
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-7-2018 2:00 PM 

Real-time Intrusion Detection using Multidimensional Sequence-Real-time Intrusion Detection using Multidimensional Sequence-

to-Sequence Machine Learning and Adaptive Stream Processing to-Sequence Machine Learning and Adaptive Stream Processing 

Gobinath Loganathan 
The University of Western Ontario 

Supervisor 

Samarabandu, Jagath 

The University of Western Ontario Co-Supervisor 

Wang, Xianbin 

The University of Western Ontario 

Graduate Program in Electrical and Computer Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of 

Engineering Science 

© Gobinath Loganathan 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Digital Communications and Networking Commons, and the Systems and 

Communications Commons 

Recommended Citation Recommended Citation 
Loganathan, Gobinath, "Real-time Intrusion Detection using Multidimensional Sequence-to-Sequence 
Machine Learning and Adaptive Stream Processing" (2018). Electronic Thesis and Dissertation 
Repository. 5523. 
https://ir.lib.uwo.ca/etd/5523 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F5523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F5523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F5523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5523?utm_source=ir.lib.uwo.ca%2Fetd%2F5523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

A network intrusion is any unauthorized activity on a computer network. There are host-

based and network-based Intrusion Detection Systems (IDS’s), of which there are each signature-

based and anomaly-based detection methods. An anomalous network behavior can be defined

as an intentional violation of the expected sequence of packets. In a real-time network-based

IDS, incoming packets are treated as a stream of data. A stream processor takes any stream

of data or events and extracts interesting patterns on the fly. This representation allows ap-

plying statistical anomaly detection using sequence prediction algorithms as well as using a

stream processor to perform signature-based intrusion detection and sequence extraction from

a stream of packets. In this thesis, a Multidimensional Sequence to Multidimensional Se-

quence (MSeq2MSeq) encoder-decoder model is proposed to predict sequences of packets and

an adaptive and functionally auto-scaling stream processor: “Wisdom” is proposed to process

streams of packets. The proposed MSeq2MSeq model trained on legitimate traffic is able to

detect Neptune Denial of Service (DoS) attacks, and Port Scan probes with 100% detection rate

using the DARPA 1999 dataset. A hybrid algorithm using Particle Swarm Optimization (PSO)

and Bisection algorithms was developed to optimize Complex Event Processing (CEP) rules in

“Wisdom”. Adaptive CEP rules optimized by the above algorithm was able to detect FTP Brute

Force attack, Slow Header DoS attack, and Port Scan probe with 100% detection rate while

processing over 2.5 million events per second. An adaptive and functionally auto-scaling IDS

was built using the MSeq2MSeq model and “Wisdom” stream processor to detect and prevent

attacks based on anomalies and signature in real-time. The proposed IDS adapts itself to obtain

best results without human intervention and utilizes available system resources in functionally

auto-scaling deployment. Results show that the proposed IDS detects FTP Brute Force attack,

Slow Header DoS attack, HTTP Unbearable Load King (HULK) DoS attack, SQL Injection

attack, Web Brute Force attack, Cross-site scripting attack, Ares Botnet attack, and Port Scan

probe with a 100% detection rate in a real-time environment simulated from the CICIDS 2017

dataset.
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Chapter 1

Introduction

1.1 Motivation

The rise in popularity of cloud computing has caused data and software housed in local work-

stations to migrate to remote servers. The Internet of Things (IoT) and mobile devices heavily

rely on services provided over the Internet. Availability of user data in a central point and the

single point of failure attract attackers to breach servers. Intrusion Detection Systems are being

used to detect such attacks in a network or a host. However, these days there are a lot of tools

developed to automate attacks. New attacks are being invented by evading the detection tech-

niques used to prevent existing attacks. For example, GoldenEye Denial of Service (DoS) [1]

attack evades HTTP Unbearable Load King (HULK) DoS [2] detectors by adding randomness

to packets. Therefore, an Intrusion Detection System (IDS) should be able to detect unknown

attacks or at least should be able to adapt to detect evolving attacks.

There are host-based and network-based intrusion detection systems, of which there are

each signature and anomaly based methods [3]. Anomaly-based systems detect intrusions

based on anomalous behaviors observed in a network. There are no ideal machine learning

models to detect anomalous packets with a 0 prediction accuracy. Therefore a minimum pre-

diction accuracy threshold is used to classify anomalous packets. Such anomaly-based IDS’s

1



2 Chapter 1. Introduction

require a large amount of anomalous traffic to detect attacks with enough confidence. For

example, in a SYN Flood DoS attack, the attacker sends a large number of SYN requests to

the victim, which is a noticeable anomalous traffic in a network. However, attacks targeting

selected system vulnerabilities using a few number of packets are hard to detect for anomaly-

based systems. Signature-based systems detect attacks based on predefined attack specific rules

regardless of the number of packets involved in the attack. For example, a Structured Query

Language (SQL) Injection attack is easy to detect by looking for SQL keywords in request

parameters.

Figure 1.1: TCP Three-way Handshake – a legitimate TCP sequence starts with SYN, fol-
lowed by SYN-ACK and ends with ACK.

In this research, an anomaly-based network intrusion is defined as an intentional violation

of expected behavior or network protocols. A network protocol is a well-defined sequence of

packets often represented by a state machine. For example, a Transmission Control Protocol

(TCP) handshake as shown in Figure 1.1 is a sequence of three TCP packets with TCP flags:

(SYN, SYN-ACK, ACK). An intentional violation of this rule in Direct SYN Flood DoS attack



1.1. Motivation 3

as depicted in Figure 1.2 is an anomalous sequence with a large number of (SYN, SYN-ACK,

SYN, SYN-ACK, ...) packets in which the order of SYN-ACK may differ. The ability of machine

learning algorithms trained on legitimate traffic to detect unseen attacks makes them suitable

for anomaly-based IDS’s. Researchers have already proposed several machine learning algo-

rithms to detect network intrusions [4, 5]. To the best of my knowledge, none of them except

Bontemps et al. have taken advantage of the sequential relationship of packets in a legitimate

network connection to detect intrusions. Bontemps et al. aligned packets arrived in a prede-

fined interval as a sequence and trained a stacked Long Short-Term Memory (LSTM) Recurrent

Neural Network (RNN) to predict last n − 3 packets using first 3 packets of a sequence where

n is the number of packets in a sequence [6]. However, their definition of the sequence may

include completely unrelated packets from different connections which can drastically reduce

the accuracy. Grouping packets arrived in a predefined interval as a sequence gives rise to

unrealistic sequences depending on external factors such as peak business time.

Figure 1.2: Direct SYN Flood – an intentional violation of TCP three-way handshake in which
the attacker keeps sending SYN requests.
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Sommer and Paxson discussed some of the challenges in using machine learning for in-

trusion detection including a) high cost of errors, b) semantic gaps like alert generation and

organization-specific policies, c) diversity of network traffic, and d) lack of appropriate pub-

lic datasets [7]. Even though these problems still exist in machine learning based intrusion

detection, signature-based IDS’s like Snort [8] are less affected by these problems because a

carefully developed signature-based rule generates a relatively smaller number of false alarms

than machine learning methods [3]. Commercial signature-based IDS’s provide the necessary

infrastructure to send alarms to interested stakeholders. In addition, signatures developed by

domain experts do not require public datasets to define those rules. However, diversity of net-

work traffic is a problem for signature-based IDS’s. For example, receiving more traffic in a

peak season is normal for an online retail service but receiving a similar amount of traffic on

a regular day can be a symptom of DoS attack. Signature-based IDS’s must be able to adapt

according to external conditions to overcome this problem. In addition, existing IDS’s do not

utilize available resources other than network packets. Using all data sources like network

packets, application logs, system logs, and policy changes can improve the detection ratio.

Complex Event Processing (CEP) is a reactive programming paradigm used in respond-

ing to real-time events based on predefined rules. Stream processors provide the necessary

infrastructure to develop and deploy CEP rules for a wide range of applications including

intrusion detection [9], healthcare [10], fleet management [11], and power grid [12]. Com-

mercial stream processors like Apache Flink [13], Esper [14], and WSO2 Stream Processor

[15] support different input sources and output sinks like File, Email, Hypertext Transfer Pro-

tocol (HTTP) connection, TCP connection, Message Queuing Telemetry Transport (MQTT)

connection, Databases, and Message Queues [16, 13]. Some products even support writing

custom receivers and producers with minimal effort [16, 13]. The ability of stream processors

to receive data from multiple sources and emit events to different receivers makes them a better

alternative to signature-based IDS’s. SQL like stream processing queries offered by most of

the stream processors are much more expressive and easy to learn than IDS rules. A common
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Figure 1.3: Intrusion Detection System – a high-level architecture of the adaptive and func-
tionally auto-scaling IDS developed using Wisdom Stream Processor and MSeq2MSeq model.

weakness of existing stream processors is their inability to adapt according to external condi-

tions. There were several attempts made on dynamic query deployment [17], adaptive stream

processing [18], and automatic query mining with an intention to replace domain experts with

machines [19, 20, 21, 22]. However, none of them were used outside of research environ-

ments due to the unrealistic assumptions made by researchers such as raw events not being

complex, or a single CEP rule template being able to represent all complex events. Therefore,

stream processors still require manual deployment of new queries when there is a change in

requirement and do not address the challenge of “diversity of network traffic” when it comes

to intrusion detection using stream processors.

In this research, a network-based IDS was built using both anomaly-based and signature-

based detection techniques as shown in Figure 1.3 with a preliminary focus on detecting attacks
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in real-time. Even though the proposed IDS is tested using network packets, the signature-

based rules of the proposed IDS can be used as a host-based IDS. The proposed IDS can

be hosted anywhere in a network and fed with packets captured using network monitoring

tools like Wireshark [23] and other required information like application logs in real-time. The

anomaly-based intrusion detection problem is mapped to multidimensional sequential anomaly

detection problem (see chapter 3.1 for details) and a novel Multidimensional-Sequence-to-

Multidimensional-Sequence (MSeq2MSeq) model based on the traditional Sequence-to-Sequence

(Seq2Seq) model [24] is proposed for real-time anomaly-based intrusion detection [25]. The

model was trained using packets from regular network traffic split into sequences. In testing,

actual packets highly deviating from predicted packets are classified as anomalies. Training the

model on normal traffic instead of intrusion traffic gives access to large training data and lets the

model detect even new unknown attacks those are deviating from a regular pattern. Humans are

better than machines at designing logical CEP rules due to their cognition. However, expecting

a human to modify deployed rules in real-time based on the dynamics of the operating envi-

ronment is not practical. To address this, a new adaptive and functionally auto-scaling stream

processor: “Wisdom” has been developed which can optimize its queries automatically using

swarm intelligence1 [27]. We use the term “functionally auto-scaling” to mean the ability of

“Wisdom” stream processor to add more features by starting or to reduce resource consumption

by stopping unwanted rules. Using such a self-tuning stream processor in intrusion detection

solves the problem of “diversity of network traffic” by adjusting thresholds on the fly based

on the dynamics of the environment. Humans also need an expressive language to code their

knowledge in defining an attack signature. Semantics used to define rules in popular IDS’s like

Snort are not expressive enough and hard to interpret for a novice user. Therefore, “Wisdom”

supports SQL like “Wisdom Query” language which is expressive enough for humans to code

their knowledge. At the same time, “Wisdom Query” also provides variables and annotations

which are used by the stream processor itself to optimize the rule and to automate deploy-

1Intelligent behavior of a decentralized population emerged by intractability and non-representability of indi-
vidual agents [26]. Swarm Intelligence is widely being used in decision making and optimization algorithms.
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ment. “Wisdom” stream processor is used to build other core components of the IDS including

signature-based detectors. “Wisdom” stream processor supports the following input sources:

HTTP endpoints, gRPC [28] endpoints, Apache Kafka [29] Topics, CSV files, and packet cap-

ture (pcap) files from which events may be read. Output event sinks implemented in “Wisdom”

include: HTTP endpoints, gRPC endpoints, Apache Kafka Topics, Console and Text files. New

input sinks and output source can be developed with minimal effort using “Wisdom” extension

library2. Variety of sources and sinks let the IDS read data from multiple sources including raw

network packets, system logs, application logs, and user feedback and send alerts to different

stakeholders like system admin, network firewall or even a dashboard for statistical purposes.

However, within the IDS, Apache Kafka is used to provide loosely coupled communication

between “Wisdom” applications3. Quality of a self-tuning CEP rule is highly determined by

the data used to tune threshold values at the runtime. Since we do not have control over what

is received at the runtime, the self-tuned rule may miss some attacks which could be detected

with original user-defined thresholds. To overcome this problem, a Minimum Rate Guaranteed

deployment of tunable signature-based rules is proposed (see Figure 1.3) using two additional

clones of the actual CEP rule which are used to tune the CEP rule in a sandbox and to detect

attacks using tuned CEP rule along with the actual rule (discussed in chapter 4.6.1).

