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Abstract

Mutations are alterations of the DNA nucleotide sequence of the genome. Analyses of
spatial properties of mutations are critical for understanding certain mutational mechanisms
relevant to genetic disease, diversity, and evolution. The studies in this thesis focus on two
types of mutations: point mutations, i.e., single nucleotide polymorphism (SNP) genotype dif-
ferences, and mutations in segments, i.e., copy number variations (CNVs). The microarray
platform, such as the Mouse Diversity Genotyping Array (MDGA), detects these mutations
genome-wide with lower cost compared to whole genome sequencing, and thus is considered
for suitability as a screening tool for large populations. Yet it provides observation of muta-
tions with high degree of missingness across the genome due to its design, which thus leads to
challenges for statistical analyses. Three topics are studied in this thesis: the development of
formal statistical tools for detecting the existence of point mutation clusters under the microar-
ray platform; the evaluation of the performance of test statistics developed while accounting
for various probe designs, in terms of the capabilities of detecting mutation clusters; the de-
velopment of formal statistical tools for testing the existence of spatial association between
point mutations and mutations in segments. Statistical models such as Poisson point processes
and Neyman-Scott processes are used for the distributions of the locations of point mutations
under null and alternative hypotheses. Monte Carlo frameworks are established for statistical
inference and the evaluation of power performance of the proposed test statistics. Tests with
desirable performance are identified and recommended as screening tools. These statistical
tools can be used for the study of other genomic events in the form of point events and events
in segments, as well as with other microarray platforms than the MDGA which is utilized
here. Simulated probe sets based on a window-based probe design mimicing the design of the
MDGA are used to study the effect of various factors in probe design on the performance of
test statistics. Insights are offered for determining key features in such design, such as probe
intensity, when designing a new microarray platform, in order to achieve desired power for the

purpose of mutation cluster detection.
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Chapter 1

Overview

The discovery of the structure of Deoxyribonucleic acid (DNA) in the 20th century has greatly
inspired the field of biological research, and has led to a more profound understanding of life
and vast changes to our understanding of health leading to better health outcomes for humans.
In the 21st century, numerous scientific hypotheses in biological research have been investi-
gated through the conduct of very many observational studies and experiments. Tremendous
volumes of data are generated rapidly, thanks to the advancement of measuring techniques
such as sequencing. Yet data generated from various sources often require that new appro-
priate statistical tools be developed for the analyses. This research aims to reduce the gap of
suitable statistical methods to study features of biological phenomenon using data obtained by

a specific measuring technique, microarray analysis.

DNA is the fundamental molecule that stores crucial biological information and plays the
role of hereditary material. Genetic instructions are encoded in DNA and used in the devel-
opment and functioning of all living organisms as well as many viruses. The genome is the
complete set of DNA in an organism. Genomics aims to study the mechanisms related to the
entire DNA set, instead of individual pieces. Genomics research is crucial for tackling prob-

lems faced in health, environment, and agriculture.

Mutations are alterations of the DNA nucleotide sequence of the genome. During repli-



2 CHAPTER 1. OVERVIEW

cation of DNA, there is a chance that DNA nucleotides are mismatched. There are repairing
mechanisms to ensure that the genetic information is inherited stably from generation to gener-
ation. However, repairing mechanisms are not perfect, thus mutations in the DNA may occur.
A mutation is an important source of genetic variability, adaptability and evolution, yet it can
also lead to cancer. Mutations can refer to several different types of mismatches or changes in
the DNA sequence. Two common types are single nucleotide polymorphism (SNP) genotype

differences and copy number variations (CNVs), which are investigated in this thesis research.

To measure the mutations genome-wide, two options are usually available: DNA sequenc-
ing and the microarray. DNA sequencing measures the genome with a resolution of a single
nucleotide, unveiling all the DNA information in the genome. With the advancement of tech-
nology in recent years, the price of sequencing is becoming more affordable for sequencing the
entire genome of some organisms, including for human research. Yet for most other organisms,
the price of DNA sequencing can still be prohibitively high. On the other hand, the microarray,
or genotyping array, provides an alternative for genome-wide mutation measurement. A mi-
croarray contains a large set of specifically designed probes targeting different areas across the
genome. Only the information on the targeted areas is obtained, yielding missing observations
in other areas of the genome. Yet the microarray has substantially lower cost compared to se-
quencing, and is used in a wealth of genetics research. It has been adopted as a cost-effective

way to measure mutation information across the genome.

In mutation related research, the relationship between genotypes and phenotypes has nor-
mally been a main focus. The phenotype is determined by DNA composition, which can be al-
tered due to mutations. The microarray platform has been widely used to conduct genome-wide
association studies, aiming to identify association between SNP genotypes and diseases [1].
In recent years, the spacing between mutations has caught the attention of some researchers.
From observation by sequencing some small DNA fragments, it was found that mutations may
tend to be close to each other in term of spatial locations, rather than occurring in a random

pattern. Thus there raises a hypothesis that mutations may be generated in what are called



patterns of showers because of some mechanisms. More evidence about this phenomenon and
the mechanisms or leading factors that can cause this non-random spacing pattern are thus of
high interest currently to many biologists. And research on a genome scale, rather than over
small DNA segments, is now needed to give a broader perspective. Such research may help
better understand fundamental mutagenesis mechanisms and provide new insights to develop-
ing therapies of cancer or other disease. To our knowledge, the statistical tools for studying
the spatial association between mutations observed under the microarray platform have not
been developed. Importantly, biologists have developed ad hoc graphical tools for investigat-
ing spatial patterns and, though helpful, this thesis aims to offer more rigorous tools for such

investigations.

This thesis focuses on statistical methods for analyzing spatial properties of mutations de-
tected under the microarray platform. Based on the research interest of the biologists with
whom we collaborated, three questions regarding the spatial association between mutations
are addressed and discussed in three chapters as discussed below. The thesis is presented as
a compilation of three papers developed through this research. Each of Chapter 2, 3, and 4
represent articles prepared for submission for publication. University regulations permit that a

thesis be assembled in this manner.

In Chapter 2, we develop spatial statistical tools for genome-wide mutation cluster detec-
tion under a microarray probe sampling system. Mutation cluster analysis is critical for under-
standing certain mutational mechanisms relevant to genetic disease, diversity, and evolution.
Yet, whole genome sequencing for detection of mutation clusters is prohibitive with high cost
for most organisms and population surveys. SNP genotyping arrays, like the Mouse Diversity
Genotyping Array (MDGA), offer an alternative low-cost, screening for mutations at hundreds
of thousands of loci across the genome using experimental designs that permit capture of de
novo mutations in any tissue. Formal statistical tools for genome-wide detection of mutation
clusters under a microarray probe sampling system are yet to be established. A challenge

in the development of statistical methods is that microarray detection of mutation clusters is
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constrained to select SNP loci captured by probes on the array. This chapter develops a Monte
Carlo framework for cluster testing and assesses test statistics for capturing potential deviations
from spatial randomness which are motivated by, and incorporate, the array design. While null
distributions of the test statistics are established under spatial randomness via the homoge-
neous Poisson process, power performance of the test statistics is evaluated under postulated
types of Neyman-Scott clustering processes through Monte Carlo simulation. A new statistic
is developed and recommended as a screening tool for mutation cluster detection. The statistic
is demonstrated to be excellent in terms of its robustness and power performance, and useful
for cluster analysis in settings of missing data. The test statistic can also be generalized to
any one-dimensional system where every site is observed, such as DNA sequencing data. The
chapter illustrates how the informal graphical tools for detecting clusters may be misleading.
The statistic is used for finding clusters of putative SNP differences in a mixture of different
mouse genetic backgrounds and clusters of de novo SNP differences arising between tissues

with development and carcinogenesis.

In Chapter 3, we study the effect of probe design in microarray type data on powers of test
statistics for cluster detection. Mutation clusters are important signatures for understanding
mutational mechanisms, genetic diversity, disease, adaptation and evolution. The microarray
platform detects mutations genome-wide with lower resolution and cost compared to next-
generation sequencing, and thus may be considered for screening for mutation cluster detection
in large populations. As well, formal statistical tools have been developed and recommended
for mutation cluster detection for a specific microarray platform. In this chapter, we further
evaluate properties of the tests by assessing comparisons of their performance across various
probe designs in terms of their capabilities of detecting mutation clusters. The various probe
designs compared here include simulated probe sets using a window-based probe selection
procedure from simulated genomic variation libraries, as well as probe sets filtered from an
existing mouse array design. A framework and algorithm are provided for numerical calcula-

tion of the rejection rates of the test statistics. The methods and tools developed here provide



insight for determining key features such as probe intensity, when designing a new microarray

platform with desired power for the purpose of mutation cluster detection.

In Chapter 4, we develop a nonparametric association test for spatial independence in oc-
currence of SNP differences and CNVs under a microarray probe sampling system. The study
of spatial properties of mutations can help to better understand mutational mechanisms as well
as genetic diversity to inform our understanding of health and disease. Investigation of the
spatial association between the locations of two types of mutations, such as genotypic differ-
ences at SNP loci and CNVs, may help uncover potential relationships in these locations, in-
cluding interactions between these mutational mechanisms. The microarray platform, such as
the MDGA, provides a cost-effective way to assay SNP genotypes and detect CN'Vs and hence
may allow for screening studies for large scale investigations. In this study, we propose two test
statistics to test the existence of spatial association between SNP differences and CNVs. Impor-
tantly, these test statistics incorporate the microarray design, accounting then for intermittent
observation over the genome. We propose three null hypotheses, with different generality, re-
lated to the association between SNP differences and CNVs, and three Monte Carlo simulation
approachs for statical inference, including one based on the parametric Poisson model and two
block bootstrap methods. Power performance of the test statistics is evaluated under a step
function Poisson process, as well as a modified version of the Neyman-Scott parent child pro-
cess. The statistics are based on neighborhood properties of SNP differences related to CNVs
and are modifications of well-established association tests in the literature that are known to
have good performance. One statistic, the J statistic, is demonstrated to perform well in this
context of missing data and is recommended. We demonstrate the utility of the J statistic in
an example that considers mutation profile differences between primary tumor and metastatic
tissue of the same mouse. The methods and tools provided in this chapter can be utilized for
the analysis of association for other genomic events using the microarray platform for mouse,

human, and other species.

In Chapter 5, we provide a summary of the innovations in this thesis, and suggest directions
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for future work.



Chapter 2

Spatial statistical tools for genome-wide
mutation cluster detection under a

microarray probe sampling system



8 CHAPTER 2. CLUSTER DETECTION OF SNP DIFFERENCES

2.1 Introduction

Mutation signatures are useful tools for identifying mutagens and mutational mechanisms,
and understanding genetic diversity, disease, adaptation and evolution. These signatures are
identified by comparison of genomic sequences with a reference sequence and association
with specific exogenous and/or endogenous conditions. Genome sequences can be viewed as
a string in the genome alphabet, or equivalently as a time series or lattice sequence of large
length. For the mouse genomic experiments discussed here, the length of a single chromosome
ranges from 6.14 x 107 base pairs (bp) of nucleotides for chromosome 19 to 1.95 x 108 bp for

chromosome 1.

Current genomic technologies have broadened our perspective to mutation analysis, reveal-
ing a critically important phenomenon of non-random spacing of mutations as a new muta-
tion signature [2]. This signature is crucial for discovery of mechanisms for mutagenesis and
carcinogenesis, as well as for development of cancer treatments that target effects of driver
mutations. Proximal spacing of multiple mutations has been termed ‘Kataegis’ or thunder-
showers of mutations [3]. Mutation showers have been reported in genomes of yeast [4, 5],
mice [6, 7] and humans [8], within genes and dispersed across the genome. To date, muta-
tion showers have been arbitrarily defined based on cancer whole genome sequencing data as
the occurrence of sequence segments containing six or more consecutive mutations with an
average intermutation distance of less than or equal to 1,000 bp [8]. Another definition for
mutation clusters was based on empirical data for the observation of multiple mutations within
30 kb in the context of postzygotic mutations in healthy mouse tissues[7]. The largest dataset
for detection of mutation showers exists for large pan-cancer studies, where mutation showers
are found with low incidence in certain cancer types [8]. A chief mechanism proposed for this
signature is transient hypermutagenesis, an elusive and incompletely understood phenomenon
[9, 10]. Examination of the human genome for mutation showers is restricted to a very limited

number of tissues or cell types and next generation sequencing. Whole genome sequencing,
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although the highest resolution possible, is not affordable as a population screening approach

in general.

Since complete genome sequencing is expensive and generally impractical as a screening or
survey method, genotyping microarrays are a low-cost alternative which are commonly used to
detect mutations at loci with single nucleotide polymorphisms (SNPs). These loci are referred
to as SNP sites. Differences in a single nucleotide, referred to as SNP genotype differences
(SNP differences), can be interpreted as mutations when comparing two samples. These two
samples can be two biological samples of interest, or a biological sample of interest and a
reference sample, which is usually B6 mouse in mouse studies. SNPs are genotyped using de-
signed single-stranded short nucleotide probes affixed to a microarray platform. These probes
complement specific locations within the genome and these locations are quite sparse in distri-
bution across the genome relative to the genome length, yielding low cost for the array process
relative to sequencing. Thus, a SNP genotype difference can be detectable or undetectable by a
microarray platform, depending on whether the probes on the array are at that SNP locus. The
objective we study in this chapter is the development of a population, i.e., a large sample size,
screening tool for a wide variety of tissues and cell types, using the low cost SNP array data
for identifying clusters of putative mutations. The challenge is that arrays provide windows of
observations along the genome, which depend on probe sites, in terms of both number of sites
and distribution or spacing of the sites. Hence the screening tool would need to accommodate

this constraint in the experimental design with microarray platforms.

The Mouse Diversity Genotyping Array (MDGA) is a single nucleotide polymorphism
(SNP) microarray [11] that detects SNP alleles at 493,290 SNP loci [12] across the mouse
genome. The alleles at each SNP locus are detected by a SNP probe set on the array. A probe
set consists of eight single-stranded DNA sequences (probes) 25 bp in length. The probes are
fixed to a solid surface (or chip) in a known arrangement. Due to several conditions a SNP
probe needs to satisfy in design, the probes are not evenly distributed along each chromosome.

To illustrate the sparsity of the probes, Figure 2.1 is a boxplot of the MDGA inter-SNP locus
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distances for each autosome and the X chromosome. The average inter-SNP locus distance is
5,210 bp, with a maximum and minimum distance of 7,268,520 bp and 16 bp, respectively.
Of the SNP loci, 83.6% (412,181 SNP loci) are within 10,000 bp of another SNP locus, and
38.7% (190,714 SNP loci) are within 1,000 bp of another SNP locus. There are 22 SNP probe
deserts, defined as consecutive probe sites spanning more than 1 million bp; the two largest
gaps between consecutive probe sites are 7,268,520 bp and 7,033,330 bp on chromosomes 7

and X, respectively.
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Distance (bp) inter—probe loci

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Chromosome

Figure 2.1: The inter-SNP locus distances (bp) for 493,290 SNP loci assayed by the probes on
the Mouse Diversity Genotyping Array (MDGA) are summarized for each chromosome.
A boxplot of the distribution of these inter-SNP locus distances (bp) for each autosome and
the X chromosome.
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With the rapid development of genotyping and sequencing techniques in recent years, more
genetic studies have begun to focus on assembling, visualizing and studying the spatial infor-
mation of genomic events under different scenarios such as genome-wide association studies
[13]. For cluster detection, several statistical methods have been developed and applied in
DNA and protein sequencing data [4, 14, 15, 16]. Despite previous efforts for detecting clus-
ters with sequencing data, to our knowledge, there have not been formal studies attempting to
detect mutation clusters under a genotyping array system. For sequencing data, the rainfall plot
has been introduced recently for visualizing the landscape of mutations [8, 17]. Specifically,
a rainfall plot portrays the base pair distance of intermutation spacing along the chromosome
or entire genome sequence. Here, rainfall plots are adopted to visually examine the potential
existence of clusters on the whole genome or individual chromosomes for data from a mouse
SNP genotyping array. Mutation clusters are suggested by low intermutation spacing values in
such plots; the goal of this paper is to attach rigorous statistical inference to the identification

of clusters.

From the discussion above we see that the observable microarray data depend on the probe
design, that is, the locations of the probes. In this chapter, we study several statistics for de-
tecting mutation clusters: a set of non-parametric statistics based on neighbourhood measures,
and a test statistic based on distances between SNP loci where mutations are detected, which is
related to rainfall plots. These statistics are also studied in real-valued functional forms to sum-
marize the cluster features. The microarray probe sampling system yields missing observations
in the domain of interest. Numerical techniques have become increasingly important for the
analysis of complex data structures, such as observed here. Such techniques are utilized in our
analyses to incorporate the probe design constraints. The null process of complete randomness
is a homogeneous Poisson process. For a natural alternative cluster process we consider the
family of Neyman-Scott processes, which are a class of parent-child point processes. We eval-
uate the techniques through power studies which demonstrate that the tests proposed provide

suitable tools for screening samples for clustering effects on the genome scale. We then ap-
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ply the recommended statistical tools for finding clusters of putative SNP genotype differences
(SNP differences) in a mixture of different mouse genetic backgrounds and for finding clusters

of de novo SNP differences between tissues with development and with carcinogenesis.

2.2 Methods

To detect mutation clusters genome-wide, chromosomes are studied individually as each chro-
mosome consists of a linear space in itself. Define the set of the probe locations, determined
by design, as S : S c R*. Denote the location of the first probe target site (a SNP locus) on the
chromosome as sy = min,s s, and the location of the last probe target site on the chromosome

as s; = max,gs s. Denote the locations of SNP differences detected by the probesas X : X C S.

