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Abstract 
 

In this thesis, I investigated the process of statistical word segmentation using a 

combination of behavioural, clinical, and neuroimaging approaches. Prior research has 

largely focused on the outcome of statistical learning approaches, with little research 

attention paid to the process of learning. In this body of research, I sought to address this 

issue. In Chapter 2, I examined how domain-specific and domain-general working 

memory interference effects on a statistical word segmentation task. I found that when 

completing a concurrent visuospatial or verbal working memory task, statistical language 

learning was impaired. Thus, this study provided some evidence that domain-general 

working memory may support statistical language learning. In Chapter 3, I further 

investigated how cognitive processes, including language and working memory, are 

involved in statistical learning across domains. In this study, school-aged children with 

and without a developmental language disorder (DLD) completed a statistical language 

learning task and a visual statistical learning task. I found that those with DLD did not 

differ from typically developing children on either statistical learning task, and that 

performance across groups was meager for the statistical language learning task, and not 

above chance levels for the visual statistical learning task. Further, performance on the 

statistical learning tasks was not associated with other cognitive processes. This raised the 

possibility that an alternative measurement approach may be better suited to examine 

statistical learning. I addressed this issue in Chapter 4, where I measured event related 

potentials (ERPs) using electroencephalography (EEG) during exposure to a structured, 

unsegmented language. I found that statistical learning performance was related to neural 

responses to the structured linguistic input, and that ERPs were modulated as a function 



 

	 ii 

of language exposure, revealing the dynamic nature of statistical learning. Chapter 5 

discusses the relevant findings of this thesis in relation to the current state of affairs in 

statistical learning research, and presents recommendations for future research in 

examining the process of statistical learning.  

Keywords 

Statistical language learning, language acquisition, implicit learning, working memory, 

developmental language disorder, specific language impairment, event-related potentials 
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Chapter 1: Introduction 
 

The process of human language acquisition is an extraordinary cognitive 

phenomenon. Infants are born without the ability to use language, but remarkably, they 

are well underway in developing the ability to learn language. What is perhaps most 

remarkable is the rapidity with which infants learn the unique characteristics of their 

native language. For instance, at birth, infants can discriminate languages with different 

prosodic structure (Mehler, Jusczyk, Lambertz, Halsted, Bertoncini, & Amiel-Tison, 

1988), with the ability to discriminate between their native language and a language in the 

same rhythmic class developing around 4-5 months of age (Nazzi & Ramus, 2003). By 7 

months of age, infants show a preference for the stress, melody, and phonotactics of their 

native language (Jusczyk, 2002), and have become attuned to the phonetic categories 

within their native language (Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992). By 

their first birthday, infants begin to produce their first words, and begin using full 

sentences by 3 years of age. And, by 4-5 years of age, young children have mastered 

nearly all the rules of their native language, and can both use and understand most 

linguistic structures. Given how quickly infants seem to master many of the fundamentals 

of their native language, it seems only natural that exploring this phenomenon has been of 

great interest to psychologists, linguists, and neuroscientists. My research seeks to 

examine one way in which humans acquire language, namely, the process of statistical 

learning. 

1.1 Early Theories on Language Acquisition 

Early theories of language acquisition sought an explanation for the rapidity with 

which infants acquired their native language. The most prominent theories from Piaget 
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(see Piaget, 2005), Skinner (1957) and Chomsky (e.g., Chomsky, 1965) varied 

substantially in how they viewed the interaction between general cognition and language 

faculties. Fitting with his view on cognitive development as a movement through distinct 

stages, Piaget saw language acquisition as a similar stage-like phenomenon (see Piaget, 

2005). In his view, a child’s language developed from being largely egocentric, to being 

symbolic and reflective of socialized knowledge and behaviour. Additionally, Piaget saw 

language development as being constrained by domain-neural cognitive processes. 

Similar to Piaget, Skinner (1957) argued that language developed like other cognitive 

phenomena, though his theory was constrained within his own views on behaviorism. 

Skinner speculated that language was acquired via a process of operant conditioning, that 

is, language acquisition was due to an organism’s history of reinforcement and shaping. 

This view was strictly a learning-based account, and viewed the language-learner as a 

tabula rasa or blank slate.  

Chomsky’s (1959) proposals on language acquisition were a direct critique of 

Skinner’s (1957) tabula rasa view. Chomsky (1959) argued that reinforcement learning 

has little to do with language acquisition as instead, he saw the language learner as an 

“innate grammarian”. Central to his argument was his notion of the “poverty of the 

stimulus”, as the language learner receives too little input to account for their language 

outcomes. Because of this impoverished input, Chomsky suggested that the formal 

structures of language must be innately specified. This nativist view of an innate 

specification for language was echoed by others, including Eimas, Siqueland, Juszcky and 

Vigorito (1971), who also concluded that the ability to acquire a language must be part of 

a human’s biological make-up. These built-in constraints, it was thought, could only be 

learned by a specialized “language acquisition device” (Chomsky, 1965; Gleitman & 
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Wanner, 1982; Pinker, 1984). In a similar argument, Pinker (1994) suggested that a 

“language instinct” was based on micro-circuitry that detailed the innate knowledge of the 

principles of grammar, and was determined by natural selection (also see Pinker & 

Bloom, 1990). At the same time that Chomsky (1965) was arguing for a specialized and 

innately specified “language acquisition device”, Lenneberg (1967) was advancing his 

proposal that language is a system deeply constrained by biology. In his influential book, 

Biological Foundations of Language, Lenneberg (1967) argued for a “critical period” for 

language, based on observations that optimal language development can only be acquired 

through birth until the onset of puberty (see Werker & Tees, 2005 for a discussion). 

Lenneberg’s (1967) proposal was found to be consistent with later findings related to 

second language acquisition throughout development (e.g., Johnson & Newport, 1989). 

Although there are theoretical distinctions between many of these nativist claims, this 

body of work has converged at the conclusion that language must be constrained by our 

biological makeup.  

These nativist claims have been, and continue to be, strongly influential theories 

of language acquisition. However, their validity has been questioned by a growing body 

of research indicating the importance of interactions with the environment during the 

learning process. Beginning in the 1980s, research on infants’ phonetic perception 

challenged nativist views, as this research showed that young infants could engage in a 

detailed mapping between the distributional properties of environmental input to a 

phonetic percept (Kuhl et al., 1992; Werker & Tees, 1980; see Kuhl, 2000), highlighting 

how experience-dependent learning can operate within some of the earliest stages of 

language acquisition. Moreover, the input to the child is not as impoverished as 

previously thought (e.g., Chomsky, 1965), but is rich with useful information. For 
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instance, infants’ constrained visual world subsequently constrains their encoding of 

linguistic input (e.g., Yu, Smith, Klein, & Shiffrin, 2007). Additionally, regularities 

within the linguistic environment provide reliable cues for visual object categorization 

(Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002). Computational modeling 

approaches have also largely outstripped nativist accounts, as they have construed 

learning as a stochastic process over distributed representations (e.g., Elman, 1990), as 

opposed to a manipulation of discrete symbols (e.g., Marcus et al, 1999). More recent 

claims (e.g., Spencer, Blumberg, McMurray, Robinson, Samuelson, & Tomblin, 2009) 

have argued that nativist theories should be abandoned entirely, as they ignore 

epigenetics: The view that developmental processes including language acquisition 

emerge via cascading interactions across multiple levels of causation, from genes and 

environment. Also, close examinations of population-level data have shown no evidence 

for a discontinuity in second language acquisition at the critical period (Hakuta, 

Bialystok, & Wiley, 2003), which runs in stark contrast to hypotheses regarding a 

biologically-defined critical period. Given the fragility of nativist accounts, there is room 

to explore how the language learner harnesses the information available to them in the 

environment in order to acquire a language. 

1.2 The Emergence of Statistical Learning Accounts 

Despite the early influence of innate or modularist accounts, experience-

dependent theories for language acquisition have gained prominence in recent decades. In 

one of the most influential findings on the study of language acquisition, Saffran, 

Newport, and Aslin (1996), and Saffran, Aslin, and Newport (1996) empirically 

demonstrated that distributional cues inherent to linguistic input may play an important 

role in segmenting words from fluent speech. The experiments by Saffran and her 
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colleagues were a particularly intriguing endeavor, as one of the first tasks facing the 

infant language learner is discovering the words embedded in fluent speech. Moreover, 

word segmentation in a natural language is a complicated task as there are multiple cues 

that may be confounded with word boundaries, including prosodic cues (Christophe, 

Dupoux, Bertoncini, & Mehler, 1994; Cutler, 1994; Cutler & Norris, 1988), stress 

patterns (Echols, 1993; Echols & Newport, 1992, Jusczyk, Houston, & Newsome, 1999), 

and speakers’ tendency to rarely pause between words (Cole & Jakamik, 1980). However, 

linguists had determined that words could reliably be segmented based on the conditional 

or transitional probabilities between adjacent syllables (Harris, 1955). Specifically, the 

transitional probabilities of adjacent syllables within words is higher than the transitional 

probabilities between words. For instance, in the phrase “personal computer”, the 

probability of the syllable “al” following “son” is higher than the probability of “com” 

following “al”. It is this distinction between within and between word transitional 

probabilities that allows the language learner to discover the boundaries between words, 

and segment words from fluent speech (e.g., Hayes & Clarke, 1970).  

To demonstrate word segmentation using an artificial language, adults (Saffran, 

Newport, et al., 1996) and 8-month-old infants (Saffran, Aslin, et al., 1996) were exposed 

to a structured, unsegmented artificial language where the only cue to word boundaries 

were the transitional probabilities between syllables. Both studies found that even after a 

brief exposure, participants could readily identify words from the speech stream, and 

demonstrated that experience with the distributional cues within a language may 

contribute to language acquisition. However, these studies did not definitively show that 

transitional probabilities drive word segmentation. To overcome this, Aslin, Saffran, and 

Newport (1998) constructed a speech stream that did not confound transitional 
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probabilities and joint probabilities. To accomplish this, both the trained words part-word 

foils used in the test phase were equated in frequency of co-occurrence during the 

familiarization phase. However, the trained words had higher conditional probability of 

co-occurrence, or higher transitional probabilities, than the part-word foils. They found 

that infants could reliably discriminate trained words and part-words, and demonstrated 

that the computation of transitional probabilities supersedes the simple frequency of co-

occurrence between units. This discovery that language learners could detect the 

distributional regularities within speech was termed statistical language learning, and has 

since become an expanding area of research on the experience-dependent mechanisms of 

language acquisition.  

The findings from these initial studies on statistical word segmentations coincided 

with other emergentist theories at the time. Emergentist theories were concerned with 

how internal representations developed or emerged gradually due to exposure, and 

included how information was computed across distributed representations based on the 

principles of associative learning (see Bates & Elman, 1996; Cleermans, 1993; Hollich, 

Hirsh-Pasek, & Golinkoff, 2000). Major developments in infant research demonstrated 

how experience shaped linguistic perception, including the narrowing of phonetic 

perception for native-language consonants (Werker & Tees, 1984) and vowels (Kuhl et 

al., 1992), stress patterns (e.g., Jusczyk, Cutler, & Redanz, 1993), and phonotactics 

(Jusczyk et al., 1993). These results suggest that infants are skilled learners, and that their 

perceptual system is organized based as a function of their linguistic experience (see 

Kuhl, 2004; Werker & Curtin, 2005). And, this experience-based learning may not be 

restricted to infancy: Experience may be capable of guiding statistical learning throughout 

the lifetime (e.g., Saffran, Newport, & Aslin, 1996; Saffran et al., 1997). There are many 
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other examples of language learners using linguistic input to extract more complex 

statistical structures, and I will now review some of relevant findings of statistical 

learning beyond word segmentation.  

1.3 Statistical Learning beyond Word Segmentation 

1.3.1 Phonetic perception 

Different acoustic contrasts are meaningful across different languages. For 

example, in English, the distinction between /r/ and /l/ phonemes is meaningful, as in 

“rake” and “lake”, while in Japanese, these phonemes are treated as part of the same 

category and are thus indistinguishable to Japanese speakers. Learning these distinctions 

is the result of statistical learning of distributional phonemic information within one’s 

native language. In a series of studies, Maye and her colleagues (Maye, Werker, & 

Gerken, 2002; also see Yoshia, Pons, Maye, & Werker, 2010) demonstrated that infants 

or adults form phonemic categories based on experience with distributional regularities. 

In Maye, Werker, and Gerken (2002), infants were familiarized with sounds along a 

phonetic /da/-/ta/ continuum that was distributed as either unimodal or bimodal. 

Specifically, in the bimodal condition, infants heard the endpoints of the /da/-/ta/ 

continuum more frequently than stimuli at the mid-point of the continuum. In the 

unimodal condition, on the other hand, infants heard stimuli from the mid-point of the 

continuum more frequently than stimuli at the endpoints of the continuum. They found 

that during the test phase, only infants in the bimodal training condition could distinguish 

between phonetic tokens at the endpoints of the continuum, while those trained in the 

unimodal condition could not. This finding was significant as it demonstrated that infants 

are sensitive to the statistical distribution of speech sounds in language input, and that this 

sensitivity shapes their speech perception. This finding was also consistent with other 
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accounts showing that by 6 months of age, native-language experience has shaped 

infants’ phonetic perception (e.g., Kuhl et al., 1992). 

1.3.2 Syntax acquisition 

One of the key criticisms from the original Saffran et al. (1996) findings was that 

it is grammar learning, and not word learning, that is informative for understanding the 

mechanisms involved in language learning; According to Pinker (1997), the results from 

Saffran et al. (1996) were seen as an inconclusive account of language acquisition via a 

distributional learning mechanism. A response to this criticism came from Gómez (2002), 

who demonstrated that statistical learning can account for learning of higher-level 

linguistic structures. In their study, adults and 8-month-old infants were trained on an 

artificial language with an AXB structure: The first element in the sequence, A, reliably 

predicted the final element, B, while X was not predictive of either A or B. The key 

manipulation in this study was that X came from a variable set size across conditions, 

with vocabularies of either 2, 6, 12, or 24 words. Gómez (2002) found that infants and 

adults only learned the non-adjacent A-B relationship when X was least predictive and 

came from the largest set size. The findings from Gómez (2002) were particularly 

influential for statistical learning approaches, as it showed that language learners could 

use distributional regularities beyond the single-order adjacent relationships originally 

demonstrated in Saffran, Aslin, and Newport (1996). Further, the demonstration of 

statistical learning for non-adjacent sequences demonstrated that statistical learning may 

contribute to learning grammatical or syntactic structures, and was closely related to other 

implicit learning approaches examining language acquisition, namely, artificial grammar 

learning paradigms (e.g., Knowlton, Ramus, & Squire, 1992; Knowlton & Squire, 1996; 
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Matthews et al., 1989; Reber, 1967; 1989, see Christiansen, 2018 and Perruchet & 

Pacton, 2006 for discussions).  

1.3.3 Bridging between linguistic levels 

Distributional learning can also be seen when bridging between linguistic levels. 

In a novel approach, Graf Estes, Evans, Alibali, and Saffran (2007) used a speech 

segmentation paradigm to train 8-month-old infants on an artificial language. Similar to 

the Saffran, Newport, and Aslin (1996) paradigm, infants heard a structured, 

unsegmented speech stream containing four, bi-syllabic, nonsense words. Following 

language exposure, the trained “words” from the artificial language were used as labels 

for novel objects. They found that infants who heard labels that were either inconsistent 

with the regularities in the training language (Experiment 1), or familiar sequences with 

low internal probabilities (Experiment 2) did not learn the labels. However, infants who 

heard labels that were consistent with the statistical regularities in the training stimuli 

learned the labels for the novel objects. This finding was the first to demonstrate that 

words with a high internal probability in a speech stream may be treated as proto-lexical 

traces or candidate words, and expanded our understanding of the output of statistical 

learning. Additionally, it provided convincing support that statistical cues interact (also 

see Lany & Saffran, 2010; Thiessen & Saffran, 2007; Sahni, Seidenberg & Saffran, 

2010), with learning at one level affecting learning downstream. 

1.3.4 Summary 

Despite early criticism to statistical learning approaches (see Pesetsky, Wexler, & 

Fromkin, 1997) it is clear that there are applications for distributional learning beyond the 

original findings from Saffran, Aslin, and Newport (1996). The findings reviewed here 

show that statistical learning is valuable for the naïve language learner for learning 
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multiple levels of linguistic structure. In this thesis, I will focus specifically on the 

statistical word segmentation paradigm originally explored by Saffran, Newport, and 

Aslin (1996). Crucially, I will focus on the process of statistical learning, as much of the 

prior research has primarily focused on the outcome of statistical learning (see Romberg 

& Saffran, 2013). The cognitive processes involved in statistical learning, as well as the 

constraints on learning, will be examined in detail. In this chapter, I will first explore 

some of the theoretical background on statistical language learning. Next, there will be a 

discussion of some of the domain-general and domain-specific constraints on statistical 

learning, and how statistical learning is situated within our broader cognitive architecture. 

Finally, some current issues in statistical learning paradigms will be addressed before 

proceeding to a review of the studies included in this thesis.  

1.4 Computational Approaches to Statistical Learning 

1.4.1 The critical period and the Less is More Hypothesis 

It is important to review the relevant theoretical and computational work that has 

been influential for the field of statistical learning, as much of this work guides the 

discussion of the cognitive processes theorized to underlie this process. An early and 

influential theory in this realm was the Less is More Hypothesis from Newport (1990). 

The basis for this theory was earlier work from Lenneberg (1967), hypothesizing a 

biologically-defined critical period for language acquisition. Since Lenneberg’s (1967) 

proposal, however, it was difficult to empirically test for the critical period 

experimentally given strong (and ethically conscionable) constraints on how scientists can 

deprive children of input (cf. ‘natural experiments’ involving children raised under 

extreme cases of sensory deprivation, e.g., Curtiss, 1977). In a ground-breaking finding at 

the time, Johnson and Newport (1989) examined English second-language proficiency of 
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Korean children who moved to the United States. They reported that children who moved 

before the age of 7 achieved better second language proficiency than those who arrived 

after the age of 7. They then concluded that there is, in fact, a critical period of language 

acquisition, and that this critical period extended to second language acquisition. This 

finding also raised an intriguing question: Why were younger children, who have lower 

cognitive ability, more proficient than older children at learning a second language? To 

reconcile this, the Less is More Hypothesis (Newport, 1990) suggested that the restricted 

working memory of children was advantageous for language acquisition, and attempted to 

offer a causal explanation for this phenomenon. It was thought that the smaller perceptual 

window in children, due to a smaller working memory capacity, constrained the number 

of possible analyses language learners can make relative to adults, who have a larger 

perceptual window. Hence, the likelihood of making a correct analysis is increased as 

extraneous or complex information is omitted.  

1.4.2 Testing the Less is More Hypothesis 

Following Newport’s (1990) proposal, Elman (1993) tested the Less is More 

Hypothesis with a model of syntactic agreement acquisition using a simple recurrent 

network (SRN; Elman, 1990). An SRN is a three-layer feed-forward artificial neural 

network consisting of input units, hidden units, and output units. After the first item is fed 

into the network, the state of the hidden units is “copied back” to the context or input 

units. Activation in the network is propagated forward, and the output is compared to the 

target via backpropagation. The development of an SRN for natural language processing 

was a substantial advancement for cognitive and linguistic theory, as it was the first 

simulation to break away from a priori commitments to specific linguistic units or 

representations (i.e., units for phonemes and words), and instead proposed that units may 
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be an emergent consequence of learning. To test the Less is More Hypothesis, Elman 

(1993) trained an SRN on a corpora of English sentences. The context units of the model 

represented working memory, and the size of these units was varied in order to simulate 

the modulation of working memory capacity throughout development. Elman (1993) 

found that the network could successfully learn the dependencies within the corpora when 

a gradual increase in working memory was instantiated in the model, which mirrored 

developmental increases in working memory. However, when the working memory 

parameter was initially set at a full capacity, the model failed to learn. This finding was 

important on two accounts. First, it offered a plausible explanation as to why there are 

developmental constraints on language acquisition. Second, this model provided a role for 

working memory within language acquisition.  

1.4.3 Memory-based accounts of statistical language learning 

One of the most important contributions from Elman’s (1993) model was the 

inclusion of the role of memory in segmentation, and the role for memory in 

segmentation was clearly acknowledged in later chunking models. Chunking models 

account for segmentation by grouping speech segments or syllables together into 

manageable units. One illustrative example of a chunking model adapted for speech 

segmentation was the PARSER model (Perruchet & Vinter, 1998), which was used to test 

the behavioural findings reported by Saffran et al. (1996). This model, and later chunking 

models (e.g., Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Giroux & Rey, 2009; 

Orbán, Fiser, Aslin, & Lengyel, 2008), relied on three interrelated memory processes for 

word segmentation: Activation, decay, and interference. When first exposed to a string of 

syllables, the model randomly groups them into chunks. However, as the model proceeds 

through the input stream, the activation of chunks stored within memory decrease over 
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time, comprising the decay function. This gradual decay of chunks stored in memory 

continues, unless the chunks are re-encountered. In this way, groups that are likely to co-

occur (e.g., syllables that co-occur within a word) are likely to be chunked and stored as a 

memory trace due to re-activation. Groups that are less likely to occur (e.g., syllables that 

span a word boundary) are less likely to be chunked and are thus subject to decay. 

Similarly, there may be interference for the chunks stored in memory when conflicting 

segmentations are made. Speech segmentation, then, consists of synthesizing a set of 

elements (e.g., syllables) into larger units (e.g., words). For instance, in learning the 

phonological form of the word “computer”, learners would differ in their response to the 

subcomponents of the unit, such as “comp”, “u”, or “ter”, as they become more familiar 

with the overall unit. As learners become more familiar with (or learn) the overall unit, 

the subcomponents embedded within that unit become less plausible as discrete units. 

Thus, “comp”, “u”, and “ter” become less likely as candidate words, as “computer” 

becomes more likely.  

The iMINERVA model (Thiessen & Pavlik, 2013) was a recent update of these 

earlier chunking models, and continued to invoke memory processes in statistical 

learning. In this memory-based approach, a probe to memory activates prior exemplars 

based on a function of their similarly to one another: More similar exemplars are 

activated more strongly than less similar exemplars. If no similar prior exemplar exists, 

the probe is integrated into memory as a new exemplar. Features that are consistent across 

exemplars become strengthened over accumulated exposure, while features that are 

inconsistent are weakened. Thus, the model eventually comes to represent a set of 

exemplars that are prototypical in nature, or, reflect the central tendency of the 

distributions to which it has been exposed. Models such as iMINERVA were an 
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important development, as they extended beyond statistical learning of word boundaries 

to incorporate other types of statistical learning (Thiessen, 2017). 

1.4.4 Summary 

Treating statistical learning as a memory-based process, as described by these 

computational approaches, has relevant theoretical implications. First, it provides a link 

between statistical learning and other forms of learning. For instance, factors that 

influence memory have also been shown to influence statistical learning, including spaced 

practice and consolidation (Gómez, Bootzin, & Nadel, 2006), and memory constraints in 

how stimuli are encoded, stored, and accessed may similarly constrain language learning 

(Christiansen & Chater, 2015). Returning to the idea that language learning capabilities 

decrease with development (e.g., Elman, 1993; Newport, 1990), the connection between 

statistical learning and memory may also provide insights into this developmental change. 

As discussed by Thiessen (2017), developmental changes in language learning may be 

characterized by changes in memory abilities, with earlier stages of learning being slow 

and flexible learning, to later stages where learning is fast but constrained. The models 

described in this section are by no means an exhaustive description of the computational 

approaches in statistical learning research. However, they all highlight a role for memory 

in statistical learning. In the next section, I will explore how memory and other domain-

general cognitive processes may be involved in statistical language learning, and how 

these are contrasted with domain-specific constraints on statistical learning.  

1.5 Domain-Generality and Domain-Specificity in Statistical Learning 

1.5.1 Terminology 

Before proceeding to a review of different domain-general processes that may be 

involved in statistical learning, it is important to comment on the different 



 

	 15 

conceptualizations of cognitive and linguistic architecture within “domain-specific” and 

“domain-general” systems. Domain-specificity often refers to Fodorian modules, that is, 

modules that operate on only certain kinds of input, and that are highly specialized 

(Fodor, 1983). For the purposes of nativist or modularist approaches, language is viewed 

as domain-specific, and a distinct and encapsulated cognitive system (e.g., Chomsky, 

1965; Levy & Kavé, 1999). Domain-general processes are quite distinct from these 

encapsulated views, and instead view mental activity as being distributed in nature (e.g., 

Rumelhart, McClelland, & The PDP Research Group, 1986). In terms of language 

acquisition accounts, domain-generality was thought to arise from a unitary learning 

mechanism operating across stimulus types (e.g., Skinner, 1957). However, this account 

seemed insufficient (see Saffran & Thiessen, 2007), and domain-generality in statistical 

learning has more recently been viewed as a result of domain-general constraints in 

cognition and perception. Specifically pertaining to statistical learning account, domain-

generality in has been ascribed to statistical learning, as similar learning has been shown 

across stimulus types (see Thiessen, 2011). However, domain-generality in statistical 

learning is not the result of a unitary learning mechanism (e.g., Endress & Mehler, 2009), 

and there are qualitative and quantitative differences in statistical learning outcomes 

across domains (Conway & Christiansen, 2005). What is more likely is that statistical 

learning is comprised of multiple distributed domain-general processes, including 

memory and attention (Arciuli, 2017), that are responsible for engaging in domain-

general computations across stimulus types (Frost, Armstrong, Siegelman, & 

Christiansen, 2015). Views on domain-specificity have also been updated from 

modularist accounts, with domain-specificity arising from domain-specific processing 

constraints across different input types. I will now review some of the evidence for 
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domain-specificity in statistical learning, and possible component cognitive processes that 

may be involved in statistical learning in a domain-general way. 

1.5.2 Domain specificity in perceptual processing 

Recent theoretical accounts (e.g., Frost et al., 2015) suggest that domain-

specificity in statistical learning arises from specific perceptual processing constraints that 

distinguish learning across domains. In this view, statistical learning is thought to be 

subject to constraints that are specific to the modality of input. For instance, auditory 

information unfolds over time, and is thus subject to the temporal characteristics of the 

input. Visual information, on the other hand, is not sensitive to the same temporal 

constraints, as visual information is processed (more or less) instantaneously. Evidence 

for these domain-specific constraints in statistical learning comes from reports comparing 

statistical learning across domains that consistently reveal domain-specificity. For 

instance, rate of presentation has different effects on statistical learning of audio versus 

visual material (Conway & Christiansen, 2009). Additionally, performance across 

auditory and visual statistical learning tasks has been shown to be uncorrelated 

(Siegelman, Bogaerts & Frost, 2017). Further evidence for domain-specificity in 

statistical learning was clearly demonstrated in Conway and Christiansen (2005). In this 

study, statistical learning across auditory, visual, and tactile sequences was compared. 

