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Abstract 

Cancers exist within complex microenvironments formed by heterogeneous cell types. 

This diversity creates significant challenges for detection, diagnosis and treatment. 

Mass spectrometry-based proteomics is a powerful approach capable of 

characterizing complex biological systems which are characteristic of cancer biology. 

In this thesis, proteomics was utilized to answer several questions related to ovarian 

cancer diagnosis and detection, and the effects of NODAL, an embryonic morphogen, 

on the breast cancer secretome and stromal cell recruitment. First, I compared 

multiple sample preparation techniques and found high-pH/low-pH fractionation to 

yield the greatest proteome coverage over commonly used approaches. Second, I 

compared the proteomes from two ovarian cancer subtypes (high-grade serous and 

endometrioid) for which histological discrimination remains difficult in a proportion of 

cases. I documented several unknown proteins, including KIAA1324, which were 

validated and confirmed to improve the differential diagnosis of endometrial ovarian 

cancer. Third, I extensively characterized extracellular vesicle proteomes from 

biological fluids (conditioned media, plasma and ascites) to catalogue potential 

biomarkers associated with malignant ovarian cancer. I detected many factors 

associated with advanced stage, high-grade serous ovarian cancer including CFHR4, 

MUC1, APCS and PZP that may be useful for early detection. Last, I characterized 

the global effects of the Transforming Growth Factor-β superfamily member NODAL 

on the breast cancer secretome and stromal cell recruitment in vitro. I found a 

previously unknown role for NODAL in modulating pro-inflammatory factors, including 

CXCL1 and IL6 that were correlated with multipotent stromal cell recruitment. In 

summary, this work represents a significant contribution to the histological 

assessment and detection of ovarian cancer and our understanding of the malignant 

properties of NODAL within the breast cancer microenvironment. 
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1.1 General introduction 

Cancer is a complex and heterogeneous group of diseases characterized by 

dysregulated cell growth, metastatic dissemination and the disruption of healthy 

tissue and organ function. The lifetime risk of developing cancer in the US is 38.4% 

with an average 5-year survival of 66.9% [1]. In Canada, this risk is even greater 

with 49% of males and 45% of females expected to develop cancer in their lifetime 

[2]. Cancer initiation and development is linked to genomic alterations incurred by 

normal cells during replication and exposure to environmental stresses. 

Prerequisites or “hallmarks” underlying malignant transformation include 

perturbations in carefully regulated cellular processes involving replicative 

immortality, Epithelial-Mesenchymal Transition (EMT), and sustained 

angiogenesis [3]. While these intrinsic alterations are critical for cancer initiation, 

extrinsic factors are similarly essential for tumour progression by mediating 

communication between cancerous and non-transformed host cells within the 

tumour microenvironment (TME) [4]. Characterizing the TME may lead to improved 

diagnostics and therapeutics, however this task is not trivial given the complexity. 

High resolution mass spectrometry (MS)-based proteomics is a powerful technique 

which can achieve quantitative information on thousands of proteins and provide 

insight into biological systems. In this thesis, I employed MS-based proteomics to 

improve the differential diagnosis of endometrioid and high grade serous ovarian 

cancer subtypes, to discover biomarkers for detecting high grade serous ovarian 

cancer in bio-fluids, and to characterize the role of NODAL in multipotent stromal 

cell (MSC) recruitment in breast cancer. 

1.2 Ovarian cancer  

Collectively, ovarian cancer (OC) is a broad and diverse group of diseases with 

disparate origins traced to sex organs of the female reproductive system [5]. In the 

United States (US), OC is the 5th most lethal female cancer and most lethal 
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gynecological disease. Although the lifetime risk of developing OC is low (1.27%), 

the 5-year survival is relatively poor (46.5%) [1]. Endometrial cancer (cancer of the 

uterine corpus), for comparison, is the most common gynecological cancer in the 

US with a lifetime risk developing of 2.86% but 5-year overall survival of 81.1% [1]. 

Cervical cancer, however, comprises the greatest disease burden worldwide 

(incidence and total deaths) of all gynecological cancers [6]. This is largely 

attributed to the limited resources of low- to middle-income countries for prevention 

and early detection that is routinely practiced in health care systems of developed 

regions. Unfortunately, regardless of region, there is currently an unmet need for 

better detection and treatment of OC globally.  

 Basic anatomy of the female reproductive system  

The female reproductive system is comprised of several internal and external sex 

organs which function in concert to regulate oocyte production, maturation and 

fertilization, and support embryonic (fetal) development [7]. The internal sex 

organs, located within the lower abdomen (intraperitoneal cavity), are comprised 

of two ovaries (left and right sides) connected to the uterus by separate fallopian 

tubes (Figure 1.1) [7]. The ovaries are surround by an epithelium and contain an 

inner mass made up of stromal cells and follicles [7]. Within each ovary, there are 

a finite number of follicles made up of a centrally located oocyte (egg) surrounded 

by cumulus cells, granulosa cells and an outer layer of theca cells [8]. 

Approximately once every month, until menopause, a mature follicle will rupture 

from the ovarian surface epithelium (OSE) and release (ovulate) an oocyte [7]. At 

the end of the fallopian tube, finger like projections (fimbriae) grasp the ovary and 

capture ovulated oocytes. Once captured, oocytes are transported to the uterus 

through the fallopian tube which is comprised of several cell types with specialized 

functions. The inner fallopian tube epithelium is lined with ciliated and secretory 

(glandular) cells which support egg transport and tubal fluid synthesis, respectively 

[5]. Stromal and contractile smooth muscle cells make up the inner region and 

outer layer of the fallopian tube, respectively. If an egg becomes fertilized (zygote) 
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during the journey through the fallopian tube over several days, it will implant into 

uterine wall (endometrium) and begin developing into a fetus [7]. The endometrium 

is a specialized organ comprised of epithelial cells, stromal cells and blood vessels 

and is part of the  maternal-fetal interface (placenta) which is critical for exchange 

of nutrients and waste to and from developing fetus [9]. While these organs are 

integral for reproduction, perturbations within various cells types can lead to the 

development of abnormal lesions and ovarian malignancies [5,7]. 
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Figure 1.1 Anatomy of female reproductive system 

The female sex organs are comprised of the ovaries (b), fallopian tubes (a) and 

uterus (c). Each organ contains specialized cell types which facilitate reproduction. 

(a and b) During ovulation, a follicle will rupture form the ovarian surface epithelium 

(OSE) and be captured by fimbrae connected to the fallopian tube. Ciliated and 

secretory epithelial cells lining the fallopian tube are important for egg 

transportation and fertilization. (c) If an egg becomes fertilized during this journey, 

the zygote will implant into the uterine wall or endometrium. EME endometrial 

epithelium, EMS endometrial stroma. Adapted by permission from RightsLink 

Permissions Springer Customer Service Centre GmbH: Springer Nature. Nature 

Reviews Cancer. The disparate origins of ovarian cancers: pathogenesis and 

prevention strategies, Anthony N. Karnezis, Kathleen R. Cho, C. Blake Gilks, 

Celeste Leigh Pearce, David G. Huntsman (2016) 1:65-74. 
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 Staging 

Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and 

accounts for approximately 90% of all diagnoses in developed countries [16]. 

During ovarian cancer progression, tumours may spread to neighboring organs 

through direct contact or passively disseminate as single cells or spheroids via fluid 

known as ascites within the intraperitoneal cavity [10]. The intraperitoneal wall 

(peritoneum) and omentum are the most common sites affected by metastatic 

ovarian cancer followed by the colon, liver, and kidneys. In rare cases, ovarian 

cancer metastasizes to the lungs, brain, skin, spleen and lymph nodes [11].  

Staging is critical part of all cancer care and involves documenting the extent of 

cancer progression to better predict patient prognosis and guide treatment 

decisions [12]. For ovarian cancers, two systems are used for staging; the 

International Federation of Gynecology and Obstetrics (FIGO) and the American 

Joint Committee on Cancer (AJCC) Tumour Node Metastasis (TNM) [13]. The 

FIGO staging system is more widely adopted and recognized worldwide but shares 

a number of similarities with TNM staging.  

Individual components monitored by the TNM scoring system include tumour (T) 

size and spread, the presence of cancer cells in the lymph nodes (N), and 

metastasis (M) to distant organs. A cancer patient’s overall stage is comprised of 

the number and/or letter assigned to each TNM component. Higher TNM 

values/letters are associated with later stages and therefore greater disease 

burden. In patients with stage I ovarian cancer, tumours are confined to the 

ovary(ies) and/or fallopian tube(s). During stage II disease, tumour growth has 

spread or invaded into adjacent organs such as the bladder, uterus, colon and/or 

formed primary peritoneal cancer. At stage III, small cancer growths (<2cm) are 

present on the surface of organs beyond the pelvic region such as the spleen or 

liver and cancer cells may also be found in the lymph nodes. In patients with stage 

IV cancer, the last and most deadly stage, cancer cells can be detected in fluid 
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surrounding the lungs (pleural effusions) and/or tumours have formed in distant 

organs such as the liver, lungs, skin, brain, spleen, lymph nodes and in rare cases, 

bone [11]. Patients with early stage invasive EOC (I and II) have much better 

prognosis with 5-year overall survival rates ranging from 70-90% [14]. 

Unfortunately, most invasive EOCs are detected during later stages for which the 

5-year overall survival drops significantly (39-59% for stage III and 17% for stage 

IV). While lifetime risk of developing ovarian cancer is low, the risk of dying, in 

absolute terms, is quite high at 0.93% [1].  

 Subtypes 

In addition to staging, subtype classification based on morphological and molecular 

features is another important factor for diagnosing and treating cancer [15]. There 

are 5 major histotypes of invasive EOC and two histotypes of borderline disease 

(serous and mucinous) [17]. The 5 invasive EOC subtypes are high grade serous, 

low grade serous, endometrioid, clear cell and mucinous (Table 1.1) [18]. Up to 

30% of all EOC cases are diagnosed as endometrioid, clear cell or mucinous. 

These cancers are generally benign or slow growing with intermediate to 

favourable prognosis and are also referred to as type I tumours [15]. Unfortunately, 

the majority of patients (~70%) are diagnosed with high grade serous ovarian 

cancer (HGSC) or type II tumours which comprise the most aggressive and 

deadliest form(s) of EOC. Notably, mutations in TP53 are prevalent in 95% of 

HGSC given the central role in dictating cell cycle arrest and apoptosis [19–22]. 

Indeed, TP53 is the most frequently mutated gene in cancer. Diagnosis and 

subtype identification of tumour samples is initially determined by a pathologist 

however, in ~10% of cases, EOC may be misclassified due to similarities in 

histology [23]. Of note, this is particularly problematic when differentiating (high-

grade) endometrioid ovarian cancer (EC) from HGSC and low grade serous 

ovarian cancer (LGSC) from HSGC [23,24]. 
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 Pathogenesis 

In terms of pathogenesis, histopathological and genetic profiling has recently 

identified distinct precursor lesions for type I and type II tumours [15]. Until recently, 

EOC was predominately believed to arise through invagination and neoplastic 

transformation of ovarian surface epithelial (OSE) cells following repeated 

ovulation. However, the incessant-ovulation hypothesis is less favoured with new 

evidence tracing the origins of EOC to the fallopian tube and endometrial 

epithelium [5]. Indeed, the majority of HGSC are associated with Serous Tubal 

Intraepithelial Carcinomas (STICs) primarily located within fimbriae (Figure 1.2) 

[25]. STICs are derived from fallopian tubal epithelial cells (FTECs) and 

importantly, frequently share identical TP53 mutations with their HGSC 

counterparts [26,27]. Moreover, HGSC may arise from ectopic ciliated and/or 

secretory fallopian tube epithelium (endosalpingiosis) or cortical inclusion cysts 

(CICs) of the ovary. Endosalpingiosis and CICs are believed to arise due to 

invagination of the OSE or tubal-type epithelium following ovulation [28]. The rarer 

and less aggressive LGSC and serous borderline tumours may also originate from 

CICs. However, unlike HGSC, these tumours are characterized by intact and wild-

type TP53 expression and patchy CDKN2A staining [29]. EC and clear cell 

carcinoma (CCC), in contrast, are associated with atypical endometriosis 

(endometriomas) of the ovary [30–33]. Endometriomas, like endosalpingiosis, are 

ecotopic endometrial tissue derived from ciliated and/or secretory cells. 

Retrograde menstruation, and possibly endometrial remnants, are thought to be 

the primary source of endometriomas. Moreover, recent work by Cochrane et al. 

suggests EC and CCC may be derived from secretory and ciliated endometrial 

epithelial cells, respectively [33]. Interestingly, whereas STICs give rise to HGSC, 

fallopian tube cancers are extremely rare. Hence, genotoxicity of the fallopian tube 

is theorized to prevent ectopic implantation of embryos and coincidentally, tumour 

growth [5]. Conversely, the ovary has been suggested to contain supportive 

stromal cells and factors which can promote tumour growth [5]. Indeed, metastasis 
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to the ovary has been linked to breast, colon, stomach and appendiceal cancers 

[34]. How EOC preferentially co-opts the ovaries during progression is not 

understood and improved characterization of this close association may reveal 

targets for inhibiting tumour growth. 
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Table 1.1 Features of main epithelial ovarian cancer (EOC) subtypes 

 

  



12 

 

 

 

 

Figure 1.2 Anatomical overview of cell types and precursor lesions which 

give rise to EOC subtypes. 

(a) Cells from different origins of the female reproductive system give rise to 

ovarian cancer. Precursor lesions and signalling pathways underlying progression 

of individual EOC subtypes are shown. (b) Proposed roles of ovarian and fallopian 

tube stromal cells on ovarian cancer progression.  Adapted by permission from 

RightsLink Permissions Springer Customer Service Centre GmbH: Springer 

Nature. Nature Reviews Cancer. The disparate origins of ovarian cancers: 

pathogenesis and prevention strategies, Anthony N. Karnezis, Kathleen R. Cho, 

C. Blake Gilks, Celeste Leigh Pearce, David G. Huntsman (2016) 1:65-74. 
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 Treatments 

HGSC accounts for ~70% of all EOC cases and ~90% of advanced (stage III/IV) 

disease [35]. First line treatments for advanced ovarian cancer remain limited and 

require aggressive surgery combined with chemotherapy [36]. Surgery should be 

performed by a gynecological oncologist and generally involves tumour debulking, 

hysterectomy (removal of the uterus), bilateral salpingo-oophorectomy (removal of 

the ovaries and fallopian tubes), and omentectomy [37]. When tumour debulking 

is not feasible due to risk of patient morbidity associated with extensive surgery, 

neoadjuvant (preoperative) chemotherapy may be administered followed by 

interval debulking [37]. Taxanes (i.e. paclitaxel, docetaxol) and platinum based 

compounds (i.e. carboplatin, cisplatin) are standard chemotherapeutics 

administered following surgery. These drugs inhibit cellular proliferation by 

stabilizing microtubules (taxanes) and crosslinking DNA to inhibit repair and 

replication (platinum based compounds) [38,39]. While short term responses are 

often achieved with aggressive treatment, tumours often develop resistance [40].  

Accurate molecular and  histotype classification is becoming increasingly relevant 

for the management and treatment of EOC [15]. For example, germline mutations 

in breast cancer susceptibility type 1 and/or 2 (BRCA1/2)  are currently the single 

best predictors of developing ovarian and breast cancer [41]. Indeed, BRCA1 and 

BRCA2 mutations increase the likelihood of developing ovarian cancer by 44% 

and 17% respectively. In breast cancer, the risk is even greater at 72% for BRCA1 

and 69% for BRCA2 carriers [42]. Therefore, females bearing germline BRCA1/2 

mutations may undergo risk reducing prophylactic salpingo-oophorectomy and/or 

mastectomy (removal of the breasts) to prevent ovarian and breast cancer, 

respectively. Moreover, up to 33% of HGSC cases are estimated to exhibit 

alterations in BRCA1/2 due to germline and somatic mutations or epigenetic 

silencing [37]. Notably, both BRCA1/2 and Poly (ADP-ribose) polymerase (PARP) 

PARP carry out homologous recombination mediated DNA repair and maintain 
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genome integrity [43,44]. Together, these findings have led to the clinical use of 

PARP inhibitors in BRCA1/2 defective cancers like HGSC by exploiting the 

concept of synthetic lethality [45]. In essence, the combination of BRCA1/2 defects 

and PARP inhibition impairs cancer cells ability to repair DNA damage and results 

in cell death. In contrast, healthy cells without DNA damage are largely spared. 

Indeed, clinical trials investigating PARP inhibitors in HGSC have demonstrated 

impressive increases in progression free survival (PFS) with few significant side 

effects [46]. However, significant increases in PFS with PARP inhibitors such as 

Olaparib did not translate into overall survival (OS) but combination therapies, 

dosing and stratification of patient subgroups are still be explored to realize their 

full potential. 

Alternatively, the PI3K/AKT/mTOR pathway is frequently activated in EC and CCC  

and may be potential target when cancers do not respond to chemotherapy [44]. 

Furthermore, estrogen receptor (ER) and/or progesterone receptor (PR) 

expression has been reported in EOC, in particular EC and HGSC. High ER and 

PR expression was highest in EC and associated with increased disease free 

survival [47]. Unfortunately, clinical studies targeting PR in EC are lacking, in part 

due to side effects and poor specificity of progesterone receptor modulators [48]. 

Given the limited treatment options for EOC, additional studies focused on 

hormonal therapy may improve patient outcomes. 

 Detection and diagnosis 

According to the National Institutes of Health Biomarkers Definitions Working 

Group, a biomarker is defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, 

or pharmacologic responses to a therapeutic intervention” [49]. In terms of 

biomarkers used for detecting or diagnosing diseases like cancer, sensitivity and 

specificity are standard metrics used to assess their performance. Sensitivity 

corresponds to the true positive rate or percentage of individuals within the 
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diseased population which test positive for a given biomarker. Alternatively, the 

specificity of biomarker indicates the percentage individuals which correctly test 

negative for the disease in question. 

In the context of ovarian cancer, early stage disease is often asymptomatic and 

therefore difficult to detect. Moreover, symptoms associated with disease 

progression are generally non-specific and primarily include abdominal pain and 

discomfort due to accumulation of ascites within the intraperitoneal cavity and/or 

malignant transformation of the fat pad (omentum) covering the bowel and 

abdominal cavity [10].  

Currently, there are no FDA approved biomarkers for ovarian cancer screening; 

however cancer antigen 125 (CA-125) levels in the blood are widely used to aid in 

diagnosis, monitor disease progression and treatment response [50]. CA-125 is 

derived from the transmembrane glycoprotein Mucin 16 (MUC16), and is typically 

elevated in ~83% of EOC cases [50]. Unfortunately, several issues primarily 

related to sensitivity and specificity make CA-125 unsuitable as a single agent for 

early screening [50]. Firstly, CA-125 is only elevated in ~67% of patients with stage 

I disease when using a less stringent cut-off of 30 U/mL [51]. Secondly, non-

malignant/benign gynecological conditions can increase CA-125 levels 

necessitating the need for surgical follow-up [51]. Lastly, CA-125 levels fluctuate 

between post-menopausal women depending on race/ethnicity, age, 

hysterectomy, smoking history and obesity and thus confound the use of a set cut-

off to establish disease status [52]. For example, CA-125 significantly increases 

with age and is higher in Caucasians compared to African Americans and other 

minorities. 

In addition to CA-125, highly sensitive imaging methods like transvaginal 

ultrasound (TVUS) can detect abnormal ovarian masses/features. However, 

invasive follow-up surgeries/biopsies associated with significant patient discomfort 

remain essential for accurate diagnosis by a pathologist. Moreover, the majority of 
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these surgeries do not reveal malignant disease with the ratio of surgeries to the 

number of cancers detected by TVUS being ~19:1 [53]. For reference, two large 

scale trials, the Prostate, Lung, Colorectal, Ovarian cancer screening trial (PLCO) 

in the US and UK Collaborative Trial of Ovarian Cancer Screening trial 

(UKCTOCS) evaluated the role CA-125 and TVUS screening on reducing ovarian 

cancer deaths [54,55]. Both trials monitored tens of thousands of females over a 

number of years. Unfortunately, results from these trials did not achieve a 

significant reduction in overall mortality based on their initial analyses. In the PLCO 

trial, a substantial number of false-positive screening results were reported in the 

intervention group (CA-125 plus TVUS) that were later associated with follow-up 

surgery related complications [55]. Surprisingly, the authors did not observe a 

stage shift in detecting early ovarian cancer in the intervention group compared to 

usual care. The UKCTOCS trial, on the other hand, noted a significantly higher 

proportion of cases with low volume disease (stage I, II, IIIa) in the multimodal 

screening group (CA-125 plus TVUS) compared to no screening (40% versus 

26%) [54]. Initially, the authors reported a small but insignificant mortality reduction 

in the screening groups (CA-125 plus TVUS or TVUS only) compared to standard 

care (no screening) [54]. However, an overall mortality reduction of 20% (between 

years 0 to 14 after screening) in favour of multimodal screening (CA-125 plus 

TVUS) was reached when subgroup analysis was performed excluding prevalent 

cases (females likely harbouring ovarian cancer prior to enrolment). Together, 

these studies highlight the limitations associated with CA-125 and TVUS screening 

modalities and suggest that longer follow-up studies may be needed to achieve 

significant reductions in mortality. 

Consequently, the lack of clinically available screening strategies remains a major 

bottleneck for improving survival of ovarian cancer patients.  Given the absence or 

limited number of biomarkers for EOC screening and diagnosis, a substantial 

amount of research effort is focused on identifying/developing new or improved 

markers. For example, human epididymis protein 4 (HE4) is another clinically 



17 

 

 

 

approved marker with sensitivity and specificity similar to CA-125 but has not been 

widely implemented [56]. Moreover, Cramer et al. surveyed 49 markers in a large 

cohort of malignant and non-malignant plasma samples from the PLCO trial [57]. 

When using a sensitivity cut-off of 95%, CA-125 followed by HE4 were the best 

predictors of disease status with specificities of 0.73 and 0.54, respectively. In 

addition to single biomarkers, several assays have been developed which monitor 

a panel of plasma proteins and achieve greater performance than CA-125 or HE4 

alone. These products include OvaSure, OVA1 and OvPlex and can aid in the 

diagnosis of EOC such that patients may not have to undergo surgeries for benign 

conditions [56]. Very recently, a study published in the journal Science reported a 

multi-analyte blood test capable of achieving very high detection rates for 8 

different cancers [58]. This test, called CancerSEEK, monitors ~60 amplicons in 

cell-free DNA and several proteins in the blood. Impressively, CancerSEEK 

achieved sensitivities ranging from 69-98% (98% for ovarian cancer) at a 

specificity >99% and could also predict the anatomical location of cancers. Studies 

like this highlight the significant challenges associated with low signal to noise in 

detecting tumour-derived products that are present in minute quantities. However, 

sensitive assays which monitor multiple biomarkers may hold the future of 

screening tools. 

1.3 Breast cancer  

Breast cancer is second leading cause of cancer related deaths in females with a 

lifetime risk of developing breast cancer (invasive and ductal carcinoma in situ) of 

14.73% (12.41% for invasive disease only) [1]. Although the incidence of breast 

cancer is high in the US, 89.5% of patients are alive after 5-years. In absolute 

terms, the lifetime risk of dying from breast cancer for females in the US is 2.62%. 

Screening strategies have significantly improved early detection and treatment, 

however metastatic disease remains difficult to cure. In terms of risk factors, both 

breast and ovarian cancers have several in common even though they originate in 
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anatomically different locations. For example, early age of first menarche 

(menstruation), non-parous (non-child bearing) females, and delayed menopause 

are all associated with increased risk of developing breast and ovarian cancer. 

Conversely, early age of first childbirth and breastfeeding are protective against 

breast cancer and long term oral contraceptive use are protective against 

developing EOC [59–61]. Intriguingly, the most aggressive forms of breast and 

ovarian cancer share similar genetic profiles [19]. 

 Basic anatomy of the breast 

The breasts contain a branching of network glandular structures (mammary 

glands) within a vascularized layer of fatty tissue that is externally supported by 

connective tissue (Figure 1.3) [62]. The primary function of the breasts (mammary 

glands) are milk production (lactation) to support newborns. These organs are 

unique to mammals and undergo extensive morphogenesis/remodelling 

throughout embryonic development, puberty, and pregnancy [63]. Within each 

breast, the mammary gland forms a hollow tree like network of ~15-20 lobes or 

terminal end buds (TEBs) which radiate outward from the nipple. These tubular 

structures (mammary ducts) are made up of a bilayer of inner luminal and outer 

basal epithelial cells that arise through proliferation and elongation into the fat pad 

throughout puberty [63,64]. During pregnancy, the TEB luminal epithelium 

proliferates and differentiates into secretory (milk producing) cells comprised of 10-

100 alveoli. While breastfeeding, basal myoepithelial cells surrounding alveoli 

contract to expel milk into the ducts. After breastfeeding is no longer required, 

alveoli undergo massive apoptosis to remove up to 80% of the epithelium [64]. 

Strikingly, this dynamic cycle of proliferation, differentiation and apoptosis is tightly 

regulated by a number of extracellular factors and can be repeated many times 

over several decades [64].   
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Figure 1.3 Anatomy of the breast. 

