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Abstract 

Micrometeorological variability within cities has important implications for urban air and 

water quality, building energy consumption, and human health and thermal comfort.  

However, the monitoring of microscale climate is not routinely conducted.  In most 

instances, primary meteorological observations are made under reproducible standard 

conditions (typically at an airport); but these open field observations tend to be 

unrepresentative of the intra-urban meteorological conditions. 

This thesis used an alternative approach of conducting mobile traverse measurements using 

vehicle-mounted sensors to characterize the microclimates of Toronto, ON under hot, 

summertime weather conditions.  Sampling occurred along two routes and incorporated 

sampling 8 intra-urban neighbourhoods with contrasting surface properties.  In addition, a 

rural reference and two areas identified by Toronto Public Health (TPH) as ‘high-risk’ in 

relation to human health were sampled – the Thorncliffe Park and Moss Park 

neighbourhoods.  These observations were used to address the following: 

1) What is the intra-urban meteorological variability observed by vehicle traverses 

under daytime and nighttime conditions? 

2) Compared to the other neighbourhoods, do the Thorncliffe Park and Moss Park 

neighbourhoods exhibit microclimates associated with higher human thermal 

discomfort? 

3) How does an urban-scale numerical model perform in predicting neighbourhood-

scale microclimates? 

The results presented in this thesis demonstrate significant microscale intra-urban 

variability from 9 daytime and 3 nighttime traverses.  Numerical model outputs show 

relatively good agreement with vehicle traverse observations, where ΔTair (mod-obs) < -1.1 ºC 

and ΔTdew (mod-obs) < -1.7 ºC in 8 of 11 evaluated vehicle traverses.   The application of these 

results can provide insight to where in Toronto public health is at highest risk and where 

heat mitigation strategies are most needed. 

Keywords 

Urban climate, micrometeorology, urban heat island, mobile traverses, urban numerical 

modeling, Toronto.  
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Chapter 1  

1 Introduction 

1.1 Urban Climates 

Urban development leads to significant changes in the Earth’s surface properties.  Land 

cover, structure, and materials are all modified from their pre-urbanized state and 

anthropogenic emissions of heat, water vapour, and pollutants alter the composition of the 

atmosphere.  Together, these serve to form distinctly urban climates relative to their 

surrounding rural area.  Local impacts on temperature, humidity, precipitation, and wind 

have been well documented in cities.  One of the most studied impacts is the general 

warming associated with urban areas, a phenomenon termed the Urban Heat Island (UHI).  

First observed by Luke Howard (1833), this urban effect is typically expressed by elevated 

air and surface temperatures and is generally found in all urban areas across the world 

(Oke, 1995).  This leads to several practical implications within cities, including impacts 

on urban building energy consumption (e.g. Fung et al., 2006; Kolokotroni et al., 2007; 

Skelhorn et al., 2016), urban air and water quality (e.g. James, 2002; Huizenga et al., 2006; 

Lai & Cheng, 2009), and human health and thermal comfort (e.g. Harlan et al., 2006; 

Johansson & Emmanuel, 2006; Ng & Cheng, 2012).  As development expands and the 

number of people living in an urban environment increases (United Nations, 2014), 

understanding our effect on the climate and the implications of the UHI remains evermore 

critical. 

1.2 Defining the Urban Climate 

The vertical structure and the different scales of an urban-modified atmosphere can be seen 

in Figure 1-1.  The meso, local, and micro-scales all represent different conceptual 

divisions within the urban boundary layer –the upper most layer of an urban-modified 

atmosphere.  Each scale has unique dominant drivers of climate.  For example, mesoscale 

climate is more heavily governed by vertical mixing within the urban boundary layer 

whereas local building and canyon geometry more heavily governs microscale climate.  

Nevertheless, it is essential to note that all urban climates are under the control of current 
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synoptic weather conditions and, on long time-scales, the background climate of a location 

(Lowry, 1977).  Understanding how climate is modified at different scales is important 

since each climate parameter is a part of a continuum in which they interact with each other 

across multiple scales (Oke et al., 2017). 

 

Figure 1-1.  A schematic of the urban boundary layer, including the different vertical 

layers and three scales of observation.  Abbreviations defined as: PBL = Planetary 

boundary layer; UBL = Urban boundary layer; UCL = Urban canopy layer (Piringer et 

al., 2002, after Oke, 1995). 

Shown in Figure 1-1, the scale of this thesis focuses within the urban canopy layer (UCL).  

The UCL represents the lowest layer of an urban-modified atmosphere, i.e. the layer 

beneath the mean height of buildings and trees (zH).  UCL climate conditions are of great 

concern to researchers as this is the layer in which the majority of urban development and 

daily human activity occurs. 

1.3 Urban Canopy Layer Climate 

UCL climate is dominated by complex and unique combinations of physical properties at 

the microscale.  In other words, the climate at any location within the UCL will be affected 
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by both the intrinsic (i.e. radiative, thermal, moisture, and aerodynamic) properties of the 

area studied, as well as properties of the surrounding environment (e.g. building heights 

and density).  As per Oke (1982), the interactions of these intrinsic surface properties with 

the surrounding environment produces an almost limitless array of microclimate 

conditions.  Table 1-1 shows the effects of varying surface properties, and how these 

influence local climate processes within the UCL, ultimately contributing to elevated urban 

temperatures.  

Table 1-1.  UCL surface properties and their effects on climate processes (Modified from 

Oke, 1982). 

Surface Property Effect Climate Process 

Canyon geometry 

(i.e. Building height, 

spacing, and 

orientation) 

 

• Increased surface area and 

multiple reflections 

 

• Reduction of sky view 

factor 

• Increased absorption of 

shortwave radiation 

• Decreased longwave 

radiation loss 

• Decreased local turbulent 

heat transport 

• Reduction of wind speed 

Construction and 

surface cover 

materials 

• Increased impermeable 

surface cover 

• Decreased 

evapotranspiration 

Canopy layer heat islands (UHIucl) are traditionally measured by screen-level (~1.5 m 

above ground level) observations between ‘urban’ and ‘rural’ locations, e.g. for air 

temperature, ΔTurban-rural.  This urban-rural difference is also described as the “heat island 

magnitude”.  The heat island magnitude is strongest at night, due to the relatively fast 

cooling rate of a rural area relative to a city, and is maximized approximately 3 to 4 hours 

following sunset and under clear skies and calm wind conditions.  These ‘ideal’ conditions, 

help maximize urban-rural cooling rates by limiting turbulent and advective exchanges 

between the city and rural area and maximizing upwelling longwave radiation (Oke, 1987).  

In mid-latitude cities during the summertime, nocturnal heat island magnitudes can exceed 

10 °C, while in daytime conditions a negative “cool” island can occasionally be observed 

(Oke, 1982; Runnalls & Oke, 2013).  Additionally, heat island magnitudes have been 

linked to a city’s population size, in which higher magnitudes are observed in more 

populous cities (Oke, 1973). 
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Despite the vast UHI literature dating back two centuries, Stewart (2011) has argued that 

the heat island magnitude is arguably the most misrepresented climate expression.  At the 

root of Stewart’s argument is that conventional nomenclature, ΔTurban-rural is far too 

simplistic, as the words ‘urban’ and ‘rural’ provide no means of describing the field site or 

local surroundings.  In an effort to enhance the communication of field site data and provide 

a basis for inter-site comparisons, the Local Climate Zone (LCZ) classification system was 

developed (Stewart & Oke, 2012). 

1.4 Local Climate Zones 

LCZs classify areas of uniform surface properties and human activity that span hundreds 

of metres to several kilometers in horizontal scale (Stewart & Oke, 2012).  Each LCZ has 

a unique microclimate resulting from distinctive surface properties that make it 

distinguishable, including: mean building height, terrain roughness, building, impervious, 

and pervious surface fractions, surface admittance, albedo, and anthropogenic heat flux 

(Stewart & Oke, 2012).  There are 17 standard built and land cover LCZs in total.  In 

addition, 2 or more standard LCZs can be combined to form a subclass.  For example, a 

large low-rise LCZ (LCZ 8) can be combined with scatter trees (LCZ B) to form LCZ 8B, 

large low-rise with scattered trees. Common LCZ examples found within cities can be seen 

in Figure 1-2.  Using LCZs can enhance UHI communication by defining heat island 

magnitudes according to their LCZ, and not simply ‘urban’ and ‘rural’, e.g. ΔTLCZ x-y. 

 

Figure 1-2.  Three examples of LCZs commonly found within cities (Stewart & Oke, 

2012). 

1.5 Assessing UCL Climate 

The use of fixed weather stations is the most commonly used approach to assess UCL 

climate and the resulting microclimate conditions.  According to the World Meteorological 

Organization (2008), to conduct representative UCL observations, an instrument’s source 
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area, defined as the surface area ‘seen’ by a sensor, must be based within a single LCZ.  

Figure 1-3 provides a hypothetical source area for an air temperature sensor placed within 

the UCL (Stewart & Oke, 2012).  The location of a source area is always upwind from the 

sensor, and the size and orientation varies depending on the wind speed and direction.  By 

“rule of thumb” a source area under relatively calm wind conditions extends no more than 

a few hundred meters (Mizuno et al., 1991; Runnalls & Oke, 2006).   

 

Figure 1-3.  Hypothetical source area for an air temperature sensor in the UCL. (Left) 

represents short-term source, (right) represents mean daily source area (Stewart & Oke, 

2012). 

This ultimately makes conducting representative UCL observations a very challenging 

task, and in the majority of cities, the monitoring of microscale urban climate is not 

regularly undertaken.   

1.5.1 Approaches to Conducting UCL Observations 

One approach used in cities to characterize UCL climates is to use a network of observing 

stations (e.g. Micro-scale UScan in Tokyo, Japan (Ono et al., 2008); Oklahoma City 

Micronet (OKCNET) (Basara & Rowell, 2012).  A network can vary in the number of 

stations and scale it represents, yet to ensure representability, the location of each station 

should follow the same protocol outlined in Assessing UCL Climate.  A network can 

provide long-term meteorological observations (typically of air temperature and humidity) 

over a variety of LCZs yet challenges in implementing a network include finding secure 

and representative station sites, and adequate funding and maintenance.   

Another approach is through mobile observations.  Mobile observations, known as 

traverses, use a measurement platform that carries instruments and makes meteorological 

observations while in motion.  Within the UCL, traversing can be conducted on foot (e.g. 
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Nakayoshi et al., 2015; Tsin et al., 2016), by bicycle (e.g. Heusinkveld et al., 2010; Vanos 

et al., 2012) or from a vehicle (e.g. Conrads & Van Der Hage, 1971; Voogt & Oke, 1998; 

Sofer & Potchter, 2006; Leconte et al., 2015).  Traverses can provide detailed spatial 

observations along a route, covering a variety of LCZs; however, they are often limited in 

their ability to represent temporal variation.  This is because a fixed number of traverses 

can typically be conducted within a day and are often limited to a select number of days.  

In addition, the representativeness of traverse observations can be difficult to determine 

while driving within a city due to consistently varying source areas.  Lastly, this approach 

requires that the data collected be refined, namely, by correcting for temperature changes 

(i.e. heating or cooling) during a traverse as well as filtering out data while stationary as 

extraneous heat sources, such as vehicle exhaust, may contaminate the signal. 

A third approach is to use thermal remote sensing techniques.  These techniques observe 

radiative surface temperatures, or more specifically upwelling thermal radiance, and are 

often used to assess the surface urban heat island, perform land cover classifications, and 

provide input for models.  Remote sensing techniques can provide large, repetitive, area 

coverage that leads to important observations of the surface conditions.  However, the 

thermal remote sensing of urban climates includes a variety of spatial and temporal biases.  

Spatially, remote sensing techniques under sample complex urban 3-dimensional surfaces 

as what the sensor “sees” depends on the sensor viewing angle and thus a significant 

portion of the complete urban surface may not be viewed (Voogt & Oke, 2003).  

Temporally, satellite overpass times are discontinuous and require clear skies to view the 

surface, thus limiting the applicability of remote sensing techniques.  

1.5.2 Urban-Scale Numerical Models 

The use of urban-scale numerical models is another approach to characterizing UCL 

climate.  Urban climate models (UCMs) are used to simulate UCL meteorological 

conditions using mathematical relationships that represent the surface-atmosphere 

processes.  There is a large variety of UCMs, that differ based on the scale they represent 

(micro-macro), surface description (1D-3D), and overall complexity (the number of urban-

atmosphere processes included).  Currently, a common approach is to ‘couple’ models, 

meaning that a mesoscale model is run to provide the upper boundary layer conditions for 
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a microscale model, that in turn provides the lower boundary conditions for the mesoscale 

model.  Adding to the complexity of these models, a microscale model may also consist of 

multiple parts – referred to as a ‘tiled’ scheme.  For example, a tiled-microscale model may 

incorporate two different models to represent the vegetated and urban parts of a grid cell.  

For these models, the final output is weighted and then combined according to the 

vegetated and urban fraction of a grid cell.  UCMs allow users to simulate urban effects by 

simplifying the real world and many of the inherently complex processes that occurs 

between a city and the atmosphere.  A major benefit of this approach is the ability to predict 

future climate scenarios, which can only be achieved through computer simulations.   

1.6 Thesis Context and Background 

The majority of cities do not have proper monitoring platforms to make daily assessments 

of UCL climate. In most instances, primary meteorological observations are made under 

reproducible standard conditions (typically at an airport); but these open field observations 

tend to only represent one LCZ and thus are predominately unrepresentative of the variety 

of LCZs and conditions within an urban area. While urban-scale numerical modeling 

provides an alternative approach and has undergone significant improvements 

(synchronous with increasing computing power), the evaluation of these models to 

represent the microscale is an on-going process (Leroyer et al., 2011). 

1.6.1 Pan and Parapan American Games 

In the summer of 2015, Toronto, ON, Canada was host to the Pan and Parapan American 

Games, the world’s third largest sporting event.  During this time, a large scientific field 

campaign was initiated to provide enhanced weather, air quality, and health monitoring 

within the Greater Toronto Area (GTA).  This included a variety of observation and 

modeling systems and provided urban meteorological observations and simulations not 

routinely made.  See Joe et al. (2017) for a full description of the scientific field campaign. 

1.7 The GEM-LAM Model 

Of interest to this thesis is the operation of the Global Environmental Multiscale model 

(GEM; Zadra et al., 2008) run in Limited-Area Mode (GEM-LAM) during the field 
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campaign.  The GEM-LAM model simulates UCL conditions using a ‘tiled-scheme’ to 

represent different surface categories; the Town Energy Balance scheme (TEB: Masson, 

2000) is used to represent urban areas and the Interactions between the Surface, Biosphere, 

and Atmosphere scheme (ISBA; Noilhan & Planton, 1989) is used to represent land 

surfaces and vegetation .  Throughout the games, the spatial domain of the modeling system 

was set-up over Southwestern Ontario to include the 2015 Pan-American Games venues 

and the GTA.  The model was operated at 1 km and 250 m resolutions; this thesis assesses 

the 250 m outputs. 