The test statistics proposed below consider SNP genotype differences within the neighbor-
hood of a known SNP genotype difference, where neighbourhood is defined by either distance
d from the known SNP genotype difference, or by the number of SNP differences n, within the
neighborhood. Each statistic can be considered as a function of a specific value of d or n, or
alternatively, the behavior of each statistic over a range of d or n may be considered. The sum-
mary statistics for functional behaviors utilize the well-known frameworks of the Kolmogorov-
Smirnov (KS) and Cramér-von Mises (CvM) tests, adapted for this missing data context. The

test statistics proposed are:

(I) Mean over all sites with SNP differences of the ratio of the number of sites with SNP

differences to the number of probes within fixed distance d

Nx(x,d)
erX Ns (x,d)

R(d) = Rs(d) = X

2.1)

where for arbitrary set A, fixed distance d, and site with a SNP genotype difference x, we
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have

Ni(x,d) = Z 10<|z—x < d) (2.2)

z€A

where I(E) is the indicator function for the event E.

(II) Pooled mean detection ratio: the ratio of the total, over all x € X, of Nx(x, d), the number
of SNP differences within distance d of each SNP genotype difference, to the total, over
all x € X, of Ng(x,d), the number of probes within distance d of each SNP genotype

difference

Rd) = Rs(d) = ZeexMxed) 23)

Direx Ns(x,d)

The two statistics above are inspired by the K function introduced by Ripley [18], which
tests for general clustering in a point process by measuring the number of events occuring
within a certain distance of other events. The R(d) and R(d) statistics proposed here summarize
properties in the neighborhood of distance d from observed SNP differences, while adjusting
for varying probe sparsity over the chromosome. The index S is used to emphasize that the
statistics depend on the design of the probe set S. Comparing the two statistics, R(d) as a
pooled estimate of the mean detection ratio is more robust and numerically more stable. These
two statistics can be invalid in case their denominators are zero in some data or settings, which
are discussed in Appendix D.5. While we focus on the above formulations, for comparison

purposes, we also consider traditional neighbourhood formulations of test statistics:

(ITIT) Consider D(xy, n) the minimum distance to include n SNP differences around x

D(xo,n) = inf {d : Z I(xo— x| < d) = n} (2.4)

xeX
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The test statistic is the minimum of such distances over all SNP differences x, € X,
D,,in(n) = min D(xo, n) (2.5)
xo€X

Notice than when n = 2, D,,;,(n) becomes the minimum of the distances between any
two SNP differences. Algorithm 2.1, provided at the end of this section, describes an
efficient procedure for the calculation of D,,;,(n).

(IV) Maximum of the number of SNP differences within distance d of any given SNP geno-

type difference

Nmax(d) = m%(x NX(-X’ d) (26)

Another test statistic proposed is a count statistic inspired by the rainfall plot. The statistic
is related to the distances between SNP loci with genotype differences, which are features

shown in the rainfall plots. The count statistic is defined as follows:

(V) Count of inter-SNP locus distances for those SNP loci with different genotypes under

threshold d

C(d) = Z I(b < d) 2.7)

bEBX

where By = W' {X(.1) — X5}, and X; is denoted as the ith ordered statistic in X, where
i =1,---,|X]. The multiset By contains all of the inter-SNP locus distances for those

SNP loci with different genotypes for the sample X.

These five statistics, generically denoted as G(y) with argument y, may be viewed as func-
tion valued statistics with a fixed argument d or n. In the statistics above, the argument is

typically d or n. Instead of considering a fixed argument y, they may also be viewed as a
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functional form G(-), G(-) = {G(y),y € R(y)}, where R(y) is the range of y considered. Let
G*(-) = Eo(G(-)), the expectation of G(-) under an appropriate null hypothesis, e.g., homoge-
neous Poisson process, which is discussed in further detail in Section 2.3.1. Two test statistics
measuring the distance of G(-) from G*(-) as considered here are of the forms of Kolmogorov-

Smirnov (KS) and Cramér-von Mises (CvM) tests [19] described as follows:

(a) Kolmogorov-Smirnov test framework

The KS test statistic is the supremum norm distance of G to G* over a range of y:
KS(G,G") =sup|G(y) -G O (2.8)
.y

(b) Cramér-von Mises test framework
The CvM test statistic integrates the squared difference between G and G* over a range

of y:

CvM(G,G) = f [GY) - G*()Pdy (2.9)

The five test statistics G(y) for specific argument y as described above and KS and CvM

based on their functional forms G(-) are used to conduct inference.

To evaluate KS and CvM, the support of function G(-) is discretized and set as a finite grid
Y ={y;,i =1,---,k}. The grid points y; and y; represent the smallest and largest values of d
and n in the evaluation range respectively. Given the grid Y, the discrete versions of KS and
CvM statistics are calculated as:

KS(G.G") = max |GG -G () (2.10)

Vii=1

k-1

D {IGO) = GG + 60w = G i) P01 =30} 2.11)

i=1

CVvM(G,G") =

| =
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The parameter k controls how dense the function G(-) is evaluated on the support [y, yi].
If the selected grid points are dense, KS and CvM converge to KS and CvM; yet the selection

of k should also account for feasible computational load.
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Algorithm 2.1: Calculation of D,,;,(n)

1: Let X ={x;,i = 1,--- , K} denote the set of ordered SNP differences, where x; is the
ith ordered SNP genotype difference on the chromosome. Then there are K —n + 1
clusters of consecutive SNP differences of size n: {{x;, -« , Xpon1 )30 =1,--- K—n+1}.

2: Define D; = mine(i41 4n—2) MaxX(Xy, — X7, Xpyn—1 — Xm), [ = 1,--- K — n + 1. For the
Ith cluster of SNP differences, consider the set of minimum distances to include n
cluster SNP differences around each SNP genotype difference in the cluster; then D,
is the minimum distance in the set. Note that cluster SNP differences refer to SNP
genotype difference in the /th cluster.

3: D) =miny Dy [ =1,---K—n+ 1.
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2.3 Small sample properties of the test statistics

Mutations may occur at any of the 2.8 billion base positions in the mouse genome. Among
these mutations some exist at the genomic loci targeted by SNP probes and are thus detectable
as SNP differences by the SNP probe system, while the existence of the other mutations remains
unknown. Both null and alternative hypotheses are established on underlying processes that
generate all mutations, both detectable and undetectable. Since the target loci of the SNP
probes are unique and non-random on each chromosome, the null and alternative distributions
of the proposed test statistics are calculated conditional on the probe locations on the specific

chromosome considered.

2.3.1 Proposed underlying processes for the null hypothesis

Under the null hypothesis, the locations of SNP differences are assumed to follow complete
spatial randomness in this study. This model would be used for the most generic application
scenario where no further genetic background information is available. Under the null hypothe-
sis that SNP differences are located at random locations along the chromosome, the underlying
process generating SNP differences can be assumed as a homogeneous Poisson process (hPP).
Under such a process, every site on the chromosome, and in particular, every probe site, is inde-
pendent and has an identical probability of having a SNP genotype difference. The relationship
between the hPP rate parameter and the total expected number of detected SNP differences n
is linear. Numerical methods are adopted to obtain the null distributions of the test statistics
for testing that X, the observed locations of SNP differences from the sample, are randomly
located along the chromosome. Algorithm 2.2 develops the Monte Carlo estimate of the null

distribution of the test statistics, while algorithm 2.3 provides an inferential procedure.
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Algorithm 2.2: Monte Carlo estimates of the null distributions of summary statistics
2.1: Set a finite grid ¥ = {y;,i = 1,---,k}, which defines the scale of d or n as the
evaluation range;
2.2: Simulate M replications of detected SNP differences {Xém), m=1,---, M} from the
hPP. At the mth replication, X(()m) is obtained as follows:
(a): Generate the total number of underlying SNP differences Nfl’:;)l ~ Pois(),

where A is an estimate of the rate parameter from the observed sample X,:

A= (Sll_;lf " The parameter 17 can be set as |X,|, where |A| is the norm of set A,

that is the count of the number of elements in A;
(b): Generate the set of underlying (both observable and unobservable) locations

with SNP differences U™

null

= {M],J = 1"”,N(m)

s Where independent and

identically distributed random variables u; ~ Ulsy, s;], and U is the discrete
uniform distribution on {s¢, - - , 5;};
(c): Obtain the set of observed SNP differences: X(()m) = U}S’:Z NnsS.
2.3: Foreachm = 1,--- M, obtain GX(()m)(') = {GX(()m)(yi),i = 1,---,k} at the grid sites
yii=1,--+ k;
2.4: The Monte Carlo estimate of G*(-) is G*(-) = {4 Y, Gy i =1, k);
2.5: Foreachm =1, --- M, calculate the KS or (/?;1\//1 test statistic:

X(m)

(@: KSg' = KS(Gym,G);

——Xxm

(b): CVvMg = CvM(Gym, G™);

2.6 The Monte Carlo estimates of the cumulative distribution functions of the test statis-
tics F' KSe and F oM, are:

. —x™
@): Frs () =520 I(KSG <1
(m)

A ——X
(b): Fap (0 = 37 Sy [(ICVMG < 1)
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Algorithm 2.3: Hypothesis testing procedure
3.1 Based on the observed sample X, calculate Gx, () = {Gx,(y;),i = 1,--- ,k}. The test

statistics are:
(a): KSg = K5 (G, G");
(b): CvMj; = CvM(Gy,, G°);
3.2 Statistical inference:
(a): For hypothesis testing at significance level a:
(Q): KS test: if KS 2‘, > F %G( 1 — a), reject the null hypothesis, otherwise do
not reject.
(i1): CvM test: if 6\/\1\//[)2 > F ;Alm(l — @), reject the null hypothesis, otherwise
do not reject.

(b): The p-values are calculated as:
. (m) .
1+3M | IRS.) >KS8)
1+M ’
. (m) .
LM ICML SCoMy)
1+M ’

(1): KS test:

(i1): CvM test:
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The methods for calculation of the p-value in step 3.2(b) of Algorithm 2.3 are based on the
approaches for calculating p-values for Monte Carlo simulation provided in [20], which would
yield empirical p-values having correct type-I error rate.

To study the size of the statistics with fixed arguments as well as their functional forms,

two schemes are adopted as follows:

(s1=s7)I1X;l

S 10* Monte Carlo samples

a: Under a null process with the Poisson intensity A =
are simulated, and the null distributions and critical values are estimated based on these

same 10* samples. Another 10° Monte Carlo samples are simulated under the null pro-

(s1=s7)I1X;]

ST and tested based on the same null

cess with the same parameter setting of A =

distributions and critical values. The size would be calculated as the proportion rejected

among these 10° simulated samples.

(s1=5 1)1 X;

S 10° Monte Carlo samples,

b: Under a null process with the Poisson intensity A =

X(m)

o m =1, 103, are simulated. For each Xt((’)" ), another 10° Monte Carlo samples

(5= IX |

are simulated under a null process with the Poisson intensity 1 = A™ = T

and Xt(g’) is tested using the null distributions and critical values estimated from these
10 samples. The size would be calculated as the proportion rejected among simulated

samples X" . m = 1,---, 10°.

0 >

2.3.2 Proposed underlying processes for alternative hypotheses

Under the alternative hypotheses, the underlying process would generate SNP differences fol-
lowing a non-random spacing pattern. Here, the Neyman-Scott (NS) process is proposed as
a suitable clustering process. The NS process is a parent-offspring process, where a cluster
of several offspring is generated around each unobservable parent. The parent locations can
be randomly spaced along the chromosome or follow some alternate spacing patterns. This
parent-offspring type of underlying process is reasonable because it mimics a specific muta-

genesis mechanism that one source of error may lead to a cluster of mutations nearby. The
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error source could be a binding site of a particular protein that leads to the generation of nearby
mutations. This is an example of a transient state of an error-prone polymerase or a period in
replication of biased dANTP pools or error-prone conditions associated with translesion bypass
[21, 22, 23, 24, 6, 9].

Three alternative hypotheses are considered, all derived from the NS parent-offspring clus-
tering process. Each of these three alternatives differs in the domain D, on which parent sites
are generated as discussed below. Each parent site generates a cluster of offspring sites, with
the random number of offspring following the Poisson distribution with the expected number
Uo. The offspring sites are independent and identically distributed, truncated normal random
variables centered at the parent site location. The standard deviation of the truncated normal
distribution is denoted as o~. The half-length of the window of the truncation range is denoted

as h.

(1) Parent sites with an expected number yu,, are generated along the chromosome from an
hPP. The domain on which parent sites are located, D, is [sy — h, s; + h]. Only parents
within this range can yield offspring detectable by the probe set, because of the truncation
range in offspring distribution.

(2) Parent sites are constrained to SNP probe locations: D, = §. There are two important
reasons to constrain parent sites to probe locations. First, probes are located where the
corresponding SNP differences have an occurrence of at least 1% in the population, so
that the probe sites are selected based on their being favorable in terms of having SNP
differences. Secondly, under this constraint, all of the test statistics will attain the highest
power compared to other parent site settings. Thus this setting is helpful for eliminating
some candidate tests with sub-optimal performance.

(3) The parent sites are constrained to be within a certain distance &, of a probe; D, =
Uses [s—hp, s+h,]. This setting recognizes possible errors in identifying probe locations,

so parents may not be exactly placed at favorable sites for SNP differences.

In the simulation of each alternative hypothesis, as in the null hypothesis, the expected total
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number of detected SNP differences 7 is set to equal the observed total SNP differences |Xj],
which is achieved by adjusting the parameters in the alternative process. Algorithm 2.4 details

the Monte Carlo estimates of the powers.
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Algorithm 2.4: Power Study
4.1: Seta finite grid Y = {y;,i = 1,--- , k} the same as in Algorithm 2.2;
4.2 Simulate M’ replications of detected SNP differences {Xé’"), m=1,---,M’'} from a
Neyman Scott process. At the mth replication, X" is generated as follows:
(a): Generate the total number of unobservable parent points Nf,m) ~ Pois(u,),
where p,, is the Poisson mean parameter.
(b): Generate the set of parent points Z™ = {z™,t = 1,--- ,Nl(,’")}, where the iid
random variable z(’") ~ U(D,) and U is the discrete uniform distribution on the
domain D,,.
(c): For each parent point z§'”>, generate the number of offspring N,(,t) ~ Pois(u,),
and a set of offspring 0" = {u (m) ,j=1,---,N%), where iid random variables
(’") ~ N(z™, o®) with truncation interval [z — h, 2" + h];

N(m)

(d): Obtain the set of all generated offspring U, ('") O(’”)

(e): Obtain the set of observed SNP differences X : X(m) Uv™ns.

alt

4.3: For each m = 1,--- M’, obtain GX‘(lm)(') = {GXé,n)(y,-),i = 1,---,k} at the grid sites

il =1,k
4.4: Foreachm =1,--- M’, using é*(-) from step 2.4 in Algorithm 2.2, calculate:
X‘(lm)
(@: KS; = KS(GX(/11),G );

X(’")

(b): CvM; = CvM(GX<m), G*);
4.5 The Monte Carlo estimates of the power of the test statistics :3K5 and IBEV‘M are as

follows, where :

A (m) A
(@) : fgs, = ,Z I(KSG“ > :L (1 -a));

)

®) : B, = LIRS > F2L (1-0)).
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2.3.3 Simulation parameter settings and results

Chromosome 19 is selected as an illustrative example to conduct simulation studies. A mouse
with a primary mammary tumor and lung metastasis with about 50 putative de novo SNP dif-
ferences between these two tissue samples on its chromosome 19 is selected for consideration
here. Based on this example, the total expected number of detected SNP differences 7 is chosen
as 50. Under the null hypothesis, the estimate of the underlying rate parameter of the hPP, A,

is calculated as 1.77 x 10~* (See step 2.2(a) in Algorithm 2.2 in this chapter).

All of the statistics are evaluated using a grid of values for d or n, which are selected to be
scientifically meaningful. In sequencing data, having six or more consecutive mutations with
an average distance of less or equal to 1 kb is considered as a mutation shower [8]. Another
definition of a mutation cluster, obtained empirically from analysis of a genic region, is having
multiple mutations (2 or more) within a 30 kb region [7]. In genotyping array data, as infor-
mation is missing between SNP probe sites, the evaluation range for identifying clusters would
necessarily be larger than the range used in sequencing data with single base pair resolution.
In this simulation study, a grid of distances d;,i = 1,--- ,20 are set from 5000 bp to 100,000
bp with an interval of 5000 bp, so d; = 5000i; while a grid of cluster sizes n;,i = 1,---,7 is set

from 2 to 8 with an interval of 1, son; =i + 1.

Thus there are, in total, 97 statistics formulated: R(d;),i = 1,---,20, R(d)),i = 1,--- ,20,
D,i(np),i=1,--- 7, Nyo(dp),i=1,---,20,C(d;),i = 1,---, 20, and the 10 functional forms
of these statistics based on KS or CvM frameworks. The critical values for all tests are based

on a = 0.05.

The results of the study validates the size of the test statistics under both schemes are shown
in Tables A.1 to A.8 in Appendix A. For statistics with a single argument, it can be seen that
the sizes of R(d), R(d), and D,,;,(n) are close to the significance level of @ = 0.05; the sizes of
Npax(d) and C(d) can be quite lower than the significance level for some argument settings. For

the functional forms of the test statistics, the sizes of all statistics are close to the significance



2.3. SMALL SAMPLE PROPERTIES OF THE TEST STATISTICS 27

level in both schemes, except that the sizes of functional forms of D,,;,(n) and C(d) are lower
than the significance level in Scheme b. That the sizes are somewhat low for N,,,.(d) and C(d)
may due to the discreteness of the test statistics.