The breast is comprised a branching network of ducts which terminate into 

lobular units surrounded by stromal and adipose tissue. Each lobular unit 

(mammary gland) contains an inner and outer layer of luminal epithelial and 

myoepithelial cells, respectively.  Adapted from the McMaster Pathophysiology 

Review (MPR) website: http://www.pathophys.org/breast-cancer/. 
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 Staging 

Cancer staging is a critical component of patient management. Similar to ovarian 

cancer, breast cancer staging is also based upon the AJCC TNM system with TNM 

components assigned a value/letter corresponding to disease progression at 

diagnosis [60]. For example, T1 corresponds to the presence of a tumour <2 cm 

across while a score of T4 includes tumours of any size that have grown into the 

chest wall or skin. In addition, the AJCC TNM staging system was recently updated 

to include tumour grade and estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor 2 (HER2) expression status [65]. Tumour grade is 

based on how normal and or undifferentiated the cancer cells appear with less 

differentiated cells often associated with advanced disease. 

 Subtypes 

Breast cancer is primarily comprised of 4 intrinsic subtypes: luminal A, luminal B, 

HER2-enriched and triple negative breast cancer (TNBC) (Table 1.2) [66]. Luminal 

breast cancers express ER and PR and accordingly, are classified as hormone 

receptor (HR) positive. Of note, luminal A breast cancers are HER2- while luminal 

B can be either HER2- or HER2+. For reference,  the Surveillance, Epidemiology, 

and End Results (SEER) breast cancer registry in the US population revealed 83% 

of all breast cancers diagnosed are HR+ [67]. When accounting for HER2 

expression, 72.7% and 10.3% of HR+ breast cancers were HER2- and HER2+, 

respectively. A similar report by the North American Association of Central Cancer 

Registries found 72.1% and 10.3% of all HR+ breast cancer to be HER2- and 

HER2+, respectively [68]. From these findings, the luminal A subtype is the most 

predominate and fortunately, exhibits the highest OS of all invasive breast cancers. 

Luminal B cancers, in contrast, are less frequent, characterized by high levels of 

proliferating Ki67+ cells and have a worse prognosis [69–71]. Compared to luminal 

cancers, HER2-enriched tumours are rarer and account for ~4.6% of cases [67]. 
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This subtype typically lacks ER and PR, is highly aggressive and associated with 

low OS. The last main subtype, TNBC, lacks ER, PR, and HER2 and comprises 

the most heterogeneous form of breast cancer. TNBC  accounts for ~12.2% of all 

cases and based on molecular profiling, can be divided into two subgroups, basal 

A and basal B (or claudin-low) [67,72]. Like HGSC, TP53 mutations are found in 

up to 84% of all TNBCs [73]. Of note, inflammatory breast cancer is another form 

that is extremely rare but highly proliferative and aggressive [74]. It is characterized 

by swelling and redness of breasts and associated with a higher rate of recurrence 

and worse OS compared to non-inflammatory locally advanced breast cancer 

(Stages IIB, IIIB,IIIA) [75]. 
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Table 1.2 Features of main invasive breast cancer subtypes 
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 Pathogenesis 

Ductal Carcinoma In Situ (DCIS) accounts for about 1 in 5 of all breast cancers 

diagnosed and is the precursor to invasive breast cancer (IBC) [82]. DCIS is 

characterized by confined hyperplasia of ductal epithelial cells and when detected, 

5-year survival rates are nearly 100%. Alternatively, Lobular Carcinoma In Situ 

(LCIS) is a more rare form of breast cancer that involves neoplasia of the secretory 

cells lining the mammary glands. DCIS which proceeds to invade through the 

myoepithelium and breach the basement membrane is termed Invasive Ductal 

Carcinoma (IDC). IDC accounts for the majority of breast cancer cases and is 

typically detected when localized to the breast and axillary lymph nodes, chest wall 

and skin of the breast [2]. Metastatic breast cancer (mBC) is the rarest and most 

aggressive form which occurs when cancer cells travel through the bloodstream or 

lymphatic system and form secondary tumours at distant sites. Bone, liver, lungs 

and brain are the main organs of breast cancer metastasis [82]. Patients with 

metastasis to the bone have better prognosis compared to those with lung and 

liver and brain metastases are the least frequent but most lethal [76]. In terms of 

origin, gene expression patterns for luminal and TNBC subtypes more closely 

resemble those of ductal and myoepithelial cells, respectively, however EpCAM+ 

luminal epithelial cells are main progenitors from which most breast carcinomas 

arise [77–79].  

 Detection and diagnostics 

In contrast to ovarian cancer, breast cancer screening has had a significant impact 

on patient mortality and is performed via routine mammograms in females aged 

50-55 or older [80]. Even more so, the advent of 3D mammography (breast 

tomosynthesis) has further increased detection rates while reducing the false 

positives associated with 2D mammography [80]. Self-examination of the breast 

for masses, irritation and discoloration can also aid in early detection.  Taken 
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together, breast cancer screening has significantly reduced breast cancer mortality 

and rates of stage II disease or higher [81]. A number of gene-expression assays 

are also clinically available to aid predicting recurrence and response to therapy 

for breast cancer. For example, OncotypeDx™ – a genomic test which measures 

the expression of a panel of 21 genes – prognosticates the likelihood of recurrence 

and predicts the likelihood of benefit from chemotherapy in patients with node-

negative, early-stage, ER positive breast cancer treated with surgery and/or 

hormonal therapy [66]. 

 Treatments 

In cases of DCIS, females may opt for breast conserving surgery or mastectomy 

depending on the tumour size and spread [82]. Lymph node removal may be 

required depending on sentinel lymph node biopsy results and radiation and/or 

adjuvant hormone therapy may be administered. Although luminal breast cancers 

are HR positive, hormone therapy including selective estrogen receptor 

modulators (SERMs, i.e. tamoxifen) and aromatase inhibitors are largely 

ineffective in Luminal B cancers for which chemotherapy may be appropriate. 

Surgery plus chemotherapy is standard treatment for TNBC, inflammatory breast 

cancer and HER2-enriched tumours. However, the monoclonal antibody 

(trastuzumAb/Herceptin™) which targets the HER2 receptor is therapeutically 

effective in HER2-enriched subtypes when combined with chemotherapy but 

relapse rates are high [83]. TNBC lack HR and HER2 expression and consequently 

are the most difficult to target. Coincidentally, TNBCs are frequently BRCA1/2 

defective and therefore susceptible to PARP inhibitors like HGSC. Indeed, ongoing 

and recently completed trials exploring the potential of PARP inhibitors as a 

monotherapy or combination therapy have shown positive increases in PFS [84].  
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1.4 Breast cancer plasticity 

Cellular plasticity exists throughout embryonic development and refers to the ability 

of cells to adapt to and modulate their surrounding microenvironment [85]. Cellular 

plasticity is also characterized by the capacity for stem cells to undergo self-

renewal and multi-lineage differentiation and remains important for tissue 

repair/homeostasis. However, during development and in adult tissues, cellular 

plasticity becomes increasingly restricted [86]. For example, during mammary 

gland development, mammary stem cells (MaSCs) within differentiate into luminal 

and basal epithelial cells which subsequently undergo rapid expansion and 

apoptosis throughout and following pregnancy, respectively [63]. Although cellular 

plasticity is tightly regulated, during (breast) cancer progression, terminally 

differentiated cells can acquire plastic, stem-like phenotypes through genetic, 

epigenetic and microenvironmental mechanisms which in turn confer selective 

advantages to intrinsic and extrinsic stresses such as TP53 inactivation and low 

oxygen (hypoxia) [86]. For instance, in transgenic mouse models, oncogenic 

PIK3CAH1047R expression in luminal cells permitted multi-lineage luminal-to-basal 

differentiation and recapitulation of all main breast cancer subtypes (luminal, HER2 

and basal-like) in mouse xenografts [87]. In basal cells, although oncogenic 

PIK3CAH1047R expression promoted basal-to-luminal differentiation, oncogenic 

PIK3CAH1047R expression combined with TP53 deletion was required to form breast 

tumours with characteristics of the most aggressive subtypes (basal-like TNBC). 

Currently, it is not clear whether stem-like breast cancer cells arise from tissue 

resident progenitors or differentiated ductal cells [85,88]. Regardless, stem-like 

breast cancer cells have been implicated in cancer initiation, metastasis and 

secondary tumour formation and are often demarcated based on CD44+/CD24- 

and/or ALDH1 expression [85,89]. Remarkably, stem-like breast cancer cells 

constitute a small fraction of the overall tumour mass but when purified/sorted, 

efficiently recapitulate entire tumours in limiting dilution assays with as little as 
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1000 cells [90]. Moreover, CD44+/ALDHhi breast cancer cells were also found to 

be more resistant to chemotherapy and radiation [91]. However, the association 

between CD44+/CD24- breast cancers, patient survival and prognosis is not 

entirely clear [92,93]. For instance, a meta-analysis of 16 studies found CD24 

expression to be a prognostic indicator of worse prognosis and no significant 

association was found for CD44+ and CD44+/CD24- breast cancers [93]. In this 

meta-analysis, subtype specific expression of CD44/CD24 was not available which 

may influence prognostic value. Other properties of stem-like cancer cells include 

anchorage independent  growth and expression of embryonic signalling pathways 

[94]. For example, human embryonic stem cell transcription factors OCT-4 

(POU5F1), NANOG, SOX2, MYC and their target genes, are enriched in poorly 

differentiated cancers, in particular, ER-/basal-like breast tumours [95]. However, 

embryonic signatures were not associated with CD44+/CD24- expression in this 

study, suggesting that different markers may be used to identify populations of 

stem-like breast cancer cells. In another study by Spike et al., HER2-enriched and 

basal breast cancer subtypes were found to exhibit similar gene expression 

patterns characteristic of mouse fetal MaSC (fMaSC) [96]. Ultimately, a number of 

embryonic signalling pathways have been implicated promoting plasticity in breast 

cancer including WNT, NOTCH and recently, NODAL [95,97–99].  

1.5 The embryonic morphogen NODAL 

NODAL is an embryonic morphogen which has been shown to regulate plasticity 

in a variety embryonic and tumourigenic settings [100]. NODAL belongs to the 

Transforming Growth Factor-beta  (TGF-β) superfamily and is widely regarded for 

its roles in patterning left-right asymmetry during embryonic development, meso-

endoderm induction and maintaining human embryonic stem cell (hESC) 

pluripotency [101]. NODAL is synthesized as a homodimeric pro-protein which 

requires cleavage by PACE4 and/or FURIN to generate mature NODAL (Figure 4) 

[99]. Mature NODAL ligands signal through a receptor complex involving the type 
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I ACTIVIN receptor-like-kinase (ALK4/7), the ACTIVIN type IIB receptor (ActRIIB) 

and the co-receptor CRIPTO. Phosphorylation of downstream SMAD2/3 signalling 

proteins by the ALK4/7-ActRIIB receptor complex leads to the formation and 

translocation of SMAD2/3 dimers with SMAD4 into the nucleus. SMAD2/3-SMAD4 

complexes associate with several transcription factors such as FOXH1 to regulate 

gene expression for a number of targets including NODAL and the endogenous 

inhibitor Lefty1/2. NODAL has also been shown to induce ERK1/2 activation in 

non-canonical manner in breast cancer cell lines [102].  

During early murine embryonic development, NODAL expression is proximally 

concentrated and regulated at the extraembryonic ectoderm-epiblast interface 

[86]. Diffusion of NODAL towards the distal region induces expression of its 

endogenous inhibitor Lefty at dorsal visceral endoderm (DVE) to generate a 

proximal distal (PD) gradient. The anterior posterior (AP) axis is formed when the 

DVE rotates anteriorly to become the anterior visceral endoderm (AVE). NODAL 

expression subsequently localizes posteriorly during formation of the germ layers 

and primitive streak (early gastrulation). NODAL expression eventually reaches 

the Node located distally where its activity becomes restricted to the left 

hemisphere of the developing embryo due to inhibition by Lefty in the right 

hemisphere. In hESCs, the addition of recombinant ACTIVIN and/or NODAL with 

FGF can maintain expression of pluripotency markers (POU5F1, SSEA3, SSEA4, 

Tra-1-60[PODXL]) over prolonged culture in feeder free conditions [103]. 

ACTIVIN/NODAL signalling drives NANOG transcription in hESCs via SMAD2/3 

binding within the NANOG promoter [104]. Nanog expression in turn prevents 

neuroectoderm differentiation by inhibiting FGF signalling, which is also required 

for pluripotency, and blocking transcription of ACTIVIN/NODAL in a negative 

feedback loop [104]. Conversely, targeting ALK4/5/7 with the small molecule 

inhibitor SB431542 accelerates hESC neuroectoderm differentiation [104]. Thus, 

NODAL contributes to a complex network of signalling pathways which can 

regulate pluripotency and differentiation. 
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Figure 1.4 NODAL signalling pathway 

NODAL is a secreted pro-protein that is cleaved by the convertases PACE4 and 

Furin to generate mature NODAL ligands. Mature NODAL homodimers induce 

phosphoryation of SMAD2/3 proteins via binding to the receptor complex invloving 

the type I ACTIVIN Like Kinase (ALK4/7), ACTIVIN type IIB receptor (ActRIIB) and 

co-repector CRIPTO. Phosphorylated SMAD2/3 dimers associate with SMAD4 

which together, translocate into the nucleus to regulate target gene expression by 

associating with transcription factors including FOXH1. NODAL signalling can 

promote expression of itself as well as the endogenous inhibitor LEFTY. 
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Intriguingly, NODAL is silenced in most adult tissues but aberrantly expressed and 

promotes malignant phenotypes in a variety of cancers including melanoma, 

breast, prostate, pancreatic and glioma [86]. Fascinatingly, early work by 

Topczewska et al. found aggressive C8161 melanoma cells transplanted into 

zebrafish embryos could induce ectopic outgrowths and body axis duplication 

which is a unique phenotype of NODAL signalling [100]. NODAL expression was 

further found to be positively correlated with metastatic melanoma in patient 

samples [100]. In a subsequent study, hESC conditioned Matrigel™ was shown to 

suppress NODAL signalling in aggressive melanoma cells via hESC derived Lefty. 

Importantly, inhibition of NODAL signalling could differentiate aggressive 

melanoma cells into a pigment producing melanocytic phenotype [105]. In breast 

cancer models, NODAL was recently found to positively regulate stem cell markers 

and promote stem cell phenotypes in claudin-low TNBC (MDA-MB-231) and 

luminal breast cancer (MCF-7) cell lines [98]. In addition to NODAL, its co-receptor 

Cripto-1 and family members TGF-β and ACTIVIN are frequently dysregulated in 

cancer [106–108]. Together, these studies and others highlight the dominant role 

NODAL signalling plays in promoting embryonic and plastic phenotypes in cancer.  

Recent work by our lab and others has also demonstrated that NODAL is a potent 

regulator of tumour growth, vascularization and invasion in breast cancer 

[102,109,110]. Of note, inhibition of NODAL signalling in the MDA-MB-231 

significantly reduces tumour growth in vivo and vascularization of angioreactors. 

Although Vascular Endothelial Growth Factor (VEGFA) and Platelet Derived 

Growth Factor (PDGFA) expression are positively associated with NODAL 

signalling, how NODAL regulates breast cancer vascularization and growth is not 

fully clear. For instance, the addition of exogenous recombinant human NODAL 

only partially rescues vascularization deficiencies following NODAL knockdown in 

breast cancer cells. Furthermore, VEGF is not able to rescue tumour growth of 

MDA-MB-231 breast cancer cells lacking NODAL in a chick CAM assay. Together, 

these findings suggested NODAL may regulate tumour vascularization through 
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VEGF-dependent and independent mechanisms by altering the recruitment of 

accessory cells including bone marrow derived cells. Moreover, aggressive and 

undifferentiated cancers which are difficult to treat by current means may be 

sensitive to NODAL-targeted therapies. 

1.6 The tumour microenvironment – a reservoir of biomarkers 

and therapeutic targets 

Current research efforts aimed at tackling cancer are not limited to targeting 

tumour cells alone but the tumour microenvironment (TME) as a whole [3,111]. 

The TME is integral to all areas of cancer progression and is comprised of all 

cellular, biochemical and biophysical components in which cancer develops [4]. It 

harbours a wealth of information pertaining to tumour biology and is a rich source 

of biomarkers and potential drug targets [3]. Moreover, modulating interactions 

between auxiliary cell types within the TME is a complementary approach to 

reduce tumour burden in the case of anti-angiogenic and immune therapies [4]. 

Therefore, improved characterization and modeling of the TME can yield better 

diagnostics and treatments.  

1.7 Non-transformed cells of the TME 

In many cancers, non-transformed cells form a substantial proportion of the overall 

tumour mass. These cells exhibit distinct yet overlapping behaviours and can be 

broadly classified as endothelial, stromal (fibroblasts) and immune.  

 Endothelial cells 

Endothelial cells form the main building block of all vessels in the body which are 

essential for the transportation and exchange of oxygen, nutrients and cellular (by-

)products needed for cell survival [112]. New blood vessel formation 

(neovascularization) occurs during embryonic development and wound repair but 
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also in diseases like cancer. In adult tissues, neovascularization primarily occurs 

through a process known as angiogenesis which entails endothelial cell sprouting 

and branching from pre-existing vasculature [113,114].  Importantly, tumours must 

also become vascularized in order to grow beyond 1-2mm (the diffusion limit of 

oxygen) [115]. This was first recognized by the late Judah Folkman who proposed 

targeting tumour vascularization as a means to starve growth [112,116]. Given that 

tumours utilize angiogenesis heavily, neutralizing the highly potent angiogenic 

factor VEGFA significantly impaired rhabdomyosarcoma, glioblastoma multiforme 

(GBM) or leiomyosarcoma tumour growth in vivo [117]. This study and work by 

other groups ultimately led to the development and clinical approval of the VEGFA 

monoclonal Antibody (mAb) Bevacizumab (Avastin™)  [118]. While promising 

results were achieved in vivo, Bevacizumab in combination with chemotherapy 

only modestly improved PFS and OS in renal cell carcinoma (RCC), clear cell 

carcinoma (CCC), metastatic breast cancer (mBC), glioblastoma multiforme 

(GBM), and lung cancer [119]. Unfortunately, most cancers develop resistance to 

anti-angiogenic therapies or exhibit limited responses, in part due to the 

emergence of VEGF-independent vascularization [112,120]. Indeed, tumour 

vasculature is often described as tortuous and comprised of leaky, immature 

vessels, indicating processes other than angiogenesis. Moreover, anti-angiogenic 

therapies may even reduce the efficacy of chemotherapy and inadvertently 

promote metastasis or selection of aggressive cancer cells [121]. 

Vasculogenesis or de novo blood vessel formation in the absence of pre-existing 

vasculature precedes angiogenesis during early embryonic development. 

Hemangioblasts are multipotent precursor cells within the yolk sac which give rise 

to haematopoietic and endothelial lineages and form primitive vessel like networks 

termed blood islands [122]. Although vasculogenesis was initially thought to be 

restricted to embryonic development, Asahara et al. identified a small population 

of Bone Marrow Derived Cells (BMDCs) referred to as Endothelial Progenitor Cells 

(EPCs) that could migrate to sites of ischemia and wounds to support postnatal 
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neovascularization [123]. Green fluorescent protein (GFP) or β-galactosidase 

(LacZ+) expressing EPCs from mouse bone marrow also augmented tumour 

angiogenesis by incorporating into a small but significant percentage vessels [124]. 

For reference, VEGF, Id1/3 and Tie-2 receptors have been shown to mediate the 

vasculogenic effects of EPCs [124–126]. For example, inhibiting VEGF receptor 

1/2 (VEGFR1/2) or deleting VEGFR2 in EPCs dramatically reduces tumour 

frequency, growth rate and size in vivo [127]. Alternatively, tumour cells can 

generate channel-like networks through a process referred to as “vasculogenic 

mimicry” [128]. In light of this, multi-pronged approaches may be necessary to 

overcome resistance associated with anti-angiogenic therapy. 

 Stromal cells 

Stromal cells, primarily Carcinoma Associated Fibroblasts (CAFs), often comprise 

the largest mass of non-transformed cells within the TME [129,130]. CAFs are 

mostly derived from fibroblasts within connective tissue which have become 

activated/transformed following exposure to signals from the TME [131].  Normally, 

during wound repair and tissue/ECM remodeling, fibroblasts become temporarily 

activated and express myofibroblast markers including ⍺-smooth muscle actin (⍺-

SMA) and fibroblast activation protein (FAP).  In cancer however, activated 

fibroblasts persist as CAFs to promote tumourigenic behaviours including growth, 

vascularization, metastasis and resistance to therapy. Indeed, tumours often 

resemble a chronic state of wound healing and hence are referred to as  “Wounds 

that do not heal” [132,133]. Since early observations of desmoplastic stroma 

(fibrous connective tissue) in cancer, a substantial amount of work has focused on 

uncovering the molecular mechanisms associated with CAF phenotypes. TGF-β, 

connective tissue growth factor (CTGF), stromal derived factor-1 (SDF-1 also 

known as CXCL12), collagens and pro-inflammatory cytokines are just some of 

the proteins expressed by CAFs [134]. Targeting these signalling pathways is one 

method to prevent stromal cell recruitment and cancer progression 
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Multipotent Stromal Cells (MSC) are highly plastic stromal cells also found within 

the TME [135,136]. MSC were first discovered within the bone marrow but also 

reside in many other vascularized niches including adipose tissue and often 

promote tumour progression in vivo [137]. In vitro, MSC form cartilage, bone, fat 

and muscle, and express adult stem cell-associated markers (CD133) and can 

form vessel-like networks [138].  Mounting evidence suggests MSCs are important 

for tumour neovascularization although their contributions may be restricted to 

perivascular roles and paracrine roles [139,140]. Moreover, MSCs can also 

differentiate into CAFs or myofibroblasts to remodel the extracellular environment 

by secreting ECM components and proteases linked to cancer aggressiveness 

[141]. Furthermore, up to 20-25% of CAFs have been found to originate from BM-

MSC [142,143]. A number of chemokine/cytokine signalling networks have been 

implicated in MSC recruitment in breast, prostate and gastric cancer mouse 

models which involve CXCL12/CXCR4, migration inhibitory factor (MIF)/CXCR4, 

CXCL16/CXCR6 [144–146]. Of note,  the contributions and effects of MSC in the 

TME appear to vary depending on their origin and cancer model [137]. In one 

study, adipose MSCs were shown to preferentially localize to sites of 

vascularization while bone marrow MSCs tended to remain at the periphery of 

tumours [147].  

 Immune cells 

Although not investigated in this this, immune cells or tumour infiltrating 

lymphocytes (TILs) are the last main subset of non-transformed cells within the 

TME. TILs comprise a diverse repertoire of cell types which can enhance or 

abrogate tumour progression [148]. For example, cytotoxic CD8+ T-cells mediate 

cancer cell death while Treg CD4+ T-cells suppress CD8+ T-cell cytotoxicity [149]. 

Gamma delta T-cells (γδTc) are another subset of TILs with both cytotoxic and 

regulatory roles depending on the type of cancer [150]. In a mouse model of PDGF-

driven GBM, CSF1R inhibition resulted in tumour regression via re-education of 



34 

 

 

 

tumour associated macrophages (TAMs) from a pro-tumourigenic M2 state to an 

anti-tumourigenic phenotype [151]. However, a follow-up study by the same group 

found >50% of GBM tumours acquired resistance to prolonged CSF1R inhibition 

[152]. Intriguingly, resistance was linked to PIK3CA pathway activation in response 

to macrophage-derived IGF1 which, when blocked in combination with CSF1R, 

could reduce tumour recurrence. In a mouse model of pancreatic ductal 

adenocarcinoma (PDAC), a sub-population BM macrophages we required to 

establish a pre-metastatic niche in the liver, and subsequently PDAC metastasis 

[153]. A more comprehensive overview of TIL subset within the TME is provided 

by Gajewksi et al. [148]. In summary, many cell types within the TME are regulated 

by numerous extracellular factors that may be useful targets for cancer therapy. 

1.8 The extracellular proteome 

The complement of proteins and vesicular cargo that are secreted, shed or 

released by cells into the extracellular space is collectively known as the 

secretome [154]. Proteins secreted within the TME or tumour secretome harbour 

a diverse array of functions and can be broadly categorized into 4 groups: 1) 

signalling factors 2) extracellular matrix (ECM) proteins 3) proteases (enzymes) 

and 4) vesicular cargo. 

 Signalling factors 

Growth factors, cytokines, chemokines and developmental morphogens all belong 

to a group of signalling factors which mediate autocrine, paracrine, and endocrine 

signalling events between cells in TME. Many of these factors regulate immune 

responses and wound healing but are often associated with worse patient 

prognosis and malignant progression [155]. For instance, CXCL12 and TGF-β 

potently stimulate fibroblast migration and invasion and their expression is often 

dysregulated in the tumour stroma [156]. Moreover, the pleiotropic cytokine 

interleukin-6 (IL6) is perhaps one of the most frequently elevated cytokines in 
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cancer [157]. IL6 is expressed by multiple cells within the TME and carries out a 

number of pro-inflammatory and tumour promoting functions. For example, in 

breast cancer, IL6 promotes monocyte and macrophage recruitment and high 

levels are correlated with worse overall survival [158]. Additionally, IL6 expression 

is associated with basal-like and stem-like CD44+/CD24- breast cancer cells [159]. 

Of note, the effects of IL6 are largely mediated through downstream activation of 

the JAK/STAT pathway which is consequently hyperactive in most cancers. IL6 

signalling involves binding to and activation of the IL6 receptor/gp130 complex to 

recruit and phosphorylate Janus kinases (JAKs). JAKs subsequently 

phosphorylate and activate downstream signal transducer and activator of 

transcription (STAT) proteins, particularly STAT3, which in turn regulate 

transcription of target genes such as VEGF and matrix metalloproteainses (MMPs) 

[157]. Thus, given the link between inflammation and tumour progression, a 

number of drugs have been developed to target the IL6/JAK/STAT pathway for not 

only treating chronic inflammatory diseases but also cancer [157]. 

