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Disruption to functional networks in neonates with perinatal brain injury
predicts motor skills at 8 months☆
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c Brain Development Imaging Lab, San Diego State University, San Diego, USA
d Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

A B S T R A C T

Objective: Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury
could improve prediction of motor impairment before symptoms manifest, and establish how early brain or-
ganization relates to subsequent development. This cohort study is the first to describe and quantitatively assess
functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal
brain injuries.
Methods: Infants (n=65, included in final analyses: n=53) were recruited from the neonatal intensive care
unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology
was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional con-
nectivity were obtained from 14min of fcMRI acquired during natural sleep at term-equivalent age.
Results: Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor
impairment at 4 and 8months. This disruption in functional connectivity was not found to be driven by dif-
ferences between clinical groups, or by any of the specific measures we captured to describe the clinical course.
Conclusion: fcMRI was predictive over and above other clinical measures available at discharge from the NICU,
including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also fron-
toparietal executive networks, which supports the functional importance of these networks in early develop-
ment. Disruption to these two networks might be best addressed by distinct intervention strategies.

1. Introduction

Thousands of newborns each year are diagnosed with perinatal
brain injury secondary to preterm birth, an underlying genetic disorder,
asphyxia or neonatal stroke. In a subset of these infants, neonatal brain
injury leads to cognitive and behavioral deficits later in life (van Buuren
et al., 2013; Farooqi et al., 2011; Miller et al., 2005; Peterson, 2000;
Hack, 2000; Inder, 2011). Atypical or disrupted development of motor
skills is often one of the first indications of broader developmental delay
(Harris, 2016). Predicting which infants will develop these delays is
difficult, as problems often only become apparent when infants can be
assessed behaviorally. This uncertainty puts considerable stress on
parents, and hinders targeted early intervention.

Infants with suspected brain injury are often examined using mag-
netic resonance imaging (MRI). Some qualitative features identified by
a radiologist can be indicative of severe developmental problems such
as cerebral palsy (de Vries et al., 2011). Additionally, two recent studies
quantitatively assessed white matter injury in premature infants using
MRI and found a relationship between white matter injury of the frontal
lobe and cognitive outcome (Guo et al., 2017), and of punctate lesions
with motor outcome (Tusor et al., 2017). Unfortunately, however, the
extent of injury visible with routine structural MRI and commonly en-
countered in the NICU is not always a reliable predictor of long-term
developmental outcome. Identifying disruption to brain function with
functional connectivity MRI (fcMRI) promises to provide additional
information that could improve prediction. In school-age children and
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adults born prematurely, for example, functional connectivity is altered
compared to that of their healthy peers, and these differences are re-
lated to measures of developmental outcome, IQ, and performance in
school (Damaraju et al., 2010a; Gozzo et al., 2009a; Dick et al., 2013;
Schafer et al., 2009). Functional networks can reliably be identified in
healthy term-born neonates (van den Heuvel et al., 2014a; Fransson
et al., 2009a) and even fetuses (Thomason et al., 2014; Thomason et al.,
2013), and it has been suggested that alterations of functional networks
as a consequence of premature birth (Ball et al., 2016; Smyser et al.,
2014a; Scheinost et al., 2015a; Kwon et al., 2015; Toulmin et al., 2015;
Lin et al., 2008a) can already be detected at term-equivalent age with
fcMRI. It has not yet been determined how these differences relate to
neurodevelopmental outcomes, however. Additionally, neonates with
even mild neuropathology visible on anatomical MRI scans have been
excluded from these studies. In order to understand whether disruptions
of functional brain systems due to perinatal brain injury measured at
term-equivalent age (TEA) relate to developmental delays detected at
follow-up, we studied a cohort of neonates with a diverse range of
neuropathologies representative of the perinatal brain injuries com-
monly encountered in large North American Neonatal Intensive Care
Units (NICUs).

