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Abstract 

For over 90% of individuals with hearing loss, hearing aids are the primary method of 

treatment. Recent studies have shown that most hearing aids are not personalized properly to 

patients, resulting in poor hearing outcomes. Poor training methods has been proposed as a 

possible reason for these findings.  

A training simulator was developed consisting of a mannequin head with flexible, 

anatomically correct ears, and an optical tracking system for tracking the insertion of 

diagnostic equipment into a 3D printed ear canal. The simulator provides an outlet for 

trainees to practice their clinical procedures while receiving validated feedback, without the 

need for an instructor.  

Two validation studies with students and experts were completed. Experts found the 

simulator to provide an improved educational experience, while students who used the 

simulator found increased skill development. Further steps are currently being taken to 

incorporate this validated simulator into training programs in the field. 

Keywords 

Education, hearing aids, hearing aid fitting, probe tube, medical simulation, 3D printing, face 

and content validity, transfer validity. 
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Chapter 1  

1 Introduction 

Hearing loss is a major worldwide issue recently recognized as a priority area by the 

World Health Organization (WHO) (1–3). While hearing loss is an extremely disruptive 

disease on its own, high-reaching implications from hearing loss include social isolation, 

decreased intellectual functioning and high risk of dementia (4–11). In Canada, 

approximately 25% of individuals have some degree of hearing loss, with 5% being deaf 

or hard of hearing – a number expected to increase with the growing population (12). 

Hearing aids are the primary method of treatment for nearly 90% of all hearing loss cases 

(13,14).  

Hearing aid technology has progressed exponentially since its introduction in the 1960s, 

and along with it, the methods used by clinicians to tailor the device to patients. The 

clinician’s intricate “fitting” of the hearing aid is instrumental to the outcomes of 

treatment. Unfortunately, the methods of training for hearing aid fitting remain the same 

as with their initial introduction – procedures are still being practiced on classmates or 

volunteers, in which trainees receive no standardized feedback and cannot provide 

amplification due to safety concerns. This is particularly true with probe tube placement, 

or the insertion of a thin-flexible probe into the patient’s ear canal to receive acoustical 

measurements in which to base the fitting. Partially due to a lack of proper training 

methods, hearing aids are often not properly fitted for patients in clinic (15–17). 

Through the development and validation of a probe tube placement training simulator, we 

hope to encourage the use of this training technology in pre-clinical scenarios. This will 

help to ensure every clinician is operating within the proper standard of care, and in turn, 

every patient is receiving quality care. This chapter provides a brief discussion of relevant 

background material upon which this thesis work is based. 



2 

 

1.1   The Auditory System 

The human auditory system can be explained in three main sections, each with their own 

distinct purpose in the conduction of sound. As seen in Figure 1.1, the auditory system 

consists of the outer ear, middle ear, and inner ear. 

 

Figure 1.1: Anatomical model of the human auditory system containing the outer ear, 

middle ear, and inner ear (Image Courtesy of MED-EL GmbH). 

 

1.1.1 The Outer Ear 

The outer ear is the first part of the auditory system with which environmental sounds 

interact. The outer ear consists of the pinna, ear canal, and tympanic membrane (TM). 

Environmental sounds are captured by the pinna and funneled into the ear canal. The 

shape of the ear canal amplifies frequencies responsible for key human functions – 

speech and environmental sounds. Frequencies in the range of 1.5kHz to 7kHz are 

amplified by a factor of approximately 10 to 15dB (18). A common graphic representing 

this natural amplification of English sounds required in human audibility and speech is 

the “Speech Banana” seen in Figure 1.2 (19). Frequencies and tones associated with the 
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center of the graph require less sound level (loudness) to be audible, while frequencies 

towards the edges of the “Speech Banana” require a louder volume to become audible. 

This natural amplification afforded by the ear canal is important to determine a patient’s 

hearing ability and audibility, and for the fitting of hearing devices. Different syllables 

and letters are responsible for different frequencies throughout this “Speech Banana”, and 

significantly contribute to a patient’s speech intelligibility, or the degree to which the 

acoustic signal is understood by the listener. 

 

Figure 1.2: The ‘Speech Banana’ indicating how different frequencies and English 

sounds are amplified differently in the human outer ear. Typical hearing is seen within 

the yellow area, with louder sounds and more hearing loss downwards on the graph 

(Image Courtesy of ClearValue Hearing). 
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Once the sound has been funneled through the ear canal and the amplification through the 

ear canal has occurred, the sound strikes the TM causing very small amplitude vibrations 

corresponding to the frequency of the sound. 

1.1.2 The Middle and Inner Ear 

The main purpose of the middle ear is to conduct the vibration of the TM to the inner ear 

through an impedance matching transformer. The middle ear contains a chain of three 

bones that transfer the sounds into the inner ear: The malleus, incus, and stapes, seen in 

Figure 1.3. The malleus is the first bone in the middle ear and is attached to the TM. The 

malleus will vibrate with the vibrations of the TM and pass this vibration to the incus, 

then the stapes, which is connected to the cochlea (inner ear). The middle ear’s bones are 

arranged in such a way to convert this energy into sound signals and provide a natural 

amplification across the entire frequency band via their orientation and sizes through a 

hypothesized lever-arm mechanism (18). 

 

Figure 1.3: The TM and three ossicles of the human middle ear – Incus, Malleus, and 

Stapes – responsible for conducting sounds to the inner ear (Image Courtesy of MED-EL 

GmbH). 
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Finally, the inner ear is responsible for sending the sound signals received from the outer 

ear and middle ear to the brain for processing. The inner ear contains the semicircular 

canals, vestibule, and most importantly the cochlea – the organ of hearing. The cochlea is 

a spiral shaped, fluid filled labyrinth that receives vibrations from the middle ear bones. 

When the stapes vibrates against the cochlea, waves are induced in the cochlea’s internal 

fluid with a frequency corresponding to that of the original sound signal. Depending on 

the frequency of these vibrations, different locations inside the cochlea will be stimulated 

(Figure 1.4). Hair cells (sensory receptors) lining the basilar membrane inside the cochlea 

will send a signal to the brain if activated at its specific, unique frequency. Hair cells are 

aligned such that cells in the apex of the cochlea are activated by low frequencies, and 

hair cells at the entrance (base) of the cochlea are activated by high frequencies. Once 

sent to the brain, the auditory cortex processes the signals to what is heard as sound. 

 

Figure 1.4: The cochlea (inner ear) and the method in which sound vibrates the basilar 

membrane to conduct sound to the brain (Image Courtesy of Indiana University). 
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1.2 Hearing Loss 

As previously mentioned, each section of the ear (outer, middle, inner) is responsible for 

a different function in the conduction of sound. When hearing loss exists or occurs, it 

corresponds to a malfunction in one of these sections.  Hearing loss can be classified into 

three main categories: Conductive hearing loss (CHL), sensorineural hearing loss 

(SNHL), and mixed hearing loss (MHL). CHL refers to when sound is unable to pass 

through the outer or middle ear. This may result from an ear infection in the ear canal or 

middle ear, a non-functioning TM, clogging of the ear canal (due to wax or other 

objects), or fluid in the middle ear space. SNHL refers to a problem in the nerve 

pathways from the hair cells in the inner ear to the brain. This results from degradation of 

the hair cells in an individual’s cochlea from the natural aging process, a traumatic 

experience (i.e. a blow to the head, repetitive exposure to loud sounds, etc), or through 

illnesses and drugs. SNHL is the most common type of permanent hearing loss, and can 

range in its severity from a mild hearing loss to profound hearing loss. Finally, MHL 

occurs when there is a sudden CHL while already possessing SNHL. Different classes of 

hearing aids can be used to remedy most hearing loss issues, with approximately 90% of 

hearing loss cases able to be corrected with hearing aids (13,14). 

 

1.3 Hearing Aids 

Hearing aids are amplification devices which are used for “correcting” a patient’s hearing 

loss. Hearing aids are made to amplify specific frequencies that a patient can no longer 

hear well, or in SNHL cases, whose hair cells now have a larger threshold of activation. 

Hearing aids can be potentially damaging to patients if fitted improperly as they can 

amplify sounds louder than needed. Only qualified individuals such as audiologists can 

prescribe and fit hearing aids to patients.  

Hearing aids have developed exponentially since their mainstream introduction in the 

1960’s (20–22). While analog hearing aids with onboard circuits capable of real-time 

amplification used to be the standard, they have been replaced with digital hearing aids, 
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performing all necessary signal processing through their digital signal processing (DSP) 

chip. Henceforth, any mention of hearing aids will refer to digital hearing aids.  

Figure 1.5 displays the wide range of hearing aid variations that are available. Years ago, 

hearing aid selection was very limited in the styles that existed. A behind-the-ear (BTE) 

hearing aid was one of the only aids which was prescribed to patients. These large, bulky 

hearing aids are easily visible and were not available in smaller sizes. Currently, there are 

dozens of different styles to pick from such as receiver-in-the-canal (RIC), or 

Completely-in-the-Canal (CIC) hearing aids, which are more discreet. The appropriate 

hearing aid is selected according to the severity of the hearing loss, while also 

considering the patient’s lifestyle and preference. 

 

Figure 1.5: Examples of different styles of hearing aids currently available (Image 

Courtesy of Lachlan A.N. Smith Audiologist). 

 

In addition to the various hearing aid styles, each aid has varying levels of technological 

features to improve hearing outcomes. Common features which must be programmed by 

the clinician include adaptive noise reduction (gain reduction for speech enhancement, 

transient noise reduction, and internal noise reduction), directional microphones, and 

environmental classification. While not crucial to the work in this thesis, it is important to 

note the added complexities which modern hearing aids now possess. Previous studies 

have shown that the complexity of these digital hearing aids and associated fitting 
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technology may contribute to a lack of adherence to best practices, and a resulting 

reduction in good patient outcomes (23–25).  Each year, hearing aid manufacturers 

provide new technology to improve hearing outcomes for patients, but most new features 

add further complexities to the clinician’s fitting of the hearing aid. This fitting procedure 

is critical for the success of the hearing aid. 

