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Insulin-like growth factor binding protein-6 (IGFBP-6), the main regulator of insulin-like growth factor-2 (IGF-2), is a component
of the stem cell niche in developing muscle cells. However, its role in muscle development has not been clearly defined. In this study,
we investigated the role of IGFBP-6 in muscle commitment and differentiation of human mesenchymal stem cells derived from the
placenta. We showed that placental mesenchymal stem cells (PMSCs) have the ability to differentiate into muscle cells when
exposed to a specific culture medium by expressing muscle markers Pax3/7, MyoD, myogenin, and myosin heavy chain in a
stage-dependent manner with the ultimate formation of multinucleated fibers and losing pluripotency-associated markers,
OCT4 and SOX2. The addition of IGFBP-6 significantly increased pluripotency-associated markers as well as muscle
differentiation markers at earlier time points, but the latter decreased with time. On the other hand, silencing IGFBP-6
decreased both pluripotent and differentiation markers at early time points. The levels of these markers increased as IGFBP-6
levels were restored. These findings indicate that IGFBP-6 influences MSC pluripotency and myogenic differentiation, with

more prominent effects observed at the beginning of the differentiation process before muscle commitment.

1. Introduction

Unlike embryonic stem cells which are derived from the
early embryo, placental mesenchymal stem cells (PMSCs)
are derived from human placentae that are usually dis-
carded following delivery, and therefore a readily available
and noncontroversial source of adult stem cells for possi-
ble use in tissue regenerative therapies in human patients
[1-3]. Placental mesenchymal stem cells are available in
large numbers and capable of differentiating into cells of
all three germ layers depending on the type and concen-
tration of niche factors to which the cells are exposed to
in vitro. The pathways activated by these cells during
differentiation into specific mesodermal cell types illustrate
the mechanisms by which these cells differentiate in vitro
and in vivo and may provide important information on

the developmental processes of tissues and organs during
embryogenesis and in the adult.

Skeletal muscle development is a highly coordinated
stepwise process utilizing a series of transcriptional factors,
and structural and enzymatic proteins expressed to mark
the different stages of skeletal muscle development. During
myogenesis, committed progenitors differentiate into mus-
cle lineage by upregulating the myogenic regulatory factors
(MRFs) as well as muscle commitment transcription fac-
tors (Pax3 and Pax7), followed by the expression of early
muscle cell markers (MyoD and myogenin) [4]. After com-
mitment, the cells start to fuse together to form multinu-
cleated fibers and express muscle-specific proteins, such
as myosin heavy chain (MHC) [4]. It is believed that in
recovery and regeneration after muscle injury in the adult,
this process is recapitulated.
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Mesenchymal stem cells isolated from bone marrow have
the ability to differentiate into myocytes [5, 6]. However,
these cells have limited availability and do not have the ability
to form fused skeletal muscle in vitro [7, 8]. Adipose-derived
stem cells are another source of stem cells that can differenti-
ate into skeletal muscle [9]. Although these cells are readily
available, they have limited muscle recovery [10]. Therefore,
the need to find a stem cell population that will eliminate the
problems related to other stem cells was our main priority.

The insulin-like growth factor (IGF) family of peptides
regulates cell growth, differentiation, and the maintenance
of cell survival through several signal transduction pathways
[11]. This family includes two IGF peptides, IGF-1 and IGF-2,
three cell surface receptors, type-1 and type-2 IGF receptors,
insulin and hybrid receptors, and six IGF binding proteins
(IGFBPs) [4]. IGF-1 and IGF-2 are circulating and intercellu-
lar peptides that function as potent mitogens for many differ-
ent cell types, which are mediated by binding to IGF-1R, a
membrane receptor tyrosine kinase [12]. IGFBPs are carriers
for IGFs in the circulation and in the extracellular fluid com-
partment [13], protecting them from degradation [12, 14],
delivering them to specific tissues, and modulating the bio-
logical actions of IGFs. IGFBP-6 is a 30 kDa secreted protein,
and unlike other IGFBPs, has a significantly higher affinity
(~70-100-fold) for IGF-2 than IGE-1 [15, 16]. IGFBP-6 has
been demonstrated to modulate IGF-2 activity via inhibiting
IGF-2 binding to the IGF-1R or directly independent of
IGF-2 binding to the receptor [17, 18]. IGF binding pro-
teins, including IGFBP-6, are secreted into the extracellular
environment where they interact with IGFs. They are also
localized intracellularly suggesting that IGFBPs may have
biological actions independent of IGFs [19].

The IGF family has been shown previously to play a
major role in muscle development. IGF-1R knockout mice
die soon after birth due to breathing difficulties due to lack
of functional respiratory muscles [20, 21]. IGF-2 is expressed
abundantly in the developing skeletal muscle and is a major
factor for muscle growth, differentiation, and regeneration
[22]. When IGF-2 is knocked down, myogenesis does not
occur [22]. During development, IGFBP-6 is expressed abun-
dantly in developing muscle cells and is also required for
myogenesis [22]. Previous studies in our laboratory have
described IGF-independent functions of IGFBP-6 by inter-
acting with Ku proteins in regulating cell fate in a skeletal
muscle cell line [23]. Also, another study showed that
IGFBP-6 inhibits angiogenesis but promotes migration in
an IGF-independent manner [17].

To our knowledge, the biological roles of IGFBP-6 in the
differentiation of stem cells into the muscle lineage have not
been reported. In this study, we determined if PMSCs can
differentiate into skeletal muscle when exposed to muscle dif-
ferentiation promoting conditions and then characterized
the effects of IGFBP-6 on the differentiation of PMSCs into
skeletal muscle.