The evaluation of the GEM numerical model for simulating UCL conditions has only been 

assessed in a few case-specific studies.  Lemonsu et al. (2009) tested the modeling system 

over Oklahoma City (OKC).  One of their main goals was to test the ability of the system 

to simulate street-level air temperature on two separate dates in July (clear sky conditions).  

Their evaluation included two intensive observational periods, on July 16th and another on 

July 26th.  The evaluation was conducted using a variety of fixed stations, set up as three 

different networks, in and surrounding the central business district (CBD) of the city.  

Instrumentation heights ranged from 3 m to 8 m above the ground.  Their analysis 

compared observed and simulated air temperature within the CBD, a commercial and 

industrial area within the city, and a rural location.  Model results showed good agreement 

with the observations to represent the nocturnal heat island, but did not succeed in 

representing the ‘cool’ island observed throughout the day.  The authors state this is likely 

due to limitations in radiative calculations in the TEB scheme. Ultimately, their results 

indicated satisfactory agreement between modeled and observed air temperature (with 

differences less than 1.5 °C).  Another evaluation of the model was conducted in Montréal 

(Leroyer et al., 2011).  This study evaluated air temperature and humidity using the EPiCC 

measurement network, that included two tower sites (one defined as “urban”, the other 

“sub-urban”) with mounted instrumentation (25 m) and a rural weather station (2 m).  

Findings at the rural location indicated a warm modeled air temperature bias (about 3 °C) 

during nighttime conditions and a diurnal modeled underestimation of specific humidity.  

At the urban site, air temperature was slightly underestimated by the model during both 

daytime and nighttime conditions.  While specific humidity also showed an 

underestimation, near-surface relative humidity showed relatively good agreement.  At the 
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suburban site, air temperature was better modeled during the nighttime than at the urban 

site, yet daytime air temperature was still slightly underestimated.  Specific humidity and 

relative humidity showed similar trends to that at the urban site.  The authors conclude with 

stating that modifications to TEB are currently being made to improve the representation 

of urban vegetation inside street canyons.  A third evaluation was conducted in Vancouver 

(Leroyer et al., 2014).  This evaluation also used the EPiCC measurement network, that 

consisted of two instrumented towers located in an urban residential neighbourhood south 

of downtown Vancouver.  Both locations represent the “open midrise” LCZ 6 (Stewart & 

Oke, 2012).  At both sites, diurnal air temperature was relatively well modeled, except for 

a 1 °C underestimation of the maximum value.  Diurnal relative humidity also showed 

similar trends at both sites and in general the model underestimated relative humidity.  

These findings show similar trends to that presented in Lemonsu et al. (2009) and Leroyer 

et al. (2011).  Past evaluations have used fixed station sites and have evaluated a limited 

number of LCZs, this thesis attempts to expand on these evaluations by including a larger 

number of LCZs and evaluating the modeled outputs with in-situ urban canyon 

observations.  

1.8 Toronto’s Urban Climate 

The first intra-urban spatial observations of Toronto’s climate were made by Middleton 

and Millar (1936).  Using a vehicle traverse approach, their findings showed “surprising” 

spatial air and dewpoint temperature variability along Yonge St under a range of conditions 

and seasons.  During summer daytime conditions, the lowest air temperatures were 

observed near the lakefront, with air temperature increasing until approximately 8 km north 

of the lake.  Dewpoint temperature had the opposite trend and decreased the further away 

from the lakefront.  These insights provided the first evidence of intra-urban microclimatic 

variability within the city and the strong influence Lake Ontario has on the city’s climate. 

Munn et al. (1969) used a “volunteer-observer-network” of fixed weather stations to 

examine the UHI under two seasons – a warm and cold season.  During the warm season 

they found the highest air temperatures north of Bloor Street and the central business 

district.  The UHI was identified as more intense during the nighttime and under light 

winds.  The authors also state that changes in local topography (e.g. valleys and interfluves) 
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within the city may also contribute to observed air temperature variability.  More recently, 

Gough and Rozanov (2002) assessed Toronto’s UHI using historical climate data observed 

from three fixed stations (2 rural, 1 downtown Toronto).  Their findings suggest a 3-4 °C 

heat island increase from 1930-1980.  They also note a strong lake breeze effect during the 

summer and estimate this contributes a cooling effect of 0.8 °C.  Furthermore, Mohsin and 

Gough (2010) stated that ongoing urban development within the GTA has contributed to 

at least 30% of the total increasing trend in annual average air temperature.  This study was 

followed up in 2012, when the authors examined the spatiotemporal trend of Toronto’s 

UHI and highlighted the importance of site selection when defining an UHI.  In general, 

these studies suggest an increasing trend in Toronto’s intra-urban air temperature dating 

back to post World War I with a strong connection to increasing urban development.  This 

thesis provides an updated insight on the intra-urban meteorological conditions observed 

within the city. 

A select number of studies have used thermal remote sensing to obtain land surface 

temperatures (LST) in the GTA.  Rinner and Hussain (2011) used a Landsat Thematic 

Mapper thermal image (60 m resolution) and identified statistically significant differences 

in LST between commercial/industrial land covers (29.1 °C) and parks/recreational land 

covers (23.1 °C).  Ye et al. (2017) used Landsat and ASTER thermal images with 120 m 

resolution to analyze surface temperature heat island intensity from 1984-2014 in the GTA.   

Using the normalized difference vegetation index to assess land cover change their findings 

suggest an increasing LST trend with increasing urban development.  To date, Toronto’s 

intra-urban surface temperatures have only been observed through thermal remote sensing 

techniques with relatively large (< 60 m resolution) pixel resolution; this thesis will provide 

the first insights into surface temperature variations at the microscale, within the UCL.  

However, as using a vehicle traverse methodology only allows a portion of the surface (i.e. 

road) to be sampled, we make the distinction between surface temperature, that may 

include roof and vegetated temperatures, and strictly road temperature.  Road temperature 

variability during hot summertime periods within cities is important to study as it 

contributes to the thermal loading on nearby pedestrians, specifically in busy districts such 

as downtown Toronto.   
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1.9 UCL Climate and Toronto’s Public Health 

Toronto experiences the highest number of extreme heat events or heat waves in Canada, 

defined as lasting two days or longer (Smoyer-Tomic et al., 2003).  With projected large 

scale anthropogenic climate change, the frequency of these events is expected to increase 

substantially (Meehl & Tebaldi, 2004).  UCL surface properties can further increase 

temperatures that impact inhabitants (Li & Bou-Zeid, 2013).  Prolonged exposure to heat 

can result in a wide variety of physiological effects, ranging from heat exhaustion and 

cramps to mortality.  In the city of Toronto, there is a clear link between temperature and 

death rates – on average, there are 120 heat-related deaths per year (Pengelly et al., 2007). 

Since 2000, Toronto Public Health (TPH) has developed a Hot Weather Response Plan as 

well as a Heat Warning alert in order to prepare for and spread awareness of the dangers 

of unusually hot weather (TPH, 2017).  Since then, the city has continued to implement 

policies and initiatives intended to counter heat-related risks to the public.  These initiatives 

range from improving urban green space (e.g. The Green Development Standard) to 

enhancing energy efficiency in existing buildings and new construction projects (e.g. The 

Better Buildings Partnership) (Penney, 2008).  More recently, TPH has identified two 

neighbourhoods in the city as being “high-risk” in relation human health – Moss Park and 

Thorncliffe Park (S. Dutfield, personal communication, July 16, 2015).  These two 

neighbourhoods contain large and mid-rise multi-residential towers and are characterized 

by low income housing with known human health concerns arising in these 

neighbourhoods. Yet, to date, no monitoring of the local urban microclimates has been 

conducted. 

1.10 Research Rationale and Questions 

With urban development and the number of people living in the GTA expected to increase 

(United Nations, 2016; Ontario Ministry of Finance, 2017), along with the known heat-

related health implications in the city of Toronto, this thesis endeavors to investigate 

microscale intra-urban variability captured by vehicle traverse observations and evaluate 

the ability of the GEM-LAM model to represent microscale variability during hot 

summertime periods.  From past evaluations of the model, this thesis expands on the 
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number of LCZs used in the evaluation and the number of days, as typically only a select 

number (1 or 2) days are evaluated.  Furthermore, at the time of writing, the GEM-LAM 

model has never been evaluated by mobile vehicle traverse observations.  These 

observations typically provide better representation of UCL climate compared to fixed 

weather stations and also provides the ability to see the variability within LCZs to assess 

any neighbourhood variability not resolved by the model. 

Using Stewart and Oke’s (2012) scheme, select Toronto neighbourhoods were classified 

as LCZs and meteorological differences of air, road, and dewpoint temperature associated 

with the physical characteristics between neighbourhoods are identified.  The use of 

representative LCZs to classify neighbourhoods in the city allows for both vehicle traverse 

observations and urban scale numerical modeling to be evaluated.  Each of these methods 

have tradeoffs in coverage, resolution, and error, but the use of LCZs provides a means of 

reconciling the two data sources (i.e. traverse and modeled data) to more accurately account 

for intra-urban variability.  Ultimately, these findings can help provide insight to where in 

Toronto public health is at greatest risk and where heat mitigation strategies are most 

needed.   

The research questions of this thesis are categorized as ‘observational’ or ‘modeling’ and 

meteorological variability is defined by air (Tair), road (Troad), and dewpoint (Tdew), 

temperature.  The research questions are as follows: 

Observational based:  

1. What is the meteorological variability observed by vehicle traverses under daytime 

and nighttime conditions in the city of Toronto? 

 

2. How do microclimates of select urban neighbourhoods differ under the same 

synoptic conditions? 

 

3. Identified as ‘high-risk’ neighbourhoods by TPH, do the Thorncliffe Park and Moss 

Park neighbourhoods exhibit microclimates associated higher heat related health 

risks compared to other urban neighbourhoods? 

Modeling based:  

4. How does an urban-scale numerical model perform in predicting neighbourhood-

scale microclimates? 
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a. Does the model show the same ranking of neighbourhood temperatures 

compared to the observations? 

 

1.11 Thesis Outline 

Chapter 2 details the study site, period, and the logistics of the mobile vehicle traverses; 

including a description of the vehicle-traverse platform, the routes, and the neighbourhoods 

that were sampled.  It describes the post-collection data filtering and time-correction 

schemes that have been applied to the traverse observations.  Furthermore, it describes the 

GEM-LAM modeling system and the data processing associated with the model outputs 

and provides an overview of the statistical tests used this thesis. 

Chapter 3 presents results and discussion from the vehicle traverses and addresses research 

questions 1 – 3.  The chapter concludes with a summary that highlights the key findings. 

Chapter 4 presents results and discussion from the GEM-LAM model evaluation and 

addresses research question 4.   Similar to the previous chapter, the chapter concludes with 

a summary that highlights the key findings. 

Chapter 5 summarizes the primary findings shown in Chapter 3 and Chapter 4.  It provides 

insight on future work and concludes with final remarks. 
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Chapter 2  

2 Methods  

2.1 Study Site and Period 

Toronto, Ontario, Canada, is currently Canada’s most populous city with a population of 

over 2.7 million people (Statistics Canada, 2018).  The city is located within a larger, highly 

urbanized region on the north shore of Lake Ontario that extends to the western end of the 

lake – the GTA (Figure 2-1).  The climate is represented by the Dfa Köppen-Geiger climate 

classification code (Kottek et al., 2006): characterized by hot, humid summers and cold 

winters.  The climate is greatly influenced by its proximity to Lake Ontario.  During the 

summertime, strong local “lake-effect” winds often blow inland, producing a strong 

moderating effect on the climate.   

 

Figure 2-1.  A map of Toronto, Ontario, Canada (43°42′ N, 79°24′ W) and the 

surrounding GTA region (ESRI, 2012).  The Claremont fixed weather station is indicated 

by the red star (see Section 2.6). 

A climograph depicting Toronto’s seasonal variability in Tair and precipitation can be seen 

in Figure 2-2.  Aimed to target hot, humid, summertime conditions, the field work took 

place from July 7 – July 29, 2015; coinciding with Toronto’s warmest month on average 
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of the year and with the GEM-LAM model simulations as part of the Pan and Parapan 

American Games science campaign. 

 

Figure 2-2.  A climograph depicting the seasonal variability in air temperature and 

precipitation of Toronto, ON.  Data represent the Climate Normals from 1981 – 2010 

recorded from Toronto Pearson International Airport. 

 

2.2 Vehicle Traverse Platform 

An instrumented pickup truck was used to conduct vehicle traverses (Figure 2-3).  The 

measured meteorological variables include: Tair, relative humidity, Troad, incoming 

shortwave and longwave radiation, and left and right canyon wall temperatures.  These 

variables were included to characterize the conditions within the UCL and external 

radiative environment that humans are exposed to.  A global positioning system (GPS) was 

also included in the instrumentation which provided the truck’s latitude, longitude, and 

elevation during a traverse.  All instrumentation was wired into a datalogger in the backseat 

and observations were recorded at 1 second intervals; this was chosen to minimize the 

spatial resolution and capture the best representative data of a specific location while 

driving at speeds up to 60 km h-1.  Multiple Tair sensors included in the instrumentation 

showed very similar trends to each other.  Results presented in Chapter 4 are based on the 

HC2S3 thermistor and this thesis does not include observations of incoming radiation or 

wall temperatures.  See Appendix E for the datalogger program written in CRBasic.  
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Figure 2-3.  (Above) Instrument configuration and mounted heights.  (Below) Labeled 

instrumentation.  See Table 2-1 for instrument descriptions. 
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Table 2-1.  Instrumentation list and measurements.  Note: the viewing angle for the road 

facing infrared radiometer was 40° (relative to nadir view = 0°), representing a field of 

view of 5.97 m2 and all air temperature sensors were placed inside aspirated radiation 

shields. 