In addition to inflammatory cytokines, a number of proteins have been shown to 

exhibit pro-angiogenic functions like VEGFA. In particular, PDGFA, Placental 

Growth Factor (PlGF), Angiopoietins (ANGPTs) and FGFs may be important 

during acquired resistance to VEGF targeted therapies like Bevacizumab™ [160]. 

More recently, the extracellular factor microseminoprotein (MSMP) was found to 

harbour neovascular properties in ovarian tumour xenografts resistant to anti-

VEGF therapy [161]. In this study, ovarian cancer conditioned media (CM) was 

found to induce endothelial tube formation and ERK activation in an MSMP/CCR2 

dependent manner. Notably, combined inhibition of MSMP and VEGF in vivo 

profoundly reduced tumour burden and vessel density in xenografts previously 

resistant to anti-VEGF therapy [161]. Thus, multiple modes of anti-angiogenic 

interference may be required to prevent or overcome resistance. 
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 Extracellular matrix proteins 

The 3D network of scaffolding proteins in which tissues exist is termed the 

extracellular matrix (ECM) [162]. The ECM is deposited by cells to support tissue 

integrity and structure and to regulate cellular phenotypes and behaviours. For 

example, stemness, EMT, apical-basal polarity, migration, invasion and 

angiogenesis are all regulated by components of the ECM [162,163]. The ECM is 

a dynamic structure that is continuously remodeled during wound repair and 

cancer progression [163]. Although many proteins form the ECM, only ~300 within 

the mammalian genome are annotated as core matrisomal proteins which exhibit 

distinct, and often repeating, domains and post translational modifications (PTMs) 

[164]. The remaining matrisome-associated or ‘ECM-affiliated’ proteins are more 

diverse and varied. Core matrisomal proteins are comprised of collagens, 

proteoglycans and glycoproteins and a number of these proteins are cross-linked 

via transglutaminase or contain inter-chain disulfide bonds which make their 

extraction and solubilisation difficult [165,166]. Collagens form homo- and hetero-

trimers that are characterized by repeating Gly-X-Y triplets with proline and 4-

hydroxyprolines frequently located in the X and Y positions, respectively [167]. 

Collagen VI, in particular, has been shown to regulate apoptosis, proliferation, 

angiogenesis and inflammation and is often highly abundant in tumours relative to 

benign tissues [167]. Moreover, the COL6A3 fragment, Endotrophin, is 

upregulated in mammary tumours during breast cancer progression in mice 

expressing the mammary tumour virus–polyoma middle T antigen (MMTV-PyMT) 

promoter [168].  Proteoglycans are heavily modified with glycosaminoglycans 

(GAGs) or polymeric repeating units of disaccharides with carboxyl and sulfate 

groups [166]. GAGs sequester water and divalent cations due to their negative 

charge and therefore confer lubricating and space filling properties. The largest 

and most complex subset of core matrisomal proteins are glycoproteins. They may 

include basement membrane components like laminins, CCN-family members 

such as CTGF and growth factor binding proteins like latent transforming growth 
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factor binding protein (LTBP). In the case of TGF-β, LTBPs facilitate folding in the 

ER, proteolytic processing in the trans-Golgi network, secretion, matrix association 

and activation [169]. Insulin-like growth factor binding proteins (IGFBPs) are also 

glycoproteins which regulate the activity and stability of IGFs which are potent 

growth factors that are often highly expressed in cancer [170]. Growth factor 

binding proteins such as LTBPs and IGFBPs often have multiple binding partners 

and functions which complicate our understanding of their roles in normal 

physiology and cancer. For instance, LTBPs may also signal independently of 

TGF-β to modulate the organization of fibrillin microfibrils [169]. There are 

numerous other glycoproteins within the ECM however a full catalogue of their 

functions is lacking.  

 Proteases 

Protease expression and activity is frequently dysregulated in cancer [171]. Next 

to kinases, proteases form the second largest group of enzymes in mammalian 

cells and provide exciting opportunities for targeting. This large family of proteins 

includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases 

(ADAMs), convertases, cathepsins, kallikreins and other endoproteases which are 

important for regulating tissue homeostasis, ECM remodelling and the bio-activity 

and availability of signalling ligands. Proprotein convertases (PC) belong to a 9 

membered family of mammalian Ca2+-dependent serine proteases related to 

bacterial subtilisin that proteolytically process hormones, growth factors, receptors, 

cell adhesion molecules and enzymes [172]. PC function both intra and 

extracellularly and typically cleave the pro-domains of inactive precursors to 

generate mature ligands. FURIN is a ubiquitously expressed PC which becomes 

upregulated in a number of cancers and is also involved in NODAL signalling  

[173]. For instance, in the TNBC cell line MDA-MB-231, Lapierre et al. observed a 

decrease in the maturation of pro-PDGFA and pro-IGF1R when the PCs furin, and 

to lesser extent, PACE4, were inhibited [174]. However, inhibition of FURIN and 
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PACE4 differentially decreased and increased MDA-MB-231 cell motility, 

migration and invasion, respectively. Accordingly, FURIN and PACE4 activity were 

positively and negatively associated with MMP9 activity, respectively. For 

reference, MMP9 is a matrix metalloproteinase that is frequently upregulated in 

cancers including breast cancer and is important for ECM remodelling and cancer 

cell intravasation and extravasation [175]. Tissue kallikreins and kallikrein-related 

peptidases form a 15 membered group (KLK1-15) of serine proteases with tryptic 

and/or chymotryptic-like activity which regulate substrate activation, inactivation or 

degradation [176]. KLK expression profiles vary between tissues and their 

physiological roles include maintaining proper kidney, brain and skin-barrier 

function. Prostate specific antigen (PSA; also known as KLK3) is perhaps the most 

widely known KLK. The main function of KLK3 is seminal liquefaction via cleavage 

of fibronectin (FN) and seminogelin-1 and 2. However, during prostate cancer 

progression, KLK4 overexpression and low Zn2+ levels lead to increased KLK3 

levels and in turn, cleavage of tumour-derived ECM proteins [176]. For example, 

cleavage of IGFBP3 by KLK3 promotes IGF1 dissociation and increased 

proliferation of prostatic stromal cells [177]. Other members of the kallikrein family 

have also been implicated in cancer progression and disease [178]. Cathepsins 

(CTS) are an 11 membered family of cysteine proteases with most members 

containing endopeptidases activity [179]. Like most proteases, cathepsin are 

synthesized as inactive zymogens with inhibitory pro-peptides that are cleaved by 

autocatalysis at low pH or other proteases. Cathepsins generally function within 

endosomal/lysosomal compartments but can be secreted into the extracellular 

space upon alterations in trafficking which occur in cancer and activated stromal 

cells. Of note, TAMs express CTS more robustly than any other cell type in the 

TME which is relevant given that Cathepsin S and L promote shedding of cell 

adhesion molecules (ALCAM, CD44 and neuropilin-1) and migration of MDA-MB-

231 breast cancer cells [180]. Moreover, similar to KLKs, CTS may be useful 

diagnostic markers for cancer. For example, high CSTB expression is associated 

with worse overall survival in many cancers including breast and ovarian 
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[179,181,182]. Lastly, a recent large scale proteomic screen employing terminal 

amine isotopic labeling of substrates (TAILS) identified over 1110 substrates of the 

cathepsin family in prostate cancer [183]. This report highlights the widespread 

substrates of CTS (and proteases in general) in the TME and how proteomic 

technologies can aid in their detection. 

 Vesicular cargo  

Intracellular proteins, counterintuitively, often comprise the largest fraction of 

species identified in secretome studies employing MS-based proteomics [184]. 

Indeed, highly abundant metabolic, transcriptional and translational proteins are 

liberated upon cell death and consequently, easily contaminate secretomes [184]. 

However, when cell death is carefully minimized, many intracellular proteins still 

remain suggesting the presence of non-classical secretion pathways for proteins 

lacking signal peptides [184]. Additionally, many intracellular proteins may be shed 

and located within extracellular vesicles (EVs) [185]. Several types of EVs are 

released by cells which vary in size, protein content and density. Exosomes, for 

example, are EVs ~30-120 nm in diameter which can transmit proteins and RNA 

(mRNA and miRNA) between cells. They are generated through endosomal 

trafficking and often express the surface markers CD9, CD63 and CD81 [186]. 

Little is known regarding role of EVs in intercellular protein transfer. Intriguingly, in 

2008,  Khalid Al-Nedawi et al. demonstrated the capacity of exosomes to transfer 

truncated EGFRvIII between expressing and non-expressing U373 glioma cells 

[187]. Remarkably, EGFRvIII containing exosomes were found to promote tumour 

growth in vivo and induce ERK1/2 and Akt activation in vitro which was correlated 

with VEGF and Bcl-x production. These findings have significant implications for 

cancer detection and treatment and also show that oncogenic transmission can be 

reversed upon blocking exosomal mediated protein transfer. In addition to 

exosomes, cells also release/shed vesicles and apoptotic blebs ranging from 50-

1000 nm in diameter comprised of various waste and cellular (by-)products. A 
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recent study by Harel et al. characterized plasma microparticles by LC-MS and 

identified a signature of protein biomarkers (PPTN1, SFXN3 and LPP) which could 

identify prostate cancer with a receiver operating characteristic area-under-the-

curve (ROC-AUC) of ~0.84 [188]. Taken together, the complement of EV 

associated proteins may reveal useful biomarkers and insights in biological 

processes exploited by cancers. 

1.9 Modelling the complexity of TME 

The TME is complex and dynamic and a number of approaches have been used 

to investigate its components individually or as a whole [189].  Properties intrinsic 

to the sample(s) or the model in question can limit the applicability of experimental 

findings and therefore complementary approaches may help generate a more 

comprehensive picture of the TME. Monolayer cultures of established cell lines are 

the most widely utilized model for examining cancer related questions [190,191]. 

This can be primarily attributed to ease of propagation and manipulation afforded 

by tissue culture plastic formats. Moreover, commonly used cancer lines have well 

defined genetic and molecular profiles which make experimental outcomes and 

findings relatable to previously published work [192,193]. Unfortunately, 

monolayer cultures and cancer lines do not accurately recapitulate the TME due 

to several reasons [194]. For one, cancer lines at their point of isolation, reflect a 

state of disease progression which over time in culture, may shift as a result of 

clonal selection and genomic instability. For instance, an analysis of the Cancer 

Cell Line Encyclopedia (CCLE) found a higher median mutation frequency in 

ovarian cell lines compared with tumours samples (4.3/Mb versus 1.6/Mb) [20]. 

Another shortcoming of monolayer cultures is the absence of accessory cell types 

frequently found in the TME. To examine these variables, Vincent et al. compared 

RNA sequencing data from breast cancer cell lines and breast tumours to measure 

differences in immune and stromal scores based on the ‘Estimation of STromal 

and Immune cells in MAlignant Tumours using Expression data’ (ESTIMATE) 
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algorithm [195,196]. Strikingly, 134 of the top 163 proteins differentially expressed 

between breast cancer cells and tumours were positively correlated with stromal 

score and likely attributed to the lack of stromal cells in monolayer cultures. This 

work and earlier studies also found proliferative, metabolic and transcriptional 

pathways upregulated in cell lines compared to tumours [191,196]. Conversely, 

pathways involved cell adhesion and communication were downregulated in cell 

lines. Regardless of their shortcomings, cell lines have been essential for 

understanding cell biology. For example, cell lines in isolation afford the ability 

determine the origin of extracellular factors involved in bi-directional cellular 

communication within the TME. Moreover, the NCI panel of 60 cell line resource 

has been exhaustively studied and is an import cornerstone for drug screening 

[192].  

However, several modifications to existing culture systems can be employed to 

better mimic the TME and limit the deficiencies highlighted above. First, primary 

patient derived samples which have undergone less selective pressure may 

resemble in vivo phenotypes more closely [193]. Moreover, tissue/tumour pieces 

can be cultured ex vivo for short periods of time to monitor invasion in response to 

inhibitors or drugs [197]. Co-cultures enable reciprocal signalling events between 

cancer cells and other cell types although tracing cell-type derived products require 

specific labelling techniques [198]. To represent the 3D structure of tissues in vivo, 

cell lines can be cultured in bioreactors or in ultra-low attachment conditions to 

promote spheroid formation [189,199]. These spheroids can develop regions of 

hypoxia with anoxia and necrotic cores that more accurately recapitulate tumour 

physiology.  

The ECM is another critical component of tumour biology often absent in 

monolayer cultures. Reconstituted basement membrane extracts (BME) such as 

Matrigel™ and GelTrex™ can be utilized to substitute the ECM in vitro and in vivo 

[200]. For example, Matrigel™ which is derived from the Engelbreth-Holm-Swarm 
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mouse sarcoma, is widely used to support feeder-free hESC cultures. Although 

predominantly comprised of laminin and entactin, mass spectrometry-based 

proteomic characterization of Matrigel identified over 1800 proteins including 

growth factors, regulatory proteins, intracellular contents and membrane bound 

proteins [200]. Furthermore, matrices preconditioned  by hESC can maintain 

pluripotency over multiple passages and thus highlights the importance of the ECM 

for modeling complex biological systems like stem cells and cancer [201].  

Finally, patient derived xenografts (PDXs) afford the most complex models of 

tumour biology which can be serially propagated in vivo [202,203]. While PDXs 

may be an attractive model of cancer pathology, a recent analysis of over 1100 

PDXs found divergence and loss of copy number alterations following serial 

propagation in mice [204].  Thus, there are a number of models to consider when 

studying the TME, each with their own benefits and drawbacks. 

1.10 Mass spectrometry-based proteomics 

As discussed above, the tumour secretome plays an integral role in dictating the 

activities and types of accessory cells within the TME [3]. The complexity of the 

TME, however, poses significant challenges for characterization. Commonly used 

‘omic’ approaches such as microarrays, RNA sequencing and whole exome 

sequencing can infer pathways involved in cancer progression [205]. Of caution, 

transcripts are not the functional machinery of cellular behaviours and their levels 

do not always correlate with protein expression [206]. Proteomics involves the 

study of proteomes or the protein complement of a biological sample, and is an 

alternative means of investigating cellular activities. Western blotting and Enzyme 

Linked Immunosorbent Assays (ELISAs) are perhaps the simplest proteomic tools 

available. Both are robust techniques with several limitations. ELISAs are widely 

used in clinical settings due to high sensitivity and accurate quantitation [207]. 

ELISAs are capable of processing large numbers of samples but are restricted to 

one or several targets and require access to high-quality antibodies [208]. Multiplex 
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cytokine arrays and Reverse Phase Protein Arrays (RPPA) are an alternative 

approach with limited throughput but the capacity to measure a larger number of 

factors (dozens to hundreds of targets) [208].  Like ELISAs and Western blotting, 

protein arrays also require validated antibodies and targets must be selected a 

priori.   

Although ELISAs and protein arrays are compatible with complex biological 

samples such as serum, they remain limited in their capacity for comprehensive 

tumour secretome characterization which is comprised of thousands of proteins. 

Bottom-up mass spectrometry-based approaches, however, identify peptide 

sequence information which can be matched to thousands of proteins in an 

unbiased, medium-to-high throughput manner [209]. Moreover, with some 

modifications, MS-based approaches are amenable to a wide array of biological 

formats including cell lines, fluids (i.e. blood, urine, saliva, effusions, ascites), and 

tissues. In effect, MS-based proteomics holds enormous potential for identifying 

drug targets, biomarkers and understanding cancer biology [207].  

 Sample preparation and fractionation strategies 

Sample preparation is critical task that should be carefully planned and optimized 

and is vital to the success of any proteomics study. The nature of experimental 

question(s) dictate the means in which samples are collected, processed and 

analyzed. A standard bottom-up proteomics workflow involves sample collection, 

protein extraction and solubilisation, reduction and alkylation, digestion, clean-up, 

chromatographic separation by HPLC, acquisition of MS and MS/MS spectra, and 

database searching. 

Depending on the source of material to be analyzed, samples may require 

enrichment or pre-processing. Harsh lysis buffers utilizing chaotropes, detergents 

and reducing agents combined with mechanical dissociation are often an effective 

means of protein extraction and amenable to most materials. For instance, urea 
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and disulfide reduction can improve the extraction and detection of ECM proteins 

that are otherwise insoluble. Unlike tissues/cell pellets, the protein concentrations 

of fluids are more dilute and may require concentration or enrichment. Molecular 

weight cut-off (MWCO) filter units combined with centrifucation are a simple yet 

effective apparatus for concentrating extracellular proteins. One caveat when 

working with biological fluids or cell culture media is the presence of high 

abundance proteins (HAP) such as Albumin. FBS or serum supplements can often 

be omitted for short periods of time in vitro. However, this is not possible with 

patient fluids like plasma. Depletion strategies are one method to overcome the 

presence of HAP which often exceed the dynamic range of MS instruments [210]. 

Alternatively, proteins with specific post-translational modifications can be affinity 

purified. For example, secreted proteins may be enriched using glyco-capture and 

phospho-peptide enrichment with TiO2 beads for measuring kinase signalling 

[211,212]. Moreover, extracellular vesicles can be isolated using affinity 

purification or ultracentrifugation [213]. With regard to the ECM proteins, 

ammonium sulfate precipitation has been used to crudely precipitate less soluble 

moderate-to-high molecular weight proteins (generally present in high abundance) 

from more soluble, low molecular weight proteins which often contain low 

abundance growth factors [200]. Lastly, fractionation strategies can improve the 

detection of low abundance proteins by analyzing more material across multiple 

LC-MS runs. A large number of strategies exist for sample fractionation with SDS-

PAGE traditionally being the most widely used. Recent innovations and newer 

techniques have significantly simplified fractionation workflows or achieved greater 

results. These include Stop-and-go-extraction Tip (StageTip) fractionation, offline 

HPLC basic reversed phase separation, and selective elution from beads via a 

novel SP3 approach [214–217]. Impressively, a recent study combined multiple 

enzyme digestions with high-pH fractionation and state-of-the-art mass-

spectrometry instrumentation to achieve unprecedented HeLa proteome coverage 

to a depth of 14K proteins [209]. Continuous advances in sample preparation 
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modalities and MS instrumentation are narrowing the gap between genomic 

sequencing and proteomic technologies.  

 Quantification strategies 

Quantification is a key aspect of modern day MS-based proteomics [218]. Robust, 

accurate and flexible quantification strategies are needed to enable comparisons 

between as little as two samples to potentially hundreds.  Mass spectrometry 

techniques can utilize a number methods for relative and absolute protein (peptide) 

quantification and like sample preparation, the method employed will vary 

depending on the experimental questions being asked. 

Unlike most quantification techniques, label free quantification (LFQ) does not 

require special considerations and can be implemented into most proteomic 

workflows. Although LFQ strategies have been available for decades, only recently 

have software and instrumentation improvements increased the accuracy and 

robustness [219]. Spectral counting and intensity based absolute quantification 

(iBAQ) have been largely utilized as  surrogates or proxies for protein abundance 

[206,220]. Interference due to co-eluting peptides with highly similar m/z values is 

a primary concern for all extracted ion chromatogram (XIC)-based quantification 

strategies such as LFQ. Of note, high resolution mass analyzers combined with 

narrow m/z search tolerances can alleviate most interference issues. Furthermore, 

feature detection algorithms utilizing retention time (RT) windows and isotopic 

distribution patterns improve quantification across adjacent runs and fractions 

where peak splitting and technical variation are encountered [219]. Stable Isotopic 

Labelling in Cell Culture (SILAC) is a metabolic labelling technique that also 

employs XIC-based quantification like LFQ [221].  SILAC uniquely enables protein 

samples from different cell lines or treatments to be mixed which eliminates 

technical variability associated with sample handling and LC-MS. SILAC, however, 

requires isotopically labelled cells in order to compare relative changes in protein 

expression/PTMs between two or more conditions. In a typical SILAC workflow, 
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cell lines are grown in media containing either light or heavy isotopes of Arginine 

and Lysine. Thus, newly synthesized proteins incorporate light or heavy amino 

acids and after several population doublings entire proteomes become isotopically 

labelled. Peak intensities between pairs of light and heavy peptides (m/z values) 

from pooled SILAC samples are used to compare relative protein (peptide) levels. 

SILAC provides more accurate quantification and can achieve more than twice the 

throughput than that of LFQ. However, sample complexity is effectively doubled 

with SILAC which therefore limits the number of unique peptides that can be 

sequenced in a given LC-MS run due to redundant MS/MS scans for light and 

heavy pairs. Of note, several variations of SILAC have increased its utility beyond 

comparing two cell types or conditions. Super SILAC, for example, employs a 

heavy standard comprised of multiple heavy labelled cell lines. When spiked into 

light (unlabeled) samples, the super SILAC standard acts as an internal reference 

which protein levels can be normalized to and compared across many samples. 

For reference, Pozniak et al. utilized super SILAC to compare proteomes from 

healthy breast ductal epithelia, lymph node negative, lymph node positive and 

metastatic breast tumours [222]. This study found key that DNA repair proteins 

involved in non-homologous end joining, mismatch repair, and the single-strand 

DNA break repair complex were downregulated in tumours while several enzymes 

involved in oxidative phosphorylation and glycolysis were significantly increased 

and decreased, respectively. Interestingly, in tumour versus normal tissues, these 

authors noted an inverse relationship between The Cancer Genome Atlas (TCGA) 

mRNA expression and protein levels for DNA repair, ribosomal and glycolytic 

enzymes.  Cell Type specific labeling using Amino acid Precursors (CTAP) is 

another elegant metabolic labelling technique that enables proteins to be traced to 

cell of origin in co-culture conditions [198]. In this technique, transgenic cell lines 

express enzymes (lysine racemase or diaminopimelate decarboxylase) which 

utilize different L-lysine precursors. Given that lysine precursors are only utilized 

by one cell type, transgenic line can be studied in the same culture dish. Using this 

strategy, Tape et al. investigated the reciprocal interactions between PDAC and 
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pancreatic stromal cells [223]. CyToF is another MS-based approach which 

employs antibodies labelled with metals to multiple surface protein expression on 

single cells to a greater extent than afforded by flow cytometry [224]. Using this 

technology, Bendall et al. were able to measure 34 parameters including 31 

proteins on single cells to generate a complex map of hematopoietic lineages. 

To overcome limitations associated with LFQ, chemical labelling strategies 

including isotope coded affinity tags (ICAT) and tandem mass tags (TMT) were 

developed [225]. These chemical labelling technique are implemented following 

sample digestion and do not induced mass differences between MS1 precursors 

like SILAC. Rather, quantification is performed on “tags” from different channels 

which are produced during MS/MS fragmentation. Up to 10 or more samples can 

be multiplexed with this technique allowing for high throughput proteome analysis 

[226].  Of note, noise associated with the low m/z regions where tags are quantified 

can interfere with quantification [227]. MS3 scans can significantly improve 

specificity and the cost of sensitivity and speed [228]. However, an elegant solution 

to these issues was the development of Notched MS3 scans (trademarked as 

synchronous precursor selection) by Coon’s group [227]. This feature is only 

available on state-of-the-art Orbitrap Fusion instruments.   

Selective reaction monitoring (SRM) and more recently, parallel reaction 

monitoring (PRM), are the last quantification strategies which harbour the greatest 

potential for diagnostic and clinical utility [229].  These targeted methods require 

peptide retention time (RT) information and are typically limited to small number of 

transitions. Synthetic stable isotope labeled (SIL) peptides can be utilized for 

absolute quantification. They afford highly accurate and sensitive MS2 

quantification that is less susceptible to interference from all sources and can be 

rapidly performed using shorter gradients. 
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1.11 Rationale and thesis objectives 

A variety of approaches and model systems are required to answer complex 

biological questions involving the TME. MS-based proteomics is a powerful 

technology that can improve our understanding the TME. In this thesis, I focused 

on better understanding the complexities of the TME by utilizing mass 

spectrometry to study several aspects of cancer biology important for: 1) the 

classification of ovarian cancer subtypes, 2) the identification of biomarkers 

for ovarian cancer detection, and 3) understanding the global effects of 

NODAL in the breast cancer microenvironment. 
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Chapter 2  

2 Comparison of sample preparation techniques for 
large scale proteomics 
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2.1 Abstract 

Numerous workflows exist for large scale bottom-up proteomics, many of which 

achieve exceptional proteome depth. Herein, we evaluated the performance of 

several commonly used sample preparation techniques for proteomic 

characterization of HeLa lysates (unfractionated in-solution digests, SDS-PAGE 

coupled with in-gel digestion, gel-eluted liquid fraction entrapment electrophoresis 

(GELFrEE) technology, SCX StageTips and High-/Low-pH reversed phase 

fractionation (HpH)). HpH fractionation was found to be superior in terms of 

proteome depth (>8400 proteins detected) and fractionation efficiency compared 

to other techniques. SCX StageTip fractionation required minimal sample handling 

and was also a substantial improvement over SDS-PAGE separation and 

GELFrEE technology. Sequence coverage of the HeLa proteome increased to 

38% when combining all workflows however total proteins detected improved only 

slightly to 8710. In summary, HpH fractionation and SCX StageTips are robust 

techniques and highly suited for complex proteome analysis. 
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2.2 Introduction 

Sample preparation strategies employed in bottom-up proteomics can be broadly 

categorized into workflows which omit or implement fractionation at the protein 

and/or peptide level prior to LC-MS [1]. Prior limitations in MS instrumentation and 

HPLC technology rendered unfractionated approaches insufficient when 

characterizing complex proteomes and thus necessitated the need for extensive 

fractionation [2]. Advances in instrumentation speed and sensitivity coupled with 

UPLC systems utilizing longer columns and smaller particles sizes has 

substantially improved proteome depth of unfractionated samples. This is 

exemplified by Nagaraj and colleagues and Pirmoradian et al., who detected over 

3900 yeast and 4800 HeLa proteins, respectively, by employing long gradients and 

50 cm reversed phase columns coupled to a high resolution Q Exactive mass 

spectrometer [3,4]. In fact, it is now possible to detect ~4000 yeast and ~4400 

HeLa proteins in approximately 1h with current state-of-the-art Orbitrap-based 

mass spectrometers (Orbitrap Fusion and Q Exactive HF) [5,6]. In contrast, 

fractionation approaches based on molecular weight (MW), charge, pI, or 

hydrophobicity require substantially more acquisition time and sample handling [7]. 

