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Abstract 
 

Way too often, students find some concepts too abstract to comprehend. One of the strategies 

used to assist students with building conceptual knowledge is to use analogies. We investigate 

the place of nonmath analogies in teaching school mathematics. First, we demonstrate the 

widespread use of analogies by drawing examples through context analysis of tutoring websites, 

textbooks, and teaching experiences. Second, we argue that analogies reflect the grounded 

nature of mathematical concepts in common life experiences and, thus, have an essential place 

in instruction. To support our argument we offer a theoretical rationale based on research 

literature and historical sources. 
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1. Introductions Examples from Practice 

"Life is good for only two things, discovering mathematics and teaching mathematics. 

Siméon-Denis Poisson. 

NCTM Standards and Principals strongly emphasize the importance of learning with 

understanding. “Students must learn mathematics with understanding, actively building new 

knowledge from experience and prior knowledge.”(NCTM 2000, p.19). But way too often, 

students find mathematical concepts too abstract to comprehend. One of the strategies that 

teachers use to assist students with building conceptual knowledge is to use analogies. Richland, 

Holyoak, & Stigler (2004) point out that that math and distant (nonmath) analogies drawn from 

non mathematics contexts are routinely generated by teachers. When we use nonmath analogies 

in our mathematics classes, we observe in students a lowered level of math anxiety, deeper 

understanding of concepts being taught, deeper understanding of what we are doing when doing 

math, better memorization of the skills taught, and ease in building connections between 

different strands of math. 

In this paper we, a practicing teacher and university educator, will investigate the place of 

nonmath analogies (here-in-after “analogies”) in teaching school mathematics. First, we 

demonstrate the widespread use of analogies in teaching mathematics by drawing examples 

through context analysis of tutoring websites, selected textbooks, and from our own teaching 

experiences. These examples are specific to algebra because it is during algebra lessons when 

students usually first encounter pure abstract concepts. Second, we argue that analogies reflect 

the grounded nature of mathematical concepts in common life experiences and, thus, have an 

essential place in school mathematics instruction. To support our argument we offer a theoretical 

rationale based on research literature and historical sources. 
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2. Examples from practice 

The sites of our content analysis were professional magazines such as Mathematics Teacher 

(MT), Mathematics in Middle School, Ontario Mathematics Gazette, math textbooks of pre-

algebra and algebra courses of intermediate level, and math help websites such as 

mathforum.org, math.com or purplemath.com. 

Textbooks proved to be the scarcest source of analogies. Many textbooks, despite their 

inclusion of real life contexts and pictures, shy away from employing nonmath contexts, 

especially analogies, as an explanation tool when handling more abstract or advanced topics. We 

have found only few analogies that are prominently presented in textbooks. The one is when an 

equation is compared to a scale (e.g. MathPower 8, McGraw-Hill Ryerson, 1990, 

p. 396), another one is when a function is compared to a machine that has input and output slots 

(e.g. Mathematics 9, Addison-Wesley, 1999, p.147). 

The analogies that we find in professional magazines tend to be of a linguistic kind (general 

meaning of a mathematical term). For instance, “Since many secondary students have used the 

word limit in their daily lives, the concept will not be novel for them. …a discussion about the 

meaning of limit could be invaluable at the beginning of class.” (MT, Vol. 100, No. 8, p.551) or 

“The process of substituting one expression for another is an abstract concept. What may seem 

like a simple mathematical procedure to a mathematics teacher can pose a conceptual barrier for 

many of our students. In this instance, help came when I considered what it generally means to 

substitute one item for another.” (MT, Vol. 100, No. 2, p.135). 

Math help websites are an excellent source of anecdotal evidence of specific math concepts 

that students find hard to comprehend, and the strategies they can use to facilitate their 

comprehension. In the wealth of on-line math help we found that analogies are used routinely in 

responses to students’ or teacher’s questions. What surprised us is that most of the analogies are 
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exactly the same as the ones we thought we had independently invented to use in our own math 

classrooms! The table below is a collection of some of analogies most frequently used to explain 

basic algebra concepts. We are sure that most of readers with teaching experience would 

recognize one or two analogies. 

