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Abstract

Musculoskeletal injuries can severely inhibit performance of activities of daily living. In order

to regain function, rehabilitation is often required. Assistive devices for use in rehabilitation are

an avenue explored to increase arm mobility by guiding therapeutic exercises or assisting with

motion. Electromyography (EMG), which are the muscle activity signals, may be able to provide

an intuitive interface between the patient and the device if appropriate classification models allow

smart systems to relate these signals to the desired device motion.

Unfortunately, there is a gap in the accuracy of pattern recognition models classifying motion

in constrained laboratory environments, and large reductions in accuracy when used for detecting

dynamic unconstrained movements. An understanding of combinations of motion factors (limb

positions, forces, velocities) in dynamic movements affecting EMG, and ways to use information

about these motion factors in control systems is lacking.

The objectives of this thesis were to quantify how various motion factors affect arm muscle

activations during dynamic motion, and to use these motion factors and EMG signals for detecting

interaction forces between the person and the environment during motion.

To address these objectives, software was developed and implemented to collect a unique

dataset of EMG signals while healthy individuals performed unconstrained arm motions with

combinations of arm positions, interaction forces with the environment, velocities, and types of

motion. An analysis of the EMG signals and their use in training classification models to predict

characteristics (arm positions, force levels, and velocities) of intended motion was completed.

The results quantify how EMG features change significantly with variations in arm positions,

interaction forces, and motion velocities. The results also show that pattern recognition models,

iv



ABSTRACT v

usually used to detect movements, were able to detect intended characteristics of motion based

solely on EMG signals, even during complex activities of daily living. Arm position during elbow

flexion–extension was predicted with 83.02 % accuracy by a support vector machine model using

EMG signal inputs. Prediction of force, the motion characteristic that cannot be measured without

impeding motion, was improved from 76.85 % correct to 79.17 % accurate during elbow flexion–

extension by providing measurable arm position and velocity information as additional inputs to

a linear discriminant analysis model. The accuracy of force prediction was improved by 5.2 %

(increased from 59.38 % to 64.58 %) during an activity of daily living when motion speeds were

included as an input to a linear discriminant analysis model in addition to EMG signals.

Future work should expand on using motion characteristics and EMG signals to identify in-

teractions between a person and the environment, in order to guide high level tuning of control

models working towards controlling wearable elbow braces during dynamic movements.

Keywords: motion classification, motion characteristics, dynamic movements, interaction

forces, arm position, joint velocity, electromyography, EMG.
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Chapter 1

Introduction

Musculoskeletal (MSK) disorders are among the leading causes of pain and discomfort in Canada.

Eleven million Canadians are affected by MSK diseases each year [1]. The number of people affected

is expected to increase with the aging population. MSK diseases cost the Canadian economy $22.3

billion in 2000 [2]. The total cost consists of direct (health professional visits, rehabilitation) and

indirect costs (loss of productivity or ability to perform activities, absence from work). Injuries

contribute an additional $15 billion each year [1]. Forty percent of lost time compensation claims

in Ontario are due to MSK disorders, according to the Workplace Safety and Insurance Board

(WSIB), demonstrating that MSK disorders lead to a loss of productivity [3, 4].

MSK disorders are usually chronic, causing long-term physical, psychological, and financial

burdens [5]. Loss of function results in reduced ability to perform activities of daily living, including

those required for self-care or in the workplace. Injuries to bones, joints, and muscles also result

in reduced function and slow recovery [1]. Inactivity and injuries are risk factors for future health

problems, and long rehabilitation strategies contribute to the financial burden to the individual

and the health care system.

To improve the lives of Canadians burdened by MSK disorders and injuries, the Institute of

Musculoskeletal Health and Arthritis’ (IMHA) five year strategic plan (2014–2018) addresses dis-

ability, mobility and health as a main focus area for research in Canada [1]. A main theme is

rehabilitation and restoring function to individuals with MSK disorders. Technological advance-

ments can assist in rehabilitation, working towards the goal of improved mobility and well-being.

1
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1.1 Motivation

The goal of rehabilitation is to help patients regain functional ability. During classical rehabil-

itation, therapists guide repetitive exercises to manage pain, regain range of motion, and build

muscle strength. Physiotherapists may manually assist patients to perform movements or provide

resistance during training [6]. Mobilization of joints is important to prevent stiffness after trauma,

and orthotic braces are often used to progressively increase joint range of motion and to protect

against further injury when patients are not in a rehabilitation therapy session [7]. However, poor

adherence to rehabilitation programs, including not attending therapy sessions or not performing

home-based exercises, is a barrier to health improvement [8].

Active-assisitive devices can be used to guide repetitive exercises [9], reducing the required

amount of direct contact with a physiotherapist, and providing assistance outside of a therapy

session. Electromechanical and robot-assisted devices, used as tools in rehabilitation, have helped

improve patients’ ability to perform activities of daily living, arm function, and muscle strength

[10]. Such devices can interface with the patients by measuring muscle activity (electromyography),

then detecting intended motions based on these signals in order to control the devices to assist

movement and provide therapeutic training [11]. However, there are challenges in accurately

detecting intended motions during unconstrained, dynamic movements.

1.2 General Problem Statement

The development of mechatronic devices to provide rehabilitation therapy and motion assistance

after elbow surgery is of interest to the clinical community. Surface electromyography (EMG)

signals are promising for monitoring muscle activity and to act as an interface between the patient

and the device, by being used as inputs to the control systems. It has been noted that factors such

as arm position, external forces, and movement speeds affect EMG signals, causing unfavourable

control outcomes outside of a constrained laboratory environment.

This work aims to assess the influence of motion characteristics on EMG signals, quantifying

their effect to inform the development of better motion classification models.
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1.3 Research Objectives

The main goal of this thesis is to advance our understanding of the impact of motion characteristics

during unconstrained dynamic arm movements on EMG signals used as inputs to control systems,

working towards a smart wearable elbow brace. To achieve this objective, the work has focused

on the following specific objectives:

� To develop software for calibration and collection of EMG, kinematic, and dynamic data

from participants performing diverse movements while interacting with the environment.

� To collect EMG, kinematic, and dynamic data from healthy participants.

� To investigate trends in EMG feature values that vary in response to changes in motion

characteristics during unconstrained movements.

� To investigate the usefulness of information about motion characteristics for motion classifi-

cation.

1.4 Overview of the Thesis

The structure of the thesis is outlined below:

Chapter 2 Literature Review: A review of elbow rehabilitation techniques and assessments,

EMG signals and features, motion classification for control of wearable devices, and

a review of factors affecting EMG signals and motion classification accuracy.

Chapter 3 Design of Experiments: Includes the design of a repeated measures experimental

protocol. Factors and levels are discussed.

Chapter 4 Equipment Set-Up: Outlines the measurement systems utilized and methods of data

collection. This includes software development.

Chapter 5 Pre-Processing and Statistical Analysis: Describes the process of extracting relevant

features from EMG signals. Features with statistical significance related to motion

characteristics are discussed.
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Chapter 6 Motion Characteristic Classification and Applications: Presents training of pattern

recognition models to classify motion characteristics using EMG signal inputs. Iter-

ations of classification models informed by statistical analysis results are described.

Chapter 7 Conclusions and Future Work: Highlights the contributions of this work. Recom-

mendations for future work are also given.



Chapter 2

Literature Review

This chapter presents a review of literature in the areas of arm rehabilitation including assessment

and assistive devices, arm motion including the tracking of motion, EMG signal features, the use

of EMG features in motion classification for the control of wearable devices, and factors affecting

EMG signals and control systems using these signals as inputs. A literature review was conducted

using Google Scholar between September 2016 and July 2018. The keywords used for the searches

included: myoelectric control, motion classification, dynamic movements, arm position, forces,

motion velocity, EMG features, elbow rehabilitation, arm rehabilitation devices, prosthetic control,

and a combination of some of those keywords. A total of 70 papers resulted from the search, a

summary of which is presented in the following sections.

2.1 Elbow Rehabilitation

After surgery or injury to a joint of the body, such as the elbow, rehabilitation activities are

commonly required. In rehabilitation, clinicians work with patients to regain functional ability

[12]. The inability to move the elbow joint can inhibit many activities in daily life requiring

use of the arm. It is important to mobilize the elbow early in rehabilitation to regain range of

motion and prevent stiffness in this complex joint [7]. Four overlapping phases during a general

rehabilitation guideline include: immediate motion, an intermediate phase, strengthening, and

return to activity. In the first phase, pain is managed and motion is performed early to prevent

5
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more elbow stiffness. Then, exercises are continued to increase range of motion. More types of

muscle contractions (isotonic contractions including concentric then eccentric contractions) can be

introduced [6]. Progressively the muscles are strengthened, for example, via resistance training [13].

Returning to regular activity is usually completed gradually, especially for athletes, by increasing

intensity of activities and joint use [6]. Various methods are used to evaluate and assess progress

of rehabilitation, and a range of devices have been created for arm training, described further in

the following sections.

2.1.1 Assessment

Clinical assessments used by professionals in rehabilitation assist in diagnosing problems and mon-

itoring progress, commonly by evaluating performance of activities of daily living (ADLs) [12].

Activities of daily living are common movements performed repeatedly during daily life. They are

goal oriented, performed with the purpose of completing a task. Measures used to assess movement

function may include questionnaires, performance of tasks interacting with objects, with results

consisting of scores on scales or various metrics [12]. A subset of these assessments include the

Functional Independence Measure (FIM), the Barthel Index, Arm Motor Ability Test, Wolf Motor

Function Test (WMFT), and the Fugl-Meyer Assessment [10]. These methods consist of activities

of daily living and/or various range of motion and strength activities, some of which can be timed.

Tests may be tailored to specific patient populations and injuries. For example, the WMFT has

repeatedly been used to study chronic stroke patients [14].

Studies assessing arm motion (kinematics and dynamics) or measuring other outputs (sensor

comparisons, device validation) use various motion measures and have participants perform a

variety of relevent activities of daily living. These tasks may not include all aspects of clinical

assessments but still produce valuable information. There is not one standard group of activities of

daily living used. For example, in one study of upper extremity kinematics, participants performed

four activities of daily living including touching their shoulder with their hand, simulating the

motion of drinking, brushing hair, and moving their hand to their back pocket [15]. Another study

looked at arm dynamics while performing ten activities of daily living, finding that motions of

reaching the hand to the head or opposite side of the neck required the largest elbow rotations [16].
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Another group looked at the kinematics of six activities of daily living: combing hair, perineal care,

eating, reaching above the shoulder, washing axilla, and lifting a 4 kg weight [17].

2.1.2 Assistive Devices

Many research groups are working on developing wearable smart devices to provide therapy and

assistance, commonly for people with impaired arm function after a stroke. A range of electrome-

chanical and robotic devices reviewed perform functions throughout the rehabilitation process.

These devices may provide movement while the user is passive, and they may assist or resist move-

ments during training exercises [10]. It has been found that receiving therapy with an assistive

device can improve arm function and performance of activities of daily living after a stroke [10].

Similar to developments in prosthetic devices, electromyography (EMG) signals, from both surface

and intramuscular electrodes, monitor muscle activity and are sometimes used as an interface be-

tween the patient and the device. Regular elbow motion and an understanding of the arm muscle

functions must be understood while developing such devices.

2.2 Motion

The elbow is a hinged joint performing mainly flexion–extension movements. Extension decreases

the angle of the joint, while flexion increases the angle of the joint. Elbow flexion–extension

movement and positions can be described by the degree of the angle between the forearm and the

straight arm, with the fully extended straight arm being zero-degree flexion, as shown in Figure

2.1. Portions of the elbow anatomy are involved in pronation–supination of the forearm as well,

as shown in Figure 2.2. However, the elbow is not involved in radial–ulnar deviation of the wrist,

as shown in Figure 2.3. Major shoulder motions, adduction–abduction and flexion–extension, are

shown in Figure 2.4.

Muscle activation is necessary for humans to perform motions or hold contractions. Arm

muscles have generally been classified as extensors, which are active during elbow extension, flexors,

which are activated during elbow flexion, and stabilizers. The biceps and brachioradialis, acting

synergistically, are the main muscles that perform elbow flexion [18]. However, muscles do not
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Figure 2.1: An elbow joint fully extended (Left), and flexed 90◦ (Right).

Figure 2.2: A forearm at 90◦ pronation (Top), neutral position (Middle), and at 90◦ supination
(Bottom).

always fall into these strict categories as human motion is complex. Since ADLs are motions

used to perform a task, they can include motions from multiple joints at the same time, with the

individual movements adding together to perform a resultant motion.

Categories of motion can include isometric movements, and isotonic/dynamic movements with

muscles in eccentric or concentric contraction. During isometric contractions, the joint angle and

muscle length do not change. The joint angle and muscle length vary during isotonic movements.

Muscle contractions can be classified as eccentric or concentric during isotonic movements. If
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Figure 2.3: Wrist radial deviation (Left) and ulnar deviation (Right).

Figure 2.4: Shoulder adduction–abduction (Left) and flexion–extension (Right).

the muscle is activated and shortening, working to move the joint in the direction of motion, the

muscle is performing concentric contractions. If the activated muscle is lengthening, resisting the

direction of joint movement, the muscle is performing eccentric contractions. It is the coordination

of individual muscle motor units and muscle groups that cause the resultant arm movement.

When performing or attempting to perform a motion or muscle contraction, electromyography

(EMG) systems can detect levels of muscle activation. Superficial muscles can be measured with

surface EMG (sEMG) electrodes attached to the skin while deeper muscles can only be measured

with intramuscular electrodes. Many systems aimed at classifying wrist and hand motion for

people with amputations in need of prosthetic devices, measure EMG signals using an arm band

with electrodes spaced evenly around the arm. This does not give direct information for specific

muscles. Instead, these signals are generally used with pattern recognition algorithms to classify

motions. In other cases, EMG signals are gathered from specific muscles, with each channel

giving information related to the muscle function. Muscles commonly measured using sEMG in
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order to detect intended arm motions and control devices are shown in Figure 2.5 and listed

below [19,19–28]:

� Biceps brachii short head

� Biceps brachii long head

� Brachialis

� Brachioradialis

� Pronator teres

� Infraspinatus

� Latissimus dorsi

� Upper trapezius

� Rhomboid major

� Pectorialis major

� Anterior deltoid

� Lateral deltoid

� Posterior deltoid

� Teres major

� Teres minor

� Triceps brachii long head

� Triceps brachii lateral head

� Triceps brachii medial head

� Extensor carpi ulnaris
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� Flexor carpi ulnaris

� Extensor carpi radialis

� Flexor carpi radialis

� Palmaris longus

� Anconeous

� Extensor digitorum

� Flexor digitorum

Figure 2.5: Upper extremity muscles commonly measured using sEMG, anterior view (Left) and
posterior view (Right).
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2.2.1 Motion Tracking

In order to study body kinematics and relate movements to muscle activity, motion can be tracked.

A few main methods used to measure movement include electromagnetic tracking, inertial mea-

surement units, and optical motion tracking.

Electromagnetic trackers can collect biomechanics movement data. However, metal in the

environment can disturb the signals and markers being tracked must remain within a limited

measurement range.

Inertial measurement units (IMUs) are a type of sensor that has been used for kinematic track-

ing. IMUs are usually small and not cumbersome when attached to landmarks on the body, and

can be relatively inexpensive and portable compared to other systems such as optical trackers.

Inertial sensors can contain a combination of gyroscopes, accelerometers, and a magnetometer.

However, there are also many drawbacks. Drift is a common issue with use of gyroscopic informa-

tion for position sensing, and the inertial data must be processed to relate it to a model of the body

to extract meaningful joint angle and velocity information. There is not a set standard for using

inertial sensing in motion analysis. Although gathering data from the sensors themselves can be

relatively simple, the math required to calculate meaningful kinematic information with the data is

more involved [29]. The entire algorithm calculating the kinematic information must be considered

when determining accuracy, not just the individual sensors themselves. Inertial sensors have been

shown to track human hip joint motion by fitting inertial sensor data in the sagittal plane to a

sinusoidal curve [29]. As well, a combination of accelerometers and gyroscopes with Euler angle

computation and Langrangian optimisation have been used to detect wrist, elbow, and shoulder

positions in a controlled environment, with participants sitting while performing arm motions such

as reaching, shrugging, forearm rotation, and tracing shapes on a desk with their hand [30]. This

algorithm requires a kinematic model of the arm with lower and upper arm lengths [30].

Optical motion tracker systems may or may not require a marker. Without external markers,

analysis of images to detect landmarks is needed. When markers are used, they are placed on the

specific parts of the body to be tracked. The markers may be passive or active. Occlusion is a

common problem with markers in optical tracking. If a specific marker is blocked by another part
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of the body or an object in the environment, the position of the body landmark related to that

marker remains unknown.

The Microsoft Kinect sensor (Microsoft, USA), is a low cost alternative to large and expensive

optical motion tracking systems, in some rehabilitation and human motion analysis applications.

The Kinect uses depth information and its own skeletonization algorithm to output joint locations.

Since there is no in depth calibration or choice of body model used, the Kinect estimates the body

geometry with each frame [31]. Studies have been performed to assess accuracy with the camera

focusing on a frontal view of a participant who is sitting still and breathing, and found that the

length of the leg bones was varied by about 2 cm [31]. With the camera at a 45 angle to the frontal

body plane, the variation in bone length was about 5 cm [31]. Another study found that for static

poses, the Kinect was more accurate at identifying the joints of the upper extremities, with an

accuracy of less than 100 mm for upper extremity joints, except for the hand, and lower accuracy

for the lower extremity, except for the hip [32]. In general, the Kinect sensor has not identified

joint positions of people in sitting postures as accurately as when people were in standing postures,

as the sensor was built for standing game play [32]. Other drawbacks of the Kinect sensor are that

occlusion of the body being tracked can inhibit tracking, and that clutter in the environment can

cause the system to identify joints on other objects in the environment, such as a chair instead of the

human body [31]. Other factors that can influence the accuracy of joint locations determined with

the Kinect sensor are clothing (loose clothing may confuse the system) and body mass index [32].

However, if these precise measurements are not required, the Microsoft Kinect sensor can be a

viable motion capture system of a lower price and faster calibration and setup than a motion

capture system with markers.

The Kinect has also been used to perform and assess activities of daily living in virtual environ-

ments. An example is using the Kinect to track movements with an unscented Kalman filter-based

system, and measuring speed-based performance metrics [33]. In this case, the accuracy and in-

formation available with the Kinect worked well enough to run a virtual reality system for which

participants recovering from hemiparetic stroke sat in a chair performing upper extremity move-

ments corresponding to virtual activities of daily living [33]. Metrics calculated from the mentioned

virtual reality environment with data from the Kinect (duration to complete subtasks, normalized
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speed, ”movement arrest period ratio”) were compared to time metrics using the clinical Wolf

Motor Function Test (WMFT), and it was found that the duration metric and the WFMT time

were correlated with statistical significance [33].

Motion tracking provides true kinematic measurements of the arm during motion. When the

arm movements are known, muscle activity can be related to these movements, and functions of

muscles and trends of muscle activation during movements can be observed. Electromyography

(EMG) measures this muscle activity.

2.3 EMG Signals

Electromyography (EMG) signals have been introduced in the development of assistive devices in

rehabilitation and prosthetics. These signals are primarily used as an input to control systems to

determine intended movements.

Electromyography (EMG) is a way to measure and record electrical activity of muscles. Elec-

trodes can be placed on the surface of the skin over the underlaying muscle of interest, this is

referred to as surface electromyography (sEMG). The electrodes measure voltages on a millivolt

scale. These voltages are the combination of motor unit activations from multiple motor units

firing in the muscles under the skin, underneath the electrode location. Electrodes can also pene-

trate the skin and muscle of interest with intramuscular EMG electrodes. By evaluating the signals

recorded from the electrodes, information related to the muscle activation can be gathered.

sEMG sensors can vary in electrode shape and size, electrode material, inter-electrode distance,

and construction. Electrode placement can vary with skin preparation, location and orientation of

the electrodes, and fixation method. Hermans et al. tried to put together widely used guidelines

for sEMG measurement, by looking at a variety of methods used and results, they determined

recommendations for best practices [34].

To be useful, raw EMG signals must be processed. Usually, the first steps in processing

raw EMG signals is gain amplification and filtering for the desired frequencies. Then, features

categorized into the time domain, frequency domain, and time-frequency domain, can be extracted

to gain meaningful information [35]. For most features, the EMG signals are first divided into
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windows, with or without overlaps, and then the features are extracted for each window.

Studies use varying window lengths and different overlap durations. One main factor that goes

into choosing an appropriate window length is that for wearable devices, there is a desire to make

the system work online in real time. If the system is to work in real time, there is a limit for

the amount of delay that will be tolerated. In particular, delays of less than 300 ms have been

found to be acceptable for electromyography controlled prosthetic wrist/hand devices to be usable

in daily situations [36]. It has also been noted that window lengths between 150 and 250 ms is

optimal [36]. However, window lengths as short as 40 ms and 50 ms have been used in other

studies of myoelectric control and developing a neuromusculoskeletal model of the elbow with

EMG inputs [24, 37]. Once the window length is chosen, there remains the option of overlapping

windows by a number of samples, or not overlapping windows. Overlapping windows may improve

accuracy at the expense of increased processing time [38]. While EMG signals provide a large

amount of information about muscle activity, there are also limitations.

2.3.1 Limitations

An important limiting factor in studying EMG is that there can be crosstalk between signals

gathered from muscles close to each other. Especially when the muscle activation is measured on

the surface of the skin, the signals can have interference from surrounding muscles. However, if the

EMG signals are being used to train algorithms to output motion information such as joint angle or

force, and the crosstalk remains somewhat constant, the crosstalk could provide extra information

to be used in the pattern recognition [27]. Related to crosstalk, electrode shift can influence EMG

signals. sEMG electrodes attached to the surface of the skin can shift with respect to the muscle

underneath, adding undesirable and difficult to remove signal variation [39]. Other factors affecting

the quality of the EMG signals measured are sweat on the skin surface and electrode impedance

changes [35]. Even with these limitations, EMG features from the time domain, frequency domain,

and time-frequency domain are still being used in studying motion classification.
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2.3.2 EMG Features

Although many time domain EMG features exist, some are defined very similarily and contain

redundant information. A few features commonly used in the literature are listed below [35,40,41]:

� Mean Absolute Value (MAV) For MAV, the absolute value of an EMG signal is found,

then this value is averaged for an EMG window, as follows:

MAV =
1

N

N∑
i=1

|xi| (2.1)

where N is the length of the EMG signal, and xi is the EMG signal in segment i.

� Slope Sign Changes (SSC) Since slope of an EMG signal switches directions, the SSC

refers to the number of times the slope changes from positive to negative and negative to

positive, as follows:

SSC =
N−1∑
i=2

f [(xi − xi−1)× (xi − xi+1)]

f(x) =

{
1, if x ≥ threshold

0, otherwise

(2.2)

� Waveform Length (WL) For a window, WL is the length of the EMG waveform, repre-

sented with the following equation:

WL =

N∑
i=1

|xi+1 − xi| (2.3)

� Zero Crossings (ZC) ZC for an EMG window refers to the number of times the amplitude

of the signal crossed zero, as follows:
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ZC =
N−1∑
i=2

[sgn(xi × xi+1) ∩ |xi − xi+1|]

sgn(x) =

{
1, if x ≥ threshold

0, otherwise

(2.4)

� Root Mean Square (RMS) RMS is found by squaring the signal amplitude values, taking

the mean of these squares over a window, and then calculating the square root, as follows:

RMS =

√√√√ 1

N

N∑
i=1

xi2 (2.5)

� Autoregressive Coefficients (AR coefficients) AR coefficients are the coefficients of a

linear combination model of previous EMG samples that could predict future EMG values,

as follows:

xi =

n∑
k=1

akxi−k (2.6)

where ak is an autoregressive coefficient, and n is the order of the autoregressive model.

� Wilson or Willison Amplitude (WAMP) For WAMP, the difference in EMG amplitude

between two segments is found. WAMP is the number of times this difference exceeds a

threshold, as follows:

WAMP =
N−1∑
i=1

f(|xi − xi−1|)

f(x) =

{
1, if x ≥ threshold

0, otherwise

(2.7)

Information is also contained in EMG signals in the frequency domain. Frequency domain
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features generally require more computational power and time to extract compared to time domain

features. Two simple frequency domain features are described below [41]:

� Mean Frequency (MNF) The MNF is the average frequency of the EMG signal in the

power spectrum, as follows:

MNF =
M∑
j=1

fjPi

/
M∑
j=1

Pj (2.8)

where M is the length of the frequency bin, fj is the frequency of the power spectrum at bin

j, and P is the EMG power spectrum at frequency bin j.

� Median Frequency (MDF) The MDF is the median frequency of the EMG signal in the

power spectrum, calculated as follows:

MDF∑
j=1

Pj =
M∑

j=MDF

Pj =
1

2

M∑
j=1

Pj (2.9)

In addition, wavelets are an area being explored to describe information contained in EMG

signals in the time-frequency domain, however, many groups continue to use only time domain

features because of the ease of computation.

The information obtained with the different metrics can be redundant due to similarities in

features, as shown in Phinyomark et al.’s comparison of 37 time and frequency domain features

[41]. Frequency and frequency-time domain features can contain information that is lost in the

time domain. However, extracting frequency domain features can be more complex and require

more processing [42]. Studies have shown that there is not a significant improvement in motion

classification when using time and frequency domain features compared to only using time domain

features [41]. With systems intended to process information in real time with little delay, and with

limited processing power (as devices must be wearable), working with only time domain features

can generally give enough valuable information for the system to achieve its purpose (such as

classifying motion within a limited timeframe).

A common time domain multi-feature set, known as the Hudgins feature set, is widely used for
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extracting information from EMG signals to be used as inputs to classifiers for motion classification.

This set includes: mean absolute value, slope sign changes, waveform length, and zero crossings

[27, 41, 43, 44]. In some instances, mean absolute value slope is also included in this list of key

features, but not always [45,46].

A group recommends using time domain features: mean absolute value (MAV), waveform

length (WL), Wilson amplitude (WAMP), autoregressive coefficients (AR), mean absolute value

slope (MAVS), and not using frequency-domain features due to the higher complexity in processing

[41].

Often, studies will compare accuracies of pattern recognition algorithms using different sets

of features as inputs. For example, in one study it was found that using multiple time domain

features (MAV, SSC, WL, ZC) made a multilayer perceptron artificial neural network predict

wrist forces based on sEMG signals more accurate than when using only the mean square value

(MSV) feature [27]. In addition, two feature sets created by adding five wavelet marginals to the

time domain features or adding the root mean square value and six autoregressive coefficients to

the time domain features provided similar results (not significantly different) to the original time

domain feature set, but still better than only using MSV [27]. Accordingly, it has been found that

the features used to classify motions can affect the accuracy of motion classification more than the

types of classifiers used [35].

2.4 EMG control of Wearable Devices

Many of these EMG features are being used as inputs for control systems of wearable devices to

assist motion. Simple controllers not based on pattern recognition include: proportional control,

finite state machines, and onset analysis [38]. Finite state machines involve states, transitions,

and commands. The transitions are associated with the input signals and the states are motion

commands [35]. These controllers can be intuitive to use and implement, comparing EMG signal

levels to set thresholds, but are limited in the number of commands that can be implemented.

Some complex sytems designed to predict joint trajectory utilize Hill-type models, relating EMG,

force, joint angle, and contraction velocity [47]. Pattern recognition models are also used to classify
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intended motion. Once intended motions are identified, wearable devices can be commanded to

assist with these motions. The use of models to classify motions is explored further in the next

section.

2.4.1 Motion Classification

A variety of machine learning techniques are used to classify motion. With these techniques,

systems can be trained to accept EMG features as inputs and connect them to motion classes,

such as type of movement (i.e. wrist flexion–extension vs. rest). Use of these classifiers requires a

training period to associate EMG patterns with the motion classes. The long training period, and

training with limited data in constrained laboratory settings which do not necessarily translate

well to clinical settings, are a couple of the limitations of pattern recognition models used in control

systems [48]. It has been noted that there is a gap between research data collection and findings

compared to usability results in daily living implementations, in regards to pattern recognition

accuracy results for prosthetics [49].

Many types of classification systems exist, a few of the main classifiers are linear discriminant

analysis (LDA) models, support vector machines (SVM), and artificial neural networks (ANN).

Various combinations of features and classifiers are possible. In one study, SVMs were more

accurate than neural networks for mapping sEMG signals to eight upper limb motions in real

time [20]. However, accuracy is not the only factor to consider when choosing the optimal design,

as SVMs consumed more time in this trial [20].

There is a gap between the accuracy of motion classification or pattern recognition systems

in constrained laboratory settings, and usability in unconstrained daily activities. Frequently,

in training the systems, the body, for example the arm, is held in a very specific position as the

elbow is flexed and extended. However, changes in arm position and orientation, disturbances such

as constant or variable external forces, analyzing signals gathered from different motion segments

(static muscle activation vs. time-varying portions), and other noise factors can cause EMG signals

to differ and reduce accuracy of motion classification systems [35,48,50].
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2.5 Factors

Many factors affect EMG signals measured while motions are performed, and in turn, affect accu-

racy of motion classification algorithms. Some of the factors affecting the EMG signals are external

to the muscle performance, not truly affecting muscle activations. Instead, these factors can cause

noise and drift or change EMG electrode output signals when there are not real changes in the

muscle activations [51]. Some changes in readings between systems could be caused by factors

such as electrode size and type. Other factors may affect how motions are performed and could

change muscle recruitment, even when the motion of interest is constant. These factors are not

always understood and may not affect the signals coming from each muscle being measured at all

times. Examples of these two types of factors are given below.

The following factors can affect EMG measurements:

1. Electrodes (material, style, surface, intramuscular, electrode spacing, sweating, skin cleanli-

ness)

2. Placement (position of electrodes over muscle bodies, shifting of electrode location during

use, crosstalk mixing signals from surrounding muscles)

3. System (amplification, filtering)

The following factors may affect muscle activation and the resulting EMG signals being mea-

sured:

1. Arm Position

2. Force

3. Velocity

4. Fatigue

5. Training Protocol

These variables can make the use of EMG signals as inputs to control systems challenging, as

the signals can vary a lot, and it may not be known why they are changing. In laboratory settings,
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with variables controlled and motion very constrained, classification systems using EMG inputs

generally have a higher accuracy than the same systems used in unconstrained daily activities [37].

The factors during daily living that can affect muscle activations are described further in the

following sections.

2.5.1 Arm Position

In studies, EMG data are generally collected in very constrained laboratory settings with arms

supported in specific resting positions, resulting in repeatable contractions. In the laboratory,

shoulder movements can be avoided by fixing the upper arm to the body trunk. Other body move-

ments have been limited by sitting participants in chairs and fixing their forearms to measurement

devices that allow the participant to rotate the elbow in only one degree of freedom (DOF) [52].

Whereas in task-oriented situations or activities of daily living, limbs take on a variety of changing

postures during contractions [49].

The actual muscle activations can change with limb posture and indirect joint angles, however,

EMG readings can also change with limb position without being caused by changes in true muscle

activation. When limbs move dynamically, the muscles contract or stretch, changing shape, and

shifting beneath the skin. The movement of muscles under the electrodes may cause crosstalk

effects to differ and alter the measurement conditions (such as distance from electrode to muscle),

making electrode readings appear different even if the true muscle activation is not changing [39].

It is possible that different arm positions can cause activations in muscles not usually involved

in the motion of interest. Muscles may need to activate to counteract gravity, and can play a

larger or smaller role in some motions depending on joint angles. This is reflected in accuracies of

pattern recognition of motion reducing with limb position variation [49].

For example, during trials of repetitive hand gripping while the arm was positioned with four

shoulder flexion–extension angles and three elbow flexion–extension angles, EMG signal features

(mean median frequency, RMS, slope of mean frequency, EMG work done) of the extensor carpi

radialis brevis (ECRB) were not significantly different for different positions except for the EMG

work done feature [53]. The ECRB muscle is located in the forearm, with the primary function

of extending the wrist. Despite the ECRB not playing an active role in controlling elbow and
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shoulder joint angles, one of the EMG features of the ECRB tested was affected by those joint

positions. Similar to how not all EMG features may be affected by position for one muscle, not

all muscles may be affected by positions in the same way. In one study, the mean normalized

sEMG envelope (indicating muscle activation) of the brachioradialis did not change with changes

in elbow joint angles only [52]. Systems using EMG with the arm in varying positions can use

these changes in signal as control inputs or can be designed to be robust and not affected by these

variable signals.

In testing algorithms used to classify motion types or control devices, sets of data are used for

training the system, and separate sets of data are used for testing the system. When data are

collected from limbs in various positions, systems have been trained with data from one position or

a combination of positions. If systems were trained with a data set from the arm in a single position,

intra-position testing can describe when testing data are from the same position as training data,

and inter-position testing can describe when testing data are from a position different from the

position used in training data [54].

It has been found that errors in classifying forearm/wrist/hand motions using EMG signals from

an electrode band around the forearm depended on limb postures (angles of joints not primarily

moved by the muscles being measured) [49]. When linear discriminant analysis (LDA) classifiers

were trained with four time domain surface EMG features to classify wrist/hand motions with

the arm (shoulder and elbow angles) in different postures, the errors of classifiers trained in one

position and tested classifying motions in the same arm position were lower than classification

errors when a model trained with data from one arm position was tested with data from the other

arm positions [49].

Another study observed effects of arm position, intra- and inter-position training, and subject

type (people with or without amputations) on the accuracy of multi-layer perceptron artificial

neural networks with EMG features as inputs and hand/wrist angles as outputs [54]. In this

study, EMG and kinematic data were collected with the arm in three positions involving different

elbow angles and shoulder adduction–abduction [54]. It was found that there was a significant

difference between the artificial neural network performance measure for intra- and inter-position

training/testing, with intra-position testing being more accurate [54]. This means that an artificial
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neural network classifying kinematics of wrist flexion–extension, wrist radial–ulnar deviation, and

wrist pronation–supination did not work as well when using EMG data with the arm in a different

position than the arm was in during training.

To counteract the decrease in accuracy with inter-position training and testing, it was found

that if training data were pooled together from multiple positions instead of one position, the

artificial neural network performance improved compared to inter-position training/testing perfor-

mance [54]. The optimal number and types of arm positions that provide the best EMG data for

training of motion classification algorithms requires further investigation. For a linear discriminant

analysis (LDA) classifier, classification accuracy was better for classifiers trained with data from

positions with the elbow at multiple angles compared to training data with the arm in multiple

positions but only a flexed or extended elbow, not variations in elbow angle [49]. It was also shown

that performance generally improved with an increase in the number of positions used in training,

although there was also variation in performance with different combinations of positions used in

training, and the amount of improvement with additional positions decreased as the number of

positions included increased [49]. With the very large variation in dynamic movement of the upper

limb, a very large training data set would be required to sample a range of positions of human

movements. This would make training duration longer and require more repetitions of movements

performed by the user of the system. Therefore, determining the best combination of and number

of positions to use in training to balance the effort and time of training with the accuracy and

usability improvements is desirable.

2.5.2 Resistance Force

In addition to arm position, interaction forces affect motion and EMG signals. In one study,

classification error of an LDA model predicting hand actions based on EMG signals, increased by

approximately 32 % when forces were introduced [35]. Activated muscles apply forces to joints

causing movement or stabilization during isometric contractions. Increased recruitment of motor

units, and increased firing rates of those motor units produces force [47]. The level of activation

measured through sEMG can be related to force output, with higher sEMG signal amplitudes

generally related to higher levels of force output [18]. However, this relationship is not always linear
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above force thresholds, or the force-sEMG relationship has a more parabolic shape in some muscles,

for example muscles controlling finger movement [47]. In very controlled isometric contractions of

the biceps, sEMG has been related non-linearly to force output at the wrist as well [18].

External forces acting on a joint during movement can cause a torque in the same direction of

the joint rotation, assisting the main flexors or extensors causing the motion, or the external forces

can oppose the joint motion, causing a torque acting in the opposite direction of the intended joint

motion. An example of an opposition force would be lifting a load held in the hand by flexing the

elbow, with the arm initially straight and upper arm held against the torso. In this case, the prime

flexors, biceps and brachioradialis, are working against the added load. An example of an assisting

force would be extending the arm from an initially bent (flexed) position with a load held in the

hand and upper arm stationary against the torso. In this case, the added load is adding torque

on the elbow joint in the same direction that the prime extensor, the triceps, is applying torque.

As well, this may increase the amount of support or control the flexors may need to provide to

support the added load in the extension movement.

During activities of daily living, varying levels of external forces can assist and oppose joint

motion, as well as act on the limb in directions causing torques not aligned with the axis of rotation

of the joint. Different loading on joints, as well as loading when the muscles are actively moving

a joint versus when used for fine-tuning control, can cause changes in muscle activation patterns.

The biceps assisting in controlling acceleration during elbow extension motions is an example of a

fine-tuning role of a muscle (biceps), as the biceps is not a prime mover for elbow extension. For

example, when performing elbow flexion against an external load the biceps and brachioradialis had

similar muscle activation during sets of different joint angles, velocities, and loads, but during active

elbow extension (fine-tuning roles) the biceps and brachioradialis had different muscle activations

from each other in some sets [52]. In load bearing roles compared to fine tuning roles, the biceps

and brachoiradialis were activated in different combinations during motions [52]. Changes in EMG

signals with motion type is consistent with findings of muscle activations higher during concentric

motions, lower during isometric contractions, and lowest during eccentric motions with constant

force values [47]. Another example of the force-EMG relationship changing with motion is the

force-EMG relationship was shown to change with changes in elbow joint angle [47].
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Changes in muscle activation patterns measured by sEMG during upper limb movements pro-

ducing different forces measured externally were distinct enough to calibrate parallel cascade iden-

tification modeling to estimate force [55]. Understanding the relationship between sEMG signals

and generated force can be used to predict intended force based on EMG signals, and control

devices.

For example, the efficacy of using bilateral mirrored training programs to predict intended

output forces at the wrist during motion in two DOFs on a amputated limb has been studied [27].

In this case, forces measured at one wrist were used to train a multilayer perceptron artificial

neural network to take sEMG signals from seven arm muscles on the ipsilateral (same) or con-

tralateral arm as inputs and output intended force values [27]. The relationship between patterns

in sEMG features and output forces could then be used to train with ipsilateral or contralateral

measurements and control devices to determine and produce desired force levels.

A challenge when relating EMG to forces is accurately measuring the force outputs without

interfering with motion. A pulley device has been used to apply constant loads to participants’

hands in either direction, resisting elbow flexion or extension [52]. As well, a 1 DOF exoskeleton

has been used to apply torques to the elbow joint and measure forces acting at the wrist joint with

a 6 DOF force/torque sensor [55]. Though these devices could apply or measure force, the devices

were limited to 1 DOF and more complex arm movements (shoulder rotations) were not permitted,

the hand could only be moved in one plane. Another example of limited force measurements is

the InMotion 2 (Interactive Motion Technologies, Watertown, MA) planar horizontal robot with

a 6 DOF force sensor attached [28]. It was also found that by attaching a 6 DOF force sensor as

the end effector on a KUKA robot arm (KUKA, Germany), a user could push against the robot

during movements and receive feedback as forces are measured [56]. In contrast, this method with

the KUKA robot arm was able to provide force measurements during movements with the hand

following more complex paths.

2.5.3 Velocity

In addition to arm position and force, varying motion activation patterns can be related to varying

joint rotation velocities. Muscle activation of the biceps and brachioradialis has been observed to
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increase with increasing velocities during elbow flexion [52]. However, during fine-tuning tasks

(extension of the elbow), muscle activation of the biceps decreased with increasing velocities, while

the brachioradialis mean normalized sEMG envelope increased with increasing angular velocity [52].

This highlights that the effects of velocity on muscle activation can depend on the muscle and type

of motion. Other studies note the possible impact of velocity on muscle behaviour, but then hold

velocity constant while studying EMG signals during elbow flexion–extension movements [50].

Root mean square error of a ”parallel cascade identification model” estimating forces at the wrist

based on EMG inputs, increased from 8.3 %, when forces and velocities were not varied, to 33.3

%, when variation in forces and velocities were introduced [55].

2.5.4 Fatigue

Furthermore, the effects of fatigue on muscle activation are not completely understood. However, it

has been observed that when performing isometric contractions and maintaining a specified force,

the amplitude of an sEMG signal of a muscle can increase and signal power shifts to the lower

end of the spectrum [18, 47]. In studying EMG, rest periods are commonly given during trials

between contractions, and motions are performed in randomized orders to minimize effects of

fatigue. For example, in one study, 60 s rest periods were given between 45 s duration contraction

measurement periods to reduce the effects of fatigue [52], but the reasoning behind why these

durations were chosen is unclear. In situations where a set of contractions are performed to train

systems for control of devices, rest times for fatigue avoidance can greatly increase training periods.

In training an artificial neural network for prosthesis control, 5 minutes of rest allotted between

25 second contractions to avoid fatigue was presented as a limitation [27].

2.5.5 Training Protocol

In many experiments focused on the design and testing of myoelectric controlled devices, the EMG

pattern recognition classifiers are being trained for long periods of time in a very controlled lab

setting. In daily activities, the body is not constrained in the same way, with factors affecting the

EMG signals and intended movements not matching the movement profiles used in the training

period.
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Development of improved training protocols is being studied to make pattern recognition con-

trol systems more generalizable to arm movements outside of laboratory settings [37]. It has been

found that involving data from dynamic portions of muscle contractions (instead of only static

portions) in the training protocol of classifiers, improved the accuracy of LDA and SVM classifiers

used [48].

Another challenge in EMG control is exposure to external forces, involuntary muscle activa-

tions, and the after effects of changes in EMG signals in response to removal of dynamic external

forces [57]. To account for external forces and varying levels of muscle contractions, it was found

that SVM models trained with data from dynamic arm positions and dynamic levels of muscle

contractions performed better at classifying finger motions under a variety of conditions (static ver-

sus dynamic arm positions and contraction levels, and external disturbance forces) than classifiers

trained with data only from static postures and contraction levels [37].

Another suggestion is to incorporate other data, such as signals from accelerometers, with the

surface EMG signals in the training and use of classifiers [51]. Using a combination of kinematic and

EMG signals in prosthesis control was demonstrated in a simulated virtual reality environment [58].

In this chapter, the motivation for investigating effects of motion characteristics on EMG

signals and motion classification were reviewed. A literature review of methods of rehabilitation

and functional assessment, types of arm motion and effects on EMG signals, and the uses of these

EMG signals in motion classification have been presented.



Chapter 3

Design of Experiments

It was found that a variety of motion factors can influence EMG signals. Also, variations in

EMG signals introduce difficulties in using these signals as inputs to classification models and

control systems identifying intended motions and controlling wearable devices. An experiment

was designed to investigate the effects of motion characteristics on EMG signals to improve use

of EMG signals. The methods of the experiment designed along with key measurements collected

are described as follows.

3.1 Methods

The three main movement factors being observed were: arm position, resistance force, and velocity.

The experiments were organized in a factorial design with the goal of collecting EMG and kinematic

data of arm movements. Arm motions were divided into three categories: isometric, single elbow

flexion–extension motions, and more complex activities of daily living (ADLs), as explained in

Section 3.1.1. All three types of motion were included to permit investigation of differences in

EMG levels and factor interaction across the motion types. In one session, participants completed

all three sets of tests: isometric contractions, single motion, and activities of daily living.

Each motion factor was varied between two or three levels as arm movements were performed.

The arm position factor consisted of three levels: position 1 (P1), position 2 (P2), and position 3

(P3), as described in Section 3.1.2.1. Arm position was not specified during ADLs, as the shoulder

29
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orientation could not be constrained as the motions simulated performing tasks. Force values

and directions changed between three levels for isometric contractions and elbow flexion–extension

motions, and two levels during ADLs. The force levels are presented in Section 3.1.2.2. Velocity

was split into three levels: stationary, slow, and fast. Velocity details are explored in Section

3.1.2.3. During isometric contractions, the joint angle does not change, therefore, the arm was

held stationary with no variation in velocity. The corresponding elbow flexion–extensions varied

between slow and fast speeds. During ADLs, velocity could only be varied between two levels,

slow or fast. Stationary isometric contractions would not have permitted the completion of ADL

tasks. Table 3.1 displays the factor variation for the three motion types.