Nonetheless, these workflows contribute to our understanding of biological 

systems by characterizing PTMs, enriching for low abundance species and 

quantifying expression for thousands of proteins [8–11].  

 

SDS-PAGE protein separation coupled with in-gel digestion has been widely used 

in mass spectrometry-based proteomic studies [12,13]. Its robustness, low cost, 

high resolution and ability to handle detergent containing samples make it 

amenable to many workflows. In fact, two recently published drafts of the human 

proteome utilized SDS-PAGE to obtain unprecedented protein expression profiles 

for multiple tissues (peptide evidence from 84-92% of protein coding genes in the 

human proteome) [14,15]. However, SDS-PAGE fractionation is time consuming, 

manually intensive and subject to variable peptide extraction efficiencies [12]. 
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Newer fractionation strategies, like Gel Eluted Liquid Fractionation Entrapment 

Electrophoresis (GELFrEE) technology, can overcome most limitations associated 

with SDS-PAGE [16]. Exceptional proteome coverage has been reported with 

peptide based fractionation using MudPIT [17], IEF [18,19], and High-/Low-pH 

reversed phase chromatography (HpH) [6,20]. Alternatively, small scale peptide 

fractionation (C18, SCX, SAX) can be readily performed in StageTips without 

requiring dedicated fractionation equipment [21–23]. 

Many large scale proteomic studies employ methodologies such as those listed 

but few have compared their performance relative to one another [24–26]. In light 

of this, we compared HeLa proteomes obtained from unfractionated in-solution, 

SDS-PAGE, GELFrEE, SCX StageTip and HpH sample preparations across 

several parameters. When controlling for sample loading and LC-MS time, most 

workflows performed well, however, HpH fractionation provided the greatest 

proteome coverage. 

2.3 Results 

 Proteome coverage of different workflows on a Q 

Exactive mass spectrometer 

HeLa proteomes obtained from unfractionated in-solution, SDS-PAGE, GELFrEE, 

SCX StageTip and High-/Low-pH pH reversed phase (HpH) sample preparations 

were systematically compared (Figure 2.1). Where possible, experimental 

parameters were kept constant between workflows. To minimize sample handling 

and processing, all techniques, with the exception of SDS-PAGE, utilized 

chloroform methanol precipitation followed by in-solution digestion. In total, 10 

fractions were analyzed by LC-MS (~1µg per fraction) for each technique from 3 

biological replicates (3 different passages). Unfractionated in-solution samples 

were injected once per replicate. In our hands, long LC-MS gradients generate 

more protein identifications compared to shorter gradients when analyzing cellular 
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lysates (data not shown). Therefore, all fractions were run on a 4h gradient plus 

washing and re-equilibration.   

 

Replicates were searched both individually and grouped using the match between 

runs feature in MaxQuant. Where applicable, protein identifications containing ≥1 

unique peptide(s) in 2 out of 3 biological replicates were used for analysis [27]. In 

general, each method tested received more instrument time compared to previous 

reports and when necessary, utilized chloroform/methanol precipitation to remove 

SDS coupled with on-pellet, in solution digestion. 

 

Within each replicate from different workflows, ~7.1% of the HeLa proteins 

identified were “matched-between-runs” and >95% of the proteins were present in 

all biological replicates suggesting high reproducibility for each technique (data not 

shown). Moreover, only a small fraction of proteins were identified by one unique 

peptide (Figure 2.2A). In total, 5189, 6959, 5919, 7655, 8470 proteins were 

detected with in-solution, SDS-PAGE, GELFrEE, SCX and HpH workflows, 

respectively (Table 2.1).  

 

In terms of proteomic depth, nearly 5200 proteins were detected with 

unfractionated in-solution HeLa digests, which is on par with previous reports 

[4,27]. Recently, Beck et al. detected ~5200 HeLa proteins from triplicate, 90 

minute runs on a Bruker Impact II™ Q-TOF [28]. For gel-based techniques, 

proteome coverage with SDS-PAGE was also comparable to reports by other 

groups [29,30]. While Botelho et al. previously demonstrated similar performance 

between GELFrEE and SDS-PAGE using an LTQ ion trap, we detected ~1,000 

more proteins with SDS-PAGE fractionation compared to GELFrEE separation 

[26].  
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Regarding peptide fractionation approaches, we identified a respectable number 

of proteins using SCX StageTips but our numbers were less than that obtained by 

Kulak et al. using a similar technique (7655 versus 9667) [22]. Differences in 

sample preparation (lysis buffer and digestion) as well as column size may be 

contributing factors. Protein identifications with HpH was similar to Kelstrup et al. 

(8470 versus 8400 protein IDs) and the highest out of all workflows tested [6]. Even 

greater proteome depth has been achieved with HpH fractionation by Beck et al. 

who reported >11,000 proteins from a more complex mouse cerebral tissue [28].  

Several proteomic studies have documented increased proteome depth by 

combining data from multiple workflows and/or instrumentation [31–33]. 

Combining all our datasets yielded >8700 unique proteins. This represents a small 

increase of ~3% over HpH fractionation, which had nearly 700 exclusive proteins 

alone (Figure 2.2B).  
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Figure 2.1 Schematic of workflows tested. 

Hela lysates (100µg) were separated by SDS-PAGE and GELFrEE or subjected 

chloroform/methanol precipitation and on-pellet, in-solution digestion prior to High 

pH reversed phase and SCX StageTip fractionation. GELFrEE fractions were also 

chloroform/methanol precipitated to remove SDS. Three independent biological 

replicates were analyzed by LC-MS on the Q Exactive. 
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Table 2.1 Total HeLa proteins detected on a Q Exactive for each technique 
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Figure 2.2 High confidence identifications and large overlap between 

proteomes from different techniques.  

(A) Majority of proteins (~95%) were identified with high confidence (2 or more 

unique peptides; blue) for each technique. Only a small number (~5%) were 

identified by a single peptide (red). (B) Total proteins exclusive (11%) and common 

(50%) to 5 different preparative techniques analyzed on a Q Exactive. Gene 

symbols were used for analysis and proteins exclusive to one biological replicate 

were omitted. 

  



73 

 

 

 

 Comparison of fractionation efficiency 

The capacity of pre-fractionation to resolve unique proteins or peptides into 

discrete packets, reduces sample complexity and improves peptide detection and 

identification by MS [34]. To assess the fractionation efficiency for each technique, 

we examined how many unique peptides, and proteins where applicable, were 

exclusive to 1, 2 or ≥3 fractions. For this analysis, biological replicates were 

searched individually without the "match-between-runs" feature in MaxQuant. 

 

In principle, SDS-PAGE displays good protein separation and resolution over a 

wide range of MWs, generally within a few kDa. Surprisingly, we found with SDS-

PAGE that only 27.7% and 59.5% of proteins identified were exclusive to 1 or 2 

fractions, respectively (Figure 3A). However, at the peptide level, 58.2% and 

82.8% were exclusive to 1 or 2 fractions, respectively (Figure 2.3C). Of note, the 

GELFrEE protocol was less efficient at separating proteins than SDS-PAGE 

(Figure 3B, D). Silver stained GELFrEE fractions ran on 1D SDS-PAGE revealed 

moderate overlap between adjacent lanes (Figure 4A). Moreover, Box-and-

Whisker plots of median fraction MW further illustrate limited separation with 

GELFrEE compared to SDS-PAGE (Figure 2.4C). Peptide fractionation efficiency 

with SCX StageTips was similar to Kulak et al. with 53.8% and 77.4% exclusive to 

1 or 2 SCX fractions, respectively (Figure 2E) [22]. However, the HpH method gave 

the best fractionation performance with 80.1% and 94.5% of all peptides exclusive 

to 1 or 2 fractions, respectively (Figure 2.3F).  
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Figure 2.3 Fractionation efficiency varies between protein and peptide 

separation techniques. 

Pie chart displaying percentage of unique proteins and peptides (mean +/- SD) 

exclusive to one (black), two (light grey) and three or more fractions (grey) for SDS-

PAGE (A,C), GELFrEE (B,D), SCX (E) and HpH (F). SDS-PAGE and HpH 

exhibited the greatest fractionation efficiency for protein and peptide based 

separation techniques, respectively. 
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Figure 2.4 Overview of GELFrEE separation 

(A) Silver stained 1D SDS-PAGE of fractions collected on an 8% Tris-acetate 

GELFrEE cartridge starting with 100ug of HeLa lysate. Fraction 14 was run on the 

same gel. (B) Gradient was slightly modified to allow leading dye front to be eluted 

in the first fraction. Fraction 1 was discarded and fractions 2 and 3, 11 and 12, and 

13 and 14 were combined to produce a total of 10 fractions. (C) Box-and-Whisker 

plot of median protein MW detected in each fraction for SDS-PAGE (black) and 

GELFrEE (blue). Boxes represent 75% and 25% percentiles and Whiskers indicate 

90% and 10% percentiles. 
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 Distribution of proteins and peptides  

Fractionation techniques which exhibit orthogonal separation should be more 

efficient at maximizing MS/MS time across the entire gradient space [34]. For each 

method, the distribution of peptides and proteins across all fractions varied. We 

did not observe any trends between gel- and peptide-based fractionation 

approaches, however, changes in unique peptides and proteins per fraction 

consistently mirrored each other within each technique. For example, total 

peptides and proteins increased slightly with MW for SDS-PAGE separation before 

declining in later fractions (Figure 2.5A). SCX displayed a sharp increase in 

peptides/proteins detected in early fractions before both plateaued (Figure 2.5C). 

Changes between fractions with GELFrEE and HpH fractionation were relatively 

smaller (Figure 5B and D). Peptide density versus retention time plots also 

illustrate a similar trend (Figure 2.6). For example, SDS-PAGE exhibited a higher 

peptide density with increasing fraction number (MW) while HpH remained even 

throughout, most likely due to its concatenation scheme. 

 

We next examined peptides:protein ratios for each technique and found gel-based 

methods had approximately 1 less peptide identified per protein compared to 

peptide fractionation even though gel-based approaches generated roughly 300K 

more MS2 scans (Table 2.2). As expected, in-solution digests had the lowest 

peptides:protein ratio (10.1:1) but identified the greatest proteins/hour (1298/hour). 

While total unique peptides was indicative of proteins identified for each technique, 

this was not the case with PSMs. For example, GELFrEE had the greatest number 

of PSMs but the fewest unique peptides and proteins. 
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Figure 2.5 Peptide and protein distribution profiles deviate for each 

technique. 

(A-D) Distributions of unique peptides (right y-axis, grey) and proteins (left y-axis, 

black) identified per fraction for SDS-PAGE, GELFrEE, SCXand HpH, 

respectively. 
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Figure 2.6 HpH fractionation is highly orthogonal compared to other 

methods. 

Peptide density distribution was assessed using the hexbin package in R, each 

hexagon represents 500 peptides with red indicating the highest density. HpH 

fractionation yields a more even distribution of peptides throughout the entire 

gradient and across all fractions compared with gel- and SCX-based fractionation 

which exhibit more extreme (low and high) peptide densities. 
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Table 2.2 Total MS/MS scans, peptides and proteins detected with each 

technique 
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 Evaluating peptide characteristics 

Examining the median sequence coverage achieved for each method revealed a 

peak in peptide density between 10% and 15% before tailing off (Figure 2.7A). For 

gel-based workflows, median sequence coverage with GELFrEE (~27%) was 

higher than SDS-PAGE (22.6%) (Figure 2.7B). SCX and HpH peptide fractionation 

improved median sequence coverage to ~27% and 24.4%, respectively, over the 

unfractionated in-solution digest (22.8%) (Figure 2.7B). Combining sequence 

information from all methods improved median sequence coverage of all HeLa 

proteins identified to 38.0%. This can be attributed to a 48.6% increase in total 

unique peptides (165K) over HpH, which had the second highest number of unique 

peptides (111K) (Table 2.3). For comparison, Kelstrup et al. achieved a median 

sequence coverage of >40% with HeLa digests fractionated by HpH (14 fractions) 

using the latest generation Q Exactive HF [6].  

 

Next, we calculated GRAVY scores for unique peptides detected by each workflow 

to determine whether any bias towards hydrophobic or hydrophilic species existed 

(Figure 2.9A) [35]. All methods displayed a propensity to enrich for hydrophilic 

peptides as indicated by negative GRAVY scores. Dunn’s multiple comparison, 

post hoc analysis revealed a significantly higher (P<0.001) median GRAVY score 

with unfractionated in-solution digests compared to all other techniques (Figure 

2.9B). These findings are in line with previous groups which found cellular digests 

to be primarily hydrophilic and also suggests a proportion of hydrophobic peptides 

are lost during sample handling [36,37]. 

 

Lastly, analysis of missed cleavages revealed that a large number were present in 

most sample preparations although many (~70%) were restricted to 1 site (Table 

2.3). As expected, SDS-PAGE was the highest (44.5%) which may be explained 

by poor absorption and diffusion of trypsin into the gel pieces. Missed cleavages 

with GELFrEE was relatively high (34.8%) compared to unfractionated in-solution 
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samples (25.6%) even though digestion was performed essentially the same for 

both techniques. SCX fractionation exhibited the least missed cleavages (15.9%) 

followed by HpH (22.1%).   
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Figure 2.7 Different fractionation techniques provide complementary 

sequence coverage 

(A) Kernel density estimation comparing percent sequence coverage for each 

technique. A slight maxima is observed near 40% (black line) when combining 

sequence information from all methods. (B) Box-and-Whisker plots displaying 

median percent sequence coverage for individual techniques (blue). Box and 

whiskers indicate 75% and 25% percentiles, and 95% and 5% percentiles, 

respectively. One-way ANOVA was performed using the Kruskal-Wallis test to 

assess differences in mean sequence coverage distribution between methods. 

Combined data set is shown in red. All methods were significantly different from 

each other (p<0.05), with the exception of GELFrEE and SCX. 
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Figure 2.8 All workflows preferentially enrich for hydrophilic peptides. 

(A) Kernel density estimation was performed using GRAVY scores from each 

method. GRAVY scores <0 indicate the presence and relative abundance of 

hydrophilic species. (B) Box-and-Whisker plot displaying mean GRAVY scores. 

Boxes represent 75% and 25% percentiles and whiskers indicate 95% and 5% 

percentiles. One-way ANOVA was performed using the Kruskal-Wallis test to 

assess differences in mean GRAVY score distribution between methods. 

Combined dataset is shown in red. In-solution was significantly from different from 

all other methods (p-value <0.0001). 

  



84 

 

 

 

Table 2.3 Total missed cleavages present in all preparative techniques 
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2.4 Discussion 

In this study, we compared the performance of several commonly used sample 

preparative techniques for bottom-up proteomics. As expected, fractionation 

yielded more protein identifications, and in most cases, greater sequence 

coverage, than unfractionated in-solution digests. Peptide-based fractionation 

outperformed gel-based workflows in terms of protein IDs and fractionation 

efficiency but not necessarily sequence coverage.  

 

Interestingly, in our hands, we did not achieve similar proteome depth with 

GELFrEE compared to SDS-PAGE. GELFrEE appears to suffer from poor 

resolution which may be inherent to the low 8% tris-acetate cartridges and short 

resolving gel (1cm) required for eluting high MW proteins within a reasonable time 

frame. In addition, the GELFrEE collection chamber was not rinsed between 

cycles. Hence, carry over between fractions from residual sample in the GELFrEE 

collection chamber could have led to an under representation of 

separation.  However, both GELFrEE and SDS-PAGE exhibited poor protein 

separation in comparison to other studies which found 64-67% of proteins 

identified were exclusive to a single fraction [26,29]. At the peptide level, our 

numbers more closely resemble these values. Therefore, we believe that 

proteoforms (isoforms, PTMs and cleaved/fragmented proteins) migrating at 

different MWs are recorded as single entries during database searching, thereby 

underestimating the true fractionation efficiency of both SDS-PAGE and GELFrEE. 

For example, Titin, a 3.6 MDa protein was detected in low, intermediate and high 

MW SDS-PAGE and GELFrEE fractions. Nonetheless, GELFrEE remains an 

invaluable tool for top-down proteomics [38].  

 

Differences between digestion efficiency with in-gel and in-solution preparations is 

another factor which likely affected proteome coverage and warrants further 

investigation. For reference, we investigated peptides with missed cleavages from 
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HpH preparations which contained internal lysine and/or arginine residues. 

Notably, we found the frequency of internal K residues to be ~2 fold higher than R 

even though their abundance in the human proteome (Uniprot) is approximately 

even (~5.8% for K and ~5.6% for R) (data not shown). This difference can be 

explained by trypsin's higher affinity for arginine compared to lysine [39]. Hence, 

future sample preparations may benefit from utilizing Trypsin/LysC to minimize the 

number of missed cleavages occurring at lysine [40]. 

 

Reproducibility, feasibility/cost and throughput are important parameters to 

consider when choosing a sample preparation to employ in bottom-up proteomics. 

Although it is difficult to objectively quantify these parameters for each technique, 

SCX StageTip fractionation was by far the most efficient and straightforward 

method due to the capacity to process samples in parallel and short elution times. 

HpH fraction collection was automated but is limited to processing one sample at 

a time. In addition, HpH requires a dedicated fractionation system as well as 

additional time for concatenation, drying and column cleaning between replicates. 

GELFrEE can multiplex up to 8 samples but needs ~3 hours to run plus 

chloroform/methanol precipitation of each fraction. It also requires a dedicated unit 

and custom cartridges. SDS-PAGE, as expected, was the most labour intensive 

technique and required an additional day for destaining. However, SDS-PAGE as 

well as SCX StageTips, were the most cost-effective and accessible methods. 

 

Although combining multiple techniques improved protein identifications and 

sequence coverage, the additional acquisition time needed is not feasible for the 

majority of medium to large scale proteomic studies (≥1 proteome/day of 

instrument time). It is doubtful that faster mass spectrometers with increased 

sensitivity and dynamic range will bypass the need for some form of sample 

fractionation to achieve maximum proteome coverage.  Utilizing multiple enzyme 

digestion strategies or iterative exclusion in tandem with techniques like HpH 

fractionation may be more appropriate for achieving optimal sequence coverage 
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[10,41–43]. Additional improvements to protein extraction/handling, column 

technology and instrumentation could also yield increased proteome depth. In 

summary, the findings reported here illustrate the benefits and limitations of 

different techniques for analyzing a complex cellular proteome and should help aid 

in the design of future bottom-up proteomics studies.  

2.5 Materials and Methods 

 Cell culture and protein extraction 

HeLa cells (obtained from the ATCC) were maintained in DMEM F12 media 

supplemented with 10% FBS (Life Technologies, Grand Island, NY). Confluent 

15cm plates of HeLa cells were rinsed with PBS, trypsinized and then centrifuged 

at 400 xg for 5 minutes to pellet cells. Cell pellets were re-suspended in PBS, 

pelleted again and stored at -80°C. To prepare lysates for LC-MS, frozen cell 

pellets were incubated in 8M Urea, 50mM ammonium bicarbonate (ABC), 10mM 

DTT, 2% SDS and sonicated with a probe sonicator (20 X 0.5 second pulses; Level 

1) (Fisher Scientific, Waltham, MA) to shear DNA. Lysates were quantified using a 

Pierce™ 660nm Protein Assay (ThermoFisher Scientific) and stored at -80˚C until 

future use. 

 Chloroform/methanol protein precipitation 

HeLa lysates were reduced in 10mM DTT for 30 minutes and alkylated in 100mM 

Iodoacetamide (IAA) for 30 minutes at room temperature in the dark. Next, lysates 

were precipitated in chloroform/methanol in 1.5mL microfuge tubes according to 

Wessel and Flügge [44]. Briefly, 100μg aliquots of HeLa lysates were topped up to 

150µL with 50mM ABC. To each sample, 600μL of cold methanol was added 

followed by 150μL of chloroform and thorough vortexing. A volume of 450μL of 

water was added before additional vortexing and centrifugation at 14,000 xg for 5 

min. The upper aqueous/methanol phase was carefully removed to avoid 
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disturbing the precipitated protein interphase. A second 450μL volume of cold 

methanol was added to each sample followed by vigorous vortexing and 

centrifugation at 14, 000 xg for 5 min. Remaining chloroform/methanol was 

discarded and the precipitated protein pellet air dried in a fume hood. 

 Unfractionated on-pellet in-solution digestion 

On-pellet protein digestion was performed using a modified protocol described by 

Duan et al. [45]. Briefly, 150µL of 50mM ABC (pH 8) trypsin solution was added to 

precipitated protein pellets (1:50 ratio) and incubated overnight at 37°C in a water 

bath shaker. An additional aliquot of trypsin was added the next day (1:100 ratio) 

for ~4 hours before acidifying (pH 3-4) with 10% formic acid (FA). Digests were 

centrifuged at 14,000 xg to pellet insoluble material before LC-MS or peptide 

fractionation. 

 SDS-PAGE followed by in-gel digestion 

HeLa lysates were fractionated by SDS-PAGE as previously described [46]. 

Briefly, 100µg of lysate was separated on a 12% acrylamide tris-glycine gel 

followed by fixing, staining with Coomassie blue and destaining overnight on a 

horizontal shaker. Each lane was divided into 10 equal gel fractions which were 

manually processed into ~1x1 mm3 cubes using a razor blade. Gel pieces were 

reduced in 10mM DTT for 30 minutes and alkylated in 100mM IAA for 30 minutes 

at room temperature in the dark.  After dehydration with ACN, gel pieces were 

swelled in 100μL of 50mM ABC (pH 8) trypsin solution (1:25 ratio distributed evenly 

across 10 fractions) and incubated overnight in a water bath shaker at 37°C. 

Peptides were extracted from gel pieces in the presence of a water bath sonicator 

by adding a small volume of 10% FA followed by dehydration in 300μL ACN for 10 

minutes, two times. Samples were dried in a SpeedVac (Thermo Scientific, 

Waltham, MA) and re-suspended in 0.1% FA prior to LC-MS. 
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 GELFrEE fractionation followed by in-solution digestion 

HeLa lysates (100μg/chamber) were fractionated on an 8% tris-acetate cartridge 

using the GELFrEE system according to the manufacturer (Expedeon, San Diego, 

CA). The voltage gradient used to operate the GELFrEE station is outlined in 

Supplementary Figure 1B. Sample collection was not started until blue loading dye 

was visible in the collection chamber after which 150-200µL of liquid was removed 

and replaced following each time interval. Running buffer was changed every hour 

or half hour when using 50 or 100V, respectively. Fractions 2 and 3, 11 and 12, 

and 13 and 14 were concatenated to generate a total of 10 fractions that were 

processed using chloroform/methanol and in-solution digestion as described 

above. 

 SCX peptide fractionation 

Tryptic peptides recovered from chloroform/methanol precipitated, in-solution 

digests of HeLa lysate (100µg) were fractionated using SCX StageTips similarly to 

Kulak et al.[22]. Approximately 100µg of peptides, acidified with 1% TFA, were 

distributed evenly between four 12-plug SCX StageTips. In total, 10 SCX fractions 

were collected by eluting in 75, 100, 125, 150, 175, 200, 225, 250 and 300mM 

ammonium acetate/20% ACN solutions followed by a final elution with 5%mM 

ammonium hydroxide/80% ACN. Fractions eluted with identical buffers from 

quadruplicate StageTips were combined, dried in a SpeedVac, resuspended in 

ddH2O and dried again to evaporate residual ammonium acetate. All samples were 

resuspended in 0.1% FA prior to LC-MS analysis. 

 High pH reversed phase peptide fractionation 

Proteins (100µg) obtained from chloroform/methanol precipitation were digested 

in-solution with trypsin as described above. Next, tryptic peptides were fractionated 

on a Waters XBridge BEH130 C18 5µm 4.6mm x 250mm column connected to an 
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Agilent 1100 HPLC system at a flow rate of 1 mL/min at 20°C. Buffer A (100% 

water) and buffer B (10% water/90% ACN) were maintained at pH 10.0 by the 

addition of ammonium hydroxide immediately prior to fractionation. The gradient 

consisted of 5% to 35% B over 55 minutes, 70% B over 8 min, hold at 70% B for 

2 minutes, return to 5% B over 5 min and then hold for 15 minutes. A total of 50 

fractions were collected during the first 75 minutes of the gradient (1.5 mL per 

fraction) using an automated fraction collector. The volume of each fraction was 

reduced using a SpeedVac and every 10th fraction was concatenated. The final 10 

fractions were dried completely using a SpeedVac and resuspended 0.1% FA prior 

to LC-MS. 

 LC-MS 

All fractions/digests were analyzed using an M-class nanoAquity UHPLC system 

(Waters) connected to a Q Exactive mass spectrometer (Thermo Scientific). Buffer 

A consisted of Water/0.1% FA and Buffer B consisted of ACN/0.1%FA. Peptides 

(~1µg measured by BCA) were initially loaded onto an ACQUITY UPLC M-Class 

Symmetry C18 Trap Column, 5 µm, 180 µm x 20 mm and trapped for 4 minutes at 

a flow rate of 10 µl/min at 99% A/1% B. Peptides were separated on an ACQUITY 

UPLC M-Class Peptide BEH C18 Column, 130Å, 1.7µm, 75µm X 250mm 

operating at a flow rate of 300 nL/min at 35°C using a non-linear gradient 

consisting of 1-7% B over 7 minutes, 7-19% B over 173 minutes and 19-30% B 

over 60 minutes before increasing to 95% B and washing. Settings for data 

acquisition on the Q Exactive are outlined in Table 2.4. 