In addition to the adaptiveness of stream processor, particular attention was paid on utilizing

system resources for intrusion detection. Stream processors like Apache Flink [13] supports

distributed deployment of rules where each CEP operators can be scaled up and down. Even

though stream processors can distribute and scale operators, not all stateful operators are hori-

zontally scalable [30]. Especially when it comes to dynamic CEP operators, it is hard to track

and atomically update them in a horizontally scaled environment. Therefore, a novel function-

ally auto-scaling deployment of CEP rules in a distributed environment is proposed to utilize

the available resources. As depicted in Figure 1.3, each “Wisdom” rule deployed in the IDS

2How to write a Wisdom extension is explained at https://slgobinath.github.io/wisdom/
wisdom-extensions

3In this thesis, “Wisdom application”, “Wisdom rule” and “Wisdom query” are used interchangeably to refer
a CEP logic developed using Wisdom stream processor.
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is a standalone microservice [31] application. Therefore they can be scaled up and down in-

dividually depending on the requirement. The “Wisdom Manager” and “Filter Query” along

with other rules form a functionally auto-scaling infrastructure to reduce the overall resource

consumption of the IDS. In this deployment, “Wisdom” queries with low priority are kept off

by the “Wisdom Manager” until some events related to those queries are sent by the “Fil-

ter Query”. More details about functionally auto-scaling deployment is discussed in Chapter

4.6.2 and the minimum resource consumption of the proposed functionally auto-scaling IDS is

demonstrated in Chapter 5.3.

The proposed machine learning model itself cannot solve the problems addressed by Som-

mer and Paxson. However, the signature-based IDS built on top of the adaptive stream proces-

sor generates a smaller number of false positives, and false negatives and adapts at the runtime

based on the diversity of network traffic. The ability of “Wisdom” stream processor in receiv-

ing and sending events through various protocols let the proposed IDS receive organization-

specific policies and send alerts to different stakeholders. Signature-based IDS’s do not require

datasets to define rules because attack signatures are developed by domain experts based on

how an attack works. It makes signature-based IDS’s not affected by the availability of public

dataset. Therefore, the proposed hybrid IDS supporting both signature-based detection and

anomaly-based detection successfully overcomes common challenges encountered in machine

learning based IDS’s. In Phase 1 evaluation, the proposed MSeq2MSeq model was compared

with the LSTM RNN model used by Bontemps et al. [25]. The model developed by Bontemps

et al. was able to detect Neptune DoS attack with 100% detection rate and 63 false alarms in

DARPA 1999 dataset [6]. The MSeq2MSeq model along with the definition of sequence was

able to detect Port Scan probe and Neptune DoS attack with 100% detection rate and only a

single false alarm was produced in DARPA 1999 dataset [25]. The proposed IDS was tested

with four signature-based rules and an anomaly-based rule against CICIDS 2017 dataset [32].

It was able to detect File Transfer Protocol (FTP) Brute Force attack, HTTP Slow Header DoS

attack, HULK DoS attack, SQL Injection attack, Web Brute Force attack, Cross-site scripting
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attack, Ares Botnet [33] attack, and Port Scan probe with 100% detection rate.

1.2 Contributions

To summarize, this thesis presents the following contributions:

• A novel MSeq2MSeq model which can be used in any multidimensional sequence pre-

diction problem like intrusion detection, weather prediction, and stock prediction is de-

veloped.

• An adaptive and functionally auto-scaling stream processor: “Wisdom” is implemented

which can be used for any stream processing applications such as intrusion detection,

fraud detection, and fleet management.

• Suitability of Bayesian Optimization Algorithm (BOA) and Particle Swarm Optimization

(PSO) for CEP rule optimization is compared, and a hybrid algorithm using PSO and

Bisection algorithm is implemented as part of the “Wisdom” Stream Processor.

• Prototype of a distributed IDS using MSeq2MSeq model for anomaly-based intrusion

detection and “Wisdom” stream processor for signature-based intrusion detection is de-

veloped and tested using CICIDS 2017 dataset. The proposed IDS supports adaptive

rules and functionally auto-scaling deployment with the support of “Wisdom” stream

processor. Minimum Rate Guaranteed deployment ensures that the adaptive rules will

never reduce the detection rate of initial rules with user-defined thresholds. Semantics

of the SQL like “Wisdom” query used in the proposed IDS is easy to learn than the

semantics of Snort [8] rules.
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1.3 Document Structure

The remainder of this thesis is organized as follows: The mathematical formulation of map-

ping intrusion detection to sequence prediction problem and CEP rule optimization problem

are presented in Chapter 3. A literature review is presented in Chapter 2 which describes dif-

ferent intrusion detection techniques and early research activities on building dynamic stream

processors. In Chapter 4, the methodology of the proposed method is described in detail. It

contains detailed description and architecture of the MSeq2MSeq model, “Wisdom” stream

processor and the proposed IDS. Tests conducted to evaluate the MSeq2MSeq model, the IDS,

and functionally auto-scaling deployment are elaborated in Chapter 5. Obtained results in all

test cases are presented and discussed in Chapter 6. Finally, the conclusion of the research and

future work are discussed in Chapter 7.



Chapter 2

Background

2.1 Intrusion Detection

Maheshkumar and Gursel used nine different pattern recognition, and machine learning al-

gorithms to detect attacks in the KDD CUP 1999 dataset [4]. The authors proposed a multi-

classifier model using Multilayer Perceptron for probe attacks, K-means algorithm for DoS and

User-to-Root (U2R) attacks, and Gaussian classifier for Remote-to-Local (R2L) attacks based

on the results they obtained. The proposed multi-classifier was able to detect probe attacks,

DoS attacks, U2R attacks, and R2L attacks with 0.887, 0.973, 0.298, and 0.096 detection rates

respectively. Since KDD CUP 1999 is a pre-processed and flattened dataset, this work does

not take advantage of the sequential relationship of packets.

Bontemps et al. used LSTM RNN based model to detect Neptune DoS attack with 100%

true positives and 63 false positives in the time series version of KDD CUP 1999 dataset using

collective anomalies in a network [6]. 63 false alarms in a five day period are not accept-

able for an IDS. In their research, the model was trained using attack-free traffic to predict a

sequence of packets using the first three packets. The average prediction error was used to

classify anomalies. Bontemps et al. defined all packets arrived within a fixed time window as

a sequence. However, within a time window, there can be packets from multiple connections

11
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and multiple clients which are independent of each other. Furthermore, packets arrived within

a time window is depending on external factors like peak business hours which do not have

a constant pattern. Therefore their proposed solution may not give the claimed accuracy with

real datasets.

Lobato et al. used stream processors with machine learning algorithm to detect DoS and

probe attacks in real-time [34]. They used a stream processor to receive logs from applications

and packets from Bro Network Security Monitor [35]. The authors used Decision Tree, Artifi-

cial Neural Network (ANN), and Support Vector Machine (SVM) algorithms for unsupervised

classification and obtained above 90% accuracy with ANN and SVM algorithms. Though they

used stream processor, it was not used for signature-based detection. Furthermore, the ANN

used in this research is just a linear regression model which does not take advantage of the

sequential order of packets. Therefore it has no significant difference from Maheshkumar et

al.’s work [4].

Massimo and Luigi proposed a signature-based IDS using a stream processor [9]. In this

work, authors assumed that an attack requires some mandatory pre-steps to complete and de-

veloped CEP rules to detect those patterns. For example, they assumed that an SQL Injection

attack always starts with a Port Scan followed by Directory Traversal and Buffer Overflow

within a predefined time frame. However, the authors agree that it is hard to define an interval

which covers all these steps because an attacker may execute each of them at different times

depending on his level of patience. Furthermore, a hacker can attack a known public endpoint

using SQL Injection without scanning open ports. Therefore, this methodology is not suitable

for a real IDS.

2.2 Sequence to Sequence Encoder Decoder Model

Intrusion detection based on anomalies in a sequence of packets requires a machine learning

model to predict sequences of packets. Similar sequence prediction problem has been already
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Figure 2.1: Sequence to Sequence Encoder Decoder Model – a stacking recurrent architec-
ture for translating a source sequence “I am a student” into a target sequence “Je suis étudiant”.
Here, marks the end of a sequence. [45]

addressed in Neural Machine Translation (NMT) in which source and translated sentences are

treated as sequences of words. NMT researchers have moved from LSTM RNN to Seq2Seq

Encoder-Decoder model since the work of Sutskever et al. [24]. The model was later improved

by other researchers and became the state-of-the-art solution in NMT [24, 36, 37, 38, 39, 40].

For example, the sentence “I am a student” in English can be translated into “Je suis étudiant”

in French using Seq2Seq model as shown in Figure 2.1. The Seq2Seq model is also used in

object recognition in video [41, 42] and anomaly detection in series of events [43]. Malhotra et

al. used stacked LSTM RNN and Seq2Seq model to detect anomalous sensor data [43, 44]. In

their research, Seq2Seq model gave better results for unpredictable datasets, whereas stacked

LSTM RNN gave better results for predictable datasets [43].

The sequence in NMT is a sentence formulated by words in a given order. Similarly, the

sequence in video analysis is a grid of pixels aligned sequentially. In both cases, elements of

a sequence are one-dimensional items such as words or pixels. Datasets used by Malhotra et

al. also contain sequences of single dimensional sensor readings. However, in packet predic-

tion, both input and output are sequences of multidimensional packets. Selected attributes of

a packet may or may not have interdependencies. In such a multidimensional Seq2Seq prob-

lem, the model must learn those interdependencies and the contribution of each attribute in

predicting the following element.
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In NMT, some words are more important than others. Attention layers were introduced

to the Seq2Seq model to focus on the more relevant word in source sentence [37, 38, 39]. In

a video frame, some pixels may be more important than others. Such important pixels are

extracted using convolutional encoders [41, 42]. Sutskever et al. reversed the encoder input

to introduce short-term dependencies and obtained a better result in English to French NMT

because it reduces the average distance between target words [24]. Luong et al. also obtained

better results by reversing the input sentence in English to German NMT [38]. Bahdanau et al.

used Bidirectional Recurrent Neural Network (BiRNN) instead of LSTM in Seq2Seq model

which can read input sequence in both directions [37].

2.3 Adaptive Stream Processor

Machine learning algorithms for anomaly detection and publicly available stream processors do

not address the problem of “diversity of network traffic” as discussed in Chapter 1. Even though

several attempts were made to build adaptive stream processors, all of them were limited to cer-

tain domains and datasets due to the unrealistic assumptions made by researchers. This section

briefly analyzes such attempts and their applicability to intrusion detection. Mousheimish et al.

proposed automatic predictive CEP rule mining from classified multivariate time series dataset

[19]. Their learning algorithm first searches for subsequences across a time series input. The

length of possible subsequences is limited by user-defined lower and upper bounds. Later,

it prunes redundant parts of subsequences and builds a CEP rule using subsequence with the

highest accuracy. This approach is limited by user-defined sequence lengths and limited CEP

rule templates which are not guaranteed to fit all use cases.

Margara et al. developed iCEP which can generate CEP rules using time window, selector,

logical operator, pattern, and aggregator [20]. iCEP learns interesting events and time frame

followed by aggregators and filters, and finally parameters and sequences in an independent

three-phase pipeline. In this approach, errors made in early stages of the pipeline can prop-
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agate and affect the following learners. For example, if “Time Window Learner” does not

capture all the necessary events, “Sequence Learner” cannot learn a sequence at the end of

the pipeline. Isolated learning phases of iCEP fail to address the correlation between CEP

operators. Therefore, a rule generated by iCEP may not perform well on a highly correlated

domain.

Lee et al. proposed CEP rule mining based on similarity match [21]. In this work, authors

clustered event sequences, extracted a complex event based on similarity across sequences from

the same cluster and finally generated a complex event pattern using Markov Transition model.

The proposed clustering algorithm calculates the distance between two sequences based on the

cosine similarity between individual events and their position in sequence. The attribute to

calculate cosine similarity is determined by domain experts.

Mehdiyev et al. used Elitist Pareto-based Multi-Objective Evolutionary Algorithm to select

event attributes and Fuzzy Unordered Rule Induction Algorithm to classify events [22]. Au-

thors compared the proposed algorithm with other classification algorithms but did not propose

a way to generate CEP rules using the proposed algorithm. They also admit that generating

CEP rules from the output of their classifier is a difficult challenge to address.