The researchers found quantitative differences in learning across domains, with better 

overall memory for auditory sequences, and qualitative differences in the memory for 

learned sequences across domains. Conway and Christiansen thus demonstrated that 

statistical learning is constrained by the modality of input.  

The domain-specific constraints proposed by Frost et al. (2015) are also supported 

by the neurobiological distinctions in statistical learning across domains. For example, 
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auditory statistical learning results in increased activation in primary auditory processing 

regions of the cortex (e.g., Cunillera et al., 2009), while visual statistical learning results 

in greater activation in primary visual areas (e.g., Turk-Browne, Scholl, Chun, & 

Johnson, 2009). These findings of domain-specific cortical activation further clarify 

statistical learning operates in a domain-specific way. However, there are other domain-

general cognitive constraints on statistical learning, which I will now explore. 

1.5.3 Attention 

Although it was originally proposed that statistical learning can operate in the 

absence of attention (Saffran et al., 1997), subsequent research has provided contrasting 

evidence to this claim. In an investigation of attentional interference on statistical 

learning, Toro, Sinnett, and Soto-Faraco(2005) had participants complete a word 

segmentation task while concurrently engaged in an attention-demanding task that was 

verbal or nonverbal in nature. The attentional interference task was either auditory 

(noises) or visual (pictures), or involved attending to pitch changes in the speech stream 

itself. They found that across all secondary task conditions, diverted attention led to an 

impairment in statistical word segmentation, leading to the conclusion that statistical 

learning is reliant on attentional resources. Other work has also shown that when attention 

is divided (Fernandes, Kolinsky, & Ventura, 2010) or directed to an irrelevant stream 

(Emberson, Conway, & Christiansen, 2011), statistical learning is disrupted. Attentional 

interference effects have also been found on visual statistical learning tasks (Turk-

Browne, Junge, & Scholl, 2005). It may also be that when attention is enhanced, 

statistical language learning performance improves. To investigate this, Thiessen, Hill 

and Saffran (2005) examined infant-directed speech facilitated word segmentation in 7-

month-old infants. Prior research suggests that infant-directed speech holds infants’ 
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attention better than adult-directed speech (e.g., Werker, Pegg, & McLeod, 1994). 

Thiessen et al. (2005) found that compared to infants who heard adult-directed speech, 

infants who heard infant-directed speech were more accurate at identifying words from an 

artificial language following language exposure, and concluded that the infant-directed 

speech promoted attention to the statistical regularities in the language. Thus, even though 

statistical learning occurs implicitly (e.g., Reber, 1967), some degree of attention is may 

support learning. 

1.5.4 Working memory 

Some accounts view working memory as a domain-specific system, with separate 

stores for visuospatial and verbal information, mediated by a domain-general central 

executive (e.g., Baddeley & Hitch, 1974) and episodic buffer (Baddeley, 2000), while 

other models view working memory as a domain-general system (Daneman & Carpenter, 

1980; 1983; Just & Carpenter, 1992 also see Cowan, 1999; 2001). Recently, it has been 

suggested that domain-general processes within working memory are involved in 

statistical learning. Arciuli and Simpson (2011) speculated that for a task like statistical 

learning, where implicit computations are made between sequentially delivered input, it is 

likely that some form of working memory is involved. This view was later echoed by 

Janacsek and Nemeth (2015), who also speculated that some form of short-term storage is 

necessary for extracting statistical structure. Similar to the findings of attentional 

interference in statistical learning, recent research has shown that working memory 

interference also disrupts statistical learning. Speech segmentation has been shown to be 

disrupted via an articulatory suppression task (Lopez-Barroso, de Deigo-Balaguer, 

Cunillera, Camara, Münte, & Rodríguez-Fornells, 2011), showing that phonological 

rehearsal within working memory may be important for speech segmentation. Subsequent 
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research has shown that statistical word segmentation is improved with a slower 

compared to a faster speech rate, which is thought to facilitate maintenance within verbal 

working memory (Palmer & Mattys, 2016, Experiment 1 and 2). Statistical learning was 

also shown to be disrupted when participants were engaged in a concurrent verbal or 

visual working memory task. Additionally, the level of working memory disruption was 

largest when the artificial language was presented at a slow rate of articulation, or when 

the contributions from working memory were thought to be greatest (Palmer & Mattys, 

2016, Experiment 3). The interference effects from both verbal and visual secondary tasks 

led Palmer and Mattys (2016) to conclude that statistical learning is supported by domain-

general processes within working memory. One of the goals of this thesis is to examine 

the effects of domain-specific and domain-general working memory interference in a 

statistical word segmentation task (Chapter 2).  

1.5.5 Executive functions 

Although there is little research on the subject, some have speculated that 

executive functions may also be involved in statistical or implicit learning. Executive 

functions are domain-general processes, and researchers have identified three related but 

separable components of executive functions, including inhibitory control, shifting, and 

updating or attentional monitoring (Miyake, Friedman, Emerson, Witzki, Howerter, & 

Wager, 2000). Kapa and Colombo (2014) examined the relationship between executive 

functions and artificial grammar learning in adults and preschoolers, and found that the 

adults’ artificial grammar learning was predicted by their inhibitory control abilities 

(Study 1), and that children’s performance was predicted by their attentional monitoring 

and shifting abilities (Study 2). Importantly, executive functions uniquely predicted 

performance on the artificial grammar learning tasks after controlling for vocabulary and 
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working memory abilities. This finding is consistent with other implicit learning research 

showing a positive association between executive functions and performance on 

procedural learning tasks (e.g., Beaunieux et al., 2006). Converging evidence comes from 

neuroimaging research demonstrating the involvement in statistical learning of the 

prefrontal cortex (Robertson, Tormos, Maeda, & Pascual-Leone, 2001), an area 

considered critical to executive functions (see Kane & Engle, 2002). However, further 

examination of the involvement of executive functions in statistical language learning are 

necessary before any strong conclusions can be made. 

1.5.6 Summary 

Taken together, it appears that statistical learning involves multiple processes that 

are domain-general in nature, including attention, working memory, executive functions, 

and general memory processes. The notion that statistical learning is comprised of 

multiple component processes is consistent with a recent account from Arciuli (2017). In 

her account, the components involved in statistical learning relate to the encoding, 

integration, and abstraction processes necessary for segmentation (e.g., Thiessen & 

Pavlik, 2013), and may include attention, processing speed, and working memory. 

Individuals vary in terms of these underlying components, and statistical learning across 

different domains may vary as a function of how a specific statistical learning task draws 

on these underlying components. Thus, if statistical learning is viewed as a 

multicomponent ability, restrictions or impairments in any one of these processes may 

constrain statistical learning. More work is needed to examine how variations in domain-

general cognitive processes are involved in statistical learning. One of the goals of this 

thesis is to examine this in terms of domain-general working memory restrictions in 

statistical word segmentation (Chapter 2). Likewise, I also examine how individual 
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variability in language, working memory, and other cognitive abilities is related to 

statistical learning on verbal and visual segmentation tasks (Chapter 3). 

1.6 Neuroimaging Support for Statistical Learning 

Our understanding of the processes involved in statistical learning can be 

informed by examining its neural bases. There are a few recent functional magnetic 

resonance imaging (fMRI) studies that have examined the neural bases of auditory 

statistical learning. Two main regions that have been identified are the superior temporal 

gyrus (STG), and inferior frontal gyrus (IFG). The STG is involved in auditory perception 

and speech processing (Hickock & Poeppel, 2004), and has been shown to have increased 

activation for structured auditory sequences relative to random auditory sequences 

(McNealy, Mazziotta, & Dapretto, 2006), and has been implicated in the segmentation of 

words from fluent speech (e.g., Cunillera et al., 2009). The IFG seems to track the 

expression of auditory statistical learning in behaviour (Karuza, Newport, Aslin, Starling, 

Tivarus, & Bavelier, 2013). In a natural language learning experiment, Plante, Patterson, 

Dailey, Kyle, and Fridriksson (2014) examined functional changes in neural activation 

with accumulated language exposure. They found that when exposed to structured input, 

adults’ brain activation reflected increased activation with a widely distributed language 

network including the superior gyrus, the temporo-parietal-occipital junction and frontal 

regions, and that activation levels within this network were related to offline behavioural 

measures of word segmentation. Overall, structured auditory input leads to reliable and 

measureable neural responses reflective of language processing. 

In addition to the relevant evidence of cortical involvement in auditory statistical 

learning, the distinction between domain-specific and domain-general constraints on 

statistical learning is also well-supported by neuroimaging research. Statistical learning 
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invokes stimulus-specific cortical activation, with activation in cortical regions being in 

accordance with the mode of learning. As mentioned, for auditory statistical learning, 

activation can be seen in the STG and IFG (e.g., Cunillera et al., 2009; Hickok, 2012; 

Karuza et al., 2013; Overath et al., 2007), while for visual statistical learning, activation is 

seen primarily in visual areas including the lateral occipital cortex (e.g., Turk-Browne et 

al., 2009). The domain-general computations involved in statistical learning may be 

mediated by memory systems within the medial temporal lobe, specifically, the 

hippocampus. Evidence for domain-general involvement of the hippocampus in statistical 

learning comes from a case study of a patient with bilateral hippocampus loss who 

exhibited deficits in statistical learning across a range of auditory and visual tasks 

(Schapiro et al., 2014). Given the limitations of a single-case design, however, this 

possibility would need to be examined further. The hippocampus also has a unique role in 

statistical learning in that different sub-regions of the hippocampus seem to have distinct 

roles in extracting distributional regularities. These sub-regions include the dentate gyrus 

and CA3, which are responsible for encoding of specific exemplars and pattern 

extraction, respectively (Schapiro et al., 2012). The complementary involvement of these 

hippocampal sub-regions in statistical learning is consistent with memory-based accounts, 

which proposed distinctions between the extraction and integration processes involved in 

statistical learning (e.g., Thiessen & Pavlik, 2013).  

Other relevant neuroimaging support comes from studies using 

electroencephalography (EEG) to examine event-related potentials (ERPs) in response to 

artificial language stimuli. Different studies have proposed several ERP components that 

may reflect word segmentation, including the N100 (Sanders, Newport, & Neville, 2002), 

the P200 (Cunillera, Toro, & Sebastián-Gallés 2006; De Diego-Balaguer, Toro, 
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Rodríguez-Fornells, & Bachoud-Lévi, 2007), P300 (Batterink, Reber, Neville, & Paller, 

2015), the N400 (de Diego-Balaguer et al., 2007; Cunillera, Toro, & Rodríguez-Fornells, 

2006; Cunillera et al., 2009, Sanders et al., 2002), and the LPC (Batterink et al., 2015). In 

the first study to examine the ERP components related to word segmentation, Sanders and 

colleagues (2002) examined the ERP responses to nonsense words in a statistical word 

segmentation task. Following the artificial language exposure, participants showed an 

enhanced N100 and N400 in response to the nonsense words. The N400 has commonly 

been associated with processing meaningful words (e.g., Kutas & Federmier, 2011), 

which lead Sanders et al., (2002) to suggest that the N400 response following language 

exposure was reflective of proto-lexical trace formation of the novel words. Subsequent 

research from Abla, Katahira, and Okanoya (2006) and Cunillera et al. (2009) examined 

the dynamic nature ERP responses during auditory statistical learning tasks, and found 

that the amplitude of the N400 response increased with accumulated language exposure. 

In examining how statistical regularities modulated ERP responses to trained words, 

Batterink et al. (2015) measured the amplitude of the P300 in response to word onset, 

medial, or final syllables following exposure to an artificial language. They found that the 

P300 amplitude linearly increased as a function of syllable position, suggesting that 

neural responses to trained words differ as a function of learned statistical regularities. 

What has not been explored is how this modulation in ERP responses to predictable and 

unpredictable syllables changes as a function of exposure to structured input, which will 

be examined more fully in this thesis (Chapter 3).  
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1.7 Relevant Issues in Statistical Learning Research 

1.7.1 Modelling language acquisition in infancy with laboratory experiments 

Critical periods are biologically determined and fixed time periods in which an 

organism’s neural functioning (and related behaviour) is open to external input and 

modulation. In the original conception, a critical period was seen as time-invariant, 

although more recent formulations suggest that some biological developments may be 

better characterized by a “sensitive period” (e.g., Bateson, 1979; Michel & Moore, 1995). 

As mentioned previously, the idea of a critical period for language acquisition was first 

proposed by Lenneberg (1967), who suggested that the process of language acquisition is 

deeply constrained by biology. Lenneberg’s (1967) proposal was seen to be consistent 

with Chomsky’s (1965) argument for a specialized, language-acquisition device. These 

ideas converged on their biological restrictions for when language can be acquired. 

Although theories of language acquisition have largely moved away from strict nativist 

theories, there nevertheless seem to be some aspects of language for which humans seem 

to be biologically endowed (see Werker & Tees, 2005 for a review), and age of 

acquisition maintains a strong predictive relationship with later language proficiency (see 

Newport, Bavelier, & Neville, 2001). Given that there are some aspects of language that 

seem to be better acquired earlier in life, it raises the question as to why much of the 

research on statistical learning has been conducted on adults, and whether adults are an 

appropriate model in which to examine this language acquisition mechanism.  

Early findings supported no difference between children and adults on a statistical 

word segmentation task (Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). However, 

one caveat distinguishing statistical learning paradigms in infants and adults is that infants 

are generally trained on simpler artificial languages than adults, with vocabularies of four 
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(e.g., Saffran, Aslin & Newport, 1996) compared to six words (e.g., Saffran, Newport, & 

Aslin, 1996). Additionally, although earlier reports suggested age invariance, later reports 

(Arciuli & Simpson, 2011) showed that statistical learning improves with age. Although it 

can be noted that Arciuli and Simpson (2011) used a visual statistical learning task, and 

this finding cannot be used as direct evidence against language acquisition accounts, it 

nevertheless raises the possibility that statistical learning in general improves with age. 

Another possibility is that there is a bidirectional relationship between statistical learning 

and language acquisition, such that improvements in statistical learning abilities with age 

boost language learning, and language that is already acquired shapes statistical learning 

(e.g., Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018). However, statistical or 

implicit learning is underpinned by phylogenetically older brain structures that mature 

early and remain invariant throughout much of development (Reber, 1992). In line with 

this, it may be that at least some aspects of statistical learning are intact from infancy to 

adulthood. 

Although examining the developmental trajectory of statistical learning is not 

examined in this thesis, it is nevertheless a stipulation in the research that is important to 

address. It seems that there are some statistical learning advantages for older children 

(e.g., Arciuli & Simpson, 2011), and this may extend into adulthood. Thus, the findings 

from adult statistical learning paradigms may constrict or confound our interpretations of 

language acquisition in infancy. However, statistical language learning may remain 

unchanged through development (e.g., Saffran et al., 1997). Further still, there is a 

plethora of research examining statistical learning in infancy (see Gómez & Gerken, 

2000; Romberg & Saffran, 2010 for a review) that has already been informative for 

theoretical accounts of statistical learning. It is therefore likely that investigating 
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statistical learning outside of the critical period is, at minimum, informative for existing 

theories of language acquisition based on statistical learning research in infants. 

1.7.2 Measurement approaches 

Typically, in adult statistical language learning paradigms, participants are 

exposed to a structured, unsegmented speech stream for 21 minutes, and complete a two-

alternative forced-choice task following language exposure. This task involves making a 

forced-choice response between two exemplars, which is presumed to test participants’ 

knowledge of the distributional structure of the language. It has recently been 

demonstrated that this test paradigm relies on explicit knowledge of the artificial 

language, and it in fact underestimates implicit learning in statistical learning paradigms 

(Batterink, Reber, Neville & Paller, 2015). Siegelman, Bogaerts, and Frost (2016) also 

addressed a number of psychometric limitations in the two-alternative forced-choice test, 

including there being a limited number of items included at test, most of the sample 

performing at-chance, and all items being at the same level of difficulty. Earlier work (see 

Romberg & Saffran, 2013) suggested that implicit online measures may more accurately 

measure the process of statistical learning, and proposed a move away from measuring 

learning via explicit, post-training outcome measures. Some recent methodologies have 

been proposed, including using reaction time measures in response to trained language 

stimuli (e.g., Batterink et al., 2015; Batterink, Reber, & Paller, 2015), measuring event-

related potentials (ERPs) during a statistical learning task (e.g., Abla et al., 2006; 

Cunillera et al., 2006; Cunillera et al., 2009), and measuring neural entrainment during a 

word segmentation task (Batterink & Paller, 2017). The development of these new 

measurement approaches is greatly informative for further uncovering the processes 

involved in statistical learning. 
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1.8 Objectives and Overview 

The central objective of this thesis is to examine the process of statistical language 

learning. While most prior studies have primarily focused on the product or outcome of 

statistical learning, the studies in this thesis will examine both the cognitive and neural 

processes involved in statistical word segmentation, and how statistical learning unfolds 

in real-time. By combining behavioural, clinical, and neuroimaging approaches, I 

consider both the cognitive processes speculated to be involved in statistical learning, and 

measurement approaches that best capture this learning process.  

Chapter 2 examines the effects of both domain-specific and domain-general 

working memory interference on a statistical word segmentation task. Prior studies have 

shown that dual-task paradigms can impair statistical learning due to attentional 

interference (e.g., Toro et al., 2005), or domain-general working memory interference 

(Palmer & Mattys, 2016). To expand on this prior research, Chapter 2 investigates how 

visual and verbal working memory tasks interfered with performance on a statistical word 

segmentation. This paradigm allowed me to examine both domain-general and domain-

specific working memory interference effects on a statistical word segmentation task.  

Chapter 3 extends this investigation on the domain-general and domain-specific 

constraints on statistical learning. In this study, children with and without a marked 

language impairment complete both a statistical language learning and visual statistical 

learning task, as well as a series of linguistic and domain-general cognitive measures. 

This experiment expands on the currently scarce area of research examining statistical 

word segmentation in those with a developmental language impairment. Moreover, this 

study is novel in that it compared performance across a verbal and visual statistical 

learning task in a clinically impaired group. 
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A perennial issue in the statistical learning literature is the apparent disconnect 

from using explicit tasks, such as a word-recognition task, in order to measure implicit 

learning outcomes. I also speculate that the findings exhibited in Chapters 2 and 3 may be 

more nuanced than the outcome measures allowed. In order to overcome this limitation, 

Chapter 4 investigates the application of an implicit, indirect measure of statistical 

learning. In this study, participants’ event-related potentials (ERPs) were measured online 

during a statistical word segmentation task. Specifically, I examined responses to 

predictable syllables during language exposure. In this novel approach, I examined how 

neural responses were modulated in an online fashion as a function of statistical learning.  

The findings presented in this thesis will inform theories regarding the domain-

general and domain-specific constraints on statistical language learning, and advance the 

measurement approaches applied to statistical learning research. 
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Chapter 2: Domain-Specific and Domain-General Constraints 
on Statistical Language Learning 

 
2.1 Introduction 

Statistical learning refers to the process of uncovering the regularities within the 

environment, and has been shown to play a role in learning across a variety of stimulus 

types. Evidence of statistical learning has been shown in the learning of linguistic 

(Saffran, Aslin, & Newport, 1996) and non-linguistic (Gebhart, Newport, & Aslin, 2009) 

auditory sequences, as well as shape (Fiser & Aslin, 2001), spatial location (Mayr, 1996), 

and tactile sequences (Conway & Christiansen, 2005). Given that statistical learning 

seems to operate across a diverse array of stimulus types, it has been proposed as a 

domain-general explanation for human learning (Evans, Saffran, & Robe-Torres 2009; 

Fiser & Aslin, 2001; Kirkham, Slemmer, & Johnson, 2002; Reber, 1967). This domain-

general assumption has been particularly attractive for theories of language acquisition, as 

it provides evidence against innate, language-specific learning mechanisms (e.g., 

Chomsky, 1965; Gleitman & Wanner, 1982; Pinker, 1984). Indeed, statistical learning has 

widely been applied to the study of language learning, including processes related to 

phoneme discrimination (Maye, Werker, & West, 2002), word segmentation (Saffran, 

Aslin, and Newport, 1996; Aslin, Saffran & Newport, 1998), word-object pairing (Graf 

Estes, Evans, Alibali, & Saffran, 2007), and grammar learning (e.g., Dienes, Altmann, 

Kwan, & Goode, 1995; Gómez, 2002; Gómez & Gerken, 1999). Although there is 

considerable evidence of statistical learning across a variety of input types, this does not 

necessarily imply that statistical learning is as unitary mechanism that operates across 

domains. Critically, the empirical findings examining whether statistical learning is 

mediated by domain- or modality-specific processes (Conway & Christiansen 2005, 
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2006; Johansson, 2009), or by domain-general processes such as working-memory 

(Palmer & Mattys, 2016) or attention (Toro, Sinnett, & Soto-Faraco, 2005) are 

contradictory. To help reconcile these findings, the present study investigated the domain-

specific and domain-general constraints on statistical learning by examining the 

interference effects of concurrent domain- or language-specific (verbal) or non-language-

specific or domain-general (visuospatial) tasks on statistical word segmentation.  

In an initial demonstration of statistical language learning, Saffran, Aslin, and 

Newport (1996) exposed infants to a structured, unsegmented stream of syllables for two 

minutes. The syllables were concatenated into four nonsense words. Although there were 

no acoustic or prosodic cues to indicate word boundaries, the syllables within a word 

always appeared within the same sequence. As a result, the transitional probabilities of 

adjacent syllables within words (1.0) was higher than the transitional probabilities 

between words (0.33). Following language exposure, infants showed that they were 

sensitive to these statistics. In a subsequent study, Aslin, Saffran, and Newport (1998) 

demonstrated that infants were not only sensitive to not only the simple co-occurrence of 

frequent pairs, but that they were uniquely sensitive to the transitional or conditional 

probabilities between syllables. Taken together, these and subsequent findings have 

provided a demonstration of a mechanism by which language learners can segment words 

from fluent speech; a fundamental process in language-learning (see Romberg and 

Saffran, 2010).  

Considerable research attention has been focused on the mechanisms and 

constraints involved in statistical learning since Saffran, Aslin, and Newport’s (1996) 

seminal work. Much of this research has begun to examine whether the process of 

statistical language learning is supported by a language learning subsystem, shaped by 
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language-specific constraints, or by domain-general learning constraints that operates 

across a variety of input types. Domain-general constraints on statistical language 

learning would arise from general characteristics of the human cognitive system that 

shape learning generally, such as working memory (e.g., Newport, 1990), attention (e.g., 

Thiessen, Hill, & Saffran, 2005), and perception (e.g., Creel, Newport, & Aslin, 2004). 

Evidence for domain-general constraints on statistical learning has been mounting, 

particularly from studies examining interference effects on statistical learning across 

domains. In a recent examination, Palmer and Mattys (2016) had participants complete a 

word segmentation task while concurrently engaged in a verbal or visual n-back task 

(Experiment 3). They found that both the verbal and visual forms of the secondary task 

interfered with word segmentation, and inferred that domain-general working memory 

processes support statistical language learning. Other cross-domain interference effects on 

statistical learning have demonstrated reduced learning with concurrent auditory attention 

(Toro et al., 2005), picture-matching (Toro et al., 2005; Fernandes, Kolinsky & Ventura, 

2010), and a pitch change detection tasks (Toro et al., 2005). Taken together, these 

findings provide convincing evidence of constraints on statistical learning arising from 

general limitations in the human cognitive architecture.  

Computational models of statistical learning have attempted to account for the 

disruption cross-domain tasks have on statistical learning from a capacity-limited 

framework. In their model of sequential learning, Keele, Ivry, Mayr, Hazeltine, and 

Heuer, (2003) proposed a multidimensional learning system that is responsible for the 

learning of complex sequences, such as those computations necessary for word 

segmentation. Learning through this system occurs automatically, but only attended 

signals are learned. When processing resources are otherwise engaged, the learning 
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outcomes of the multidimensional system are underspecified. Thus, domain-general 

interference is possible under this model when there are insufficient processing resources 

to adequately attend to the to-be-learned stimuli. Similarly, memory based models of 

statistical learning, such as iMINERVA (Thiessen & Pavlik, 2013), PARSER (Perruchet 

& Vinter, 1998), TRACX (French, Addyman & Mareschal, 2011), and TRACX2 

(Mareschal & French, 2017) describe the mechanisms of statistical learning as being 

similar to the mechanisms studied in traditional memory paradigms, including how 

stimuli are encoded, stored, and accessed in memory (see Thiessen, 2017). It follows, 

then, that changes in the precision with which newly extracted information is encoded in 

memory, particularly through memory interference or decay, changes the nature of the 

representation itself. As such, modelling efforts have provided a mechanistic stipulation 

by which domain-general interference in statistical language learning may occur. 

Another line of evidence favouring a domain-general view of statistical learning 

comes from similar findings of learning transitional probabilities across a wide range of 

stimuli, from speech (Saffran, Aslin, & Newport, 1996), to non-linguistic auditory 

(Teinonen et al., 2009), visual (Fiser & Aslin, 2001; Turk-Browne, Jungé, & Scholl, 

2005), and tactile stimuli (Conway & Christiansen, 2005). However, a reconsideration of 

this supposition is warranted. First, the findings of similar statistical learning outcomes 

observed across different stimulus types does not necessarily implicate the involvement 

of a singular underlying cognitive mechanism. Conway and Christiansen (2005) sought to 

compare statistical learning across auditory, visual, and tactile modalities in a single study 

while maintaining comparable experimental procedures across the three paradigms to 

ensure valid comparisons. Their findings revealed qualitative and quantitative differences 

in learning across the three modalities, suggesting there are modality-specific constraints 
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on statistical learning. Specifically, auditory statistical learning had a quantitative 

advantage over visual and tactile statistical learning. In terms of qualitative differences, 

compared to learning in visual or tactile domains, auditory statistical learning afforded 

better learning of sequence-final elements. Related work from Seitz and colleagues 

(2007) examining multi-modal statistical learning found that when participants were 

presented with a multimodal audiovisual sequence, they could detect distinct sequences 

from the audio and visual streams. This suggests that the resultant knowledge statistical 

learning is bound to the modality of exposure, which is consistent with a modality-

specific view of statistical learning, and does not result in an amodal representation as 

would be predicted by a domain-general account (e.g., Altmann, Diens, & Goode, 1995; 

Peña, Bonatti, Nespor, & Mehler, 2002; Shanks, Johnstone, & Staggs, 1997). Similarly, 

the knowledge resulting from artificial grammar learning paradigms appears to be 

stimulus-specific (Conway & Christiansen, 2006; Johansson, 2009). Subsequent 

neuroimaging evidence has demonstrated that implicit sequence learning seems to 

activate brain areas dependent on the specific demands of the task (Conway & Pisoni, 

2008). This, in turn, raises the possibility that modality-specific neural networks do play a 

role in statistical learning.  