1.3.1 The Prescription and Fitting of Hearing aids in Clinic 

Once hearing aid candidacy is confirmed and initial discussions between the patient, their 

family, and the clinician have taken place, the clinician will have their first fitting with 

the patient. Fitting refers to the clinician’s personalization of the hearing aid for the 

patient –  ensuring the aid is properly tuned for the patient’s unique hearing loss. The 

frequencies at which a hearing loss is present are amplified to a pre-determined 

amplification target to fit the aid to the patient. The clinician will fit the hearing aid 

according to the patient’s hearing loss as seen in the hearing aid fitting software. After 

this initial “first-fit”, the clinician must verify that the sound being delivered to the TM is 

meeting amplification standards outlined by governing audiology organizations (26–29). 

This final check of amplification is called “hearing aid verification”. Hearing aid 

verification utilizes real-ear measurements (discussed below) to ensure the listener’s 

individual ear canal acoustics are taken into account in the fitting process. Recent studies 

have shown that this verification is essential to hearing aid outcomes, and differences 

between the first-fit outcomes and the verified amplifications can be greater than 10dB 

(30,31) – a difference capable of severely affecting the speech intelligibility of the patient 

(32). While the use of verification is part of best practice guidelines, numerous 

organizations and individuals are working towards creating mandatory practice standards 

to ensure all patients receive proper fittings (33). 

1.4 Real-ear Measures & Probe Tube Placement 

To verify the hearing aid, the clinician must measure the sounds that are being delivered 

directly to the TM – referred to as the “real-ear”. These real-ear measurements are 

required as studies have shown that acoustics delivered to the entrance of the ear canal 

are not equal to the acoustics which reach and strike the TM (34,35). The only way to 
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ensure that the amplification targets are being met is to measure the sounds pressure level 

at the TM, something that is not possible with simply a ‘first fit’ correction with the 

hearing aid software (25,34). The mechanism by which the clinician measures this real-

ear measurement is by placing a thin, flexible probe tube close to the TM, as seen in 

Figure 1.6. This probe tube is connected to a microphone system responsible for 

measuring the acoustics at the TM. It has been shown that the clinician must insert this 

probe within 5mm of the TM for proper measurements (26,36–39). 

 

Figure 1.6: Insertion of a probe tube into a human ear canal to take acoustical 

measurements for the fitting of hearing aids (Image Courtesy of Audioscan). 

 

1.4.1 Issues & Difficulties with Clinical Probe Tube Placement 

Placing the probe to within 5mm of the TM is a difficult target to hit – particularly for 

novice clinicians. Studies have shown that if the probe is farther than 5mm from the TM, 

standing waves from sound reflectance with the TM will negatively affect the accuracy of 

measurements (36,37,40,41). While the measurements increasingly improve with closer 

placements to the TM, the risk of contacting the TM increases as well. Contacting the 

TM with the probe tube causes an alarming sensation for the patient, and in pediatric 

cases in particular, may result in an early appointment conclusion (42). Contact with the 

TM can also lead to decreased confidence in the clinician – something that has been 

shown to impact the patient’s hearing outcomes (43).  
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The main tool which an audiologist or hearing instrument specialist can use to gauge their 

probe microphone placement is an otoscope – a magnifying glass shaped to view into the 

ear canal. The view which the clinician would see through the otoscope is seen in Figure 

1.7. For a novice clinician, it is very difficult to estimate the distance of the probe tube to 

the TM from this perspective. 

 

Figure 1.7: The anatomical view of an otoscope observing the TM of a patient (A), and 

the view seen through the otoscope directed at the TM (B) (Image Courtesy of OnHealth 

& Chears Audiology). 

 

Additionally, the clinician receives no feedback regarding the placement of the probe, 

unless the clinician contacts the TM, causing a response by the patient. Avoiding contact 

with the TM is a very important part of probe placement and is discouraged during the 

training of clinicians. The only method to receive feedback on probe placement is 

through an expert who verifies its location by using the same otoscope. 

Another issue with probe tube placement is the varying anatomical differences that exist 

across human ears. The human ear canal can vary in length, shape (s-shaped versus 
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straight), and amount of cerumen/hair (44–46). Each probe tube placement is slightly 

different, and the trainee must be comfortable encountering any situation in clinic. 

It is important to note that if the probe is placed improperly in the ear, the results from 

verification may be incorrect, and the fitting of the hearing aid and the patient’s success 

with the hearing aid will suffer. 

1.4.2 Pre-clinical Training Procedures 

Students that are new to the field of audiology and patient care must be proficient in their 

probe tube placement before entering a clinical scenario. To gain this experience and 

expertise in probe tube placement, trainees practice their placements in a lab setting with 

their classmates, volunteers, and instructors. While this way of training has been used for 

years in audiology, there are several disadvantages. 

First, this form of training provides no qualitative or quantitative feedback to the trainee 

about whether or not they are performing the placement correctly. The only way to know 

if the probe is placed properly is for an expert (the instructor/trainer or teaching assistant) 

to look into the patient’s ear with an otoscope after the trainee has finished. This is 

extremely impractical in a lab setting, and limits how often the trainee can receive 

feedback.  

Second, practice time for trainees is limited. Due to the nature of the procedure, the 

trainee must have another person to act as the patient. This results in novice clinicians 

only practicing the procedure with other students, or during their lab times. The need to 

schedule this training time with another individual is restrictive, and even if students 

practice in partners, there is no way to receive feedback. The only situation in which they 

can practice with feedback is in a lab setting where they have a ‘patient’ to perform the 

placement on, and an expert to evaluate whether it was done properly. 

The last issue with current training methods is the limited anatomies which the trainee 

receives exposure to. The human outer-ear has large inter-individual differences, and the 

clinician must adjust their procedures accordingly. The length of the patient’s ear canal, 

the shape of the ear canal, and the bends within, all vary considerably (44–46). For 
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example, the same probe tube placement cannot be performed for an adult male with a 

straight 32mm long canal and for a 5-year-old infant with an s-shaped 20mm long ear 

canal. While training in an audiology program, the trainee does not gain exposure to a 

wide collection of ear canals – typically they will gain plenty of experience with 20 – 30-

year-olds due to the demographic of the program. This issue arises again when 

encountering extreme anatomical cases. For example, an exostosis is a bony growth 

within an individual’s ear canal. If encountered by a novice clinician in a clinical 

scenario, they may not know how to perform verification including real-ear measures 

with probe tube placement. Even more severe, a patient with a mastoid cavity has their 

ear canal ‘dug out’ and has a large space which was previously excavated for a previous 

procedure. The small acceptable area of 5mm to place the probe is very difficult under 

these circumstances, and appropriate modifications must be taken. 

In conclusion, probe tube placement is a difficult procedure to effectively train clinicians 

for and poor initial performance in placements may result. The main difficulties that are 

present in clinical probe tube placement are also found in training settings and offer no 

way for trainees to overcome these challenges. Through meetings with experts at Western 

University (Canada), it was established that this difficulty increases as training program 

sizes increase, and each trainee receives less time with the expert and less feedback on 

their placements. 

1.4.3 Probe Tube Placement Usage Rates in Clinic 

Compliance rates for the use of probe-mic verification is very low in clinics, with studies 

finding a usage rate of less than 50% (23,24,47). Numerous reasons for this lack of 

compliance have been cited such as the complexity of modern hearing aids, uncertain 

correlation with hearing aid satisfaction, cost of equipment, and poor training. With 

reporting bias where clinicians over-estimate how often they are performing these 

procedures, the usage rate is predicted to be even lower (34). Other studies have looked 

to quantify the harmful effects that lack of verification may have on patients.  

The low usage of probe-microphone equipment, and lack of proper training methods, 

outline a need for a more validated and proficient method to train for clinical practice. 
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1.5 Literature Review of Simulation in Hearing Healthcare 

A solution within educational settings to increase skill in high-risk, difficult-to-teach 

areas is simulation (48–54). First introduced in aviation, simulation offers a method to 

recreate real-world situations in educational settings in an effort to gain experience and 

skills before being placed into a high-risk (clinical) scenario. While real-world experience 

is still necessary in these situations, simulation provides an outlet to practice a procedure 

as often as required with exposure to varying types of anatomy. Simulation allows 

trainees to recreate extreme circumstances to ensure they are ready to encounter any 

scenario in their clinical placement.  

Simulation-based medical education is becoming increasingly popular with the global 

simulation market expected to double from 2017 to 2022 (55). Increasing demand for 

minimally invasive surgeries, and increased focus placed on patient safety, presents a 

clear need for advanced training procedures. While the technology has evolved allowing 

for more advanced training solutions, the validation of these techniques is crucial in order 

to prove their utility in training scenarios, and to ensure that implementation will produce 

positive clinical results. The validation of simulation as a core solution to these problems 

encountered in the healthcare industry has been vital in the implementation of these 

devices in training programs.  

There are currently various methods of simulation that are present in healthcare. Each 

method of simulation is tailored to the specific training need and the field in which it is 

present. Some key types of simulation technology include virtual reality systems with 

force feedback input/output, virtual patient simulation, and physical models.  

While simulation has not yet been fully accepted within hearing, there are groups looking 

to simulate other difficult or high-risk procedures for Audiologists and Otolaryngologists. 

Simulation systems within hearing include OtoSim for otoscopy, Myringotomy VR for 

myringotomy, and a Virtual-Patient Audiology Simulator that simulates audiometric 

testing (56–58). While all these simulators provide utility for the clinician looking to 
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practice those procedures, none of them were developed to train clinicians on real-ear 

verification. To address the need to gain experience in probe tube placement before 

clinic, a physical model was chosen as the best solution. 

Physical models include a physical recreation of the situation which is to be encountered 

in clinic. In medical simulation, this typically includes a mannequin aimed to simulate the 

patient in some form, with additional functionality to recreate human physiology, or to 

provide feedback mechanisms that increase learning opportunities. These physical 

simulations allow trainees to get accustomed to clinical methodologies before practicing 

on volunteers or operating in a clinic.  