Table 3.1: Factor variation for motion tests.

Motion sets

Factors Isometric Single Motion Activities of Daily Living

Position X X —

Force X X X

Speed — X X

Overall, the combined isometric contractions and flexion–extension motions resulted in a 3 by

3 repeated measures design, with three factors (position, force, velocity) varying between three

levels each. As well, the ADL motions were performed as part of a 2 by 2 repeated measures design

with two factors (force and velocity) varying between two levels each. The motion sets and factor

levels are described further in the following section.

3.1.1 Motion Sets

As described in Chapter 2 Section 2.2, motion can be divided into isometric contractions and

dynamic movements with isotonic muscle contractions. Therefore, in this study, EMG signals were

measured during isometric contractions and dynamic movements. The dynamic movements were

divided into simple elbow flexion–extension, and more complex activities of daily living (ADLs).
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3.1.1.1 Isometric Contractions

During isometric contractions, the participants were expected to hold their arm still. The elbow

angle did not change during the contraction, however, separate isometric contractions were held

with the elbow fully extended, or the elbow flexed 90◦. These contractions were held with the arm

in three different positions (shoulder orientations), and three different forces were applied to the

hand.

3.1.1.2 Single Motions

The first type of dynamic motions was simple elbow flexion–extension. In these motion trials, the

arm was held in the starting position with the elbow fully extended, the elbow joint was rotated to

90◦ flexion, then extended again. One repetition consisted of the full movement from extended el-

bow, to flexed elbow, and return to extended elbow. These flexion–extension movements expanded

on the isometric contractions, by being performed with the arm held in the three corresponding

arm positions (shoulder orientations), three force levels applied to the hand, and at two velocities

(slow, fast).

3.1.1.3 Activities of Daily Living

Upper extremities consist of multiple joints (shoulder, elbows, wrist) with various degrees of free-

dom. Arms are involved in many different activities throughout the day, moving through a wide

range of motion. To consider more scenarios, activities of daily living were tested.

As presented in Chapter 2 Section 2.1.1, various sets of activities of daily living, or other move-

ments are performed for the assessment of upper extremity kinematics, dynamics, and functionality.

The specific activities of daily living included can vary. In particular, due to the elbow being the

joint of interest in this study, motions that produced large variations in elbow flexion–extension

were of interest.

The following two activities of daily living were selected as a sample of arm movements to

measure:

1. Lowering and raising arm above horizontal (reaching above shoulder level in front of body)
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2. Hand to mouth (simulating eating and drinking)

During performance of these motions, resistance force was varied between two levels and the

velocity at which the motion was performed at varied between two levels. The levels of the motion

factors are described further in the following section.

3.1.2 Factors

The three main movement factors being observed were arm position, resistance force, and velocity.

These factors were varied through multiple levels in multiple combinations during the described

motion trial movements, while muscle activation was measured, and kinematic information was

collected.

3.1.2.1 Arm Position

For isometric measurements, and moving the arm through single flexion–extension motions, the

orientation of the upper arm was held in three different positions. The shoulder and torso were

not physically constrained which allowed for some movement of the upper arm to occur naturally,

regardless of instructing participants to remain stationary. This was reflective of how motions are

comfortably performed during daily activities. The arm positions are displayed in Table 3.2 and

Figure 3.1.

Table 3.2: Arm orientations

Position Description Shoulder Angles

P1 Arm down along torso
0◦ abduction, 0◦

flexion

P2 Arm horizontal, stretched forwards 90◦ flexion

P3 Arm horizontal, stretched to side 90◦ abduction

During isometric contractions in P1, the elbow was fully extended and also held still at 90◦

flexion, as if the flexion–extension movement was paused. These joint angles are demonstrated in

Figure 3.2. These data were gathered to determine baseline measurements.
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Figure 3.1: Arm positions: P1 (Left), P2 (Top right), and P3 (Bottom right).

Figure 3.2: Arm with elbow extended (Left), and elbow flexed by 90◦ (Right).

3.1.2.2 Resistance Force

The participants grasped a handle end effector of the collaborative robot while performing motions,

as described in Chapter 4. Forces were applied to the participants’ hands through the handle, and
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the contact forces transmitted from the participant’s hand to the handle were measured. The

three force levels during isometric contractions and elbow flexion–extension were: 0 N, 22 N in the

direction resisting elbow flexion, and 22 N resisting elbow extension. 22 N was chosen to represent

the weight felt to lift objects such as a bag of potatoes or textbooks. During activities of daily

living, two force levels (11 N and 22 N) were applied to the participant’s hand. The 11 N or 22 N

forces were applied directly downwards to simulate the force of gravity acting on objects a person

may carry.

3.1.2.3 Velocity

Velocity is a factor affecting muscle activation. Movements in this experiment were performed

at three different velocities: 0◦/sec during isometric contractions, a slow quasi-static speed (ap-

proximately 11◦/sec), and a faster speed (approximately 23◦/sec). Participants were guided to

perform stationary isometric contractions, then elbow flexion–extension and two activity of daily

living motions at the two different speeds. In order to perform the motions at two different speeds,

participants were instructed to perform the slow trials in about 8 seconds (duration from full ex-

tension to 90◦ elbow flexion), and complete the motion segment in about 4 seconds for the faster

speed. For the faster speeds participants did not move as fast as possible because motions were to

be executed in a controlled manner.

3.1.3 Constant Experiment Elements

While the motion characteristics of interest were varied, other aspects of the experiment were

held constant to reduce the introduction of variables. The constant experimental elements were

the protocol for measuring maximum voluntary contractions, hand positions, and breaks between

motions to mitigate effects of fatigue. However, since movements were unconstrained, some vari-

ation in arm positions and speeds did exist and were not eliminated. Small variations were seen

as acceptable because these data are being used to work towards control of a device during un-

constrained movements during daily living with interactions with the environment, such as lifting

objects. The ways in which maximum voluntary contraction tests and hand positions were held

constant, and fatigue effects mitigated are described in the following sections.
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3.1.3.1 Maximum Voluntary Contraction

Studies use various strategies to conduct the measurement of EMG signals during the maximum

voluntary contraction (MVC) of muscles. The purpose of measuring EMG signals during maxi-

mum contraction is the EMG signals during other motions can then be normalized, allowing for

comparisons of EMG patterns between subjects, not only within subjects. The duration that con-

tractions were held for during measurement, the style of contraction such as slowly ramping up to

maximum muscle contractions before holding versus only holding maximum contractions, duration

of rest periods in between contractions to avoid fatigue, and the number of repetitions varied in

the literature. MVC was not measured in every study. Usually, MVC was measured if EMG data

from various movements or contractions were going to be normalized to the MVC EMG signals in

order to make fair comparisons between study subject and muscle group EMG values.

In this work, MVC was measured by holding the upper arm against the torso with the elbow

flexed 90◦ while the hand gripped the handle of a stationary robot. The participants maximally

contracted the arm for one trial, attempting to flex the elbow (raise the hand), and a second trial,

attempting to extend the elbow (lower the hand), each for a 5 second duration. The robot was stiff,

resisting movement. Surface EMG and force measurements were recorded as the MVC values. The

measurement of MVCs was completed at the start of the measurement session for each subject,

first with isometric elbow flexion and second with isometric elbow extension.

3.1.3.2 Hand Position

During movements, forearm position or rotation was held constant in a neutral position. However,

a wrist brace was not worn by participants in order to constrict movements. The participants

were merely instructed to hold their forearm and wrist in a constant neutral position. The fore-

arm and wrist were held in a neutral orientation to limit changes in mechanics with angle and

line of activation for muscles involved in elbow flexion–extension. As well, muscles involved in

elbow flexion–extension can also be involved in forearm pronation–supination. With the forearm

in a constant neutral position, changes in activation levels of these muscles should have stayed

representative or related mainly to elbow flexion–extension.
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Also, during all of the motions, the participants were holding onto a handle. The same handle

was held during the 38 motion trials and MVC trials. During motions outside of a laboratory while

interacting with the environment, people would not always be holding items of the same shape

or orientation. However, for this study, the grip force and orientation was not a motion factor of

interest, therefore, the handle interface was held constant throughout the trials.

3.1.3.3 Fatigue

Three repetitions of each trial were performed. To prevent extreme muscle fatigue and discomfort

due to overworked muscles, rest periods were given between each repetition, and between each set.

Ten seconds of rest were given between each repetition, and approximately 1 minute of rest was

given between motion sets. Participants mentioned some tiring of muscles during motion sets with

the arm at 90◦ shoulder abduction, however they were able to complete the tasks with adequate

recovery during rest times.

3.2 Measurements

In order to collect the required force, kinematic, and EMG data, various systems were required.

To transmit controlled forces to participants’ hands, a handle interface was designed. As EMG

signals were the main measurements of interest, particular arm and shoulder muscles of interest

were selected. The handle interface through which forces were applied to participants’ hands and

the key muscles of interest are described in the following sections.

3.2.1 Force

In order to track hand motion, provide desired and measurable stiffness, and measure forces as par-

ticipants performed motions interacting with a physical environment, participants were instructed

to hold onto a handle attached to a robot while performing motions. The robotic equipment se-

lection and set-up is described in detail in Chapter 4, while the handle design is presented in the

next section.
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3.2.1.1 Participant Interface

A handle end effector was designed as an interface between the user and equipment applying forces.

The requirements of the handle interface were as follows:

1. Must attach easily to the equipment applying forces (robot flange).

2. Must have a comfortable/ergonomic grip diameter.

3. Must not have moving parts. No moving parts while performing motions was important, as

movable parts would change the characteristics of the end effector, which would make the

robot-calculated force measurements inaccurate.

A straight handle extending from the robot flange was selected. The handle was to be gripped

with the long axis perpendicular to the forearm with the wrist and forearm in neutral positions,

during stationary and single motion trials. During the activities of daily living, the handle remained

vertical, perpendicular to the ground, simulating lifting a cup without it being tipped. This decision

was justified by previous work, in which it was found that people with dexterity disabilities, such

as arthritis, performed better at lifting small weights on a device with a vertical handle, as opposed

to a horizontal handle [59].

With the handle orientation decided, the grip diameter was determined. Hand size and the

size of items grasped affect hand grip strength, so a diameter within the range in which people

can perform high grip strength activities was chosen [60]. For a study of people without dexterity

disabilities, the mean grasping diameter of the hand (maximum bending diameter of the hand with

the thumb and middle finger just touching while grasping an object) was 40.42 mm, with a range of

26.93 mm for the 5th percentile to 46.31 mm for the 95th percentile [59]. These grasping diameters

reflected the maximum diameter of objects people were able to grasp with their thumb and middle

finger touching, not necessarily ergonomic object sizes. For stability in a power grip, the Canadian

Centre for Occupational Health and Safety (CCOHS) recommended a handle diameter range of

30–50 mm, specifically 40 mm [61].

For the first prototype shown in Figure 3.3, a handle diameter of 40 mm was chosen to fit

within the recommended ranges. To prevent slippage, the diameter of the ends was widened. For
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comfort and grip, the stiff plastic material of the handle was coated with a softer, more rubbery

material. A full set of pilot trials was completed with two participants with this first prototype.

Subject one (S1) had no complaints about the handle and completed all of the tests. The second

subject (S2) commented on minor thumb soreness where the thumb was in contact and moving

against the handle. S2 remarked that the grip diameter felt large. In response to this feedback, a

second prototype was designed, shown in Figure 3.3. The second prototype had a grip diameter

of 30 mm, which was at the lower end of the recommended range of handle diameters for power

grips [61]. 30 mm was also the measured diameter of the grip portion of a dumbbell, an exercise

weight that people with varied hand sizes grip and lift. Since participants were performing motions

similar to dumbbell exercises, a handle similar to the size of a dumbbell handle was reasonable to

use.

Figure 3.3: First prototype (Left), and final design (Right) of a handle interface.

The handle length was selected to accommodate the common hand breadth sizes noted from

available anthropometric data. In one report, mean hand breadth sizes of the right and left hand

were reported as 90.5 mm and 89.9 mm, respectively, with a maximum breadth of 115.9 mm for

the right hand and 115.5 mm for the left hand [59]. Work presented in [62] recommended a handle

length between 100 mm and 150 mm to accommodate hand breadth. A minimum handle length

of 100 mm was recommended by the CCOHS to prevent compression in the palm due to a handle

not spanning the breadth of the hand [61]. A handle length of 140 mm was selected to ensure
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enough room for the hand.

The handle was modeled in Solidworks (Dassault Systèmes, USA), and then 3D printed (Poly-

jet, Stratasys, USA) with a plastic material. The grasping surface of the handle was coated with

a softer rubber material during printing to provide more grip. The handle was securely attached

to the robot flange with four M6 screws. With the handle designed and fabricated, motions trials

could then be performed with forces being applied to participants’ hands via the handle.

3.2.2 Muscles Measured

During trials for all motion types, sEMG measurements were recorded using the Trigno wireless

EMG sensors (Delsys, USA). This system had 16 channels with wireless electrodes that adhered to

the skin surface above the belly of the muscle with sticky tape. Each of these electrodes measured

the muscle activity and had a three DOF accelerometer.

The prime elbow flexion–extension muscles were selected for measurement, as well as other

muscles in the arm and shoulder area. In particular, shoulder muscles involved with shoulder

abduction and flexion (raising the arm) were included because the effect of arm posture was

one of the main factors being studied. The forearm was held in a neutral position during most

tasks. Effects of pronation and supination of the forearm were not investigated in detail, as the

arm was not actively pronating or supinating. However, muscles involved in forearm rotation

can stabilize the forearm and are sometimes involved in elbow flexion–extension as well, such as

the brachioradialis. Therefore, sEMG signals were collected from selected forearm muscles. The

forearm muscles measured included wrist flexors and extensors. Table 3.3 lists the selected muscles

for which EMG measurements were collected.

3.3 Conclusion

This chapter outlined the experimental design of this study. It described how motion factors (arm

position, interaction forces, and velocities) were being varied during isometric contractions, elbow

flexion–extension, and ADLs. Types of data collected were also introduced. The specific collection

systems selected are described further in the following chapter, along with how the equipment was
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Table 3.3: Upper limb muscles measured.

Channel Muscle Acronym Function

1 biceps brachii short head BB S
flexor of elbow, forearm

supinator, involved in flexing shoulder

2 biceps brachii long head BB L flexor of elbow, supinator

3 brachialis BRA flexor of elbow

4 brachioradialis BRD flexor of elbow, pronator

5 triceps brachii long head TRI LO elbow extension

6 triceps brachii lateral head TRI LAT elbow extension

7 triceps medial head TRI M elbow extension

8 pronator teres PT
elbow extension, forearm

pronation

9 infraspinatus ISPI
shoulder rotation, stabilizer in

rotator cuff

10 anterior deltoid AD
shoulder vertical and horizontal

flexion, shoulder rotation

11 lateral deltoid LD shoulder abduction

12 posterior deltoid PD
shoulder vertical and horizontal

extension, shoulder rotation

13 extensor carpi ulnaris ECU wrist extension

14 extensor carpi radialis ECR wrist extension

15 flexor carpi ulnaris FCU wrist flexion

16 flexor carpi radialis FCR wrist flexion

calibrated to run the designed experimental protocol.



Chapter 4

Equipment Set-Up

Chapter 3 discussed the experimental design. Three main types of data were collected for these

experiments including body kinematics, EMG, and force. The measurements of these motion

characteristics were divided between three systems: a Microsoft Kinect motion sensor, Trigno

Wireless EMG Sensors, and a KUKA robot. This chapter describes the equipment features and

how the systems were used to conduct the experimental protocol.

4.1 Kinect

In addition to the dynamic and EMG data collected, availability of kinematic data was also desired

to potentially relate the muscle activity to the actions being performed better. The KUKA robot

was able to provide position data of the robot itself, and by extension, the position of the partici-

pants’ hands as they held the robot handle, as described in Section 4.3. The position information

along with timestamps could be used to calculate speeds as well. However, using the robot, only

the position of the users’ hand was known, losing any other information about the users’ body.

Criteria for a suitable motion tracking system are listed below.

1. The physical set-up, such as markers, must not interfere with EMG collection.

2. Metal components must not interfere with the motion tracker.

3. The sensor must accommodate the movement envelope of participants (elbow flexion–extension

41
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while standing with the arm in various orientations, and selected ADLs).

4. Provide elbow position and angle measurements.

5. Capable of saving kinematic data to a .txt or .csv file format suitable for further processing

offline.

6. Provide timestamps.

Magnetic tracking was not used because of metal interference with robotic equipment being used

and the large range of motion capture required. Optical trackers without markers were systems of

interest to reduce calibration and equipment set-up time with each subject. A Microsoft Kinect

motion tracking system (Microsoft, USA) was chosen to provide additional kinematic data as it

fulfilled the requirements identified. The Kinect sensor is shown in Figure 4.1, sitting above a

computer monitor. The Kinect tracked motion activity by visually detecting the joints of the

person in the view range. An application written in C# was used to acquire the joint position

data of each of the joints available in the Kinect body tracking, then record these position points

in a text file, to be imported into MATLAB at a later time.

Figure 4.1: Experimental set-up with Kinect sensor located above a computer monitor used during
data collection.
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4.2 Trigno

Collection of EMG signal measurements was required for this experiment, in addition to kinematic

and dynamic data of motions. Sensors were needed to measure EMG signals from the surface of

the skin. To ensure the sensors would be usable for the experiment, key requirements of the EMG

system were identified. The key criteria for the EMG sensors are listed below.

1. The EMG sensors must not interfere with movement, they must not constrict natural arm

movement.

2. Accommodate the movement envelope of a person standing and performing elbow flexion–

extension motions and ADLs of interest.

3. Sensors must have a range of at least approximately 3 m, to suit the testing configuration

with the other equipment.

4. 16 EMG channels are needed to be collected simultaneously.

5. The sensors must attach to the surface of the skin, they must not be invasive.

6. Capable of saving EMG data to a .csv file format suitable for further processing offline.

7. Provide timestamps.

Based on this criteria, the Trigno wireless surface EMG sensors (Delsys, USA) were chosen to

collect the EMG data. This system met the outlined requirements and had additional beneficial

features. These EMG sensors could be charged, and then used continuously for multiple hours.

The wireless sensors were charged before each use, and had a working range of 20 m [63]. The

sensors adhered to the surface of the skin above the main bulky area of the muscles of interest

with sticky tape, as shown in Figure 4.2. Each sensor provided 1 of 16 EMG channels, and

3 degree-of-freedom accelerometer measurements. The proprietary software provided by Delsys,

EMGworks Acquisition, was utilized to collect and save the data. Afterwards, using the analysis

software, EMGworks Analysis, the raw files were converted into .csv files to be easily accessed

using MATLAB.
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Figure 4.2: Trigno EMG sensors attached to the dominant arm over 16 muscles of interest.

4.3 KUKA lbr iiwa

A main part of these experiments was observation of human movement while interacting with the

environment with various force levels. The force between the participant’s hand and the environ-

ment needed to be manipulated and controlled for each participant. The option to manipulate

the direction of the forces in a way that was more complex than simply instructing participants to

carry a weight, was required. This was necessary to simulate more diverse interactions between a

person and the environment during movements. In order to apply the force levels specified in the

experimental design to participants’ hands, and measure the contact forces, a list of requirements

was drafted for the equipment. The key criteria for the equipment used to apply and measure

forces is presented below.

1. Able to manipulate force value and direction, and capable of measuring both.
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2. Interaction could be passive, i.e., moved by user, with specified resistance levels.

3. Capable of safely collaborating with humans.

4. Able to accommodate elbow flexion–extension movements and simulate interaction with the

environment during activities of daily living.

5. Capable of saving force (value and direction) and position data to a .csv file format suitable

for further processing offline.

6. Provide timestamps.

Based on these requirements a KUKA lbr iiwa collaborative robot (KUKA, Germany), shown

in Figure 4.3, was chosen to implement and measure force levels during human movements. This

robot was capable of safely interacting with humans. The robot has 6 joints with an extra turning

flange, providing redundancy as it moves with 6 degrees of freedom (x, y, z translation, a, b, c

rotation). Torque sensors in each joint provide torque and force feedback. This force feedback

capability allowed for the robot to be passive while moved by a user, or to apply forces during

movements with variable stiffness. The stiffness of the robot was controlled in an impedance

control mode. In effect, the robot acted like springs with a programmed stiffness attached to the

end effector, pulling it back to a set position. Forces in certain directions were also overlaid as

motions were performed.

The following sections outline how the robot was set up and controlled during the experimental

trials.

4.3.1 KUKA Projects

Robot applications were developed using the KUKA Sunrise.Workbench program installed on a

desktop computer (Intel® CoreTM i7-6700 CPU 3.4 GHz Desktop running Windows 10). This

software acted as a development environment for aspects such as writing programs, setting safety

features, configuring robot tools, workpieces and frames, and setting up robot inputs and outputs

(I/O).
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Figure 4.3: KUKA lbr iiwa collaborative robot.

The programs were written in a Java-based language within the KUKA Sunrise.Workbench

program taking advantage of many built in KUKA robotics libraries. The project was loaded

onto the robot controller for running of the programs during the experimental trials. As robot

programs ran, the only way to interface with the robot was through the smartPAD teach pendant

human-machine interface, input buttons, and force feedback.

4.3.1.1 Programs

In order to use the robot during the experiments, to apply the desired forces to the participants

and log the measurements of interest, two programs were written in the KUKA Sunrise.Workbench

program. The two programs and basic functions are listed below.

1. SetStartPositions: This program was run by the experimental coordinator, with a trial

participant assisting, to set up the starting positions for MVC measurements and the 38

motion trials, but the motions were not yet performed by the participant.

2. MeasuringForDynamicCalibration: This program was run by the experimental coordinator
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while a participant was interacting with the robot. The robot guided MVC measurements,

interacted with the participant during the 38 motion trials by applying desired forces to the

participant’s hand or acting passively with low stiffness and gravity compensation. During

the trials, the robot controller logged position, force, and timestamp data of interest. Position

and force measurements were sampled at a rate of 1000 Hz.

The second program, MeasuringForDynamicCalibration, required more collaboration be-

tween the robot and participant than the first program, SetStartPositions. However, in the

default robot mode, the robot moves rigidly and is not compliant. A challenge was to have the

robot apply a constant force in a chosen direction, while still allowing the participants to move

the robot freely and smoothly. The Cartesian Impedance Control Mode and the Cartesian Sine

Impedance Control Mode, native to the Sunrise.Workbench programming environment for the

KUKA lbr iiwa, were utilized to control stiffnesses of the robot (how the robot resisted forces or

was passive) and forces overlaid over movements. Through iterations, parameters of the impedance

control modes were calibrated to control how the robot simulated activities and interactions with

the environment. A more detailed explanation of the flow of each program, and the parameters of

the robot impedance control modes implemented is presented in the following sections.

4.3.1.1.1 Setting Motion Trial Start Positions: SetStartPositions Before motion trials

could be completed by the participants, the starting positions of the motions were established. No

other calibration was required. The robot frames held all of the robot position information used

during robot motion commands.

For running the program to set up starting positions (save robot frames), the desired program

was selected from the Applications menu via the smartPAD. Figure 4.4 shows the pendant screen

at the beginning of the application. This is where messages stating the progress of the application

and dialog boxes appeared. Other menus could also be accessed from this window.

Figure 4.5 outlines the basic program flow. The darker coloured boxes indicate that input was

required from the user, i.e., the experimental coordinator, or coordinator from this point onwards.

Input could be transmitted to the robot via the the smartPAD, or buttons on the robot flange.

To run the program the coordinator pressed and held both the enabling switch and play button
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Figure 4.4: The smartPAD screen view at the beginning of SetStartPositions application.

on the smartPAD.

1. As with all programs, initialization was the first step. In this case, variables were defined,

the handle tool was attached to the robot, I/O were specified, I/O conditions were defined,

and instances of Cartesian Impedance Control Modes were configured. Table 4.1 displays

the parameter settings for the control mode used when the robot was commanded to hold a

position in this program with a high resistance to movement.

Table 4.1: Cartesian Impedance Control Mode parameters for robot holding positions with resis-
tance to movement.

Cartesian Impedance Control Mode Parameters Value

Translational Stiffness [N/m] 5000 (max)

Rotational Stiffness [Nm/rad] 300 (max)

Additional Control Force [N] 0
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Figure 4.5: Flow of SetStartPositions program run on KUKA robot.

2. After initialization, a dialog box appeared on the smartPAD (human-machine interface pen-

dant) allowing for selection of the dominant hand (right or left) of the participant. The

coordinator selected the appropriate choice (left hand button or right hand button) via the
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touchscreen. This choice determined whether the robot then moved through a series of

default start frames for motion trials completed with the participant’s left hand or right

hand.

3. The robot then moved to the default start frame for ADL 1. When the robot reached this

position, the program paused, and the coordinator did not need to continue holding the

enabling switch and play button. The participant was instructed to stand with their arm in

the desired position. The coordinator could press and hold an enabling switch on the robot

flange to put the robot in a hand guiding mode. This mode enabled gravity compensation

and put the robot in a passive state where the coordinator could move it with little resistance.

The coordinator adjusted the robot to ensure that the handle interface was placed at a proper

height and position for the participant, Figure 4.6.

Figure 4.6: The ADL 1 start position for a right-handed participant holding the robot handle
interface.

When the robot was adjusted to the desired position, the coordinator updated the corre-

sponding start position frame to the current robot position via the smartPAD. From the

home menu of the smartPAD, the coordinator selected the Frames menu to access the list
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of frames, Figure 4.7. The corresponding frame was updated to equal the current robot

position. When updating the positions, the reference frame must be correctly set with the

”Handle” tool and ”Handle centre” as the frame reference.

Figure 4.7: The smartPAD home screen (Left), and list of frames (Right).

4. The robot required the green button on the robot flange to be pressed in order to continue

with the program. The green button activation was the condition required to break free

from holding its position and to move to the next position. After robot position adjustment

and frame updates, the program was started again from the pause position by holding the

enabling and play switches, and pressing the green button on the robot flange.

5. The robot then moved to the next default frame (ADL 2, MVC, P1, P2, P3). Again, the

robot was adjusted to be in the proper position for the current participant, as shown in

Figures 4.8 and 4.9. The default start frames for all motion trial starting positions were

configured and saved as part of the robot application prior to participant trials and did not
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need to be adjusted while running experiments with participants.

Figure 4.8: The ADL 2 (Left) and MVC (Right) start positions for a right-handed participant
holding the robot handle interface.

Figure 4.9: A right-handed participant holding the robot handle interface in start positions P1
(Left), P2 (Top Right), and P3 (Bottom Right).

6. Once all of the frames were updated, the application ended. At this point, the frames used

for running motion trials were tailored to the current participant.
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4.3.1.1.2 Guided Motion Trials, Logging Measurements: MeasuringForDynamicCalibration

During this program, the robot applied desired forces through the handle during motions specified

by the coordinator via the smartPAD, recorded data, and saved the log files to the robot controller.

Figure 4.10 provides an overview of the robot program used to guide motion trials and log

measurements.

This program consisted of the functions (methods) listed below:

1. main()

The robot application was run through this main program. The application was selectable

from the Applications menu on the smartPAD. Figure 4.11 shows the smartPAD view

at the start of the program running. After initialization, this main program prompted

input from the coordinator to specify specific tests to be run (MVC and motion trials),

updated variables in response to the user input, and ran methods (doMVC, doStatReps,

doFlexExtReps, doADLReps) to conduct the specified tests. The details of the individual

steps are described below.

(i) Initialization

Initialization was the first step. At this stage, variables were defined, the handle was

attached, and instances of Cartesian Impedance Control Modes and Cartesian Sine

Impedance Control Modes were configured.

To simulate lifting weights, or pushing and pulling against items in the environment

while performing activities of daily living, without constraining motions, three Cartesian

Sine Impedance Control Modes were configured, as seen in Table 4.2.

For all the motion test categories (stationary, flexion–extension, activities of daily liv-

ing), the Null Space Damping was set to 0.7 Nm*s/rad and Null Space Stiffness was set

to 50 Nm/rad. This Null Space Stiffness determined how far the robot moved when an

external force was applied to the robot. The Null Space Damping parameter determined

the oscillation as the robot was deflected from the planned path. Setting a low Null

Space Stiffness made the robot compliant in its redundant degree of freedom [64]. In

this way, the robot could respond to obstacles in its path during motion. If the robot
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Figure 4.10: Overall flow of the MeasuringForDynamicCalibration program run on the KUKA
robot.

was pushed or it collided with something it would respond with a low stiffness instead

of colliding rigidly.

In addition to Null Space Damping, Translational and Rotational Damping were also

set to 0.7, a damping parameter setting recommended by the KUKA manual for pre-
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Figure 4.11: The smartPAD screen view at the beginning of MeasuringForDynamicCalibration

application.

dictable robot motion [64]. The Translational and Rotational Stiffnesses, Force Bias

and Force Limit parameter settings are described in detail in the method descriptions

corresponding to the motion types. Stationary motion parameters are described in the

method 3 doStatReps explanation, Flexion–Extension parameters are described further

in the method 4 doFlexExtReps explanation, and the ADL parameters are described

in the method 5 doADLReps explanation.

The three Cartesian Sine Impedance Control Modes were implemented in addition to a

Cartesian Impedance Control Mode shown in Table 4.3, deployed at each time the robot

was paused holding its position with maximum resistance. This mode was updated from

the mode used in SetStartPositions (Table 4.1) to reset maximum control forces and

torques, and null space damping and stiffness after these parameters were used at other

times during the motion trials. Translational Stiffness was set to 5000 N/m to make
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Table 4.2: The configuration of Cartesian Sine Impedance Control Mode parameters used to sim-
ulate environment interaction.

Motion Type

Cartesian Sine Impedance

Control Mode Parameters
Stationary Flexion–Extension ADLs

Translational Stiffness [N/m] 0 0 0

Rotational Stiffness A [Nm/m] 0 0 0

Rotational Stiffness B [Nm/m] 0 0 300

Rotational Stiffness C [Nm/m] 0 0 300

Null Space Stiffness [Nm/rad] 50 50 50

Translational Damping 0.7 0.7 0.7

Rotational Damping 0.7 0.7 0.7

Null Space Damping [Nm*s/rad] 0.7 0.7 0.7

z Force Bias [N] (0, +22, -22)* (0, +22, -22)* (11, 22)*

z Force Limit [N] (absolute value z Force Bias)* (absolute value z Force Bias)* (absolute value z Force Bias)*

Rise Time [s] 2 2 2

Hold Time [s] 5 indefinite indefinite

Fall Time [s] 2 0 0

the robot have very high resistance to movement in the x, y, and z axes. Setting

Maximum Translational Control Force to 5000 N allowed for high translational forces

to occur without the robot decreasing resistance to movement. Rotational Stiffness was

set to 300 Nm/rad to make the robot have very high resistance to a, b, or c torques.

Setting Maximum Rotational Control Torque to 300 Nm allowed for this high resistance

to torques to occur. Null Space Damping was set to 0.7 Nm*s/rad, as recommended

in the KUKA programming manual to ensure that the robot moves predictably and

smoothly [64]. Null space stiffness was set at 200 Nm/rad so that the robot was not

compliant in its redundant degree of freedom, ensuring the robot did not move as forces

were applied to it.

(ii) MVC

After initialization was complete, a dialog box appeared on the smartPAD display asking

the coordinator if the MVC was to be measured. The coordinator responded with the

touchscreen by selecting one of three buttons: ’Biceps (flexion)’, ’Triceps (extension)’, or

’Done MVC’. If biceps or triceps was selected, force value and direction variables within

the program were set accordingly. Then the doMVC method was called and completed.

The doMVC method permitted the measurement of MVC as the participant attempted to

flex or extend the elbow against resistance, as described in method 2 doMVC. Afterwards,
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Table 4.3: The configuration of Cartesian Impedance Control Mode parameters for robot holding
positions with maximum stiffness.

Cartesian Impedance Control Mode Parameters Value

Translational Stiffness [N/m] 5000 (max)

Rotational Stiffness [Nm/rad] 300 (max)

Additional Control Force [N] 0

Maximum Translational Control Force [N] 5000 (max)

Maximum Rotational Control Torque [Nm] 300 (max)

Null Space Damping [Nm*s/rad] 0.7

Null Space Stiffness [Nm/rad] 200

the application looped back to inquiring the user if MVC was to be measured.

Once the ’Done MVC’ button was selected instead of ’Biceps (flexion)’ or ’Triceps

(extension)’, then the application moved on to the next step: running motion trials.

(iii) Motion Trials

To start the motion trials, a dialog box appeared on the smartPAD display asking if

testing was to continue. The coordinator responded via the touchscreen by selecting

a button indicating the type of trial (’Trial 1–12 (stationary)’, ’Trial 13–30 (flexion–

extension)’, ’Trial 31–38 (ADLs)’) or ’No’ to end the trials.

If a trial type was selected, another dialog box appeared with selectable buttons for

each motion trial in that range. The user was prompted to select a button indicat-

ing the desired trial. Once a trial was selected, trial variables used in the remainder

of the application were updated. Force levels and direction, log filenames, start posi-

tions, velocity, and motion type were set automatically within the program according

to the chosen trial, hence, the coordinator was not required to input these manually.

Based on the type of motion trial selected, a method, doStatReps or doFlexExtReps

or doADLReps, was called to perform the three repetitions of the specified stationary,

or flexion–extension, or ADL motion trial. Once the repetitions were completed, the

application looped back to asking the coordinator if testing was to continue.

2. doMVC

For maximum voluntary contraction in the direction of elbow flexion and extension, the robot
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moved to its MVC starting frame (updated in setStartPositions), and held its position

steady for 5 seconds. At this point, the participant held the handle interface. If more time

was required for the participant to get in the proper position, the coordinator could let go

of the play or enabling switches to pause the program.

The blue LED ring on the robot flange lit up while the robot held its position with a high

stiffness Cartesian Impedance Control Mode, Table 4.3. This mode was implemented because

both translational and rotational stiffnesses were at the robot maximum, meaning that the

robot resisted movement if the handle was pulled or pushed. As shown in Table 4.3, two

Cartesian Impedance Control Mode parameters, Maximum Translational Control Force and

Maximum Rotational Control Torque, were set high at 5000 and 300, respectively. These

maximum control force and torque parameters ensured the robot stayed in position. If these

maximum control forces and torques were low, the robot would move like a spring in response

to the participant pulling or twisting the handle with a force or torque above the specified

value.

At this step, the participant attempted to flex or extend their elbow while holding the robot

handle, and the robot resisted movement. The robot measured and recorded position and

forces for five seconds. Then the blue LED ring turned off to indicate to the participant

that they are allowed to stop flexing or extending, the robot stopped recording to the log file

saved locally on the robot controller, and the robot paused its movement.

3. doStatReps

The stationary isometric contraction (zero velocity) tests, began with the robot moving to the

starting position for the selected trial. The Cartesian Sine Impedance Control Mode, Table

4.2, was updated automatically with the Force Bias and Force Limit values corresponding

to the current trial. The robot held its position for ten seconds allowing the participant to

rest and get in position, holding the handle.

Then, the blue LED ring turned on, and the robot held its position with the updated Carte-

sian Sine Impedance Control Mode. The low translational and rotational stiffnesses meant

that the robot would move with little resistance in response to being pushed or twisted, to
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ensure that the participant’s motion was not constrained. The Force Bias meant that the

robot pushed or pulled with the specified force with a line of action along the long axis of

the handle (z axis of the robot flange), as seen in Figure 4.12. Setting the direction of the

Force Bias in the positive or negative z direction corresponded to resisting or assisting elbow

flexion as the participant held the handle, depending on how the handle was oriented.

Figure 4.12: The z axis of the robot flange and line of action of force biases applied to the partic-
ipant hand via a handle interface.

For the stationary motion trials, the participant tried to maintain a constant position while

holding the handle, as the robot pulled with the specified force value in the specified direction.

The Force Limit parameter equalling the Force Bias value meant that if the participant

pushed or pulled the handle in the z direction with a force greater than the absolute value

of the specified force, the robot would respond by moving to ensure a constant force was

applied.

As shown in Table 4.2, the 2 second Rise Time meant that the force increased to the desired

amount over 2 seconds, instead of suddenly applying the total force. A rise time of 2 seconds

was found to be sufficient to ease the application of the force so that it was not too sudden.

The 5 second Hold Time controlled the robot to maintain the specified force level for 5

seconds, then the force decreased back to 0 N over two seconds, as specified by the Fall Time

parameter.

At the end of the repetition, the LED lights turned off and the robot held its position with its
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original holding stiffness, supporting itself and not applying greater forces to the environment,

for 10 seconds until the next repetition. This process was repeated for a total of 3 repetitions.

Log files containing timestamped robot position and external force measurements for each

repetition were saved to the robot controller.

4. doFlexExtReps

The flexion–extension tests began with the robot moving to the start position for the selected

trial and pausing for 10 seconds. The Cartesian Sine Impedance Control Mode for flexion–

extension movements was updated automatically with the Force Bias and Force Limit values

accordingly, as shown in the third column of Table 4.2.

At the beginning of a repetition, the blue LED ring on the robot flange lit up, the robot was

in the impedance mode with force overlay corresponding to the specified trial, and the robot

system was recording and saving timestamped position and force measurements to a log file.

During the repetition, the participants held the handle interface, and performed an elbow

flexion–extension movement. The robot could be pushed or twisted with little resistance,

due to low translational and rotational stiffness parameters. Depending on the specific trial,

the robot was passive with gravity compensation, allowing the participant to move it with

little resistance, or allowed the participant to move the robot while the robot applied a force,

equalling the Force Bias parameter, along the long axis of the handle, robot flange z axis.

Depending on the direction of this force overlay (Force Bias), with or against the direction

of motion, the participant pulled against it or was assisted. The Force Limit equalling the

absolute value of the Force Bias, allowed for the robot to provide the stiffness required to

overlay the corresponding Force Bias.

At the end of each repetition, the coordinator pressed the green user button on the robot

flange to signal the end of the repetition and stop the recording of that repetition. The

Hold Time of the impedance control mode was set to be indefinite, and the ending condition

of the motion was activation of the green button. This Hold Time parameter setting and

end condition meant that the participant was able to perform their motion without a time

limit enforced by the robot. The end of the repetition was signalled to the robot by the
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coordinator pressing the green button on the robot flange. Due to the repetitions ended by

a button press in this method, the Fall Time parameter was not used, therefore it was set

to the default 0 s. When a repetition ended, the blue LED ring turned off and the robot

resumed its original high stiffness mode holding its position stationary for 10 seconds until

the next repetition. Three repetitions occurred for each of these trials.

5. doADLReps

To begin the activity of daily living tests, the robot moved to its starting position for the

selected trial and paused for five seconds. The Cartesian Sine Impedance Control Mode for

ADL movements was updated with the Force Bias and Force Limit values for the specified

trial, as shown in the fourth column of Table 4.2.

At the beginning of a repetition, the blue LED ring on the robot flange lit up, the robot

switched to its updated impedance mode with force overlay, as well as recorded and saved

timestamped position and force measurements to a log file. The impedance control mode

used to simulate the activities of daily living was very similar to the mode used for flexion–

extension movements, but with a higher stiffness for two rotational directions. For the

simulated activities of raising the arm above horizontal lifting an object off a shelf (ADL

1), and lifting a cup to the mouth (ADL 2), rotation about the handle axis (z axis of the

robot flange) was not restricted (rotational stiffness a set to 0 Nm/rad). As the handle was

to remain vertical, maximum stiffnesses of 300 Nm/rad were set for b and c rotations to

limit and prevent tipping of the handle off of the vertical axis. With the specified Force

Bias being applied downwards towards the ground (simulating gravity acting on an object),

the participant was free to perform the motion without tipping the handle. The Force Limit

value set to equal the absolute value of the Force Bias value meant that the robot was capable

of applying the corresponding force through the handle to the participant, but not a force

higher than the Force Limit.

To end the repetition, stopping the force application and recordings, the coordinator pressed

the green user button on the robot flange. The blue LED ring turned off, signaling no force

overlay and the robot returned to its high stiffness mode, not moving for 10 seconds until
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the next repetition. A total of three repetitions were completed for the current trial.

4.3.1.2 Transferring Projects

Once projects were setup in Sunrise.Workbench, they were transferred to the robot controller via

an ethernet cable, by clicking the ’Synchronize Project’ button, as shown in Figure 4.13. During

development of programs, projects were loaded from the controller to the computer to collect and

save robot frame and tool information. All safety configurations transferred as part of the project.

For projects to be transferred, computer IP (internet protocol) settings were updated in order to

communicate with the robot, as shown in Figure 4.14.

Figure 4.13: Sunrise.Workbench toolbar with ’Synchronize Project’ button.

Figure 4.14: IP settings required to communicate with the robot.
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4.3.1.3 Tool Set-Up

In order for robot movements and measurements to adjust to external forces properly, all com-

ponents attached to the robot needed to be configured. In this study, a handle end effector was

attached to the robot flange to interface between the participants and the robot.

After mounting the handle to the robot, ”tool load data” was determined using the built

in robot controller functionality. A handle tool was created in the project object templates in

Sunrise.Workbench, Figure 4.15, and then transferred to the robot. In the Robots view, Load

data was selected, Determining the load data was pressed, Redetermine mass was selected,

and then the program was allowed to run, as shown in Figure 4.16.

When the automatic load data determination was complete, the load information was applied

to the tool, and the entire project was synchronized between the controller and Sunrise.Workbench

program. Synchronization saved the configuration to Sunrise.Workbench so that the tool could be

used in programs.

Figure 4.15: Sunrise.Workbench template data for tools and workpieces.

4.3.1.4 Safety

While working in close proximity with the robot, safety measures were taken, to ensure the partic-

ipants and coordinators running the experiment remained safe. People could be in direct contact

while collaborating with the robot as it was running because of the safety configurations in place.

The KUKA lbr iiwa has torque sensors in each of its joints, which were used to measure torques
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Figure 4.16: The smartPAD screen view for determining and saving tool loads.

and calculate forces, which allowed for force limits to be set.

The robot programs were run in a testing mode instead of in an automatic mode, as one

safety precaution. KUKA provided operating modes, including: T1 (manual reduced velocity), T2

(manual high velocity), and AUT (automatic). The differences in functions are described in Table

4.4. In the test modes (T1 and T2), an enabling button and play button needed to be pressed and

held for the program to run, compared to the automatic mode which allows the program to run

automatically once started. The test modes facilitated pausing and restarting of the program in

between trials. As well, the coordinator was able to immediately stop the robot at any time by

letting go of one or both of the enabling and play buttons. SetStartPositions was run in T1

mode, while MeasuringForDynamicCalibration was run in T2 mode to facilitate higher velocities.

Before the robot could move, a safety configuration within Sunrise.Workbench was required to

be set, loaded to the robot controller, and given permission to take effect. The safety configuration,

shown in Figure 4.17, consisted of KUKA Permanent Safety Monitoring (KUKA PSM), Customer
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Table 4.4: Operating modes of the KUKA robot.

Operating Mode Program Conditions Jog Mode

T1

Reduced velocity, maximum 250 mm/s

Manual

Maximum 250 mm/s

T2

Programmed velocity

Manual

Not possible

AUT Programmed velocity Not possible

Permanent Safety Monitoring (PSM), and Event-driven Safety Monitoring (ESM).

Figure 4.17: Sunrise.Workbench safety configuration, KUKA PSM.

KUKA PSM settings consisted of non configurable safety functions, which could not be changed.

These included the use of the emergency stop button on the smartPAD, the requirement of holding

enabling buttons when the robot was running in test modes T1 and T2, and velocity limits (250

mm/s) when the robot was in a hand guiding (robot passive) mode.

Customer PSM settings were configurable safety checks that were monitored while the robot

was running. Velocity monitoring was one PSM setting that was added, as shown in Figure 4.18.

With the cartesian velocity monitoring, the maximum robot and tool velocity was set at 500 mm/s.

If this velocity was exceeded (KUKA Atomic Monitoring Function (AMF) is violated), a safety

stop 1 (on-path) was triggered. This speed limit was introduced because the motions necessary
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during the trials fell under this speed and higher velocities were not required. Therefore, if the

participant were to let go of the handle while the robot was applying a force overlay, or if the

participant was not resisting the forces applied by the robot, or if the participant was not moving

the robot smoothly in a controlled manner, then the robot stopped before any damage was caused.