All above CEP rule mining methodologies were developed with an intention to replace do-

main experts with machines. However, they rely on false assumptions like raw events not being

complex, TimeWindow being enough to collect events in all scenarios, or a single CEP rule

template being able to represent all complex events. These assumptions oversimplify the prob-

lem and do not capture the real world requirements. Furthermore, these solutions mainly focus

on generating rules for frequently occurring patterns. In anomaly driven domains like intru-

sion detection, such frequently occurring patterns represent legitimate traffic in training data.

Hence rules developed using frequently occurring patterns may not work well for detecting

anomalous traffic.

Turchin et al. defined CEP rules based on probability score of selected attributes and tuned

threshold values using Discrete Kalman Filter based on expert feedback and event history [18].
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The concept of tuning rule parameters and the application of adaptive rules to detect attacks in

DARPA 1999 dataset are close to this research. Therefore, Turchin et al.’s results have been

chosen as a benchmark to compare the results obtained in this research. However, their contri-

bution to CEP rule optimization may not be widely applicable because their rules neither use

any CEP operators like Filter1 or Window2 nor follow CEP semantics. Therefore, their solu-

tion does not address any problems we raised in Chapter 3.2 such as correlated parameters or

discontinuous function. Instead, they calculate anomalous probability score of request length,

response length, possible “SYN” error, and hostname for each packet. A packet is classified as

an anomaly by comparing the total score of these four attributes with two threshold values. Us-

ing anomalous probability score of the hostname will give high accuracy in a simulated dataset

but not in an actual deployment. For example, in CICIDS 2017 dataset, Firewall translates the

hostnames of most of the attackers to the same IP address. Similarly, in DARPA 1999 dataset,

same hosts were reused multiple times to simulate different attacks. In both these datasets, the

anomalous probability score of attackers will be high and yield a high accuracy. In a real attack,

there is a high chance of an attacker to spoof the IP address so that the anomalous probability

score of that unknown IP will be close to zero which will reduce the accuracy of the system.

BOA [46] is widely being used by researchers for hyperparameter optimization and black-

box optimization [47]. In this method, an unknown objective function is mapped into a prior

belief and sequentially refined by a Bayesian posterior update [47]. Snoek et al. used BOA to

tune machine learning hyperparameters [48]. It is also used by Pooyan et al. to optimize the

performance of Apache Storm stream processor [49]. Among the population-based optimiza-

tion algorithms, Genetic Algorithm (GA) and PSO [50] are widely used for hyperparameter

tuning [51, 52]. GA and PSO optimized a selected set of problems with equal accuracy in

a test conducted by Hassan et al. [53]. Though GA has been successfully applied for opti-

mization problems, it is inefficient for applications with highly correlated parameters [52]. In

1A CEP operator used to filter events based on a given condition.
2A CEP operator used to subset events based on some conditions like a time frame or number of events per

window.
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addition, GA is much more complex to implement than PSO. Therefore, both BOA and PSO

are evaluated for suitability in this research due to their simplicity and popularity in similar

optimization problems.



Chapter 3

Problem Formulation

3.1 Map Intrusion Detection to Sequence Prediction

Seq2Seq model is widely being used in NMT [24, 36, 37, 38, 39, 40]. In general, a Seq2Seq

problem can be defined as below:

X = (x1, x2, x3, ...xn)

Y = (y1, y2, y3, ...ym)

Y ′ = (σs, y′1, y
′
2, y
′
3, ...y

′
m, σe)

Y ′i+1 = f (X,
i⋃

t=0

Y ′t )

where X is the input sequence which is the source sentence in NMT, and Y is the expected

output sequence which is the ideal translated sentence in NMT. σs is a flag indicating Start of

Sequence known as <S OS > in NMT and σe is a flag indicating End of Sequence known as

<EOS> in NMT. Y ′ is the input to the decoder which starts with σs and ends with σe. Naively,

y′i is the predicted item for the decoder input y′i−1. In teacher forcing method [54], yi−1 is used

as the decoder input to predict y′i . f is the Seq2Seq encoder-decoder model which generates

18
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the i + 1th item of output sequence using the input sequence X together with the first i elements

of decoder input Y ′.

The intrusion detection problem can be mapped to the Seq2Seq prediction problem by

defining a sequence of packets P as given below in which pi is the ith packet in the sequence.

The first k packets are used as input sequence X and the remaining packets are treated as output

sequence Y . Sequences with a prediction accuracy α less than a threshold T , are classified as

an anomaly.

P = (p1, p2, p3, ...pn)

X = (p1, p2, p3, ...pk)

Y = (pk+1, pk+2, ...pn)

Y ′ = (σs, p′k+1, p′k+2, ...p
′
n, σe)

α = 1 −
n∑

i=k+1

δ(pi, p′i)

Though the intrusion detection problem can be mapped to sequence prediction problem,

the traditional Seq2Seq algorithm cannot be directly applied for packet prediction. In NMT,

Seq2Seq model receives and generates sentences which are sequences of one-dimensional

items: words. A word can be encoded into a one-hot vector [55] with a size equal to the

number of words in the vocabulary. In intrusion detection problem, the model must receive

and generate a sequence of packets where a packet is a multidimensional item. Flattening all

selected attributes into a single one-hot vector requires a large vector and does not let the model

learn the contribution of each attributes in predicting the next packet. Therefore, a new map-

ping technique or a model to predict multidimensional sequence is required to apply Seq2Seq

model for intrusion detection.
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Figure 3.1: HTTP Slow Header DoS Detector – a Wisdom query to detect HTTP Slow Header
DoS attack based on the fact that the attacker opens several incomplete connections simultane-
ously to keep the server busy.

def stream PacketStream;

def stream AttackStream;

@config(trainable=true, minimum=100, maximum=60000, step=-1)

def variable time_threshold = 101;

@config(trainable=true, minimum=3, maximum=1000, step=1)

def variable count_threshold = 998;

from PacketStream

filter ‘http’ == app_protocol and

destPort == 80 and ‘\r\n\r\n’ in data

and ‘Keep-Alive: \\d+’ matches data

partition by destIp

window.externalTimeBatch(‘timestamp ’, $time_threshold)

aggregate count() as no_of_packets

filter no_of_packets >= $count_threshold

select srcIp, destIp, timestamp

insert into AttackStream;

3.2 Stream Processor Query Optimization

Logical stream processor queries are developed by domain experts using their experience

and domain knowledge. Several recent studies have proposed automatic CEP rule genera-

tion using unsupervised machine learning algorithms to replace domain experts by machines

[19, 20, 21, 22]. Machine learning algorithms require a lot of preprocessed data and training

time. Instead, the traditional way of defining CEP rules based on human cognition and domain-

specific facts is easier than mining rules from training data. For example, HTTP Slow Header

DoS attacks open several incomplete connections to keep an HTTP server busy for a long time

[56]. A “Wisdom” CEP rule was developed based on the above definition to detect HTTP Slow

Header DoS attack as given in Figure 3.1. Though it is easy to define the filter condition ( f ilter

keyword with boolean conditions in Figure 3.1) based on attack signature, determining thresh-

old values (time threshold and count threshold in Figure 3.1) requires manual inspection of
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training data. Humans are experts in logical reasoning using their experience and cognition but

poor in handling a large volume of numbers. Especially in intrusion detection, it is a tedious

task for a human to analyze raw pcap files and to determine those threshold values.

Threshold values in a CEP rule can be an integer, a real number or a constant. Considering

all possible constants as a list of candidates, they can be treated as integer values. These num-

bers may or may not have lower and upper bounds. For example, the minimum count threshold

in Figure 3.1 has a lower bound 0 but not an upper bound because the number of packets in an

interval can be an arbitrarily large positive number but cannot be a negative number. However,

these parameters are correlated to each other in such way that they cannot take all possible

values in the space. According to these facts, a CEP rule optimization problem can be defined

as

max/min f (x1, x2, x3, ..., xn)

s.t AX ≤ B

xεR

where A is a rational matrix, and B is a rational vector. CEP rule is a discontinuous func-

tion which takes streams of events as input and optionally generates complex events as output.

Therefore, it is hard to fit a CEP rule itself in an optimization problem. Instead, f is a continu-

ous profit or loss function defined using the output of a CEP rule in such a way that optimizing f

will optimize the CEP rule. This way, optimizing a CEP rule can be defined as a Mixed Integer

Linear Programming (MILP) problem if f is linear or Mixed Integer Non-Linear Programming

(MINLP) problem if f is non-linear. Both MILP and MINLP are NP-Hard problems and as

such, finding a solution in polynomial time is not feasible in a worst-case scenario [57, 58].
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Methodology

The proposed IDS has two main components: (1) a machine learning model for anomaly-based

intrusion detection and (2) an adaptive stream processor for signature-based intrusion detection.

This section covers both these components and how the problems discussed in Chapter 3 have

been addressed in this research. In addition, the architecture of proposed IDS is explained in

this chapter.

4.1 Dataset Selection and Preprocessing

Available intrusion detection datasets such as DARPA 1999 [59], KDD CUP 1999 [60], UNSW-

NB15 [61] and CICIDS 2017 come with raw packet capture files and pre-processed data in text

or CSV format. Pre-processed datasets in human readable format do not capture the sequential

relationship of packets. For example, the KDD CUP 1999 dataset has 42 attributes but among

them, the duration of a connection and the number o f connections in the last two seconds are

the only two attributes related to the temporal relationship of packets. Still, KDD CUP 1999

dataset does not provide any hint on packets which are part of each connection and how those

packets are aligned in the connection. Therefore, raw network packets1 were used to train

1The application developed to process raw packet capture files is available at https://github.com/
slgobinath/pcap-processor

22
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the MSeq2MSeq machine learning model. In Phase 1 evaluation, the model was trained and

tested using raw packets from DARPA 1999 dataset. However, the simulated traffic in DARPA

1999 dataset is highly unrealistic. For example, manual inspection of raw packets revealed

that some port scans were generated by iterating from port 1 to 1000 five times repetitively. In

addition, DARPA 1999 dataset is more than fifteen years old. On the other hand, CICIDS 2017

dataset is relatively newer than other datasets and covers the most common attacks based on

2016 McAfee report [32]. Therefore, raw packet capture files from CICIDS 2017 dataset were

chosen to train and test the IDS due to the availability of recent attacks in raw packet capture

format.

In the Phase 1 evaluation using DARPA 1999 dataset, a sequence of packets P was defined

as a TCP connection. However, it cannot be used with other connectionless protocols like

User Datagram Protocol (UDP). Therefore, in later evaluations, streams of packets transferred

between the same client and server were split into sequences Pi as given below:

Pi = (pi1 , pi2 , pi3 , ...pin)

s.t T IME(p(i+1)1) − T IME(pin) ≥ 1sec

and T IME(pit+1) − T IME(pit) < 1sec

and IP(pit+1) ≡ IP(pit)

where pik is the kth packet in the ith sequence, T IME is the timestamp of the packet, and IP is

the hostname of the source or destination. Here an assumption was made that most of the time,

network traffic is generated directly or indirectly by humans. Therefore, a delay is expected

between two independent traffic generated by a person. For example, if a user clicks on a link,

there will be a delay before another click. In such a case, packets transferred for the first click

and the second click are treated as two separate sequences. In this research, a 1sec delay was

considered which was determined by trial and error using CICIDS 2017 dataset. Suppose a user
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watches more than a video from the same server, all the packets transmitted between the client

and server may be considered as a sequence because of the lack of significant delay between

those packets. No actions were taken to separate them because it is a legitimate scenario and

the model should be able to learn such patterns.

Splitting DARPA 1999 dataset based on the above definition led to sequences with packets

from several independent connections. It may be due to the way DARPA 1999 dataset was

created using continuously repeating scripts without concerning real human behavior. A model

trained using such a dataset will fail to differentiate the traffic generated by bots from legitimate

traffic. Compared to DARPA 1999, CICIDS 2017 is better in representing human behavior.

However, CICIDS 2017 dataset also has some pitfalls. For example, the creators of the dataset

claim that there are 21 SQL Injection attacks in the dataset; but only 15 packets related to SQL

Injection attack were found in the packet capture file. CICIDS 2017 dataset has only one long-

running simulation of every selected attack. Since the proposed IDS processes raw packets, the

labeled dataset cannot be used to compare the number of detections. Instead, the timestamp

and IP addresses of anomalous packets detected by the IDS were manually compared with raw

packets and labeled dataset to confirm the accuracy.

