
ηλρ

(
ηµτηνπ + ηµπηντ −

2
d − 2

ηµνηπτ

)
−

1
4

(
δλτδ

ρ
µηνπ + δλτδ

ρ
νηµπ + δλπδ

ρ
νηµτ + δλπδ

ρ
µηντ

)
(3.33a)

The propagator for φµν is [6]

µ ν λσ
k =

1
k2

{
ηµληνσ + ηµσηνλ − 2

(g1 − g2)2 + 2(g1 + 1)(g2 + 1)α
∆

ηµνηλσ

+ (α − 1)
1
k2

[
kµkληνσ + (µ↔ ν) + (λ↔ σ)

]
+ 2

(g2 − g1)2 + [4(g1 + 1)(g2 + 1) − g2 − g1 − 2]α
∆

1
k2

[
kµkνηλσ + kλkσηµν

]
+

1
∆

[
4α

[
(g1 + g2)(d − 4) + (2g1g2 + 1)(d − 3) −

(
g2

1 + g2
2

)
(d − 1)

]
+ 2(d − 2)

[
(g1 − g2)2 − α2(4(g1 + 1)(g2 + 1) − 1)

]] 1
k4 kµkνkλkσ

}
, (3.33b)

where ∆ = (d − 1)(g1 − g2)2 + 2(d − 2)(g1 + 1)(g2 + 1)α.

When α→ 0 (g1 , g2) this becomes the transverse-traceless propagator.

For the real fields ci we have

µ ν
k = D(i)

µν =

(d − 2)gikµkν
k2[(d − 2)gi − 1]

− ηµν

k2 . (3.33c)
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The vertices are given by

µν, p

i, q, α

j, r, β

=
δi j

4

[
−pβqνηµα − rβqνηµα − gi pβqαηµν

− girβqαηµν + 2girνqαηµβ + (q, α)↔ (r, β)
]

+ µ↔ ν(3.34a)

µν

αβ
λ

γδ
σ

=
1
8


δβµδδνδαλδγσd − 1

− δβµδ
δ
νδ
α
σδ

γ
λ + µ↔ ν

 + α↔ β

 + γ ↔ δ


+ (λ, α, β)←→ (σ, γ, δ) (3.34b)

γδ
σ p

q µν

r αβ

=
irθ
4

{[(
1

d − 1
δγµδ

δ
σD

θ
αβ
ρ
νρ − δ

γ
µD

θ
αβ
δ
νσ + µ↔ ν

)
+ α↔ β

]
+ γ ↔ δ

}

+ (q, α, β)←→ (r, µ, ν) (3.34c)

µν p

q αβ

r γδ

=
qκrθ

8

{[(
Dκ

αβ
π
µσD

θ
γδ
σ
νπ −

1
d − 1

Dκ
αβ
σ
µσD

θ
γδ
π
νπ + µ↔ ν

)
+ α↔ β

]
+ γ ↔ δ

}

+ six permutations of (p, µ, ν) (q, α, β) (r, γ, δ) (3.34d)

If g1 = g2, we cannot recover the TT propagator from Eq. (3.33b) even if α→ 0 [6].

For the Bosonic ghost ζµ we have a propagator and vertices that follow from Eqs. (3.27) and

(3.28).

The arguments used in ref. [12, 13] can be used to show that when using a non-quadratic gauge

fixing Lagrangian, physical results are independent of the gauge choice.
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Beginning with the insertion of Eq. (3.7) into Eq. (3.6), we have

Z[ j] =

∫
Dφ

∫
Dθ1Dθ2 exp i

∫
dd x

[
L(φ) + j · φ

]
δ( F˜1(φ + A˜θ1) − p1)δ( F˜2(φ + A˜θ2) − p2)

det( F˜1A˜) det( F˜2A˜). (3.35)

We can now insert into this equation a further factor of “1”

1 =

∫
D~ωδ( F˜3(φ + A˜ω) − ~q) det( F˜3A˜) (3.36)

and then by interchanging ω and θ1, and p1 and q we see that F˜1 and F˜3 are interchanged

without altering Z[ j], demonstrating that Z is independent of the gauge fixing condition.

3.3 Discussion

In this Chapter we considered how the transverse-traceless(TT) gauge could be applied on

the first order Einstein-Hilbert(1EH) action. We modified the ordinary Faddeev-Popov gauge-

fixing procedure and introduced two gauge-fixing conditions at same time to allow gravition

propagator to be transverse and traceless at same time. We derived the resulting action and as-

sociated Feynman rules under the transverse-traceless condition. There are now two Fermionic

and one Bosonic ghost fields.

It would be interesting to derive a set of WTST and BRST identities associated with the gauge

transformation of Eq. (3.4) and the gauge choices of Eq. (3.14).
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Chapter 4

Renormalization Scheme Ambiguities and

Multiple Couplings

4.1 Introduction

In order to excise divergences arising in the perturbative evaluation of physical quantities using

quantum field theory, it is necessary to perform a subtraction to “renormalize” the parameters

that characterize the theory1. Ambiguities in perturbative results arise both from the intro-

duction of an unphysical scale parameter µ and from the possibility of performing a finite

renormalization in addition to what is required to eliminate the divergence. The requirement

that the exact expression for physical quantities be unambiguous leads to the renormalization

group (RG) equations [2-4].

The renormalization scheme (RS) ambiguities when one uses a mass independent RS [5,6] in

1Analytic continuation can be used to avoid explicit occurrence of divergences [1].

60
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theories with a single coupling constant a can be parameterized by the coefficients ci(i ≥ 2)

of the RG β-function that arise beyond two loop order, with the one and two loop coefficients

being RS invariant [7]. It is possible to find a function Bi(a, ck) that shows how this coupling

a depends on these coefficients ci [8]. Furthermore, it is possible to use the RG equation asso-

ciated with µ to sum these terms which in perturbation theory explicitly depend on µ through

ln µ so that this explicit dependence of a physical quantity R on µ cancels against implicit

dependence on µ through a(µ) [9-11].

In this chapter, I extend these considerations to deal with the situation in which there are two

coupling constants in a massless theory. It turns out there are significant differences when one

goes from one to two couplings. I first review how when using mass independent renormaliza-

tion the β-functions associated with these couplings are RS dependent at two loop order and

beyond. This is unlike the situation in which there is only one coupling where at two loop order

the β-function is RS independent. (This has been noted in ref. [12] and again in ref. [19].)

A second feature of a theory in which there are two couplings is that, unlike the situation in

which there is but one coupling, there is no RS in which the β-functions can be terminated

beyond two loop order. When there is only one coupling, the β-function receives only one and

two loop contributions when the ’t Hooft [13] RS is used.

At N loop order the β-functions in a model with two couplings involve 2(N + 2) parameters.

We show how the RS used can be characterized by 2(N + 1) of these parameters; in general the

two other parameters are dependent on these 2(N + 1) parameters. This motivates developing

a way of characterizing a RS by use of parameters that arise in the expansion of the coupling

in one RS in terms of the coupling in another RS.
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The RS dependence of perturbative expressions for a physical quantity R is considered when

there are two couplings. It is demonstrated how R is independent of µ when RG summation is

performed and once this is done, how R depends on parameters that characterize the change in

RS.

It is shown that when there are either one or two coupling constants, a RS can be chosen so that

the perturbative expansion for R terminates and the effect of all higher loop effects is absorbed

into the behavior of the running coupling.

In the next section we study some features of RS dependence when there are five couplings.

By way of contrast, the analogous results when there are two couplings and five couplings

are presented. There are qualitative differences in the RS dependence of models with one and

models with two or five couplings.

We wish to emphasize that we are exclusively using mass independent renormalization schemes.

When using a mass dependent RS, there are non-trivial differences in the RS ambiguities in the

theory [26,27].

4.2 Renormalization Scheme Dependence With One Coupling

Quantum chromodynamics (QCD) is characterized by a single couplant a. When using the

notation of ref. [8], the dependency of a on the renormalization scale parameter µ is given by

µ
da
dµ

= β(a)

= −ba2
(
1 + ca + c2a2 + . . .

)
(4.1)
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when using a mass independent renormalization scheme [5,6].

If a finite renormalization is performed [12], then

a = a + x2a2 + x3a3 + . . . (4.2)

obeys an equation like (4.1). We find that since

µ
da
dµ

= β(a)
(
1 + 2x2a + 3x3a2 + . . .

)
(4.3a)

as well as

= −b
(
a + x2a2 + x3a3 + . . .

)2 [
1 + c

(
a + x2a2 + . . .

)
(4.3b)

+ c2

(
a + x2a2 + . . .

)2
+ . . .

