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Abstract 

The BONEBRIDGE bone-conduction device is used to treat conductive and mixed hearing 

losses. The size of its floating mass transducer (FMT) can preclude implantation in certain 

anatomies, necessitating comprehensive surgical planning. Current techniques are time 

consuming and difficult to transfer to the operating room. The objective of this thesis was to 

develop software for calculating skull thickness to the dura mater to find locations for the 

FMT and to the first air cells which guarantee sufficient bone for the implant screws to grasp. 

Temporal bone computed tomography (CT) images were segmented and processed and 

custom Matlab code was written to generate and test thickness colormaps. For validation, 

measurements performed by a trained otologist were compared to the algorithm estimations 

achieving sub-millimeter accuracy. Results suggest this software can be used in the surgical 

workflow to automate thickness estimation and aid in finding an ideal location for the 

BONEBRIDGE device and screws. 
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Chapter 1  

Introduction 
 

1.1 Overview 

In this thesis, patient data were analyzed for bone conduction implant surgery, an implant 

designed to alleviate hearing loss. A method was then developed to automate a part of the 

surgical planning procedure, with the goal of saving clinical time. This introductory 

chapter begins with a short review on the anatomy and physiology of the ear, followed by 

an explanation of the degrees and types of hearing loss, current bone conduction devices, 

and lastly summarizes the image processing approaches adopted in this research.  

1.2 The Human Hearing System 

The human ear is divided into three sections. External, middle and internal. An overview 

of the human ear anatomy can be observed in Figure 1-1.  

 

Figure 1-1: Coronal cross-section of ear anatomy.  Image courtesy of Stanford 

University School of Medicine [1]  
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The external ear is formed by the auricle and ear canal. It receives sound waves travelling 

through the air in the ear canal and conducts them into the middle ear.  

The middle ear consists of the tympanic membrane and the internal bones that form the 

ossicular chain (incus, malleus and stapes). The sound waves in the ear canal vibrate the 

tympanic membrane, which in turn triggers the ossicular chain that sends the mechanical 

vibrations into the inner ear. 

The inner ear consists of both the vestibular system, which is related to balance, and the 

cochlea and auditory nerve, which are related to hearing. Inside the cochlea, hair cells 

convert the received vibrations into electrical impulses of different frequencies that are 

then sent to the brain via the auditory nerve. Figure 1-2 depicts the main components of 

the middle and inner ears.   

 

Figure 1-2: Middle and inner ear anatomy.  Image courtesy of Stanford University 

School of Medicine [1] 
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1.3 The Temporal Bone 

The human skull has two temporal bones, one on either side of the skull as shown in 

Figure 1-3a.  

 

Figure 1-3: Location of the temporal bone in the skull (a) from [2] and its 

components (b) from [1] 

Each temporal bone is divided into several main sections that can be observed in Figure 

1-3b. The petromastoid is a combination of the petrous and the mastoid sections of the 

temporal bone, and contains the essential organs required for hearing. The fissure 

between the petromastoid and tympanic sections leads into the middle ear, or tympanic 

cavity. The tympanic cavity houses the external acoustic meatus (ear canal). The 

zygomatic process contains the junction where the squamous section and the mandible 

meet. The styloid process serves as an anchor point for several muscles associated with 

the tongue and larynx. The squamous section is formed by thin bone and forms the lateral 

wall of the middle cranial fossa. The squamous section overlaps superiorly with the 

parietal bone, which occupies the largest space of the top and side of the head. The 

parietal bone is delineated in Figure 1-4. 
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Figure 1-4: Location of the two parietal bones (red) in the skull.  (a) Frontal and (b) 

lateral views from [3] 

1.4 Hearing Loss 

Hearing loss is a global public health concern recognized by the World Health 

Organization (WHO). It is the second impairment, after anemia, that affects the greatest 

number of people around the globe [4]. Approximately 1.33 billion people endure hearing 

loss [4], of which 473 million people suffer from disabling hearing loss [5], making up 

5% of the worldwide population. There are currently 34 million children suffering from 

disabling hearing loss where language skills and educational development require special 

attention and are often delayed if the impairment is left unattended, even when hearing 

loss is unilateral [6]. According to the WHO, 60% of childhood hearing loss is 

preventable through public health strategies that deal with infections, birth complications 

and treatment of expectant mothers [7, 8]. In elderly adults (over 65 years), one in every 

three have disabling hearing loss, which can contribute to dementia and cognitive decline 

when untreated [7]. Approximately 19% of the Canadian population from ages 20 to 79 

currently suffer from hearing loss [9], and a billion young people worldwide are at risk of 

permanent damage due to their listening habits [10]. Hearing loss is also more likely in 

households with low income and/or low educational attainment [9]. Hearing loss has a 

worldwide economic impact of 750 billion US dollars annually, with costs associated to 

healthcare, educational support and productivity losses [4, 7]. If causes of irreversible and 
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disabling hearing loss, like with chronic ear infections, occupational noise and ototoxic 

medications are left unattended, the global statistic could rise to 630 million people by 

2030 and to 900 million in 2050 [7], doubling the current occurrence up to 10% of the 

population. To prevent this, the WHO recommends early identification of the issue to 

prompt the use of hearing aids or implants to improve quality of life. It is estimated that 

72 million people could potentially benefit from a hearing device [7], adding to the 

challenge of supplying sufficient access to physicians. 

1.4.1 Types and Degrees of Hearing Loss 

Hearing loss can be classified by type and degree. There are three main types of hearing 

loss. Conductive hearing loss (CHL) is the reduction of sound transmission in the middle 

or outer ear. CHL can be caused by a damaged or perforated tympanic membrane; 

abnormalities preventing the proper movement of the ossicular chain, such as fixed 

malleus syndrome [11]; or pathologies, such as otitis media or middle ear malformations 

[12] in the aforementioned structures; among other causes. Sensorineural hearing loss 

(SNHL) is caused by abnormalities in the inner ear, where speech recognition is often 

decreased. Mixed hearing loss (MHL) is a combination of problems in the outer, middle 

and inner ears, and shares elements from CHL and SNHL. Table 1-1 presents degrees of 

hearing loss in accordance with the American Speech-Language-Hearing Association; 

values are in decibels of hearing loss (dB HL) which measures the degree of hearing loss 

in relation to the standard of normal hearing. 