Bucket Protocol No of packets Encoder Input Decoder Input
1 TCP 4-10 3 7
2 TCP 11-20 7 13
3 TCP 21-40 13 27
4 TCP 41-80 27 53
5 TCP 81-160 53 107
6 TCP 161-320 107 213
7 UDP 4-10 3 7
8 UDP 11-20 7 13
9 UDP 21-40 13 27

Table 4.1: Buckets of Sequences – sequences grouped based on transport protocol and the
maximum number of packets per sequence. Sequences with less than 3 packets were ignored
and sequences with more than 320 packets were pruned to 320.

Packets from the first day of CICIDS 2017 dataset which contain attack free traffic were
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split into sequences. In an initial experiment with CICIDS 2017 dataset, a single model was

unable to learn all sequences with enough accuracy. Therefore, the extracted sequences were

grouped into buckets based on transport protocol and the maximum number of packets as

shown in Table 4.1 and dedicated MSeq2MSeq models were developed for each bucket. Us-

ing different models per transport protocol lets each model learn a single pattern. Internet

Control Message Protocol (ICMP) packets were ignored because the dataset does not have

enough number of ICMP sequences to train the machine learning model. Sequences with

less than the maximum number of packets of a bucket were padded with max bucket size −

sequence length number of EMPTY PACKET s to meet the expected length of the input vec-

tor. Here, EMPTY PACKET is a vector representing a packet with default values assigned to

each selected attributes. Sequences with less than four packets were ignored because the en-

coder required at least three to predict with enough accuracy in our preliminary test. Sequences

having more than 320 TCP packets were pruned to 320, and more than 160 UDP packets were

pruned to 160 because there were no enough TCP sequences with more than 320 packets and

UDP sequences with more than 160 packets to train a model with enough accuracy. From

each packet, following attributes were selected to be used with the proposed machine learning

model: transport layer, src ip, dst ip, ip f lag, transport f lag. Increasing the number of

selected attributes reduces the accuracy of the model. Above attributes were selected by trial

and error to obtain better accuracy.

4.2 Sequence to Sequence Model

Seq2Seq model has two RNN’s named encoder and decoder. The goal of the encoder is con-

verting an input sequence X = (x1, . . . , xn), into a vector c and the goal of the decoder is

converting c into an output sequence Y = (y1, . . . , yn).

At each time step t, hidden state of an RNN ht is computed by (4.1) where f is a non-linear

activation function and xt is the input at time t.
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ht = f (xt, ht−1) (4.1)

Usually the non-linear activation function f is an LSTM and c is the final hidden state hn

of that LSTM. Decoder is another LSTM which generates Y = (yt, ..., yi) using Y = (y1, ..., yt−1)

as the input and c as the initial internal state. Hidden state of the decoder is computed by:

ht = f (ht−1,Yt−1, c) (4.2)

4.3 Multidimensional Sequence to Multidimensional Sequence

Model

Though Seq2Seq model is widely being used in NMT, it cannot receive or generate sequences

with multidimensional items as discussed in Chapter 3.1. Therefore the traditional Seq2Seq

model is improved in this research to receive and generate sequences with multidimensional

items as depicted in Figure 4.1. This figure depicts only a single layer of sigmoid func-

tions. However, there may be more than one layer depending on the problem. The proposed

MSeq2MSeq model has k number of input and output branches where k is the number of se-

lected attributes in a packet. Depending on the problem, the number of branches of the encoder

and decoder can vary. This way, MSeq2MSeq model learns the contribution of every single

attribute in predicting the next packet and adjusts the weight in input and output branches. Ex-

cept for the first few layers and last few layers, the model reflects the exact traditional Seq2Seq

model. The attention layer proposed by Luong et al. [38] is used to obtain better results as

discussed later in this chapter.

Sutskever et al. and Luong et al. obtained better results by reversing the encoder input in

NMT. The impact of reversing input sequence in packet prediction was tested by comparing the

training loss of reversed and non-reversed encoder input. Though there was no significant dif-
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Figure 4.1: Multidimensional Sequence to Multidimensional Sequence Model - an en-
hanced Seq2Seq model to receive and generate sequences of multidimensional items. This
model learns the individual contribution of each attribute of elements in predicting the se-
quence.

ference in prediction accuracy and training loss, the model trained with direct input sequences

learned slightly better than the model trained with reversed input sequence as shown in Figure

4.2. As shown in Table 4.1, the encoder input sequence X is always guaranteed to be complete.

Furthermore, in a sequence of packets, the i + 1th packet is highly depending on ith packet than

the first packet. Therefore, reversing the encoder input is not necessary in packet prediction

problem.

The impact of attention layer in the proposed MSeq2MSeq model for packet prediction

was tested using the attention layer proposed by Luong et al. Two MSeq2MSeq models were

developed with and without the attention layer proposed by Luong et al. and trained using
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Figure 4.2: Impact of Reversing Encoder Input – comparison of the impact of reversing
encoder input in (a) Bucket 1 (b) and Bucket 3 from Table 4.1. The model trained with not-
reversed sequences with a maximum of 10 TCP packets learned slightly faster than the model
trained with reversed sequences with a maximum of 10 TCP packets. As the number of packets
in a sequence increases, the difference becomes less transparent.

sequences from “Bucket 1” and “Bucket 3” respectively. As shown in Figure 4.3, the model

with attention layer learned faster than the model without attention layer while training se-

quences from “Bucket 1”. However, there is no significant difference in training the model

with sequences from “Bucket 3”. Sequences in “Bucket 1” has a maximum of ten packets and

sequences in “Bucket 3” has a maximum of 40 packets. Packets from a small network connec-

tion like TCP three-way handshake heavily rely on preceding packets compared to packets in a

long network connection like video streaming. As discussed earlier, the definition of sequence

allows a sequence to have packets from more than one connection. As the number of packets in

a sequence increases, there is a high chance of having packets from different network connec-

tions. Therefore, as the number of packets increases, the importance of reversing the encoder

input or having an attention layer becomes less.
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Figure 4.3: Impact of Attention Layer – comparison of the impact of attention layer in (a)
Bucket 1 (b) and Bucket 3 from Table 4.1. The model with attention-layer learned significantly
faster than the model without attention layer when training them using sequences with a max-
imum of 10 TCP packets. As the number of packets in a sequence increases, the difference
becomes less transparent.

4.4 Wisdom Stream Processor

Even though dynamic stream processors have been proposed in early works, commercial stream

processors do not support dynamic query modification at the runtime. Analysing the open

source stream processors: Apache Flink and WSO2 Siddhi revealed that their underlying data

structures that are being used to store events in memory do not support dynamic query mod-

ification. On the other hand, authors of iCEP dynamic complex event processor claim that

their complex event processor can analyze “thousands of events in a few minutes” [20] which

is much less than the throughput of commercial stream processors which typically can handle

several million events per second. Therefore, an adaptable and functionally auto-scaling stream

processor: “Wisdom”2 was developed without compromising the performance [27]. The un-

derlying architecture of “Wisdom” using Observer design pattern and Mediator design pattern

[62] to implement variables and dynamic CEP operators yields performance comparable to

commercial stream processors as shown in Table 4.2 and significantly better performance than

2The Wisdom Stream Processor is available at https://slgobinath.github.io/wisdom
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Figure 4.4: Made-up Profit Function – representing an imaginary CEP rule with two thresh-
old values to test Bayesian Optimization and Particle Swarm Optimization algorithms. The
imaginary CEP rule produces more accurate events when those threshold values are close to
20 and 200.

iCEP.

Stream Processor Throughput Latency
Apache Flink 6,711,544 events/sec 100 nanoseconds
WSO2 Siddhi 3,811,876 events/sec 216 nanoseconds
Wisdom 2,543,299 events/sec 332 nanoseconds
Esper 2,247,807 events/sec 334 nanoseconds

Table 4.2: Performance Comparison of Stream Processors – comparing “Wisdom” with
commercial stream processors using a filter query in single thread setup.

The profit or loss function f defined in Chapter 3.2 is a black box of correlated variables

because its output depends on the underlying CEP rule. CEP rules looking for anomalies emit

output only for a limited set of threshold values. For any other values, they emit nothing. A

simple profit function was developed as shown in Figure 4.4 to simulate the behavior of an

imaginary CEP rule which generates output only if its threshold values are closed to 20 and

200. Both PSO and BOA were used to optimize this function. The accuracy and execution

time were recorded for each optimization algorithms. As shown in Table 4.3, PSO outperforms

BOA in both accuracy and performance. PSO starts with random initial points and quickly

converges to the optimum once a particle finds an improvement in the profit. Though BOA had
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Figure 4.5: CEP Rule Optimization Algorithm – a hybrid optimization algorithm developed
using PSO and Bisection algorithms. PSO algorithm is used to find an initial optimum point
and Bisection algorithm is used to push the optimum point towards a desired boundary.
Input: f unction, constraints, steps
Output: optimal values

1: optimal values, loss← PS O( f unction, constraints)
2: for all val ∈ optimal values do
3: val← Bisection( f unction, val,

constraints[val], step[val])
4: end for
5: return optimal values

some initial points close to the optimum, it was distracted by the plateau where profit is 0 and

spent more time in building the prior model. Therefore, the PSO algorithm has been chosen to

implement the actual CEP parameter tuning algorithm.

Bayesian Particle Swarm
Initial points/Swarm size 100 100
Maximum iterations 10 10
Avg. execution time (seconds) 255.788 0.029
Avg. optimal points (x, y) 8.742, 409.921 20.681, 199.919
Avg. Profit 0 0.998

Table 4.3: Bayesian Optimization vs Particle Swarm Optimization – comparison of
Bayesian and Particle Swarm optimization algorithms using the profit function shown in Figure
4.4. The maximum obtainable profit is 1 for the optimum point (20, 200).

A real CEP rule can have more than one optimum points adjacent to each other. For ex-

ample, the above imaginary CEP rule may produce the same output for threshold values in

between 20 − 25 and 200 − 250. Depending on the requirement we may be interested in either

the upper bound or the lower bound of a threshold. For example, we prefer to have minimum

time threshold and maximum count threshold for the CEP rule given in Figure 3.1 to reduce

latency and false positives. Therefore, a hybrid optimization algorithm was implemented using

PSO and Bisection algorithms as shown in Figure 4.5. PSO is used to find the initial optimum

values, and Bisection algorithm is used to push them towards desired boundaries. In traditional

Bisection algorithm, the convergence speed reduces with every iteration as the step size de-
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Figure 4.6: Wisdom Optimizer Architecture – a framework developed to optimize Wisdom
rules. The Input Feeder and Loss Function must be defined by the user depending on the
requirement and data format.

creases. To overcome this problem, the user-defined step value (−1 and 1 in Figure 3.1) is used

as the step size if the actual step size is smaller than the user-defined step value. Sign of the

user-defined step value indicates the desired direction to move the optimum threshold values.

The proposed optimization algorithm requires a domain expert to limit the range of thresh-

old variables to find a solution in polynomial time. The minimum value, maximum value, and

step size are tailored to “Wisdom” query using @con f ig(trainable = true, ...) annotation as

shown in Figure 3.1. Figure 4.6 depicts the architecture of Wisdom Optimizer. In this archi-

tecture, “Input Feeder” and “Loss Function” must be defined by domain experts depending on

the domain requirements where “Input Feeder” feeds input events to the optimizer and “Loss

Function” converts the output of CEP rule to a real number. “Wisdom Application” is the

runtime environment compiled from a Wisdom query and the “Optimization Algorithm” is the

implementation of the algorithm given in Figure 4.5 with additional features to coordinate with
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Figure 4.7: Wisdom Java API – a sample Wisdom application developed using Java API to
filter TCP packets from PacketStream.

WisdomApp app = new WisdomApp("TCPFilter", "1.0.0")

app.defineStream("PacketStream");

app.defineStream("OutputStream");

app.defineQuery("FilterQuery")

.from("PacketStream")

.filter(event -> "TCP".equals(event.get("protocol")))

.insertInto("OutputStream");

app.addCallback("OutputStream", EventPrinter::print);

Figure 4.8: Wisdom Query – a sample Wisdom application developed using Wisdom Query
Language to filter TCP packets from PacketStream.

@app(name=‘TCPFilter ’, version=‘1.0.0’)

def stream PacketStream;

@sink(type=‘console ’)

def stream OutputStream;

@query(name=‘FilterQuery ’)

from PacketStream

filter symbol == ‘TCP’

insert into OutputStream;

“Wisdom” application.

“Wisdom” provides Java [63] API and Wisdom Query Language to develop CEP applica-

tions. For example, Figure 4.7 shows a Wisdom application developed in Java to filter TCP

packets from PacketS tream. The same application can be developed using Wisdom Query

Language as given in Figure 4.8. A rule defined using Wisdom Query Language can be still

parsed in Java to create a Java based application. Wisdom Stream Processor package provides

the necessary infrastructure to run “Wisdom” applications as a service using query files. Even

though “Wisdom” can be used as a Java library, running “Wisdom” application as a service is

recommended for scalability and resource allocation. The Wisdom Stream Processor package



34 Chapter 4. Methodology

also provides an additional tool named “Wisdom Manager” which can be used to automati-

cally deploy and control Wisdom rules. Currently, Wisdom Manager supports the following

RESTful APIs:

• Get details about a deployed Wisdom rule.