]

then by eqs. (4.3a, 4.3b) we find that [23]

b = b (4.4a)

c = c (4.4b)

c2 = c2−cx2 + x3 − x2
2 (4.4c)

c3 = c3 − 3cx2
2+2 (c2 − 2c2) x2 + 2x4 − 2x2x3 (4.4d)

c4 = c4 − 2x4x2 − x3
2+c

(
x4 − x3

2 − 6x2x3

)
+ 3x3c2 − 4x3c2 (4.4e)

− 6x2
2c2 + 2x2c3 − 5x2c3 + 3x5

etc.
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From eqs. (4.4a-4.4e) we find

x3 = c2 − c2 + cx2 + x2
2 (4.5a)

x4 =
1
2

[
c3 − c3 + (6c2 − 4c2) x2 + 5cx2

2 + 2x3
2

]
(4.5b)

x5 =
1
3

{
c4 − c4 + (5x2c3 − 2x2c3) + (4c2 − 3c2 + 6x2c) (4.5c)(
c2 − c2 + cx2 + x2

2

)
+

(
c2 − c2 + cx2 + x2

2

)2
+ 6x2

2c2

+ x3
2c + (2x2 − c)

[1
2

(c3 − c3) + x2 (3c2 − 2c2)

+
5
2

cx2
2 + x3

2

]}
etc.

We see that the renormalization of a in eq. (4.2) leads to a change in ci(i ≥ 2) that fix xi(i ≥ 3)

with x2 not determined. In ref. [23,24], some restrictions on the transformation of eq. (4.2) are

considered.

The fact that a RS is characterized by ci means that a itself is dependent on ci. If

da
dci

= Bi(a, ck) (4.6)

then the function Bi can be determined by the consistency condition[
µ
∂

∂µ
,
∂

∂ci

]
a = 0 (4.7)

which leads to [8]

Bi(a, ck) = −bβ(a)
∫ a

0
dx

xi+2

β2(x)

≈
ai+1

i − 1

[
1 +

(
(−i + 2)c

i

)
a +

(
(i2 − 3i + 2)c2(−i2 + 3i)c2

(i + 1)i

)
a2 + . . .

]
. (4.8)

If now

µ
d

dµ
a (µ, ci) = 0 =

(
µ
∂

∂µ
+ β(a)

∂

∂a

) (
a (µ, ci) + (σ21`) a2 (µ, ci) + . . .

) (
` ≡ b ln

(
µ

µ

))
(4.9)
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then we have

σ21 = 1, σ31 = c, σ32 = 1, σ41 = c2, σ42 =
5
2

c, σ43 = 1 (4.10)

σ51 = c3, σ52 = 3c2 +
3
2

c2, σ53 =
13
3

c, σ54 = 1

σ61 = c4, σ62 =
7
2

(cc2 + c3) , σ63 =
1
6

(
35c2 + 36c2

)
, σ64 =

77
12

c, σ65 = 1

σ71 = c5, σ72 = 2
(
c2

2 + 2cc3 + 2c4

)
, σ73 =

1
6

(
15c2 + 92cc2 + 48c3

)
,

σ74 =
5
6

(
17c2 + 12c2

)
, σ75 =

87
10

c, σ76 = 1.

Knowing these coefficients σmn gives a(µ̄, ci) in terms of a(µ, ci); this amounts to having a

perturbative solution of eq. (4.1) [28]. If one defines S n(a) =
∑∞

k=0 σk+n+1,kak+n+1 (n=0,1,2...),

one can solve sequentially for S n using eq. (4.9).

Similarly, if

a (µ, ck) = a (µ, ck) + λ2 (ck, ck) a2 (µ, ck) + λ3 (ck, ck) a3 (µ, ck) + . . . (4.11)

with λi(ck, ck) = 0, then the equation

d
dci

a (µ, ck) = 0 =

(
∂

∂ci
+ Bi (a, ck)

∂

∂a

) (
a(µ, ck) + λ2 (ck, ck) a2 (µ, ck) + . . .

)
(4.12)

results in

λ2 = (c2−c2), λ3 =
1
2

(c3−c3), λ4 =
1
6

(
c2

2 − c2
2

)
+

3
2

(c2−c2)−
c
6

(c3 − c3)+
1
3

(c4−c4) (4.13)

etc.

Eqs. (4.11-4.13) is essentially a series solution of eq. (4.6) [28].

If in eq. (4.2) we eliminate xn(n ≥ 3) in favour of x2, ci, ci(i ≥ 2) using eq. (4.5) and then set

ci = ci, we end up with the series of eq. (4.9) for a(µ, ci) provided x2 = b ln
(
µ

µ

)
[11]. This

shows that x2 can be identified with b ln
(
µ

µ

)
as postulated in ref. [8].
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If now a physical quantity, such as the cross section Re+e− for e+e− −→ (hadrons), is expanded

in the form

R =

∞∑
n=0

An(a)Ln (4.14)

where L = b ln µ

Q and [9, 10]

An(a) =

∞∑
k=0

Tn+k,nan+k+1, (4.15)

then from the RG equation (
µ
∂

∂µ
+ β(a)

∂

∂a

)
R = 0

it follows that

An(a) = −
β(a)
bn

d
da

An−1(a) (4.16)

so that since by eq. (4.1) [8]

ln
(
µ

Λ

)
=

∫ a(ln µ
Λ )

0

dx
β(x)

+

∫ ∞

0

dx
bx2(1 + cx)

(4.17)

we find from eqs. (4.14-4.17)

R = A0

(
a
(
ln

Q
Λ

))
(4.18)

and the explicit and implicit dependence of R on the unphysical scale parameter µ has cancelled

[10].

By eqs. (4.15, 4.18) we see that

R =

∞∑
n=0

Tn

(
a
(
ln

Q
Λ

))n+1 (
Tn ≡ Tn,0

)
. (4.19)

so that from the requirement that

(
∂

∂ci
+ Bi(a)

∂

∂a

)
R = 0 (4.20)
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we find that

T0 = τ0, T1 = τ1, T2 = −c2 + τ2, T3 = −2c2τ1 −
1
2

c3 + τ3 (4.21)

T4 = −
1
3

c4 −
c3

2

(
−

1
3

c + 2τi

)
+

4
3

c2
2 − 3c2τ2 + τ4

etc.

where the τi are constants of integration and hence are RS invariants [9, 10]. One RS of

particular interest is the one in which Ti = 0(i ≥ 2) so that R is represented by a perturbative

series that terminates. A second interesting RS due to ’t Hooft has ci = 0(i ≥ 2) [13, 14], so

that the β function is a finite series in the coupling.

We will now see how the results obtained in this section are modified when one considers

models in which there are two coupling constants. Again, we will deal with massless theories

and employ mass independent renormalization schemes.

4.3 Renormalization Scheme Dependence With Two Couplings

We now will consider the consequences of having two couplings ga(a = 1, 2) in a model with

the β-functions

µ
dga

dµ
= βa(g1, g2) =

∞∑
i=2

i∑
j=0

ca
i j(g1)i− j(g2) j (4.22)

in place of eq. (4.1). In order to compute ca
i j, a calculation of diagrams involving i-1 loops is

required. For example, in the limit of the Standard Model in which there is only the S U(2)

gauge field and the Higgs doublet, with the gauge coupling g and the Higgs self coupling λ,
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the coefficient ca
i j are to two loop order [15] in the MS RS if g2 = 16π2g1 and λ = 16π2g2,

c1
20 = −

19
3
, c1

30 =
35
3
, c2

20 =
27
4
, c2

21 = −9, c2
22 = 4 (4.23)

c2
30 =

915
8
, c2

31 = −
73
8
, c2

32 = 18, c2
33 = −

26
3
.

The analogue to eq. (4.2) for a finite renormalization of ga is

ga = ga +

∞∑
i=2

i∑
j=0

xa
i j(g1)i− j(g2) j. (4.24)

In analogy with eqs. (4.3a) and (4.3b) we then see that

µ
dga

dµ
= βa(gb) +

∞∑
i=2

i∑
j=0

xa
i j

[
(i − j)gi− j−1

1 g j
2β1(gb) + jgi− j

1 g j−1
2 β2(gb)

]
(4.25a)

and

µ
dga

dµ
=

∞∑
i=2

i∑
j=0

ca
i j

g1 +

∞∑
k=2

k∑
`=0

x1
k`g

k−`
1 g`2

i− j g2 +

∞∑
m=2

m∑
n=0

x2
mngm−n

1 gn
2

 j

. (4.25b)

Upon comparing terms in eqs. (4.25a) and (4.25b) that are quadratic in the couplings (i.e., that

are of one loop order) we find that much like eq. (4.4a)

ca
2 j = ca

2 j ( j = 0, 1, 2) (4.26)

and so one loop contributions to βa(gb) are RS independent. However, terms in eqs. (4.25a)

and (4.25b) that are cubic in the couplings (i.e., that are at two loop order) show that at order

g3
2, g3

2, g2
1g2 and g1g2

2 respectively [19]

ca
30 = ca

30 + 2xa
20c1

20 − 2ca
20x1

20 + xa
21c2

20 − ca
21x2

20 (4.27a)

ca
33 = ca

33 + 2xa
22c2

22 − 2ca
22x2

22 + xa
21c1

22 − ca
21x1

22 (4.27b)

ca
31 = ca

31 + 2xa
20c1

21 − 2ca
20x1

21 + xa
21

(
c1

20 + c2
21

)
− ca

21

(
x1

20 + x2
21

)
+ 2xa

22c2
20 − 2ca

22x2
20 (4.27c)

ca
32 = ca

32 + 2xa
20c1

22 − 2ca
20x1

22 + xa
21

(
c1

21 + c2
22

)
− ca

21

(
x1

21 + x2
22

)
+ 2xa

22c2
21 − 2ca

22x2
21 (4.27d)
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with a = 1, 2. From eq. (4.27) it is immediately apparent that the two loop contributions to

βa(g1, g2) are RS dependent, unlike what happens when there is one coupling (see. eq. (4.4b))

[12, 19]. However, as there are now eight equations fixing changes in the eight quantities

ca
3i(a = 1, 2; i = 0, 1, 2, 3) in terms of just the six independent coefficients xa

2i(a = 1, 2; i =

0, 1, 2), it is evident that it is in general not possible to vary each of the quantities ca
3i indepen-

dently. Only if the coefficients ca
2i(a = 1, 2; i = 0, 1, 2) were to have special values would it be

possible to find values of xa
2i so that each of the ca

3i equals zero, which would be the analogue

of the ’t Hooft RS when there is one coupling [13,14].