Consistent with these modality specific constraints on statistical learning, previous 

research has provided evidence for domain-specific interference effects in statistical 

learning (Noonan, 2014). Although previous studies using interference paradigms have 

demonstrated domain-general interference effects (e.g., Fernandes et al., 2010; Palmer & 

Mattys, 2016; Toro et al., 2005), it is possible the secondary tasks impose high cognitive 

demands, resulting in overarching effects on statistical learning regardless of secondary 

task domain. Furthermore, the cognitive demand across secondary task domains varied in 
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previous studies, making conclusions about the underlying effects untenable. To reconcile 

this, Noonan (2014) investigated the interference of a secondary task on statistical 

learning wherein cognitive load across secondary task domains was consistently varied. 

Adult participants were exposed to an artificial language similar to that of Saffran, 

Newport and Aslin (1996) for 28 minutes while they concurrently were engaged in a 

verbal or visual n-back task that was posed either a low (0-back) or high (2-back) 

demand. It was found that individuals completing a concurrent verbal task, regardless of 

task load, were impaired on the statistical learning task. Those completing a concurrent 

visuospatial 0- or 2-back task, however, performed similarly with controls. This provided 

clear evidence of domain-specific, but not domain-general interference impacted 

statistical learning, and raised the possibility that statistical learning is supported by 

domain-specific mechanisms, contrary to previous studies examining interference effects. 

However, the language exposure in Noonan (2014) was longer than in previous studies of 

statistical word segmentation, which may have allowed for the learning to be 

compensated despite secondary task interference. A reduction of the language exposure 

time, and thus less redundancy in the to-be-learned material, may bring forth a different 

pattern of interference effects. 

In one of the first attempts to reconcile findings related to domain-general and 

modality-specific constraints on statistical learning, Frost, Armstrong, Siegelman, and 

Christiansen (2015) suggested that statistical learning is mediated by domain-general 

neurobiological mechanisms and computational principles, operating across modalities, 

whilst constrained by the modality of the incoming stimulus. For instance, the encoding 

of auditory information such as speech unfolds over time, and thus the binding of 

sequential elements in time is critical in the encoding of incoming auditory information. 
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Conversely, the visual modality is not bound by the same constraint. These differences 

are reflected in how the auditory and visual cortices encode to-be-learned material (Chen 

& Vrooman, 2013; Recanzone, 2009; Salminen, Aho, & Sams, 2013). The proposal that 

learning is shaped by the modality in which it occurs but is also reliant on an amodal 

learning mechanism provides possible explanations for both domain-general and 

modality- or domain-specific interference effects in statistical learning. Specifically, 

modality-specific interference effects could reflect processing limitations within that 

domain. Conversely, observed domain-general interference effects could be explained by 

interference within shared neural networks supporting statistical learning. These may be 

housed within the medial temporal lobe, specifically, the hippocampus. This region has 

been shown to be active in a variety of statistical learning tasks across different domains 

(Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014). Grounded in 

neuroscience, this framework unifies findings of domain-general and domain- and 

modality-specific constraints on statistical learning, and provides an adequate description 

to advance the understanding of the underlying mechanisms that support and constrain 

statistical learning.  

2.1.1 Present study 

The involvement of cognitive constraints on statistical learning were examined 

using an interference paradigm adopted from studies of working memory. Participants 

were presented with an auditory statistical language learning task while they completed a 

secondary n-back task that was verbal or visuospatial, and imposed either a low- (0-back) 

or high (2-back) cognitive load. The nature of the secondary n-back tasks used in the 

present study motivated the hypotheses involving the possible domain-general and 

domain-specific constraints on statistical language learning. The n-back task, where n > 1, 
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has been described as a “gold standard” working memory task in functional neuroimaging 

studies (see Kane & Engle, 2002). If statistical learning is impaired for participants 

engaged in a secondary 2-back task across task domains, but not the 0-back tasks, this 

would point to the involvement of working memory resources in statistical language 

learning. Such a finding would provide support for descriptions of statistical learning 

instantiated upon general human cognitive architecture with the involvement of memory-

related processes (e.g., French, Addyman, Mareschal, 2011; Keele et al., 2003; Marexchal 

& French, 2017; Newport, 1990; Palmer & Mattys, 2016; Thiessen & Pavlik, 2013; Toro 

et al., 2005; Perruchet & Vinter, 1998). 

An alternative hypothesis is related to domain-specific interference effects on 

statistical language learning: Impaired statistical learning performance for participants 

engaged in a secondary verbal task, but not a secondary visuospatial task, would indicate 

that statistical learning is reliant on domain-specific language processing resources. This 

finding would be consistent with previous research (Noonan, 2014) and would support 

accounts of statistical learning which suggest a reliance on domain- or modality-specific 

processing constraints (e.g., Conway and Christiansen, 2005, 2006; Johansson, 2009). 

One consideration when using a visually presented verbal task, as is the case in the 

present paradigm, is that modality-specific interference effects cannot be assumed. 

However, considerable evidence from the field of working memory has demonstrated that 

visual-verbal information is recoded and stored phonologically, resulting in interference 

with recall of auditorally presented verbal stimuli (Baddeley, 2012). Following from 

Oberauer and Kliegl’s (2006) model of capacity limits in working memory, this 

interference results from the overlap in the phonological features of the verbal stimuli, 

regardless of the modality of presentation. It would follow, then, that interference from 
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the visual-verbal (i.e., letter monitoring) task could interfere with statistical language 

learning if shared phonological resources are encoding both auditory and visual-verbal 

(written) information, a notion investigated in the present study. Thus, interference effects 

on statistical language learning from the verbal n-back tasks can be presumed to be 

related to domain-specific capacity limitations.  

2.2 Method 

2.2.1 Participants 

Participants in the present study consisted 104 adults (Mage = 18.89 years, SDage= 

0.67, Nmale = 41). Participants received course credit or $10.00 for study participation. All 

participants reported being monolingual English speakers and had no uncorrected vision 

or hearing difficulties. Ethics approval for all study procedures and materials was 

obtained by the University of Western Ontario Non-Medical Research Ethics Board, and 

written informed consent was obtained from all study participants. 

2.2.2 Procedure 

Testing took place in a single session within a quiet testing room. The task was 

administered individually via a laptop computer. The statistical learning task involved a 

listening phase followed immediately by a test phase. Participants completed the 7-minute 

listening phase while engaged in one of five concurrent secondary task conditions: (1) 

Control (no secondary task); (2) verbal, 0-back; (3) verbal, 2-back; (4) visuospatial, 0-

back; (5) visuospatial, 2-back. Participants were quasi-randomly assigned to one of the 

five conditions such that roughly equal numbers completed each condition with no 

participant factors determining group assignment.  
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2.2.2.1 Listening phase: Artificial language exposure 

Artificial language stimuli. The artificial language employed in the present study 

was based on the stimuli described by Saffran, Newport, and Aslin (1996). The language 

consisted of four consonants (p, t, b, d) and three vowels (a, i, u) which, when combined, 

rendered an inventory of 12 CV syllables. These syllables were then combined to create 

six trisyllabic “words” in an artificial language: patubi, tutibu, babupu, bupada, dutaba, 

pidadi. Some syllables from the inventory occurred more often within the language than 

others (e.g., bu occurs in three words, whereas ti occurs in one word). Approximating the 

transitional probabilities in English, transitional probabilities of syllables varied, and were 

higher within words (Range: 0.33 to 1.0) than across word boundaries (Range: 0.1 to 0.2) 

(note these ranges may be even closer in a real language).  

Recording the artificial language stimuli. Unlike Saffran, Newport, and Aslin’s 

(1996) synthesized stimuli, the artificial language in the present study was constructed 

from audio recordings of a female native-English speaker using a neutral vocal effort. 

Although much of the available evidence is based on findings from exposure to synthetic 

speech samples, more recent work of Saffran and colleagues (Graf, Estes, Evans, Alibali, 

& Saffran, 2007) and similar studies (Lew-Williams, Pelucchi, & Saffran, 2011; Pelucchi, 

Hay, & Saffran, 2009) have employed naturally produced speech and found similar 

effects. 

Recordings were made in a double walled IAC sound booth with a pedestal 

microphone (AKG C 4000B) located approximately 30cm from the speaker’s mouth and 

routed to a USBPre 2 pre-amplifier (Sound Devices) using SpectraPlus software (Pioneer 

Hill Software, 2008). Recordings were made of each of the 12 target syllables in the 

middle of a three-syllable sequence, within every co-articulation context required for the 
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language. For example, the syllable tu occurred in two words in the artificial language, 

tutibu and patubi. For the word tutibu in the continuous artificial language stream, the 

word-initial syllable tu could be preceded by the word-final syllables for the remaining 

five words, bi, pu, da, ba, or di, and followed only by ti. Thus, recordings of these six 

iterations were made. Alternatively, for the word patubi the word-medial syllable tu 

would be preceded only by the word-initial syllable pa and the word-final syllable bi. 

Thus, recordings of this one iteration were made. Eight repetitions of each sequence were 

recorded, and the token with the most neutral pitch contour and best sound quality was 

chosen and uploaded into Sound Forge Audio Studio (Sony Creative Software) editing 

software.  

Creating the artificial language. Middle syllables from the recorded tokens were 

extracted by identifying the final offset of vowel oscillation in the previous syllable to the 

offset of vowel oscillation in the target syllable. The continuous artificial language stream 

was created by concatenating the medial syllables to create random sequences of the 

words. In this way, all syllables were spliced together in the same way throughout the 

entire language regardless of whether the syllables were within a word or across word 

boundaries. The language maintained a consistent speech rate (average 3.1 syllables/s) 

using a time stretch and was normalized to a pitch of F0 = 196 Hz using Sound Forge 

Audio Studio (Sony Creative Software). There were no pauses between words. As such, 

there were no acoustic cues to word boundaries. The artificial language was comprised of 

120 tokens of each of the six words occurring in a random order, with the constraint that 

the same word never occurred twice in a row.  

Listening phase procedure. The listening phase involved exposure to 7 minutes 

of the artificial language administered via personal headphones. Following Saffran, 
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Newport, and Aslin (1996), participants were told they would hear a nonsense language. 

No information was provided about the length or the number of words within the 

language. Those in the control (no secondary task) condition were seated in front of a 

computer displaying stimuli from the secondary task, but were not instructed to attend to 

or perform memory operations on the stimuli. Those in one of the four secondary task 

conditions were instructed to complete the n-back task, and this was highlighted to them 

as the primary task. This deliberate use of vague instructions regarding the artificial 

language was done to minimize the chance of participants trying to explicitly learn the 

language during the experiment. 

2.2.2.2 Concurrent secondary tasks 

Secondary task stimuli. The n-back task employed in the present study involved 

presenting one of six alphabetic letters (P, G, T, K, W, C) in 72-point sans-sheriff black 

font on a white background. Letter case was randomized across trials to avoid reliance on 

visual recognition of the letter instead of a verbal label when required. The letter on a 

given trial appeared at one of 6 pseudorandom positions on the screen that were not easily 

coded verbally (i.e., “top right” or “center” positions were avoided). Letter name and 

position were counterbalanced across trials so that each letter and position occurred with 

equal probability. Each stimulus was presented for a duration of 500 milliseconds (ms), 

with an inter-stimulus interval of 2500ms.  

Secondary task procedure. Relevant instructions, 30 practice trials, and stimuli 

for the n-back tasks were administered via E-Prime 2.08 (Schneider, Eschman, & 

Zuccolotto, 2002). During the task, 140 trials were administered with matches in 30% of 

trials. The n-back task varied along two dimensions, task domain (verbal or visuospatial) 

and task load (0-back or 2-back), resulting in four n-back task conditions: (1) verbal, 0-
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back, (2) verbal, 2-back, (3) visuospatial, 0-back, (4) visuospatial, 2-back. A schematic of 

the task is presented in Figure 2.1. For the verbal task conditions, participants were 

required to monitor for matches across letter name, regardless of letter case. For the 

visuospatial task conditions, participants were required to monitor for matches across 

stimuli position on the screen. In order to minimize opportunities for verbal recoding in 

the visuospatial conditions, the term “letter” was not used in the instructions, and all 

training examples used a red square to demonstrate spatial location. The corresponding 

load manipulations for the verbal and visuospatial n-back tasks included 0-back and 2-

back tasks.  In the 0-back conditions, participants were instructed to press the space bar if 

the current stimulus matched the target stimulus presented at the beginning the 7-minute 

exposure block. In 2-back conditions, participants were instructed to press the space bar if 

a stimulus on each trial matched the stimulus occurring two trials previously.  

 

 

Figure 2.1 Schematic diagram of n-back task 
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2.2.2.3 Test phase 

Test phase stimuli. Six non-word foils were constructed from the same 12 CV 

syllables as the artificial language: pubati, tapudi, dupitu, tipabu, bidata, batipi. Foil 

words were created with the constraint that within word transitional probabilities would 

be zero based on the participants’ previous artificial language exposure. Syllables were 

drawn from the same recording inventory as the artificial language stimuli, with 

appropriate co-articulation contexts. Participants were tested on non-word foils rather 

than part-word foils, which consist of two syllables from a trained “word” from the 

artificial language, plus an incorrect syllable. Discrimination accuracy is generally higher 

for non-words than part-words (Saffran, Aslin, & Newport, 1996). As the aim of the 

present study was not to discover if statistical learning of language was present generally, 

but rather, whether it differed across experimental groups, the more sensitive measure 

was used.  

Test phase procedure. Following the listening phase, participants completed a 

two-alternative forced-choice (2AFC) task delivered by E-Prime 2.08 (Schneider et al., 

2002). For each test item, participants heard two tri-syllabic strings separated by 500ms 

of silence. One of these strings was a trained word from the artificial language, and the 

other a foil word. Subjects were instructed to indicate which word “sounds more like 

something you heard in the language”, and to select “A” or “L” on the keyboard to 

indicate the first or second stimulus, respectively. The instructions stayed on the screen 

for the duration of the test phase. Each trained word was paired exhaustively with foil 

word, comprising 36 total test pairs, and pairs were presented in a fixed random order. 
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2.3 Results 

2.3.1 Preliminary Analyses: n-back task performance 

 First, a preliminary analysis was conducted to ensure that the secondary n-back 

tasks imposed differing cognitive loads based on the recalling items 2 vs. 0 back, but not 

on task domain. Performance on the n-back was measured using a d’ score, which 

accounts for both correct hits and false alarms (see Macmillan & Creelman, 1991). Mean 

d’ scores for all n-back task groups are presented in Table 2.1. N-back performance data 

was missing from 4 participants in the verbal 0-back condition due to a computer error. 

Scores across secondary tasks were compared using a 2 (domain: verbal, visuospatial) by 

2 (load: 0-back, 2-back) analysis of variance (ANOVA). There was a significant main 

effect of task load, F (1, 98) = 65.84, p < .001, β = 1.00, such that those in a 2-back 

condition had significantly lower d’ scores on the n-back task than those in a 0-back 

condition. There was no significant main effect of task domain, F (1, 98) = 0.00, p = .994, 

ηp2 = .418 and no significant interaction between task load and domain, F (1, 94) = 0.36, 

p = .549, ηp2 = .004. These results confirmed that the 2-back conditions were more 

difficult than the 0-back conditions, given the lower d’ scores across the 2-back 

conditions, and that performance on the n-back task did not differ as a function of task 

domain. It is important to note that even though the same stimuli were used across all task 

conditions, participants were sensitive to their target manipulation regarding task domain. 

This interpretation applies specifically to those in 0-back conditions, who were more 

accurate on the n-back task overall. That is, participants in the visuospatial conditions 

responded accurately to stimulus position, and participants in the verbal conditions 

responded accurately to letter name. This indicates that the participants were engaged in 

the domain-relevant task, which was crucial for the interference manipulation. 
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Table 2.1 Average d’ scores on secondary n-back tasks across conditions. 

 Domain 
Load Verbal Visuospatial 
0-back 5.14 (2.66) 4.90 (1.55) 
2-back 1.64 (2.11) 1.89 (1.48) 

Note. Standard deviation in parentheses 

2.3.2 Two-alternative forced-choice (2AFC) test 

Table 2.2 shows the mean scores on the 2AFC task for all conditions. Performance 

on the 2AFC was compared across groups to determine whether engagement in the 

secondary tasks differentially impacted scores on the 2AFC test following language 

exposure. Because of the inclusion of the control (no-domain/no-load) condition in the 

analyses, the design was not fully factorial. Thus, a one-way analysis of variance 

(ANOVA) directly comparing across all task conditions was used. A significant effect of 

task condition on 2AFC scores was found, F (4, 126) = 3.791, p = .006, β = 0.881. Post-

hoc comparisons using a Bonferroni correction revealed that those engaged either in the 

visuospatial 2-back, t (47) = 2.884, p = .005, d = 0.809, and verbal 2-back, t (49) = 3.195, 

p = .002, d = 0.886, had significantly lower scores than controls on the 2AFC measure. 

No other comparisons were significant. 

Table 2.2 Average test scores for the 2-alternative forced choice task on word 
identification across secondary task conditions. 

Secondary Task n M SD 

Control (no task) 26 22.27 3.67 
Verbal 0-back 26 20.81 3.50 
Verbal 2-back 26 18.81*^ 4.13 
Visuospatial 0-back 23 21.26 3.53 
Visuospatial 2-back 25 19.12*^ 4.10 

Note. Scores are out of 36. * = group scores that were not statistically different from 
chance; ^ = group scores significantly lower than controls.  
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Next, single-sample t-tests were conducted to assess whether scores on the 2AFC 

task were significantly above chance across all conditions. Chance was defined as 18 

items correct on the 2AFC, out of a possible total of 36; that is, 50% correct. Not all 

groups performed significantly better than chance: Scores for those in the visuospatial 2-

back, t (24) = 1.37, p = .092, d = 0.273, and verbal 2-back tasks, t (25) = 1.00, p = .164, d 

= 0.196, did not differ from chance on the 2AFC measure, whereas the control task, t (25) 

= 5.93, p < .001, d = 1.163, visuospatial 0-back, t (22) = 4.43, p < .001, d = 0.924, and 

verbal 0-back, t (25) = 4.09, p < .001, d = 0.803, all performed above chance. A 

distribution of individual scores by secondary task group is presented in Figure 2.2.  

 

Figure 2.2  Scores on the two-alternative forced-choice task assessing word identification 
across secondary task groups. Horizontal dashed line represents chance responding (18 
out of 36 correct responses). 

Note. VSSP = visuospatial; VBL = verbal. 
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Taken together, these results clearly show that those completing a secondary 2-

back task, regardless of task domain, had lower word identification scores compared to 

those completing no secondary task. These results are corroborated with the analyses 

comparing group-level performance to chance, wherein those completing a secondary 

verbal or visuospatial 2-back task did not score above chance on the 2AFC measure. On 

the other hand, those completing a verbal or visuospatial 0-back task identified words at 

an above-chance level following language exposure, and performed equivalently with 

those completing no secondary task.  

2.4 Discussion 

Studies examining interference effects on statistical learning have demonstrated 

both domain-general and domain-specific interference effects. However, because there is 

a wide diversity in the interference tasks used in these studies, and because of this, it 

difficult to meaningfully compare the interference effects. Because of this, it has been 

difficult to assess the whether there are true domain-general or domain-specific effects, 

and thereby, clearly elucidate the underlying cognitive mechanisms that may support 

statistical language learning. In the present study, the interference effects between 

domain-specific (verbal) and domain-general (visuospatial) tasks on auditory statistical 

word segmentation were compared. Participants were exposed to a structured, 

unsegmented artificial language while concurrently engaged in one of four secondary n-

back tasks: The n-back task was either verbal (same-domain) or visuospatial (cross-

domain), and involved either a 0-back or 2-back manipulation for either task domain. 

Following language exposure, scores on a word identification task were compared across 

secondary task groups relative to a control (no secondary task) condition. It was found 

that those completing a secondary 2-back task, regardless of task domain, had lower word 
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identification scores than controls. In fact, those completing either the verbal or 

visuospatial 2-back task did not score above chance on the word identification task, 

suggesting that they did not successfully segment the words from the artificial language. 

All other groups performed above chance. 

Overall, this pattern of results demonstrates an interference effect on statistical 

language learning from a secondary task spanning both verbal and non-verbal domains, 

and is consistent with theories suggesting that statistical language learning is supported by 

domain-general cognitive resources. One theory relevant to these findings is the 

framework for statistical learning proposed by Frost and colleagues (2015), which 

suggests that domain-general neurobiological mechanisms and computational principles 

operate in different modalities, and learning is constrained by the modality of the 

incoming stimulus. Thus, partially shared domain-general neural networks are responsible 

for the computation of to-be-learned stimuli. These on-line computations of transitional 

probabilities may have been disrupted by the cross-domain 2-back tasks. Given this, it 

may be possible to infer that domain-general processing resources, which support shared 

domain-general computational principles, are necessary to support statistical language 

learning and indeed contribute to statistical language learning. It is important to note that 

the secondary same-domain verbal task (letter monitoring) was not of the same modality 

as the auditory statistical learning task. Frost et al.’s (2015) model, however, allows for 

shared processing of cross-modality audio-visual verbal stimuli. The results are in line 

with shared domain-specific but not modality-specific processing of audio and visual 

verbal stimuli, perhaps within a shared phonological resource within the language 

domain. In future research, it may be necessary to consider modality-specific, domain-
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specific, and domain-general constraints in order to understand the encoding and 

extracting of statistical regularities, at least with regards to phonological information.  

The effect of domain-general interference on statistical language learning 

observed here may be due to the engagement of partially shared resources modulating the 

encoding of both the auditory language sequence and the n-back task stimuli. Uncovering 

the putative nature of these shared cognitive resources has significant implications for 

theories of statistical language learning, and statistical learning more generally. One 

likely explanation is that statistical learning involves memory-related processes including 

encoding, storing, and accessing newly learned information at retrieval (Erikson & 

Thiessen, 2015; Thiessen, Kronstein, & Hufnagle, 2013). Memory-based perspectives on 

statistical learning would postulate that disruptions to statistical learning are due to 

memory interference or decay (Thiessen, 2017). Interference in the task would have been 

caused by the 2-back manipulations of the n-back task. The 2-back task involves constant 

updating and monitoring of incoming stimuli, resulting in the active engagement of 

participants’ working memory. Working memory is a component of general memory 

processes (D’Esposito, 2007) and, importantly, is a capacity limited system (e.g., 

Baddeley & Hitch, 1974). Additionally, working memory has shown to be involved in 

word learning, including in the acquisition of new words (Baddeley, Gathercole, & 

Papagno, 1988; Gathercole, 2006; Gathercole & Baddeley, 1989). It follows, then, that if 

the capacity limit of working memory was perhaps met or exceeded by engagement in the 

2-back tasks, the necessary additional resources required for segmenting the language 

stream would not have been available. 

The suggestion that statistical word segmentation is disrupted by concurrent 

working memory engagement is analogous with findings from Palmer and Mattys (2016), 
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who found statistical learning interference effects under verbal and visuospatial 2-back 

concurrent task conditions. While this collection of results provides evidence of 

interference in statistical learning caused by concurrent working memory engagement, the 

nature of this interference needs to be elucidated. One possibility is that due to the 

concurrent working memory task, listeners are unable to hold the complete phonological 

form of a newly segmented word in auditory working memory, resulting in mis-

segmentations during language learning. One of the key stipulations in PARSER 

(Perruchet & Vinter, 1998), a memory-based account of statistical learning, is that 

syllable sequences are refreshed or reactivated upon repeated occurrence. Refreshing the 

newly segmented syllable sequence leads to integration across repeated presentations and, 

subsequently, the retention of the candidate word within memory. If the auditory stream 

is mis-segmented, an accurate match of the extracted candidate word may not be re-

encountered with the precision necessary to integrate across repeated presentations, nor to 

store the word within memory. Further exploration of the nature of these mis-

segmentations may be necessary.  

There are two possible findings that could be predicted from a memory-based 

model of statistical learning. First, it is possible that participants whose statistical learning 

was disrupted due to memory limitations may be familiar with part-words, that is, two 

adjacent syllables from one of the tri-syllabic trained words. This familiarity would be 

due to mis-segmentations of the artificial language stream due to limitations within the 

phonological store. Second, participants’ familiarity with the words may be graded as a 

function of word frequency. Words that were encountered more frequently may have 

been sufficiently refreshed within memory, and thereby stored as candidate words, 
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despite memory limitations. Future research would be needed to investigate these 

possibilities. 

It is interesting to speculate as to why the domain-general interference effects in 

the present study, with 7 minutes of language exposure, are inconsistent with the domain-

specific interference effect found in a previous study (Noonan, 2014), which featured 28 

minutes of language exposure. When considering these effects, is important to note that 

the analysis of performance on the n-back task showed equivalent performance across 

task domains (verbal, visuospatial), indicating that they were of equal difficulty and, 

presumably, imposed similar levels of interference. Toro and colleagues (2005) 

demonstrated that word segmentation performance dropped when attention was diverted 

to a different stream within the same sensory modality (auditory), or to a different 

modality (vision). Costs to statistical learning when the concurrent task was of a different 

modality only occurred when the distractor task was more difficult, whereas costs to 

statistical learning for the auditory task were consistent across task difficulties. It is 

possible to interpret the results from the present study in light of these findings. First, the 

present findings of interference effects for the visuospatial 2-back condition, but not the 

0-back condition is consistent with the conclusion that it is more difficult to find attention 

costs across modalities than within a modality (Duncan, Martens, & Ward, 1997; Soto-

Faraco & Spence, 2002; Triesman & Davies, 1973; Toro et al., 2005). However, this 

conclusion is weakened by the fact that there were no interference effects for the verbal 0-

back condition, wherein domain-specific attention costs across task difficulty levels could 

have been expected.  