Table 1-1: Hearing loss categorized by the degree of loss  [13]  

Hearing Loss Degree 

 

Hearing Loss Range 

(dB HL) 

Normal Up to 15 

Slight 16-25 

Mild 26-40 

 Moderate 41-55 

Moderately Severe  56-70 

Severe 71-90 

Profound >91 
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1.4.2 Treatment of Hearing Loss 

Various treatment options are available depending on the type (conductive, sensorineural, 

or mixed) and degree of hearing loss. Patients with mild to moderate hearing loss, 

regardless of type, can largely benefit from wearing hearing aids. Hearing aids deliver 

amplified sound into the ear and do not require surgery.  

Severe to profound hearing loss is most commonly sensorineural, and can be treated with 

a cochlear implant, which involves an electrode that is surgically implanted into a 

patient’s cochlea. Cochlear implants deliver electrical impulses to the cochlear nerve, 

bypassing the outer and middle ear, in order to allow the patient to hear an array of 

frequencies that permit the interpretation of speech.  

Conductive and mild MHL are typically treated with hearing aids.  However, many 

patients cannot wear hearing aids due to previous surgery, recurrent infections, or atresia 

(where the external auditory canal and/or pinna are congenitally malformed). These 

patients can be treated with a bone conduction device (BCD), which bypass the external 

auditory canal and middle ear by transmitting sound vibrations through the temporal bone 

into the cochlea.  

1.5 Bone Conduction Devices 

Bone conduction is the transmission of sound through the bones of the skull, it occurs 

when the vibrations representing sound that normally happen in the middle ear take place 

in the skull instead. These vibrations compress and expand the skull forcing the 

movement of the fluids in the cochlea. The intensity of the transmission depends on the 

incoming sound frequency and bone structure [14]. 

BCDs are embedded in the temporal bone and convert sound into vibrations in the skull, 

which are picked up by the cochlea and then sent to the brain, therefore bypassing the 

middle and outer ears to produce the sensation of hearing. BCDs are a recommended 

treatment for patients with CHL or MHL that do not attain sufficient audiological 

improvement from, or are unable to wear, conventional hearing aids. This can be caused 

by a number of reasons including occlusion of the outer ear canal, recurrent infections, or 
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persistent drainage [15, 16]. BCDs are the only option to treat CHL when it is 

accompanied by bony atresia or intractable drainage [15]. 

Percutaneous devices were the first type of BCD developed during the 1970s out the 

necessity to improve on the discomforts of conventional hearing aids, such as auditory 

feedback and pressure [14]. The most commonly used device of this category is the 

Bone-Anchored Hearing Aid (BAHA), introduced in Sweden in the late 1970s [17]. The 

BAHA stimulates the temporal bone via an osseointegrated (adhered to bone) screw 

made of titanium and an abutment through the skin (percutaneous) connected to the 

external unit. After no longer being able to wear conventional hearing aids, patients have 

reported improvement in speech recognition, sound quality, and comfort with the BAHA 

[18]. Even though the complication rate for the BAHA is low, the percutaneous abutment 

and the interface with the titanium screw can represent risk of recurring infection, skin 

overgrowth, or wound dehiscence [16].   

Passive transcutaneous BCDs avoid the issues related to the percutaneous nature of the 

BAHA by stimulating a magnet implanted transcutaneously through an external 

stimulator, vibrating the bone through the skin instead of directly. However, it has been 

reported that in comparison with the BAHA, the hearing improvement at higher 

frequencies is considerably lower, and the vibration in the soft tissue may cause a variety 

of skin problems such as swelling or infection after fitting [19]. A transcutaneous version 

of the BAHA was introduced in 2013 [20]. 

In active transcutaneous BCDs, vibrations are transmitted directly to the temporal bone 

via a floating mass transducer (FMT) that converts sound into vibrations. This active 

component is implanted in the bone under the skin. In contrast with the percutaneous 

BAHA, the electrical signal from the processor is transmitted through the skin instead of 

through mechanical vibrations [19]. Active transcutaneous BCDs have fewer 

complications than percutaneous and passive BCDs, but they can be surgically 

challenging to insert [19]. 
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1.6 The BONEBRIDGE 

The BONEBRIDGE is a partially implantable, active transcutaneous BCD developed by 

MED-EL (Innsbruck, Austria) that was first implanted in June 2011 as part of a clinical 

trial and was launched onto the European market in September 2012. The first 

BONEBRIDGE implant in North America was performed at London Health Sciences 

Centre in April, 2013 [21, 22].  

The device consists of a floating mass transducer (FMT) surgically implanted into the 

temporal bone, which is powered trancutaneously by a transmitter coil [16, 23] and a 

digital audio processor that is magnetically held in place by the aforementioned coil 

beneath the skin [24]. In addition to CHL and MHL, the BONEBRIDGE can in some 

cases treat severe-to-profound SNHL in one ear, also known as Single Sided Deafness 

(SSD) if the contralateral ear has normal hearing. The BONEBRIDGE device is 

displayed in Figure 1-5.  

 

Figure 1-5: The BONEBRIDGE, its components and dimensions.  Image courtesy of 

MED-EL [25] 

As opposed to the BAHA, the two screws securing the device in the temporal bone do not 

need to be osseointegrated, therefore the BONEBRIDGE can be activated 

approximatively three weeks after implantation surgery [24]. Furthermore, 
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osseointegration of screws with the BAHA have been shown to fail in some pediatric 

cases [26].  

The BONEBRIDGE is indicated for patients who are aged 5 years and above, have 

conductive or mixed mild-to-moderate hearing loss and can still benefit from sound 

amplification. The main audiological requirement is that the pure tone average (PTA) 

bone conduction (BC) threshold measured at 0.5, 1, 2, 3 and 4 kHz should be better than 

or equal to 45 dB of hearing loss per ear. PTA refers to the average hearing threshold of a 

given set of frequencies. This parameter helps determine the degree of residual hearing 

the patient has and their capacity to interpret speech. 

Individuals with any of the following conditions in their medical history may benefit 

from the BONEBRIDGE, being that they are unable to wear conventional hearing aids: 

revision tympanoplasty, ear canal stenosis or chronically draining ears, otosclerosis or 

tympanosclerosis that cannot be rectified by surgery, or congenital malformations where 

ear canals are absent and cannot be restored through conventional surgery. The screening 

process to determine candidacy for the BONEBRIDGE also involves checking for 

sudden deafness, acoustic neuroma, or other conditions which cause severe to profound 

sensorineural hearing loss on one side [14].  