There are various ways in which these physical models can be created. While previous 

mannequins were made through plastic and silicone molds for realistic flexible models, 

three-dimensional (3D) printing has now allowed for the quick and affordable 

development of rapid prototypes. 

  

1.6 3D Printing & Rapid Prototyping 

3D printing is an additive manufacturing process in which various materials are injected 

onto a build platform to create physical models of computer generated volumes. There 

are several different 3D printing techniques, however in this thesis, the focus will be on 

two techniques: fused deposition modelling (FDM) and Polyjet.  

FDM printing is the most popular and accessible 3D printing technique available in the 

current day. This type of printer uses a heated extruder head to melt and extrude plastic 

filament (PLA, ABS, PC, etc) onto a build plate. The location it is extruded to 

corresponds with the location specified by the 3D model in the 3D printer software. At 

the time of writing, FDM printing is inexpensive (roughly $1.00 for a four-inch cube), 

produces functional parts, and is most often used for prototyping. FDM printers can vary 

from $100 to $1,000,000 depending on the print volume, printable materials, and 

accuracy for example.  



15 

 

The second 3D printing technique relevant to this thesis is Polyjet printing. Polyjet refers 

to a technique very similar to an inkjet paper printer, but instead of dropping droplets of 

ink onto paper, the 3D printer extrudes miniscule droplets of liquid plastic. A UV light 

over the part cures the plastic into a solid. Like an inkjet printer, one can vary the colour 

(and material) by mixing the different material cartridges to create the ideal properties for 

the print job. Polyjet printers are known for smooth surfaces, precision, and varied 

material properties (59). The cost of polyjet printing vastly outprices FDM with entry 

level printers starting at $50,000 and the cost of print material for a four-inch cube 

starting at approximately $50 (50x that of an FDM printer), along with several 

maintenance requirements. This technique is used for highly precise parts with differing 

material properties. 

Although 3D printing is advancing at an exponential rate, and the capabilities of 

advanced printing techniques such as Polyjet create new manufacturing possibilities, 3D 

printing remains incapable of producing flexible, soft parts that can mimic human tissue. 

If properties produced from 3D printing are not optimal for the required application, 

manufacturing techniques such as molding and casting can be used. This consists of using 

a resin (typically silicone) to create a mold and cast of the 3D printed part. The creation 

of these molded and casted parts in tandem with 3D printing can be extremely cost-

efficient and extend the range of materials.  

1.6.1 The Development of 3D Models 

To obtain models to 3D print for physical mannequins, a Computer-Aided Designed 

(CAD) model must be developed. While common 3D object files can be found at various 

online repositories, specialized geometries must be created from scratch. In the healthcare 

field, medical scans such as computed tomography (CT) scans are used to create 3D 

models of patient anatomy and geometry.  

While CT scans offer exact patient geometry for use in 3D models, an additional step 

must be completed to create models of only the relevant geometry in the image, 

segmentation. Segmentation refers to the outlining of relevant anatomy in an image. This 

is necessary in anatomical images since scans contain all of the patient’s anatomy – from 
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air pockets and soft tissue to bone – which is not needed in the models. There are various 

ways in which segmentation can be performed. The anatomy can be manually segmented, 

where the operator outlines, or “colours in”, the tissues that are required for the model. 

Alternatively, the segmentations can be automated through common computer 

algorithms. Thresholding, or defining a threshold gray level in the image and segmenting 

anything above or below that threshold, and region growing, the selection of a seed point 

and expansion outwards to a specific threshold, are two popular techniques. 

After segmentation, the relevant segmented anatomy can be exported to a modeller in 

which a volume is created, and surfaces can be fitted to the outlines. The modelling CAD 

software is capable of editing and fixing this volume to prepare for 3D printing. 

The creation of these 3D models and the rapid prototyping through 3D printing was an 

important technique that was relevant to the creation of the probe tube placement 

simulator. Through these methods, new prototypes can be developed in short periods of 

time with limited costs. The integration of these 3D printed parts with feedback 

mechanisms create an extremely powerful tool to offer enhanced training methods 

capable of better preparing trainees for clinic. 

 

1.7 Objectives 

The first objective of this thesis was to develop a probe tube placement training simulator 

for trainees in audiology to practice probe tube placement before entering a clinical 

scenario. The second objective was to validate the simulator to determine its usefulness in 

teaching and its ability to produce skill development for users. 
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Chapter 2  

2 The Development of the Probe Tube Placement Simulator 

The development of the probe tube placement simulator was an iterative process 

occurring over two years. The design has evolved substantially since its initial prototype 

through user feedback received from the performed validation studies (Chapter 3 and 4). 

Included in this chapter is the development process of the original simulator with in-

depth detail of each component. 

 

2.1 Design Requirements 

While the development of the probe tube placement simulator was open-ended to allow 

for creative autonomy, there were several design objectives which were to be met for the 

simulator to be used in Western’s audiology training program.  

Firstly, the simulator had to provide a high-fidelity (highly realistic) training experience 

for trainees. The teaching and learning of audiology is a hands-on process that includes 

becoming both accustomed to common instruments and comfortable interacting with a 

patient’s head and ear while performing procedures. A high-fidelity simulator (in 

comparison to a low fidelity/realism task trainer) (48) is favoured while satisfying the 

remainder of the requirements.  

Secondly, users of the simulator were to receive feedback regarding how far the probe 

had been placed from the TM. Trainees do not receive this type of feedback in clinic – a 

large barrier while learning probe tube placement, as discussed in Chapter 1. The 

simulator must be able to measure the probe-to-TM distance with an accuracy within 

1mm.  

Thirdly, the simulator design was to be as cost-effective as possible, with cost of 

materials kept under roughly $500. Due to the limited budgets which training programs 

and training institutions possess, a high-priced system would not be plausible.  
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Finally, the system had to be lightweight, portable, and compatible across different 

operating systems and different hardware specifications. Training programs often require 

equipment to move between rooms depending on the lesson or lab that is taking place. 

The developed design therefore had to be adaptable to several rooms while also being 

able to operate on different computers within these settings. 

 

2.2 Physical Simulator 

A physical simulator was determined to be the best type of medical simulator to simulate 

probe tube placement due to its high-fidelity approach. Probe tube placement is one of 

the first hands-on procedures that clinicians perform on a patient. A physical simulator 

allows trainees to be introduced to the procedure and offers them a tool to practice probe 

tube placement while becoming comfortable with an otoscope and using real-ear 

measurement equipment on a patient’s head. 

Due to the large variation of ear anatomy that exists between individuals, an adult 

simulator (based on adult anatomy) and a pediatric simulator (based on infant anatomy) 

were built. Both simulators were developed using the same methodology, with only the 

head model and ears differing between the two (as seen in Figure 2.1). Henceforth, all 

development will refer to both the pediatric and adult models, as the adult model was 

developed first, and the pediatric model was a modified version of the adult model. 
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Figure 2.1: The adult (left) and pediatric (right) versions of the first probe tube 

placement simulator. 

 

As seen in Figure 2.2, the physical simulator consists of three main parts: The ear model, 

the head model, and the optical tracking system. 

2.2.1 Ear Model 

To create a high-fidelity model for probe tube placement, CT data of cadaveric temporal 

bones were obtained.  All cadaveric specimens were obtained with permission from the 

body bequeathal program at Western University (London, Ontario, Canada) in 

accordance with the Anatomy Act of Ontario and Western's Committee for Cadaveric 

Use in Research. The pinna, ear canal, and TM provided by these CT scans allowed for 

simulation of exact patient anatomy. CT scan data was utilized for both the adult and 

pediatric models, displaying drastically different anatomy. As defined by the scans, the 

canal length of the adult model was 32 mm whereas the pediatric ear canal length was 15 
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mm. To print these 3D ears, the CT scan data had to first be segmented and created into a 

3D model. 

 

 

Figure 2.2: The internals of the adult simulator displaying the three parts of the 

simulator: The head model (A), optical tracking module (B), and ear model (C). 

 

A step-by-step process of the ear model creation is seen in Figure 2.3. First, the CT scan 

data was imported into 3D Slicer (60) for segmentation and manipulation of the original 

images (Figure 2.3A). For the purposes of the probe tube placement simulator, the pinna, 

ear canal, and TM were the only necessary structures. All parts of these structures were to 

be segmented and succinctly integrated into one surface for printing. To segment these 

structures, a thresholding technique was used. Through trial and error, it was found that 

the proper limits of the threshold were greater than -500 Hounsfield Units and less than 

200 Hounsfield Units – corresponding approximately to the radiodensity of human tissue 
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found in the human ear system. Even though this resulted in a suitable outline of the 

anatomy, there were minor deviations/outliers that had to be manually corrected – 

structures within the threshold that were not required in our model – as seen in Figure 

2.3B. In addition, the TM is an extremely small structure which is difficult for a 

segmentation algorithm to capture in entirety. To correct for both these errors, the 

remainder of the structures had to be manually segmented. The raw CT data were 

examined slice-by-slice to correct for any of the relevant anatomy that was not captured. 

Once completed, the segmented object was exported to a 3D modelling software to 

prepare the design for printing. 

The modelling software Geomagic Studio (3D Systems, Morrisville, North Carolina, 

USA) was used to smooth the automatic and manual segmentation results from 3D Slicer 

(60). As Geomagic Studio uses meshes to manipulate objects, functions such as 

relaxation and refining of the mesh were used along with restructuring geometry 

sculpting and shelling the existing meshes. Extensive work with these functions was 

performed to optimize the 3D printing process, minimizing material and time for printing 

(Figure 2.3C). Once completed, the ear model was exported as an .STL file to send to a 

manufacturer for printing.  

