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Abstract 

In this work we study the problem of pricing multiple exercise options, a class of early 

exercise options that are traded in the energy market, using a modified Longstaff and 

Schwartz approach. Recent work by Letourneau and Stentoft (2014) shows American option 

price estimator bias is reduced by imposing additional structure on the regressions used in 

Monte Carlo pricing algorithms. We extend their methodology to the Monte Carlo valuation 

of multiple exercise options by requiring additional structure on the regressions used to 

estimate continuation values. The resulting price estimators have reduced bias, particularly 

for small sample sizes, and results hold across a variety of option types, maturities and 

moneyness. A comparison of the original Longstaff and Schwartz approach to the modified 

Longstaff and Schwartz approach demonstrates the strengths of the developed numerical 

technique.  
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Chapter 1  

1 Introduction 

In this dissertation, we apply least squares Monte Carlo (LSMC) method with inequality 

constraints for regression to price multiple exercise options. If one wants to solve this 

model numerically, one has to solve it with forest of trees. This is the motivation of this 

dissertation. 

1.1 Background and Significance 

An option is a financial derivative that represents a contract sold by an option writer to an 

option holder. This derivative offers the buyer the right, but not the commitment, to buy 

or sell a security (or other financial asset) at an agreed-upon price, named the strike price, 

during a specific interval of time or on a certain date, called the exercise date. A call 

option gives an investor the right, but not the obligation, to buy a security at a specified 

price within a specific time period. Call options give the right to buy at a certain price, so 

the buyer desires the stock to go up. A put option gives an investor the right, but not the 

obligation, to sell a security or other instrument at a specified price within a specific time 

period. Unlike a call option owner, put option buyers desire the stock to go down. 

In this dissertation, the Monte Carlo valuation of multiple exercise options in discrete 

time is studied. Multiple exercise options are considered as a combination of put and call 

rights. A modified Longstaff and Schwartz approach is used which uses constrained 

regression to obtain the hold value at each time. For put options, it is obvious that the 

hold value function is convex with respect to the underlying asset and the slope is 

between -1 and 0. The call option hold value function is convex with respect to the 

underlying asset as well but the slope is bounded between 0 and +1. It is shown that 

applying these constraints gives better high and low biased estimators compared to the 

Longstaff and Schwartz approach. 

In the rest of section 1 we review the Monte Carlo method, Monte Carlo for European 

options, American-style options, detailed description of least squares Monte Carlo, bias 
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of Monte Carlo estimators and detailed description of inequality constrained least squares 

(ICLS) method. In chapter 2, multiple exercise options, pricing algorithms and a 

description of ICLS method for multiple exercise options are reviewed. Chapter 3 

presents the numerical results. 

1.2 Monte Carlo Method 

An alternative to the numerical PDE methods is Monte Carlo, which is straightforward 

and easy to apply, and has application on diverse divisions of mathematics. The recent 

rise in the complexity of derivative securities pricing has directed a requirement to 

evaluate high-dimensional integrals. Growth of the problem dimension pushed Monte 

Carlo methods to be more desirable compared to other numerical integration methods 

such as quadrature. The Monte Carlo method for pricing derivatives uses the probability 

distribution of the underlying security and the law of large numbers. In this approach, the 

first step is simulating sample paths for the underlying state variables for a time period 

using the risk-neutral measure. The option payoff is calculated for each sample path.  The 

simulated option payoffs are discounted and then averaged across sample paths yielding a 

price estimate.  

Monte Carlo simulation was launched into quantitative finance by Boyle[1]. Monte Carlo 

simulation is the most important method for pricing complicated financial derivatives 

particularly for payoffs that are path-dependent or are influenced by multiple factors. 

Let’s work with a single underlying asset to describe Monte Carlo in more detail. To 

generate sample paths assume that the underlying asset (stock) follows a risk-neutral 

process as 

 dS = rS dt +  σSdW, (1.1) 

where S is the asset price, r is the expected return under the risk neutral measure,𝜎 is the 

volatility, t is time and W is a Weiner process. Dividing the time interval into N equally 

spaced subintervals of length ∆t  allows us to simulate a discrete time version of the 

sample path of S using the equation  
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 S(t + ∆t) − S(t) = rS ∆t +  σSεt√∆t (1.2) 

where εt are iid N(0,1) random variables and S(t) stands for the value of underlying asset 

at time t. Equation (1.2) is an Euler discretization of the SDE in (1.1). It is more accurate 

to use the solution to (1.1) to simulate sample paths of S. Specifically ln S follows 

 
d ln S = (r −

σ2

2
)dt + σdW. (1.3) 

So that 

 
ln S(t + ∆t) − ln S(t) = (r −

σ2

2
)∆t + σεt√∆t (1.4) 

or 

 
S(t + ∆t) = S(t)exp [(r −

σ2

2
) ∆t + σεt√∆t], (1.5) 

where εt’s are iid N(0,1) random variables.  

The best advantage of Monte Carlo simulation is that this method can be used when the 

payoff is path dependent or depends on multiple factors.  

1.2.1 Simulating Random Numbers 

Monte Carlo methods utilize chains of random numbers to work out problems. Using 

random numbers has some benefits. It makes possible to simulate trajectories of a 

stochastic process with a variable that changes randomly in time such as given in 

equation (1.1). Additionally complex processes can be simulated providing insights for 

which there are no analytical solutions. Furthermore, Monte Carlo is a tool for evaluating 

multi-dimensional integrals.  

Monte Carlo methods need a trustworthy technique to generate random numbers. 

Because it is not easy to make absolutely random numbers, generators mainly generate 

pseudo-random numbers which emulate the behavior of real random numbers and are 



4 

 

made in a predictable and deterministic way. As Monte Carlo simulations call for many 

random numbers, the pseudo-random numbers are better to be generated quickly and 

satisfy some statistical tests of randomness.  

Additionally, psedo-random number generators (PRNG) all eventually repeat themselves, 

with the period being the length of the unrepeated sequence. The output of a good PRNG 

is a sequence, u1, u2, …, that  

• has a long period 

• is generated efficiently  

• satisfies uniformity properties. That is, want 𝑢1, 𝑢2, …, to be iid uniform[0,1] 

random variables. A battery of statistical tests is used to check the uniformity 

properties. See [2] for example, for further information. 

Sometimes it is necessary to use the same sequence of random numbers in the simulation 

process such as when estimating differences in the function at different parameter 

settings. As such, it is necessary to control the seed used in the PRNG to be able to 

reproduce the same sequence of random numbers. Applying parallel processing 

computing technique is a fantastic benefit of the Monte Carlo method. To use this 

technique it is important to be able to skip ahead to another part of the sequence. This 

allows independent sequences of random numbers to be used by the different parallel 

processes. Finally a random number generating algorithm should be able to run on all 

computing platforms.  

The output of random number generators are uniform [0,1] random numbers but most 

Monte Carlo simulations require sampling from non-uniform distributions. Methods for 

generating observations from non-uniform distribution include inverse transform and 

acceptance-rejection. See [2] for more details.  

For many financial applications, the simulation of standard normal random variables is 

required. If Z~N(0,1) , then this can be transferred to X~N(μ, σ2) using X = μ + σZ, thus 

normal random variables with arbitrary mean and variance can be simulated from N(0,1) 

random variables and then transforming. 



5 

 

The Mersenne-Twister random number generator has been used in this thesis. This is a 

twisted generalized feedback shift register generator with a very long period of 219937 −

11. This PRNG is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623 and passes 

numerous tests for statistical randomness.  

1.2.2 Monte Carlo Estimate 

Suppose we are interested in computing  

 
𝑓 = E[g(X)] = ∫g(x)h(x)dx (1.6) 

where g is some function and X is a random variable having probability density h. The 

Monte Carlo estimator of f is  

 

𝑓𝑀̂ =
1

M
∑g(xi

∗)

M

i=1

 (1.7) 

where x1
∗, x2

∗ , … , xM
∗  are iid simulated values from the probability density h.  

It is easily seen that E[𝑓𝑀̂] = f and that var[𝑓𝑀̂] =
var(g(x))

M
=
σ2

M
. 

The estimated standard error of 𝑓𝑀̂ is then 

 σ̂

M
, (1.8) 

where σ̂ is the standard deviation of the simulated values g(x1
∗), … , g(xM

∗ ). A 95% 

confidence interval for f is easily constructed as 

 
𝑓𝑀̂ −

1.96σ̂

√M
< 𝑓 < 𝑓𝑀̂ +

1.96σ̂

√M
. (1.9) 

This shows that the uncertainty of simulation is inversely related with the square root of 

the number of paths. So to improve the accuracy by a factor of 5, the number of trials 

should increase by a factor of 25. 
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In this setting, the Monte Carlo Estimator is unbiased, that is  

bias(fM̂, f) ≡ E[fM̂] − f = 0. 

Additionally, fM̂ is a consistent estimator of f, that is, for any ε > 0, lim
M→∞

P(|fM̂ − f| >

𝜀) = 0. In what follows, MC estimators for early-exercise options generally yield price 

estimators that are biased yet consistent for the true price.  

1.2.3 Simulation of sample paths 

Another important concern in Monte Carlo simulation is generating appropriate sample 

paths. Usually in quantitative finance applications, geometric Brownian motion (GBM) is 

used as the stochastic process. Geometric Brownian motion is the product of 

exponentiating Brownian motion (BM) and as a result the methods for simulating BM are 

methods for simulating GBM as well. Let's take a random process continuous in time, a 

function W(t) which for each time t ≥ 0 is a random variable. The standard Brownian 

motion process is a stochastic process W(t), for t ≥ 0, with the following properties: 

1) Each increment W(t)−W(s) over any time period of length t-s is normally 

distributed with mean 0 and variance t-s,  

 W(t) −W(s)~N(0, t − s) 
(1.10) 

2) The increments  W(tm) −W(tm−1), … ,W(t1) −W(t0),  are independent for 

all 0 ≤ 𝑡0 ≤ ⋯ ≤ 𝑡𝑚 ≤ 𝑇. 