Instrument & Model Measurement Company Label 

Pyrgeometer, PIR 
Incoming longwave 

radiation 

The Eppley 

Laboratory Inc 
I 

Infrared radiometer (right 

facing), SI-131 

Radiative surface “canyon 

wall” temperature 

Apogee Instruments 

Inc 
E 

Infrared radiometer (left 

facing), SI-131 

Radiative surface “canyon 

wall” temperature 

Apogee Instruments 

Inc 
D 

Fine wire thermistor, ST-

200 
Air temperature 

Apogee Instruments 

Inc 
C 

Pyranometer, TSP-400 
Incoming shortwave 

radiation 

Yankee 

Environmental 

Systems Inc 

H 

GPS, 16X-HVS X, Y, Z coordinates 
Garmin International 

Inc 
G 

Thermistor and 

hygrometer, HC2S3 

Air temperature and 

relative humidity 

Campbell Scientific 

Inc 
A 

Thermocouple, Type T 

(24 AWG) 
Air temperature 

Omega Engineering 

Inc 
B 

Infrared radiometer (road 

facing), SI-1H1 

Radiative surface “road” 

temperature 

Apogee Instruments 

Inc 
F 

Data logger, CR3000 Data acquisitioning system 
Campbell Scientific 

Inc 
- 

2.3 Vehicle Traverse Routes 

Vehicle traverses were conducted along two routes (A and B) primarily along Yonge St 

(Figure 2-4).  Yonge St is a major north-south street within Toronto that extends northward 

from the shoreline of Lake Ontario to Newmarket, ON.  Each route incorporated sampling 

urban neighbourhoods with contrasting surface properties, classified using the LCZ 

scheme.  The use of two different routes allowed for three additional neighbourhoods to be 

sampled, including the two areas identified by TPH as being “high-risk” – the Thorncliffe 

Park and Moss Park neighbourhoods.  Route A (solid line) included sampling: Residential 

1, Residential 2, Open-High Rise, Shopping Centre, and Downtown and route B (dashed 

line) included: Residential 1, Open-High Rise, Thorncliffe Park, Residential 3, Moss Park, 

and Downtown. 
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Figure 2-4.  A map of the combined traverse routes (A and B) and sampled urban 

neighbourhoods overlaid on a satellite image.  Neighbourhood codes include: R1,2,3: 

Residential 1,2,3, OHR: Open-high Rise, SC: Shopping Centre, THORN: Thorncliffe 

Park, MOSS: Moss Park, DT: Downtown 

2.3.1 Nighttime Extended Route 

Two nighttime traverses extended route A northbound to King Rd (Figure 2-5).  These 

traverses were conducted under ‘ideal’ conditions and timed to maximize the UHI 

magnitude between urban and rural locations.  This entailed beginning traverses 

approximately 3 hours after sunset (i.e. 1:00 EST) and under low wind and relatively clear 

sky weather conditions. 
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Figure 2-5.  A map of the nighttime extended route.  Highlighted in yellow is the defined 

“rural” transect. 

2.4 Defining Sampled Neighbourhoods 

Using a Sentinel-2 satellite image (10 m resolution) and open source lidar 3D massing data 

provided by the city of Toronto, a supervised land cover classification was conducted to 

calculate the building, impervious and pervious surface fraction for each sampled 

neighbourhood.  The 3D massing data was also used to provide mean building heights.  To 

account for Tair and humidity source area variations when driving through neighbourhoods, 
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a 200 m surrounding buffer for each neighbourhood was applied during the land cover 

classification.  All analysis was conducted using ArcGIS. 

The sky view factor (SVF), defined as the ratio of the amount of sky visible from ground 

level to that of an unstructured hemisphere, was calculated to represent the urban geometry 

and vegetation within each neighbourhood.  This was conducted by taking hemispherical 

photographs using a Nikon CoolPix880 digital camera with a FC-E8 fisheye lens.  Using 

the photographs, SVF was calculated using the open source SkyViewFactorCalculator 

model (Lindberg & Holmer, 2012).  Sample hemispherical photographs for route A 

neighbourhoods can be seen in Figure 2-6.   

 

Figure 2-6.  Sample hemispherical photos.  A, B: residential neighbourhoods, C: open 

high-rise, D: shopping centre, E: downtown. 

2.4.1 Classifying LCZs 

Using the calculated values of surface land cover properties, neighbourhoods were 

classified according to the LCZ scheme (Table 2-2).  Thermal, radiative, and metabolic 

values for each neighbourhood were not directly measured and are estimated according to 

Stewart and Oke (2012) (Table 2-3).
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Table 2-2.  Neighbourhood surface cover and geometric properties. 

Neighbourhood 

(coordinates) 

Building fraction 

(%)1 

Impervious 

fraction (%)2 

Pervious fraction 

(%)3 
zH (m)4 SVF5 LCZ6 Built and land cover types6 

Residential 1 

(43.7321 -79.4079) 
25 44 31 7.0 0.65 6 Open low-rise 

Residential 2 

(43.7190, -79.4039) 
22 42 36 7.7 0.54 6 Open low-rise 

Residential 3 

(43.6876, -79.3404) 
26 59 15 5.7 0.71 6 Open low-rise 

Open High Rise 

(43.7111, -79.3992) 
60 25 15 28.0 0.70 4E Open paved high-rise 

Shopping Centre 

(43.7135, -79.3648) 
30 59 11 6.9 0.96 8 Large low-rise 

Thorncliffe Park 

(43.7050, -79.3498) 
26 52 22 16.2 0.81 53 

Open midrise with compact 

low-rise 

Moss Park 

(43.6546, -79.3695) 
34 51 15 13.1 0.78 5 Open midrise 

Downtown 

(43.6504, -79.3784) 
62 33 5 62.9 0.24 1 Compact high-rise 

Rural Transect 

(43.9390, -79.4815) 
- 36 64 - > 0.80 6B,F 

Open low-rise with scattered 

trees and agriculture 

                                                 

1
 Ratio of building plan area to total plan area. 

2
 Ratio of impervious plan area to total plan area. 

3
 Ratio of pervious plan area to total plan area. 

4
 Geometric average of neighbourhood building heights (does not include vegetation). 

5
 Value represents an average from five hemispherical photos within a neighbourhood.  The ‘Rural Transect’ SVF was estimated using Stewart and Oke (2012). 

6
 Classified LCZ based on neighbourhood surface cover and geometric properties (Stewart & Oke, 2012). 
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Table 2-3.  Estimated values of thermal, radiative, and metabolic properties.  Provided by 

Stewart and Oke (2012). 

LCZ 
Surface Admittance 

(J m-2 s-1/2 K-1)7 
Surface albedo 

Anthropogenic heat output 

(W m-2)8 

1 1500-1800 0.10-0.20 50-300 

4 1400-1800 0.12-0.25 <50 

5 1400-2000 0.12-0.25 <25 

6 1200-1800 0.12-0.25 <25 

8 1200-1800 0.15-0.25 <50 

2.5 Vehicle Traverse Criteria 

Targeting hot summertime days when human thermal comfort is at greatest risk, a total of 

23 vehicle traverses were conducted during the study period.  The criteria for a traverse to 

be included in the analysis included: 1) cloud coverage ≤ 7 oktas, and 2) the lake breeze 

front was located north or south of the traverse route.  Meteorological Terminal Aviation 

Routine Weather Report (METAR) data provided at its lowest recorded level was used to 

assess cloud coverage and radar data provided by Dave Sills (Environment Canada) was 

used to identify the location of a lake-breeze front (Figure 2-7).  Sampling dates with 

relatively clear-sky conditions increases incident solar radiation and thus promotes high 

contrasts in surface temperatures and maximum differentiation between sampled 

neighbourhoods.  Furthermore, ensuring all neighbourhoods are on the same side of the 

lake-breeze front is critical in assessing meteorological differences between 

neighbourhoods.  Recently in Toronto, Mariani et al. (2017) found an average 2.1 ± 0.2 °C 

decrease in Tair and 2.3 ± 0.3 °C increase in Tdew when a lake-breeze front passes by.  Thus, 

if a neighbourhood is within the lake-breeze frontal zone while others are not, observed 

neighbourhood differences will be influenced by the lake-breeze, rather than distinguished 

by surface properties of a neighbourhood.  A summary table of all the eligible traverses 

including the start and end times, and meteorological conditions observed during the 

traverses is provided in Chapter 3. 

                                                 

7
 Ability of a surface to accept or release heat. 

8
 Mean annual heat flux density from fuel combustion and human activity (e.g. transportation, space 

cooling/heating, industrial processing, human metabolism). 
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Figure 2-7.  Example radar and satellite observations identifying the location of the lake-

breeze front on July 11th (pink triangular dashed line). 

2.6 Defining Urban-Rural Differences 

Chapter 1 describes the importance of adequately defining ‘urban’ and ‘rural’ when 

assessing UHI magnitudes.  To acknowledge this, the UHI magnitudes presented in this 

thesis are defined according to the differences within a select urban neighbourhood and a 

rural fixed weather station located in Claremont, ON (43°56'09.800" N, 79°05'05.400" W) 

(Figure 2-1).  This weather station was chosen as it is approximately the same distance 

from the shoreline of Lake Ontario compared to the neighbourhoods, ensuring 

neighbourhoods and the weather station are on the same side of the lake-breeze front.  In 

addition, a consistent rural reference allows for daytime and nocturnal heat island 

magnitudes to be compared.  Using a consistent rural reference also allows observed and 

modeled urban-rural differences to be assessed.  For modeled urban-rural differences, the 

rural reference is defined as the pixel value at the Claremont location.  For the two 

nocturnal traverses that used the ‘nighttime extended route’, differences in UHI magnitudes 

corresponding to different rural locations is discussed in Chapter 3.  Furthermore, urban-

rural results presented in Chapter 3 and Chapter 4, are denoted as aUHI (Tair), rUHI (Troad), 

and ∆Td (Tdew). 
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2.7 Post-Collection Data Processing 

2.7.1 Data Filtering 

Observation sequences in which the vehicle was travelling less than 15 km h-1 were 

eliminated.  This was to remove any Tair or humidity observations more likely to be 

contaminated from nearby heat sources (e.g. vehicle exhausts) and for road surface 

temperature, to remove any observations that may be contaminated by vehicles located 

closely behind the truck while stopped in traffic or moving slowly.  Vehicle speed was 

calculated based on GPS output. 

2.7.2 Time-Correction Schemes 

To account for any changes in temperature or humidity during a vehicle traverse (~2 hours), 

a time-correction scheme is applied to all observations.  This adjusts all observations along 

a traverse to a common time and thus permits for spatial comparisons along the traverse 

route.  For Tair and relative humidity, this thesis applies a linear-time correction.  This 

methodology has been implemented in previous studies such as Richards (2005) and 

Leconte et al. (2015).  For Troad, this thesis builds off work reported by Voogt and Oke 

(1998). 

Air Temperature and Humidity Scheme 

A linear trend assumes the temporal temperature or humidity changes occur at a constant 

rate.  This requires a common start and end location; for the majority of traverses 

conducted, this was residential #1.  As an example, using Tair, the correction factor (CF) is 

defined and applied as: 

𝐶𝐹 =  
−∆ 𝑇𝑎𝑖𝑟

̅̅ ̅̅ ̅̅

𝑡
 

(1.1) 

𝑇𝑎𝑖𝑟
′ = 𝑇𝑎𝑖𝑟 + 𝑡 ∙ 𝐶𝐹 (1.2) 

where ∆ 𝑇𝑎
̅̅ ̅̅  is the temperature difference between the average Tair at the start and end times 

at the common location, time (t) is the duration of the traverse in seconds, and 𝑇𝑎𝑖𝑟
′ is time-
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corrected Tair.  As an example, a comparison between uncorrected and corrected Tair is 

shown in Figure 2-8.  

 

Figure 2-8.  A comparison of uncorrected (black) versus corrected (red) air temperature 

observations for an early afternoon traverse (July 13).  Note that on this traverse, the 

correction corresponds to a warming of approximately 1.2°C that occurred over the 

traverse duration. 

Road Temperature Scheme 

Correcting Troad for temporal changes is inherently more complex than correcting Tair and 

humidity.  For Tair and humidity, under stable atmosphere conditions, one can assume a 

temporally “smooth” and continuous diurnal change.  However, for surface temperature, 

the rate of changes are much larger and variable.  At the microscale, the rate of heating or 

cooling of the surface depends on the temperature of the surface (i.e. shaded surfaces heat 

up faster than previously sunlit surfaces).  The Troad scheme described in this section is for 

daytime conditions; for nighttime conditions, Troad is corrected using a linear scheme 

previously outlined for Tair and humidity.  The daytime scheme follows a similar protocol 

as a linear correction, however it differs by calculating two CFs – one for sunlit 

observations and another for shaded observations.  To classify the observations, histograms 

were created using commercially available software (PeakFit v4.12).  The histograms were 

used to assess the temporal change in Troad distributions between the common start and end 
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neighbourhoods.  Using Figure 2-9 as an example, the two CFs are based on the 

temperature differential between paired peaks at the start and end times; where the yellow-

dashed peaks represent fully sunlit peaks and the blue-dashed peaks represent fully shaded 

peaks.  The CF that is applied is based on the median of the starting neighbourhood’s Troad 

distribution, for example if an observation is less than the median it is classified as “shaded” 

and the shaded CF is applied.  Numerically this is represented in Equations 1.3 and 1.4. 

 

Figure 2-9.  An example from July 24th of two overlaid road temperature histograms 

from Residential 1 used to represent how CFs are calculated based on the change in fully 

sunlit and fully shaded peaks. 

𝐶𝐹𝑠ℎ𝑎𝑑𝑒𝑑 =
−∆ 𝑇𝑟𝑜𝑎𝑑,𝑠ℎ𝑎𝑑𝑒𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡
 

(1.3) 

𝐶𝐹𝑠𝑢𝑛𝑙𝑖𝑡 =
−∆ 𝑇𝑟𝑜𝑎𝑑,𝑠𝑢𝑛𝑙𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡
 

(1.4) 

2.8 GEM-LAM Modeling System 

As introduced in 1.5.2, the GEM-LAM model is composed of two surface schemes: TEB 

(Masson, 2000) and ISBA (Noilhan & Planton, 1989) that are driven by Environment 

Canada’s Regional Deterministic Prediction System (Fillion et al. 2010).   
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The TEB scheme follows a single-layer urban canopy approach to simulate energy 

exchanges between the UCL and overlying atmosphere.  To simplify complex urban 

geometry, TEB calculates separate urban energy budgets for roofs, roads, and walls while 

assuming there is no vegetation present in the canyon.  TEB inputs include geometric 

parameters: building fraction, building height, canyon aspect ratio, and the ratio between 

walls and horizontal built-up areas; radiative parameters: roof, road, and wall albedos and 

emissivities; and thermal parameters: thicknesses, thermal conductivities, and heat 

capacities of the roofs, roads, and walls (Masson, 2000).  The effects of shadows and 

radiation trapping inside a street canyon are considered and turbulent exchanges inside a 

canyon, and between the canyon and atmosphere, are determined using an aerodynamic 

resistance network that consider wind speed and stability conditions (Lemonsu et al., 

2009).  Mean air temperature, mean specific humidity, and mean windspeed are calculated 

for the middle of the street at the mid-height of buildings (Lemonsu et al., 2009).   

The ISBA scheme simulates energy exchanges over land, water, glaciers, and sea ice 

(Bélair, 2003).  However, as the focus of this thesis was for vegetated land during the 

summertime, the schemes described here will only consider the processes over land.  Thus, 

the required inputs are surface temperature, mean surface temperature, soil volumetric 

water content, rooting depth volumetric water content, leaf area index, and canopy 

intercepted liquid water (Noilhan & Planton, 1989).  The turbulent fluxes are calculated by 

aerodynamic equations using a thermal drag coefficient from Delage and Girard (1992) 

and Delage (1997).  The final output from the two surface schemes are calculated as a 

weighted average according to the fractions of pervious or impervious surface cover.  