We focused on motor function as the outcome measure of interest
since it is frequently impacted by perinatal brain injury, is important to
daily living, develops rapidly in the first year, and can be measured by
observation. Motor skills were assessed at term-equivalent age, and at 4
and 8months with standard clinical instruments. Our first hypothesis
was that fcMRI at TEA would be predictive of motor impairments, over
and above other clinical, diagnostic and neurological measures avail-
able. We then examined which brain systems were most critical to
motor development in this period. We hypothesized that connectivity of
the somatomotor network at TEA would be particularly important for
motor development in the first year. We furthermore considered which
other networks might be relevant. In infants at high risk of autism
spectrum disorder a relationship has been found between motor skills
and executive functioning at 12months (St John et al., 2016). Ad-
ditionally, a recent study assessing the relationship between walking,
gross motor development and functional connectivity in toddlers found

the default mode, attention and frontoparietal networks to be asso-
ciated with concurrent motor skills (Marrus et al., 2017). In adults,
frontoparietal executive control networks are critical for motor learning
(Miller and Cohen, 2001). Neuroimaging has shown that these net-
works are present at term-equivalent age (van den Heuvel et al., 2014b;
Fransson et al., 2009b), and show the greatest maturational changes in
healthy term-born infants over the first two years (Gao et al., 2015a;
Doria et al., 2010; Cao et al., 2016; Fransson et al., 2007; Fransson
et al., 2011). It has, subsequently, been proposed that they might play a
crucial role in infant learning and development (Cusack et al., 2016),
even though there is little behavioral manifestation of executive control
before 5 1/2months postnatally (Reznick et al., 2004; Reynolds and
Romano, 2016). Our third hypothesis was therefore that the functional
connectivity of the frontoparietal executive network would be related
to early motor learning. Lastly, we examined whether differences in
functional connectivity at TEA and their relationship to motor skills at
8 months could be explained by stratifying infants by prematurity or
presence of perinatal brain injury or by any other demographic factors
or clinical course in the NICU.

2. Materials and methods

2.1. Cohort

Infants (n=65) were recruited from the tertiary care NICU at
Children's Hospital (LHSC), London, Canada. Inclusion criteria were:
requirement for a clinical MRI scan and either gestational age (GA) at
birth< 29weeks, or GA at birth> 29weeks but high risk of brain in-
jury due to e.g. asphyxia, stroke, seizures, or suspected genetic dis-
orders. Infants with metal implants were excluded, and 12 datasets
discarded due to poor data quality (see below) resulting in analysis of
data from 53 infants. Demographics and the clinical course in the NICU
were obtained from the discharge reports (Tables 1 and 2). Infants were
stratified based on their age at birth (premature birth< 37w GA vs.
term birth) and on whether neuropathology was diagnosed by the
neuroradiologist after examination of the clinical MRI scans. Ethical
approval was obtained from the Western University Health Sciences

Table 1
Demographic and clinical information.

All Preterm
No neuropathology

Preterm
Neuropathology

Term
No neuropathology

Term
Neuropathology

Sex Male 40 11 19 3 7
Female 13 5 5 1 2

Birth weight Median 1110 g 985 g 1060 g 2950 g 3870 g
Range 490–4570 g 705–1480 g 490–3150 g 2010–3110 g 2250–4570 g

Gestational age at birth Median 29w 27.5 w 27.5w 40w 40w
Range 24–41w 25–34w 24–36w 39–41w 38–41w

Gestational age at scan Median 38w 37w 37.5 w 40.5 w 41w
Range 35–43w 35–42w 35–41w 40–41w 39–43w

5-Minute APGAR Median 6 8 6 7.5 6
Range 1–9 4–9 1–9 6–8 3–9

Days on oxygen supplementation Median 26 34.5 58 0 0
Range 0–116 0–106 0–116 0–1 0–11

Infections while in NICU # Infants 16 7 11 0 0
Anemia while in NICU # Infants 21 6 14 0 1
Discharge Hb levels Median 114 101 113.5 202.5 159.5

Range 83–234 83–139 90–198 185–234 93–189
Days in NICU Median 69 78 86 5.5 9

Range 1–121 22–113 7–121 1–20 6–13
Deceased # Infants 3 0 1 0 2
Woodward WMI

(Subset of infants)
n 37 8 17 4 8
Mean 7.49 6.5 8.91 5.5 6.38
Std. dev. 2.17 1.6 2.05 0.58 1.41
Range 4–13 5–9 6–13 5–6 4–8

Woodward GMI
(Subset of infants)

n 37 8 17 4 8
Mean 4 4.375 4.53 3 3
Std. dev. 1.03 0.92 0.94 0 0
Range 3–6 3–6 3–6 3 3
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REB, and parents gave informed, written consent.