Figure 4.18: Sunrise.Workbench safety configuration, Customer PSM.

These two sets of PSM (Permanent Safety Monitoring) functions were running and being

checked while the robot was running any program or application contained within the project.

When the project (safety configuration, individual programs, tool and workpiece setups) were

loaded on the robot controller, these safety checks were being monitored.

Three event-driven safety monitoring (ESM) AMFs (Atomic Monitoring Functions) were also

added, as shown in Table 4.5. The monitoring of these safety functions took place at specific

points during the programs when they were activated, and were not monitored when deactivated.

A maximum of one ESM could be activated and monitored, while the remainder needed to remain

inactive. If the AMF safety conditions were ever violated, the robot stopped on path and paused

the program. The program could be played after being enabled again with the enabling buttons.

ESM 2 was only utilized during the programming process to move the robot to various positions

and continue running the program, while ESM 1 and 3 were used during the main programs used

for testing participants. Notable differences between the ESM settings were that ESM 1 had a

collision detection external torque limit, however, ESM 3 did not have this added torque sensing
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Table 4.5: Event-driven safety monitoring.

ESM AMF Reaction

ESM 1

Emergency stop smartPAD Stop 1 (on path)

Collision detection (maximum external torque 30 Nm) Stop 1 (on path)

Cartesian velocity monitoring (maximum velocity 500 mm/s) Stop 1 (on path)

ESM 2 Hand guiding device inactive Stop 1 (on path)

ESM 3
Emergency stop smartPAD Stop 1 (on path)

Cartesian velocity monitoring (maximum velocity 500 mm/s) Stop 1 (on path)

in the safety controls.

ESM state 1 was enabled while: the coordinator was providing input with the smartPAD

touchscreen, the robot was moving between positions, or the robot was paused with low forces

(lower than 22 N). Directly before an interaction with forces of 22 N, or higher forces during MVC

completion were expected, the ESM state was switched to ESM 3 to allow the high forces to occur

without the robot conducting a safety stop. After the high force interaction, the ESM state was

switched back to ESM 1. This ensured that during the majority of the testing time, the extra end

effector collision detection was activated.

4.3.1.5 Obtaining Log Files

The data collected during runtime of the program, were written to log files on the robot controller.

In order to access the files and transfer them to a desktop computer, a USB was inserted into

the robot controller and a diagnostic package was written to the USB, after each participant

completed all of the trials. The option to write the diagnostic package to the USB was selected

with the smartPAD from the Robots view. The log files of interest were then found in the file path

\KRCDiag 0 2018-05-15T17 36 18\Files\KRC\Roboter\Log\DataRecorder.

4.4 Protocol

Each of the individual systems described were used in conjunction. Using this equipment, the

protocol followed to conduct the experimental trials for data collection from the participants is

listed below:
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1. Systems were turned on and tested to ensure programs were running without problems.

These systems included: the KUKA robot, Kinect sensor, and Trigno EMG collection unit.

2. The participant read through and signed the letter of information and consent form, shown

in Appendix B.2.

3. The coordinator filled out the Trial Form, shown in Appendix B.3, with the participant’s

information (subject number, age, dominant hand, gender, weight [kg], height [cm], waist

circumference [cm], wrist circumference [cm], hip circumference [cm], forearm circumference

[cm], forearm length [cm], upper arm length [cm], room temperature [◦C], time of day, level

of activity [number of times exercising/week]).

4. The robot program SetStartPositions was run. As described in Section 4.3.1.1.1, the

coordinator guided the participants through positioning their arm in the start positions for

the various motions, while the coordinator adjusted the position of the robot and updated

the robot frames via the smartPAD.

5. The surface of the skin where EMG sensors were to be attached was cleaned with an alcohol

swab. These areas were above the 16 muscles of interest.

6. EMG sensors were attached with double sided sticky tape to the surface of the skin over the

muscles of interest. The EMG sensors were located over the muscle belly, following SENIAM

guidelines and anatomy diagrams.

7. The trial data were collected. One repetition each of elbow flexion MVC and elbow extension

MVC were completed. Then the three repetitions of each of the 38 motion trials were

performed in randomized order. Prior to data collection, the order of trials was randomized

using the randi function in MATLAB, after the random number generator was seeded based

on the current time using rng(’shuffle’) to ensure a new sequence of numbers would be

produced.

8. The EMG sensors were removed from the participant’s arm once all repetitions of all trials

were completed. The participant’s involvement in the experiment was finished at this point.
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9. Log files were obtained from the KUKA robot, EMG files from the Trigno system were

converted to .csv file format, and any extra notes were added to the notes section of the Trial

Form by the coordinator. The Trial Form is shown in Appendix B.3.

4.4.1 Timestamps

The EMG, kinematic, and force data were collected using three separate systems, Trigno, Kinect,

and KUKA robot, respectively. Data points from the separate systems were required to be syn-

chronized offline after collection since the systems were not connected at the time of the trials.

Timestamps recorded by each system were used to match data points obtained from the three

different systems.

In the files holding joint measurements collected with the Kinect system, the second line held

a timestamp of the first data point identifying the initial real world time, and the last line held

the amount of time in seconds that had passed from the first data point to the last data point.

With the timestamp information and the frequency of measurements, the real world time of any

of these position measurements could be determined.

In the saved files from the Trigno system, the time label of the first measurement was ’0’,

with the time labels of subsequent measurements counting up in time since the first measurement.

When viewing the files in the Trigno software, a real world time timestamp for the beginning of

the measurement file was available and recorded, in order to match the Trigno measurement times

with other systems referencing real world time. To relate each of the KUKA robot data points

to data collected with the Kinect and Trigno systems, each data point in the log files from the

KUKA robot were labeled with an epoch timestamp.

When first observing the EMG data (from the Trigno system) and the force data (from the

KUKA robot), it was discovered that there was an offset between the real world timestamps. The

KUKA robot system time appeared to be offset from true world time by about 30 seconds. This

offset also drifted when the robot was turned on and off since the KUKA robot was not connected

to the network with the same time server as the other computers used during data collection.

To determine the offset, the real world time, seen watching a live web update on the computer

system with time matching the Trigno and Kinect systems, of 10 unique activity timepoints that
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corresponded to the start and end of log files saved by the KUKA robot were recorded. The time

difference between the observed time and robot recorded timestamps were then calculated and

averaged to determine the actual robot offset. Human error or delay in observing the time was

minimal enough for this study. Since during troubleshooting the robot time offsets were seen to

fluctuate slightly when the robot was turned off then restarted after a period of a couple days, this

time recording process was completed for each participant trial, without turning the robot system

off in between.

With this information, the data from the Trigno, KUKA robot, and Kinect system could be

synchronized, using the timestamps to relate the data points to a common reference time.

4.5 Conclusion

This chapter described how the equipment was used to conduct motion trials to collect the kine-

matic, dynamic, and EMG measurements of interest. The software developed for data collection

and calibration of the KUKA robot was also outlined. The majority of the set-up was required

for the KUKA robot to smoothly guide the motion trials. In order to gain insight into the raw

EMG data collected, processing and analysis of the EMG data were the next steps. This analysis

is described in the following chapter.



Chapter 5

Pre-Processing and Statistical

Analysis

The previous two chapters presented the experimental design and execution of data collection.

Surface EMG data were measured from 16 muscles as 24 healthy participants performed motions.

The first purpose of conducting this experiment was to gain insight into how muscle activations

changed with motion characteristics: arm position, force, and velocity. In order to do that, this

chapter presents the processing of the collected data and statistical analysis of the processed EMG

signals. The results of this chapter can be used to inform the use of EMG signals in detecting

characteristics of intended motion in the next chapter. To conduct a statistical analysis, features

needed to be extracted from the raw EMG signals. The processing of the raw EMG signals is

presented in the following section.

5.1 Pre-Processing EMG Signals

The data during trials were all collected, and then processed after data collection was completed.

Processing was completed offline, not in real time, using MATLAB R2016b (MathWorks, USA).

See MATLAB scripts written for processing data in Appendix A.2. It was found that data from

one of the Trigno sensors (Sensor 8) were inconsistent as the sensor disconnected from the system

and did not measure EMG signals during many of the trials and repetitions. This occurred for

71
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21 out of 24 subjects (87.5 %). Due to the sensor inconsistently recording, all recordings from

Trigno Sensor 8 (attached over the pronator teres) were omitted during further statistical and

classification analysis. As well, during measurement, Trigno Sensor 7 disconnected momentarily

for Participant 9, and Trigno Sensor 9 disconnected for Participant 7. Since these were isolated

incidents, not all of Sensor 7 and Sensor 9 data were excluded for every subject. Sensor 7 was

only excluded from further analysis for Participant 9, and Sensor 9 data were only excluded for

Participant 7, since including the partial measurements could skew the results. Table 5.1 lists the

15 muscles used in further processing.

Table 5.1: Muscle channels

Muscle Channel Muscle Acronym

1 biceps brachii short head BB S

2 biceps brachii long head BB L

3 brachialis BRA

4 brachioradialis BRD

5 triceps brachii long head TRI LO

6 triceps brachii lateral head TRI LAT

7 triceps medial head TRI M

8 infraspinatus ISPI

9 anterior deltoid AD

10 lateral deltoid LD

11 posterior deltoid PD

12 extensor carpi ulnaris ECU

13 extensor carpi radialis ECR

14 flexor carpi ulnaris FCU

15 flexor carpi radialis FCR

5.1.1 Segmenting EMG Repetitions

EMG signals for multiple repetitions were collected in the same file. Timestamps recorded with the

hand position and force data from the KUKA robot, indicated the starting and end times of the

various movements and repetitions. These timestamps of the beginning and end of each repetition

were identified and then synchronized to the EMG files. The EMG signals were segmented into

separate repetitions.
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5.1.2 Filtering

EMG signals were sampled at a rate of 2000 Hz. Offline, these signals were bandpass filtered with

a 4th-order butterworth band-pass filter with a lower boundary of 20 Hz and an upper boundary

of 450 Hz. These bandpass window limits were chosen because it has been noted that EMG signals

of interest using surface EMG electrodes are between the frequencies of 20 and 450 Hz [65]. A

notch filter eliminated the 60 Hz power noise.

5.1.3 Normalizing EMG Signals

The EMG signals gathered indicate the activation of the muscle below the sensor, the combination

of the individual motor units firing. In order to compare the signals between participants and

muscles, the filtered signals were normalized relative to the absolute maximum of the EMG signals

gathered from the corresponding muscle during the maximum voluntary contraction exercises.

5.1.4 EMG Feature Extraction

Features of EMG signals were extracted to observe how EMG signals changed with the influence

of the arm position, force, and velocity levels during dynamic movements. The features extracted

fall under the time domain or frequency domain categories, and were extracted using existing

MATLAB functions [66]. Table 5.2 lists the extracted features.

To extract the features, the window size and overlap of windows were held constant. The

window length was set at 500 samples (approximately 250 ms) and the overlap of the windows

was 250 samples (approximately 125 ms) long. The parameters were set at these values because

these levels have been commonly used and have been shown to be effective [43]. Segments were

overlapped because segments over 200 ms need to be overlapped to potentially have time to process

signals and control devices in real time with less than a 300 ms delay between muscle contraction

and device movement [67]. A variety of window sizes and overlaps have been shown to work [35,68].

However, the window length resulting in higher classification accuracy can vary depending on the

features and classifiers used, with longer window lengths closer to 400 ms performing better than

very short (50 ms) window lengths [35]. Another study including varying window lengths found



5.1 Pre-Processing EMG Signals 74

Table 5.2: Features extracted

Feature Number Feature Acronym

1 mean absolute value MAV

2 slope sign changes SSC

3 waveform length WL

4 zero crossings ZC

5 root mean square RMS

6 first autoregressive coefficient AR1

7 second autoregressive coefficient AR2

8 third autoregressive coefficient AR3

9 fourth autoregressive coefficient AR4

10 mean frequency MNF

11 median frequency MDF

150–250 ms to be the optimal range in window length for acceptable classification error in real-

time control [69]. As well, it has been shown that increasing window lengths from 125 ms to 500

ms increased classification accuracy, but the improvements above 250 ms were not significant [43].

Therefore, the effects of window size and overlap were not of interest in this study and thereby

held constant. Also, it has been shown that the efficacy of pattern recognition models depended

more on, or were influenced more by, the features used (type, number, specific combination) and

type of training data used than by the classifier [48].

Four time domain features belonging to the Hudgins set were extracted. This set of time domain

features included: mean absolute value (MAV), slope sign changes (SSC), waveform length (WL),

and zero crossings (ZC). Mean absolute value slope, included as part of the Hudgins set in some

cases, was not observed in the initial study. A second group of time domain features seen in the

literature consists of root mean square (RMS) and autoregressive coefficients (AR) [67, 70]. RMS

and fourth order autoregressive coefficients (AR1, AR2, AR3, AR4) were also extracted.

Additionally, two frequency domain features extracted were the mean frequency (MNF) and

median frequency (MDF). These were included to provide more frequency information than is

represented in the SSC and ZC time domain features.
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5.2 Statistical Analysis

With features extracted from the filtered and normalized EMG signals, a statistical analysis was

completed to observe relationships between motion factors and EMG signal features.

Correlations between factor levels and EMG feature values for the muscles of interest were

observed. To evaluate these connections or lack of connections between motion characteristics and

EMG signals, a repeated measures analysis was completed using the Statistical Package for the

Social Sciences v. 24 (SPSS). A statistical significance of 0.05 was used.

For each muscle and each of the extracted features, the feature value was averaged over the

entire repetition of a movement, then the mean of the repetition averages was collected to give one

value for the feature per movement. This process was completed for each subject. Each muscle and

feature was analyzed separately. There was some variation in EMG feature values throughout a

movement trial, however, the feature values were averaged over an entire motion to investigate the

motion as a whole. In future studies, motions could be segmented further, potentially segmented

into elbow flexion versus extension portions of a movement. EMG feature measurements were

observed to be repeatable between the three repetitions, with intraclass correlation. Specifically

for the two participant pilot study data, there was some variation in EMG measurements between

repetitions, however trends of features increasing or decreasing with movement repetitions were

not observed for the BB S for S1, or the TRI LO for S2.

For the factorial experimental design, EMG data were analyzed with repeated measures tests

using SPSS. For the basic flexion–extension tests, processed EMG signals from flexion–extension

motions and isometric contractions with the elbow fully extended were grouped together. Activity

of daily living motion trials were not included in this group for analysis. The three factors observed

were arm position, interaction force between the users’ hand and environment (robot), and goal

velocity. Each factor had three levels. The three nominal arm positions (P1, P2, P3) were the

arm starting down by the side of the torso (0◦ shoulder abduction, 0◦ shoulder flexion), the arm

horizontal with hand stretched forwards (90◦ shoulder flexion), and arm horizontal with hand

stretched to the side (90◦ shoulder abduction). The three force levels (F1, F2, F3) in this group

of trials were 0 N, 22 N resisting elbow flexion, and 22 N resisting elbow extension. The three
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velocities (V1, V2, V3) were stationary (0◦/s), slow (approximately 11◦/s, 8 seconds to perform

motion), and fast (approximately 23◦/s, 4 seconds to perform motion). The velocities in this

case were the speeds at which the participants were instructed to move during the tests, the goal

velocities.

The next group for analysis was the motion trials for ADL 1, which consisted of a simulation of

picking an object off of a shelf just above shoulder height, lowering the hand, and raising the hand

back to the starting position. The two factors varied during this activity were force and velocity.

Unlike the single flexion–extension motions and isometric contractions, the arm position was not

specified for these activities as specific daily tasks were being mimicked. The two force levels (F1,

F2) for this set were 11 N and 22 N. The direction of this force remained constant with the robot

pushing vertically downwards on the participants’ hands. The two velocity levels (V1, V2) were

slow and fast, again. The 0◦/s stationary level was not included in this case as performance of the

task required movement not isometric contractions.

Similarly, the analysis group for ADL 2, which included a simulation of lifting a cup off of

a table to drink, was analyzed with the two factors of force and velocity. The two force levels

(F1, F2) were 11 N and 22 N, the two velocities (V1, V2) were slow and fast. The results of all

statistical analyses described are presented in the next section.

5.2.1 Statistical Results

An initial statistical analysis was performed in order to observe the effect of changing position,

force, and velocity levels on feature values of 15 arm and shoulder muscles. The results for basic

flexion–extension, and two ADL motions are presented in the follow sections.

5.2.1.1 Flexion–Extension Statistical Results

For flexion–extension, there were many significant differences between all position levels, between

all force levels, and between all velocity levels. The features with significant differences for position,

force, or velocity levels, varied with each muscle assessed. Significant changes in feature values

related to changes in the levels of the motion characteristics are displayed in Tables 5.3, 5.4, and

5.6. The rows correspond to the 15 muscles of interest (Table 5.1). The columns designate Features
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1–11 (Table 5.2). In the body of the table, a coloured cell represents a significant difference in

the feature value with changing factor level for that corresponding muscle, whereas white cells

represent no significant difference for the intersecting feature and muscle combination.

Table 5.3: Significant differences found in the assessment of position during flexion–extension mo-
tion for the various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

Table 5.3 displays a summary of the statistical results of EMG features related to arm position.

This table shows that at least two feature values had significant differences with changing arm

positions for all 15 muscles of interest. The differences in arm position between P1, P2, and P3

were shoulder flexion angles and shoulder abduction angles. It was expected that feature values

for the prime movers responsible for shoulder flexion, abduction, and rotation would be significant.

Based on anatomy, the main function of the LD is shoulder abduction. In P3, the participant’s

shoulder was abducted 90◦, compared to P1 and P2 with 0◦ shoulder abduction. Consistent

with the LD performing shoulder abduction, multiple features were significantly different for the

LD between P1 and P3 (nine features), as well as P2 and P3 (7 features). However, multiple

features of the LD muscle activation also changed significantly between P1 and P2 (9 features),

where participants were maintaining a constant shoulder abduction angle. For example, mean SSC

values for the LD were highest when the arm was held in P1, mid-range when the arm was held in
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P2, and lowest in P3 (60.617 vs. 51.0955 vs. 47.703, p < 0.001), as shown in Figure 5.1 together

with the ZC metric (which was also significant between P1 and P2). A full comparison of mean

EMG feature values for each muscle, and significant differences in these values corresponding to

varying levels of arm position, force, and velocity during elbow flexion–extension, is provided in

Appendix C.1.

Figure 5.1: Mean SSC and ZC values for the LD in three arm positions. Error bars indicate
standard deviations.

Anatomically, the AD contributes to shoulder flexion, and the PD contributes to shoulder

extension. In P2, the participant’s arm was oriented with 90◦ flexion, compared to P1 and P3

with 0◦ shoulder flexion. Multiple EMG features varied significantly based on arm position for

both the AD and PD. For the AD, more features changed significantly between P1 and P2 (nine

features), P1 and P3 (11 features) than P2 and P3 (five features). For example, mean WL values

for the AD were lowest in P1 and higher in P2 and P3 (2.083 vs. 11.486 and 10.035, p < 0.001),

as displayed in Figure 5.2. While for the PD, more features changed between P1 and P3 (nine

features), P2 and P3 (nine features) than between P1 and P2 (three features). For example, mean

WL feature values were lowest for the PD in P1 and P2 compared to P3 (3.342 and 3.456 vs.

15.846, p < 0.001).
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Figure 5.2: Mean WL values for the AD and the PD in three arm positions. Error bars indicate
standard deviations.

Also, other arm muscles, such as the prime elbow flexors and extensors, BB ( S and L) and

TRI ( LO, LAT, and M), as well as muscles in the forearm (ECU, ECR, FCU, and FCR) had

significant changes in values for subsets of features when the arm was in different positions. For

example, mean ZC values for the BB L were significantly different when the arm was in P1, P2,

and P3 (59.791 vs. 52.945 vs. 56.325, p < 0.001). As well, mean WL values for the ECU varied

significantly when the arm was in P1, P2, and P3 (12.215 vs. 15.925 vs. 18.866, p < 0.001). These

findings suggest that muscle activation was influenced by joint positioning tasks for joints for

which those muscles were the not main activators, and from which they were separated by another

intermediate joint (the elbow separated the forearm muscles from the shoulder). Alternatively,

changes in arm positions changed the way in which the arm muscles coordinated to perform a

consistent task. These differences in muscle activations with changes in arm position were also

observed with the arm performing flexion–extension motions with varying external forces (F1, F2,

F3) applied to the hand, and at varying velocities (V1, V2, V3).

As shown in Table 5.4, force had a large impact on muscle activation. The patterns of muscle

activation in response to environmental interaction occurred across different arm positions and

elbow rotation velocities. This indicates that the impact of force on the EMG signals was strong.
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Table 5.4: Significant differences found in the assessment of force during flexion–extension motion
for the various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

Five EMG features (MAV, SSC, WL, ZC, RMS) for all 15 muscles had significant differences in

values during different environmental interactions. The remaining 6 features (four autoregressive

coefficients, MNF, and MDF) changed significantly with force for the majority of the muscles

measured, but not for all. The environmental forces were applied through the robot handle to

the hand of the participant. The range of features impacted over each of the muscles suggested

that the muscles throughout the entire arm and shoulder were working together synergistically in

response to external forces.

Table 5.5: WL means and standard deviations at three force levels for elbow flexors and extensors.

WL Mean Standard Deviation

Muscle F1 F2 F3 F1 F2 F3

BB S (ch1) 1.494 5.140 1.864 1.166 3.929 2.131

BB L (ch2) 2.016 6.056 1.757 1.063 3.532 1.220

BRA (ch3) 2.228 5.823 2.561 1.352 2.969 1.960

BRD (ch4) 3.017 4.909 3.234 4.243 3.968 4.522

TRI LO (ch5) 1.957 1.593 5.525 1.186 0.994 2.998

TRI LAT (ch6) 2.777 2.303 8.231 1.808 1.573 5.188

TRI M (ch7) 3.086 1.963 7.928 2.911 1.300 5.554
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Figure 5.3: Mean WL values for elbow flexors and extensors at three force levels. Standard devi-
ation error bars not shown in plot for clarity. Standard deviations are shown in Table
5.5.

The variety of muscles were activated differently in response to the changing forces to stabilize

the wrist, elbow, and shoulder joints. To demonstrate, mean WL length values for a subset of

muscles, the prime elbow movers, are presented in Figure 5.3. The mean WL feature values for

BB S were higher for F2 than F1 and F3 (5.140 vs. 1.494 and 1.864, p < 0.001). Whereas the

mean WL of the TRI M was highest for F3, lower for F1, and lowest for F2 (7.928 vs. 3.086 vs.

1.963, p < 0.001). These differences appeared even with changing arm positions and velocities.

Fewer muscle/feature combinations were found to have significant differences with changing

velocities, as seen in Table 5.6. 108 muscle/feature combinations changed significantly with velocity

level changes, compared to 124 and 152 muscle/feature combinations that changed significantly
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with different positions or force levels, respectively. Similar to the force motion characteristics, a

trend of MAV, SSC, WL, ZC, and RMS changing significantly for more muscles than the remaining

six features (except the fourth AR coefficient) was observed. Two examples of feature values

changing with varying motion velocities are described. For the BB S, the mean SSC feature was

highest when the arm was stationary (V1), and also varied significantly between V2 (slow) and

V3 (fast) motions (54.815 vs. 52.173 vs. 53.483, p < 0.001). Similarly, for the TRI M, mean SCC

values were higher during isometric contractions (V1) than slow (V2) and fast (V3) movements

(59.427 vs. 56.277 and 56.471, p < 0.001).

Table 5.6: Significant differences found in the assessment of velocity during flexion–extension mo-
tion for the various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

This section explored the results of the statistical analysis of EMG signals during flexion–

extension motions. All three motion characteristics of interest (position, force, velocity), had

some impact on EMG signal feature values. This impact was observed even though the motions

were performed with limited constraints and motion characteristics changed simultaneously, in

a repeated measures experimental design. Velocity had fewer muscle/feature combinations with

statistical significance, while MAV, SSC, WL, ZC, and RMS were consistently significantly different

for different force and velocity levels for most muscles (all 15 muscles for force). The results of the
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statistical analysis for ADL motions are described in the following section.

5.2.1.2 ADL Statistical Results

For activities of daily living (ADL) 1 and 2, there were fewer feature and muscle combinations

that had significant differences for the force and velocity levels, when compared to the flexion–

extension results. For ADL 1, 100 feature/muscle combinations varied significantly with force level,

and 46 varied significantly with velocity. For ADL 2, there were 98 feature/muscle combinations

with significant differences for force, and 36 combinations with significant differences for velocity.

These results for ADL 1 are shown in Table 5.7 and Table 5.8. These results for ADL 2 are shown

in Tables 5.9 and 5.10.

Table 5.7: Significant differences found in the assessment of force during ADL 1 motion for the
various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

Overall, force levels influenced EMG signals in a more consistent manner compared to velocity.

As well, force and velocity impacted EMG signals less consistently for ADL motions compared

to the basic elbow flexion–extension motion. This was expected as the ADL motions combined

more rotations of the shoulder joint moving the upper arm making the movements more complex.

As well, for the force characteristic, the nominal difference in force value between levels was only
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Table 5.8: Significant differences found in the assessment of velocity during ADL 1 motion for the
various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

11 N during ADLs, whereas the nominal difference in force level investigated during basic elbow

flexion–extension was plus and minus 22 N.

For both ADL 1 and ADL 2, the first five features (MAV, SSC, WL, ZC, and RMS) had

significant differences in values during different velocities for more muscles than the remaining

six features. This trend was observed during flexion–extension motions as well. This suggests

these features may be more robust if used to indicate intended velocity, but less stable if signals

unchanging in response to velocity changes were desired.

A few examples of the impact of force and velocity changes on EMG signals are presented.

During ADL 1, mean WL values for the BB S increased with an increase in force from F1 (11 N)

to F2 (22 N) (3.231 vs. 4.803, p < 0.001). Similarly, mean WL values were higher for F2 (22 N)

than F1 (11 N) for the TRI LAT during ADL 1 (2.553 vs. 2.196, p = 0.013). During ADL 2, mean

ZC values increased with an increase in velocity from slow (V1) to fast (V2) movements for the

TRI M (58.626 vs. 61.239, p = 0.006). The BB S followed a similar trend with ZC values increasing

with an increase in speed from V1 to V2 (50.593 vs. 52.211, p = 0.029). A full comparison of mean

feature values and significant differences during ADL 1 and ADL 2 motions is provided in Appendix

C.2 and C.3. The relationship between EMG signals and motion characteristics is explored further
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Table 5.9: Significant differences found in the assessment of force during ADL 2 motion for the
various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR

in the next chapter with patterns in EMG signals used to predict motion characteristics.

5.3 Conclusion

Chapter 5 described the processing of the collected EMG signals, extraction of time domain and

frequency domain features, and the relationship between changing motion characteristics and mus-

cle activation, as represented by the feature values. Arm position, force, and velocity all had an

impact on EMG features throughout the arm. The relationship is explored further and used to

determine intended arm motion in Chapter 6.
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Table 5.10: Significant differences found in the assessment of velocity during ADL 2 motion for
the various features and muscles assessed.

Muscles/Features MAV SSC WL ZC RMS AR1 AR2 AR3 AR4 MNF MDF

BB S

BB L

BRA

BRD

TRI LO

TRI LAT

TRI M

ISPI

AD

LD

PD

ECU

ECR

FCU

FCR



Chapter 6

Motion Characteristic Classification

and Applications

In the previous chapter, it was shown that motion characteristics such as arm position, interaction

forces between a person’s hand and the environment, and movement velocity all significantly

impacted the activation of a variety of arm and shoulder muscles, as seen as variations in up to

11 EMG feature values. This insight into the behaviour of arm muscle activation during various

motions was then used to classify levels of motion characteristics based on EMG signals. However,

classification of motion characteristics was a basic example of a control scheme for a wearable

device. A smoother device would need to be controlled using more complex model-based strategies.

The importance of basic motion characteristics affecting EMG signals remains. Results of motion

characteristic classification and further applications of using measurable motion characteristics to

improve classification of interaction forces are described in this chapter.

6.1 Motion Characteristic Classification

In the previous statistical analysis, it was shown that changing levels of motion characteristics

changed muscle activation as represented by EMG feature values. Depending on the motion factor

(position, force, velocity) and motion type (simple elbow flexion–extension or ADLs), various

feature values changed for differing muscles. In this section, the EMG features of various arm

87
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muscles were used in MATLAB to train two types of classifiers, linear discriminant analysis (LDA)

and support vector machine (SVM), to detect classes of arm position, forces, and motion velocities.

Refer to Appendix A.2.1 for MATLAB scripts developed to implement classification of motion

characteristics. Determining motion characteristics such as force from EMG signals could then

lead to better control of active-assistive devices.

6.1.1 Training Sets

EMG data from groups of motions were used to train classification models. Classifiers have tended

to categorize hand movements less accurately when force levels or limb positions during testing

changed or differed compared to the constrained conditions the training data came from [35]. Since

including training data from various force levels or various arm positions has reduced motion clas-

sification error when various force levels and limb positions were introduced [35], diverse training

sets were used in this work. The classifiers were trained and the accuracy of the trained classifiers

was tested with the same data collected and used in the statistical analysis, after feature extraction.

This training data consisted of EMG features from motions with varying arm positions, forces, and

velocities. Separate models were trained with data collected during four different motion types

listed below.

1. Flexion–Extension movements

Observations from isometric contractions and flexion–extension movements were combined

together in one training set. The EMG observations for ADL 1 and ADL 2 were excluded.

These data were more representative of a single arm motion (flexion and extension of the

elbow) without additional movements of the shoulder and wrist. This group included ob-

servations from diverse unconstrained motions with three motion factors (position, force,

velocity) varying between three levels each.

2. ADL 1

A second set of training data consisted of EMG data collected during performance of ADL 1

only for each participant. Two motion factors (force and velocity) varied between two levels

each, during ADL 1.
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3. ADL 2

A third set of training data included EMG features collected during ADL 2 movements for

every participant. For ADL 2, two motion factors (force and velocity) varied between two

levels.

4. ADL 1 and ADL 2

The fourth set of observations contained EMG data collected during ADL 1 and ADL 2 move-

ments performed by all 24 participants. Data from both ADLs were combined to generate a

more diverse training set.

Data were separated by type of motion to train independent models because force levels differed

between flexion–extension motions and ADLs. As well, unlike flexion–extension motions, arm

position was not a controlled variable during ADLs.

The training input was divided into predictors, which consisted of EMG feature values from

the various arm muscles measured, and labels pertaining to motion characteristic classes. Each

observed set of predictors was assigned a label. The observations consisted of data from a subset

of trials corresponding to the four types of motion (flexion–extension, ADL 1, ADL 2, ADL 1 and

ADL 2), for each participant. The predictors and class labels are described in more detail in the

following sections.

6.1.1.1 Predictors

For this initial collection of tests, all feature values (11) for all available muscles (15) were given

as predictors to the classifier. Along with the set of predictors (11 feature values for all 15 muscles

available), a label was assigned to each motion.

6.1.1.2 Labels

The labels for each movement corresponded to classes of the position, force, and velocity motion

characteristics. Independent classification models were trained to classify arm position, force, or

velocity. For the flexion–extension trial group, three position classes (P1, P2, P3) were deter-

mined. As well, three force classes (0 N, +22 N, -22 N) were classified. For the velocity motion
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characteristic, motions were classified into three classes (stationary (0◦/s), slow, fast) or two classes

(stationary, moving).

For the ADL trial groups, these motions were separated into two force classes (11 N, 22 N),

or two velocity classes (slow, fast). Predictors with known labels were used to train classifiers to

receive predictors as inputs and output the expected class. Native MATLAB functions, fitcdiscr

and fitcecoc, received sets of training predictors and labels to generate LDA and SVM models,

respectively, for scripts see Appendix A.2.1. The method for checking classifier accuracy is outlined

in the following section.

6.1.2 Model Accuracy

To test the accuracy of the trained classification models, a leave-one-subject-out (LOSO) cross-

validation technique was used to exclude testing sets from training sets [37, 71, 72]. For the 24

subjects, the observations from Subjects 2–24 were used to train the classification model, then

the model was tested by classifying the motion of Subject 1. Motions were classified using the

native MATLAB function predict(model, test predictors). Inputs to this function included

a trained model (model) and the new set of predictors (test predictors), and the output was

a vector of class labels that the model assigned to the predictors. These new labels, predicted

by the trained models, were compared to the true labels corresponding to the test predictors, to

determine how many labels the model assigned correctly to the motion predictors. Then Subject 2

was excluded from the training observation set (consisting of all remaining subjects, 1 and 3–24),

and used as a test set for checking the classification accuracy. This was repeated, leaving each

subject out of the training data then testing the model with that subject, to give a final averaged

accuracy. This LOSO technique was used to give a better idea of model generalization and true

accuracy without overfitting. The accuracies of the LDA and SVM models to assign the described

predictors to the proper position, force, and velocity classes are demonstrated in the next section.

6.1.3 Classification Results

The results of training classifiers to detect motion characteristics are displayed in Table 6.1. Inde-

pendent classification models were trained and tested using the LOSO cross-validation technique
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for four groups of motion trials: flexion–extension, ADL 1, ADL 2, or ADL1 and ADL 2 motion

data.

Table 6.1: LDA and SVM motion characteristic classification accuracies using 11 EMG feature
inputs from 15 arm and shoulder muscles.

Motion Type Characteristic Classes LDA Accuracy [%] SVM Accuracy [%]

flexion–extension position 3 (P1, P2, P3) 78.70 83.02

flexion–extension force 3 (0 N, +22 N, -22 N) 73.77 74.54

flexion–extension velocity 3 (stationary, slow, fast) 43.98 47.22

flexion–extension velocity 2 (stationary, moving) 67.90 71.91

ADL 1 force 2 (11 N, 22 N) 56.25 63.54

ADL 1 velocity 2 (slow, fast) 56.25 53.13

ADL 2 force 2 (11 N, 22 N) 53.13 59.38

ADL 2 velocity 2 (slow, fast) 53.13 57.29

ADL 1, ADL 2 force 2 (11 N, 22 N) 54.69 58.33

ADL 1, ADL 2 velocity 2 (slow, fast) 48.96 54.17

An LDA model was first trained with a flexion–extension observation set to determine the po-

sition (P1, P2, P3) of the arm during movements. This LDA model performed with a classification

accuracy of 78.7 %. This accuracy improved to 83.02 % with an SVM model. Even with very

diverse training data with varied force levels and velocity levels, position could be determined with

less than 25 % error.

The accuracy of force classification was lower at 73.77 % and 74.54 % accuracies, for LDA and

SVM models, respectively. In this case, not as much improvement was observed with the SVM

classifier compared to the LDA classifier. However, interaction with the environment could be

determined with just over 25 % error when arm position and velocity varied, influencing the EMG

signals.

Both classifier types were very poor at determining three velocity classes (stationary, slow,

fast), but accuracy improved when only two velocity levels (stationary, moving) were classified.

Poor discrimination was expected between the slow and fast velocity classes as these were the goal

velocities at which the participants were instructed to move. The actual joint rotation and hand

speeds varied between participants, and within participant trials they could vary between repeti-

tion, even though participants were instructed to perform motions over consistent durations. With

the statistical analysis, significant differences were found for EMG features pertaining to motions in
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these goal velocity classes, not only the position and force motion characteristics. Therefore, signif-

icant differences in signals levels do not necessarily indicate positive pattern recognition. However,

both LDA and SVM type classifiers could better recognize patterns in EMG signals pertaining to

isometric contractions compared to elbow flexion and extension. LDA models classified stationary

contractions versus movement with 67.9 % accuracy, while SVM models were 71.91 % accurate.

Force and velocity classification was worse for ADL motions than the flexion–extension move-

ments, as presented in Table 6.1. These classification levels were expected to be lower because the

motions were more complex, and the force was applied constantly downwards not perpendicular

to the forearm, meaning the torque experienced at the elbow could differ throughout the motion

even though the force value felt at the hand was constant. As well, there was a smaller difference

between the force levels (11 N and 22 N) for ADLs compared to the force levels (0 N, +22 N, -22

N) experienced during the basic flexion–extension motion trials. Also, there were fewer training

motions for ADLs (4 ADL 1 motion trials per subject) relative to the 27 flexion–extension motion

trials per subject, meaning that there were fewer training prediction/label observations for the

classifiers.

There were minimal constraints for flexion–extension motions in this study, and the classifiers

were trained with data covering various arm positions, force levels, and velocities. Motion con-

straints were limited and diverse training sets were used in an effort to make the classifier training

sets of EMG signals more representative of the variety of elbow movements during day to day

living. However, the much poorer classification of motion characteristics for ADLs compared to

flexion–extension motions shows that the control problem of using EMG signals to determine in-

tended elbow motion characteristics for ADLs is more complex than elbow flexion–extension with

limited upper arm movement.

Usually, motion classifiers using arm muscle EMG input have been used to determine intended

motion types such as wrist flexion–extension, grabbing objects, and pointing. In contrast, these

results demonstrated the potential to determine more information about intended motion related

to arm position and force. These initial classifiers had error rates above 10 %, the maximum

error rate for a system classifying motions to be considered usable [35]. However, these initial

classifiers determining force would most likely not be implemented in force control of a wearable
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device. The intention of these classifiers determining levels of motion characteristics and not purely

motions, was to demonstrate the tangible impact of the motion characteristics on the EMG feature

values from a variety of arm and shoulder muscles, and to use this information to better inform

other control systems. For instance, knowing if a user is interacting with the environment or not

(force classification) could be useful in guiding or tuning control models using EMG signal inputs.

Further iterations of classifiers determining force levels, representing interactions between a person

and their environment, and using motion characteristic information such as arm position and hand

velocity as additional inputs to improve this classification is continued in the next section.

6.2 Classification Iterations

Purely classifying basic motion characteristics based on EMG signals as a control input would

only provide basic control of a wearable device designed for rehabilitation. In these devices, the

development of more complex control systems may require parameters that need to be tuned.

Parameter values may be optimized using data from constrained motions performed at a specific

velocity, and no environmental interaction. Or they may have been calibrated with the user’s arm

in one position (or shoulder orientation) instead of in a variety of arm positions that occur during

activities of daily living. However, this study showed that arm position, force and interaction with

the environment, and joint velocity do impact EMG signals significantly for many features and

many arm muscles.

For such control schemes, it could be useful to have arm position, interaction forces, and

velocities as known inputs if measurable. These motion characteristics could then direct the control

path. For instance, if control model parameters are tuned for the model to perform optimally at

a particular speed, the actual speed of motion could be used to tune these parameters further for

other velocities as the motions are being performed. As well, knowing whether or not the device

user is interacting with the environment, and with which force level, could be used to tune the

control model or change the level of assistance or stiffness or compliance. For example, an assistive

device may be required to provide more support if the user is holding a heavy object instead of

just their own hand. However, higher muscle activation required to hold a heavy object stationary
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should not be mistaken as an intent to flex the elbow.

Arm position and joint velocity or hand speed are simpler to measure with a wearable device

than interaction forces between a person’s hand and the objects in the environment. Therefore,

classifying interaction forces is the most important goal as it would not be possible to directly

measure it. To improve the ability of models to correctly classify force during motion, the data

included in training sets for pattern recognition models were modified. Since it was shown that arm

position and joint speed influenced muscle activations in addition to force levels, arm position and

hand velocities (related to joint rotation speeds) were included as inputs to classifiers in addition

to EMG signal features. As well, the sizes of the EMG feature vectors were reduced. The specifics

of the the predictor groups implemented in training are as follows.

6.2.1 Force Predictors

To compare to the previous classifications, all 11 EMG features for all 15 muscles measured were

included as predictors in the first training sets. A modified training set that slightly reduced

the number of muscles/features included was also generated. Only the specific EMG feature and

muscle combinations found to have significant differences with changing force levels during flexion–

extension motions (Chapter 5 Section 5.2) were included. However, the size of the feature vector

was not reduced by a large amount. Thereby, the muscle/feature combinations included were

reduced further to include only the popular and robust Hudgins set EMG features (MAV, SSC,

WL, ZC) for the biceps brachii and triceps brachii muscles (BB S, BB L, TRI LO, TRI LAT,

TRI M). The muscles were limited to BB and TRI as devices have been controlled with only

surface EMG signals from BB and TRI as inputs [35].

Since the influence of arm position and movement velocity on EMG signals has been shown,

combinations of position labels (P1, P2, P3) and motion speed values and labels were included as

predictors in addition to the muscle/feature EMG sets. Actual average hand speed (representative

of joint rotation speed), or goal movement speed labels (stationary vs. moving, or stationary vs.

slow vs. fast) were used as the speed predictors. The actual average hand speed was calculated

from the KUKA robot handle x, y, z position measurements in the world frame collected during

the performance of the motions. During elbow flexion–extension, the hand speed was related to
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the joint rotation speed. The speed was averaged over the entire motion duration. The labels

corresponding to the predictor sets are outlined in the next section.

6.2.2 Classifier Training

The observation force labels remained the same as the initial classifications in Section 6.1.1.2, 0

N, +22 N, and -22 N for flexion–extension motions, and 11 N and 22 N for ADL motions. Again,

the leave-one-subject-out technique was used to check the accuracy of the trained model with data

observations for subjects that remained independent from the training dataset. An LDA classifier

was implemented as it is commonly recommended and used to classify Hudgins set EMG signal

features as the LDA model is robust, does not have extra parameters and can produce accuracies

similar to other more complex models [35, 73]. The results of training the LDA classification

models to identify force levels using the various predictor sets for flexion–extension motions and

ADL movements are described in the following section.

6.2.3 Iterated Classification Results

The results of the LDA models trained with the new predictor sets, reducing the EMG muscle-

/feature vectors and adding position and movement speed information, were compared to the

original force classification systems. The goal was to improve the force classification accuracy.

Flexion–extension and ADL motions were analyzed separately.

6.2.3.1 Improved Flexion–Extension Force Classification Results

Table 6.2 displays the results of LDA model force classification accuracies for flexion–extension

motions using different predictor sets. Classification accuracy was given as percent correct, the

Muscles/Features column outlines which EMG values were included as predictors, and the green

cells indicate if position labels, actual average hand speed, or speed labels were included as pre-

dictors as well.

A few general trends in classification accuracy were observed. First of all, the overall classi-

fication accuracy using all feature 11 values for all 15 muscles (the full feature vector) resulted

in the largest errors classifying 0 N, +22 N, and -22 N. Adding position labels or motion speed
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Table 6.2: Accuracy of LDA model classifying three force levels (0 N, +22 N, -22 N) during elbow
flexion–extension motions with varying predictor sets. Coloured boxes mean that the
predictors named in the corresponding column title were included as inputs to the LDA
model of the intersecting row.

Accuracy [%] Muscles/Features Position Label
Actual Average

Hand Speed

Speed Label

(Stationary,

Moving)

Speed Label

(Stationary,

Slow, Fast)

73.77 all

73.61 all

73.92 all

74.23 all

74.38 all

73.30 all

73.61 all

72.84 all

75.00 force significance

74.38 force significance

75.31 force significance

75.00 force significance

76.85 BB, TRI, Hudgins set

78.40 BB, TRI, Hudgins set

77.62 BB, TRI, Hudgins set

77.16 BB, TRI, Hudgins set

77.16 BB, TRI, Hudgins set

78.40 BB, TRI, Hudgins set

79.17 BB, TRI, Hudgins set

78.55 BB, TRI, Hudgins set

information did not produce a large change in accuracy. The accuracies ranged from 72.84 % to

74.38 % correct. A possible explanation for the lack of change in accuracy is that the predictor

sets were already so large with the full muscle/feature vector, that adding a single position and/or

speed predictor did not make much difference. As well, the predictors included many muscle EMG

feature values already influenced by position and speed so adding position and speed predictors

was redundant.

Next, the classification accuracies of LDA models trained with a slightly reduced muscle/feature

set (only the EMG muscle/feature combinations with significant differences with changing force

levels) were slightly higher. These accuracies fell in the 74.38–75.31 % range. Adding the arm

position or average hand speeds did not cause much difference in classification errors.