The BONEBRIDGE was developed to improve the audiological outcomes associated 

with passive transcutaneous BCDs and to reduce the complications associated with 

percutaneous BCDs. A recent systematic review of 29 studies, of which 12 studied safety, 

found that implant-related complications occurred in only 6 out of 117 patients, where 

minor adverse events such as headaches and wound pain were experienced and only one 

case required superficial revision surgery [14]. Other events included postoperative 

wound pain and dizziness, temporary tinnitus, headache, vertigo, seroma, and skin 

infection. Another study by Lassaletta et al. evaluated 27 postoperative BONEBRIDGE 

patients using pain questionnaires and found no significant postoperative pain 

irrespective of the sigmoid sinus (venous channels to the brain) or dural compression 

(external layer of the brain), and postoperative pain scores were similar to those 

experienced by patients with other transcutaneous auditory implants [27].  
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1.6.1 Implant Surgery 

The implant surgery for the BONEBRIDGE consists of drilling a bed in the temporal 

bone which allows for the placement of the FMT in accordance with the implant’s 

dimensions. There are currently three surgical approaches described in the literature and 

each is performed depending on a patient’s specific anatomy. The transmastoid approach 

is the most common approach for cases with previous middle ear surgeries with normal 

anatomy and is dependent on the volume of the mastoid. The venous sinuses and the dura 

mater are least likely to be compromised in this approach. The retrosigmoid approach is 

indicated for patients with difficult mastoid anatomy and is ideal for patients who have 

undergone previous mastoidectomy for chronic otitis media. However, the bone in this 

region is often curved, and surgery requires dissection of the nuchal musculature. The 

middle fossa approach may also be used as an alternative to the transmastoid approach.  

In this approach, the incision is located above the ear in the squamous temporal bone and 

is approximately 3 cm in length (comparatively smaller than in the other two 

approaches), and cosmetically hidden in the hairline. Since the bone in this area can be 

thin, dura may be exposed; however there is minimal risk or sequelae [28, 29].  

Approximate locations for the mentioned approaches are displayed in Figure 1-6.  

 

Figure 1-6: Locations for BONEBRIDGE implant.  Mastoid (MS), retrosigmoid 

(RS) and middle fossa (MF) 
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In difficult cases, compression of the sigmoid sinus or dura can appear unavoidable, but it 

can be minimized by using BCI lifts. The BCI lifts are washers ranging in size from 1 to 

4 mm and can be attached to the BONEBRIDGE FMT to allow it to fit difficult 

anatomies [14]. Figure 1-7 showcases the BCI lifts.  

 

Figure 1-7: The BCI lifts , from 1 to 4 mm in size, aid in the implantation of the 

BONEBRIDGE in difficult anatomies. Image courtesy of MED-EL [25] 

1.6.2 Computed Tomography 

Computed tomography (CT) is an imaging modality capable of generating cross-sectional 

images (slices) by using X-rays taken from different angles of the target anatomy. CT 

images are displayed in grayscale representing the intensity of the light absorbed by the 

observed tissue. Head CT scans are typically used to detect head injury, where the darker 

structures indicate less tissue density and brighter structures indicate denser tissue. A 

head CT scan is employed in determining if a patient’s anatomy is appropriate for the 

placement of the BONEBRIDGE implant. CT allows for good visualization of 

anatomical landmarks relevant to the implant surgery, such as the sigmoid sinus and the 

cochlea [14, 30]. Figure 1-8 displays a single axial head CT slice.  
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Figure 1-8: Axial slice view of a head CT scan.  Only one slice of a sequence of slices 

is shown. Image courtesy of 3D Slicer [31, 32] 

CT datasets consist of stacks of multiple two-dimensional (2D) slice images of the same 

specimen. Figure 1-9a represents a stack of axial head CT slices forming a 3D dataset. 

Slice data can be displayed in three-dimensional (3D) environments using medical image 

visualization software such as the open-source 3D Slicer software (www.slicer.org) [31, 

32]. Figure 1-9b demonstrates the 3D rendering of the same dataset.  

In CT, gray level intensities are described by the Hounsfield scale. The values in the scale 

are related to the linear attenuation coefficient of tissues and are expressed in non-

dimensional units, called Hounsfield units (HU) or CT numbers, that are determined by 

the following formula: 

𝐻𝑈 = [
μ𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−μ𝑤𝑎𝑡𝑒𝑟

μ𝑤𝑎𝑡𝑒𝑟
] × 1000 

 

http://www.slicer.org/
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Figure 1-9: Sample head CT scan.  (a) Representation as a stack of 2D slices forming 

a (b) 3D Rendering of the same dataset. Image courtesy of 3D Slicer [31, 32] 

where μ𝑤𝑎𝑡𝑒𝑟 tends to zero and is the linear coefficient of water. Medical grade CT 

scanners are calibrated with water as the reference. Table 1-2 lists HU values for 

common biological materials. The Hounsfield scale is used in image analysis applications 

to locate the boundaries of a material within an image with a known HU number. 

Table 1-2: Reference intensity values in the Hounsfield Scale [33–36] 

Substance HU 

Air -1000 

Lung -600 to -700 

Fat -50 

Water 0 

Blood +13 to +75 

Muscle +50 

Brain 0 to +100 

D4 Bone (Fine 

trabecular bone) 

+150 to +350 

D3 Bone (Porous 

trabecular bone) 

+350 to +850 

D2 Bone (Thick 

porous cortical bone) 

+850 to +1250 

D1 Bone (Dense 

cortical bone) 

>1250 
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1.6.3 Surgical Planning 

For BONEBRIDGE implantation, the patient’s anatomy is analyzed by visualizing the 

bony anatomical structures to determine if it allows for appropriate placement of the 

FMT implant. Specifically, the region of the skull that is selected must be thick enough to 

fully house the implant.  

Manually finding a suitable location is achieved by performing a CT scan of the patient’s 

head and navigating through the axial orientation CT slices to try to find a suitable 

location for the FMT based on the distance to the dura mater (the outer layer of 

membrane protecting the brain). It is essential that during this procedure, the anatomy is 

analyzed to avoid the risk of injury to important anatomical structures, including the 

chorda tympani [37], the sigmoid sinus or the facial nerve [38] during implantation [39]; 

or significant modification of the temporal bone pneumatisation (the air cell1 system) that 

could affect the middle ear pressure buffers [40].  

Manually determining the most suitable location to implant the FMT is time consuming 

and hinders the surgical workflow, which is why surgeons have expressed a need for 

quick and intuitive skull thickness estimation tools. A few attempts have been made to 

develop algorithms to estimate the thickness of the skull from each patient’s CT scan and 

generate a map that can visually guide the surgeon in selecting a location that is thick 

enough to house the implant. 