When one goes beyond two loop order, equations much like eq. (4.27) can be found. At N loop

order, ca
N+1,i − ca

N+1,i(a = 1, 2; i = 0 . . .N + 1) is related to xa
N,i(a = 1, 2; i = 0 . . .N) through

2(N +2) equations. Consequently, in general, 2 of the 2(N +2) quantities ca
N+1,i cannot be varied

independently by altering the RS by adjusting only the 2(N + 1) independent parameters xa
N,i.

However, there is the intriguing possibility that for some choice of xa
i, j that either β1(g1, g2) or

β2(g1, g2) vanishes beyond one loop order.

Since not all of the coefficients ca
mn can be varied independently by a change of RS , it is apparent

that these coefficients are no longer suitable for characterizing a RS where there is more than

one coupling. In the next section we show how the coefficients xi in eq. (4.2) (when there is

one coupling) or xa
i j in eq. (4.24) (when there are two couplings), all of which are independent,

can be used to characterize a RS.

RS ambiguities are of practical importance, as is illustrated by the discrepancy between the

calculations presented in refs. [20] and [21]. This is discussed in ref. [22].
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4.4 An Alternate Way to Characterize a Renormalization

Scheme

We begin by considering the case of one coupling a and showing how the parameters xi in

eq. (4.2) can be used to characterize a RS. Suppose that a refers to the coupling in some “base

scheme” such as MS , and the a is the coupling in some other scheme with a and a related by

eq. (4.2). If now

a = a + y2a2
+ y3a3

+ . . . (4.28)

then eqs. (4.2, 4.28) are consistent provided

a = a − x2a2
+

(
2x2

2 − x3

)
a3

+
(
5x2x3 − 5x3

2 − x4

)
a4

+ . . . . (4.29)

It is clear that a depends on xi; from eq. (4.2) we see that

da
dxn

= an (a(xn = 0) = a) (4.30a)

which by eq. (4.29) becomes

da
dxn
≡ Bn(a, xm) =

(
a − x2a2

+
(
2x2

2 − x3

)
a3

+ . . .
)n
. (4.30b)

There are two consistency checks on eq. (4.30b). First of all, we have

da
dxn

= 0 (4.31a)

which by (29) and (30b) leads to

[
∂

∂xn
+

(
a − x2a2

+
(
2x2

2 − x3

)
a3

+ . . .
)n ∂

∂a

] (
a − x2a2

+
(
2x2

2 − x3

)
a3

+ . . .
)

= 0 (4.31b)



4.4. An AlternateWay to Characterize a Renormalization Scheme 71

which can be verified. A second test follows from eq. (4.1)

µ
da
dµ

= −ba2(1 + ca + c2a2 + . . .); (4.32a)

if we eliminate a in eq. (4.32a) by eq. (4.29) and use

µ
da
dµ

= −ba2(1 + c a + c2a2
+ . . .) (4.32b)

we recover eq. (4.4).

We can now employ this approach to characterizing a RS to the situation in which there are

two couplings. In this case, a RS is defined in terms of a “base scheme” in which the couplings

are given by (g1, g2) and the coefficients xa
mn appearing in eq. (4.24). The advantage of this

approach is that all of the xa
mn can be independently varied. We have shown that it is not

possible to independently vary the coefficients ca
i j appearing in the functions βa in eq. (4.22) by

use of eq. (4.24).

We begin by noting that from eq. (4.24), it follows that if

ga = ga +

∞∑
m=2

m∑
n=0

Ya
mng m−n

1 gn
2 (4.33)

then

Ya
2k + xa

2k = 0 (a = 1, 2; k = 0, 1, 2) (4.34)

and

Y1
30 = 2(x1

20)2 + x1
21x2

20 − x1
30; Y2

33 = 2(x2
22)2 + 2x2

21x1
22 − x2

33 (4.35a,b)

Y1
33 = 2x1

22x2
22 + x1

21x1
22 − x1

33; Y2
30 = 2x2

20x1
20 + x2

21x2
20 − x2

30 (4.35c,d)

Y1
31 = 2x1

20x1
21 + x1

21(x1
20 + x2

21) + 2x1
22x2

20 − x1
31; Y2

32 = 2x2
22x2

21 + x2
21(x2

22 + x1
21) + 2x2

20x1
22 − x2

32

(4.35e,f)
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Y1
32 = 2x1

22x2
21 + x1

21(x2
22 + x1

21) + 2x1
20x1

22 − x1
32; Y2

31 = 2x2
20x1

21 + x2
21(x1

20 + x2
21) + 2x2

22x2
20 − x2

31.

(4.35g,h)

etc.

The inversion of series with several variables is discussed in, for example, ref. [18].

It also follows from eq. (4.24) that

dga

dxb
mn
≡ B

a
b;m,n(ga) = δa

bgm−n
1 gn

2 (4.36)

so that, for example

dg1

dx1
21

= g1g2 = g1g2 − x2
20g3

1 −
(
x1

20 + x2
21

)
g2

1g2 (4.37)

−
(
x1

21 + x2
22

)
g1g2

2 − x1
22g3

2 . . .

We now can consider the RS dependence of a physical quantity using the parameters xn when

there is one coupling a and xa
mn when there are two couplings g1, g2.

Again considering R given by eq. (4.19), we take a
(
ln Q

Λ

)
to be the coupling in a “base scheme”

(such as MS ). Under a renormalization such as in eq. (4.2) we must have

d
dxn

R = 0 =

(
∂

∂xn
+ Bn(a, xm)

∂

∂a

) ∞∑
n=0

T n

(
a
(
ln

Q
Λ

))n+1

. (4.38)

In eq. (4.38), T n ≡ T n,0 are the coefficients of an expansion of R in powers of a, a coupling

related to the coupling a through the renormalization of eq. (4.2). Using eq. (4.30b), we find

that for k = 2, 3 . . .

∞∑
n=0

∂T n

∂xk
an+1

+ (n + 1)an
(
a − x2a2

+
(
2x2

2 − x3

)
a3

+ . . .
)k

T n

 = 0. (4.39)

From eq. (4.39) it follows that

∂T 0

∂x2
=
∂T 0

∂x3
=
∂T 0

∂x4
= 0 (4.40a-c)
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∂T 1

∂x2
+ T 0 =

∂T 1

∂x3
=
∂T 1

∂x4
= 0 (4.41a-c)

∂T 2

∂x2
+ 2T 1 − 2x2T 0 =

∂T 2

∂x3
+ T 0 =

∂T 2

∂x4
= 0 (4.42a-c)

∂T 3

∂x2
+ 3T 2 − 4x2T 1 + T 0

(
5x2

2 − 2x3

)
=
∂T 3

∂x3
+ 2T 1 − 3x2T 0 =

∂T 3

∂x4
+ T 0 = 0. (4.43a-c)

Since when xi = 0, a = a and T n = Tn, we see that from eqs. (4.40-4.43) that

T 0 = T0 (4.44a)

T 1 = T1 − x2T0 (4.44b)

T 2 = T2 +
(
−x3 + 2x2

2

)
T0 + (−2x2)T1 (4.44c)

T 3 = T3 +
(
−x4 + 5x2x3 − 5x3

2

)
T0 +

(
−2x3 + 5x2

2

)
T1 − 3x2T2 (4.44d)

etc.

One interesting feature of eq. (4.44) is that x2, x3 . . . can all be selected so that T 1 = T 2 =

T 3 · · · = 0, leaving R given by the single term

R = T0a
(
ln

Q
Λ

)
. (4.45)

In eq. (4.45), a runs according to eq. (4.32b) with b, c, ck given by eq. (4.4) once xk is computed

in terms of Tn from eq. (4.44). As is apparent upon comparing eqs. (4.19,4.45), the solution

for xk is xk = Tk−1
T0

.