 

 

Figure 2.3: Creation of the 3D printed ear model. Pane A shows the raw CT scan which 

was segmented in 3D Slicer and exported as a surface (Pane B). Pane C shows the final 

mesh-fitted object ready to be 3D printed. 
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Cimetrix Solutions (Oshawa, Ontario, Canada) was the source of printing for this initial 

print job due to their advanced 3D printers and capability for variation of material 

properties throughout the same part. The human auditory system possesses structures 

with varying material properties such as cartilage for the outer one-third of the ear canal 

and bone for the inner two-thirds of the ear canal, which were important to capture in this 

ear model. The pinna and entrance of the ear canal was printed with a Stratasys Objet 500 

Connex3 3D printer with TangoPlus FLX 930 material (Stratasys Ltd., Eden Prairie, MN, 

USA) at a shore value (hardness) of 27A. For the tracking system and simulator to 

operate effectively, the inner ear canal portion of the ear was printed in a transparent 

VeroClear RGD810 material and coated in a latex paint to further increase transparency. 

As previously mentioned, the capabilities of this Polyjet printer allowed for varied 

mechanical properties of the printed part throughout the same print job. 

 

2.2.2 The Head Model  

Various approaches were explored for providing a head model, but the low-cost solution 

of styrofoam was chosen. Styrofoam was found to be extremely inexpensive and allowed 

for easy manipulation. For the tracking system and ear to be mounted in the head at 

consistent and stable locations, the styrofoam was carved out in the desired location, and 

hot glue was used to secure them in place. While this approach is not ideal for repeatable 

production or large volumes, it was excellent for an initial proof of concept to show the 

feedback mechanisms that were present and to receive feedback on the operation of the 

simulator. When moving forward into more advanced prototypes or production units, 

alternative materials for the head models would be used such as 3D printing or injection 

molding.  

 

2.2.3 The Tracking System 

A variety of sensing modalities capable of detecting the probe tube as it was inserted into 

the model ear were considered; however, optical tracking was used in the final design. 
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Although a capacitive or inductive sensor system offers more accuracy than an optical 

sensor, a key factor discouraged the use of this category of sensing technology – cost. 

The probe tubes used by clinicians have a very small diameter (around 2mm) and are 

made of plastic. This is a very difficult object to detect using a capacitive or inductive 

sensor. Through various quotes on capacitive and inductive sensors capable of detecting 

such an object, it was determined that this sensor would cost greater than $2000. This 

hardware cost did not meet our requirements supplied by the end users, so optical 

tracking was explored instead. 

Optical tracking allows for extremely flexible tracking through software and object 

tracking algorithms utilizing image processing techniques. By isolating the object in 

question from the background, the software can track quantitative feedback metrics about 

the object such as location relative to other objects in the scene, or the rate in which 

things occur. For the optical system, a Microsoft LifeCam HD-3000 camera was used, 

costing $40. 

The tracking system mounted in the head model can be seen in Figure 2.2B. An LED 

light seen above the camera was required to provide optimal lighting. This light was 

necessary as the styrofoam head will be closed once in use and different lighting 

scenarios in which the simulator is used can drastically alter the lighting conditions inside 

the head. This supplied light provides a consistent scene for which the software can be 

optimized for. The LED is powered by a 9V battery with a switch located on the outside 

of the head. The circuit used to power the LED consists of a 9V battery, switch, resistor, 

and LED pack all connected in series. A 1kΩ resistor was used to allow for optimal 

brightness from the LED. 

 

2.3 The Software 

A software module was developed using Matlab (MathWorks, Natick, Massachusetts, 

USA) to allow for tracking of the probe tube inside the 3D printed ear canal. The key 

parts of the software were the two modes of operation, underlying object tracking 
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algorithm, and the additional graphical user interface (GUI) functionalities. The user 

interface was split into two different modes corresponding to the user’s intention for 

using the simulator: practice mode or test mode. 

2.3.1 Practice Mode 

The practice mode was designed for users new to probe tube placement to receive real-

time feedback regarding their placement while in a training setting. An image of the user 

interface in practice mode can be seen in Figure 2.4.  The real-time updating image 

displays the location of the probe, while the feedback box labelled “Distance:” displays 

the exact distance the probe is from the TM. While not realistic in a clinical scenario, 

users of the practice mode can see typical events that may happen with the probe tube in 

the canal when inserting (placed along the floor vs. ceiling), or changes that may occur 

with the location of the probe once securing the external lanyard to the patient. 

 

Figure 2.4: The user interface (shown in practice mode) of the first probe tube placement 

simulator developed using Matlab. 
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2.3.2 Test Mode 

Test mode was developed to create an evaluation case in which students do not receive 

any visual feedback on their probe tube placement until they have completed the 

placement. Test mode uses the same interface as practice mode (Figure 2.4) but 

withholds the on-screen results panel until the placement is finished. To indicate the 

simulator is in test mode, the toggle button at the bottom left of the user interface will 

change labels from “Practice Mode” to “Test Mode”. The aim was to simulate a clinical 

scenario in which the clinician must perform the entire procedure before receiving any 

feedback. This mode may also be used in evaluation settings. The interface feature which 

differentiates test mode from practice mode is the usage of start and stop buttons. When 

the start button in the GUI is selected, a timer begins. When finish is selected, the timer 

ends, and the results of the probe tube placement are displayed – the time to completion, 

final probe-to-TM distance, and an image of the probe inside the ear canal. If at any time 

during the running timer (after clicking start, and before clicking finish) the probe 

contacts the TM, an audible note is played through the computer’s speakers. This sound 

indicates contact was made with the TM and simulates a patient’s sudden reaction that 

would typically occur in a clinical setting.  

2.3.3 Object Tracking Algorithm 

Regardless of the mode of operation, the same object tracking algorithm was used. To 

track the probe being inserted into the transparent ear canal, the camera feed analyzes 

each frame independently from the last. The isolation of the probe from the background 

is a multi-step process seen in Figure 2.5. The algorithm begins with determining the ear 

canal background without the probe. When the program first launches, an initial picture 

of the ear canal is captured (Figure 2.5A). This first image is a benchmark for what the 

ear canal looks like without the probe tube inserted. Every frame after this first frame 

(Figure 2.5B) is compared to the initial image. An image subtraction occurs in which 

each element in the initial image is subtracted from the new image (Figure 2.5C). If there 

is no probe currently inside the ear canal, the subtraction will result in a matrix of zeros, 

indicating no probe in the ear canal. If the probe is currently in the ear canal, the matrix 

will be non-zero in the locations corresponding to the probe. While the probe is evident 
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after this initial subtraction, additional image processing must occur to outline the probe’s 

shape and provide the outline which can be used for calculating distance.  

After the two images are subtracted, a cropping feature erases any values in the matrix 

that are outside of the ear canal to focus processing on the region of interest. As the 

camera and ear canal are always in the same location in the head relative to each other, 

this cropping box will always be at the same location within the images. This cropped 

image was also rotated to a consistent angle to ensure the TM was taken as a column of 

pixels in the image. This crop and rotation was dependent on the placement of the 

tracking system in the head, so customization of these features was completed after the 

design was completed.  

After cropping, the segmentation of the probe occurs. To make the probe stand out from 

the background more clearly, the last 8 cm of the probe were painted black. This 

provided more consistent probe-tracking due to the enhanced contrast between the probe 

and the background. To segment this black part of the probe, thresholding was used with 

a gray value of 35 in the 8-bit webcam images to create a binary image (Figure 2.5D). 

This value of 35 meant that there was a gray value difference between the original image 

(no probe in canal) and the current image of greater than or equal to 35. This remained a 

stable benchmark as the positioning of the ear and camera remained constant, and the 

mounted LED circuit supplied consistent lighting. Once the threshold converted the 

image into a binary image, morphological operations were used to filter and smooth the 

result. To produce reliable segmentations of only the probe, a dilation and erosion 

(closing) was performed with a disk element of radius three to minimize the number of 

outliers in the segmentation mistakenly taken for the probe (Figure 2.5E).  
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Figure 2.5: Images displaying the segmentation sequence that was needed to locate the 

probe. Pane A is the initial image captured by the camera for comparison. Pane B is a 

random frame after the first image when the probe is inserted. The result of Pane B 

subtracted from Pane A is seen in Pane C. A threshold is used to convert Pane C to a 

binary selection (Pane D), where it is smoothed using filters and morphological 

operations to produce the final segmentation of the probe (Pane E). 

 

Once the probe was segmented from the background and smoothed into what was 

determined to be an acceptable outline of the probe in all locations of the ear canal, a 

function capable of assigning labels to each of the connected values of segmented objects 

was applied. As the segmentation and filtering was customized for optimal results in this 

specific environment, there was always one large segmented object which was found – 

the probe. If there were no objects in this image, a signal was sent to the GUI indicating 

there was no probe found in the ear canal. 

Once the probe was segmented and located inside the ear canal, its location was 

calibrated with the camera’s location for measurement. The camera was mounted in such 
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a location that the TM was perpendicular to the camera lens making a column of pixels in 

the image equivalent to the TM location. This precise location of the TM, along with the 

camera and ear canal maintaining the same locations at all times, allowed for a pixel 

distance to be measured from this row of pixels to the tip of the probe tube.  

The distance from the TM to the tip of the probe (closest part of the segmented object to 

the TM location) was calculated in pixels. For example, if the TM was always located at 

column 300 of the image, and a bounding box around the segmented probe stretched to 

column 275 of the image, the probe was located 25 pixels from the TM. 

Finally, the probe-to-TM distance in pixels had to be converted to millimeters. This was 

done by using a conversion factor between millimeters and pixel distance calculated by 

using landmarks on the ear canal visible in the images. The most evident landmarks used 

were the entrance of the canal and the tip of the TM. The distance between these two 

landmarks was found in the image in pixels. The ear was then removed, and the 

millimeter distance of these two exact landmarks was found using a micrometer. This 

produced a conversion factor that can be used to convert between millimeters and pixels 

in this location. This was repeated for several different landmarks on the ear canal to find 

the conversion factors. These conversion factors were then averaged to find the true 

conversion of 4mm/85 pixels. Using this conversion factor, the pixel distance from the tip 

of the probe tube to the TM was found in each frame of the camera and outputted to the 

user depending on the mode selected. 