 Data Analysis 

All raw MS files were searched in MaxQuant version 1.5.2.8 using the Human 

Uniprot database (reviewed only; updated May 2014 with 40,550 entries) [47,48]. 

Missed cleavages were set to 3 and I=L. Cysteine carbamidomethylation was set 

as a fixed modification. Oxidation (M), N-terminal acetylation (protein), and 
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deamidation (NQ) were set as a variable modifications (max. number of 

modifications per peptide = 5) and all other setting were left as default. Precursor 

mass deviation was left at 20 ppm and 4.5 ppm for first and main search, 

respectively. Fragment mass deviation was left at 20 ppm. Protein and peptide 

FDR was set to 0.01 (1%) and the decoy database was set to revert. Match-

between-runs was enabled where specified in the main text in order to transfers 

missed proteins identifications between replicate LC-MS/MS runs due to 

limitations in instrument speed during data dependent acquisition of complex 

samples. Bioinformatics analysis was performed using Perseus version 1.5.5.3. 

Briefly, protein lists obtained from MaxQuant search results were loaded into 

Perseus and entries (proteins) indicated as identified by site, reverse or potential 

contaminant were removed [49]. When using the match-between-runs feature, 

datasets were filtered for proteins containing a minimum of one unique peptide in 

at least 2 out of 3 biological replicates. Kernel density estimation was performed 

using R statistical software version 3.2.3. Graphpad Prism version 6.01 was used 

to conduct nonparametric Kruskal-Wallis test coupled with Dunn’s multiple 

comparison, along with the Mann-Whitney test to assess significance. 
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Table 2.4 Overview of parameters used for data acquisition on a Q Exactive. 

 

  



93 

 

 

 

2.6 References 

[1] Ly, L., Wasinger, V.C., Protein and peptide fractionation, enrichment and depletion: Tools 
for the complex proteome. Proteomics 2011, 11, 513–534. 

[2] Mann, M., Kulak, N. a., Nagaraj, N., Cox, J., The Coming Age of Complete, Accurate, and 
Ubiquitous Proteomes. Mol. Cell 2013, 49, 583–590. 

[3] Nagaraj, N., Kulak, N.A., Cox, J., Neuhauser, N., et al., System-wide perturbation analysis 
with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a 
bench top Orbitrap. Mol. Cell. Proteomics 2012, 11, M111.013722. 

[4] Pirmoradian, M., Budamgunta, H., Chingin, K., Zhang, B., et al., Rapid and deep human 
proteome analysis by single-dimension shotgun proteomics. Mol. Cell. Proteomics 2013, 
12, 3330–8. 

[5] Hebert, A.S., Richards, A.L., Bailey, D.J., Ulbrich, A., et al., The one hour yeast proteome. 
Mol. Cell. Proteomics 2014, 13, 339–47. 

[6] Kelstrup, C.D., Jersie-Christensen, R.R., Batth, T.S., Arrey, T.N., et al., Rapid and deep 
proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass 
spectrometer. J. Proteome Res. 2014, 13, 6187–95. 

[7] Mayne, J., Starr, A.E., Ning, Z., Chen, R., et al., Fine tuning of proteomic technologies to 
improve biological findings: advancements in 2011-2013. Anal. Chem. 2014, 86, 176–95. 

[8] Batth, T.S., Francavilla, C., Olsen, J. V, Off-Line High-pH Reversed-Phase Fractionation 
for In-Depth Phosphoproteomics. J. Proteome Res. 2014, 13, 6176–6186. 

[9] Pozniak, Y., Balint-Lahat, N., Rudolph, J.D., Lindskog, C., et al., System-wide Clinical 
Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis. Cell 
Syst. 2016, 2, 172–184. 

[10] Bendall, S.C., Hughes, C., Campbell, J.L., Stewart, M.H., et al., An enhanced mass 
spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol. 
Cell. Proteomics 2009, 8, 421–32. 

[11] Wang, H., Chang-Wong, T., Tang, H.Y., Speicher, D.W., Comparison of extensive protein 
fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex 
proteomes. J. Proteome Res. 2010, 9, 1032–1040. 

[12] Speicher, K.D., Kolbas, O., Harper, S., Speicher, D.W., Systematic analysis of peptide 
recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. 
Tech. 2000, 11, 74–86. 

[13] Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V, Mann, M., In-gel digestion for mass 
spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–60. 

[14] Kim, M.-S., Pinto, S.M., Getnet, D., Nirujogi, R.S., et al., A draft map of the human 
proteome. Nature 2014, 509, 575–81. 



94 

 

 

 

[15] Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas Gholami, A., et al., Mass-spectrometry-
based draft of the human proteome. Nature 2014, 509, 582–7. 

[16] Tran, J.C., Doucette, A. a, Gel-eluted liquid fraction entrapment electrophoresis: an 
electrophoretic method for broad molecular weight range proteome separation. Anal. 
Chem. 2008, 80, 1568–73. 

[17] Washburn, M.P., Wolters, D., Yates, J.R., Large-scale analysis of the yeast proteome by 
multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242–7. 

[18] Stein, D.R., Hu, X., Mccorrister, S.J., Westmacott, G.R., et al., High pH reversed-phase 
chromatography as a superior fractionation scheme compared to off-gel isoelectric 
focusing for complex proteome analysis. Proteomics 2013, 13, 2956–2966. 

[19] Branca, R.M.M., Orre, L.M., Johansson, H.J., Granholm, V., et al., HiRIEF LC-MS enables 
deep proteome coverage and unbiased proteogenomics. Nat. Methods 2014, 11, 59–62. 

[20] McQueen, P., Krokhin, O., Optimal selection of 2D reversed-phase–reversed-phase HPLC 
separation techniques in bottom-up proteomics. Expert Rev. Proteomics 2012, 9, 125–8. 

[21] Ishihama, Y., Rappsilber, J., Mann, M., Modular stop and go extraction tips with stacked 
disks for parallel and multidimensional Peptide fractionation in proteomics. J. Proteome 
Res. 2006, 5, 988–94. 

[22] Kulak, N. a, Pichler, G., Paron, I., Nagaraj, N., Mann, M., Minimal, encapsulated 
proteomic-sample processing applied to copy-number estimationa in eukaryotic cells. Nat. 
Methods 2014, 11, 319–24. 

[23] Rappsilber, J., Ishihama, Y., Mann, M., Stop and Go Extraction Tips for Matrix-Assisted 
Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in 
Proteomics. Anal. Chem. 2003, 75, 663–670. 

[24] Wang, H., Sun, S., Zhang, Y., Chen, S., et al., An off-line high pH reversed-phase 
fractionation and nano-liquid chromatography–mass spectrometry method for global 
proteomic profiling of cell lines. J. Chromatogr. B 2015, 974, 90–95. 

[25] Yin, X., Zhang, Y., Liu, X., Chen, C., et al., Systematic comparison between SDS-
PAGE/RPLC and high-/low-pH RPLC coupled tandem mass spectrometry strategies in a 
whole proteome analysis. Analyst 2015, 140, 1314–1322. 

[26] Botelho, D., Wall, M.J., Vieira, D.B., Fitzsimmons, S., et al., Top-down and bottom-up 
proteomics of SDS-containing solutions following mass-based separation. J. Proteome 
Res. 2010, 9, 2863–70. 

[27] Thakur, S.S., Geiger, T., Chatterjee, B., Bandilla, P., et al., Deep and Highly Sensitive 
Proteome Coverage by LC-MS/MS Without Prefractionation. Mol. Cell. Proteomics 2011, 
10, M110.003699-M110.003699. 

[28] Beck, S., Michalski, A., Raether, O., Lubeck, M., et al., The impact II, a very high 
resolution quadrupole time-of-flight instrument for deep shotgun proteomics. Mol. Cell. 
Proteomics 2015, 2014–2029. 



95 

 

 

 

[29] Weston, L.A., Bauer, K.M., Hummon, A.B., Comparison of bottom-up proteomic 
approaches for LC-MS analysis of complex proteomes. Anal. Methods 2013, 5, 1–15. 

[30] Heroux, M.S., Chesnik, M. a, Halligan, B.D., Al-Gizawiy, M., et al., Comprehensive 
characterization of glioblastoma tumor tissues for biomarker identification using mass 
spectrometry-based label-free quantitative proteomics. Physiol. Genomics 2014, 46, 467–
481. 

[31] Darville, L.N.F., Sokolowski, B.H. a, In-depth proteomic analysis of mouse cochlear 
sensory epithelium by mass spectrometry. J. Proteome Res. 2013, 12, 3620–30. 

[32] Jones, K.A., Kim, P.D., Patel, B.B., Kelsen, S.G., et al., Immunodepletion plasma 
proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass 
spectrometers. J. Proteome Res. 2013, 12, 4351–65. 

[33] Mostovenko, E., Hassan, C., Rattke, J., Deelder, A.M., et al., Comparison of peptide and 
protein fractionation methods in proteomics. EuPA Open Proteomics 2013, 1, 30–37. 

[34] Wang, Y., Yang, F., Gritsenko, M. a., Wang, Y., et al., Reversed-phase chromatography 
with multiple fraction concatenation strategy for proteome profiling of human MCF10A 
cells. Proteomics 2011, 11, 2019–2026. 

[35] Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a 
protein. J. Mol. Biol. 1982, 157, 105–32. 

[36] Manadas, B., English, J. a, Wynne, K.J., Cotter, D.R., Dunn, M.J., Comparative analysis 
of OFFGel, strong cation exchange with pH gradient, and RP at high pH for first-
dimensional separation of peptides from a membrane-enriched protein fraction. 
Proteomics 2009, 9, 5194–8. 

[37] Magdeldin, S., Yamamoto, K., Yoshida, Y., Xu, B., et al., Deep proteome mapping of 
mouse kidney based on OFFGel prefractionation reveals remarkable protein post- 
translational modifications. J. Proteome Res. 2014, 13, 1636–46. 

[38] Catherman, A.D., Durbin, K.R., Ahlf, D.R., Early, B.P., et al., Large-scale top-down 
proteomics of the human proteome: membrane proteins, mitochondria, and senescence. 
Mol. Cell. Proteomics 2013, 12, 3465–73. 

[39] Giansanti, P., Tsiatsiani, L., Low, T.Y., Heck, A.J.R., Six alternative proteases for mass 
spectrometry-based proteomics beyond trypsin. Nat. Protoc. 2016, 11, 993–1006. 

[40] Glatter, T., Ludwig, C., Ahrné, E., Aebersold, R., et al., Large-scale quantitative 
assessment of different in-solution protein digestion protocols reveals superior cleavage 
efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 
2012, 11, 5145–5156. 

[41] Wang, N., Li, L., Exploring the precursor ion exclusion feature of liquid chromatography-
electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein 
identification in shotgun proteome analysis. Anal. Chem. 2008, 80, 4696–4710. 

[42] Meyer, J.G., In Silico Proteome Cleavage Reveals Iterative Digestion Strategy for High 
Sequence Coverage. ISRN Comput. Biol. 2014, 2014, 1–7. 



96 

 

 

 

[43] Guo, X., Trudgian, D.C., Lemoff, A., Yadavalli, S., Mirzaei, H., Confetti: A Multi-protease 
Map of the HeLa Proteome for Comprehensive Proteomics. Mol. Cell. Proteomics 2014, 
13, 1573–1584. 

[44] Wessel, D., Flügge, U.I., A method for the quantitative recovery of protein in dilute solution 
in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. 

[45] Duan, X., Young, R., Straubinger, R.M., Page, B., et al., A Straightforward and Highly 
Efficient Precipitation/On-Pellet Digestion Procedure Coupled with a Long Gradient Nano-
LC Separation and Orbitrap Mass Spectrometry for Label-Free Expression Profiling of the 
Swine Heart Mitochondrial Proteome. J. Proteome Res. 2009, 8, 2838–2850. 

[46] Bendall, S.C., Booy, A.T., Lajoie, G., in:, Curr. Protoc. Stem Cell Biol., vol. Chapter 1, 
John Wiley & Sons, Inc., Hoboken, NJ, USA 2007, p. Unit 1B.1. 

[47] Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized 
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 
2008, 26, 1367–1372. 

[48] Consortium, T.U., UniProt: a hub for protein information. Nucleic Acids Res. 2014, 43, 
D204–D212. 

[49] Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., et al., The Perseus computational 
platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–
40. 

 



97 

 

 

 

Chapter 3  

3 Proteomic-based discovery of putative biomarkers 
for improved classification of endometrioid and high 
grade serous ovarian cancer subtypes 
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3.1 Abstract 

Epithelial ovarian cancer (EOC) is a heterogeneous disease consisting of 5 main 

subtypes. Overall survival for EOC remains low and treatment modalities do not 

differ significantly between subtypes. However, patients may benefit from alternate 

therapies targeting pathways associated with EOC subtypes, such as Poly (ADP-

ribose) polymerase (PARP) inhibitors for high grade serous ovarian cancer 

(HGSC). Thus accurate subtype classification will become increasingly important 

for patient management and outcomes. HGSC and endometrioid ovarian cancer 

(EC) are associated with poor and good patient prognosis, respectively. However, 

in a subset of cases, the differential diagnosis of HGSC from EC (primarily high-

grade) based on pathological assessment is challenging. Although histotype 

specific markers for HGSC exist in the clinic, positive markers for EC are lacking. 

Therefore, we undertook a label free quantitative proteomics approach to 

characterize differences between EC and HGSC tumours that may reveal markers 

specific to EC. Our findings highlight differences between HGSC and EC biology 

that relate to integrin, estrogen and interferon signalling pathways. Although a 

subset of EC and HGSC tumours exhibited similar protein expression profiles, we 

identified a number of proteins consistently enriched in EC. Accordingly, several 

candidates, including progesterone receptor (PR), were validated by 

immunohistochemistry on a cohort of over 300 (EC and HGSC) tumour sections. 

KIAA1324 was identified as a novel marker for EC with diagnostic performance 

similar to PR, the current best marker of EC, and may aid in pathological 

assessment of difficult to discriminate tumours.  
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3.2 Introduction 

Ovarian cancer affects 1.27% of females and remains a difficult disease to treat 

with a 5-year overall survival of only 46.5% [1]. Approximately 90% of all ovarian 

cancer cases are classified as invasive epithelial ovarian cancer (EOC) which can 

be divided into 5 main subtypes: high grade serous (HGSC), low grade serous 

(LGSC), clear cell (CCC), endometrioid (EC) and mucinous. Although EOC is 

comprised of heterogeneous entities, cytoreductive surgery combined with 

platinum/taxol-based chemotherapy remains the standard first line treatment 

regardless of subtype [2]. For example, CCC, mucinous, and LGSC respond poorly 

to chemotherapy but are treated identically to HGSC and EC [3–5]. In light of 

advances in genetic and molecular profiling, only recently have targeted therapies 

for managing EOC begun to emerge [6]. For example, clinically approved poly 

(ADP-ribose) polymerase (PARP) inhibitors are now a promising second line 

treatment option for BRCA1/2 defective, chemoresistant or recurrent HGSC [7]. 

Immunotherapy might be an alternative treatment option for EC which is 

associated with defects in DNA mismatch repair genes (Lynch syndrome) [8,9]. 

Moreover, the anti-angiogenic therapy bevacizumab (Avastin™) significantly 

increases median progression free survival (PFS) and may preferentially improve 

overall survival (OS) in EOC with mesenchymal and proliferative molecular 

subtypes [10]. Therefore, accurate characterization and discrimination of EOC 

subtypes is becoming increasingly pertinent for making informed treatment 

decisions and developing targeted therapies.  

Pathological assessment of EOC can be supported by immunohistochemistry 

(IHC) in a reproducible manner. For example, TP53 combined with WT1 or 

p16/CDKN2A staining can be used to discern HGSC and LGSC [11,12]. 

Alternatively, hepatocyte nuclear factor-1 beta (HNF-1β) is a highly specific marker 

of CCC [13]. In a proportion of EOC cases, discrimination between HGSC and EC 

tumours remains challenging, in particular high-grade (2 and 3) EC [9,11,14,15]. 
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Although WT1 can help confirm HGSC cases misclassified as EC, positive 

markers for EC exhibit limited specificity. For instance, progesterone receptor (PR) 

is expressed by ~81% of EC but present in 56% of HGSC [16]. Thus, identification 

and validation of EC specific markers are needed to improve clinicopathologic 

assessment and treatment selection for difficult diagnosis. 

High-resolution mass spectrometry-based proteomics is a powerful and unbiased 

technology which is being increasingly applied to characterize complex biological 

systems which are inherent in cancer. A recent study by Hughes et al. exemplified 

the translational capabilities of mass spectrometry by performing high-throughput 

quantitative proteomic characterization of formalin fixed paraffin embedded 

(FFPE) tumour samples from HGSC, CCC and EC. One of the findings reported 

in this study was the identification of cystathionine γ-lyase (CTH), a highly specific 

and novel marker for CCC [17]. In another large scale proteomic study, ovarian 

cancer cell lines were stratified based on clustering with mesenchymal, clear cell 

and epithelial expression profiles to identify their possible site of origin [18]. In an 

attempt to elucidate histotype specific markers of EC, we undertook a mass 

spectrometry-based proteomics approach using fresh frozen tumour samples from 

HGSC and EC patients. In addition to previously reported markers, we observed 

several proteins by proteomics that may offer improved diagnostic performance 

over PR alone for detecting EC. Lastly, IHC was performed on a cohort of up to 

311 (HGSC and EC) ovarian tumour sections to determine the specificity and 

sensitivity for a subset of proteins (PLCB1, PAM, KIAA1324, PR, CTNNB1, 

MUC5B, PIGR, SCGB2A1 and PIGR) for detecting EC.   
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3.3 Results 

 Global proteomic analysis of serous and endometrioid 

ovarian cancer 

To identify markers enriched in or exclusive to endometrioid (EC) versus high-

grade serous ovarian cancer (HGSC) subtypes, we performed label free 

quantitative proteomics on 20 unfractionated EC and HGSC tumour samples (10 

samples from each subtype) and 4 normal ovarian tissues (Figure 3.1). Patient 

characteristics for each subtype are listed in Table 3.1. On average, ~4500 

proteins were identified in each sample of which ~97% contained LFQ intensity 

values (Figure 3.2A). As anticipated, most proteins detected were of cytoplasmic 

origin (cell part) or belonging to macromolecular protein complexes and organelles 

according to PantherDB (Figure 3.2B) [19]. Approximately 78% of all proteins 

identified in the dataset were present in at least one sample from each group 

(Normal, HGSC or EC) and 13.5% (870 proteins) were exclusively shared between 

HGSC and EC groups (Figure 3.2C). Entries with LFQ values in ≤2 samples/group 

(Normal, EC or HGSC) were subsequently removed to minimize the number of 

proteins detected in a limited number of samples. Missing LFQ values were 

imputed in Perseus and Principal Component Analysis (PCA) was performed on 

the remaining proteins (~5800) [20]. EC samples clustered relatively well as 

illustrated by PCA however HGSC clustering was more dispersed (Figure 3.2D). 

In addition, only 3 of 4 normal samples were distinct from malignant samples. 

Interestingly, several tumour samples clustered more tightly with the opposite 

subtype suggesting similarities in protein expression profiles and/or intra-subtype 

heterogeneity. Indeed, ovarian cancers are known to be highly complex and 

heterogeneous. One HGSC sample contained substantially less protein IDs 

(~3100) which likely impacted its clustering with other HGSC samples. 
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Figure 3.1 Proteomics-based workflow for detecting EC enriched markers 

Proteins were initially extracted, precipitated and digested from normal ovarian 

tissue (Normal), high-grade serous ovarian cancer (HGSC) and endometrioid 

ovarian cancer (EC) tumours. Unfractionated digests (peptides) were analyzed by 

liquid chromatography-mass spectrometry (LC-MS) on an Orbitrap Elite followed 

by database searching and label free quantification (LFQ) in MaxQuant with 

match-between-runs enabled and a minimum ratio count of 1 to improve proteome 

coverage and quantification. Protein LFQ intensities were used to identify 

differentially expressed proteins and perform gene ontology (GO) and pathway 

analysis. A subset of protein candidates specific to or highly expressed by EC 

tumours were validated by immunohistochemistry (IHC) on tumour microarrays 

consisting of EC and HGSC tumour sections to assess their performance.  
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Table 3.1 Patient characteristics 

 

  



104 

 

 

 

 

 

  



105 

 

 

 

Figure 3.2 Proteome coverage and clustering ovarian (tumour) samples. 

(A) Stacked bar plot showing total proteins identified (light and dark grey) and 

quantified (light grey) in normal ovarian tissue samples (Normal), endometrioid 

ovarian cancer (EC) and high-grade serous ovarian cancer (HGSC) tumour 

samples. (B) Distribution of GO cellular components (GOCCs) for all proteins 

identified. (C) Venn diagram showing overlap between Normal, HGSC and EC 

datasets.  (D) Principal Component Analysis (PCA) using protein entries containing 

≥3 LFQ intensities in at least one group (Normal, HGSC or EC). Missing LFQ 

values were imputed in Perseus using a down shift of 1.8 and width of 0.3.  
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We next determined which proteins were differentially expressed (two sample t-

test, p<0.05) between ovarian tumour samples (EC or HGSC) and normal ovarian 

tissue (Normal). Substantially more proteins were significantly elevated in EC and 

HGSC tumours compared to normal tissue (Figure 3.3A and B). Interestingly, log2 

fold-changes in protein expression between EC versus Normal and HGSC versus 

Normal correlated relatively well (Pearson correlation coefficient of ~0.8) 

suggesting a fair degree of similarity between these two subtypes (Figure 3.3C). 

Indeed, regardless of subtype (EC or HGSC), multiple proteins were highly 

elevated in ovarian tumours, such as phosphoserine aminotransferase (PSAT1) 

and L-amino-acid oxidase (IL4I1), that may warrant further investigation.  

To better interrogate differences between EC and HGSC, we omitted the normal 

ovarian samples from further analyses. Proteins shared between HGSC and EC 

samples were relatively unchanged however clustering within each subtype 

appeared to improve slightly (Figure 3.4A and B).  Moreover, numerous proteins 

were found to be differentially expressed between the two subtypes (two-sample 

t-test, p<0.05) (Figure 3.4C, ESM3.1). Accordingly, cellular tumour antigen p53 

(TP53) and PR expression were significantly lower (-2.06 log2 fold-change, -log10 

p-value = 2.03) and higher (4.20 log2 fold-change, log10 p-value = 4.46) in EC 

tumours relative to HGSC tumours, respectively. We did not detect Wilms tumour 

protein (WT1), a known positive marker of HGSC, in our proteomics data however 

CDKN2A/p16 was significantly higher in HGSC [11]. Additional proteins previously 

found to be differentially expressed between EC versus HGSC included MSLN (-

2.67 log2 fold-change, -log10 p-value = 1.50), IGF2 (-1.62 log2 fold-change, -log10 

p-value = 1.51), MMP7 (1.45 log2 fold-change, -log10 p-value = 2.23) and CTNNB1 

(0.86 log2 fold-change, -log10 p-value = 2.15) [21].  
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Figure 3.3 Utilizing normal ovarian tissues to assess commonalities between 

EC and HGSC proteomes. 

(A and B) Volcano plot of log2 fold-changes in LFQ protein intensities between EC 

tumours and normal ovarian tissue or HGSC tumours and normal ovarian tissue. 

Proteins significantly elevated (p-value<0.05) in tumour samples or normal ovarian 

tissue are highlighted in red and blue, respectively. (C) Scatter of plot of log2 fold-

changes versus log2 fold-changes from A and B. Proteins differentially expressed 

in both datasets (EC versus Normal and HGSC versus Normal) are highlighted in 

red and blue. A subset of significant proteins highly expressed in ovarian tumours 

regardless of subtype (EC and HGSC) or normal ovarian tissue are labelled in 

black.  
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Figure 3.4 Interrogating differences between HGSC and EC proteomes. 

(A) Venn diagram reveals high overlap between proteins expressed in HGSC and 

EC subtypes. (B) Principal Component Analysis (PCA) illustrating moderate 

clustering of tumour samples within each subtype. (C) Volcano plot of log2 fold-

changes in LFQ intensities (EC versus HGSC) reveal a large number of 

differentially expressed proteins. Proteins significantly elevated in EC or HGSC are 

coloured in red and blue, respectively. Several of the top differentially expressed 

proteins are labelled in black. Only protein entries containing LFQ intensities in at 

least 3 out of 10 samples for either subtype (HGSC or EC) were retained for 

downstream comparisons. 
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 Pathway annotation reveals differences between HGSC 

and EC biology  

To document pathways and processes which may differ between EC and HGSC, 

we utilized two approaches. First, proteins significantly elevated in EC or HGSC 

proteomes were analyzed using ‘EnrichR’ to identify over-represented pathways 

(Reactome, BioCarta, NCI-Nature, KEGG) or GO biological processes (GOBPs) 

[22]. Second, using the entire proteomic expression dataset, we performed gene 

set enrichment analysis (GSEA) which is sensitive to cumulative changes in the 

expression of groups of multiple proteins.   

In terms of over-representation, a wide variety of signalling pathways, 

metabolic/enzymatic processes, immune associated responses and 

transcriptional/translational activities were significantly associated with each 

subtype (Figure 3.5, ESM3.2 and 3.3). For example, “Neutrophil mediated 

immunity”, “Lysosome” and “Alpha6 beta4 integrin ligand interactions” were 

significant in EC (Figure 3.5A). Alternatively, “Interferon signaling”, “Mismatch 

repair” and “Integrin family cell surface interactions” were over-represented in 

HSGC (Figure 3.5B). Accordingly, significant differences in integrin signalling were 

supported by higher ITGA6, ITGB4 and ITGA1 expression in EC and elevated 

ITGA3 and ITGA5 levels in HGSC.  