 
Table 1. Analogies for basic algebra concepts 

 

Mathematical Concept Analogy  
Solving equations Undressing a person vs. Dressing a person  
Isolating a variable Peeling an onion one layer at a time or Shacking corn  
Collecting like terms Sorting out the mix fruits into separate piles  
Distributive property Passing out papers from a stack to each student in a class  
Substituting numbers for the variables Putting a thing in the place of another thing. 

 

 

Our own teaching experience provided us with the following two analogies. We chose them 

specifically, because they help to answer questions that teachers of intermediate and senior level 

of math would recognize as “cursed”— cursed in that they are questions that recur every year 

one teaches. We want to demonstrate how analogies can help students to “make sense” of the 

answers to these cursed questions. 

First question is: why can we not divide by zero? (Analytic geometry extension is, for 

instance, why the slope of a vertical line is undefined?) Some students would not bother to 

ponder over this problem by simply accepting that it is just a rule and even calculators show an 

error sign when you type in division by zero. But there will always be some curious minds in a 

class who would be baffled by this “rule”. This is not surprising given the long winded historical 

evolution of zero. But the source of their bewilderment is actually deeper than just a question of 

divisibility by zero. What we mean is that every student in intermediate and higher grades would 

probably know how to divide a number by a smaller number, to share a collection of apples, for 

example, among a given number of students, which reflects a partitioning (or sharing) 

interpretation of division. But the measurement interpretation of division, which is determining 
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how many times one quantity is contained in another, is often not been rooted in students’ 

conceptual framework. And then, while engaged in solving word problems such as, “How many 

times bigger is the sun at 10
9
 m to a giant squid at 10

1
 m?” Many students do not know what 

mathematical operation they have to use to find the answer. The analogy that helps evoke a 

conceptual metaphor for division is “squeezing objects in a container.” Division is used when 

you want to find out how many smaller things you can put into a larger one. When students 

understand that, in order to find how many giant squids you can squeeze into the sun you have to 

employ division, the problem starts to “make sense.” This analogy also solves once and for all 

the problem of “Why can’t we divide by zero?” Ask your students what it means to divide a 

number by zero. Isn’t it like trying to figure out how many nothings you can put into anything? 

How many nothings fit into something? The students almost immediately answer that it is 

infinity or as much as you want—in a nut shell undefined. And there comes a moment of: “Ah, I 

get it!” 

A second “cursed” question is what a graph has to do with an equation. Students’ reluctance 

to see connection between different representations of a mathematical relation, especially 

between an equation and graph, constantly draws attention of educators (Kaput, Carraher and 

Blanton, 2008). In our classroom, while investigating linear relations and analytic geometry, we 

apply the analogy that compares different representations of a relation to different ways of 

identifying a person. Within this analogy, a graph of a relation is like a snapshot of a person. 

What is a graph after all if not a visual representation of a relation? Compare some of the 

definitions of “a graph”: A graph is “a drawing that expresses the relationship between two sets 

of numbers” (Webster’s, 1990) or “a picture which shows how two sets of information or 

variable amounts are related, usually by lines or curves” (Cambridge Dictionary, 2005). 

With a constant reminder that a graph is just a visual ID of a relation, many areas of analytic 
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geometry start to make sense to students. Take, for instance, a concept of a domain of the 

relation. When a student has to graph an equation, let’s say        for the domain of real 

numbers, a usual mistake is to find a few ordered pairs, plot them and then connect the points 

with a line segment. You can ask a student, “Can you see the whole relation on this graph?” If 

the student insists on having represented the whole relation, you show a picture of a person 

covering the eyes and ask: “What color are this guy’s eyes? You can’t tell it from a partial 

picture, can you? So, how does anyone know from your graph the way your relation work 

beyond what you show to me? If you want to represent that y- values equal take away 3 from 

double x-values on domain of real numbers, you have to extend the line in both directions and 

put two arrows at the ends.” 

 

3. Rationale: Research and Historical connection 

We now turn to research on analogies. Specifically, we will explore theoretical distinctions 

and the structure of analogies in relation to the nature of mathematics concepts, and examples of 

analogies from historical mathematics sources. 