• Get details about all deployed Wisdom rules.

• Start a deployed Wisdom rule.

• Stop a running Wisdom rule.

• Stop the Wisdom Manager.

These APIs are subject to change in future work according to the requirement. Wisdom

Query Language provides built-in semantics to define the priority of a query within the system

and streams on which the query is depending on. A stream defined in a query can report its

statistics to third parties including Wisdom Manager. Using these details, Wisdom Manager

can automatically stop running Wisdom instances if streams on which they are depending on

have not received any events for a long time. However, functionally auto-scaling deployment

is an optional feature and only used in the IDS if system resources are limited. Distributing

and scaling a stream processor at the operator level can cause to coordination problems in CEP

operators depending on the order of events. Therefore, “Wisdom” stream processor is designed

using microservice architecture [31] to deploy each CEP rule as a microservice with required

memory and CPU allocation.

4.5 Integrating the Stream Processor with Machine Learner

Another framework named “Wisdom Machine Learner”3 is developed using TensorFlow [64]

to train and serve the MSeq2MSeq model developed in Chapter 4.3. The framework is config-

urable to pre-process, train, test or serve the MSeq2MSeq model in a pipeline. The Wisdom
3The Wisdom Machine Learner is available at https://github.com/slgobinath/wisdom-ml
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Figure 4.9: Wisdom Stream Processor and Machine Learner – integrating the Wisdom
Machine Learner into a Wisdom application. The gRPC Mapper seamlessly sends events to
the Wisdom Machine Learner and injects the result back into the stream of events.

Machine Learner exposes gRPC [28] endpoint which can be accessed from “Wisdom” stream

processor through gRPC Mapper as given in Figure 4.9. The predictive “Wisdom” query given

in Figure 4.10 splits the stream of packets transferred between same source and destination,

aligns them into a sequence using IdleLengthT imeBatchWindow4 and seamlessly calculates

the prediction accuracy using the Wisdom Machine Learner. The Wisdom Machine Learner

converts the events to a one-hot vector, calculates the prediction accuracy using TensorFlow

Model Server, and returns the accuracy to the stream processor. The above query is also re-

sponsible for selecting the correct endpoint according to the maximum number of packets in

the sequence. During runtime, this query is served using three independent services: (1) Wis-

dom Stream Processor, (2) Wisdom Machine Learner, and (3) TensorFlow Model Server. Since

they are independent of each other, these instances can be scaled up and down depending on

the requirement.

4.6 Intrusion Detection System

The proposed IDS combines both adaptive intrusion detection and functionally auto-scaling

deployment together as depicted in Figure 4.11. Even though only raw network packets were

used in this research, CEP rules can be written to take advantage of other sources like applica-

tion logs and company policy changes. Every individual “Wisdom” service running as part of

4A CEP window which collects events from a stream and emits them if there is an idle period in the stream or
the number of events in the window exceeds a threshold.
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Figure 4.10: Predictive Wisdom Query – detects anomalies using Wisdom Machine Learner
serving on localhost port 9001. Sequences with a prediction accuracy less than 0.125 are
classified as anomalies.

@app(name=‘WisdomApp ’, version=‘1.0.0’, playback=‘timestamp ’)

@source(type=‘kafka’, bootstrap=‘localhost:9000’)

def stream PacketStream;

def stream TCPStream;

@source(type=‘console ’)

def stream AttackStream;

from PacketStream

filter transport_layer == ‘\ac{tcp}’

select src_ip, dst_ip, ip_flag

partition by src_ip, dst_ip

window.idleTimeLengthBatch(time.sec(1), 1000)

limit 320

aggregate collect(‘src_ip ’) as src_ip, collect(‘dst_ip ’) as dst_ip,

collect(‘ip_flag ’) as ip_flag

map len(‘ip_flag ’) as no_of_packets

insert into TCPStream;

from TCPStream

filter no_of_packets > 20 and no_of_packets <= 40

map grpc(‘localhost:9001’, ‘accuracy ’) as accuracy

filter accuracy < 0.125

select src_ip, dst_ip, no_of_packets , accuracy

insert into AttackStream;
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the IDS has the flexibility to read external sources and to produce output to external endpoints.

Therefore, users can write individual rules using different sources of events without worrying

about other rules already deployed in the IDS. However, a common source is recommended

for inputs which are likely to be used by all “Wisdom” rules to improve the performance. For

example, in the above architecture, the “Filter Query” receives all network packets and share

them with other “Wisdom” rules. The deployment method of “Wisdom” rules in the proposed

IDS differs from native “Wisdom” stream processor. Both anomaly-based rules and untunable

signature-based rules are deployed as normal CEP rules. However, signature-based rules with

tunable parameters are deployed in Minimum Rate Guaranteed mode. Since the IDS is devel-

oped using “Wisdom” stream processor, it takes all advantages of “Wisdom” stream processor

including self-tuning rules, functionally auto-scaling instances in a distributed deployment,

SQL like “Wisdom” query for rule definition and multiple input sources for advanced decision

making. Following sections cover the in-depth architecture of adaptive IDS and functionally

auto-scaling IDS.

4.6.1 Adaptive Intrusion Detection System

The intrusion detection system is built using both “Wisdom” stream processor and Wisdom

Machine Learner. During deployment time, IDS reads all “Wisdom” rules and create “Wis-

dom” instances based on those rules. If a query has at least one trainable variable, the IDS will

create three runtime instances of the query: (1) a static instance which will use user-defined

thresholds forever, (2) an adaptive instance starting with user-defined thresholds but will be

tuned later by the IDS and (3) a sandboxed instance to optimize the query without producing

output to the user. If a query does not have trainable variables, only one CEP instance will

be created. Predictive “Wisdom” rules connected with machine learner also can be tunable.

However, in this research, predictive rules were not tuned to reduce complexity and resource

consumption.

As shown in Figure 4.12, the “Packet Receiver” receives raw packets, converts them into
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Figure 4.11: Intrusion Detection System – a high-level architecture of the adaptive and func-
tionally auto-scaling IDS developed using Wisdom Stream Processor and MSeq2MSeq model.

events and feeds them to the “Packet Cache” and all deployed “Wisdom” applications. A

“Wisdom” application can be a signature-based detector as in Figure 3.1 or an anomaly-based

detector with the support of “Wisdom” machine learner as in Figure 4.10. “Packet Cache”

keeps packets arrived in last t minutes which will be later used to tune “Wisdom” rules. Alerts

generated by “Wisdom” applications trigger the Wisdom Optimizer deployed in a sandbox and

update the threshold variables of “Wisdom” applications. Missing an attack can cause severe

damage in safety-critical domains like intrusion detection. The above Minimum Rate Guar-

anteed deployment ensures that the IDS will not miss any attacks that could be captured by

the user-defined rule by tuning a clone of CEP rule and running both user-defined rule and

self-tuning rule concurrently with a cost of additional system resources. Running duplicate

instances of the same Wisdom rule generates duplicate alerts for the same attack. Such dupli-
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Figure 4.12: Self-tuning Intrusion Detection System - the Minimum Rate Guaranteed de-
ployment of self-tuning Wisdom rules. Two additional clones of tunable rules are used to
optimize the rule in a sandbox and to guarantee the minimum detection rate.

cate alerts are filtered by the “Alert Manager”. It is also responsible for triggering the relevant

Wisdom Optimizer to tune the rule. By combining stream processor and machine learner, the

IDS can detect attacks based on both signature and anomalous traffic.

4.6.2 Functionally Auto-scaling Intrusion Detection System

In an IDS, some attack detectors may need more resources than others. For example, a DoS

attack detector may need more system resources than an SQL attack detector due to the large

amount of traffic involved in DoS attack. The native microservice architecture of “Wisdom”

stream processor lets the IDS to control system resource allocation per each IDS rule. Running

all intrusion detectors all the time consumes a lot of system resources. In the world of IoT,

miniature computers like Raspberry Pi [65] are getting popular. In such systems, running a
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Figure 4.13: Filter Query Used in Functionally Auto-scaling Deployment – filters network
packets based on some initial conditions and to send them to relevant possible attack stream.

@app(name=‘packet_filter ’, version=‘1.0.0’, priority=10, stats=‘

StatisticsStream ’, stats_freq=time.sec(5), stats_vars=[’port’])

@source(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘

PacketStream ’)

def stream PacketStream;

@config(stats=true)

@sink(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘

PossibleDosStream ’)

def stream PossibleDosStream;

@config(stats=true)

@sink(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘

PossibleBruteForceStream ’)

def stream PossibleBruteForceStream;

@config(stats=true)

@sink(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘

PossiblePortScanStream ’)

def stream PossiblePortScanStream;

@sink(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘_Statistics ’)

def stream StatisticsStream;

@query(name=‘FilterDosAttacks ’)

from PacketStream

filter ‘http’ == app_protocol and destPort == 80 and ‘\r\n\r\n’ in

data and ‘Keep-Alive: \\d+’ in data

insert into PossibleDosStream;

@query(name=‘FilterBruteForceAttacks ’)

from PacketStream

filter ‘\ac{ftp}[Control]’ == app_protocol and ‘530 Login incorrect ’

in data

insert into PossibleBruteForceStream;

@query(name=‘FilterPortScanAttacks ’)

from PacketStream

filter syn == true and ack == false

insert into PossiblePortScanStream;
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Figure 4.14: DoS Attack Detector Used in Functionally Auto-scaling Deployment – uses
packets filtered by “packet filter” shown in Figure 4.13. This query is depending on ‘Possible-
DosStream’. Therefore, it will not run until ‘PossibleDosStream’ receive some events.

@app(name=‘dos_detector ’, version=‘1.0.0’, priority=5, requires=[‘

PossibleDosStream ’])

@source(type=‘kafka’, bootstrap=‘localhost:9092’, topic=‘

PossibleDosStream ’)

def stream PossibleDosStream;

@sink(type=‘file.text’, path=‘/temp/dos.txt’)

def stream DosAttackStream;

from PossibleDosStream

partition by destIp

window.externalTimeBatch(‘timestamp ’, 1189)

aggregate count() as no_of_packets

filter no_of_packets >= 3

select srcIp, destIp, no_of_packets , timestamp

insert into DosAttackStream;

full-fledged IDS is not feasible. Therefore, the proposed IDS is designed to start or stop its

rules using the advantage of functionally auto-scaling “Wisdom” stream processor.

Functionally Auto-scaling IDS always requires a query to filter events as given in Figure

4.13. The above query reads packets from Apache Kafka message queue. Even though the

input source can be configured to any other supported sources in “Wisdom” stream processor,

Apache Kafka or any other message queues are recommended to handle unexpected unavail-

ability of “Wisdom” instances. This query filters the packets and inserts them into different

streams if they meet certain conditions. The priority = 10 property in @app annotation

informs the “Wisdom Manager” that the “packet filter” query should not be stopped by any

chance.

Output streams of “packet filter” are used for further processing in separate “Wisdom”

queries. For example, the “dos detector” given in Figure 4.14 collects filtered packets from

“packet filter” through PossibleDosS tream and process them further to detect HTTP Slow

Header DoS attack. The priority = 5 and requires = [′PossibleDosS tream′] properties in
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@app annotation informs the “Wisdom Manager” that the “dos detector” query should not

run unless there are some events passed to the PossibleDosS tream. Wisdom Manager keeps

looking at the throughput of each stream decorated with @con f ig(stats = true) (See Figure

4.13) and starts all depending queries if a stream has a throughput greater than a predefined

threshold τ which is 0 in the proposed IDS. If a stream has a throughput of 0 for a long time,

the Wisdom Manager will stop all depending “Wisdom” instances with a priority less than a

predefined threshold Θ to save system resources. In this method, latency is compromised for

resource utilization because starting a new “Wisdom” instance takes some time. However, the

system will not miss any packets since they are written to and read from Apache Kafka queue.



Chapter 5

Evaluation

The proposed IDS was evaluated in three phases: (1) to ensure the applicability of the MSeq2MSeq

model in intrusion detection using DARPA 1999 dataset, (2) to test all components of the IDS

using CICIDS 2017 dataset, and (3) to test the effectiveness of functionally auto-scaling de-

ployment. First two evaluation phases have three tests per each and the last phase has a single

test. This chapter covers all test case setups and their purpose. Results obtained for each test

are discussed in Chapter 6.