2.2. MRI data acquisition

Structural and functional MRI were acquired at term-equivalent age
(TEA) on a 1.5 T 450W GE scanner during unsedated natural sleep.
Each infant underwent a clinical MRI scan consisting at a minimum of a
whole-brain T1-weighted structural image (TR=8.4–11.5 ms, de-
pending on clinical requirements, TE=4.2ms, flip angle= 12/25°,
matrix size 512× 512, 99–268 slices, voxel size typically
0.39×0.39×0.5mm (0.31×31×5 to 0.43×0.43×0.6 for some
infants), and a T2-weighted structural image (TR=3517–9832ms,
TE= 7.3–8.4ms, flip angle= 90/160°, matrix size 256×256, 19–60
slices, 0.7× 0.7× 2–5mm voxel resolution). Occasionally other ima-
ging sequences were added if requested by the attending physician.
Four 7-minute functional MRI scans were acquired at the end of the
clinical protocol (TR=1920ms, TE= 60ms, flip angle= 70°, 22
slices, 3 mm isotropic resolution). Excerpts of lullabies were played
through the ear defenders during the functional MRI scans using a fixed
block design (15 s sound, 11 s silence) for a different study not reported
here. Functional connectivity has previously been found to be similar
between resting-state and tasks including those in which sounds were
presented (Shah et al., 2016).

Infants were wrapped in a MedVac vacuum blanket to reduce mo-
tion, wore infant ear protection (MiniMuffs, Natus, 7dB attenuation)
and ear defenders (29 dB attenuation, http://www.scansound.com/
index.php/mri-noise-reduction-headphone.html), and were monitored
by an attending NICU nurse using ECG, pulse-oxymetry, and a noise-
cancelling microphone (FOMRI-III, Optoacoustics) attached to the head
coil.

2.3. MRI image pre-processing

Imaging data were preprocessed in Matlab (The Mathworks, Version
2014a) with the automatic analysis toolbox (Cusack et al., 2014) and
SPM8 (Wellcome Department of Imaging Neuroscience, London, UK).
Images were converted to NIFTI format, motion corrected using six-
parameter rigid-body realignment as implemented in SPM, co-regis-
tered to the structural T1 or T2 image (depending on quality), and
normalized to the UNC neonatal brain template (Shi et al., 2011a).
Coregistration and normalization were visually inspected for all data-
sets and as a result five datasets were excluded from further analyses as
mentioned above. Examples of successful normalizations are shown in
Supplementary Fig. e-1. Additional pre-processing of the functional
data was carried out for the individual analyses and is described below
and in the Supplementary Methods. Timecourses from white matter and
cerebrospinal fluid were not regressed out due to the presence of pa-
thology and insufficient data quality of the structural images to carry
out reliable segmentation. Global signal regression was not performed
to avoid introducing potentially spurious negative correlations (Fox

et al., 2009; Jones et al., 2010; Murphy et al., 2009; Weissenbacher
et al., 2009). Additionally, since the functional connectivity analyses
performed examine patterns of connectivity, and the main results are
derived from second order correlations, global signal regression would
not be expected to substantially alter the results presented. 12 datasets
were excluded from subsequent analyses due to excessive motion or
poor coregistration or normalization (see Supplementary methods).

2.4. Relating disruption of functional connectivity to neurodevelopmental
outcome

The pattern of functional connectivity across the brain in each in-
fant at term-equivalent age was compared to a normative connectivity
pattern between the same regions-of-interest (ROIs) obtained from a
group of 14 adults (see Supplementary methods). Functional con-
nectivity was calculated between every pair of 28 ROIs, which were
derived from MNI coordinates previously identified in healthy, term-
born neonates (Smyser et al., 2014b) (Supplementary methods and
Table e-1). Each ROI comprised an 8mm sphere at these coordinates,
and was normalized to the UNC neonatal template (Shi et al., 2011b).
The mean timecourse of BOLD fMRI activity was extracted for each
ROI, and functional connectivity calculated as the Pearson correlation
between every pair of timecourses, resulting in a 28×28 connectivity
matrix. The similarity of each infant's connectivity pattern to that of the
adults yielded a measure of “disruption to functional connectivity” for
each infant:

=
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where aij is the mean adult connectivity and bijk is the connectivity of
infant k, between region i and region j, R the total number of regions, μa
is the mean of the values in the adult matrix and σa their standard
deviation, and μb, σb the corresponding summary statistics for the in-
fants.