2.3.4 Other User Interface Functionalities 

This object tracking system was integrated into a GUI developed through Matlab, seen in 

Figure 2.4. This interface provided the user with a single screen capable of receiving 

multiple forms of feedback during the probe tube placement. First, the probe-to-TM 

distance was clearly displayed for the user to know where in the canal the probe was 

currently located. Additional feedback included the time spent performing the probe tube 

placement and an audible response from the software if contact was made with the TM. 
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2.4 Conclusion 

While this initial design was a valuable proof of concept, there were several parts of the 

simulator which could have been improved. Through consultation with the contributing 

audiologists and end users of the product, it was decided that this was an excellent point 

to seek feedback from expert clinicians on the design and to gain insight into which 

aspects of the simulator to focus on for upcoming developments. Through these 

validation studies (Chapter 3 and 4), the goal was to determine whether the probe tube 

simulator would prove as a useful tool for trainers and trainees, and where to focus 

further development. Future chapters will focus on the studies performed, and the 

simulator improvements produced from each round of feedback. 

 

 



30 

 

Chapter 3 

3 Face and Content Validity of a Probe Tube Placement 

Simulator 

3.1 Introduction 

Validation of the developed probe tube placement simulator was required prior to using it 

in a clinical or educational setting. Face and content validity is typically an initial step in 

medical simulator validation (61). Face validity refers to an assessment of the realism of 

the simulation compared to the real situation (57,62), while content validity refers to 

evaluating whether the simulator could be useful in training (57,61). These two forms of 

validation provide valuable feedback on the simulator and highlight specific areas that 

may need to be improved prior to more rigorous validation. 

The objective of this study was to evaluate the face and content validity of the probe tube 

placement simulator, as well as the barriers/facilitators to implementation of the simulator 

in educational settings. 

 

3.2 Materials and Methods 

3.2.1 Simulator  

The simulator used in this study was previously described in Chapter 2. Both the adult 

and the pediatric simulator were used, offering two different anatomies on which 

participants could practice.  

3.2.2 Participants 

This study was approved by the Western University Health Research Ethics Board (REB 

109083 – See Appendix A). Participants were recruited through the National Centre for 

Audiology at Western University (Canada) and comprised of twelve (12) clinicians and 

researchers, with probe tube placement experience ranging from three (3) to thirty-seven 

(37) years. Ten of these participants were employed as course instructors or clinical 
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supervisors in an audiology training program and were at some point responsible for the 

course training of novice audiologists, while the remainder had experience teaching 

novice clinicians in roles as teaching assistants and/or external clinical practicum 

supervisors. In addition, all participants had clinical experience performing real-ear 

measures for the purposes of hearing aid fitting. 

3.2.3 Protocol 

The structure of this study consisted of three sections: (1) operation and evaluation of the 

adult simulator; (2) operation and evaluation of the pediatric simulator; and, (3) content 

validity, applicability in an educational setting, and barriers and facilitators to use. For all 

evaluations, a “think aloud” approach was used (63–65) in which participants were audio 

and videotaped to capture their physical use and thought processes while using the 

simulators. Participants also completed a questionnaire aimed at providing quantitative 

evaluations of both simulators (see below). Sections (1) and (2) were identical, with the 

exception of the use of the different models: adult and pediatric. 

During sections (1) and (2), the participant was given setup and operating instructions for 

the specific simulator they were using. The participant would follow the instructions, 

which guided them through each feature and aspect of the simulator, including assessing 

the realism of the 3D printed ear, otoscopic usage with the simulator, probe insertion in 

both practice and test modes, interpretation of results after/during insertion in both 

practice and test modes, and foam tip insertion1. Once the participant was comfortable 

with the simulator and had completed the setup and operating instructions, they were 

presented with the questionnaire to complete based on their experience with the simulator 

they had used. They were first asked to complete the face validity section of the 

questionnaire to assess the realism of specific aspects of the simulator. Once the face 

validity questions were completed, the participant was required to perform five 

consecutive probe tube placements in which the final probe-to-TM distance was 

                                                 

1
 Foam tip insertion refers to a clinician inserting a foam “earplug” to occlude the ear canal after inserting 

the probe. This is a common requirement when taking certain acoustical measurements with the probe. 
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recorded. Any contacts with the TM were recorded. Finally, once the above was 

performed on both simulators, the remainder of the questionnaire was completed to 

evaluate the content validity, applicability to an educational setting of both simulators, 

and to find specific facilitators and barriers to their implementation in a clinical education 

setting. 

3.2.4 Questionnaire 

A questionnaire was developed in this study that aimed to assess the following relative to 

the two simulator models: face validity, content validity, applicability in an educational 

setting, and barriers and facilitators to implementation in clinical education settings. 

Questions for face validity are summarized as items in Table 3.1, while questions for 

content validity, applicability, and facilitators/barriers are summarized in Table 3.2. 

Questionnaire data were collected during a one visit session via SurveyMonkey™.  

 

NO. SECTIONS 1 & 2: FACE VALIDITY 

1 Appearance of the ear 
2 Shape of the ear 
3 Texture of the ear 
4 Stiffness of the ear 
5 Otoscopic view of the ear 
6 Length of simulator ear canal 
7 Presence of relevant anatomical features 
8 Proportionality of the ear to the head 
9 Sturdiness of the head 

10 Adjustability of the head 
11 Ability to set up probe mic equipment on simulator 
12 Ability to properly position the probe mic lanyard 
13 Foam tip insertion experience 
14 Time required to perform insertion 
15 Total probe placement experience 

Table 3.1: Summary of face validity questions used to assess the realism of the adult and 

pediatric probe tube placement simulators. 
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The questionnaire used a scale from 0% - 100% in intervals of 10%, with 0% indicating a 

strong disagreement, 50% indicating neither an agreement nor disagreement, and 100% 

showing a strong agreement. Participants were also given an opportunity to provide 

written feedback for each item. The questionnaire was developed in conjunction with 

several audiologists from the National Centre for Audiology to ensure all aspects of the 

simulator and the procedure were properly assessed. 

 

NO. SECTION 3A: CONTENT VALIDITY 

1 Educate student on anatomical landmarks 
2 Educate student on otoscopic usage 
3 Provides high quality opportunity to practice probe placement 
4 Provides high quality probe placement evaluation method 
5 Assists students in identifying their skill level 
6 Assists instructor in identifying a student’s skill level 
7 Simulator is not too time-consuming in an educational setting 
8 Simulator is not too difficult to use in an educational setting 
9 Simulator can be used to train students on all aspects of probe placement 

  
 SECTION 3B: APPLICABILITY TO AN EDUCATIONAL SETTING 

10 This simulator provides a more valid approach for teaching probe placement 
11 The simulator should be implemented within clinical education programs 
12 The simulator should be implemented in professional development 

programs 
13 There will be widespread acceptance of this simulator in clinical education 

programs 
  
 SECTION 3C: FACILITATORS AND BARRIERS 

14 List the top three facilitators to implementing this simulator in an 
educational setting 

15 List the top three barriers to implementing this simulator in an educational 
setting 

Table 3.2: Summary of questions on content validity (3A), recommendations on the 

applicability to an educational setting (3B), and facilitators and barriers to 

implementation (3C). 
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3.2.5 Statistical Analysis 

The average and standard deviation of each questionnaire section was found, as well as 

the average probe-to-TM distance and standard deviation resulting from the repeated 

placements for each simulator. The content of the open-ended responses was examined to 

see how it could be used to refine and revise the models, and to develop a better 

understanding of the barriers/facilitators to using the simulators in educational settings. 

The facilitators and barriers provided by the participants were ranked in terms of the most 

mentioned topics, and the top seven facilitators and barriers are presented. 

 

3.3 Results 

3.3.1 Face Validity (Sections 1 & 2) 

Average participant rating for the realism of the adult model was 65% (SD = 18.2) while 

the average rating of the child model was 64% (SD = 16.4). Ratings per question are 

shown in Figure 3.1. Four questions out of twelve were given a negative rating (below 

50%) for both simulators. These questions pertained to the evaluation of the texture of the 

ear, stiffness of the ear, otoscopic view of ear ‘landmarks’ and/or the TM, and the foam 

tip insertion experience. 
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Figure 3.1: Box plot of face validity results for the adult and pediatric simulator, 

corresponding to the questionnaire represented by Table 3.1. White represents results 

from the adult simulator whereas gray represents results from the pediatric simulator. 

 

3.3.2 Distance-to-TM Results (Sections 1 & 2) 

The average distance-to-TM for all participants combined was 3.7 mm (SD = 1.82) for 

the adult model with TM contact 12% of the time across all trials. With the child model, 

participants achieved an average distance-to-TM of 2.8 mm (SD = 0.94) with TM contact 

5% of the time. 

3.3.3 Content Validity and Applicability to Educational Settings 

(Section 3) 

The content validity (section 3A, i.e., questions 1 – 9 of Table 3.2) was intended for 

evaluating the teaching value of this simulator and had an average score of 78.7% (SD = 

17.0) with only one question producing a negative response. The applicability to an 

educational setting (section 3B, i.e., questions 10 – 13 of Table 3.2) had an average score 

of 80.0% (SD = 5.33) with no negative responses being reported. All the above data are 

seen in Figure 3.2, and all recorded facilitators and barriers can be seen in Table 3.3. 
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Figure 3.2: Box plot of content validity results for both simulators, corresponding to the 

questions asked in Table 3.2. 

3.4 Discussion 

Simulator systems are typically evaluated for face and content validity at an early product 

development stage, in order to glean systematic feedback prior to developing final 

versions for use in educational programs (61,66). This study completed a first level face 

and content validity evaluation of a prototype simulated patient designed to assist in 

teaching probe tube placement prior to real-ear measurement, by allowing experienced 

clinical instructors of audiology coursework to use the simulator and provide structured 

feedback. For the first level of evaluation of this simulator, results from this study were 

generally positive, with the majority of the questions receiving above a 50% rating. By 

using experts in probe tube placement, we obtained feedback from audiologists who have 

had extensive experience performing clinical probe tube placements, and in most cases, 

have taught students and other professionals how to properly place a probe tube within 

both adult and child-sized ears. These participants are aware of the barriers that exist in 

learning probe tube placement techniques and are representative of professionals who 
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may make use of a product such as this simulator in professional situations such as course 

or lab instruction, or in clinical practica. 