Most notably, the further reduced muscle/feature vector (Hudgins set features for BB and TRI)
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as predictors resulted in the highest classification accuracies ranging from 76.85 % to 79.17 %, as

presented in Figure 6.1. This was promising, as collecting EMG signals from many muscles and the

processing of the signals and extraction of features took time and computational power. Reducing

the amount of EMG processing required in controlling a device in real time is advantageous. The

lowest classification accuracy (76.85 %) using this reduced muscle/feature predictor vector occurred

when only the EMG features were included as inputs to the LDA classifier without additional

position and/or speed predictors. Although the increase in accuracies was small, augmenting the

EMG predictor vector with arm position labels and speed labels (stationary, moving) resulted in

the lowest error (classification accuracy of 79.17 %). Adding position labels reduced the error

slightly more than adding only speed information. This demonstrated that position and speed

information had some positive influence on classification of force with a reduced EMG feature

predictor set. Further investigation to determine if these trends occurred for more complex ADL

motions and smaller differences in force levels continues in the next section.

Figure 6.1: Classification accuracy of LDA models identifying force levels (F1, F2, F3) with three
predictor sets during elbow flexion–extension.
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6.2.3.2 Iterated ADL Force Classification Results

The LDA model force classification accuracy results for ADL motions with various predictor sets

are displayed in Table 6.3.

Table 6.3: Accuracy of LDA model classifying two force levels (11 N, 22 N) during activities of daily
living motions with varying predictor sets. Coloured boxes mean that the predictors
named in the corresponding column title were included as inputs to the LDA model of
the intersecting row.

Accuracy [%] Motion Type Muscles/Features
Actual Average

Hand Speed

Speed Label

(Slow, Fast)

56.25 ADL 1 all

54.17 ADL 1 all

53.13 ADL 2 all

54.17 ADL 2 all

54.69 ADL 1, ADL 2 all

53.13 ADL 1, ADL 2 all

59.38 ADL 1 BB, TRI, Hudgins set

64.58 ADL 1 BB, TRI, Hudgins set

63.54 ADL 1 BB, TRI, Hudgins set

61.46 ADL 2 BB, TRI, Hudgins set

60.42 ADL 2 BB, TRI, Hudgins set

61.46 ADL 2 BB, TRI, Hudgins set

58.85 ADL 1, ADL 2 BB, TRI, Hudgins set

59.90 ADL 1, ADL 2 BB, TRI, Hudgins set

58.33 ADL 1, ADL 2 BB, TRI, Hudgins set

This table and Figure 6.2 show that a reduced muscle/feature vector of Hudgins set features

for the BB and TRI (BB S, BB L, TRI LO, TRI LAT, TRI M), instead of 11 features for each of

15 muscles, increased LDA model force classification accuracy for ADLs. The overall accuracies

were much lower for the ADLs than basic flexion–extension, yet this decrease in error by using the

reduced muscle/feature EMG set reflected the same trend observed with basic flexion–extension

motions.

In contrast to the flexion–extension motions, arm position was not included as a predictor

in this analysis of ADLs. The participants could not perform the ADL motions by remaining

stationary, therefore, the only speed labels used as predictors were slow or fast, not stationary.



6.2 Classification Iterations 99

Figure 6.2: Classification accuracy of LDA models identifying force levels (F2, F3) with four pre-
dictor sets during ADLs.

Unlike flexion–extension movements, adding in speed information did not correspond with a

consistent change in accuracy for identifying force levels during ADL 2 or the combination of ADL

1 and ADL 2 movements. However, providing speed information (actual average hand speed or

goal speed labels (slow, fast)) as predictors in addition to the Hudgins set feature values for BB

and TRI did increase the accuracy of force level (11 N, 22 N) classification during ADL 1. The

addition of speed labels as classifier inputs increased the accuracy from 59.38 % correct, with only

EMG signals as predictors, to 63.54 % correct. The highest classification accuracy was 64.58 %

using actual average hand speed as an input in addition to the reduced EMG set, as shown in

Table 6.3 and Figure 6.2.

These results were limited by amount of data available for training and testing the classifiers, as

well, the motions were complex with little constraint and multiple factors (force, velocity) affecting

the motion. The limited constraints and varying conditions is reflective of ADL motions outside

of a laboratory environment. Even with these limitations, a 5 % increase in force classification

accuracy was observed for ADL 1 when speed information was provided as an input to the classifier

in addition to EMG features. Additionally, the lowest force classification error during flexion–

extension motions resulted when position and speed information, along with the reduced EMG
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feature vector, was fed into the LDA model. This demonstrated that knowing arm positions and

motion speeds influenced the results of classifying interaction forces. The amount of improvement

that position and speed motion characteristics provide in force classification decisions based on

EMG signals can be investigated further. The identification of interaction force levels means

classifiers could be used to detect when a person is in contact with the environment.

6.3 Conclusion

This chapter presented the results of using the data collected during the performance of motions

by healthy people to classify motion characteristics. EMG features were fed into LDA and SVM

classification models, which then detected arm position, force levels, or movement. Informed by

the previous EMG feature statistical analysis, iterations of the pattern recognition model training

consisted of reducing the size of the EMG feature vector and adding position and motion speed

predictors to the model inputs. More consistent improvements were seen in force prediction for

flexion–extension motions compared to ADL movements. Motion characteristic information that

influences EMG signals may be used to guide tuning of more complex control systems. Further

applications of these findings are discussed in the following chapter, along with the main conclusions

and contributions from this work.



Chapter 7

Conclusions and Future Work

The work presented in this thesis was aimed at analyzing the effects of motion characteristics

on EMG signals, and using the trends to inform the investigation of classifying levels of motion

characteristics, particularly force (interaction between a person and the environment). A literature

review was performed to show the gaps in informed motion classification and control with various

motion factors simultaneously influencing EMG signals. EMG signals were readily used as inputs

to control systems to detect intended movements, however, they perform more poorly outside of

a constrained laboratory environment. The effect of motion factors during unconstrained motion

on EMG feature metrics for the various upper limb muscles would inform the use of EMG signals

as control system inputs.

A repeated measures EMG study was designed to quantify the way in which EMG signal

features changed with varying arm positions, interaction forces between the person and the en-

vironment, and motion velocities during unconstrained elbow flexion–extension and activities of

daily living. In order to conduct the experiment, software was developed to calibrate and control

a collaborative KUKA robot in the application of precise forces between the robot end effector

and the participant to simulate interaction with the environment, and to collect kinematic and

dynamic data.

EMG signals measured from 15 arm and shoulder muscles during motion trials were processed

and analyzed. Significant differences were observed between various EMG feature values as arm

position, or interaction force, or goal velocity changed. Fewer feature/muscle combinations had

101



102

significant differences in values with changing velocities, than changing forces or arm positions.

The knowledge of the impact of motion characteristics on EMG features across a range of upper

extremity muscles is important to inform the use of EMG signals as control inputs for a smart

wearable brace for motion assistance during rehabilitation.

Additionally, pattern recognition (LDA and SVM) models were fed EMG features and trained

to detect levels of motion characteristics. Three arm positions and three classes of interaction with

the environment were identified by two LDA models, one classifying arm position and one classi-

fying force, with accuracies of 78.70 % and 73.77 %, respectively, during elbow flexion–extension.

For comparison, in the literature, an LDA model was trained and tested with data with varying

force levels, to identify ten hand position classes with an error of 19 % [35]. Three velocities of

motion (stationary, slow, fast) could not be distinguished well with LDA or SVM models. How-

ever, isometric contractions versus active motion were determined during elbow flexion–extension,

although the classification error was 32.10 %. Compared to basic elbow flexion–extension move-

ments, models classifying forces and velocities had higher errors during ADLs. This is consistent

with the usability of pattern recognition control systems only weakly correlated to offline accuracy

in the literature [37,74].

The results of the initial analysis of motion characteristics were used to increase the accuracy

of force classification. Interaction forces were the motion characteristic of interest for classification

as it is more complex to determine than arm position and joint velocity, with a basic wearable

device. Including arm position and hand speed as inputs to an LDA model, in addition to a

reduced EMG feature set (four features for biceps and triceps only), influenced the ability of the

model to determine three force levels during elbow flexion–extension. The classification accuracy

of LDA models predicting force levels increased from 76.85 %, without position or velocity inputs

(only the reduced EMG set), to a range of 77.16–79.17 %, with position labels and/or velocity as

additional inputs to the model. However, the same amount of improvement in classifying force

levels was not observed during ADL 2. Yet, during ADL 1 movements, force classification error

was reduced by 5.20 % to improve the classification accuracy to 64.58 % when hand speed was

included as an input to the classifier, in addition to the reduced EMG set. This is comparable to

the literature where a PCI model estimated force with 33.3 % error during arm contractions with
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varying force and velocity [55].

The results of these analyses showed that motion characteristics had significant effects on EMG

signal features across a range of arm and shoulder muscles during unconstrained elbow flexion–

extension motions, and less straightforward effects during more complex activities of daily living.

Improvements in classifying forces from different types of interactions with the environment using

position and speed information as well as EMG signals suggest that motion characteristic inputs

can influence the use of EMG signals in control.

7.1 Contributions

The contributions of the work presented in this thesis are as follows:

� Software was designed to calibrate a KUKA robot and have the robot perform a repeated

measures motion trial study simulating activities with specified forces, and collecting dynamic

data of the motions.

� This work collected and processed a unique dataset of EMG signals and corresponding arm

kinematic and dynamic data during dynamic motions. This can be used for further study and

calibration of control systems that use EMG signals during complex unconstrained motions

with changing arm positions, person–environment interaction forces, and motion velocities.

� Insight into EMG signals during unconstrained motion was gained. EMG signals were ob-

served with combinations of multiple factors affecting the motion. Previous studies have

looked at effects of motion velocity or force or position. This work confirmed the effects of arm

position, forces from environmental interaction, and motion velocity on EMG signals. This

study highlighted and quantified the effect of changing levels of each of these factors simulta-

neously, during various styles of movement (isometric contractions, basic flexion–extension,

and activities of daily living). Statistical differences were observed in EMG features for a

variety of arm muscles corresponding to changes in motion characteristics.

� EMG signal features were used to determine corresponding motion characteristics. Classifi-

cation of intended arm position and interaction force was more accurate than classification
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of goal velocity.

� The significance of motion factors on EMG feature values highlighted with the statistical

analyses led to the inclusion of motion characteristic information during classification of

interaction forces. Detection of changes in interaction forces during dynamic and uncon-

strained motions using only EMG signals, arm position, and movement speed information

was completed. Improvement of force classification was observed with a reduction in feature

vector to four Hudgins set EMG features (MAV, SSC, WL, ZC) for BB and TRI muscles,

and addition of arm position and hand speed information for the first time. It justifies the

consideration of motion characteristics in further exploration of using EMG signals as inputs

to a control system detecting intended elbow motion.

7.2 Recommendations for Future Work

Recognizing that the insights gained from this study can be applied further, and expansion of the

experiment to include patient cohorts could identify more trends, research avenues to explore in

future work are presented below:

� To provide smoother data collection, increase ease of modifying measurement parameters

during trials, reduce the time of experimental trials, and reduce processing time and error

introduced in synchronizing the data from various systems, EMG and KUKA robot data

collection can be integrated at the time of measurement, and a graphical user interface

(GUI) could be created for visualization and control.

� Expand the variety of motions measured, and ways in which motions can be characterized.

– Test more unconstrained motions mimicking a wider range of activities of daily liv-

ing. Ensure data are collected for clinically relevant movements that patients would be

performing or attempting to perform during rehabilitation. Detection of motion char-

acteristics was much less accurate for ADLs compared to basic elbow flexion–extension,

but these complex unconstrained motions are the types of movements that wearable
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devices would be required to assist users perform. Therefore, data for these motions is

required to develop improved control systems.

– Label motion segments as elbow flexion versus extension, due to variability in EMG

signals throughout movements. Motion characteristics can also be divided into a greater

number of levels or classes to further breakdown the effects of motion characteristics on

EMG signals and as inputs to classification models.

� Collect EMG from pectoral muscles and kinematic data of torso or the other side of the body

in addition to arm and shoulder muscles. This would give more insight into compensatory

movements due to impairment in movement and control elsewhere in the arm (wrist, elbow,

shoulder), possibly indicative of difficulty moving the arm. As well, with higher forces being

resisted, qualitatively it looked and felt like muscles on the opposite side of the body were

being activated, this information could be useful if measured. During this investigation,

the feet placement and body stance was free to vary slightly as participants were instructed

to face a certain direction and hold their arm in a specified starting position, yet they

could put their feet in whatever position and stance felt comfortable. This could have

introduced some variability, and is another factor that could be constrained or varied as

another indepedent variable, or observed and noted in future investigations. Since natural

unconstrained movements were the focus of this investigation, recording of the body position

rather than constraining it would be preferred.

� Repeat portions of the study with participants with a musculoskeletal injury, movement im-

pairment, or going through the process of rehabilitation and physical therapy. Investigate

differences in EMG metrics between participants with and without impairment, and indi-

cators of the need for motion assistance. During testing with healthy participants, higher

force movements at slow speeds with the shoulder abducted induced some fatigue, noted sub-

jectively in qualitative comments. For patients with musculoskeletal conditions, the testing

protocol may need to be adjusted to better fit their current capabilities to ensure they can

complete the measurement activities without too much effort or causing more injury.

� Investigate the effects of tuning control models and choosing control pathways using motion
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characteristic classes, such as knowledge of contact with the environment, as inputs. Force

classification could be part of a multi-tiered approach for control of wearable devices, with

identification of intended levels of motion characteristics paired up with mathematical models

in real time. These models used to control wearable devices can be optimized by setting

multiple parameters, however, parameter settings may control devices best under constrained

conditions of a single arm orientation, a specific motion velocity, or no interaction with the

environment. Knowing if the device user is in contact with the environment, and with which

force level, could guide the tuning of control model parameters or control the device at a

high level by adjusting the device stiffness/compliance or level of assistance provided by the

device to the user.

The purpose of this thesis was to gain insight into the effects of arm position, interaction forces,

and velocity motion characteristics changing simultaneously on muscle activations measured as

EMG signals. This knowledge was used to inform the calibration of models using EMG signals as

inputs to detect intended motion, working towards the control of a wearable mechatronic device

for rehabilitation. These objectives were accomplished first by developing software to use a KUKA

robot to precisely control types of environmental interaction and measure motion kinematics and

dynamics as EMG signals from a variety of upper extremity muscles were collected. Effects of

motion factors on EMG signals were highlighted, then a pilot test, informed by the significant

effects of motion characteristics on EMG signals, calibrated training sets of an LDA model for

force classification. Continued work in using motion characteristic information to tune control

systems, or in detecting intended motion characteristics, instead of merely gross motions, could

lead to more accurately controlled wearable mechatronic devices for elbow rehabilitation, and

possibly for devices actuating other joints.
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���� ɥś ŵŵ����� ����
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ���������ɑƀƀŜ

������������������ſɥŜɪƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ�������ɨ���������ɑƀƀŜ

������������������ſɥŜɪƀƀŚ
���������ſƀŜ����ſɑ������� ����� ���ɨ���������ř ������ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ�������ɩ��������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� ���ɩ��������ř ������ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �������� ��� �ɨ�ɩř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
����������������������ɨ����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɨ����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
����������������������ɩ	����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɩ	����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
����������������������ɪ����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɪ����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ����ɑƀŚ
�����Ś

���� ɨś ŵŵ���� ����
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ���������ɑƀƀŜ

������������������ſɥŜɪƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ��������ɨ���������ɑƀƀŜ

������������������ſɥŜɪƀƀŚ
���������ſƀŜ����ſɑ������� ����� ���ɨ���������ř ������ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ

ɨɩɩ
ɨɩɪ

ɨɩɫ

ɨɩɬ
ɨɩɭ

ɨɩɮ
ɨɩɯ
ɨɩɰ

ɨɪɥ
ɨɪɨ

ɨɪɩ
ɨɪɪ
ɨɪɫ

ɨɪɬ
ɨɪɭ

ɨɪɮ
ɨɪɯ
ɨɪɰ

ɨɫɥ
ɨɫɨ

ɨɫɩ
ɨɫɪ
ɨɫɫ

ɨɫɬ

ɨɫɭ
ɨɫɮ

ɨɫɯ
ɨɫɰ
ɨɬɥ

ɨɬɨ

ɨɬɩ
ɨɬɪ

ɨɬɫ
ɨɬɬ
ɨɬɭ
ɨɬɮ

ɨɬɯ
ɨɬɰ
ɨɭɥ
ɨɭɨ

ɨɭɩ

ɨɭɪ
ɨɭɫ
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������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ��������ɩ��������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� ���ɩ��������ř ������ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ�������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �������� ��� �ɨ�ɩř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
�����������������������ɨ����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɨ����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
�����������������������ɩ	����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɩ	����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ
�����������������������ɪ����ɑƀƀŜ������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ������� ����� �ɪ����ř ������ ����ř ���� ����� ����� ������ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř Şɨř ��������Ŝ�������ƀŜ���������ſ

�����������ɏ������ƀƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɪƀƀŚ

���������ſƀŜ����ſɑ����ɑƀŚ
�����Ś

ƈ

������Ŝ������ſƀŚ

ƈ

ŵƋƋ
Ƌ ����Ş��������� ������ ����Ŝ �� ��� ������ ��� �������� �� ���� ������Ŝ
Ƌŵ

������ ������ ���� ����ſ������ƃƄ ����ƀ Ƈ
����������������� ��� ʰ ��� �����������������ſƀŚ
���Ŝ��������������ſƀŚ

ƈ
ƈ

ɨɭɬ
ɨɭɭ
ɨɭɮ

ɨɭɯ
ɨɭɰ

ɨɮɥ
ɨɮɨ
ɨɮɩ

ɨɮɪ
ɨɮɫ

ɨɮɬ
ɨɮɭ
ɨɮɮ

ɨɮɯ
ɨɮɰ

ɨɯɥ
ɨɯɨ
ɨɯɩ

ɨɯɪ

ɨɯɫ
ɨɯɬ

ɨɯɭ
ɨɯɮ
ɨɯɯ

ɨɯɰ

ɨɰɥ
ɨɰɨ

ɨɰɩ
ɨɰɪ
ɨɰɫ
ɨɰɬ

ɨɰɭ
ɨɰɮ
ɨɰɯ
ɨɰɰ
ɩɥɥ
ɩɥɨ
ɩɥɩ
ɩɥɪ
ɩɥɫ
ɩɥɬ
ɩɥɭ
ɩɥɮ
ɩɥɯ
ɩɥɰ
ɩɨɥ
ɩɨɨ
ɩɨɩ
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������ ����Ŝ����Ŝ����������Ŝ��������Ś

������ �����Ŝ������Ŝ������Ś

������ ���Ŝ����Ŝ���������Ŝ��������Ŝ�����	�������
����Ś
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ŵƋƋ
Ƌ �������������� �� � ����� �����������Ŝ
Ƌ ʳ�ʴ
Ƌ ��� ����������� �������� � Ƈɒ���� ���������������ɤ����������ſƀƈ ��� �
Ƌ Ƈɒ���� ���������������ɤ���ſƀƈ ������ř ����� ���� �� ������ ������������ ��
Ƌ ��� ����������� ���������Ŝ ��� ����������� ���� ��������� ������������� �����
Ƌ ��� Ƈɒ���� ���������������ɤ���ſƀƈ ������ ��� �������� �� ����� �������� ���
Ƌ ����Ŝ ��� Ƈɒ���� ���������������ɤ�������ſƀƈ ������ ���� �� ������ř ���� �� ��
Ƌ ��������� �� ������ ������ �������������� �� ���Ŝ
Ƌ ʳ�ʴ
Ƌ ʳ�ʴ�� �� ���������� �� ���� ʳ����ʴ�����Ŝ�������ſƀʳŵ����ʴ ���� ���������� ���
Ƌ Ƈɒ���� ���������������ɤ�������ſƀƈ ������Ŝʳŵ�ʴ
Ƌ
Ƌ ɒ��� ���������������������
Ƌ ɒ��� ɤ����������ſƀ
Ƌ ɒ��� ɤ���ſƀ
Ƌ ɒ��� ɤ�������ſƀ
Ƌŵ

������ ����� ���������	�������������������� ������� ���������������������� Ƈ
������� ���������� ����ɏ�������ɏ�������ɏɨŚ
������� ��� ���ɏ����ɏɨɫɏ�ɯɩɥɏɨŚ

������� ���� ������Ś

������� ������ƃƄ �������� ʰ Ƈɑ�	ɑřɑ��ɑƈŚ ŵŵ �	 ʰ ������ �������ř �� ʰ ������ ���������
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����ř �ɬʰ���
������� ������ƃƄ �������� ʰ Ƈɑ�ɨɑřɑ�ɩɑřɑ�ɪɑřɑ�ɫɑřɑ�ɬɑř ɑ�ɭɑƈŚ ŵŵ����� �ɨʰɥř �ɩʰɰɥř �ɪʰɨɬɥř �ɫʰ����ř �ɬʰ

���ř �ɭʰ����ŵ���
������� ������ƃƄ �������	 ʰ Ƈɑ	ɨɑřɑ	ɩɑřɑ	ɪɑƈŚ ŵŵ�����
������� ������ƃƄ �������� ʰ Ƈɑ�ɨɑřɑ�ɩɑřɑ�ɪɑƈŚ ŵŵ�������� �ɨ ʰ ����������ř �ɩ ʰ ����ř �ɪ ʰ ����
������� ������ƃƄ �������� ʰ Ƈɑ�ɨɑřɑ�ɩɑřɑ�ɪɑřɑ�ɫɑřɑ�ɬɑƈŚ ŵŵ���
������� ��� ������� ʰ ɪŚ ŵŵ��� ��� ����� ������ �� ����

ɨ
ɩ
ɪ
ɫ
ɬ
ɭ
ɮ
ɯ
ɰ

ɨɥ
ɨɨ
ɨɩ
ɨɪ
ɨɫ
ɨɬ
ɨɭ
ɨɮ
ɨɯ
ɨɰ
ɩɥ
ɩɨ
ɩɩ
ɩɪ
ɩɫ
ɩɬ
ɩɭ
ɩɮ
ɩɯ
ɩɰ
ɪɥ
ɪɨ
ɪɩ
ɪɪ
ɪɫ
ɪɬ
ɪɭ
ɪɮ
ɪɯ
ɪɰ
ɫɥ
ɫɨ
ɫɩ
ɫɪ
ɫɫ
ɫɬ
ɫɭ
ɫɮ
ɫɯ
ɫɰ
ɬɥ
ɬɨ
ɬɩ
ɬɪ
ɬɫ
ɬɬ

ɬɭ

ɬɮ
ɬɯ
ɬɰ
ɭɥ
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������� ������ �������Ś
������� ������ ����������Ś
������� ��� �������Ś

������� ������ �����������Ś
������� ������ ��������������������Ś
������� ������ ������������Ś

������� ��� ���������Ś
������� ��� ��������Ś
������� ��� �����Ś
������� ��� �����Ś
������� ��� ���Ś
������� ��� ���Ś

������� ��� ������Ś
������� ��� �����Ś
������� ��� ���������Ś ŵŵ ɥ ʰ ����������ř ɨ ʰ �������ŵ���������ř ɩ ʰ ���
ŵŵ����� ������ ��� ����� ���������ř ��������ř �����ř ����� �����ř ��������
������� ���ƃƄ �������� ʰ Ƈɥřɥřɨřɥřɥř

ɨřɥřɥřɨřɥř
ɥřɨřɥřɥřɥř
ɥřɨřɨřɥřɥř
ɥřɥřɨřɨřɥř
ɥřɥřɥřɨřɨř
ɥřɥřɥřɥřɥř
ɥřɥřɥƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɥřɥř
ɥřɨřɨřɨřɩř
ɩřɩřɥřɥřɥř
ɥřɥřɥřɨřɨř
ɨřɨřɨřɨřɩř
ɩřɩřɩřɩřɩř
ɪřɪřɪřɪřɫř
ɫřɫřɫƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɨřɨř
ɨřɥřɥřɥřɥř
ɥřɥřɬřɬřɬř
ɬřɬřɬřɬřɬř
ɬřɬřɬřɬřɬř
ɬřɬřɬřɬřɬř
ɪřɪřɪřɪřɫř
ɫřɫřɫƈŚ

������� ���ƃƄ �����	���� ʰ Ƈɥřɨřɨřɥřɨř
ɨřɥřɨřɨřɥř
ɨřɨřɥřɥřɨř
ɨřɨřɨřɥřɥř
ɨřɨřɨřɨřɥř
ɥřɨřɨřɨřɨř
ɩřɩřɨřɨřɩř
ɩřɨřɨƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɥřɥř
ɥřɥřɥřɥřɥř
ɥřɥřɨřɩřɨř
ɩřɨřɩřɨřɩř
ɨřɩřɨřɩřɨř
ɩřɨřɩřɨřɩř
ɨřɩřɨřɩřɨř
ɩřɨřɩƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɥřɥř
ɥřɥřɥřɥřɥř

ɭɨ
ɭɩ
ɭɪ
ɭɫ
ɭɬ
ɭɭ
ɭɮ
ɭɯ
ɭɰ
ɮɥ
ɮɨ
ɮɩ
ɮɪ
ɮɫ
ɮɬ
ɮɭ
ɮɮ
ɮɯ
ɮɰ
ɯɥ
ɯɨ
ɯɩ
ɯɪ
ɯɫ
ɯɬ
ɯɭ
ɯɮ
ɯɯ
ɯɰ
ɰɥ
ɰɨ
ɰɩ
ɰɪ
ɰɫ
ɰɬ
ɰɭ
ɰɮ
ɰɯ
ɰɰ

ɨɥɥ
ɨɥɨ
ɨɥɩ
ɨɥɪ
ɨɥɫ
ɨɥɬ
ɨɥɭ
ɨɥɮ
ɨɥɯ
ɨɥɰ
ɨɨɥ
ɨɨɨ
ɨɨɩ
ɨɨɪ
ɨɨɫ
ɨɨɬ
ɨɨɭ
ɨɨɮ
ɨɨɯ
ɨɨɰ
ɨɩɥ
ɨɩɨ
ɨɩɩ
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ɥřɥřɥřɥřɥƈŚ
������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɥřɥř

ɥřɥřɥřɥřɥř
ɥřɥřɥřɥřɥƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɨřɩřɪřɫř
ɥřɨřɩřɪřɫř
ɥřɨřɩřɪřɫƈŚ

������� ���ƃƄ �����	���� ʰ Ƈɨřɨřɨřɨřɨř
ɩřɩřɩřɩřɩř
ɥřɥřɥřɥřɥƈŚ

������� ���ƃƄ �������� ʰ Ƈɥřɥřɥřɥřɥř
ɥřɥřɥřɥřɥř
ɥřɥřɥřɥřɥƈŚ

������� ��� ���Ś
������� ���ƃƄ �������� ʰ ƇɥřɩɩřɨɨƈŚ
������� ���ƃƄ ����������� ʰ Ƈɥř ɥř ɥƈŚ ŵŵ������������� �� ����� ���� ��������

������� ��� ��������Ś

ŵŵ������� ������� ������������ ʰ ����Ś
������� ��� ������Ś
������� ��� ���������Ś

ɒ������
������� �����	�������
���� ��������Ś ŵŵ����� ����� ������ ��

ɒ��������
������ ���� ����������ſƀ Ƈ

����ɏ�������ɏ�������ɏɨ ʰ �������������ſɑ����ɏ�������ɏ�������ɏɨɑƀŚ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨ ʰ ſ���ƀ ���������ſ����ɏ�������ɏ�������ɏɨř

ɑ���ɏ����ɏɨɫɏ�ɯɩɥɏɨɑƀŚ
ƈ

ɒ��������
������ ���� ���ſƀ Ƈ

ŵƋ
Ƌ
Ƌ ��������������
Ƌ
Ƌŵ

���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɨɑƀŚ

ŵŵ������ ������ ���� �� �����
������ ʰ ������������������ſƀŜ������	�����������ſɑ������ɨɑƀŚ
���������ſƀŜ����ſɑ��������� ������ ����ɑƀŚ
������Ŝ��������ſ���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ���	�����ſƀƀŚ

�������� ʰ ��� �����	�������
����ſ����ɏ�������ɏ�������ɏɨƀŚ
��������Ŝ����������ſ�����ƀŚ

ŵŵ ��� �������� ������ �� ���� ���������
��� ���� ʰ ��������Ŝ������Ś
������ ʰ ɥŚ
��� ʰ ŞɨŚ
��������� ʰ ɥŚ

ŵŵ������� �� ��������� ���� �� ��� ���� ſ�� ������ ɨɬŜɩɬƀř ������� ��� ������� ����� �����
������� ʰ ��� ������ſ��������ƃ���������Ƅʫ��������ƃ��������Ƅʫ��������ƃ�����Ƅʫ�������	ƃ�����Ƅʫ��������

ƃ���Ƅʫ��������ƃ���ƄƀŚ
������������ ��� ʰ ��� ������������ſ�������ř Şɨř ��������Ŝ�������ř ɨƀŚ
���Ŝ������������	����ſ������Ŝ���	����ſɑŵ������ɨ���ɑƀř ����ƀŚ ŵŵ����� �� ������ ������ř �����������

����� �� ������ ������

ɨɩɪ
ɨɩɫ
ɨɩɬ
ɨɩɭ
ɨɩɮ
ɨɩɯ
ɨɩɰ
ɨɪɥ
ɨɪɨ
ɨɪɩ
ɨɪɪ
ɨɪɫ
ɨɪɬ
ɨɪɭ
ɨɪɮ
ɨɪɯ
ɨɪɰ
ɨɫɥ
ɨɫɨ
ɨɫɩ
ɨɫɪ
ɨɫɫ
ɨɫɬ
ɨɫɭ
ɨɫɮ
ɨɫɯ
ɨɫɰ
ɨɬɥ
ɨɬɨ
ɨɬɩ
ɨɬɪ
ɨɬɫ
ɨɬɬ
ɨɬɭ
ɨɬɮ
ɨɬɯ
ɨɬɰ
ɨɭɥ
ɨɭɨ
ɨɭɩ
ɨɭɪ
ɨɭɫ
ɨɭɬ
ɨɭɭ
ɨɭɮ
ɨɭɯ
ɨɭɰ
ɨɮɥ
ɨɮɨ
ɨɮɩ
ɨɮɪ
ɨɮɫ
ɨɮɬ
ɨɮɭ
ɨɮɮ
ɨɮɯ
ɨɮɰ
ɨɯɥ

ɨɯɨ
ɨɯɩ
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���Ŝ������������	����ſ������Ŝ���	����ſɑŵ������ɨ���ɑƀř �����Ŝ�������Ŝ�������	����ſƀƀŚ ŵŵ����� ��
������ ������ř ����������� ����� �� ����� ����

���Ŝ������������������������������ſ������Ŝ���	����ſɑŵ������ɨ���ɑƀř �����Ŝ�������Ŝ�������	����ſƀƀŚ ŵŵ
��������� �������� �� ������ ������ř ����������� �� ����� ����

���Ŝ����������������������ſ���ɏ����ɏɨɫɏ�ɯɩɥɏɨř ���������Ŝ������ƀŚ ŵŵ����� ���������ř ������ ��
�������

��ſ��������� ʰʰ ɥƀƇ
��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ɩɩŚ
��������ƃɩƄ ʰ ɨɨŚ

ƈ���� ��ſ��������� ʰʰ ɨƀƇ
��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ŞɩɩŚ
��������ƃɩƄ ʰ ŞɨɨŚ

ƈ

�������� ʰ ����Ŝ���ſ��������ƃ�����ƄƀŚ

ŵŵ���� ��� ������� ����������
����������������������������� ���������� ʰ ��� �����������������������������ſƀŚ
����������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
����������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
����������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
����������Ŝ�����������ſ������	Ŝ���ƀŜ����������ſɥŜɮƀŚ ŵŵ����������� ������� ����� ��� ������� ���

����� �� ������
����������Ŝ�����������ſ������	Ŝ���ƀŜ������������ſɪɥɥƀŚ
����������Ŝ�����������ſ������	Ŝ�ƀŜ��������������������	����ſ��������ƃ�����ƄƀŚ

ŵŵ ���� ��� ���������� �����
��������������������������������� �������������� ʰ ��� ���������������������������������ſƀŚ
��������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
��������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
��������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
��������������Ŝ�����������ſ������	Ŝ���ƀŜ����������ſɥŜɮƀŚ ŵŵ����������� ������� ����� ��� ������� ���

����� �� ������
��������������Ŝ�����������ſ������	Ŝ���ƀŜ������������ſɥƀŚ
��������������Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƃ�����ƄƀŚ
��������������Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ
��������������Ŝ�������������������ſɥŜɮƀŚ
��������������Ŝ���������������������ſɬɥƀŚ
��������������Ŝ�����������ſɩŜɥƀŚ
��������������Ŝ�����������ſɬŜɥƀŚ
��������������Ŝ���	�������ſɩŜɥƀŚ

ŵŵ ���� ��� ������� ��������� �����
��������������������������������� ��������������	� ʰ ��� ���������������������������������ſƀŚ
��������������	�Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
��������������	�Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
��������������	�Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
��������������	�Ŝ�����������ſ������	Ŝ���ƀŜ����������ſɥŜɮƀŚ
��������������	�Ŝ�����������ſ������	Ŝ���ƀŜ������������ſɥƀŚ
��������������	�Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƃ�����ƄƀŚ
��������������	�Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ
��������������	�Ŝ�������������������ſɥŜɮƀŚ
��������������	�Ŝ���������������������ſɬɥƀŚ
��������������	�Ŝ�����������ſɩƀŚ

ŵŵ���� ��� ��� �����
��������������������������������� ����������������� ʰ ��� ���������������������������������ſƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ

ɨɯɪ

ɨɯɫ

ɨɯɬ

ɨɯɭ
ɨɯɮ
ɨɯɯ
ɨɯɰ
ɨɰɥ
ɨɰɨ
ɨɰɩ
ɨɰɪ
ɨɰɫ
ɨɰɬ
ɨɰɭ
ɨɰɮ
ɨɰɯ
ɨɰɰ
ɩɥɥ
ɩɥɨ
ɩɥɩ
ɩɥɪ
ɩɥɫ

ɩɥɬ
ɩɥɭ
ɩɥɮ
ɩɥɯ
ɩɥɰ
ɩɨɥ
ɩɨɨ
ɩɨɩ
ɩɨɪ

ɩɨɫ
ɩɨɬ
ɩɨɭ
ɩɨɮ
ɩɨɯ
ɩɨɰ
ɩɩɥ
ɩɩɨ
ɩɩɩ
ɩɩɪ
ɩɩɫ
ɩɩɬ
ɩɩɭ
ɩɩɮ
ɩɩɯ
ɩɩɰ
ɩɪɥ
ɩɪɨ
ɩɪɩ
ɩɪɪ
ɩɪɫ
ɩɪɬ
ɩɪɭ
ɩɪɮ
ɩɪɯ
ɩɪɰ
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�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
�����������������Ŝ�����������ſ������	Ŝ���ƀŜ����������ſɥŜɮƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɪɥɥƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɪɥɥƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƃ�����ƄƀŚ
�����������������Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ
�����������������Ŝ�������������������ſɥŜɮƀŚ
�����������������Ŝ���������������������ſɬɥƀŚ
�����������������Ŝ�����������ſɩƀŚ

ŵŵ������� ����
����������������������������� ���������� ʰ ��� �����������������������������ſƀŚ
����������Ŝ�����������ſ������	Ŝ������ƀŜ������������ſɬɥɥɥƀŚ
����������Ŝ�����������ſ������	Ŝ���ƀŜ������������ſɪɥɥƀŚ
����������Ŝ�����������ſ������	Ŝ�ƀŜ��������������������	����ſɥƀŚ
����������Ŝ�������������	����ſɬɥɥɥŜɥř ɬɥɥɥŜɥř ɬɥɥɥŜɥř ɪɥɥŜɥř ɪɥɥŜɥř ɪɥɥŜɥř �����ƀŚ
����������Ŝ�������������������ſɥŜɮƀŚ
����������Ŝ���������������������ſɩɥɥƀŚ

ŵŵ���� ������ ����
����������������������������� ���������� ʰ ��� �����������������������������ſƀŚ
����������Ŝ�����������ſ������	Ŝ������ƀŜ������������ſɪɥɥɥƀŚ
����������Ŝ�����������ſ������	Ŝ���ƀŜ������������ſɩɥɥƀŚ
ŵŵ����������Ŝ�������������������ſɥŜɮƀŚ
ŵŵ����������Ŝ���������������������ſɨɬɥƀŚ

ŵŵ������ ���� ��������� ���� �� ���������� ����� �� ��������� �� ����� �� ������
������������������� ��������� ʰ ��� �������������������ſ�������������Ŝ�����ř ɥŜɥř ɥƀŚ

���������ſƀŜ����ſɑ
���� ����ɑƀŚ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ����ſ�������ſƀŜ����������������������ſɥŜɬƀŜ������������������ſɥŜɨƀƀŚ

ŵƋ
Ƌ
Ƌ ���
Ƌ
Ƌŵ

�����ſ��������� Šʰ ɩƀƇ
��������� ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ������� ���ţɑ

ř ɑ������ ſ�������ƀɑř ɑ������� ſ���������ƀɑř ɑ���� ���ɑƀŚ
������ ſ���������ƀƇ
���� ɥś

���������� ʰ ɑ�������ɑŚ
�����ſ���ř ����������ƀŚ
�����Ś

���� ɨś
���������� ʰ ɑ������ɑŚ
�����ſ���ř ����������ƀŚ
�����Ś

���� ɩś
�����Ś

ƈ
ƈ

ŵƋ
Ƌ
Ƌ ������ ������
Ƌ
Ƌŵ

ɩɫɥ
ɩɫɨ
ɩɫɩ
ɩɫɪ
ɩɫɫ
ɩɫɬ
ɩɫɭ
ɩɫɮ
ɩɫɯ
ɩɫɰ
ɩɬɥ
ɩɬɨ
ɩɬɩ
ɩɬɪ
ɩɬɫ
ɩɬɬ
ɩɬɭ
ɩɬɮ
ɩɬɯ
ɩɬɰ
ɩɭɥ
ɩɭɨ
ɩɭɩ
ɩɭɪ
ɩɭɫ
ɩɭɬ
ɩɭɭ
ɩɭɮ
ɩɭɯ
ɩɭɰ
ɩɮɥ
ɩɮɨ
ɩɮɩ
ɩɮɪ
ɩɮɫ
ɩɮɬ
ɩɮɭ
ɩɮɮ
ɩɮɯ
ɩɮɰ
ɩɯɥ

ɩɯɨ
ɩɯɩ
ɩɯɪ
ɩɯɫ
ɩɯɬ
ɩɯɭ
ɩɯɮ
ɩɯɯ
ɩɯɰ
ɩɰɥ
ɩɰɨ
ɩɰɩ
ɩɰɪ
ɩɰɫ
ɩɰɬ
ɩɰɭ
ɩɰɮ
ɩɰɯ
ɩɰɰ
ɪɥɥ
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��ſ��� ʰʰ ſ����ŞɩƀƀƇ
������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�������� �������

ţɑřɑ��ɑřɑ����� ɨŞɨɩř ����������ɑř
ɑ����� ɨɪŞɩɨř ����ŵ���ɑřɑ����� ɩɩŞɪɥř ����ŵ���ɑřɑ����� ɪɨŞɪɯř ���ɑƀŚ

ƈ����Ƈ
������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�������� �������

ţɑřɑ��ɑř ɑ����� ɨŞɨɩř ����������ɑř
ɑ����� ɨɪŞɩɨř ����ŵ���ɑřɑ����� ɩɩŞɪɥř ����ŵ���ɑřɑ����� ɪɨŞɪɯř ���ɑřɑ���ř ���� ����������

���ɑƀŚ
ƈ

�����ſ������ Šʰ ɥƀƇ
������ ſ������ƀƇ
���� ɥś

�����Ś
���� ɨś ŵŵ���ř ����� ������

��Ƈ
����� ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�����ţɑř

ɑɨŞ�	�ɨ�ɨ	ɨ�ɨɑřɑɩŞ�	�ɨ�ɨ	ɩ�ɨɑřɑɪŞ���ɨ�ɨ	ɩ�ɨɑřɑɫŞ�	�ɨ�ɩ	ɨ�ɨɑř
ɑɬŞ�	�ɨ�ɩ	ɩ�ɨɑřɑɭŞ���ɨ�ɩ	ɩ�ɨɑřɑɮŞ�	�ɩ�ɨ	ɨ�ɨɑřɑɯŞ�	�ɩ�ɨ	ɩ�ɨɑř
ɑɰŞ���ɩ�ɨ	ɩ�ɨɑřɑɨɥŞ�	�ɪ�ɨ	ɨ�ɨɑřɑɨɨŞ�	�ɪ�ɨ	ɩ�ɨɑřɑɨɩŞ���ɪ�ɨ	ɩ�ɨɑƀŚ

������������ſƀŚ

������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ���� �������
ţ �����ś ɑʫſ�����ʫɨƀʫɑř ���������ś ɑ

ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑ
ř �����ś ɑ

ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���Ƅʫɑţɑř ɑ��ř ������ɑř ɑ���ř
��������ɑƀŚ

ƈ�����ſ������ ʰʰ ɥƀŚ
�����Ś

���� ɩś
��Ƈ
����� ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�����ţɑř

ɑɨɪŞ�	�ɨ�ɭ	ɨ�ɩɑřɑɨɫŞ�	�ɨ�ɭ	ɨ�ɪɑřɑɨɬŞ�	�ɨ�ɭ	ɩ�ɩɑřɑɨɭŞ�	�ɨ�ɭ	ɩ�ɪɑř
ɑɨɮŞ���ɨ�ɭ	ɩ�ɩɑřɑɨɯŞ���ɨ�ɭ	ɩ�ɪɑřɑɨɰŞ�	�ɩ�ɭ	ɨ�ɩɑřɑɩɥŞ�	�ɩ�ɭ	ɨ�ɪɑř
ɑɩɨŞ�	�ɩ�ɭ	ɩ�ɩɑƀŚ

����� ʰ ����� ʫ ɨɩŚ
������������ſƀŚ

������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ���� �������
ţ �����ś ɑʫſ�����ʫɨƀʫɑř ���������ś ɑ

ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑ
ř �����ś ɑ

ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���Ƅʫɑţɑř ɑ��ř ������ɑř ɑ���ř
��������ɑƀŚ

ƈ�����ſ������ ʰʰ ɥƀŚ
�����Ś

���� ɪś
��Ƈ
����� ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�����ţɑř

ɑɩɩŞ�	�ɩ�ɭ	ɩ�ɪɑřɑɩɪŞ���ɩ�ɭ	ɩ�ɩɑřɑɩɫŞ���ɩ�ɭ	ɩ�ɪɑřɑɩɬŞ�	�ɪ�ɭ	ɨ�ɩɑř
ɑɩɭŞ�	�ɪ�ɭ	ɨ�ɪɑřɑɩɮŞ�	�ɪ�ɭ	ɩ�ɩɑřɑɩɯŞ�	�ɪ�ɭ	ɩ�ɪɑřɑɩɰŞ���ɪ�ɭ	ɩ�ɩɑř
ɑɪɥŞ���ɪ�ɭ	ɩ�ɪɑƀŚ

����� ʰ ����� ʫ ɩɨŚ
������������ſƀŚ

������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ���� �������
ţ �����ś ɑʫſ�����ʫɨƀʫɑř ���������ś ɑ

ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑ

ɪɥɨ
ɪɥɩ

ɪɥɪ
ɪɥɫ
ɪɥɬ

ɪɥɭ

ɪɥɮ
ɪɥɯ
ɪɥɰ
ɪɨɥ
ɪɨɨ
ɪɨɩ
ɪɨɪ
ɪɨɫ
ɪɨɬ
ɪɨɭ
ɪɨɮ
ɪɨɯ
ɪɨɰ
ɪɩɥ
ɪɩɨ
ɪɩɩ
ɪɩɪ

ɪɩɫ

ɪɩɬ

ɪɩɭ
ɪɩɮ
ɪɩɯ
ɪɩɰ
ɪɪɥ
ɪɪɨ
ɪɪɩ
ɪɪɪ
ɪɪɫ
ɪɪɬ
ɪɪɭ
ɪɪɮ

ɪɪɯ

ɪɪɰ

ɪɫɥ
ɪɫɨ
ɪɫɩ
ɪɫɪ
ɪɫɫ
ɪɫɬ
ɪɫɭ
ɪɫɮ
ɪɫɯ
ɪɫɰ
ɪɬɥ
ɪɬɨ

ɪɬɩ
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ř �����ś ɑ
ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���Ƅʫɑţɑř ɑ��ř ������ɑř ɑ���ř