If there are two couplings g1, g2 then the general form of R is

R =

∞∑
m=1

m∑
n=0

m−1∑
k=0

Tm,n;kgm−n
1 gn

2Lk (4.46)

where L = ln
(
µ

Q

)
and g1, g1 satisfy eq. (4.22) so that ga = ga

(
ln µ

Λ

)
. Since R is independent of

the unphysical renormalization mass scale µ, then

µ
d

dµ
R =

(
µ
∂

∂µ
+ βa

∂

∂ga

) ∞∑
k=0

Ak(g1, g2)Lk = 0 (4.47)
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where

Ak =

∞∑
m=0

m+k+1∑
n=0

Tm+k+1,n;kgm+k+1−n
1 gn

2. (4.48)

By eqs. (4.47) and (4.22), we find that

Ak+1

(
ga

(
ln
µ

Λ

))
=
−1

k + 1
d

d
(
ln µ

Λ

)Ak

(
ga

(
ln
µ

Λ

))
(4.49)

so that R in eq. (4.46) becomes

R =

∞∑
k=0

(−L)k

k!

 d

d
(
ln µ

Λ

)
k

A0

(
ga

(
µ

Λ

))
= A0

(
ga

(Q
Λ

))
. (4.50)

As in eq. (4.18), all implicit and explicit dependence on µ has cancelled once the RG has been

used to sum the logarithmic contributions to R.

In analogy with eq. (4.38) we now have

dR
dxa

mn
= 0 =

(
∂

∂xa
mn

+ B
b
a;m,n(gb)

∂

∂gb

) ∞∑
k=0

k+1∑
`=0

T k+1,`;0(g1)k+1−`(g2)`. (4.51)

Using eq. (4.36) for B
b
a;m,n, eq. (4.51) becomes (with T̄m,n ≡ T̄m,n;0)

∞∑
k=0

k+1∑
`=0

{
∂T k+1,`

∂xa
mn

(g1)k+1−`(g2)` + T k+1,`

[
B

1
a;m,n(k + 1 − `)(g1)k−`(g2)` (4.52)

+ B
2
a;m,n(`)(g1)k+1−`(g2)`−1

]}
= 0.

From eq. (4.52) it follows

∂T 1`

∂xa
mn

= 0 (` = 0, 1) (4.53)

∂T 20

∂xa
mn

+ T 10
(
δa

1δm2δn0
)

+ T 11
(
δa

2δm2δn0
)

= 0 (4.54a)

∂T 22

∂xa
mn

+ T 11
(
δa

2δm2δn2
)

+ T 10
(
δa

1δm2δn2
)

= 0 (4.54b)

∂T 21

∂xa
mn

+ T 10
(
δa

1δm2δn1
)

+ T 11
(
δa

2δm2δn1
)

= 0 (4.54c)
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etc.

with T k` = Tk` when xa
mn = 0. Eqs. (53, 54) lead to

T 1` = T1` (4.55)

T 20 = T20 − x1
20T10 − x2

20T11 (4.56a)

T 22 = T22 − x2
22T11 − x1

22T10 (4.56b)

T 21 = T21 − x1
21T10 − x2

21T11 (4.56c)

etc.

It is evident that xa
mn can be selected so that T mn(m ≥ 2) are all zero so that R is given by just

two terms

R = T10g1

(
ln

Q
Λ

)
+ T11g2

(
ln

Q
Λ

)
(4.57)

and no higher powers of ga contribute to R. The functions βa(gb) that govern the evolution of

ga with ln Q
Λ

can be found using eq. (4.27) once xa
i j has been determined.

4.5 Renormalization Scheme Ambiguities in the Standard

Model

In its simplest form, the Standard Model of particle physics involves five coupling constants ga,

the SU(3), SU(2) and U(1) gauge couplings as well as the quartic SU(2) scalar self coupling

and the Yukawa coupling of the top quark. As with any renormalizable theory, renormalization

introduces a mass scale µ and these couplings all vary as µ varies in a way dictated by the

renormalizaion group (RG) β-functions.
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µ
dga

dµ
= βa(gb) =

∞∑
k=2

k∑
i1=0

k∑
i2=0

k∑
i3=0

k∑
i4=0

k∑
i5=0

ca
k;i1i2i3i4i5(g1)i1(g2)i2(g3)i3(g4)i4(g5)i5δk−(i1+i2+...+i5).

(4.58)

However, the value of any physical quantity R when computed to finite order in perturbative

theory has explicit dependence on µ. This explicit dependence must be conpensated for by the

implicit dependence through ga(µ); this leads to the RG equation [2-4]

µ
d

dµ
R = (µ

∂

∂µ
+ βa(gb)

∂

∂ga
)R = 0. (4.59)

In addition to the ambiguity in the perturbative value of R resulting from the necessity of

introducing the renormalization mass scale µ, it is possible to make finite renormalizations of

the couplings ga, even when using a mass-dependent renormalization scheme (RS) [5-6], so

that ga is replaced by ga where

ga = ga +

∞∑
k=2

k∑
i1=0

k∑
i2=0

k∑
i3=0

k∑
i4=0

k∑
i5=0

xa
k;i1i2i3i4i5(g1)i1(g2)i2(g3)i3(g4)i4(g5)i5δk−(i1+i2+...+i5). (4.60)

There is an extensive literature dealing with the RS ambiguities (for example refs. [8,10]). We

have extended these considerations to the case of two couplings in the preceeding sections.

We have seen that there are qualitative differences between the RS ambiguities occurring when

there are one and two couplings. When there is one coupling a, the RS ambiguities can be

characterized by the coefficients of the β-function β(a) [8] and a RS can be chosen so that

β(a) receives no contribution beyond two loop order. Furthermore, it is possible to have a RS
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so that R(a) vanishes beyond one-loop order and all higher loop effects serve only to affect

the β-function [16]. This can be implemented after the RG equation (4.59) is used to sum all

logarithmic contribution to R which results in a cancellation between the implicit and explicit

dependence on µ [10].

When there are two couplings, the number of coefficients arising in the perturbative expansion

of βa(gb) is inadequate to fully characterize a RS. It also becomes impossible to choose a

RS when using mass independent renormalization to choose a RS that eliminates all higher

loop contributions to βa(gb), although only the one loop contribution to βa(gb) is RS invariants

[12,19]. However, as in the one coupling case, upon using the RG equation to sum logarithmic

effects, the implicit and explicit dependence on µ cancels in R and it becomes possible to

choose a RS in which higher loop contributions to R vanish with all of the higher loop effects

contributing to βa.

Here we examine the effects of RS ambiguities on the couplings in the Standard Model. We

note that when using modified minimal substraction MS as a RS, then all βa(gb) have been

computed to two loop order [15] while the β-function for the gauge couplings are known to

three loop order [29].

If a β-function β(ga) dictates how ga evolves under change of µ and β(ga) has the same form as

eq. (4.58) with ca
k;i1i2i3i4i5 replacing ca

k;i1i2i3i4i5
, then since both

µ
dga

dµ
= βa(gb(gc)) (4.61)

and
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µ
dga

dµ
=

5∑
c=1

∂ga(gc)
∂gc

βc(gb) (4.62)

where gb(gc) is given by eq. (4.60), we find from eqs. (4.61,4.62) that upon looking at terms

quadratic and cubic in the couplings

ca
2;i1i2i3i4i5 = ca

2;i1i2i3i4i5 (4.63a)

c1
3;30000 = c1

3;30000 + c5
2;20000x1

2;10001 + c4
2;20000x1

2;10010 + c3
2;20000x1

2;10100 + c2
2;20000x1

2;11000 (4.63b)

− c1
2;11000x2

2;20000 − c1
2;10100x3

2;20000 − c1
2;10010x4

2;20000 − c1
2;10001x5

2;20000

and

c1
3;21000 = c1

3;21000 + c5
2;20000x1

2;01001 + c4
2;20000x1

2;01010 + c3
2;20000x1

2;01100 + 2c2
2;20000x1

2;02000 (4.63c)

+ c5
2;11000x1

2;10001 + c4
2;11000x1

2;10010 + c3
2;11000x1

2;10100 + c2
2;11000x1

2;11000 + c1
2;11000x1

2;20000

− 2c1
2;02000x2

2;20000 − c1
2;01100x3

2;20000 − c1
2;01010x4

2;20000 − c1
2;01001x5

2;20000

− c1
2;20000x1

2;11000 − c1
2;11000x2

2;11000 − c1
2;10100x3

2;11000 − c1
2;10010x4

2;11000 − c1
2;10001x5

2;11000.

etc.

As we showed above, if there were but one coupling, eq. (4.63) shows that c2 and c3 are

unaltered by a change of RS of the form of eq. (4.60) [7]; cn(n > 3) which arise from an (n-1)
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loop calculation can all be altered. In fact, xn(n > 2) can be chosen so that cn(n > 3) vanishes

[15]. A RS can be characterized either by cn(n > 3) [8] with µ being identified with x2 [16], or

by the parameters xn(n ≥ 2) themselves.

It is possible to see that with five coupling constants, as with two coupling constants consid-

ered above, there simply are not enough constants appearing in the expansion of ga given in

eq. (4.60) to independently vary the constants in the expansion of βa(gb) in eq. (4.58). (In par-

ticular, at N-loop order, there are more constants ca
N+1;i1i2i3i4i5

than constants xa
N;i1i2i3i4i5

.) Thus,

unlike what happens when there is one coupling, the coefficients of the expansion of βa(gb)

are not suitable for characterizing a RS and as in the case of two couplings, we will employ

directly the coefficients xa
N;i1i2i3i4i5

of eq. (4.60) to relate the parameters that occur when using a

particular RS to that of a ”base scheme”.