2. Materials and Methods

2.1. Isolation of PMSCs. PMSC isolation and experiments
were conducted in accordance with the approval from the
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Health Sciences Research Ethics Board of Western Univer-
sity. Informed consent was obtained from healthy women
undergoing therapeutic termination of pregnancy, and
the PMSCs used in this study were isolated from 15 weeks
preterm placental tissues. After surgery, chorionic villi
were dissected, washed, minced with surgical scissors and
forceps, and then subjected to enzymatic digestion with
collagenase IV (3691U/mg), hyaluronidase (9991U/mg)
(Sigma-Aldrich, Oakville, ON), and DNase I (2000IU/mg)
(Hoffmann-LaRoche, Mississauga, ON) for 10 minutes at
room temperature, followed by 0.05% trypsin (Gibco/Invi-
trogen, Mississauga, ON) for 5 minutes at room temperature.
The sample was then washed for 10 minutes with 10% FBS in
DMEM/F12 medium, and the resulting single cell suspension
was separated by density centrifugation over a Percoll
(Sigma-Aldrich, Oakville, ON) discontinuous gradient using
a modified protocol by Worton et al. [24].

2.2. Cell Culture. Cells from Percoll gradient fractions num-
ber 3 and number 4 were plated on to T75 flasks, cultured,
and maintained using DMEM/F12 media supplemented with
15% FBS serum (Gibco/Invitrogen, Mississauga, ON) and
FGF-2 (50 ng/mL) (Sigma-Aldrich, Oakville, ON) contain-
ing 100 U/mL penicillin, 100 ug/mL streptomycin, and
0.25 pg/mL amphotericin-B. The nonadherent cells were dis-
carded at the time of media change, which was performed
every 72 hours. The adherent cells were cultured until they
reach 90% confluence. Cells were then passaged 1:2 approx-
imately once per week using 0.05% trypsin for 10 min at 37°C
for 3 passages. Fourth passaged cells were stored at —80°C in
ImL of freezing media (30% FBS and 10% DMSO in
DMEM/F12 media). When needed, vials were thawed and
cells were resuspended in normal culture media (25ng/mL
FGF-2 and 15% FBS in DMEM/F12). Only PMSCs of passage
3 or 4 were used in the experiments.

2.3. Flow Cytometry Analysis. Cells were trypsinized for 10
minutes using recombinant trypsin (TrypLE EXpress,
Gibco/Invitrogen, Mississauga, ON) diluted 1:1 in PBS,
at 37°C. After the cells were detached from the flask,
trypsin was neutralized with 10% FBS in DMEMEF/12
medium, cells were washed and incubated for one hour with
fluorochrome-labeled primary antibody against MSC
markers. CD73 (number 550256) (BD Pharmingen,
San Jose, CA), PE-conjugated CD105 (number 12-1057-
73) (eBioscience, San Diego, CA), and CD-117/c-Kit
(sc-13508) (Santa Cruz Biotechnology, Dallas, TX) were
used (Supplementary Figure 1).

2.4. Muscle Differentiation. Cells were plated in the presence
of the muscle growth media (fetal bovine serum 0.05 mL/mL,
fetuin 50 pg/mL, epidermal growth factor 10 ng/mL, basic
fibroblast growth factor 1ng/mL, insulin 10 pg/mL, and
dexamethasone 0.4 ug/mL) for 48 hours before changing to
the skeletal muscle differentiation media, which is serum-
free medium containing 10 ug/mL insulin (PromoCell,
Heidelberg, Germany). Cells were grown in six-well plates
in a standard tissue culture incubator at 37°C in 5% CO,.
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2.5. IGFBP-6. Recombinant Human IGFBP-6 (ProSpec, East
Brunswick, NJ) was resuspended in sterile MilliQ-H,O and
added to the media at a concentration of 375ng/mL.
IGFBP-6 was added every 3 days at the time of media change.
IGFBP-6 concentration was determined by a dose-response
experiment using PMSCs in muscle differentiation media
(Supplementary Figure 2A). IGFBP-6 was added every 3 days
at the time of media change because that was the time it took
for IGFBP-6 secreted levels to be lower than the control
(Supplementary Figure 2B).

2.6. Downregulation of IGFBP-6 Expression by siRNA. To
silence the endogenous IGFBP-6 expression, IGFBP6 siRNA
(h) with a pool of 3 target-specific 19-25 nt siRNAs was used
(Santa Cruz Biotechnology, Dallas, TX). 8 uL of Lipofecta-
mine (Invitrogen, Mississauga, ON) with either 8 uL of
scrambled or IGFBP-6 siRNA was added to 100 uL of
DMEM/F12 media (Invitrogen, Mississauga, ON) for 40
minutes at room temperature; the concentration of siRNA
was 80 nM. The siRNA solution was then added to the 60%
confluent cells and incubated for 5 hours at 37°C. Muscle
growth media (1.5mL) was added to the cells for 48 hours,
and then it was replaced with 2 mL of muscle differentiation
media. New siRNA was added every 3 days during the change
of media, and the experiment was performed for 7 days.

2.7. Immunocytochemistry. PMSCs were grown and differen-
tiated on glass cover slips, stained with primary antibodies,
and incubated at 4°C overnight. The primary antibodies were
washed using 0.1% Tween-20 in PBS (3 times for 5 minutes),
and cells were then incubated in the dark with the secondary
antibody. The secondary antibody was washed 0.1% Tween-
20 in PBS, and the nuclear stain was added for 7 minutes and
then rinsed. The cover slips were mounted for 2 hours, and
images were taken using a Zeiss confocal microscope. Each
antibody was performed in triplicate.