��������ɑƀŚ
ƈ�����ſ������ ʰʰ ɥƀŚ

�����Ś
���� ɫś

��Ƈ
����� ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ�����ţɑř

ɑɪɨŞ�	�ɫ�ɫ	ɪ�ɩɑřɑɪɩŞ�	�ɫ�ɫ	ɪ�ɪɑřɑɪɪŞ�	�ɫ�ɫ	ɩ�ɩɑřɑɪɫŞ�	�ɫ�ɫ	ɩ�ɪɑř
ɑɪɬŞ�	�ɬ�ɬ	ɪ�ɩɑřɑɪɭŞ�	�ɬ�ɬ	ɪ�ɪɑřɑɪɮŞ�	�ɬ�ɬ	ɩ�ɩɑřɑɪɯŞ�	�ɬ�ɬ	ɩ�ɪɑƀŚ

����� ʰ ����� ʫ ɪɥŚ
������������ſƀŚ

������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ���� �������
ţ �����ś ɑʫſ�����ʫɨƀʫɑř ���������ś ɑ

ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑ
ř �����ś ɑ

ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���Ƅʫɑţɑř ɑ��ř ������ɑř ɑ���ř
��������ɑƀŚ

ƈ�����ſ������ ʰʰ ɥƀŚ
�����Ś

���� ɬś ŵŵ���ř ���� ���������� ���
��� ʰ ��� ʫɨŚ
��������� ʰ ��������ƃ���ƄŚ
�������� ʰ ��������ƃ���ƄŚ
����� ʰ ��������ƃ���ƄŚ
����� ʰ �����	����ƃ���ƄŚ
��� ʰ ��������ƃ���ƄŚ
��� ʰ ɥŚ
�����Ś

ƈ

��ſ��������� ʰʰ ɥƀƇ
��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ɩɩŚ
��������ƃɩƄ ʰ ɨɨŚ

ƈ���� ��ſ��������� ʰʰ ɨƀƇ
��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ŞɩɩŚ
��������ƃɩƄ ʰ ŞɨɨŚ

ƈ

��ſſ�������� ʰʰ ɩƀĺĺſ�����ʰʰɬƀƀƇ
��ſ��������� ʰʰ ɥƀƇ

��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ŞɩɩŚ
��������ƃɩƄ ʰ ŞɨɨŚ

ƈ���� ��ſ��������� ʰʰ ɨƀƇ
��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ɩɩŚ
��������ƃɩƄ ʰ ɨɨŚ

ƈ
ƈ

��ſſ�������� ʰʰ ɩƀĺĺſ�����ʰʰɥƀƀƇ
��ſ��������� ʰʰ ɥƀƇ

��������ƃɥƄ ʰ ɥŚ
��������ƃɨƄ ʰ ŞɩɩŚ
��������ƃɩƄ ʰ ŞɨɨŚ

ƈ���� ��ſ��������� ʰʰ ɨƀƇ
��������ƃɥƄ ʰ ɥŚ

ɪɬɪ

ɪɬɫ
ɪɬɬ
ɪɬɭ
ɪɬɮ
ɪɬɯ
ɪɬɰ
ɪɭɥ
ɪɭɨ
ɪɭɩ
ɪɭɪ
ɪɭɫ
ɪɭɬ

ɪɭɭ

ɪɭɮ

ɪɭɯ
ɪɭɰ
ɪɮɥ
ɪɮɨ
ɪɮɩ
ɪɮɪ
ɪɮɫ
ɪɮɬ
ɪɮɭ
ɪɮɮ
ɪɮɯ
ɪɮɰ
ɪɯɥ
ɪɯɨ
ɪɯɩ
ɪɯɪ
ɪɯɫ
ɪɯɬ
ɪɯɭ
ɪɯɮ
ɪɯɯ
ɪɯɰ
ɪɰɥ
ɪɰɨ
ɪɰɩ
ɪɰɪ
ɪɰɫ
ɪɰɬ
ɪɰɭ
ɪɰɮ
ɪɰɯ
ɪɰɰ
ɫɥɥ
ɫɥɨ
ɫɥɩ
ɫɥɪ
ɫɥɫ
ɫɥɬ
ɫɥɭ
ɫɥɮ
ɫɥɯ
ɫɥɰ
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��������ƃɨƄ ʰ ɩɩŚ
��������ƃɩƄ ʰ ɨɨŚ

ƈ
ƈ

�������� ʰ ����Ŝ���ſ��������ƃ�����ƄƀŚ

����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ	���� ��� ��� ���������ś
ɑ

ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑř �����ś ɑ
ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���Ƅʫɑţɑř ɑ���ɑƀŚ

���������ſƀŜ����ſɑ	���� ��� ��� ���������ś ɑ
ʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑř �����ś ɑ

ʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���ƄʫɑţɑƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������ř ɩř ��������Ŝ�������ƀƀŚ ŵŵ�������
���� ɬ �� ɩ ������� ����

������ſ�����ƀƇ
���� ɥś

������� ʰ ɨɰŚ
����������ſ���ř ����������ř ��������������ř ����������ř ���������ř ����������ƀŚ
�����Ś

���� ɨś
������� ʰ ɨɰŚ
����������ſ���ř ����������ř ��������������ř ����������ř ���������ř ����������ƀŚ
�����Ś

���� ɩś
������� ʰ ɨɰŚ
����������ſ���ř ����������ř ��������������ř ����������ř ���������ř ����������ƀŚ
�����Ś

���� ɪś ŵŵ ���ɨ Ş ����
����������� ʰ ɑŵ���ɨ���������ɑŚ
���������ſ���ř �����������������ř ����������ř ����������ƀŚ
�����Ś

���� ɫś ŵŵ ���ɩ Ş ���
����������� ʰ ɑŵ���ɩ��������ɑŚ
���������ſ���ř �����������������ř ����������ř ����������ƀŚ
�����Ś

���� ɬś ŵŵ������� ���������
��ſ�������� ʰʰ ɥƀƇ

�������������������� ʰ ɑŵ������������������ɨ����ɑŚ
ƈ���� ��ſ�������� ʰʰ ɨƀƇ

�������������������� ʰ ɑŵ������������������ɩ	����ɑŚ
ƈ���� ��ſ�������� ʰʰ ɩƀƇ

�������������������� ʰ ɑŵ������������������ɪ����ɑŚ
ƈ

��	����������ſ���ř ��������������	�ř ����������ř ����������ƀŚ
�����Ś

ƈ

��ſ��� ʰʰ ſ����ŞɩƀƀƇ
������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ��������

�������ţɑřɑ��ɑřɑ����� ɨŞɨɩř ����������ɑř
ɑ����� ɨɪŞɩɨř ����ŵ���ɑřɑ����� ɩɩŞɪɥř ����ŵ���ɑřɑ����� ɪɨŞɪɯř ���ɑƀŚ

ƈ����Ƈ
������ ʰ ����������������ſƀŜ������������������ſ���������������������Ŝ��������ř ɑ��������

�������ţɑřɑ��ɑř ɑ����� ɨŞɨɩř ����������ɑř
ɑ����� ɨɪŞɩɨř ����ŵ���ɑřɑ����� ɩɩŞɪɥř ����ŵ���ɑřɑ����� ɪɨŞɪɯř ���ɑřɑ���ř ����

���������� ���ɑƀŚ
ƈ

ɫɨɥ
ɫɨɨ
ɫɨɩ
ɫɨɪ
ɫɨɫ
ɫɨɬ
ɫɨɭ
ɫɨɮ

ɫɨɯ
ɫɨɰ
ɫɩɥ
ɫɩɨ
ɫɩɩ
ɫɩɪ
ɫɩɫ

ɫɩɬ
ɫɩɭ
ɫɩɮ
ɫɩɯ
ɫɩɰ
ɫɪɥ
ɫɪɨ
ɫɪɩ
ɫɪɪ
ɫɪɫ
ɫɪɬ
ɫɪɭ
ɫɪɮ
ɫɪɯ
ɫɪɰ
ɫɫɥ
ɫɫɨ
ɫɫɩ
ɫɫɪ
ɫɫɫ
ɫɫɬ
ɫɫɭ
ɫɫɮ
ɫɫɯ
ɫɫɰ
ɫɬɥ
ɫɬɨ
ɫɬɩ
ɫɬɪ
ɫɬɫ
ɫɬɬ
ɫɬɭ
ɫɬɮ
ɫɬɯ
ɫɬɰ
ɫɭɥ
ɫɭɨ

ɫɭɩ
ɫɭɪ
ɫɭɫ

ɫɭɬ

ɫɭɭ
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ƈ

���������ſƀŜ����ſɑ����ɑƀŚ

������Ŝ������ſƀŚ

ƈ

ŵƋƋ
Ƌ
Ƌŵ

������� ���� ������������ſƀ Ƈ
��������� ʰ ��������ƃ�����ƄŚ
�������� ʰ ��������ƃ�����ƄŚ
����� ʰ ��������ƃ�����ƄŚ
����� ʰ �����	����ƃ�����ƄŚ
��� ʰ ��������ƃ�����ƄŚ
��� ʰ ɥŚ

ƈ

ŵƋƋ
Ƌ
Ƌŵ

������� ���� �����ſ������������ ������ř ����������������������������� ��������ƀ Ƈ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ��������ɑƀƀŜ

������������������ſɥŜɨƀƀŚ
���������ſƀŜ����ſɑɬ ������� ����� ���ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɬř ��������Ŝ�������ƀƀŚ

������Ŝ���	�������ſ����������ƀŚ

��������Ŝ����������ſ����ƀŚ ŵŵ���� �� ������ ���
������Ŝ������ſƀŚ

���������ſƀŜ����ſɑ������� ����� ��� ���ɑƀŚ ŵŵ����� �� �������

���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɪɑƀŚ
������Ŝ��������������ſƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɬř ��������Ŝ�������ƀƀŚ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɨɑƀŚ
��������Ŝ����������ſ�����ƀŚ
������Ŝ�������������ſƀŚ

���������ſƀŜ����ſɑ���� ���ŜɑƀŚ
������Ś

ƈ

ŵƋƋ
Ƌ
Ƌŵ

������� ���� ���������ſ������������ ���ř
��������������������������������� ���������������ř ����������������������������� ��������ř

����������������������������� ��������ƀ Ƈ
���������� ����������� ʰ ��������Ŝ��������ſɑ����������ɑƀŚ
������������������ �����������ɏ������ ʰ ��� ������������������ſ�����������ř ����ƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ���������ɑƀƀŜ
������������������ſɥŜɨƀƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſ�����������ƀƀŜ
������������������ſɥŜɨƀƀŚ

ɫɭɮ
ɫɭɯ
ɫɭɰ
ɫɮɥ
ɫɮɨ
ɫɮɩ
ɫɮɪ
ɫɮɫ
ɫɮɬ
ɫɮɭ
ɫɮɮ
ɫɮɯ
ɫɮɰ
ɫɯɥ
ɫɯɨ
ɫɯɩ
ɫɯɪ
ɫɯɫ
ɫɯɬ
ɫɯɭ
ɫɯɮ
ɫɯɯ
ɫɯɰ
ɫɰɥ
ɫɰɨ

ɫɰɩ
ɫɰɪ
ɫɰɫ
ɫɰɬ
ɫɰɭ
ɫɰɮ
ɫɰɯ
ɫɰɰ
ɬɥɥ
ɬɥɨ
ɬɥɩ
ɬɥɪ
ɬɥɫ
ɬɥɬ
ɬɥɭ
ɬɥɮ
ɬɥɯ
ɬɥɰ
ɬɨɥ
ɬɨɨ
ɬɨɩ
ɬɨɪ
ɬɨɫ
ɬɨɬ
ɬɨɭ
ɬɨɮ
ɬɨɯ

ɬɨɰ
ɬɩɥ
ɬɩɨ
ɬɩɩ

ɬɩɪ

ɬɩɫ
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���ſ���ʰɥŚ���ʳ�������Ś���ʫʫƀƇ

ŵŵ������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɬř ��������Ŝ�������ƀƀŚ
���������ſƀŜ����ſɑɬ ������� ����� ���ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɬř ��������Ŝ�������ƀƀŚ

ŵŵ������ ��������
���������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
���������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
���������������Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƀŚ
���������������Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ

ŵŵ������ ��������� ����
������� ʰ ſ��������ƃ���������Ƅʫ��������ƃ��������Ƅʫ��������ƃ�����Ƅʫ�������	ƃ�����Ƅʫ��������ƃ���Ƅʫ

��������ƃ���ƄƀŚ
���Ŝ���	�������ſ�������ƀŚ

��������Ŝ����������ſ����ƀŚ ŵŵ���� �� ������ ���
���Ŝ������ſƀŚ

���������ſƀŜ����ſɑ������� �����ř ���ś ɑʫ��������ƃ���ƄƀŚ ŵŵ����� �� �������

��ſ�������� ʰʰ ɩɩƀƇ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɪɑƀŚ

ƈ

���Ŝ��������������ſƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ���������������ř Şɨř ��������Ŝ�������ƀŜ
���������ſ�����������ɏ������ƀƀŚ ŵŵ ʳɥ ����� ����� ������� �������

���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɨɑƀŚ

ŵŵ���� ���������
���Ŝ�������������ſƀŚ

��������Ŝ����������ſ�����ƀŚ
���������ſƀŜ����ſɑɬ ������� ����� ��������� �� �����ɑƀŚ
������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɬř ��������Ŝ�������ƀƀŚ

��ſ���ʰʰſ�������ŞɨƀƀƇ
���Ŝ�������������ſƀŚ
���������ſƀŜ����ſɑ���� ɑʫ�������ʫɑ ���� �� ���������ś ɑʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ

��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑř �����ś ɑʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���ƄʫɑŜɑ
ƀŚ

������Ś
ƈ

ƈ
ƈ

ŵƋƋ
Ƌ ɒ����� ���
Ƌ ɒ����� ��������������
Ƌŵ

������� ���� ��	����������ſ������������ ���ř
��������������������������������� ������������	�ř ����������������������������� ��������ř

����������������������������� ��������ƀ Ƈ

���������� ����������� ʰ ��������Ŝ��������ſɑ����������ɑƀŚ
������������������ �����������ɏ������ ʰ ��� ������������������ſ�����������ř ����ƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſɑŵ������������������ɑƀƀŜ
������������������ſɥŜɨƀƀŚ

ɬɩɬ
ɬɩɭ
ɬɩɮ
ɬɩɯ
ɬɩɰ
ɬɪɥ
ɬɪɨ
ɬɪɩ
ɬɪɪ
ɬɪɫ
ɬɪɬ
ɬɪɭ
ɬɪɮ
ɬɪɯ

ɬɪɰ
ɬɫɥ
ɬɫɨ
ɬɫɩ
ɬɫɪ
ɬɫɫ
ɬɫɬ
ɬɫɭ
ɬɫɮ
ɬɫɯ
ɬɫɰ
ɬɬɥ
ɬɬɨ
ɬɬɩ

ɬɬɪ
ɬɬɫ
ɬɬɬ
ɬɬɭ
ɬɬɮ
ɬɬɯ
ɬɬɰ
ɬɭɥ
ɬɭɨ
ɬɭɩ
ɬɭɪ
ɬɭɫ

ɬɭɬ
ɬɭɭ
ɬɭɮ
ɬɭɯ
ɬɭɰ
ɬɮɥ
ɬɮɨ
ɬɮɩ
ɬɮɪ
ɬɮɫ
ɬɮɬ

ɬɮɭ
ɬɮɮ
ɬɮɯ
ɬɮɰ
ɬɯɥ
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������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſ��������������������ƀƀŜ
������������������ſɥŜɨƀƀŚ

���ſ���ʰɥŚ���ʳ�������Ś���ʫʫƀƇ

���������ſƀŜ����ſɑɨɥ ������� ����� ���ɑƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɨɥř ��������Ŝ�������ƀƀŚ

ŵŵ������ ��������
������������	�Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
������������	�Ŝ�����������ſ������	Ŝ�ƀŜ������������ſɥƀŚ
������������	�Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƃ�����ƄƀŚ
������������	�Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ

ŵŵ������ ��������� ����
������� ʰ ſ��������ƃ���������Ƅʫ��������ƃ��������Ƅʫ��������ƃ�����Ƅʫ�������	ƃ�����Ƅʫ��������ƃ���Ƅʫ

��������ƃ���ƄƀŚ
���Ŝ���	�������ſ�������ƀŚ

��������Ŝ����������ſ����ƀŚ ŵŵ���� �� ������ ���
���Ŝ������ſƀŚ

���������ſƀŜ����ſɑ������� �����ř ���ś ɑʫ��������ƃ���ƄƀŚ ŵŵ����� �� �������

��ſ�������� ʰʰ ɩɩƀƇ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɪɑƀŚ

ƈ

���Ŝ��������������ſƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ������������	�ř Şɨř ��������Ŝ�������ƀŜ���������
ſ�����������ɏ������ƀƀŚ ŵŵ ʳɥ ����� ����� ������� �������

���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɨɑƀŚ

ŵŵ���� ���������
���Ŝ�������������ſƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɨř ��������Ŝ�����������ƀƀŚ
��������Ŝ����������ſ�����ƀŚ

��ſ���ʰʰſ�������ŞɨƀƀƇ
���Ŝ�������������ſƀŚ
���������ſƀŜ����ſɑ���� ɑʫ�������ʫɑ ���� �� ���������ś ɑʫ��������ƃ���������Ƅʫɑř ��������ś ɑʫ

��������ƃ��������Ƅʫɑř �����ś ɑʫ��������ƃ�����Ƅʫɑř �����ś ɑʫ�������	ƃ�����Ƅʫɑř ��������ś ɑʫ��������ƃ���ƄʫɑŜɑ
ƀŚ

������Ś
ƈ

ƈ
ƈ

ŵƋƋ
Ƌ ɒ����� ���
Ƌ ɒ����� ����ɩɩ
Ƌ ɒ����� ��������
Ƌŵ

������� ���� ����������ſ������������ ���ř ����������������������������� ��������ř
��������������������������������� ����������������ř

����������������������������� ��������ř ������������������� ������������ř
����������������������������� ��������ƀ Ƈ

��ſ�������� ʰʰ ɥƀƇ

ɬɯɨ

ɬɯɩ
ɬɯɪ
ɬɯɫ
ɬɯɬ
ɬɯɭ
ɬɯɮ
ɬɯɯ
ɬɯɰ
ɬɰɥ
ɬɰɨ
ɬɰɩ
ɬɰɪ
ɬɰɫ
ɬɰɬ
ɬɰɭ

ɬɰɮ
ɬɰɯ
ɬɰɰ
ɭɥɥ
ɭɥɨ
ɭɥɩ
ɭɥɪ
ɭɥɫ
ɭɥɬ
ɭɥɭ
ɭɥɮ
ɭɥɯ
ɭɥɰ
ɭɨɥ

ɭɨɨ
ɭɨɩ
ɭɨɪ
ɭɨɫ
ɭɨɬ
ɭɨɭ
ɭɨɮ
ɭɨɯ
ɭɨɰ
ɭɩɥ
ɭɩɨ

ɭɩɩ
ɭɩɪ
ɭɩɫ
ɭɩɬ
ɭɩɭ
ɭɩɮ
ɭɩɯ
ɭɩɰ
ɭɪɥ
ɭɪɨ
ɭɪɩ

ɭɪɪ

ɭɪɫ
ɭɪɬ
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��ſ����� ʰʰ ɥƀƇ
������������ ʰ ɑŵ����������ɨ�ɨ����ɑŚ

ƈ���� ��ſ����� ʰʰɨƀƇ
������������ ʰ ɑŵ����������ɨ�ɩ����ɰɥɑŚ

ƈ
ƈ���� ��ſ�������� ʰʰ ɨƀƇ

������������ ʰ ɑŵ����������ɩ	����ɑŚ
ƈ���� ��ſ�������� ʰʰ ɩƀƇ

������������ ʰ ɑŵ����������ɪ����ɑŚ
ƈ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ���ſ������������������ſƀŜ���	����ſ������������ƀƀŜ
����������������������ſɥŜɬƀŜ������������������ſɥŜɨƀƀŚ

���ſ���ʰɥŚ���ʳ�������Ś���ʫʫƀƇ

���������ſƀŜ����ſɑɨɥ ������� ����� ���ɑƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ��������ř ɨɥř ��������Ŝ�������ƀƀŚ

ŵŵ������ ��������
��������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
��������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
��������Ŝ�����������ſ������	Ŝ�ƀŜ��������������������	����ſ��������ƃ�����ƄƀŚ

����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
����������������Ŝ�����������ſ������	Ŝ�ƀŜ������������ſ�����������ƃ�����ƄƀŚ
����������������Ŝ�����������ſ������	Ŝ�ƀŜ�������ſ��������ƃ�����ƄƀŚ
����������������Ŝ�����������ſ������	Ŝ�ƀŜ���	���������ſ��������ƀŚ

ŵŵ������ ��������� ����
������� ʰ ſ��������ƃ���������Ƅʫ��������ƃ��������Ƅʫ��������ƃ�����Ƅʫ�������	ƃ�����Ƅʫ��������ƃ���Ƅʫ

��������ƃ���ƄƀŚ
���Ŝ���	�������ſ�������ƀŚ

��������Ŝ����������ſ����ƀŚ
���Ŝ������ſƀŚ
���������ſƀŜ����ſɑ������� ��������ř ���������ř ɬ �������ř ���ś ɑʫ��������ƃ���ƄƀŚ

��ſ�������� ʰʰ ɫɬƀƇ
���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɪɑƀŚ

ƈ

���Ŝ��������������ſƀŚ

������Ŝ���	����ſɑŵ������ɨ���ɑƀŜ����ſ������������ſ����������������ř ɰř ��������Ŝ�������ƀƀŚ ŵŵ
��������� ������ ���� ������ř Ŝ�����������ſ������������ř ��������ƀ ������ ����� Ş��� ��������� ���
������������

���ɏ����ɏɨɫɏ�ɯɩɥɏɨŜ�����������ſɑɨɑƀŚ

ŵŵ���� ���������
���Ŝ�������������ſƀŚ
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A.2 MATLAB

getKUKA.m

%% 20180223

%% loading data into matlab from log files

clear all

close all

clc

%% assigning variables

subjects = {'testS1 ','S2','S3'};

testType = {'stat','sing','adl'}; % 1= stationary , 2= single motion , 3=ADL

testSetD = {'RF','RE'}; % direction resisting motion

testSetP = {'P1','P2','P3','P4','P5'}; % position

testSetA = {'A1','A2','A3','A4','A5'}; % angle

testSetF = {'F1','F2','F3'}; % force

testSetV = {'V1','V2','V3'}; % velocity

testRep = {'R1','R2','R3','R4','R5'}; % repetition

numReps = 3;

testSet = {1,'RFP1A1F1V1 '

2,'RFP1A1F2V1 '

3,'REP1A1F2V1 '

4,'RFP1A2F1V1 '

5,'RFP1A2F2V1 '

6,'REP1A2F2V1 '

7,'RFP2A1F1V1 '

8,'RFP2A1F2V1 '

9,'REP2A1F2V1 '

10,'RFP3A1F1V1 '

11,'RFP3A1F2V1 '

12,'REP3A1F2V1 '

13,'RFP1A6F1V2 '

14,'RFP1A6F1V3 '

15,'RFP1A6F2V2 '

16,'RFP1A6F2V3 '

17,'REP1A6F2V2 '

18,'REP1A6F2V3 '

19,'RFP2A6F1V2 '

20,'RFP2A6F1V3 '
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21,'RFP2A6F2V2 '

22,'RFP2A6F2V3 '

23,'REP2A6F2V2 '

24,'REP2A6F2V3 '

25,'RFP3A6F1V2 '

26,'RFP3A6F1V3 '

27,'RFP3A6F2V2 '

28,'RFP3A6F2V3 '

29,'REP3A6F2V2 '

30,'REP3A6F2V3 '

31,'RFP4A4F3V2 '

32,'RFP4A4F3V3 '

33,'RFP4A4F2V2 '

34,'RFP4A4F2V3 '

35,'RFP5A5F3V2 '

36,'RFP5A5F3V3 '

37,'RFP5A5F2V2 '

38,'RFP5A5F2V3 '

39,'MVCflex '

40,'MVCext '

};

%% load Kuka data , get timestamps for start and end of each trial

subNum = 24; % set as subject currently being processed

startTrial = 1;

numTrials = 40;

timestampRepStartK = zeros(numReps ,40);

timestampRepEndK = zeros(numReps ,40);

TimeStartKFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\','

timesStartK.csv');

TimeEndKFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\','

timesEndK.csv');

for trial=startTrial :( startTrial - 1 + numTrials)

if(trial < 39)

for rep =1: numReps
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fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\KUKA\',testSet{

trial ,2}, testRep{rep});

dataKuka = load(fileName);

KTimeCol = getKukaTimestampCol(dataKuka (:,1),dataKuka (:,2));

% collect timestamps

timestampRepStartK(rep ,trial) = KTimeCol (2001);

if (trial < 13)

timestampRepEndK(rep ,trial) = KTimeCol (7001);

elseif (trial > 12)

timestampRepEndK(rep ,trial) = KTimeCol(size(KTimeCol ,1));

end

end

end

if (trial > 38)

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\KUKA\',testSet{trial

,2});

dataKuka = load(fileName);

KTimeCol = getKukaTimestampCol(dataKuka (:,1),dataKuka (:,2));

% collect timestamps

timestampRepStartK (1,trial) = KTimeCol (1);

timestampRepEndK (1,trial) = KTimeCol(size(KTimeCol ,1));

end

end

%% save Kuka timestamps to files

dlmwrite(TimeStartKFilename , timestampRepStartK ,'precision ' ,16);

dlmwrite(TimeEndKFilename , timestampRepEndK ,'precision ' ,16);

%saveFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum) ,'\',testSet{

set ,2}, testRep{rep},'CondensedData ');

%dlmwrite(saveFilename ,condensedData , 'precision ',16);
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getKUKATimestampCol.m

function [ KTimestampCol ] = getKukaTimestampCol( dataTime_1 , dataTime_2 )

% this function combines two timestamp values given by KUKA into one

% number , returns a column of timestamps

for j=1: size(dataTime_1 ,1)

if(dataTime_2(j,1) == 0)

tempTime = strcat(num2str(dataTime_1(j,1)),'.',num2str (0),num2str (0),num2str (0),

num2str (0),num2str (0),num2str (0),num2str (0),num2str (0),num2str (0));

elseif (dataTime_2(j,1) < 10000000)

tempTime = strcat(num2str(dataTime_1(j,1)),'.',num2str (0),num2str (0),num2str(

dataTime_2(j,1)));

elseif(dataTime_2(j,1) < 100000000)

tempTime = strcat(num2str(dataTime_1(j,1)),'.',num2str (0),num2str(dataTime_2(j,1)))

;

elseif (dataTime_2(j,1) >= 100000000)

tempTime = strcat(num2str(dataTime_1(j,1)),'.',num2str(dataTime_2(j,1)));

end

KTimestampCol(j,1) = str2double(tempTime);

end

end
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getTrigno.m

%% 20180306

% this script loads Trigno data files and segments data into repetitions

% based on KUKA timestamps

%% assigning variables

subNum = 1; % set as subject currently being processed

startTrial = 1;

numTrials = 40; % includes MVC files

timeOffsetRepStartT = zeros(numReps , 40);

timeOffsetRepEndT = zeros(numReps , 40);

%matOffsetRepStartT = zeros(numReps , 40);

%matOffsetRepEndTEMG = zeros(numReps , 40);

offset = 26; % offset of trigno to get to real time move 2 seconds back , kuka to real time

28 seconds back , between is 26 seconds

[offsetK , offsetKTimezone] = getKOffset(subNum); % time offset of Kuka , specific for

subject

offsetKTimezone = offsetKTimezone {1 ,1};

offsetT = 0; %S1+0, S2+0, S3+0, S4+0

%% get time offsets

% run assign variables section first

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\Trigno\EMGRecTimestamps.xlsx

');

[numT , txtT , rawT] = xlsread(fileName ,'B1:C40');

timestampFileT = datetime(strcat(txtT (:,1),txtT (:,2)),'InputFormat ','yyyy/MM/ddHH:mm:ss.

SSSSSSS ');

timestampFileT.TimeZone = offsetKTimezone; % -4:00 for S1, S2 , -3:00 S3,

timestampFileT.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS ';

timeRepStartFromKfile = csvread(TimeStartKFilename);

timestampRepStartFromKfile = datetime(timeRepStartFromKfile ,'ConvertFrom ','epochtime ');

timestampRepStartFromKfile.TimeZone = '+00:00 ';

timestampRepStartFromKfile.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS ';

timeRepEndFromKfile = csvread(TimeEndKFilename);

timestampRepEndFromKfile = datetime(timeRepEndFromKfile ,'ConvertFrom ','epochtime ');

timestampRepEndFromKfile.TimeZone = '+00:00 ';

timestampRepEndFromKfile.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS ';

for trial=startTrial :( startTrial - 1 + numTrials)
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for rep =1: numReps

tempTimeOffsetStart = (timestampRepStartFromKfile(rep ,trial)-seconds(offsetK))

- (timestampFileT(trial)-seconds(offsetT));

timeOffsetRepStartT(rep ,trial) = seconds(duration(tempTimeOffsetStart));

tempTimeOffsetEnd = (timestampRepEndFromKfile(rep ,trial)-seconds(offsetK)) - (

timestampFileT(trial)-seconds(offsetT));

timeOffsetRepEndT(rep ,trial) = seconds(duration(tempTimeOffsetEnd));

end

end

matOffsetRepStartTEMG = round(timeOffsetRepStartT ./(1/1925.926) ,0) + 1;

matOffsetRepEndTEMG = round(timeOffsetRepEndT ./(1/1925.926)) + 1;

%% get Trigno data , save as separate reps

% run assign variables section first

for trial=startTrial :( startTrial - 1 + numTrials)

if(trial < 39)

for rep =1: numReps

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\Trigno\EMG',

int2str(trial),'.csv');

dataTrigno = csvread(fileName ,453 ,0);

%get portion of Trigno data for specific rep , specific trial

tempDataTrignoEMGRep = [dataTrigno(matOffsetRepStartTEMG(rep ,trial):

matOffsetRepEndTEMG(rep ,trial) ,1:2),... %BicepsBrachiiShortHead

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,10),... %BicepsBrachiiLongHead

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,18),... %Brachialis

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,26),... %Brachioradialis

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,34),... %TricepsBrachiiLongHead

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,42),... %TricepsLateralHead

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,50),... %TricepsMedialHead

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)
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,58),... %PronatorTeres

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,66),... %Infraspinatus

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,74),... %AnteriorDeltoid

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,82),... %LateralDeltoid

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,90),... %PosteriorDeltoid

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,98),... %ExtCarpiUlnaris

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,106),... %ExtCarpiRadialis

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,114),... %FlexCarpiUlnaris

dataTrigno(matOffsetRepStartTEMG(rep ,trial):matOffsetRepEndTEMG(rep ,trial)

,122) %FlexCarpiRadialis

];

saveTrignoEmgRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str

(subNum),'\EMGReps\EMGT',int2str(trial),'R',int2str(rep),'.csv');

dlmwrite(saveTrignoEmgRepFilename ,tempDataTrignoEMGRep ,'precision ' ,16);

end

end

if(trial > 38)

if(trial == 39)

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\Trigno\

EMGMVCflex.csv');

elseif(trial == 40)

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\Trigno\EMGMVCext

.csv');

end

dataTrigno = csvread(fileName ,453 ,0);

%get portion of Trigno data for specific rep , specific trial

tempDataTrignoEMGRep = [dataTrigno(matOffsetRepStartTEMG (1,trial):

matOffsetRepEndTEMG (1,trial) ,1:2),... %BicepsBrachiiShortHead

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,10),

... %BicepsBrachiiLongHead

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,18),

... %Brachialis
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dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,26),

... %Brachioradialis

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,34),

... %TricepsBrachiiLongHead

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,42),

... %TricepsLateralHead

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,50),

... %TricepsMedialHead

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,58),

... %PronatorTeres

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,66),

... %Infraspinatus

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,74),

... %AnteriorDeltoid

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,82),

... %LateralDeltoid

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,90),

... %PosteriorDeltoid

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,98),

... %ExtCarpiUlnaris

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,106)

,... %ExtCarpiRadialis

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,114)

,... %FlexCarpiUlnaris

dataTrigno(matOffsetRepStartTEMG (1,trial):matOffsetRepEndTEMG (1,trial) ,122)

%FlexCarpiRadialis

];

saveTrignoEmgRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str

(subNum),'\EMGReps\EMGT',int2str(trial),'.csv');

dlmwrite(saveTrignoEmgRepFilename ,tempDataTrignoEMGRep ,'precision ' ,16);

end

end
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getKOffset.m

function [ subKOffset ,subKOffsetTimezone ] = getKOffset( sub )

% input is subject number

% KOffsets is matrix , col 1 is subject number , col 2 is Kuka time offset

% each row is for a subject

KOffsets = [1,28

2,28

3,30.2

4,30.2

5,31.7

6,31.1

7,33.2

8,32.7

9,33.6

10,34

11 ,34.2

12 ,35.4

13,36

14 ,36.2

15 ,37.8

16 ,37.5

17,38

18,40

19,40

20 ,39.4

21 ,40.2

22 ,39.8

23,40

24 ,41.3

];

KOffsetsTimezones = {1,' -04:00'

2,' -04:00'

3,' -03:00'

4,' -04:00'

5,' -04:00'

6,' -05:00'

7,' -05:00'

8,' -05:00'

9,' -05:00'

10,' -05:00'

11,' -05:00'
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12,' -05:00'

13,' -05:00'

14,' -05:00'

15,' -05:00'

16,' -05:00'

17,' -05:00'

18,' -05:00'

19,' -05:00'

20,' -05:00'

21,' -05:00'

22,' -05:00'

23,' -05:00'

24,' -05:00'

};

subKOffset = KOffsets(sub ,2);

subKOffsetTimezone = KOffsetsTimezones(sub ,2);

end
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preprocessTrigno.m

%% pre -processing Trigno

% this script filters and normalizes EMG signals , extracts features , saves

% .csv files

%% assigning variables

subNum = 24;

startTrial = 1;

numTrials = 40; % filter 40 including MVC , normalize and extract features 38 trials

numReps = 3;

numMuscles = 16;

numFeatsHudgins = 4;

numFeatsOskoei = 2;

numFeatsFreq = 2;

repsStartEnd = getSubReps(subNum);

% prior to 20180618 used window length 100 samples , increment 10

% 20180618 used window length 500 samples , increment 250

mywinsize = 500;

mywininc = 250;

HudginsFeat = {'mav'

'ssc'

'wl'

'zc'};

OskoeiFeat = {'rms'

'ar'};

freqFeat = {'mnf'

'mdf'};

%% filter

% run assign variables section first

for trial = startTrial :( startTrial - 1 + numTrials)

if(trial < 39)

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGReps\EMGT',int2str(trial),'R',int2str(rep),'.csv');

dataTrignoRep = csvread(filename);
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dataTrignoRepFilt = zeros(size(dataTrignoRep ,1),numMuscles);

for muscle =2:1+ numMuscles

dataTrignoRepFilt (:,muscle -1) = emgfilter_trigno(dataTrignoRep (:,muscle));

end

saveTrignoEmgRepFiltFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',

int2str(subNum),'\EMGRepsFilt\EMGFiltT ',int2str(trial),'R',int2str(rep),'.

csv');

dlmwrite(saveTrignoEmgRepFiltFilename ,dataTrignoRepFilt ,'precision ' ,16);

end

end

if(trial > 38)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\EMGReps\

EMGT',int2str(trial),'.csv');

dataTrignoRep = csvread(filename);

dataTrignoRepFilt = zeros(size(dataTrignoRep ,1),numMuscles);

for muscle =2:1+ numMuscles

dataTrignoRepFilt (:,muscle -1) = emgfilter_trigno(dataTrignoRep (:,muscle));

end

saveTrignoEmgRepFiltFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',

int2str(subNum),'\EMGRepsFilt\EMGFiltT ',int2str(trial),'.csv');

dlmwrite(saveTrignoEmgRepFiltFilename ,dataTrignoRepFilt ,'precision ' ,16);

end

end

%% normalize filtered EMG

% run assign variables section first

MVCflexFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFilt\EMGFiltT39.csv');

MVCflexEMG = csvread(MVCflexFilename);

MVCextFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\EMGRepsFilt

\EMGFiltT40.csv');

MVCextEMG = csvread(MVCextFilename);

%find max EMG amplitude for each muscle

[MVCmax (1,:),I] = max(MVCflexEMG ,[] ,1);

[MVCmax (2,:),I] = min(MVCflexEMG ,[] ,1);

[MVCmax (3,:),I] = max(MVCextEMG ,[],1);



A.2 MATLAB 145

[MVCmax (4,:),I] = min(MVCextEMG ,[],1);

MVCmax = abs(MVCmax);

[maxEMG , I] = max(MVCmax ,[],1);

for trial = startTrial :( startTrial - 1 + numTrials) % for just the 38 trials , not MVC

because normalizing relative to MVC

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFilt\EMGFiltT ',int2str(trial),'R',int2str(rep),'.csv');

tempEMG = csvread(filename);

tempEMGnorm = tempEMG ./ maxEMG;

saveEMGRepFiltNormFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(

subNum),'\EMGRepsFiltNorm\EMGFiltNormT ',int2str(trial),'R',int2str(rep),'.csv')

;

dlmwrite(saveEMGRepFiltNormFilename ,tempEMGnorm ,'precision ' ,16);

end

end

%% extract features (not normalized)

% run assign variables section first

% extract 4 Hudgins set features

for trial = startTrial :( startTrial - 1 + numTrials) % for just the 38 trials , not MVC

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFilt\EMGFiltT ',int2str(trial),'R',int2str(rep),'.csv');

dataTrignoRepFiltered = csvread(filename);

clear dataTrignoRepFeatMAV dataTrignoRepFeatSSC dataTrignoRepFeatWL

dataTrignoRepFeatZC

for muscle =1: numMuscles

dataTrignoRepFeatMAV (:,muscle) = mavfeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

dataTrignoRepFeatSSC (:,muscle) = sscfeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

dataTrignoRepFeatWL (:,muscle) = wlfeat(dataTrignoRepFiltered (:,muscle),mywinsize

,mywininc);

dataTrignoRepFeatZC (:,muscle) = zcfeat(dataTrignoRepFiltered (:,muscle),mywinsize

,mywininc);
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end

for feat = 1: numFeatsHudgins %write to files

saveTrignoEmgRepFeatFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',

int2str(subNum),'\EMGRepsHudginsFeat\EMGFeatT ',int2str(trial),'R',int2str(

rep),HudginsFeat{feat},'.csv');

if (feat ==1)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatMAV ,'precision ' ,16);

elseif (feat == 2)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatSSC ,'precision ' ,16);

elseif (feat == 3)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatWL ,'precision ' ,16);

elseif (feat == 4)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatZC ,'precision ' ,16);

end

end

end

end

%% extract features from normalized emg

% run assign variables section first

% extract 4 Hudgins set features

for trial = startTrial :( startTrial - 1 + numTrials) % for just the 38 trials , not MVC

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFiltNorm\EMGFiltNormT ',int2str(trial),'R',int2str(rep),'.csv');

dataTrignoRepFiltered = csvread(filename);

clear dataTrignoRepFeatMAV dataTrignoRepFeatSSC dataTrignoRepFeatWL

dataTrignoRepFeatZC

for muscle =1: numMuscles

dataTrignoRepFeatMAV (:,muscle) = mavfeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

dataTrignoRepFeatSSC (:,muscle) = sscfeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

dataTrignoRepFeatWL (:,muscle) = wlfeat(dataTrignoRepFiltered (:,muscle),mywinsize

,mywininc);

dataTrignoRepFeatZC (:,muscle) = zcfeat(dataTrignoRepFiltered (:,muscle),mywinsize

,mywininc);

end

for feat = 1: numFeatsHudgins %write to files

saveTrignoEmgRepFeatFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',
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int2str(subNum),'\EMGRepsHudginsFeatOfNorm500_250\EMGFeatT ',int2str(trial),'

R',int2str(rep),HudginsFeat{feat},'500 _250.csv');

if (feat ==1)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatMAV ,'precision ' ,16);

elseif (feat == 2)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatSSC ,'precision ' ,16);

elseif (feat == 3)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatWL ,'precision ' ,16);

elseif (feat == 4)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatZC ,'precision ' ,16);

end

end

end

end

%% extract features from normalized emg

% run assign variables section first

% extract 2 Oskoei set features

for trial = startTrial :( startTrial - 1 + numTrials) % for just the 38 trials , not MVC

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFiltNorm\EMGFiltNormT ',int2str(trial),'R',int2str(rep),'.csv');

dataTrignoRepFiltered = csvread(filename);

clear dataTrignoRepFeatRMS dataTrignoRepFeatAR

for muscle =1: numMuscles

dataTrignoRepFeatRMS (:,muscle) = rmsfeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

end

if subNum == 7

dataTrignoRepFiltered (:,9)=0; % only for subject 7, muscle 9 normalized filtered

values were NaN because MVC absolute max was 0 because of faulty sensor

% only for AR feature because cannot accept NaN

end

if subNum == 9

dataTrignoRepFiltered (:,7)=0; % only for subject 9, muscle 7 normalized filtered

values were NaN because MVC absolute max was 0 because of faulty sensor

% only for AR feature because cannot accept NaN

end

dataTrignoRepFeatAR = arfeat4(dataTrignoRepFiltered ,mywinsize ,mywininc ,4);

for feat = 1: numFeatsOskoei %write to files
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saveTrignoEmgRepFeatFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',

int2str(subNum),'\EMGRepsOskoeiFeatOfNorm500_250\EMGFeatT ',int2str(trial),'R

',int2str(rep),OskoeiFeat{feat},'500 _250.csv');

if (feat ==1)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatRMS ,'precision ' ,16);

elseif (feat == 2)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatAR ,'precision ' ,16);

end

end

end

end

%% extract features from normalized emg

% run assign variables section first

% extract 2 frequency features

for trial = startTrial :( startTrial - 1 + numTrials) % for just the 38 trials , not MVC

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\

EMGRepsFiltNorm\EMGFiltNormT ',int2str(trial),'R',int2str(rep),'.csv');

dataTrignoRepFiltered = csvread(filename);

clear dataTrignoRepFeatMNF dataTrignoRepFeatMDF

if subNum == 7

dataTrignoRepFiltered (:,9)=0; % only for subject 7, muscle 9 normalized filtered

values were NaN because MVC absolute max was 0 because of faulty sensor

% freq features cannot accept NaN

end

if subNum == 9

dataTrignoRepFiltered (:,7)=0; % only for subject 9, muscle 7 normalized filtered

values were NaN because MVC absolute max was 0 because of faulty sensor

% freq features cannot accept NaN

end

for muscle =1: numMuscles

dataTrignoRepFeatMNF (:,muscle) = mnffeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

dataTrignoRepFeatMDF (:,muscle) = mdffeat(dataTrignoRepFiltered (:,muscle),

mywinsize ,mywininc);

end
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for feat = 1: numFeatsFreq %write to files

saveTrignoEmgRepFeatFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',

int2str(subNum),'\EMGRepsFreqFeatOfNorm500_250\EMGFeatT ',int2str(trial),'R',

int2str(rep),freqFeat{feat},'500 _250.csv');

if (feat ==1)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatMNF ,'precision ' ,16);

elseif (feat == 2)

dlmwrite(saveTrignoEmgRepFeatFilename ,dataTrignoRepFeatMDF ,'precision ' ,16);

end

end

end

end
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getSubReps.m

function [ subReps ] = getSubReps( sub )

% input is subject number

% returns matrix , two columns for specified subject , S1.1 is first rep of S1 reps , S1.2

% is last rep of subject reps

% rows are each trial , 1-38

startEndReps =

[1,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

4,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

5,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

6,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

7,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

8,1,3,1,3,1,3,1,3,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

9,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

10,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

11,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

12,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

13,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

14,2,3,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

15,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

16,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

17,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3
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18,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