3) W(0)=0 

4) W(t) is continuous for all t 

 

Discretizing time, sample paths of W can be generated by taking Z1 , … , Zm  iid N(0,1) 

random variables and starting from W(0)=0,  

 W(ti+1) = W(ti) + √∆t Zi+1    ,i=0,…,m−1 . (1.11) 
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where ∆𝑡 =
T

Number of exercise opportunities
. Now a process with drift and different variance 

can be made using constants μ and σ and setting X(t) = μt +  σW(t). The parameter μ is 

the drift parameter and σ is the volatility. So the dynamics of this process are 

 dX(t) = μdt +  σdW(t) (1.12) 

and path values may be generated using the starting value X(0) and the Euler 

discretization  

 X(ti+1) = X(ti) + μ(∆𝑡) + √∆𝑡Zi+1 (1.13) 

for i= 1, ..., m. In general the drift and diffusion can be functions of time and the current 

value of the process. That is X, follows the SDE starts at X(0) and  

 dX(t) = μ(t, X(t))dt + σ(t, X(t))dW(t). (1.14) 

With the starting value X(0), sample paths of X can be simulated using 

 X(ti+1) = X(ti) + μ(ti, X(ti))(∆𝑡) + σ(ti, X(ti))√∆𝑡Zi+1. (1.15) 

With μ(t, x) = μ̃x and σ(t, x) = σ̃x, where μ̃ and σ̃ are constants, X is GBM, with 

dynamics 

 dX(t) = μ̃X(t)dt + σ̃X(t)dW(t) (1.16) 

or 

 dX(t)

X(t)
= μ̃dt + σ̃dW(t) (1.17) 

The solution of the above stochastic differential equation with initial value of X(0) could 

be found by using Ito's lemma as 

 
X(t) = X(0)exp((μ̃ −

1

2
σ̃2) t + σ̃W(t)) (1.18) 
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and the path can be simulated by using the recursive relation  

 
X(ti+1) = X(ti)exp ((μ̃ −

1

2
σ̃2) (∆𝑡) + σ̃√∆𝑡Zi+1) (1.19) 

where Z1 , … , Zm  are iid N(0,1) random variables. 

1.3 Monte Carlo for European Options 

A European option is an option that can be exercised only at the maturity time. Pricing of 

European options is less complicated compared to pricing American options because the 

option holder has no opportunity to exercise before maturity. A European call option is a 

contract between two parties that gives the buyer the right to purchase a stock at the 

future maturity time (T) at a determined strike price (K) agreed in the contract. If the 

buyer decides to exercise the option at maturity time, the seller has to sell the stock at a 

price K to the buyer. The holder’s payoff function is  

 f(ST) = max(ST − K, 0) (1.20) 

Equation (1.20) presents the value of the call option at time T because if S(T) >K, the 

holder makes a profit of S(T)-K. On the other hand if S(T)<K, the holder does not 

exercise the option hence it expires worthless. 

Using Risk-neutral valuation, the price of the option is given by  

 C = e−rTE[f(ST)] (1.21) 

where r is the continuously compounded risk-free rate. The price can be estimated by 

Monte Carlo using 

 

Ĉ = e−rT(
1

M
∑f(ST

j
)

M

j=1

) (1.22) 

where ST
1 , ST

2, … , ST
M are iid simulated observations from the risk-neutral distribution of 

the underlying asset. Like other methods, simulation-based methods such as Monte Carlo 
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were employed to price European options first. Tilley [3] and Barraquand and Martineau 

[4] incorporated the early exercise feature of American options and used simulation to 

assign the holding value of the American option.  

1.4 American-style Options 

An American option is an option that allows the option holder to exercise any time prior 

and at the maturity date. Because an American option holder has the choice to exercise at 

any time during the life of the contract, the value of the American option compared to the 

corresponding European option is higher. Most of the options that are traded on 

exchanges are American-style. 

Nevertheless, European options are normally easier to analyze than American options, 

and several properties of American options are regularly concluded from those of its 

European counterparts. Due to this early-exercise feature, the pricing of American 

options becomes a complicated problem that falls in the general class of optimal 

stopping, a subclass of optimal control problems. This flexibility makes this problem path 

dependent and an optimal stopping time problem. So, pricing an American option 

includes finding the optimal exercise times.  

In the last few decades, American options pricing has been examined broadly. The major 

difficulty is because the American option pricing needs the selection of the optimal 

exercise boundary with the valuation of the contingent claim. Numerous methods have 

been proposed in the literature to work out this challenge. 

To get the price of an American put option, one should find the optimal discounted 

expected payoff over all stopping times, τ, in [0,T] which is  

 supE[e−rτmax(K − S(τ), 0)] (1.23) 

where K is the strike price and S(τ) is the underlying asset value at time τ. To get the 

American option price numerically, τ should be limited to m exercise opportunities t0 <

t1 < ⋯ < tm. 
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To obtain the dynamic programming equations for American options, we use the 

underlying state variable (S) as the related state variable. At each time there is a 

maximum of one right to exercise and the option holder has the right to exercise or hold 

the option. When the option holder reaches any exercise opportunity he/she selects 

between two choices; exercise the right, or keep the right and continue with the option 

having one right left. A dynamic program has been used to price this option and the 

recursive equations below have been used, 

 Hi(Si) = E[𝑒
−𝑟(𝑡𝑖+1−𝑡𝑖)Bi+1(Si)|Zi] (1.24) 

 Bi(Si) = max(hi(Si), Hi(Si)) (1.25) 

where Hi(S), Bi(S) and hi(S) are respectively the continuation value, option value and 

exercise payoff at time ti and state Ȥi which is the time ti information set. 

1.4.1 Approximations 

Generally there are three major numerical approaches including lattices, trees and 

simulation methods for pricing the American options. Popularity of lattices is growing 

mostly in the academic studies. Simplicity and ability of implementing early exercise of 

American options, is the reason for this popularity. Both lattice and trees are connected 

with the curse of dimensionality, in the other words they suffer from the exponential 

growth in computational cost as dimensionality increases. On the other hand simulation 

based methods don’t have the curse of dimensionality, as a result simulation based 

methods are the best approaches when the problem dimension increases. 

Geske and Johnson [5] proposed the first method for this issue using a portfolio of 

compound European options to replicate the early exercise feature of American options. 

Bunch and Johnson [6] studied a method to locate the exercise times optimally and 

enhanced the efficiency of the Geske–Johnson method. They showed that most of the 

time only two early-exercise dates (including maturity) are required. Barone-Adesi and 

Whaley [7] presented a quadratic approximation that gives an estimated answer of the 

Black–Scholes partial differential equation in closed form which is very fast and precise 

for short and long maturities. Ju and Zhong[8] modified the Barone-Adesi and Whaley 
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method by including a second-order extension and could give accurate answers for 

middle-term maturities. Later, Li [9] advanced the Ju and Zhong method[8] by the 

smooth pasting condition and leads to a more accurate solution of the optimal exercise 

price (OEP). However, all these methods have the limitation that the approximation error 

cannot be checked, subsequently they cannot be shown to converge.  

Kim [10] and Carr, Jarrow, and Myneni [11] derived an integral equation in implicit form 

to solve the optimal exercise price and made a significant achievement in this problem 

converting the American option pricing problem into one of finding the optimal exercise 

price. Later, Ibáñez [12] adapted Kim’s approach to show that the prices converge to the 

true prices by decreasing the size of the time steps. Lately, Broadie and Detemple [13], 

Laprise, Fu, Marcus, Lim, and Zhang[14] and Chung, Hung, and Wang [15] 

recommended tight quasi-analytic bounds for American options.  

Using the approximate moving boundaries method, Chockalingam and Muthuraman [16] 

studied the cost of a suboptimal exercise price. This method iteratively finds an 

approximation of the optimal exercise price.  When the maturity time is long enough, 

more or less all the methods possibly will create considerable pricing errors, 

consequently convergence to the “true” price relies on increasing the number of iterations 

(or reducing the time-step size) which leads to significant efficiency losses for these 

methods.  

Boyle [1] initiated the simulation based method to price European options which can be 

used for a considerable range of assets. These methods have convergence rates that are 

independent of the number of state variables unlike lattice methods. The main issue for 

these methods is the computation cost. A major concern for using Monte Carlo to solve 

the dynamic programming problem is that dynamic programming methods generally 

work backwards in time, because of the optimal exercise price being simply determined 

at maturity time. However, simulation methods generally work forward in time. Tilley [3] 

dispelled the dominant belief that simulation based methods are not suitable for pricing 

American-style options, but simulation based methods are suitable to find optimal 

exercise price. 
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1.4.2 Tree base methods / PDE Lattice 

Tree-based methods like binomial and trinomial trees can be employed for pricing 

options, which are mainly well-liked for pricing American options since no closed-form 

formulas are currently available for these options. 

In the tree methods, the price of a European option converges to the Black-Scholes price 

when the size of the time steps tends to zero. When pricing American options one needs 

to evaluate whether early exercise is beneficial at each node in the tree compared with 

holding the option. The advantage of binomial and trinomial trees is that they can be used 

to value any kind of option and they are extremely straightforward and painless to 

implement. 

Cox and Ross [17] suggested a binomial tree structure to describe the underlying asset 

paths. This model assumes that the underlying asset takes on one of only two possible 

prices at each time period. It may seem unrealistic at the first sight but the assumption 

directs to a formulation that can precisely value options. With many times periods, this 

model approximates GBM. 

The binomial model assumes that the current price, S0, either increases by a proportion u 

with the probability q, or decreases by a proportion d with probability 1-q, at each time 

period. Figure 1.1 shows the movement in one time step schematically.  

 

 

Figure 1.1: Up and down move in one time period 
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Denote r as the risk-free interest rate for the period which is assumed to be constant. The 

inequality below should be satisfied to avoid arbitrage opportunities between the stock 

and the risk-free investment, 

 d < 1 + 𝑟 < 𝑢. (1.26) 

Figure 1.2 illustrates the possibilities of a binomial tree for 3 time periods, with the 

additional assumption that u =
1

d
.   

 

Figure 1.2: Binomial Tree with 3 Periods 

We assume a portfolio containing of a long position in Δ shares and a short position in an 

option with initial value  f0 , fu and fd for up and down move respectively. Then we 

determine the value of Δ that makes the portfolio risk-free. If there is a downward move 

in the stock price, the value of the portfolio at the end of time step is 

 ∆𝑑𝑆0 − 𝑓
𝑑 (1.27) 

If there is an upward move in the stock price, the value of the portfolio at the end of time 

step is 

 ∆𝑢𝑆0 − 𝑓
𝑢 (1.28) 

The two are equal when 
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∆=

𝑓𝑢 − 𝑓𝑑

𝑆0(𝑢 − 𝑑)
 (1.29) 

For this value of Δ, the portfolio is riskless and, for there to be no arbitrage opportunities, 

it must earn the risk-free interest rate. Then 

 𝑆0∆ − 𝑓0 = (𝑢𝑆0∆ − 𝑓
𝑢)𝑒−𝑟∆𝑡 (1.30) 

where Δt is the length of a time step. Rearranging gives 

 𝑓0 = 𝑒
−𝑟∆𝑡(𝜌𝑓𝑢 + (1 − 𝜌)𝑓𝑑) (1.31) 

where,  

 
𝜌 =

𝑒𝑟∆𝑡 − 𝑑

𝑢 − 𝑑
. (1.32) 

Since 0 < 𝜌< 1, 𝜌 has the properties of a probability. In fact, this pseudo-probability 𝜌 

would equal the true probability q if investors were risk-neutral. This method is simply 

generalized to any number of time-steps. 