2.8. Immunoblotting. Following experiment completion, each
cell lysate containing 20 pg of protein was added to 6x SDS
gel loading buffer (1% p-mercaptoethanol, 1% SDS, 30%
glycerol, 0.0012% bromophenol blue, Tris-HCI 0.28 M, and
pH 6.8). Samples were boiled for 5 minutes at 95°C, then
placed on ice for 3 minutes, and centrifuged at 3000 rpm
for 20 seconds before loading. Samples were resolved by
molecular weight using 10% SDS polyacrylamide gels and
then transferred onto polyvinyldenefluoride (PVDF) mem-
branes (Bio-Rad, Hercules, California) using a Trans-Blot
Turbo (Bio-Rad, Hercules, California) with an optimized
protocol depending on the protein size. Membranes were
blocked with 5% nonfat dry milk, gently shaked for 1 hour
at room temperature in Tris-HCI buffer saline pH 8.0 with
0.1% Tween-20 (TBS-T). Blots were then washed with TBS-
T (3x for 10 min) followed by incubation at 4°C overnight
with specific primary antibodies in 5% BSA or 5% nonfat
dry milk in TBS-T following the manufacturer’s protocol.
Then membranes were washed and incubated for 1 hour at
room temperature with the corresponding secondary HRP
antibody. Resolved protein bands were detected using chemi-
luminescence, and images were taken using the VersaDoc

Imager (Bio-Rad, Hercules, California). Western blots were
performed in triplicate.

2.9. Quantification of the IGFBP-6 and IGF-2 Secretion by
Enzyme-Linked Immunosorbent Assay (ELISA). Human
IGFBP-6 (RayBiotech®, Burlington, ON) and IGF-2
(ALPCO, Salem, NH) ELISA kits were used to measure the
amount of IGFBP-6 and IGF-2 secreted into the media of dif-
ferent treatment conditions. Standards and samples were
loaded into the wells and the immobilized antibody bound
IGFBP-6 or IGF-2 present in the sample. The wells were
washed, and biotinylated anti-human antibody was added.
After washing, HRP-conjugated streptavidin was added; then
a TMB substrate solution was used to develop a blue color in
proportion to the amount of IGFBP-6 or IGF-2 bound. The
Stop Solution changes the color from blue to yellow, and
the intensity of the color was measured at 450 nm using
Multiskan Ascent analysis software.

2.10. Aldehyde Dehydrogenase (ALDH) Activity. PMSC
ALDH activity was assessed by flow cytometry. An Alde-
fluor™ kit (Stem Cell Technologies, Vancouver, BC) was used
as per the manufacturer’s protocol. 5 uL of the activated
Aldefluor reagent/mL was added, and the cells were incu-
bated for 45 minutes. Cells were centrifuged for 5 minutes
and resuspended in 500 uL of ice-cold Aldefluor assay buffer.
ALDH activity was measured using flow cytometry. Samples
were run in triplicate.

2.11. Antibodies. For pluripotency markers, we used OCT4
antibody (N-19: sc-8628) (Santa Cruz Biotechnology, Dallas,
TX), and SOX2 (2683-1) (Epitomics, Burlington, ON, CAN).
For muscle differentiation markers, Pax3/7 (E-10:5¢365613),
MyoD (M-318: sc-760), myogenin (F5D: sc-12732), and
myosin heavy chain (H-300: sc-20641) (Santa Cruz Biotech-
nology, Dallas, TX) were used. For loading control, pan-actin
Ab-5 (Thermo Fisher Scientific, Fremont, CA) was used. For
IGFBP-6, antibody (H-70: sc-13094) (Santa Cruz Biotechnol-
ogy, Dallas, TX) was used. The secondary antibodies used for
immunoblotting were goat anti-rabbit (number 170-6515) or
anti-mouse (number 170-6516) HRP-conjugated antibodies
(Bio-Rad, Hercules, CA), or donkey anti-goat antibody
(Santa Cruz Biotechnology, Dallas, TX). The secondary anti-
bodies used for immunocytochemistry were green-Alexa 488
or red-Alexa 568 (Invitrogen, Mississauga, ON).

2.12. Statistical Analysis. All experiments were run in tripli-
cates, and the specific protein levels were quantified and nor-
malized for loading with the level of pan-actin in each lane.
GraphPad Prism Software 5.0 was used to generate all graphs
and analyses. A two-way ANOVA followed by a Bonferroni’s
multiple comparison test or a one-way ANOVA followed by
a Student ¢-test was used, and significant difference was con-
sidered when P <0.05. Graphic representation values are
presented as mean + SEM (shown as variance bars).

3. Results

3.1. PMSCs Can Differentiate into Skeletal Muscle. To deter-
mine if PMSCs can differentiate into skeletal muscle, PMSCs
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F1GURE 1: PMSCs cultured under muscle differentiation conditions showed muscle morphology with lower OCT4 and higher MHC at 14 days
postdifferentiation. (a, b) Compared to cells cultured under standard conditions in 10% FBS, PMSCs grown in muscle differentiation media
showed skeletal muscle morphology as early as day 1 postdifferentiation (20x). (c, d) At 14 days postdifferentiation, PMSCs grown in muscle
differentiation media showed increased skeletal muscle fiber compaction and the formation of multinucleated fibers (20x). 40x magnification
is shown in the bottom right corner. Red arrows indicate multinucleated muscle cells. (e-h) Cells grown in muscle differentiation media
showed less OCT4 (green-Alexa 488, 1-488 nm) (20x) and more MHC immunoreactivity (red-Alexa 568, A-568 nm), when compared to
PMSCs in 10% FBS at 14 days postdifferentiation (10x). Nuclei were stained with Hoechst dye (blue, A =340nm). Experiment was

performed in triplicate.