5.1 Phase 1 - Test the MSeq2MSeq model using DARPA 1999

dataset

Phase 1 tests were developed to ensure that the MSeq2MSeq model can be used for real-time

intrusion detection by treating streams of packets as sequences. As discussed in Chapter 1,

Bontemps et al. used stacked LSTM RNN model for intrusion detection in DARPA 1999

dataset based on sequential anomaly detection. Results obtained in this evaluation phase are

compared with the results obtained by Bontemps et al.

43
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TCP packets from attack-free outside sniffing data of DARPA 1999 dataset were split into

connections based on their sessions using PcapSplitter.1 Connections with less than 4 pack-

ets were not used for training and connections with more than 60 packets were pruned to 60

because a connection must have at least 4 packets to train the model and 96.96% TCP connec-

tions in the training dataset have less than 60 packets. Connections having packets between 3

and 60, were padded with empty packets to maintain desired batch input format. The first three

packets of a connection were used as input sequence to predict the rest.

The decoder was trained to predict {p4, p5, . . . , pn, σe} using {σs, p4, p5, . . . , pn} as input

and hidden state of the encoder as the initial state. Here, n is the number of packets in the

connection. The model was trained using Teacher Forcing [54] because it reduces error propa-

gation in testing. Even if the model can predict more than one upcoming packets, it must wait

for actual packets to calculate the prediction error. Therefore, predicting i + 1th packet after the

arrival of ith packet is enough and gives better results.

Three datasets were prepared from the DARPA 1999 dataset: (1) attack-free tcpdumps split

into connections; (2) tcpdumps containing both attack and normal traffic within a day; and (3)

tcpdumps containing both attack and normal traffic over a week.

5.1.1 Test 1.1 - Validate the MSeq2MSeq model using legitimate TCP

connections

The first dataset was used to check the accuracy of the model on predicting packets of normal

TCP connections and end of connections (σe) with a goal of validating the model. For this test,

the first three packets of valid TCP connections were fed to the encoder and the rest were fed to

the decoder one by one to predict following packets. Two packets were considered equal only

if all their attributes match to each other. The accuracy of a predicted connection is calculated

by (5.1).

1PcapPlusPlus available at https://github.com/seladb/PcapPlusPlus
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accuracy =
No o f correct predictions

No o f packets in connection
∗ 100 (5.1)

5.1.2 Test 1.2 - Determine the minimum accuracy threshold

TCP packets collected on Thursday of the second week outside sniffing data were split into

streams having requests and responses between same source and destination. The first three

packets from each stream were fed to the encoder and the rest were fed to the decoder one by

one to predict the next packet until the decoder generates a σe. Suppose a σe is generated after

ith packet in a stream, the first i packets will be considered as a connection and compared with

predicted packets. The remaining packets in the stream will be used to predict next connection.

If a σe is not generated within τ packets, the decoder will emit predicted τ number of packets

as a connection and a new prediction cycle will start from τ + 1th packet. Even though most

connections have less than 60 packets, τ is set to 100 in this test to be on the safe side.

In preliminary Test 1.2, the accuracy defined using exact match of packets resulted in more

false positives. Therefore, predicted packets were compared with actual packets using a dis-

tance algorithm as given in Figure 5.1. The distance algorithm calculates a weighted distance

by comparing individual categorical attributes of packets. The weight of each attribute is deter-

mined based on preliminary observations. The computed distance of each connection was used

to define the accuracy of prediction. Suppose a predicted connection has n packets, prediction

accuracy of that connection is given by (5.2).

accuracy =

n∑
i=1

1 − distancei

n
∗ 100 (5.2)
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Figure 5.1: Weighted Packet Distance Algorithm – used in Test 1.2 to calculate prediction
accuracy.
Input: actual packet, predicted packet,weights
Output: distance

Initialize:
1: distance← 0
2: for all name ∈ actual packet.attributes do
3: if (actual packet[name] , actual packet[name]) then
4: distance← distance + weights[name]
5: end if
6: end for
7: distance← distance/

∑
weights

8: return distance

5.1.3 Test 1.3 - Test the ability of the MSeq2MSeq model in real-time

intrusion detection

Test 1.3 was developed to validate the application of the proposed model in real-time anomaly

detection. Packets collected in the second week of DARPA 1999 dataset were preprocessed in

the same way as in Test 1.2 and fed to the model. The system will raise an alarm in real-time,

if the average weighted prediction error of 60 packets is less than 12.5% which is the mean

accuracy of anomalous packets in Test 2. The percentage of true positive alarms and number

of false positive alarms were compared with the results obtained by Bontemps et al. using

stacked LSTM RNN on the same dataset.

5.2 Phase 2 - Test the Intrusion Detection System using CI-

CIDS 2017 dataset

The MSeq2MSeq model trained on attack-free raw packets from CICIDS 2017 dataset as ex-

plained in Chapter 4 is used in this evaluation phase. Three tests were developed (1) to validate

the MSeq2MSeq model and to test the integration of stream processor with the machine learner,

(2) to compare the proposed CEP rule optimization algorithm with Turchin et al.’s work [18],
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and (3) to test the ability of the proposed IDS in detecting attacks based on both anomaly and

signature.

5.2.1 Test 2.1 - Test the integration of Wisdom Stream Processor with

Machine Learning model

In the training phase, MSeq2MSeq model was trained without the intervention of stream pro-

cessor to avoid additional delay introduced by the stream processor even though it is negli-

gible. All nine MSeq2MSeq models were trained and validated individually. Test 2.1 was

developed to test the integration of stream processor and all trained MSeq2MSeq models to

detect anomaly-based attacks. Predictive “Wisdom” rules were developed as in Figure 4.10

for all buckets listed in Table 4.1 and attack free stream of packets were fed to those rules.

As shown in Figure 4.10, predictive rules classify sequences with a prediction accuracy less

than 12.5% as anomalies. The minimum accuracy threshold was selected from Test 1.2. All

sequences classified as anomalies must be false positives in this test because the input traffic

does not have any attack.

5.2.2 Test 2.2 - Test the self-tuning ability of Wisdom Stream Processor

In Test 2.2, three “Wisdom” rules were developed to detect HTTP Slow Header DoS attack,

FTP brute force attack and “nmap -sS” Port scan probe. All these rules have two optimizable

variables: time threshold and count threshold. A loss function as given in Figure 5.2 was

developed to calculate the loss based on the number of false positive packets detected by stream

processor. In the five days period of CICIDS 2017 dataset, FTP brute force, HTTP Slow Header

DoS and Port scan attacks were simulated on Tuesday 9:20 - 10:20, Wednesday 10:14 - 10:35

and Friday 13:55 - 14:35, respectively. Packets transferred in a randomly selected 10 minutes

interval from those attack simulations were extracted and used to optimize the “Wisdom” rules.

After optimization, network packets from Tuesday, Wednesday, and Friday packet capture files
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Figure 5.2: Loss Function to Tune “Wisdom” Rules – used in the proposed Intrusion Detec-
tion System. This function increases the loss by 100 for every false positive and decreases the
loss by 10 for every true positive to reduce the number of false positives.
Input: output events, exp src ip
Output: loss

Initialize:
1: loss← 1, 000, 000
2: for all event ∈ output events do
3: if exp src ip , event[‘src ip′] then
4: loss += event[‘no o f packets′] ∗ 100
5: else
6: loss −= event[‘no o f packets′] ∗ 10
7: end if
8: end for
9: return loss

were fed to FTP brute force, HTTP Slow Header DoS and Port scan detectors respectively.

5.2.3 Test 2.3 - Test the complete Intrusion Detection System using CI-

CIDS 2017 dataset

In Test 2.3, all queries developed in Test 2.1 and Test 2.2 were deployed together as depicted in

Figure 5.3 to detect attacks based on both anomalies and signature. Another rule to detect SQL

Injection based on the signature was developed without any variables to optimize. A filter to the

anomaly-based “Wisdom” rules was added to ignore Transport Layer Security (TLS) packets

since they caused false alarms in Test 2.1. Signature-based queries were deployed in self-tuning

mode with initial threshold values obtained in Test 2.2. Even though the IDS is supposed to

generate unique alert per attack, in this test the IDS was set to log all alerts to compare the pre-

cision of each component. The IDS groups packets into a sequence in anomaly-based detection

or into a group of packets collected by the IdleLengthT imeBatchWindow in signature-based

detection and classify them as anomaly or not. The labeled CICIDS 2017 dataset has f low of

packets marked as an attack or not but the definition of a f low is not available to the public.

Furthermore, the complete dataset was used in this test which makes counting packets involved
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Figure 5.3: Test 2.3 Deployment – signature-based rules and anomaly-based rules deployed
together in the IDS.

in attacks impossible. Therefore, the accuracy of the IDS was measured only in precision by

manually comparing packets classified as anomalies with raw packets. Every attack simulated

in the CICIDS 2017 dataset occurs only once but last for a long time. Therefore, detecting at

least one anomalous sequence which is part of an attack is enough for an IDS to prevent the

attack.
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5.3 Phase 3 - Test the functionally auto-scaling ability of Wis-

dom Stream Processor

5.3.1 Test 3.1 - Compare the memory consumption of functionally auto-

scaling deployment with manual deployment

Test 3.1 was developed to show the effectiveness of functionally auto-scaling stream processor

in intrusion detection. To avoid the complexity, only the signature-based rules developed in

Test 2.2 were used without enabling self-tuning ability. Deploying all three signature-based

rules requires three “Wisdom” instances to run all the time. Instead, a filter query as given in

Figure 4.13 was developed to filter incoming packets which can be part of HTTP Slow Header

DoS attack, FTP brute force attack or Port scanning. Rest of the attack specific CEP operations

were defined in separate rules and deployed as shown in Figure 5.4. If there is a possibility

of any of these attacks, “Filter Query” sends the packet to the relative output stream. Wisdom

Manager monitors the throughput of “Filter Query” output streams and starts a “Wisdom”

instance with relevant CEP rule if the throughput is greater than 0. If there is no input for an

attack detector for a long time, Wisdom Manager will stop the attack detector. To simulate

real-time behavior, pcap files having no attack, FTP brute force attack, HTTP Slow Header

DoS attack, and Port Scan were fed in order. The memory consumption of this automatic

functionally auto-scaling deployment was compared with manual deployment where all three

“Wisdom” instances were deployed and started using a Wisdom Manager instance without

enabling the functionally auto-scaling feature.
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Figure 5.4: Distributed and Functionally Auto-scaling Deployment – Wisdom Manager
controls the execution of “Wisdom” rules.



Chapter 6

Results

6.1 Phase 1 - Test the MSeq2MSeq model using DARPA 1999

dataset

6.1.1 Test 1.1 - Validate the MSeq2MSeq model using legitimate TCP

connections

In Test 1.1, the model was able to predict connections with 84.97% accuracy and end of con-

nections (σe) with 89.57% accuracy as shown in Figure 6.1. The obtained accuracy values are

highly promising because two packets are considered equal only if all of their attributes are

equal. As discussed in Chapter 5.1, more than 96% of connections have less than 60 packets.

The prediction accuracy increases with number of packets per connection as shown in Figure

6.1.

6.1.2 Hypothesis

If the decoder is unable to find a connection in a stream of events, it will predict the maxi-

mum number of packets allowed for a sequence (τ). Therefore, if the number of packets in

a predicted connection is equal to τ (set to 100 in this experiment), either those packets are

52
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Figure 6.1: Sequence Prediction Accuracy – prediction accuracy and end of connection (σe)
prediction accuracy.

anomalies or the actual connection has greater than or equal to τ number of packets. However,

if those packets are from an actual connection, the model may be able to predict them with

a higher accuracy even though it cannot reach the end of the connection. According to these

facts, if a predicted connection has close to τ packets with less prediction accuracy, it may be

an anomalous sequence.

6.1.3 Test 1.2 - Determine the minimum accuracy threshold

At the end of Test 1.2, a dataset with the number of packets in each predicted connection

along with the prediction accuracy was prepared. This dataset was clustered using K-means

clustering algorithm into six clusters as shown in Figure 6.2. The number of clusters was

determined by cross-validation. As shown in Table 6.1, Cluster 6 has the lowest accuracy
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Figure 6.2: Clusters of Predicted Connections – cluster 6 has most of the sequences with a
small prediction accuracy and large number of packets per connection.

(12.25%) and a high number of predicted packets (94.47), which supports the above hypothesis.

Even though the model classifies all attacks as anomalies without further distinctions, man-

ual inspection of true positive packets from Cluster 6 reveals that anomalous packets are from

either Port-Sweep probe or Neptune DoS attack. The proposed model is able to identify such

anomalous packets with 97.02% Detection Ratio and 0.07% False Alarm Ratio.