In power study, for each statistic, the null distribution is estimated from M = 10* replica-
tions generated under the null process. For the alternative processes, the parameters o~ and h
jointly reflect the spread of clusters of the SNP genotype differences. Here, the truncation range
h is set as h = 30, as there are very low probabilities associated with the normal distribution
outside this range. In the definition of D, in alternative hypothesis (3), &, is set as h, = o7; note
that h, = +oo for alternative hypothesis (1), where s, = O for alternative hypothesis (2). The
simulation study evaluates power performance of all test statistics with two factors, u, and o.
With u, and o specified, the parameter y,, is set to ensure that the expected number of detected
SNP genotype differences = 50. The experiment adopts a full factorial design with: (1) u,
having two levels, 375 and 1125, denoting low and high levels of offspring within a cluster in
order that powers of the statistics being evaluated are away from the extremes of 0 and 1, so
that the performance of the test statistics can be differentiated; and (ii) o having levels of grid
distances of 500 bp, and from 1000 bp to 10000 bp with increment of 1000 bp. These values of
o are based on the definition of a mutation cluster by [7]; i.e., the truncation range 60 ranges
from 3kb to 60kb.

Figure 2.2 to 2.4 provide power results for y, = 375 under each of the three alternative
hypotheses. The power of the statistics with relatively lower performance are not displayed.
The statistics with fixed argument are only shown for the argument d,,,,,, which is the optimal
argument for the corresponding parameter setting. The display of the statistics with fixed
optimal argument is intended to show the best power performance of the collection of the
statistics with various argument settings, which is to be compared with the functional form of

the statistics.
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Power performance of statistics based on R, R and C across o under NS processes
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Figure 2.2: Power performance of statistics related to R(d), R(d), and C(d) under alternative
hypothesis (1) with parameter u, = 375.
Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed;
dnqx refers to the value of d yielding the largest power.
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Power performance of statistics based on R, R and C across o under NS processes
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Figure 2.3: Power performance of statistics related to R(d), R(d), and C(d) under alternative

hypothesis (2) with parameter u, = 375.

Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed;

dqx refers to the value of d yielding the largest power.
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Figure 2.4: Power performance of statistics related to R(d), R(d), and C(d) under alternative
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Power performance of statistics based on R, R and C across o under NS processes
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hypothesis (3) with parameter u, = 375.

Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed;

dnqx refers to the value of d yielding the largest power.
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Under the alternative hypothesis (1), for i1, = 375, in general, the power of each test statistic
decreases as o increases. The test statistics based on R(d), R(d) and C(d) generally have higher
powers than those based on N,,,,(d) and D,,;,(n). Figure 2.2 contrasts the power performance
of nine categories of statistics based on R(d), R(d) and C(d), including the statistics with fixed
arguments as well as their function forms. Among these nine, R(d) has the highest power
and outperforms R(d) and C(d) in all the settings of o. The statistics related to R(d) seem to
always outperform the statistics related to R(d), which may be because R(d) is more robust
and numerically more stable than R(d). Among the six functional forms of statistics, CvM R
and ESTR outperform the other four functional forms of statistics, and CvM 7 has better power

performance than KS 3 as o increases.

The power performance under alternatives (2) and (3) for u, = 375, available in Figure 2.3
and Figure 2.4, provide similar results to that described for alternative hypothesis (1). Power
is generally highest under alternative (2) and lowest under alternative (1) given all the other
settings remain constant. One noticeable difference from alternative hypotheses (2) and (3)
compared to (1) is that the powers of C(d) outperform R(d) when o is not small. The compari-
son among the six functional forms of statistics shows similar results for alternative hypothesis
(D).

For u, = 1125, the powers of the test statistics are higher than when u, = 375. The powers
are closer to 1 and decrease less dramatically over o than for the cases where u, = 375. The
patterns of power comparisons are similar to the cases where u, = 375. Yet the powers of
R(d) are comparable with C(d) when ¢ is large and both are quite close to 1 under alternative
hypotheses (2) and (3). The power performance of the statistics under the three alternative

hypotheses for i, = 1125 is available in Figures A.1 to A.3 in Appendix A.

The power performance of R(d) and C(d) seem to be best among the nine categories of
statistics, yet they suffer the disadvantage that they require a choice of d. The optimal argument
choices of d are usually unknown in application. Moreover, the optimal choices of d may

change over parameter settings, particularly for o, as seen in Figure 2.5 for R(d). Importantly,
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using a sub-optimal choice of d can yield very low power.
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Figure 2.5: Power performance of test statistics R(d) across a grid of d under alternative
hypothesis (1) with parameter u, = 375.
The solid points indicate the maximum power for the particular parameter setting.
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In conclusion, the functional statistic CvM}; is the preferred test statistic in applications
because it has the correct size and general high power performance, oftentimes close to the
best among all statistics; importantly, with this statistic no specific choice of tuning parameter

d needs to be defined.

2.4 Application

2.4.1 Genotyping method

DNA was extracted from mouse tissue samples using the Wizard® Genomic DNA Purification
Kit (Promega, Madison, WI). Isolated DNA was submitted to the London Regional Genomics
Centre to be processed (restriction enzyme digested, amplified, fragmented and fluorescently
labeled) and hybridized to the Mouse Diversity Genotyping Array (MDGA; Affymetrix®,
Santa Clara, CA) [11]. Genotyping was performed for each of the three specific examples
within the context of separate experimental designs with a minimum cohort size of 12 samples
and a maximum of 351 samples. Genotyping Console (Affymetrix®, Santa Clara, CA) was
used to call genotypes at the 493,290 SNP loci represented by the MDGA, using the fluores-
cence intensity data. The Genotyping Console software uses a clustering algorithm, Birdseed
v2, and assigns each SNP locus as 1 of 4 possible calls: AA (homozygous for the most com-
mon allele), AB (heterozygous, one of each allele), BB (homozygous for the less common
allele), or no call if the SNP genotype calls did not cluster well with any of the three possi-
ble genotypes. The resulting data for each biological sample used for further analysis consist
of a list of SNP genotype calls, their locations in the genome (chromosome number and base
pair number) and the genotyping call given by Genotyping Console for each sample. In the
data sets utilized for testing for existence of clusters in this research, the events are defined as
SNP differences, which are the binary indicators of differences at SNP loci when contrasting
two biological samples. The genotyping call and the consequent SNP differences are putative

until the genotyping is confirmed by an alternate technology. All animal work was conducted
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according to relevant national and international guidelines. Western University’s Animal Use
Subcommittee approved the study. All guidelines were followed including those approved

standard operating procedures for euthanasia.

2.4.2 Analyses for three biological samples of interest

Three specific examples are considered here.

1. Detection of known clusters of putative SNP differences in a mouse with a known mixed

genetic background;

2. Test for the existence of clusters of putative SNP differences arising postzygotically be-

tween two healthy tissues from a C57BL/6J mouse;

3. Test for the existence of clusters in comparison of two cancerous tissues from a MMT V-

PyMT transgenic mouse [25].

Rainfall plots portraying the mutation landscapes of the three samples are provided in Fig-
ure 2.6. On a rainfall plot, each point represents a single mutation with its distance (in base
pairs) to the previous mutation in log scale plotted on the y axis, and the base pair location in
the genome is plotted on the x axis. Rainfall plots display mutations detected along a single
chromosome or potentially across the entire genome. Although the plots offer a helpful vi-
sualization of the data including potential clustering, they do not provide formal evidence of

clustering [17].
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Figure 2.6: Rainfall plots portraying the SNP differences due to mixed genetic background,
putative new mutations arising during development of two normal tissues of the same mouse
and putative mutations arising between two cancerous tissues from the same mouse.

(A) Rainfall plot for chromosome 6 from a mouse (identifier: 904.11) with mixed genetic
background (75% C57BL/6J and 25% CBA/Cal). (B) Rainfall plot for chromosome 1 for a
comparison of normal cerebellum and spleen tissue from the same mouse (identifier: 300.7).
(C) Rainfall plot for chromosome 1 for comparison of primary mammary tumor and lung
tissue with metastases from a MMTV-PyMT transgenic mouse (mouse identifier 36.1).
(Legend: CI cerebellum, Sp spleen, PMT primary mammary tumor, WLM whole lung with

metastases)
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As an example of a positive control for known clustered putative SNP differences in a
genome, the recommended CvM 7 test statistic was used to analyze SNP differences in nor-
mal cerebellar tissue from a mouse with a known mixed genetic background of two common
inbred mouse strains (75% C57BL/6J and 25% CBA/Cal), example 1. For chromosome 6 (Fig-
ure 2.6a), the test statistic rejects the null hypothesis at a significance level of 0.05, indicating

existence of mutation clusters along the chromosome.

In example 2, the CvM  test statistic was used to analyze SNP differences along chromo-
some 1 between cerebellar and splenic tissue from a healthy C57BL/6J inbred mouse (Fig-
ure 2.6b). The SNP differences detected are hypothesized to have arisen by spontaneous mu-
tation mechanisms resulting in somatic mutations propagated with cell division during devel-
opment. The test statistic failed to reject the null hypothesis at the significance level of 0.05,

indicating no existence of clusters of putative SNP differences along the chromosome.

In the third example, the CvM  test statistic was used to analyze SNP genotype differences
observed along chromosome 1 for a comparison of primary mammary tumor and lung tissue
with metastases from the same MMTV-PyMT transgenic mouse (Fig 2.6¢). The test statistic
rejects the null hypothesis at a significance level of 0.05, indicating existence of mutation
clusters along the chromosome. As mentioned in [17], the interpretation of rainfall plots is
difficult and subject to pitfalls. The example in Fig 2.6¢c shows that when a subjective judgment
from a visual examination of the rainfall plot is ambiguous and inconclusive, the rigorous
statistical tool developed here can provide an objective decision-making approach for detecting

the existence of mutation clusters.

2.5 Discussion

In order to perform rigorous statistical testing to detect existence of clusters of putative SNP
differences identified by genotyping array probe systems, 97 candidate test statistics are pro-

posed and evaluated. Conditional null distributions of test statistics are obtained by Monte
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Carlo simulations. The powers of all the test statistics are studied under three different types
of Neyman-Scott processes, intended to mimic the unknown underlying mutation generation
mechanisms. Various choices of parameters for alternative hypotheses are used to evaluate
the power performance of the candidate statistics. Among all of the parameter settings, the
Cramér-von Mises version of the pooled ratio estimate (6\/\1\//1 #) has high power among all can-
didate tests and lacks dependence on optimal argument choices. It also possesses the desirable
property of having correct size and power performance degrade less over various parameter
settings as the cluster range becomes larger. The functional form of the C(d) statistic based on
the rainfall plot performs substantially poorer. Therefore CvM # 1s recommended as an effective

statistic for detection of clustering.

The test statistics are developed conditional on the probe design and total number of de-
tected SNP genotype differences. When applied to a new scenario, the null distributions of all
the statistics need to be established according to the specific probe design on a chromosome
and total number of detected SNP genotype differences using Algorithm 2.2. Depending on
the total number of observed SNP differences and probes, the computational time using rec-
ommended testing procedure can be in the order of minutes on a PC with a four core Intel
17 CPU. The rate parameter of hPP under the null hypothesis can be estimated from a single
chromosome of interest without the need of extra information from other chromosomes in the
same biological sample or any other replicates. However, it can also be estimated from several
chromosomes under a justified experimental setting. For example, the rate parameter can be
estimated from certain replicates which can be assumed to share a common underlying muta-
tion rate under certain experimental conditions. When the objective is to carry out the mutation
cluster detection genome-wide, all of the chromosomes in a sample should be tested separately.
Multiple testing issues arise when the statistic is applied to multiple chromosomes from either
one or a number of biological samples. These multiple tests can be independent or correlated
depending on the biological context. In order to achieve a desirable overall type I error rate

or false discovery rate (FDR), statistical methods such as the Bonferroni correction or by [26]
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may be applied to achieve desirable testing properties, depending on the goal of the research.

The methods developed in this article are designed for cluster detection under a genotyp-
ing array probe design. The probe design provides a cost-effective way for mutation detection
compared to sequencing every base pair of the entire genome. Instead of a high resolution of
mapping of mutations in the genome, the probe system usually only reveals a small proportion
of information on a chromosome, leaving the regions outside of the probe sites unknown. As
mutations in regions where probes are absent are undetectable by design, any mutation clusters
occurring in such regions are correspondingly undetectable. The test statistics are established
based on the information on the probe system, so they can only identify clustering when the
probe system is capable of detecting potential clusters. The power performance of the test
statistics in this study is evaluated under the alternatives that there exist underlying clusters
generated from a known clustering mechanism. This mechanism does not necessarily guaran-
tee that clusters are detectable by the specific probe system. If all the samples evaluated in the
power studies contained clusters detectable by the probe systems, the power performances of
the tests would most likely be higher. One of the reasons for some low power performances
in certain alternative parameter settings may be that clusters generated are not detected by the
probe system. Designing an array with a larger number of probes or switching to an existing
array system with a larger number of probes will augment the probability of detecting existing

clusters.

In studies involving known genetic backgrounds, prior information on detected SNP dif-
ferences may be utilized to improve the power of testing for mutation clusters. For example,
information on SNP differences in high linkage disequilibrium (LD) with more unobserved
SNP differences in their neighborhood may be given greater weight in the testing procedure.
Alternatively, information on SNP genotypes undetectable by the microarray platform may be
inputed based on other information such as known haplotypes[27]. However, for studies with
de novo mutations, such as in healthy somatic tissues and in cancer studies, the imputation

based on LD or known haplotypes may not be appropriate; even so, other prior knowledge
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may become helpful. Extensions of the methods discussed in this paper could incorporate

improvements based on such prior knowledge.

The statistical tool recommended in this research can test for the existence of clusters of
SNP differences, but cannot identify the locations and the sizes of the clusters. The tool is
ideal for large scale experimental designs, which are usually intended to compare various ex-
posures. The feature of existing clusters can be compared among experimental groups with
different exposures. After mutation clusters have been detected, different downstream analyses
are possible. The nature of the mutation types in clusters can be used to identify mutation sig-
natures and to infer the underlying mutational mechanisms. Alternatively, the mutation clusters
can be linked to functional annotations for the genome and inferences can be made about the

functional impact of the mutation clusters.

The SNP differences here in this study are used as an example of genetic events that take
place on one base pair on the chromosome. The method developed here can be applied to
cluster detection of any single site event along any one dimensional system. These events
can be defined by biological researchers based on their genetic contexts and study interest.
An example is the distribution of DNA methylation locations detected by the CpG site probe
system as described by [13]. The method provided here is not only applicable to the mouse,
but also to other organisms, e.g. human, with microarray designed for SNP genotype detection.
The method can be generalized to any one dimensional system where every site is observed,
such as DNA or protein sequencing data, with probes designated as having length one at each

site of the system.

The arbitrary and informal graphical tools and definitions for portraying and detection mu-
tation clusters can now be replaced with a formal statistic test for mutation cluster detection.
The recommended test statistics in this study provide tools for genome-wide detection of muta-
tion clusters under the genotyping probe system. Due to the cost-effectiveness of array systems,
larger scales of experimental designs can be adopted compared to those possible with next gen-

eration sequencing techniques. Certain samples with putative mutation clusters can be further
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confirmed and investigated by sequencing techniques.
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3.1 Introduction

Mutations are alterations of DNA composition, arising during the regular course of cellular
development or due to environmental factors. The study of signatures of mutations may help
provide a better understanding of mutational mechanisms, genetic diversity, disease, adaptation
and evolution. Although the allocations or spatial properties of the mutations on the chromo-
somes have not been the focus of biological research in the past, the recent discovery of the
phenomenon that mutations may form clusters in space has attracted a lot of attention [2],
because of potential connections with known or unknown mutagens or mechanisms. Under-
standing the mechanisms that generate mutation clusters may also be crucial for research on

mutageneses and carciogenesis.

Currently there are two main technologies to measure mutations on the genome scale in
DNA samples: next-generation sequencing and the microarray. Next-generation sequencing,
also known as high throughput sequencing, has been developed in recent years to measure DNA
composition in single nucleotide resolution, the highest resolution possible, in a much faster
and cheaper way than the previously used sequencing technologies developed in the 1970s.
With the efforts of researchers worldwide, the efficiency of whole next-generation sequencing
has been improved even while the cost has been reduced, especially for commonly studied
organisms. For example, the price for sequencing the whole genome of a human has decreased
to the order of a thousand dollars. Even so, the price still remains very high, especially for
less commonly studied organisms. For example, for a mouse, although a widely studied model
organism, the cost of whole genome sequencing could be on the order of thousands of dollars.
Though price reductions are still on the horizon, substantial changes in pricing may take some
effort yet. Importantly, for human screening purposes or for studies with a relatively large

populations, next-generation sequencing is still not cost efficient or even feasible.

On the other hand, the microarray platform provides an alternative approach at a lower cost

to measure mutations. A type of mutation can be genotypic alteration at a single nucleotide
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polymorphism (SNP) locus, referred to as a ‘SNP genotype difference’, or in short as ‘SNP
difference’ between two samples. The SNP genotypes are measured by a collection of probes,
specially designed for specific purposes for each organism. Only the SNP genotypes at specific
loci on the probes can be detected by the microarray platform, while those outside the probe
sites remain unknown. The number of targeted probe sites usually covers far less than the
length of the entire genome, leading to an observation of the SNP genotypes with potentially

substantial missing data.

For example, in the Mouse Diversity Genotyping Array (MDGA) [11], the total number of
SNP probe sites is 493,290, which is much fewer than the mouse genome size of 2.8 billion base
pairs (bp). The number of SNP probe sites and their locations in the microarray are selected
by a design procedure. Genomic variations in the form of SNP differences from 7 categories
of mouse samples were used to develop the design of MDGA. From samples in each category,
probe site locations were selected. For example, in the first category of 25 widely used classical
laboratory mouse strains, the genome was divided into non-overlapping 40kb intervals. In each
interval, the top three SNP loci with the highest minor allele frequency and low missing rate
were selected. In the second category of 15 strains from National Institute of Environmental
Health Sciences (NIEHS), probe sites were selected based on local phylogenetic trees. Other
constraints to ensure feasibility of the physical experiment, such as annealing temperature, GC
content, also need to be considered in the selection of probe sites. With the observation of a
small proportion of nucleotides spanning the entire genome, the microarray platform provides
a much cheaper and feasible approach to detect mutations and become a screening tool in a

study with a large population, if it can be shown to be effective.