There is another significant category on numerical methods in financial modeling, 

deterministic methods based on PDE which comes from the BSM differential equation 

[18]: 

 𝜕𝑓

𝜕𝑡
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 (1.33) 

where f is the price of option, S is underlying asset and r is the risk-free interest rate. 

Solving the PDE becomes more complicated for American options which include 

variation inequalities.  

A variety of techniques has been used in the literature to solve this PDE. One may choose 

between finite difference methods [19], finite element methods [20], [21], finite volume 

methods [22], [23] or spectral methods [24], [25]. 
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1.4.3 Monte Carlo Methods for American Options 

Broadie and Glasserman [26] introduced a stochastic mesh method for pricing high-

dimensional American options when there are a finite, but probably large, number of 

exercise dates. Their algorithm offered point estimates and confidence intervals and 

which converges to the correct values as the computational effort increases. Tsitsiklis and 

Van Roy [27] developed a model for optimal stopping times for discrete-time ergodic 

Markov processes with discounted rewards. They suggested a stochastic approximation 

algorithm that adjusts weights of a linear combination of basis functions in order to 

approximate a value function. They proved that this algorithm converges and that the 

limit of convergence has some appropriate properties. In another research, Tsitsiklis and 

Van Roy [28] introduced and analyzed a simulation-based approximate dynamic 

programming method for pricing complex American-style options, with a possibly high-

dimensional underlying state space. They showed that with an arbitrary choice of 

elements of the state space, the approximation error can grow exponentially with the time 

horizon (time to expiration). 

Of particular interest to this thesis is the regression method of Longstaff and Schwartz 

[29]. They expressed the possibility of utilizing simulation and regression methods 

together for pricing American options. Simulation for pricing American options methods, 

combined with regression on a group of basis functions to extend lower dimensional 

approximations to higher dimensional dynamic problems. A big advantage of these 

methods is that their performance does not diminish with dimensionality. In the Least-

squares Monte Carlo method a set of basis functions is chosen for regression to estimate 

continuation values which means only this set of basis functions determines the 

continuation value estimators. Using a finite set of basis functions initiates an 

approximation error. Stentoft [30] demonstrated that the LSMC method is the best 

method among the different suggested numerical methods based on simulation and 

regression.  

In the case of dealing with path dependent options, Monte Carlo is a suitable choice 

which is one advantage of this method. The ability simulate the underlying asset price 

path by path then calculate the payoff of each simulated path and employ the average 
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discounted payoff to estimate the price. On the other hand, this advantage makes this 

method difficult to employ to price the American options because it is complicated to 

find the continuation value at all times. Figure 1.3 shows the early exercise boundary for 

a typical American put option.  

 

Figure 1.3 Schematic of early exercise boundary for an American put option 

The main idea is to find an early exercise boundary at which the American option can 

behave like a knocked-and-exercised option. If any simulated path never touches this 

boundary before the maturity time, payoff of this path will be calculated based on the 

discounted value of the payoff at the maturity time. 

1.5 Detailed description of LSMC 

Probably after Longstaff and Schwartz [29] used simulation and regression method for 

pricing American option, this method becomes established. Longstaff and Schwartz 

method has less accumulated errors and so is less biased. They introduced a strong and 

easily implemented method for estimating the price of American options by simulation. 
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This method uses least squares to find the continuation value of the option. This method 

is appropriate when traditional finite difference and binomial techniques could not be 

used such as for multifactor models and path dependent situations. The holder of the 

American option compares the payoff of immediate exercise with the continuation value 

at each exercise opportunity. The larger of these two values determines whether the 

owner decides to exercise or hold the option. In the simulation the continuation value is a 

conditional expectation which is estimated from the cross-sectional data by using least 

squares. This is the main intuition of LSMC. Here payoffs from continuation are 

regressed on a set of basis functions where values are determined by the state variables 

and the fitted value of this regression gives an obvious approximation of the conditional 

expectation. By moving along exercise times, regression estimation of the conditional 

expectation function for each exercise date is obtained. From this an estimate of the finest 

exercise strategy along each path is determined. Using this estimated strategy, American 

options could then be priced precisely by simulation. This technique is referred as least 

squares Monte Carlo (LSMC). 

Here the framework for the valuation process is presented. Assume a finite time horizon 

[0, T] and  complete underlying probability space (Ω,F,Q) where Ω is set of all possible 

outcomes of the stochastic process from time 0 to T, F is a 𝜎-Algebra of subsets of Ω and 

Q is a risk-neutral probability measure. We are attracted into pricing an American-style 

option with random cash flows which may occur from time 0 to T. 

The aim of the LSMC approach is to obtain a pathwise approximation to the optimal 

stopping rule yielding a pathwise approximation for the American option value. Although 

usually American options could be exercised continuously, to express the insight behind 

the LSMC algorithm, the discussion will be focused on the situation in which the 

American option can only be exercised at some specific times such as 0 < t1 ≤ t2 ≤

 t31 ≤ ⋯ ≤ tK = T which includes K exercise times, and be concerned about the finest 

stopping strategy at each exercise time. By taking K to be sufficiently large, the LSMC 

technique could be applied to estimate the value of the continuously exercisable options. 

Earlier than the last expiration date, at any exercise time t, the investor must decide 

whether to exercise instantly or to keep holding the option and revisit the exercise choice 
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at the next exercise time. The option holder exercises the right once the instant exercise 

value is greater than or equal to the value of continuation. If the investor decides not to 

exercise the option until the last exercise time, which is the expiration date of the option, 

the option will be exercised if it is in the money, or will be expired if it is out of the 

money. 

The investor knows the cash flow from immediate exercise at time tk which is simply 

equal to the value of instant exercise. On the other hand, the cash flows from holding the 

option are not known at that time. The value of holding the option is equal to the value of 

the option presuming that it is not allowed to be exercised until after the current time. No-

arbitrage pricing theory implies that the value of this option is known by calculating the 

expectation of the leftover discounted cash flows using the risk-neutral pricing measure. 

The LSMC method employs least squares to estimate the conditional expectation 

function and moves backwards in time since the path of cash flows made by the option is 

defined recursively. Cash flows at time tk could be different from cash flows at time tk+1 

since it may be optimal to execute at time tk+1 so changing all subsequent cash flows 

along a specific path.  

Let's assume F(Sk, tk) expresses the continuation value of a path having price Sk at time 

tk with 

 
F(Sk, tK) =∑βk,iBk,i(𝑆𝑘)

∞

i=0

 (1.34) 

where 𝑆𝑘 is the price, Bk is the set of basis functions, βk are coefficients and constant at 

time tk and i is related to the basis function. Then 

 β̂k = (Bk
TBk)

−1
Bk
TFk (1.35) 

where F is the vector of basis functions. Also define C(s; t, T) to denote the path of cash 

flows made by the option conditional that it has not been exercised at or prior to time t 

and the option holder follows the optimal stopping strategy for all s, t <s≤ T. 
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To apply LSMC method, F(tk−1) is estimated using the first M basis functions (M<∞) 

and present this estimation with FM(tk−1) which is approximated by regressing the 

discounted values of C(tk; tk−1, T) onto the basis functions only including the paths 

where the option is in the money at time tK−1. Because taking decision on the exercise of 

option is concerned, only in the money options are included in the regression as the 

obvious decision for the out-of-the money options is to hold. The result is that fewer basis 

functions are needed to attain a precise estimation of the conditional expectation function 

than when including all of the paths in the regression. 

When the conditional expectation function at time tK−1 is approximated, by comparing 

the instant exercise payoff with F̂M(Sk−1, tK−1) the early exercise decision at time tK−1 

could be made for all in-the-money paths w. After the exercise decision is known, the 

option cash flow paths C(s; tK−2, T) could be estimated. The exercise decision at each 

exercise time for each path could be identified by repeating the procedure. To value the 

American option at time zero, we take the first stopping time along each path and 

discount the payoff from exercise back to time zero, and then take the average over all 

paths. 

The Least-squares Monte Carlo technique has been employed for the valuation of 

multiple exercise options [31]. A big advantage of this method is that increasing 

dimensionality does not diminish the performance. In this method a set of basis functions 

must be chosen to run regressions to approximate continuation values. In theory only an 

infinite set of basis functions results in the true option value, but usually a finite set of 

basis functions is employed which brings in an approximation error. The problem is that 

this approximation error could spread backwards through the exercise opportunities and 

generate high- and low-biased estimators which may not converge to the identical value 

[32]. 

1.6 Bias of Monte Carlo estimator 

It is well known that Monte Carlo methods to value American-style options generate 

price estimators that are biased. Depending on how the price estimator is constructed, it 

can be possible to determine the sign of the bias. One common strategy for valuation is to 
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construct two estimators, one with positive bias and the other with negative bias, that (on 

average) bound the true option price. If these estimators are also consistent, then as the 

sample size increases the difference in the estimators can be made arbitrarily small, hence 

yielding the option value. In this section we discuss the sources of bias and the 

construction of price estimators.  This discussion is general in that it applies to many 

Monte Carlo methods (e.g., stochastic tree, stochastic mesh, regression-based technique) 

used for American-style options. 

In general, bias results from i) making incorrect exercise decisions and ii) using the same 

set of information for exercise decisions and value propagation (back to the next time 

step in the recursion). Incorrect exercise decisions means the option was held when it 

should have been exercised or it was exercised when it should have been held. 