1.7 Image segmentation 

Segmentation is an image processing technique used to partition a digital image to 

simplify its analysis. Image segmentation is employed in medical imaging to separate 

anatomical structures for visualization and diagnosis. Thresholding is the simplest form 

of segmentation, where an HU number is used as the lower grayscale intensity boundary 

to binarize an image into two values: pixels with HU equal to or above the threshold 

                                                 

1
Air cells in bone are cavities filled by air. Air cells are present in human temporal bones. The air cells 

connect to the middle ear.  
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represent pixels inside the segmentation (assuming the region of interest is brighter than 

other tissue) and HU values below the threshold are considered outside the segmentation. 

The opposite applies if the threshold is set as an upper boundary (i.e., the tissue of 

interest is darker than the other tissue). Figure 1-10 shows the segmentation result when 

using a lower threshold value of 150 HU, therefore labelling all pixels within the data 

with intensities 150 HU and above as the segmented part. Because the thinner type of 

bone is described as having a CT number of 150 HU, the figure displays the skull within 

the dataset. 

 

Figure 1-10: Segmentation results (BELOW) and 3D model (ABOVE) of sample 

data using 150 HU threshold to segment bone. 

1.8 Literature Review 

To improve on slice-by-slice manual processing to find a suitable implant location, some 

surgeons have reported using volume rendering of the BONEBRIDGE FMT inside CT 

images of the head, and simultaneously navigating through axial slices to determine a 

location with sufficient space to house the implant [14]. A common tool used for this 

approach is the BB FASTVIEW (CEIT, Guipuzcoa, Spain) software. The only guidance 

to find the location for the implant are the anatomical landmarks and the patient’s clinical 

history [14]. This approach does not consider the air cells in the skull which are important 
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for screw placement as described below. Also, processing times have been reported to be 

over an hour long [41]. 

Other approaches overlay color maps on temporal bone models using different colors to 

depict the thickness of the bone from the cortical layer, but with no consideration of the 

air cells of the skull [42, 43]. This is problematic as the inclusion of the air cells in the 

segmentation can lead to over-estimation of the bone thickness, which may result in 

surgical complications if an implant location where there is not enough bone to hold the 

surgical screws is selected. Figure 1-11 represents a fictional case where the 

segmentation would prevent the visualization of the air cells, and the implant (overlaid) 

would be placed in an area without enough thick bone to hold it. Improper placement of 

the implant can result in secretory otitis media, among other complications such as 

cholesteatoma [40]. The software developed for this approach was presented as a C++ 

application with much quicker run rimes than the BB FASTVIEW approach, but it is not 

available to the public for download [42].  

 

Figure 1-11: Representation of an axial slice view of a segmentation where air cells 

are considered bone (LEFT). Example of implant location where there is not enough 

bone to hold the BONEBRIDGE’s surgical screws (RIGHT) 

1.9 Objective 

The main objective of this work was to develop a prototype thickness estimation software 

tool that would consider the air cells in the estimates to produce colored thickness maps 

of the distances from the cortical bone layer to the first air cell and from the cortical layer 
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to the dura mater, therefore aiding in the surgical planning of the BONEBRIDGE FMT, 

as well as the placement of the screws. The second objective was to validate the tool by 

comparing a sample of the algorithm’s thickness estimations to measurements made by a 

surgeon with BONEBRIDGE implantation experience.  

1.10 Hypothesis  

It was hypothesized that bone thickness estimates obtained from both the proposed 

algorithm and expert measurements to air and to dura would not differ significantly from 

each other. 
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Chapter 2  

Development and Validation of a Surgical Planning 

Tool for Bone-Conduction Implants 

 

2.1 Background 

The BONEBRIDGE® (Med-El GmbH, Innsbruck, Austria) is a transcutaneous bone-

conduction device (BCD) intended to treat conductive (CHL) and mixed hearing losses 

(MHL). The device consists of an externally worn audio processor and a subcutaneous 

floating mass transducer (FMT) implant that is surgically anchored to the temporal bone 

[1]. The external component powers the FMT, classifying the BONEBRIDGE as an 

active, semi-implantable BCD [2]. The active nature of the FMT avoids the transfer of 

vibrational energy transcutaneously, thus overcoming the shortcomings of percutaneous 

and passive transcutaneous bone conduction devices [3, 4].  

One disadvantage of the BONEBRIDGE is that the FMT is 8.7mm in height and 15.8mm 

in diameter, therefore surgical planning is required in order to find safe locations for 

implantation. Currently described locations include the mastoid, retrosigmoid, and middle 

fossa areas [5]. In the mastoid, there can often be limited room between the sigmoid 

sinus, tegmen mastoideum2, external auditory canal, and facial nerve to safely house the 

implant. This location is often excluded in patients with chronic otitis media or previous 

mastoidectomies [4]. The retrosigmoid and middle fossa areas are alternatives in these 

cases, however the skull thickness can often preclude complete implantation without 

dural compression and/or the use of BCI lifts [5–9].  In addition, the screws securing the 

implant typically require 3-4 mm of cortical bone thickness for fixation, however in 

                                                 

2
 The thin plate of bone that covers the middle ear. 
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highly pneumatized temporal bones, the cortex adjacent to the air cells can be very thin. 

An implanted BONEBRIDGE is shown in Figure 2-1. 

 

 

Figure 2-1: Cross-section of an implanted BONEBRIDGE bone-conduction device 

[10] 

Current surgical planning techniques use computed tomography (CT) images to perform 

manual thickness measurements [10]. As these are conducted on two dimensional slices, 

the eventual location is difficult to transfer to the patient in the operating room. Some 

research groups such as Zernotti [5] and Weiss et al. [7] have experimented with the BB 

FASTVIEW tool (Center for Technical Studies and Research at the University of 

Navarra, Spain) which allows visualization of the FMT inside CT slices and three-

dimensional (3D) reconstructions. In their work, they described three potential 

implantation sites and their subjective experience with the tool. Kong et al. [11] also used 

BB Fast View combined with image guidance to find potential implantation locations on 

one patient in the operating room. This approach, however, was time consuming with the 

navigation process taking over 90 minutes [11].   
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Plontke [12] proposed a similar planning tool that implemented 3D visualization with 

AMIRA (Thermo Fisher Scientific, Waltham, MA, USA), however this commercial tool 

is costly and not readily available to surgeons for pre-operative planning. This technique 

also required manually moving the virtual implant to determine the optimal location, with 

no automated guidance for the surgeon. 