Figure 2-10 provides a conceptual diagram of TEB and illustrates the energy exchanges 

that the surface scheme includes associated with canyon roofs, roads, and walls. 
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Figure 2-10.  A conceptual diagram of the Town Energy Balance (TEB) surface scheme 

(Oke et al., 2017 modified after Masson et al., 2002). 

2.8.1 Accessing and Analyzing GEM-LAM Outputs 

GEM-LAM variables evaluated in this thesis are: “screen-level air temperature” and 

“dewpoint temperature”.  Outputs of the model were provided every 15 minutes, and 

therefore correspond to the closest matching observational start time.  Modeled outputs 

were accessed from Environment Canada through a secure shell network.  Using this 

network, modeled outputs were visualized and downloaded using a graphical user interface 

called SPI (version 7.7.3), developed by the Meteorological Service of Canada.  The 

downloaded model output files are imported into ArcGIS as shapefile feature classes where 

individual pixel output values are obtained and map features are added.  All outputs are 

geo-referenced in World Geodetic System 1984. 

For an individual model pixel to be included in the evaluation (e.g. scatterplots), at least 5 

time-corrected and filtered vehicle traverse observations were needed within the pixel 

(N=5 threshold).  This value was chosen given that the source area of each observation 
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should extend at least 100 m and thus 5 observations covers a relatively large fraction of a 

250 m model pixel.  See Figure 2-11 for sample modeled output vehicle traverse 

observations overlaid. 

 

Figure 2-11.  Sample modeled output pixels with at least 5 vehicle traverse observations 

overlaid. 

2.9 Statistical Tests 

All vehicle traverse data were found to be non-normally distributed upon using the Shapiro-

Wilk (Shapiro & Wilk, 1965) test of normality (α=0.05).  Therefore, the nonparametric 

Mann-Whitney U (Mann & Whitney, 1947) test (α=0.05) was used to determine significant 

differences between residential #1 and the other neighbourhoods.  The test criteria includes: 

1) neighbourhood observations are independent from each other; 2) Null hypothesis, the 

distributions of both neighbourhoods are equal; and 3) Alternative hypothesis, the 

distributions are not equal.  Analysis of the U-value illustrates the degree of overlap 
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between neighbourhood distributions, where U = 0 indicates no overlap.  The maximum 

value of U is the product of the two sample sizes. 

Chapter 5 presents a variety of model evaluation statistics.  These include regression 

coefficients: slope, y-intercept, and coefficient of determinization (R2).  The mean absolute 

error (MAE), root-mean-square-error (RMSE), systematic root-mean-square-error 

(RMSEs), unsystematic root-mean-square-error (RMSEu) and refined index of agreement 

(dr) are also calculated (Willmott et al., 1985; Willmott et al., 2012).  The equations for 

each model evaluation statistic are defined as:   

𝑀𝐴𝐸 =  √
∑  |𝑝 − 𝑜|𝑛

1

𝑛
 

(1.5) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑝 − 𝑜)2𝑛

1

𝑛
 

(1.6) 

𝑅𝑀𝑆𝐸𝑠 =  √
∑ (�̂� − 𝑜)2𝑛

1

𝑛
 

(1.7) 

𝑅𝑀𝑆𝐸𝑢 =  √
∑ (𝑝 − �̂�)2𝑛

1

𝑛
 

(1.8) 

𝑑𝑟 =  1 − √
∑ |𝑝 − 𝑜|𝑛

1

∑ |𝑝 − �̅�|𝑛
1 + |𝑜 − �̅�|

 

(1.9) 

where, p is the modeled variable, o is the observed variable, �̅� is the average observed 

variable, and �̂� is the predicted variable based on the least square regression. 
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Chapter 3  

3 Vehicle Traverse Results and Discussion 

During the study period, 12 traverses – 9 daytime and 3 nighttime, met the required criteria 

to be included in the analysis and evaluation of the GEM-LAM model.  Table 3-1 provides 

a summary of the eligible vehicle traverses, including each traverse start and end time, 

sampling route, cloud coverage conditions, wind speed, and observed median Tair, and Tdew, 

and Troad.  The table also includes Tair and Tdew reported from the fixed rural station in 

Claremont, ON and indicates whether a lake-breeze front was present during the start time 

of a traverse.   

Results presented in this chapter will address research questions 1 - 3.  All observations are 

time-corrected and filtered as outlined in Section 2.7.  To conclude, a summary of the 

chapter and key results are presented. 

3.1 Daytime Traverse-Scale Observations 

Two traverses (July 11th and July 24th) are used as examples to show the intra-urban 

variability of Tair, Troad, and Tdew observed along a vehicle traverse.  These two traverses 

cover both routes and provide representative daytime conditions when a lake-breeze front 

is present (i.e. north of all sampled neighbourhoods).  Figure 3-1 and Figure 3-2 show 

traverse-scale observed Tair variability.  The warmest Tair is observed along Eglinton Rd. 

with a relatively consistent spike in Tair among all traverse dates.  Tair decreases southbound 

along Yonge St. towards Lake Ontario, with the coolest Tair observed in Toronto’s 

downtown core.  From all daytime traverses, the largest observed range in intra-urban Tair 

was 4.8 °C (July 13th) and the smallest was 2.1°C (July 11th).  These findings support 

previous results from Middleton and Millar (1936).  In addition, similar spatial trends of 

Tair and Troad are observed between replicate traverses along the same route and expands 

from work conducted by Tsin et al. (2016) in which the authors suggest future studies focus 

on route-replication to increase the representativeness of traverse observations and to 

minimize day-to-day variability (Figure 3-7).
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Table 3-1.  A summary table of the 12-eligible daytime and nighttime (shaded) traverses. 

Date 

(2015) 

Start 

Time1 

End 

Time 
Route 

Cloud 

Coverage2 

Med T
air 

3

 

(°C)
 

Med T
road 

(°C) 

Med T
dew 

(°C) 

Rural T
air 

4

 

(°C) 

Rural T
dew 

(°C) 

Wind Speed5 

(km/h) 

Lake-Breeze 

Front 

July 10 15:20 17:16 A Broken 26.4 43.9 11.5 26.7 11.7 14 Y 

July 11 13:26 15:15 A Few 27.7 44.9 12.7 26.8 16.3 16 Y 

July 12 1:13 3:56 Extended Clear 21.4 24.4 15.4 14.5 14.4 11 N 

July 13 13:17 15:19 A Clear 27.7 46.1 17.7 26.6 19.6 18 N 

July 16 13:42 15:56 A Few 22.7 40.9 8.7 22.0 11.2 14 N 

July 19 1:12 2:29 A Broken 25.1 28.1 20.8 19.5 19.5 14 N 

July 19 13:09 14:47 A Few 31.0 48.5 21.3 30.6 21.8 15 Y 

July 20 14:00 15:45 B Broken 28.6 42.2 16.3 28.2 15.6 27 Y 

July 22 14:00 15:55 B Few 25.5 43.5 8.9 24.4 11.6 23 N 

July 24 14:01 15:50 B Broken 28.0 44.2 8.9 26.5 13.0 11 Y 

July 29 1:18 4:17 Extended Scattered 24.8 28.4 16.2 17.1 16.2 12 N 

July 29 13:51 15:49 B Few 32.3 45.8 16.3 31.7 17.4 19 Y 

                                                 

1
 Traverse start and end times begin at the common location.  Time is reported in Eastern Daylight Time (EDT). 

2
 METAR data from YYZ where ‘Few’ = 1-2 oktas, ‘Scattered’ = 3-4 oktas, ‘Broken’ = 5-7 oktas. 

3
 Traverse-scale medians of air temperature, road temperature, and dewpoint temperature.  ‘Med’ = median.  

4
 Reported from the fixed weather station in Claremont, Ontario.  Times correspond to closest 1-hr to traverse start time. 

5
 Wind speed observations are from Toronto Pearson International Airport, reported by Environment Canada. 
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Figure 3-3 and Figure 3-4 show traverse-scale observed Troad.  Relative to the other 

meteorological variables, Troad shows the largest degree of intra-urban variability as large 

temperature gradients are created between fully sunlit and fully shaded regions along a 

vehicle traverse.  From all daytime traverses, the largest observed range in intra-urban Troad 

was 36.7 °C (July 11th) and the smallest range was 24.3 °C (July 20th).  This is likely driven 

by differences in cloud cover and wind speed between the two dates, as for both a lake-

breeze front is present and Tair and Tdew conditions are relatively similar.  Like Tair, similar 

traverse-scale structural trends are observed.   

 

Figure 3-5 and Figure 3-6 show traverse-scale observed Tdew.  In general, Tdew shows more 

structural variability between dates and similar trends aren’t definitively observed (Figure 

3-7).  An influence of the lake-breeze is present as traverse-scale Tdew is on average higher 

when a lake-breeze front is present.  The maximum Tdew range observed along a traverse 

was 5.5 °C (July 29th) and the minimum range was 1.8°C (July 19th).  For all traverse-scale 

plots of Tair, Troad, and Tdew from both routes, see Appendix A-1. 
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Figure 3-1.  Daytime traverse-scale air temperature variability (route A).  Med T

air 
= 27.7 

°C.  Note: shaded regions represent sampled intra-urban neighbourhoods. 

 

 
Figure 3-2.  Daytime traverse-scale air temperature variability (route B).  Med T

air 
= 28.0 

°C. 
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Figure 3-3.  Daytime traverse-scale road temperature variability (Route A).  Med T

road
= 

44.9 °C.  Note: plot represents a 20-observational moving average. 

 

 
Figure 3-4.  Daytime traverse-scale road temperature variability (Route B).  Med T

road
= 

44.2 °C.  Note: plot represents a 20-observational moving average. 
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Figure 3-5.  Daytime traverse-scale dewpoint temperature variability (Route A).  Med 

Tdew = 12.7 °C. 

 

 

 
Figure 3-6.  Daytime traverse-scale dewpoint temperature variability (Route B).  Med 

Tdew = 8.9 °C. 
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Figure 3-7.  Normalized air, road, and dewpoint temperature from route A vehicle 

traverses.  All observations are normalized by the traverse-scale median of the variable of 

interest. 
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3.2 Nocturnal Traverse-Scale Observations 

Results from three nocturnal traverses are presented in this section.  The traverse on July 

12th is used as an example to show the intra-urban meteorological variability as it sampled 

the most intra-urban neighbourhoods and provided insight on the urban-rural contrast in 

meteorological conditions under ideal UHI conditions.  Urban-rural conditions presented 

in this section are defined as differences between the Downtown neighbourhood and the 

traversed ‘rural’ transect along King Rd. 

Figure 3-8 shows Tair variability observed along a nighttime vehicle traverse.  As expected, 

large urban-rural contrasts in Tair exist, with maximum aUHI = 8.3 °C on July 12th.  Like 

daytime Tair observations, similar spatial trends are observed between common traverse 

sections along the same route.  The largest observed intra-urban Tair range was 5.6 °C (July 

12) and the smallest observed intra-urban Tair range was 1.4 °C (July 19).  As with daytime 

observations, nocturnal Troad shows the largest degree of variability relative to the other 

observed meteorological variables (Figure 3-9).  Observed rUHI are smaller relative to 

aUHI, where rUHI = 5.1 °C.  The largest observed intra-urban Troad range was 7.5 °C (July 

12) and the smallest observed intra-urban Troad range was 3.3 °C (July 19).  These dates 

also coincide with those of the largest and smallest nocturnal Tair ranges and is likely linked 

to cloud cover as according to METAR data, the night of July 19th was significantly 

cloudier than the night of July 12th, as humidity and wind speed conditions were relatively 

the same.   

Observed urban-rural differences in Tdew (∆Td) are smaller relative to aUHI and rUHI, 

where ∆Td = 0.18 °C on July 12th (Figure 3-10).  Furthermore, the intra-urban ranges in 

nocturnal Tdew are similar to the ranges observed during the daytime, as the maximum Tdew 

range observed along a nocturnal traverse was 5.7 °C (July 29th) and the minimum range 

was 0.7 °C (July 19th).  These dates also correspond to days with varying cloud cover.  
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Figure 3-8.  Nighttime traverse-scale air temperature variability (Route A - Extended).  

Med Tair = 21.4 °C. 

 

 

 

Figure 3-9.  Nighttime traverse-scale road temperature variability (Route A - Extended).  

Med Troad = 24.4 °C. 



40 

 

 

Figure 3-10.  Nighttime traverse-scale dewpoint temperature variability (Route A - 

Extended).  Med Tdew = 15.4 °C. 
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3.3 Neighbourhood-Scale Results 

The results presented in this chapter show the Tair, Troad, and Tdew differences among the 

sampled intra-urban neighbourhoods.  In total, 8 intra-urban neighborhoods were sampled.  

From the eligible traverses, route A neighbourhoods were sampled a total of 5 times and 

route B neighbourhoods were sampled 4 times.  Normalized plots are constructed that use 

the traverse-scale median of each variable.  This allows for vehicle traverse observations 

to be compared on a common scale, and permits observations on different dates, with 

varying synoptic meteorology, to be assessed.  A summary of the neighbourhood-scale 

results is provided in Appendix B.  This appendix contains daytime and nighttime medians 

of observed Tair, Troad, Tdew for all sampled neighbourhoods.  The appendix also provides 

the Tair and Tdew conditions reported at Toronto International and Billy Bishop Toronto City 

Airports.  

3.3.1 Daytime Neighbourhood-Scale Results 

Boxplots of neighbourhood-scale Tair, Troad, and Tdew from the July 11th vehicle traverse are 

presented in Figure 3-11.  These results reflect the differences commonly observed between 

neighbourhood distributions of route A.  Generally, there is overlap in the observed 

distributions between the Residential 2 and Open High-Rise, neighbourhoods with 

Residential 1 for all meteorological variables, while very little overlap exists between 

Residential 1 and the Downtown and Shopping Center neighbourhoods.  Of the three 

variables, Troad shows the most distribution overlap between sampled neighbourhoods.  