Suppose that we have simulated a set of M stock price sample paths and consider the 

recursive dynamic program given by Equations (1.24) and (1.25) replacing the hold value 

with its simulation-based estimator, Hĩ(si), in Equation (1.25) yields 

 B̃i(Si) = max (hi(Si), H̃i(Si)) (1.36) 

This estimator uses the same information to i) make exercise decisions; and ii) propagate 

the value backwards along the path for the next recursion. Mathematically, it is easy to 

show that the resulting estimator has positive bias and hence on average overestimates 

the true price. This bias is termed foresight bias and arises from peering into the future 

along the path in order to make both the exercise decision and assign value. For example, 

if by chance the future value of the option along the path produces a higher than average 

payoff, the hold value will be higher, making it more likely the option will be held and 

the higher than average value propagated backwards. On the other hand, if by chance the 

path-wise future option value produces a lower than average payoff, the hold value will 

be lower, making it more likely the option will be exercised, resulting in the (higher than 

average) exercise value as the one propagated backwards. Both situations have the effect 

of pushing up the option value estimator, resulting in an estimator with positive bias. 
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One way to get rid of the foresight bias is to use independent sets of information for 

exercise decisions and value propagation. Suppose that in addition to the set of M 

simulated stock price sample paths, we have another (set of) independent simulated stock 

price sample path(s). Let * denote the independent sample path. Using the original set of 

M simulated stock price paths, the hold value estimator is constructed and compared with 

the exercise value along the independent sample path.  If the hold value is less than the 

exercise value, the option is exercised, otherwise the option is held and the value assigned 

is the discounted value from the next time step along the independent path. The hold 

value along the independent path is denoted Hĩ(si
∗), and Equation (1.25) becomes 

 
B̃i
∗ = {

hi(Si
∗)             if  hi(Si

∗) > H̃i(Si
∗)

e−𝑟∆𝑡𝑖B̃i+1
∗ if  hi(Si

∗)  ≤  H̃i(Si
∗)

 (1.37) 

This can be repeated for the whole set of independent sample paths, and then the option 

value estimates across paths are averaged. This estimator is called the out-of-sample or 

path estimator. Mathematically it is easy to show that the out-of-sample estimator has 

negative bias, hence underestimates the true option price. This bias is termed sub-optimal 

exercise bias and it results from making incorrect exercise decisions. Intuitively, along a 

given path, there is an optimal exercise rule which is the best one can do. Replacing the 

optimal exercise rule with an estimate results in a sub-optimal exercise rule which gives 

rise to incorrect exercise decisions. The value propagated is independent of the exercise 

decision (not peering into the future along the path to make exercise decisions) and hence 

is not on average higher than it should be as in the case above (in fact due to possibly 

incorrect exercise decisions at future times, the value propagated along the path is, on 

average, lower than it should be). All of this implies that the resulting estimator has 

negative bias. 

Another estimator that is commonly used, particularly in the regression-based methods, is 

called an interleaving estimator by Glasserman [33]. The interleaving estimator avoids 

the need for simulating a second set of independent sample paths and removes some of 

the foresight bias that results from using the dynamic program in Equation (1.36). 

However, these improvements come at the expense of not knowing the sign of the bias, 
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implying there is no knowledge of whether the price estimator is an upper or lower bound 

for the true price. Using the set of M simulated sample paths, Equation (1.36) in the 

dynamic program becomes 

 
B̃i = {

hi(Si)                    if  hi(Si) > H̃i(Si)

e−𝑟∆𝑡𝑖 B̃i+1             if  hi(Si)  ≤  H̃i(Si)
 (1.38) 

For this estimator, there is dependence between the set of information used to make 

exercise decisions and the value propagated. Thus there remains some foresight bias in 

this estimator. Using the discounted cash flows along each path as the value propagated 

(in the event that the exercise decision is to hold) results in significantly less foresight 

bias as compared to the positively-biased estimator. Additionally, sub-optimal exercise 

bias is present as the estimated exercise rule can induce incorrect exercise decisions. 

Effectively, there is a tradeoff between the foresight and the sub-optimal exercise biases. 

For small to moderate sample sizes, the foresight bias can dominate while for large 

sample sizes, the effect of including the single path in the exercise decision gets washed 

away in the large number of other paths, resulting in sub-optimal exercise bias 

dominating the foresight bias.  Hence for large sample sizes the interleaving estimator 

generally has negative bias and for small sample sizes, the sign of the bias cannot, in 

general, be determined. 

Duality methods provide another way to get a positively-biased estimator that is generally 

less than the estimator given by Equation (1.36), hence providing a tighter upper bound 

on the true price. Duality methods require as an input a method that generates a 

negatively-biased estimator, such as the path estimator. Rogers [34], Jamshidian [35], and 

Haugh [36] are some examples in the literature that use duality to provide an upper bound 

on the option value. 

There have been a number of methods proposed in the literature to reduce estimator bias. 

By far the vast majority of these have been in the regression-based setting in which 

various approaches have been used to get a better estimate of the hold-value function. 

Notable exceptions are the bootstrapping approach proposed by Broadie, Glasserman and 

Ha [37] for the stochastic tree, the bias estimate suggested by Carriere [38] in the 
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regression setting, and the works by Kan and Reesor [32], Whitehead, Davison, Reesor 

and Kan [39] and Whitehead, Reesor and Davison [40]. In the latter works, the authors 

use a central-limit theorem approximation to derive an estimate of the bias, which is 

subtracted from the price estimator at each step in the dynamic program recursive 

equations. This method has been shown to be effective for the stochastic tree and mesh 

and for the regression-based approaches. One recent interesting attempt at reducing bias 

in the regression setting is given by Cheng and Joshi [41], though the efficacy of this 

method is unclear. 

In this thesis, we work in the regression-based setting and focus on Inequality 

Constrained Least Squares (ICLS), which has been proposed by Letourneau and Stentoft 

[42] as a way of reducing bias by imposing monotonicity and convexity constraints on 

the fitted value function.  This work is promising and in this thesis we extend their 

approach to the valuation of multiple exercise options. In the following subsections, we 

provide a detailed description of the ICLS approach. 

1.7 Detailed description of ICLS 

Letourneau and Stentoft [42] showed that refining Longstaff and Schwartz method by 

imposing proper structure in the regression problem could reduce the bias of the method 

and improve the results consequently. Interestingly this is true for different maturities, 

categories of moneyness and type of option payoffs. In the ICLS method monotonicity 

and convexity of the estimated function is imposed which leads to nice properties of 

estimation function. The most important result of this structure is not having overfitting. 

Dynamic programming of ICLS and LSMC are similar but the regression part of these 

methods is different which would be explained in this section. Least squares regression in 

matrix form is presented as 

 y = βX + ε (1.39) 

where β is a vector of unknown parameters and ε is a vector of unobserved disturbances. 

The Longstaff and Schwartz algorithm introduced an exercise strategy by approximating 

the holding value using regression then deciding to exercise or hold the option. Their 
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method has three main steps as i) making paths for the underlying asset by taking the 

proper stochastic model, ii) determine of payoff at maturity, then iii) move one time step 

back and calculate the expected cash flow for each path. Here the time step is ∆𝑡 =

T

Number of exercise opportunities
. The best advantage of the least squares Monte Carlo 

(LSMC) method is simplicity and the easiness which it could be modified to price a 

variety of financial products. The LSMC method has decent convergence properties. 

Stentoft [30] illustrated that the LSMC method converges to the true price when the 

number of paths and regressors tend to infinity. But in real applications, one uses a finite 

number of regressors and simulated paths which leads to biased estimates. One way of 

having a better convergence rate is increasing the number of regressors. Longstaff and 

Schwartz [29] claimed that the number of regressors should increase until the price 

estimate starts to decline.  Even though more regressors will enhance the flexibility of the 

estimator, but it will raise the in-sample overfitting and consequently increase the bias, so 

the final result is not clear.  

Letourneau and Stentoft [42]  suggested a novel method which uses constraints in the 

estimation of the holding value function and consequently reduces the chance of making 

incorrect exercise decisions along a given path. Hence, the resulting estimator will have 

less bias. Imposing constraints reduces the likelihood of poor exercise decisions that can 

result from overfitting. 
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(a) 

 

(b) 

 

 

Figure 1.4 Approximation the hold value for a) 3 regressors, b) 8 regressors. The 

option characteristics are S0=K=40, r=6% ,σ=40%, t=1 year  and S follows 

geometric Brownian motion. 1000 simulated paths are used. 
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Figure 1.4 demonstrates the value of an American put option with one year to maturity. 

Figure 1.4 includes the theoretical holding value of European option using BSM, intrinsic 

value, ordinary least squares and inequality constrained least squares methods keeping a) 

3 and b) 8 regressors. This figure shows the possibility of overfitting and poor fit in the 

ordinary least squares method for both 3 and 8 regressors. When the intrinsic value is low 

(asset price is close to strike price), number of simulated paths is adequate, therefore 

ordinary least squares method and ICLS have the same holding value. Though, in the 

large moneyness region, not enough paths exist which leads to overfitting for OLS 

method which consequently raises the incorrect exercise decisions. On the other hand, 

ICLS method prevents the overfitting by imposing constraints even for a very low 

number of paths.  

In looking at the exercise rule for the maturity, the unconstrained regression approach 

implies an incorrect exercise decision, as it implies the holder should hold when the 

underlying is between 15 and 20 (Colour red in Figure 1.4 a). Constraining the fitted 

regression fixes this problem, as can be seen by looking at the Colour blue curve in the 

right panel of Figure 1.4 b. 

First we introduce notation. Let’s define Γh = (x1, x2, … , xh)′ to be a univariate grid on 

{x1: xh} with h elements. The first and second difference of f, the estimation function, 

over grid are defined respectively as 

 [f̂(xi+1) − f̂(xi)] (1.40) 

 [f̂(xi+2) + f̂(xi) − 2f̂(xi+1)] (1.41) 

where f̂ is the estimated function over the grid. By checking the second difference to be 

positive, we could verify if the function is convex over three points of the grid discretely. 

To check the monotonicity over the grid, the differentiation matrix should be defined as 
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Dk =

(

  
 

−1 1 0
0 −1 1
0 0 −1

0 … 0
⋮

1
⋮

0 0 …

⋱ ⋱

0 −1 1)

  
 

 (1.42) 

where Dk is a k × (k + 1) matrix and k is number of points which we check the 

monotonicity and convexity of estimated function. The second differentiation matrix 

could be obtained by Dk−1 × Dk as 

 

Dk−1 × Dk =

(

  
 

1 −2 1
0 1 −2
0 0 1

0 … 0
1 ⋮
−2 1

⋮

0 0 …

⋱ ⋱

1 −2 1)

  
 

 (1.43) 

So the matrix multiplication Dk−1 × f̂(Γk) denotes the first difference over the grid and 

Dk−2 × Dk−1 × f̂(Γk) denotes the second difference. To affect the constraints to the 

estimated function in the univariate grid, the problem should be established as 

 min
B
‖f̂(Γh) − Q‖ (1.44) 

such that 

 A × Q ≥ 0 (1.45) 

where Q is vector of size h and A is a matrix with the finite difference constraints, 

therefore A × Q is a vector. Note to impose strict monotonicity over the grid, A should be 

set as Dh−1. On the other hand, to impose the convexity, A should be set as Dk−2 × Dk−1. 