6.1.4 Test 1.3 - Test the ability of the MSeq2MSeq model in real-time

intrusion detection

In Test 1.3, the model was able to raise alarms on all Port-Sweep and Neptune DoS attacks

with 100% true positive rate. Only a single False Alarm was raised in five days of network

traffic. Bontemps et al. claimed 100% true positive alarms and 63 false alarms using LSTM on
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Cluster Accuracy No of packets
1 95.19 97.08
2 61.80 9.52
3 76.52 7.68
4 89.16 13.06
5 76.66 96.49
6 12.25 94.47

Table 6.1: Accuracy and Number of Packets – cluster means of accuracy and number of
predicted packets in Test 1.2.

the same dataset [6]. Furthermore, their model was able to detect only the Neptune DoS attack.

Based on these results, we can claim that the proposed MSeq2MSeq model outperforms LSTM

RNN in detecting anomalies in TCP traffic.

6.2 Phase 2 - Test the Intrusion Detection System using CI-

CIDS 2017 dataset

6.2.1 Test 2.1 - Test the integration of Wisdom Stream Processor with

Machine Learning model

In Test 2.1, the IDS generated 36 false alarms. Considering individual packets in each false

alarms, the IDS classified 0.07% of packets as anomalies and the remaining 99.93% packets as

legitimate packets. Although this is a low percentage, for an IDS, 36 false alarms in a day is not

acceptable. Manual inspection of raw packets revealed that among these false alarms, 24 were

caused by a massive amount of out of order packets, 9 were caused by TLS sequences and the

remaining 3 were caused by a large number of HTTP GET requests sent by a client to a specific

server in a short interval. Though the massive amount of out of order packets and anomalous

GET requests are not intentional attacks in the dataset, they are potential network anomalies

which can be used to attack systems. Therefore, they are treated as potential anomalies and the

IDS is allowed to raise alarms. False alarms caused by TLS sequences are due to the inability of



56 Chapter 6. Results

the trained model in predicting such sequences. Less number of TLS sequences in the training

data compared to other traffic can be a reason for lower prediction accuracy of TLS sequences.

Test 2.1 also reveals that the model can be used in real-time with our stream processor and the

predictive “Wisdom” rules are working as expected.

6.2.2 Test 2.2 - Test the self-tuning ability of Wisdom Stream Processor

CEP Rule Avg. Precision Avg. Recall
FTP Brute Force 100% 99.61%
Slow Header DoS 100% 96.85%
Port Scan 99.95% 83.80%

Table 6.2: Precision and Recall of Optimized Wisdom Rules – optimized using PSO and
Bisection algorithm in Test 2.2.

As in Table 6.2, “Wisdom” rules optimized by the proposed optimization algorithm was

able to detect selected attacks with a minimum precision of 99.95% and a maximum precision

of 100%. The minimum recall was 83.80% and the maximum recall was 99.85%. The knowl-

edge of domain expert and training data used to optimize the rule determine the accuracy of

a signature-based rule. The port scan detector is looking for a large number of packets with

SYN flags and unique destination port sent within a short interval. Therefore, there is a high

chance of false port scan alarms. Turchin et al. obtained a maximum precision of 80% and a

maximum recall of 90% with their probability-based CEP rule optimized using Kalman Filter

after training the system using the complete dataset [18]. Above results, support the argument

that humans are good at writing high-level signature-based rules and the proposed optimization

algorithm helps to derive optimal threshold values with better accuracy.
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Attack Static Rule Self-tuning Rule
FTP Brute Force 100% 100%
Slow Header DoS 99.96% 100%
Port Scan 71.43% 80.38%
SQL Injection 100% N/A

Table 6.3: Precision of Signature-based Rules – self-tuning “Wisdom” rules performed better
than static rules with user-defined threshold values in Test 2.3.
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Figure 6.3: Timestamp of Alarms Raised by FTP Bruteforce Detector – timestamp of each
alarm raised from the beginning of FTP Bruteforce attack. As time progress, the self-tuning
rule generates alerts slightly faster than the static rule with user-defined thresholds.

6.2.3 Test 2.3 - Test the complete Intrusion Detection System using CI-

CIDS 2017 dataset

In Test 2.3, self-tuning instances of signature-based rules were more accurate than static in-

stances of signature-based rules as given in Table 6.3. It reveals that tuning thresholds in

runtime improves the precision. As shown in Figure 6.3, Figure 6.4, and Figure 6.5 self-tuning

FTP brute force detector raised alarms faster than the static signature-based rule without com-

promising the precision. However, self-tuning instances of DoS detector and Port Scan detector

compromised the latency for precision. The latency versus precision tradeoff is depending on

the loss function and the training data used to optimize the rule. However, considering targetted

attacks, deployed signature-based rules have raised at least one alarm for each attack instances

which claims 100% detection rate.
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Figure 6.4: Timestamp of Alarms Raised by HTTP Slow Header DoS Detector – timestamp
of each alarm raised from the beginning of HTTP Slow Header DoS attack. As time progress,
the self-tuning rule generates alerts significantly later than the static rule with user-defined
thresholds. However, the accuracy of self-tuning rule is slightly better than the accuracy of
static rule.
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Figure 6.5: Timestamp of Alarms Raised by Port Scan Detector – timestamp of each alarm
raised from the beginning of Port Scan probe. As time progress, the self-tuning rule generates
alerts significantly later than the static rule with user-defined thresholds. However, the accuracy
of self-tuning rule is significantly better than the accuracy of static rule.

Anomaly-based rules detected 76 unique anomalous sequences. Among them, 63 se-

quences were out of order TCP packets, and 5 sequences were anomalous GET requests. The

remaining sequences were from HULK DoS, Web Brute Force, Cross-site scripting and Ares

Botnet attacks. As discussed earlier in this chapter, out of order packets and anomalous GET

requests are treated as potential anomalies. Therefore the proposed IDS claims 100% detection
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rate with anomaly-based rules. Even though there was an instance of Distributed Denial of

Service (DDoS) attack which involves a large volume of anomalous traffic, the anomaly-based

detector was not able to detect it because of the definition of the sequence. Additional CEP

rules are required to detect attacks which cannot be detected by the proposed anomaly-based

detection.

6.3 Phase 3 - Test the functionally auto-scaling ability of Wis-

dom Stream Processor

6.3.1 Test 3.1 - Compare the memory consumption of functionally auto-

scaling deployment with manual deployment

In Test 3.1 manual deployment, the overall memory consumption of every “Wisdom” instances

was between 450 - 500 Megabyte (MB) from the beginning to end (See Figure 6.6). In func-

tionally auto-scaling deployment, Wisdom Manager started Port scanning detector from the

beginning because there were packets matching Port scanning filter even in normal traffic (See

Figure 6.7). FTP brute force detector and HTTP Slow Header DoS were started only after feed-

ing packets containing those attacks. FTP brute force detector was stopped after the attack but

HTTP Slow Header DoS detector was stopped after the actual attack and started a few times

due to some matching packets in later traffic. However, those packets were not reported by DoS

detector as attacks. According to these results, we can conclude that functionally auto-scaling

deployment requires less amount of system resources than running rules all the time without

compromising the accuracy.
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Figure 6.6: Memory Consumption in Manual Deployment – from the beginning, all “Wis-
dom” rules are actively checking for new packets.
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Figure 6.7: Memory Consumption in Functionally Auto-scaling Deployment – Packet Filter
runs all the time, but other attack detectors run only if there is a possibility for those attacks.
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Conclusion

In this research, a novel MSeq2MSeq machine learning model, and an adaptive and function-

ally auto-scaling stream processor “Wisdom” were proposed to build an IDS for both anomaly-

based and signature-based intrusion detection. The IDS developed using both machine learn-

ing and stream processing techniques was able to detect eight attacks with 100% detection rate.

Above results are obtained by simulating a real-time network traffic by feeding streams of pack-

ets read from raw pcap files. In an attack which requires a lot of packets like DoS, the proposed

IDS raises several alarms continuously. Therefore, the proposed IDS can be used to prevent

network intrusions at their initial stage by modifying firewall rules with the first alarm gener-

ated by the IDS. Even though the MSeq2MSeq model has been used for packet prediction, it

has a wide range of applications in other MSeq2MSeq problems like weather forecasting with

multiple features and stock prediction. The “Wisdom” can be used as a general purpose stream

processor with the ability to adapt itself, start new rules to add more features and stop unwanted

rules to decrease resource consumption. Compared to signature-based rules, anomaly-based

rules cannot differentiate a benign anomaly like an out of order packet from an attack. On the

other hand, it is not always possible for a domain expert to come up with a signature to detect

unknown attacks with false positive rates that are low enough for practical use. Therefore,

combining both signature-based detection and anomaly-based detection takes the advantage of

61
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signature-based rules without missing unknown attacks. Another advantage of using stream

processor as an IDS is the ability to utilize external resources like system logs and knowledge

about hosted services and legitimate users. However, none of them were used in this research

because none of the publicly available datasets provide such additional information.

Compared to popular IDS’s like Snort, the proposed IDS offers functionally auto-scaling

deployment, SQL like query, anomaly-based intrusion detection, and self-tuning rules. The

ability of the proposed IDS in processing events received from different sources makes it suit-

able to detect attacks with high accuracy. Among the four challenges raised by Sommer and

Paxon, the proposed IDS has addressed the first three problems. The last challenge: “lack

of appropriate public datasets” still affects the research because the accuracy of the machine

learning model is depending on the quality of training data. Furthermore, the CICIDS 2017

dataset does not contain multiple occurrences of the same attack at different times which limits

testing the long-term benefit of self-tuning rules. However, creating an ideal dataset is beyond

the scope of this research. Training the machine learning model using more data will increase

the accuracy of the anomaly-based detector. Similarly, writing new signature-based rules for

every known attack will make the signature-based detector to detect all those attacks. As a

future direction, I recommend deploying the proposed IDS in a honeynet for a long period

with new self-tuning signature-based rules to test the long-term effect of the self-tuning IDS. A

honeynet can also be used to test advanced signature-based rules using additional information

sources like application logs and to continuously train the MSeq2MSeq model using the traffic

received by the honeynet.



Bibliography

[1] J. Seidl, “Goldeneye layer 7 (keepalive+nocache) dos test tool,” may 2018. [Online].

Available: https://github.com/jseidl/GoldenEye

[2] B. Shteiman, “Hulk - http unbearable load king packet storm,” may 2018. [Online]. Avail-

able: https://packetstormsecurity.com/files/112856/HULK-Http-Unbearable-Load-King.

html

[3] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” Technical report,

Tech. Rep., 2000.

[4] M. Sabhnani and G. Serpen, “Application of machine learning algorithms to kdd intrusion

detection dataset within misuse detection context.” 01 2003, pp. 209–215.

[5] A. Ahmed, A. Lisitsa, and C. Dixon, “A misuse-based network intrusion detection system

using temporal logic and stream processing,” in 2011 5th International Conference on

Network and System Security, Sept 2011, pp. 1–8.

[6] L. Bontemps, V. L. Cao, J. McDermott, and N. Le-Khac, “Collective anomaly detection

based on long short term memory recurrent neural network,” CoRR, 2017. [Online].

Available: http://arxiv.org/abs/1703.09752

[7] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for

network intrusion detection,” in 2010 IEEE Symposium on Security and Privacy, May

2010, pp. 305–316.

63



64 BIBLIOGRAPHY

[8] Cisco, “Snort - network intrusion detection & prevention system,” may 2018. [Online].

Available: https://www.snort.org/

[9] M. Ficco and L. Romano, “A generic intrusion detection and diagnoser system based on

complex event processing,” in 2011 First International Conference on Data Compression,

Communications and Processing, June 2011, pp. 275–284.

[10] M. Blount, M. R. Ebling, J. M. Eklund, A. G. James, C. McGregor, N. Percival, K. Smith,

and D. Sow, “Real-time analysis for intensive care: Development and deployment of the

artemis analytic system,” IEEE Engineering in Medicine and Biology Magazine, vol. 29,

no. 2, pp. 110–118, March 2010.

[11] S. Nielsen, C. Chambers, and J. Farr, “Fleet management systems and methods for com-

plex event processing of vehicle-related information via local and remote complex event

processing engines,” jun 2013, uS Patent 8,473,148.

[12] J. Hazra, K. Das, D. P. Seetharam, and A. Singhee, “Stream computing based

synchrophasor application for power grids,” in Proceedings of the First International

Workshop on High Performance Computing, Networking and Analytics for the Power

Grid, ser. HiPCNA-PG ’11. New York, NY, USA: ACM, 2011, pp. 43–50. [Online].