19,1,3,1,3,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

20,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

21,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

22,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

23,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

24,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

25,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

26,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

27,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

28,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

29,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

30,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

31,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

32,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

33,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

34,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

35,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

36,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

37,1,3,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3

38,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3
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];

subReps = startEndReps (:,(sub *2):(sub *2+1));

end
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aveFeats.m

%% average features for each motion

% for each separate motion trial and feature , average features over windows for one

% feature value per rep , average features over reps for one feature value

% per motion trial

%% clear

clear all

close all

clc

%% run variable setup for feature averaging

startTrial = 1;

endTrial = 38;

numReps = 3;

numFeatsHudgins = 4;

numFeatsOskoei = 2;

numFeatsFreq = 2;

HudginsFeat = {'mav500_250 '

'ssc500_250 '

'wl500_250 '

'zc500_250 '};

OskoeiFeat = {'rms500_250 '

'ar500_250 '};

freqFeat = {'mnf500_250 '

'mdf500_250 '};

openFolders ={'EMGRepsHudginsFeatOfNorm500_250 '

'EMGRepsOskoeiFeatOfNorm500_250 '

'EMGRepsFreqFeatOfNorm500_250 '};

saveFolders ={'EMGMeanHudginsFeatOfNorm500_250 '

'EMGMeanOskoeiFeatOfNorm500_250 '

'EMGMeanFreqFeatOfNorm500_250 '};

%% run averaging of features over reps for each trial

for sub =1:24

for featH =1: numFeatsHudgins

getAveFeats(startTrial ,endTrial ,openFolders {1}, saveFolders {1}, HudginsFeat{featH},

sub);

end
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for featO =1: numFeatsOskoei

getAveFeats(startTrial ,endTrial ,openFolders {2}, saveFolders {2}, OskoeiFeat{featO},sub

);

end

for featF =1: numFeatsFreq

getAveFeats(startTrial ,endTrial ,openFolders {3}, saveFolders {3}, freqFeat{featF},sub);

end

end
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getAveFeats.m

function [ ] = getAveFeats( sTrial ,eTrial , openFold , saveFold , featName , subNumber)

%averages feature values of given feature for given subject

% inputs are start and end trial , folder names , feature , subject number

% average specified feature over trials for given subject , save csv file ,

% rows are trial , columns are muscle

clear EMGAveFeat EMGAveFeatAll

for trial = sTrial:eTrial

clear tempDataEMGFeat EMGFeat

repsStartEnd = getSubReps(subNumber);

numRepsToAve = 0;

for rep=repsStartEnd(trial ,1):repsStartEnd(trial ,2)

numRepsToAve = numRepsToAve +1;

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNumber),'\',

openFold ,'\EMGFeatT ',int2str(trial),'R',int2str(rep),featName ,'.csv');

tempDataEMGFeat = csvread(filename);

EMGFeat(numRepsToAve ,:) = mean(tempDataEMGFeat ,1);

end

EMGAveFeat = mean(EMGFeat ,1);

EMGAveFeatAll(trial ,:) = EMGAveFeat;

end

saveAveFeatAllTrial = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNumber),'

\',saveFold ,'\',featName ,'.csv');

dlmwrite(saveAveFeatAllTrial ,EMGAveFeatAll ,'precision ' ,16);

end



A.2 MATLAB 156

getKukaVelocity.m

%% 20180718

% this gets retrieves the KUKA data and calculates velocities (speed components)

clear all

close all

clc

%% Assigning variables

testSet = {1,'RFP1A1F1V1 '

2,'RFP1A1F2V1 '

3,'REP1A1F2V1 '

4,'RFP1A2F1V1 '

5,'RFP1A2F2V1 '

6,'REP1A2F2V1 '

7,'RFP2A1F1V1 '

8,'RFP2A1F2V1 '

9,'REP2A1F2V1 '

10,'RFP3A1F1V1 '

11,'RFP3A1F2V1 '

12,'REP3A1F2V1 '

13,'RFP1A6F1V2 '

14,'RFP1A6F1V3 '

15,'RFP1A6F2V2 '

16,'RFP1A6F2V3 '

17,'REP1A6F2V2 '

18,'REP1A6F2V3 '

19,'RFP2A6F1V2 '

20,'RFP2A6F1V3 '

21,'RFP2A6F2V2 '

22,'RFP2A6F2V3 '

23,'REP2A6F2V2 '

24,'REP2A6F2V3 '

25,'RFP3A6F1V2 '

26,'RFP3A6F1V3 '

27,'RFP3A6F2V2 '

28,'RFP3A6F2V3 '

29,'REP3A6F2V2 '

30,'REP3A6F2V3 '

31,'RFP4A4F3V2 '

32,'RFP4A4F3V3 '

33,'RFP4A4F2V2 '
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34,'RFP4A4F2V3 '

35,'RFP5A5F3V2 '

36,'RFP5A5F3V3 '

37,'RFP5A5F2V2 '

38,'RFP5A5F2V3 '

39,'MVCflex '

40,'MVCext '

};

%%

subNum = 24; % set as subject currently being processed

startTrial = 1;

numTrials = 40;

% 1 millisecond period

period = 0.001; % 0.001 seconds (1 millisecond)

rowMotionStart = 2001;

rowMotionEndStat = 7001;

clear p_handle_ave_all v_handle_ave_all

for trial = startTrial:numTrials

if (trial < 39) %motion trials not including MVC

clear temp_p_handle_reps_ave temp_v_handle_reps_ave

repsStartEnd = getSubReps(subNum);

numRepsToAve = 0;

for rep = repsStartEnd(trial ,1):repsStartEnd(trial ,2) %using reps matching reps

used for feature extraction

clear dataKuka p_handle v_handle

numRepsToAve = numRepsToAve + 1;

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\KUKA\',testSet{

trial ,2},'R',int2str(rep));

dataKuka = load(fileName);

if (trial < 13)

rowMotionEnd = rowMotionEndStat;

end

if (trial > 12)

rowMotionEnd = size(dataKuka ,1); % KUKA2 added the '-2000'

end

rowVel = 1;

for rowData = rowMotionStart:rowMotionEnd -1
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%calculate velocity

p_handle(rowVel ,1:3) = [( dataKuka (( rowData + 1) ,22) - dataKuka(rowData ,22))

,(dataKuka (( rowData + 1) ,23) - dataKuka(rowData ,23)),(dataKuka (( rowData

+ 1) ,24) - dataKuka(rowData ,24))];

p_handle(rowVel ,4) = sqrt(( p_handle(rowVel ,1)^2)+( p_handle(rowVel ,2)^2)+(

p_handle(rowVel ,3)^2));

v_handle(rowVel ,1:3) = [( dataKuka (( rowData + 1) ,22) - dataKuka(rowData ,22))

,(dataKuka (( rowData + 1) ,23) - dataKuka(rowData ,23)),(dataKuka (( rowData

+ 1) ,24) - dataKuka(rowData ,24))]/ period;

v_handle(rowVel ,4) = sqrt(( v_handle(rowVel ,1)^2)+( v_handle(rowVel ,2)^2)+(

v_handle(rowVel ,3)^2));

rowVel = rowVel + 1;

end

savePositionRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(

subNum),'\KUKA\PositionT ',int2str(trial),'R',int2str(rep),'.csv');

saveVelocityRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(

subNum),'\KUKA\VelocityT ',int2str(trial),'R',int2str(rep),'.csv');

dlmwrite(savePositionRepFilename ,p_handle ,'precision ' ,8);

dlmwrite(saveVelocityRepFilename ,v_handle ,'precision ' ,8);

temp_p_handle_reps_ave(numRepsToAve ,:) = mean(abs(p_handle) ,1);

temp_v_handle_reps_ave(numRepsToAve ,:) = mean(abs(v_handle) ,1);

end

p_handle_ave_all(trial ,:) = mean(temp_p_handle_reps_ave ,1);

v_handle_ave_all(trial ,:) = mean(temp_v_handle_reps_ave ,1);

end

if(trial > 38)

clear temp_p_handle_reps_ave temp_v_handle_reps_ave

clear dataKuka p_handle v_handle

repsStartEnd = getSubReps(subNum);

fileName = strcat('D:\ TaylorMasters2\Data\S',int2str(subNum),'\KUKA\',testSet{trial

,2});

dataKuka = load(fileName);

rowMotionEnd = size(dataKuka ,1); % KUKA2 added the '-2000';

rowVel = 1;

for rowData = rowMotionStart:rowMotionEnd -1

%calculate velocity

p_handle(rowVel ,1:3) = [( dataKuka (( rowData + 1) ,22) - dataKuka(rowData ,22)) ,(

dataKuka (( rowData + 1) ,23) - dataKuka(rowData ,23)) ,(dataKuka (( rowData + 1)

,24) - dataKuka(rowData ,24))];

p_handle(rowVel ,4) = sqrt(( p_handle(rowVel ,1)^2)+( p_handle(rowVel ,2)^2)+(



A.2 MATLAB 159

p_handle(rowVel ,3)^2));

v_handle(rowVel ,1:3) = [( dataKuka (( rowData + 1) ,22) - dataKuka(rowData ,22)) ,(

dataKuka (( rowData + 1) ,23) - dataKuka(rowData ,23)) ,(dataKuka (( rowData + 1)

,24) - dataKuka(rowData ,24))]/ period;

v_handle(rowVel ,4) = sqrt(( v_handle(rowVel ,1)^2)+( v_handle(rowVel ,2)^2)+(

v_handle(rowVel ,3)^2));

rowVel = rowVel + 1;

end

savePositionRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(

subNum),'\KUKA\PositionT ',int2str(trial),'R',int2str(rep),'.csv');

saveVelocityRepFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(

subNum),'\KUKA\VelocityT ',int2str(trial),'R',int2str(rep),'.csv');

dlmwrite(savePositionRepFilename , p_handle ,'precision ' ,8);

dlmwrite(saveVelocityRepFilename , v_handle ,'precision ' ,8);

p_handle_ave_all(trial ,:) = mean(p_handle ,1);

v_handle_ave_all(trial ,:) = mean(v_handle ,1);

end

end

saveAvePosAllTrialsFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),

'\KUKA\MeanPosition.csv');

saveAveSpeedAllTrialsFilename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum

),'\KUKA\MeanSpeed.csv');

dlmwrite(saveAvePosAllTrialsFilename , p_handle_ave_all ,'precision ' ,8);

dlmwrite(saveAveSpeedAllTrialsFilename , v_handle_ave_all ,'precision ' ,8);

subNum %print subject number to screen to see progress of script running
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A.2.1 Classification Implemented Using MATLAB

classificationLOSO.m

%% classification

% this script generates matrixes of predictors , vectors of labels , runs

% LOSO LDA or SVM classification with specified predictors , labels , sets of

% trials , saves accuracies and results

%% clear

clear all

close all

clc

%% labeling

%% run variable setup

numSubjects = 24;

numTrials = 38;

HudginsFeat = {'mav500_250 '

'ssc500_250 '

'wl500_250 '

'zc500_250 '};

OskoeiFeat = {'rms500_250 '

'ar500_250 '};

freqFeat = {'mnf500_250 '

'mdf500_250 '};

featNames = {'mav500_250 '

'ssc500_250 '

'wl500_250 '

'zc500_250 '

'rms500_250 '

'ar500_250 '

'ar500_250 '

'ar500_250 '

'ar500_250 '

'mnf500_250 '

'mdf500_250 '};

openFolders ={'EMGMeanHudginsFeatOfNorm500_250 '

'EMGMeanOskoeiFeatOfNorm500_250 '
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'EMGMeanFreqFeatOfNorm500_250 '};

%% setting up trial labels

% labels of trials

% column 1: data trial number

% column 2: flexion/extension position 1=down , 2=front , 3=side (0= down 90 deg flex , 4=ADL1 ,

5=ADL2)

% column 3: flexion/extension force 1=0 N, 2=22 N RF , 3=22 N RE (4=11 N)

% column 4: flexion/extension velocity 1= stationary , 2=slow , 3=fast

% column 5: ADL force 1=11 N, 2=22 N (3=22 N RE, 4=0 N)

% column 6: ADL velocity 1=slow , 2=fast (3= stationary)

% column 7: flexion/extension velocity 1= stationary , 2= moving

% column 8: flexion/extension position 1=down , 2=front , 3=side (1= down 90

% deg flex , 4=ADL1 , 5=ADL2) **** only change to col 2 is 1=down 90 deg flex

% as well

% column 9: flexion/extension force 1=0 N, 2= > 0 N

trial_labels = [

1,1,1,1,4,0,1,1,1

2,1,2,1,2,0,1,1,2

3,1,3,1,3,0,1,1,2

4,0,1,1,4,0,1,1,1

5,0,2,1,2,0,1,1,2

6,0,3,1,3,0,1,1,2

7,2,1,1,4,0,1,2,1

8,2,2,1,2,0,1,2,2

9,2,3,1,3,0,1,2,2

10,3,1,1,4,0,1,3,1

11,3,2,1,2,0,1,3,2

12,3,3,1,3,0,1,3,2

13,1,1,2,4,1,2,1,1

14,1,1,3,4,2,2,1,1

15,1,2,2,2,1,2,1,2

16,1,2,3,2,2,2,1,2

17,1,3,2,4,1,2,1,2

18,1,3,3,4,2,2,1,2

19,2,1,2,4,1,2,2,1

20,2,1,3,4,2,2,2,1

21,2,2,2,2,1,2,2,2

22,2,2,3,2,2,2,2,2

23,2,3,2,3,1,2,2,2

24,2,3,3,3,2,2,2,2
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25,3,1,2,4,1,2,3,1

26,3,1,3,4,2,2,3,1

27,3,2,2,2,1,2,3,2

28,3,2,3,2,2,2,3,2

29,3,3,2,3,1,2,3,2

30,3,3,3,3,2,2,3,2

31,4,4,2,1,1,2,4,2

32,4,4,3,1,2,2,4,2

33,4,2,2,2,1,2,4,2

34,4,2,3,2,2,2,4,2

35,5,4,2,1,1,2,5,2

36,5,4,3,1,2,2,5,2

37,5,2,2,2,1,2,5,2

38,5,2,3,2,2,2,5,2

];

%% setting up consolidated feature file

% featuresALL contains all features for all muscles (columns), for all

% subjects for all trials (rows)

% columns: features MAV , SSC , ZC, RMS , AR1 , AR2 , AR3 , AR4 , MNF , MDF , all

% muscles M1 -15 for each (excluding muscle 8 from data file)

% rows: subjects 1-24, all trials 1-38 for each

clear featuresAll

for subNum = 1: numSubjects

for feat = 1:size(featNames ,1)

if feat < 5

folder = openFolders {1};

elseif feat < 10

folder = openFolders {2};

else

folder = openFolders {3};

end

filename = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\',folder ,

'\',featNames{feat},'.csv');

tempDataFeat = csvread(filename);

if feat < 6

% put in zeros for S7 M9, S9 M7 (unreliable data because of disconnecting

sensor)

if subNum == 7

tempDataFeat (:,9)=0;
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elseif subNum == 9

tempDataFeat (:,7)=0;

end

featuresAll (((subNum -1)*38 +1):subNum *38,((feat -1)*15 +1):feat *15) = [

tempDataFeat (: ,1:7),tempDataFeat (: ,9:16)];

elseif feat < 10

subFeat = feat - 5;

tempSubFeat (: ,1:15) = [tempDataFeat (:,subFeat),tempDataFeat (:,subFeat +4),

tempDataFeat (:,subFeat +(2*4)),tempDataFeat (:,subFeat +(3*4)),tempDataFeat (:,

subFeat +(4*4)),tempDataFeat (:,subFeat +(5*4)),tempDataFeat (:,subFeat +(6*4)),

tempDataFeat (:,subFeat +(8*4)),tempDataFeat (:,subFeat +(9*4)),tempDataFeat (:,

subFeat +(10*4)),tempDataFeat (:,subFeat +(11*4)),tempDataFeat (:,subFeat

+(12*4)),tempDataFeat (:,subFeat +(13*4)),tempDataFeat (:,subFeat +(14*4)),

tempDataFeat (:,subFeat +(15*4))];

% put in zeros for S7 M9, S9 M7 (unreliable data because of disconnecting

sensor)

if subNum == 7

tempSubFeat (:,8)=0; % data muscle 8 was already excluded

elseif subNum == 9

tempSubFeat (:,7)=0;

end

featuresAll (((subNum -1)*38 +1):subNum *38,((feat -1)*15 +1):feat *15) =

tempSubFeat;

else

% put in zeros for S7 M9, S9 M7 (unreliable data because of disconnecting

sensor)

if subNum == 7

tempDataFeat (:,9)=0;

elseif subNum == 9

tempDataFeat (:,7)=0;

end

featuresAll (((subNum -1)*38 +1):subNum *38,((feat -1)*15 +1):feat *15) = [

tempDataFeat (: ,1:7),tempDataFeat (: ,9:16)];

end

end

end
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%% get position labels and actual averaged velocity

clear pos_vel_all

for subNum = 1: numSubjects

pos_vel_all (((subNum -1)*38 +1):subNum *38,1) = trial_labels (:,8); %position 1, 2, 3

filenameSpeed = strcat('D:\ TaylorMasters2\Data\Processing\S',int2str(subNum),'\KUKA\

MeanSpeed.csv');

dataSpeed = csvread(filenameSpeed);

pos_vel_all (((subNum -1)*38 +1):subNum *38,2) = dataSpeed (1:38 ,4); %actual average hand

speed

pos_vel_all (((subNum -1)*38 +1):subNum *38,3) = trial_labels (:,7); %speed label

stationary , moving

pos_vel_all (((subNum -1)*38 +1):subNum *38,4) = trial_labels (:,4); %speed label

stationary , slow , fast

end

%% setup desired predictor subset

muscles_feats_factors = zeros (15 ,15);

% fill in matrix with desired feature/muscle combinations for predictor

% subset

% 1 = include , 2 = exclude

% row 12 indicates include position , row 13 indicates include average speed

%% continue setting up predictor subset

% column is trial set , rows are trials during data collection

% replace 0 with 1 if want that data trial in the set of trials included

% for predictors

% column 2: flexion/extension

% column 3: ADL 1

% column 4: ADL 2

% column 5: felxion/extension , exclude stationary

% column 6: all trials

% column 7: only P1

% column 8: ADL 1 and ADL 2

trials = [

1,1,0,0,0,1,1,0

2,1,0,0,0,1,1,0



A.2 MATLAB 165

3,1,0,0,0,1,1,0

4,0,0,0,0,1,0,0

5,0,0,0,0,1,0,0

6,0,0,0,0,1,0,0

7,1,0,0,0,1,0,0

8,1,0,0,0,1,0,0

9,1,0,0,0,1,0,0

10,1,0,0,0,1,0,0

11,1,0,0,0,1,0,0

12,1,0,0,0,1,0,0

13,1,0,0,1,1,1,0

14,1,0,0,1,1,1,0

15,1,0,0,1,1,1,0

16,1,0,0,1,1,1,0

17,1,0,0,1,1,1,0

18,1,0,0,1,1,1,0

19,1,0,0,1,1,0,0

20,1,0,0,1,1,0,0

21,1,0,0,1,1,0,0

22,1,0,0,1,1,0,0

23,1,0,0,1,1,0,0

24,1,0,0,1,1,0,0

25,1,0,0,1,1,0,0

26,1,0,0,1,1,0,0

27,1,0,0,1,1,0,0

28,1,0,0,1,1,0,0

29,1,0,0,1,1,0,0

30,1,0,0,1,1,0,0

31,0,1,0,0,1,0,1

32,0,1,0,0,1,0,1

33,0,1,0,0,1,0,1

34,0,1,0,0,1,0,1

35,0,0,1,0,1,0,1

36,0,0,1,0,1,0,1

37,0,0,1,0,1,0,1

38,0,0,1,0,1,0,1

];

%% get feature / muscle subset of predictors , position and velocity added here too

% from the matrix with all features gathered , get only desired

% feature/muscles combinations
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numMusc_per_feat = sum(muscles_feats_factors ,2);

clear predictors_v1

column = 1;

for feature = 1:11

for muscle = 1:15

if muscles_feats_factors(feature ,muscle) == 1

predictors_v1 (:,column) = featuresAll (:,(feature -1)*15 +muscle);

column = column +1;

end

end

end

if muscles_feats_factors (12,1) == 1

predictors_v1 (:,column) = pos_vel_all (:,1);

column = column +1;

end

if muscles_feats_factors (13,1) == 1

predictors_v1 (:,column) = pos_vel_all (:,2);

column = column +1;

end

if muscles_feats_factors (14,1) == 1

predictors_v1 (:,column) = pos_vel_all (:,3);

column = column +1;

end

if muscles_feats_factors (15,1) == 1

predictors_v1 (:,column) = pos_vel_all (:,4);

end

%%

% specify model type , test number , test set , and labels and trials to

% include for the specified test number

model = 'LDA'; % 'LDA ' 'SVM '

test = 77;

set = 16;

labels_trials = [

2,2,1

3,2,2

4,2,3

5,3,4

6,3,5

5,4,6

6,4,7
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7,2,8

2,6,9

3,2,10

3,2,11

3,2,12

3,7,13

3,7,14

5,3,15

5,4,16

5,8,17

5,8,18

3,2,19

3,2,20

3,2,21

3,2,22

3,2,23

3,2,24

3,2,25

3,2,26

5,3,27

5,3,28

5,4,29

5,4,30

5,8,31

5,8,32

5,3,33

5,4,34

3,2,35

3,2,36

3,2,37

3,2,38

3,2,39

3,2,40

3,2,41

3,2,42

3,2,43

3,2,44

3,2,45

3,2,46

5,3,47

5,4,48
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5,8,49

9,2,50

9,2,51

9,2,52

9,2,53

3,2,54

3,2,55

3,2,56

3,2,57

3,2,58

5,3,59

5,3,60

5,3,61

5,8,62

6,8,63

6,8,64

5,4,65

5,4,66

5,4,67

5,8,68

5,8,69

5,8,70

3,2,71

3,2,72

3,2,73

3,2,74

3,2,75

3,2,76

3,2,77

];

%% get trial subset of predictors

% from matrix with desired feature/muscle combinations , get only desired

% trials

trialSet = labels_trials(test ,2); % column number in trials variable

clear predictors_v2

for sub = 1: numSubjects

trialCount = 1;

for trialCounter = 1:38

if trials(trialCounter ,trialSet) == 1
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predictors_v2 ((sub -1)*sum(trials(:,trialSet))+trialCount ,:)= predictors_v1 ((sub

-1) *38 + trialCounter ,:);

trialCount = trialCount +1;

end

end

end

%% get trial subset of trial labels

% trialSet = 3; % column of trials variable (trials to include)

labelSet = labels_trials(test ,1); % column of trial_labels variable (type of label to use)

clear labels_v1

for sub = 1: numSubjects

trialCount = 1;

for trialCounter = 1:38

if trials(trialCounter ,trialSet) == 1

labels_v1 ((sub -1)*sum(trials(:,trialSet))+trialCount ,:)=trial_labels(

trialCounter ,labelSet);

trialCount = trialCount +1;

end

end

end

%% classify v01

clear mdl ldaResubErr cp cvlda ldaCVErr

% classify with LDA

% mdl = fitcdiscr(predictors_v2 ,labels_v1);

mdl = fitcecoc(predictors_v2 ,labels_v1);

ldaResubErr = resubLoss(mdl);

cplda = cvpartition(labels_v1 ,'KFold ' ,10);

cvlda = crossval(mdl ,'CVPartition ',cp);

ldaCVErr = kfoldLoss(cvlda);

%% classify v02

clear predictors_full labels_full train_predictors train_labels test_predictors test_labels

labels_mdl

clear Mdl

matching(1,test) = 0;

for sub = 1: numSubjects
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sub

trials_per_sub = sum(trials(:,trialSet));

predictors_full = predictors_v2;

labels_full = labels_v1;

train_predictors = predictors_full;

train_predictors ((sub -1)*trials_per_sub +1: sub*trials_per_sub ,:) =[];

train_labels = labels_v1;

train_labels ((sub -1)*trials_per_sub +1: sub*trials_per_sub ,:) =[];

test_predictors = predictors_full ((sub -1)*trials_per_sub +1:sub*trials_per_sub ,:);

test_labels = labels_full ((sub -1)*trials_per_sub +1: sub*trials_per_sub ,1);

switch model

case 'LDA'

Mdl = fitcdiscr(train_predictors ,train_labels);

case 'SVM'

Mdl = fitcecoc(train_predictors ,train_labels);

end

labels_mdl (:,sub) = predict(Mdl ,test_predictors);

labels_result(sub ,test) = sum(eq(labels_mdl (:,sub), test_labels));

matching(1,test) = matching(1,test) + labels_result(sub ,test);

A(sub ,test) = labels_result(sub ,test)/trials_per_sub;

cp = cvpartition(train_labels ,'KFold ' ,10);

cvmdl = crossval(Mdl ,'CVPartition ',cp);

CVErr(sub ,test) = kfoldLoss(cvmdl);

a_cv(sub ,test) = 1 - CVErr(sub ,test);

end

labels_mdl (:,sub +1) = test_labels;

Accuracy(test) = (matching(1,test)/size(predictors_full ,1))*100;

filename_01 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\T',int2str(test),'.csv');

csvwrite(filename_01 ,labels_mdl);

%% save

filename_02 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\labels_result.csv');
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csvwrite(filename_02 ,labels_result);

filename_03 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\matching.csv');

csvwrite(filename_03 ,matching);

filename_04 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\A.csv');

csvwrite(filename_04 ,A);

filename_05 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\a_cv.csv');

csvwrite(filename_05 ,a_cv);

filename_06 = strcat('C:\Users\Taylor\Documents\Taylor\Masters1\classification\set',int2str

(set),'\',model ,'\Accuracy.csv');

csvwrite(filename_06 ,Accuracy);
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B.2 Letter of Information/Consent



 
 

Please Initial:_________ 
Version 2 (03-08-2017)  Page 1 of 5 
 

Letter of Information 

Title: Dynamic Calibration of EMG Signals 

Principal Investigator: Dr. Ana Luisa Trejos 

 

 

You are being invited to participate in a research study directed by Dr. Ana Luisa Trejos to increase our 

understanding of factors affecting electromyography (EMG) signals during daily arm movements. At this 

initial visit, one of the collaborators working on this project will read through this consent form with 

you, describe the procedure in detail and answer any questions you may have. This study is being 

conducted by the following researchers: 

Dr. Ana Luisa Trejos, Ph.D. (Principal Investigator) 

Assistant Professor, Department of Electrical and Computer Engineering 

The University of Western Ontario, London, Ontario, N6A 5B9 

Associate Scientist, Canadian Surgical Technologies & Advanced Robotics (CSTAR) 

Lawson Health Research Institute, 339 Windermere Road, London, Ontario, N6A 5A5 

email: analuisa.trejos@lhsc.on.ca, atrejos@uwo.ca 

Tel: (519) 685-8500 Ext. 32529 or (519) 661-2111 Ext. 89281 

 

Shrikant Chinchalkar, (Co-Investigator) 

Therapist, Schulich School of Medicine and Dentistry 

Roth-McFarlane Hand and Upper Limb Centre 

St. Joseph’s Hospital, 268 Grosvenor Street, London, Ontario, N6H 4V2 

email: schinchalkar@hotmail.com 

Tel: (519) 646-6100 Ext. 64944 

 

S. Jayne Garland, Ph.D. (Co-Investigator) 

Dean, Faculty of Health Sciences 

Professor, School of Physical Therapy 

The University of Western Ontario, London, Ontario, N6A 5B9 

email: jgarland@uwo.ca 

Tel: (519) 661-2111 Ext. 84239 

 

Taylor Stanbury, B.E.Sc. (Coordinator) 

Graduate Student, Biomedical Engineering Program 

The University of Western Ontario, London, Ontario, N6A 5B9 

Spencer Engineering Building, Room 2038 

email: tstanbur@uwo.ca 

Tel: (519) 661-2111 Ext. 84485 
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Please Initial:_________ 
Version 2 (03-08-2017)  Page 2 of 5 
 

Details of the Study 

The overall goal of this study is to collect muscle activation data during arm motions to gain a better 

understanding of factors affecting the muscle activation measured by surface electromyography (EMG). 

This data will be used to observe muscle activation patterns and detect participants’ arm motion based 

on muscle activations. This data will be used to further develop a wearable arm brace to assist during 

arm movements. 

 

The experiments will be conducted at the Wearable Biomechatronics Laboratory in the Spencer 

Engineering Building, after the consent form is signed by you and the study investigator or coordinator. 

The research coordinator will fill out a Trial Form. You will be asked questions (age, hand dominance, 

weight, height, level of activity) and the coordinator will measure sections of your dominant arm, waist, 

and hip. 

 

Activity of arm muscles will be recorded by attaching small sensors on up to 16 muscle groups, located 

around your shoulder, arm and forearm. The skin where the electrodes will be placed will be cleaned 

with alcohol, the alcohol will evaporate and the sensors will be attached with a sticky tape. The sensors 

are not invasive and will not obstruct normal movement. Arm movements will be recorded by an optical 

sensor.  Video of the session will also be recorded. The video recording will not include the face of the 

participant, and will not be linked to any personal identifiable information.  

 

You will be asked to perform all or a subset of 3 trial sets (isometric, single motion, activities of daily 

living, as described below). While performing motions, a safe robot, i.e., one that is safe to interact with 

in all circumstances, will be applying resistive or assistive forces to your hand. These forces are 

comparable to holding 0 pounds, 5 pounds, or 10 pounds. Prior to the motion trials, you will be asked to 

perform maximum muscle contractions of select muscles of interest. 

 

Isometric 

With your upper arm in each of 5 different orientations, you will be asked to hold your arm still with 

your elbow bent at 5 different angles in your normal range of motion. Breaks will be given between 

contractions. The robot arm will apply external forces equivalent to holding 0 pounds, 5 pounds, and 10 

pounds. You will perform 5 repetitions at 5 different angles with your arm in 5 different orientations 

with 3 different force levels. 

 

Single Motion 

You will be asked to perform flexion/extension (bending/straightening) motions with your elbow. While 

holding on to the end of the robot arm, you will bend and straighten your arm through your full range of 

motion. The robot will resist/assist movement equivalent to you holding 0 pounds, 5 pounds, and 10 

pounds. You will watch a timer to guide you while performing the motions at a very slow speed and at a 

quicker speed. You will perform 5 repetitions with 3 different forces at 2 different speeds with your arm 

in 5 different orientations. 
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Activities of Daily Living 

You will be asked to perform up to 5 different activities of daily living. Activities of daily living will 

include: simulating eating (hand to mouth); hand to back pocket; simulating answering telephone (hand 

to ear); simulating opening and closing a door; and reach above shoulder level in front of body (lifting 

and extending arm at 45° above horizontal). You will complete the tasks while holding on to the end of 

the robot arm. The robot will resist/assist movement equivalent to you holding 0 pounds, 5 pounds, and 

10 pounds. You will watch a timer to guide you while performing the motions at a very slow speed and 

at a quicker speed. You will perform 5 repetitions with 3 different forces at 2 different speeds. 

 

Risks 

There is the potential for temporary muscle discomfort due to the repetitive tasks being performed. You 

will be asked to perform motions within your normal range of motion. Slight skin irritation could occur 

temporarily at the sites of sticky tape attaching EMG sensors to the skin if the skin is very sensitive. 

There is a risk for harm from the robot. Emergency safety stops are available for you and the 

investigator to press at any time. You will be holding on to the end of the robot and can let go during 

any trial if you become uncomfortable/concerned. The robot is only enabled to be moved with varying 

levels of stiffness during the trial time. The robot will not move when it senses resistance levels outside 

the expected range. The trials can be stopped immediately at any time if you wish. The loads for one 

trial can range from no load to loads comparable to the weight of two textbooks. There is a risk of 

privacy breach, the following confidentiality section outlines precautions taken to avoid this. 

NOTE: The participation in this study is voluntary. You may withdraw from the experiments at any time. 

Data cannot be withdrawn after completing the trials. 

Benefits: 

Although you may not benefit directly from this study, your participation may contribute to our 

knowledge of human mechanics and human muscle activation during daily activities, and how to 

incorporate this knowledge into the design of EMG-driven control systems for assistive devices. 

Confidentiality: 

All data and video recordings will be stored in a password protected computer (University of Western 

Ontario, Spencer Engineering Building). Identifiable information will not be linked to video recordings 

and faces of participants will not be visible in the recordings. Hard copies of any documents will be 

stored in locked cabinets in a locked office. The only documents containing your name will be the 

Consent Forms, which will not be linked to any of the recorded data. Consent Forms will be stored 

separately from other data in a locked cabinet in a locked office. Access to records and data is limited to 

authorized persons. Your anonymity will be protected at all times by using numeric codes when 

analyzing your experimental data. Data will be retained for 15 years (in accordance with Lawson policy), 

then destroyed. 

Representatives of the University of Western Ontario Health Sciences Research Ethics Board may 

require access to your study-related documents to oversee the ethical conduct of this study. 

B.2 Letter of Information/Consent 177



 
 

Please Initial:_________ 
Version 2 (03-08-2017)  Page 4 of 5 
 

Representatives of Lawson Quality Assurance Education Program may require access to your study-

related documents to ensure that proper laws and guidelines are being followed. 

Rights: 

You do not waive any legal right by consenting to this study. 

If you have any questions or concerns regarding participation in our study, please contact Dr. Ana Luisa 

Trejos at (519) 661-2111 Ext. 89281, email: atrejos@uwo.ca 

If you have any questions about the conduct of this study or your rights as a research subject you may 

contact The Office of Human Research Ethics (519) 661-3036, email: ethics@uwo.ca. A copy of this 

information package is yours to keep for your personal records. 
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CONSENT FORM 

Title of Research:  Dynamic Calibration of EMG Signals 

Principal Investigator: Dr. Ana Luisa Trejos 

Co-Investigators:  Shrikant Chinchalkar, Dr. S. Jayne Garland 

Collaborators:   Taylor Stanbury 

 

For the Participant: 

I have read and understand the above information describing this study. I have had the purposes, 

procedures and technical language of this study explained to me. I have been given sufficient time to 

consider the above information and to seek advice if I chose to do so. I have had the opportunity to ask 

questions which have been answered to my satisfaction. I am voluntarily signing this form. I will receive 

a copy of this consent form for my information. 

If at any time I have further questions, problems, or adverse events, I can contact Dr. Ana Luisa Trejos, 

the principal investigator of the project, at (519) 661-2111 Ext. 89281 or any of the investigators and 

collaborators on the project. 

If I have any questions about my rights as a research participant or the conduct of this study, I may 

contact The Office of Human Research Ethics (519) 661-3036, email: ethics@uwo.ca. 

 

By signing this consent form, I am indicating that I agree to participate in this study. 

 
 

    

Name of Participant 
(please print) 

 Signature of Participant  Date 

 
 
 
 

    

Name of Person Obtaining 
Informed Consent 

 Signature of Person Obtaining 
Informed Consent 

 Date 
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TRIAL FORM 

Title of Research:  Dynamic Calibration of EMG Signals 

Principal Investigator: Dr. Ana Luisa Trejos 

Co-Investigators:  Shrikant Chinchalkar, Dr. S. Jayne Garland 

Coordinator:  Taylor Stanbury 

To be entered by the Coordinator: 

If the participant is not comfortable answering any of these questions, they do not have to respond. 

Participant Information 

Subject code:   

Age:  years 

Dominant hand: R        L  

Gender: M       F       Other  

Weight:  kg 

Height:  cm 

Waist circumference:  cm 

Wrist circumference:  cm 

Hip circumference:  cm 

Forearm 
circumference: 

 cm 

Forearm length:  cm 

Upper arm length:  cm 

Environment Information 

Room temperature:  °C 

Time of day:  AM       PM 
 

Level of activity (sports, # of times / week exercising): _____________________________________ 

 

Notes on trial performance:  
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Muscle Feature Factor Significance L1 L2 L3 L1 L2 L3 SF 1-2 SF 1-3 SF 2-3

Position 0.038 0.018 0.020 0.015 0.003 0.003 0.003 0.242 0.063 0.010

Force < 0.001 0.009 0.034 0.011 0.001 0.006 0.002 0.005 0.001 0.004

Velocity 0.011 0.016 0.020 0.018 0.003 0.003 0.003 0.003 0.051 0.031

Position < 0.001 55.313 51.051 54.106 0.846 0.745 0.730 < 0.001 0.092 < 0.001

Force < 0.001 57.517 45.454 57.500 0.694 0.928 0.766 < 0.001 0.981 < 0.001

Velocity < 0.001 54.815 52.173 53.483 0.716 0.773 0.722 < 0.001 0.024 < 0.001

Position 0.059 2.928 3.087 2.483 0.467 0.457 0.515

Force < 0.001 1.494 5.140 1.864 0.238 0.802 0.435 < 0.001 0.187 < 0.001

Velocity 0.004 2.622 3.039 2.837 0.452 0.501 0.452 0.001 0.042 0.007

Position < 0.001 60.278 53.923 57.363 1.308 1.259 1.315 < 0.001 0.005 0.001

Force < 0.001 60.417 49.500 61.647 1.289 1.297 1.527 < 0.001 0.258 < 0.001

Velocity < 0.001 59.166 55.303 57.095 1.330 1.171 1.246 < 0.001 0.028 0.001

Position 0.030 0.025 0.027 0.021 0.004 0.004 0.004 0.194 0.050 0.008

Force < 0.001 0.012 0.046 0.014 0.002 0.008 0.003 < 0.001 0.255 < 0.001

Velocity 0.008 0.022 0.026 0.024 0.004 0.004 0.004 0.002 0.038 0.049

Position 0.309 2.357 2.367 2.369 0.011 0.016 0.013

Force 0.330 2.370 2.354 2.370 0.012 0.020 0.012

Velocity 0.252 2.364 2.361 2.369 0.013 0.014 0.013

Position 0.117 -2.418 -2.361 -2.420 0.037 0.052 0.037

Force < 0.001 -2.466 -2.261 -2.472 0.034 0.062 0.034 < 0.001 0.780 < 0.001

Velocity 0.022 -2.419 -2.369 -2.411 0.040 0.044 0.038 0.024 0.649 0.008

Position 0.006 1.315 1.214 1.306 0.038 0.050 0.034 0.008 0.695 0.001

Force < 0.001 1.380 1.074 1.382 0.032 0.060 0.034 < 0.001 0.911 < 0.001

Velocity 0.002 1.310 1.237 1.288 0.039 0.043 0.038 0.003 0.273 0.001

Position 0.001 -0.336 -0.291 -0.330 0.014 0.018 0.012 0.002 0.523 < 0.001

Force < 0.001 -0.363 -0.232 -0.361 0.012 0.020 0.013 < 0.001 0.808 < 0.001

Velocity < 0.001 -0.332 -0.302 -0.322 0.014 0.015 0.013 0.001 0.165 < 0.001

Position 0.002 106.402 98.110 100.639 2.681 3.144 3.023 0.001 0.005 0.213

Force 0.008 104.076 96.084 104.991 2.586 3.761 2.868 0.002 0.615 0.016

Velocity 0.029 103.544 99.865 101.742 2.891 2.769 2.771 0.012 0.179 0.050

Position 0.038 87.950 82.224 83.444 2.795 3.293 3.376 0.018 0.037 0.595

Force 0.577 85.229 82.302 86.086 2.768 4.075 3.094
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Velocity 0.272 85.519 83.344 84.755 3.042 2.970 2.955

Position < 0.001 0.019 0.029 0.018 0.002 0.004 0.003 0.001 0.726 < 0.001

Force < 0.001 0.013 0.043 0.010 0.002 0.006 0.002 < 0.001 0.006 < 0.001

Velocity 0.020 0.021 0.024 0.022 0.003 0.003 0.002 0.065 0.688 0.007

Position < 0.001 54.627 48.152 51.130 0.719 0.860 0.838 < 0.001 0.001 < 0.001

Force < 0.001 53.748 43.148 57.013 0.666 0.995 0.722 < 0.001 < 0.001 < 0.001

Velocity 0.001 52.379 50.123 51.407 0.821 0.632 0.678 0.003 0.110 < 0.001

Position < 0.001 2.748 4.261 2.820 0.300 0.516 0.376 < 0.001 0.682 < 0.001

Force < 0.001 2.016 6.056 1.757 0.217 0.721 0.249 < 0.001 0.039 < 0.001

Velocity 0.008 3.133 3.497 3.199 0.421 0.389 0.338 0.025 0.637 0.002

Position < 0.001 59.791 52.945 56.325 1.584 1.326 1.779 < 0.001 0.009 0.010

Force < 0.001 57.953 47.689 63.420 1.427 1.438 1.757 < 0.001 < 0.001 < 0.001

Velocity 0.006 57.890 54.785 56.386 1.507 1.360 1.520 0.004 0.082 0.004

Position < 0.001 0.025 0.039 0.025 0.003 0.005 0.003 0.001 0.724 < 0.001

Force < 0.001 0.018 0.058 0.014 0.002 0.007 0.002 < 0.001 0.007 < 0.001

Velocity 0.015 0.028 0.032 0.029 0.004 0.004 0.003 0.046 0.578 0.007

Position < 0.001 2.314 2.338 2.356 0.013 0.016 0.014 0.023 < 0.001 0.086

Force 0.029 2.344 2.305 2.359 0.013 0.022 0.010 0.007 0.131 0.012

Velocity 0.692 2.339 2.334 2.335 0.013 0.014 0.014

Position 0.018 -2.312 -2.251 -2.349 0.036 0.049 0.043 0.105 0.213 0.004

Force < 0.001 -2.355 -2.111 -2.446 0.036 0.065 0.032 < 0.001 0.003 < 0.001

Velocity 0.180 -2.324 -2.281 -2.307 0.041 0.041 0.040

Position 0.002 1.235 1.095 1.216 0.032 0.047 0.041 0.002 0.581 0.001

Force < 0.001 1.250 0.935 1.361 0.033 0.059 0.031 < 0.001 0.001 < 0.001

Velocity 0.061 1.206 1.151 1.188 0.040 0.036 0.036

Position < 0.001 -0.318 -0.251 -0.298 0.010 0.016 0.015 < 0.001 0.131 < 0.001

Force < 0.001 -0.317 -0.190 -0.360 0.012 0.019 0.011 < 0.001 0.001 < 0.001

Velocity 0.024 -0.298 -0.276 -0.292 0.014 0.011 0.012 0.046 0.466 0.006

Position 0.015 102.660 95.706 99.968 2.937 2.966 3.293 0.004 0.172 0.022

Force < 0.001 101.127 89.263 107.945 2.955 3.147 3.172 < 0.001 0.004 < 0.001

Velocity 0.058 101.108 97.647 99.579 2.989 2.845 3.011

Position 0.104 84.013 81.217 84.715 3.078 3.117 3.298

Force < 0.001 84.121 75.201 90.622 3.168 3.188 3.283 < 0.001 0.010 < 0.001

Velocity 0.196 84.465 82.008 83.472 3.110 2.966 3.112
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Position < 0.001 0.032 0.032 0.025 0.010 0.003 0.004 0.933 0.224 0.035