GSEA was performed using Hallmark and canonical pathways (v6.1) from the 

Molecular Signatures Database (MSigDB) and identified a moderate number of 

gene sets with nominal p-values≤0.05 albeit a subset were within the 

recommended FDR cut-off of 0.25 (Table 3.2) [23,24]. Substantially more gene 

sets were enriched in EC compared to HGSC. Indeed, melanoma, bladder cancer, 

and DNA replication (KEGG) were among the limited gene sets potentially 

enriched (negative normalized enrichment score (NES)) in HGSC. Conversely, 

numerous gene sets were highly enriched (positive NES) in EC with estrogen 
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response early (Hallmark; NES ~1.6) among the most significant (p-value<0.001 

and FDR q-value <0.25).   

To further illustrate differences between EC and HSGC biology, we compared 

normalized (z-scored) expression values of core proteins enriched in estrogen 

response early (Hallmark) and interferon alpha beta signalling (Reactome) gene 

sets (Figure 3.6A). In general, EC samples expressed high levels of proteins 

associated with estrogen signalling while proteins associated with interferon 

signalling were elevated in HGSC samples. Interestingly, HGSC-1 and EC-9 

appeared to exhibit protein expression profiles characteristic of the opposing 

subtype.  

As a complement, we performed 1D annotation enrichment in Perseus on the 

combined list of ~5600 proteins which revealed modest but significant alterations 

in GOBPs (BH FDR<0.02) (Figure 3.6B and ESM3.4) [20]. Proteins associated 

with defense response to fungus (1.24 log2 fold-change), O-glycan processing 

(0.99 log2 fold-change), and fatty acid metabolic processes (0.44 log2 fold-change) 

were enriched in EC. High mucin expression (MUC1, MUC5AC, MUC5B, MUC6 

and MUC16) was primarily associated with elevated O-glycan processing in EC. 

Conversely, processes enriched in HGSC included response to type 1 interferon 

(0.90 log2 fold-change), DNA strand elongation (0.61 log2 fold-change), positive 

regulation of adaptive immune response (0.51 log2 fold-change) and mitochondrial 

translation (0.36 log2 fold-change). High expression of HLA-A histocompatibility 

antigens, and interferon induced and regulatory proteins were primarily 

responsible for increased interferon signalling in HGSC. 
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Figure 3.5 Pathway annotation of proteins differentially expressed between 

EC and HGSC tumours  

Proteins significantly elevated in EC or HGSC tumour samples were analyzed in 

EnrichR using Reactome (red), BioCarta (blue), KEGG (black) and NCI-Nature 

(purple) pathways and GO biological processes (GOBPs; green). (A and B) The 

top 3 most significant (Benjamini-Hochberg (BH) adjusted p-value<0.05) pathways 

and GOBPs in (A) EC or (B) HGSC tumours are labelled. Horizontal dotted line 

indicates an adjusted p-value cut-off of 0.05 and no significant BioCarta pathways 

were observed in HGSC tumours. 
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Table 3.2 Gene sets enriched in EC and HGSC tumours 
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Figure 3.6 Selected pathways and processes characteristic of EC and HGSC 

biology. 

(A) Heat map showing normalized (z-score) expression of core proteins enriched 

in estrogen response early (top panel) or interferon alpha/beta signalling (bottom 

panel). (B) Selected GOBPs enriched in HGSC and EC subtypes following 1D 

annotation enrichment in Perseus. Bars and black dots represent total proteins and 

log2 fold-enrichment for each GOBP listed, respectively. 
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 Selecting EC enriched proteins for IHC validation 

An ideal diagnostic marker is one that achieves high sensitivity (detects all or most 

true positives) and high specificity (reports no or few false positives). To filter 

candidates of EC for validation by IHC, we first tabulated proteins with peptide 

evidence in ≥80% of tumour samples from one subtype and ≤20% of samples from 

the other subtype (Table 3.3). This approach identified 15 and 7 proteins that were 

largely exclusive to EC and HGSC tumours, respectively. Of note, PR was among 

the list of proteins enriched in EC with a log2 fold-change (EC versus HGSC) of 

4.20. While this strategy may detect proteins with high specificity, it may not 

capture all proteins with high differential expression in EC. Therefore, we analyzed 

our proteomics data using the R package ‘geNetClassifier’ (GNC) to rank proteins 

with the greatest classification power in an unbiased fashion [25]. In total, 106 

proteins passed the posterior probability cut-off of 0.95 and were used in training 

the support vector machine (Figure 3.7A and ESM3.4). The lowest error rate 

achieved by GNC was 0.1 (10%) and corresponded to a set of 69 proteins (Figure 

3.7B). Interestingly, the top 2 ranked proteins (MUC5B and PIGR) were not 

identified based on our initial filtering criteria. We subsequently performed 

unsupervised hierarchical clustering utilizing Pearson correlation coefficients 

calculated from LFQ expression data restricted to the top 106 ranked proteins. 

While this analysis segregated HGSC and EC samples relatively well, hierarchical 

clustering revealed a third central cluster comprised of 3 EC and 2 HGSC samples 

(Figure 3.7C). This finding was in agreement with our earlier PCA which indicated 

some tumour samples cluster more closely with opposite subtype, such as HGSC-

1 and EC-9.  

 Validation of EC enriched proteins by IHC  

Based on our proteomic analysis, we opted to select several candidates with large 

log2 fold-changes (MUC5B and PIGR) and/or high specificity (PLCB1, PAM, 
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KIAA1324 and SCGB2A1) to validate using IHC on a cohort of up to 311 tumour 

sections (174-176 EC and 134-136 HGSC). For comparison, we included known 

markers of EC (PR and CTNNB1 [beta-catenin]) in our IHC panel. Receiver 

Operating Characteristic (ROC) Area Under the Curves (AUCs) ranged from 0.82-

0.99 for these candidates when calculated from LFQ expression values (Figure 

3.4D). PPM1H exhibited the highest ROC-AUC but was not validated in our initial 

cohort. 

IHC staining for each of the candidates were scored using a 4-tier system; absent 

= 0, 1-50% focal = 1, 50-95% diffuse = 2, ≥95% block pattern = 3 (Figure 3.5). PR 

was scored as absent (0) or present (1) and CTNNB1 as membranous (0) or 

nuclear (1). IHC images from tumour sections demonstrating positive staining in 

EC (score ≥2) and negative staining in HGSC (score = 0) for each marker are 

shown (Figure 3.8). Importantly, staining scores ≥1 were observed in a significantly 

greater proportion of EC tumour sections than HGSC (Figure 3.9A). Of note, 

KIAA1324 was the only marker which exhibited performance similar to that of PR 

with a sensitivity of 88.5% and specificity of ~53% (Figure 3.9B). Increasing the 

cut-off score to ≥2 reduced sensitivity to 65% but increased specificity to 84% for 

KIAA1324 (data not shown). Although PAM yielded a very high ROC-AUC, it was 

the second least sensitive marker next to CTNNB1 (Figure 3.4D and Figure 3.9B). 

SCGB2A1 (mammaglobin-B), conversely, was the least specific marker which was 

unexpected given the expression, like KIAA1324, was relatively exclusive to EC 

versus HGSC samples in our proteomics analyses (Table 3.3 and Figure  3.9B). 
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Table 3.3 High confidence proteins frequently detected in HGSC and EC 

tumours. 
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Figure 3.7 Protein selection for downstream validation of EC markers. 

(A) Proteomes with LFQ intensities from each tumour sample were analyzed using 

the Bioconductor package ‘geNetClassifier’ (GNC) in R.  (A and B) Total number 

of proteins assigned a posterior probability ≥0.95 by GNC. A minimum set of 69 

genes was found to discriminate between HGSC and EC at an error rate of 10% 

after being trained. Unsupervised hierarchical clustering of tumour samples 

according to Pearson correlation coefficients using the 106 proteins with posterior 

probability ≥0.95. (D) Receiver-operating-characteristic (ROC) area under the 

curve (AUC) of several EC targets selected for validation by IHC. 
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Figure 3.8 Immunohistochemical staining for markers of EC. 

Images taken from EC and HGSC tumour sections showing positive (score ≥ 2) 

and absent (score = 0) staining for each marker (PLCB1, PAM, KIAA1324, PR, 

CTNNB1, SCGB2A1, MUC5B and PIGR). 
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Figure 3.9 Proportion of tumours staining positive for EC markers. 

(A) Mosaic plots showing the proportion of EC and HSGC sections with positive 

(blue region) or negative (red region) staining for PLCB1, PAM, KIAA1324, PR, 

CTNNB1, SCGB2A1, MUC5B and PIGR. Nuclear and membranous staining for 

CTNNB1 was assigned a score of 1 and 0, respectively. The proportion of tumour 

sections staining positive (score ≥1) was significantly higher for all markers in EC 

compared to HGSC (Fisher’s exact test, p<0.001). (B) Corresponding sensitivity 

and specificity values of each target for detecting EC using a cut-off score ≥1. PR 

and KIAA1324 were the best performing markers with relatively good sensitivity 

but intermediate specificity. 
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3.4 Discussion 

Accurate subtype classification is becoming increasingly important for the 

management of patients with EOC. However, differential diagnosis between EC 

and HGSC tumours remains troublesome in a small proportion of cases [2,15]. In 

light of this, we performed label free proteomic analysis on fresh frozen tumours to 

identify markers specific to the EC histotype. We did not employ fractionation or 

multiplexed-based quantification strategies but achieved relatively good proteomic 

coverage (~4500 protein identifications/sample) and detected a significant number 

of proteins that may aid in the discrimination of EC from HGSC.  

While not the main focus of this study, pathway analysis revealed several 

interesting differences between EC and HGSC biology. For instance, members of 

integrin signalling pathways which have been implicated in a wide range of 

diseases including cancer were differentially expressed between EC and HGSC 

[26]. More specifically, integrin α6/β4 were elevated in EC and commonly 

expressed by epithelial cancers [26]. Integrin α5 (ITGA5) expression, in contrast, 

was higher in HGSC and has been previously associated with worse patient 

prognosis compared to tumours with low expression [27]. Proteins linked to 

interferon and estrogen signalling were also elevated in HGSC and EC, 

respectively, and may provide opportunities for therapeutic intervention. 

Interestingly, mismatch repair was significantly over-represented in HGSC 

compared to EC. Our group and others have previously found mismatch repair to 

be defective in a subset EC which supports this finding [9,28,29]. Given the limited 

treatment options for EOC, fractionation techniques which yield greater proteome 

coverage and in-depth pathway analysis are warranted [30]. 

Importantly, our proteomics analyses identified several proteins highly enriched in 

EC. All markers validated by IHC were expressed in significantly higher proportion 

of EC tumours however KIAA1324 was the only marker which exhibited sensitivity 

and specificity comparable to PR. According to the Human Protein Atlas 
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(www.proteinatlas.org), KIAA1324 is a prognostic (favourable) indicator for 

endometrial, lung and ovarian cancer [31]. Little is known regarding the role of 

KIAA1324 in ovarian cancer although it was initially identified as a novel-estrogen 

induced gene (EIG121) in endometrial cancer [32]. More recently, KIAA1324 was 

reported in HGSC with high ERα and KIAA1324 gene expression correlated with 

worse OS [33].  In this study, the authors note KIAA1324, compared to ERα alone, 

may better stratify HGSC patients for which hormonal therapy is beneficial. For 

reference, up to 88% of HGSC tumours express ERα but the number of patients 

estimated to respond to hormonal to therapy ranges from 13-26%. We did not 

correlate ERα with KIAA1324 in this study however if KIAA1324 can stratify 

hormone sensitive EC or HGSC, retrospective analysis of tumour samples from 

patients treated with estrogen antagonists are warranted. 

Similar to KIAA1324, the human protein atlas lists PR, PAM, SCGB2A1, and PIGR 

but not PLCB1 or MUC5B as prognostic indicators of endometrial cancer [31]. Of 

note, TCGA studies have revealed a number of similarities between EC and the 

copy-number low (endometrioid) endometrial cancer subtype [34,35]. For 

instance, PR is upregulated in both EC and copy-number low endometrial cancer. 

Given the prognostic value of these markers in endometrial cancer and their high 

expression in EC, one or more of these factors may exhibit prognostic potential if 

detected in EC or HGSC. However, this needs to be confirmed by comparing PFS 

and OS data. Beyond the markers we validated by IHC, it would be useful to 

investigate additional targets with potentially greater specificity for EC including 

PPMH1 and PPAP2C.  

Several limitations of our proteomic analysis that may mask or exaggerate 

differences between EC and HGSC is the unknown contribution of stromal proteins 

and potential differences in protein localization or activity. Stromal cell 

contributions remains an issue for most ‘omic’ studies but have been approximated 

with the ‘Estimation of STromal and Immune cells in MAlignant Tumours using 
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Expression data’ (ESTIMATE) score [36]. However, like CTNNB1, putative 

diagnostic proteins may not exhibit high differential expression but rather differ in 

their compartmentalization and activity and are therefore likely to be overlooked 

during candidate selection. Techniques such as laser capture microdissection, 

PTM enrichment and/or subcellular fractionation may reveal additional subtype 

specific proteins missed by our approach. 

In summary, the lack of identifying a strong candidate for discriminating EC from 

HGSC (>90% sensitivity and specificity) resonates with the challenges reported by 

previous histopathological studies [2,11]. This was evident following PCA and 

hierarchical clustering whereby several EC and HGSC proteomes clustered 

together and appeared to share similar expression profiles. A similar finding was 

also documented in the quantitative proteomic study of FFPE ovarian cancer 

tumour sections by Hughes et al. where HGSC and EC samples clustered more 

closely at the proteome and transcriptome level compared to CCC samples [17].  

In light of prior and current findings, it may be difficult to establish a single marker 

which discriminates EC from HGSC. Alternatively, multiple markers may be 

required to aid in accurate diagnosis. For example, ward’s algorithm was utilized 

to determine which combination of TP53 and CDKN2A staining features could best 

discriminate HGSC from LGSC [12]. Moving forward, multivariate analysis of our 

IHC data may reveal subtype specific expression patterns for improved diagnosis 

of EC in challenging cases. 

3.5 Materials and methods 

 Protein extraction from fresh frozen tumours  

Fresh frozen tumour biopsy cores where provided by Dr. Köbel at the University of 

Calgary and confirmed to be HGSC or EC based on pathological assessment. To 

prepare samples for LC-MS, tumours cores were partially thawed on ice and a 

section corresponding to ~100mg was removed with a razor blade. Tumour 
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sections were immediately wrapped in tin foil and submerged in liquid nitrogen for 

~10 minutes. Cryopreserved tumour pieces wrapped in tin foil were hit with a mallet 

3-5 times to pulverize the tissue into a fine powder. One mL of 8M Urea, 50mM 

ammonium bicarbonate (ABC), 10mM dithiothreitol (DTT), 2% SDS lysis buffer 

was added directly to the dissociated tumour sample on tin foil and carefully 

transferred into a 1.5mL microfuge tube. Tumour samples were sonicated with a 

probe sonicator (~20 X 0.5s pulses; Level 1) (Fisher Scientific, Waltham, MA) on 

ice to break up residual tissue chunks and reduce viscosity. Lysates were 

quantified using a Pierce™ 660nm Protein Assay (Thermo Scientific™) and stored 

at -80˚C until future use.  

 Chloroform/Methanol protein precipitation 

A 100µg aliquot of tumour lysate was reduced in 10mM DTT for 30 minutes and 

alkylated in 100mM iodoacetamide (IAA) for 30 minutes at room temperature in 

the dark. Proteins were precipitated in chloroform/methanol in 1.5mL microfuge 

tubes according to Wessel and Flügge [37]. Briefly, samples in lysis buffer were 

topped up to 150µL with 50mM ABC then mixed with ice cold methanol (600μL) 

followed by adding ice cold chloroform (150μL) and vortexed thoroughly.  An 

additional volume (450μL) of 4°C water was added followed by vortexing and 

centrifugation at 14, 000 xg for 5 min. The upper aqueous/methanol phase was 

carefully removed to avoid disturbing the precipitated protein interphase. A second 

450μL volume of cold methanol was added to each sample followed by vigorous 

vortexing and centrifugation at 14, 000 xg for 5 min. The remaining 

chloroform/methanol supernatant was discarded and the precipitated protein pellet 

was left to air dry in a fume hood. 

 On-pellet in-solution digestion 

On-pellet in-solution protein digestion was performed similarly to Duan et al. [38]. 

Briefly, precipitated tumour proteins were reconstituted in 100µL of 50mM ABC 
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(pH 8) and sonicated for 1-3 x 0.5s pulses to the break up the pellet. LysC (Wako 

Chemicals, USA) and mass spec grade trypsin/LysC mix (Promega, Madison, WI, 

USA) were added to protein samples at a 1:100 and 1:50 ratios, respectively. 

Protein digestion was carried out 37°C on a ThermoMixer C (Eppendorf) held at 

300 rpm overnight (~18h). The next day an additional volume of trypsin/LysC mix 

(1:100 ratio) was added to each sample and mixed at 1400 rpm. After 4h, digests 

were acidified to pH 3-4 with 10% FA and centrifuged at 14,000 xg to pellet 

insoluble material prior to LC-MS. 

 LC-MS 

Digests were analyzed using an M-class nanoAquity UHPLC system (Waters) 

connected to an Orbitrap Elite mass spectrometer (Thermo Scientific). Buffer A 

consisted of Water/0.1% FA and Buffer B consisted of ACN/0.1%FA. Peptides 

(~1µg measured by BCA) were initially loaded onto an ACQUITY UPLC M-Class 

Symmetry C18 Trap Column, (5 µm, 180 µm x 20 mm) and trapped for 6 minutes 

at a flow rate of 5 µl/min at 99% A/1% B. Peptides were separated on an ACQUITY 

UPLC M-Class Peptide BEH C18 Column (130Å, 1.7µm, 75µm X 250mm) 

operating at a flow rate of 300 nL/min at 35°C using a non-linear gradient 

consisting of 1-7% B over 1 minute, 7-23% B over 173 minutes and 23-35% B over 

60 minutes before increasing to 95% B and washing. Settings for data acquisition 

on the Orbitrap Elite are outlined in Table 3.4. 

 Data analysis 

MS files were searched in MaxQuant (1.5.8.3) using the Human Uniprot database 

(reviewed only; updated May 2017 with 42, 183 entries) [39,40]. Missed cleavages 

were set to 3 and cysteine carbamidomethylation was set as a fixed modification. 

Oxidation (M), N-terminal acetylation (protein), and deamidation (NQ) were set as 

a variable modifications (max. number of modifications per peptide = 5) and all 

other settings were left default. Protein and peptide FDR was set to 0.01 (1%) and 
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the decoy database was set to revert. The match-between-runs feature was 

utilized to maximize proteome coverage and quantitation by LFQ [41]. Datasets 

were loaded into Perseus (version 1.5.5.3) and proteins containing peptides only 

identified by site (modified peptides exceeding 1% FDR) or matched to reverse 

(decoy) database hits were removed [20]. Protein identifications with quantitative 

values in ≥2 samples in a least one tumour subtype (HGSC or EC) were retained 

for downstream analysis unless specified elsewhere. Missing values were imputed 

using a width of 0.3 and down shift of 1.8. Gene ontology cellular component 

(GOCC) analysis was performed using PantherDB. Pathway annotation was 

performed in using EnrichR [19,22]. Gene set enrichment analysis was carried out 

using GenePattern or GSEA 3.0 with all settings left as default [24]. Support Vector 

Machine (SVM) analysis and Pearson correlation heatmaps were produced using 

the Bioconductor packages ‘geNetClassifier’ and ‘complexHeatmap’, respectively 

[25,42]. ROC-AUC was performed in GraphPad Prism (Version 6.01). 

 Immunohistochemistry 

Immunohistochemistry (IHC) staining was performed by Calgary Laboratory 

Services in the Department of Pathology and Laboratory Medicine at the University 

of Calgary using a DAKO Omnis platform on two 0.6mm representative cores (4 

micron sections) from previously constructed tissue microarrays (174-176 EC and 

134-136 HGSC tumour sections). Antibody information is provided in ESM3.5.  All 

markers were scored using a 4-tier system by pathologists Dr. Martin Köbel and/or 

Dr. Peter Rambau. Absent staining was assigned a score of 0. Tumour cells 

staining as focal (1-50%), diffuse (>50-95%), or block pattern (≥95%) were 

assigned scores 1, 2, or 3, respectively. For CTNNB1, nuclear and membranous 

staining were assigned a score of 1 or 0, respectively. Fisher’s exact test was used 

to determine statistically significant differences (p<0.05) between the proportion of 

EC and HGSC tumour sections staining positive and negative for each marker. 
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Table 3.4 Orbitrap Elite instrument parameters for data acquisition 
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Chapter 4  

4 Proteomic profiling of ovarian cancer extracellular 
vesicles for biomarker discovery 
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4.1 Abstract 

Epithelial ovarian cancer is often detected at later stages and is thus associated 

with poor survival rates. Combined with transvaginal ultrasound, CA-125 is the 

most widely used biomarker for diagnosing and monitoring ovarian cancer 

progression and recurrence. However, other common gynecological conditions 

increase CA-125 levels and not all ovarian cancer patients exhibit elevated CA-

125 levels, necessitating the discovery of additional markers or refined detection 

methods. Extracellular vesicles (EVs) such as exosomes and microparticles 

contain cell-of-origin specific cargo and may be reservoirs for cancer-associated 

biomarkers. Moreover, EVs can be fractionated from high abundance proteins 

including albumin, enabling the de novo detection of low abundance proteins in 

plasma using mass spectrometry-based proteomics. Herein we describe the 

systemic analysis of EVs derived from established and primary ovarian cancer cell 

lines, from patient ascites and from plasma. We found that samples taken directly 

from patients are more appropriate for biomarker discovery, as cell lines whether 

normal or malignant, cluster similarly in terms of EV cargo. In addition, we 

discovered that crude EV collection via ultracentrifugation isolates more cancer-

associated cargo than does CD9-immunopreciptation. Using liquid 

chromatography-mass spectrometry, we uncovered proteins present in EVs 

derived from patient ascites that were absent or extremely low in EVs derived from 

the plasma of healthy donors. Several of these proteins included GPRC5A, 

SLC34A2, ACTBL2, and MUC16 (CA-125). We used this information to create an 

EV-specific parallel reaction monitoring method for plasma EVs that was able to 

differentiate between patients with ovarian cancer compared to non-malignant 

controls. Collectively, these results suggest that when paired with EV-isolation, 

several analytes, including CA-125, may be used in combination to detect ovarian 

cancer in plasma samples. 
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4.2 Introduction 

Cancer biomarker discovery and validation has profound clinical implications for 

screening, diagnosis, personalized medicine and monitoring response to therapy 

[1]. Importantly, cancer biomarkers may improve patient survival by detecting 

preclinical or early stage disease. Currently, most protein based FDA approved 

cancer biomarkers are restricted to differential diagnosis and monitoring disease 

progression and recurrence but not screening or detection [2,3].  

In developed countries, epithelial ovarian cancer (EOC) is the second most 

common gynecological malignancy but most lethal with a 5-year overall survival of 

about 46.2% [4,5]. Early detection is hampered by the lack of symptoms and 

therefore, patients are frequently diagnosed during later stages for which 

prognosis is poor [6].  Women experiencing abdominal and/or pelvic discomfort 

may undergo a transvaginal ultrasound (TVUS) to check for pelvic masses 

however this procedure cannot accurately discriminate between benign or 

malignant masses [7]. Therefore, if ovarian cancer is suspected, invasive surgical 

staging and debulking is required [8].  

A biomarker includes any measurable entity (molecule and/or physiological 

process) which indicates a biological state or phenotype [9–11]. In addition to 

TVUS, CA-125 is the most widely used biomarker to assist in diagnosing and 

monitoring ovarian cancer progression and response to therapy [12]. CA-125 is an 

extracellular epitope consisting of repeating domains generated through cleavage 

of the transmembrane glycoprotein MUC16 [12]. Approximately 83% patients with 

advanced epithelial ovarian exhibit elevated CA-125 levels (>35 U/mL) in the 

blood. However, other common gynecological conditions increase CA-125 levels 

and not all ovarian cancer patients have elevated CA-125 levels making it 

problematic for screening and diagnosis [12,13]. To address this, several 

algorithms have been developed to improve its diagnostic performance. For 

example, the Risk of Malignancy Index (RMI) incorporates menopausal status, CA-
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125 levels and ultrasound characteristics [14]. Alternatively, the Risk of Ovarian 

Cancer Algorithm (ROCA) monitors CA-125 levels over time, rather than using a 

set cut-off, to assess the risk of developing ovarian cancer [15]. In addition to these 

diagnostic assays, three large randomized control trials were recently completed 

which sought to determine whether screening asymptomatic women for ovarian 

cancer could improve patient survival [16]. Unfortunately, results from the US 

Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) found no 

survival advantage for screening by CA-125 and TVUS compared to standard care 

[17]. While the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) 

found a mortality reduction of 15% and 11% in the multimodal (CA-125+TVUS) 

and TVUS screening groups compared to standard care, respectively, this 

difference was not statistically significant based on primary analyses [18]. 