SNP differences detected from the microarray platform can be used for the detection of
the existence of mutation clusters. Formal statistical tools have been developed for such a
purpose in Chapter 2. The power performance of several statistics were studied based on a real
probe setting on one chromosome. One of the statistics emerged as having excellent power

and is further utilized here to study the properties of the tests across a variety of probe designs.



3.2. STATISTICAL METHODS 45

This information and the approaches considered here are useful for the design of microarray

platforms.

In this investigation, we compare various microarray platforms in terms of their capabilities
for detecting the existence of clusters. Here we develop procedures to obtain: (1) simulated
probe sets using a window-based probe selection procedure from two types of simulated ge-
nomic variation libraries: the homogeneous Poisson process library and the Neyman-Scott
library; (2) probe sets filtered from existing MDGA probe design. We also develop a frame-
work and algorithm to numerically calculate the rejection rates of the test statistics developed
in Chapter 2 under these various probe designs. We compare the power of these proposed test
statistics under (i) the simulated probe settings with two varying factors: a parameter defining
the probe selection procedure, and the type of genomic variation library; as well as (ii) the
probe settings that are based on MDGA. The framework developed provides valuable insights
to help determine key features such as what level of probe intensity would provide for high
power in detecting clusters under a variety of mutation levels, for the design of microarray
platforms for the purpose of mutation cluster detection for population screening.

In Section 3.2 of this chapter, we first introduce the data structure of the SNP differences
detected under the microarray platform as well as the process for the construction of simu-
lated probe settings considered here. Section 3.3 describes the study design and the results for
comparison of various probe designs. Section 3.4 discusses the roles of various factors in the
simulation study, and insights the study framework provides on the effectiveness of microarray

platforms as screening tools.

3.2 Statistical methods

For genome-wide mutation cluster detection with information collected from the microarray
platform, when focusing on an individual chromosome, the data consist of two components:

the set of probe locations on the chromosome S : § C R* and the set of locations of SNP
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differences detected by the probes X : X € §. The probe locations S are determined by the
design of the mircroarray platform. Only SNP differences falling inside the probe regions can
potentially be detected, while those falling outside of the probe regions cannot. Denote all the
underlying SNPs on the sample chromosome as U, then X = U N §. Thus, given the same
DNA sample with underlying SNP differences U, an alternative probe system S * may yield a
different observation of the set observed SNP differences X* = UNS*. The statistical inference
for cluster detection of SNP differences relies on both the probe set S and the corresponding
observation X. Thus altering the probe design S may also alter inference.

The goal of this study is to evaluate the effect of probe design on powers of test statistics
for cluster detection. Various alternative probe designs are required to represent different probe
features, such as probe intensity and probe allocation. There are two strategies adopted in this
research to achieve probe design alterations - the use of: (1) probe sets designed from simulated

libraries of genomic variations; (2) probe sets filtered from the MDGA probe design.

3.2.1 Probe sets designed from simulated libraries

The probe design procedure follows the essence of the design process for the Mouse Diversity
Genomic Array (MDGA) [11] and can be divided into two main parts. The first is generation
of a library that stores all the genomic variation information in a population. The second is
the probe selection procedure, which selects the locations of the probes on the chromosome

according to the genomic variation information in the library.

3.2.1.1 Library generation

The library of genomic variation is a collection of DNA information of the species of interest in
the study. It provides sources of genetic variability, which indicates plausible locations of SNP
probe sites and consists of genetic information from a number of samples depending the array
being constructed. For example, in the design of MDGA, the sources of genetic variations are

25 widely used classical laboratory mouse strains.
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The information on genetic variability in a library is determined by the group of biological
samples of interest, which may have different properties in terms of their genetic variation
behavior. To consider a broad coverage of genetic variations, the library is obtained through

simulations of genetic variations under different models.

For a target chromosome of a simulated biological sample, consider the two following
models: the homogeneous Poisson model and the Neyman-Scott model. In the homogeneous
Poisson model, genetic variation follows a homogeneous Poisson process (hPP). Under such
a process, every base pair on the chromosome acts independently and has an identical prob-
ability of having a genetic variation. The Poisson intensity in this model is denoted as A. In
the Neyman-Scott (NS) model, the genetic variation follows a parent-offspring type of cluster-
ing process. Under this clustering process, unobservable parent sites with an expected number
U, are generated along the chromosome from an hPP. Each parent site generates a cluster of
offspring sites with expected number p,. The offspring sites are independent and identically
distributed truncated normal random variables centered at the parent site. The standard devia-
tion of the truncated normal distribution is denoted as o~. The half-length of the window of the
truncation range is denoted as 4. Neither the hPP model nor the NS model perfectly portrays
genetic variations in real world libraries. They are utilized as references for two ‘extreme’
conditions of complete spatial randomness and clustering process. The genetic variations in

the real world libraries likely lie somewhere in between these two extremes.

Thus two libraries storing genetic variability information from N biological samples can be
constructed: one with all samples independently following the homogeneous Poisson model,
another with the Neyman-Scott model; these are named the hPP library and the NS library
respectively. The hPP library represents a population with randomly spaced genetic variations,

while the NS library represents a population with clustered genetic variations.
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3.2.1.2 Window-based probe selection procedure

Probe sites are selected using a window based design procedure mimicking the design of the
MDGA array. As well, this design offers even coverage of the genome which is important for
cluster analyses. In this window based design, the chromosome is divided into non-overlapping
windows of size /,,. In each window, n,, probe sites are selected based on similar criteria for
selections as for the MDGA design. The main criteria are high frequency of genetic variation
observed amongst samples in the library at a particular site, and the importance of sites for the
construction of local phylogenetic trees. The dominance of each of these two criteria depends
on the goal of the probe design, with the former being dominant where sites with higher muta-
tion rates are critical to capture, and the latter considered when the focus is identification of the
difference amongst samples. For this study, high frequency of genetic variation is the criterion
used to select probe sites because of the goal of mutation cluster detection. For each window,
the n,, sites with the highest count of genetic variation are selected. When ties occur, random
selection from the ties is conducted to achieve the total as n,,. The design parameters /,, and
n,, are adjusted to vary the overall total number of probes. Algorithm 3.1 specifies the window

based probe selection procedure.
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Algorithm 3.1: Window-based probe selection procedure
1.1 For a chromosome of length L, denote the chromosomal position of each base pair

as{l,---,L};

1.2 Denote the set of chromosomal positions of genomic variations in each of the N

samples in the library as T.,c = 1,--- , N;

1.3 Divide the chromosome into m,, = [L/l,] consecutive non-overlapping windows,
each of size [,,. If m,Il, > L, then the number of probe sites chosen for the last
window that then has length less than /,, would be adjusted proportionate to the
length of that window. In our studies, m,,/,, = L. Denote the windows as {W},i =
L,---,m,. For the ith window W, the chromosomal positions are {b;; = (i — 1)I,, +

j’j: la alw}-

1.4 In the ith window W;, for each chromosomal position b;;, obtain the count of sam-

ples in the library that have a genomic variation at this location C;; = Zf’:l I(b;; €

T),j=1,---,1,, where I(-) is the indicator function.
1.5 The chromosomal position of the largest n,, elements in the vector (C;y, - -+, Cy;,) and
their corresponding chromosomal positions s;, - - - , s, are selected as elements in

the probe set S. In case of occurrence of ties, random selection from the ties is

conducted to ensure the number of total selected sites is n,,.

1.6 Repeat step 1.4 to 1.5 for every window W,i = 1,--- ,m,. Obtain the probe set

— mH’ nw .
S = Ui:l Uk:l Sik-
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3.2.2 Probe sets filtered from MDGA

Probes from the MDGA microarray probe design are filtered by randomly selecting sites with-
out replacement. Denote the target probe intensity for the filtered probe set as A;. The number
of probes is then calculated as [A,L], where [x] is the nearest integer of x and L is the length of
the chromosome. Then the filtered probe set is obtained by selecting a random sample of size

[1,L] without replacement from the probe set for the corresponding chromosome on MDGA.

3.2.3 Methodology for power study

The emphasis here is the study of the effect of probe designs on the performance of test statistics
for detecting the existence of mutation clusters. Once a probe set S is determined either from
a simulated library or by filtering from MDGA, the corresponding observed SNP differences
can be obtained for a given sample as X = U N S, where recall U is the complete set of SNP
differences for test sample over the whole chromosome.

We utilize statistics developed in Chapter 2 that have been demonstrated as having good

performance for cluster detection. The test statistics are defined as follows:

KS 5 = sup |[R(d) — R*(d)|, (3.1)
y

CvMj = f [R(d) — R*(d))*dy, (3.2)

where

ZXEX NX(X’ d)

R(d) = Ry(d) = )
( ) S( ) ZxEXNS(x’d)

(3.3)

and where for arbitrary set A, fixed distance d, and specific SNP difference x,

Ni(x,d) = Z 10 < |z - x| < d), (3.4)

Z€A
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and R*(d) = Eo(R(d)), the expectation being taken under an appropriate null hypothesis.

To numerically approximate the test statistics, we evaluate the supremum in equation 3.1
and integral in equation 3.2 over D, D = {dy), -+ ,dw)}, k = |D|, D being a discrete set of grid
points for distance argument d. A finer choice of grid points leads to a better approximation.
Suitable choices were discussed in Chapter 2, and adopted here.

When D is not well specified, some elements of D may lead to invalid calculation of R(d),
as the denominator in (2.3) can be zero. This is because when d is selected small enough, there
is no probe within distance d to an observed SNP difference x except for the one that detects
x itself. A subset of D, however, usually exists such that calculation of R(d) is valid. Given
the grid set D, suppose for a sample X, 4D, = D,(X) c D and D, # ¢, such that Yd € D, (X),
R(d) € R and ¥d € D,(X)° N D, R(d) ¢ R. The calculation of discretized functional statistics

to approximate 3.1 and 3.2 are as follows:

E?@ﬁﬂig%W@—F@L (3.5)

2R ) = R () + [R(dyiany) = R (i)W duirny — dui))

CvM (R, R = : , (3.6)
2(maxgep,x)(d) — mingep, (x)(d))
where D, = {dv(1)7 T, dv(kv)’ kv = |Dv|}

Note that ﬁ*(ﬁ, R*) and E’W\//[*(R, R*) are referred to as the CvM and KS test statistics
respectively in subsequent discussion.

To study the rejection rate under any given probe setting S, the homogeneous Poisson
process is adopted as the null process while the Neyman-Scott cluster process is adopted as
the alternative. Algorithm 3.2 identifies the calculation of the rejection rate given any specific

probe setting S .
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Algorithm 3.2: Calculate rejection rate given probe setting S

2.1

2.2

23

24

2.5

Generate M, replications of underlying SNP differences U;’), r=1,---,M, based

on an alternative NS process with the parameter setting of ., (40, 07, and hy;

For the sample of U, generate the detected SNP differences Xg) = UY NS based

on the probe design S';

For detected SNP differences Xér), obtain Monte Carlo estimations of the null dis-
tributions of the KS and CvM statistics and hypothesis testing procedure based on
Algorithm 2.2 and 2.3 in Chapter 2, replicated as shown in Algorithm S1 and S2 in
Appendix B;

Denote RE?S /R(Crz y as an indicator for rejection of the null hypothesis for sample Xér)
based on the KS/CvM statistics, where Rgg /R(Cri v = 1 indicates rejection of the null

hypothesis and 0 otherwise.

Repeat the procedure from 2.2 to 2.4 for r = 1,--- , M,. Then the rejection rates

V.

based on KS and CvM statistics are RS, = M R% /M and RS, = M R(Cr)M/Ma

respectively.
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3.3 Power study

3.3.1 Parameter settings

For the construction of probe sets designed from simulated libraries, a pseudo chromosome of
length Ly = 107bp is considered in this simulation study, without loss of generality, to main-
tain feasible computational load. Though this length is close to the order of a typical mouse
chromosome length of 10%bp, it is important to note that different organisms have different

chromosome lengths and these may vary substantially in scale.

For library generation, to obtain the genomic variation library based on a hPP, the Poisson
intensity A is set as 0.002, which is within the range of typical rates discussed in the genomic
literature [28]. For the library based on the NS process, the parameters are set as u, = 100,
U, =200, 0 = 10*, h = 3 x 10*, close to values reported in Chapter 2 for the analysis of mouse
data. For each library, N = 100 samples are generated for selecting probe sites as described in

the next paragraph.

For the window-based design procedure, for each type of library, 3 window lengths [,
are chosen as 20, 000bp, 100,000bp and 200, 000bp. For [, = 20kbp, the number of sites
selected in each window n,, is set as 1, 2, 3, or 4, which would yield a total number of probes as
500, 1000, 1500, 2000, respectively, with corresponding overall probe intensities as 5 X 107>,
1x107%,1.5%x107*,2x107*. For I,, = 100kbp, n,, is set as 1 through 10 with increments of 1, as
well as 15 and 20. These settings of n,, would yield a total number of probes as 100 to 1000 with
increment of 100 and additionally 1500 and 2000. The corresponding overall probe intensities
are from 107> to 10~* with increment of 107, 1.5x 10~* and 2x 10~*. For /,, = 200kbp, n,, is set
from 2 to 20 with increments of 2 as well as 30 and 40. These settings yield the same number
of probes as well as overall probe intensities corresponding to the /,, = 100kbp settings. Note
that when the length of the chromosome is 107 and the total number of probes is 2000, the

overall probe density in the simulation is comparable to the average density observed for the
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mouse SNP microarray (MDGA).

For generation of probe sets filtered from MDGA, probe set on chromosome 19 from
MDGA array is utilized for filtering. The probe intensity on chromosome 19 is 1.938 x 10~
probe/bp, which is comparable to the highest probe intensity of 2 x 10~ probe/bp in the probe
sets designed from simulated libraries. The probe set on chromosome 19 from MDGA is
then filtered, targeting the probe intensities of 107> to 10~* with increment of 1075, as well as
1.5 x 10~* from those simulated probe sets with window length ,, = 100kbp and [,, = 200kbp.

For the power study, for both simulated probe sets and the probe sets filtered from MDGA,
the number of samples generated under the alternative process M, is set as 100. For the sim-
ulated probe sets, the parameters in the alternative NS process are set as y, = 100, u, = 200,
o =5x%x10% h =1.5%x10°. For the probe sets filtered from MDGA, in order that the alternative
process is comparable with that for the simulated probe sets, the parameter u, in the NS pro-
cess for the filtered probe sets is multiplied by a factor of LL—’(‘)‘ due to the change of chromosome
length, where L, here is the length of chromosome 19. By using this multiplier, the expected
number of mutations per unit length is the same between the simulated probe settings and the
filtered probe set from chromsome 19. The remaining parameters in NS process are kept the
same as previously in order to have the identical behaviour of offsprings given a parent location
in a cluster. That is, we set u,, = lOOLL—Z,,uo =200,0=5x10* h=15x%x10.

For each sample from an alternative process for either simulated probe sets or the probe sets
filtered from MDGA, for each specific probe set, a Monte Carlo estimate of the null distribution
of summary statistics is calculated as in Algorithm S1 in the Appendix, with the number of
replicates M(See Appendix B) set as 1000. The grid points D utilized in this algorithm are set

from 103 to 10° with increments of 10°.

3.3.2 Power comparisons

The rejection rates under the alternative process based on hPP mouse library for the CvM and

KS statistics are shown in Figures 3.1 and 3.2, while corresponding rates for the NS library are
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displayed in Figures 3.3 and 3.4. In Figures 3.5 and 3.6, we provide a comparison of rejection
rates based on the filtered probe sets of chromosome 19 with those from probe sets based on

the simulated hPP and NS libraries with [,, = 100k for the two test statistics.
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Comparison of rejection rates of CvM statistic among three window sizes (hPP library)
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Figure 3.1: Comparison of rejection rates of CvMj under various probe settings among three
window sizes. The mouse library is constructed from hPP samples.
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Comparison of rejection rates of KS statistic among three window sizes (hPP library)
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Figure 3.2: Comparison of rejection rates of KS 3z under various probe settings among three
window sizes. The mouse library is constructed from hPP samples.
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Comparison of rejection rates of CvM statistic among three window sizes (NS library)
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Figure 3.3: Comparison of rejection rates of CvMj under various probe settings among three
window sizes. The mouse library is constructed from NS samples.
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Comparison of rejection rates of KS statistic among three window sizes (NS library)
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Figure 3.4: Comparison of rejection rates of KS 3 under various probe settings among three
window sizes. The mouse library is constructed from NS samples.
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Rejection rate

Comparison of rejection rates of CvM statistics under probe settings
based on ch19, hPP library (lw = 100k) and NS library (Iw = 100k)
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Figure 3.5: Comparison of rejection rates of CvMj under filtered probe sets based on
chromosome 19, hPP library (/,, = 100k) and NS library (/,, = 100k). The blue and black
dashed vertical lines indicate probe intensities required for high performance with the hPP
library and filtered probe sets on chromosome 19 from MDGA respectively.
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Figure 3.6: Comparison of rejection rates of KS 3 under filtered probe sets based on
chromosome 19, hPP library (/,, = 100k) and NS library (/,, = 100k).
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For any probe design, or alternative process, and for any window size, as expected, the
rejection rates tend to increase as the probe intensity increases over the range considered with
more information being available from higher intensities. Rejection rates under the NS library
tend to be considerably lower than those under the hPP library, again as expected because of
the increased variability in event locations corresponding to the NS library. The difference in

rejection rates for these two libraries is striking.

Though window lengths chosen for the study were considerably different, no substantial
differences in rejection rates were observed over the window lengths considered, with /,, = 20k
having generally lowest power, and largest power seen with /,, = 200k. Under any setting, the

CvM statistic has better performance in terms of rejection rate than the KS statistic.