Another possibility is that there are variations in individual differences in 

statistical learning across the samples used in the present study and in Noonan (2014), 
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which the present analyses were unable to capture. Prior work has suggested that there is 

wide and measurable individual variation in statistical learning (Arciuli & Simpson, 2012; 

Bogaerts, Siegelman, & Frost, 2016; Conway et al., 2010; Evans et al., 2009; Karuza et 

al., 2013; Misyak & Christiansen, 2012; Siegelman & Frost, 2015). However, the 

statistical learning assessment used in the present study, the two-alternative forced-choice 

task (2AFC), is not suitable to analyze individual performance data, and may not be a 

reliable or valid measure of statistical learning (Siegelman, Bogaerts & Frost, 2016). 

Given these shortcomings, the increased use of implicit measures of statistical language 

learning, such as the measurement of neural responses (Alba, Katahira, & Okanoya, 2006; 

Batternik, Reber, Neville, & Paller, 2015; Cunillera, Toro, Sebastián-Gallés, & 

Rodríguez-Fornells, 2006; Sanders, Newport, Neville, 2002), may be informative in 

understanding the individual variations in sensitivity to statistical structures.  

2.4.1 Conclusions 

It has been proposed that first language acquisition occurs, in part, via an implicit 

statistical learning mechanism, and this mechanism may be specifically useful for helping 

language learners discover the boundaries between words in fluent speech. What has been 

poorly understood, however, are the cognitive processes that support implicit statistical 

language learning. To address this, this study sought examined how engaging in explicit 

same-domain (verbal) or cross-domain (visuospatial) cognitive tasks influenced implicit 

statistical learning of word boundaries in an artificial language. It was found that 

engagement in a secondary 2-back task, regardless of task domain, resulted in 

interference in statistical language learning, while engagement in a 0-back verbal or 

visual task did not. This cross-domain interference effect supports the model that 
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statistical learning is supported by domain-general cognitive resources rather than 

representing a strictly modality-specific learning mechanism.  
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Chapter 3: Examining the relationship between statistical 
learning and cognitive abilities in school-aged children  

 
3.1 Introduction 

Statistical learning is generally viewed as a domain-general mechanism that 

uncovers the distributional regularities across stimulus types (Reber, 1967; Saffran & 

Thiessen, 2007). But, there is a lack of clarity as to what is meant by “domain-

generality”. Some accounts ascribe domain generality in statistical learning to a unitary, 

general purpose learning mechanism (Bluf, Johnson, & Valenza, 2011), that can operate 

uniformly across domains (Saffran & Thiessen, 2007), and in non-human species 

(Hauser, Newport, & Aslin; 2001; Milne, Wilson, & Christiansen, 2018). Despite this, 

similar findings of statistical learning across domains does not necessarily implicate the 

same underlying cognitive mechanism. Indeed, there is evidence showing that statistical 

learning is modality- or stimulus-specific (Altmann, Dienes & Goode, 1995; Conway & 

Christiansen, 2005; Redington & Chater, 1996, see Frost, Armstrong, Siegelman, & 

Christiansen, 2015). Of potential interest to the question of domain-general vs. domain-

specific effects in statistical learning would be an examination of performance of a group 

with a disproportionate language impairment such as children with a developmental 

language disorder (DLD). Previous work has revealed marked DLD deficits in statistical 

language learning tasks (SLL) tasks (e.g., Evans, Saffran, & Robe-Torres, 2009; Mainela-

Arnold & Evans, 2014) as well as non-linguistic sequential learning tasks (e.g., Lum, 

Conti-Ramsden, Morgan, & Ullman, 2014; Obeid, Brooks, Powers, Gillespie-Lynch & 

Lum, 2016), however no previous studies have directly compared statistical learning 

across verbal and visual domains in children with DLD. The purpose of the present study 

was to investigate whether statistical learning is subject to domain-specific processing 
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constraints, or is perhaps subject to more domain-general limitations by comparing 

statistical learning across verbal and visual domains in children with either typical 

development or DLD, and to examine the relationship between statistical learning and 

other measures of language and cognition.  

The nature of domain-generality in statistical learning has been linked to both 

common computational processes involved in statistical learning across domains 

(Thiessen & Saffran, 2007), as well as domain-general cognitive processes that may 

support statistical learning (Frost et al., 2015). In describing the domain-general 

computational processes involved in statistical learning, Frost et al. (2015) proposed a 

theoretical model that construed statistical learning as a set of domain-general 

neurobiological mechanisms for learning, detecting, and processing the distributional 

regularities across stimulus types. This learning system is not a unitary system, as 

processing within a domain is subject to the specific perceptual constraints of that 

domain. However, there are common domain-general computational principles that 

operate across domains, or partially shared neural networks that modulate the encoding of 

to-be-learned material (e.g., Fedorenko & Thomspon-Schill, 2014). Although not 

acknowledged in Frost et al.’s (2015) account, domain-general cognitive processes may 

also play a role in mediating statistical learning. Some work has demonstrated that 

statistical learning may depend on attention (Toro, Sinnett, & Soto-Faraco, 2005, c.f. 

Saffran, Newport, Aslin, Tunick, & Barrueco, 1997).  

Others have shown that working memory may also be involved in SLL in a 

domain-general way (Palmer & Mattys, 2016; see Chapter 2 of this thesis). In terms of 

SLL, working memory may play a role as an active maintenance mechanism for newly 

segmented words via the phonological loop component of working memory (see Lopez-
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Barroso, de Diego-Balaguer, Cunillera, Camara, Münte, & Rodríguez-Fornells, 2011). 

Studies showing working memory interference in statistical language tasks (e.g., Palmer 

& Mattys, 2016; Lopez-Barroso et al., 2011; see Chapter 2 of this thesis), have raised the 

possibility that limitations in working memory lead to impairments in statistical learning. 

Working memory likely mediates statistical learning via short term or temporary storage 

of segmented units: In order to detect the distributional regularities within linguistic input 

to segment words from fluent speech, one must be able to retain the phonological 

sequence within memory. If the memory span is not sufficient to hold the sequence in 

mind, the regularities between adjacent elements cannot be detected. Initial evidence for 

this comes from studies showing impairments in statistical learning due to working 

memory interference (Palmer & Mattys, 2016; see Chapter 2 of this thesis). Consistent 

with this notion, a recent account of statistical learning suggests that statistical learning 

arises from a set of memory processes involving the extraction of an element of the input 

into a memory trace, and the subsequent integration across these stored memory traces to 

detect the distributional regularities (Thiessen, 2017). This memory-based account of 

statistical learning is linked theoretically to working memory accounts of vocabulary 

acquisition where word learning is mediated by temporary phonological storage in verbal 

short-term memory (Baddeley, Gathercole, & Papagno, 1998; Gathercole, 2006). These 

memory-based accounts of word learning leaves open the possibility that a verbal 

working memory limitation may lead to an impairment in SLL. The role of working 

memory in non-linguistic tasks, however, has not been previously examined. Findings of 

a deficit in statistical learning across different domains in children known to have a 

working memory impairment would provide additional evidence regarding the role of 

working memory in statistical learning. In order to examine this possibility, the present 
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study investigated the relationships between verbal and visual statistical learning, and 

between these tasks and measures of verbal and visuospatial working memory. 

Although domain-general processes are likely essential to successful statistical 

learning, there are nevertheless domain-specific constraints on statistical learning. Such 

constraints are explicitly acknowledged within the theoretical model proposed by Frost et 

al. (2015) due to perceptual processing differences across domains, and are supported by 

empirical findings. For example, Conway and Christiansen (2005) demonstrated both 

quantitative and qualitative differences in statistical learning of structured material across 

verbal, visual, and tactile domains. Domain-specificity in statistical learning is also 

supported by neuroimaging research. Recent fMRI studies have shown that VSL results 

in activation in visual regions, including lateral occipital cortex and inferior frontal gyrus 

(Turk-Browne, Scholl, Chun, & Johnson, 2009), while auditory statistical learning 

invokes activation in auditory areas, including left middle and frontal gyri (McNealy, 

Mazziotta, & Dapretto, 2006), as well as the posterior superior temporal gyrus (Cunillera 

et al., 2009). In examining the domain-specificity of statistical learning, there are inherent 

challenges in designing similar tasks that differ only in the domain of the material. 

Notably, this was addressed by Conway and Christiansen (2005), who sought to use 

closely comparable cross-domain tasks. Similarly, in the present study, both the SLL and 

VSL tasks involved the computation of transitional probabilities in order to segment 

either tri-syllabic or three-shape sequences. Findings that children with a disproportionate 

impairment in one domain, such as language, are impaired on an SLL task but not a VSL 

task would provide additional evidence in support of domain-specific constraints on 

statistical learning, as well as findings of correlations between SLL and language 

measures, but not domain-general cognitive measures.  
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Before proceeding, it is important to acknowledge the relevance of procedural 

learning, and how it can inform hypothesis related to statistical learning, as much of the 

work examining implicit learning in language-impaired groups has used procedural 

learning tasks (see Lum et al., 2014). There has been some discussion in the field of 

implicit learning on the distinction between procedural and statistical learning, as these 

terms are sometimes used interchangeable (Perruchet & Pacton, 2006). The term 

“procedural learning” is most consistently applied to implicit learning tasks, which focus 

heavily on the unconscious nature of learning in these paradigms (Reber, 1967). Common 

examples of such tasks include artificial or finite-state grammar tasks and serial reaction 

time (SRT) tasks, both of which involve the gradual learning of structured material. 

“Statistical learning”, when it first originated, was used to describe the ability of infants to 

discover words in a continuous speech stream (Saffran, Aslin, & Newport, 1996), and has 

since been applied to learning or segmenting stimuli across a variety of stimulus types 

(e.g., Conway & Christiansen, 2005). With regards to language learning, these terms were 

contrasted in that implicit or procedural learning pertained to syntactic acquisition, or the 

learning of rule-like structures (e.g., Marcus, Vijayan, Rao, & Vishton, 1999), while 

statistical learning dealt with lexicon formation (e.g., Saffran, 2003). However, statistical 

learning is no longer simply applied to learning word-like units, but has been shown to 

operate in learning complex structures such as syntax (Gómez, 2002, Saffran & Wilson, 

2003). One theoretical distinction that remains is that implicit learning tends to favour the 

formation of chunks (e.g.: Servan-Schreiber & Anderson, 1990), while statistical learning 

tends to favour statistical computations (Aslin, Saffran, & Newport, 1998; Saffran, 2001). 

Both of these operations have been argued to be independent processes (Meulmans & van 

der Linden, 2003; see Perruchet & Pacton, 2006 for a discussion). However, others have 
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argued that chunk formation is the default process, with sensitivity to statistics being a 

by-product of this process (Perruchet & Vinter, 1998). Further still, a recent discussion 

(Christiansen, 2018) has sought to align implicit and statistical learning under the 

umbrella term implicit statistical learning, which reconciles much of the related findings 

between these two bodies of literature. For the purposes of the present study, findings 

from procedural and statistical learning paradigms will be discussed. This collection of 

findings can, at minimum, be closely aligned, with findings from procedural learning 

paradigms being useful when forming hypotheses related to statistical learning.  

Given the growing research interest in exploring the domain general and domain 

specific constraints on statistical language learning, it is of interest to examine these 

constraints in a clinical population with a disproportionate deficit in one domain. To do 

this, the present study explored statistical learning across verbal and visual domains via 

SLL and VSL tasks in children with a persistent language disorder not associated with a 

known biological etiology known as developmental language disorder (DLD; Bishop, 

Snowling, Thompson, Greenhalgh, & CATALISE-2, 2017). DLD is a relatively common 

developmental disorder, affecting roughly 7% of kindergarten children (Norbury et al., 

2016; Tomblin, Records, Buckwalter, Zhang, Smith, & O’Brien, 1997), and is more 

prevalent in male than female children (e.g., Choudhury & Benasich, 2003; Flax, Raelpe-

Bonilla, Hirsch, Brzustowicz, Bartlett, & Tallal, 2003). These children show difficulties 

in learning the grammatical structures of language, with the acquisition of pragmatics and 

semantics relatively intact (Leonard, 1998). Language abilities are markedly impaired in 

DLD, as evidenced by poor performance relative to typically developing peers on a 

variety of linguistic measures, including tasks of grammaticality judgment (Miller, 

Leonard, & Finneran, 2008, Rice, Wexler, & Redmond, 1999), sentence comprehension 
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(Bishop, 1979, 1982, 1997), sentence formulation (Leonard, Miller, Grela, Holland, 

Gerber, & Petucci, 2000), and object naming (McGregor, Newman, Reilly & Capone, 

2000). Further, impairments in verbal working memory are common for those with DLD, 

with visuospatial working memory relatively spared (see Archibald & Gathercole, 

2006a). These clear linguistic deficits make DLD a useful and informative clinical case to 

examine the relationship between language and statistical learning across domains. 

In one of the first investigations of statistical learning in a DLD sample, Evans, 

Saffran, and Robe-Torres (2009) compared performance across both a statistical word 

segmentation task and a tone-sequence segmentation task. The authors speculated that 

children with DLD would show a statistical learning impairment, and that this impairment 

would be related to their language difficulties. The statistical word segmentation task was 

similar to the one used by Saffran, Newport, and Aslin (1996), wherein tri-syllabic words 

could only be segmented from a speech stream based on the transitional probabilities 

between adjacent syllables. The tone-sequence stimuli were structured similarly to the 

word segmentation task (see Saffran, Johnson, Aslin, & Newport, 1999). In this task, pure 

tones were played one at a time in a structured, unsegmented stream, and three-tone 

sequences could only be segmented based on the transitional probabilities between 

adjacent tones. Participants were exposed to the language stream for 21 minutes 

(Experiment 1) and 42 minutes (Experiment 2a), and the tone stream for 42 minutes 

(Experiment 2b). The DLD group did not perform above chance on the word 

segmentation task with 21 minutes of exposure, however, their performance improved to 

above-chance levels when the exposure duration was increased to 42 minutes. Typically 

developing (TD) children, on the other hand, consistently performed above chance across 

both exposure durations. In investigating the relationship between SLL and language 
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abilities, performance on the word segmentation task at 21 minutes of exposure was 

found to be related to receptive and expressive vocabulary scores for the DLD group. For 

the tone-sequence learning task, the TD group performed above chance while the DLD 

group did not, despite the lengthy exposure period. Given this diverging performance for 

the DLD group across the two statistical learning tasks, Evans et al. (2009) speculated 

that statistical learning is not a domain-general mechanism in this population. However, 

without assessing statistical learning in a non-auditory task, it is difficult to determine the 

domain-specificity of the statistical learning impairment in those with DLD.  

In a subsequent DLD study, Mainela-Arnold and Evans (2014) examined the 

relationship between SLL and both a lexical-phonological and a lexical-semantic task. 

Similar to the Evans et al. (2009) study, children with DLD completed a statistical word 

segmentation task (e.g., Saffran, Newport & Aslin, 1996). Mainela-Arnold and Evans 

(2014) found a DLD deficit on the statistical word segmentation task, and that this deficit 

was related to poor performance on the lexical-phonological task, but not the lexical-

semantic task. Taken together with the association between statistical word segmentation 

and vocabulary found in Evans et al. (2009), Mainela-Arnold and Evans (2014) suggested 

that a procedural learning deficit, as captured by poor performance on the statistical word 

segmentation task, was related to the poor lexical-phonological abilities in DLD. The 

poor lexical-phonological abilities, then, resulted in the poor vocabulary outcomes for the 

DLD group. However, as with the Evans et al. (2009) study, it is difficult to determine if 

the finding of impaired statistical learning in DLD from Mainela-Arnold and Evans 

(2014) is due to a domain-specific or domain-general statistical learning impairment in 

this population. Or, whether statistical learning is related to other cognitive abilities not 

measured in the above studies. In order to expand this research area and determine 
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whether statistical learning is impaired generally in this population, a more 

comprehensive approach is needed.  

Departing from statistical word segmentation tasks, Mayor-Dubois, Zesiger, van 

der Linden, and Roulet-Perez (2014) examined procedural learning in children with DLD 

across a variety of tasks to further examine the domain-specificity of a statistical or 

procedural learning deficit in this group. Participants completed a phonotactic learning 

task, a motor sequence learning task, and a cognitive learning task. The phonotactic 

learning task resembled that of Majerus, van der Linden, Mulder, Meulemans, and Peters 

(2004), wherein participants heard a continuous sequence of 3000 consonant-vowel 

syllables. Artificial phonotactic rules determined the possible combinations between 

phonemes and syllables. Following exposure to the syllable sequence, participants 

completed a “lexical” decision task similar to the 2AFC used in statistical word 

segmentation studies (e.g., Saffran, Newport & Aslin, 1996). Consistent with the findings 

from Evans et al. (2009) and Mainela-Arnold and Evans (2014), Mayor-Dubois et al. 

(2014) found that children with DLD were unable to learn the phonotactic sequences 

providing further evidence in favour of a procedural learning impairment in DLD. 

Moreover, Mayor-Dubois et al. (2014) did not find an impairment for the DLD group on 

the motor sequence learning task nor the cognitive learning task, suggesting that the DLD 

deficit in statistical or procedural learning is specific to learning linguistic sequences.  

A number of recent meta-analyses have provided additional evidence of a 

procedural or statistical learning deficit in DLD. What is significant from these analyses 

is that they provide evidence of procedural learning impairments for those with DLD on 

non-linguistic tasks, supporting the notion that this group is impaired on domain-general 

sequence learning tasks. In the first of such analyses, Lum and colleagues (2014) 
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examined Serial Reaction Time (SRT) task performance in children with DLD across 

eight studies. The SRT task is a parameter commonly used to assess implicit sequence 

learning (Nissen & Bullemer, 1987). For this task, participants make a speeded response 

to a fixed set of stimuli. Unbeknownst to the participant, there are probabilities governing 

the transition between cues. Sequence learning on this task is defined as a decrease in 

reaction times (i.e., faster responding) as subjects learn the transitional probabilities 

between stimuli. Lum et al. (2014) found SRT impairments in DLD compared to typically 

developing peers, pointing to a procedural learning deficit in this population. In a 

subsequent study, Obeid and colleagues (2016) examined procedural and statistical 

learning across a variety of tasks in individuals with DLD. In their analysis, they included 

studies examining SRT, contextual cuing, artificial grammar learning, speech 

segmentation, observational learning, and probabilistic classification. They found that the 

DLD group was impaired across procedural and statistical learning tasks, and the effect 

size related to this deficit did not differ due to task modality. Specifically examining 

auditory statistical learning in DLD, Lammertink, Boersma, Wijnen, and Rispens (2017) 

found a robust DLD deficit for the detection of statistical regularities in auditory input for 

both verbal and non-verbal auditory stimuli. Taken together, there is mounting evidence 

for a procedural or statistical learning deficit in those with DLD, and that this deficit may 

be domain-general. 

The domain-general deficits seen on statistical or procedural learning tasks in 

DLD are difficult to reconcile with the literature supporting the relative linguistic deficit 

in this group. In order to closely examine whether children with DLD are impaired on 

only a verbal statistical learning task, or whether they are also impaired on a non-verbal 

task, the present study also included measures of both SLL and VSL. Participants in the 
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present study completed a statistical word segmentation task similar to the task in Saffran, 

Newport, Aslin, Tunick, and Barrueco (1997), which has been used in previous statistical 

learning studies with DLD groups (e.g., Evans et al., 2009; Mainela-Arnold & Evans, 

2014). The VSL task was a close replication of the task developed by Siegelman, 

Bogaerts, and Frost (2016), adapted for use in a developmental sample. Similar to a word 

segmentation task, this VSL task involves the presentation of a structured, unsegmented 

stream wherein shapes are organized into triplets based on the transitional probabilities 

between adjacent shapes. As with the SLL task, within-triplet transitional probabilities 

were higher than between-triplet transitional probabilities (0.5-1.0 within-triplet versus > 

0.3 between-triplet). The test for the VSL task incorporated both pattern recognition items 

and pattern completion items. The inclusion of these test items both maximize the number 

and diversity of questions asked, while circumventing some of the psychometric 

limitations of only using a 2AFC test (see Siegelman et al., 2016 for a discussion). A 

foundational study on VSL showed that adults can learn the relationships embedded in 

sequences of shapes after only 6 minutes of exposure (Fiser & Aslin, 2002, also see Turk-

Browne et al., 2005), and similar tasks have demonstrated successful statistical learning 

of visual sequences in typically-developing school-aged samples (Arciuli & Simpson, 

2011). Examining VSL in children with DLD provides a useful analogue to a statistical 

word segmentation task, and adds substantially to the empirical evidence on domain-

general statistical learning in this population.  

Although predicting an impairment on SLL for those with DLD seems to be an 

obvious extension of previous findings (e.g., Evans et al., 2009; Mainela-Arnold & 

Evans, 2014), predicting their performance on a VSL is somewhat less clear. One 

possible theory that would predict a domain-general statistical or procedural learning 
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deficit in DLD, and the interpretation favoured by earlier research (e.g., Evans et al., 

2009; Lum et al., 2014; Mainela-Arnold, 2014), is the Procedural Deficit Hypothesis. The 

Procedural Deficit Hypothesis states that a procedural memory impairment underlies the 

language difficulties seen in children with DLD, specifically those difficulties associated 

with grammatical processing. Originally proposed by Ullman and colleagues (Ullman, 

2001; Ullman & Gopnik, 1999; Ullman & Pierpont, 2005), the Procedural Deficit 

Hypothesis suggests that there is a distinction between lexical and grammatical 

knowledge. The declarative system is responsible for the acquisition and representation of 

the mental lexicon, specifically the form-meaning associations related to word-specific 

knowledge. The procedural learning system, on the other hand, is thought to support the 

acquisition of the sequential representations that are characteristic of grammatical 

knowledge and other types of domain-general procedural learning. Thus, this theory 

would predict DLD impairments in procedural or statistical learning tasks, and that these 

difficulties should be related to the grammar difficulties seen in this population as 

grammar learning is mediated by the procedural learning system. Some evidence showing 

poor procedural learning of novel grammatical strings in adolescents with DLD supports 

this conclusion (Tomblin, Mainela-Arnold, & Zhang, 2007). Additionally, the Procedural 

Deficit Hypothesis can account for poor procedural or statistical learning in DLD groups 

in non-linguistic domains, as it is a domain-general hypothesis (Ullman & Pierpont, 

2005). What is difficult to reconcile with the Procedural Deficit Hypothesis are the 

findings from Evans et al. (2009) and Mainela-Arnold and Evans (2014), where poor 

procedural learning was associated with poor vocabulary in the former study, and poor 

lexico-phonological learning in the latter study, as both of these are generally assumed to 

hinge on associative rather than procedural mechanisms. A recent meta-analysis 
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(Hamrick, Lum & Ullman, 2018) concluded that lexical abilities are exclusively mediated 

by the declarative system, while grammar was linked to both the declarative and 

procedural learning systems. This conclusion makes it difficult to discern how an 

association between statistical learning and vocabulary outcomes can be reconciled with 

the Procedural Deficit Hypothesis, which posits a strict distinction between lexical and 

grammatical learning.  

Given the theoretical link between working memory and statistical learning, it is 

possible that if those with DLD have an insufficient working memory capacity to hold a 

newly-segmented word as a phonological trace, or to properly segment the speech stream, 

this would manifest in impairments on SLL outcome measures. There is a considerable 

body of evidence that children with DLD often present with comorbid working memory 

deficits, specifically in the verbal domain. Children with DLD tend to be impaired on 

tasks of verbal short-term and working memory (Archibald & Gathercole, 2006b; Marton, 

Eichorn, Campanelli, & Zakarias, 2016; Montgomery, 2003). The finding of a verbal 

working memory deficit in children with DLD is particularly pronounced on tasks 

involving the immediate recall of unfamiliar phonological forms, or non-words 

(Archibald & Joanisse, 2009; Bishop, Bishop, North, & Donlan 1996; Coady & Evans, 

2008; Conti- Ramsden, 2003; Conti-Ramsden, Botting, & Faragher, 2001; Dollaghan & 

Campbell, 1998; Edwards & Lahey, 1998; Weismer, Tomblin, Zhang, Buckwalter, 

Chynoweth, & Jones, 2000; Montgomery, 1995). In fact, investigations of working 

memory impairments in those with DLD have identified subtypes of this disorder whose 

language difficulties may be characterized by dual deficits in language and working 

memory (Archibald & Joanisse, 2009; Noonan, Redmond, & Archibald 2014). Consistent 

with this evidence, Evans et al. (2009) did speculate that a working memory impairment 
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could explain the poor statistical learning in their DLD group. In a comprehensive review, 

Hsu and Bishop (2011) hypothesized that the grammatical difficulties in those with DLD 

are a consequence of their poor ability to extract the statistical regularities in language 

input, due to their short-term or working memory limitations. Thus, although children 

with DLD are characterized by poor language skills, comorbid impairments in verbal 

working memory may underlie their impairments in verbal statistical or procedural 

learning tasks. It is possible, then, a verbal working memory deficit in DLD may be 

associated with poor performance on verbal- but not non-verbal statistical learning tasks.  

3.1.1 Present study 

In this study, school-aged children with and without DLD completed a SLL and 

VSL task, as well as a range of cognitive and linguistic measures. The SLL task was a 

word segmentation task (e.g., Saffran, Newport & Aslin, 1996), while the VSL task was a 

shape-triplet segmentation task (e.g., Siegelman et al., 2016). One goal of the study was 

to compare performance in cross-domain statistical learning tasks in groups differing 

primarily in relative language skills. Findings for impairments across both statistical 

learning tasks in the DLD group may point to either an impairment in processing 

structured information across domains, or an impairment in other domain-general 

processes associated with statistical learning. DLD deficits confined to the SLL task, on 

the other hand, would point to a domain-specific constraint in processing linguistic 

material for those with DLD, and would be consistent with prior reports (Lammertink et 

al., 2017).  

A second aim of the study was to examine relationships between performance in 

statistical learning tasks to broader measures of language and other cognitive processes 

including working memory. Because verbal working memory has been shown to be 
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impaired in children with DLD (Montgomery, 2002), with visuospatial working memory 

relatively spared, (Archibald & Gathercole, 2006a; Bavin, Wilson, Maruff & Sleeman, 

2005), one could predict a domain-specific association between the poor verbal working 

memory abilities in those with DLD and poor SLL, and intact visuospatial working 

memory in this group being associated with unimpaired VSL. Relationships between 

domain-specific working memory skills and the SLL and VSL tasks would point to 

possible working memory involvement in statistical learning. 