Given the limited sensitivity and specificity of CA-125, there is an unmet need for 

discovering and/or validating alternative biomarkers for the early detection and 

diagnosis of ovarian cancer. However, due to the low incidence of EOC, it has 

been suggested that any biomarker used to screen postmenopausal women will 

require a sensitivity of 99.6% and specificity of >75% in order to achieve a positive 

predictive value of 10% or higher (1 correct diagnosis for every 10 positive test 

results) [19,20]. Plasma is a non-invasive resource which contains numerous 

tissue derived biomarkers beyond CA-125 that can potentially aid in diagnosis and 

monitoring progression. For example, the risk of ovarian malignancy algorithm 

(ROMA) monitors human epididymis protein 4 (HE4) and CA-125 [21]. The FDA 

approved OVA1 in vitro diagnostic multivariate index assay measures 5 

biomarkers (CA-125-II, transferrin [TF], transthyretin (prealbumin), apolipoprotein 

A1 [APOA1], and beta-2 microglobulin [B2M]) and was recently shown to predict 

the malignancy of pelvic masses better than a physician's pre-operative 

assessment or CA-125 alone  [22]. Moreover, Yip et al. screened 259 serum 

biomarkers from nearly 500 patients with ovarian cancer or benign disease and 

found a panel of 9 biomarkers with greater specificity than OVA1 (88.9 versus 
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63.4%) at a sensitivity threshold of 90% [23]. Høgdall et al. screened serum from 

150 cancer patients and found B2M, TF, and inter-alpha-trypsin inhibitor heavy 

chain H4 (ITIH4) robustly predicted overall survival and progression free survival 

[24]. Unfortunately, despite the best efforts of academia and industry, no 

biomarkers for ovarian cancer detection have been approved. The difficulties 

associated with this task are reflected by the fact that on average, only 1.5 protein 

based biomarker tests (plasma or blood) were introduced into the clinic each year 

between 1993 and 2008 for any disease or condition [25]. 

While plasma is comprised of over 10,000 proteins and is the primary biofluid 

utilized for biomarker discovery, plasma proteins span a dynamic range greater 

than 10 orders in magnitude and therefore low abundance species are often 

underrepresented which could potentially provide valuable biomarkers [26–29]. 

Conventional, immunoaffinity-based assays (ELISAs and antibody arrays) afford 

extreme sensitivity (pg/mL) and specificity but require high-quality antibody pairs 

and are limited to predefined analytes [26]. Alternatively, mass spectrometry (MS)-

based proteomics can detect and quantify thousands of proteins across several 

orders of magnitude in an unbiased manner. Unfortunately, high abundance 

proteins (HAPs) which comprise ~99% of the total plasma protein content (i.e. 

albumin, immunoglobulins, and transferrin) hinder MS-based plasma profiling [25–

27]. HAP depletion techniques can improve proteome coverage however they are 

often laborious, incomplete and expensive [30]. For example, Keshishian et al. 

combined protein depletion (14 most abundant and ~50 moderately abundant 

plasma proteins) with extensive high-pH reversed phase fractionation to detect 

~5300 plasma proteins from 4 patient samples [31,32]. In practice, most plasma 

profiling strategies are limited in comparison to cellular lysates in which ~10,000 

proteins are being reported [33–36] .  

Extracellular vesicles (EVs) include exosomes and membrane bound 

microparticles that are released or shed from cells which contain cellular (by-
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)products and range between 40-1000 nm in diameter [37]. Unlike soluble plasma 

proteins, MS-based profiling of EVs purified from biological fluids (plasma and 

urine) are less susceptible to severe dynamic range issues associated with HAPs. 

While EVs may contain valuable biomarkers for clinical use, only a handful of 

studies have characterized their proteomes in prostate, ovarian, and colorectal 

cancer cell lines or biofluids [38–41].  

To circumvent the limitations of traditional plasma-based biomarker discovery and 

foster the development of targeted proteomics assays for ovarian cancer detection 

and diagnosis, we characterized EV proteomes obtained from cell lines, plasma 

and ascites. Our proteomics approach identified a large number of previously 

annotated and unknown biomarkers associated with malignant EV samples. While 

many proteins were highly enriched in ascites, the majority remained difficult to 

detect or undetectable in plasma EVs.  As a proof-of-principle, we performed 

targeted proteomics using parallel reaction monitoring (PRM) to measure ~471 

peptides (240 proteins) in a cohort of non-malignant and malignant plasma EVs. 

In this cohort, ROC-AUC analysis revealed several peptides with similar or better 

performance than CA-125 which warrant further validation.   

4.3 Results 

 MS-based workflow for interrogating ovarian cancer EV 

proteomes 

Cell lines remain an integral tool for studying disease however they may not fully 

reflect in vivo biology [42]. Patient samples (tissues and biofluids) can provide 

uncompromised insight into human physiology but are complex in nature and 

limited in quantity. In light of these factors, we undertook a multi-pronged MS-

based approach to characterize EV proteomes from cancer cell lines, healthy 

donor plasma, and ascites for biomarker discovery (Figure 4.1). Bulk EVs were 

primarily obtained by differential ultracentrifugation (UC) however CD9-affinity 
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purification (CD9AP) was also performed on healthy donor plasma and ascites to 

preferentially capture exosomes (endosome derived EVs <150nm in size which 

express the transmembrane protein CD9) [43]. LC-MS analyses were performed 

on Q Exactive mass spectrometer and data were searched in MaxQuant with the 

match-between-runs enabled across all sample types (cell lines, plasma and 

ascites) to improve coverage and label free quantification (LFQ) [44].  

Two established (OV-90, OVCAR3) and two primary (EOC6 and EOC18) ovarian 

cancer cell lines and one non-malignant human immortalized ovarian surface 

epithelium cell line (hIOSE) were initially chosen for comparison. EOC6 and 

EOC18 were derived from patient ascites and characterized to be high-grade 

serous and low-grade serous, respectively. In cellular EV preparations, ~6230 

proteins were identified in each sample on average with 76% of the total proteins 

detected shared amongst 4 out of 5 cell lines (Table 4.1, Figure 4.2A). We next 

profiled EV proteomes from healthy donor plasma and ascites (3 individuals each) 

which yielded substantially fewer proteins but was comparable in size to a previous 

study characterizing prostate cancer plasma microparticles by LC-MS [41]. 

Between 61-75% proteins detected within plasma or ascites were present in 2 out 

of 3 samples (Figure 4.2B and C). Within each purification technique (UC or 

CD9AP), 60-66% of the proteins identified were shared between plasma and 

ascites. Unexpectedly, a large number of proteins were exclusive to CD9AP 

preparations that were not found with UC (Figure 4.2D). This may be due to 

enrichment of proteins specifically associated with CD9-labelled vesicles and/or 

non-specific absorption of plasma proteins to beads during purification [43]. 

Regarding differences between plasma and ascites, we noticed two interesting 

results. Firstly, ascites contained more exclusive proteins than plasma in the UC 

group (1546 versus 503) (Figure 4.2B). Secondly, UC yielded substantially more 

exclusive proteins than CD9AP in ascites samples (2075 versus 424) (Figure 

4.2D). We reasoned that aberrant secretion/shedding of EVs by either cancer cells 
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and cell types within the intraperitoneal cavity, as well as accumulation or reduced 

clearance, significantly expanded the repertoire of EV enriched proteins detected 

in ascites compared to plasma [37]. Furthermore, UC crudely isolates small to 

large membrane bound cargo irrespective of surface marker expression and 

therefore yields greater more heterogeneous EVs compared to selective 

purification techniques [37,43]. In total, ~7700 proteins were identified in at least 

one sample with ~2400 proteins common to all groups (Figure 4.2E). Few proteins 

were unique to plasma or ascites with cellular EVs containing the majority of 

exclusive proteins. 
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Figure 4.1 Workflow for extracellular vesicle sample preparation. 

Extracellular vesicles (EVs) were purified from cell lines, healthy donor plasma and 

ascites by differential ultracentrifugation (UC) or CD9-affinity purification (CD9AP). 

Following purification, EV proteins were extracted, precipitated in 

chloroform/methanol and digested with trypsin/LysC overnight. Peptides were 

fractionated using SCX StageTips and analyzed by LC-MS on a Q Exactive mass 

spectrometer. *CD9AP was performed on healthy donor plasma and ascites only. 
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Table 4.1 Total proteins identified and quantified 

 

*Healthy donor plasma and ascites samples were obtained from 3 different individuals within each 

purification technique (UC, Ultracentrifugation; CD9AP, CD9-affinity purification).   
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Figure 4.2 Effect of sample type and purification technique on EV proteome 

coverage. 

(A) Occurrence of proteins identified in 1 or more cell lines and overlap between 

non-malignant hIOSE cells and 4 ovarian cancer cell lines. (B and C) Variability in 

proteins detected within individual plasma and ascites samples from UC and 

CD9AP preparations. (D) Number of proteins common and exclusive to each 

sample preparation technique for plasma and ascites. (E) 5-way Venn diagram 

showing exclusive and common proteins for each group of samples. 
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 Annotation of EV proteomes reveals similarities and 

differences between sample types and preparations 

EVs may form via budding of ectosomes from the plasma membrane or through 

exocytosis of multivesicular bodies (MVB) containing intraluminal vesicles (ILVs) 

[45]. While differential UC can yield a heterogeneous population EVs, 

immunoaffinity purification approaches like CD9AP may preferentially capture 

small ILVs ~50-100nm in diameter (exosomes) that may be important for cellular 

communication [43]. To analyze the composition of EV preparations, we first 

performed GO cellular component (GOCC) analysis on proteomes from each 

group using the statistical over-representation test in PantherDB [46]. Importantly, 

all proteomes were significantly enriched for GOCC terms associated with EVs 

including SNARE complex, vesicle coat, integral to membrane and endosome 

(Figure 4.3). Several intracellular terms were also enriched in EV proteomes so we 

next compared LFQ intensities for a subset of subcellular markers to more 

precisely investigate their purity (Figure 4.4). Unsupervised hierarchical clustering 

revealed high LFQ intensities for many EV/exosomal markers suggesting good 

enrichment [47]. CD9, HSPA8 and GAPDH are among the most frequently 

detected exosomal markers and in our hands, exhibited the least variability and 

highest LFQ intensities across all samples (Figure 4.4 and Figure 4.5) [47]. 

However, many additional EV markers including CD63, CD81, CFL1, ANAX2 

displayed variable and decreased levels in CD9AP samples (Figure 4.4 and Figure 

4.5). Plasma and ascites samples contained abundant levels of the serum proteins 

ALB, TF and APOA1 and thereby suggesting incomplete removal following UC or 

nonspecific binding during CD9AP. Nonetheless, most golgi (TGOLN2), 

autophagosomal (ATG12), mitochondrial (ACO2, VDAC1) and nuclear (NUP98, 

LMNA) markers were extremely low in all samples. Low to high LFQ values were 

observed for several cytoskeletal and endoplasmic reticulum proteins which may 

associate with EVs naturally. 



149 

 

 

 

 

 

Figure 4.3 GO cellular component analysis of EV proteomes 

(A-E) Fold enrichment (black dots) and total proteins (bars) associated with 

specified GOCC terms. Integral to membrane, vesicle coat, endosome, organelle 

and Golgi apparatus GOCC terms were in enriched sample preparations (cell lines, 

plasma and ascites) indicating the presence of vesicular proteins from cell lines, 

plasma and ascites by either UC or CD9AP.  The presence of intracellular proteins 

within EVs may account for GOCC terms associated with cytoplasmic proteins. 
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Figure 4.4 High but variable detection of markers associated with EVs in UC 

and CD9AP preparations. 

Heat map of LFQ intensities from common EV and subcellular markers across all 

samples reveals high levels of EV/exosomal proteins (purple text) with minimal 

(intra) cellular contamination. Samples prepared by UC clustered more closely and 

plasma proteins were highly abundant in patient samples but not cell lines. 
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Figure 4.5 Effect of sample type and preparation technique on EV/exosome 

markers. 

(A-F) LFQ intensities for frequently detected EV/exosomal markers in each sample 

reveals differences between purification techniques. (A and E) CD9 and HSPA8 

were the most reliable markers across all conditions. CD9AP was associated with 

decreased marker intensities. 
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 Integrated proteomic analyses reveals putative 

biomarkers associated with malignant EVs 

To more stringently filter our proteomics dataset, we removed entries exclusive to 

a single sample within each group and imputed missing LFQ intensities as 

described in the materials and methods. Cell lines correlated moderately well with 

Pearson coefficients ranging from 0.65 to 0.81. Similarly, Pearson correlation 

coefficients within ascites or plasma samples were relatively good (0.72-0.84) but 

low between these sample types (0.43-0.61). Interestingly, Principal Component 

Analysis (PCA) revealed little to no clustering amongst cancer lines and no clear 

distinction from the non-malignant hIOSE cells (Figure 4.6A). Independent plasma 

or ascites samples, in contrast, clustered together regardless of the purification 

strategy employed (Figure 4.6B and C). As a complement, following analysis of 

the main dataset, we acquired LC-MS data using EVs derived from immortalized 

fallopian tube epithelial cells (FTEC) which have been documented as the cell of 

origin for most HGSC. However, a secondary PCA comparing the additional 

cellular EV proteomes had a negligible effect on clustering (Figure 4.7).  

To identify proteins enriched in EVs from ovarian cancer cells, we subtracted LFQ 

intensity values of the non-malignant hIOSE sample from the proteomes of each 

cancer line. A one sample t-test revealed 385 proteins significantly (p<0.05) 

elevated in ovarian cancer EVs with EPCAM, MUC16 and SLC34A2 comprising 

the most differentially elevated proteins (Figure 4.6D and ESM4.1). Of note, log2 

fold-changes (cancer line-hIOSE cells) for most targets varied in 1 out of 4 cancer 

lines suggesting a high degree heterogeneity between malignant proteomes 

(Figure 4.8). MUC16 expression, for example, was substantially lower in OV-90 

EVs compared to OVCAR3, EOC6 and EOC18 EVs (Figure 4.8A). Like MUC16, 

EPCAM overexpression is common in EOC tumours and associated with 

decreased overall survival [48]. Interestingly, less work has been published on the 

Sodium-Dependent Phosphate Transport Protein 2B (SLC34A2) which is elevated 
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in ovarian and lung cancer and the target of antibody drug conjugate in clinical 

trials [49,50]. E-cadherin (CDH1) was also abundant in ovarian cancer EVs which 

is consistent with previous reports documenting elevated expression in EOC 

[51,52]. 

To confirm biomarkers with bona fide expression in malignant human samples, we 

next examined differences between plasma and ascites EV proteomes from UC 

and CD9AP preparations. In agreement with our earlier findings, a disproportionate 

number of proteins (1162) were significantly elevated (two-sample t-test, p<0.05) 

in ascites EVs compared to plasma in the UC group (Figure 4.6E and ESM4.2). 

Similar to our cancer cell line comparison, MUC16 and SLC34A2 were among the 

most differentially expressed proteins in ascites EVs from the UC group. 

Macrophage migration inhibitory factor (MIF), cellular retinoic acid-binding protein 

2 (CRABP2) and claudin-3 (CLDN3) were abundant in ascites EVs and are known 

to be frequently elevated in EOC [13,35]. Retinoic acid-induced protein 3 

(GPRC5A) was highly elevated in ascites EVs and may be relevant for predicting 

cellular responses to all-trans-retinoic acid (ATRA) in which some ovarian cancer 

cell lines, but not others, are sensitive to its the growth inhibitory effects [35,53,54].  

Regarding CD9AP samples, the number differentially expressed proteins (two-

sample t-test, p<0.05) between plasma and ascites was substantially smaller and 

more evenly distributed than UC preparations. Specifically, 259 proteins were 

significantly elevated in ascites EVs (Figure 4.6F and ESM4.3). Surprisingly, 

MUC16 and EPCAM levels were not different between plasma and ascites 

although a number of proteins previously implicated in EOC progression were 

highly enriched such as CRP, FBLN1 and MXRA5 [13,55]. For example, increased 

levels of C-reactive protein (CRP) are associated with worse overall survival and 

fibulin-1 (FBLN1) was initially identified as an estrogen responsive extracellular 

matrix protein in EOC [56,57]. Furthermore, Bukanovich et al. found Aldican or the 

matrix-remodeling-associated protein 5 (MXRA5) expression 10-350 fold higher in 
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ovarian cancer vasculature compared to normal ovarian tissues [58]. Intriguingly, 

we did not detect HE4 in any EV proteomes which suggested it may not associate 

with EVs. Indeed, Zhao et al. detected EPCAM and CA-125 but not HE4 on CD9+ 

exosomes purified from ovarian cancer plasma using a microfluidic ExoSearch 

chip [59]. In light of these comparisons, we believe CD9-negative vesicles harbour 

potentially valuable biomarkers that may be lost during selective enrichment 

strategies like immunoaffinity purification.  

While EVs may be important for EOC detection and diagnosis, they can also 

provide insight into disease biology. Therefore, we selected protein entries from 

each comparison with Log2 fold-changes >0 and searched them in EnrichR against 

the NCI-Nature pathway database (Figure 4.6G-I). PDGFRβ signalling was among 

the top significantly enriched pathway in the cancer lines and ascites (UC group). 

Proteins involved in CXCR4, ErbB1 (EGFR), VEGFR1/2, E-cadherin (CDH1) and 

hepatocyte growth factor (c-Met) signalling pathways were also significantly 

enriched (over-represented) in these conditions. The CD9AP ascites proteome, in 

contrast, was enriched in proteins primarily associated with integrin and syndecan 

signalling. Taken together, these observations indicate a number of proliferative 

and angiogenic processes likely to be utilized by HGSC. 

As a complement, we examined whether EV proteomes from each comparison 

(cancer lines versus hIOSE, ascites versus plasma (UC group), and ascites versus 

plasma (CD9AP group)) were potentially correlated. Scatter plots of log2 fold-

changes versus log2 fold-changes revealed little to no similarities between any of 

our three comparisons (Figure 4.9). Only a small fraction of proteins including 

MUC16, EPCAM, CRP, MIF were highly correlated between two out of three 

malignant sample types. UC and CD9AP groups were the only comparison which 

appeared marginally correlated. Lastly, we reduced the dataset to ~1300 entries 

comprised of proteins with LFQ values shared between ≥2 cell lines, plasma and 

ascites samples (UC and CD9AP groups). PCA illustrated tight clustering within 
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each sample type (Figure 4.10A). Ascites samples from the UC group clustered 

in-between the cell lines and plasma samples. CD9AP samples were loosely 

clustered although each sample type (plasma or ascites) could be distinguished 

from one another. In addition, we performed unsupervised hierarchical clustering 

after z-scoring (Figure 4.10B). Similar to PCA, ascites samples (UC group) 

clustered more closely to the cell lines. Taken together, our integrated proteomics 

approach revealed a number of similarities and differences between ovarian 

samples and purification strategies which may significantly impact downstream 

biomarker validation.  
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Figure 4.6 Label free proteomics identifies highly abundant proteins 

associated with ovarian cancer EVs. 

(A-C) Principle Component Analysis (PCA) of EV proteomes reveals heterogeneity 

between ovarian (cancer) cell lines but high similarity within plasma and ascites 

samples from each preparation strategy (UC and CD9AP). (D-F) Volcano plots of 

log2 fold-changes LFQ intensities between ovarian cancer and hIOSE cells, UC 

ascites and UC plasma samples, and CD9AP ascites and CD9AP plasma 

samples. Highly abundant EV proteins associated with ovarian cancer samples 

and ascites are highlighted. (G-I) Corresponding NCI-Nature Pathways 

significantly enriched in EVs from cancer cells or ascites using protein lists with 

log2 fold-changes >0 from volcano plots in (D-F). Pathways were ranked based on 

the combined score (log10 p-value multiplied by the z-score of the deviation from 

the expected rank) calculated by EnrichR. Notably, pathways involved in 

proliferation, angiogenesis and cell adhesion were highly enriched. 
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Figure 4.7 Principle component analysis of cellular EVs including a fallopian 

tube epithelial cell line. 

PCA reveals low similarity between EV proteomes derived from high grade serous 

ovarian cancer cell lines. The primary EOC lines cluster more closely to the 

immortalized fallopian tube epithelial line FT194 while established cancer lines OV-

90 and OVCAR3 formed their own group. Biological duplicates for EOC6 and 

EOC18 are shown. 
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Figure 4.8 Variable levels of EOC markers detected in cellular EVs. 

LFQ intensities for differentially expressed proteins were varied in 1 out 4 cell lines 

revealing heterogeneity within ovarian cancer lines. 
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Figure 4.9 Proteins elevated in malignant EVs are weakly correlated between 

different sample types and preparation techniques. 

(A-C) Scatter plots of log2 fold-changes versus log2 fold-changes from each 

comparison in Figure 4D-F indicate most differences in EV protein levels between 

malignant and non-malignant samples are not correlated. Only a small number of 

proteins elevated in malignant EVs were highly correlated between each 

comparison and are highlighted in red. (C) Log2 fold-changes in EV proteins 

appear most correlated in the Ascites-Plasma (UC) versus Ascites-Plasma 

(CD9AP) comparison.  
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Figure 4.10 Clustering of EV proteomes. 

(A) PCA showing the effect sample type and preparation method on clustering. 

CD9AP samples clustered more tightly compared to UC samples. Ascites (UC 

group) exhibited protein expression profiles characteristic of both cell lines and 

plasma samples (UC group). (B) Unsupervised hierarchical clustering of ~1300 

proteins with quantitative values present ≥2 samples in each comparison from 

Figure 4D-F. Similar to PCA, sample type and preparation technique were 

clustered with ascites (UC group) between cell lines and plasma samples. 



162 

 

 

 

 Monitoring ovarian cancer biomarkers in patient plasma 

Based on the aforementioned comparisons, we sought to determine which proteins 

enriched in ascites, were the strongest predictors of disease status. For this, 

proteomes from the three plasma and ascites samples belonging to UC group were 

used to train the support vector machine (SVM) ‘geNetClassifier’ (GNC) in R [60]. 

As a consequence of the small training set size and limited sample heterogeneity, 

over 1300 proteins exceeded the posterior probability cut-off of 0.95 set by GNC 

(ESM4.4). However, GPRC5A, SLC34A2, ACTBL2, and MUC16 were amongst 

the top proteins identified by GNC for classifying ascites samples from healthy 

donor plasma (Table 4.2). Additional proteins frequently elevated in ovarian 

malignancies with high classification power included MIF, CLDN3, and CRABP2.  

 

Given the global differences between EV proteomes from healthy donor plasma 

and ascites, we next investigated if any proteins significantly elevated in ascites 

EVs could be identified in an independent cohort of patient plasma samples. For 

this, EVs were purified by UC from 9 non-malignant and 8 malignant plasma 

samples (~0.5mL of plasma/sample). Of the 1435 proteins significantly enriched 

in either UC or CD9AP ascites EVs, we detected 354 in one or more unfractionated 

plasma EV samples (Figure 4.11A). Using this list, plus several housekeeping EV 

markers, a spectral library was built in Skyline to develop a targeted LC-MS 

method using Parallel Reaction Monitoring (PRM) [61,62]. A refined list of 271 

proteins corresponding to 470 peptides were subsequently targeted using a PRM 

method in the same cohort of plasma EVs for more accurate label free 

quantification (Figure 5.11A). Peak areas were normalized to heavy 

glufibrinopeptide (hGFP) which was equally spiked into each sample. While 

median CV values demonstrated good reproducibility between technical replicates 

and low inter-sample variability, we observed heterogeneity between peptides for 

common EV housekeeping markers such as CD9, CD81, and HSPA8 (Figure 
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4.11B; data not shown). Therefore, peak areas were additionally normalized to the 

CD9 peptide EVQEFYK (extracellular region, AAs 120-126) which was used a 

surrogate marker of EV recovery and purity. We calculated Receiver Operating 

Characteristic Area Under the Curves (ROC-AUC) for the most differentially 

expressed targets to determine peptides with the greatest performance (Figure 

4.11C and D). Of note, only one peptide derived from the extracellular domain of 

MUC16 (ELGPYTLDR) met our selection criteria with an AUC value of 0.75 (95% 

CI of 0.5-1.0) (Figure 4.5E). Although this peptide was 2.92 median fold higher in 

malignant EVs, this difference was not quite significant (Mann Whitney test, 

p=0.0894) (Figure 4.11E). In contrast, several peptides belonging to complement 

factor H related protein 4 (CFHR4), MUC1, and Serum amyloid P-component 

(APCS) were significantly elevated in malignant EVs (Mann Whitney test, p<0.05) 

(Figure 4.11E and F). CFHR4 and APCS were exclusively enriched in the CD9AP 

dataset while MUC1 was specific to UC comparison. Pregnancy zone protein 

(PZP) was significantly higher in malignant plasma EVs and enriched in both UC 

and CD9AP groups (log2 fold-changes of 6.63 and 5.74, respectively). MXRA5 and 

GPRC5A were also significant but not SLC34A2 and CLDN3 which had lower 

AUCs of 0.75 and 0.722, respectively. In general, most candidates were slightly 

elevated in malignant plasma but not significant. In our hands, proteins enriched 

in ascites EVs were challenging to detect in unfractionated samples and we were 

unable to monitor all peptides due to the large number of targets. While most 

peptides were well correlated, further work is needed to refine this list and confirm 

the best predictors of disease status. 
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Table 4.2 Top ranking proteins of ascites EVs identified by ‘geNetClassifier’ 
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Figure 4.11 Monitoring ascites enriched biomarkers in plasma EVs 

EVs were purified by ultracentrifugation from 9 non-malignant and 8 malignant 

patient plasma samples (~0.5mL/sample). (A) Unfractionated plasma EV 

preparations were initially analyzed by LC-MS and searched in Peaks®. Protein 

identifications common to plasma EVs and those significantly enriched in ascites 

EVs (UC and CD9AP datasets) were retained and used to build a spectral library 

in Skyline and a scheduled PRM method. A minimum of 3 transitions were required 

to measure peak areas with most containing 4 or 5.  Peak areas were subsequently 

normalized to hGFP to correct for technical variability between LC-MS runs. (B) 

Box and whisker plots showing median CV values (horizontal line) between 

technical duplicates within the acceptable cut-off of 20%. Boxes indicate 75% and 

25% quartiles and whiskers represent 90% and 10% ranges and mean CVs are 

indicated by the ‘+’ sign. Peak areas were further normalized to the CD9 peptide 

EVQEFYK to account for differences in EV recovery and purity following 

ultracentrifugation. Peak boundaries for hGFP and CD9 were manually selected 

to ensure accuracy prior to normalization and non-transformed peaks were used 

to measure peak areas. (C) Bar plot of ROC-AUC values from peptides with the 

largest differences between non-malignant and malignant plasma EVs. (D) ROC 

curves for the top 4 peptides with the largest AUCs and MUC16 (CA-125) are 

shown. (E) ROC-AUC values, (median) fold-changes and p-values for the top 4 

peptides and MUC16. (F) Dot plots comparing peak areas between non-malignant 

and malignant samples for the top 4 peptides and MUC16. Horizontal lines indicate 

median peak areas. The top 4 peptides were significantly elevated (p<0.05) in 

malignant samples however MUC16 was not (p=0.0894). 
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4.4 Discussion 

In this study, we characterized EV proteomes derived from three different sources 

(cell lines, plasma and ascites) using two different techniques (UC and CD9AP) to 

identify proteins which may be used as biomarkers for detecting ovarian cancer. 