were grown under muscle differentiation conditions for up to
14 days. Compared to PMSCs grown in nondifferentiating
conditions (10% FBS), differentiated PMSCs showed muscle
morphology as early as day 1 postdifferentiation (compaction
and elongated appearance) (Figures 1(a) and 1(b)), and cells
continued to differentiate forming multinucleated fibers at
day 14 (Figures 1(c) and 1(d) and Supplementary Figure 3A
and B). Associated with these morphological changes,
pluripotency-associated marker (OCT4) immunoreactivity
appeared low (Figures 1(e) and 1(f)), and muscle

differentiation marker (MHC) immunoreactivity was high
(Figures 1(g) and 1(h)) when compared to control cells
(10% FBS). In addition, PMSCs under muscle differentiation
conditions showed lower cell counts per field compared to
undifferentiated controls (Supplementary Figure 3C).
Under muscle differentiation conditions, PMSCs
decreased pluripotency-associated protein levels of OCT4
and SOX2. OCT4 levels were reduced at day 1 compared to
control with further decrease at 14 days postdifferentiation
(Figure 2(a)). In addition, SOX2 levels were lowered and
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F1GURE 2: PMSCs cultured under muscle differentiation conditions increased levels of muscle markers (Pax3/7, MyoD, MyoG, and MHC) and
decreased OCT4 and SOX2 levels using Western blots. Compared to PMSCs cultured under control conditions, (a) OCT4 was decreased at 1
and 14 days under muscle differentiation conditions. (b) SOX2 levels were decreased at each time point under muscle differentiation
conditions. (c) Pax3/7 was increased at day 7 and decreased by day 14 under muscle differentiation conditions. (d) MyoD, (e) MyoG, and
(f) MHC were increased at each time point under muscle differentiation conditions. Protein levels were quantified by densitometry and
normalized to f3-actin. Data is presented as the mean + SEM of 3 independent experiments. Two-way ANOVA with Bonferroni’s multiple
comparison test was performed to determine *P <0.05, **P<0.01, and ***P <0.001 comparing control to muscle differentiation
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FIGURE 3: PMSCs cultured under skeletal muscle differentiation
conditions showed a decreased frequency of cells with high ALDH
activity. Compared to PMSCs cultured under control conditions,
PMSCs cultured under differentiated conditions showed
significantly decreased frequency of cells with high ALDH activity.
Even under control culture conditions, PMSCs showed diminished
ALDH-activity over time. Data is presented as the mean + SEM of
3 independent experiments. Two-way ANOVA with Bonferroni’s
multiple comparison test was performed to determine ***P < 0.001
comparing control to muscle differentiation conditions, or
#P<0.01 and "P<0.001 comparing the same treatment
over time.

nearly diminished by day 14 in cells under muscle differenti-
ation conditions compared to control (Figure 2(b)). Muscle
commitment marker Pax3/7 was increased at day 7, followed
by a decrease at day 14 in PMSCs under muscle differentia-
tion conditions compared to control (Figure 2(c)), suggesting
that PMSCs under muscle differentiation conditions are
committed to the muscle lineage and are proceeding to mus-
cle differentiation. This was confirmed by the protein levels
of muscle markers (MyoD, MyoG, and MHC) that increased
significantly over time under muscle differentiation condi-
tions (Figures 2(d), 2(e), and 2(f)). Collectively, these find-
ings indicate that PMSCs differentiate into skeletal muscle
under appropriate culture conditions, and this cell differenti-
ation model could be consistently used to study muscle
development in vitro.

We used the Aldefluor assay to determine the frequency
of primitive progenitor cells with high ALDH activity. In this
context, high ALDH activity is a conserved characteristic of
proliferative progenitor cells of multiple lineages [25, 26].
As differentiation occurs towards a more mature cellular
phenotype, ALDH activity is reduced. Compared to PMSCs
grown under nondifferentiation conditions, there was a
decrease in the frequency of cells with high ALDH activity
(ALDH" cells) under muscle differentiation conditions at
days 1 to 14 (Figure 3 and Supplementary Figure 4). More-
over, ALDH activity was also decreased over time when cul-
tured under control conditions (10% FBS) (Figure 3). These
findings suggested that PMSCs comprised of a heterogeneous
population that slowly differentiated during maintenance in
standard culture conditions and PMSCs stimulated to
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differentiate into skeletal muscle immediately decreased
ALDH activity at earlier time points.

3.2. PMSCs Express IGFBP-6 during Myogenic Differentiation.
PMSCs under skeletal muscle differentiation conditions
were investigated if they expressed IGFBP-6. Using immu-
nocytochemistry, PMSCs cultured under differentiation
conditions showed high intracellular IGFBP-6 immunore-
activity compared to PMSCs cultured under control condi-
tions (Figures 4(a) and 4(b)). Using immunoblotting at
multiple time points, following day 2 of differentiation,
IGFBP-6 levels gradually decreased in PMSCs cultured
under differentiation conditions but remained higher than
time-matched controls (Figure 4(c)). Using ELISA detection
in PMSC-conditioned media, there was an increase in the
levels of IGFBP-6 secreted into the media, confirming that
developing muscle cells express IGFBP-6 which is actively
secreted into the extracellular space (Figure 4(d)). There-
fore, the synthesis of IGFBP-6 increased as the cells became
more differentiated towards the muscle lineage.