Treece et al. [13, 14] developed a technique to calculate the cortical thickness in 

cadaveric femurs. This method consisted of thresholding to find an initial approximate 

surface, then fitting the surface to the data by comparing the intensity values on the 

cortical layer. Next, a new surface was interpolated and its vertices and normals were 

used to guide the thickness calculation, which was solved with a generic curve fitting 

algorithm that found the local image minima. This algorithm estimated the cortical 

thickness for each surface vertex, yielding approximately 17,000 thickness estimates per 

sample. Lillie et al. adapted this algorithm to measure cranial vault cortical thickness, 

which was found to be below 4 mm on average in multiple areas of the skull [15, 16].  

Wimmer et al. [17] described a different technique to measure the thickness of the 

temporal bone for the surgical planning of bone-conduction implants. This method 

incorporated thresholding, cropping, manual editing, and then morphological filtering to 

find the inner and outer surfaces of the bone. The thickness was estimated by calculating 

the Euclidean distance (straight-line distance) between their vertices. This generated a 

distance from the cortical bone to the dura, however the air cells were not considered as 

they had been filled via a morphological hole filter. The last iteration of this group’s 

technique, described by Barakchieva et al. [18], was developed using the C++ 

programming language. 

The primary objective of the current study was to develop an open-source, automated 

thickness estimation algorithm for surgical planning of the BONEBRIDGE. This novel 

technique would include the total thickness of the bone for FMT placement, as well as 

consideration of the air cells for placement of the screws.  The secondary objective was to 

validate this algorithm against manual measurements made by an experienced surgeon.  
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2.2 Methods 

2.2.1 Clinical CT images  

Twelve cadaveric temporal bone CT images were obtained using a Discovery CT750 HD 

Clinical Scanner (GE Healthcare, Chicago, IL). The scanner was set to acquire images at 

a resolution of 234 µm, a slice thickness of 0.625 mm, and an x-ray voltage of 120 kV. 

Ethics approval was obtained through Western University’s Committee for Cadaveric 

Use in Research (approval number #19062014). The data used in the current study are 

available from the corresponding author upon request. 

2.2.2 Algorithm Development 

2.2.2.1 Segmentation 

To prototype the algorithm, the images were first processed using the open source 

software 3D Slicer (www.slicer.org). The region of interest (ROI) contained the entire 

temporal bone, including the mastoid, retrosigmoid, and middle fossa areas.  

Segmentation was then performed utilizing a thresholding filter to separate bone from 

surrounding soft tissues. Depending on the case, dilation was used to add single layers of 

voxels to the nearest eight integers; a connectivity filter was used to remove regions 

smaller than 400 voxels not connected to the enclosed segmentation, and the 

morphological remove islands filter was used to remove regions partly connected to the 

segmentation smaller than 200 voxels. This ensured the final segmentations were closed 

surfaces. Lastly, the resulting closed surfaces were converted into models.  

2.2.2.2 Post-Processing 

The segmented models were exported to Geomagic (3D Systems, Morrisville, North 

Carolina, USA) for smoothing and averaging. This was done to reduce the number of 

triangles in the surface mesh, thereby preventing long computation times. The 

intersections and small components parameters were set to zero in the Mesh Doctor 

function of Geomagic to ensure convergence of the algorithm. The outer surfaces of the 

models were then separated from the rest of the model and used to initialize thickness 

estimation.  

http://www.slicer.org/
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2.2.2.3 Ray Casting 

A custom program was written in Matlab (MathWorks, Natick, Massachusetts, USA) to 

implement a traversal ray casting algorithm, adopted from Amanatides and Woo [19], on 

the segmented models. The primary parameters of the algorithm were the voxel intensity 

thresholds of the cortical bone, air cells and the dura mater (Figure 2-2). The first two 

thresholds used in this experiment were selected in accordance with the Misch 

classification of bone [20]. The threshold for bone was set to 600 Hounsfield units (HU), 

corresponding to thin cortical bone, and the threshold for air was set to 150 HU, below 

the fine trabecular bone intensity. These parameters were determined during development 

by visualizing the algorithm results on test images. HU values tested for thicknesses to air 

are displayed in Figure 2-3.  

 

 

Figure 2-2: Schematic illustrating the ray casting algorithm to the first air cell and 

to dura 

The program obtained the outer surface model triangulation and used the triangle centers 

as starting points for the thickness estimations. Each ray was cast from the first bone 

voxel in the normal direction of its respective triangle towards the inside of the skull.  

The traversed distance was measured at the intersecting voxels, which were found to be 

below the grey levels in HU set for air and dura. The script was written to inspect 20 

consecutive voxels beyond the voxel where the threshold was reached to ensure that the 
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algorithm had actually found dura, and not a large air cell.  

 

 

Figure 2-3: Thickness color maps from bone to air cells at (A) 400, (B) 150 and (C) 

1000 HU. The units of the colorbar are mm. 

2.2.2.4 Visualization 

The voxels traversed by the rays were converted to distance in millimeters. Two sets of 

thickness estimates per sample were then saved; the first being the thickness from the 

outer surface to the first air cell, and the second being the distance from the outer surface 

to the dura. Two color maps showing these estimates were visually overlaid onto the 

segmented models. The color maps for the distance to the first air cell were specifically 

set from 0 to 4 mm, corresponding to the amount of cortical thickness needed to fully 

embed the screws. The color map to the dura was set from 0 to 9 mm, which corresponds 

to the thickness of the actual FMT (8.7 mm).   

2.2.3 Validation 

To compare the algorithm’s estimations with expert observations, a neurotologist 

experienced in BONEBRIDGE implantation (S.K.A.) performed measurements using a 

set of uniformly distributed points (n=200) laid on the cortical layer of the temporal bone.  

These points were distributed to cover the most common implantation areas in the 

mastoid, retrosigmoid, and middle fossa areas. The expert visualized each point in the 

axial slice view and placed fiducials on the cortical bone, first air cell, and dura as shown 
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in Figure 2-4. The fiducials were converted to a distance in millimeters to correspond to 

the same distances calculated by the algorithm.   