The face validity average of 65% (SD = 18.2) for the adult simulator and 64% for the 

pediatric simulator (SD = 16.4) were reasonable considering the questions that lowered 

this score. The lowest scores reported for both models were attributed to the texture and 

stiffness of the 3D printed ear, foam tip insertion experience, and the otoscopic view of 

the ear canal and TM. The lack of realism in the texture and stiffness of the ear causing 

an unsatisfactory foam tip insertion may be due to the method of creating the ear. By 

using a multi-material printer to print the ear, the shore value (hardness) was customized 

according to material properties of human auricular cartilage found in the literature. With 

Young’s modulus (i.e., intrinsic stiffness) values ranging from 0.8 – 8 MPa (67–69), a 

lower value of 1 MPa was chosen for this model and converted to an approximate shore 

value of 27A, using Gent’s relationships (70). This value of 27A is currently the softest 

material available to be 3D printed, meaning any future improvements of the stiffness and 

texture of the ear will require a different method, such as silicon molds, to create the ear. 

Additional material properties will also need to be considered, as flexibility was a large 

issue, with clinicians unsuccessfully attempting to open the canal by pulling the posterior 

part of the pinna up and back. Using materials such as silicon will likely increase the 

flexibility of the ear, and result in more positive ratings by clinicians. The unrealistic 

otoscopic view may be due to how the simulator was optimized to improve the accuracy 

of the probe-to-TM distance measurement. For the camera to best locate the probe inside 

the canal, the ear canal was made as transparent as possible, and an internal light was 

situated behind the camera. As both of these design decisions seemed to degrade the 

otoscopic image of the ear canal and TM, further optimization will be needed to improve 

the otoscopic image while not negatively impacting the camera’s view of the canal. In 

addition, the TM will be further discriminated from the ear canal to ensure the user can 

visualize the ear canal using the TM as a consistent landmark. 

Quantitative results showed that the average probe tube-to-TM distance was within the 

5mm guideline with only one participant having an average of their five placements 

greater than the recommended 5 mm. It was observed that participants primarily in 
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research and participants who had the least clinical experience achieved a closer 

placement of the probe tip to the TM while those who primarily work in a clinic achieved 

farther distances from the TM (perhaps to avoid any accidental contact with the TM). As 

all participants were relative experts who routinely perform probe tube placements, it is 

reasonable to expect that all results are within proper distances from the TM. On a 

person-to-person basis, most participants were consistent with their own five placements, 

showing that their technique for placement is repeatable and well-practiced, as may not 

be the case with students. 

Individual question scores for content validity and applicability to an educational setting 

(sections 3A & 3B, respectively) were both generally high, while receiving low scores for 

the same topics that received low scores for face validity (texture, stiffness, and otoscopic 

view of the ear). In addition, two neutral responses were given regarding (1) no presence 

of anatomical landmarks and (2) otoscope usage. These two aspects of probe placement 

are difficult with the simulator in its current form as the landmarks are not easily 

distinguishable and the lack of flexibility in the pinna and ear canal makes clinical 

otoscopy difficult. The improvements mentioned above (producing silicone ears with 

improved shore values and more distinct landmarks) will help address these issues. 

The facilitators and barriers (as seen in Table 3.3) provided by the participants outline the 

strengths and weaknesses of the current iteration of the simulator. The top three major 

barriers to successfully implementing this simulator in an educational setting include the 

current texture and stiffness of the ear, lack of landmarks, and the potential cost for 

educational institutions to implement this into their program. To address the third barrier, 

the materials used in this simulator are relatively inexpensive, with the 3D printed ear 

being the most expensive part. As future iterations of the ear may include silicon molds 

instead of utilizing 3D printing, this cost will decrease further, making this an extremely 

affordable simulator, capable of being purchased by most institutions. Other barriers 

listed include the lack of realism, inability to record accurate acoustical measurements of 

the ear, suboptimal user interface, and only having two anatomies to practice (the 

pediatric and adult). These issues will be addressed with future iterations of the design. 
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The facilitators listed (Table 3.3) demonstrate the uses of this simulator and the benefits it 

may have in an educational setting. While improvements are needed, the simulator allows 

students to practice probe tube placement in a controlled, low stress environment, while 

receiving visual, auditory and quantitative feedback to help them progress their skill level 

before advancing to clinic.  In addition, a well built, relatively inexpensive head simulator 

with a variety of realistic ears developed from CT scans may also be used for other 

applications.  Opportunities to use the simulator to assess a clinician’s skill, to know the 

exact distance from the TM for research purposes, and to test real-ear measurement 

systems using this probe-to-TM distance are a few examples. Within an educational 

setting, and with specific additional features, a simulator such as this could be used for 

practicing the fitting of an adult ear with a receiver-in-the-ear (RICs) or slimtubes of the 

correct size, cutting earmold tubing to size for correct positioning of a behind-the-ear aid 

(BTE), setting up for complex real-ear measurement setups such as contralateral routing 

of signal (CROS and BICROS) or open fittings and using monitoring headphones. Once 

improved, this model could be used to improve skills such as otoscope usage and basic 

understanding of the anatomy and variation that may exist between individuals. 
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Rank Facilitators Barriers  Solution 

1 

Ability to learn and 

practice in a controlled, 

low stress, safe 

environment 

Stiffness  

& Texture 
 

Future ears made of silicon will 

increase flexibility and increase 

skin texture realism 

2 
Visual and auditory 

feedback received after 

insertion of probe 

Lack of 

anatomical 

landmarks & 

difficulty 

visualizing canal 

 

Allow usage of otoscope light 

and optimize otoscopic image 

by discriminating the common 

landmarks 

3 

Ability to obtain 

accurate results of 

probe-to-TM distance 

measurement 

Potential  

High Cost 
 

Materials used have low cost 

and simulator will be an 

inexpensive teaching tool 

4 
Simulator features and 

ease of use 

Some aspects not 

realistic 

(movement, 

shoulders) 

 

Future iterations will look at 

adding partial shoulders to the 

model and possible actuation of 

the base of the simulator 

5 
Realistic aspects of 

simulator 

Not acoustically 

accurate 
 

Future iterations will test real-

ear measures at each stage of 

development to confirm proper 

acoustical measurements 

6 

Provides ear anatomies 

which would not have 

previously been 

possible to practice on 

Suboptimal User 

Interface 
 

Major usability issues have 

been found and a new user 

interface will look to fix these 

issues 

7 Alternate uses 
Lack of multiple 

anatomies 

 

More simulator options will be 

later available with more 

potential patient anatomies (2+ 

adult anatomies & 2+ child 

anatomies) 

Table 3.3: Facilitators and barriers in implementing the simulator in an educational 

setting. Rank 1 showing the number one facilitator and the number one barrier in 

implementing this simulator into an educational setting, as suggested by participants. 
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3.5 Conclusion 

The probe tube placement simulator is a novel tool for instructors and students to gain 

experience in probe tube placement before entering clinical practice. The results of the 

face and content validity study are encouraging for this simulator and show a clear set of 

characteristics of the simulator which must be improved before any widespread use. With 

the participants’ final opinion that this would be recommended for use in clinical 

education programs, these pressing issues will be explored, and future iterations will be 

tested with experts and students to ensure its success in an educational setting. 
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Chapter 4 

4 Skills Transference of a Probe Tube Placement Training 

Simulator 

4.1 Introduction  

After positive results from a face and content validity study and experts in the field 

recommending its continued development and usage in training programs, key areas 

needing improvements were examined. Once suitable design improvements were made, 

one more step in validation was needed to determine the simulator’s effect in training 

programs. A final form of validation that is performed on medical training simulators is a 

skills transference study (53,57,71,72). A skills transference validation study looks to 

determine if skills learned on this simulator effectively translate to clinical scenarios.  

The objective of this study is to evaluate the skills transference of the probe tube 

placement simulator, and to determine if the use of this simulator in pre-clinical scenarios 

will increase the competence and confidence in individuals in clinic. 

 

4.2 Materials and Methods 

4.2.1 Simulator 

While the simulator has been previously described in Chapter 2 and 3, several 

improvements have been made regarding suggestions from the participants in the first 

validation study. The following improvements were only implemented on an adult model 

for the purposes of the present study. These updates incorporated a realistic 3D printed 

head model, swappable silicone ears to represent variability in ear-canal anatomy, and an 

improved mounted optical tracking system for tracking the location of the probe 

microphone inside the ear (Figure 4.1). While the previous simulator used a directly 3D 

printed ear printed with a Stratasys Objet 500 Connex3 3D printer (Stratasys Ltd., Eden 

Prairie, MN, USA), the improved silicone outer-ear was created by printing the ear with a 

Lulzbot Taz 6 printer (Aleph Objects, Loveland, Colorado, USA), and using silicone to 
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mold and cast the Pinna and entrance to the canal. In comparison to the previous 

simulator, a casting and molding technique was used in this prototype as current 3D 

printing does not allow for the printing of highly flexible materials with complex 

structures. A silicone shore value (hardness) of 2A was selected by experts after 

experimenting with various material hardness properties. When this silicone pinna is 

inserted into the head, the entrance of the canal aligns with a 3D printed transparent ear 

canal fastened to the head. The ear canal is printed with a Stratasys Objet 500 Connex 3 

using transparent material (VeroClear-RGD810), to allow for measurement of probe tube 

depth to the tenth of a millimeter from the tracking system. 