3.3. IGFBP-6 Affects Multipotency of the Developing Muscle
Cells from PMSCs before Muscle Commitment. To test the
effects of extracellular IGFBP-6 on developing muscle cells,
recombinant human IGFBP-6 was added to the muscle dif-
ferentiation media. Addition of extracellular IGFBP-6 into
the culture media increased intracellular IGFBP-6 detection
by Western blots, suggesting that recombinant human
IGFBP-6 induced a positive feedback effect or was taken
up by the differentiating cells (Figure 5(a)). Furthermore,
stimulation in IGFBP-6 increased OCT4 and SOX2 levels
concomitant to the increased IGFBP-6 levels (Figures 5(b)
and 5(c)). Interestingly, IGFBP-6 supplementation also
increased Pax3/7 levels suggesting enhanced PMSC commit-
ment towards the skeletal muscle lineage (Figure 5(d)). The
fact that these two events occurred simultaneously suggests
that IGFBP-6 possibly had these effects on different popula-
tion of cells in culture.

Finally, IGFBP-6 treatment increased the levels of
muscle-specific markers, MyoD, MyoG, and MHC, at the
earlier time points with a decline over time in the pro-
longed presence of increased extracellular IGFBP-6 com-
pared to unsupplemented muscle differentiation conditions
(Figures 5(e), 5(f), and 5(g)). Collectively, these data sug-
gested that IGFBP-6 promoted PMSC commitment to the
muscle lineage as an immediate effect but maintained
pluripotency-associated markers and delayed muscle differ-
entiation at later time points, as seen with the decreased pro-
tein level of muscle differentiation markers.

Due to the fact that both pluripotency-associated and
differentiation markers increased by IGFBP-6 treatment
in a time-dependent manner, we tested the cells for ALDH
activity to determine the frequency of PMSCs that main-
tained high ALDH progenitor phenotype. PMSCs under
muscle differentiation in the presence of IGFBP-6 increased
ALDH activity compared to PMSCs under muscle differenti-
ation alone at days 1 to 14 (Figure 6 and Supplementary
Figure 5), suggesting that IGFBP-6 addition prolonged
primitive progenitor phenotype in PMSCs cultured under
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FIGURE 4: PMSCs cultured under skeletal muscle differentiation conditions showed increased IGFBP-6 expression and secretion. (a, b)
PMSCs cultured under muscle differentiation conditions showed higher IGFBP-6 staining (red-Alexa, A-568 nm) when compared to
PMSCs under control conditions (10% FBS) at 14 days postdifferentiation. Nuclei were stained with Hoechst dye (blue, A = 340 nm). (c)
Using Western blots, IGFBP-6 protein levels in PMSCs cultured under differentiation conditions were increased at each time point
compared to control conditions. Under muscle differentiation conditions, IGFBP-6 levels peaked at 2 days postdifferentiation and
gradually decreased from days 3 to 14. Protein levels were quantified by densitometry and normalized to f-actin. (d) Using ELISA,
IGFBP-6 and (e) IGF-2 secretion into the media was increased under muscle differentiation conditions compared to control conditions.
Data is presented as the mean+SEM of 3 independent experiments. Two-way ANOVA with Bonferroni’s multiple comparison test
was performed to determine *P < 0.05, and ***P <0.001 comparing control to muscle differentiation conditions, or **P<0.01 and

P <0.001 comparing the same treatment over time.

muscle differentiation conditions. Further immunocyto-
chemistry analyses at day 14 revealed that compared to
unsupplemented conditions, PMSCs treated with IGFBP-6
showed more muscle compaction (Figures 7(a), 7(b), 7(c),
and 7(d)). Moreover, MHC immunoreactivity appeared
equivalent with or without IGFBP-6 supplementation
(Figures 7(e) and 7(f)) with less number of cells
(Figure 7(g)). These findings suggest that the increase in both
pluripotency-associated and differentiation markers resulted
from the impact of changing culture conditions (cellular
environment) on a heterogeneous population of undifferenti-
ated and differentiated cells.

3.4. Endogenous IGFBP-6 Is Required for the Differentiation
of PMSCs to Skeletal Muscle. To evaluate the effects of
IGFBP-6 silencing on pluripotency-associated and muscle
differentiation markers in PMSCs, IGFBP-6 knockdown by
siRNA was used during muscle differentiation over 7 days.
As predicted, PMSC expression of IGFBP-6 was decreased
for 1-2 days after IGFBP-6 knockdown compared to scram-
bled siRNA control. However, IGFBP-6 levels were equiva-
lent to scrambled controls by day 3. Readministration of
IGFBP-6 siRNA at day 3 prolonged IGFBP-6 reduction, but
IGFBP-6 returned to control levels by day 6 (Figure 8(a)).
These findings suggest that differentiating PMSCs have a
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FIGURE 5: PMSCs treated with IGFBP-6 increased pluripotency-associated and muscle differentiation markers. IGFBP-6, OCT4, SOX2, Pax3/
7, MyoD, MyoG, and MHC protein levels were quantified within PMSCs grown in muscle differentiation media with or without IGFBP-6
(375ng/mL) supplementation using Western blots. (a) IGFBP-6 treatment increased IGFBP-6 levels as compared to PMSCs grown in
muscle differentiation media only. IGFBP-6 treatment also increased pluripotency-associated markers (b) OCT4 and (c) SOX2 levels. (d)
IGFBP-6 treatment increased muscle lineage commitment marker Pax3/7 at each time point. Muscle differentiation markers (e) MyoD, (f)
MyoG, and (g) MHC levels increased with IGFBP-6 treatment at early time points (1-3 days) but showed reduced levels at later time
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high capacity to express IGFBP-6 and overcame siRNA
knockdown within 3 days in culture. Alongside IGFBP-6
knockdown, we observed a reduction in pluripotency-
associated markers for OCT4 (Figure 8(b)) and SOX2
(Figure 8(c)) concomitant with reduced IGFBP-6 levels, sug-
gesting that IGFBP-6 may be important for maintaining
potency which needs to be further investigated. Concomi-
tantly, there was an increase in muscle commitment

marker Pax3/7 that was reduced by day 3 (Figure 8(d)).
Similarly, levels of the muscle lineage differentiation
markers MyoD, MyoG, and MHC were all decreased at early
time points after IGFBP-6 knockdown (Figures 8(e), 8(f),
and 8(g)). Increased protein levels of muscle commitment
marker and reduced levels of muscle differentiation markers
suggest that endogenous IGFBP-6 knockdown initiated
PMSCs commitment to the muscle lineage but delayed
muscle differentiation.