 

 

Figure 2-4: Grid of evenly distributed points laid by the program (A). Expert 

measurements from the cortical bone in reference to the first air cell and to dura (B) 

2.2.3.1 Statistical Analyses  

The data were analyzed using IBM SPSS Statistics (Version 23.0. Armonk, IBM Corp., 

New York USA) and graphed with GraphPad Prism (Version 7.00, GraphPad Software, 

La Jolla California USA). The means, 95% confidence intervals (95% CI), differences, 

and mean absolute differences (MAD) were calculated.  Normality was evaluated using 

skewness, kurtosis, and the Shapiro-Wilk test. The Spearman’s ranked correlation 

coefficient was calculated, and the Wilcoxon signed-rank test was used to determine 

differences between the algorithm and expert measurements. Significance was set to p < 

0.05. Multiple comparisons were controlled using the Holm–Bonferroni method. The 

differences and absolute differences between the algorithm and expert observations were 

then calculated and included in the database. 
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2.3 Results 

2.3.1 Algorithm 

The ray-casting algorithm was successfully implemented and a surgical planning tool was 

developed to be used by surgeons pre-operatively. Each cortical surface consisted of 

approximately 135,000 triangles, and the program was multi-threaded allowing for the 

processing of multiple samples simultaneously. The workstation had a core-i7 (Intel 

Corporation, Santa Clara, CA, USA) processor, 24 GB memory, and an Nvidia GTX 970 

graphics card (Nvidia Corporation, Santa Clara, CA, USA). The total computation time 

was approximately 10 minutes per sample.   

The top part of Figure 2-5 shows a thickness color map of a thick sample bone, where 

most areas except for the most anterior part of the middle fossa can hold the screws. The 

same applies to the FMT, while also avoiding the most inferior part of the mastoid. Areas 

with thinner bone would require dural compression and/or BCI lifts for successful 

implantation. A thinner sample bone is shown in the bottom part of Figure 2-5, where the 

sigmoid sinus is visible in the bone to dura thickness map. In this case, the most 

appropriate location for the FMT and the screws would be in the medial mastoid. The 

tool is meant to suggest potential implantation areas which are to then be confirmed by 

the surgeon.  
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Figure 2-5: Thickness color map from bone to air cell (LEFT) and bone to dura 

(RIGHT).  Sample with thick cortical bone (TOP). Sample with thinner cortical 

bone (BOTTOM). Units in mm. 

 

2.3.2 Validation 

2.3.2.1 Bone to air Cell Measurements 

When comparing all points (n=200), the automated (mean=4.7 mm, CI of 4.3-5.0 mm) 

and expert (mean=4.7 mm, CI of 4.4-5.0 mm) bone to air thickness measurements were 

not significantly different, p=0.36. The MAD was small (0.30 mm, CI of 0.26-0.34 mm). 

The raw data are graphed in Figure 2-6, revealing excellent correlation between the 

algorithm and expert measurements (r=0.98, p>0.001).  
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Figure 2-6: Scatter-plot of measurements from bone to air cell by the algorithm and 

expert. 

An analysis by sub-site is provided in Figure 2-7. In the mastoid area (n=17), the 

automated (mean=4.4 mm, CI of 3.2-5.7 mm) and expert measurements (mean=4.5 mm, 

CI of 3.2-5.8 mm) were not significantly different, p=0.98. Similarly, for the middle fossa 

(n=140), the automated (mean=4.3 mm, CI of 3.9-4.7 mm) and expert (mean=4.3 mm, CI 

of 4.0-4.7 mm) thicknesses were not significantly different, p=0.76. Nonetheless, in the 

retrosigmoid area (n=23), the automated (mean=5.6 mm, CI of 4.5-6.6 mm) thickness 

measurements were statistically smaller than the expert (mean=5.8 mm, CI of 4.9-6.7 

mm) markings, Z = -2.1, p=0.03. In addition, when controlling for family-wise error with 

the Holm-Bonferroni method, all p-values for the subsets of air measurements remained 

above a=0.05 after correction, thereby not rejecting the null hypothesis in any case.   
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Figure 2-7: Box-plot of algorithm and expert measurements to the first air cell.  All 

points, mastoid, middle fossa, and retrosigmoid areas. The star represents 

significant difference, p<0.05 

2.3.2.2 Bone to dura Measurements 

When comparing all points (n=200), the automated (mean=6.0 mm, CI of 5.4-6.5 mm) 

and expert (mean=5.9 mm, CI of 5.4-6.5 mm) bone to dura thickness measurements were 

significantly different, Z = -3.7, p<0.01. The MAD was small (0.31 mm, CI of 0.28-0.35 

mm). The raw data are graphed in Figure 2-8, revealing excellent correlation between the 

algorithm and expert measurements (r=0.99, p>0.001).  
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Figure 2-8: Scatter-plot of measurements from bone to dura by the algorithm and 

expert  

Sub-site results can be observed in Figure 2-9. In the mastoid (n=17), the automated 

(mean=14.5 mm, CI of 11.2-17.7 mm) and expert (mean=14.8 mm, CI of 11.5-18.2 mm) 

measurements were not significantly different, p=0.06. This was also the case in the 

retrosigmoid area (n=23), where the automated (mean=6.1 mm, CI of 5.1-7.1 mm) and 

expert (mean=6.3 mm, CI of 5.4-7.2 mm) measurements were not statistically different, 

p=0.16. However, in the middle fossa (n=140), the automated (mean=4.8 mm, CI of 4.4-

5.2 mm) bone to dura thickness measurements were significantly different than the expert 

(mean=4.6 mm, CI of 4.3-5.0 mm) markings, Z=-5.8, p<0.01. In addition, when 

controlling for family-wise error with the Holm-Bonferroni method, the middle fossa was 

the only subset of dura measurements where the p-values were below a=0.05 after 

correction, being the only area where the null hypothesis was rejected. 
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Figure 2-9: Box-plot of algorithm and expert measurements to the dura.  All points, 

mastoid, middle fossa, and retrosigmoid areas. The star represents significant 

difference, p<0.05 

The differences between the expert and algorithm for bone to air cell and bone to dura 

measurements are shown in Figure 2-10. For bone to air measurements, the MAD values 

by sub-site were 0.37 mm, CI of 0.14-0.60 mm for the mastoid; 0.28 mm, CI of 0.31-0.60 

mm for the middle fossa; and 0.45 mm, CI of 0.23-0.32 mm for the retrosigmoid. The 

MAD for dura measurements were 0.60 mm, CI of 0.4-0.80 mm for the mastoid; 0.26 

mm, CI of 0.23-0.30 mm for the middle fossa; and 0.46 mm, CI of 0.35-0.60 mm for the 

retrosigmoid.  

An overview of the variance within the populations is summarized in Table 2-1, where 

the algorithm, expert and MAD means are displayed along with their respective 95% 

confidence intervals (95% CI). 
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Figure 2-10: Box-plot of algorithm and surgeon differences in millimeters. Positive 

results indicate the algorithm had a larger estimate than the expert. Negative results 

indicate larger measurements by the surgeon 

 

Table 2-1: Mean absolute difference (MAD) results by area with 95% confidence 

intervals. Measurements in millimeters (mm). 