 

Figure 4.1: The updated simulator showcasing the new flexible silicone ear and the fully 

3D printed head model. 
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The previous Styrofoam head was replaced by a fully 3D printed head and shoulders. The 

new head was printed out of Polycarbonate (PC) – Acrylonitrile Butadiene Styrene 

(ABS) on a Stratasys Fortus 40mc 3D printer at a slice height of 0.254 mm. The existing 

camera system remained mounted inside the head model, utilizing a Microsoft LifeCam 

HD-3000 connected to a typical laptop running Windows. The user interface responsible 

for providing users with feedback metrics such as probe-to-TM distance and time-to-

insert was redesigned using OpenCV (73) for image processing and object tracking, and 

Qt 5.11 (The Qt Company, Espoo, Finland) for user interface design.  The simulator 

focused on two aspects of probe tube placement, and so two modes were developed in the 

program: 1) Practice Mode, and, 2) Test Mode. In Practice Mode, users view a coronal 

image of the ear canal seen from an anterior position at any point during their practice 

with an exact probe-to-TM distance to know probe positioning inside the ear canal. While 

in Test Mode, this image and feedback is only available after they have finished placing 

the probe. If at any point during an insertion in Practice or Test Mode the user contacts 

the TM, a ‘grunt’ stimulus will be played to alert the user of contact with the TM. 

4.2.2 Participants 

The study was approved by the Western University Health Research Ethics Board 

(HREB 110394 – See Appendix B). Participants were recruited through a first-year 

graduate-level audiology course that introduces procedures for the fitting of hearing aids. 

Twenty-five novice clinicians in this first-year class chose to participate. These students 

were comprised of individuals in their second semester of their audiology program, with 

less than 10 hours of clinical experience. Upon beginning the study, participants reported 

having zero to three hours of experience in probe tube placement. 

4.2.3 Protocol 

The study performed was a randomized controlled trial in which participants were placed 

into one of two groups: the control group or the simulator (treatment) group. The study 

consisted of three parts: (1) Pre-test evaluation, (2) Training period, and (3) Post-test 

evaluation. 
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4.2.4 Pre-test 

At the pre-test evaluation (Part 1), the participants had no knowledge of which group they 

were assigned to. During this pre-test, both a volunteer and an expert evaluator 

(audiologist) were present in the room. To begin the pre-test session, the participant 

completed the first half of the self-efficacy questionnaire (Table 4.1A) regarding their 

confidence in performing a probe tube placement and foam tip insertion. Following the 

survey, the participant prepared the equipment for a Real-Ear-to-Coupler Difference 

(RECD)2 measurement procedure (Audioscan Verifit VF1) and inserted a probe tube into 

the volunteer’s ear. After they were satisfied with their probe tube placement (using 

otoscopy to verify placement), the participant inserted a foam-tip connected to an RECD 

transducer and measured the volunteer’s RECD values. RECD measurements were 

exported to a data file for further analysis. Following this measurement, the participant 

completed the self-efficacy survey (Table 4.1B), the expert filled out their survey 

assessing the participant’s performance (Table 4.1C), and the participant was informed 

on their randomly assigned group. 

4.2.5 Training Period 

The training period (Part 2) consisted of two-weeks in which the participants were 

instructed to practice as much or as little as they would for a practical exam. The training 

period was restricted to two weeks as not to interfere with coursework, and to allow the 

control group enough time to practice with the simulator if they desired before their 

program’s practical exam. Each participant was given a practice diary to log the amount 

of time they practiced using each method of training, depending on their randomized 

group allocation. 

                                                 

2
 RECD is a real-ear measurement that refers to the difference in decibels between the sound pressure level 

at the TM measured with a probe tube on a patient and a calibrated transducer that simulates an average 

adult’s ear canal. This measurement is used to accurately predict the hearing aid output to determine if the 

aid is correctly fitted for the patient. 
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4.2.6 Post-test 

The post-test sessions were identical to the pre-test sessions, with the same volunteer and 

expert evaluator present. The student performed an RECD measurement by placing the 

probe tube and foam tip, followed by completing the same questionnaire as the pre-test. 

Upon completion of the test sessions and training period, the expert evaluator performed 

an RECD measurement on the volunteer for a gold standard comparison. 

4.2.7 Student Questionnaire (Table 4.1A, 4.1B) 

The Student Questionnaire aimed to examine each participant’s level of self-efficacy in 

four areas: (1) placement of the probe tube within 5mm of the TM; (2) placement of the 

probe tube without contact with the TM; (3) placement of a foam tip after probe tube 

placement such that the probe tube did not move (closer to, or further from, the TM); and 

(4) self-efficacy in placing a probe tube in a clinical setting. The survey questions 

consisted of Likert-scale responses that ranged in 10% increments from 0% to 100% (0% 

= "cannot do at all”; 50% = “sometimes can do”; 100% = “always can do”). 

4.2.8 Expert Evaluator Questionnaire (Table 4.1C) 

The Expert Evaluator Questionnaire aimed to measure how the evaluator perceived the 

participant’s ability to conduct most aspects of the RECD measurements, and key factors 

that lead to a successful/unsuccessful execution in clinic. The items were similar to the 

aspects of probe tube placement and RECD measurement the participants would be 

evaluated on during their course practical examination. The survey questions consisted of 

Likert-scale responses that ranged in 10% increments from 0% to 100% (0% = "strong 

disagreement”; 50% = “neither agree nor disagree”; 100% = “strong agreement”). 
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SECTION NO. PARTICIPANT SELF EVALUATION BEFORE PLACEMENT 

A 

1 You can place the probe within 5mm from the TM 
2 You can place the probe without contacting the TM 
3 You can insert the foam tip without affecting the probe’s 

location 

                 PARTICIPANT SELF-EVALUATION AFTER PLACEMENT 

B 

4 How certain are you the probe was within 5mm of the TM 
5 How certain would you be to insert the probe within 5mm of 

the TM on a patient in clinic tomorrow 

                 EXPERT EVALUATION AFTER PLACEMENT 

C 

6 The probe was easily inserted into the ear canal 
7 The probe remained in the same location once inserted 
8 The participant inserted the foam tip with ease after the 

probe 
9 The participant appeared confident while performing the 

measurements 
10 The volunteer appeared confident in the student’s 

technique/skill 

Table 4.1: The questionnaire used to evaluate the participant’s skill and confidence in 

real-ear measurement during the pre- and post-test scenarios.  

 

4.2.9 Statistical Analysis 

Data analysis conducted on the questionnaire data used a Wilcoxon t-test to determine 

significance within groups to compare pre- vs post-test results, and a Mann-Whitney U t-

test to test significance for group differences (simulator vs. control group), in which a 

significance of p<0.01 was chosen.  A two-way mixed ANOVA was used to examine 

time effects between pre- and post-tests, group effects between the simulator and control 

groups, and interactions to determine whether they were present for all of the measures. 

A value of p<0.05 was chosen for the ANOVA. 

For the RECD measurements, the average level of the frequency-specific RECD values 

were reduced to three bands for analysis to represent the frequency ranges that are 
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affected by venting in the low frequencies, probe placement in the high frequencies, and 

the mid-frequency range in between. These were: low-frequency (200 – 945 Hz), mid-

frequency (1000 – 2800 Hz), and high-frequency (3000 – 8000 Hz) (74). A non-linear 

mixed model statistical method was used for analysis using RECD value, treatment, 

session, and frequency, in which significance was considered p<0.05.  Means within each 

frequency band were calculated and descriptively compared to a gold standard 

measurement (expert evaluator’s measurement of the RECD) for both pre- and post-test 

measurements of each group. 

 

4.3 Results 

4.3.1 Overview 

Results from the questionnaire and RECD measurements are presented in the following 

sections: Pre-test simulator vs pre-test control, comparison of training times for each 

group, post-test simulator vs post-test control, and pre-test vs post-test for the simulator 

and control group. 

4.3.2 Pre-test Comparison Results 

All questionnaire pre-test results from both groups were not significantly different, and 

all RECD measurements between the two groups were not significantly different. 

4.3.3 Training Times 

The control group practiced using traditional methods for 115 minutes (SD = 71 

minutes), while the simulator group practiced with traditional methods for 98 minutes 

(SD = 53 minutes) on average, but no significant difference was found between these two 

groups. The simulator group supplemented their traditional methods of training with 71 

minutes (SD = 31) of simulator usage on average. The total training time for the 

simulator group was 169 minutes (SD = 58) showing a significant difference between the 

control group’s total training time of 115 minutes (SD = 71, p = 0.036). 
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4.3.4 Post-test Comparison Results 

All questionnaire post-test results between the two groups were not significantly 

different. RECD measurements between groups in the post-test session were not 

significantly different in any bands. 

4.3.5 Pre- vs Post-test Results: Questionnaire 

Three questions (Questions 1, 3, 5) out of ten revealed significantly improved results for 

the simulator and control group, while three other questions (Questions 2, 8, 9) showed 

significantly improved results for only the simulator group (p = 0.0078, 0.0078, and 

0.0078), as seen in Figure 4.2. The remaining four questions (Questions 4, 6, 7, 9) 

showed non-significant improvements for both groups. These questions suggest use of 

the simulator produced improved results for confidence in placing the probe without 

contacting the TM, improved usage of the foam tip, and increased perceived confidence.  

The two-way mixed ANOVA revealed no significant group effect, a consistent time 

effect for each question, and interactions for Question 3 and 9 (p = 0.0494, and 0.0402, 

respectively). The interactions can be seen in Figure 4.2, with the simulator group 

showing notable improvement in placing the foam tip without affecting the probe, and 

perceived confidence. 

4.3.6 Pre- vs. Post-test Results: RECD Measurements 

In the RECD results, it was found that the high, mid, and low frequency bands of the 

simulator group all showed a significant effect of the simulator use on the RECD values 

(p <0.001, x2 = 36.9; p = 0.0045, x2 = 8.06; p <0.001, x2 = 29.6; respectively). All post-

session frequency band results were closer to the expert’s RECD measurements on the 

test participant, suggesting improvement (Figure 4.3). In the control group, only the high 

frequency band showed a significant effect from the training period on the RECD values 

(p = 0.0029, x2 = 8.90). These values were also found to be closer to the expert 

measurement than the pre-session values. Results suggest that the simulator group had 
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more improvements in their RECD measurements in the mid and low frequencies than 

the control group.  