In particular, since

∂ga

∂xb
k;i1i2i3i4i5

= B
a
b;k;i1i2i3i4i5(gc) = δa

bδk−(i1+i2+...+i5)g
i1
1 gi2

2 gi3
3 gi4

4 gi5
5 . (4.64)

and as eq. (4.60) can be inverted to give

ga = ga +

∞∑
k=2

k∑
i1=0

k∑
i2=0

k∑
i3=0

k∑
i4=0

k∑
i5=0

ya
k;i1i2i3i4i5(g1)i1(g2)i2(g3)i3(g4)i4(g5)i5δk−(i1+i2+...+i5) (4.65)

where

ya
2;i1i2i3i4i5 + xa

2;i1i2i3i4i5 = 0 (a = 1, 2, ...5; i1 + i2 + i3 + i4 + i5 = 2) (4.66)
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y1
3;30000 = −x1

3;30000 + 2(x1
2;20000)2 + x1

2;11000x2
2;20000 (4.67a)

+ x1
2;10100x3

2;20000 + x1
2;10010x4

2;20000 + x1
2;10001x5

2;20000

y1
3;21000 = −x1

3;21000 + 3(x1
2;20000)2 + x1

2;11000x2
2;20000 (4.67b)

+ x1
2;10100x3

2;20000 + x1
2;10010x4

2;20000 + x1
2;10001x5

2;20000

y1
3;11100 = −x1

3;11100 + 2x1
2;10100x1

2;11000 + 2x1
2;01100x1

2;20000 (4.67c)

+ x1
2;11000x2

2;01100 + 2x1
2;02000x2

2;10100 + x1
2;01100x2

2;11000

+ x1
2;10100x3

2;01100 + x1
2;01100x3

2;10100 + 2x1
2;00200x3

2;11000

+ x1
2;10010x4

2;01100 + x1
2;01010x4

2;10100 + x1
2;00110x4

2;11000

+ x1
2;10001x5

2;01100 + x1
2;01001x5

2;10100 + x1
2;00101x5

2;11000

etc.

we find that eq. (4.64) leads to, for example

dg1

dx1
2;02000

= B
1
1;2;02000(gc) = g2

2 = g2
2 − x2

2;20000g2
1g2 − x2

2;02000g3
2 − x2

2;00200g2
3g2 − x2

2;00020g2
4g2

(4.68)

− x2
2;00002g2

5g2 − x2
2;11000g1g2

2 − x2
2;01100g2g2

3 − x2
2;00110g2g3g4 . . .

As noted above, in ref [16] it is shown that if there is one coupling, there exists a RS in which

cn = 0 beyond two loop order. In contrast, by eq. (4.63) we cannot find a scheme when there

are five couplings such that ca
k;i1i2i3i4i5

all vanish beyond a certain order in the loop expansion.

However, it is possible to find a RS in which at least one of the couplings has a β-function
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that receives no contribution beyond one loop order. For example, if xa
k;i1i2i3i4i5

= 0(a , 1) then

eqs. (4.63a-c) simplify and we obtain the relations between ca
3;i1i2i3i4i5 and ca

3;i1i2i3i4i5

c1
3;30000 = c1

3;30000 + c5
2;20000x1

2;10001 + c4
2;20000x1

2;10010 + c3
2;20000x1

2;10100 + c2
2;20000x1

2;11000 (4.69a)

c1
3;21000 = c1

3;21000 + c5
2;20000x1

2;01001 + c4
2;20000x1

2;01010 + c3
2;20000x1

2;01100 + 2c2
2;20000x1

2;02000 (4.69b)

+ c5
2;11000x1

2;10001 + c4
2;11000x1

2;10010 + c3
2;11000x1

2;10100 + c2
2;11000x1

2;11000

+ c1
2;11000x1

2;20000 − c1
2;20000x1

2;11000

etc. and

c2
3;30000 = c2

3;30000 − 2c2
2;20000x1

2;20000 (4.70a)

c2
3;21000 = c2

3;21000 − 2c2
2;20000x1

2;11000 − c2
2;11000x1

2;20000 (4.70b)

c2
3;11100 = c2

3;21000 − 2c2
2;20000x1

2;01100 − c2
2;11000x1

2;10100 − c2
2;10100x1

2;11000. (4.70c)

etc.

with all other ca
k;i1i2i3i4i5 similarly computed. We see that it is possible to choose x1

k;i1i2i3i4i5
so that

c1
k;i1i2i3i4i5

= 0 for all k > 2. We could, for example, identify g1 with the strong SU(3) coupling

16π2a in which case a would by ref. [15] satisfy simply
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µ
da
dµ

= −14a2 (4.71)

with no higher loop corrections. Of course, in this scheme, g2...g5 would all satisfy eq. (4.58)

with coefficients ca
k;i1i2i3i4i5(a = 2, 3, 4, 5) that depend on the values of xa

k;i1i2i3i4i5
chosen to give

rise to eq. (4.71).

We now will consider RS dependence for a physical quantity R expanded as

R =

∞∑
k=0

Ak(a)Lk (4.72)

where L = ln( µQ ) and

Ak(a) =

∞∑
m=0

∞∑
i1=0

∞∑
i2=0

...

∞∑
i5=0

Tm;i1i2...i5;kδm+k+1−i1−i2...−i5(g1)g1(g2)g2 ...(g5)g5 . (4.73)

With g2 satisfying eq. (4.58), substitution of eq. (4.72) into eq.(4.59) leads to

Ak+1(ga(ln(
µ

Λ
))) =

−1
k + 1

d
d(ln µ

Λ
)
Ak(ga(ln

µ

Λ
)) (4.74)

where Λ is a mass scale associated with the boundary conditions on eq. (4.58). As a result [10]

R =

∞∑
k=0

(−L)k

k!
(

d
d(ln µ

Λ
)
)kA0(ga(ln

µ

Λ
)) = A0(ga(ln

Q
Λ

)), (4.75)

just like eq (4.50).

All explicit dependence of R on µ through L in eq. (4.72) has been canceled with the implicit

dependence on µ through ga(ln( µ
Λ

)) upon summing the logarithmic terms in eq. (4.72), which
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is possible on account of the RG equation (4.59). The apparent ambiguity in the perturbative

expansion for R due to µ has disappeared.

Together eqs. (4.73) and (4.75) lead to

R =

∞∑
m=0

∞∑
i1=0

∞∑
i2=0

...

∞∑
i5=0

Tm;i1i2...i5δm+1−i1−i2...−i5(g1)g1(g2)g2 ...(g5)g5 (4.76)

where

Tm;i1i2...i5 = Tm;i1i2...i5;0. (4.77)

Under the change in RS in eq. (4.60), we have T and ga in eq. (4.75) replaced by T and ga.

However, as R is RS independent, we must have by eq. (4.64)

dR
dxa

k;i1i2i3i4i5

= 0 =

 ∂

∂xa
k;i1i2i3i4i5

+ B
b
a;k;i1i2i3i4i5(gb)

∂

∂gb

 (4.78)

∞∑
h=1

h∑
j1=0

h∑
j2=0

h∑
j3=0

h∑
j4=0

h∑
j5=0

δh−( j1+ j2+...+ j5)T h; j1 j2 j3 j4 j5(g1) j1(g2) j2(g3) j3(g4) j4(g5) j5 .

Upon using eq. (4.64) for B
b
a;k;i1i2i3i4i5 , eq. (4.78) becomes

=

∞∑
h=1

h∑
j1=0

h∑
j2=0

h∑
j3=0

h∑
j4=0

h∑
j5=0

δh−( j1+ j2+...+ j5)

{
∂T h; j1 j2 j3 j4 j5

∂xa
k;i1i2i3i4i5

(g1) j1(g2) j2(g3) j3(g4) j4(g5) j5 (4.79)

+ T h; j1 j2 j3 j4 j5

[
B

1
a;k;i1i2i3i4i5 j1(g1) j1−1(g2) j2(g3) j3(g4) j4(g5) j5

+ B
2
a;k;i1i2i3i4i5 j2(g1) j1(g2) j2−1(g3) j3(g4) j4(g5) j5 + ...

]}
= 0.
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Terms of a given order in ga lead to, for example

∂T 1; j1 j2 j3 j4 j5

∂xa
k;i1i2i3i4i5

= 0 (4.80)

∂T 2;20000

∂xa
k;i1i2i3i4i5

+
(
T 1;10000δ

a
1 + T 1;01000δ

a
2 + T 1;00100δ

a
3 + T 1;00010δ

a
4 + T 1;00001δ

a
5

)
δ j12δ j20δ j30δ j40δ j50 = 0

(4.81a)

∂T 2;11000

∂xa
k;i1i2i3i4i5

+
(
T 1;10000δ

a
1 + T 1;01000δ

a
2 + T 1;00100δ

a
3 + T 1;00010δ

a
4 + T 1;00001δ

a
5

)
δ j11δ j21δ j30δ j40δ j50 = 0

(4.81b)

∂T 2;02000

∂xa
k;i1i2i3i4i5

+
(
T 1;10000δ

a
1 + T 1;01000δ

a
2 + T 1;00100δ

a
3 + T 1;00010δ

a
4 + T 1;00001δ

a
5

)
δ j10δ j22δ j30δ j40δ j50 = 0

(4.81c)

etc.