We then assessed whether disruption to functional connectivity at
term-equivalent age was related to neurodevelopmental outcome. The
infants attended visits at the Developmental Follow-Up Clinic of LHSC,
starting shortly after discharge, at which outcome was assessed by
trained nurses and clinicians using standardized tests of infant motor
development: the Test of Infant Motor Performance (TIMP) (Campbell
et al., 1995) in the first month, and the Alberta Infant Motor Scale
(AIMS) (Piper et al., 1992) and the Infant Neurological International
Battery (INFANIB) (Fox et al., 2009) at 4 and 8months. The degree of
disruption to functional connectivity of each infant was then correlated
with the TIMP, AIMS and INFANIB scores at each follow-up time point
(Supplementary methods).

To identify which parts of the connectivity matrix drove any cor-
relation between disruption to functional connectivity and outcome, we
then decomposed the correlation of the connectivity matrix into the z-
scored parts between networks M and N (where M=N corresponds to
within network connectivity, and M≠N between network con-
nectivity).
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where aij is the mean adult connectivity and bijk is the connectivity of
infant k, between region i and region j, R the total number of regions, μa
is the mean of the values in the adult matrix and σa their standard
deviation, μb, σb the corresponding summary statistics for the infants,
and RM is the set of ROIs within network M. Note that the sum of the
parts of this decomposition is equal to the original correlation value:
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Each of the component measures rkMN were then taken forwards to a

Table 2
Incidence of neuropathologies.

All Preterm Term

Stroke 5 1 4
Seizures 6 1 5
HIE 6 3 3
IVH

I
II
III
IV

14
1
9
2
2

13
1
8
2
2

1
0
1
0
0

Hydrocephalus 4 4 0
Other (e.g. cysts, broad structural abnormalities) 5 4 1

Note: some infants were diagnosed with more than one neuropathology.
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third-order correlation with the outcome, ok. to yield the contribution of
each network separately. We hypothesized that connectivity of the so-
matomotor network at TEA would be particularly important for motor
development in the first year.

2.5. Do differences in functional connectivity reflect clinical factors?

Next, we tested whether differences in functional connectivity and
their relationship to motor skills at 8 months could be explained by
clinical or demographic factors extracted from the NICU discharge re-
ports. We split patients into four pathology groups using two factors
each with two levels: preterm vs. term, and presence vs. absence of
neuropathology. For each of these four groups, we first established
whether five well-established functional brain networks (auditory, vi-
sual, motor, default mode and executive control) were equally present
in term and preterm infants with perinatal brain injuries. These net-
works have previously been identified in healthy adults (Smith et al.,
2009), children (de Bie et al., 2012), infants and neonates (Fransson
et al., 2007; Gao et al., 2015b), as well as in other patient populations
(Greicius et al., 2008; Lee et al., 2013), and include regions of the brain
involved in a spectrum of functions, from sensory and motor, to higher-
level cognition. Group Independent Component Analysis techniques
(ICA) (Calhoun et al., 2009) were adapted for infants with perinatal
brain injury using an extension of a method introduced by Wang et al.
(2015) - Cross-Validated Regression (CIR) - that avoids circularity and
can readily be applied to infant patient populations (see Supplementary
methods). Spatial correlation was used to quantify the similarity of the
infants' functional networks to known network templates (Smith et al.,
2009). A repeated-measures ANOVA with factor “network” and be-
tween-subject factor “pathology group” tested whether the five func-
tional networks could be equally well identified in term and premature
infants with and without neuropathology. Similarly, we also tested for
any differences in the disruption to functional connectivity measure
between the four pathology groups.

Next, we assessed whether disruption of functional connectivity was
related to a quantitative scale of brain injury. The Woodward grading
system (Woodward et al., 2006) was applied by a senior neuroradiol-
ogist in a subset of infants (n=37, see Supplementary Results). This
scoring system grades the degree of perinatal white- and gray-matter
injury into four categories: none, mild, moderate and severe. These
scores were Pearson correlated with the disruption of functional con-
nectivity measure.

Lastly, we tested whether disruption to functional connectivity was
related to specific clinical or demographic factors that might have been
lost by stratifying infants into a-priori defined pathology groups.
Factors included sex, gestational age at birth and MRI scan, birth
weight, 5-minute APGAR scores, days on oxygen supplementation, di-
agnosis of infections and anemia, discharge hemoglobin levels, and
days in the NICU.