Comparing probe sets designed from simulated libraries and those filtered from the MDGA
design, Figures 3.5 and 3.6 show that the rejection rates from the filtered probe sets are in
between those from the hPP and NS libraries. When the intensity is high, the filtered probe set
is closer to the hPP library. In particular, at the probe intensity of 2 x 10~%, which is close to
the actual probe intensity of MDGA in chromosome 19, the rejection rates of the filtered and
hPP libraries are quite close, and the rejection rates of CvM statistic is close to 1. Hence, good

performance of the CvM statistic is expected with MDGA on chromosome 19.

From Figure 3.5, we see that the power of the CvM statistic achieves a value of about
1 at probe intensity of 5 x 107>, while that from the filtered MDGA probe set achieves the
peak of 1 only with a much higher probe intensity over 1.5 x 10™*. We also investigate the
power performance of the test statistics under the sequencing platform, which can be viewed
as an extreme case of microarray platform with designated probes for every base pair and thus
having probe intensity of 1/bp. In this case, both the CvM and KS§ statistics yield power of 1
(results not shown). This indicates that for the mutation level corresponding to the alternative
process a high power would have been achieved with a lower probe intensity by using 75%
of the probes associated with MDGA. Thus changing the probe intensity from about 2 x 10~

to 1.5 x 1074, the high performance of the test for detecting the existence of mutation clusters
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could have been maintained, indeed as good as sequencing. Under the same mutation level, for
probe sets designed from a hPP library, a quarter of the probes would be required to maintain

the performance.

3.4 Discussion

To study the effect of different probe designs on the powers of test statistics for mutation cluster
detection, this research adapts real word microarray probe design strategies as well as devel-
ops a framework to develop probe designs from simulated genomic variation libraries. Using
a selection of probe designs with different intensities, power curves of the test statistics for
mutation cluster detection are obtained by testing on Monte Carlo simulated samples under
the alternative Neyman-Scott process. Factors in the probe design simulation, such as types of
libraries, window-size choices are considered and compared in the simulation study to demon-

strate their effects on the probe design process.

The genomic variations in the hPP library are completely randomly spaced, while those in
the NS library are clustered, because of the parent-child clustering mechanism for that library.
The probe designs based on the hPP library thus lead to more randomly spaced probes, while
those based on the NS library tend to yield more clustered probes. In the study, it is apparent
that the former probe designs result in higher rejection rates than the latter ones. This indicates
that the more randomly spaced allocation of the probe sites yield higher rejection rates than
clustered allocation of the probe sites. It is also worth noting that the rejection rates are under
the assumption of existing underlying clusters. The probe sets in certain designs may not be
able to detect those mutations in clusters. Given that same test statistics are used in this study,
it seems that the probe sets designed from a randomly spaced library tend to be able to detect
those mutation in clusters than the probe sets designed from a library with clustering genetic
variations. The power curves for the simulated probe designs from both hPP and NS libraries

are also compared with the probe settings filtered from the probe design on chromosome 19
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of MDGA. Contrary to the simulated libraries, the sources of genomic variation used in the
design of MDGA are from a collection of various types of real world mouse samples. The
comparisons of power curves based on the three genomic variation sources in this study show
that the rejection curve from probe setting on chromosome 19 lies lower than that from the
hPP library and higher than that from the NS library. This indicates that the genomic variation
sources from the real samples in the MDGA design, as well as the degree of clustering of the
probe sites, may lie between being completely random spaced versus a Neyman-Scott type of

clustering.

In the construction of the hPP library, the Poisson intensity is the only parameter to be
considered to achieve a certain fixed mutation level. In the construction of the NS library,
there are four parameters involved, and one constraint to define the fixed mutation level. The
parameter u,, can be regarded as the expected number of sources when genomic variations were
generated and u, as the expected number of genomic variations that each source generated.
The product u,u, corresponds to the fixed mutation level. The other two parameters o and A
determine the range of genomic variation clusters. For developing power curves, the choices
of the parameters in the NS process in library generation should be related to scientifically

meaningful values if certain background knowledge could apply for their choices.

In this study, three different window sizes in the probe selection procedure are adopted
and compared to investigate the effect of window size choices on the probe design and thus
the corresponding power curves. Given the same genomic variation source, with a smaller
window size, the resulting probe sites tend to be more evenly spaced, which would presumably
provide higher rejection rate. However, from the numerical results in study, the window size
l,, = 200k and [,, = 100k seem to have similar rejection rates, while the window size [,, = 20k
provides seemingly slightly lower rejection rates than the other two sizes. Considering the
limited replication size in this study, the window size choices in the probe selection procedure
do not seem to have large impact on the rejection rates. We note that a study with increased

number of replications in each setting may be able to provide better insights regarding whether
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the differences seen here with window size choices are really impactful. In any event, window
size choice seems to be less relevant in terms of impact on power. Comparably, the source
of genetic variations and probe intensity seem to have much more substantial an effect on the
rejection rate.

The CvMj and KS j; statistics used for testing existence of mutation clusters in this chap-
ter were developed from the study in Chapter 2. The power studies in the previous chapter
showed that the KS version of the statistic seems to be less stable when the standard deviation
parameter o in the alternative NS process is increasing, and recommend that the CvM statistic
is more desirable. Here we compare the two statistics with respect to probe design. Our results
show that the CvM statistic remains better than the KS statistic with various probe settings,
including factors in probe design such as probe intensity and type of genomic variation source.

The framework for understanding power as developed in this study can be used to help
determine key features when designing new microarray platforms for any species, either with or
without a previous microarray design already in place, for mutation cluster detection. For any
chromosome with known length in the entire genome of an organism of interest, the minimum
required total number of probes, in order to achieve a minimum power to detect existence of
mutation clusters under a certain mutation level, needs to be determined when designing the
microarray platform. By applying the framework in simulated hPP and NS libraries, power
curves could provide upper and lower bounds for the rejection rates based on the potential new
probe designs with various probe intensity. By referring to the lower bound based on the NS
library and the required minimum power, the corresponding probe intensity would then be the
minimum probe intensity required for the new probe design. Thus the total number of probes
required can be calculated given the total length of the chromosome. This procedure could
help determine and thus control the total number of probes required in the microarray platform
design for mutation cluster detection, making it more cost-effective and feasible, compared
to sequencing techniques, to be applied as screening tools for mutation cluster detection with

large sample sizes.
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4.1 Introduction

Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are both im-
portant types of genetic variation in genomic studies. The SNP genotype refers to the genetic
content at a SNP locus, a single nucleotide position on the genome. SNP genotype differences
(SNP differences) refer to the change of the genetic content at the SNP locus over two samples.
Alterations may occur on the chromosome in the form of duplications and deletions of DNA
segments ranging from several hundred base pairs up to millions of base pairs [29]. CNVs
refer to such regions of structural alterations. CNVs may be generated from inheritance, or
from diverse mechanisms at various stages of development of the organism [30]. In organisms
with so-called diploid cells, such as the mouse, although not distinguished here, CNVs can be
classified into several categories based on the number of copies in the gain or loss of a DNA
segment, such as single deletion, double deletion, single duplication, double duplication, or
duplication with greater number of copies. As CNVs are structural changes of genetic content
on the chromosome, the prevalence of CNVs in the genome is much smaller in magnitude than

that of SNP differences [31], which makes them rare events in the genome.

The signatures of mutations are especially useful for discovery and understanding of bio-
logical principles such as identifying mutational mechanisms, understanding genetic diversity
and using these elements to understand diseases. In recent years, a new mutation signature of
non-random spacing on the chromosome has been revealed [3]. These findings have broadened
our perspective encouraging further analysis of spatial properties of mutations in order to gain
knowledge of the mechanisms for mutageneses and carcinogeneses, as well as for development
of cancer treatments. To study mutational mechanisms, while it is important to analyze clus-
tering of a single type of mutation such as SNP differences, identification of the association
between two types of mutations, such as SNP differences and CNVs, could contribute to un-
derstanding the relationship between the mutational mechanisms that generate these two types

of mutations.
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To identify these mutations in biological samples, sequencing techniques have advantages
that they yield precise measurements, yet they suffer from high cost and often become infea-
sible in large scale studies, for example, for screening for multiple samples. A more cost-
effective way for genome-wide mutation identification may be through the use of the geno-
typing array, such as Mouse Diversity Genotyping Array (MDGA). However challenges in
inference occur because the inferential setup is strikingly different from typical spatial associa-
tion analysis frameworks with MDGA data. MDGA utilizes two sets of probes to identify both
SNP genotypes and CNVs in the same sample under the same experimental process. There
are about 500,000 SNP probe sites for detecting SNP alleles across the mouse genome. There
are, additionally, about 400,000 invariant genomic probes along with the SNP probe sites, for
detecting CNVs. The SNP genotype assay relies on the trigger of fluorescence on the probe,
either carrying a nucleotide the same as the reference, or a mutant type. On the other hand, the
identification of CNVs depends on the simultaneous high or low fluorescent level of a certain
number of consecutive probes. Abundance of DNA measured by consecutive probes deter-
mines the type of CNV detected. The start and end of a CNV identified by the genotyping

array system are estimated based on these fluorescent levels.

To study the spatial association between two objects, Foxall and Baddeley [32] proposed a
method for a nonparametric measure of association between a point process X and a random
set Y in two-dimensional space. They proposed the so-called J function, a ratio statistic, that
compares the distribution function of (1) the distance from a random point in the point process
X, to the random set Y, to (2) the distribution of the distance from a random point in the domain
to the random set Y. However, with this statistic, information on the entire domain of interest is
required. On the other hand, the microarray platform provides only intermittent observations,
as measurements on only certain specific regions of the chromosome are available. In this
chapter, we adopt some elements of the conceptual framework of the J function to develop
a test for association. Inferential methods are developed that account for the MDGA setting

of substantial missing data. A Monte Carlo simulation approach with a homogeneous Poisson
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process as the null process is proposed in this study for statistical inference. Our nonparametric
approaches are optimized for the microarray probe design. A block bootstrap approach [33]
developed for the time series setting that randomly selects segments from the original series
for hypothesis testing is also adapted here for our missing data setting.

The tools provided in this study aim to test three null hypotheses related to association be-
tween SNP differences and CNVs, each with a different level of generality. We describe the
data structure and the two proposed non-parametric test statistics for detecting spatial associ-
ation in Section 4.2. In Section 4.3, we describe three null hypotheses and three Monte Carlo
simulation approaches for statistical inference. The small sample properties of the two statis-
tics are studied by simulation under the three approaches developed: a parametric approach
utilizing a Poisson null process, as well as nonparametric overall and partial block bootstrap
approaches. A step function Poisson process and a modification of the Neyman-Scott parent-
child process, are adopted as the alternative processes for studying the power performance of
the two test statistics. In Section 4.4, we introduce our motivating example and utilize graphical
tools to help visualize landscapes of the two types of mutations. We examine the association
between SNP differences and CNVs under three null hypotheses in this example using our

recommended test statistic.

4.2 Statistical methods

4.2.1 Data structure

Consider a specific chromosome with known SNP probe design. Denote the domain of the
chromosome as L C R*. Define the set of the probe locations as § : § c L. Denote the
location of the first probe on the chromosome as sy = min,g s, and the location of the last
probe on the chromosome as s; = max,s s. Denote the locations of SNP differences detected
by the probes as X : X C §. The probes at which no SNP differences are detected are denoted

as V = S \ X. Denote the regions of CN'Vs as R. The regions outside of CNVs are thus denoted
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as RC.

4.2.2 Proposed statistics

To assess the spatial relationship between SNP differences and CNVs, statistics are considered
that accommodate our the scenario of the microarray probe sampling system. Here we consider
X as a point process and R as a random set, and compare the distribution of the distance from

X N R€ to R and that from V N R€ to R. The definitions of the two test statistics are as follows.

Define the bivariate J-function

1 - meRC, r(r)

) = I- GVnRC, R(”).

where

Gyr(r) = Pld(x,R) < rlx e Y}

is the distribution function of the distance from a typical point of Y to the nearest point of R,
and

d(z,A) = inf ||z — d|
acA

denotes the shortest distance from a point z € L to a subset A of L.

The function J can be used as a nonparametric measure of association between X and R.
The distribution functions of Gxnge, g and Gynge, g can be estimated empirically. The J function
considers only the SNP differences and probes outside of all CNV regions, since the focus of
study is the behaviour of SNP differences outside CNV regions.

We also consider a count statistic which summarizes information about SNP differences in
the regions nearby CNVs. The count statistic C(r) specifically takes into account the regions

outside of CN'Vs, and is defined as following:

C(r) = Z 100 < d(x,R) < 1) 4.1

xeX
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The J statistic is estimated as follows,

I- GXORC, r(r)

J(r) = — :
I- GVmRC, r(r)

4.2)

where GY,R(r) is

A 1
Gra(r) = ) UAGx.R) < 1),

xeY

an empirical estimator of Gyg(r).

The statistic T(r), T(r) € {J(r), C(r)} can be evaluated at any fixed r of interest in a specific
application, for testing for association. The distance r would reflect the neighborhood of the
CNVs that has potentially different behavior than regions further away. Except when a specific
value of r is of interest to study, it is often more desirable to study a range of r instead of a
pre-determined fixed one. Hence, we also consider a functional form of the T statistic below

to test for association between SNP differences and CNVs.

4.3 Small sample properties of the test statistics

Monte Carlo simulation is adopted to obtain sample paths in order to construct confidence
bands and assess power of the test statistics. To generate the sample paths, we consider CNV
locations as fixed on the chromosome. In most experimental scenarios, including the data sets
available in our study, the observed CNV counts are usually very small, especially compared
to the count of SNP differences.

Biologists are interested in the scientific questions of whether the existence of CNVs could
influence the spacing of SNP differences outside of CNVs or whether there tend to be more or
less SNP differences in regions near the CNVs compared to those farther away. Based on these
scientific hypotheses of interest to the biologists, three specific null hypotheses with increased

level of generality are proposed as follows:

(1) the SNP differences outside of CNV regions follow complete spatial randomness;
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(2) the SNP differences outside of CNV regions have similar properties in clearly defined

CNV nearby regions as for regions further away;

(3) the SNP differences outside of CNV regions have similar properties everywhere on the

chromosome.

Note that for SNP differences outside of CN'Vs, the process in the first null hypothesis is
stationary and with the restriction of being hPP; in the second null hypothesis, the process in
the two regions are stationary and the same without the restriction of being hPP; in the third,
the process is stationary everywhere and without the restriction of being hPP.The first null
hypothesis is a commonly adopted one in spatial analysis. For example, Foxall and Baddeley
[32] adopted it in their analysis of the association between ore deposits and lineaments in an
earth science investigation. However, rejection of this null hypothesis does not imply rejection
of the second or the third null hypothesis. Given a null hypothesis, specific inferential methods
need to be adopted.

For statistical inference, three Monte Carlo approaches are developed, one based on the
Poisson null process, a partial block bootstrap and an overall block bootstrap. The first ap-
proach adopts parametric modeling of the conditional distribution of the underlying SNP differ-
ences given the CNV locations; while the latter two utilize nonparametric bootstrap methods.
The approach based on the Poisson null process, the partial and the overall block bootstraps
are suitable for the first, second and third null hypothesis respectively. In the power study,
two parametric models would be specified for the distribution of underlying SNP differences
given the locations of the CNVs. In considering parametric models, once the locations of the
underlying SNP differences are generated through a specified parametric process, the observed

SNP differences would then be determined by overlaying the probe locations.

4.3.1 Monte Carlo simulation approaches for inference

We describe below the three Monte Carlo simulation approaches.
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4.3.1.1 Poisson null process

The approach based on the Poisson null process aims to test the first null hypothesis, where the
SNP differences outside of CNV regions follow complete spatial randomness. In the Poisson
null process, SNP differences are distributed according to a non-homogeneous Poisson process
(nhPP) such that the SNP differences follow different homogeneous Poisson processes (hPP)
in CNV regions R and non-CNV regions R¢, with a constant Poisson intensity that may differ
over these two regions. Under the null process, the Poisson intensity in each region, R or R€,
is estimated as the the empirical rate of SNP differences in the corresponding region in the
data sample. Thus the expected number of observed SNP differences in the entire chromosome
regions observed is the same as that in the data sample. The reason that the Poisson intensities
are allowed to be different in R and R is that only SNP differences outside the CNV regions
are of interest in the hypothesis. Thus SNP differences inside the CNV regions are not included

in the estimation of the intensity outside the CNV regions.