Force < 0.001 0.017 0.053 0.018 0.004 0.008 0.005 < 0.001 0.670 < 0.001

Velocity 0.090 0.026 0.030 0.033 0.004 0.005 0.008

Position < 0.001 53.693 48.719 52.772 1.336 0.874 0.948 < 0.001 0.192 < 0.001

Force < 0.001 55.814 42.041 57.328 1.034 1.138 1.153 < 0.001 0.045 < 0.001

Velocity < 0.001 53.195 50.197 51.792 0.966 1.063 1.115 0.002 0.073 < 0.001

Position 0.003 3.466 3.989 3.156 0.575 0.391 0.380 0.347 0.362 0.009

Force < 0.001 2.228 5.823 2.561 0.276 0.606 0.400 < 0.001 0.112 < 0.001

Velocity 0.107 3.261 3.614 3.736 0.361 0.376 0.515

Position < 0.001 56.584 48.945 55.707 2.226 1.960 2.244 < 0.001 0.323 < 0.001

Force < 0.001 56.804 41.092 63.340 2.179 1.440 2.887 < 0.001 < 0.001 < 0.001

Velocity < 0.001 56.138 51.462 53.637 2.054 2.080 2.245 < 0.001 0.028 < 0.001

Position < 0.001 0.041 0.041 0.032 0.012 0.004 0.006 0.998 0.235 0.028

Force < 0.001 0.023 0.068 0.024 0.005 0.009 0.007 < 0.001 0.658 < 0.001

Velocity 0.106 0.033 0.039 0.042 0.005 0.006 0.010

Position < 0.001 2.260 2.267 2.298 0.023 0.027 0.024 0.642 < 0.001 0.014

Force < 0.001 2.297 2.192 2.336 0.024 0.023 0.027 < 0.001 0.002 < 0.001

Velocity 0.199 2.280 2.270 2.275 0.023 0.024 0.025

Position < 0.001 -2.178 -2.097 -2.242 0.057 0.064 0.060 0.042 0.007 < 0.001

Force < 0.001 -2.278 -1.822 -2.418 0.062 0.055 0.070 < 0.001 < 0.001 < 0.001

Velocity < 0.001 -2.202 -2.138 -2.178 0.057 0.060 0.062 0.029 0.400 < 0.001

Position < 0.001 1.140 1.003 1.165 0.044 0.049 0.048 < 0.001 0.236 < 0.001

Force < 0.001 1.226 0.719 1.364 0.051 0.043 0.056 < 0.001 < 0.001 < 0.001

Velocity < 0.001 1.133 1.062 1.113 0.047 0.045 0.046 0.009 0.395 < 0.001

Position < 0.001 -0.296 -0.234 -0.294 0.012 0.015 0.014 < 0.001 0.862 < 0.001

Force < 0.001 -0.317 -0.137 -0.370 0.016 0.013 0.017 < 0.001 < 0.001 < 0.001

Velocity < 0.001 -0.286 -0.259 -0.279 0.016 0.012 0.013 0.009 0.486 < 0.001

Position < 0.001 94.828 85.630 95.085 3.792 3.789 4.147 < 0.001 0.861 < 0.001

Force < 0.001 94.799 73.185 107.559 3.933 2.890 5.155 < 0.001 < 0.001 < 0.001

Velocity < 0.001 95.555 88.414 91.574 3.911 3.732 4.003 0.001 0.040 < 0.001

Position 0.001 76.521 70.567 78.815 3.672 3.662 4.006 0.001 0.102 < 0.001

Force < 0.001 75.959 58.849 91.096 3.839 2.748 5.125 < 0.001 < 0.001 < 0.001

Velocity < 0.001 78.584 72.225 75.095 3.904 3.560 3.842 0.002 0.063 < 0.001

Position 0.268 0.025 0.029 0.037 0.005 0.007 0.014
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Force < 0.001 0.024 0.038 0.028 0.008 0.008 0.010 < 0.001 0.191 0.005

Velocity 0.055 0.019 0.033 0.039 0.005 0.009 0.012

Position 0.103 58.362 57.548 57.065 1.334 1.351 1.377

Force < 0.001 60.951 51.808 60.216 1.328 1.523 1.356 < 0.001 0.066 < 0.001

Velocity 0.004 60.380 56.173 56.421 1.538 1.260 1.471 0.001 0.001 0.622

Position 0.565 3.411 3.611 4.137 0.605 0.745 1.227

Force < 0.001 3.017 4.909 3.234 0.866 0.810 0.923 < 0.001 0.056 < 0.001

Velocity 0.015 2.756 4.064 4.339 0.529 0.923 1.120 0.006 0.019 0.284

Position 0.012 60.741 58.460 59.092 2.472 2.418 2.750 0.003 0.133 0.549

Force < 0.001 63.667 50.698 63.928 2.693 1.993 3.226 < 0.001 0.817 < 0.001

Velocity 0.001 64.812 56.365 57.117 2.636 2.567 2.757 < 0.001 < 0.001 0.096

Position 0.192 0.032 0.038 0.048 0.007 0.009 0.017

Force < 0.001 0.031 0.050 0.037 0.010 0.010 0.013 < 0.001 0.162 0.003

Velocity 0.044 0.024 0.043 0.051 0.006 0.011 0.016 0.012 0.022 0.171

Position 0.608 2.296 2.291 2.294 0.030 0.029 0.032

Force 0.548 2.294 2.287 2.299 0.031 0.030 0.032

Velocity 0.116 2.299 2.294 2.288 0.033 0.031 0.031

Position 0.151 -2.352 -2.320 -2.327 0.069 0.068 0.076

Force 0.003 -2.387 -2.220 -2.392 0.072 0.068 0.079 0.000 0.767 0.001

Velocity 0.201 -2.393 -2.305 -2.301 0.075 0.073 0.075

Position 0.115 1.339 1.302 1.311 0.051 0.050 0.055

Force < 0.001 1.400 1.155 1.397 0.053 0.054 0.061 < 0.001 0.891 < 0.001

Velocity 0.050 1.392 1.277 1.282 0.053 0.055 0.057

Position 0.065 -0.366 -0.350 -0.356 0.016 0.015 0.016

Force < 0.001 -0.394 -0.287 -0.391 0.015 0.018 0.018 < 0.001 0.719 < 0.001

Velocity 0.003 -0.389 -0.339 -0.344 0.015 0.017 0.017 < 0.001 0.001 0.217

Position 0.005 102.945 98.021 99.251 4.470 4.387 4.948 0.001 0.121 0.550

Force 0.001 105.150 89.607 105.460 4.414 4.544 5.681 < 0.001 0.898 0.001

Velocity 0.002 109.195 95.065 95.957 4.437 4.836 4.971 < 0.001 0.001 0.159

Position 0.001 81.388 76.750 79.340 4.657 4.596 4.780 < 0.001 0.185 0.101

Force 0.037 81.608 71.432 84.438 4.524 4.904 5.696 0.013 0.166 0.010

Velocity 0.002 86.338 75.240 75.901 4.492 4.863 4.955 < 0.001 < 0.001 0.151

Position 0.020 0.016 0.014 0.017 0.002 0.002 0.002 0.046 0.419 0.007

Force < 0.001 0.009 0.009 0.028 0.001 0.001 0.003 0.683 0.000 0.000
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Velocity < 0.001 0.014 0.015 0.017 0.001 0.002 0.002 0.102 0.004 < 0.001

Position < 0.001 61.730 58.667 58.846 1.011 1.178 1.037 < 0.001 < 0.001 0.673

Force < 0.001 63.291 59.515 56.438 0.944 1.255 1.108 < 0.001 < 0.001 0.002

Velocity 0.001 60.630 59.182 59.432 1.028 1.091 1.014 < 0.001 0.002 0.376

Position < 0.001 3.168 2.489 3.418 0.404 0.291 0.349 0.003 0.217 < 0.001

Force < 0.001 1.957 1.593 5.525 0.242 0.203 0.612 0.002 < 0.001 < 0.001

Velocity < 0.001 2.976 2.876 3.222 0.303 0.346 0.374 0.478 0.164 < 0.001

Position < 0.001 65.146 60.721 62.639 1.519 1.468 1.756 < 0.001 0.037 0.021

Force < 0.001 69.029 58.167 61.310 1.391 1.495 1.990 < 0.001 < 0.001 0.049

Velocity < 0.001 65.566 60.756 62.184 1.512 1.390 1.683 < 0.001 < 0.001 0.003

Position 0.018 0.021 0.018 0.022 0.003 0.002 0.002 0.041 0.438 0.006

Force < 0.001 0.012 0.012 0.038 0.001 0.002 0.004 0.844 < 0.001 < 0.001

Velocity < 0.001 0.019 0.021 0.022 0.002 0.003 0.003 0.170 0.006 < 0.001

Position 0.006 2.337 2.347 2.363 0.017 0.020 0.021 0.073 0.002 0.004

Force < 0.001 2.354 2.324 2.368 0.019 0.019 0.020 < 0.001 0.097 < 0.001

Velocity 0.017 2.357 2.343 2.347 0.019 0.019 0.020 0.005 0.061 0.266

Position 0.008 -2.496 -2.468 -2.522 0.036 0.040 0.045 0.123 0.239 0.002

Force < 0.001 -2.571 -2.411 -2.505 0.037 0.039 0.049 < 0.001 0.018 0.008

Velocity < 0.001 -2.544 -2.460 -2.483 0.039 0.037 0.043 < 0.001 < 0.001 0.028

Position 0.005 1.486 1.427 1.476 0.029 0.031 0.036 0.004 0.655 0.011

Force < 0.001 1.564 1.389 1.436 0.024 0.032 0.044 < 0.001 < 0.001 0.201

Velocity < 0.001 1.518 1.423 1.448 0.031 0.028 0.033 < 0.001 < 0.001 0.026

Position 0.001 -0.421 -0.390 -0.408 0.011 0.012 0.014 < 0.001 0.189 0.029

Force < 0.001 -0.450 -0.378 -0.391 0.009 0.012 0.017 < 0.001 < 0.001 0.367

Velocity < 0.001 -0.431 -0.389 -0.400 0.013 0.010 0.013 < 0.001 < 0.001 0.018

Position 0.001 111.234 104.768 110.548 3.718 3.753 4.480 0.004 0.769 0.002

Force < 0.001 118.766 96.747 111.037 3.762 3.496 4.913 < 0.001 0.004 < 0.001

Velocity < 0.001 115.743 103.441 107.366 4.158 3.491 4.071 < 0.001 < 0.001 < 0.001

Position 0.001 88.452 83.819 90.780 4.102 4.101 4.695 0.046 0.318 < 0.001

Force < 0.001 96.003 74.334 92.715 4.307 3.650 5.119 < 0.001 0.187 < 0.001

Velocity < 0.001 94.583 82.124 86.345 4.626 3.797 4.272 < 0.001 < 0.001 < 0.001

Position < 0.001 0.017 0.018 0.028 0.003 0.002 0.003 0.354 < 0.001 < 0.001

Force < 0.001 0.012 0.014 0.037 0.001 0.002 0.005 0.378 < 0.001 < 0.001

Velocity 0.002 0.019 0.021 0.022 0.003 0.003 0.003 0.074 0.001 0.039
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Position < 0.001 58.702 53.973 53.461 0.730 0.613 0.680 < 0.001 < 0.001 0.168

Force < 0.001 58.286 53.257 54.594 0.606 0.671 0.916 < 0.001 < 0.001 0.145

Velocity < 0.001 56.882 54.178 55.076 0.522 0.715 0.717 < 0.001 < 0.001 < 0.001

Position < 0.001 3.709 3.696 5.907 0.583 0.474 0.728 0.969 < 0.001 < 0.001

Force < 0.001 2.777 2.303 8.231 0.369 0.321 1.059 0.029 < 0.001 < 0.001

Velocity 0.001 4.237 4.338 4.736 0.550 0.580 0.595 0.610 0.022 < 0.001

Position < 0.001 65.095 60.139 61.749 1.183 1.098 1.094 < 0.001 < 0.001 0.010

Force < 0.001 66.529 54.654 65.800 1.057 1.076 1.590 < 0.001 0.371 < 0.001

Velocity < 0.001 64.758 59.972 62.253 1.075 1.053 1.186 < 0.001 0.003 < 0.001

Position < 0.001 0.023 0.025 0.038 0.004 0.003 0.005 0.326 < 0.001 < 0.001

Force < 0.001 0.017 0.018 0.051 0.002 0.003 0.006 0.646 < 0.001 < 0.001

Velocity 0.001 0.027 0.029 0.031 0.004 0.004 0.004 0.074 0.001 0.028

Position < 0.001 2.365 2.403 2.405 0.006 0.006 0.007 < 0.001 < 0.001 0.535

Force < 0.001 2.397 2.355 2.420 0.007 0.009 0.007 < 0.001 0.001 < 0.001

Velocity 0.046 2.382 2.394 2.396 0.007 0.006 0.007 0.020 0.019 0.540

Position 0.061 -2.538 -2.551 -2.568 0.015 0.017 0.016

Force < 0.001 -2.615 -2.393 -2.649 0.015 0.029 0.020 < 0.001 0.082 < 0.001

Velocity 0.001 -2.573 -2.524 -2.559 0.021 0.015 0.013 0.012 0.440 < 0.001

Position 0.080 1.490 1.450 1.465 0.018 0.020 0.020

Force < 0.001 1.552 1.300 1.553 0.017 0.030 0.027 < 0.001 0.976 < 0.001

Velocity < 0.001 1.516 1.423 1.467 0.024 0.019 0.017 < 0.001 0.036 < 0.001

Position 0.004 -0.421 -0.394 -0.401 0.008 0.010 0.009 0.002 0.003 0.262

Force < 0.001 -0.441 -0.337 -0.438 0.008 0.012 0.013 < 0.001 0.725 < 0.001

Velocity < 0.001 -0.431 -0.383 -0.402 0.010 0.009 0.009 < 0.001 0.006 < 0.001

Position 0.013 117.049 112.330 116.583 2.333 2.338 2.279 0.009 0.772 0.008

Force < 0.001 121.438 97.064 127.459 2.363 2.257 3.162 < 0.001 0.005 < 0.001

Velocity < 0.001 119.868 110.551 115.542 2.676 1.877 2.201 < 0.001 0.018 < 0.001

Position 0.009 97.748 96.431 101.399 2.371 2.362 2.225 0.459 0.055 0.002

Force < 0.001 103.648 79.181 112.749 2.527 2.285 3.086 < 0.001 < 0.001 < 0.001

Velocity < 0.001 102.267 94.206 99.105 2.755 1.805 2.208 < 0.001 0.105 < 0.001

Position < 0.001 0.019 0.017 0.024 0.003 0.002 0.003 0.074 0.002 < 0.001

Force < 0.001 0.013 0.011 0.037 0.002 0.001 0.005 0.091 < 0.001 < 0.001

Velocity < 0.001 0.018 0.020 0.023 0.003 0.003 0.003 0.027 < 0.001 < 0.001

Position < 0.001 58.519 57.723 55.933 0.951 0.801 0.796 0.050 < 0.001 < 0.001
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Force < 0.001 60.991 57.115 54.069 0.827 1.297 0.891 < 0.001 < 0.001 0.038

Velocity < 0.001 59.427 56.277 56.471 0.800 0.938 0.881 < 0.001 < 0.001 0.606

Position < 0.001 4.178 3.648 5.151 0.695 0.593 0.748 0.093 0.004 < 0.001

Force < 0.001 3.086 1.963 7.928 0.607 0.271 1.158 0.008 < 0.001 < 0.001

Velocity < 0.001 4.067 4.162 4.748 0.683 0.641 0.697 0.695 0.017 < 0.001

Position 0.232 63.794 63.904 62.726 1.402 1.441 1.535

Force < 0.001 70.405 55.850 64.169 1.331 1.711 1.854 < 0.001 < 0.001 < 0.001

Velocity < 0.001 68.109 60.244 62.072 1.281 1.438 1.679 < 0.001 < 0.001 0.005

Position < 0.001 0.027 0.023 0.034 0.004 0.004 0.004 0.095 0.001 < 0.001

Force < 0.001 0.018 0.014 0.051 0.003 0.002 0.007 0.058 < 0.001 < 0.001

Velocity < 0.001 0.025 0.028 0.031 0.004 0.004 0.004 0.064 0.001 < 0.001

Position < 0.001 2.362 2.390 2.395 0.016 0.013 0.012 < 0.001 < 0.001 0.335

Force < 0.001 2.393 2.334 2.420 0.015 0.018 0.011 < 0.001 0.003 < 0.001

Velocity 0.048 2.388 2.375 2.383 0.011 0.014 0.016 0.075 0.592 0.091

Position 0.013 -2.521 -2.579 -2.571 0.037 0.033 0.034 0.006 0.010 0.682

Force < 0.001 -2.648 -2.409 -2.614 0.031 0.047 0.037 < 0.001 0.110 < 0.001

Velocity < 0.001 -2.619 -2.510 -2.542 0.027 0.036 0.041 < 0.001 0.002 0.038

Position 0.237 1.474 1.507 1.487 0.031 0.031 0.033

Force < 0.001 1.602 1.367 1.498 0.023 0.043 0.040 < 0.001 < 0.001 0.008

Velocity < 0.001 1.567 1.436 1.465 0.024 0.033 0.037 < 0.001 < 0.001 0.061

Position 0.566 -0.411 -0.417 -0.410 0.012 0.013 0.013

Force < 0.001 -0.461 -0.369 -0.408 0.010 0.016 0.016 < 0.001 < 0.001 0.039

Velocity < 0.001 -0.448 -0.389 -0.400 0.010 0.013 0.014 < 0.001 < 0.001 0.063

Position 0.184 114.101 117.627 116.610 3.330 3.577 3.615

Force < 0.001 128.026 98.447 121.866 3.422 3.607 4.208 < 0.001 0.009 < 0.001

Velocity < 0.001 125.271 109.210 113.857 3.300 3.249 3.834 < 0.001 < 0.001 < 0.001

Position 0.025 95.132 99.597 100.086 3.711 4.053 3.933 0.043 0.008 0.807

Force < 0.001 109.200 77.983 107.632 4.125 3.850 4.310 < 0.001 0.478 < 0.001

Velocity < 0.001 107.485 90.934 96.397 3.923 3.517 4.096 < 0.001 < 0.001 < 0.001

Position < 0.001 0.022 0.050 0.043 0.003 0.007 0.006 < 0.001 < 0.001 0.201

Force < 0.001 0.028 0.050 0.037 0.004 0.006 0.005 < 0.001 < 0.001 0.001

Velocity 0.022 0.036 0.041 0.037 0.004 0.005 0.005 0.007 0.243 0.013

Position 0.001 56.938 54.743 53.644 0.979 1.018 1.086 0.051 < 0.001 0.195

Force < 0.001 57.388 53.410 54.526 0.869 1.092 0.832 < 0.001 < 0.001 0.062
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Velocity 0.001 55.523 54.532 55.270 0.834 0.937 0.955 0.009 0.466 0.001

Position < 0.001 3.789 9.799 7.698 0.456 1.295 1.183 < 0.001 < 0.001 0.025

Force < 0.001 5.561 9.488 6.238 0.767 1.232 0.839 < 0.001 0.015 < 0.001

Velocity 0.026 6.686 7.622 6.979 0.819 1.078 0.877 0.007 0.177 0.019

Position < 0.001 58.329 64.219 59.080 1.206 1.475 1.218 0.002 0.453 < 0.001

Force < 0.001 63.994 60.826 56.809 1.058 1.266 1.131 < 0.001 < 0.001 < 0.001

Velocity 0.311 60.917 60.190 60.522 1.122 1.062 1.136

Position < 0.001 0.029 0.065 0.056 0.003 0.009 0.008 < 0.001 < 0.001 0.185

Force < 0.001 0.037 0.065 0.048 0.005 0.008 0.006 < 0.001 < 0.001 0.002

Velocity 0.028 0.047 0.054 0.049 0.005 0.007 0.006 0.008 0.193 0.017

Position < 0.001 2.346 2.390 2.385 0.007 0.010 0.013 < 0.001 < 0.001 0.521

Force < 0.001 2.377 2.386 2.359 0.008 0.012 0.009 0.071 < 0.001 < 0.001

Velocity 0.221 2.376 2.374 2.371 0.010 0.010 0.009

Position 0.020 -2.401 -2.504 -2.457 0.028 0.040 0.045 0.005 0.076 0.074

Force < 0.001 -2.503 -2.465 -2.394 0.031 0.042 0.033 0.024 < 0.001 0.001

Velocity 0.132 -2.468 -2.446 -2.448 0.034 0.035 0.035

Position 0.176 1.332 1.390 1.334 0.034 0.043 0.046

Force < 0.001 1.420 1.342 1.294 0.034 0.046 0.034 < 0.001 < 0.001 0.043

Velocity 0.085 1.369 1.339 1.347 0.036 0.038 0.038

Position 0.063 -0.348 -0.365 -0.338 0.014 0.016 0.016

Force < 0.001 -0.378 -0.344 -0.329 0.013 0.017 0.012 < 0.001 < 0.001 0.108

Velocity 0.095 -0.357 -0.345 -0.349 0.013 0.014 0.014

Position < 0.001 95.402 111.587 102.041 2.219 2.893 2.363 < 0.001 0.003 < 0.001

Force < 0.001 107.623 105.967 95.439 2.089 2.509 1.967 0.085 < 0.001 < 0.001

Velocity 0.738 103.412 102.789 102.828 2.195 2.019 2.120

Position < 0.001 74.008 96.197 84.958 2.288 3.050 2.705 < 0.001 < 0.001 < 0.001

Force < 0.001 88.433 89.984 76.746 2.368 2.698 2.068 0.125 < 0.001 < 0.001

Velocity 0.579 84.822 85.439 84.903 2.458 2.158 2.248

Position < 0.001 0.011 0.063 0.058 0.002 0.005 0.005 < 0.001 < 0.001 0.138

Force < 0.001 0.040 0.063 0.030 0.003 0.006 0.003 < 0.001 < 0.001 < 0.001

Velocity 0.026 0.046 0.044 0.042 0.004 0.004 0.003 0.087 0.006 0.142

Position < 0.001 61.771 48.713 45.472 0.925 0.727 0.713 < 0.001 < 0.001 < 0.001

Force < 0.001 53.428 48.106 54.422 0.568 0.803 0.640 < 0.001 0.026 < 0.001

Velocity 0.127 52.198 51.654 52.105 0.618 0.656 0.650
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Position < 0.001 2.083 11.486 10.035 0.248 0.942 0.945 < 0.001 < 0.001 0.054

Force < 0.001 7.302 11.144 5.157 0.580 0.987 0.476 < 0.001 < 0.001 < 0.001

Velocity 0.003 8.300 7.827 7.477 0.647 0.664 0.595 0.035 0.001 0.035

Position < 0.001 65.467 55.988 53.606 1.550 1.383 1.155 < 0.001 < 0.001 0.019

Force < 0.001 61.337 55.532 58.193 1.194 1.190 1.201 < 0.001 < 0.001 0.003

Velocity 0.004 59.472 57.885 57.704 1.163 1.098 1.255 0.001 0.005 0.708

Position < 0.001 0.015 0.085 0.077 0.002 0.007 0.007 < 0.001 < 0.001 0.118

Force < 0.001 0.053 0.084 0.041 0.004 0.007 0.004 < 0.001 < 0.001 < 0.001

Velocity 0.021 0.062 0.059 0.057 0.005 0.005 0.005 0.059 0.005 0.157

Position < 0.001 2.335 2.398 2.385 0.007 0.012 0.013 < 0.001 < 0.001 0.114

Force 0.004 2.368 2.388 2.361 0.009 0.012 0.009 0.001 0.269 0.006

Velocity 0.266 2.378 2.371 2.368 0.011 0.009 0.010

Position 0.013 -2.456 -2.424 -2.350 0.023 0.042 0.044 0.351 0.008 0.010

Force 0.006 -2.429 -2.386 -2.415 0.032 0.041 0.030 0.008 0.417 0.301

Velocity 0.038 -2.431 -2.398 -2.401 0.035 0.032 0.033 0.010 0.062 0.841

Position < 0.001 1.426 1.250 1.159 0.027 0.042 0.044 < 0.001 < 0.001 0.003

Force < 0.001 1.313 1.204 1.318 0.032 0.041 0.030 < 0.001 0.797 0.001

Velocity 0.020 1.301 1.261 1.273 0.034 0.032 0.033 0.005 0.075 0.222

Position < 0.001 -0.388 -0.298 -0.264 0.011 0.014 0.015 < 0.001 < 0.001 0.003

Force < 0.001 -0.334 -0.278 -0.339 0.012 0.015 0.011 < 0.001 0.406 < 0.001

Velocity 0.006 -0.326 -0.309 -0.316 0.012 0.012 0.012 0.002 0.074 0.036

Position 0.044 106.910 103.236 100.137 2.597 3.027 2.577 0.177 0.015 0.123

Force < 0.001 107.319 102.785 100.179 2.469 2.712 2.269 < 0.001 < 0.001 0.146

Velocity 0.001 105.479 102.725 102.078 2.398 2.332 2.486 < 0.001 0.001 0.393

Position 0.009 82.016 90.121 89.070 2.637 3.168 2.512 0.004 0.005 0.594

Force < 0.001 90.327 89.607 81.272 2.594 2.933 2.350 0.604 < 0.001 0.001

Velocity < 0.001 89.161 86.447 85.598 2.480 2.444 2.567 < 0.001 < 0.001 0.179

Position < 0.001 0.022 0.071 0.174 0.003 0.008 0.016 < 0.001 < 0.001 < 0.001

Force < 0.001 0.073 0.083 0.110 0.007 0.009 0.010 0.012 < 0.001 0.001

Velocity 0.006 0.096 0.085 0.086 0.009 0.008 0.008 0.002 0.002 0.253

Position < 0.001 60.617 50.955 47.703 1.392 1.097 1.066 < 0.001 < 0.001 < 0.001

Force < 0.001 55.045 51.334 52.895 0.989 1.253 1.034 < 0.001 < 0.001 0.009

Velocity 0.026 52.805 52.980 53.489 1.022 1.091 1.114 0.545 0.027 0.016

Position < 0.001 3.710 12.394 31.948 0.407 1.361 3.071 < 0.001 < 0.001 < 0.001

LD

(ch10)

MAV

SSC

WL

AD

(ch9)

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

C.1 Consolidated statistical analysis of EMG signals during flexion–extension motions 191

Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Force < 0.001 13.739 14.678 19.635 1.324 1.570 1.937 0.177 < 0.001 0.003

Velocity 0.003 17.402 15.013 15.637 1.650 1.409 1.511 0.001 0.003 0.067

Position < 0.001 61.640 54.691 56.711 1.739 1.541 1.714 < 0.001 0.004 0.068

Force < 0.001 61.787 55.562 55.694 1.496 1.499 1.499 < 0.001 < 0.001 0.783

Velocity 0.005 58.375 56.935 57.733 1.458 1.435 1.568 0.002 0.167 0.022

Position < 0.001 0.028 0.095 0.233 0.004 0.010 0.022 < 0.001 < 0.001 < 0.001

Force < 0.001 0.097 0.111 0.148 0.009 0.012 0.014 0.009 < 0.001 0.002

Velocity 0.004 0.128 0.113 0.115 0.012 0.011 0.011 0.001 0.002 0.253

Position < 0.001 2.320 2.370 2.397 0.007 0.010 0.009 < 0.001 < 0.001 0.006

Force 0.733 2.360 2.363 2.364 0.006 0.008 0.008

Velocity 0.169 2.366 2.360 2.361 0.007 0.007 0.007

Position 0.248 -2.396 -2.383 -2.431 0.032 0.037 0.038

Force 0.002 -2.436 -2.377 -2.397 0.029 0.038 0.033 < 0.001 0.033 0.275

Velocity 0.014 -2.413 -2.391 -2.406 0.032 0.032 0.033 0.019 0.443 0.018

Position 0.011 1.374 1.262 1.274 0.042 0.041 0.044 0.003 0.013 0.640

Force < 0.001 1.352 1.262 1.296 0.035 0.046 0.037 < 0.001 0.002 0.105

Velocity 0.011 1.310 1.291 1.310 0.037 0.039 0.039 0.053 0.974 0.006

Position 0.001 -0.374 -0.318 -0.319 0.016 0.015 0.017 < 0.001 0.002 0.903

Force < 0.001 -0.359 -0.320 -0.333 0.014 0.018 0.014 < 0.001 < 0.001 0.081

Velocity 0.011 -0.339 -0.332 -0.340 0.015 0.015 0.015 0.062 0.730 0.005

Position 0.002 98.347 94.778 103.468 2.393 2.457 2.924 0.109 0.059 < 0.001

Force < 0.001 104.760 96.156 95.678 2.345 2.248 2.295 < 0.001 < 0.001 0.565

Velocity < 0.001 100.587 97.368 98.638 2.306 2.142 2.357 < 0.001 0.009 0.013

Position < 0.001 73.617 79.676 92.257 1.845 2.399 2.786 0.002 < 0.001 < 0.001

Force < 0.001 86.789 80.373 78.387 2.094 2.098 2.120 < 0.001 < 0.001 0.060

Velocity < 0.001 83.923 80.322 81.305 2.130 1.927 2.109 < 0.001 0.001 0.031

Position < 0.001 0.023 0.021 0.101 0.003 0.003 0.013 0.353 < 0.001 < 0.001

Force < 0.001 0.028 0.026 0.091 0.004 0.004 0.011 0.233 < 0.001 < 0.001

Velocity 0.129 0.050 0.046 0.048 0.006 0.006 0.006

Position < 0.001 57.097 55.432 48.237 1.017 1.198 0.867 0.047 < 0.001 < 0.001

Force < 0.001 56.801 55.203 48.763 0.850 1.073 1.029 0.005 < 0.001 < 0.001

Velocity 0.473 53.370 53.579 53.818 0.936 0.958 0.962

Position < 0.001 3.342 3.456 15.846 0.420 0.508 1.992 0.645 < 0.001 < 0.001

Force < 0.001 4.820 4.277 13.547 0.579 0.620 1.650 0.031 < 0.001 < 0.001
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Velocity 0.019 7.921 7.196 7.527 0.992 0.894 0.922 0.046 0.262 0.013

Position < 0.001 57.005 57.005 52.782 1.418 1.671 1.346 1.000 0.002 < 0.001

Force < 0.001 60.885 57.191 48.716 1.396 1.544 1.316 < 0.001 < 0.001 < 0.001

Velocity 0.680 55.840 55.337 55.615 1.386 1.377 1.445

Position < 0.001 0.030 0.028 0.136 0.004 0.005 0.017 0.306 < 0.001 < 0.001

Force < 0.001 0.037 0.034 0.123 0.005 0.005 0.015 0.283 < 0.001 < 0.001

Velocity 0.088 0.067 0.062 0.064 0.009 0.008 0.008

Position < 0.001 2.313 2.345 2.379 0.006 0.008 0.008 < 0.001 < 0.001 < 0.001

Force < 0.001 2.361 2.360 2.315 0.006 0.006 0.009 0.739 < 0.001 < 0.001

Velocity 0.098 2.352 2.341 2.343 0.008 0.006 0.007

Position 0.069 -2.325 -2.374 -2.365 0.023 0.036 0.033

Force < 0.001 -2.446 -2.410 -2.207 0.025 0.031 0.033 0.011 < 0.001 < 0.001

Velocity 0.201 -2.369 -2.343 -2.351 0.030 0.028 0.029

Position 0.026 1.284 1.294 1.217 0.028 0.043 0.037 0.674 0.034 0.007

Force < 0.001 1.374 1.327 1.095 0.031 0.038 0.036 0.005 < 0.001 < 0.001

Velocity 0.358 1.276 1.255 1.265 0.035 0.033 0.034

Position 0.003 -0.341 -0.335 -0.298 0.011 0.017 0.014 0.568 0.002 0.001

Force < 0.001 -0.367 -0.346 -0.261 0.012 0.015 0.013 0.002 < 0.001 < 0.001

Velocity 0.425 -0.327 -0.321 -0.325 0.013 0.012 0.013

Position 0.411 91.350 93.464 93.643 2.156 2.364 2.205

Force < 0.001 100.495 94.421 83.541 2.168 2.221 2.016 < 0.001 < 0.001 < 0.001

Velocity 0.361 93.550 92.230 92.678 2.090 2.037 2.173

Position < 0.001 69.303 74.113 80.646 1.997 1.956 2.379 0.002 < 0.001 < 0.001

Force < 0.001 81.129 75.650 67.284 2.045 1.954 1.996 < 0.001 < 0.001 < 0.001

Velocity 0.258 75.557 74.109 74.397 2.023 1.875 2.012

Position < 0.001 0.053 0.069 0.079 0.005 0.007 0.008 0.001 < 0.001 0.006

Force < 0.001 0.051 0.062 0.088 0.005 0.005 0.009 < 0.001 < 0.001 < 0.001

Velocity < 0.001 0.051 0.074 0.075 0.006 0.007 0.007 < 0.001 < 0.001 0.744

Position 0.028 58.805 57.349 57.759 1.118 1.303 1.356 0.012 0.095 0.186

Force < 0.001 59.087 57.098 57.728 1.204 1.279 1.301 < 0.001 0.027 0.213

Velocity 0.008 59.406 56.730 57.777 0.990 1.490 1.344 0.002 0.026 0.096

Position < 0.001 12.215 15.925 18.866 1.361 1.980 2.294 0.001 < 0.001 < 0.001

Force < 0.001 11.841 14.256 20.909 1.391 1.545 2.722 < 0.001 < 0.001 < 0.001

Velocity < 0.001 12.082 17.225 17.699 1.608 1.999 2.064 < 0.001 < 0.001 0.440

ECU

(ch12)

MAV
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Position 0.042 70.823 69.684 71.228 2.434 2.655 2.775 0.148 0.597 0.012

Force 0.002 71.406 68.884 71.445 2.344 2.728 2.852 0.001 0.972 0.022

Velocity 0.008 71.824 69.067 70.844 2.431 3.008 2.528 0.011 0.196 0.215

Position < 0.001 0.073 0.095 0.109 0.007 0.010 0.012 0.001 < 0.001 0.004

Force < 0.001 0.070 0.085 0.121 0.007 0.008 0.014 < 0.001 < 0.001 < 0.001

Velocity < 0.001 0.070 0.103 0.104 0.008 0.010 0.011 < 0.001 < 0.001 0.668

Position 0.490 2.358 2.367 2.369 0.024 0.028 0.027

Force 0.450 2.359 2.370 2.364 0.023 0.028 0.030

Velocity 0.426 2.358 2.360 2.375 0.023 0.031 0.026

Position 0.068 -2.567 -2.577 -2.600 0.064 0.078 0.077

Force 0.797 -2.583 -2.572 -2.589 0.061 0.078 0.082

Velocity 0.468 -2.590 -2.554 -2.600 0.062 0.088 0.073

Position 0.014 1.540 1.540 1.569 0.053 0.063 0.062 0.962 0.083 0.009

Force 0.253 1.560 1.532 1.557 0.050 0.064 0.065

Velocity 0.125 1.571 1.519 1.559 0.052 0.071 0.058

Position 0.005 -0.450 -0.450 -0.466 0.017 0.019 0.019 0.989 0.012 0.004

Force 0.079 -0.460 -0.446 -0.460 0.016 0.020 0.020

Velocity 0.013 -0.465 -0.444 -0.457 0.018 0.021 0.017 0.008 0.142 0.192

Position 0.003 129.071 128.957 133.340 5.210 5.905 5.907 0.952 0.006 0.006

Force 0.020 131.241 126.932 133.194 5.232 5.864 6.035 0.009 0.326 0.014

Velocity 0.115 132.453 127.946 130.968 5.579 6.279 5.341 0.041 0.416 0.254

Position < 0.001 112.325 112.922 118.376 5.309 6.041 5.963 0.767 < 0.001 0.003

Force 0.034 114.432 111.312 117.878 5.450 5.905 6.018 0.048 0.058 0.009

Velocity 0.458 115.457 112.804 115.361 5.812 6.224 5.425

Position 0.504 0.037 0.036 0.040 0.007 0.006 0.007

Force < 0.001 0.030 0.046 0.036 0.004 0.008 0.009 < 0.001 0.211 0.006

Velocity 0.001 0.030 0.041 0.041 0.006 0.007 0.007 0.004 < 0.001 0.823

Position 0.001 59.219 59.120 57.420 2.025 1.962 1.812 0.828 < 0.001 0.001

Force < 0.001 59.528 56.200 60.031 1.887 1.994 1.961 < 0.001 0.356 < 0.001

Velocity 0.051 59.559 57.892 58.308 1.982 1.896 1.949

Position 0.240 6.961 6.990 7.659 1.086 1.144 1.231

Force < 0.001 6.180 8.924 6.507 1.057 1.363 1.063 < 0.001 0.354 < 0.001

Velocity 0.001 6.101 7.895 7.614 1.076 1.258 1.124 < 0.001 < 0.001 0.288

Position 0.047 69.024 68.689 66.348 3.840 3.650 3.175 0.678 0.016 0.029
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Force < 0.001 69.260 65.334 69.467 3.546 3.466 3.677 < 0.001 0.837 < 0.001

Velocity 0.075 70.628 66.786 66.647 3.853 3.409 3.544

Position 0.506 0.049 0.048 0.053 0.009 0.008 0.009

Force < 0.001 0.040 0.062 0.049 0.006 0.010 0.011 < 0.001 0.202 0.007

Velocity < 0.001 0.040 0.055 0.056 0.008 0.009 0.010 0.003 < 0.001 0.806

Position 0.054 2.332 2.343 2.361 0.033 0.030 0.026

Force 0.008 2.349 2.354 2.333 0.030 0.028 0.032 0.546 0.113 0.002

Velocity 0.502 2.344 2.348 2.344 0.032 0.028 0.030

Position 0.209 -2.473 -2.491 -2.502 0.061 0.057 0.047

Force 0.091 -2.516 -2.468 -2.483 0.047 0.054 0.064

Velocity 0.470 -2.511 -2.478 -2.477 0.049 0.056 0.061

Position 0.591 1.432 1.444 1.436 0.050 0.049 0.042

Force 0.006 1.469 1.393 1.451 0.038 0.049 0.055 0.002 0.401 0.016

Velocity 0.128 1.467 1.420 1.426 0.039 0.049 0.053

Position 0.582 -0.400 -0.402 -0.395 0.018 0.019 0.018

Force 0.001 -0.413 -0.377 -0.407 0.016 0.020 0.020 < 0.001 0.394 0.003

Velocity 0.012 -0.415 -0.390 -0.394 0.017 0.019 0.019 0.005 0.022 0.182

Position 0.144 121.248 120.242 116.528 7.387 6.820 5.579

Force 0.001 121.850 115.515 120.653 6.850 6.251 6.722 0.001 0.519 0.002

Velocity 0.124 124.647 116.927 116.444 7.478 6.274 6.503

Position 0.172 104.246 103.463 99.636 7.022 6.588 5.140

Force 0.022 104.741 99.598 103.006 6.531 5.934 6.330 0.014 0.331 0.015

Velocity 0.115 108.212 100.004 99.129 7.267 6.021 6.192

Position < 0.001 0.044 0.057 0.050 0.005 0.006 0.006 < 0.001 0.011 0.008

Force < 0.001 0.039 0.052 0.060 0.004 0.006 0.007 < 0.001 < 0.001 0.003

Velocity < 0.001 0.034 0.057 0.059 0.004 0.007 0.007 < 0.001 < 0.001 0.327

Position 0.001 57.991 57.846 59.184 0.558 0.628 0.653 0.736 0.018 < 0.001

Force < 0.001 59.371 57.337 58.312 0.675 0.615 0.482 < 0.001 0.010 0.005

Velocity < 0.001 59.881 57.225 57.916 0.793 0.487 0.552 < 0.001 0.001 < 0.001

Position < 0.001 9.482 12.798 11.458 1.014 1.493 1.391 < 0.001 0.002 0.020

Force < 0.001 8.729 11.277 13.733 0.997 1.242 1.647 < 0.001 < 0.001 < 0.001

Velocity < 0.001 7.770 12.767 13.201 0.925 1.548 1.539 < 0.001 < 0.001 0.318

Position < 0.001 67.696 68.435 71.347 1.025 1.428 1.439 0.339 < 0.001 < 0.001

Force < 0.001 69.451 67.674 70.354 1.275 1.317 1.246 0.001 0.078 < 0.001
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Velocity 0.180 70.123 68.517 68.838 1.409 1.228 1.279

Position < 0.001 0.059 0.078 0.068 0.006 0.009 0.008 < 0.001 0.009 0.006

Force < 0.001 0.054 0.070 0.081 0.006 0.008 0.009 < 0.001 < 0.001 0.003

Velocity < 0.001 0.046 0.078 0.081 0.005 0.009 0.009 < 0.001 < 0.001 0.261

Position 0.438 2.416 2.423 2.419 0.008 0.006 0.007

Force 0.062 2.412 2.420 2.426 0.008 0.007 0.005

Velocity 0.014 2.407 2.425 2.426 0.009 0.006 0.006 0.030 0.004 0.672

Position 0.036 -2.652 -2.677 -2.694 0.022 0.025 0.026 0.097 0.011 0.123

Force 0.029 -2.665 -2.658 -2.700 0.026 0.027 0.017 0.416 0.014 0.008

Velocity 0.036 -2.664 -2.674 -2.686 0.026 0.023 0.022 0.444 0.032 0.142

Position 0.008 1.574 1.597 1.624 0.020 0.026 0.028 0.109 0.002 0.024

Force 0.005 1.598 1.573 1.623 0.027 0.028 0.018 0.004 0.059 0.003

Velocity 0.046 1.605 1.586 1.604 0.026 0.024 0.023 0.102 0.921 0.012

Position 0.004 -0.441 -0.449 -0.463 0.008 0.011 0.012 0.199 0.002 0.006

Force 0.001 -0.452 -0.439 -0.462 0.011 0.012 0.008 < 0.001 0.081 0.001

Velocity 0.006 -0.457 -0.444 -0.453 0.011 0.010 0.010 0.023 0.368 0.002

Position < 0.001 122.325 126.219 130.994 3.197 3.970 3.839 0.079 < 0.001 < 0.001

Force < 0.001 125.790 124.095 129.654 3.516 3.916 3.319 0.088 < 0.001 < 0.001

Velocity 0.844 126.415 126.394 126.730 3.731 3.523 3.579

Position < 0.001 104.006 108.170 112.965 3.715 4.258 4.160 0.086 < 0.001 < 0.001

Force < 0.001 106.541 106.532 112.069 3.843 4.260 3.727 0.994 < 0.001 < 0.001

Velocity 0.239 106.767 109.242 109.133 4.077 3.893 3.929

Position 0.003 0.040 0.049 0.040 0.005 0.006 0.005 0.001 0.926 0.003

Force < 0.001 0.032 0.049 0.047 0.004 0.006 0.006 < 0.001 < 0.001 0.146

Velocity < 0.001 0.028 0.048 0.052 0.003 0.006 0.007 < 0.001 < 0.001 0.059

Position 0.016 56.935 56.379 57.690 0.958 1.030 0.981 0.104 0.087 0.004

Force < 0.001 58.605 55.679 56.719 1.066 0.814 1.093 0.000 0.000 0.061

Velocity 0.001 58.604 55.892 56.508 1.212 0.900 0.897 0.000 0.003 0.003

Position 0.003 8.291 10.297 8.593 0.960 1.265 1.068 0.001 0.521 0.009

Force < 0.001 6.862 10.385 9.934 0.810 1.234 1.206 0.000 0.000 0.262

Velocity < 0.001 5.947 10.234 11.001 0.695 1.261 1.354 0.000 0.000 0.066

Position 0.019 66.094 66.699 68.266 1.385 1.425 1.329 0.372 0.005 0.032

Force 0.007 68.231 65.619 67.208 1.452 1.335 1.313 0.002 0.016 0.019

Velocity 0.066 68.616 66.015 66.427 1.590 1.303 1.336
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.