Nevertheless, when the convexity constraints are satisfied, the slope is monotonically 

increasing, thus one does not need to check the slope constraints, except at both ends. 

Consequently, it suffices to use k − 2 convexity constraints and 2 slope constraints in the 

problem. Therefore A is as 
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A =

(

  
 

−1 1 0
0 1 −2
0 0 1

0 … 0
1 ⋮
−2 1

⋮

0 0 …

⋱ ⋱

0 −1 1)

  
 

. (1.46) 

Here we present some numerical results and compare them with benchmarks. As the first 

step, some results from Longstaff and Schwartz [29] are reproduced. In this section we 

price an American put option on a stock when the option has 50 exercise opportunities 

per year. The interest rate is 6% and strike price is 40. Underlying asset price, volatility 

of returns and years to expiration are shown by S, σ and T respectively. Our simulation is 

based on 50,000 sample paths for the stock price process. 

Table 1: Comparison of results with Longstaff and Schwartz paper results 

S σ T 
Longstaff Our results 

American Option S.E. American Option S.E. 

36 0.2 1 4.472 0.01 4.4713 0.0162 

36 0.2 2 4.821 0.012 4.8165 0.0167 

36 0.4 1 7.091 0.02 7.0905 0.0267 

36 0.4 2 8.488 0.024 8.4839 0.0359 

38 0.2 1 3.244 0.009 3.2418 0.0137 

38 0.2 2 3.735 0.011 3.7280 0.0114 

38 0.4 1 6.139 0.019 6.1371 0.0262 

38 0.4 2 7.669 0.022 7.6406 0.0317 

40 0.2 1 2.313 0.009 2.3038 0.0145 

40 0.2 2 2.879 0.01 2.8676 0.0168 

40 0.4 1 5.308 0.018 5.3077 0.0201 

40 0.4 2 6.921 0.022 6.9007 0.0305 

42 0.2 1 1.617 0.007 1.6116 0.0124 

42 0.2 2 2.206 0.01 2.2058 0.0186 

42 0.4 1 4.588 0.017 4.5803 0.0277 

42 0.4 2 6.243 0.021 6.2425 0.0312 

44 0.2 1 1.118 0.007 1.1065 0.0069 

44 0.2 2 1.675 0.009 1.6745 0.0154 

44 0.4 1 3.957 0.017 3.9566 0.0220 

44 0.4 2 5.622 0.021 5.6400 0.0292 
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Comparison between our results and Longstaff and Schwartz [29] showed in table 1 

shows very close prices for different American put options. They have used 100,000 

samples ((50,000 plus 50,000 antithetic) and this could explain the slight differences in 

the prices and standard errors. Generally both results are very close and confidence 

intervals have overlap. 

1.7.1 High-biased Estimator 

In-sample analysis denotes to approximate the model using available data and then 

compare the model's fitted values to the same data. This process draws an excessively 

optimistic representation of the model's forecasting ability. This in-sample over fitting 

establishes a high bias in the price approximation. To reduce the high bias, must raise the 

number of simulated paths. 

Figure 1.5 shows the estimated values for the ordinary least squares and modified least 

squares methods which the modified one includes some constraints in the regression. 

Figure 1.5 includes 9 different options which vary on the initial price and expiry date. 

Options are American put options and each plot shows the prices attained with 

polynomials of order 2 to 7. The red line with circles represent the LSMC method using 

the OLS regressions, while the constrained least squares method is represented by the 

blue line with squares and the solid black line is the price obtained from binomial 

method.  
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Figure 1.5 American put option pricing using the in-sample LSMS and ICLS 

methods, ITM, ATM and OTM options are priced for maturities of 1,3 and 6 

months with daily exercise. The underlying asset follows a geometric Brownian 

motion with r= 6%, 𝝈 = 𝟒𝟎%, K=$40, number of paths = 1000 and S0=$36, $40 and 

$44 respectively for ITM, ATM and OTM options. All options are priced using 

polynomials of order 2 to 7, and the regressions are done using the paths are ITM at 

the current time step. The mean prices of 100 repetitions are shown and the 

benchmark prices are obtained with the binomial model. 

Figure 1.5 is almost the same as results that Letourneau and Stentoft[42] presented, and 

the only discrepancy is for polynomials of orders 2 and 3. This different could be raised 

because of using different packages. Letourneau and Stentoft [42] used lsqlin() in Matlab 

and we used quadprog package in r. Nevertheless, our result is more consistent and 

accurate.  
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Results in Figure 1.5 show that the ICLS method has less bias in the in-sample analysis. 

Both LSMC and ICLS have more bias for polynomial with higher order which could be 

because of over fitting. 

1.7.2 Low-biased Estimator 

Here out-of-sample pricing is used to eliminate the over fitting effect of in-sample 

pricing. Figure 1.6 includes the estimated value of American put option obtained with 

out-of-sample pricing and shows that ordinary least squares method is always biased low 

compared to the true value. When polynomial order increases, the bias increases 

consequently which is because of the over fitting. 

Figure 1.6 illustrate that in the out-of-sample approach, ICLS has less bias compared to 

the OLS and has a higher price. Approximating the conditional expectation and imposed 

structure in the regression causes less bias in the ICLS. On the other hand, the imposed 

structure prevents over fitting which is obvious in the prices of the ICLS for different 

polynomial orders.  
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Figure 1.6 American put option pricing using the out-of-sample LSMC and ICLS 

methods, ITM, ATM and OTM options are priced for maturities of 1,3 and 6 

months with daily exercise. The underlying asset follows a geometric Brownian 

motion with r= 6%, 𝝈 = 𝟒𝟎%, K=$40, number of paths = 1000 and S0=$36, $40 and 

$44 respectively for ITM, ATM and OTM options. All options are priced using 

polynomials of order 2 to 7, and the regressions are done using the paths are ITM at 

the current time step. The mean prices of 100 repetitions are shown and the 

benchmark prices are obtained with the binomial model. 
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Chapter 2  

2 Multiple Exercise Options 

In chapter 2 we focus mostly on pricing multiple exercise options. First we discuss a 

detailed description of multiple exercise options and previous models of their valuation. 

Then we present a detailed description of LSMC and ICLS methods and their algorithms.  

 

2.1 Overview of Some Multiple Exercise Products 

Options with multiple exercise opportunities provide more than one exercise right for the 

option holder which is a generalized version of American options. In some cases, the  

option holder has more flexibility such as control of the amount that exercised. The 

valuation of multiple exercise options is a key area of financial modelling, with variety of 

applications including interest rate derivatives, energy and commodity contracts. These 

types of options have become more common in the last decade and have a wide range of 

application from insurance to energy industries. A survey of the literature gives plenty of 

examples including swing options (Jaillet et al. [43], Chandramouli and Shyam [44]), 

switching options (Cortazar et al. [45]), portfolio liquidation (Gyurko et al. [46]), chooser 

flexible caps (Hambly and Meinshausen [31]) and commodity processing and storage 

(Lari et al. [47]). In particular, our focus is on valuation of multiple exercise options 

using ICLS method. 

The majority of the studies in the literature have concentrated on swing options which 

have multiple exercise rights, and constraints on the total volume delivered. Swing 

options have widely been employed in energy markets to help producers deal with the 

raw materials consumed in energy production facing uncertain demand. Swing options 

allow the option holder to buy a predetermined number of the underlying asset at a 

predetermined price while having some control over the time and quantity of the 

underlying asset. Within the duration of the contract the holder may exercise a specified 

number swing rights which typically could only be exercised at a predetermined discrete 
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set of times. A swing option is usually distinguished as the swing part of a base-loaded 

futures contract that provides a prearranged price for an amount of a commodity over a 

predetermined period of time and this part permits for a flexible delivery amount of the 

underlying asset above or under the base-loaded contract. Nonetheless, the two parts of 

the contract can be separated and treated separately for valuation.  

Another multiple exercise option is a chooser flexible cap which is an interest rate 

derivative with multiple exercise opportunities. The number of rights is limited and the 

buyer does not wait for automatic exercise but chooses when to use a cap. On the other 

hand, the buyer might decide to use the caplets on a later date which potentially could be 

more valuable. This conclusion depends on multiple factors such as number of rights left, 

time to maturity and expected volatility of underlying asset. The chooser flexible cap is 

an appropriate substitute to the interest rate cap and flexible cap particularly where the 

buyer believes there is a high chance that rates could rise above the strike. They are most 

appropriate for buyers enthusiastic in risk management. The chooser flexible cap has 

some advantages over a traditional cap such as lower premium, flexibility and ability to 

be customized. 

2.2 Multiple Exercise Options Pricing 

Similar to American option pricing, multiple exercise option valuation is a stochastic 

optimal control problem. For both of them the solution provides a value and an optimal 

exercise policy. For example, take a swing option as the multiple exercise option, the 

exercise policy is a paired arrangement of stopping times and exercise amounts. In the 

case of a chooser flexible cap as the multiple exercise option, the exercise policy is an 

arrangement of stopping times. 

A dynamic program has been used to price multiple exercise options and the recursive 

equations below have been used, 

 Hi(Si, N) = E[Bi+1(Si, N)|Zi] (2.1) 

 Bi(Si, N) = max(hi(Si, N) + Hi(Si, N − 1), Hi(Si, N)) (2.2) 
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where Hi(Si, N), Bi(Si, N)and hi(Si, N) are respectively the continuation, option and 

exercise values at time ti and state Ȥi which is time ti information set on the tree with N 

exercise rights left.  

a) 

 

b) 

 

Figure 2.1 Multiple exercise option pricing 2 put rights using binomial trees a) 1 

right left b) 2 rights left. Options are priced for maturities of 1 year with no 

dividend, r= 5%, 𝒖 = 𝟏. 𝟏, d=1/u, K=$40, S0=$40 and time steps=5.  

Figure 2.1shows the binomial trees of a multiple exercise option with two put rights. 

Grey and blue cells show the price and option value respectively. Red cell in Figure 2.1a 

indicates the best time of exercise when 1 right is left then in the tree with 2 rights left, no 

right could exercise in that time which leads to a lower value for the second right. Note 

that the total value of this multiple exercise option is summation of the value of both 

rights value which is 1.74 ( = 1.03+0.71). 