These equations have the boundary conditions that T = T when xa
k;i1i2i3i4i5

= 0 and so we have

the solutions

T 1; j1 j2 j3 j4 j5 = T1; j1 j2 j3 j4 j5 (4.82)

T 2;20000 = T2;20000−x1
2;20000T1;10000−x2

2;20000T1;01000−x3
2;20000T1;00100−x4

2;20000T1;00010−x5
2;20000T1;00001

(4.83a)

T 2;11000 = T2;11000−x1
2;11000T1;10000−x2

2;11000T1;01000−x3
2;11000T1;00100−x4

2;11000T1;00010−x5
2;11000T1;00001

(4.83b)

T 2;02000 = T2;02000−x1
2;02000T1;10000−x2

2;02000T1;01000−x3
2;02000T1;00100−x4

2;02000T1;00010−x5
2;02000T1;00001

(4.83c)
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etc.

It is evident that these equations can be used to find values of xa
k;i1i2i3i4i5

that lead to T m; j1 j2 j3 j4 j5 =

0 with m ≥ 2. In this case we have

R = T1;10000g1

(
ln

Q
Λ

)
+T1;01000g2

(
ln

Q
Λ

)
+T1;00100g3

(
ln

Q
Λ

)
+T1;00010g4

(
ln

Q
Λ

)
+T1;00001g5

(
ln

Q
Λ

)
(4.84)

and no higher powers of ga contribute to R. For example, if we choose to have xa
h;i1i2i3i4i5

= 0

for a , 1, then T m; j1 j2 j3 j4 j5 = 0(m > 1) results in

x1
2;i1i2i3i4i5 =

T2;i1i2i3i4i5

T1;10000
(4.85)

x1
3;30000 =

2(T2;20000)2

(T1;10000)2 +
T3;30000

T1;10000
(4.86a)

x1
3;12000 =

(T2;11000)2 + T2;02000T2;20000

(T1;10000)2 +
T3;12000

T1;10000
(4.86b)

x1
3;11100 =

T2;10100T2;11000 + T2;01100T2;20000

(T1;10000)2 +
T3;11100

T1;10000
(4.86c)

etc.

The β-functions associated with ga are now given by eqs. (4.69,4.70) with xa
m;i1i2i3i4i5

= 0(m =

2, 3) given by eq. (4.85,4.86).



86 Chapter 4. Renormalization Scheme Ambiguities andMultiple Couplings

4.6 Discussion

In this chapter we have considered some aspects of RS ambiguities when using mass indepen-

dent renormalization in a theory in which there are no physical mass scales and two coupling

constants. Unlike what happens when there is but one coupling, the βa-functions that dictate

how the couplings vary with the renormalization mass scale µ when there are two couplings

are ambiguous at two loop order (and beyond). Furthermore, these ambiguities do not permit

one to vary the coefficients of the expansions of these functions independently, making these

coefficients unsuitable for characterizing a RS when using mass-independent renormalization.

Instead, it is convenient to parameterize a RS by directly using the coefficients of an expansion

of the couplings used in a “new” RS in terms of the couplings used in a base RS.

A change in RS can affect the perturbative expansion for a physical quantity R in powers of

the coupling. When there is a single coupling a, one can change the coefficients ci (i ≥ 2) in

eq. (4.1) by a renormalization of the form of eq. (4.2), as is apparent from eq. (4.4). This means

that one can characterize a RS by the values of ci (i ≥ 2). If one chooses a RS in which ci = 0

(i ≥ 2) then the power series for β(a) in eq. (4.1) terminates (the ’t Hooft scheme [13,14]) and

the behavior of the running coupling found exactly in terms of a Lambert function. A second

choice of ci (i ≥ 2) can be made using eq. (4.21) so that only T0 and T1 in the expansion

of eq. (4.19) is non-zero, which means that the perturbative expansion for R in powers of a

terminates.

A different situation arises when there are two couplings, g1 and g2. In this case, the expansion

coefficients ca
i j in eq. (4.22) cannot be used to characterize a RS as a renormalization like that
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of eq. (4.24) does not allow all of the ca
i j to independently vary, as can be seen by eq (27).

It is, however, possible to use the coefficients xi of eq. (4.2) (when there is one coupling) and

the coefficients xa
i j of eq. (4.24) (when there are two couplings) to characterize how a change

of RS from some ”base scheme” (such as minimal subtraction) can be affected. In the former

case, a choice of the xi so that ci = 0 (i ≥ 2) can be made, while in the latter case it is not

in general possible to choose the xa
i j so that the expansion of eq. (4.22) is finite. However, in

both the cases of one and two couplings, the xi and xa
i j respectively can be chosen so that the

perturbative expansion for a physical quantity R in powers of the coupling terminates, as can be

seen from eqs. (4.45,4.57). With such a choice of renormalization, the expansion coefficients

of the β function (ci and ca
i j) are now dependent on the physical quantity being considered and

all higher order loop effects are absorbed into the behavior of the running coupling.

The fixed point in such a RS is clearly important. In ref. [16] the behavior of the running

couping a when the quantity R in eq. (4.19) is the total cross section (e+e− →hardrons) is

discussed. There it is shown that in a RS in which Tn = 0 (n ≥ 2), the four-loop contribution

to β(a) results in an infrared fixed point and a well defined low energy limit for R. Since the

perturbative series for R terminates, its convergence need not be considered. It would be quite

interesting to see if fixed points arise in models with more than one coupling when a finite

series is used to compute particular physical quantities.

We then demonstrated that the possibility of making a finite renormalization of the five cou-

plings provides a great deal of flexibility in the way perturbative results can be presented. It

is possible to reduce the β-function for one of the couplings to the one loop result. It is also

possible to sum all logarithmic contributions to a physical quantity R, thereby eliminating de-
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pendence on the renormalization mass scale µ and to make it possible to eliminate all higher

order contributions to R. In this scheme, any higher loop calculation only serves to affect the

contributions to the β-functions beyond one loop order. We plan to examine how finite renor-

malization of mass parameters can affect a theory.

4.7 Appendix - Evolution of two running couplings

When there is one coupling a(µ) whose evolution under changes in the renormalization mass

scale µ is given by eq. (4.1), the relationship between a(µ) and a(µ) can be found using eqs. (4.9-

4.11). In this appendix we consider the same problem when there are two couplings ga(µ)(a =

1, 2) that satisfy eq. (4.24). We begin by making the expansion

ga(µ) = ga(µ) +

∞∑
i=2

i∑
j=0

i−1∑
k=1

σa
i, j;kg

i− j
1 (µ)g j

2(µ)`k. (l ≡ ln(
µ

µ̄
)) (A.1)

It follows from the condition

µ
dga(µ)

dµ
= 0 (A.2)

=

(
µ
∂

∂µ
+ βb(g1, g2)

∂

∂gb

)
ga(µ)

where βb is given by eq. (4.24). Substitution of eq. (A.1) into eq. (A.2) results in

σ1
20,1 = −c1

20, σ1
21,1 = −c1

21, σ1
22,1 = −c1

22 (A.3a-c)

σ1
30,1 = −c1

30, σ1
31,1 = −c1

31, σ1
32,1 = −c1

32, σ1
33,1 = −c1

33 (A.4a-d)
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σ1
30,2 =

1
2

[
2(c1

20)2 + c1
21c2

20

]
, σ1

31,2 =
1
2

[
3c1

21c1
20 + c1

21c2
21 + 2c1

22c2
20

]
(A.5a-d)

σ1
32,2 =

1
2

[
(c1

21)2 + 2c1
22c1

20 + c1
21c2

22 + 2c1
22c2

11

]
σ1

33,2 =
1
2

[
c1

22c1
21 + 2c1

22c2
22

]
.

The values of σa
4 j,k can similarly be computed in terms of ca

i j,k. We note that since eqs. (4.21,

A.1) are symmetric between g1 and g2, we have symmetry in (c1
i j, c

2
i,i− j) and (σ1

i, j;k, σ
2
i,i− j;k).

Computing all of the coefficients σa
i, j;k amounts to integrating eq. (4.24) with a fixed boundary

value for ga(µ).
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Chapter 5

Conclusions

In this thesis we study various topics in the quantization and renormalization of gauge fields.

Chapter 1 gives a review of context for all three topics covered in the following chapters.

We introduce Dirac Constraint Formalism which is later used in Chapter 2 to quantize both

Yang-Mills field and 2+1 dimensional superparticle in light cone coordinate prior to the pro-

cess of gauge fixing. After that we also review the transverse-traceless gauge, which uses a

non-quadratic gauge fixing procedure that is necessary in order to have a transverse-traceless

propagator. In Chapter 3 we apply this non-quadratic gauge fixing procedure to first order grav-

ity. Finally we give an introduction to the renormalization group equation that follows from

renormalization scheme ambiguity. I also introduce renormalization group summation which

leads to a new characterization of remormalization schemes in Chapter 4.