3. Results

We first tested our central hypothesis, that differences in functional
connectivity at term-equivalent age would be related to later motor
skills. Results (Fig. 1A–C) showed significant positive correlations of
individual differences in disruption to functional connectivity measured
at TEA with the AIMS (r=0.513, p < 0.005, CI [0.217 0.723]) and
INFANIB (r=0.380, p < 0.05, CI [0.054 0.633]) scores at 8months.
At the same time as behavioral assessments of neurodevelopmental
outcome become more reliable (Pedersen et al., 2007; Campbell and
Hedeker, 2001), correlations become stronger with increasing cor-
rected-age. At 4months, correlations with the two outcome measures
were positive but lower and only significant for the AIMS (r=0.330,
p < 0.05, CI [0.016 0.585]) but not INFANIB (r=0.153, p=0.376, CI
[−0.180 0.455]) scale. Correlations with the TIMP collected within the
first month corrected age were not significant (r=0.144, p=0.368, CI

[−0.171 0.433]).
Importantly, while TIMP scores also correlated positively with the

AIMS (r=0.46, p < 0.01) and INFANIB (r=0.39, p < 0.05) scores at
8months of age, partial correlations of the AIMS and INFANIB score
with disruption of functional connectivity (controlling for the TIMP
scores) remained significant (AIMS: rpartial=0.55, p < 0.005 vs.
r=0.61, p < 0.001; INFANIB: rpartial=0.46, p < 0.01 vs. r=0.53,
p < 0.005 for the 31 infants with both TIMP and AIMS/INFANIB
scores).

Given the predictive value of disruption to functional connectivity,
we assessed which of seven functional networks among the 28 ROIs
(Smyser et al., 2014b) (language-LAN, sensorimotor-SMN, visual-VIS,
default mode-DMN, dorsal attention-DAN, ventral attention-VAN and
fronto-parietal control-FPC) drove the correlation of whole-brain
functional connectivity patterns with neurodevelopmental outcome
most strongly. Given that we focused on motor outcome, we predicted
connectivity of the motor network at TEA to considerably influence
infant motor development. Additionally, the frontoparietal executive
network is crucial for learning in later life but its role in early infant
development is not known. We predicted that even before first beha-
vioral signs of executive function emerge, this network already plays an
important role for skill learning, including motor development. This
was indeed what we found (Table 3). Our results show that connectivity
within the SMN and between the SMN-DMN and SMN-VAN contributed
most to the correlation with motor skills at 8 months. Additional con-
nectivity within the FPC and between the DMN and VIS also con-
tributed.

We then tested whether differences in functional connectivity were
related to demographic and clinical factors by, first, stratifying infants
by prematurity (preterm/term) and presence/absence of neuro-
pathology. Visual inspection and a repeated-measures ANOVA sug-
gested the infants' functional networks were similar to normative
template networks (Smith et al., 2009) in healthy adults irrespective of
pathology group (F(3, 49)= 0.653, p=0.585, η2= 0.038, Fig. 2 and
Fig. 3A, also see Supplementary results). Similarly, disruption to func-
tional connectivity was not found to be different between groups (F(3,
49)= 0.226, p=0.878, η2= 0.014, Fig. 3B, Fig. e-3).

The presence or absence of neuropathology is a crude measure of
the degree of brain injury. The Woodward grading system was therefore
used to quantify the degree of brain injury in a subset of infants
(n=37, also see Supplementary results). Functional connectivity was
not related to this quantitative measure of brain injury, for neither
white-matter (r=0.04, p=0.814, CI [−0.288 0.359]) nor grey-matter
(r=−0.101, p=0.552, CI [−0.411 0.231]).

Importantly, adverse outcome is typically only observed in a subset
of NICU infants (Serenius et al., 2013; Allen, 2008; Marlow et al.,
2005). Grouping infants into heterogeneous categories such as pre-
mature/term birth and presence of neuropathology might decrease
sensitivity to detect subtle alterations in functional connectivity that are
related to later differences in behavior. We, lastly, tested whether ten
clinical or demographic factors that might not have been captured by
the four pathology groups were related to disruption to functional
connectivity. While many of the clinical variables are highly correlated
(Fig. 1D), differences in disruption to functional connectivity were not
significantly related to any of them (top row). Additionally, clinical and
demographic factors were not related to motor skills at 8 months as
assessed by the TIMP, AIMS and INFANIB (Table e-2). These results
likely reflect the difficulty of predicting neurodevelopmental outcome
from clinical information available at discharge from the NICU. Our
results suggest that functional connectivity measured at term-equiva-
lent age provides additional information that is independent from
currently available clinical information, and that can contribute to the
prediction of neurodevelopmental outcome after preterm birth and
perinatal brain injury.
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4. Discussion