Troad distributions, with the exception of the Shopping Centre neighbourhood, also show 

the largest inter-neighbourhood range in temperature.  This range reflects large temperature 

gradients between fully sunlit and fully shaded regions are observed, and supports previous 

results from Voogt and Oke (1998) in which Troad distributions are typically bi-modal.  The 

anomaly within the Shopping Centre can be explained due to the neighbourhoods large 

SVF (0.96), in which there is seldom any afternoon shading provided by local buildings or 

vegetation and thus the distribution of Troad predominately represents fully sunlit regions 

within the neighbourhood.   
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Statistically, the degree of neighbourhood distribution overlap is reflected in the Mann-

Whitney U values.  Significant differences (α=0.05) of Tair and Tdew were found for all 

neighbourhoods.  For Troad, non-significant differences are observed between Residential 

2, Open High-rise, and Shopping Center neighbourhoods.  Complete Mann-Whitney U 

results are provided in Appendix C. 
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Figure 3-11.  Daytime distributions of intra-neighbourhood air, road, and dewpoint 

temperature on July 11th (Route A).  Traverse-scale med Tair = 27.7 °C; med Troad = 44.9 

°C; med Tdew =12.7 °C. Neighbourhood medians are represented by the line and box 

whiskers represent 5th and 95th percentiles.  X-axis abbreviations: R1 = Residential 1, R2 

= Residential 2, OHR = Open High-Rise, SC = Shopping Centre, DT = Downtown.  For 

reference, reported Tair and Tdew conditions at YYZ are superimposed (dashed line).  
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Figure 3-12 shows medians of normalized Tair, Troad, Tdew for all neighbourhoods from the 

9 daytime traverses, sampling both routes.  Most notable are daytime Tair differences 

between the Shopping Center and the Downtown neighbourhoods relative to the other 

sampled neighbourhoods, as for all daytime traverses the Downtown neighbourhood shows 

the lowest observed Tair, and for all daytime route A traverses, the Shopping Center 

experiences the highest Tair.  As both neighbourhoods are highly urbanized, with building 

and impervious surface fraction accounting for greater than 90% of the surface cover within 

each neighbourhood, this difference is likely driven between SVF differences (SVFDT = 

0.24 and SVFSC = 0.96) between the neighbourhoods.  The relatively small SVFDT reflects 

the tall urban geometry within the neighbourhood that provide significant shading within 

the UCL and limits the ability of incident radiation to reach the bottom of the street canyon.  

Local advection from Lake Ontario also contributes to the low daytime Tair within the 

Downtown neighbourhood.  However, when comparing conditions between the Downtown 

and Moss Park neighbourhoods (i.e. roughly the same distance away from the shoreline), 

lower Tair conditions are observed in the Downtown neighbourhood, suggesting that SVF 

is the predominate driver.   

The small SVFDT also contributes to cool daytime Troad.  Similar to Tair, significant shading 

within the Downtown neighbourhood contributes to the low observed Troad relative to the 

other neighbourhoods.  Additional medians of Troad between neighbourhoods show less 

variability between each other, reflecting that the majority of Troad observed within the 

neighbourhoods represent sunlit locations, yet the long whiskers observed in Figure 3-11 

support bi-modal distributions in the Residential neighbourhoods.  Similar to traverse-scale 

results, neighbourhood differences in median Tdew shows relatively no consistently 

between dates.  However, for 5 out of 9 traverses, the Downtown neighbourhood 

experiences the highest Tdew, likely due to its proximity to Lake Ontario.  Based on vehicle 

traverse observations, the TPH “high-risk” neighbourhoods of Thorncliffe Park and Moss 

Park do not show anomalous Tair, Troad, Tdew conditions compared to other sampled intra-

urban neighbourhoods.  Both neighbourhoods contain a fraction of pervious surface cover 

(TP = 22%, MP = 15%) which helps alleviate daytime high temperatures via evaporative 

cooling and provides shade.  The forested area surrounding the Thorncliffe Park helps 
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enhance this effect.  Due to the Moss Park’s proximity to Lake Ontario, local advection 

also contributes to moderate Tair. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

 

 
Figure 3-12.  Normalized neighbourhood medians of air, road, and dewpoint temperature 

for all daytime traverses.  The normalization uses the traverse-scale median variable of 

interest.  X-axis abbreviations: R1 = Residential 1, R2 = Residential 2, OHR = Open 

High-Rise, SC = Shopping Centre, TP = Thorncliffe Park, R3 = Residential 3, MP = 

Moss Park, DT = Downtown.   
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3.3.2 Nocturnal Neighbourhood-Scale Results 

Nocturnal neighbourhood boxplots of Tair, Troad, and Tdew from July 12th are presented in 

Figure 3-13.  These results reflect the differences observed under ideal UHI conditions.  

For Tair, there is generally less overlap between neighbourhood distributions during the 

nighttime compared to those observed during daytime conditions and no overlap is 

observed with the Downtown neighbourhood.  Troad also shows the most overlap between 

neighbourhood distributions and largest inter-neighbourhood range in temperature, 

however, the night time temperature range is greatly reduced relative to daytime as the 

differences between fully shaded and sunlit regions is significantly reduced.  Tdew shows 

similar intra-neighbourhood distribution ranges relative to daytime conditions. 

All Tair and Tdew neighbourhoods show significant differences with Residential 1 (reference 

neighbourhood).  For Troad non-significant differences are observed between Residential 2, 

Open-High Rise, and Shopping Centre neighbourhoods.  Complete results from the 

nocturnal Mann-Whitney U test are provided in Appendix C (shaded). 

Figure 3-14 shows medians of normalized Tair, Troad, Tdew for all neighbourhoods from two 

nighttime traverses, sampling route A.  Results indicate larger median differences between 

neighbourhoods during the night as compared to the daytime.  Contrary to daytime 

conditions, Tair in the Downtown neighbourhood is the highest, relative to other sampled 

neighbourhoods.  Additional neighbourhoods show less variability between each other 

with both residential neighbourhoods showing very similar nighttime conditions.   
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Figure 3-13.  Air, road, and dewpoint temperature nocturnal intra-neighbourhood 

distributions on July 12th (Route A).  Traverse-scale med Tair = 27.7 °C; med Troad = 24.4 

°C; med Tdew =15.4 °C.  See Figure 3-11 for x-axis neighbourhood abbreviation and for 

box and whisker interpretation. 
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Figure 3-14.  Normalized neighbourhood medians of air, road, and dewpoint temperature 

for all nighttime traverses.  See Figure 3-11 for x-axis neighbourhood abbreviations. 
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3.4 Neighbourhood-Rural Differences 

Neighbourhood-rural conditions presented in this section are defined as differences 

between the traversed urban neighbourhoods and the fixed ‘rural’ weather station in 

Claremont, ON, see Section 2.6. 

Figure 3-15 shows the neighbourhood-rural differences in Tair for daytime and the average 

differences for nocturnal traverses.  Daytime differences are significantly smaller relative 

to the nighttime, the maximum aUHI is defined with the Shopping Centre neighbourhood 

(∆𝑇̅̅̅̅  = 1.9 °C), and Downtown-rural, differences show a ‘cool’ island on 5 out of 9 traverse 

dates (∆𝑇̅̅̅̅  = -0.4 °C).  This supports previous work conducted by Runnalls and Oke (2013) 

where they commonly observed a daytime “cool” island in downtown Vancouver, BC, CA.  

July 22nd and July 24th show slightly anomalous Downtown-rural differences, these are 

likely related to high winds speeds on July 22nd (23 km/h) and cloud cover on July 24th 

(broken, 5-7 oktas), as both are contributing factors in decreasing the Tair variability 

observed along a traverse (i.e. Downtown Tair is less differentiated relative to other sampled 

neighbourhoods).  During the nighttime, the maximum aUHI is defined with the 

Downtown neighbourhood, where ∆𝑇̅̅̅̅  = 9.5 °C.  The reversal of the Downtown 

neighbourhood Tair – from coolest during the day to warmest at night – can be linked to 

differences in canyon geometry between the locations.  The relatively small SVFDT 

decreases the longwave radiation lost during the night, slowing the rate of cooling relative 

to the ‘rural’ fixed station with a larger SVF.  An association between nocturnal aUHI and 

cloud cover and windspeed is also observed as magnitudes on July 12th, under ‘clear sky’ 

conditions with 11 km/h wind speeds are greater than those observed on July 19th, under 

‘broken sky’ conditions with 14 km/h wind speeds.  In general, observed nocturnal 

maximum aUHI are similar with previous studies in cities of similar size to Toronto (Oke, 

1973). 

Figure 3-16 shows the neighbourhood-rural differences in Tdew for daytime and the average 

differences for nocturnal traverses.  Daytime differences indicate increased rural Tdew 

compared to all sampled neighbourhoods, with differences on average -2 °C. July 20th 

shows anomalous differences compared to other traverse dates, while meteorological 
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conditions are relatively similar to other dates, July 20th shows the highest wind speeds (27 

km/h) of all traverses and thus increased on-shore winds that provides humid-air masses 

from Lake Ontario, may be attributed to the increased humid conditions observed 

Downtown.  Tdew conditions are reversed at night, and all sampled neighbourhoods show 

more humid conditions relative to the rural site.   These differences are fairly consistent in 

large cities, and supports previous findings conducted in Chicago, IL, USA (Ackerman, 

1987).  
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Figure 3-15.  Neighbourhood-rural air temperature differences for all traverses (°C).  Note: the nocturnal differences represent an 

average (N=3 for R1 and DT, N=2 for R2, OHR and SC) and differences in the y-axis.  Error bars represent ± one standard deviation.
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Figure 3-16.  Neighbourhood-rural dewpoint temperature differences for all traverses (°C).  Note: the nocturnal differences represent 

an average (N=3 for R1 and DT, N=2 for R2, OHR and SC) and differences in the y-axis. Error bars represent ± one standard 

deviation.
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3.4.1 Fixed Weather Station Comparison 

Observed traverse-scale medians of Tair exceed reported values from YYZ 10/12 times and 

12/12 times from YTZ for all daytime traverses.  For Tdew, large differences between YYZ 

and YTZ airports are observed during the daytime, where YTZ significantly over estimates 

daytime Tdew. At night, smaller differences in Tdew are observed between fixed stations and 

YYZ provides generally representative intra-urban conditions.  For Tair, the differences 

between neighbourhood observed and reported temperatures from YYZ are generally less 

than 1°C.  Relative to neighbourhood medians, YTZ significantly underestimates Tair and 

Tdew daytime and nighttime conditions.  Differences experienced between airport locations 

are strongly linked to the geographical zone in which the weather station is located, as YTZ 

is located on Toronto Island and thus is fully under the influence of Lake Ontario while 

YYZ is located on-shore and located in an zone more representative of the traverse routes. 

Appendix B provides a full list of neighbourhood medians and reported YYZ and YTZ 

conditions. 

3.5 Chapter Summary 

This chapter presents the findings from 12 eligible vehicle traverses that met the required 

meteorological criteria.  Results indicate significant intra-urban differences in Tair, Troad, 

and Tdew along both daytime and nocturnal traverses.  Observations of Troad showed the 

greatest variability, by far, along a traverse compared to Tair and Tdew observations.   Two 

routes (A and B) sampled a total of 8 different intra-urban neighbourhoods, including the 

Thorncliffe Park and Moss Park ‘high-risk’ neighbourhoods.  Of the sampled 

neighbourhoods, the Downtown and Shopping Center show the largest daytime Tair 

differences compared to other neighbourhoods, with Downtown showing the coolest Tair; 

this is reversed at night when observed Tair Downtown is the warmest.  Furthermore, results 

from the vehicle traverse observations show that the Thorncliffe Park and Moss Park 

neighbourhoods do not show anomalous meteorological conditions relative to other 

sampled intra-urban neighbourhoods. Tair urban-rural differences, defined with the 

Claremont rural station, show a daytime ‘cool island’ with Downtown on 5 out of 9 traverse 

dates.  All other sampled neighbourhoods show a daytime heat island on average less than 
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2 °C.  A large heat island is observed during the nighttime, and the average maximum heat 

island = 9.5 °C, defined using Downtown. Tdew urban-rural differences, show moister rural 

conditions during the daytime relative to intra-urban conditions, and drier rural conditions 

during the nighttime.   

 Further results indicate that the YYZ fixed weather station provides more representative 

intra-urban conditions than the YTZ weather station, as the YTZ station significantly 

underestimates Tair and overestimates Tdew for both daytime and nighttime conditions.  At 

the neighbourhood scale, daytime YYZ Tair and Tdew conditions most closely characterize 

the Residential and Open High-Rise neighbourhoods, while YTZ underestimates both Tair 

and Tdew daytime and nighttime conditions and more closely resembles conditions observed 

in the Downtown neighbourhood. 
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Chapter 4  

4 GEM-LAM Model Evaluation  

The GEM-LAM model was evaluated against 11 vehicle traverses – 9 daytime and 2 

nighttime.  All modeled output was provided by Environment Canada; see Section 2.8.1 

for a complete description of how model outputs were obtained and analyzed.  This chapter 

addresses research question 4.  It follows a similar organization to Chapter 3, with traverse-

scale results described first, followed by the neighbourhood scale.  Day and night results 

are separated at each scale.  The chapter concludes with a summary that highlights the key 

results. 

Table 4-1 provides the modeled output times, modeled traverse-scale medians of Tair and 

Tdew, and differences between the medians of modeled outputs and vehicle traverse 

observations.  The table also provides modeled rural values defined as the pixel Tair and 

Tdew value at the Claremont station location used to assess daytime and nocturnal urban-

rural differences.  As reflected in the table, under both daytime and nighttime conditions, 

modeled median Tair generally underestimates observed median Tair from the vehicle 

traverses, with the largest difference of 3.1 ºC (July 19th) and smallest difference of 0.2 ºC 

(July 11th and July 24th).  For Tdew, modeled outputs overestimated Tdew relative to the 

vehicle traverse observations 9 of 11 times.   

Figure 4-1 compares modeled and observed Tair and Tdew for all evaluated vehicle traverses.  

Model performance statistics (Table 4-2) shows good agreement between GEM-LAM 

outputs and traverse observations.  
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Table 4-1.  Traverse-scale summary results of the GEM-LAM modeled output for all 

daytime and nighttime (shaded) traverses.  Note: traverse-scale medians from vehicle 

traverse observations are provided in Table 3-1. 
Date 

(2015) 

Output time 

(EDT) 

Med mod 

Tair (ºC) 

Δ Tair 

(mod-obs) 

Med mod 

Tdew (ºC) 

Δ Tdew 

(mod-obs) 

Mod rural 

Tair (ºC) 

Mod rural 

Tdew (ºC) 

July 10 15:15 25.7 -0.7 13.2 1.7 23.2 16.5 

July 11 13:30 27.5 -0.2 13.9 1.2 25.5 16.1 

July 12 1:15 21.1 -0.3 17.4 2.0 18.4 16.7 

July 13 13:15 26.6 -1.1 17.8 0.1 26.0 18.7 

July 16 13:45 21.9 -0.8 9.7 1.0 19.9 11.3 

July 19 13:15 27.9 -3.1 23.4 2.1 28.9 23.2 

July 19 1:15 23.5 -1.6 20.6 -0.2 19.3 19.2 

July 20 14:00 26.8 -1.8 16.1 -0.2 25.1 18.0 

July 22 14:00 24.8 -0.7 9.4 0.5 21.4 10.9 

July 24 14:00 27.8 -0.2 9.0 0.1 27.8 9.2 

July 29 13:45 31.3 -1.0 18.4 2.1 31.0 14.3 
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Figure 4-1.  Modeled versus observed air and dewpoint temperature for all vehicle 

traverses.  Dashed line represents the line of equality (1:1 line). 