4.3.1.2 Overall block bootstrap

For the overall block bootstrap, a resample of the SNP differences and probes over the entire
chromosome is constructed by connecting block samples from the original chromosome as
described below. Sampled blocks have fixed length By. Consider the entire chromosome L.
Sample a point g; ~ U(sy, s;) on the original chromosome, where U(-) is the uniform distribu-
tion, and s, and s; are the locations of the first and last probe on the chromosome respectively;
then the corresponding block sample is obtained as [g1, g1 + Bo — 1] on the chromosome. All
SNP differences and probes within this segment are relocated to the segment [s¢, s + Bp — 1]
on the resampled chromosome maintaining their exact position relative to g;, but now from
s¢ on the resampled chromosome. A subsequent point g, ~ U(sy, s;) is taken on the origi-
nal chromosome, the SNP differences and probes within [g,, g» + Bo — 1] are relocated to the
segment [s¢ + By, sy + 2Bp — 1] on the resampled chromosome, again maintaining their exact

position relative to g», but now from sy + By on the resampled chromosome (See Figure 4.1).
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This procedure is repeated with the mth point g,, ~ U(sy, s;) leading to all SNP differences and
probes within segment [g,,, g, + Bo — 1] relocated to the segment [sy+(m—1)Bo, sy +mBo — 1]
on the resampled chromosome, until s; is within the last resampled segment. Data beyond s; on
the resampled chromosome are omitted. Note that for the procedure described here, the blocks
sampled from the original chromosome [g,,, g, + Bo — 1],m = 1, --- can have overlap between

each other.
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Figure 4.1: The first two steps of the overall block bootstrap are illustrated. Sample a point
g1 ~ U(sy, s;) on the original chromosome. All SNP differences and probes within the
segment [g1, g + Bp — 1] on the original chromosome are relocated to the segment
[sf, s+ Bo — 1] on the resampled chromosome, maintaining their exact position relative to g,
but now from s, on the resampled chromosome. A subsequent point g, ~ U(sy, 5;) is taken on
the original chromosome, the SNP differences and probes within [g,, g> + Bp — 1] are relocated
to the segment [s; + Bo, sy + 2Bo — 1] on the resampled chromosome, again maintaining their
exact position relative to g,, but now from s + By on the resampled chromosome.
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4.3.1.3 Partial block bootstrap

In the partial block bootstrap, the resampling of the SNP differences and probes is not based
on their positions on the chromosome, but their distances to the nearest CN'V. The set of dis-
tances of SNP differences and probes to the nearest CNV in the original sample are denoted as
Dy, Dy = {d(x,R),x € X} and Ds, Dg = {d(s,R),s € S} respectively. These sets of distances
Dy and Dy are sufficient for calculating both J(r) and C(r) statistics. With this resampling pro-
cedure, these distances of SNP differences to CNVs are transformed such that small distances
are translated by a random positive value, whereas large distances are translated by the nega-
tive of that value. A heuristic conceptual explanation is that information about SNP differences
and probes near CN'Vs are exchanged with information further away. The translation function

p(y; Z, Bp) satisfies:

y+7Z ifye(0,Bp]

PO:ZBp) =3y -7 ifye[ZZ+Bp) (4.3)

y otherwise

where Z ~ U[Bp + 1, B.], and Bp is the block length defining what is considered as a small
distance and should satisfy Bp < B, — 1 in order to have a valid definition for the uniform
distribution from which Z is generated. The upper limit By is defined as B, = maXes d(s, R) —
Bp to ensure Z + Bp does not exceed the maximum distance observed between probes and the
nearest CN'V. The resampled distances Dy, are defined as D} = {p (d;Z, Bp) ,d € Dx}, and Dy

are defined as D§ = {p(d; Z, Bp) ,d € Ds}.

4.3.2 Statistical inference

For hypothesis testing, the 95% confidence bands of the expected values of the statistics can

be constructed through any of the Monte Carlo simulation approaches presented in Section
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4.3.1. There are two types of confidence bands that could apply in our context: point-wise and
global confidence bands. Given any Monte Carlo simulation approach, in each Monte Carlo
sample, the function 7'(r) can be evaluated at a given r. The sampling distribution of 7'(r)
can be obtained by Monte Carlo methods and thus point wise 95% confidence bands can be

calculated as the estimates of the 2.5% and 97.5% quantiles from the sampling distribution.

For the functional form of 7'(r) over a range of values of r, global 100(1 — @)% confidence
bands are obtained to ensure that the entire 7(r)-function stays within the bands at the con-
trolled 1 — « rate under the null hypothesis. For this property to hold, the confidence bands are

constructed in the following way. Suppose dc such that

P(MH)ZKil:fﬁliﬁz >C)S;a

Var(T(r))

Thus Vr, there is

P (T(r) € [E(T(r)) — e Var(T(r)), E(T(r)) + ¢ \/Var(T(r))]) <a

Then E(T(r))—c VVar(T(r)) and E(T(r))+c VVar(T(r)) can be estimated to be the 1 —a global
confidence lower and upper boundaries. respectively. The value of E(T(r)) and @(T(r)) can

be obtained by Monte Carlo simulation. Denote Q as the quantile function of the statistic:

|T0) - ETm)|
\Var(T(r)

The constant ¢ can be estimated by

¢=001-a)

From the Monte Carlo replicates, there are several ways to estimate the sample quantile func-
tion Q The method used in this research follows the Definition 7 in [34], which is the default

method implemented for a continuous sample in the quantile function in R.
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Then the global confidence bands are obtained by

GB(r) = [E<T<r>) —elVar(T(m), ET(r) + ¢+ V‘ar(m))]

The null hypothesis would be rejected if there dr : Ts(r) ¢ GB(r), where Ts(r) is the

functional statistic calculated from the sample being tested.

4.3.3 Alternative processes for power studies

For the alternative process, we consider two parametric models for the conditional distribution
of locations of underlying SNP differences given the CNV locations: a step function nhPP
and a modified non-homogeneous parent Neyman-Scott process (NPNSP). The first process
is a nhPP with different intensity rates for locations of SNP differences near the CN'Vs versus
locations farther away. The second process uses a NPNSP for generating SNP differences
outside CNV regions, whereas SNP differences within CNV regions are generated by a hPP.
The entire chromosome can be divided into three regions based on d(z, R),z € L, which
is the distance from a generic location to the nearest CNV. For all the locations in regions
within CNVs, the property d(z,A) = 0 holds. The regions within a certain distance D to the
nearest CNV have the property that d(z,A) € (0, D], and are termed here as regions nearby
CNVs or nearby regions. The regions further than D from the CNV have the property that
d(z,A) € (D, +00), and are termed here as regions faraway from CNVs or faraway regions.

Hence D is a parameter defining the boundary between the nearby and faraway regions.

4.3.3.1 Step function nhPP

Under the alternative hypothesis of a step function nhPP, the Poisson intensities in three dif-
ferent regions on the chromosome are constant, but allowed to be different. Denote y, as the
ratio of the intensities of SNP differences in the regions nearby CNVs and SNP differences

in the regions faraway from CNVs. When y,; = 1, the intensities of SNP differences in both
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nearby and faraway regions are the same, and the process reduces to the Poisson null process

mentioned in Section 4.3.1.1.

4.3.3.2 Modified non-homogeneous parent Neyman-Scott process (NPNSP)

The NPNSP is an modified version of the parent-child Neyman-Scott process (NSP). To gen-
erate underlying SNP differences under NPNSP, the parent locations follow a nhPP. The parent
intensity of the NPNSP is allowed to be different in the three different regions. For regions
within CNVs, the intensity of parents is set as 0. The ratio of the intensity of parents in the
CNV nearby regions to the intensity of parents in faraway regions is defined as y,. When
Yy, # 1, properties of clusters in the regions nearby and faraway from CNVs are different.
When the parameter v, is greater than a value of b, there tend to be more offspring yielded
by the parents hence more clustering in the nearby regions compared to the faraway regions;
in this case there tend to be positive association between SNP differences and CNVs. The pa-
rameter b is a constant that is greater than 1 and depends on other parameters in the process.
When y, < b, there are less offspring yielded by the parents hence less clustering in the nearby
regions compared to the faraway regions; there tends to be negative association between SNP
differences and CNVs. When y,, = 1, the offspring yielded in the nearby region is slightly less
than that in the faraway region, as there are no parents inside of the CNV regions. Slightly
increasing 7y, would offset this effect.

For a given parent site, a cluster of offspring sites are generated around it, with expected
number u,. Centered at the parent site location, the offspring sites are independent and iden-
tically distributed truncated normal random variables. The standard deviation of the truncated
normal distribution is denoted as o~. The half-length of the window of the truncation range is
denoted as h. All underlying SNP differences outside of CNV regions are offspring generated
through the clustering process.

Although there are no parents in NPNSP inside CNV regions, the offspring generated from

the parents may lie inside the CNV regions. In the censored NPNSP, the set of underlying SNP
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differences generated from the NPNSP located inside CNV regions are censored. The SNP
differences inside the CNV regions are generated from a hPP, whose intensity is the same as
that from the null process. The overall underlying SNP differences are then the combination
of the SNP differences inside the CNV regions generated from the hPP and SNP differences
outside the CNV regions produced from the NPNSP.

4.3.4 Parameter settings and simulation results

A mouse with cancer is used as an example to study power performance of the J and C statistics
under three Monte Carlo simulation approaches. Specifically, the chromosome 1 of a wild
caught mouse is selected. There are 5 CNVs and 4906 SNP differences that are different
between primary tumor and metastatic tissues. Among the 4906 SNP differences, there are 27
inside CNV regions and 4879 outside of the CNV regions. The length of the chromosome 1 is
approximately 1.9 x 10%bp.

For the calculation of the J and C test statistics, the argument r defines the CNV neighbor-
hood being considered and needs to be specified. Prior biological knowledge about a certain
neighborhood of interest can be used to set the values of r. Yet without such knowledge, a
relatively large r can be specified, as the functional form of the J or C statistic is evaluated
between 0 (not included) to the set value r. In the example of this study, a grid of values of r
is set from 100 to 10° with increment of 100, 1.0005 x 10° to 107 with increment of 500 and
1.0001 x 107 to 2.5 x 107 with increment of 1000. As a result, there are in total 43000 values

of r evaluated.

4.3.4.1 Parameter settings for confidence band construction

For the approach utilizing the Poison null process, the Poisson intensity inside and outside of
CNV regions is set as 2.34 x 1075 and 2.47 x 107> respectively based on the observed number
of SNP differences in each region in the data example. For this null process, 10* Monte Carlo

samples are generated for the construction of confidence bands.
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For the overall and partial block bootstrap, both By and Bp are set as 2x 10°. Although these
parameters can be set arbitrarily, depending on researcher’s requirement, a general guidance
for setting these parameter is through examination of the autocovariance structure from the
data sample, as illustrated in the Appendix C.3. With either of these two approaches, a total
of 10° resamples are generated for each sample to be tested for the construction of confidence
bands.

The significance level of the tests is set as @ = 0.05 for all three approaches.

4.3.4.2 Parameter settings for power study

With both alternative processes, we set D = 10°. For the alternative as a step function nhPP,
the range of vy, is specified as 0.4 to 1.5 with values in the range having increments of 0.1; this
includes both positive (y; > 1) and negative (y, < 1) association between SNP differences and
CNVs.

For the alternative process of a modified NPNSP, the parameter vy, is set from 0.4 to 1.5
with an increment of 0.1. The parameters for offspring generation are u, = 10°, o = 5 x 10°,
and the truncation range & set as 3o~. The values of the parameter u, are set so as to ensure
that the number of detected SNP differences across the chromosome are close to the observed
number of SNP differences in the data sample. The Poisson rate for SNP differences inside the
CNV regions is set the same as the rate in the CNV regions for the Poisson null process, that is
2.34x107°.

For each parameter setting of y; or y,, 10 replications were generated for power calculation

by Monte Carlo simulation.

4.3.4.3 Power study results, interpretation, and recommendation

The results of the power study comparing J and C statistics are displayed in Figures 4.2 through
4.4 for the alternative process of a step function nhPP, and Figures 4.5 through 4.7 for the

alternative process of a modified NPNSP. In these figures, dots or triangles representing the
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powers of J or C statistics are jittered horizontally to enhance readability. The vertical dashed
lines are plotted to clearly separate dots and triangles between consecutive 7y or y, values.

The blue horizontal dashed line represents the significance level of the test procedure, which is

a = 0.05.



83

4.3. SMALL SAMPLE PROPERTIES OF THE TEST STATISTICS

Jamod

15

1.4

13

12

11

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Ys
Figure 4.2: Power performance of J and C statistics under the alternative hypothesis of the
step function nhPP using confidence bands constructed from the Poisson Null Process.
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Figure 4.3: Power performance of J and C statistics under the alternative hypothesis of the
step function nhPP using confidence bands constructed from the overall block bootstrap.
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Figure 4.4: Power performance of J and C statistics under the alternative hypothesis of the

step function nhPP using confidence bands constructed from the partial block bootstrap.
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Figure 4.5: Power performance of J and C statistics under the alternative hypothesis of the
modified NPNSP using confidence bands constructed from the Poisson Null Process.
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Figure 4.6: Power performance of J and C statistics under the alternative hypothesis of the

modified NPNSP using confidence bands constructed from the overall block bootstrap.
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Figure 4.7: Power performance of J and C statistics under the alternative hypothesis of the
modified NPNSP using confidence bands constructed from the partial block bootstrap.
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In many parameter settings in each scenario, the J statistic has higher or at least comparable
power to the C statistic. When testing the simulated samples from the step function nhPP
against the first null hypothesis using the Poisson null process approach, both J and C statistics
have size about as expected when y, = 1, when the first null hypothesis is true. When testing
simulated samples from the step function nhPP and the modified NPNSP against the second and
the third null hypothesis using the partial and overall block bootstrap approach, the rejection
rate for both J and C are fairly close to, but lower than, the significance level of the test, which
is @ = 0.05, when the null hypotheses are true. It is worth noting that for both alternative
processes for the C statistic using the partial block bootstrap where power is 0. This may due
to the discreteness of the C statistic, which may lead to wide confidence bands in the nearby-D

regions, that is, when r is small.

A seemingly strange result appears in the scenario of testing the simulated samples from
the modified NPNSP against the first null hypothesis using the Poisson null process approach.
The lowest powers of both J and C statistics in this situation are reaching above 0.8 and 0.6
respectively and substantially higher than the significance level of 0.05. However, it should be
noted that when vy, is close to 1 under the modified NPNSP process, even though the regions
outside of the CNVs have the same properties everywhere, there still exists clustering. The
statistical inference procedure using the Poisson null process identifies that there is deviation
from a hPP process outside of the CNV regions leading to rejection of the null hypothesis. If the
hypothesis is to test whether the SNP differences outside the CNVs behave similarly in nearby-
D or faraway-D region, it would be problematic to use the approach as for the Poisson null,
as it would tend to reject the null hypothesis for the cases where the SNP differences outside
of CNV regions behave similar everywhere, but the process itself deviates from a hPP. On the
other hand, the overall and partial block bootstrap have appropriate size. The partial block
bootstrap tends to have higher power than the overall bootstrap for the J statistic. The partial
block bootstrap is more appropriately used for testing a null hypothesis with a well defined

boundary between nearby-D and faraway-D regions. The overall block bootstrap would be
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suitable for handling a null hypothesis without such a clear definition of the boundary between
nearby-D and faraway-D regions.

In this power study, for the alternative process of the modified NPNSP, the varying factor in
the parameter setting is y,. As the power study is time consuming, there is only one parameter
setting for the offspring generation. More simulation studies could be conducted in the future to
investigate how sensitive the power performance of the test statistics are with various parameter
settings of offspring generation mechanism.

We summarize here our recommendations on the statistics and approaches for construction
of confidence bands based on the different types of null hypothesis. For testing the null hypoth-
esis that the SNP differences outside of the CNV regions follow complete spatial randomness,
both J and C statistics are recommended using the Poisson null process. For testing the null
process that SNP differences outside the CNV regions behave the same in nearby and faraway
regions without a clearly defined boundary, the J statistic is recommended using the inferen-
tial approach of the overall block bootstrap. For testing the null process that SNP differences
outside the CNV regions behave the same in nearby and faraway regions with clearly defined
boundary, the J statistic is recommended using the inferential approach of the partial block

bootstrap.
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4.4 Application

Our motivating analysis considers whether there is association between SNP differences and
CNVs on a chromosome of a mouse. This is an important first step in determining how these
features are related to genetic backgrounds as well as environmental effects that link such
features to cancer occurrence. The mutation profile used is the difference between primary
tumor and metastatic tissues from chromosome 1 of a wild mouse. As mentioned earlier,
there are 5 CNVs and 4906 SNP differences that are different between the primary tumor and
metastatic tissues. The mutation landscape can be seen in the rainfall plot in Figure 4.8 and the
rainbow plot in Figure 4.9. In both plots, the CNV locations are indicated by the red markers
and the green dashed vertical lines, where width of a red marker identifies the start and end
base pairs of the CNV location and the green line shows the center of the corresponding CNV
region. The black dots in both plots convey information regarding the SNP differences, with
the x axis showing the locations of a SNP difference; in the rainfall plot, the y axis shows the
logarithm of the distance from a SNP difference to the previous one; while in the rainbow plot
the y axis shows the logarithm of the distance from the SNP difference to the closest CNV. The
rainfall and rainbow plots are helpful for visualizing the mutation landscape. For example, by
drawing a horizontal line in the rainfall plot, one can see how many pairs of SNP differences
are proximal within the distance defined by the placement of the horizontal line. In the rainbow
plot, a horizontal line can help one see how many SNP differences are within a certain distance
to the nearest CNV. However, these plots cannot provide formal judgment on the question
of whether the SNP differences are CNVs are spatially associated. Thus, our statistical tools

become useful for finding evidence to answer this question.
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Figure 4.8: Rainfall plot displaying mutation landscapes. Black dots refer to SNP differences.
Red markers identify CNV locations. The green dashed vertical lines show the centers of the
CNVs.
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Figure 4.9: Rainbow plot displaying mutation landscapes. Black dots refer to SNP
differences. Red markers identify CNV locations. The green dashed vertical lines show the

centers of the CNVs.
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To detect association between SNP differences and CNVs in the data example, we need
to set the null hypothesis and thus corresponding Monte Carlo simulation approach to link
with the requirement of the scientific research. If the research interest is to test whether the
SNP differences outside of CNV regions follow spatial randomness, the Poisson null process
approach of section 4.3.1.1 should be adopted; if the research interest is to test that SNP differ-
ences outside of CNV regions have similar properties everywhere, the overall block bootstrap
approach of section 4.3.1.2 should be adopted; finally if the research interest is to test that SNP
differences outside of CNV regions have similar properties in clearly defined CNV nearby-D
and faraway-D regions of CNYV, the partial block bootstrap approach of section 4.3.1.3 should
be adopted.

All three of these approaches are considered for the mouse data analysis. The values of r
and the number of replications in the Monte Carlo simulation are set to be the same over all
these approaches. The block length is set as 3 x 10° as suggested from the examination of the
autocovariance structure; details of this examination are available in Figure C.2 in Appendix
C.3. The significance level is set as 0.05 for all testing procedures.