 

4. Structure, Nature and Distinctions 

Analogy, Latin analogia and French analogie, originates from Greek mathematics analogos 

for likeness of two ratios: proportion (ate) (Oxford English Dictionary 1989). Many take 

analogies to mean “metaphors.” Both involve understanding one phenomenon in terms of 

another. Analogies and similes are overtly evoked when explaining something. They highlight a 

similarity between the explained phenomenon and another phenomenon (Aubusson, Harrison, 

and Ritchie 2006). Using analogy we speak of A is like, looks like or is similar to B, and using 

similes speak of as “white as snow.” Metaphors and metonyms on the other hand are covertly 
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used. We speak about concepts, like anger or love, in terms of a more tangible concepts, such as 

heat (Lakoff 1987). In the expressions eye of a needle and head count, objects are used to 

metonymically stand for others. All these concepts involve relations between two phenomena, 

one used to explain and the other one explained. 

Analogies such as “equations are like a balanced scale” are structural; they highlight various 

similarities: two sides of a scale, state of balancing, actions that keep the scale balancing; 

respectively for two sides of an equation - equivalence, equivalent actions. Thinking of division 

as fitting things into a container is a visual analogy. Explaining multiplication in terms of 

directed movements on a number line combines a math and nonmath analogy. Some analogies 

such as “to isolate terms is like what you do to turn a complicated sentence into a simpler one” 

are propositional (Aubusson et al. 2006) and literal; they involve a few surface similarities (Lee, 

Kim, Na, Han, and Song, 2007). 

That teachers generate non math analogies on a “regular basis … raises empirical questions 

about the nature of children’s learning from analogies” (Richland et al. 2004, p. 56). Teachers 

use analogies as teaching aids, serving communicational intent of vividly illustrating. At many 

times teachers invoke analogies to assist students deal with cursed concepts (Wilbers and Duit 

2006; Richland et al. 2004). Teachers package difficult concepts into a conceptual analogy 

(Wilbers and Duit 2006) to aid students to bridge “the epistemological gap between already 

know and the yet unknown” (Wilbers and Duit 2006, p.39; Yilmaz, Eryilmaz, and Geban 2006). 

English (1997) refers to the leap afforded by analogies as an abstraction shift, and Sfard (1994) 

and Mason (1989) have referred to it as reification. But analogies are also used by 

mathematicians and by students as mental tools to think with (English 1997). Cognitive 

psychologists study analogical reasoning as a general thinking skill to be developed among 

learners. 
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By highlighting structural commonalities, analogies unpack relations and properties (English 

and Sharry 1996). Lakoff and Núñez (2001), and associates explain that general cognitive skills 

in understanding are metaphorical in nature. Even abstract mathematical ideas such as infinity 

and continuity are better explained using more basic, every day contexts such as arithmetic, the 

number line and perpetual action. Pirie and Kieren (1994) observe that a current state of a 

student’s understanding contains outer and inner levels of understanding. Accordingly, students 

fold back to (refer to) previous levels of understanding—the analogies, metaphors and images—

as they encounter outer-level abstractions. 

 

5. Ancient Uses of Analogies 

Analogies, such as scales and polynomial tiles, adopted in textbooks today date back to 

ancient mathematics traditions (Heeffer 2007). The specific historical example elaborated on 

here is from the Babylonian tablet. 

i. I have heaped the surface and my confrontation [side length]: it is ¾. [In today’s symbols x
2
 

+ x = ¾] 

ii. 1 the projection [line] you posit, [A square on which a unit length and x units wide 

rectangle is joined; x
2
 + 1.x] 

iii. half-part you break, [Rectangle 1x split into two equal parts, 1/2 length and x width; ↔ x
2
 

+ ½ x + ½ x ] 

iv. make ½ and ½ hold, [outer half moved to the adjacent side of x
2
 to make a frame that 

encloses a square of length and width ½ i.e., area ¼; x
2
 + ½ x + ½ x + (½)