Table 4-2.  Statistical performance summary of air temperature and dewpoint 

temperature for all 12 vehicle traverses.  N = 1211.  

Variable Slope 
Intercept 

(ºC) 
R2 

MAE 

(ºC) 

RMSE 

(ºC) 

RMSEs 

(ºC) 

RMSEu 

(ºC) 
dr 

Tair 0.902 1.464 0.907 1.231 1.563 1.180 1.025 0.988 

Tdew 0.989 1.138 0.928 1.210 1.517 0.975 1.163 0.985 
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4.1 Daytime Traverse-scale Model Evaluation 

Two examples of modeled Tair and Tdew output from a daytime traverse (July 11) are shown 

in Figure 4-2 and Figure 4-3.  Included in both figures is the vehicle traverse route overlaid 

in black.  In general, for days with a lake-breeze present, it is common to observe Tair 

gradients of several degrees from the shore to the lake-breeze front.  Whereas daytime 

modeled Tdew shows less consistent intra-urban spatial patterns, patterns are observed in 

highly vegetated areas around the study site and along the Don River.   

 

 

Figure 4-2.  GEM-LAM modeled air temperature output on July 11, 13:30 EDT.  Output 

represents 250 m resolution. 
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Figure 4-3.  Modeled dewpoint temperature output on July 11, 13:30 EDT (250 m 

resolution). 

Figure 4-4 to Figure 4-7 provide the results from the daytime traverse-scale scatterplots 

between observed and modeled Tair and Tdew.  Each point represents a modeled output value 

for a pixel and a median observed value from the vehicle traverse observations within that 

pixel (N=5 threshold).  Model performance statistics are given in Table 4-3 and Table 4-4. 

A positive correlation in Tair is observed for all daytime traverses with a slope, in general, 

close to 1.  The largest differences between modeled and observed occur in the Downtown 

neighbourhood.  For other neighbourhoods, from both routes, the model shows good 

agreement with the vehicle traverse observations. Six of nine traverses show a negative 

intercept, highlighting the warm bias experienced by the vehicle traverse observations.  
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Examination of RMSE values associated with Tair, indicate that systematic error accounts 

for a larger percentage of error than unsystematic (or random) error.  The underestimation 

in modeled Tair may be attributed to GEM-LAM’s ability to represent QF (anthropogenic 

heat flux) relative to the vehicle traverse observations, as especially in the Downtown 

neighbourhood, QF may be a significant contributor to increased Tair. 

For Tdew, a positive correlation is not consistently observed; on 5 daytime traverses a 

negative correlation was found and on traverse dates July 11th and July 24th, no correlation 

was observed.  Furthermore, the agreement between model and observed neighbourhoods 

is shown to be very case dependent. For example, on July 19th and July 29th, the downtown 

neighbourhood shows the best agreement with the vehicle traverse observations, relative 

to the other neighbourhoods, however on July 11th and July 22nd, the downtown 

neighbourhood shows the worst agreement.  Contrary to Tair, all intercepts from the Tdew 

comparison are positive, yet like Tair, the systematic error accounts for a larger percentage 

of error than unsystematic error when examining RMSE values. 

 

 

 

 

 

 

 



62 

 

  

  

 

 

Figure 4-4.  Comparison of modeled and 

observed air temperature for daytime 

route A traverses. Colouring represents 

sampled neighbourhoods, where: Green-

Residential 1, Blue-Residential 2, Yellow-

Open High-rise, Grey-Shopping Center, 

Red-Downtown. 
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Figure 4-5.  Comparison of modeled and observed air temperature for daytime route B 

traverse dates. Colouring represents sampled neighbourhoods, see Figure 4-4. 
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Figure 4-6.  Comparison of modeled and 

observed dewpoint temperature for 

daytime route A traverse dates. Colouring 

represents sampled neighbourhoods, see 

Figure 4-4. 
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Figure 4-7.  Comparison of modeled and observed dewpoint temperature for daytime 

route B traverse dates. Colouring represents sampled neighbourhoods, see Figure 4-4. 
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Table 4-3.  Statistical performance summary of air temperature from all daytime 

traverses.   

Date Slope 
Intercept 

(ºC) 
R2 

MAE 

(ºC) 

RMSE 

(ºC) 

RMSEs 

(ºC) 

RMSEu 

(ºC) 
dr 

July 10 

(n=76) 
1.089 -3.318 0.322 1.014 1.284 0.964 0.848 0.474 

July 11 

(n=81) 
1.674 -19.322 0.461 0.764 1.147 0.659 0.939 0.099 

July 13 

(n=82) 
1.229 -7.787 0.545 1.416 1.630 1.421 0.798 -0.316 

July 16 

(n=82) 
1.047 -1.841 0.295 0.822 1.008 0.775 0.645 -0.201 

July 19 

(n=81) 
0.491 12.621 0.310 3.259 3.317 3.278 0.507 -0.660 

July 20 

(n=130) 
1.011 -2.108 0.667 1.785 1.891 1.786 0.623 0.500 

July 22 

(n=125) 
0.571 10.140 0.156 0.852 1.004 0.857 0.523 0.493 

July 24 

(n=127) 
0.883 2.883 0.331 0.570 0.752 0.405 0.633 0.448 

July 29 

(n=129) 
1.730 -24.138 0.825 1.056 1.326 1.151 0.654 0.526 

Table 4-4.  Statistical performance summary for dewpoint temperature from daytime 

traverses. 

Date Slope 
Intercept 

(ºC) 
R2 

MAE 

(ºC) 

RMSE 

(ºC) 

RMSEs 

(ºC) 

RMSEu 

(ºC) 
dr 

July 10 

(n=76) 
0.345 9.171 0.182 1.606 1.663 1.632 0.322 -0.575 

July 11 

(n=81) 
-0.046 14.572 0.008 1.361 1.637 1.592 0.380 -0.027 

July 13 

(n=82) 
-0.113 19.790 0.074 0.425 0.523 0.493 0.175 0.378 

July 16 

(n=82) 
0.776 3.071 0.181 1.154 1.323 1.117 0.708 -0.431 

July 19 

(n=81) 
-0.382 31.573 0.0618 2.269 2.354 2.309 0.461 -0.776 

July 20 

(n=130) 
0.541 7.129 0.473 0.625 0.730 0.543 0.489 0.567 

July 22 

(n=125) 
-0.294 12.067 0.0364 0.625 0.770 0.656 0.403 -0.311 

July 24 

(n=127) 
-0.012 9.283 0.000 0.800 0.931 0.697 0.618 0.206 

July 29 

(n=129) 
0.0299 17.914 0.022 1.955 2.302 2.880 0.256 0.090 
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4.2 Nocturnal Traverse-scale Model Evaluation 

Examples of modeled Tair and Tdew outputs from the July 12th, extended night traverse, is 

shown in Figure 4-8 and Figure 4-9, with the vehicle traverse route overlaid in black.  The 

maximum magnitude of aUHImod (4.0 °C), defined as Downtown-Rural Transect, is about 

half that observed from the vehicle traverses.  For nocturnal Tdew, less variability is 

captured by the model relative to Tair, the urban-rural difference in modeled Tdew is 0.2 °C.  

Similar to daytime Tdew, large nocturnal spatial patterns are observed.  Using Figure 4-8 as 

an example, a similar spatial pattern (as observed during the daytime) along the Don River 

and parks surrounding the Shopping Centre neighbourhood is present.  Additionally, west 

of the traverse route, a similar spatial pattern is present along the Humber River and 

Lambton Golf and Country Club.  

Figure 4-10 shows traverse-scale scatterplots between observed and modeled Tair and Tdew 

for two-night traverses in which model output was provided.  Model performance statistics 

are provided in Table 4-5 and Table 4-6.  Note the differences in routes between the two 

dates, July 12th sampled the extended UHI route, N = 217 and July 19th sampled route A, 

N = 81.  Similar to daytime modeled Tair, there appears to be a warm bias in observed Tair, 

most evident during the night of July 19th.  In addition, the largest differences between 

modeled and observed Tair occur in the Downtown neighbourhood, whereas other 

neighbourhoods (including the Rural Transect) show better agreement with the vehicle 

traverse observations.  Unlike daytime modeled Tair, where a positive correlation was 

observed for all traverses, a negative correlation is observed on the night of July 19th.  

Furthermore, nocturnal RMSE values, are similar to daytime values. 
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Figure 4-8.  Modeled GEM-LAM air temperature output on July 12, 1:15 EDT. 
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Figure 4-9.  Modeled GEM-LAM dewpoint temperature output on July 12, 1:15 EDT. 
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Figure 4-10.  Comparison of modeled and observed air and dewpoint temperature for 

two nocturnal traverses.  Colouring represents sampled neighbourhoods, where: Green-

Residential 1, Yellow-Open High-rise, Grey-Thorncliffe Park, Blue-Residential 3, 

Orange- Moss Park, Red-Downtown.  Note: rural transect points for July 12th are 

coloured in orange. 
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Table 4-5.  Nocturnal traverse air temperature statistical performance summary. 

Date Slope Intercept R2 MAE RMSE RMSEs RMSEu dr 

July 12 

(n=217) 
0.682 6.05 0.715 1.052 1.350 0.999 0.907 0.704 

July 19 

(n=81) 
-1.287 55.77 0.284 1.573 1.746 1.671 0.504 0.500 

Table 4-6.  Nocturnal traverse dewpoint temperature statistical performance summary. 

Date Slope Intercept R2 MAE RMSE RMSEs RMSEu dr 

July 12 

(n=217) 
0.219 14.02 0.404 1.897 1.990 1.980 0.194 0.500 

July 19 

(n=81) 
-1.287 55.77 0.000 0.211 0.259 0.237 0.105 0.497 

4.3 Nocturnal Neighbourhood-Scale Evaluation 

This section compares observed neighbourhood rankings with modeled neighbourhood 

rankings. For daytime Tair, average modeled rankings show close agreement with observed 

rankings, where the Shopping Center is consistently ranked the highest neighbourhood and 

the Downtown is ranked the lowest.  Furthermore, Residential 1 is also ranked second 

highest for both modeled and observed neighbourhood rankings of Tair.  The additional 

neighbourhoods along route B show less consistency between modeled and observed 

rankings (Table 4-7).  A consistency in daytime rankings is not seen between modeled and 

observed neighbourhood Tdew medians, although results suggest the Downtown 

neighbourhood is on average the most humid neighbourhood (Table 4-8).  

For nocturnal Tair, the largest difference between modeled and observed ranking is 

experienced in the Downtown neighbourhood, as the observed neighbourhood ranking is 

1 (the warmest), however the modeled ranking is lowest.  Table 4-9 lists modeled 

neighbourhood medians of Tair and their ranking for two nocturnal traverses.  For nocturnal 

Tdew, average modeled ranking for neighbourhoods do not show a similar ranking 

compared to observed Tdew, as no neighbourhoods are ranked the same between modeled 

and observed neighbourhood ranking.  Table 4-10 lists all modeled and observed nocturnal 

rankings of Tdew.
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Table 4-7.  Rankings of neighbourhood medians for observed and modeled air temperature for all evaluated daytime traverses.  Note: 

a ranking of 1 indicates the highest median temperature and an asterisk indicates a ranking tie.  N=5 (route A), N=6 (route B). 

Date 
R1 R2 OHR SC TP R3 MP DT 

Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm 

July 10 2 2 3 3 4 4 1 1 - - - - - - 5 5 

July 11 2 2 3 3 4 4 1 1 - - - - - - 5 5 

July 13 2 2 3 3 4 4 1 1 - - - - - - 5 5 

July 16 2 2 4 3* 3 3* 1 1 - - - - - - 5 4 

July 19 4 2 3 3 2 4 1 1 - - - - - - 5 5 

July 20 2 1 - - 1 2 - - 3 3 4 4 5 5 6 6 

July 22 5 4 - - 3 5 - - 2 3 4 2 1 1 6 6 

July 24 4 1* - - 3 3* - - 1 2 2 1* 5 3* 6 4 

July 29 1 1 - - 2 2 - - 3 3 4 4 5 5 6 6 

 

Table 4-8.  Rankings of neighbourhood medians for observed and modeled dewpoint temperature for all evaluated daytime traverses 

Date 
R1 R2 OHR SC TP R3 MP DT 

Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm 

July 10 2 1* 1 1* 3 2 4 3 - - - - - - 5 1* 

July 11 2 2* 1 2* 4 3 3 4 - - - - - - 5 1 

July 13 5 2* 3 2* 4 3 2 4 - - - - - - 1 1 

July 16 3 2 4 5 5 4 2 3 - - - - - - 1 1 

July 19 3 3 2 2* 4 2* 5 1 - - - - - - 1 4 

July 20 6 6 - - 5 5 - - 3 3 4 4 2 2 1 1 

July 22 2 3* - - 4 4* - - 1 4* 3 2 5 3* 6 1 

July 24 2 1 - - 4 2 - - 3 5 5 6 6 4 1 3 

July 29 6 1* - - 5 3* - - 3 4 4 2 2 1* 1 3* 
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Table 4-9.  Rankings of neighbourhood medians for observed and modeled air 

temperature for all evaluated nocturnal traverses.  Note: a ranking of 1 indicates the 

highest median temperature and an asterix indicates a ranking tie. 

Date 
R1 R2 OHR SC DT 

Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm 

July 12 5 4* 4 3 2 2 3 1 1 4* 

July 19 2 1 5 3 4 2 3 4 1 5 

Table 4-10.  Rankings of neighbourhood medians for observed and modeled dewpoint 

temperature for all evaluated nocturnal traverses. 

Date 
R1 R2 OHR SC DT 

Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm Ranko Rankm 

July 12 4 2 2 2 3 1 1 1 5 3 

July 19 1 1 3 2 5 2 4 4 2 5 

4.4 Modeled Urban-Rural Differences 

Modeled urban-rural differences presented in this section are defined as medians of 

modeled neighbourhood-modeled pixel values at the fixed weather station location.  The 

results follow the same protocol as observed differences presented in section 3.4.  Figure 

4-11 shows modeled neighbourhood-rural differences in Tair for daytime traverse dates and 

the average differences for nocturnal traverses. Similar to observed, the maximium aUHI 

is defined with the Shopping Centre neighbourhood (∆𝑇̅̅̅̅ mod = 2.3 °C).  A ‘cool’ island 

between modeled Downtown-rural differences is also simulated on 7 out of 9 traverse dates 

(∆𝑇̅̅̅̅ mod = -1.3 °C).  An anomaly is experienced on the July 22nd traverse, in which ∆Tdt-rural 

= 2.4 °C, this coincides with a positive heat island also observed by the vehicle traverse 

observations.  As discussed in section 3.4, the high wind speeds experienced on this date 

contributes to less variability observed between neighbourhoods, resulting in typical 

Downtown ‘low Tair’ to be reasonably close to other neighbourhoods.  During the 

nighttime, the maximum modeled aUHI is defined with the Open-High Rise 

neighbourhood, where ∆𝑇̅̅̅̅  = 4.4°C, contrary to observed maximum heat island defined with 

the Downtown neighbourhood. 