The functional J statistic and three pairs of confidence bands for the three approaches are
plotted in Figure 4.10 through 4.12. As the J statistic for the data example is clearly outside of
the global confidence band constructed from the Poison null process (see Figure 4.10), the the
null hypothesis that the SNP differences outside the CNV regions follows completely spatial
randomness is rejected. The J statistic lies completely inside the confidence bands constructed
from the overall and partial block bootstrap, as seen in Figure 4.11 and 4.12. Thus there is no
evidence against the null hypothesis that 1) SNP differences outside the CNV regions behave
the same everywhere and hence logically also no evidence against 2) SNP differences within
the distance of 3 x 10° to the CNVs and farther away than this distance threshold have similar

properties.
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Figure 4.10: J statistic applied to the SNP and CNV difference profiles between primary
tumor and metastatic tissue in chromosome 1 of a mouse. Confidence bands are constructed
using the Poisson null process.
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Figure 4.11: J statistic applied to the SNP and CNV difference profiles between primary
tumor and metastatic tissue in chromosome 1 of a mouse. Confidence bands are constructed
using the approach of overall block bootstrap.
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Figure 4.12: J statistic applied to the SNP and CNV difference profiles between primary
tumor and metastatic tissue in chromosome 1 of a mouse. Confidence bands are constructed
using the approach of partial block bootstrap.
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To conclude, there is evidence that the SNP differences outside of the CNV regions in this
data example do not follow complete spatial randomness. But there is no evidence against
the hypothesis that SNP differences with distance less than 3 x 10° to CNVs have the same
properties as those farther than 3 x 10° from CNVs. There is also no evidence against that the

SNP differences outside of the CNV regions have the same properties everywhere.

4.5 Discussion

In order to perform statistical testing for spatial association between SNP differences and CN'Vs
observed from the microarray platform, we propose to use two types of statistics, the J statistic
(equation 4.2) and the more conventional neighborhood count C statistic (equation 4.1). The
SNP differences can be viewed as following a spatial point process, and the CNV regions can
be viewed as random sets existing in one dimensional spatial space. Foxall and Baddeley’s J
statistic [32] is designed to test association between a spatial point process and random sets
in two dimensional space, and thus adapted in this study. Based on the conceptual framework
of the Foxall and Baddeley’s J statistic, the J statistic utilized here is developed for the one
dimensional scenario while accounting for the probe sampling design. In particular, the lo-
cation of a typical point in the point process is restricted to the probe sites, a subset of the
entire chromosomal space, instead of the entire domain in [32]. The C statistic is developed
in the spirit of the rainbow plot, which takes count of the SNP differences that are close to a
certain distance to the nearest CNV. Both statistics are studied in their functional form over a
large range of distance arguments. We propose three null hypotheses with increased general-
ity over these hypotheses, related to the association between SNP differences and CNVs. We
develop three Monte Carlo simulation approaches to construct confidence bands for statistical
inference, one based on the parametric Poisson model and two block bootstrap methods. Our
simulation studies show that the two block bootstrap methods seem to work reasonably well

to test their corresponding null hypothesis, especially for the J statistic. The overall block
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bootstrap adapts the idea of overlapping moving block bootstrap as discussed in [35], which
is well studied. However the partial block bootstrap is developed in this research, specifically
targeting to test the second null hypothesis. The partial block bootstrap method still needs
to be validated in the further study. A step function nhPP and a modified NPNSP allowing
excessive or prohibitive clustering in the CNV nearby regions are proposed as the alternative
processes to study the powers of the two test statistics. All three approaches for confidence

band construction using the J statistic are recommended for testing the three null hypothesis.

The first null hypothesis and its corresponding approach of the Poisson null process are
usually adopted in spatial analyses, as in [32]. The second and the third null hypotheses are
potentially more related to the scientific questions from biologists and thus more of interest.
We have included all the three null hypotheses for completeness, and provided corresponding
approaches for inference. As illustrated and explained in our study, the rejection of the first null
hypothesis cannot lead to the rejection of the second and the third null hypothesis. Misusing

the inferential approach could lead to false conclusion.

The null distributions of the test statistics are evaluated conditional on the probe design.
This design would then vary by any new scenario for a different chromosome setting or some
other probe sets; however the framework for developing confidence bands would be the same
as discussed here. The null distributions would also depend on the total number of SNP dif-
ferences outside of the CNVs regions. The implementation for obtaining null distributions and
power study is achieved by algorithms we developed using R software. For each chromosome,
the computational time for testing procedure can be in the order of minutes on a PC with a four
core Intel 17 CPU, depending on other parameters such as total number of SNP differences,
CNVs and probes. Given the Monte Carlo samples, the global confidence bands constructed
in this study are symmetric given any argument r. In case the distribution of J(r) is highly
skewed, the symmetric global confidence bands may not be the most efficient, yet an easy way
to work on. The method for constructing more efficient asymmetric global confidence bands

may be achieved by estimating global upper and lower quantile functions of the functional J
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statistic, which still remains to be further explored.

The conclusion reached by the testing procedure in this study are based on mutation features
on a single chromosome, and cannot infer to the individual organism or a certain population.
Proper study design should be adopted when inference on the population level is of interest.
The statistical tool in this study is developed under the microarray platform, and can be used
to summarize the dependence between SNP differences and CNVs. The tool is ideal for large
scale experimental designs, which are usually intended to compare various exposures. De-
pendence of mutations can be compared among experimental groups with different exposures.
When considering a barrage of these tests for different chromosomes or multiple biological
samples, such multiple tests should be adjusted in order to achieve either desirable overall type
I error rate or false discovery rate (FDR). Methods such as Bonferroni correction or that pro-
vided by Benjamini [26] may be applied. Desirable FDR can be controlled to achieve higher

discovery, which could lead to further detailed investigations and downstream analyses.

Both test statistics require arguments be set. Prior biological knowledge could help deter-
mine the choice of the argument », which would define the range of the CNV neighborhood to
be examined. Without prior knowledge, a relatively large argument r can be set, to incorporate
a wide range of r values that are then visualized in the plot of the J statistic. The plot of the J
statistic can help determine the regions where there is rejection of no association between SNP

differences and CNVs, and the direction of the association, positive or negative.

In this chapter, the spatial models for evaluating the test statistics focus on the distributions
of SNP differences conditional on CNVs. These tests could also incorporate the distribution
of CNVs. However, as the prevalence of CNVs in typical data examples is very low, properly
specifying the distribution of CNVs becomes infeasible. Naturally, there are more mutations
in a single nucleotide base pair than those occurring in large segments of DNA. However,
future data sets with more observation of CNVs in a single chromosome may help establish
distributional models for CNVs, and as well joint distributions of SNP differences and CNVss

may be specified. The J and C statistic would also be applicable in such a joint modeling
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framework.

The methods provided in this chapter are not restricted to utility with the mouse microarray,
but can be adopted to any microarray data from other organisms, including human. The meth-
ods can also be extended to consider other distance distributions. Importantly, for example, the
distances between a SNP and the 5’ or 3’ end of CNVs can be compared to investigate if the
behaviors of SNP differences are symmetric on both side of the CNVs. The method can also
be applied to study other genetic elements that are in the form of segments, such as genes, or

extrons.



Chapter 5

Summary and future work

The research in this thesis develops formal statistical tools for the analysis of spatial properties
of mutations detected under the microarray platform. Nonparametric statistics are developed
for testing the existence of clusters of single point mutations and for association between point
mutations and mutations in segments. We also study how the design of probe sites in microar-
ray studies can affect the performance of recommended tests for clustering and we compare the
performance of the test under the microarray platform to that for data from sequencing studies.
Power performance of various statistics under different scenarios and different microarrays are
contrasted via simulation experiments. Statistics with preferred power performance are identi-
fied and their utility is demonstrated with specific applications of interest. The CvMj; statistic
1s recommended for testing the existence of clusters of single point mutations. The J statistic is
recommended together with three inferential approaches to test three null hypotheses regarding

the association between point mutations and mutations in segments.

The statistical tools developed in this thesis are delivered to the biologists to be applied
in their research. It is worth emphasizing that the test statistics recommended are designed to
provide a measure of spatial association between mutations on an entire single chromosome.
The statistical tools are not capable of answering questions regarding the local properties such

as where the clusters exist, what the size of the clusters are, or how the SNP differences are
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associated with the CNV regions. Further methods are required to be developed to answer these

questions using the data observed under the microarray platform. It is also worth noting that

the conclusion based on testing a single chromosome cannot infer to the individual organism

or a certain population. Biologists would conduct proper study designs in order to study the

mutation features on a population level. Biologists could use the statistical tools to compare

various exposures in different population in large scale experimental designs. The measures

the statistical tools provide on each individual can be compared among experimental groups

with different exposures. In these application scenarios, a barrage of these tests are usually

requested for different chromosomes and multiple biological samples. Multiple tests should be

adjusted in order to achieve either desirable overall type I error rate or false discovery rate.

The innovations in this thesis are summarized below:

)

(2)

3)

A microarray platform has highly missing observations of mutations by design and thus
offers challenges in using current statistical methods to test for spatial association be-
tween mutations. The statistical tools provided in this thesis incorporate the properties
of the probe detection system and offer solutions with good performance for testing the

existence of clusters of point mutations and association between two types of mutations.

Microarray platforms are compared with sequencing in terms of their capability to study
spatial association between mutations. How various probe designs can affect the ability
to study spatial association between mutations is studied. The framework developed here

can help determine key features when designing new microarray platforms.

In the study of testing for the existence of spatial association between two types of mu-
tational events, such as SNP differences and CNVs, three specific null hypotheses are
proposed with increased level of generality in terms of spatial association. Overall and
partial block bootstraps are developed as suitable inferential approaches for the two more
general null hypotheses of no association respectively. Both block bootstrap approaches

are adapted for the data under the microarray platform, using the idea of the moving
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block bootstrap usually used in the analysis of time series data. The two more general
null hypotheses are compared to the more traditionally used nulls of complete spatial
randomness. The block bootstrap approaches are shown to be capable of providing rea-
sonable type I error rates for testing the more general null hypotheses and has fairly good

power performance.

Future work, inspired by the research in this thesis regarding the analysis of spatial associa-

tion between mutations under the microarray platform or other biological measuring platform,

1s described as below.

)

2)

3)

Spatial statistical tools can be developed to investigate some other pressing questions
regarding the spatial association between mutations under the microarray platform. For
example, since DNA has a direction, an extension to the study of association between
two mutations would be to consider if the SNP differences on one side of the CNV have
the same spatial properties as those on the other side. It is also of interest to study
if the CNVs on the chromosome are randomly spaced or clustered. Since CNVs are
mutations in segments with a certain length instead of point mutations, approaches would
thus require a different strategy than considered here for studying clustering of SNP
differences. When clustering is evident, it would also be useful to develop approaches
and methods for identifying the location and the size of the clusters of point mutations

based on microarray data.

RNA sequencing is a technique that can provide information on the DNA on specific
regions in genes. Instead of having information on one nucleotide as occurs under the
microarray platform, RNA sequencing measures every nucleotide within the targeted
regions. Statistical tools could be developed to test for clustering with the RNA-seq data,
and investigations would need to be conducted to understand how such tests perform and

whether they are effective for various types of hypotheses.

For the probe design question, it would also be of interest to develop a strategy for
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selecting a target number of probets from a predetermined pool of potential probe loci,
where the goal is to achieve optimal capability of detecting existence of clusters with that

fixed number of probes.

Statistical tools are capable of providing far greater insights over traditional visualization
tools that have been developed in biological research. These tools need to reflect the properties
of biological data gathered from various sources. With the development of suitable statistical
tools, the tremendous biological data that are generated cost-effectively in scientific research

can be well utilized to produce better understanding of human health.
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Appendix A

Supplementary information for Chapter 2

A.1 Validation of size of test statistics

A.1.1 Scheme a

n

2

3

4

5

6

7

8

D,yin(n) | 0.053

0.064

0.058

0.05

0.056

0.054

0.046

Table A.1: size of D,,;,,(n) under various argument of n based on Scheme a.

d 5000 | 10000 | 15000 | 20000 | 25000 | 30000 | 35000 | 40000 | 45000 | 50000
R(d) | 0.054 | 0.058 | 0.058 | 0.055 | 0.051 | 0.048 | 0.05 | 0.052 | 0.051 | 0.053
R(d) | 0.055| 0.051 | 0.051 | 0.051 | 0.054 | 0.05 | 0.052 | 0.059 | 0.049 | 0.053

Nyax(d) | 0.001 | 0.005 | 0.01 | 0.022 | 0.034 | 0.05 | 0.002 | 0.004 | 0.004 | 0.006
C(d) |0.004 | 0.029 | 0.056 | 0.017 | 0.04 | 0.022 | 0.032 | 0.014 | 0.023 | 0.045

Table A.2: size of R(d), R(d), N,u.(d), and C(d) under various argument of d based on

Scheme a part 1.
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d 55000 | 60000 | 65000 | 70000 | 75000 | 80000 | 85000 | 90000 | 95000 | 100000
R(d) 0.057 | 0.053 | 0.052 | 0.056 | 0.057 | 0.052 | 0.045 | 0.045 | 0.051 | 0.047
R(d) 0.05 | 0.045 | 0.05 | 0.048 | 0.052 | 0.05 | 0.045 | 0.046 | 0.05 0.048
N,ux(d) | 0.007 | 0.007 | 0.009 | 0.012 | 0.015 | 0.015 | 0.017 | 0.02 | 0.022 | 0.029
C(d) 0.022 | 0.029 | 0.037 | 0.024 | 0.031 | 0.042 | 0.021 | 0.025 | 0.038 | 0.052

Table A.3: size of R(d), R(d), N,..(d), and C(d) under various argument of d based on

Scheme a part 2.

KS | CGvM

Dyin(n) | 0.046 | 0.046
R(d) | 0.051 | 0.057
R(d) | 0.058 | 0.053
Npax(d) | 0.047 | 0.048
C(d) | 0.051 | 0.048

Table A.4: size of functional forms of the five statistics based on Scheme a.
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A.1.2 Schemeb

n

2

3

4

5

6

7

8

D,in(n) | 0.053

0.046

0.042

0.031

0.043

0.049

0.045

Table A.5: size of D,,;,,(n) under various argument of n based on Scheme b.

113

d 5000 | 10000 | 15000 | 20000 | 25000 | 30000 | 35000 | 40000 | 45000 | 50000
R(d) 0.05 | 0.053 | 0.05 | 0.048 | 0.051 | 0.05 | 0.054 | 0.059 | 0.062 | 0.051
R(d) |0.042] 0.043 | 0.049 | 0.043 | 0.05 0.05 0.05 | 0.056 | 0.051 | 0.047

Nyax(d) 0 0.006 | 0.015 | 0.021 | 0.029 | 0.026 | 0.022 | 0.013 | 0.009 | 0.008
Cd) |0.018| 0.019 | 0.018 | 0.014 | 0.022 | 0.023 | 0.021 | 0.024 | 0.019 | 0.021

Table A.6: size of R(d), R(d), N..(d), and C(d) under various argument of d based on

Scheme b part 1.

d 55000 | 60000 | 65000 | 70000 | 75000 | 80000 | 85000 | 90000 | 95000 | 100000
R(d) 0.056 | 0.057 | 0.057 | 0.056 | 0.054 | 0.052 | 0.056 | 0.046 | 0.047 | 0.046
R(d) 0.051 | 0.048 | 0.062 | 0.061 | 0.053 | 0.051 | 0.05 | 0.047 | 0.04 | 0.037

Npyax(d) | 0.01 | 0.009 | 0.01 | 0.009 | 0.009 | 0.009 | 0.013 | 0.015 | 0.015 | 0.017
Cd) | 0.021 | 0.026 | 0.017 | 0.015 | 0.021 | 0.016 | 0.015 | 0.011 | 0.01 0.01

Table A.7: size of R(d), R(d), N,..(d), and C(d) under various argument of d based on

Scheme b part 2.
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KS CvM
D,ix(n) | 0.008 | 0.005
R(d) | 0.046 | 0.043
R(d) | 0.047 | 0.052
Nyax(d) | 0.041 | 0.043
C(d) 0.02 | 0.03

Table A.8: size of functional forms of the five statistics based on Scheme b.
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A.2 Additional power study figures

Power performance of statistics based on R, R and C across o under NS processes
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Figure A.1: Power performance of statistics related to R(d), R(d), and C(d) under alternative
hypothesis (1) with parameter u, = 1125.
Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed,;
dnqx refers to the value of d yielding the largest power.
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Power performance of statistics based on R, R and C across o under NS processes

o
S -
©
®
(e}
<
9]
B
I}
a
<
o -
—— ’R\(‘dmax)
-~ KSi
A- CvMg
~ —u— Bidmax)
o -— KSg
--A- CvMg
—=— E(_dmax)
-— KS¢
o --A- CvMc
S
T T T T T T
0 2000 4000 6000 8000 10000

Figure A.2: Power performance of statistics related to R(d), R(d), and C(d) under alternative
hypothesis (2) with parameter u, = 1125.
Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed;
dnqx refers to the value of d yielding the largest power.



A.2. ADDITIONAL POWER STUDY FIGURES 117

Power performance of statistics based on R, R and C across o under NS processes
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Figure A.3: Power performance of statistics related to R(d), R(d), and C(d) under alternative
hypothesis (3) with parameter u, = 1125.
Only maximum powers of R(d), R(d), and C(d) over values of d considered are displayed;
dqx refers to the value of d yielding the largest power.
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Supplementary information for Chapter 3

Algorithm S1: Monte Carlo estimates of the null distributions of summary statistics
2.1: Set a finite grid D = {d;,i = 1, --- , k}, which defines the scale of d as the evaluation

range;

2.2: Simulate M replications of detected SNP differences {X(()’"), m=1,---, M} from the

hPP. At the mth replication, X(()’") 1s obtained as follows:

(a): Generate the total number of underlying SNP differences Nr(z):;z ~ Pois(),

where 1 is an estimate of the rate parameter from the observed sample X

;l — (si=sp)m

5 The parameter 1 can be set as |X§r)|, where |A| is the norm of set A,

that 1s the count of the number of elements in A;

(b): Generate the set of underlying (both observable and unobservable) SNP dif-

ference locations Ufl’:l)l = {u;,j =1, ,Nr(l’:l)l}, where iid random variables
uj ~ Ulsy, 5], and U is the discrete uniform distribution on {s¢, - - , s5;};

(c): Obtain the set of observed SNP differences: X(()m) = Ufl’:l)l ns.