2
 ] 

v. ¼ to ¾ you join: [Now with a square with dimensions x + ½; x
2
 + 1.x = ¾ ↔ x

2
 + 1.x + 

(½)
2
 = ¾ + ¼↔ (x + 1/2 )

2
 
=
 1 ] 
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vi. …½ which you have made hold from the body of 1 you tear out: [x = 1 – ½] 

vii. ½ is the confrontation. [x = ½] (Høyrup, 2007, p.266-268) 

In the procedure above, analogies are used when referring to procedures, attributes and 

variables: heap and join for add, break and tear out for subtract, hold for enclose, and alongside 

for square root or factor. Two distinct analogies are used to refer to what would be symbolically 

the same: Heap in the i. to refer to addition of values of different kinds” whereas join in the v. to 

addition of values of the same kind. Even without visual drawings on the tablets, Babylonian 

algebra utilized visual, geometrical analogies (see Phrase iv--“make ½ and ½ hold” for 

multiplying ½ by ½) akin to current use of polynomial tiles and completion of squares (Heefer 

2007; Namukasa, Tuchtie and Stanley, 2009). The well documented curse questions “why can’t 

7a + 5b equal 12 ab” could use the distinction heaping not joining. Prior to symbolic algebra and 

birth of the concept of an equation in the 16
th

 century (Heefer 2007), algebra procedures were 

narrated. And what do teachers do when they explain mathematics? They mainly narrate. 

Ancient narrated algebra has great pedagogical relevance. Pedagogy of analogies (Swetz 

1995) is also evidenced in 9
th

-17
th

 century Arabic and European mathematics textbooks in which 

for instance various algorithms such multiplication algorithms are configured in a form that 

visually looks like a familiar real life object and, in turn, are named after these objects. Cases in 

point are multiplication by the method of a pipe organ or little stairs (for our common algorithm 

of multiplying) or division by the boat method (Berg 2001; NCTM 1969; Smith 1952; Swetz 

1995). 

 

6. Conclusion 

Of course analogies have to be used very carefully, thoughtfully and always, always, always 

as a side dish to the main course of mathematical reasoning. They may pose limitations when 
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over generalized. It is important that learners see the correspondence between the analogy and 

the structure of the concept Hall (1998) - otherwise, analogies generated by a teacher are not 

necessarily transparent to students. 

When we decide which analogy to keep in our “teaching toolbox”, its extendibility is one of 

the criteria for selection. We also look for students’ positive reactions to analogies that we use. 

We check if these analogies can work as memory clues. And, the most important criterion is 

whether the analogy seems meaningful to our own understanding of the mathematical concept in 

question. 

“Learning with understanding also makes subsequent learning easier. Mathematics makes 

more sense and is easier to remember and to apply when students connect new knowledge to 

existing knowledge in meaningful ways” (NCTM 2000, p.19). Analogies help students connect 

new mathematical knowledge to their existing experiential knowledge and, thus, facilitate 

understanding and memorization of mathematical concepts. 

Rubenstein (1996) identifies the use of analogies as a way to facilitate learning the 

mathematics language. And Stavy and Tirosh (2000), as a means to eliminate common 

misunderstandings of some mathematics concepts. Analogies trigger metaphorical thinking that 

helps conceptualize abstract concepts in concrete terms. A visitor can hear in our classes remarks 

strange to an outsider’s ear, like “Cause the negative sign is not in the building!” (Response to 

“Why is -2
2
 equal -4 and not +4), or “Because you can put an infinity of nothings into 

something.” (Response to “Why can we not divide a number by a zero?”). Analogies make math 

a friendlier subject and less detached from students’ experiential base. Everyday logic and out-

of-school experiences start playing an active role in students’ mathematical reasoning. 

Analogies are not only beneficial to students but also to teachers. When, as a teacher, you 

start looking for analogies and deciphering the metaphors behind your math, you achieve a 
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different level of understanding and ease in your teaching. As shown above in the example of 

divisibility by zero, you see the connections between different topics more clearly. You feel 

more connected to your students and, ultimately, have more fun in your classroom. Your students 

like math because it is no longer a detached, abstract discipline of symbols and symbolic 

notations, but rather a new language to speak about the world around us. 
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