Figure 4-12 shows modeled neighbourhood-rural differences in Tdew for daytime and the 

average differences for nocturnal traverses.  Similar to observed results, the model 

indicates increased rural Tdew compared to the sampled neighbourhoods during the 

daytime, with July 29th showing anomalous conditions.   Reasoning for this anomaly is not 
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directly apparent based on the meteorological conditions during the time of the evaluation, 

however, it is likely linked to the model underestimating rural Tdew on this specific date. 

On average, the modeled differences between the neighbourhoods-rural is -0.6 °C during 

the daytime and 1.1°C during the night.  These findings, along with the observed results, 

highlight the importance of adequately defining ‘urban’ and ‘rural’ when quantifying 

urban-rural differences in the city Toronto. 
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Figure 4-11.  Modeled neighbourhood-rural air temperature differences for all traverses (°C).  Note: the nocturnal differences 

represent an average (N=2) and differences in the y-axis.  Error bars represent ± one standard deviation.
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Figure 4-12.  Modeled neighbourhood-rural dewpoint temperature differences for all traverses (°C).  Note: the nocturnal differences 

represent an average (N=2) and differences in the y-axis.  Error bars represent ± one standard deviation.
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4.5 Chapter Summary  

Results presented in this chapter evaluate GEM-LAM modeled outputs of Tair and Tdew with 

vehicle traverse observations.  In total, 9 daytime and 2 nocturnal traverses were evaluated.  

This marks the first time GEM-LAM evaluations have been conducted using mobile 

traverse observations.  Results between modeled and observed Tair for all combined 

traverse dates shows good results (R2 = 0.907).  However, results indicate that the model 

underestimates observed Tair from the vehicle traverses by an average of 1.0 ºC during both 

daytime and nighttime conditions.  Median neighbourhood Tair (excluding Downtown) was 

modeled reasonably well, with differences between modeled and observed medians 

generally less than 1.0 ºC.  Notable differences between modeled and observed values for 

the Downtown neighbourhood were experienced, during both daytime and nighttime 

conditions.  During the daytime, GEM-LAM significantly underestimates Tair in the 

Downtown neighbourhood with median differences (i.e. modeled – observed) ranging from 

-3.3 ºC (July 11th) to -1.4 ºC (July 22nd).  During the nighttime, these differences are even 

larger, with median differences ranging from -3.7 ºC (July 12th) and -4.1 ºC (July 19th).  

The underestimation in Downtown Tair is reflected in a modeled ‘cool’ island observed 

during 7 out of 9 evaluated days.  In addition, the maximum modeled nocturnal aUHI is 

defined with the Open-High Rise neighbourhood, where ∆𝑇̅̅̅̅  = 4.4°C. 

Model outputs of Tdew show spatial patterns of increased Tdew around highly vegetated 

areas, such as parks, and along rivers, specifically the Don River and Humber River.  

Similar to Tair, evaluation results between modeled and observed Tdew show good results 

with all traverse dates combined (R2 = 0.928) however, little consistency is shown over 

multiple dates.  At the neighbourhood scale, modeled and observed neighbourhood 

medians of Tdew do not show a similar ranking, yet, differences between modeled and 

observed Tdew is generally less than 1.5 ºC.  Modeled and observed urban-rural differences 

in Tdew show similar findings, with daytime rural conditions showing more humid 

conditions compared to all neighbourhoods and nighttime rural conditions showing drier 

conditions. 
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Chapter 5  

5 Summary and Conclusions 

This thesis assessed the intra-urban variability in Tair, Troad, and Tdew under hot, summertime 

conditions using vehicle traverse observations.  In total, 23 vehicle traverses were 

conducted during the study period from July 7 – July 29, 2015 during the Pan and Parapan 

American Games held in Toronto, ON.  Sampling occurred along two routes and 

incorporated sampling eight intra-urban neighbourhoods, including two identified by TPH 

as ‘high-risk’ in relation to human health – the Thorncliffe Park and Moss Park 

neighbourhoods.  Using a satellite image to conduct a land cover classification, and 

hemispherical photographs to calculate SVF, surface properties were defined for each 

neighbourhood and a LCZ was assigned (Table 2-2).  Urban-rural differences for daytime 

and nighttime traverses were assessed using a fixed weather station in Claremont, ON.  12 

vehicle traverses – 9 daytime and 3 nighttime, met the required criteria to be included in 

the analysis presented in this thesis.  Vehicle traverses were also used to evaluate model 

outputs of Tair and Tdew from an urban-scale model, GEM-LAM (250 m resolution). 

Results from vehicle traverses indicate significant intra-urban Tair, Troad, and Tdew 

variability linked to surface properties and urban geometry within the sampled 

neighbourhoods.  Most notable during the daytime are Tair differences between the 

Shopping Centre and Downtown neighbourhoods, with Downtown showing significantly 

cooler temperatures.  During a traverse, Troad shows the largest intra-urban variability 

compared to Tair and Tdew (max range observed = 36.7 °C on July 11th) and similar to Tair, 

Troad Downtown shows the coolest daytime temperatures.  A daytime influence of the lake-

breeze is present as traverse-scale Tdew is on average higher when a lake-breeze front is 

identified, however, intra-urban variability in Tdew shows less consistent trends relative to 

the other variables.  Daytime and nighttime neighbourhood-rural Tair differences illustrate 

the importance of defining ‘urban’ and ‘rural’ when assessing UHI magnitudes as a large 

range of magnitudes are observed.   

GEM-LAM numerical model outputs show relatively good agreement with the 

observations at the traverse-scale, where ΔTair (mod-obs) < -1.1 ºC and ΔTdew (mod-obs) < -1.7 ºC 
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in 8 of 11 evaluated vehicle traverses.  At the neighbourhood scale, median neighbourhood 

Tair was modeled reasonably well, excluding the Downtown neighbourhood.  Evaluation 

between modeled and observed Tdew shows little consistency over multiple dates and is 

reflected in median neighbourhood ranking’s.  However, neighbourhood differences 

between modeled and observed Tdew is generally less than 1.5 ºC.  Ultimately, while the 

GEM-LAM model shows encouraging results, especially for Tair outputs, continued 

evaluation with representative UCL observations is recommended, especially in deep 

urban canyons such as those experienced in downtown Toronto. 

Additionally, results from vehicle traverse observations and GEM-LAM outputs indicate 

that the TPH “high-risk” neighbourhoods of Thorncliffe Park and Moss Park 

neighbourhoods do not show microclimates associated higher heat related health risks 

compared to other urban neighbourhoods.  However, it should be noted that this is strictly 

from a microclimate perspective and thus other factors such as pre-existing health 

concerns, age, and socioeconomic factors were not considered.  Lastly, as both 

observational and modeling results indicate high daytime temperatures within the 

Shopping Centre neighbourhood, this thesis suggests heat mitigation strategies should be 

focused in areas of the city with similar surface cover properties as the Shopping Centre 

neighbourhood. 

5.1 Future Work 

Vehicle traverse observations were aimed towards hot, summertime conditions and thus it 

is encouraged that future work examines how intra-urban microclimate conditions vary 

under different seasons.  Furthermore, the results presented in this thesis are for a mid-

latitude, North American city located along a Great Lake and thus the results are limited in 

their ability to represent other locations in which the extrinsic controls (i.e. latitude, 

altitude, proximity of water) on a city’s climate vary. 

Future work is also encouraged to expand on the findings presented in thesis by including 

additional meteorological variables to more fully characterize the microclimates of these 

neighbourhoods (e.g. in-situ observations of wind speed and direction, incoming radiation).  

The use of these metrological variables could be used to calculate human thermal comfort 
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indices (e.g. Universal Thermal Comfort Index) to objectively evaluate differences in 

thermal comfort levels within neighbourhoods of Toronto and to provide data for 

evaluation of these indices as calculated in the GEM-LAM system. 

5.2 Final Remarks 

With urban development and the number of people living in the GTA expected to increase 

(Ontario Ministry, 2005; United Nations, 2016), characterizing and understanding 

Toronto’s UHI effect and impacts remains an important issue.  The results presented in this 

thesis demonstrate significant microscale intra-urban variability not typically captured by 

routine meteorological observations.  The application of these results can provide insight 

to where in Toronto public health is at highest risk and where heat mitigation strategies are 

most needed. 
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Appendix A: Traverse-scale Observations 

  

  

  

  

 

 

 

Appendix A-1:  Traverse-scale air temperature plots from both intra-urban routes (A and 

B).  Note: y-axis range may vary between dates. 
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Appendix A-2:  Traverse-scale road temperature plots from both intra-urban routes (A 

and B).  Note: y-axis range may vary between dates. 
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Appendix A-3:  Traverse-scale dewpoint temperature plots from both intra-urban routes 

(A and B).  Note: y-axis range may vary between dates. 

. 
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Appendix B: Observed Neighbourhood Medians 

Appendix B-1:  Daytime neighbourhood medians of air, road, and dewpoint temperature for all sampled neighbourhoods.  Also 

provided are reported air and dewpoint temperature conditions at Toronto International Airport (YYZ) and Billy Bishop Toronto City 

Airport (YTZ) (shaded). 
Date Variable R1 R2 OHR SC TP R3 MP DT YYZ YTZ1 

July 10 

T
air

 26.7 26.0 25.9 27.2 - - - 25.7 26.2 23.3 

T
road

 45.9 41.2 43.3 45.6 - - - 39.2 - - 

T
dew

 12.0 12.3 11.6 11.5 - - - 10.5 12.5 13.6 

July 11 

T
air

 28.1 27.8 27.5 29.0 - - - 27.0 26.4 25 

T
road

 46.5 46.4 46.3 45.7 - - - 32.8 - - 

T
dew

 13.6 13.8 12.8 13.1 - - - 11.5 13.7 13.9 

July 13 

T
air

 27.9 27.7 27.5 29.6 - - - 25.6 27.5 23.1 

T
road

 47.9 47.6 47.5 46.9 - - - 34.3 - - 

T
dew

 17.2 17.8 17.6 17.9 - - - 18.6 18.1 19.1 

July 16 

T
air

 23.0 22.3 22.5 23.5 - - - 22.3 22.1 20.6 

T
road

 44.1 43.5 41.1 41.8 - - - 31.4 - - 

T
dew

 9.0 8.7 8.5 9.1 - - - 9.7 8.4 12.6 

July 19 

T
air

 31.0 31.5 31.7 32.7 - - - 29.6 30.9 26.4 

T
road

 49.4 49.6 50.4 51.8 - - - 33.8 - - 

T
dew

 21.1 21.5 21.1 20.7 - - - 21.6 21.9 21.5 

July 20 

T
air

 29.2 - 29.4 - 28.5 28.0 27.7 26.8 28 23.9 

T
road

 44.0 - 44.5 - 44.0 43.9 41.4 30.9 - - 

T
dew

 15.1 - 15.1 - 16.8 16.2 16.8 17.8 15.5 18.2 

July 22 

T
air

 25.2 - 25.5 - 25.6 25.3 25.9 25.2 24.6 24.9 

T
road

 45.9 - 42.6 - 43.9 44.9 44.9 33.6 - - 

T
dew

 9.1 - 9.0 - 9.3 9.1 8.7 8.7 9.6 11.1 

July 24 

T
air

 27.9 - 28.1 - 28.9 28.6 27.7 27.4 28.3 25.4 

T
road

 42.5 - 45.2 - 48.1 48.3 44.7 32.9 - - 

T
dew

 9.4 - 8.8 - 8.9 8.3 8.1 9.8 12.9 14.5 

July 29 

T
air

 32.5 - 32.4 - 32.3 31.2 30.9 30.2 31.5 27.9 

T
road

 47.9 - 48.0 - 47.5 49.9 45.0 33.3 - - 

T
dew

 14.8 - 14.9 - 16.9 19.0 17.2 17.5 17.7 21.9 
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Appendix B-2.  Nocturnal neighbourhood medians of air, road, and dewpoint temperature for all sampled neighbourhoods.  Also 

provided are reported air and dewpoint temperature conditions at Toronto Pearson International Airport (YYZ) and Billy Bishop 

Toronto City Airport (YTZ) (shaded). 

Date Variable R1 R2 OHR SC DT YYZ1 YTZ1 

July 12 

Tair 21.3 21.5 22.3 21.4 25.7 19.6 19.1 

Troad 25.5 24.7 26.0 24.3 26.7 - - 

Tdew 15.5 16.3 15.6 16.9 15.2 15.5 17.8 

July 19 

Tair 25.3 24.7 24.9 24.6 25.8 24.0 22.2 

Troad 27.8 27.5 28.2 28.20 26.6 - - 

Tdew 21.0 20.9 20.7 20.8 21.0 20.8 20.3 

July 29 

Tair 24.5 - - - 28.1 23.1 22.4 

Troad 29.1 - - - 28.9 - - 

Tdew 16.1 - - - 17.2 17.7 17.7 

                                                 

1
 Open-access past climate data as reported every 1-hr by Environment Canada.  Times of reported conditions correspond to closest hr. to traverse start time.  
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Appendix C: Mann-Whitney U Test Results 

Appendix C-1.  Results of the Mann-Whitney U tests for daytime air temperature. 

Values provided represent: Mann-Whitney U (p-value).  * indicates non-significant 

differences (α=0.05). 
 R2 OHR SC TP R3 MP DT 

July 

10 

510 (.000) 0 (.000) 0 (.000) - - - 45 (.000) 

July 

11 

2822 (.000) 102 (.000) 288 (.000) - - - 0 (.000) 

July 

13 

3018 (.000) 1368 (.000) 0 (.000) - - - 0 (.000) 

July 

16 

0 (.000) 1 (.000) 810 (.000) - - - 0 (.000) 

July 

19 

275 (.000) 0 (.000) 0 (.000) - - - 0 (.000) 

July 

20 

- 52 (.000) - 0 (.000) 0 (.000) 0 (.000) 0 (.000) 

July 

22 

- 663 (.000) - 2252 (.000) 4238 (.000) 0 (.000) 8389 

(.000) 

July 

24 

- 4607 (.000) - 4 (.000) 0 (.000) 5459 

(.000) 

0 (.000) 

July 

29 

- 5860 (.000) - 6493 (.000) 0 (.000) 0 (.000) 0 (.000) 

Appendix C-2.  Results of the Mann-Whitney U tests for daytime road temperature.  See 

table 4-2 for description of values. 
 R2 OHR SC TP R3 MP DT 

July 

10 

1509 (.000) 2305 (.000) 3228 

(.486) * 

- - - 573 

(.000) 

July 

11 

16053 

(.424) * 

17139 

(.567) * 

13566 

(.017) 

- - - 2289 

(.000) 

July 

13 

15924 

(.526) * 

15040 

(.130) * 

11688 

(.043) 

- - - 3425 

(.000) 

July 

16 

14432 

(.291) * 

10857 

(.000) 

9952 

(.000) 

- - - 3125 

(.000) 

July 

19 

12179 

(.049) 

10152 

(.000) 

4373 

(.000) 

- - - 1304 

(.000) 

July 

20 

- 12061 

(.001) 

- 15652 

(.582) * 

9961 (.211) 

* 

6349 

(.000) 

282 

(.000) 

July 

22 

- 6363 (.000) - 10409 

(.000) 

8632 (.026) 8797 

(.101) 

1951 

(.000) 

July 

24 

- 4422 (.000) - 1065 (.000) 1144 (.000) 4243 

(.000) 

2956 

(.000) 

July 

29 

- 10335 

(.955) 

- 12490 

(.099) 

5523 (.000) 6675 

(.000) 

714(.000) 
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Appendix C-3.  Results of the Mann-Whitney U tests for daytime dewpoint temperature.  