As both pluripotency-associated and differentiation
markers were decreased with IGFBP-6 silencing, ALDH
activity was determined. Silencing of endogenous IGFBP-
6 expression in PMSCs, decreased ALDH activity com-
pared to control (scrambled siRNA) in a time-dependent
manner (Figure 9 and Supplementary Figure 6). However,
there was no change in cell morphology with IGFBP-6
silencing (Figure 10(a)) when compared to the control
(Figure 10(b)) at day 7 postdifferentiation. On the other
hand, IGFBP-6 knockdown decreased IGFBP-6 production
and secretion as IGFBP-6 levels were reduced in PMSC-
conditioned media at all time points as measured by
ELISA (Figure 10(c)).

4. Discussion

Stem cell research has progressed in recent years, and the
promise of using stem cells in tissue regeneration and cellular
therapies are closer to becoming a reality in the clinics
[27, 28]. However, before they can be used reliably and
safely in regenerative medicine, it is essential to understand
how factors within the stem cell microenvironment influence
lineage commitment and differentiation as stem cell fate is
altered by the culture conditions in vitro [29]. In addition,
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most current cellular therapies are expected to utilize plu-
ripotent or multipotent stem cells that are already poised
to generate into a desired lineage of committed progenitor

cells by culturing them under specific culture conditions
prior to therapy. Congenital muscular dystrophies represent
a potential genetic disorder that may be amenable to cellular
therapies due to accessibility and possible incorporation of
new functional skeletal muscle cells into diseased tissues after
transplantation [30, 31]. The results from this study are the
first to provide insight on how IGFBP-6 can be used to
modulate muscle lineage commitment and differentiation
from readily available PMSCs in vitro.

To be able to use stem cells to treat Duchenne muscular
dystrophy and to be approved for clinical trials, cells need
to be from a readily available source, maintain the muscle dif-
ferentiated state, avoid immune rejection by the host, avoid
tumorigenesis, and can be easily injected. Human placental
mesenchymal stem cells achieve these criteria.

The human placenta is usually discarded tissue after
birth and represents a rich source of adult mesenchymal
stem cells for the development of tissue regeneration thera-
pies [2, 3, 32]. PMSCs have greater cell expansion and pas-
sage number in vitro than mesenchymal stem cells isolated
from bone marrow [1]. They also demonstrate lower tumor-
igenicity [33] and higher immunotolerance capacity to
reduce the possibility of triggering an immune response
[34]. Thus, placental stem cells could provide an ethical and
readily available source of stem cells for future experimental
and clinical applications.



Stem Cells International

Si (control)

Day 7
(10%)

2500
2000 A
1500 4

1000

Levels of secreted IGFBP-6 (pg/mL)

si (control)

[ si IGFBP-6)
(c)

13

Si (IGFBP-6)

(b)

IGFBP-6

FiGure 10: IGFBP-6 siRNA treatment maintained PMSCs cell morphology and inhibited IGFBP-6 secretion. PMSC skeletal muscle
morphology was maintained for 7 days under muscle lineage differentiation conditions with (a) scrambled siRNA or (b) IGFBP-6 siRNA
treatment. (c) Using ELISA, IGFBP-6 secretion was decreased at each time point with IGFBP-6 siRNA treatment that was applied every
3 days. Data is presented as the mean + SEM of 3 independent experiments. Two-way ANOVA with Bonferroni’s multiple comparison
test was performed to determine ***P <0.001. ELISA sensitivity: highest amount detectable 60,000 pg/mL; lowest amount detectable

82.3 pg/mL. Standard curve R? = 0.97.

The IGF family plays a central role in muscle develop-
ment, differentiation, growth, and regeneration [20-22, 35,
36]. In Duchenne muscular dystrophy, IGF-1 activates mus-
cle growth and hypertrophy and appears to improve the loss
of muscle mass [37]. IGFBPs are the carriers for IGFs in the
circulation [7], protecting them from degradation [12, 38]
and delivering them to specific tissues and thus modulate
the biological actions of IGFs. Also, IGFBPs increase the
half-life of IGF peptides in the circulation and control their
access to the IGF-1R, thus playing an important role in
IGF-regulated cell metabolism, development, and growth.
In recent years, it has become apparent that the IGFBPs
can be expressed and maintained within the cellular envi-
ronment and have functions independent of IGFs [14].
Several IGF binding proteins have been shown to be impor-
tant in myogenesis and are expressed in developing muscle
cells. Ren et al. reported that in C2C12 myoblast cells and
in primary skeletal muscle cells, IGFBP-5 acts in an IGF-
dependent manner to promote myogenesis by binding to
IGF-2 and promoting its interaction with the IGF-1R [39].

Knockdown of IGFBP-5 impaired myogenic differentiation
by reducing myogenin, myosin heavy chain, and IGF-2
expression [39]. In L6E9 skeletal myoblasts, IGFBP-4 and
IGFBP-6 were accumulated during myogenesis, with
IGFBP-4, and not IGFBP6, inhibiting IGF-1 induced muscle
differentiation [40]. These findings suggested the important
role of IGFBPs in the muscle differentiation of both primary
and cell lines of skeletal muscle lineage. Our study is the first
to demonstrate the role of IGFBP-6, which is specific for the
embryonic IGF, IGF-2, in muscle development using PMSCs.