Position 0.004 0.054 0.066 0.054 0.006 0.008 0.007 0.001 0.892 0.006

Force < 0.001 0.044 0.067 0.064 0.005 0.008 0.008 < 0.001 < 0.001 0.153

Velocity < 0.001 0.038 0.066 0.071 0.005 0.008 0.009 < 0.001 < 0.001 0.046

Position 0.210 2.401 2.401 2.409 0.012 0.011 0.010

Force 0.001 2.393 2.410 2.407 0.012 0.009 0.012 0.006 < 0.001 0.699

Velocity 0.010 2.392 2.409 2.410 0.012 0.010 0.010 0.017 0.003 0.784

Position 0.071 -2.583 -2.582 -2.615 0.028 0.024 0.021

Force 0.313 -2.590 -2.589 -2.601 0.023 0.025 0.023

Velocity 0.050 -2.584 -2.593 -2.602 0.021 0.025 0.025

Position 0.052 1.493 1.485 1.525 0.026 0.024 0.021

Force 0.031 1.514 1.483 1.505 0.022 0.025 0.022 0.010 0.260 0.111

Velocity 0.123 1.509 1.490 1.504 0.021 0.025 0.023

Position 0.051 -0.408 -0.405 -0.421 0.011 0.011 0.009

Force 0.004 -0.419 -0.402 -0.411 0.011 0.011 0.010 0.002 0.036 0.102

Velocity 0.071 -0.417 -0.405 -0.411 0.010 0.011 0.010

Position 0.089 117.724 119.681 121.462 3.619 3.548 3.048

Force 0.541 119.967 118.791 120.109 3.363 3.582 3.152

Velocity 0.973 119.886 119.486 119.495 3.213 3.511 3.493

Position 0.071 100.510 103.145 104.557 4.359 4.191 3.672

Force 0.256 101.863 103.017 103.332 4.038 4.157 3.896

Velocity 0.612 101.786 103.354 103.072 3.755 4.224 4.193
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Table C.1: Mean, std error, and significance of 11 EMG feature values for 15 muscles for 3 levels
of position, force, and velocity during elbow flexion–extension.
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C.2 Consolidated statistical analysis of EMG signals during ADL

1 motions



Muscle Feature Factor Significance L1 L2 L1 L2

Force < 0.001 0.021 0.031 0.003 0.004

Velocity 0.676 0.026 0.026 0.004 0.004

Force < 0.001 47.568 45.220 0.965 0.788

Velocity 0.007 45.874 46.914 0.876 0.889

Force < 0.001 3.231 4.803 0.476 0.676

Velocity 0.542 4.047 3.987 0.588 0.564

Force 0.597 50.293 50.003 1.235 1.159

Velocity 0.101 49.706 50.590 1.194 1.195

Force < 0.001 0.029 0.042 0.004 0.006

Velocity 0.526 0.035 0.036 0.005 0.005

Force 0.552 2.363 2.358 0.019 0.019

Velocity 0.703 2.361 2.359 0.018 0.020

Force 0.072 -2.303 -2.263 0.058 0.058

Velocity 0.500 -2.277 -2.289 0.056 0.059

Force 0.004 1.128 1.070 0.055 0.054

Velocity 0.165 1.086 1.112 0.053 0.056

Force < 0.001 -0.255 -0.230 0.019 0.018

Velocity 0.083 -0.236 -0.248 0.018 0.019

Force 0.579 95.834 96.350 3.437 3.401

Velocity 0.802 96.209 95.975 3.477 3.362

Force 0.224 81.979 83.437 3.769 3.732

Velocity 0.255 83.314 82.102 3.781 3.701

Force < 0.001 0.034 0.049 0.004 0.006

Velocity 0.074 0.040 0.043 0.005 0.005

Force < 0.001 44.213 42.526 0.807 0.773

Velocity 0.080 42.952 43.788 0.826 0.793

Force < 0.001 5.045 7.144 0.610 0.861

Velocity 0.051 5.945 6.244 0.721 0.748

Force 0.011 49.066 48.088 1.427 1.318

Velocity 0.121 48.059 49.095 1.358 1.440

Force < 0.001 0.046 0.065 0.006 0.008

Velocity 0.060 0.054 0.057 0.007 0.007

RMS

ADL 1
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(ch1)
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force 0.079 2.320 2.308 0.019 0.018

Velocity 0.897 2.314 2.315 0.019 0.019

Force 0.002 -2.163 -2.113 0.054 0.054

Velocity 0.622 -2.132 -2.145 0.057 0.054

Force < 0.001 0.989 0.931 0.049 0.050

Velocity 0.516 0.952 0.968 0.053 0.048

Force < 0.001 -0.210 -0.188 0.016 0.016

Velocity 0.511 -0.196 -0.202 0.017 0.015

Force 0.026 92.484 91.022 3.433 3.156

Velocity 0.437 91.333 92.173 3.437 3.211

Force 0.077 79.189 78.068 3.709 3.432

Velocity 0.696 78.416 78.841 3.714 3.484

Force < 0.001 0.043 0.062 0.009 0.012

Velocity 0.045 0.050 0.056 0.009 0.012

Force < 0.001 45.524 42.559 1.034 0.955

Velocity 0.169 43.772 44.310 0.956 1.013

Force < 0.001 4.881 6.780 0.631 0.818

Velocity 0.012 5.559 6.102 0.660 0.790

Force 0.001 43.636 41.903 1.387 1.566

Velocity 0.047 42.066 43.473 1.418 1.577

Force < 0.001 0.057 0.080 0.012 0.015

Velocity 0.035 0.065 0.072 0.013 0.015

Force < 0.001 2.244 2.221 0.020 0.022

Velocity 0.388 2.237 2.228 0.021 0.021

Force < 0.001 -1.995 -1.902 0.046 0.051

Velocity 0.672 -1.954 -1.943 0.050 0.050

Force < 0.001 0.891 0.789 0.037 0.039

Velocity 0.726 0.844 0.836 0.038 0.040

Force < 0.001 -0.191 -0.156 0.012 0.012

Velocity 0.759 -0.175 -0.172 0.011 0.013

Force 0.006 76.699 74.658 2.887 3.023

Velocity 0.066 74.516 76.841 2.940 3.054

Force 0.172 61.472 60.593 3.072 3.082

Velocity 0.085 59.980 62.085 3.031 3.200
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force 0.003 0.031 0.041 0.009 0.011

Velocity 0.025 0.034 0.038 0.010 0.011

Force < 0.001 55.503 52.590 1.524 1.625

Velocity 0.773 53.949 54.144 1.479 1.706

Force < 0.001 3.751 4.887 0.994 1.058

Velocity 0.074 4.199 4.439 1.012 1.036

Force 0.026 54.184 51.749 2.494 2.362

Velocity 0.264 52.532 53.401 2.218 2.577

Force 0.002 0.041 0.054 0.012 0.015

Velocity 0.012 0.045 0.050 0.013 0.014

Force 0.589 2.287 2.292 0.027 0.027

Velocity 0.076 2.295 2.283 0.028 0.026

Force 0.216 -2.273 -2.244 0.068 0.068

Velocity 0.333 -2.267 -2.250 0.069 0.067

Force 0.015 1.242 1.185 0.057 0.058

Velocity 0.753 1.217 1.211 0.058 0.056

Force 0.003 -0.325 -0.300 0.019 0.019

Velocity 0.809 -0.311 -0.313 0.019 0.019

Force 0.386 91.738 90.105 4.763 4.690

Velocity 0.687 90.683 91.160 4.508 4.831

Force 0.910 71.822 71.612 4.840 4.935

Velocity 0.637 71.425 72.009 4.743 4.932

Force 0.087 0.009 0.009 0.001 0.001

Velocity < 0.001 0.008 0.010 0.001 0.001

Force < 0.001 62.556 60.424 1.152 1.219

Velocity < 0.001 62.167 60.813 1.201 1.150

Force 0.249 1.704 1.803 0.265 0.254

Velocity < 0.001 1.604 1.903 0.245 0.270

Force < 0.001 64.056 60.657 1.473 1.423

Velocity 0.230 62.874 61.839 1.564 1.385

Force 0.218 0.011 0.012 0.002 0.002

Velocity < 0.001 0.011 0.013 0.002 0.002

Force 0.087 2.325 2.332 0.019 0.020

Velocity 0.014 2.322 2.335 0.019 0.021
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force 0.093 -2.470 -2.451 0.036 0.037

Velocity 0.250 -2.452 -2.469 0.034 0.039

Force 0.006 1.471 1.434 0.027 0.026

Velocity 0.828 1.451 1.454 0.026 0.028

Force 0.001 -0.413 -0.395 0.010 0.010

Velocity 0.883 -0.404 -0.403 0.011 0.010

Force < 0.001 105.681 100.494 3.337 3.295

Velocity 0.703 102.771 103.404 3.379 3.375

Force 0.001 81.122 77.146 3.526 3.638

Velocity 0.152 77.963 80.306 3.639 3.617

Force 0.002 0.011 0.013 0.002 0.002

Velocity < 0.001 0.011 0.013 0.002 0.002

Force < 0.001 57.506 54.787 0.489 0.579

Velocity < 0.001 56.712 55.581 0.511 0.538

Force 0.013 2.196 2.553 0.338 0.393

Velocity < 0.001 2.154 2.596 0.339 0.388

Force < 0.001 60.863 57.938 1.017 1.028

Velocity 0.593 59.499 59.302 1.084 0.958

Force 0.002 0.014 0.018 0.002 0.003

Velocity < 0.001 0.015 0.018 0.002 0.003

Force 0.009 2.359 2.373 0.007 0.008

Velocity 0.187 2.362 2.370 0.008 0.007

Force 0.408 -2.478 -2.467 0.019 0.023

Velocity 0.442 -2.467 -2.478 0.023 0.019

Force 0.009 1.422 1.384 0.019 0.024

Velocity 0.957 1.403 1.403 0.023 0.020

Force 0.001 -0.389 -0.370 0.008 0.010

Velocity 0.996 -0.380 -0.380 0.009 0.008

Force < 0.001 105.510 101.360 2.263 2.138

Velocity 0.045 102.432 104.438 2.391 2.007

Force 0.018 85.524 82.838 2.410 2.177

Velocity 0.007 82.555 85.807 2.546 2.029

Force 0.154 0.011 0.012 0.002 0.001

Velocity 0.020 0.010 0.012 0.002 0.001

TRI_M

(ch7)

MAV

TRI_LAT

(ch6)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

TRI_LO

(ch5)

AR2

AR3

AR4

MNF

MDF
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force < 0.001 59.584 57.574 1.189 1.109

Velocity 0.169 58.882 58.276 1.228 1.062

Force 0.718 2.246 2.297 0.371 0.337

Velocity 0.010 2.065 2.478 0.369 0.340

Force < 0.001 61.689 58.340 1.830 2.193

Velocity 0.005 59.238 60.790 2.047 1.950

Force 0.213 0.015 0.016 0.002 0.002

Velocity 0.017 0.014 0.016 0.002 0.002

Force 0.523 2.345 2.339 0.017 0.018

Velocity 0.072 2.335 2.349 0.018 0.017

Force 0.049 -2.485 -2.440 0.038 0.047

Velocity 0.037 -2.446 -2.479 0.042 0.042

Force 0.012 1.454 1.400 0.032 0.044

Velocity 0.181 1.418 1.436 0.037 0.038

Force 0.010 -0.404 -0.384 0.013 0.017

Velocity 0.315 -0.391 -0.397 0.014 0.015

Force 0.008 108.024 103.385 3.718 4.347

Velocity < 0.001 102.896 108.513 3.929 4.086

Force 0.076 87.080 83.681 4.089 4.361

Velocity < 0.001 81.699 89.061 4.032 4.307

Force < 0.001 0.053 0.077 0.009 0.013

Velocity 0.329 0.064 0.066 0.011 0.011

Force < 0.001 52.601 50.573 1.179 1.201

Velocity 0.109 51.290 51.883 1.187 1.204

Force < 0.001 10.263 14.551 1.748 2.424

Velocity 0.011 12.080 12.734 2.077 2.088

Force < 0.001 61.541 59.737 1.395 1.540

Velocity 0.058 60.118 61.160 1.410 1.543

Force < 0.001 0.069 0.101 0.012 0.018

Velocity 0.303 0.084 0.086 0.015 0.014

Force 0.305 2.383 2.377 0.013 0.012

Velocity 0.945 2.380 2.380 0.012 0.014

Force 0.005 -2.452 -2.406 0.049 0.049

Velocity 0.637 -2.424 -2.434 0.049 0.050

AR3

AR4

MNF

MDF

ISPI

(ch8)

MAV

SSC

WL

ZC

RMS

AR1

AR2

TRI_M

(ch7)

SSC

WL

ZC

RMS

AR1

AR2
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force < 0.001 1.325 1.261 0.053 0.054

Velocity 0.535 1.286 1.300 0.054 0.054

Force < 0.001 -0.339 -0.312 0.019 0.020

Velocity 0.449 -0.323 -0.328 0.020 0.019

Force 0.003 107.385 105.096 2.713 2.952

Velocity 0.034 105.162 107.319 2.764 2.942

Force 0.016 92.541 91.002 2.862 3.029

Velocity 0.055 90.841 92.702 2.814 3.112

Force < 0.001 0.070 0.090 0.006 0.008

Velocity < 0.001 0.073 0.087 0.007 0.008

Force 0.001 48.403 47.258 0.645 0.721

Velocity 0.782 47.778 47.883 0.688 0.701

Force < 0.001 12.741 16.715 1.260 1.663

Velocity < 0.001 13.386 16.070 1.372 1.552

Force 0.289 56.006 55.533 1.435 1.431

Velocity 0.852 55.705 55.834 1.343 1.564

Force < 0.001 0.094 0.120 0.009 0.011

Velocity < 0.001 0.097 0.117 0.009 0.010

Force 0.290 2.385 2.378 0.013 0.013

Velocity 0.773 2.383 2.380 0.012 0.015

Force 0.052 -2.385 -2.351 0.040 0.040

Velocity 0.929 -2.369 -2.367 0.037 0.045

Force 0.007 1.210 1.162 0.037 0.039

Velocity 0.904 1.185 1.187 0.035 0.042

Force 0.001 -0.283 -0.262 0.013 0.013

Velocity 0.725 -0.271 -0.273 0.012 0.014

Force 0.677 102.831 103.196 3.175 3.188

Velocity 0.999 103.015 103.013 3.044 3.444

Force 0.397 89.751 90.549 3.428 3.442

Velocity 0.970 90.184 90.116 3.339 3.696

Force < 0.001 0.082 0.113 0.013 0.017

Velocity < 0.001 0.087 0.108 0.014 0.016

Force < 0.001 52.084 49.845 1.220 1.196

Velocity 0.210 51.195 50.733 1.261 1.159

AD

(ch9)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

ISPI

(ch8)

AR3

AR4

MNF

MDF

LD

(ch10)

MAV

SSC
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force < 0.001 14.821 19.999 2.205 2.904

Velocity < 0.001 15.471 19.350 2.295 2.813

Force < 0.001 56.251 54.305 1.501 1.360

Velocity 0.499 55.145 55.410 1.420 1.446

Force < 0.001 0.108 0.148 0.017 0.023

Velocity < 0.001 0.115 0.142 0.018 0.022

Force 0.989 2.356 2.356 0.009 0.011

Velocity 0.033 2.348 2.363 0.010 0.010

Force 0.071 -2.367 -2.334 0.034 0.040

Velocity 0.079 -2.333 -2.368 0.038 0.037

Force 0.004 1.259 1.208 0.039 0.044

Velocity 0.181 1.220 1.247 0.043 0.041

Force 0.001 -0.319 -0.298 0.014 0.016

Velocity 0.236 -0.304 -0.313 0.016 0.015

Force 0.002 96.349 94.376 2.267 2.199

Velocity 0.023 94.582 96.143 2.184 2.292

Force 0.231 80.384 79.649 2.171 2.160

Velocity 0.002 78.831 81.203 2.086 2.255

Force < 0.001 0.022 0.033 0.005 0.007

Velocity 0.002 0.024 0.031 0.005 0.007

Force < 0.001 56.671 53.613 1.217 1.220

Velocity 0.001 55.673 54.611 1.207 1.229

Force < 0.001 3.812 5.270 0.673 0.926

Velocity 0.001 4.001 5.080 0.687 0.915

Force < 0.001 59.187 56.036 1.667 1.547

Velocity 0.149 57.888 57.335 1.588 1.630

Force < 0.001 0.029 0.043 0.006 0.009

Velocity 0.002 0.031 0.041 0.006 0.009

Force 0.696 2.353 2.351 0.006 0.006

Velocity 0.210 2.347 2.357 0.008 0.006

Force < 0.001 -2.420 -2.367 0.031 0.031

Velocity 0.690 -2.390 -2.397 0.036 0.027

Force < 0.001 1.351 1.274 0.039 0.039

Velocity 0.680 1.316 1.309 0.043 0.036

PD

(ch11)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

LD

(ch10)
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force < 0.001 -0.357 -0.326 0.016 0.016

Velocity 0.374 -0.344 -0.339 0.017 0.015

Force < 0.001 96.359 92.617 2.431 2.140

Velocity 0.841 94.545 94.431 2.285 2.289

Force 0.017 76.103 74.581 2.168 1.865

Velocity 0.159 74.890 75.793 2.002 2.045

Force 0.311 0.066 0.072 0.011 0.012

Velocity 0.347 0.068 0.071 0.011 0.010

Force 0.758 57.765 57.977 1.504 1.473

Velocity 0.168 57.425 58.318 1.647 1.299

Force 0.026 15.029 17.641 2.683 3.379

Velocity 0.091 15.726 16.944 3.118 2.920

Force 0.107 69.699 71.593 3.648 3.137

Velocity 0.049 69.477 71.816 3.554 3.243

Force 0.298 0.092 0.101 0.016 0.018

Velocity 0.287 0.095 0.099 0.017 0.016

Force 0.495 2.346 2.354 0.031 0.029

Velocity 0.734 2.348 2.352 0.032 0.028

Force 0.451 -2.543 -2.568 0.087 0.081

Velocity 0.438 -2.541 -2.570 0.093 0.076

Force 0.405 1.519 1.542 0.072 0.066

Velocity 0.376 1.516 1.545 0.077 0.062

Force 0.330 -0.447 -0.456 0.023 0.021

Velocity 0.253 -0.445 -0.457 0.024 0.020

Force 0.272 130.247 132.757 7.518 6.612

Velocity 0.056 129.296 133.708 7.373 6.766

Force 0.291 115.687 118.084 7.454 6.735

Velocity 0.034 114.553 119.219 7.364 6.810

Force 0.106 0.039 0.053 0.009 0.016

Velocity 0.535 0.046 0.046 0.013 0.012

Force 0.008 58.342 57.273 2.137 2.121

Velocity 0.018 57.479 58.136 2.158 2.092

Force 0.001 6.764 8.293 1.256 1.439

Velocity 0.058 7.395 7.662 1.347 1.325

ECR

(ch13)

MAV

SSC

WL

ECU

(ch12)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

PD

(ch11)

AR4

MNF

MDF
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force 0.148 67.071 66.389 3.750 3.776

Velocity 0.462 66.498 66.962 3.804 3.733

Force 0.101 0.052 0.070 0.012 0.020

Velocity 0.433 0.060 0.061 0.017 0.016

Force 0.721 2.332 2.328 0.033 0.033

Velocity 0.823 2.331 2.329 0.033 0.033

Force 0.371 -2.460 -2.439 0.067 0.070

Velocity 0.682 -2.447 -2.452 0.068 0.068

Force 0.155 1.421 1.394 0.057 0.058

Velocity 0.455 1.403 1.412 0.057 0.057

Force 0.081 -0.394 -0.385 0.020 0.021

Velocity 0.360 -0.388 -0.391 0.020 0.020

Force 0.251 117.081 116.293 6.807 6.804

Velocity 0.980 116.670 116.703 6.823 6.837

Force 0.438 99.794 99.320 6.567 6.596

Velocity 0.884 99.678 99.436 6.655 6.597

Force < 0.001 0.035 0.046 0.005 0.006

Velocity 0.245 0.040 0.041 0.005 0.006

Force 0.007 58.723 57.522 0.857 0.694

Velocity 0.026 57.831 58.414 0.788 0.736

Force < 0.001 7.802 10.175 1.221 1.447

Velocity 0.147 8.789 9.189 1.301 1.346

Force 0.487 67.964 67.537 1.318 1.380

Velocity 0.060 67.300 68.201 1.278 1.388

Force < 0.001 0.047 0.063 0.007 0.008

Velocity 0.209 0.054 0.056 0.007 0.007

Force 0.723 2.409 2.411 0.010 0.009

Velocity 0.428 2.412 2.408 0.008 0.010

Force 0.510 -2.647 -2.638 0.028 0.031

Velocity 0.959 -2.643 -2.642 0.026 0.032

Force 0.090 1.577 1.554 0.028 0.032

Velocity 0.735 1.563 1.568 0.028 0.032

Force 0.037 -0.444 -0.432 0.012 0.013

Velocity 0.645 -0.437 -0.439 0.012 0.013

ECR

(ch13)

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

FCU

(ch14)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.



Force 0.853 124.184 123.978 3.830 4.115

Velocity 0.133 123.421 124.742 3.878 4.039

Force 0.450 105.169 106.208 4.204 4.468

Velocity 0.223 105.166 106.211 4.236 4.373

Force < 0.001 0.029 0.041 0.004 0.005

Velocity 0.926 0.035 0.035 0.004 0.004

Force 0.001 56.935 55.193 1.014 0.847

Velocity 0.006 55.689 56.439 0.961 0.868

Force < 0.001 5.937 8.393 0.702 1.006

Velocity 0.856 7.192 7.138 0.867 0.826

Force 0.062 64.928 63.697 1.102 1.381

Velocity 0.028 63.796 64.829 1.271 1.185

Force < 0.001 0.039 0.056 0.005 0.007

Velocity 0.985 0.047 0.048 0.006 0.006

Force 0.591 2.396 2.400 0.011 0.010

Velocity 0.175 2.402 2.394 0.011 0.009

Force 0.601 -2.562 -2.553 0.025 0.031

Velocity 0.711 -2.560 -2.555 0.029 0.026

Force 0.246 1.468 1.445 0.026 0.034

Velocity 0.835 1.455 1.458 0.030 0.028

Force 0.178 -0.397 -0.387 0.012 0.015

Velocity 0.611 -0.391 -0.393 0.013 0.013

Force 0.569 116.357 115.753 3.194 3.753

Velocity 0.299 115.517 116.593 3.546 3.418

Force 0.570 99.077 99.621 3.955 4.293

Velocity 0.676 99.099 99.599 4.200 4.085

FCR

(ch15)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

FCU

(ch14)

MNF

MDF
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Table C.2: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 1.
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C.3 Consolidated statistical analysis of EMG signals during ADL

2 motions



Significance

Muscle Feature Factor Significance L1 L2 L1 L2 SF 1-2

Force < 0.001 0.021 0.030 0.003 0.004 < 0.001

Velocity 0.001 0.027 0.023 0.004 0.004 0.001

Force < 0.001 48.926 46.105 1.213 0.928 < 0.001

Velocity < 0.001 46.504 48.527 1.068 1.038 < 0.001

Force < 0.001 3.279 4.749 0.509 0.713 < 0.001

Velocity 0.002 4.335 3.693 0.661 0.560 0.002

Force 0.039 52.303 50.500 1.184 1.030 0.039

Velocity 0.029 50.593 52.211 1.141 1.031 0.029

Force < 0.001 0.028 0.041 0.004 0.006 < 0.001

Velocity 0.001 0.037 0.032 0.005 0.005 0.001

Force 0.037 2.389 2.365 0.017 0.021 0.037

Velocity 0.139 2.370 2.384 0.019 0.019

Force 0.002 -2.390 -2.301 0.052 0.059 0.002

Velocity 0.011 -2.313 -2.377 0.056 0.055 0.011

Force < 0.001 1.218 1.113 0.050 0.055 < 0.001

Velocity 0.002 1.128 1.204 0.054 0.051 0.002

Force < 0.001 -0.288 -0.245 0.018 0.019 < 0.001

Velocity 0.001 -0.252 -0.281 0.018 0.018 0.001

Force 0.337 99.709 98.301 3.081 3.006

Velocity 0.136 98.026 99.985 3.182 2.859

Force 0.501 85.644 84.458 3.522 3.400

Velocity 0.531 84.613 85.488 3.542 3.297

Force < 0.001 0.027 0.037 0.003 0.004 < 0.001

Velocity 0.012 0.033 0.031 0.004 0.003 0.012

Force 0.002 46.164 44.401 0.897 0.749 0.002

Velocity 0.003 44.461 46.104 0.852 0.793 0.003

Force < 0.001 4.011 5.510 0.458 0.573 < 0.001

Velocity 0.001 4.999 4.521 0.545 0.477 0.001

Force 0.171 49.561 48.706 1.239 1.278

Velocity 0.030 48.426 49.840 1.305 1.212 0.030

Force < 0.001 0.036 0.050 0.004 0.005 < 0.001

Velocity 0.024 0.045 0.042 0.005 0.005 0.024

Std ErrorLevel Mean

BB_L

(ch2)

MAV

SSC

WL

ZC

RMS

ADL 2

BB_S

(ch1)

AR3

AR4

MNF

MDF

MAV

SSC

WL

ZC

RMS

AR1

AR2
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force < 0.001 2.338 2.304 0.020 0.021 < 0.001

Velocity 0.067 2.314 2.329 0.021 0.020

Force < 0.001 -2.238 -2.133 0.055 0.056 < 0.001

Velocity 0.020 -2.158 -2.212 0.058 0.054 0.020

Force < 0.001 1.080 0.975 0.049 0.047 < 0.001

Velocity 0.012 0.999 1.056 0.050 0.046 0.012

Force < 0.001 -0.246 -0.209 0.015 0.014 < 0.001

Velocity 0.011 -0.218 -0.238 0.015 0.014 0.011

Force 0.022 93.279 91.268 3.221 3.273 0.022

Velocity 0.312 91.753 92.794 3.500 3.001

Force 0.032 79.016 77.379 3.585 3.535 0.032

Velocity 0.797 78.050 78.345 3.814 3.345

Force < 0.001 0.036 0.048 0.009 0.011 < 0.001

Velocity 0.411 0.042 0.041 0.010 0.010

Force < 0.001 47.302 44.703 1.271 1.103 < 0.001

Velocity 0.068 45.359 46.646 1.057 1.334

Force < 0.001 3.794 5.027 0.569 0.680 < 0.001

Velocity 0.006 4.547 4.274 0.603 0.636 0.006

Force 0.151 43.779 42.703 1.426 1.654

Velocity 0.040 42.429 44.054 1.387 1.691 0.040

Force < 0.001 0.046 0.062 0.011 0.014 < 0.001

Velocity 0.289 0.055 0.053 0.013 0.013

Force 0.212 2.237 2.228 0.025 0.024

Velocity 0.314 2.238 2.227 0.022 0.027

Force 0.007 -2.011 -1.952 0.054 0.053 0.007

Velocity 0.984 -1.982 -1.981 0.048 0.060

Force 0.001 0.939 0.865 0.039 0.038 0.001

Velocity 0.425 0.891 0.913 0.035 0.044

Force 0.003 -0.216 -0.190 0.011 0.012 0.003

Velocity 0.118 -0.196 -0.209 0.010 0.013

Force 0.418 75.405 74.619 2.739 3.019

Velocity 0.170 74.284 75.740 2.763 3.010

Force 0.599 59.766 60.264 2.953 2.963

Velocity 0.316 59.532 60.498 2.929 2.989

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

BB_L

(ch2)

AR1

AR2

AR3

AR4

MNF

MDF

BRA

(ch3)

MAV
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force 0.302 0.029 0.034 0.008 0.008

Velocity 0.228 0.030 0.033 0.007 0.008

Force < 0.001 56.755 53.715 1.375 1.525 < 0.001

Velocity 0.271 54.889 55.582 1.456 1.437

Force 0.249 3.646 4.083 0.915 0.692

Velocity 0.834 3.846 3.883 0.740 0.845

Force 0.005 55.887 52.594 2.047 2.123 0.005

Velocity 0.723 54.487 53.995 2.078 2.180

Force 0.252 0.039 0.045 0.011 0.010

Velocity 0.187 0.040 0.044 0.009 0.011

Force 0.398 2.305 2.296 0.027 0.030

Velocity 0.221 2.306 2.294 0.030 0.027

Force 0.046 -2.334 -2.270 0.063 0.070 0.046

Velocity 0.329 -2.316 -2.289 0.069 0.063

Force 0.008 1.303 1.222 0.050 0.056 0.008

Velocity 0.362 1.275 1.251 0.055 0.051

Force 0.003 -0.346 -0.315 0.016 0.018 0.003

Velocity 0.248 -0.336 -0.325 0.017 0.017

Force 0.068 94.600 90.993 3.858 4.544

Velocity 0.287 93.992 91.601 4.136 4.365

Force 0.172 73.791 71.741 4.122 4.586

Velocity 0.210 73.935 71.597 4.204 4.575

Force 0.835 0.006 0.006 0.001 0.001

Velocity 0.345 0.006 0.006 0.001 0.001

Force < 0.001 66.071 64.377 1.155 1.257 < 0.001

Velocity 0.628 65.314 65.135 1.250 1.159

Force 0.191 1.251 1.192 0.201 0.197

Velocity 0.151 1.173 1.271 0.194 0.206

Force < 0.001 68.470 64.282 1.558 1.435 < 0.001

Velocity 0.544 66.677 66.076 1.558 1.562

Force 0.978 0.008 0.008 0.002 0.001

Velocity 0.330 0.008 0.008 0.002 0.001

Force 0.019 2.320 2.307 0.020 0.019 0.019

Velocity 0.727 2.313 2.314 0.019 0.020

RMS

AR1

TRI_LO

(ch5)

MAV

SSC

WL

ZC

RMS

AR1

BRD

(ch4)

MAV

AR2

AR3

AR4

MNF

MDF

SSC

WL

ZC
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force < 0.001 -2.510 -2.444 0.036 0.034 < 0.001

Velocity 0.813 -2.475 -2.479 0.033 0.038

Force < 0.001 1.539 1.467 0.026 0.026 < 0.001

Velocity 0.963 1.503 1.503 0.024 0.029

Force < 0.001 -0.443 -0.413 0.011 0.010 < 0.001

Velocity 0.966 -0.428 -0.428 0.010 0.012

Force < 0.001 111.078 102.805 3.421 3.087 < 0.001

Velocity 0.790 106.689 107.193 3.143 3.549

Force < 0.001 83.152 75.412 3.719 3.307 < 0.001

Velocity 0.447 78.527 80.036 3.287 3.864

Force 0.348 0.007 0.007 0.001 0.001

Velocity 0.343 0.007 0.007 0.001 0.001

Force 0.003 60.977 59.172 0.718 0.752 0.003

Velocity 0.827 60.041 60.108 0.717 0.686

Force 0.663 1.392 1.359 0.208 0.218

Velocity 0.256 1.332 1.420 0.215 0.212

Force < 0.001 64.370 60.866 1.106 1.171 < 0.001

Velocity 0.256 62.185 63.051 1.045 1.274

Force 0.552 0.009 0.009 0.001 0.001

Velocity 0.274 0.009 0.009 0.001 0.001

Force 0.076 2.368 2.358 0.009 0.009

Velocity 0.639 2.361 2.365 0.007 0.011

Force < 0.001 -2.542 -2.479 0.020 0.024 < 0.001

Velocity 0.309 -2.500 -2.521 0.019 0.027

Force < 0.001 1.509 1.432 0.020 0.024 < 0.001

Velocity 0.238 1.459 1.481 0.019 0.026

Force < 0.001 -0.425 -0.392 0.009 0.009 < 0.001

Velocity 0.169 -0.403 -0.413 0.008 0.010

Force < 0.001 108.946 101.898 2.193 2.218 < 0.001

Velocity 0.067 103.847 106.997 1.917 2.664

Force < 0.001 86.848 80.407 2.506 2.209 < 0.001

Velocity 0.051 81.726 85.529 2.042 2.837

Force 0.846 0.008 0.008 0.001 0.001

Velocity 0.050 0.007 0.009 0.001 0.001

TRI_LO

(ch5)

AR2

AR3

AR4

MNF

MDF

TRI_LAT

(ch6)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

TRI_M

(ch7)

MAV
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force 0.015 61.476 59.881 1.056 1.304 0.015

Velocity 0.101 59.869 61.488 1.001 1.442

Force 0.051 1.674 1.424 0.284 0.201

Velocity 0.037 1.400 1.697 0.245 0.251 0.037

Force < 0.001 62.664 57.202 2.003 2.186 < 0.001

Velocity 0.006 58.626 61.239 1.872 2.218 0.006

Force 0.640 0.011 0.011 0.002 0.001

Velocity 0.039 0.010 0.012 0.002 0.002 0.039

Force 0.003 2.348 2.306 0.016 0.022 0.003

Velocity 0.221 2.334 2.321 0.017 0.021

Force < 0.001 -2.507 -2.376 0.042 0.052 < 0.001

Velocity 0.937 -2.441 -2.443 0.044 0.049

Force < 0.001 1.488 1.373 0.037 0.042 < 0.001

Velocity 0.350 1.423 1.438 0.037 0.041

Force < 0.001 -0.416 -0.378 0.014 0.014 < 0.001

Velocity 0.230 -0.393 -0.402 0.013 0.016

Force < 0.001 106.852 95.817 4.228 4.324 < 0.001

Velocity 0.003 98.689 103.980 3.765 4.622 0.003

Force < 0.001 84.040 73.581 4.556 4.143 < 0.001

Velocity 0.029 76.434 81.187 3.815 4.816 0.029

Force < 0.001 0.035 0.047 0.004 0.005 < 0.001

Velocity 0.044 0.043 0.039 0.005 0.004 0.044

Force < 0.001 51.880 50.626 1.253 1.255 < 0.001

Velocity 0.032 50.800 51.706 1.237 1.283 0.032

Force < 0.001 6.343 8.501 0.726 0.902 < 0.001

Velocity 0.067 7.708 7.137 0.902 0.723

Force 0.997 58.084 58.086 1.489 1.468

Velocity 0.060 57.596 58.573 1.474 1.492

Force < 0.001 0.046 0.061 0.005 0.007 < 0.001

Velocity 0.051 0.056 0.051 0.007 0.005

Force 0.994 2.364 2.364 0.011 0.015

Velocity 0.402 2.360 2.367 0.013 0.013

Force 0.251 -2.385 -2.365 0.045 0.052

Velocity 0.261 -2.362 -2.388 0.049 0.049

AR1

AR2

AR3

AR4

MNF

MDF

ISPI

(ch8)

MAV

SSC

WL

ZC

RMS

AR1

AR2

TRI_M

(ch7)

SSC

WL

ZC

RMS
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force 0.054 1.262 1.229 0.050 0.057

Velocity 0.243 1.232 1.259 0.054 0.054

Force 0.030 -0.316 -0.303 0.019 0.021 0.030

Velocity 0.279 -0.305 -0.314 0.020 0.020

Force 0.649 100.271 100.611 2.872 2.728

Velocity 0.180 99.938 100.943 2.847 2.753

Force 0.097 84.800 86.182 2.839 2.637

Velocity 0.396 85.212 85.770 2.730 2.729

Force < 0.001 0.035 0.043 0.003 0.005 < 0.001

Velocity 0.159 0.040 0.038 0.004 0.004

Force 0.081 49.386 48.785 0.774 0.825

Velocity 0.037 48.694 49.476 0.789 0.815 0.037

Force < 0.001 6.448 7.942 0.657 0.866 < 0.001

Velocity 0.125 7.405 6.984 0.763 0.769

Force 0.860 55.775 55.879 1.288 1.531

Velocity 0.858 55.774 55.880 1.337 1.488

Force < 0.001 0.047 0.058 0.005 0.006 < 0.001

Velocity 0.180 0.053 0.051 0.005 0.005

Force 0.003 2.395 2.373 0.013 0.015 0.003

Velocity 0.236 2.389 2.378 0.014 0.014

Force 0.002 -2.418 -2.357 0.037 0.044 0.002

Velocity 0.490 -2.395 -2.380 0.040 0.043

Force 0.001 1.244 1.186 0.035 0.041 0.001

Velocity 0.984 1.215 1.215 0.036 0.040

Force 0.002 -0.294 -0.274 0.012 0.014 0.002

Velocity 0.639 -0.282 -0.286 0.012 0.014

Force 0.477 102.663 101.856 3.259 3.604

Velocity 0.376 102.796 101.723 3.408 3.475

Force 0.663 88.903 88.464 3.725 3.970

Velocity 0.193 89.621 87.746 3.861 3.901

Force < 0.001 0.030 0.038 0.004 0.005 < 0.001

Velocity 0.597 0.035 0.034 0.004 0.004

Force < 0.001 55.584 53.681 1.381 1.339 < 0.001

Velocity 0.794 54.558 54.707 1.362 1.381

LD

(ch10)

MAV

SSC

ISPI

(ch8)

AR3

AR4

MNF

MDF

AD

(ch9)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force < 0.001 5.337 6.648 0.670 0.821 < 0.001

Velocity 0.672 6.055 5.930 0.760 0.743

Force 0.022 57.345 56.053 1.560 1.502 0.022

Velocity 0.251 56.410 56.987 1.456 1.597

Force < 0.001 0.040 0.050 0.005 0.006 < 0.001

Velocity 0.600 0.046 0.045 0.006 0.005

Force 0.025 2.357 2.345 0.010 0.009 0.025

Velocity 0.811 2.350 2.352 0.010 0.009

Force < 0.001 -2.409 -2.353 0.035 0.034 < 0.001

Velocity 0.713 -2.378 -2.383 0.032 0.038

Force < 0.001 1.330 1.261 0.042 0.042 < 0.001

Velocity 0.708 1.292 1.299 0.038 0.046

Force < 0.001 -0.349 -0.322 0.016 0.016 < 0.001

Velocity 0.622 -0.334 -0.338 0.015 0.017

Force 0.141 94.660 93.690 2.245 2.185

Velocity 0.068 93.648 94.701 2.164 2.254

Force 0.499 75.690 76.033 2.160 2.075

Velocity 0.135 75.382 76.341 2.137 2.114

Force 0.006 0.013 0.016 0.002 0.003 0.006

Velocity 0.732 0.014 0.015 0.002 0.003

Force < 0.001 59.715 56.848 1.203 1.220 < 0.001

Velocity 0.463 58.097 58.467 1.220 1.233

Force 0.005 2.220 2.655 0.346 0.426 0.005

Velocity 0.768 2.416 2.459 0.389 0.388

Force < 0.001 60.776 57.880 1.847 1.616 < 0.001

Velocity 0.076 58.829 59.827 1.701 1.758

Force 0.009 0.017 0.021 0.003 0.003 0.009

Velocity 0.685 0.018 0.019 0.003 0.003

Force 0.681 2.333 2.330 0.007 0.009

Velocity 0.810 2.331 2.333 0.008 0.007

Force 0.007 -2.418 -2.367 0.031 0.038 0.007

Velocity 0.464 -2.387 -2.398 0.035 0.033

Force < 0.001 1.389 1.317 0.038 0.044 < 0.001

Velocity 0.441 1.346 1.359 0.042 0.040

LD

(ch10)

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

PD

(ch11)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force < 0.001 -0.378 -0.350 0.015 0.016 < 0.001

Velocity 0.438 -0.362 -0.367 0.016 0.015

Force 0.002 96.639 93.162 2.716 2.348 0.002

Velocity 0.039 94.130 95.671 2.461 2.565 0.039

Force 0.383 73.184 72.315 2.211 2.093

Velocity 0.029 72.123 73.376 2.000 2.221 0.029

Force 0.391 0.052 0.045 0.011 0.005

Velocity 0.037 0.056 0.040 0.011 0.005 0.037

Force 0.614 58.575 58.993 1.887 1.257

Velocity 0.028 58.097 59.471 1.725 1.415 0.028

Force 0.403 12.445 10.582 2.942 1.419

Velocity 0.077 13.470 9.557 2.978 1.279

Force 0.913 70.720 70.551 3.156 2.540

Velocity 0.327 69.878 71.392 3.289 2.360

Force 0.373 0.073 0.062 0.016 0.008

Velocity 0.047 0.078 0.057 0.016 0.007 0.047

Force 0.178 2.340 2.361 0.031 0.022

Velocity 0.363 2.345 2.356 0.030 0.022

Force 0.329 -2.532 -2.573 0.087 0.058

Velocity 0.304 -2.535 -2.569 0.084 0.060

Force 0.437 1.513 1.538 0.071 0.048

Velocity 0.257 1.510 1.542 0.068 0.050

Force 0.825 -0.443 -0.445 0.021 0.017

Velocity 0.366 -0.440 -0.449 0.021 0.017

Force 0.596 129.368 127.857 6.298 5.372

Velocity 0.828 128.310 128.915 6.665 4.891

Force 0.490 112.975 111.181 6.421 5.745

Velocity 0.635 112.701 111.454 6.827 5.264

Force 0.003 0.032 0.038 0.006 0.007 0.003

Velocity 0.413 0.037 0.033 0.008 0.006

Force 0.099 59.073 58.475 2.076 2.129

Velocity < 0.001 58.098 59.451 2.170 2.032 < 0.001

Force 0.001 6.097 7.654 1.085 1.391 0.001

Velocity 0.359 7.056 6.695 1.283 1.203

PD

(ch11)

AR4

MNF

MDF

ECU

(ch12)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF

ECR

(ch13)

MAV

SSC

WL
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force 0.819 68.478 68.255 3.857 4.056

Velocity 0.008 67.699 69.034 4.030 3.838 0.008

Force 0.002 0.042 0.051 0.008 0.009 0.002

Velocity 0.427 0.049 0.045 0.010 0.008

Force 0.459 2.334 2.340 0.031 0.034

Velocity 0.801 2.336 2.338 0.034 0.032

Force 0.729 -2.477 -2.483 0.059 0.063

Velocity 0.309 -2.469 -2.491 0.064 0.058

Force 0.787 1.437 1.432 0.050 0.053

Velocity 0.154 1.421 1.449 0.054 0.049

Force 0.539 -0.402 -0.398 0.019 0.021

Velocity 0.105 -0.395 -0.406 0.020 0.019

Force 0.956 120.676 120.798 7.411 8.150

Velocity 0.059 119.704 121.770 7.837 7.620

Force 0.983 103.884 103.925 7.327 7.902

Velocity 0.460 103.405 104.404 7.762 7.412

Force 0.001 0.029 0.033 0.004 0.005 0.001

Velocity 0.030 0.033 0.030 0.005 0.005 0.030

Force 0.004 59.417 58.412 0.788 0.765 0.004

Velocity < 0.001 58.311 59.518 0.743 0.800 < 0.001

Force 0.003 6.360 7.271 0.985 1.099 0.003

Velocity 0.049 7.161 6.470 1.069 1.025 0.049

Force 0.074 68.038 67.169 1.229 1.168

Velocity 0.168 67.215 67.992 1.211 1.204

Force 0.001 0.040 0.046 0.006 0.007 0.001

Velocity 0.061 0.045 0.041 0.006 0.006

Force 0.173 2.413 2.407 0.009 0.010

Velocity 0.351 2.413 2.407 0.009 0.011

Force 0.039 -2.651 -2.627 0.028 0.029 0.039

Velocity 0.788 -2.641 -2.637 0.029 0.029

Force 0.009 1.578 1.549 0.029 0.029 0.009

Velocity 0.777 1.561 1.566 0.030 0.028

Force 0.012 -0.442 -0.431 0.012 0.012 0.012

Velocity 0.679 -0.435 -0.437 0.013 0.012

FCU

(ch14)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

ECR

(ch13)

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.



Force 0.843 121.839 121.660 3.740 3.723

Velocity 0.765 121.636 121.863 3.767 3.679

Force 0.619 102.583 103.121 4.139 4.112

Velocity 0.528 103.152 102.552 4.193 4.041

Force 0.003 0.025 0.032 0.003 0.005 0.003

Velocity 0.249 0.029 0.027 0.004 0.004

Force 0.007 57.631 56.336 1.051 0.861 0.007

Velocity 0.057 56.577 57.390 0.884 1.025

Force 0.004 5.157 6.380 0.604 0.861 0.004

Velocity 0.124 6.014 5.523 0.777 0.690

Force 0.054 65.116 63.678 1.273 1.258

Velocity 0.814 64.324 64.471 1.185 1.318

Force 0.003 0.034 0.043 0.004 0.006 0.003

Velocity 0.315 0.040 0.038 0.005 0.005

Force 0.942 2.397 2.397 0.010 0.010

Velocity 0.599 2.399 2.396 0.010 0.010

Force 0.280 -2.570 -2.551 0.027 0.029

Velocity 0.882 -2.562 -2.559 0.029 0.027

Force 0.120 1.481 1.451 0.029 0.029

Velocity 0.783 1.464 1.469 0.029 0.028

Force 0.083 -0.403 -0.390 0.012 0.012

Velocity 0.581 -0.394 -0.398 0.012 0.012

Force 0.055 115.917 113.658 3.471 3.818

Velocity 0.459 115.209 114.366 3.749 3.546

Force 0.090 98.154 96.683 4.277 4.610

Velocity 0.332 97.995 96.841 4.566 4.361

FCU

(ch14)

MNF

MDF

FCR

(ch15)

MAV

SSC

WL

ZC

RMS

AR1

AR2

AR3

AR4

MNF

MDF
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Table C.3: Significance, mean, and std error of 11 EMG feature values for 15 muscles for 2 levels
of force and velocity during ADL 2.
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