This study shows that it is possible to robustly identify functional
brain networks in infants with perinatal brain injuries at TEA, paving
the way for future studies of this vulnerable clinical population.
Differences in functional connectivity irrespective of pathology group

correlated significantly with motor skills at 4 and 8months.
Specifically, disruption to the motor and frontoparietal executive net-
works drove this relationship most strongly. This implies that fMRI
provides prognostic information at the time of discharge from the
NICU.

Our results extend previous findings by Arichi et al. (2014) who
found substantial motor network connectivity abnormalities in three
neonates with severe hemorrhagic parenchymal infarction who later
developed cerebral palsy (CP). Similarly, a study in 14 infants with
moderate to severe white matter injury secondary to periventricular
hemorrhagic infarction (Smyser et al., 2013) found that functional
connectivity was disrupted, particularly in the motor network and
cerebellar regions. Compared to these two studies, however, most in-
fants in the current cohort had milder and more diverse neuropathol-
ogies, and including cortical regions that spanned seven distinct func-
tional networks allowed us to assess the relationship between motor
outcome and brain function across cortex. This is important, as the most
common perinatal brain injuries (such as low-grade intraventricular
hemorrhage following premature birth) put an infant at increased risk
of developmental delays that are much harder to detect early than CP.

Our results suggest that the executive system may be important for
development much earlier than previously thought (Cusack et al.,
2016). Injury to this system essential for learning and cognition would
be expected to lead to a spectrum of neurodevelopmental deficits.
Smyser et al. (2014b) also found alterations in functional connectivity

Fig. 1. Functional connectivity at term-equivalent age predicted motor skills at 4 and 8months. (A) Relationship between functional connectivity (FC) at term-equivalent age (TEA) and
neurodevelopmental outcome. Correlation scatter plots between functional connectivity and outcome at 8months are shown in (B) for the AIMS, and (C) for the INFANIB. (D)
Relationship between functional connectivity, demographic and clinical information (Pearson correlations). (***p < 0.001, **p < 0.01, *p < 0.05).

Table 3
Networks driving correlation of functional connectivity with outcome at 8months (values
are correlation coefficient rho, * indicates significance at p < 0.05, **p < 0.01,
***p < 0.001).

LAN SMN VIS DMN DAN VAN FPC

LAN AIMS
INFANIB

0.20
−0.08

SMN AIMS
INFANIB

0.11
0.12

0.44**
0.44**

VIS AIMS
INFANIB

0.08
0.14

−0.17
−0.16

−0.07
−0.11

DMN AIMS
INFANIB

0.18
0.06

0.35*
0.39*

0.38*
0.31

−0.07
−0.13

DAN AIMS
INFANIB

−0.10
−0.06

0.08
0.01

0.19
−0.04

0.17
0.07

0.23
0.12

VAN AIMS
INFANIB

0.08
−0.15

0.44**
0.40*

0.25
0.24

−0.05
−0.11

0.05
0.03

0.23
0.22

FPC AIMS
INFANIB

−0.14
−0.15

0.14
0.06

0.20
0.06

−0.10
−0.16

−0.29
−0.08

−0.14
−0.22

0.43**
0.60***
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of the DMN and FPC in premature infants scanned at term-equivalent
age, but since no behavioral follow-up information was included, it
remained unknown whether this influenced development. Importantly,
screening tests like the AIMS and INFANIB provide the first signs not
only of motor disability but also of more general neurodevelopmental
delays and disorders, and it has consequently been argued that all in-
fants should undergo developmental motor screening at the end of the
first year (Harris, 2016). By 8months, motor milestones are predictive
of various aspects of later development, even when controlling for ge-
stational age, birth weight, and disability (Ghassabian et al., 2016).
Long-term follow-up information would provide important insights into
the power of fcMRI collected at term-equivalent age to improve early
prediction of broader cognitive and social outcomes for infants at risk.