Lets assume price of multiple exercise option with Np put rights and Nc call rights is 

V(Np,Nc). The price of call and put rights are distinct which means adding one put right 

to this option, adds some value which is independent of number of call rights. So 

 𝑉(𝑁𝑝, 𝑁𝑐) − 𝑉(𝑁𝑝−1, 𝑁𝑐) = 𝑉(𝑁𝑝, 0) − 𝑉(𝑁𝑝−1, 0) (2.3) 
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then it is easy to conclude  

 𝑉(𝑁𝑝, 𝑁𝑐) = 𝑉(𝑁𝑝, 0) + 𝑉(0,𝑁𝑐) (2.4) 

Note that above conditions hold when put right strike price is not more than call right 

strike price. 

 

2.2.1 Tree base Methods / PDE Lattice 

It is obvious that American option has no closed form pricing formula and consequently 

multiple exercise options and swing option don't have closed form pricing formula also. 

Therefore a numerical method should be employed to price these options approximately. 

The numerical methods fall into lattice/tree, numerical PDEs and Monte Carlo solutions.  

Multiple exercise options are complicated and there is a lack of literature about their 

valuation. Most of the focus in the literature is on swing options. Multiple exercise 

options have specific characteristics that make their valuation different from American 

options. Similar to American options, multiple exercise options have the right of early 

exercise therefore methods that have been developed for American options could be 

modified to value the multiple exercise options. 

Lari-Lavassani et al. [48] provided an overview of the valuation of American options via 

trees related to both widening the number of trees and the stop pricing time strategy. For 

valuating an American option with dynamic programming techniques, a specific tree 

could be used. On the other hand, for pricing multiple exercise option a forest of trees 

should be made which each tree representing a possible combination of rights. The 

dynamic programming algorithm moves backward in time and is used for pricing 

American options. This is modified to be able to move both backward in the time and 

through the trees corresponding to different numbers of exercise rights. In this case the 

start of the progress would be from the tree with no exercise rights remaining. Pricing of 

options with multiple exercise opportunities is a stochastic optimal control problem.  
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The insight behind the valuation of multiple exercise options using forest of trees as 

follows. The process begins from the expiration date of the option and moves towards the 

back in time to value the instrument by backward induction in two dimensions: price; and 

number of exercise rights left. At each exercise opportunity the holder chooses the 

maximum value of continuing in the current tree (to not exercise a right), or the payoff 

from exercising a right and continuing to hold an option with one less right. if the choice 

is to exercise then this "jumps" the valuation algorithm to the tree with one less exercise 

right. Suppose that up until the current time k out of N rights have been exercised. 

Exercising of an additional right would leave the option holder with the payoff from 

immediate exercise plus continuing with an option with N-k-1 rights left.  

Besides the forest of trees method, there are other methods for valuing multiple exercise 

options. PDE valuation methods are some of them and they need clearly defined 

boundary conditions. The holder of a multiple exercise option cannot exercise two rights 

at the same time and this feature makes valuing of multiple exercise option with PDE 

approach more challenging.  

The PDE valuation models are more complicated than the BSM therefore to solve the 

PDE methods numerically, well-posed boundary conditions should be defined. Yan [49] 

developed a PDE method with well-posed boundary conditions for valuing swing 

options. To develop the boundary condition he used the energy method and made a two 

space variable model of Asian options well-posed on a finite domain and used the PDE 

approaches to approximate the solution. He priced the multiple exercise option with a 

waiting period as well. In the extreme case, when the waiting time tends to zero, the 

value of the M rights option price increases to the value of a portfolio of M American 

options.  

Wilhelm and Winter [20] solved a PDE of the excess to the payoff function to bypass the 

difficulty of early exercise option. In addition they extended a PDE approach to solve the 

usage based on the BSM. In the lattice and PDE methods one exogenous price process 

should be specified in the form of stochastic differential equation.  
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2.2.2 MC Methods 

Pricing and hedging early exercise options such as multiple exercise options is an 

important problem in the finance area and its analysis usually involves solving problem 

of optimal stopping or optimal control. For uncomplicated contracts, for instance 

American puts and calls, the related optimal stopping time problems can be solved by 

usual numerical methods such as binomial trees. But, the computational expenses for 

these methods grow dramatically as the number of parameters affecting the price of a 

contract grows. The approach for pricing multiple exercise options numerically, such as 

trees and finite difference methods for PDEs, have similar issues as the computational  

increases with  time dimension of the problem.  

Extensive studies have been done on the high dimensional American option pricing 

challenge. Tilley [3] started with American style option and then Barraquand [4], Broadie 

and Glasserman [50] and Tsitsiklis and Van Roy [28] worked on the approximation of the 

exercise boundary by applying different methods on more complex options with high 

dimensionality. All of their techniques conclude a non-optimal exercise policy and give a 

lower bound on the price because the price is the supremum over the return from all 

possible exercise strategies in these methods.  

Generally there is no unbiased estimator for pricing multiple exercise options by 

simulation. Therefore attempt to limit the option value from above and below as good as 

possible. Denote random variable 𝑉0
↑,𝑀

 as a positively biased estimator and𝑉0
↓,𝑀

 as a 

negatively biased estimator, in that  

 𝜇↓,𝑀 =  E[𝑉0
↓,𝑀] ≤ 𝑉0

∗,𝑀
 (2.5) 

 𝜇↑,𝑀 =  E[𝑉0
↑,𝑀] ≥ 𝑉0

∗,𝑀
 (2.6) 

where 𝜇↑,𝑀 and 𝜇↓,𝑀 are the means of the positively and negatively biased estimator using 

a sample size of M. Similarly let 𝜎↑,𝑀 and 𝜎↓,𝑀 be the standard deviations of the 

positively and negatively biased estimators from a sample size M. A (1 − 𝛼)% 

confidence interval for the true value of 𝑉0
∗,𝑀

 is given by  
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[𝜇↓,𝑀 − 𝑍𝛼

𝜎↓,𝑀

√𝑀
 , 𝜇↑,𝑀 − 𝑍𝛼

𝜎↑,𝑀

√𝑀
] ≤ 𝑉0

∗ (2.7) 

As sample size M increases the width of the confidence interval decreases.  

Haugh and Kogan [36] and Rogers [34] improved the Monte Carlo approach by 

considering the dual problem and constructed a positive biased approximation for the 

valuation of an American option. Hambly and Meinshausen [31] extended this theory to 

the multiple exercise options and obtained an expression for the price of the option as the 

infimum over a choice of stopping times and martingales then developed an algorithm to 

obtain a positive biased approximation for the price. 

Currently the Monte Carlo (MC) method is the most prosperous for pricing early exercise 

options such as American, multiple exercise and swing options. Hambly and 

Meinshausen [31] developed the technique to price a straightforward swing call option 

which includes a right to exercise at each exercise time. Aleksandrov and Hambly [51] 

recently used Monte Carlo to price a general form of swing call option. Leow [52] 

studied valuation of swing option with MC using the pricing problem formulated as a 

stochastic optimal control problem in discrete time and state space. Nadrajah et al. [53] 

developed least squares Monte Carlo value (LSMV) and approximate linear 

programming (ALP) methods to value the multiple exercise options with term structure 

model. They compared the performance of these methods with least squares Monte Carlo 

continuation method. A drawback of the LSMV and ALP methods is the large 

computation of high dimensional expectation in the valuation of Markov decision 

problem.  

2.3 Detailed Description of LSMC for Multiple Exercise 
Options 

Because of its simplicity and treating the high dimensionality problem, MC methods are 

accepted in practical finance including for the valuation of multiple exercise options. As 

discussed before, handling the early exercise feature is the most challenging issue in the 

MC methods. Most authors concentrate on the expectation function engaged in the 
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repetition of the dynamic programming using least squares regression for estimating the 

continuation values. In this section least squares Monte Carlo (LSMC) method for 

multiple exercise options is discussed.  

The method LSMC introduced by Longstaff and Schwartz [29] intends to evaluate 

continuation values by regression. To price the multiple exercise options with LSMC, an 

analogous forest of trees method should be employed.  The forest of trees method for 

multiple exercise option pricing is a generalization of the pricing of American options by 

trees which extends the number of trees linked with the exercise rights and  a forest is 

constructed which includes a tree for every possible combination of rights. The 

conventional tree-based approach for pricing of options is based on constructing a tree for 

the option price that identifies the progress of the option settlement price until the 

expiration date. Although this method is hard to implement for path dependent options 

such as Asian options, but works properly for multiple exercise options. 

In this thesis, we face with the underlying state variable (S) and number of exercise rights 

left (N) as related state variables. It is assumed that the exercise volume is fixed. When 

the option holder reaches any exercise opportunity he/she should select between two 

choices; exercising one right and continuing with another option with N-1 rights, or keep 

all rights and continuing with an option having N rights left. Dynamic programming has 

been used to price this multiple exercise option and the algorithm below has been used 

for pricing one specific tree with 𝑁𝑗 number of rights left and LSMC method: 

1. Generate M number of independent paths of the underlying asset price from time 

0 to maturity time T.  

2. Calculate the option value for the last time step BT(Si, N), which is the payoff of 

each path at time T. 

3. By backward induction from i=T-1 to i=0  

a) Estimate the E[Bi+1(Si, N)|Zi] using linear regression with the set of all 

ITM paths and N represents the number of rights remaining.  
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b) Execute equations (2.1) and (2.2) to decide whether hold the right or 

exercise one right and jump to another tree with one right less left,  

c) This results in an estimator of the optimal exercise policy corresponding to 

each value for the number of exercise rights remaining and, similar to the 

case for American style options, results in a high-biased price estimator. 

Note that here time steps are equal to ∆𝑡 =
T

Number of exercise opportunities
. 

4. The low biased estimator of Monte Carlo simulation for tree N rights left is 

calculated using the estimated policy from above with another set of M 

independently simulated sample paths. 

Obviously constructing the jungle of trees starts from making the tree with 1 possible 

right (call or put right) because in (2.2) price of the tree with one less right is needed 

always. Note that 

 Hi(Si, 0) = 0. (2.8) 

All of the above calculations can be repeated independently and each repetition results in 

one price. These prices can be averaged and the standard deviation computed to yield a 

confidence interval for the price. 
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Figure 2.2 Section of a forest of trees with N and N-1 number of rights remaining 

Figure 2.2 is a schematic diagram in a forest that illustrates the node in the tree with N 

remaining rights which decides to exercise one right and move to the other tree with N-1 

rights left.  