3.2 Method 

3.2.1 Participants 

Children were recruited from the developmental research pool at The University 

of Western Ontario (n = 11), and from those participating in a language and literacy 

intervention program in an elementary school in Southwestern Ontario (n = 16). Data 

from four children were excluded due to incomplete data collection, resulting in 23 total 

participants (11 females), Mage = 7.4 years, SDage = 0.92 years, range: minage = 5.25 years, 

maxage = 9.67 years. Nineteen children participated in follow-up testing six months after 

initial testing. All participants were native English speakers. Participants who came to the 

laboratory for testing received a $20 gift card as compensation for study participation. 

Participants recruited from the language and literacy intervention program received a 

language report from a speech language pathologist as compensation for study 

participation. Ethics approval for all study procedures and materials was obtained by the 

University of Western Ontario Non-Medical Research Ethics Board. Written informed 

consent was obtained from the parents of all study participants, and written and verbal 

assent was obtained from all study participants.  
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Twelve of the 23 children in the initial sample met the criteria for DLD; 

inclusionary criterion was one standard deviation (< 85) below average on the Clinical 

Evaluation of Language Fundamentals (CELF-IV; Semel, Wiig & Secord, 2003) 

Composite Language Score (CLS). The CLS includes scores from four core subtests from 

the CELF-IV, including Concepts and Following Directions, Recalling Sentences, 

Formulating Sentences, and, depending on the age of the children, Word Knowledge (< 9 

years) or Word Classes (> or equal to 9 years). These tests are described in more detail 

below. Scores for the language measures and the other standardized measures are 

presented in Table 3.1. 

Table 3.1  Standard scores for DLD and TD groups across the standardized language and 
cognitive measures. 

Group n Age 
(Years) 

CELF AWMA MAVA 
Expressive 

MAVA 
Receptive 

WASI  
Block Design 

WASI  
Matrix Reas. 

TD 12 7.73 
(1.33) 

100.00 
(11.52) 

96.42 
(15.52) 

101.67 
(6.76) 

94.50 
(18.49) 

52.82  
(10.59) 

54.82 
(12.05) 

DLD 11 7.33 
(0.94) 

66.18** 
(7.90) 

83.32* 
(11.94) 

89.09* 
(10.30) 

85.00 
(13.34) 

43.11*  
(6.97) 

41.11*  
(9.88) 

Note. Where DLD < TD: * = p < .05; ** = p < .001.  
 
3.2.2 Procedure 

All participants completed three individual study sessions less than one hour long 

at either a university laboratory or in a quiet room in their school. The first 2 study 

sessions occurred approximately 1 week apart, and a third, follow-up session was 

completed 6 months later. At the first testing session, children completed standardized 

measures of language and working memory. At the second testing session, the children 

completed standardized measures of vocabulary and nonverbal reasoning, as well as the 

statistical language learning task. Nineteen children who returned for the follow-up 
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session completed the VSL task. At all sessions, additional measures not reported here 

were completed. All tasks were administered by a trained research assistant. 

3.2.3 Materials 

3.2.3.1 Standardized measures 

Oral language. As described as part of the inclusionary criteria for DLD, each 

child completed the four core subtests for the child’s age for the Composite Language 

Score (CLS) from the CELF-IV (Semel et al., 2003). In the Concepts and Following 

Directions subtest, the child pointed to aspects of a pictorial display following a spoken 

instruction. For Recalling Sentences, the child repeated sentences of increasing length 

immediately after hearing them. For Formulated Sentences, a child was given a word or 

words and generated a spoken sentence in reference to a picture cue. If the child was 

between 5 and 8 years old, they completed the Word Structure subtest, in which the child 

completed a sentence with the grammatically correct form of a target word. If the child 

was between 9 and 12 years old, they completed the Word Classes subtest, in which the 

child heard four words, and chose two from that set which were related, and described 

their relation. Scores on the four subtests were aggregated to calculate the CLS, and 

converted to standard scores based on published norms.  

Vocabulary. Children completed both the Receptive and Expressive subtests of 

the Montgomery Assessment of Vocabulary Acquisition (MAVA; Montgomery, 2008). 

For the Receptive subtests, a child was given a target word and had to select the 

corresponding picture from an array of four pictures. For the Expressive subtest, the child 

was shown a target picture and had to provide the correct name for the picture. For both 

MAVA subtests, raw scores were converted to standard scores based on published norms.  
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Working memory. Two subtests from the Automated Working Memory 

Assessment (AWMA; Alloway, 2007) were administered. The Dot Matrix subtest 

involved recalling the position of a series of dots in a 3x4 matrix. The Counting Recall 

subtest involved counting the number of circles in an array of shapes, and recalling the 

respective tallies of circles at the end of the list. Both tasks required the storage and 

processing of information in a span procedure such that up to six lists of one item, and 

then two items, and so on were completed until errors were made on four of the six lists, 

at which point the test was discontinued. Standardized scores were calculated based on 

local norms (Nadler & Archibald, 2014). These tests have been found to load on to 

separable working memory factors. Specifically, the Dot Matrix subtest is associated with 

visuospatial working memory, while the Counting Recall subtest is associated with verbal 

working memory and phonological storage (Archibald, 2013).  

Nonverbal Reasoning. Children completed the Block Design and Matrix 

Reasoning subtests of the Wechsler Abbreviated Intelligence Scale (WASI, Wechsler, 

2003). For the Block Design subtest, the child arranged blocks to match a model or a 

picture. For the Matrix Reasoning subtest, the child chose a picture to complete a 5-

element pattern. For both WASI subtests, raw scores were converted to standard scores 

based on published norms. 

3.2.3.2 Statistical learning tasks 

Statistical language learning. Participants were exposed to a structured, 

unsegmented speech stream for 21-minutes, followed immediately by a two-alternative 

forced-choice (2AFC) test, asking participants to identify words from the artificial 

language. In the exposure phase, the artificial language was played over headphones at a 

comfortable listening volume. Participants were told that the experimenter was “going to 
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play some sounds over their headphones”, with no information provided about the 

artificial language. These deliberately vague instructions minimized the chance of 

participants trying to explicitly learn the language’s structure during the experiment. 

During the artificial language exposure phase, participants were free to colour a colouring 

page.1 

The artificial language was based on the stimuli described by Saffran, Newport 

and Aslin (1996). The language was composed of an inventory of 12 CV syllables, 

combined to create six trisyllabic “words”: patubi, tutibu, babupu, bupada, dutaba, 

pidadi. Transitional probabilities of syllables ranged from 0.33 to 1.0 within-word, and 

from 0.1 to 0.2 across word boundaries, assuming an equal distribution of each word 

preceding and following all others. The artificial language was constructed from audio 

recordings of a female native-English speaker using a neutral vocal effort. Recordings of 

the speech stimuli were made in a double walled IAC sound booth with a pedestal 

microphone (AKG C 4000B) located approximately 30cm from the speaker’s mouth and 

routed to a USBPre 2 pre-amplifier (Sound Devices) using SpectraPlus software (Pioneer 

Hill Software, 2008). Recordings were made of each of the 12 target syllables in the 

middle of a three-syllable sequence, within every co-articulation context required for the 

language. Eight repetitions of each sequence were recorded, and the token with the most 

neutral pitch contour and best sound quality was chosen and uploaded into Sound Forge 

Audio Studio (Sony Creative Software) editing software. Middle syllables from the 

recorded tokens were extracted by identifying the final offset of vowel oscillation in the 

                                                
1 In Saffran et al. (1997) and Evans et al. (2009), children were instructed to colour on a 
computer colouring program. Although this study aimed to closely replicate these original 
findings, experimental piloting suggested that the participants in the present study were 
more engaged with pencil-and-paper colouring compared to the computerized version. 
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previous syllable to the offset of vowel oscillation in the target syllable. These were then 

concatenated to create the final 21-minute stream of words. The stream consisted of 360 

tokens of each word in random order, with no word presented twice in sequence. The 

language maintained a consistent speech rate (average 3.1 syllables/s) using a time 

stretch, and was normalized to a pitch of F0 = 196 Hz using the pitch shift in Sound Forge 

Audio Studio. There were no pauses between words; as such, the only cues to word 

boundaries were the lower transitional probabilities for between-word syllable pairs.  

The 2AFC test followed immediately after the exposure phase, which was 

delivered by E-Prime 2.08 (Schneider, Eschman, & Zuccolotto, 2002). For each test item, 

participants heard a trained word from the artificial language paired with a non-word foil, 

separated by 500ms of silence. Presentation order of trained words and non-word foils 

were randomized across trials. During the test phase, participants were asked to select the 

word that “sounds more like something you heard in the language”. Before the test phase 

began, participants completed four practice trials to ensure they understood the task. 

Then, the test phase began. Within the test phase, each non-word foil was paired 

exhaustively with each trained word, comprising 36 total test pairs. The test pairs were 

presented in a fixed random order. Behavioural accuracy on the task was calculated for 

each participant as the percent of correct identifications of trained words. 

For the test phase stimuli, an additional six non-word foils were constructed from 

the same 12 CV syllables as the artificial language, but which were not included in the 

training set: pubati, tapudi, dupitu, tipabu, bidata, batipi. Non-word foils were created 

with the constraint that within-word transitional probabilities would be zero. Syllables 

were drawn from the same recording inventory as the artificial language stimuli, with 

appropriate co-articulation contexts. Note that fully new non-word foils were used with 
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transitional probabilities of 0 based on previous language exposure (e.g., Evans et al., 

2009), rather than tri-syllabic part-word foils consisting of two syllables from a trained 

item plus an incorrect syllable (e.g., Saffran, Newport, & Aslin 1996). Discrimination 

accuracy at test is generally higher when fully new non-word foils are used rather than 

part-words. The six non-word foils were paired exhaustively with the six trained words, 

creating 36 total test pairs.  

Visual statistical learning. Similar to the statistical language learning task, the 

VSL task involved an exposure phase and a test phase, and was adapted from the task 

designed by Siegelman, et al. (2016) to be used with a developmental population. 

Participants were seated in front of a laptop computer, and were told that they would see 

some shapes one at a time presented on the computer. As with the SLL task, deliberately 

vague instructions were provided for the VSL task. While the shape stream was presented 

on the computer, the experimenter played the instrumental soundtrack from the film 

“Inside Out” (Inside Out Original Motion Picture Soundtrack, 2015) over a speaker. 

Playing music concurrent with the VSL exposure phase was done to closely approximate 

the SLL exposure phase by including a non-demanding secondary task well-suited to 

school-aged children. The VSL task was administered using E-Prime 2.08 (Schneider et 

al., 2002) 

For the exposure phase stimuli, 10 complex black shapes were concatenated into 

five triplets (see Appendix 1). The transitional probabilities between adjacent shapes 

within a triplet ranged from 0.33 to 1.0. The five triplets were concatenated into a random 

stream, with the restriction of no immediate repetitions of triplets. Each triplet appeared 

24 times in the familiarization phase. Shapes were presented for 800ms, with a 200ms 

inter-stimulus-interval between shapes. Thus, the stream was 6 minutes in length. Note 
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that the present task was modified from the original paradigm to be used with school-aged 

children by including fewer shapes in the training set (10 as opposed to 16), and fewer 

triplets (six, as opposed to eight). 

Following familiarization, participants completed a 35-item test. All test items are 

detailed in Appendix 2. The test phase was shortened from the 42-item test used in 

Siegelman et al. (2016) in order to accommodate having fewer training triplets and fewer 

shapes in the training set than the original paradigm. For the test phase stimuli, an 

additional eight foil triplets were constructed from the same 10 shapes used in the training 

set. The transitional probabilities of the foil items ranged between 0 to 0.5 and differed in 

their position violations That is, a violation occurred for either the onset, medial, or final 

shape of the sequence across items.  

The test phase consisted of pattern recognition and pattern completion items. 

Pattern recognition items included two- and four-alternative forced choice questions for 

both triplet and pair sequences from the training stream. Answers were clearly numbered 

on the computer screen, and participants were asked to select the corresponding number 

for their answer while an experimenter coded their responses. Pattern completion items 

included questions for both triplet and pair sequences from the training stream. For these 

items, participants selected the missing shape to complete a sequence from the training set 

from a selection of three possible shapes. As with the pattern recognition items, 

participants indicated their answer and the experimenter coded their responses. The 

corresponding instructions for each question were presented on the computer screen 

during the test phase. For the pattern recognition items, the instruction read “Please 

choose the pattern you are most familiar with as a whole”. For the pattern completion 
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items, the instruction read “Please choose the shape that best completes the pattern”. A 

visualization of a selection of test items is provided in Figure 3.1. 

 
Figure 3. 1. Sample questions from the visual statistical learning (VSL) task test phase. 
From left to right, the panels depict a triplet-2AFC, a pair-4AFC, and a triplet pattern 
completion question. 

The test began with the pattern recognition items, which consisted of 10 triplet-

2AFC items, followed by five triplet-4AFC items, five pair-2AFC items, and five pair-

4AFC items. Finally, there were five pattern completion items for triplet sequences, and 

five pattern completion items for pair sequences. The order of presentation of items 

within each question type was randomized across participants. The correct response 

(either item “1” or “2” for 2AFC questions, or “1”, “2”, “3”, or “4” for 4AFC questions) 

was counterbalanced amongst items. Each trained (target) triplet appeared as a target in 

the pattern completion items for both triplet and pair completions. Note that the 

presentation of trained triplets and foil items was not fully exhaustive, as it was in the 

statistical language learning test phase. Following Siegelman et al. (2016), test items such 

as these both maximized the number of test items and minimized the number of repeated 

targets and foils in order to mitigate any learning effects within the test phase.  

3.3 Results 

3.3.1 Statistical language learning 

First, a one-sample t-test was performed to compare performance on the two-

alternative forced-choice (2AFC) test against chance. Individual scores are presented in 

Please	choose	the	
pattern	you	are	
most	familiar	with	
as	a	whole.

Please	choose	the	
pattern	you	are	
most	familiar	with	
as	a	whole.

Please	choose	the	shape	that	best	completes	the	pattern.
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Figure 3.2. Chance on the 2AFC was defined as achieving 18 (50%) correct out of the 36 

total test items. Bootstrapping with 10,000 samples was used to validate the results of the 

t-test. Performance on the 2AFC task was above chance, M = 53.65%, SD = 7.65%, t (22) 

= 2.290, p = 0.032, d = 0.477. The data were also examined by estimating a Bayes factor 

using Bayesian Information Criteria (Wagenmakers, 2007), comparing the fit of the data 

under the null hypothesis and the alternative hypothesis. An estimated Bayes factor 

(alternative/null) suggested that the data were 2.18:1 in favor of the alternative 

hypothesis, or rather, 2.18 times more likely to occur under a model including an effect of 

statistical language learning, rather than a model without it. This represents positive 

(Raferty, 1995) or substantial (Jeffreys, 1961) evidence that scores on the 2AFC were 

above chance. Because the effect was generally small, performance on individual test 

items was also examined. Scores on each individual test item, averaged across 

participants, was compared to chance (50%) using a t-test. As with the previous analyses, 

bootstrapping with 10,000 samples was used for these tests. Performance on only two test 

items was significantly above chance: tipabu versus pidadi, M = 70.00%, SD = 46.5%, t 

(22) = 2.554, p = .018, d = 0.430, and tipabu versus babupu, M = 78.00%, SD = 42.4%, t 

(22) = 3.407, p = .002, d = 0.660. Above-chance performance was not achieved on any of 

the other test items, t (22) < 1.499, p > .05, d < 0.354, all cases.  
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Figure 3.2 Performance on the 2AFC test of statistical language learning. The horizontal 
dashed line represents chance responding (50% correct). 

In order to examine relationships between statistical language learning and 

vocabulary, language, working memory, and nonverbal reasoning, bivariate correlations 

were conducted (see Appendix 3). No significant correlations were observed between 

statistical language learning and age, nor any of the standardized measures, r < 0.297, p > 

.05, BF10 < 0.715:1, all cases. There were a number of significant correlations amongst 

the standardized measures, but given that these correlations were not pertinent to the 

present study, they were not considered further. 

Taken together, these results showed generally weak performance on the 

statistical language learning task, with above-chance performance on only two of the test 

items. Furthermore, given these data, there was insufficient evidence to support an 

association between scores on the statistical language learning task and age, nor any of 

the standardized cognitive measures.  
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3.3.1.1 Comparing children with and without DLD on statistical language 

learning 

The DLD (M = 54.82%; SD = 6.42%) and TD (M = 52.83%; SD = 8.77%) groups 

did not differ on the 2AFC statistical language learning measure, t (21) = -0.692, p = 

.4972, d = 0.002. The DLD group was above chance on the SLL measure, t (10) = 2.491, 

p = .032, d = 0.750, while the TD group was not above chance, t (11) = 1.020, p = .330, d 

= 0.323.  

Similar to the sample-level analyses, the group-level data were also examined by 

estimating a Bayes factor. For the comparison of the DLD and TD group, the estimated 

Bayes factor (null/alternative) suggested that the data were 2.219:1 in favor of the null 

hypothesis, or rather, 0.45 times more likely to occur under a model not including an 

effect group, rather than a model with it. Thus, there was little evidence to suggest that 

the groups differed on the SLL task.  

Taken together, these results clearly demonstrated that the DLD and TD groups 

did not differ on the 2AFC task assessing statistical word segmentation. Additionally, 

there was some evidence that the DLD group was numerically above-chance on the SLL 

task. However, given the small sample size for this analysis, the results should be 

interpreted with caution.  

3.3.2 Visual statistical learning 

Scores across participants on the VSL task are presented in Figure 3.3. Because 

the number of response options varied amongst question types, chance could not be 
                                                
2 Given that the sample sizes under consideration were rather small (DLD: n = 11; TD n = 
12), a power analysis was conducted using G-Power (version 3.1.9.3, 2009) for the t-test 
comparing statistical language learning scores between groups. The power for the t-test 
was 0.7546, which approached the standard of adequacy at 0.80. Thus, it was warranted 
to assume that there was a failure to reject the null hypothesis. 
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defined as 50% correct on the test as a whole. According to the binomial distribution, the 

different probabilities of correct responses on different items were aggregated to 

determine that chance-level performance was 13.33 correct trials (e.g., Siegelman et al., 

2016). Thus, above-chance performance was defined as scoring above 13.33 correct 

responses, or 38.09% correct. At the group level, performance did not differ from chance, 

M = 39.09%, SD = 8.78%, t (20) = 0.740, p = .468, d = 0.114. An estimated Bayes factor 

(null/alternative) suggested that the data were 3.44:1 in favor of the null hypothesis. 

Similar to the analyses of item-level performance on the statistical language learning task, 

scores on each individual test item were compared to chance. The appropriate chance-

level criterion was selected for individual questions. Results showed that performance 

was not above chance for any question, t (21) < 2.046, p > .05, d < 0.558, all cases. Thus, 

these results clearly demonstrated that group-level performance across the VSL test was 

not above chance. 

 
Figure 3.3 Individual performance on the test of visual statistical learning (VSL). The 
horizontal dashed line represents chance responding (38.09% correct). 
 

As with the analyses of the SLL data, a series of correlations were completed 

comparing average scores on VSL task against age, and the standardized measures, as 
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well as SLL scores (see Appendix 4). Performance on the VSL task did not correlate with 

SLL scores, age, nor any of the cognitive measures, r < .247, p > .05, BF10 < 1.085 all 

cases. There were a number of significant correlations amongst the standardized 

measures, but they were not considered further for the present study. 

Taken together, performance on the VSL task was not above chance. Furthermore, 

given these data, there was insufficient evidence to support an association between 

performance on the VSL task and performance on the SLL task, nor any of the cognitive 

abilities assessed in the present study.  

3.3.2.1 Comparing children with and without DLD on visual statistical 

learning 

As the sample included in these analyses is not identical to the sample used in 

comparing statistical language learning scores, descriptive statistics for age, cognitive 

measures, and VSL for children with DLD and TD children are presented again here, in 

Table 3.2. Children with DLD scored significantly lower than their TD peers on the 

measures of language, t (17) = 6.690, p < .001, expressive vocabulary, t (17) = 2.857, p = 

.011, working memory, t (17) = 2.446, p = .026, and Block Design: t (17) = 2.707, p = 

.017. The groups did not differ on receptive vocabulary, Matrix Reasoning, or age, t (17) 

< 2.083, p > .05, all cases. 

Table 3.2 Scores for DLD and TD groups in the follow-up sample across standardized 
and cognitive measures. 

Group n Age 
(Years) 

CELF AWMA MAVA 
Expressive 

MAVA 
Receptive 

WASI  
Block Design 

WASI  
Matrix Reas. 

TD 9 7.73 
(1.33) 

99.89 
(12.62) 

95.22 
(13.92) 

101.22 
(7.42) 

88.89 
(16.37) 

52.82  
(10.59) 

54.82 
(12.05) 

DLD 10 7.33 
(0.94) 

66.18** 
(7.90) 

83.32* 
(11.94) 

89.09* 
(10.30) 

85.00 
(13.34) 

43.11*  
(6.97) 

41.11  
(9.88) 

Note. Where DLD < TD: * = p < .05; ** = p < .001.  
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Performance on the VSL task did not differ between the TD (M = 41.30%, SD = 

8.1%) and DLD (M = 37.1%, SD = 9.3%) groups, t (17) = 1.175, p = .2563, d = 0.482. 

Also, performance for neither group was statistically above chance, t < 1.178, p > .272, d 

< .0.396, all cases. Following the approach used to examine the group comparison on the 

SLL measure, the VSL task performance data were also compared between TD and DLD 

groups using a Bayes factor. The estimated Bayes factor (null/alternative) suggested that 

the data were 1.72:1 in favour of the null hypothesis. Thus, there was no evidence to 

suggest that the TD and DLD groups differed in performance on the VSL task. 

Additionally, the Bayes factors estimating whether the TD or DLD groups were above 

chance on the VSL task provided no evidence in favour of the alternative hypotheses 

(alternative/null factor: < 0.556:1, all cases).  

Overall, then, these results clearly demonstrated that performance on the VSL task 

did not differ for the DLD and TD groups, and that neither group scored above chance.  

3.4 Discussion 

In the present study, children with developmental language disorder (DLD) were 

compared to typically developing (TD) children in their performance on a statistical 

language learning (SLL) and visual statistical learning (VSL) task. The relationship 

between performance on these two statistical learning tasks and other cognitive and 

linguistic measures was also examined. Analysis of performance on the SLL task 

revealed that, across the sample, performance was marginally above chance. Comparing 

performance between DLD and TD groups, it was found that the two groups did not 
                                                
3 Given that the sample sizes under consideration were again rather small (DLD: n = 10; 
TD n = 9), a power analysis was conducted using G-Power (version 3.1.9.3, 2009) for the 
t-test comparing VSL scores between groups. The power for the t-test was 0.7569, which 
approached the standard of adequacy at 0.80. Thus, it was warranted to assume that there 
was a failure to reject the null hypothesis. 
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differ. However, the DLD group performed above chance, while the TD group did not. 

On the VSL task, performance across the sample was not above chance, and the TD and 

DLD groups did not differ. Additionally, performance on the two statistical learning tasks 

was not related, nor was there evidence to conclude that there was a relationship between 

performance on either statistical learning task related to any of the cognitive or linguistic 

measures. These results were a failure to replicate previous work (Evans et al., 2009) 

which demonstrated a group difference on statistical word segmentation between TD and 

DLD groups and an association between SLL and vocabulary. This work also failed to 

show that school-aged children could learn the distributional regularities within an 

adapted VSL task.  

The results from the present study, with only the DLD group being above-chance 

on the SLL task with neither group above-chance on the VSL task, failed to clearly 

address the main research question investigating the domain-specificity or domain-

generality of statistical learning within a population with a disproportional language 

impairment. The finding of no group difference on the SLL task between the TD and 

DLD groups was surprising, given that a statistical or procedural learning deficits have 

repeatedly been demonstrated in the research (e.g., Lammertink et al., 2017; Lum et al., 

2014; Obeid et al., 2016). The above-chance performance on the SLL task for the DLD 

group also runs contrary to these previous findings. Nevertheless, both a power analysis 

and a Bayes’ factor calculated for the present effect confirmed the findings. A likely 

conclusion is that the above-chance performance for the DLD group is a weak and 

precarious effect, and further investigation would be necessary to demonstrate successful 

statistical word segmentation for this group. The results for the SLL task from the present 

study should also be interpreted with caution given the relatively small effect and small 
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sample size. Although the accuracy rate on the 2AFC of 53% is consistent with prior 

research (e.g., Evans et al., 2009), it is difficult to conclude whether this rate can be taken 

as convincing evidence of learning. The lack of a learning effect on the VSL task for 

either group is also difficult to interpret, and may reflect measurement error or an 

unsuitability of this task for a developmental sample. In order to make any conclusions 

regarding a domain-specific or domain-general impairment on statistical learning in the 

language impaired group, above-chance performance for the TD group on either 

statistical learning task would be necessary.  

Although it is difficult to claim from the present results that the sample “learned” 

the regularities in either the verbal or visual domain, some participants were nevertheless 

above chance. Thus, it was interesting to speculate as to whether performance on either 

task was related. What was concluded from the present results was that performance on 

the SLL and VSL tasks was unrelated. The lack of a correlation among performance 

outcomes on these tasks may be related to low learning overall, but, nevertheless, this 

finding has some relevance to prior research. Directly comparing performance on a SLL 

and VSL task, Siegelman and Frost (2015) reported that the correlation between these two 

tasks was virtually zero. Examining the developmental trajectory of verbal and visual 

statistical learning, Raviv and Arnon (2017) showed that while performance on a visual 

SL task improved linearly with age (also see Arciuli & Simpson, 2011), auditory SL did 

not show any improvements with age. The authors reasoned that there are different 

developmental trajectories across these two tasks and, importantly, that there are clear 

domain-specific constraints on SL. It is then reasonable to conclude that the lack of a 

correlation between visual and auditory SL in the present study stems from different 

constraints in processing regularities in either domain. However, this conclusion should 
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be further evaluated with more sensitive measures where learning across both tasks can 

clearly be demonstrated. 