2.3: For each m = 1,--- M, obtain Rxg”>(') = {f(’Xgm(d,-),i = 1,---,k} at the grid sites
d[7i: 1’”' 7k;
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2.4: The Monte Carlo estimate of R*(-) is 13*(-) = {t Z%:l RXéw(d,-),i =1,---k};

2.5: Foreachm =1, --- M, calculate the KS or C/’;]\/d test statistic:

__xm 2
(a): KS;' =KS (Rxg”>’R*);
(m)

——X —_~ o 2
(b): CvMj' = CyM(Rym, R*);

2.6 The Monte Carlo estimates of the cumulative distribution functions of the test statis-
tics F %S, and F G, Are:
A A==
@) Fgs, (D =31 2 I(KS 7 <1)
(m)

A ——X
(b): Fay (1) = LM HCvMyE <)




120 CHAPTER B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3

Algorithm S2: Hypothesis testing procedure
3.1 Based on the observed sample Xﬁ'), calculate Rxs(') = {RX§r>(d,~),i =1,---,k}. The
test statistics are:

—_—x"

(@): KSg = KSRy R");

x\

(b): CvMp

= CVM(Ryo, R*);
3.2 Statistical inference:

(a): For hypothesis testing at significance level a:

(i): KS test: if ﬁﬁ > F % (1 — @), reject the null hypothesis, otherwise do
R

not reject.
—~X, A
(i1): CvM test: if CvMy > F 5174 (1 — @), reject the null hypothesis, otherwise
VM

do not reject.

(b): The p-values are calculated as:
~X(m) )

1+3M RS0 2K )
1+M ’

(1): KS test:

e xm____xn
M 0 K
+ 0 IOV, >CvMy )

1+M ’

(i1): CvM test: :
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Supplementary information for Chapter 4

C.1 Geometrical illustration of the partial block bootstrap

The partial block bootstrap procedure transforms two sets of distances, Dy and Dy into resam-
pled sets of distances, Dy and D§ with the translation function p(y; Z, Bp) (see equation 4.3).

The transformation is geometrically illustrated as follows.

Consider a CNV on the chromosome as illustrated on the top panel in Figure C.1; find
the neighborhood regions on its left side (5’ side in genetic terminology) and right side (3’
side in genetic terminology) that contain SNP differences and probes with nearest distances
to this particular CNV. The boundaries of these regions are either the mid-point between two
consecutive CNVs or either end of the chromosome, which is in practice the starting or ending
probe on the chromosome. The shortest distance from any location in a CNV to the boundary
of its neighborhood regions on the left or right sides is termed the distance from the CNV to
its left or right boundary, respectively. The set of distances from CNVs to their left and right
boundaries can be denoted as Dy = {D(b),b = 1,--- B} and assume D(1) < D(2) < --- < D(B).
As the set Dg contains only unique elements, we have B = |R| + 1, where |R| is the total number

of CNVs on the chromosome.

Select all SNP differences and probes on both left and right side neighborhoods of all CNV
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and superpose them. Then, without lost of generality, perform a reflection of the left side SNP
differences and probes so they land on the right side with the same distance to the nearest
CNV. Through this superposition, the distances from SNP differences and probes to the nearest
CNV can be displayed on a new coordinate system, all now being to the right of the CNV. The
bootstrap procedure swaps all SNP differences and probes in the two distance region (0, Bp]
and [Z, Z + Bp). The procedure is illustrated graphically with three CNVs on a chromosome in
Figure C.1.

Given the data, in the bootstrap procedure, the information in the segment (0, Bp] is fixed;
however, information in the segment [Z, Z + Bp) is random as it depends on the random point
Z. Consider all the neighborhood regions, as Z increases and Z + Bp > D(b) for some b € B,
the number of the neighborhood regions contributing information to the random interval of
[Z,Z + Bp) decreases. From a distributional perspective in the Monte Carlo simulation, the
larger the corresponding distance to the boundary, the more information a neighborhood of the
CNYV would contribute to the bootstrap randomness.

Given parameter Bp, for a certain random number Z in a bootstrap resample, the two block
segments to be exchanged, (0, Bp] and [Z, Z + Bp), may therefore arise from different numbers
of neighborhood regions of the CNVs. Yet, the statistic J(r) contrasts the proportions of SNP
differences and probe sites in the form of a ratio. Although not rigorously proved here, heuris-
tically, under the null hypotheses, having the two segments contain information from different
number of neighborhood regions would not affect the first order property of the ratio. The J
statistic exchanges and contrasts information of SNP differences and probes in CNV nearby
and faraway regions. The statistic is specially constructed for testing the second null hypoth-
esis, where clearly defined CNV nearby and faraway regions are of interest for comparison.
Further work is required for validation of this method. It is also worth noting that the global
confidence bands constructed using the Monte Carlo samples from the partial block bootstrap
can be instable, as seen in Fig 4.12 when r is relatively large. The reason for this behavior is

yet to be investigated in the future.
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Figure C.1: Geometrical illustration of the partial block bootstrap. The distances from SNP
differences and probes to the nearest CNV are obtained by superposition of SNP differences
and probes in a defined region on either side of each CN'V. The distances within the interval of
(0, Bp] and [Z, Z + Bp) are exchanged by transformation, maintaining their relative positions
within the segments.
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C.2 Parameter setting in the alternative hypothesis for the

step function nhPP model

Define the shortest distance from a probe site s € § to CNV regions R by
d; = inf||s — 4|
a€R

Then the probability of the probe detecting a SNP difference under the step function nhPP is
given by
P(s € X) =7l(d; = 0)+ 60I(d; = D) +y,01(0 < d; < Dy)

where 7 corresponds to the probability of a probe inside of CNV detecting a SNP difference, D,
defines the neighborhood that is the nearby-D region of a CNV, 6 corresponds to the probability
that a probe in the faraway-D region from a CNV detects a SNP difference. The parameter T

is estimated from the sample:

2ses [(s ¢ X)I(d; = 0)
ZseS I(ds =0)

=

since

E

Zl(s € X)} = mp

seS
where my is the total number of SNP differences observed in the data, the parameter y, and 6

have the constraint that

%Zl(ds = 0)+OZI(dS > DS)+)/SQZI(O <d, <D,)=my

seS seS seS

Since 7y, is a parameter that determines how different the SNP difference intensities are in the
nearby-D locations from faraway-D locations, it is altered arbitrarily to study power under dif-

ferent situations. The parameter D; is also arbitrarily altered to reflect different ‘effect ranges’.
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Fixing vy, then
— moy — %ZSGS I(ds = O)
ZSES I(d; = Dy) + Vs ers 1(0 < ds; < Dy)

0

C.3 Examination of autocovariance for location of SNP dif-
ferences on microarray data

The autocovariance structure for the location of SNP differences in microarray data can be
examined to provide guidance on selecting the block length parameters By and Bp. For a

stationary process, the covariance can be expressed as follows:
Cov(X;, Xivs) = E(XiXivs) — /12’

where

u=EX) = E(Xi.5),

t € L is an arbitrary location on the chromosome L, and 6 € Z*. A value of ¢ yielding that
E(X,X,.s) = 1%, and thus E(X,X,.s) — 4> = 0 would indicate no association between locations
with ¢ distance. Since the microarray data is sparse and the number of probes is large, a special

method is used to estimate the autocovariance structure, described as follows:

(1) randomly sampleaset Y C S, |Y| = Ny, where |Y/| is the norm for set Y and S is the probe

set;

(2) foreachy € Y, randomly sample aset W(y) C {g: g € S,|g—y| > h,}, where [W(y)| = N,
and A, is a sampling distance parameter;

(3) Sample pairs Q, = | U (y,q@)and Qy = (J (y,w). Obtain Q = Q, U QOy;

yeY qe{g:8€S ,0<|g—yl<hy} weW(y)

(4) Obtain V= |J {(I(y € X)I(z € X),|y—2z])}. The elements in pairs (p, o) € V are samples
20
of (X;Xi+s,0).
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(5) Use kernel smoothing with a uniform kernel (bandwidth 4;) to estimate the function p(6).

This estimate of E(X,X,.s) is to be compared with jz*, where

Z(}’,Z)EQ[I(y € X)+1(z € X)]
2|10

,L_l:

In the example in Section 4.4, the autocovariance structure is examined as seen in Figure
C.2. The parameters are set as follows: N; = N, = 10%, h, = 5x 10%, and & = 4 x 10°. Around
6 = 3x10°, the horizontal line seems to cross with the confidence bands estimated in the kernel

smoothing, thus 3 x 10° is selected for the block length parameter B, and Bp.
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Figure C.2: Examination of the autocovariance for the locations of SNP differences in the
example in Section 4.4.



Appendix D

Related techniques

D.1 Monte Carlo simulation for statistical inference and power

estimation

For hypothesis testing, Monte Carlo simulation offers an effective approach for estimating the
distribution of a test statistic 7 [36]. This method is especially convenient when T does not
have closed form, as for the spatial statistics proposed in this thesis. Monte Carlo methods can
be used to estimate the quantiles of 7. With this method, m random samples are generated
under the null hypothesis, with the parameter m selected to be equal to the size of the original
data sample. The test statistic is calculated for each of the generated random samples, yielding
a sample of test statistics, £}, - - - , ;. The empirical cumulative distribution function P}, of these
sample test statistics can be used as an estimate of the CDF of the test statistic Pz, used to esti-
mate the critical region or p-value of the observed statistic. Denote r as the number of sample

test statistics that are greater than or equal to the observed statistic. An unbiased estimator of

(r+1)
> (1)’

the p-value is given as =. Another estimator of the p-value introduces a slight bias, yet
provides the correct type 1 error interpretation, which is often a desirable property [20]. Note
that the bias introduced by the latter estimator diminishes when m increases.

In this thesis, Monte Carlo simulation is used to estimate the distribution of all test statistics

128
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for hypothesis testing as well as their power under alternative hypotheses. Monte Carlo samples
are generated from parametric models (such as the hPP or NS) with specified parameters, or
from bootstrap methods. The number of Monte Carlo samples is set arbitrarily. Although it is
more accurate when large, increasing the number of samples increases computational resources
required. The p-value is estimated in the simulation studies through the thesis by --, as the main
goal here is to compare power between various test statistics under different scenarios, rather

than having strictly correct interpretation of type I error. In real applications, it is recommended

that the estimator ((r”) be used.
m+1)

D.2 Block bootstrap for dependent data

For simple random sampling of the data, Efron’s bootstrap method [37] uses a nonparametric
sampling scheme to approximate the distribution of a certain random variable without requiring
model assumptions on the CDF. The bootstrap approach is described as follows, as taken from
[35]. Assume X1, X5, - - - is a sequence of iid random variables with common CDF F. Suppose
X, = {Xi,---,X,} are the data at hand and let T,, = 1,{X,; F'},n > 1 be the random variable
of interest. A simple random sample X} = {X], -+, X} of size n is drawn with replacement
from X,,. Then conditional on X, {X7,---, X} are iid random variables with common distri-
bution F, = n' 1| 8x,, where &, denotes the probability measure putting unit mass at y. The
bootstrap version T, of T, is defined as T, = t,(X}; F,), with X, and F, replacing X, and F
respectively. Denote G, as the conditional distribution of T given X, and G,, as the unknown
distribution of T,. Then the bootstrap principle advocates G, as an estimator of G,,. For func-
tional ¢(G,), a bootstrap estimator is given by ¢(G,). Monte Carlo simulation can be used to
approximate G,,.

However, the method described above is not suitable for dependent data, and other boot-
strap techniques have been developed, such as the moving block bootstrap, the nonoverlapping

block bootstrap, and a generalized block bootstrap. This thesis adapts the moving block boot-
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strap approach. Other methods can be investigated in future studies. Instead of resampling
a single observation each time, the moving block bootstrap method resamples blocks of con-
secutive observations. Thus the dependence structure of the original observations within each
block is preserved. The moving block bootstrap method is described as follows. Let X;, X5, - - -
be a sequence of stationary random variables, and X, = {Xj,---, X,,} be the observations in
the data. Suppose [ € [1,n] is an integer. Let B; = (X;,---,X;;;—1) denote the block of
length [ starting with X;, 1 < i < N, where N = n -1+ 1. Let 8],---,8; denote a sim-
ple random sample drawn with replacement from {8, - - - , By}. Denote the elements in B by
X pgrs - X i =1,--- k. The sample X7, ---, X, is a moving block bootstrap sample of

size m = kl. The empirical distribution of (X7,---, X)), F,,, can then be used for estimation

n2
of other statistics, such as @n =T(F),).

In Chapter 4, block bootstrap strategies are adopted to generate bootstrap samples in order
to estimate the variance of test statistics under the null hypotheses. Simple random samples
of blocks containing probe site locations and their corresponding outcomes of SNP differences
are generated and used to form resamples. Monte Carlo simulations are used to estimate the

variance of the test statistics based on these resamples.

D.3 DNA data structure: discreteness

The nucleotides on a DNA forms a linear structure. Each nucleotide has a defined location
determined by its order on the chromosome based on a pre-defined starting location. This
can be regarded as its coordinate on a one dimensional coordinate system (number line). As
determined by its order, the locations of the nucleotides are always integer and cannot be real
numbers. However, the scale of the chromosomes in some organisms is in the order of 10® bp
and a nucleotide is of length 1 bp. It is thus often reasonable to treat the locations as continuous
rather than discrete. When generating Monte Carlo samples from certain point processes, such

as the Neyman-Scott process, the locations of generated points,i.e., parents and offspring, can
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be continuous. In this case, the locations of these points are rounded to the nearest integer. The

rounding here should in principle not affect the goal of this study and interpretability.

D.4 Spatial point process

In this thesis, a spatial point process is used to describe the behavior of the underlying muta-
tions, either detected or undetected. A spatial point process X is a random countable subset
of a space S. In this scenario, S is the chromosome space L € R*, a one dimensional space.
Two major types of point processes, the Poisson process and the Neyman-Scott process, are
considered in this thesis, and described below.

The Poisson point process is described as follows. For bounded B C §, the intensity
measure u is given by

u(B) = fB p(E)dE. BCS:

and the count function N(B) = |B|, which is the random number of points falling in B. A point
process X consisting of n,n € Z, i.i.d. points with a density function f on a set B C S is
called a binomial point process, denoted as X ~ binomial(B, n, f). A point process X on S is a

Poisson point process with intensity function p if the following properties are satisfied:
(1) forany B C S with u(B) < co, N(B) ~ Pois(u(B)); if u(B) = 0 then N(B) = 0.

(2) forany n € Z and B € § with 0 < u(B) < oo, conditional on N(B) = n, X ~

binomial(B, n, f), where Xz = X N B is the restriction of X to B.

Note that if p(£) = p is a constant in a Poisson process, the process is a homogeneous Poisson
process; otherwise it is an non-homogeneous Poisson process.

The Neyman-Scott process is described as follows. Let C be a stationary Poisson process
with intensity « > 0. Conditional on C, let X, ¢ € C be an independent Poisson process with
intensity function p.(¢) = ak(é—c), where @ > 0 and £ is a kernel function. Then X = U X, is

a special case of a Neyman-Scott process, where C are cluster centers or parents and X.,c € C
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are the clusters or offspring. In a more general definition, N(X,) given C is not restricted to
be Poisson distributed. In this thesis, the kernel function is chosen to be the Gaussian kernel.
The cluster centers C can be a homogeneous Poisson process or a non-homogeneous Poisson
process, where the intensity of C depends on the distance to the nearest mutation event of

another type.

D.S Notes on numerical computation

In this thesis, some definitions of statistics involve ratios between two numbers. However, the
denominator of the ratio is not always guaranteed to be non-zero as it is often depends on the

data and the choice of argument.

For example, the statistic R(d) has |X| and Ns(x,d) in the denominator. If |X| = 0, that is,
there is no SNP difference observed at all, the calculation of R(d) would be invalid. Meanwhile
if for any SNP difference x € X, there is no probe site for which the distance to x is less than
or equal to a given distance d, the calculation of R(d) would be invalid as well. Thus for the
former issue, it is required that a check is made that there exists at least one SNP difference
in the data set. For the latter issue, the argument d needs to be specified large enough for all
of the SNP differences to have at least one nearby probe site in the neighborhood. The same
issue exists in the recommended statistic R(d), where the denominator D rex Ns(x,d) needs to
be non-zero. This constraint only requires that there are probe site within distance d to at least
one SNP difference, which is a much easier condition to satisfy compared to that needed for
valid computation of R(d). In Chapter 2, that the denominator is zero is not an issue, as d
is specified large enough, relative to the inter-probe distances in MDGA; this is not a major
constraint. In Chapter 3, a subset of values of d € D could lead to invalid calculation of R(),

and we discussed suitable methods to handle the situation in Section 3.2.3.

In the study of association between SNP differences and CNVs, the calculation of the J

statistic also has the potential issue that the denominator may theoretically be zero. The de-



D.5. NOTES ON NUMERICAL COMPUTATION 133

nominator, 1 — (A}VQRC, r(r), can be zero when r is chosen to be larger than max cwyngc) d(x, R),
which is the largest distance from a SNP difference outside of CNVs to the nearest CNV. Thus
r should be specified small enough for the denominator not to take value zero, and this is a

trivial constraint to impose.
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