In Chapter 2 we consider both the Yang-Mills field and 2+1 dimensional superparticle. For both

theories, we formulate its Langrangian in light cone coordinate, apply constraint formalism to

identify and classify first class and second class constraints, pairing up each first class constraint
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with a gauge and then compute Dirac brackets to exhaust all second class constraints as well

as pairs of first class constraints and their associated gauges. The most promising application

of Dirac’s constraint formalism is that it allows us to find all symmetries of a specific theory.

However for complicated theories like gravity, the process of applying the constraint formalism

is really involved. The symmetries revealed by constraint formalism may not be of the form

that is desired. It would be interesting to extend our study on these aspects.

In Chapter 3 we apply non-quadratic gauge fixing procedure to first order gravity. With non-

quadratic double gauge fixing, we can have our graviton propagator being transverse and trace-

less at same time. We have also derived the entire set of Feynman rules under such gauge

fixing. Having graviton propagator transverse and traceless could lead to cancellation in per-

turbative computation, which could contribute to the renormalizability of underlying gravity

theory.

In Chapter 4 we consider parameterization of renormalization scheme ambiguities. We dis-

cover that when there are two or more couplings, there is no scheme in which the β-functions

can be terminated beyond one loop order, and ambiguity in the β-functions occurs beyond one

loop order. We propose a new characterization method using parameters that arise in the ex-

pansion of coupling in one scheme in terms of couplings in another scheme. We tested our

new characterization method in theories with one, two and five couplings and discover that

with our new characterization method, we can choose a scheme so that a physical quantity R

can be perturbatively terminated with higher loop effects absorbed into the behavior of running

coupling.
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Appendix B

Code for symbolic computations

In this appendix, I present major components of my code for symbolic computations in Section

4.5. The complete file can be found in my github:

https://github.com/CGZGit.

(** RG beta functions **)

gbar[1] = g[1] + Sum[Sum[Sum[Sum[Sum[x[1, i1, i2, i3, i4, itotal - i1 - i2 -

i3 - i4]*g[1]ˆi1*g[2]ˆi2*g[3]ˆi3*g[4]ˆi4*g[5]ˆ(itotal - i1 - i2 - i3 - i4),

{i1, 0, itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}], {i3, 0,

itotal - i4}], {i4, 0, itotal}], {itotal, 2, k}].

Do[gbar[ii] = g[ii] + Sum[Sum[Sum[Sum[Sum[

x[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*g[1]ˆi1*

g[2]ˆi2*g[3]ˆi3*g[4]ˆi4*g[5]ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0,

itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}], {i3, 0,

itotal - i4}], {i4, 0, itotal}], {itotal, 2, k}], {ii, 1, 5}].

(** Construct polynomials containing coefficient relations between x and

y and then extract coefficient relation equations **)

Do[pol1[ii] = gbar[ii] - g[ii] + Sum[Sum[Sum[Sum[Sum[

y[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*
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gbar[1]ˆi1*gbar[2]ˆi2*gbar[3]ˆi3*gbar[4]ˆi4*

gbar[5]ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0,

itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}], {i3, 0,

itotal - i4}], {i4, 0, itotal}], {itotal, 2, k}], {ii, 1, 5}].

Do[pol2[ii] = pol1[ii]*g[1] g[2] g[3] g[4] g[5], {ii, 1, 5}].

Do[Do[ce[ii, i1, i2, i3, i4, i5] =

Coefficient[Coefficient[Coefficient[Coefficient[Coefficient

[pol2[ii], g[1], i1], g[2], i2], g[3],

i3], g[4], i4], g[5], i5], {i1, 1, k}, {i2, 1, k}, {i3, 1,

k}, {i4, 1, k}, {i5, 1, k}], {ii, 1, 5}]

(** Solve for coefficient relations **)

Do[Do[Do[Do[Do[y1[ii, i1, i2, i3, i4, 2 - i1 - i2 - i3 - i4] =

y[ii, i1, i2, i3, i4, 2 - i1 - i2 - i3 - i4] /.

Solve[ce[ii, i1 + 1, i2 + 1, i3 + 1, i4 + 1, 3 - i1 - i2 - i3 - i4] == 0,

y[ii, i1, i2, i3, i4, 2 - i1 - i2 - i3 - i4]][[1]], {i1, 0, 2 - i4 - i3 - i2}],

{i2, 0, 2 - i4 - i3}], {i3, 0, 2 - i4}], {i4, 0, 2}], {ii, 1, 5}]

(** Reconstruct RG beta functions for new characterization method **)

Do[gg[ii] = ggbar[ii] + Sum[Sum[Sum[Sum[Sum[

y[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*ggbar[1]ˆi1*ggbar[2]ˆi2*

ggbar[3]ˆi3*ggbar[4]ˆi4*ggbar[5]ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0,

itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}], {i3, 0,

itotal - i4}], {i4, 0, itotal}], {itotal, 2, k}], {ii, 1, 5}]

(** Dependence of g on x **)

Do[Do[Do[Do[Do[Do[

Bbar[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4] =

ggbar[1]ˆi1*ggbar[2]ˆi2*ggbar[3]ˆi3*ggbar[4]ˆi4*ggbar[5]
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ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0, itotal - i4 - i3 - i2}],

{i2, 0, itotal - i4 - i3}], {i3, 0, itotal - i4}], {i4, 0, itotal}],

{itotal, 2, 3}], {ii, 1, 5}]

(** The ultimate consistency condition (4.79) **)

Ult[2, 2, 0, 0, 0, 0] = Sum[Sum[Sum[Sum[Sum[

Tx[2, 2, 0, 0, 0, 0, itotal, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]

*ggbar[1]ˆi1*ggbar[2]ˆi2*ggbar[3]ˆi3*ggbar[4]ˆi4*ggbar[5]

ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0, itotal - i4 - i3 - i2}],

{i4, 0, itotal - i2 - i3}], {i3, 0, itotal - i2}], {i2, 0, itotal}],

{itotal, 1, k}] + Sum[Sum[Sum[Sum[Sum[

T[itotal, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*Bbar[2, 2, 0, 0, 0, 0]

*i2*ggbar[1]ˆi1*ggbar[2]ˆ(i2 - 1)*ggbar[3]ˆi3*ggbar[4]ˆi4*ggbar[5]

ˆ(itotal - i1 - i2 - i3 - i4), {i1, 0, itotal - i4 - i3 - i2}],

{i4, 0, itotal - i2 - i3}], {i3, 0, itotal - i2}], {i2, 1, itotal}],

{itotal, 1, k}]

(** Deriving diferential Equations of T-bar **)

Do[Do[Do[Do[Do[dTdx[2, m1, m2, m3, m4, mtotal - m1 - m2 - m3 - m4]

= -Sum[Sum[Sum[Sum[Sum[Sum[T[itotal, i1, i2, i3, i4,

itotal - i1 - i2 - i3 - i4]*

Coefficient[Coefficient[Coefficient[Coefficient[Coefficient[

Bbar[ii, m1, m2, m3, m4, mtotal - m1 - m2 - m3 - m4], ggbar[1], m1],

ggbar[2], m2], ggbar[3], m3], ggbar[4], m4], ggbar[5],

mtotal - m1 - m2 - m3 - m4]*x[ii, m1, m2, m3, m4, mtotal - m1 - m2 - m3 - m4]

D[ggbar[1]ˆi1*ggbar[2]ˆi2*ggbar[3]ˆi3*ggbar[4]ˆi4*ggbar[5]

ˆ(itotal - i1 - i2 - i3 - i4), ggbar[ii]]

, {i1, 0, itotal - i4 - i3 - i2}], {i4, 0, itotal - i2 - i3}],

{i3, 0, itotal - i2}], {i2, 0, itotal}], {itotal, 1, 1}], {ii, 1, 5}],

{m1, 0, mtotal - m4 - m3 - m2}], {m4, 0, mtotal - m2 - m3}],

{m3, 0, mtotal - m2}], {m2, 0, mtotal}], {mtotal, 2, 2}]
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Do[Do[Do[Do[Do[dTdx1[3, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4]

= -Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[

T[ktotal, k1, k2, k3, k4, ktotal - k1 - k2 - k3 - k4]*

Coefficient[Coefficient[Coefficient[Coefficient[Coefficient[

Bbar[aa, m1, m2, m3, m4, mtotal - m1 - m2 - m3 - m4], ggbar[1], t1],

ggbar[2], t2], ggbar[3], t3], ggbar[4], t4], ggbar[5],

ttotal - t1 - t2 - t3 - t4]*delta[aa, m1, m2, m3, m4,

mtotal - m1 - m2 - m3 - m4]D[ggbar[1]ˆk1*ggbar[2]ˆk2*ggbar[3]ˆk3

*ggbar[4]ˆk4*ggbar[5]ˆ(ktotal - k1 - k2 - k3 - k4), ggbar[aa]]