One alternative to explain the lack of a correlation between performance on the 

SLL and VSL tasks, and above-chance performance on only the SLL task, is that the SLL 

task was subject to linguistic entrenchment (Siegelman, Bogaerts, Elazar, Arciuli, & 

Frost, 2018). The linguistic entrenchment hypothesis suggests that learning in a statistical 

learning task is constrained by prior knowledge. Specifically, learners’ entrenched 

expectations about co-occurrences from their native language impact what they learn 

from novel auditory input. Learning in the VSL task, however, is not shaped by prior 

knowledge because participants should, presumably, have no prior knowledge about the 

nonsense shape sequences used in this task. Investigating the linguistic entrenchment 

hypothesis, Siegelman and colleagues (2018) found that auditory-verbal statistical 

learning tasks display item-specific learning effects, and that performance on auditory-

verbal statistical learning tasks is related to participants’ native-language knowledge. In 

the present study, although the nonsense words do not exist in the participants’ lexicons, 

they would be consistent with existing linguistic knowledge. For instance, the syllables 

used in the present study follow the phonotactic constraints within English. So, it is 

possible that prior knowledge of some aspects the linguistic stimuli affected performance 

on the SLL task, while the VSL task was unaffected due to a lack of prior experience. 

This may explain why performance on the SLL task was above chance, while 

performance on the VSL task was not. Yet, an entrenchment explanation remains unlikely 

in the present study, where above-chance performance on the SLL task was seen only for 

the DLD group. Children with DLD typically present with low vocabularies (Laws & 

Bishop, 2003), and underspecified phonetic representations (Edwards & Lahey, 1996). 
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These reports are thus difficult to reconcile with their performance on the SLL being 

affected by linguistic entrenchment. 

Perhaps the greatest implication that can be taken from these inconclusive results 

is that there are improvements to be made to the design of statistical learning paradigms, 

particularly for use in developmental samples. Batterink, Reber, Neville, and Paller 

(2015) demonstrated that traditional statistical learning assessments based on familiarity 

judgments, including the 2AFC, reflect explicit memory, and should not be taken as 

measures of implicit learning. Their results also demonstrated that indirect measures 

capture implicit learning more effectively. Because statistical learning paradigms are 

primarily concerned with uncovering implicit learning effects, a better measurement 

approach is warranted. To address this, a number of implicit measures of statistical 

learning have been described in the literature. Batterink and colleauges (2015), developed 

a measure that involves measuring reaction times (RTs) to syllables within a structured, 

unsegmented speech stream, similar to the one used in the present paradigm. Findings 

across related studies (e.g., Batterink, Reber, & Paller, 2015; Batterink & Paller, 2017) 

revealed that participants were faster at responding to learned stimuli, which was 

reflective of learning the distributional regularities within the trained artificial language 

(also see Misyak, Christiansen, & Tomblin, 2010). A second possible approach is to 

measure event-related potentials (ERPs) during a statistical learning paradigm. Previous 

research has shown that following language exposure, participants’ ERP responses are 

reflective of successful word segmentation (e.g., Cunillera, Toro, & Sebastián-Gallés, 

2006; Cunillera et al., 2009; Sanders, Newport, Neville, 2002). A final approach is to 

examine participants’ brain responses to structured stimuli by measuring fMRI during 

statistical learning. fMRI approaches have largely been adopted to measure VSL (Turk-
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Browne, Scholl, Chun, & Johnson, 2009; Schapiro, Gregory, Landau, McCloskey, & 

Turk-Browne, 2014) although some studies have also used fMRI to measure SLL (e.g. 

Cunillera et al., 2009; Scott-van Zeeland, McNealy, Wang, Sigman, Brookheimer, & 

Dapretto, 2010; Plante, Patterson, Dailey, Kyle, & Fridriksson, 2014;). Given the promise 

of this research, future research should aim to examine implicit statistical learning in a 

developmental sample using an indirect technique.  

Another possibility as to why the results of the SLL paradigm from Evans et al. 

(2009) were not replicated in the present study is that the effect for this paradigm is 

meager, or truly not replicable. There are no reported findings showing the absence of a 

learning effect in TD school-aged children on the SLL paradigm from Saffran et al. 

(1997). However, a number of studies have tried to extend the findings from the original 

Saffran, Aslin, and Newport (1996) paradigm in infants, and have failed to show a 

learning effect. Both Johnson and Jusczyk (2003) and Lew-Williams and Saffran (2012) 

showed that infants could only segment a speech steam when words were of uniform 

length, and failed to segment the speech stream when words were of varying length. 

Johnson and Jusczyk (2003) suggested that the simplicity of the language in Saffran, 

Aslin, and Newport (1996) is what drove the effect, and that the statistical learning 

phenomenon exhibited in the original paradigm fails to scale up to natural language 

where, indeed, words are of varying length. Additionally, Graf-Estes and Lew-Williams 

(2015) demonstrated that infants failed to segment words when different voices were used 

in training and at test, providing further evidence that the original Saffran, Aslin, and 

Newport (1996) paradigm is difficult to replicate when complexity is added to the input 

stream. Thus, there is some speculation to be raised about the replicability of the word 

segmentation effect originally proposed by Saffran, Aslin, and Newport (1996). 
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What is possible is that additional cues may aid in successful segmentation. Some 

have argued that hearing words in isolation may help bootstrap infants’ speech 

segmentation (Brent, 1999; Brent & Siskind, 2001; Pinker, 1984). Others have argued 

that highly frequent words, such as names and function words, may further facilitate 

speech segmentation (Bortfeld, Morgan, Golinkoff, & Rathburn, 2005; Shi, Cutler, 

Werker & Cruickshank, 2006). Consistent with this, research on a large-scale language 

has shown that adults can successfully segment words from a speech stream constructed 

with a Zipfian distribution (Kurumada, Meylan & Frank, 2010), albeit with 10 hours of 

language exposure. Still, others have argued that prosody is essential to early word 

segmentation (Johnson, 2008; Johnson & Jusczyk, 2001; Jusczyk, 1997; Johnson & Seidl, 

2008, 2009; Mehler, Nespor, & Shukla, 2006), or may contribute to word segmentation 

after the onset of transitional probability tracking (Thiessen & Saffran, 2007). Although 

much of the work reviewed here has focused on infant research, it is nevertheless 

informative for exploring some of the potential shortcomings of the statistical word 

segmentation paradigm used in the present study. What can be said for these findings is 

that tracking transitional probabilities between syllables (or shapes) is likely not the only 

way in which an individual segments the regularities in the environment. Indeed, no one 

has ever claimed that transitional probabilities are the sole source of information used in 

successful segmentation. What may be the case is that the conjunction of segmentation 

cues, including cues such as prosody and transitional probabilities in SLL paradigms, 

would facilitate segmentation in the present paradigm.  

3.4.1 Conclusions 

In order to examine the domain-specificity or domain-generality of statistical 

learning, the present study investigated statistical learning across both verbal and visual 
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statistical learning tasks in children with DLD. For the SLL task, performance for 

children with DLD was above chance, while performance for TD children was not. For 

the VSL task, performance for neither the DLD and TD groups was above chance. The 

associations between statistical learning and an array of cognitive and linguistic measures 

was also examined, and these data did not support an association between statistical 

learning and any of these broader measures. Additionally, performance on the two 

statistical learning tasks was not associated. Overall, these results do not provide 

sufficient evidence to conclude that statistical learning is mediated by domain-general or 

domain-specific processes. However, they do highlight the necessity for developing more 

sensitive measures of implicit statistical learning that can accurately capture learning in 

these tasks.  
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Chapter 4: Individual variation in the time course of statistical 
word segmentation: An ERP investigation 

 
4.1 Introduction 

 If the ability to detect and learn the distributional regularities within language 

underlies some aspects of language acquisition (e.g., Saffran, Aslin, & Newport, 1996), 

then certainly, it would be advantageous for listeners to rapidly detect these patterns. 

However, existing research has not empirically quantified how quickly learners become 

sensitive to the regularities embedded within language. A number of computational 

models of word segmentation, including PARSER (Perruchet & Vinter, 1998), TRACX 

(French, Addyman, & Mareschal, 2011), TRACX2 (French & Cottrell, 2014), and 

iMINERVA (Thiessen & Pavlik, 2013) demonstrate that statistical learning involves the  

extraction of chunks or exemplars from the input and the integration of the regularities 

across these exemplars over repeated exposure. However, empirical data demonstrating 

these processes is currently lacking. A further limitation of much of the empirical data on 

statistical learning is that it relies on behavioural outcome measures following a learning 

phase, which cannot shed light on the process of learning as it unfolds. Furthermore, these 

behavioural outcome measures rely on explicit recognition of implicitly learned material, 

which may underestimate the amount of knowledge accrued in a statistical learning task 

(e.g., Batterink, Reber, Neville, & Paller 2015). An alternative approach is to use an 

online measure of statistical learning that can implicitly measure the learner’s sensitivity 

to the distributional regularities within an artificial language. Some neuroimaging work, 

specifically, the measurement of event-related potentials (ERPs), has been used to 

implicitly measure the outcome of statistical learning. This work has described event 

related potentials (ERPs) marking statistical learning, including the N100 (Sanders, 
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Newport, & Neville, 2002), N400 (Cunillera, Toro, Sebastián-Gallés, & Rodríguez-

Fornells, 2006; Sanders et al., 2002), P200 (Cunillera et al., 2006; De Diego-Balaguer, 

Toro, Rodríguez-Fornells, & Bachoud-Lévi, 2007), the P300 (Batterink, Reber, & Paller, 

2015; Batterink, Reber, Neville, & Paller, 2015), and the late positivity component (LPC) 

(Batterink & Neville, 2013). In a novel approach, the present study measured ERPs online 

during a statistical word segmentation task in order to measure dynamic changes in neural 

responses over time to provide clear evidence on the processes involved in statistical 

learning. 

Computational models provide a useful framework for understanding the dynamic 

processes involved during statistical language learning. One of the first examples of this 

was the PARSER model (Perruchet & Vinter, 1998), which is a memory-based model of 

word segmentation involving both the extraction and integration of representational units, 

or chunks. In this model, sensory primitives such as syllables are first experienced within 

the focus of attention and are then stored in memory as a new representational unit. These 

representations are reinforced within memory over multiple encounters, while those units 

that are not re-experienced rapidly decay. These initial percepts or units guide perception, 

and subsequently-encountered units are entered in a recursive fashion. This assertion 

naturally fits with the role of statistical learning in language acquisition. For instance, if a 

group of syllables are extracted as a candidate word, they are more likely to be re-

encountered if they are, in fact, a word. On the other hand, if the syllables straddle a word 

boundary, they are unlikely to be re-encountered and are subject to decay. Additionally, if 

an element within a chunk occurs within a different chunk, the previously stored chunk 

experiences interference and loses a degree of activation. Thus, the system rapidly 

converges towards the words. Taken together, this model clearly stipulates that both the 
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extraction of representational units or words, and the integration of regularities across 

these units are both necessary processes for statistical learning. 

In a related memory-based model of statistical learning, Thiessen and Pavlik’s 

(2013) iMINERVA model demonstrates how memory-based processes can yield 

sensitivity to structure in a distributional statistical learning task. In this model, stimuli 

activate prior exemplars already stored in memory as a function of their similarity: The 

more similar to the exemplar, the stronger the activation for that exemplar. If more than 

one similar exemplar exists, the stimulus is integrated with the exemplar with the greatest 

degree of activation. If no similar prior exemplar exists, the stimulus is stored as a new 

exemplar within memory. Consistent features across multiple stored exemplars become 

strengthened with repeated activation, while features that are inconsistent are gradually 

weakened. These combined processes of activation, integration, and decay form the 

general process by which the model comes to represent a set of exemplars that are 

prototypical in nature. Unlike PARSER’s chunking framework, iMINERVA is not 

explicitly applied to statistical word segmentation. However, iMINERVA can account for 

the distributional learning of statistical regularities such as phoneme distributions (e.g., 

Maye, Werker, & Gerken, 2002), non-adjacent dependencies (e.g., Gómez, 2002), and 

cue-weighting (e.g., Thiessen & Erickson, 2013). What is important is that both PARSER 

and iMINERVA stipulate initial chunking or storage of a stimulus or set of exemplars, 

with subsequent re-activation over repeated presentations preceding eventual storage 

within memory. Taken together, these models specify how the separable memory-based 

processes of activation, integration, and decay are involved within a statistical learning 

paradigm.  
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While the computational models stipulate how the memory-related processes 

should be involved in a statistical word segmentation task, the empirical data has yet to 

clearly demonstrate this. First and foremost, this is due to a limitation in how learning is 

assessed within a word segmentation paradigm. Overall, studies on word segmentation 

share an intrinsic limitation: Computations during the learning phase are often only 

inferred following a lengthy period of language exposure. Typically, participants are 

asked to assess the familiarity of a trained and foil nonsense word in a two-alternative 

forced-choice (2AFC) discrimination test only after language exposure (e.g., Saffran, 

Newport, & Aslin, 1996). There are a number of problems with respect to the 2AFC test, 

as described by Siegelman, Bogaerts, and Frost (2016). First, testing learning only after 

exposure runs in stark contrast to the theoretical assumptions of statistical learning, which 

has been defined as a process of continuous assimilation of regularities (e.g., Reber, 

1967), with behavioural changes happening incrementally over time. As described by 

Siegelman, Bogaerts, Christiansen, and Frost (2017) an inherent problem of offline 

measures is that they are tracing learning retroactively, and may not be doing so in an 

accurate way. Second, an explicit test is being used to measure an implicit learning 

process (Siegelman et al., 2016): Offline measures such as a 2AFC require participants to 

make an overt behavioural response, and to decide between two related stimuli. Given 

these constraints, it is difficult to disentangle unrelated effects due to encoding and 

memory capacities, as well as decision-making biases. Finally, the limited number of 

training items, often only 4 (e.g. Saffran, Aslin, & Newport, 1996) or 6 (e.g., Saffran, 

Newport, & Aslin, 1996), places inherent limitations on the number of test items. This 

constraint is made more problematic as accuracy on the 2AFC can only be measured 

using group-averaged statistics; examinations of individual differences are precluded due 
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to the lack of test sensitivity. Clearly, the use of 2AFC tests obfuscate our understanding 

of the processes of statistical word segmentation.  

In an effort to overcome the limitations of the 2AFC test, Siegelman et al. (2016) 

used an online measure of statistical learning to measure the rate of learning during a 

visual sequence learning task. In order to measure online learning, they constructed a self-

paced reaction-time (RT) task. For this task, participants were asked to advance the 

shapes, one at a time, within the sequenced stream at their own pace. The stream 

consisted of triplet sequences, which were grouped based on the high transitional 

probabilities between adjacent shapes within a sequence. They found faster RTs for 

advancing shapes in a predictable compared to a non-predictable stream. Additionally, 

they found significant RT gains following seven or eight repetitions of the triplets, which 

clearly demonstrated rapid learning of the sequential structure of the shape stream. 

Critically, they showed that this RT measure was a valid measure of learning as it 

correlated with the well-established offline learning measure, the 2AFC. In another 

examination of changes in behavioural responses over the learning phase, Batterink and 

Paller (2017) exposed participants to a continuous speech stream composed of nonsense 

tri-syllabic words, similar to the Saffran, Newport, and Aslin (1996) paradigm, and 

measured learning online via a target detection task. In the target detection task, 

participants were asked to monitor for a target syllable, and the target syllable occurred as 

either the first, second, or third syllable within the nonsense words. By the second 

presentation of a word, a robust RT effect was elicited such that targets in a predictable 

position (i.e., a word-final position) were responded to faster than targets in an 

unpredictable position (i.e., a word-initial position). These RT gains provided further 
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evidence of rapid statistical learning, with faster responding to predictable syllables after 

only a single word presentation.  

Both Siegelman et al. (2016) and Batterink and Paller (2017) found a significant 

correlation between an offline behavioural test of statistical learning and their online RT 

measure. However, a significant correlation between online and offline measures has not 

always been found. In a similar RT paradigm to Batterink and Paller (2017), Batteirnk et 

al. (2015) measured RTs in a target detection task and ERP responses to the artificial 

language stimuli as online learning outcomes, and found no correlation between the post-

exposure 2AFC task and their online measures. This finding emphasized the implication 

that explicit knowledge as measured by a 2AFC test may underestimate the implicit 

knowledge accrued during a statistical language learning task, a limitation previously 

described by Siegelman et al. (2016). Given this, it is worthwhile considering other 

implicit measures that more accurately reflect the implicit knowledge acquired during 

statistical learning.  

One possible approach is to examine statistical learning using an implicit measure, 

such as electroencephalography (EEG) to record ERPs in a statistical learning task. Due 

to the high temporal sensitivity of ERPs, they are well-suited to examine fine-grained 

responses to linguistic stimuli. In one of the first examinations of the ERP correlates of 

word segmentation, Sanders et al. (2002) exposed participants to an artificial language, 

similar to the Saffran, Newport, and Aslin (1996) paradigm, and measured ERP responses 

to words before and following language exposure. Sanders et al. (2002) analyzed their 

ERP data comparing those with high versus low scores on a 2AFC task, and found a 

larger N100 for word onsets after training only for those with high 2AFC scores, and a 

greater N400 response to word onsets for both groups. The authors interpreted the 
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elicitation of the N400 as being consistent with the conventional interpretation of the 

N400 as a marker of lexical and semantic processing (Kutas & Federmeier, 2011), and as 

supporting some work from the statistical learning field suggesting that segmented words 

are treated as proto-lexical traces (Saffran, 2001; Graf-Estes, Evans, Alibali, & Saffran, 

2007). In a related study, Sanders and Neville (2003) found that word-initial syllables 

elicited a larger N100 component than word-medial syllables when other sensory cues 

including loudness, length, and phonemic content were equated. Taken together, these 

findings helped form the initial interpretation of the N100 as a marker of word 

segmentation.  

Corroborating the findings from Sanders et al. (2002), Cunillera et al. (2006) also 

found evidence of an N400 component for word-onsets following training in a word 

segmentation task. Compounded with the previous evidence (e.g., Saffran 2001; Sanders 

et al., 2002), the authors suggested that the elicitation of an N400 points to the formation 

of a proto-lexical trace during the word segmentation task. When stress cues marking 

word onsets were added to the artificial language stream, both the N400 and a P200 were 

elicited in response to word onsets (Cunillera et al., 2006). Although not pertinent to 

studies examining word segmentation based on syllable-level distributional regularities, 

the elicitation of the P200 in response to word-onset cues may have indexed fast auditory 

learning, and a greater recruitment of neural populations within the auditory cortex 

(Allison, Wood, & McCarthy, 1986), specifically in response to learned acoustic 

components within the artificial language. A critical difference between the Cunillera et 

al. (2006) and the Sanders et al. (2002) study is that the former examined ERP 

components online during the artificial language learning task. However, the 

measurement of learning “online” in the Cunillera et al. (2006) study was, in fact, the 
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averaging of ERP responses over 6-minute exposure blocks. Averaging over this duration 

makes it difficult to identify any dynamic changes in ERP components related to 

accumulated language exposure. Reconciling this, Cunillera et al. (2009) measured 

changes in ERP responses to word-onsets over 2-minute exposure blocks. Clear evidence 

was found for an N400 response to word onsets after only two minutes of artificial 

language exposure. Supporting the electrophysiological findings, participants could 

behaviourally identify newly segmented words after one minute of language exposure. 

What was interesting was that the N400 decreased in amplitude with longer exposure. 

This result shed new light on measuring dynamic changes within statistical learning, and 

further strengthened the interpretation of the N400 as a marker of proto-lexical trace 

formation in statistical learning tasks.  

Measuring the dynamic changes during a statistical segmentation task gained 

attention following the work from Cunillera et al. (2006) and Cunillera et al. (2009). 

Abla, Katahira, and Okanoya (2008) had participants listen to a non-linguistic auditory 

tone sequence, the elements of which were three-tone “words”, and was consistent with 

the regularities within the artificial language stimuli used by Saffran, Newport, and Aslin 

(1996). Participants were exposed to the auditory input for three 6.6-minute sessions. 

Following exposure, participants performed a behavioural test in which they identified 

familiar tone sequences from the training stimuli. Based on this behavioural test, 

participants were divided into three groups: High, middle, and low learners. A 

comparison of ERPs between the learner groups revealed that for the high learners, three-

tone “word” onsets elicited N100 and N400 components within the first 6.6-minute 

listening session, with these components being elicited for the middle learners in the 

second session, and with no reliable N100 or N400 effect for the low learners. Similar to 



 

	 115 

related studies (Cunillera et al., 2006; Cunillera et al., 2009; Sanders et al., 2002), the 

authors interpreted the N400 effect as reflecting on-line segmentation.  

Findings of a difference in ERPs between good and poor statistical learners (Abla 

et al., 2008; Sanders et al., 2002) raises the possibility that individual variation in 

statistical learning ability may influence online segmentation. The examination of 

statistical learning of auditory sequences in musicians offers an interesting examination of 

how domain-specific expertise influences the processing of structured input. Musicians 

are a unique population in which to examine statistical segmentation, as previous research 

has shown they are better at grouping and processing complex auditory patterns (Boh, 

Herholz, Lappe, & Pantev, 2011; van Zuijen, Sussman, Winkler, Näätänen, & 

Tervaniemi, 2004). Additionally, research has shown that musicians demonstrate faster 

working memory updating than non-musicians (George & Coch, 2011), which may be a 

necessary process for the extraction and consolidation of statistical patterns, as shown in 

Chapter 2 of this thesis, and by others (e.g., Cunillera et al., 2009; Lopez-Barroso, de 

Deigo-Balaguer, Cunillera, Camara, Münte, & Rodríguez-Fornells, 2011; Palmer & 

Mattys, 2016). Closely related to word segmentation paradigms, the findings from tone 

“word” segmentation paradigms in musicians have shown N100 and N400 triplet onset 

effects (Vasuki, Pragati, Sharma, Ibrahim, & Arciuli, 2017). Additionally, ERP markers 

were found for musicians segmenting a sung language, including a reduction in P200 

amplitude over increased exposure (François & Schön, 2011), and modulation of the 

N400 for word-onsets (François, Jaillet, Takerkart, & Schön, 2014), with expert learners 

showing an inverted U-shaped curve in N400 amplitude over the language exposure 

period. These findings generally point to the conclusion that expertise in a particular 

domain seems to influence neural responding during segmentation. Furthermore, this 
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individual variation may point to some of the cognitive processes involved in 

segmentation. Specifically, the inverted U-shaped amplitude modulation demonstrated by 

François et al. (2014) was attributed to the consolidation of the extracted phonological 

units into templates or exemplars. Moreover, the expert effects exhibited across these 

studies are consistent with other “high learner” or expert learner effects in the statistical 

language learning literature (e.g., Abla et al., 2008; Sanders et al., 2002).  

From this body of evidence, it seemed that the N100 and N400 were reliable 

markers of statistical learning, reflecting word segmentation and pre-lexicalization 

processes, respectively. However, these effects have not consistently been reported. 

Cunillera et al. (2006) did not observe an N100 effect, but rather reported a P200 increase 

for stressed syllables embedded in a structured artificial language, but not an unstructured 

stream. Additionally, the N100 and the P200 were not observed in response for an 

unstressed structured stream. However, it is important to note that the inclusion of stress 

markers indicating word onsets adds an additional linguistic cue beyond the transitional 

probabilities of syllables, which makes it difficult to interpret these results in terms of the 

ERP components related to the extraction or integration of purely conditional 

relationships between syllables.  

In a continuation of the investigating of ERP markers for word segmentation, De 

Diego-Balaguer and colleagues (2007) found that listeners elicited a P200 in response to 

words in an artificial language by the 3rd minute of exposure. The modulation of the P200 

was interpreted as a “reorganization” of the structural information. That is, the P200 was 

considered indicative of chunking of the speech signal prior to the extraction of its 

underlying structure. This suggestion is consistent with interpretations of the P200 as 

reflecting perceptual segregation of auditory input (Snyder, Alain, & Picton, 2006). De 
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Diego-Balaguer and colleagues (2007) also found evidence of an N400, which was 

related to word learning following language exposure. This pattern of findings is 

interesting, as it seems to disentangle both the extraction of structural rules as indicated 

by the modulations in the P200, and successful word learning as marked by the N400. 

Taken together, the findings from Cunillera et al. (2006) and de Diego-Balaguer (2007) 

may indicate ERP that reflect perceptual segregation or chunking when attending to 

structured auditory input, specifically the P200. 

The lack of N100 and N400 effects has also been reported by Batterink, Reber, 

Neville, and Paller (2015) and Battink, Reber and Paller (2015). In both studies, ERP 

responses to trained nonsense words were recorded following exposure to an artificial 

language (e.g., Saffran et al., 1996). Trained words elicited an enhanced late positive 

potential (LPC) following language exposure, which was thought to be indicative of 

explicit knowledge for the newly segmented words. The LPC is generally found over 

parietal scalp sites, begins around 400-500ms after the onset of a stimulus (Paller & 

Kutas, 1992; Rugg & Curran, 2007), and is often associated with explicit memory for 

repeated stimuli (Rugg et al., 1998). Batterink et al. (2015) and Batterink, Reber, and 

Paller (2015) also examined the amplitude of the P300 component during a target 

detection task following language exposure. For this task, participants were asked to 

monitor for a specific syllable within a stream of nonsense words from the artificial 

language. The amplitude of the P300 was found to differ as a function of syllable 

position, with word-initial syllables eliciting the largest P300, word-medial syllables 

eliciting a moderate P300, and word-final syllables eliciting the smallest P300. This 

finding is consistent with interpretations of the P300 as associated with attention and 

memory operations (Polich, 2007), and reflecting allocation of attentional resources to a 



 

	 118 

target stimulus (Polich, 2003; 2007). Specifically, targets that are less probable, such as 

word-initial syllables, are thought to elicit a larger P300 response. Conversely, targets that 

are more probable, such as word-final syllables, should elicit a smaller P300 response. 

This decrease in P300 amplitude as a function of syllable predictability, based on the 

statistics within the nonsense language, may reflect a facilitation in processing for 

predictable syllables. Relatedly, Batterink et al. (2015) found that those who were 

explicitly trained on the nonsense words prior to language exposure showed a larger and 

earlier P300 to word-final syllables than those with no training. They speculated that this 

larger anticipatory P300 for the explicitly trained participants reflected anticipatory 

processing and greater overall processing effort for predictable syllables.  