 

2.4 Detailed Description of ICLS for Multiple Exercise 
Options 

In this section the inequality constrained least squares Monte Carlo (ICLS) method for 

multiple exercise options is discussed. As reviewed before, the Longstaff and Schwartz 

method uses regression to obtain an estimate for the hold value of option in the next time 

step. Letourneau and Stentoft [42] suggested imposing structure in the regression part of 

the method leading to more accurate prices. Dynamic programming valuation of multiple 

exercise option using ICLS is similar to LSMC but the regression part is different.  

In the valuation process of a multiple exercise option having both call and put rights, 

there are 3 possibilities at each time step for any Monte Carlo path; 
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I. Exercise one call right (assuming at least one call right remains and spot price is 

above strike price) then jump to another tree with one less call rights remaining. 

II. Exercise one put right ( assuming at least one put right remains and spot price is 

below strike price) then jump to another tree with one less put right remaining. 

III. Do not exercise any rights and stay on the same tree. 

Figure 2.3 shows a schematic plot of a call option. The curve of call option has some 

characteristics including positive convexity and slope between 0 and 1at all prices. 

Imposing this structure to the regression leads to a better estimation for option price at 

each time. 

 

 

Figure 2.3 Schematic of constraints which ICLS applies to American call options 

On the other hand, the curve of price for put option has positive convexity and slope 

between -1 and 0 at all prices. Figure 2.4 presents these constraints schematically.  
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Figure 2.4 Schematic of constraints which ICLS applies to American put options 

When there are both call and put rights remaining, for each path there is possibility of 

exercising one put right or one call right, depends on the price related to that path. 

Consequently at each time step constraints displayed in Figure 2.3 would be applied to 

paths that are in the money for call rights and constraints displayed in Figure 2.4 would 

be applied to paths that are in the money for put rights. Assuming the strike prices is the 

same for both call and put rights implies that the sets of ITM paths for call rights and 

ITM paths for put rights are disjoint. 

As with the ICLS method for American-style options, high- and low-biased estimators 

for multiple exercise options can be similarly constructed. Additionally, with independent 

repeated valuations, confidence intervals for the high- and low-biased estimators can 

easily be computed. Using the upper and lower confidence limits for the high- and low-

biased estimators, respectively, a conservative confidence interval for the true price is 

obtained.  
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Chapter 3  

3 Pricing Multiple Exercise Options 

In the previous chapters, we have provided an introduction to the ICLS and LSMC 

methods of pricing multiple exercise options. In this chapter, we use ICLS and LSMC 

methods to price some multiple exercise options using the forest of trees technique.  

In the first section, we use our valuation method and compare results to those obtained in 

other studies to verify our methodology. In the second section, some numerical results 

and the effects of different parameters on the option value are discussed. The last section 

presents the processing time required for pricing along with root mean squared errors 

(RMSE). 

The multiple exercise options can be exercised at discrete times up to expiry. In this 

thesis the volume choices given are constant and don't change. This means that the holder 

could exercise one of the rights at any time which is chosen from a limited list.  

3.1 Verification with Binomial and Other Studies 

This section presents verification of our pricing methodology by comparing with prices 

obtained from different methods.  

Figure 3.1and Figure 3.2 show the price of a multiple exercise option using regression 

polynomials order of 2 and 6 respectively. Figure 3.1 illustrates the effect of sample size 

on the high and low biased estimators of both ICLS and LSMC when polynomial of 

second order is chosen as the basis functions for regression. As predicted, increasing the 

sample size from 20 to 10000 paths leads the high and low biased estimators to converge 

to the price of binomial method. Prices shown are the average of 100 repetitions of the 

given sample size. The option has 1 put right and 1 call right. Option prices are computed 

using the out-of-sample and in-sample LSMC and ICLS methods, ATM options are 

priced for maturities of 3 years with yearly exercise opportunities. The underlying asset 

follows a geometric Brownian motion with dividend=10%, r= 5%, σ=20%, K=$40 and 

S0=$40, number of paths = 1000. All options are priced using polynomial of order 2 and 
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the regressions are done using the paths that are ITM at the current time step. Both ICLS 

and LSMC converge to 10.08 which is in agreement with Marshall[54].  

 

Figure 3.1 Multiple exercise option price versus sample size. The option has 1 put 

right and 1 call right. Prices are computed using the out-of-sample and in-sample 

LSMC and ICLS methods, ATM options are priced for maturities of 3 years with 

yearly exercise opportunities. The underlying asset follows a geometric Brownian 

motion with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are 

priced using polynomial of order 2 and the regressions are done using the paths that 

are ITM at the current time step. The mean prices of 100 repetitions are shown and 

the benchmark prices are obtained with the binomial model. 

Figure 3.1 shows that when sample size is small using ICLS improves the estimation 

giving in- and out-of-sample estimators that are closer to the true price. By increasing the 

sample size, both LSMC and ICLS methods converge to the binomial method and the 

differences between the estimators vanishes. 

Figure 3.2 presents the pricing of the same instrument as in Figure 3.1 but using a 

regression polynomial of order 6. Figure 3.2 shows that in LSMC method, increasing the 

polynomial order hurts the approximation a result over fitting. On the other hand, in the 
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ICLS method increasing the polynomial order leads to tightening the spread between 

high-biased and low-biased estimators then ICLS does not suffer from over fitting. 

 

Figure 3.2 Multiple exercise option price versus sample size. The option has 1 put 

right and 1 call right. Prices are computed using the out-of-sample and in-sample 

LSMC and ICLS methods, ATM options are priced for maturities of 3 years with 

yearly exercise opportunities. The underlying asset follows a geometric Brownian 

motion with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are 

priced using polynomial of order 6 and the regressions are done using the paths that 

are ITM at the current time step. The mean prices of 100 repetitions are shown and 

the benchmark prices are obtained with the binomial model. 

3.2 Numerical Results 

In this section additional numerical results are presented, mostly focused on the 

comparison of LSMC and ICLS methods under parameter settings such as number of 

rights, number of exercise opportunities and volatility of underlying asset.  

Figure 3.3 a) and b) presents multiple exercise option and relative values respectively, 

compared to a basket of American put options for 1 to 5 put rights using the out-of-

sample and in-sample LSMC and ICLS methods. ATM options are priced for maturities 
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of 1 year with weekly exercise opportunities. The underlying asset follows a geometric 

Brownian motion with dividend=0%, r= 5%, σ=20%, K=$40, S0=$40 and number of 

paths = 1000. All options are priced using polynomial of order 2 and the regressions are 

done using the paths that are ITM at the current time step. The mean prices of 100 

repetitions are shown and the benchmark prices are obtained with the binomial model. 

Obviously increasing the number of rights widens the range between high-biased and 

low-biased estimators.   

a) 

 

b) 

 

Figure 3.3 Multiple exercise option pricing including 1 to 5 put rights using the out-

of-sample and in-sample LSMC and ICLS methods, ATM options are priced for 

maturities of 1 year with weekly exercise opportunities a) option value b) relative 

value of option compare to basket of American put options. The underlying asset 

follows a geometric Brownian motion with dividend=0%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40, 

S0=$40 and number of paths = 1000. All options are priced using polynomial of 

order 2 and the regressions are done using the paths that are ITM at the current 

time step. The mean prices of 100 repetitions are shown and the benchmark prices 

are obtained with the binomial model. 

 

Figure 3.4 presents the effect of increasing number of exercise opportunities and 

compares the LSMC and ICLS methods. This figure presents pricing of multiple exercise 

option with 5 put rights using the out-of-sample and in-sample LSMC and ICLS  

methods, ATM options are priced for maturities of 1 year with different number of 

exercise opportunities from 10 to 100. The underlying asset follows geometric Brownian 

motion with no dividend, r= 5%, σ = 20%, K=$40, S0=$40, and number of paths 1000 

and 100 respectively. All options are priced using polynomial of order 2 and the 
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regressions are done using the paths that are ITM at the current time step. The mean 

prices of 100 repetitions are shown. The price of both methods increases monotonically 

although for large number of exercise opportunities the curves tend to get flat and the 

effect of changing the number of exercise opportunities diminishes. Interestingly for low 

exercise opportunities ICLS and LSMC methods are closer and the more exercise 

opportunities brings in more chance of choosing not optimal decision by LSMC, so the 

difference of these methods increases by exercise opportunities. 

a) 

 

b) 

 

Figure 3.4 Multiple exercise option pricing 5 put rights using the out-of-sample and 

in-sample LSMC and ICLS methods. ATM options are priced for maturities of 1 

year with different number of exercise opportunities from 10 to 100. The underlying 

asset follows a geometric Brownian motion with no dividend, r= 5%, 𝝈 = 𝟐𝟎%, 

K=$40, S0=$40 and number of paths a) 1000 and b) 100. All options are priced using 

polynomial of order 2 and the regressions are done using the paths that are ITM at 

the current time step. The mean prices of 100 repetitions are shown. 

The main difference of LSMC and ICLS methods is the regression of the estimated value 

of the option which LSMC uses regular regression but ICLS uses constrained regression, 

as explained before. The effect of moneyness on the fitted regression value is displayed 

in Figure 3.5 to Figure 3.8. Additionally, the impact of the polynomial order on 

constrained versus unconstrained regression and the number of exercise opportunities is 

also displayed in these figures. The curves illustrate the regions that holding the option is 

beneficial. Wherever the fitted regression value is above the intrinsic value, one should 

hold the option but if the fitted regression value is less than the intrinsic value, one should 
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exercise the option because the payoff is more than the discounted expected value of the 

option at the next time step.  

Figure 3.5 illustrates the influence of moneyness and time to maturity parameters on the 

fitted regression values for LSMC method using polynomial of order 2 as the set of basis 

functions. In Figure 3.5 the prices of multiple exercise options including a) 1 put right 

and b) 5 put rights using LSMC method are presented. ATM options are priced for 

maturities of 1 year. The underlying asset follows a geometric Brownian motion with 

dividend=0%, r= 6%, σ = 20%, K=$40, S0=$40 and number of paths = 1000. All options 

are priced using polynomial of order 2 and the regressions are done using the ITM paths 

at the current time step. Regression values are presented for different remaining time to 

maturity. Note that moneyness is the relative position of the current price of the 

underlying asset with respect to the strike price of the option which is (𝐾 − 𝑆)+ for a put 

option.  