 

Figure 4.2: ANOVA Results from the questionnaire results comparing the pre-test results 

to the post-test results for both the simulator and control group. The x-axis denotes the 

rating from 0-100% in agreeance with the statement, and a star represents an ANOVA 

interaction. 
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Figure 4.3: Bar graph displaying the means of the RECD measurements made by the 

simulator group (top) and control group (bottom) in the pre- and post-tests. Session 

measurements with a significant difference between the two sessions are marked with a 

star. Standard deviations are also displayed. 

 

4.4 Discussion 

In medical simulator research, a typical validation sequence consists of an initial study 

aiming to receive early-stage feedback (face and content validity), backed with 

quantitative studies to prove its utility within educational settings (construct validity, 

discriminant validity, skills transference validity). Our previous study (75) confirmed the 
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simulator’s training ability and provided feedback to guide the product development 

discussed above. The current study accomplished a second-level evaluation of the 

developed audiology training simulator designed to assist students with learning probe 

tube placement and real ear measurement by facilitating practice with feedback, without 

the need for an instructor or fellow student. While the first-level face and content validity 

study previously performed on an early prototype of the simulator recruited experts to 

evaluate the simulator, the present study required novice students in order to observe skill 

progression throughout the duration of the study. Completion of the study within the 

student’s course-load introduced challenges. First, the timeframe of the study was very 

limited. Students in the audiology program at Western University have a practical exam 

in probe tube placement one month following their first probe tube placement lab session. 

Due to this schedule, the training period of this study was limited to two weeks to 

guarantee the control group equal opportunity to use the simulator after the completion of 

this study but before their practical exam as required by HREB. Second, the pre- and 

post-test sessions were limited to one probe tube placement to work within the time frame 

of the study, and to accurately replicate a clinical scenario in which students would have 

time for one placement. Despite these limitations, the study found several meaningful 

results. 

  No significant pre-test differences were found in either the questionnaire or the 

RECD results, suggesting that both the simulator and control group were at equivalent 

skill levels at the beginning of this study. Additionally, no significant post-test 

differences were found. There were no significant improvements when only comparing 

post-test results. 

When observing pre- vs post-test sessions within groups, there were several notable 

results between the questionnaire and the real-ear measures. First, Question 2 (self-

evaluation for “You can place the probe without contacting the TM”) produced a 

significant improvement for the simulator group but not for the control group. This result 

along with the positive trend in the ANOVA for the same question (Figure 2) suggests 

the simulator’s feedback mechanisms of contacting the TM and providing users insight 

into where the TM is located in the simulated ear canal may have an impact on the 
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clinical performance of their probe tube placement. Recall that the control group 

practiced on one another and were likely motivated to avoid contact with the TM during 

practice. With the simulator, it is feasible to practice intentionally placing the probe tube 

too far in order to learn how to avoid this without fear of an aversive experience for one’s 

classmate. This study only measured the time span of student practice with the simulator, 

so we have not directly assessed whether this factor is important for students’ perceived 

confidence in not striking the TM. High frequency similarities in the RECD measures 

may also suggest that the probe depth is comparable between the two groups, but with the 

simulator group being less likely to contact the TM, which is an important aspect of 

clinical probe tube placement.  

Second, several results suggest that participants who used the simulator had better usage 

of the foam tip to occlude the ear canal. Question 3 (self-evaluation of “You can insert 

the foam tip without affecting the probe’s location”) produced an interaction in the 

ANOVA, while the expert’s evaluation of the participant easily inserting the foam tip 

(Question 8) produced significantly improved results for the simulator group, but not for 

the control group. The simulator’s ability to provide real-time feedback on the probe’s 

position while inserting the foam tip may allow for users to be more aware of these 

changes in a clinical scenario. The RECD measurements also reiterate that the foam tip 

may have better occluded the ear canal within the simulator group than the control group, 

as significant changes were found in the low frequency band of only the simulator group. 

Again, this reflects a better overall level of competency with the details of the 

measurement procedure.  

Third, the ANOVA presented interactions between the two groups in the participants’ 

confidence to place the foam tip without affecting the probe (Question 3), and the 

participants’ perceived confidence (Question 9). Confidence is extremely important in 

clinic, with studies showing that clinician confidence, and the patient’s perception and 

trust of the clinician influence hearing outcomes (31,43). A new clinician entering clinic 

with improved confidence may not only deliver better care to the patient, but also 

improve the patient’s trust. This may also relate to the issues around additional practice 

noted above. 
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Finally, the RECD results reinforced the questionnaire results. The significant 

improvements found within the RECD measurements in the simulator group suggest 

more improved measurements were taken in the post-test scenario for the simulator 

group. The improved occlusion of the ear canal with the foam tip may be related to the 

probe tip insertion depth suggested by the RECD. The control group’s higher propensity 

to touch the TM with the probe, along with the similar high frequency RECD values 

suggest a deeper insertion depth than the simulator group.  

 These positive results are also present with a non-significant difference between 

traditional training times. Recall that the simulator group only supplemented their 

training with the simulator, so this overall improvement in competency may reflect 

additional practice time. While this may or may not be attributable to the simulator itself 

(i.e., perhaps more traditional practice could have achieved the same result), we note that 

additional practice via the simulator does not require a lab partner, and therefore may 

support flexibility and independence in performing additional practice sessions while 

learning key procedures. 

 As the simulator is still a working prototype, final feedback was received from the 

participants in the form of written recommendations. Participants noted the most 

beneficial parts of the simulator for probe tube placement were: (1) the ability to practice 

on their own; (2) the ability to know how deep they were placing the probe tube; and (3) 

the ability to know exactly how to judge when the probe tube was placed within 5 mm of 

the TM.  

Next steps for this project include continued improvement to the simulator. As 

development on the simulator evolves, more ear anatomies will be available (e.g., large 

ear canal, small ear canal, pediatric ears, exostosis, mastoid cavity), and specific training 

use cases for the simulator will be created. With these results showing encouraging 

effects of simulator use in clinical programs, there are several other procedures which 

still cannot be simulated in an educational setting. Initial tests have been performed with 

earmold impressions and the insertion of RICs and earmolds into the canal with the 

algorithm providing feedback to the location of the mold, the RIC tip or the otoblock in 
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the canal. Additional work will be put towards incorporating this into the design and 

ensuring the clinical training needs are met. 

4.5 Conclusion 

In conclusion, this study has found benefits to trainees’ usage of the probe tube 

placement simulator. Results suggest that students who supplemented their traditional 

training with the simulator were less likely to contact the TM in a clinical scenario, more 

likely to perform a better ear canal occlusion resulting in improved RECD measurements 

in the low frequencies, more likely to achieve appropriate probe tube placement with 

improved RECD measurement in the high frequencies, and more likely to appear 

confident. With two validation studies completed, future work will aim to address final 

concerns, and the initial supplying of this simulator system to training programs to 

improve trainee performance while decreasing the workload on instructors. 
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Chapter 5 

5 Conclusions and Future Work 

5.1 Conclusions 

The purpose of this project was to develop a training simulator for audiologists to use in 

training programs to improve their performance in clinic. Through the developments that 

occurred, and the two validation studies which looked to evaluate the effectiveness of this 

simulator, clinicians and trainers can confidently use this simulator knowing it will have 

positive results on novice clinicians and lessen the required time of the trainer.  

In Chapter 2, we outlined a development process that was done step-by-step to ensure it 

complied with the audiologist’s requests and needs in their training program. This initial 

simulator was an excellent point at which to receive expert feedback and find areas of 

improvement to focus on next. The simulator described in this section offered as an 

excellent minimum viable product which allowed for extensive future development. 

In Chapter 3, a face and content validity study was presented showing expert feedback on 

the simulator regarding its realism, teachability, and applicability in educational settings. 

Overall, results were positive with all participants recommending implementation in 

training programs while encouraging further development. 

In Chapter 4, the key improvements made to the simulator were described, and the final 

skills transference validity study was completed. From the results of the study we 

provided evidence for the simulator’s utility in educational settings, with better clinical 

results being found by participants who used the simulator. While minor improvements 

can still be made, it was determined this simulator was at a level of development which 

could allow implementation into Western’s Audiology training program at the National 

Centre for Audiology. 
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5.2 Future Work 

With two validation studies completed, results have suggested the simulator has an 

important and useful implementation inside training settings with the skills transference 

study showing a benefit to using the simulator within educational settings. While the 

skills transference study shows that the simulator is ready for implementation in training 

programs, and possibly into curriculums in the near future, there are some final 

improvements which were outlined from the skills transference study. These included a 

more reproducible 3D printed head, two silicone ears instead of one, a better fastening 

mechanism between the transparent ear canal and the silicone outer ear, and minor 

software improvements and optimizations. 

Probe tube placement is only one of the procedures which audiologists are required to 

learn to operate in a clinic and effectively fit hearing aids. There are several other 

procedures such as earmold creation and insertion that are more invasive and present a 

greater risk to patients. With this fully developed physical simulator acting as a platform 

for hands-on education, further work can be put into expanding its usages suggested at 

the end of Chapters 3 and 4 to further increase its usage within training programs.  

Within the last six months, this project has resulted in a spin-off company named AHead 

Simulations founded in March 2018. AHead Simulations, after receiving $110,000 in 

funding, will look to take the simulator to market, and build upon its success. Audiology 

is a crucial medical field as hearing loss cases continue to increase. Growth in the 

industry will be large, and work has to be done to help correct issues within the field as 

mentioned in this thesis. The low number of clinics performing best practices and the 

hundreds of thousands of ill-fitted hearing aids are a huge problem which needs to be 

addressed before the industry growth is too much. Future developments on this specific 

probe tube placement simulator will slow, but more improvements on expanding past 

probe tube placement and creating an educational platform for audiology will be stressed. 

With this probe tube placement simulator acting as the initial foundation for audiology 

training, developments will expand the utility of the simulator, and this head and ear 

system will be the core of future developments. With enough capital and work into this 
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simulation, we hope to improve the quality of clinical care to ensure all patients are being 

provided with the best hearing aid outcomes possible. 
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