4.1.1 Present study 

Although much of the work examining the ERP components related to statistical 

language learning is convincing of extant ERP markers for statistical word segmentation, 

a consistent shortcoming is that ERP responses are averaged over long periods exposure 

time, with analyses being focused on blocks of 6 or more minutes (e.g., Abla et al, 2008; 

Cunillera et al., 2006; Sanders et al., 2002), or examined only following language 

exposure (e.g., Batterink, Reber, & Paller, 2015; Batterink, et al., 2015). Because of this, 

it is difficult to clearly distinguish the extraction and integration processes that are 

thought to underlie statistical word segmentation (e.g., Perruchet & Vinter, 1998; 

Thiessen & Pavlik, 2013). To overcome this, the present study examined the dynamic 

changes in ERP components online during a statistical word segmentation task.  

In the present study, participants were exposed to a structured, artificial language 

for 21-minutes, with ERPs recorded for the duration of the language exposure period. 

Following language exposure, participants completed the conventional 2AFC word 
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identification task. It was of interest to explore individual variation in the ERP responses 

based on statistical learning abilities, so the sample was divided into high- and low-

learners based on the 2AFC scores, and ERPs during the exposure period were compared 

between the learner groups. Following the results of de Diego-Balaguer (2007), Cunillera 

et al. (2006), and François and Schön (2011), analyses were focused on modulations in 

the P200 component over exposure time, as this component may be indicative of 

extraction of the statistical regularities within the structured artificial language. Also, 

given the syllable-position effects from Batterink et al. (2015) and Batterink, Reber, and 

Paller (2015), analyses of the P200 were focused on responses to maximally predictable 

syllables, that is, word-final syllables.  

Two main hypotheses follow from the analyses of the continuous ERP data. First, 

it was hypothesized that if participants were actively segmenting the artificial language 

based on the transitional probabilities embedded within the speech stream, responses to 

predictable syllables should be modulated as a function of accumulated exposure. Second, 

if the modulation effect of the P200 differed across learner groups, this would provide 

evidence of a relationship between an implicit measure of extraction of the statistical 

regularities and the outcome of statistical language learning. Although an assessment of 

the evolution of ERP responses to predictable syllables was the primary interest of the 

present study, it was also worthwhile considering the N100 and N400 effects marking 

word segmentation initially reported by Sanders et al. (2002). To do this, pre- and post-

training effects were approximated by examining N100 and N400 amplitude in the first 

(minute 1) and final (minute 21) minutes of the language exposure periods, both at the 

group level, and comparing these effects between the high and low learner groups.  
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4.2 Method 

4.2.1 Participants 

Twenty-two participants (14 female) were recruited from The University of 

Western Ontario community for this experiment. All participants were between 18 and 30 

years old (M = 20.24, SD = 2.70), native English-monolingual speakers, and reported no 

hearing impairments. Participants either received course credit or were paid $10/hour for 

study participation. Ethics approval for all study procedures and materials was obtained 

from the University of Western Ontario Non-Medical Research Ethics Board, and written 

informed consent was obtained from all study participants.  

4.2.2 Stimuli 

4.2.2.1 Artificial language stimuli  

The artificial language was based on the stimuli described by Saffran, Newport 

and Aslin (1996). The language was composed of an inventory of 12 CV syllables, 

combined to create six trisyllabic “words”: patubi, tutibu, babupu, bupada, dutaba, 

pidadi. Transitional probabilities of syllables ranged from 0.33 to 1.0 within-word, and 

from 0.1 to 0.2 across word boundaries assuming equal distribution of each word 

preceding and following all others.  

The artificial language was constructed from audio recordings of a female native-

English speaker using a neutral vocal effort. Recordings of the speech stimuli were made 

in a double walled IAC sound booth with a pedestal microphone (AKG C 4000B) located 

approximately 30cm from the speaker’s mouth and routed to a USBPre 2 pre-amplifier 

(Sound Devices) using SpectraPlus software (Pioneer Hill Software, 2008). Recordings 

were made of each of the 12 target syllables in the middle of a three-syllable sequence, 

within every co-articulation context required for the language. Eight repetitions of each 
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sequence were recorded, and the token with the most neutral pitch contour and best sound 

quality was chosen and uploaded into Sound Forge Audio Studio (Sony Creative 

Software, version 10.0) editing software. Middle syllables from the recorded tokens were 

extracted by identifying the final offset of vowel oscillation in the previous syllable to the 

offset of vowel oscillation in the target syllable. These were then concatenated to create 

the final 21-minute stream of words. The stream consisted of 360 tokens of each word in 

random order, with no word presented twice in sequence. The language maintained a 

consistent speech rate (average 5.1 syllables/s) using a time stretch, and was normalized 

to a pitch of F0 = 196 Hz using the pitch shift in Sound Forge Audio Studio. There were 

no pauses between words; as such, the only cues to word boundaries were the lower 

transitional probabilities for between-word syllable pairs.  

4.2.2.2 Test phase stimuli 

An additional six non-word foils were constructed from the same 12 CV syllables 

as the artificial language, but which were not included in the training set: pubati, tapudi, 

dupitu, tipabu, bidata, batipi. Non-word foils were created with the constraint that within-

word transitional probabilities would be zero. Syllables were drawn from the same 

recording inventory as the artificial language stimuli, with appropriate co-articulation 

contexts. Note that we used fully new non-word foils with transitional probabilities of 0 

based on previous language exposure, rather than trisyllabic part-word foils consisting of 

two syllables from a trained item plus an incorrect syllable (e.g., Saffran, Newport, & 

Aslin, 1996). Discrimination accuracy at test is generally higher when fully new non-

word foils are used rather than part-words. As our primary goal was not to discover if 

statistical learning of language was present generally, but rather, whether we could 
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uncover neural indices of segmentation during and following language exposure, the 

more sensitive measure was used.  

4.2.3 Procedure 

4.2.3.1 Artificial language exposure phase.  

The artificial language was played over speakers at a comfortable listening 

volume. Participants were told they would hear a nonsense language, with no information 

provided about the length or the number of words within the language. These deliberately 

vague instructions minimized the chance of participants trying to explicitly learn the 

language’s structure during the experiment. To reduce eye movements, participants were 

instructed to look at a fixation cross during the exposure phase while during EEG 

recording. Every seven minutes during the exposure phase, they received a short break. 

No other task was presented to the participants during the exposure phase. 

4.2.3.2 Test phase 

Following the exposure phase, participants completed a two-alternative forced-

choice (2AFC) task delivered by E-Prime 2.08 (Schneider et al., 2002). For each test 

item, participants heard a trained word from the artificial language paired with a non-

word foil, separated by 500ms of silence. Presentation order of trained words and non-

word foils were randomized across trials. Each non-word foil was paired exhaustively 

with each trained word, comprising 36 total test pairs, and presented in a fixed random 

order. Subjects were instructed to indicate which word “sounds more like something you 

heard in the language”, and to select “A” or “L” on the keyboard to indicate the first or 

second stimulus, respectively. Instructions remained on the screen throughout the test 

phase. Behavioural accuracy on the task was calculated for each participant as the percent 

of correct identifications of trained words.  
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4.2.4 EEG recording and pre-processing 

Continuous EEG was acquired during the exposure and test phases using a 

BioSemi ActiveTwo system consisting of amplifier-embedded Ag/AgCl electrodes at 32 

scalp sites (Fp1/2, AF3/4, F7/8, F3/4, T7/8, C3/4, CP5/6, CP1/2, P7/8, P3/4, PO3/4, O1/2, 

Fz, Cz, Pz, and Oz) and two mastoid sites per the International 20-30 system. 

Electrooculogram (EOG) was recorded from four active electrodes placed on the outer 

canthus of either eye, and above and below the left eye. A Common Mode Sense active 

electrode and a Driven Right Leg passive electrode were used as ground. Data were 

acquired at a 512 Hz sampling rate, filtered online at 0.1-100 Hz bandpass and 60Hz 

notch filters, and impedances kept below 20 kΩ. 

Due to the use of naturally produced speech in our artificial language stream, all 

syllables were of varying length. We were interested in recording ERPs at the onset of 

each syllable during the exposure phase, however, stimulus presentation software can 

introduce inaccuracies in EEG time-locking due to latencies introduced by buffering the 

acoustic stimulus through a digital-to-analog converter prior to outputting the signal to a 

speaker. To eliminate this problem, time-locking of the ERPs to the auditory stimuli was 

achieved by directly tracking the onset of each syllable in the stream and encoding it 

alongside the continuous EEG data using an auxiliary analog-to-digital interface 

(StimTracker; Cedrus Corporation, 2010). To do this, the left audio channel of the digital 

audio stream contained a 10ms click, manually aligned to the onset of each auditory 

syllable within the right audio channel. The left and right audio outputs were electrically 

isolated so that the participant heard only the right channel, played through a speaker, 

whereas the left channel was fed to the StimTracker. The EEG triggers produced by the 

Stim Tracker were used to mark syllable onsets throughout our analyses. 
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ERP data were processed in MATLAB (2015b) using the EEGLAB (version 13; 

Delorme & Makeig, 2004) and ERPLAB (version 5.1.1.10; Lopez-Calderon & Luck, 

2014) toolboxes. Continuous EEG was bandpass-filtered from 0.1 to 30 Hz, and 

referenced to the algebraic average of the left and right mastoid electrodes. Scalp EEGs 

were then submitted to Independent Component Analysis (ICA) using the extended 

fastica routine in EEGLAB (Hyvärinen & Oja, 2000) to identify and remove ocular and 

exogenous channel-wise artifacts. Epochs were time-locked to the onset of each syllable 

within the language exposure and test phase, (-50 to 800ms post stimulus onset), and 

baseline corrected to the 50ms pre-stimulus interval. Following epoching, data were 

submitted to moving-window (200ms) peak-to-peak artifact detection to identify and 

remove any remaining artifacts greater than 100uV. Three sets of epochs were created 

reflecting the onset of each syllable within a word (onset, medial, and final); these were 

further grouped into separate 1-minute average bins reflecting the mean syllable-wise 

ERP response during each minute of exposure. 

4.2.5 Data analysis 

First, performance on the 2AFC behavioural measure was analyzed. Participants 

scores were calculated as the number of correct identifications of a trained word within 

test pairs. For our subsequent analyses, participants were divided into two groups based 

on a median split of 2AFC accuracy scores. This created “low-learner” and “high-learner” 

groups, which was our grouping variable for the analysis of ERP responses during the 

exposure phase. 

Next, the P200 component in response to word-final syllables throughout the 

exposure phase was examined. On the basis of visual inspection, the peak of the P200 

was identified at 250ms post-stimulus onset, and average amplitude of the amplitude was 
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computed from 220-280ms (i.e., 250ms +/- 30ms) for all syllables within the word-final 

position. Next, the mean P200 voltages were averaged together across each one-minute 

time interval to create an average voltage for the P200 for word-final syllables for each 

minute during the language exposure phase.  

The mean amplitude of the word-final P200 response was analyzed using a 

Growth Curve Analysis (GCA) technique to compare the amplitude of the component 

between the high- and low-learner groups. GCA is a multilevel regression technique used 

to model and compare time-varying data. A significant advantage for GCA over 

univariate techniques is that it does not require multiple comparisons at discrete time 

points or averaging across large time bins, both of which can obscure important temporal 

effects. This technique can also incorporate both group-level and individual-level 

differences into the model. Here, the time variable was modeled using an orthogonal 

polynomial, which captures the curvature of the data and is orthogonally transformed to 

avoid collinearity of higher order polynomials. Groups were compared by adding group-

level differences, stepwise, to each polynomial term of the GCA model, and using 

analysis of variance (ANOVA) to compare improvements in model fit. Additionally, the 

parameter estimates are compared between groups to examine differences in the shape of 

the data. Significant differences in the intercept term represent different means, while 

differences in the linear term of the model are associated with different slopes. The 

quadratic and cubic terms of the model represent its curvature, and significant differences 

between these terms can be interpreted as different quadratic and cubic curvatures 

between groups. As higher-order polynomials are non-asymptotic (their values do not 

have plateau-like sections), they do not provide an adequate fit for asymptotic data. To 

resolve this difficulty, we restricted the length of the tail data that were included in our 
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analyses (Mirman, 2014). Using visual inspection, it was clear that the data reached 

asymptote across both groups by the 4th minute of exposure. Thus, analyses were 

constrained to ERP responses from minute 1 to minute 4 during the artificial language 

exposure phase 4. All GCA analyses were carried out in R (version 3.3.1; R Core Team, 

2016), using the lme4 and lmerTest packages. 

Electrodes were grouped into regions of interest (ROIs) arranged in a 3x3 grid 

over the scalp (left/midline/right; anterior/central/posterior), and average voltages from 

the electrodes within each ROI were averaged together to create a mean amplitude within 

each ROI for the selected time-window entered into the analyses. For analysis of the ERP 

responses during the exposure phase, we examined responses for all frontal electrodes 

across left, midline, and right hemispheres.  

 Given that an N100 and N400 have been cited as markers of word segmentation 

(Abla et al, 2008; Abla et al., 2009; Cunillera et al., 2006; Sanders et al., 2002), the 

presence of these components was investigated in the present dataset. Because the 

artificial language used in the present study most closely resembled that used in Sanders 

et al., (2002), both in the vocabulary of the language and the exposure duration, their 

analyses were replicated here. In their study, Sanders et al. measured the N100 and N400 

component pre- and post-training. Pre- and post-training measures were not collected in 

the present study, as responses to the artificial language were measured continuously 

throughout language exposure, so ERP responses to word onsets averaged across the 1st 

minute and 21st minute were analyzed. The logic behind selecting these time points is that 

                                                
4 To avoid introducing experimenter bias into the selection of the 4-minute time window, 
parallel analyses were conducted using different time windows (e.g., 3 minutes, 5 
minutes, 7 minutes), and verified that the results were the same across these similar 
models. In doing so, selection of the 4-minute tail was approached in an unbiased manner. 
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it should approximate any effects related to pre- versus post-training that were uncovered 

in the Sanders et al. paradigm. Furthermore, examining ERP responses at the 21st minute 

of exposure is roughly equivalent to the total accumulated language exposure for 

participants in the Sanders et al. study. Consistent with Sanders et al., the average 

amplitude of the N100 was measured between 70 and 130ms post stimulus-onset, and the 

average amplitude of the N400 was measured between 200 and 500ms post stimulus-

onset. Modulation of the N100 and N400 due to training were analyzed both at the group 

level, and between high- and low-learner groups. For these analyses, the criteria for 

selecting the high- and low-learner groups was the same as the grouping criteria for the 

GCA analyses. 

As with the GCA analyses, electrodes were grouped into regions of interest 

(ROIs) arranged in a 3x3 grid over the scalp (left/midline/right; 

anterior/central/posterior), and average voltages from the electrodes within each ROI 

were averaged together to create a mean amplitude for each ROI for the selected time-

window were entered into the analyses. For the supplemental analyses, ROIs were treated 

as repeated measures to examine the topographical distribution of the N100 and N400 

effects. Pairwise post-hoc t-tests were used to identify ROIs for which the condition-wise 

effect was significant.  

4.3 Results 

4.3.1 2AFC behavioural outcome measure 

Scores on the 2AFC measure (M = 69.79%, SD = 9.7%, min = 52.77%, max = 

80.56%) were significantly greater than chance, t (1, 23) = 9.9929, p < .001, where 

chance was defined as identifying trained words correctly on 50% of test trials. A 

scatterplot of participants’ performance on the 2AFC measure is presented in Figure 4.1. 
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For the growth-curve analysis of ERPs during the exposure phase, a median split of 

2AFC scores was used to divide the sample into “low-learners” and “high-learners”. 

Three participants scored at the median value (69.44% correct), and were grouped as low 

learners in order to keep the group sizes roughly equivalent. Thus, the sample was divided 

into 12 low learners (2AFC scores: M = 63.42%; SD = 5.86%) and 10 high learners 

(2AFC scores: M = 79.44%; SD = 2.68%). 

 

 

Figure 4.1 Individual performance on the 2AFC discrimination task following language 
exposure. Scores are reported as percent correct (out of 36 test pairs). Horizontal trendline 
represents group average score of 69.79%. 
 
4.3.2 Growth curve analysis of exposure phase event-related potentials 

Figure 4.2 depicts the amplitude of the P200 in response to word-final syllables 

over the first four minutes of language exposure for the high- and low- learner groups. 

The mean amplitude of the word-final P200 response was analyzed using a Growth Curve 

Analysis (GCA) technique to compare the amplitude of the component between the high- 
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and low-learner groups across language exposure; specifically, the first four minutes of 

language exposure. Average amplitude for both groups at each time point were entered 

into the analyses to examine changes in P200 amplitude over time. The overall amplitude 

curves were modelled with third-order orthogonal polynomials on the time term (minute 

of exposure) and fixed effects of learner (low/high) on all time terms. The high-learner 

group was treated as the baseline in the model, and parameters were estimated for the 

low-learner condition. The model also included random effects of participants on all three 

orthogonalized time terms. The fixed effects of learner-group (high versus low) were 

added individually and their effects on model fit were evaluated using model 

comparisons. Improvements in model fit were evaluated using a -2 times the change in 

log-likelihood, which has a chi-square distribution with degrees of freedom equal to the 

number of parameters added.  
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Figure 4.2 Average P200 amplitude across frontal electrode sites for learner groups 
during artificial language exposure. 

The effect of learner group on the intercept did not improve model fit, χ2(1) = 

3.27, p = .070, nor on the linear term, χ 2(1) = 0.80, p = .368, or the quadratic term, χ 2(1) 

= 3.27, p = .070. The effect of learner group on the cubic term, however, did improve 

model fit, χ 2(1) = 7.51, p = .006, indicating that the low and high learner groups differed 

in the amplitude of their P200 responses to word-final syllables over the first four minutes 

of artificial language exposure. Table 4.1 shows the fixed effects parameter estimates and 

their standard errors, along with p-values estimated using the normal approximation for 

the t-values. The significant effect of learner group on time terms indicated that the 

curvature of P200 amplitude over the first four minutes of the exposure phase were 
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different between groups. There was a significant effect of learner group on the linear 

term, indicating a steeper, positive linear slope in P200 amplitude for the low compared to 

the high learners. There was also a significant effect of learner group on the cubic term, 

indicating a steeper (i.e., sharper) peak in P200 amplitude for the high versus the low 

learner group.  

Table 4.1 Parameter estimates for growth-curve analysis of effect of learner group 
(high/low) on P200 responses to word-final syllables during artificial language exposure. 

 Estimate SE t p 
Intercept -0.01736 0.25292 -0.069 0.94590 
Linear -0.35452 0.30697 -1.155 0.26053 
Quadratic -0.94438 0.41922 -2.253 0.03458 
Cubic 0.76189 0.26399 2.886 0.00858 
Low Learner -0.66496 0.34245 -1.942 0.06508 
Low Learner: Linear 1.11638 0.41564 2.686 0.01350 
Low Learner: Quadratic 0.47463 0.56762 0.836 0.41204 
Low Learner: Cubic -1.06946 0.35745 -2.992 0.00672 
Note. Bolded values are significant at the p < .05 level. 
 
4.3.3 N100 training effect 

A 2 (minute of exposure: 1st, 21st) by 9 (ROI) by 2 (leaner: high, low) analysis of 

variance was conducted to determine if there was an effect of training on N100 responses 

to word onsets. A Greenhouse-Geisser correction for multiple comparisons was applied to 

within-subjects’ tests. There was a significant interaction between minute of exposure and 

ROI, F (8, 160) = 1.772, p = .002. Post-hoc analyses with a Bonferroni correction for 

multiple comparisons revealed that the amplitude of the N100 was greater in the 1st 

compared to the 21st minute at left frontal (p = .009), central frontal (p = .031), and right 

frontal (p = .031) ROIs. The main effect of minute of exposure was not significant, F (1, 

20) = 1.310, p = .266, nor were the interactions between minute of exposure and learner, 

F (1, 20) = 1.612 p = .219, or the three-way interaction between minute of exposure, ROI, 

and learner, F (8, 160) = 1.772, p = .180. Thus, N100 amplitude was significantly greater 
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at the onset of training, and there was no effect of learner on changes in N100 amplitude 

over language exposure. 

4.3.4 N400 training effect 

A 2 (minute of exposure: 1st, 21st) by 9 (ROI) by 2 (learner: high, low) analysis of 

variance was conducted to determine if there was an effect of training on N400 responses 

to word onsets. A Greenhouse-Geisser correction for multiple comparisons was applied to 

within-subjects’ tests. There was a significant interaction between minute of exposure and 

ROI, F (8, 160) = 2.629, p = .049, however, examination of the simple main effects of 

minute of exposure at each ROI again revealed no significant differences for both 

Bonferroni corrected and uncorrected comparisons, p > .181, all cases. There was no 

significant effect of minute of exposure, F (1, 20) = 0.235, p = .633, no interaction 

between minute of exposure and learner status, F (1, 20) = 0.494, p = .490, and no three-

way interaction between minute of exposure, ROI, and learner status, F (8, 160) = 1.204, 

p = .395. Thus, there was no learning effect and no effect of high versus low learners on 

modulation of the N400 due to language exposure. 

4.4 Discussion 

In the present study, participants’ ERPs were recorded online during exposure to a 

structured, unsegmented artificial language (e.g., Saffran, Newport, & Aslin, 1996). 

Participants were grouped based on a post-exposure behavioural measure into “high” and 

“low” learners, and ERPs during language exposure were compared between these two 

groups. Analysis of ERPs during language exposure revealed that the high-learner group 

showed an increase in P200 amplitude in response to word-final syllables at the second 

minute of language exposure, with this response attenuating with subsequent exposure. 

The ERPs for the low-learner group, on the other hand, did not show sensitivity to the 
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predictable word-final syllables with accumulated language exposure. The present data 

also did not show evidence of N100 or N400 responses to trained words from the 

artificial language, despite these effects being described as markers of word segmentation 

(e.g., Sanders et al., 2002). These results present evidence of the dynamic nature of word 

segmentation, and offer a novel approach to measure statistical learning in an online 

fashion. 

Statistical learning can be viewed as a continuous, rapid, and incremental learning 

process, whereby computations of local statistics in novel environments enable people to 

predict and more efficiently process incoming input. Evidence for this continuous and 

rapid learning process may be provided by the dynamic nature of the P200 component in 

the present study. This finding allows us some insight in determining the underlying 

cognitive processes engaged in statistical word segmentation. To interpret these findings, 

it is important to consider not only the conventional interpretation of the P200 within 

cognitive neuroscience, but also the functional significance of this component in relation 

to processes believed to be fundamental to statistical learning.   

One possible interpretation of the P200 is that it is related to perceptual 

segregation and attention (Hillyard, Hink, Schwent, & Picton, 1973; Reinke, He, Wang, 

& Alain, 2003). For instance, Snyder et al. (2006) demonstrated that auditory segregation 

is dependent on attention. In their study, the amplitude of the P200 auditory evoked 

response was positively correlated with the perceptual segregation of a continuous and 

structured stream of tones which followed an ABA pattern. Furthermore, the amplitude of 

the P200 diminished when participants ignored or did not attend to the ABA pattern. 

However, it is not just segregation that is essential to word segmentation: Learners must 

also encode the segmented units or chunks within memory (e.g., Perruchet & Vinter, 
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1996; Thiessen & Pavlik, 2015). And, attentional resource availability is an important 

aspect of long-term retention, particularly when specific encoding operations are required 

(Craik & Byrd, 1982; Craik & Lockhart, 1972; Triesman, 1964). Supporting the 

interpretation of the P200 as a marker of perceptual learning and encoding, de Diego-

Balaguer et al. (2007) found a correlation between the participants’ perception of syllable 

groupings, measured behaviourally, and the magnitude of the P200. The P200 increase 

was interpreted as a perceptual change due to the re-allocation of attention to structural 

regularities within the artificial language. Based on these findings relating segmentation 

and learning, it would be consistent to interpret the elicitation of the P200 component in 

the present paradigm as a marker of attentional allocation to structured material. 

The notion that language learners are encoding the regularities within the artificial 

language is particularly apparent considering the present study measured responses to 

predictable, word-final syllables. If learners are, in fact, encoding the regularities of the 

structured speech stream in memory, it would follow that given the first two syllables of a 

word (e.g., tutu- or babu-), the final syllable would be perfectly predicted by the learner 

based on the transitional probabilities within the language (e.g., tuti à bu or babu à pu). 

Measuring participants’ ability to identify words from the language was achieved in the 

present study by using scores on the statistical learning outcome measure, the two-

alternative forced-choice (2AFC) to group participants into “high” and “low” learners, 

relative to the group-averaged scores. Thus, the emergence of the P200 in response to 

word-final syllables in the high-learner group may reflect an increase in attentional 

allocation to syllables consistent with learners’ successful segmentation of the speech 

stream. Such a conclusion is consistent with the findings from Batterink et al. (2015), 

who measured implicit behavioural and neural responses to word-final syllables, and 
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found that those with better performance on the 2AFC word identification task also 

showed greater sensitivity in their behavioural and neural measures to word-final 

syllables. Thus, the online measurement in the present study may highlight the process of 

segmentation of statistical learning. That is, the extent to which individuals spontaneously 

detect and learn the distributional regularities within language.  

A novel aspect of the present findings is that the amplitude of the P200 component 

was maximal at the second minute of artificial language exposure for the high-learner 

group. Similar findings were reported by Cunillera et al. (2009), who found that the 

amplitude of the N400 response to word onsets was maximal in the second 2-minute 

exposure block, and the findings from de Diego-Balaguer et al. (2007), who found that 

the P200 response to word onsets was maximal at the third minute of language exposure. 

One possible interpretation of the amplitude shift with accumulated exposure is that the 

listeners had a sufficient amount of information by the second minute in order to segment 

the language with two minutes of exposure, as they would have heard roughly 34 

presentations of each word token in this time (for 6 words in total, at roughly 103 words-

per-minute, for two minutes). Indeed, in the original demonstration of statistical learning, 

Saffran, Aslin, and Newport (1996) found that infants could identify words from an 

artificial language after two minutes of language exposure. Thus, two minutes of 

language exposure may be sufficient to extract proto-lexical phonological traces from the 

structured, unsegmented speech stream. Such an interpretation is consistent with previous 

work, suggesting that one of the primary outcomes of word segmentation within this 

paradigm is the formation of candidate words (e.g., Graf Estes et al., 2007; Saffran, 2003; 

Sanders et al., 2002). 
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It is important to note that the speech stream in statistical word segmentation 

studies is, in its essence, devoid of many of the cues extant in natural language, including 

stress, pause, or prosodic cues, not to mention extra-linguistic context. For this reason, it 

could be that the P200 component for the high-learner group reflected successful 

segmentation based on the transitional probability cues, but that additional cues in the 

speech stream would have facilitated further processing. Moreover, the absence of a 

neural marker for segmentation in the low-learner group may be reflective of their need 

for additional cues to successfully segment speech. The notion that the high-learner group 

may shift their segmentation strategy, or may shift their attention to additional 

segmentation cues, is consistent with behavioural work showing that listeners shift their 

strategy from tracking words to uncovering the underlying structure when the signal 

contains cues that may facilitate this process (Peña, Bonatti, Nespor, & Mehler, 2011). 