Options with longer time to maturity are farther from the exercise boundary than the 

near-to-expiry options when the moneyness is low. That means when the moneyness is 

low and you are close to expiry, there is low possibility of getting higher payoff by 

holding the option, compared to the case when the option is farther away from expiry. 

Figure 3.5 illustrates that when moneyness is low, better to hold the option. Similarly, 

when time-to-maturity is considerable, there is no reason to exercise the option and again 

should keep the right. When the time is passed enough, there is a middle region which 

LSMC method recommends to exercise the right. By increasing the moneyness, LSMC 

would imply an incorrect exercise decision which is the major drawback for this method. 

For instance, in Figure 3.5 at time step 30 LSMC methods implies no exercise for 

moneyness more than $13 and only suggests exercising the right between $7 and $13. 
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a) 

 

b) 

 

Figure 3.5 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using LSMC methods. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the paths are ITM at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

Figure 3.6 presents multiple exercise option pricing including a) 1 put right and b) 5 put 

rights using ICLS methods. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

σ=20%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the ITM paths at the current 

time step. Regression values are presented for different remaining time to maturity. Fitted 

regression values of ICLS method are displayed in Figure 3.6 for polynomial of order 2. 

Comparison of Figure 3.6 against Figure 3.5 shows that ICLS fixes the drawback of 

LSMC and for large moneyness (after enough time steps), exercising the option is 

recommended because fitted regression values lie under the intrinsic value.   
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a) 

 

b) 

 

Figure 3.6 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using ICLS methods, ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 2 and the regressions are done using the paths are ITM at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

Figure 3.7 presents multiple exercise option pricing of a) 1 put right and b) 5 put rights 

using LSMC method. ATM options are priced for maturities of 1 year. The underlying 

asset follows a geometric Brownian motion with dividend=0%, r= 6%, σ = 20%, K=$40, 

S0=$40 and number of paths = 1000. All options are priced using polynomial of order 6 

and the regressions are done using the ITM paths at the current time step. Regression 

values are presented for different remaining time to maturity. Figure 3.7 presents the 

same curves as Figure 3.5 but for polynomial of order 6. The fitted regression values for 

t=1 is not logical which is because simulated paths are not enough diffused and most of 

the paths have small moneyness. Still for all moneyness at t=10 and large moneyness at 

t=20, LSMC implies to hold the option which are incorrect exercise decisions. 

Note that fitted values for small times highly depend on the generated random paths and 

could change dramatically if the seed of the random number generator changes.  
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a) 

 

b) 

 

Figure 3.7 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using LSMC method. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

On the other hand ICLS implies correct and consistent exercise decisions if only paths are 

enough diffused. Figure 3.8 presents the fitted regression curves for polynomial order 6 

ICLS method. In this case the exercise boundary moves toward the lower moneyness 

when the time passes. For example at times 20 and 45, ICSL implies exercising the 

option if moneyness is larger than $7 and $2.5 respectively.  

In Figure 3.7, the fitted regression values are not increasing, convex functions of 

moneyness, ICLS fixes this and the effect is clearly shown in Figure 3.8. Note that blue 

curves in Figure 3.8 are not monotonic when moneyness is close to zero because no 

sample path is in that area in the first time step. 
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a) 

 

b) 

 
 

 

Figure 3.8 Multiple exercise option pricing including a) 1 put right b) 5 put rights 

using ICLS method. ATM options are priced for maturities of 1 year. The 

underlying asset follows a geometric Brownian motion with dividend=0%, r= 6%, 

𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step. Regression values are presented for different remaining time to 

maturity. 

 

 

3.3 Processing Time and RMSE 

This section discusses the processing time and root mean square error of the examples 

presented in Sections 3.1 and 3.2. All simulations in this section were completed on the 

same computer with Intel Core i7-6700 and 3.4 GHz processors. 

Equation (1.8) simply explains that the standard error monotonically decreases for higher 

sample paths of Monte Carlo simulation, subsequently equation (1.9) indicates for very 

large number of sample paths, confidence interval of estimation reaches the exact 

solution.  

Figure 3.9 and Figure 3.10 present the root mean squared error of option values showed 

in Figure 3.1 and Figure 3.2 respectively. These figures present the root mean squared 

error (RMSE) of multiple exercise option pricing including 1 put right and 1 call right 

using the out-of-sample and in-sample LSMC and ICLS methods. ATM options are 
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priced for maturities of 3 years with weekly exercise opportunities. The underlying asset 

follows a geometric Brownian motion with dividend=10%, r= 5%, σ = 20%, K=$40 and 

S0=$40. The number of paths varies from 20 to105. All options are priced using 

polynomial of order 2 and the regressions are done using the ITM paths at the current 

time step. As expected increasing the sample size decreases the RMSE for both ICLS and 

LSMC methods, both in-sample and out-of-sample estimators and any polynomial order 

of fitted regression function. Apparently the polynomial order of the fitted regression 

does not affect the RMSE but interestingly, increasing the sample size from 1000 to 104 

(10 times larger), diminishes the RMSE by half.  

 

Figure 3.9 Root mean squared error of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample with LSMC and 

ICLS methods. ATM options are priced for maturities of 3 years with weekly 

exercise opportunities. The underlying asset follows a geometric Brownian motion 

with dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced 

using polynomial of order 2 and the regressions are done using the ITM paths at the 

current time step.  
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Figure 3.10 Root mean squared error of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample LSMC and ICLS 

methods. ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced using 

polynomial of order 6 and the regressions are done using the ITM paths at the 

current time step.  

Obviously increasing the number of sample paths size is a tradeoff between RMSE and 

processing time. Although increasing the sample size decreases the RMSE (which is 

favorable), it also increases the processing time (which is not a favorable event).  

Referring to Figure 3.2, estimator precision (bias) depends on the sample size. On the 

other hand standard error can be controlled through independent repeated valuations. 

Therefore we can fix bias by choosing a sample size and then control the standard error 

by doing independent repeated valuations.  
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Figure 3.11 presents the processing time of multiple exercise option pricing including 1 

put right and 1 call right using the out-of-sample and in-sample LSMC and ICLS 

methods. ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, σ=20%, K=$40 and S0=$40. All options are priced as the mean of 

100 repetitions using a) polynomial of order 2 and b) polynomial of order 6, while the 

regressions are done using the ITM paths at the current time step. Figure 3.11 illustrates 

that the increase of polynomial order slightly increases the processing time but sample 

size has a significant effect on the processing time. Increasing the sample size from 1000 

to 10000 (10 times larger) leads to a processing time with roughly 13 times slower and 

half RMSE (see Figure 3.9 and Figure 3.10). 

 

a) 

 

b) 

 

Figure 3.11 Processing time of multiple exercise option pricing including 1 put right 

and 1 call right using the out-of-sample and in-sample LSMC and ICLS methods. 

ATM options are priced for maturities of 3 years with weekly exercise 

opportunities. The underlying asset follows a geometric Brownian motion with 

dividend=10%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40 and S0=$40. All options are priced a) 

polynomial of order 2, b) polynomial of order 6; while the regressions are done 

using the ITM paths at the current time step.  
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Figure 3.12 presents the processing time of multiple exercise option pricing including 5 

call rights using the out-of-sample and in-sample LSMC and ICLS methods. ATM 

options are priced for maturities of 3 years with 10 to 100 exercise opportunities. The 

underlying asset follows a geometric Brownian motion with dividend=10%, r= 5%, 

σ=20%, K=$40 and S0=$40. All options are priced as the mean of 100 repetitions using 

a) polynomial of order 2 and b) polynomial of order 6, while the regressions are done 

using ITM paths at the current time step. Figure 3.12 illustrates that processing time for 

multiple exercise opportunity including 5 call rights, increases exponentially with the 

number of exercise opportunities.  

a) 

 

b) 

 

Figure 3.12 Processing time of multiple exercise option pricing including 5 call 

rights using the out-of-sample and in-sample LSMC and ICLS methods. ATM 

options are priced for maturities of 1 year with number of exercise opportunities 

from 10 to 100. The underlying asset follows a geometric Brownian motion with 

dividend=0%, r= 5%, 𝝈 = 𝟐𝟎%, K=$40, S0=$40 and number of paths = 1000. All 

options are priced a) polynomial of order 2, b) polynomial of order 6, while the 

regressions are done using the ITM paths at the current time step.  

 

Parallel processing uses multiple processors to divide large problems into smaller ones 

that are worked on in parallel to save time. The current problem is inherently suitable for 

applying parallel processing because each processor can perform an independent 

valuation. This can be as straightforward as doing serial farming of the independent 

repeated valuations. Few communications are needed between the processors as only the 

parameter setting at the beginning and the valuation results at the end need to be 

communicated. 
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As example, if we engage 64 processors, 64 independent valuations of an option can be 

performed in parallel by sending each processor a single valuation, have them work in 

parallel. Excluding the very tiny processes that should occur at the end to calculate the 

mean of all valuations, the computational time for the 64 repeated valuations would be 

the same as the computational time for a single valuation using a single processor. 

 

3.4 Conclusion 

This study employed Inequality Constrained Least Squares Monte Carlo (ICLS) method 

developed by Letourneau and Stentoft [42]. This is least squares Monte Carlo with 

inequality constraints for regression to price multiple exercise options. We numerically 

compared the results from ICLS to the LSMC for multiple exercise options and showed 

that imposing structure to the regression reduces estimator bias.  

The number of regressors is one important choice in both ICLS and LSMC methods. 

Increasing the number of regressors in LSMC leads to overfitting especially when the 

sample size is low. Unlike LSMC, constraints in the ICLS method prevent overfitting 

which leads to smaller estimator bias. We showed that to obtain the same bias for these 

methods, LSMC should use a sample size 10 times larger compared to ICLS which 

increases the processing time 13 times compare to ICLS.  

Pricing multiple exercise options is a computationally intensive problem and 

consequently takes considerable processing time compared to single-exercise options. 

Valuation methods used in this thesis are adaptable to the parallel processing technique 

because many independent valuations could be performed with different processors 

requiring minimum communication. As example, using 64 processors in parallel makes 

the processing time almost 64 times faster. 

Future work on this problem is to extend methodology presented here to allow for a 

multi-dimensional underlying. This extension has been explored by Letourneau and 

Stentoft [42] for the case of American style option (single exercise). Another potential 

avenue for future research is using independent sets of samples for each number of 

exercise rights. Imposing constraints across number of exercise rights could be another 
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extension for this work. As Figure 3.3a shows the value of multiple exercise option 

increases monotonically by number of exercise rights with negative convexity.   
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