, {k1, 0, ktotal - k4 - k3 - k2}], {k4, 0, ktotal - k2 - k3}],

{k3, 0, ktotal - k2}], {k2, 0, ktotal}], {ktotal, 1, 1}], {aa, 1, 5}]

, {m1, 0, mtotal - m4 - m3 - m2}], {m4, 0, mtotal - m2 - m3}],

{m3, 0, mtotal - m2}], {m2, 0, mtotal}], {mtotal, 2, 3}],

{t1, 0, ttotal - t4 - t3 - t2}], {t4, 0, ttotal - t2 - t3}],

{t3, 0, ttotal - t2}], {t2, 0, ttotal}], {ttotal, 3, 3}]

Do[Do[Do[Do[Do[dTdx2[3, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4] =

-Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[

T[ktotal, k1, k2, k3, k4, ktotal - k1 - k2 - k3 - k4]*

delta[aa, m1, m2, m3, m4, mtotal - m1 - m2 - m3 - m4]*

Coefficient[Coefficient[Coefficient[Coefficient[Coefficient[

D[ggbar[1]ˆk1*ggbar[2]ˆk2*ggbar[3]ˆk3*ggbar[4]ˆk4*ggbar[5]

ˆ(ktotal - k1 - k2 - k3 - k4), ggbar[aa]], ggbar[1], t1 - m1],

ggbar[2], t2 - m2], ggbar[3], t3 - m3], ggbar[4], t4 - m4],

ggbar[5], ttotal - t1 - t2 - t3 - t4 - mtotal + m1 + m2 + m3 + m4],

{k1, 0, ktotal - k4 - k3 - k2}], {k4, 0, ktotal - k2 - k3}],

{k3, 0, ktotal - k2}], {k2, 0, ktotal}], {ktotal, 2, 2}], {aa, 1, 5}],

{m1, 0, mtotal - m2 - m3 - m4}], {m4, 0, mtotal - m2 - m3}],

{m3, 0, mtotal - m2}], {m2, 0, mtotal}], {mtotal, 2, 2}],
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{t1, 0, ttotal - t4 - t3 - t2}], {t4, 0, ttotal - t2 - t3}],

{t3, 0, ttotal - t2}], {t2, 0, ttotal}], {ttotal, 3, 3}]

Do[Do[Do[Do[Do[

dTdx[3, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4] =

dTdx1[3, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4] +

dTdx2[3, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4]

, {t1, 0, ttotal - t4 - t3 - t2}], {t4, 0, ttotal - t2 - t3}],

{t3, 0, ttotal - t2}], {t2, 0, ttotal}], {ttotal, 3, 3}]

(** Set x=0 for a>1 **)

Do[Do[Do[Do[Do[Do[x[kzeros, t1, t2, t3, t4, ttotal - t1 - t2 - t3 - t4]

= 0, {t1, 0, ttotal - t4 - t3 - t2}], {t4, 0, ttotal - t2 - t3}],

{t3, 0, ttotal - t2}], {t2, 0, ttotal}], {ttotal, 2, 2}], {kzeros, 2, 5}]

(** Reconstruct beta-functions to solve for c-bar **)

beta3[ii_] = Sum[Sum[Sum[Sum[Sum[

c[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*g[1]ˆi1

*g[2]ˆi2*g[3]ˆi3*g[4]ˆi4*g[5]ˆ(itotal - i1 - i2 - i3 - i4),

{i1,0, itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}],

{i3, 0, itotal - i4}], {i4, 0, itotal}], {itotal, 2, 3}]

(** Construct polymonials to equate (4.61) with (4.62) **)

Do[polc[ii] = beta3[ii] + Sum[Sum[Sum[Sum[Sum[

xxx[ii, i1, i2, i3, i4, itotal - i1 - i2 - i3 - i4]*

Sum[D[g[1]ˆi1*g[2]ˆi2*g[3]ˆi3*g[4]ˆi4*

g[5]ˆ(2 - i1 - i2 - i3 - i4), g[id]]*beta2[id], {id, 1,

5}], {i1, 0, itotal - i4 - i3 - i2}], {i2, 0, itotal - i4 - i3}],

{i3, 0, itotal - i4}], {i4, 0, itotal}], {itotal, 2, 2}] -

Sum[Sum[Sum[Sum[cbar[ii, i1, i2, i3, i4, 2 - i1 - i2 - i3 - i4]

*(g[1] + Sum[Sum[Sum[Sum[xxx[1, j1, j2, j3, j4, 2 - j1 - j2 - j3 - j4]
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*g[1]ˆj1*g[2]ˆj2*g[3]ˆj3*g[4]ˆj4*g[5]ˆ(2 - j1 - j2 - j3 - j4),

{j1, 0, 2 - j4 - j3 - j2}], {j2, 0, 2 - j4 - j3}], {j3, 0, 2 - j4}],

{j4, 0, 2}])ˆi1*(g[2] + Sum[Sum[Sum[Sum[

xxx[2, j1, j2, j3, j4, 2 - j1 - j2 - j3 - j4]*g[1]ˆj1*g[2]ˆj2*g[3]ˆj3

*g[4]ˆj4*g[5]ˆ(2 - j1 - j2 - j3 - j4), {j1, 0, 2 - j4 - j3 - j2}],

{j2, 0, 2 - j4 - j3}], {j3, 0, 2 - j4}], {j4, 0, 2}])ˆi2*(g[3] +

Sum[Sum[Sum[Sum[xxx[3, j1, j2, j3, j4, 2 - j1 - j2 - j3 - j4]*g[1]ˆj1

*g[2]ˆj2*g[3]ˆj3*g[4]ˆj4*g[5]ˆ(2 - j1 - j2 - j3 - j4),

{j1, 0, 2 - j4 - j3 - j2}], {j2, 0, 2 - j4 - j3}], {j3, 0, 2 - j4}],

{j4, 0, 2}])ˆi3*(g[4] + Sum[Sum[Sum[Sum[

xxx[4, j1, j2, j3, j4, 2 - j1 - j2 - j3 - j4]*g[1]ˆj1*g[2]ˆj2*g[3]ˆj3

*g[4]ˆj4*g[5]ˆ(2 - j1 - j2 - j3 - j4), {j1, 0, 2 - j4 - j3 - j2}],

{j2, 0, 2 - j4 - j3}], {j3, 0, 2 - j4}], {j4, 0, 2}])ˆi4*(g[5] +

Sum[Sum[Sum[Sum[xxx[5, j1, j2, j3, j4, 2 - j1 - j2 - j3 - j4]

*g[1]ˆj1*g[2]ˆj2*g[3]ˆj3*g[4]ˆj4*g[5]ˆ(2 - j1 - j2 - j3 - j4),

{j1, 0, 2 - j4 - j3 - j2}], {j2, 0, 2 - j4 - j3}], {j3, 0, 2 - j4}],

{j4, 0, 2}])ˆ(2 - i1 - i2 - i3 - i4), {i1, 0, 2 - i4 - i3 - i2}],

{i2, 0, 2 - i4 - i3}], {i3, 0, 2 - i4}], {i4, 0, 2}]

- Sum[Sum[Sum[Sum[cbar[ii, i1, i2, i3, i4, 3 - i1 - i2 - i3 - i4]

*g[1]ˆi1*g[2]ˆi2*g[3]ˆi3*g[4]ˆi4*g[5]ˆ(3 - i1 - i2 - i3 - i4),

{i1, 0, 3 - i4 - i3 - i2}], {i2, 0, 3 - i4 - i3}], {i3, 0, 3 - i4}],

{i4, 0, 3}], {ii, 1, 5}]

Do[polc2[ii] = polc[ii]*g[1] g[2] g[3] g[4] g[5], {ii, 1, 5}]

(** Extract coefficient equation relations **)

Do[Do[Do[Do[Do[Do[ce2[ii, i1, i2, i3, i4, i5] =

Coefficient[Coefficient[Coefficient[Coefficient[Coefficient

[polc2[ii], g[1], i1], g[2], i2], g[3], i3], g[4], i4], g[5], i5],

{i1, 1, k + 5 - i5 - i4 - i3 - i2}], {i2, 1, k + 4 - i5 - i4 - i3}],
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{i3, 1, k + 3 - i5 - i4}], {i4, 1, k + 2 - i5}], {i5, 1, k + 1}], {ii, 1, 5}]

(** Solve for symbolic values of c-bar **)

Do[Do[Do[Do[Do[cbarSymb[ii, i1, i2, i3, i4, 3 - i1 - i2 - i3 - i4] =

cbar[ii, i1, i2, i3, i4, 3 - i1 - i2 - i3 - i4] /.

Solve[ce2[ii, i1 + 1, i2 + 1, i3 + 1, i4 + 1, 4 - i1 - i2 - i3 - i4]

== 0, cbar[ii, i1, i2, i3, i4, 3 - i1 - i2 - i3 - i4]][[1]],

{i1, 0, 3 - i4 - i3 - i2}], {i2, 0, 3 - i4 - i3}],

{i3, 0, 3 - i4}], {i4, 0, 3}], {ii, 1, 5}]
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