Further, developmental research has shown that when both transitional probability cues 

and stress cues are present in a speech stream, 7-month-old infants show a preference for 

the transitional probability cues, while 9-month-old infants show a preference for the 

stress cues (Thiessen & Saffran, 2003). Based on these findings of a developmental 

change suggest a shift in the way the speech signal is processed. It may be that examining 

speech segmentation using combinatorial or iterative cues may help explain the difference 

in sensitivity to the regularities in the artificial language between the low- and high-

learner groups. However, another possible interpretation of the lack of an ERP response 

in the low-learner group is that they were not appropriately allocating attention to the 

structural regularities within the artificial language. As discussed above, the P200 in 

response to word-final syllables for the high-learner group is perhaps reflective of 

attention to the structured material, and behavioural work has shown that attention is 
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necessary to for word segmentation (Toro et al., 2005). It could be that additional 

segmentation cues in the speech stream may serve to facilitate attention for the low-

learner group. 

One surprising finding within the present data was the lack of an N100 and N400 

effect for word segmentation, as these have been previously described as “markers of 

word segmentation” (Abla et al., 20080; Cunillera et al.,2006; Cunillera et al., 2009; 

Sanders et al., 2002). In fact, there was greater N100 negativity at the pre-training 

compared to post-training. However, one explanation for the absence of these effects, and 

the N100 effect at training onset, can be taken from the classical interpretation of these 

ERP components. First, the auditory N100 is conventionally seen to be modulated by a 

function of expectation, with greater amplitude for unexpected stimuli (Spreng, 1980), 

and is generated within primary auditory cortex (Godey, Schwartz, de Graaf, Chauvel, & 

Liegeois-Chauvel, 2001). It seems unlikely, then, that recognition of phonological 

information, which is mediated by higher level cortical areas, would be reflective in an 

N100 modulation. An additional consideration is that there is an insufficient amount of 

acoustic information presented within 100ms for the listener to recognize a novel word as 

familiar or unfamiliar, as the first 200ms post stimulus onset is largely dominated by 

perceptual analysis. Thus, it is unlikely that the N100 is reflective of word segmentation 

as this interpretation is not acoustically plausible. Second, the N400 is well-described as a 

response to words or meaningful stimuli (see Kutas & Federmeier, 2011), and is 

reflective of semantic access within long term memory. Thus, it seems unlikely that the 

recognition of a phonological from an artificial language would generate such a response. 

Taken together, given how the N100 and N400 are often interpreted in the literature, and 
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the specific acoustic and processing constraints of the N100, it is not surprising that 

neither component were elicited in the present paradigm in response to trained words.  

There are some limitations that need to be considered when interpreting these 

results. The first is the inherent limitation of measuring ERPs in response to rapidly 

presented stimuli. The syllables in the language for the present study had a duration of 

roughly 195ms (or, 5.1 syllables per second), and the computation of the ERPs in 

response to these rapidly presented stimuli is complicated by baseline issues. Specifically, 

since was is no silence between successive syllables the baseline voltage correction for 

ERP responses to each syllable was clearly affected by the ERP to the preceding syllable. 

To correct for this issue, the present data were baseline corrected at 50ms to minimize the 

interference of prior stimulation on baseline. One possible consideration would be to add 

pauses between syllables to correct the baseline issue. However, it may be that even very 

short pauses facilitate a different mechanism for speech segmentation (e.g., Buiatti, Peña, 

& Dehaene-Lambertz, 2008) by providing an additional acoustic cue beyond 

distributional information to the learner (e.g., Mueller, Bahlman, & Friederici, 2008). The 

second limitation is that using performance on an explicit measure, the 2AFC, to interpret 

implicit neural responses to implicitly learned material may not be an accurate reflection 

of what is learned during online segmentation. The 2AFC measure only allows a fairly 

coarse grouping based on accuracy scores, and other approaches may allow a more fine-

grained approach to examining individual differences in learning. Some recent 

examinations of statistical learning have adopted implicit behavioural measures (e.g., 

Batterink et al. 2105) and more sensitive explicit measures (e.g., Siegelman et al. 2016) 

which may provide a better estimation of the outcome of statistical learning. In future 

research, the combination of these behavioural measures with online neuroimaging 
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approaches (e.g., Batterink & Paller, 2017) would better elucidate the process of 

statistical learning.  

4.4.1 Conclusions 

Using a novel neuroimaging approach, the present study assessed the process of 

statistical learning in real time and uncovered a potential ERP marker that is sensitive to 

the statistical relationships between syllables in a word segmentation paradigm. 

Participants were exposed to an artificial language for 21-minutes, and ERPs were 

measured continuously throughout language exposure. Participants were grouped into 

high and low learners. High-learners showed sensitivity to the conditional structure of the 

speech stream, as indexed by an increased P200 to predictable, word-final syllables by the 

second minute of artificial language exposure. The ERPs from the low-learner group, 

however, did not seem to be modulated by increased language exposure. This finding fits 

with previous descriptions of the P200, which describe it as a marker of attentional 

allocation to structured material (e.g., Snyder et al., 2006). The results also have 

important implications for theories of statistical learning suggesting that those who 

demonstrate greater recognition of newly segmented words, that is, the high-learner 

group, show predictable neural responses to learned regularities within the speech stream.  
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Chapter 5: General Discussion 
 

Despite the growing research on statistical language learning, much of the prior 

research has only focused on the outcome of lab-based statistical learning paradigms, and 

few studies have examined the underlying processes involved in statistical learning. In 

this thesis, I addressed this issue by combing behavioural, clinical, and neuroimaging 

approaches to examine both the cognitive and neural processes involved in statistical 

learning. There were two main aims of this combined approach. First, I wanted to expand 

on the existing research examining how domain-general and domain-specific cognitive 

skills contribute to statistical learning. Second, I wanted to develop a novel, implicit 

measurement approach to examine the process of statistical language learning in real-

time. In this chapter, I will begin by summarizing the main findings from Chapters 2, 3, 

and 4 addressing these aims. Next, I will make recommendations for future research 

based on these findings. I will then close with some comments on how statistical learning 

fits into our understanding of language acquisition more broadly.  

5.1 Relevant Findings 

5.1.1 Domain-general and domain-specific contributions to statistical language 

learning 

 Earlier theories viewed statistical learning as a domain-general process (Saffran & 

Thiessen, 2007), wherein similar computations were made across stimuli from different 

domains. For instance, the transitional probabilities between auditory linguistic and 

musical sequences were thought to be processed in much the same way (e.g., Saffran, 

Johnson, Aslin, & Newport, 1999). However, subsequent research demonstrated both 

qualitative and quantitative differences in processing statistical regularities across 
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different domains (Conway & Christiansen, 2005). More recently, a theoretical account 

described how statistical learning across domains may be differentiated by distinct 

processing constraints across modalities. Domain-generality, on the other hand, arises 

from similar domain-general computations across domains (Frost, Armstrong, Siegelman, 

& Christiansen, 2015). Further still, other accounts (e.g., Arciuli, 2017; Palmer & Mattys, 

2016) have suggested that statistical learning may be supported by distributed domain-

general skills, including working memory or attention. I was interested in further 

examining the domain-specific and domain-general processing constraints on statistical 

learning. To do this, I examined how processing limitations may be instantiated 

behaviourally, or manifest as a result of a result of a processing impairment associated 

with disproportionate deficits in language learning, known as developmental language 

disorder (DLD). 

 The study reported in Chapter 2 provided evidence that domain-general working 

memory interference disrupted statistical language learning. In this study, interference 

effects were compared across tasks imposing a low or high working memory demand, and 

that were verbal or visuospatial in nature. It was assumed if working memory resources 

are involved in statistical learning, any interference effects on statistical learning would 

be due to the working memory demands of the secondary task. Analyses revealed that 

statistical learning was impaired for those engaged in a high-demand working memory 

task across both verbal and visuospatial task conditions. Interestingly, engagement in 

either of the low-demand working memory tasks did not interfere with statistical learning. 

This finding suggested that working memory may be involved in statistical learning in a 

domain-general way, which was consistent with earlier reports (e.g., Palmer & Mattys, 

2016).  
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Overall, the findings from this study have important implications relevant to 

theories of statistical learning. First, theoretical accounts which suggest that statistical 

learning involves shared and distributed component processes, including working 

memory, are consistent with the findings in Chapter 2 (e.g., Arciuli, 2017). Specifically, it 

may be that the domain-general interference effects were due to the engagement of 

partially shared memory resources modulating the encoding of both the auditory language 

sequence and the working memory task stimuli. Memory-based accounts of statistical 

learning suggest that statistical learning arises from a set of memory processes involved 

in the extraction, encoding, and integration of statistical regularities (e.g., Thiessen & 

Pavlik, 2013; see Thiessen, 2017). It is likely that the constant updating and monitoring 

involved in the working memory task would have limited the memory resources required 

to successfully segment the language stream. Taken together, these results suggest that 

there is some involvement of domain-general working memory in statistical learning, 

which could be more fully examined by investigating working memory involvement in 

non-linguistic statistical learning tasks.  

The study reported in Chapter 3 is an extension of the findings reported in Chapter 

2 in examining how domain-general or domain-specific skills are associated with 

statistical learning across domains. In Chapter 3, I was interested in whether cognitive 

skills, including language and working memory, were associated with statistical learning 

abilities in school-aged children. To examine statistical learning across domains, 

participants completed both a statistical language learning task and a visual statistical 

learning task. Importantly, this study included children with developmental language 

disorder (DLD). Children with DLD have a relatively greater impairment in language, 

and examining their performance on verbal and visuospatial statistical learning tasks 
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allowed me to uncover whether language deficits are associated with differential 

statistical learning outcomes across domains. The main finding from this study was that 

children with a language impairment were unimpaired on the statistical language learning 

task. In fact, they performed above chance while typically developing children did not 

differ from chance-level performance. However, it is important to note that the two 

groups did not statistically differ in their performance on this task. This finding was 

surprising, as it was inconsistent with previous meta-analytic findings showing statistical 

word segmentation deficits for children with DLD (e.g., Lammertink, Boersma, Wijnen, 

& Rispens, 2017), and failed to replicate a study that was methodologically similar to the 

study reported in Chapter 2 (e.g., Evans, Saffran, & Robe-Torres, 2009). The second main 

finding was that both the DLD and typically developing groups failed to show learning in 

the visual statistical learning task. This finding is somewhat difficult to interpret, 

however. It may simply be that this task was unsuitable for a developmental population. 

In light of this, the findings from the visual statistical learning task are not be useful for 

informing hypotheses regarding the domain-specificity or domain-generality of a 

statistical learning impairment in those with DLD. Finally, there was no evidence to 

support an association between statistical learning in either domain and any of the 

cognitive or linguistic measures assessed in this sample.  

One clear implication from these findings is that a relatively domain-specific 

language impairment was not associated with poor statistical language learning. It is 

possible that children with DLD are unimpaired on statistical learning tasks, which calls 

into question previous findings demonstrating a statistical learning deficit for this group 

(e.g., Evans et al., 2009; Mainela-Arnold & Evans, 2014; Lammertink et al., 2017; Lum, 

Conti-Ramsden, Morgan, & Ullman, 2014; Obeid, Brooks, Brooks, Powers, Gillespie-
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Lynch, & Lum, 2016). However, it is important to consider that the performance on the 

statistical language learning task was generally meager, with scores only marginally 

above chance for the DLD group. One finding that is clear is that statistical learning 

across both the verbal and visuospatial task variants was not associated with performance 

on any of the language or cognitive measures. This finding is perhaps not surprising as 

previous studies have reported no association between verbal and visuospatial statistical 

learning (Siegelman & Frost, 2015). Additionally, the lack of a correlation between 

statistical learning tasks and other aspects of cognition assessed in Chapter 3 may be due 

to the nature of these tasks. Statistical learning is largely viewed as an implicit task, while 

the cognitive skills measured, including working memory, language, and intelligence, all 

involve explicit processing (see Arciuli, 2017). Given this, it may be that these distinct 

implicit and explicit processing tasks are unrelated, or that implicit statistical learning 

does not draw on these broader, explicit abilities. There is a continued interest in 

examining how statistical learning relates to other cognitive processes, and future work 

will need to be innovative in how it assesses the way in which these components are 

involved in statistical learning.  

The results from Chapter 3 are rather inconclusive in uncovering domain-specific 

and domain-general constraints on statistical learning in a clinical population. However, I 

suspected that the two-alternative forced-choice (2AFC) test was inaccurate in capturing 

statistical learning skills in the school-aged sample. It was worthwhile considering some 

of the limitations of this test, and exploring new methodological approaches that 

accurately elucidate the process of statistical learning. I will now turn to how I addressed 

this issue directly in Chapter 4.  
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5.1.2 Developing a novel measure to assess statistical learning 

 This thesis was primarily concerned with uncovering the process of statistical 

learning. Yet, this venture was inhibited from the outset as the commonly employed 

outcome measure for statistical learning, specifically the 2AFC task, may not be not well-

suited for this goal. It is my belief that the 2AFC outcome measure used in Chapter 2 and 

Chapter 3 underestimated total statistical learning for both adults and children, which is 

consistent with recent findings demonstrating that the explicit 2AFC test underestimates 

implicit statistical learning (e.g., Batterink, Reber, Neville, & Paller, 2015). To overcome 

this, the study presented in Chapter 4 investigated a novel approach to measure statistical 

learning in real-time using electroencephalography (EEG). In this study, event-related 

potentials (ERPs) were measured in response to predictive, word-final syllables during 

exposure to a structured, artificial language. Specifically, changes in P200 amplitude over 

the exposure period were compared across “low” and “high” statistical learner groups. I 

found that for “high” learners, the P200 in response to word-final syllables was maximal 

at the 2nd minute of language exposure, and that the amplitude of this component 

attenuated with subsequent exposure. The notion that the high-learner group may shift 

their segmentation strategy, or may shift their attention to additional segmentation cues, is 

consistent with behavioural work showing that listeners shift their strategy from tracking 

words to uncovering the underlying structure when the signal contains cues that may 

facilitate this process (Peña, Buatti, Nespor, & Mehler, 2011). This pattern was 

qualitatively different from the “low” learner group, who showed a gradual linear 

increase in the P200 response over the first 4 minutes of language exposure.  

 The results of Chapter 4 are important for a number of reasons. First, they 

demonstrated that ERPs measured in real-time in response to structured linguistic 



 

	 150 

material can be used to examine qualitative differences in statistical learning. This is a 

methodological contribution as it demonstrates sensitivity to distributional regularities 

using an indirect and implicit measure that captures the process of learning, not just the 

outcome. Second, the measurement of ERPs can easily be adapted to different 

developmental groups. The demonstration of reliable ERP responses following statistical 

learning in adults provides the groundwork for further exploration in other age groups, 

including infants (e.g., Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 2009), and 

children. Finally, the findings from Chapter 4 have significant implications for statistical 

learning theories. These results indicate “high” learners are shifting their focus quickly 

and briefly to those structural regularities that are meaningful in the speech stream. The 

increased P200 response to word-final syllables in the first two minutes of language 

exposure (for the “high” learner group) may be indicative of the rapid encoding the 

regularities between syllables (e.g., de Diego-Balaguer, Toro, Rodríguez-Fornells, & 

Bachoud-Lévi, 2007). This has clear applicability to statistical learning theories that 

suggest that listeners must not only detect the regularities within the input, but encode 

these segmented units within memory (e.g., Perruchet & Vinter, 1996; Thiessen & Pavlik, 

2013). Further work may be needed to uncover the neural indices of this elaborative 

processing in statistical word segmentation, and add additional empirical support for these 

memory-based accounts. 

5.2 Recommendations and Directions for Future Research  

 The findings from this thesis add to the existing literature supporting the 

involvement of domain-general processes in statistical learning, and how statistical 

learning can be measured in real-time. However, the present findings also generate some 

new questions that motivate future work. The issue of developing appropriate measures to 
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uncover the process of statistical learning was directly addressed in this thesis, however, 

future research should assess both the replicability of these findings and the applicability 

of these findings to theoretical accounts of statistical learning. Moreover, the findings 

reported in Chapter 4 of this thesis are necessarily constrained in that the comparisons of 

the ERPs were made across groups dichotomized on a potentially inaccurate explicit 

outcome measure (e.g., Siegelman, Bogaerts, & Frost, 2016). An appropriate application 

of these findings would be to uncover a continuous statistical learning measure that can 

account for the electrophysiological differences across individuals. Additionally, future 

investigations could examine whether the real-time ERP approach used in this study is in 

fact a valid measurement of statistical learning by corroborating these findings with other 

implicit measures of statistical learning (e.g., Batterink et al., 2015).  

An additional area for future research would be to develop a methodology to 

examine the association between explicit cognitive abilities, such as working memory, 

and implicit statistical learning. As mentioned previously, it is difficult to align these 

disparate skills experimentally, and there is a need for innovative research techniques to 

examine these relationships. One notion that has not been fully considered is how implicit 

working memory is related to statistical learning. Implicit working memory has not been 

widely studied, but relatively recent research has suggested that at least some aspects of 

working memory can operate outside of conscious awareness, and can be recruited 

without conscious attention (Hassin, Bargh, Engell, & McCulloch, 2009). Some 

researchers have suggested implicit working memory may be involved in statistical 

learning (e.g., Arciuli & Simpson, 2011; Janacsek & Nemeth, 2013), although this 

possibility has not been examined. To test this prediction, we would first need to provide 

a formal and testable model incorporating the distributed processes involved in statistical 
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learning,  including processes such as implicit working memory and other cognitive 

skills, and the relationship between these processes.  

It is important for future research to consider multiple dimensions of language 

learning simultaneously in statistical learning paradigms. It has been acknowledged that 

there are multiple interacting layers of language that are instrumental to language 

acquisition (e.g., Saffran, 2014); For instance, the interaction of sounds and meanings in 

the process of word learning (see Graf Estes, Evans, Alibali, & Saffran, 2007). Previous 

work has shown that multiple statistical cues do interact during language learning (e.g., 

Babineau & Shi, 2014; Cunillera, Toro, Sebastian-Galles, & Rodríguez-Fornells, 2006; 

Endress & Hauser, 2010; Finn & Hudson Kam, 2008; Thiessen & Saffran, 2003). One 

possibility that arises, given the findings from Chapter 4, is that there is a dynamic nature 

to learners’ attention to statistical cues during word segmentation. This raises the 

possibility that other linguistic cues may interact with word segmentation cues in an 

iterative or combinatorial fashion. It would be valuable if future research continued this 

exploration into how multiple sources of statistical information interact dynamically 

during language acquisition, particularly at early developmental time points.  

5.3 A Role for Statistical Learning in Language Acquisition   

 An important note on the studies presented in this thesis, and many other studies 

of statistical learning, is that lab-based statistical learning paradigms are necessarily 

devoid of the many interacting cues that may help a language learner acquire their native 

language. However, these approaches are, in fact, advantageous for researchers as it 

allows us to isolate cues that may be meaningful for specific aspects of language learning. 

Indeed, one of the goals for the first studies on speech segmentation was to isolate the 

transitional probability relationships between syllables to demonstrate how these 
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regularities uniquely guide word segmentation (e.g., Jusczyk & Aslin, 1995; Saffran, 

Aslin & Newport, 1996; Saffran, Newport, & Aslin, 1996). Following these initial studies 

using relatively sparse linguistic input, work from Pelluchi and colleagues (2009a; 2009b) 

and Hay, Pelucchi, Graf-Estes, and Saffran (2011) demonstrated that transitional 

probabilities can be applied to word segmentation in natural languages, suggesting that 

even in a noisier linguistic context, there is a role for distributional regularities between 

syllables. Additionally, in the present thesis, isolating the role of transitional probabilities 

in word segmentation allowed me to investigate both the role of other cognitive processes 

in word segmentation, and to measure statistical learning in real-time without 

contamination from confounding linguistic cues. Thus, there are clear and useful 

applications for statistical learning paradigms in the lab.  

Although there are advantages to these statistical learning approaches, no one has 

ever claimed that transitional probabilities are the only route to word segmentation. It is 

important to acknowledge in any account of statistical learning that statistical cues are 

merely one of the many tools available in the language acquisition process. There are a 

myriad of other cues available to the language learner, including rhythm and pauses (e.g., 

Johnson & Jusczyk, 2001; Thiessen, Hill, & Saffran, 2005) and native-language stress 

patterns (e.g., Echols, Crowhurst & Childers, 1997; Thiessen & Saffran, 2007) that may 

help guide word segmentation. Extra-linguistic cues are also valuable to the language 

learner, including hearing words in isolation (e.g., Brent & Siskind, 2001; Fernald & 

Morikawa, 1993), referential statistics (e.g., Smith & Yu, 2008), and social interaction 

(Kuhl, Tsao & Liu, 2003). It is this complexity in our linguistic input that makes the study 

of language acquisition a rich area of research. 
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Infants are incredibly adept patterns learners (see Lewkowicz, Schmuckler, & 

Mangalindan, 2018) and likely take advantage of any combination of available cues to 

help them discern the complex linguistic environment that surrounds them. We have 

certainly come a long way from thinking of language acquisition as the manifestation of 

simple associative learning responses (e.g., Skinner, 1957), or the result of a specialized 

language acquisition device (e.g., Chomsky, 1965), and have gone on to consider the 

complex yet predictable sea of sounds (Saffran, 2001) surrounding the naïve language 

learner. 
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Appendices 
Appendix 1: Shape inventory and training items for the visual statistical learning 
task 

 
 

Note. Shapes are numbered 1-10, and correspond to the numbering used in Appendix 2.  

 
 
 

1 2 3 4 5

6 7 8 9 10

Triplet 1

Triplet 2

Triplet 3

Triplet 4

Triplet 5
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Appendix 2: Summary of the 35 test items for the visual statistical learning task 

Pattern Recognition 

Question Type Item Triplet Target Foil 1 Foil 2 Foil 3 
Triplet-2AFC 1 1 1 2 3  6 5 3         

 2 2 2 1 4  1 3 7         
 3 3 4 3 1  9 7 8         
 4 4 5 6 7  6 5 3         
 5 5 8 9 10  4 1 5         
 6 1 1 2 3  8 1 4         
 7 2 2 1 4  1 3 7         
 8 3 4 3 1  7 2 3         
 9 4 5 6 7  8 1 4         
 10 5 8 9 10  9 10 5         

Triplet-4AFC 11 1 1 2 3  7 2 3  5 2 10  6 7 10 
 12 2 2 1 4  9 10 5  9 7 8  4 1 5 
 13 3 4 3 1  1 2 4  6 7 10  1 2 4 
 14 4 5 6 7  5 2 10  7 2 3  9 10 5 
 15 5 8 9 10  6 5 3  5 2 10  1 3 7 

Pair-2AFC 16 1 2 3   1 6          
 17 2 1 4   4 8          
 18 3 3 1   10 9          
 19 4 6 7   7 8          
 20 5 8 9   7 4          

Pair-4AFC 21 1 1 2   5 1   7 1   2 10  
 22 2 2 1   8 5   2 5   3 2  
 23 3 4 3   3 8   5 7   8 4  
 24 4 5 6   4 1   7 4   9 3  
 25 5 8 9   5 7   9 1   10 5  

Pattern Completion 

Question Type Item Triplet Sequence Completion Choices       

Triplet 26 1 1 ? 3  2 1 9         
 27 2 2 1 ?  2 4 7         
 28 3 ? 3 1  10 5 4         
 29 4 ? 6 7  5 4 8         
 30 5 8 ? 10  3 9 6         

Pair 31 1 1 ?   2 10 1         
 32 2 ? 4   5 1 8         
 33 3 4 ?   2 9 3         
 34 4 6 ?   7 4 6         
 35 5 ? 9   7 8 3         
 
Note. Shapes are numbered 1-10, and correspond to the shapes depicted in Appendix 1. 
Order of presentation was counterbalanced within each question type. For pattern 
completion items, the correct response amongst the completion choices is bolded.  
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Appendix 3: Correlations between statistical language learning performance and 
standardized measures 

Note. * = p < .05; ** = p < .001, n = 24 

  

Measure 1 2 3 4 5 6 7 8 
1. SLL 1.0 -.049 .010 .285 .109 .213 .227 .297 
2. Age (Months)  1.0 .119 .460* .295 .695** .089 .225 
3. CELF   1.0 .575* .600* .357 .545* .691** 
4. AWMA    1.0 .537* .694** .676** .562 
5. MAVA-Expressive     1.0 .609* .676* .306 
6. MAVA-Receptive      1.0 .498* .486* 
7. WASI-Block Design       1.0 .605* 
8. WASI-Matrix Reasoning        1.0 
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Appendix 4: Correlations between visual statistical learning performance, statistical 
language learning performance, and standardized measures 

Note. * = p < .05; ** = p < .001, n = 19; Note that the correlation values between the 
cognitive measures are different from those in Table 1. Only scores for those who 
completed the VSL task on follow-up testing are reported here, which included fewer 
children than the original sample. 
  

Measure 1 2 3 4 5 6 7 8 9 
1. VSL 1.0 -.159 .171 .247 .042 -.030 .032 .192 -.114 
2. SLL  1.0 .158 -.067 .338 .009 .050 .095 -.109 
3. Age (Months)   1.0 .067 .393 .209 .561* .148 .089 
4. CELF    1.0 .610* .548* .225 .681* .525* 
5. AWMA     1.0 .582* .624* .707** .465 
6. MAVA-Expressive      1.0 .580* .297 .313 
7. MAVA-Receptive       1.0 .410 .102 
8. WASI-Block Design        1.0 .528* 
9. WASI-Matrix Reasoning         1.0 
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Appendix 5: Ethics approval for the experiments reported in Chapters 2 and 4 
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Appendix 6: Ethics approval for the experiment reported in Chapter 3 
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