Our results also show that studying neonatal brain function in
predefined groups might miss variability in the data that explains later
developmental outcome. A number of previous studies have found
functional networks to be surprisingly similar in premature and
healthy-term born infants with the subset of networks altered varying
greatly between studies (Kwon et al., 2015; Toulmin et al., 2015;
Smyser et al., 2011; Smyser et al., 2010; Lin et al., 2008b), and with
some finding no differences at all (Doria et al., 2010; Lee et al., 2013).
This seems at odds with the higher incidence of developmental delays
in premature infants, and the abnormalities in functional connectivity
found in older children and adults born prematurely (Dick et al., 2013;
Schafer et al., 2009; Damaraju et al., 2010b; Gozzo et al., 2009b). It is
possible that differences in functional connectivity only emerge over
time. Alternatively, these findings might reflect a lack of sensitivity to
pick up relatively subtle and diverse differences between groups de-
fined a-priori. Approximately 30% of extremely premature infants will
develop moderate or severe developmental delays and disability

(Serenius et al., 2013; Allen, 2008; Marlow et al., 2005). Since infants
with signs of neuropathology were excluded from previous studies in-
vestigating functional network maturity and disruption after premature
birth, the risk of developmental delays for the infants typically included
in neonatal fcMRI studies is likely much lower. As such, it is reassuring
that functional brain organization seems to be unaltered in the majority
of “healthy” preterm neonates. Those with developmental delays and
clear disruptions of functional connectivity, on the other hand, might be
over-represented in studies of older children and adults born prema-
turely.

Three more recent studies employing advanced statistical methods
that have more power to detect subtle differences found disruptions of
functional connectivity in premature infants without perinatal brain
injury (Ball et al., 2016; Smyser et al., 2014b; Scheinost et al., 2015b).
These studies did not assess whether alterations of functional con-
nectivity predicted developmental outcome. However, another recent
study (Alcauter et al., 2014) showed thalamocortical connectivity
measured at 1 year correlated with assessments of cognitive function at
2 years (n=143). It is even more important to assess such relationships
in infants at high risk of developmental delays, like those born pre-
maturely or those who have sustained perinatal brain injury. The cur-
rent study is an important step in this direction.

We hope our results will encourage others to study infants with
perinatal brain injury using fMRI and to replicate the findings we have
reported here, so that limitations in the current study can be addressed.
Most importantly, the inclusion criteria in our study were broad in
order to be able to collect a sample reflecting commonly encountered
neuropathologies in North American NICUs. This meant that when
grouping infants by age at birth and presence of neuropathology,
sample sizes were moderate and unbalanced, and the lack of group

Fig. 2. Corresponding functional networks in adults and infants.
Functional networks (A) in healthy adults (Smith et al., 2009) that were used as templates during Cross-Iterative Regression (CIR), and (B) as derived in infants, split by pathology group.
Lighter colors indicate stronger evidence of the respective network. Spatial topography of each network was similar to the adult templates in all four infant pathology groups.

Fig. 3. Functional connectivity did not differ consistently between groups. No significant differences between the four infant pathology groups in (A) functional network topography (CIR
analysis, average of all networks shown), and (B) patterns of functional connectivity. Error bars are standard errors.
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differences should be interpreted with caution. Demographics, the
clinical course in the NICU, or the Woodward grading of the degree
brain injury were similarly not related to network connectivity.
Nevertheless, some differences between the groups defined by pre-
maturity and/or presence of neuropathology might become significant
with larger sample sizes. Lastly, since all infants in the current study
were recruited from the NICU we are unable to interpret whether those
infants with good motor outcome at 8months show typical brain de-
velopment of a healthy child. Our finding that functional network or-
ganization predicted motor outcome irrespective of the presence or
absence of neuropathology and gestational age at birth, suggests that
this would not have been the case. Using a normative template of
neonatal functional connectivity derived from healthy term-born in-
fants rather than one derived from healthy adults might be able to re-
veal whether and how maturity of brain function differs in infants with
perinatal brain injuries but good neurodevelopment in future studies.

Perinatal brain injury is common in NICU infants but early predic-
tion of outcome is difficult, leading to delays in interventions, increased
medical expenditures and anxiety and stress for parents and caregivers.
Functional MRI may offer valuable independent information to aid the
prediction of neurodevelopmental outcome at TEA irrespective of the
clinical course in the NICU or the brain injury acquired. We hope that
this will facilitate earlier, focused intervention, and decrease the un-
certainty parents currently face.
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