Available: http://doi.acm.org/10.1145/2096123.2096134

[13] The Apache Software Foundation, “Apache flink: Scalable stream and batch data

processing,” may 2018. [Online]. Available: https://flink.apache.org/

[14] EsperTech Inc, “Esper - espertech,” apr 2018. [Online]. Available: http://www.espertech.

com/esper/

[15] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera, and

V. Nanayakkara, “Siddhi: A second look at complex event processing architectures,”

in Proceedings of the 2011 ACM Workshop on Gateway Computing Environments,



BIBLIOGRAPHY 65

ser. GCE ’11. New York, NY, USA: ACM, 2011, pp. 43–50. [Online]. Available:

http://doi.acm.org/10.1145/2110486.2110493

[16] WSO2, “Siddhi query guide - siddhi,” may 2018. [Online]. Available: https:

//wso2.github.io/siddhi/documentation/siddhi-4.0

[17] R. Bhargavi, R. Pathak, and V. Vaidehi, “Dynamic complex event processing - adaptive

rule engine,” in 2013 International Conference on Recent Trends in Information Technol-

ogy (ICRTIT), July 2013, pp. 189–194.

[18] Y. Turchin, A. Gal, and S. Wasserkrug, “Tuning complex event processing

rules using the prediction-correction paradigm,” in Proceedings of the Third

ACM International Conference on Distributed Event-Based Systems, ser. DEBS

’09. New York, NY, USA: ACM, 2009, pp. 10:1–10:12. [Online]. Available:

http://doi.acm.org/10.1145/1619258.1619272

[19] R. Mousheimish, Y. Taher, and K. Zeitouni, “Automatic learning of predictive cep rules:

Bridging the gap between data mining and complex event processing,” in Proceedings

of the 11th ACM International Conference on Distributed and Event-based Systems,

ser. DEBS ’17. New York, NY, USA: ACM, 2017, pp. 158–169. [Online]. Available:

http://doi.acm.org/10.1145/3093742.3093917

[20] A. Margara, G. Cugola, and G. Tamburrelli, “Learning from the past: Automated

rule generation for complex event processing,” in Proceedings of the 8th ACM

International Conference on Distributed Event-Based Systems, ser. DEBS ’14.

New York, NY, USA: ACM, 2014, pp. 47–58. [Online]. Available: http:

//doi.acm.org/10.1145/2611286.2611289

[21] O.-J. Lee and J. E. Jung, “Sequence clustering-based automated rule generation for

adaptive complex event processing,” Future Generation Computer Systems, vol. 66, pp.



66 BIBLIOGRAPHY

100 – 109, 2017. [Online]. Available: {http://www.sciencedirect.com/science/article/pii/

S0167739X16300243}

[22] N. Mehdiyev, J. Krumeich, D. Werth, and P. Loos, “Determination of event patterns for

complex event processing using fuzzy unordered rule induction algorithm with multi-

objective evolutionary feature subset selection,” in 2016 49th Hawaii International Con-

ference on System Sciences (HICSS), Jan 2016, pp. 1719–1728.

[23] G. Combs, “Wireshark go deep.” may 2018. [Online]. Available: https://www.wireshark.

org/

[24] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Proc. NIPS, 2014. [Online]. Available: http://arxiv.org/abs/1409.3215

[25] G. Loganathan, J. Samarabandu, and X. Wang, “Sequence to sequence pattern learning

algorithm for real-time anomaly detection in network traffic,” in 2018 IEEE Canadian

Conference on Electrical & Computer Engineering (CCECE) (CCECE 2018), Quebec

City, Canada, May 2018.

[26] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in Robots and

Biological Systems: Towards a New Bionics?, P. Dario, G. Sandini, and P. Aebischer,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 703–712.

[27] G. Loganathan, J. Samarabandu, and X. Wang, “Real-time intrusion detection in network

traffic using adaptive and auto-scaling stream processor,” in 2018 IEEE Global Commu-

nications Conference: Communication & Information System Security (Globecom2018

CISS) - In Press, Abu Dhabi, United Arab Emirates, Dec. 2018.

[28] Google, “grpc,” https://www.grpc.io, jun 2018.

[29] The Apache Software Foundation, “Apache kafka,” apr 2018. [Online]. Available:

https://kafka.apache.org/



BIBLIOGRAPHY 67

[30] S. Jayasekara, S. Kannangara, T. Dahanayakage, I. Ranawaka, S. Perera, and

V. Nanayakkara, “Wihidum: Distributed complex event processing,” Journal of

Parallel and Distributed Computing, vol. 79-80, pp. 42 – 51, 2015, special Issue

on Scalable Systems for Big Data Management and Analytics. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0743731515000519

[31] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice Architecture:

Aligning Principles, Practices, and Culture. ” O’Reilly Media, Inc.”, 2016.

[32] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating a new intrusion

detection dataset and intrusion traffic characterization,” 01 2018, pp. 108–116.

[33] Sweet Software, “Ares,” may 2018. [Online]. Available: https://github.com/

sweetsoftware/Ares
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[57] P. Bonami, M. Kilinç, and J. Linderoth, “Algorithms and software for convex mixed inte-

ger nonlinear programs,” in Mixed Integer Nonlinear Programming, J. Lee and S. Leyffer,

Eds. New York, NY: Springer New York, 2012, pp. 1–39.
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Appendix A

Signature-based Wisdom Rules

A.1 HTTP SlowHeader Detector

@app(name=‘HTTPSlowHeaderDetector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘console ’)

@sink(type=‘file.text’, path=‘/tmp/dos_attack.txt’)

def stream DoSAttackStream;

@config(trainable=true, minimum=100, maximum=60000, step=-1)

def variable time_threshold = 1189;

@config(trainable=true, minimum=3, maximum=1000, step=1)

def variable count_threshold = 3;

from PacketStream

filter ‘http’ == app_protocol and

dst_port == 80 and ‘\r\n\r\n’ in data

and ‘Keep-Alive: \\d+’ matches data

partition by dst_ip

window.externalTimeBatch(‘timestamp ’, $time_threshold)

aggregate count() as no_of_packets

filter no_of_packets >= $count_threshold

select src_ip, dst_ip, timestamp

insert into DoSAttackStream;

72



A.2. FTP Brute Force Detector 73

A.2 FTP Brute Force Detector

@app(name=’FTPBruteForceDetector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘console ’)

@sink(type=‘file.text’, path=‘/tmp/ftp_brute_force_attack.txt’)

def stream FTPBruteForceAttack;

@config(trainable=true, minimum=100, maximum=60000, step=-1)

def variable time_threshold = 3220;

@config(trainable=true, minimum=3, maximum=1000, step=1)

def variable count_threshold = 7;

from PacketStream

filter ‘FTP[CONTROL]’ == app_protocol and ‘530 Login incorrect ’

in data

partition by dst_ip

window.externalTimeBatch(’timestamp ’, $time_threshold)

aggregate count() as no_of_packets

filter no_of_packets >= $count_threshold

select src_ip, dst_ip, no_of_packets , timestamp

insert into FTPBruteForceAttack;
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A.3 Port Scan Detector

@app(name=’PortScanDetector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘console ’)

@sink(type=‘file.text’, path=‘/tmp/port_scan_probe.txt’)

def stream PortScanProbe;

@config(trainable=true, minimum=100, maximum=60000, step=-1)

def variable time_threshold = 108;

@config(trainable=true, minimum=3, maximum=1000, step=1)

def variable count_threshold = 9;

from PacketStream

filter syn == true and ack == false

partition by src_ip + dst_ip

window.unique:externalTimeBatch(‘dst_port ’, ‘timestamp ’,

$time_threshold)

aggregate count() as no_of_packets

filter no_of_packets >= $count_threshold

select src_ip, dst_ip, no_of_packets , timestamp

insert into PortScanProbe;
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A.4 SQL Injection Detector

@app(name=’SQLInjectionDetector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘console ’)

@sink(type=‘file.text’, path=‘/tmp/sql_injection_probe.txt’)

def stream SQLInjectionAttack;

from PacketStream

filter app_protocol == ‘HTTP’

and ‘/dv/vulnerabilities/sqli/’ in data

select src_ip, dst_ip, timestamp

insert into SQLInjectionAttack;



Appendix B

Anomaly-based Wisdom Rules

B.1 TCP Packets Filter

@app(name=‘TCPPacketsFilter ’, version=’1.0.0’, playback=‘timestamp ’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘TCPStream ’)

def stream TCPStream;

from PacketStream

filter transport_layer == ‘TCP’ and

not (src_port == 443 or dst_port == 443)

select highest_layer , transport_layer , src_ip, src_port , dst_ip,

dst_port , ip_flag, transport_flag , timestamp

partition by src_ip + dst_ip

map copy(‘src_ip ’) as srcIp, copy(‘dst_ip ’) as dstIp

window.idleTimeLengthBatch(time.sec(1), 1000)

limit 320

aggregate collect(‘src_ip ’) as src_ip,

collect(‘dst_ip ’) as dst_ip, collect(‘ip_flag ’) as ip_flag,

collect(‘transport_flag ’) as transport_flag ,

collect(‘transport_layer ’) as transport_layer ,

collect(‘highest_layer ’) as highest_layer

select src_ip, dst_ip, highest_layer , transport_layer , src_ip,

dst_ip, ip_flag, transport_flag , srcIp, dstIp, timestamp

map len(‘ip_flag ’) as no_of_packets

insert into TCPStream;
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B.2 UDP Packets Filter

@app(name=‘UDPPacketsFilter ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’)

def stream PacketStream;

@sink(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘UDPStream ’)

def stream UDPStream;

from PacketStream

filter transport_layer == ‘UDP’

select highest_layer , transport_layer , src_ip, src_port , dst_ip,

dst_port , ip_flag, transport_flag , timestamp

partition by src_ip + dst_ip

map copy(‘src_ip ’) as srcIp, copy(‘dst_ip ’) as dstIp

window.idleTimeLengthBatch(time.sec(1), 1000)

limit 320

aggregate collect(‘src_ip ’) as src_ip,

collect(‘dst_ip ’) as dst_ip, collect(‘ip_flag ’) as ip_flag,

collect(‘transport_flag ’) as transport_flag ,

collect(‘transport_layer ’) as transport_layer ,

collect(‘highest_layer ’) as highest_layer

select src_ip, dst_ip, highest_layer , transport_layer , src_ip,

dst_ip, ip_flag, transport_flag , srcIp, dstIp, timestamp

map len(‘ip_flag ’) as no_of_packets

insert into UDPStream;
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B.3 TCP Bucket Connector

@app(name=‘TCPBucketConnector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘TCPStream ’)

def stream TCPStream;

@sink(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘

ProcessedStream ’)

def stream ProcessedStream;

from TCPStream

filter no_of_packets > 3 and no_of_packets <= 10

map grpc(’localhost:9001’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from TCPStream

filter no_of_packets > 10 and no_of_packets <= 20

map grpc(’localhost:9002’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from TCPStream

filter no_of_packets > 20 and no_of_packets <= 40

map grpc(’localhost:9003’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from TCPStream

filter no_of_packets > 40 and no_of_packets <= 80

map grpc(’localhost:9004’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from TCPStream

filter no_of_packets > 80 and no_of_packets <= 160

map grpc(’localhost:9005’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from TCPStream

filter no_of_packets > 160 and no_of_packets <= 320

map grpc(’localhost:9006’, ’accuracy ’) as accuracy

insert into ProcessedStream;
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B.4 UDP Bucket Connector

@app(name=‘UDPBucketConnector ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘UDPStream ’)

def stream UDPStream;

@sink(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘

ProcessedStream ’)

def stream ProcessedStream;

from UDPStream

filter no_of_packets > 3 and no_of_packets <= 10

map grpc(’localhost:9101’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from UDPStream

filter no_of_packets > 10 and no_of_packets <= 20

map grpc(’localhost:9102’, ’accuracy ’) as accuracy

insert into ProcessedStream;

from UDPStream

filter no_of_packets > 20 and no_of_packets <= 40

map grpc(’localhost:9103’, ’accuracy ’) as accuracy

insert into ProcessedStream;
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B.5 Processed Stream Filter

@app(name=‘ProcessedStreamFilter ’, version=’1.0.0’)

@source(type=‘kafka’, bootstrap=‘localhost:9002’, topic=‘

ProcessedStream ’)

def stream ProcessedStream;

@sink(type=‘console ’)

@sink(type=‘file.text’, path=‘/tmp/anomalous_attacks.txt’)

def stream AttackStream;

from ProcessedStream

filter accuracy > 0 and accuracy < 0.125

select srcIp, dstIp, timestamp , no_of_packets , accuracy

insert into AttackStream;
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