Thickness to Air Cells 

Area Algorithm Expert MAD 

 Mean 95% CI Mean 95% CI Mean 95% CI 

Mastoida  4.4 3.2-5.7 4.5 3.2-5.8 0.37 0.14-0.60 

Middle Fossab 4.3 3.9-4.7 4.3 4.0-4.7 0.28 0.23-0.32 

Retrosigmoidc 5.6 4.5-6.6 5.8 4.9-6.7 0.45 0.31-0.60 

Alld 4.7 4.3-5.0 4.7 4.4-5.0 0.30 0.26-0.34 

Thickness to Dura 

Area Algorithm Expert MAD 

 Mean 95% CI Mean 95% CI Mean 95% CI 

Mastoida  14.5 11.2-17.7 14.8 11.5-18.2 0.60 0.4-0.80 

Middle Fossab 4.8 4.4-5.2 4.6 4.3-5.0 0.26 0.23-0.30 

Retrosigmoidc 6.1 5.1-7.1 6.3 5.4-7.2 0.46 0.35-0.60 

Alld 6.0 5.4-6.5 5.9 5.4-6.5 0.31 0.28-0.35 
a n=17, b n=140, c n=23, d n=200 including 20 points close to implantation sites 
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2.4 Discussion 

Current approaches to the surgical planning of the BONEBRIDGE reported in the 

literature include manual image-guided placement. This approach consists of using CT 

images to visualize an implant model that is manually placed by the surgeon inside 

regions of the CT corresponding to potential placement locations; thickness maps are not 

provided for guidance. Plontke et al. [12] and Cho et al. [21] used commercial software to 

simulate the implant inside the images. Kong et al. [11] used a freely available program, 

BB Fast View (CEIT, Guipuzcoa, Spain), and Todt et al. developed [22] and reviewed 

[23] a similar simulator using open-source software ZIBAMIRA (Zuse Institute Berlin, 

Germany). Law et al. [24] used the program 3D Slicer to visualize the FMT and screws to 

find a suitable implantation location by measuring bone thickness in the skull landmarks. 

In Matsumoto and colleague’s work [25], a surface template guide was also visualized as 

a guide for surgery. Among these studies, Law and colleagues [24] did not consider 

perforating large air cells, whereas most other studies considered air cells as part of the 

bone in their manual estimations. In contrast, Inui et al. [26] presented ray casting as a 

general application to determine thickness and clearance in 3D objects. In the current 

study, a thickness estimation algorithm was prototyped that accounted for the air cells in 

the temporal bone, thereby preventing overestimation of the thicknesses to air and to the 

dura mater.  

The first applied topographical thickness map was presented in Wimmer’s original 

publication [17]. His group used Amira (thermofisher.com/amira-avizo) to process the 

images and lay a color map. Later, Barakchieva et al. [18] presented an approach using 

C++. In the current study, we present a prototype for which the running time of the 



36 

 

algorithm per bone was approximatively ten minutes. Our results suggest that with the 

current parameters, this algorithm can aid in the surgical planning of the BONEBRIDGE 

FMT in all three implantation areas.  

Measurements to the dura had statistically significant variation (p<0.01). Despite this, the 

overall MAD was 0.31 mm (CI of 0.28-0.35 mm) which is below the 0.625 mm slice 

thickness, making the magnitude of the variance not clinically relevant. The MAD by 

area was 0.6 mm for the mastoid, 0.26 mm for the retrosigmoid and 0.46 mm for the 

middle fossa; all below the axial resolution of 0.625 mm, therefore confirming acceptable 

variance in clinical CT images. The MAD between air measurements was also below the 

image resolution, being 0.3 mm for all (n=200) measurements. The variance in the dura 

can be attributed to the way it was calculated, being from temporal bone images with no 

actual dura or brain. The algorithm was therefore programmed to find a location where it 

would expect to see the dura, sometimes mistaking large air pockets with the expected 

location of the brain. With full-head images, HU values of the brain areas or dura can be 

inputted within the program’s parameters, along with the original code, to increase the 

overall accuracy of the algorithm.  

Each of the major steps in the image-processing pipeline (segmentation, post-processing 

and ray casting) was implemented in different software packages (3D Slicer, Geomagic 

and a custom MATLAB program, respectively). This adds to the processing time and 

could be made more efficient by developing custom C++ functionality and incorporating 

it into a single 3D Slicer module. The parameters can be further constrained to reduce the 

variation and facilitate the porting of the algorithm to an open-source, downloadable tool. 

A path towards computational efficiency can be found by limiting the number of triangles 
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in the triangulation while maintaining accuracy as in Ramm’s work [23]; his team 

segment the data using a statistical shape model approach that has several limitations, 

which make it unsuitable for thickness estimation.  

Some measurements made by the algorithm were very different from the surgeon’s. 

These outliers were caused by the algorithm calculating the normal directions using the 

triangles from the outer cortical surface in 3D, as opposed to the surgeon performing 

thickness measurements only using the axial orientation, which is typically observed to 

analyze head CT scans but represents 2D data. These points were excluded from the 

statistical analyses since the 3D calculation of the normals would be closer to the actual 

ones. The points that were used in the analyses therefore reflected the program and the 

surgeon measuring the same thicknesses, from very similar angles, while maintaining a 

high sample size for statistical power. 

2.5 Conclusion 

At the prototype stage, our algorithm allowed the visualization of faithful representations 

of the bone to air and bone to dura distances at clinical CT resolution. With further 

automation and porting, it can be developed into a viable surgical planning tool to 

suggest implant locations for the BONEBRIDGE and similar BCDs with submillimeter 

accuracy. It is intended that in its final stage, the algorithm will reduce the amount of pre-

clinical time spent analyzing patient anatomy for these types of implants.  
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Chapter 3  

Conclusions and Future Work 

 

3.1 Contribution 

Software for estimating skull thickness for the surgical placement of bone-conduction 

devices, such as the BONEBRIDGE, was developed and presented in this thesis. The 

software computed the local thickness at discrete locations on the skull and color-mapped 

the estimated thicknesses onto the segmented skull, displaying the measurements on two 

colormaps. One colormap was for thickness estimates obtained as the distance from bone 

to the first air cell, and the other colormap was from bone to dura. The colormaps can be 

used by surgeons to visually locate a region of the skull that is thick enough to house the 

BONEBRIDGE and its screws.  