The aim of this study was to characterize the effects of
IGFBP-6 on the early differentiation stage before PMSCs
commit to the muscle lineage. As shown, when PMSCs were
cultured under muscle differentiation-specific conditions,
they showed the capacity to differentiate into multinucleated
muscle fibers and commit to the muscle lineage. The biolog-
ical effects of IGFBP-6 on this differentiation process, as
determined by pluripotency-associated markers (OCT4 and
SOX2), muscle commitment (Pax3/7), and differentiation
(MyoD, MyoG, and MHC), were significantly changed at
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F1GURE 11: Model of IGFBP-6 functions on PMSC differentiation into skeletal muscle. PMSCs under normal growth conditions (10% FBS)
express high levels of pluripotency-associated markers OCT4 and SOX2. As these cells commit towards the skeletal muscle lineage, increased
IGFBP-6 correlated with increased Pax3/7 that decreased as differentiation markers (MyoG, MyoD, and MHC) were increased. Both
committed and differentiated muscle cells continued to express and secrete IGFBP-6. As IGFBP-6 increased, there was an increase in
multipotency markers, as well as, an earlier commitment and differentiation towards the muscle lineage. Thus, IGFBP-6 was required for
maintaining multipotency and enhancing muscle commitment and differentiation.

the earlier time points. Thus, IGFBP-6 induced muscle differ-
entiation and could potentially be used to guide skeletal mus-
cle regeneration using stem cell therapy.

IGFBP-6 was highly expressed in developing muscle cells
[41, 42]; however, its role in muscle development is unclear.
Previous studies from our laboratory using human fetal
tissues have demonstrated that IGFBP-6 mRNA was
expressed abundantly in the skeletal muscle, heart, and skin
and prevalent in the regions of active cellular division and
differentiation, suggesting that the protein is synthesized in
these tissues and has autocrine/paracrine actions in the
developing cells [43]. In another study from our laboratory,
we reported that IGFBP-6 mRNA was expressed in low
abundance in the chorionic villi of placenta during the sec-
ond and third trimesters [44], suggesting that this IGFBP-6
is expressed in specific population of cells in this tissue
(e.g., mesenchymal stem cells) and/or that the expression is
increased only when PMSCs are induced to differentiate into
a specific lineage such as skeletal muscle.

The findings in this current study using PMSCs suggest
that stem cells in the developing myotome or MSCs in a
developed muscle tissue express IGFBP-6 in significant levels

during differentiation, indicating IGFBP-6 as an integral pro-
tein during muscle development. In fact, as muscle differenti-
ation progressed in vitro, the intracellular IGFBP-6 decreased
gradually due to the increased capacity to secrete IGFBP-6 into
the culture medium, indicating multiple roles for IGFBP-6,
both intracellular and extracellular in muscle development.
Thus, IGFBP-6 activities may switch from intracellular IGF-
independent actions to more paracrine IGF-dependent or
IGF-independent actions as muscle differentiation occurs.
Interestingly, the increase in extracellular IGFBP-6 by the
addition of IGFBP-6 to the culture medium significantly
increased cellular IGFBP-6 (intracellular or cell associated)
witha concurrentincrease in pluripotency-associated markers
OCT4 and SOX2. The increase in intracellular IGFBP-6 sug-
gests that IGFBP-6 was likely internalized or associated with
the cell surface. A previous report from our laboratory dem-
onstrated the intracellular actions of IGFBP-6 in the cyto-
plasm and nucleus of skeletal muscle cell line RD cells
which is likely an IGF-independent actions of IGFBP-6 [19].

When extracellular IGFBP-6 was supplemented into
PMSC cultured under muscle differentiation conditions, the
muscle commitment marker Pax3/7 was increased at all time
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points of study, while other muscle differentiation markers
increased only at the earlier time points. As the differentia-
tion progressed, IGFBP-6 treatment inhibited complete myo-
genic differentiation as demonstrated by decreased muscle
differentiation markers MyoD, MyoG, and MHC. These
findings together with the higher OCT4 and SOX2 levels
indicate that IGFBP-6 promotes the commitment of PMSCs
towards the muscle lineage, while the prolonged presence
delays the differentiation process. Moreover, increased
IGFBP-6 in the MSC microenvironment is expected to reduce
the bioavailability of IGF-2 due to its high affinity for the pep-
tide, confirmed by IGF-2 ELISA (Supplementary Figure 7A).
Thus, it is likely that the increased IGF-2 secretion by the
differentiating muscle cells will have a biologic impact on
muscle development which will be further investigated.

Knockdown of IGFBP-6 using siRNA decreased both
intracellular and secreted IGFBP-6. This knockdown-
mediated decrease in OCT4 and SOX2 supports the evidence
that IGFBP-6 enhances pluripotency of PMSCs. In contrast,
the significant early increase in Pax3/7 with IGFBP-6 silenc-
ing supports an earlier commitment towards the myogenic
lineage. The increase in Pax3/7 could be due to the presence
of a greater availability of extracellular IGF-2 (Supplementary
Figure 7B), which is being recruited to the commitment
process or could be due to actions independent of IGFBP-
6. In contrast, the muscle differentiation markers (MyoD,
MyoG, and MHC) were all reduced after IGFBP-6 knock-
down, suggesting that IGFBP-6 is required for the muscle
differentiation process. Therefore, IGFBP-6 supports PMSC
multipotency and its loss leads to an early commitment
towards the myogenic lineage but delayed differentiation.