See table 4-2 for description of values. 
 R2 OHR SC TP R3 MP DT 

July 

10 

2546 .000) 5 (.000) 0 (.000)    0 (.000) 

July 

11 

8885 

(.000) 

1160 (.000) 3349 

(.000) 

   0 (.000) 

July 

13 

554 (.000) 3283 (.000) 535 

(.000) 

   0 (.000) 

July 

16 

5391 

(.000) 

493 (.000) 9426 

(.000) 

   50 (.000) 

July 

19 

754 (.000) 10515 (.000) 3131 

(.000) 

   701 

(.000) 

July 

20 

 11144 (.000)  0 (.000) 0 (.000) 0 (.000) 0 (.000) 

July 

22 

 10876 (.054) 

* 

 6564 (.000) 9824 

(.592) * 

1937 (.000) 717 

(.000) 

July 

24 

 1164 (.000)  6573(.000) 0 (.000) 0 (.000) 4316 

(.000) 

July 

29 

 5769 (.000)  0 (.000) 0 (.000) (.000) 0 (.000) 

Appendix C-4.  Results of the Mann-Whitney U tests for nighttime air temperature.  See 

table 4-2 for description of values. 

 R2 OHR SC DT 

July 12 6738 (.000) 0 (.000) 0 (.000) 0 (.000) 

July 19 0 (.000) 25 (.000) 185 (.000) 0 (.000) 

Appendix C-5.  Results of the Mann-Whitney U tests for nighttime road temperature.  

See table 4-2 for description of values. 

 R2 OHR SC DT 

July 12 10333 (.000) 11683 (.000) 5105 (.000) 4977 (.000) 

July 19 15289 (.278) 10968 (.000) 11457 (.079) 7015 (.000) 

Appendix C-6.  Results of the Mann-Whitney U tests for nighttime dewpoint 

temperature.  See table 4-2 for description of values. 

 R2 OHR SC DT 

July 12 136 (.000) 13400 (.013) 0 (.000) 3835 (.000) 

July 19 257 (.000) 0 (.000) 0 (.000) 3319 (.000) 
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Appendix D: Modeled Neighbourhood Medians 

Appendix D-1.  Median values of air and dewpoint temperature for all modeled neighbourhoods for both daytime and nighttime 

(shaded) traverse times. 
Date Variablemod R1 R2 OHR SC TP R3 MP DT 

July 10 
T

air
 26.4 25.8 25.7 27.4 - - - 22.7 

T
dew

 13.5 13.5 13.1 12.9 - - - 13.5 

July 11 
T

air
 28.5 27.5 27.4 29.4 - - - 23.7 

T
dew

 14.2 14.2 13.7 13.5 - - - 15.1 

July 12 
T

air
 22.0 22.1 22.4 22.7 - - - 22.0 

T
dew

 17.6 17.6 17.7 17.7 - - - 17.4 

July 13 
T

air
 27.5 26.9 26.6 28.6 - - - 23.4 

T
dew

 17.9 17.9 17.6 17.5 - - - 18.0 

July 16 
T

air
 22.3 21.9 21.9 23.5 - - - 19.9 

T
dew

 10.0 8.5 9.5 9.6 - - - 11.7 

July 19 
T

air
 28.9 28.8 27.8 28.3 - - - 26.5 

T
dew

 23.1 23.2 23.2 24.4 - - - 22.8 

July 19 
T

air
 24.2 23.9 24.0 23.6 - - - 21.7 

T
dew

 20.7 20.6 20.6 20.4 - - - 20.3 

July 20 
T

air
 27.8 - 27.7 - 26.7 26.6 25.4 24.2 

T
dew

 14.8 - 15.1 - 16.2 16.0 16.5 16.7 

July 22 
T

air
 24.5 - 24.1 - 24.6 24.8 25.3 23.8 

T
dew

 9.3 - 9.0 - 9.0 9.5 9.3 10.5 

July 24 
T

air
 28.2 - 27.7 - 28.0 28.2 27.7 25.6 

T
dew

 10.0 - 9.8 - 8.8 8.3 8.9 9.0 

July 29 
T

air
 32.4 - 31.8 - 31.7 30.8 29.3 27.5 

T
dew

 18.6 - 18.2 - 17.9 18.4 18.6 18.2 
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Appendix E: The Vehicle Traverse Datalogger Program 

(CRBasic) 

Public batt_volt 

 

'Probe 

Public Air_Temp, RH, Tcple, Tpanel 

 

'GPS 

Public NMEAStrings(3) As String * 80 

Public GPSArray(18) 

Public GPSchar(18) As String * 16 

Public Latlon(2) 

 

'pyranometer YES TSP-400 Ser No. 0005-2 

   Public pyr 

   Units pyr = W m-2 

 

'Pyrgeometer Epply PIR Ser No. 32905FB... Inst = case 

  Public Ld_thmp, Ld, 

  Public Inst, Dome 

  Public Rdome, Rinst 

  Public Rinstln, Rdomeln 

  Public Ld_Tinst, Ld_Tdome 

  Const c1=0.0010295 

  Const c2=0.0002391 

  Const c3=1.568e-07 

  Const sigma=5.67e-08 

  Units Ld_thmp=mV 

  Units Inst=mV/mV 

  Units Dome=mV/mV 

  Units Ld_Tdome=degC 

  Units Ld_Tinst=degC 

 

'IRRs 

Public SBTempC(3), SBTempK(3), TargmV(3), m(3), b(3), TargTempK(3), 

TargTempC(3) 

Public SBTempWallRiC, SBTempWallLeC,SBTempRoadC, TwallRC, TwallLC, TroadC,  

Dim i  

Dim mC0(3),mC1(3),mC2(3), bC0(3),bC1(3), bC2(3) 

 

'Apogee IRR SI-131  SN 1167 - wall (RIGHT) 

Const mC2_1 = 218628  

Const mC1_1 = 22974400  

Const mC0_1 = 4379500000  
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Const bC2_1 = 15951.1  

Const bC1_1 = -70761.6 

Const bC0_1 = -20837100  

 

'Apogee IRR SI-131 SN 1168 - wall (LEFT) 

Const mC2_2 =  263537 

Const mC1_2 =  25206800 

Const mC0_2 =  4931730000 

Const bC2_2 =  8020.56 

Const bC1_2 =  -69955.7 

Const bC0_2 =  -20368000 

 

'Apogee IRR SI-1H1  SN 1252 - road 

Const mC2_3 = 89285.6  

Const mC1_3 = 8576500  

Const mC0_3 = 1713110000  

Const bC2_3 = 2858.4 

Const bC1_3 = 82019.3  

Const bC0_3 = -4959750  

 

'Thermistor 

Public thermsi200 

  Dim Rt 

  Dim Tk 

   

Units batt_volt = Volts 

Units Air_Temp = mV 

Units RH = mV 

 

'Test Datatable 

DataTable (Test,1,-1) 

 DataInterval (0,1,Sec,10) 

 Minimum (1,batt_volt,FP2,0,False) 

  Sample (1,Air_Temp,FP2) 

  Sample (1,RH,FP2) 

  Sample (1,thermsi200,FP2) 

  Sample (2,TargmV(),FP2)  

  Sample (1,SBTempWallRiC,FP2) 

  Sample (1,SBTempWallLeC,FP2) 

  Sample (1,SBTempRoadC,FP2) 

  Sample (1,TwallRC,FP2) 

  Sample (1, TwallLC, FP2) 

  Sample (1,TroadC,FP2)  

  Sample (1,Tcple,FP2) 

  

'Pyrgeometer 



99 

 

 Sample(1,Ld_thmp,FP2) 

 Sample(1,Ld_Tinst,FP2) 

 Sample(1,Ld_Tdome,FP2) 

 Sample (1,Ld,FP2) 

  

'Pyranometer Y.E.S. Ser No. 0005-2 

 Sample(1,pyr,FP2) 

   

'Output parsed GPS info: 

'hhmmss (UTC) GPSchar(2)  

'Latitude: degrees, minutes, thousandths of minutes GPSchar(3) 

'N (North) or S (South) GPSchar(4) 

'Longitude: degrees, minutes, thousandths of minutes GPSchar(5) 

'E (East) or W (West)  GPSchar(6) 

'GPS Quality Indicator: 0 = No GPS, 1 = GPS, 2 = DGPS GPSchar(7) 

'Number of Satellites in use GPSchar(8) 

'Horizontal Dilution of Precision GPSchar(9) 

'Antenna altitude in meters GPSchar(10) 

'Geoidal separation in meters GPSchar(12) 

 

  Sample (1,GPSchar(2),String) 

  Sample (1,GPSchar(3),String) 

  Sample (1,GPSchar(4),String) 

  Sample (1,GPSchar(5),String) 

  Sample (1,GPSchar(6),String) 

  Sample (1,GPSchar(7),String)      

  Sample (1,GPSchar(8),String) 

  Sample (1,GPSchar(9),String)     

  Sample (1,GPSchar(10),String) 

  Sample (1,GPSchar(12),String)  

EndTable 

 

'Main Program 

BeginProg 

Scan (1,Sec,3,0) 

 Battery (batt_volt) 

 VoltSe (Air_Temp,1,mV1000,4,1,0,_60Hz,0.1,-40) 

 VoltSe (RH,1,mV1000,5,1,0,_60Hz,0.1,0) 

 BrHalf (thermsi200,1,mV1000,2,Vx1,1,1000,True ,0,_60Hz,1.0,0) 

 Rt = 24900*(1/thermsi200-1) 

 Tk = (.001129241+.0002341077*LN(Rt)+.00000008775468*LN(Rt)^3)^1 

 thermsi200 = Tk-273.15 

 PanelTemp (Tpanel,_60Hz) 

 TCDiff (Tcple,1,mV20c,4,TypeT,Tpanel,True ,0,_60Hz,1.0,0) 

 SetStatus ("BaudrateCOM1",4800) 

            GPS(GPSArray,Com1,0,100,NMEAStrings) 
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 SplitStr(GPSchar,NMEAStrings(2),",",18,5) 

    

SplitStr (Latlon(1),GPSchar(3),"String",1,0) 

SplitStr (Latlon(2),GPSchar(5),"String",1,0) 

 

'IRR Wall (RIGHT) 

     VoltDiff (TargmV,1,mV20,5,True ,0,_60Hz,1.0,0) 

'Sensor body temperature 

     Therm109 (SBTempC(1),1,16,Vx3,0,_60Hz,1.0,0)  

      

'IRR Wall (LEFT)   

     VoltDiff (TargmV(2),1,mV20,7,True ,0,_60Hz,1.0,0)  

'Sensor body temperature 

     Therm109 (SBTempC(2),1,18,Vx4,0,_60Hz,1.0,0)  

 

'IRR Road 

     VoltDiff (TargmV(3),1,mV20,6,True ,0,_60Hz,1.0,0)  

'Sensor body temperature 

     Therm109 (SBTempC(3),1,21,Vx4,0,_60Hz,1.0,0) 

 

'Calculation of m (slope) and b (intercept) coefficients for target temperature calculation  

 For i = 1 To 3 

        'declare constants in array 

        If i = 1 Then 

           mC0(i)=mC0_1 

           mC1(i)=mC1_1 

           mC2(i)=mC2_1 

           bC0(i)=bC0_1 

           bC1(i)=bC1_1 

           bC2(i)=bC2_1 

         ElseIf i=2 Then 

           mC0(i)=mC0_2 

           mC1(i)=mC1_2 

           mC2(i)=mC2_2 

           bC0(i)=bC0_2 

           bC1(i)=bC1_2 

           bC2(i)=bC2_2 

         ElseIf i=3 Then 

           mC0(i)=mC0_3 

           mC1(i)=mC1_3 

           mC2(i)=mC2_3 

           bC0(i)=bC0_3 

           bC1(i)=bC1_3 

           bC2(i)=bC2_3 

         EndIf 
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     'get slope of curve for all IRRs  

     m(i) = mC2(i) * SBTempC(i)^2 + mC1(i) * SBTempC(i) + mC0(i)  

     b(i) = bC2(i) * SBTempC(i)^2 + bC1(i) * SBTempC(i) + bC0(i)  

  

     'Calculation of sensor body temperature 

     SBTempK(i) = SBTempC(i) + 273.15  

     'Calculation of target temperature  

     TargTempK(i) = ((SBTempK(i)^4) + m(i) * TargmV(i) + b(i))^0.25  

     TargTempC(i) = TargTempK(i) - 273.15 

Next 

      SBTempWallRiC = SBTempC(1) 

      SBTempWallLeC = SBTempC(2) 

      SBTempRoadC = SBTempC(3) 

      TwallRC = TargTempC(1) 

      TwallLC = TargTempC(2) 

      TroadC = TargTempC(3) 

 

'Pyrgeometer Epply PIR Ser No. 32905FB 

      VoltDiff(Ld_thmp,1,AutoRange,13,True,0,_60Hz,257.7,0) 

      'Generic Half Bridge measurements Case 

      BrHalf(Inst,1,AutoRange,23,Vx1,1,350,True,3000,_60Hz,1,0) 

     'Generic Half Bridge measurements Dome 

      BrHalf(Dome,1,AutoRange,24,Vx2,1,350,True,3000,_60Hz,1,0) 

      Rinst = 10000*(Inst/(1-Inst)) 

      Rdome = 10000*(Dome/(1-Dome)) 

      Rinstln = LN(Rinst) 

      Rdomeln = LN(Rdome) 

      Ld_Tinst = 1/(c1 + c2*Rinstln +c3*(Rinstln)^3) 

      Ld_Tdome = 1/(c1 + c2*Rdomeln +c3*(Rdomeln)^3) 

      Ld= Ld_thmp + sigma*Ld_Tinst^4 

      Ld_Tinst = Ld_Tinst-273.15 

      Ld_Tdome = Ld_Tdome-273.15 

             

'Pyranometer Y.E.S.- Ser No. 0005-2 

 Dim CF 

 CF=1/0.032   

 VoltDiff (pyr,1,mV200,14,True ,0,_60Hz,CF,0) 

 CallTable Test 

 NextScan 
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