Previous software reported in the literature included the air cells in the thickness 

calculations, allowing the possibility of overestimation. The software developed in this 

work differs in a surgically important manner, as it presents the results of two thickness 

calculations: a colormap of bone to the air cells and a colormap of bone to the dura. In 

other words, instead of only considering the thickness from the cortical bone to dura, it 

allows computation of thickness from bone to the first encountered air cell as well. This 

is important because the screws of the BONEBRIDGE cannot be secured in pneumatized 

areas of the skull. Moreover, as the screws of the BONEBRIDGE transmit vibrations into 

the skull, they must grasp cortical bone.  

The computation time of the algorithm to calculate and display both colormaps was 

approximatively 10 minutes per temporal bone, which is reasonably short. Previous 

approaches where the implant location was determined by visualizing the FMT within CT 

images ranged from 30 [1] to 90 minutes [2] in manual image navigation time. Other 

colormapping approaches in the literature have comparable running times [3, 4]; 

however, due to the exclusion of the air cells in their estimates, they are more prone to 

over-estimation if ported to a clinical application.  
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The thickness estimates in the current study were validated by comparing to an expert 

with several years of experience implanting the BONEBRIDGE device. Thicknesses 

estimated by the algorithm to air and to dura were very close to the expert measurements, 

suggesting that the software can be used in the surgical workflow to automate thickness 

estimation and aid in finding a location for the BONEBRIDGE on a patient-specific 

basis. This contribution is a step towards implementing decision support for surgical 

planning of the BONEBRIDGE and similar BCDs.   

3.2 Limitations and Future Work 

3.2.1 Additional Testing 

The BONEBRIDGE is a relatively new device and is only used at a limited number of 

hospitals. In London, Ontario, BONEBRIDGE surgeries are only performed by one 

surgeon, who is also trained with respect to image-based planning for BONEBRIDGE 

implantation. Hence, a limitation of this study is that the thickness estimation algorithm 

was only tested with respect to one surgeon. To account for inter-observer variability, 

testing needs to be expanded to include other surgeons, preferably with experience in the 

BONEBRIDGE device as well. This would require coordination among multiple 

hospitals and could result in several collaborative studies. 

3.2.2 Decision Support 

The current version of the program is still at the prototype stage, requiring supplementary 

research and augmentation before its clinical use. A decision support system can be 

developed to display candidate implant locations, with or without the BCI lifts, and 

automatically recommending the safest, simplest surgical route. This system can be 

validated with a user study. Identifying skull landmarks is also important for the transfer 

of the image coordinates to the patient’s skull, therefore future versions of the algorithm 

can implement this function and investigate its accuracy to minimize complications from 

improper implant placement. The algorithm will require an intuitive user interface after 

all additional functions are implemented and validated to provide surgical planning of the 

BONEBRIDGE in the clinic. 
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3.2.3 Porting 

Currently, a user’s manual describes all of the processing steps and software packages 

used. Once validated at multiple institutions, the intent is to make the software publicly 

available for the community to use. The C++ programming environment can be 

employed to port the algorithm into a single application as it works with available image 

processing toolkits such as the Insight Toolkit (https://itk.org)[5]. This would allow for 

the incorporation of the algorithm into a single 3D Slicer module with a dedicated 

graphical user interface for easier use. Multi-threading and GPU processing can also be 

explored to achieve the maximum computing efficiency.  

  

https://itk.org/


43 

 

References 

1. Plontke SK, Radetzki F, Seiwerth I, Herzog M, Brandt S, Delank K-S, et al. Individual 

computer-assisted 3D planning for surgical placement of a new bone conduction 

hearing device. Otol Neurotol. 2014;35:1251–7.  

2. Kong TH, Park YA, Seo YJ. Image-guided implantation of the BONEBRIDGE TM 

with a surgical navigation: A feasibility study. Int J Surg Case Rep. 2017;30:112–

7.  

3. Barakchieva MM, Wimmer W, Dubach P, Arnold AM, Caversaccio M, Gerber N. 

Surgical planning tool for BONEBRIDGE implantation using topographic bone 

thickness maps. Int J Comput Assist Radiol Surg. 2015;10:97–8.  

4. Wimmer W, Gerber N, Guignard J, Dubach P, Kompis M, Weber S, et al. Topographic 

bone thickness maps for BONEBRIDGE implantations. Eur Arch Oto-Rhino-

Laryngology. 2015;272:1651–8. 

5. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. 

Engineering and algorithm design for an image processing Api: a technical report 

on ITK the Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.  

 

 

 

  



44 

 

Curriculum Vitae 
 

Name:   Carlos Daniel Salgado Ojeda, B. Eng. 

 

Post-secondary  National Technological Institute of Mexico 

Education and  Mexicali, Baja California, Mexico 

Degrees:   2006 – 2011 B.Eng. Mechatronics Engineering 

 

Western University 

London, Ontario, Canada 

2016 – 2018 MESc. Electrical and Computer Engineering 

 

 

Honors and   Consejo Nacional de Ciencia y Tecnología (CONACYT) 

Awards:  Graduate Scholarship 

2016 – 2018 

 

Electrical and Computer Engineering Graduate Travel Award 

2018 

 

 

Related Work  Teaching Assistant 

Experience   Western University 

MSE 2201 –  Introduction to Electrical Instrumentation 

ECE 2238 –  Introduction to Electrical Engineering 

2016 – 2018  

 

 

Publications: 

 

Salgado CD, Rohani SA, Ladak HM, Agrawal SK. Development and Validation of a 

Surgical Planning Tool for Bone-Conduction Implants. J Otolaryngol Head Neck Surg. 

Submitted July 2018 

 

Poster Presentations 

2018 – Salgado, Carlos D. Rohani, S. A., Ladak, H.M., Agrawal, S.K. Bone Thickness 

Estimation Software for Surgical Planning of a Bone-Conduction Implant. Association 

for Research in Otolaryngology (ARO), San Diego, USA, February 10th 

 

Invited Talks 

2018 – Validation of a Surgical Planning Tool for Bone-Conduction Implants. Physics 

Academy Science Thursdays, Autonomous University of Baja California Mexicali, 

Mexico, March 22nd    

2018 – Validation of a Surgical Planning Tool for Bone-Conduction Implants. 

Otolaryngology Head and Neck Surgery Resident and Graduate Student Research Day, 



45 

 

Western University, London, Ontario, Canada, May 4th   

 

2018 – Validation of a Surgical Planning Tool for Bone-Conduction Implants. Electrical 

and Computer Engineering Graduate Research Symposium, Western University, London, 

Ontario, Canada, May 8th  

 

 


	Development of image-based surgical planning software for bone-conduction implants
	Recommended Citation

	Development of image-based surgical planning software for bone-conduction implants