Studies in various cell lines have shown mostly an inhib-
itory action of IGFBP-6 mainly via IGF-2-dependent actions.
In L6A1 myoblast, IGFBP-6 inhibited muscle differentiation
induced by IGF-2 but not IGF-1 [45]. Previous reports on the
effects of IGFs on muscle differentiation were using mouse
cell lines [46-49]; thus, our study is one of the first to show
the effects of IGFBP-6 on human mesenchymal stem cell dif-
ferentiation into skeletal muscle in vitro.

Overall, we have demonstrated in this study that IGFBP-6
has both endogenous and exogenous actions that can promote
or inhibit PMSC multipotency or differentiation. Exogenous
IGFBP-6 exposure facilitates muscle lineage commitment
while a prolonged exposure can inhibit late stage differentia-
tion. Therefore, endogenous IGFBP-6 is required for
maintaining multipotency and delaying commitment and
enhancing late stage differentiation.

In conclusion, PMSCs are able to differentiate into skel-
etal muscle cells under appropriate environment or niche
conditions and that this process is enhanced by the increase
in extracellular IGFBP-6 and delayed by silencing the
endogenous expression as evident by alterations in both
pluripotent and muscle differentiation markers (Figure 11).
A balance between endogenous and exogenous levels of
IGFBP-6 is required for the complete muscle differentiation
process, and since IGFBP-6 has intracellular as well as
extracellular effects, whether the response occur dependent
or independent of IGFs (particularly IGF-2) will be fur-
ther delineated.
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Supplementary Materials

Supplementary Figure 1: PMSC Isolation from 15 weeks pre-
term placenta. (A) The dissected villous tissue was digested
enzymatically and cells were separated using a discontinuous
Percoll gradient. Five cell fractions were typically obtained
corresponding to five different densities and cells were iso-
lated from layers 3, 4, and 5. (B) Phase contrast images of
the isolated PMSCs, from all three layers, grown in culture
after 4 weeks. (C) PMSCs from passage 4 of all three layers
were positive for CD73 and CD105 (>98%), and were nega-
tive for CD117 (<1%) (measured by flow cytometry). Flow
cytometry histograms are representative of all 3 layers from
3 placental tissue as they showed the same results. Supple-
mentary Figure 2: IGFBP-6 levels in response to IGFBP-6
supplementation in PMSCs under skeletal muscle differenti-
ation conditions. (A) PMSCs cultured under muscle differen-
tiation conditions showed increased IGFBP-6 protein levels,
using western blots, in response to different doses of recom-
binant human IGFBP-6 protein supplementation with
375 ng/mL and 450 ng/mL having the highest band intensity.
(B) IGFBP-6 secretion into the media was increased with the
supplementation of recombinant human IGFBP-6 protein
(375ng/mL) that reduced by time and was lower compared
to control at day 3. Data is presented as the mean + SEM of
3 independent experiments. Two-way ANOVA with Bonfer-
roni’s multiple comparison test was performed to determine
***P <0.001. Supplementary Figure 3: PMSCs cultured
under muscle differentiation conditions showed the forma-
tion of multi-nucleated fibers and lower cell count compared
to control. (A) At 14 days post-differentiation, PMSCs are
immunoreactive for MHC (Red-Alexa 568, A-568 nm) with
cell alignment and multi-nucleated fiber formation (5X).
Nuclei, were stained with Hoechst dye (blue, A =340 nm).
(B) PMSCs grown in muscle differentiation media showed
multi-nucleated skeletal muscle fiber formation (40X). Black
arrows indicate the multi-nucleated muscle. (C) PMSCs
under muscle differentiation conditions showed lower cell
count per field compared to control. Data is presented as
the mean + SEM of 15 different fields from 3 independent
experiments. One-way ANOVA followed by a Student’s
t-test, **P < 0.01. Supplementary Figure 4: PMSCs cultured
under skeletal muscle differentiation conditions showed a
decreased frequency of cells with high ALDH-activity. Repre-
sentative flow cytometry dot plots showing the frequency of
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PMSC with high ALDH-activity with Aldefluor and an
inhibitor of ALDH (DEAB) or with ALDH alone when
cultured under control (10% FBS) or muscle differentia-
tion conditions at (A) day 1, (B) day 3, (C) day 7, (D)
and day 14. Supplementary Figure 5: IGFBP-6 treatment
increased the frequency of PMSCs with high ALDH-activ-
ity. Representative flow cytometry dot plots with Aldefluor
and an inhibitor (DEAB) or with ALDH alone in PMSCs
cultured under muscle differentiation conditions with or
without IGFBP-6 addition at (A) day 1, (B) day 3, (C)
day 7, (D) and day 14. Supplementary Figure 6: IGFBP-6
siRNA in PMSCs cultured under muscle differentiation
conditions decreased the frequency of cells with high
ALDH-activity. Representative flow cytometry dot plots
with Aldefluor and an inhibitor of ALDH (DEAB) or with
ALDH alone of PMSCs treated with IGFBP-6 siRNA at
(A) day 1, (B) day 3, and (C) day 7 under muscle differ-
entiation conditions. Supplementary Figure 7: IGF-2 secre-
tion in PMSCs treated with IGFBP-6 or IGFBP-6 siRNA
under muscle differentiation conditions. (A) IGF-2 levels
secreted into the media were significantly decreased at
each time point after IGFBP-6 addition compared the con-
trol. (B) After treatment with siRNA against IGFBP-6
compared to controls (scrambled siRNA), IGF-2 levels
increased at the first 48 hours with siRNA treatment
applied every 3 days. Data is presented as the mean + SEM
of 3 independent experiments. Two-way ANOVA with
Bonferroni’s multiple comparison test was performed to
determine *P < 0.05, **P < 0.001. (Supplementary materials)
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