Importantly, our findings complement and expand upon previous work by several 

other groups that also utilized mass spectrometry to characterize ascites or EVs 

derived from ascites or ovarian cancer cell lines [39,40,55,59,63–67].  

Our comparison of EV proteomes from ovarian (cancer) cells suggests the 

presence intercellular heterogeneity although OVCAR3, OV-90 and EOC6 are 

likely HGSC, albeit OVCAR3 was not specified in the original publication [68]. Of 

caution, this heterogeneity may reflect differences in tissue of origin [35,68].  For 

example, three distinct proteomic expression profiles (epithelial, clear cell and 

mesenchymal) were identified during a recent large scale proteomic analysis of 

ovarian cancer lines, HGSC tumours, and FTEC and hIOSE cell lines [35]. From 

our PCA, it is difficult to ascertain whether any cellular EV proteomes can be 

stratified according to this criteria. For example, OVCAR3 and FTEC were 

categorized as epithelial in origin by Coscia et al. but in our hands they were 

dissimilar. Although intra-subtype profiling may have downstream implications for 

treatment decisions, we opted to focus our efforts on interrogating plasma and 

ascites EVs which likely harbour high confidence biomarkers. 

In total, ~6000 proteins were identified in at least one or more EV preparation from 

ascites samples obtained by UC or CD9AP purification (4878 proteins in two or 

more samples).  To our knowledge, this is the most in depth ascites EV proteome 

reported to date. Several factors which enabled us to achieve this level of coverage 

include the ‘match-between-runs’ feature in MaxQuant, the recently developed 

minimal encapsulated SCX StageTip fractionation technology and the use of high 

resolution Orbitrap-based instrumentation [44,69,70]. Indeed, over 10 years have 

passed since the first global proteomic analysis of ovarian cancer ascites was 
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reported by Gortzak-Uzan et al. whom identified 229 high confidence proteins in 

the soluble fraction of ascites from a single patient [64]. Although these authors 

employed multi-dimensional protein identification technology (MuDPIT) and gel-

enhanced fractionation, the presence of HAPs and complexity were noted as 

potential reasons for their limited detection of low abundance factors such as 

VEGF and TGF-β [64,71].  To reduce interference associated with HAPs, Kuk et 

al. preferentially isolated low molecular proteins (≤30kDa or ≤100kDa) by size-

exclusion chromatography (SEC) or filtration and established a set 52 biomarker 

candidates not previously reported in ascites [55]. We cross-referenced this 

dataset with our results for comparison and found 48 out of 52 proteins in ascites 

EVs; 28 of which were significantly enriched (data not shown). In a follow-up study, 

this group utilized combinatorial peptide libraries (CPL) on beads containing 

~2.4X107 unique peptides to deplete HAPs in ascites and enrich for low abundant 

species [72]. This strategy revealed a number of new ascites biomarkers and 

enabled the quantification of 30 low abundant proteins by multiple reaction 

monitoring (MRM). While these studies elucidated numerous biomarkers, it 

remained to be determined which were specific to malignant versus non-malignant 

ascites or plasma samples. To better delineate proteins exclusive to or upregulated 

in EOC, Shender et al. compared ascites from patients with ovarian cancer to 

those with alcohol induced cirrhosis [66]. These authors combined CPL depletion 

with gel-based fractionation similar to Drabovich et al. and identified 424 proteins 

associated with malignant ascites. We also cross-referenced this dataset with our 

list of proteins significantly enriched in ascites EVs and observed ~43% overlap 

(data not shown). The difference in overlap may be attributed to the fact that our 

proteome analysis was predominately restricted to proteins associated with EVs 

(and residual HAPs) and may be lacking extracellular signalling factors and ECM 

components. For example, KLK6 was identified by Shender et al. but not present 

in our dataset [66]. These authors also documented a large number of factors 

involved in RNA splicing which appeared to be missing from our dataset. To date, 
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we are not aware of any study which has compared EV depleted ascites to 

determine which factors are shared or exclusive to each fraction. 

In addition to profiling EVs from cell lines, plasma and ascites, we performed PRM 

analysis on a cohort of patient plasma EVs as a proof-of-concept to verify potential 

biomarkers for detecting EOC. Although we performed two rounds of 

ultracentrifugation to dilute HAPs from EVs, we experienced a significant degree 

of contamination. This combined with the absence of fractionation was a 

substantial obstacle in the detection of low abundance cancer derived factors. 

Nonetheless, we identified a subset of peptides associated with malignant (ovarian 

cancer) EVs from HGSC patients compared to individuals with non-malignant 

conditions. While MUC16 was higher in malignant samples, it was not significant 

and among the best performing peptides. Interestingly, CFHR4, one of the top 

performing candidates, was specifically enriched in the CD9AP, but not UC, 

comparison. Two isoforms of CFHR4 have been identified and both have been 

shown to bind and recruit C-reactive protein (CRP) to necrotic cells and tumour 

tissue [73]. CRP is important for initiating complement activation and opsonisation 

of dead cells for phagocytosis and clearance. In effect, necrotic tissue produced 

during EOC progression is a likely culprit for elevated CFHR4 and CRP. CRP was 

also significantly elevated in malignant plasma EVs and previously reported in 

EOC, however, to our knowledge, CFHR4 has not been documented [57].  

Taken together, we identified several peptides with high confidence that are likely 

elevated during EOC progression. In tandem with CA-125, these markers may 

enhance the specificity and sensitivity of blood based assays for detecting EOC. 

Additional work is required to refine our list of targets and employ heavy synthetic 

peptides for absolute quantification in a larger cohort patients to monitor levels 

across multiple stages of EOC 
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4.5 Materials and Methods 

 Cell culture 

OV-90 (ATCC® CRL-11732) and NIH:OVCAR3 (ATCC® HTB-161) were obtained 

from the ATCC. hIOSE (OSE364) and immortalized FTEC (FT194) were kindly 

provided by Dr. Ronny Drapkin (Department of Obstetrics and Gynecology, 

University of Pennsylvania).  Primary cell lines EOC6 and EOC18 were isolated 

from the ascites of patients with high-grade and low-grade serous ovarian cancer, 

respectively. All cell lines, except OVCAR3, were maintained in M199+MCDB105 

supplemented with 5-15% FBS. NIH:OVCAR3 cells were cultured in RPMI-1640 

supplemented with 20% FBS and 5ug/mL insulin. Media was exchanged with 

serum free media for 20-30 hours to generate conditioned media (CM) for EV 

purification. All work involving the use of patient samples (cell lines, plasma and 

ascites) was approved by the Health Research Ethics Board of Alberta-Cancer 

Committee (Appendix D). 

 Ultracentrifugation (UC) 

CM, plasma and ascites samples were first centrifuged at 200-300 xg at 4°C to 

pellet cells. Supernatants were transferred to clean tubes, diluted 1:10 in PBS 

(except CM) and centrifuged at 3,000 xg for 20 minutes at 4°C to remove cell 

debris. To remove large membrane fragments, supernatants were spun at 10,000 

xg for an additional 20 minutes at 4°C. Lastly, supernatants were transferred into 

clean tubes and ultracentrifuged at 120,000 to 140,000 xg (SW-28 rotor) for 2 

hours at 4°C to pellet EVs on an OptimaTM L-100 XP ultracentrifuge (Beckman 

Coulter). The supernatant was removed and EVs were resuspended in 100-300µL 

of PBS and stored at -20°C until further use 
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 CD9-affinity purification (CD9AP) 

Hydrophilic streptavidin magnetic beads (120mg) were washed 3x with PBS on a 

magnetic rack then resuspended in 5mL of PBS (New England Biosystems, 

S1421S, 20mg/5ml). The bead slurry was mixed with 650µg of biotin conjugated 

anti-CD9 antibody (Abcam ab28094) at room temperature for 30 minutes and then 

washed 2x with PBS to remove unbound antibody. Beads were resuspended in 

6mL of PBS and 1mL (~20mg) was added to 10mL of plasma or ascites (diluted 

1:1 in PBS). Samples were placed on a rotary mixer overnight at 4°C and then 

carefully rinsed 3x with PBS next day. Exosomes were eluted from beads with 

three, 500 µl glycine-HCl (0.1M, pH 2.39) washes. A small volume (75µL) of Tris-

HCl (1.8M, pH 8.54) was used to neutralize each eluent. 

 EV protein extraction 

To prepare EVs for LC-MS/MS, ~20-25μg of protein quantified by micro BCA was 

lyophilized to dryness and reconstituted in 8M Urea, 50mM ammonium 

bicarbonate (ABC), 10mM dithiothreitol (DTT), 2% SDS lysis buffer. EV protein 

samples were sonicated with a probe sonicator (3 X 0.5s pulses; Level 1) (Fisher 

Scientific, Waltham, MA), reduced in 10mM DTT for 30 minutes and alkylated in 

100mM IAA for 30 minutes at room temperature in the dark. Proteins were 

precipitated in chloroform/methanol in 1.5mL microfuge tubes according to Wessel 

and Flügge [74]. Briefly, EV samples in lysis buffer were topped up to 150µL with 

50mM ABC then mixed with ice cold methanol (600μL) followed by adding ice cold 

chloroform (150μL) and vortexed thoroughly.  An additional volume (450μL) of 4°C 

water was added followed by vortexing and centrifugation at 14, 000 xg for 5 min. 

The upper aqueous/methanol phase was carefully removed to avoid disturbing the 

precipitated protein interphase. A second 450μL volume of cold methanol was 

added to each sample followed by vigorous vortexing and centrifugation at 14, 000 
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xg for 5 min. The remaining chloroform/methanol supernatant was discarded and 

the precipitated protein pellet was left to air dry in a fume hood. 

 EV protein digestion 

On-pellet in-solution protein digestion was performed similarly to Duan et al. [75]. 

Briefly, 100µL of 50mM ABC (pH 8) plus LysC/Trypsin (1:50 ratio) was added to 

precipitated EV proteins and vortexed vigorously.  EV samples were incubated at 

37°C overnight (~18h) in a water bath shaker (Polyscience) at 190 rpm or 

ThermoMixer C (eppendorf) at 300 rpm. An additional volume of trypsin (1:100 

ratio) was added the next day for ~4 hours before acidifying to pH 3-4 with 10% 

FA. EV digests were briefly centrifuged at 14,000 xg to pellet insoluble material 

prior to LC-MS/MS or SCX peptide fractionation. 

 SCX peptide fractionation 

Tryptic peptides recovered from EV digests were fractionated using SCX 

StageTips similarly to Kulak et al. [69]. Briefly, peptides were acidified with 1% TFA 

and loaded onto a pre-rinsed 12-plug SCX StageTips (Empore™ Supelco, 

Bellefonte, PA, USA). In total, 6 SCX fractions were collected by eluting in 75, 125, 

200, 250, 300 mM ammonium acetate/20% ACN followed by a final elution in 5% 

ammonium hydroxide/80% ACN. SCX fractions were dried in a SpeedVac (Thermo 

Fisher), re-suspended in ddH2O, and dried again to evaporate residual ammonium 

acetate. All samples were re-suspended in 0.1% FA prior to LC-MS analysis. 

 LC-MS 

SCX fractions were analyzed using an nanoAquity UHPLC M-class system 

(Waters) connected to a Q Exactive mass spectrometer (Thermo Scientific) using 

a nonlinear gradient. Buffer A consisted of Water/0.1% FA and Buffer B consisted 

of ACN/0.1%FA. Peptides (~1µg estimated by BCA) were initially loaded onto an 

ACQUITY UPLC M-Class Symmetry C18 Trap Column, 5 µm, 180 µm x 20 mm 
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and trapped for 4 minutes at a flow rate of 10 µl/min at 99% A/1% B. Peptides were 

separated on an ACQUITY UPLC M-Class Peptide BEH C18 Column (130Å, 

1.7µm, 75µm X 250mm) operating at a flow rate of 300 nL/min at 35°C using a 

non-linear gradient consisting of 1-7% B over 3.5 minutes, 7-19% B over 86.5 

minutes and 19-30% B over 30 minutes before increasing to 95% B and washing. 

Settings for data acquisition on the Q Exactive and Q Exactive Plus are outlined in 

Table 4.3. 

 Data Analysis 

MS raw files were searched in MaxQuant (1.5.2.8) using the Human Uniprot 

database (reviewed only; updated May 2014 with 40,550 entries). Missed 

cleavages were set to 3 and I=L. Cysteine carbamidomethylation was set as a 

fixed modification. Oxidation (M), N-terminal acetylation (protein), and deamidation 

(NQ) were set as a variable modifications (max. number of modifications per 

peptide = 5) and all other setting were left as default. Precursor mass deviation 

was left at 20 ppm and 4.5 ppm for first and main search, respectively. Fragment 

mass deviation was left at 20 ppm. Protein and peptide FDR was set to 0.01 (1%) 

and the decoy database was set to revert. The match-between-runs feature was 

utilized across all sample types to maximize proteome coverage and quantitation. 

Datasets were loaded into Perseus (1.5.5.3) and proteins identified by site, reverse 

and potential contaminants were removed [76].  Protein identifications with 

quantitative values in ≥2 samples in a least one group (cells, plasma or ascites) 

were retained for downstream analysis unless specified elsewhere. Missing values 

were imputed using a width of 0.3 and down shift of 1.8.  

 Parallel Reaction Monitoring (PRM) assay development 

Plasma EVs were obtained and processed as described above with slight 

modifications. Plasma samples were first diluted ~1:20 in PBS and EVs were 

pelleted at 120, 000 xg (SW-41 rotor) for 2 hours at 4°C on an OptimaTM L-100 
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XP ultracentrifuge (Beckman Coulter). To reduce serum contamination, plasma 

EVs were resuspended in 5mL of PBS and ultracentrifugated a second time at 

111,000 xg (MLA-80 rotor) for 2 hours at 4°C on an Optima™ MAX ultracentrifuge 

(Beckman Coulter). To facilitate digestion, protein pellets were sonicated 1-3 times 

following precipitation and LysC (Wako) was added (1:100) during overnight 

digestion. Digests were transferred to pre-rinsed (100µL of 25mM ABC/50% ACN) 

10 kDa MWCO microcon YM-10 centrifugal filter units (Millipore) and spun at 14, 

000xg for 20 min to recover peptides. Centrifugal filter units were washed with an 

additional 50µL of 25 mM ABC/50% ACN for 15 min at 14,000xg to collect residual 

peptides with high binding capacity. Filtered samples were dried in a SpeedVac, 

reconstituted in 0.1%FA and quantified by BCA. Unfractionated plasma EV digests 

(~1µg/sample) were analyzed on a Q Exactive Plus using a non-linear 2.5h 

gradient consisting of 1-7% B over 1 minute, 7-23% B over 134 minutes and 23-

35% B over 45 minutes before increasing to 95% B and washing. Plasma EV raw 

files were searched against the human Uniprot databased (20, 274 entries) using 

the de novo search engine Peaks™ (version 8) [61,77]. Parent and fragment mass 

error tolerances were set to 20 ppm and 0.05 Da, respectively. Max. missed 

cleavages were set to 3 and 1 non-specific cleavage was allowed. 

Carbamidomethylation was set as a fixed modification and deamidation, oxidation 

and acetylation (protein N-term) were included as variable modifications with a 

maximum of 3 PTMs per peptide allowed. pepXML peptide information and 

mzXML spectral data were exported from Peaks® prior to building a spectral library 

in Skyline. Peptides with missed cleavages or containing tryptophan were removed 

and up to 3 peptides/protein, 7-18 amino acids in length, were chosen for 

monitoring. In Skyline, peptides with low dotp scores or lacking peak areas were 

removed prior to exporting isolation lists for PRM. An 8 minute window was chosen 

to account for deviations in chromatography and minimize the chance of truncation 

while maximizing the number of MS/MS scans. Heavy glufibribrinopeptide (hGFP) 

was spiked into each plasma sample which were run in a randomized order in 

technical duplicate. PRM results were imported into Skyline and transitions (b and 
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y ions) with interference were removed. A minimum of 3 transitions were used to 

measure peak areas and targets with dotp scores <0.8 were assumed to be noise 

and assigned a peak area of 0.  

 Statistical analysis 

Differential protein expression between conditions were determined using a two-

tailed Student’s t-test (p<0.05) in Perseus (version 1.5.5.3) [76]. ROC-AUCs and 

Mann-Whitney statistical tests were calculated in in GraphPad Prism version 6.01 

(GraphPad Software, San Diego, CA).  
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Table 4.3 Q Exactive (Plus) instrument parameters for data acquisition 
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Chapter 5  

5 Embryonic protein NODAL mediates stromal cell 
chemotaxis to breast cancer cells and broadly 
regulates secretome composition  
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5.1 Abstract 

The tumour microenvironment (TME), consisting of several stromal cell types 

including fibroblasts, endothelial cells, multipotent stromal cells (MSC) and 

immune cells, is an important mediator of breast cancer progression. Breast 

cancers regulate the composition of the TME by secreting a myriad of factors. One 

such factor is NODAL, an embryonic morphogen belonging to the Transforming 

Growth Factor-beta (TGF- NODAL has been shown to act directly 

on breast cancer cells and macrophages to induce tumour-promoting phenotypes. 

NODAL has also been shown to indirectly affect endothelial cell behavior, by 

supporting the secretion of angiogenic proteins by breast cancer cells. However, 

the global effects of NODAL on cellular secretomes, have not yet been described. 

Moreover, the effects of NODAL on other components of the breast cancer 

microenvironment, including fibroblasts and MSC, have not been explored. Herein, 

we report that NODAL acts directly on fibroblasts to induce an activated phenotype 

but was unable to directly signal to MSC. Instead, NODAL caused broad 

alterations in breast cancer secretome components such as IL6, concomitant with 

changes in MSC chemotaxis. These results demonstrate the ability of NODAL to 

impact the breast cancer TME. 
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5.2 Introduction 

Non-transformed stromal cells within the tumour microenvironment (TME) undergo 

a dynamic reciprocity with cancer cells to drive tumour progression [1]. For 

example, breast cancers contain a significant proportion of auxiliary cells, including 

endothelial cells, pericytes, cancer-associated fibroblasts (CAFs), tumour-

associated macrophages (TAMs) and additional immune and progenitor cell types, 

which co-operate to promote processes such as metastasis [2–4]. Extracellular 

factors, such as cytokines and matrix proteins, mediate the pro-tumorigenic 

behaviours of stromal cells. For instance, CAF-derived CXCL12/stromal derived 

factor (SDF-1) can mobilize endothelial progenitor cells (EPCs) to increase 

vascularization of MCF-7 xenografts [5]. Furthermore, secretion of both CXCL12 

and Transforming Growth Factor-beta (TGF-β) by CAFs drives malignant 

progression by directly affecting Ras-transformed MCF-7 breast cancer xenografts 

[6]. 

Mesenchymal stromal cells (MSC) are another cell type frequently associated with 

neoplastic development [7,8]. MSC primarily arise from the bone marrow (BM) but 

also reside in most connective tissues. MSC can form bone, cartilage and fat in 

vitro and home to sites of ischemia, injury and inflammation in vivo [9]. MSC also 

exhibit pro-tumorigenic properties. For example, MSC increase tumour size and 

metastatic potential of MDA-MB-231 breast cancer xenografts via CCL5 secretion 

and CCR5 activation on breast cancer cells [10]. MSC also acquire CAF-like 

phenotypes when cultured in tumour conditioned media or mixed with cancer cells 

in mouse xenografts [11–13].  The mechanisms underlying MSC recruitment are 

not fully understood; however, up to 20% of CAFs in a mouse model of gastric 

cancer were derived from BM-MSC in a CXCL6/CXCR6 dependent manner [14].  

Moreover, stereotactic body radiation therapy was found to promote MSC 

recruitment in Lewis Lung Carcinoma (LLC) and B16F10 xenografts via SDF-

1/CXCR4 and Platelet-Derived Growth Factor B (PDGFB)/PDGF Receptor β 
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(PDGFR-β) signalling pathways [15]. MSC engraftment was associated with 

tumour recurrence and increased pericyte coverage of endothelial cells, hence 

supporting their roles in neovascularization and vasculogenesis [15].  Therefore, 

improved characterization of factors involved in MSC homing may provide 

additional avenues for therapeutic intervention. 

Several recent studies have uncovered tumour promoting roles for the TGF-β 

superfamily member and embryonic morphogen NODAL [16,17]. NODAL 

expression, while primarily restricted to embryonic development and human 

embryonic stem cells (hESCs), has been observed in melanoma, glioblastoma, 

breast, pancreatic and hepatocellular cancers [16,18–22]. In breast cancer, 

NODAL clinically correlates with stage and vascularization, and has been shown 

to promote blood vessel formation [17]. Accordingly, NODAL inhibition reduces 

breast cancer-induced neovascularization and mitigates tumour growth in Nude 

mice, in part through decreased PDGF and Vascular Endothelial Growth Factor 

(VEGF) expression [17,23]. Notably, however, in a chick chorioallantoic membrane 

model, the effects of NODAL knockdown on blood vessel formation could not be 

rescued by VEGF, suggesting that alternative pro-angiogenic secreted factors are 

affected when NODAL expression is altered [17]. 

In this study, we utilized mass spectrometry-based proteomics to analyze the 

NODAL-regulated secretomes of a claudin-low triple negative breast cancer cell 

line (MDA-MB-231) and a triple negative inflammatory breast cancer cell line 

(SUM149) [24,25]. Our analyses revealed cancer cell-type specific alterations in 

several undocumented NODAL-regulated factors including CXCL1, CXCL8, 

Interleukin 6 (IL6) and colony-stimulating factor-1 (CSF1); suggesting that NODAL 

may impact the ability of breast cancer cells to recruit a variety of stromal cell types. 

As a corollary, we found that NODAL-regulated alterations (knockdown and 

overexpression) negatively affected the ability of breast cancer conditioned 

medium to attract MSC. This effect was not due to NODAL itself, but to alterations 
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in other factors such as IL6. Conversely, we demonstrate that NODAL itself can 

signal to fibroblasts, increasing their invasion and inducing activation toward a 

CAF-like phenotype. Collectively, these data reveal a previously unknown role for 

NODAL in the regulation of breast cancer TME composition. 

5.3 Results 

 Proteomics reveals alterations in the NODAL-regulated 

breast cancer secretome  

Mass spectrometry is a powerful approach for proteomic characterization of  

cancer cell lines and tissues [26,27]. In this study, we employed high resolution 

mass spectrometry to identify NODAL-regulated factors in serum-free conditioned 

media (CM) from breast cancer cells that may act on stromal cells (Figure 5.1). 

Stable Isotopic Labelling of Amino Acids in Culture (SILAC) was combined with 

SDS-PAGE fractionation to determine relative changes in secreted proteins from 

MDA-MB-231 breast cancer cells stably expressing scrambled (shControl) or 

NODAL knockdown (shNODAL) shRNA (Figure 5.2a). In total, this approach 

identified over 3200 proteins, which were reduced to ~1300 entries after filtering 

for proteins annotated with Gene Ontology Cellular Component (GOCC) terms 

containing “extracellular” and quantified in ≥2 out of 3 biological replicates (Figure 

5.2b, ESM5.1). A one-sample, two-sided t-test revealed 122 proteins that were 

significantly different (p<0.05) between shControl and shNODAL CM (Figure 5.2b, 

ESM5.1). From this list, 1D annotation enrichment in Perseus revealed a 

significant decrease (Benjamini Hochberg (BH) FDR threshold<0.02) in proteins 

involved in GO Biological Processes (GOBPs) associated with cell migration, 

inflammation and cytokine signalling following NODAL knockdown (Figure 5.2c, 

ESM5.2) [28]. Alternatively, proteins matching to GOBP terms mRNA processes, 

protein localization and macromolecular complex disassembly were significantly 

increased (BH FDR threshold<0.02). This was attributed to higher levels of 
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ribosomal proteins (RPS and RPL members) shed by shNODAL MDA-MB-231 

cells. We plotted Heavy/Light ratios (shNODAL/shControl) and their corresponding 

–log10 p-values for the ~1300 filtered extracellular proteins found in MDA-MB-231 

CM (Figure 5.2d). All proteins annotated with the aforementioned GOBP terms 

were highlighted in blue (depleted) or red (enriched); there was a clear trend 

towards a reduction in secretion of inflammatory and chemotactic proteins 

following NODAL knockdown and an opposing increase in transcriptional and 

translational proteins. CXCL chemokines (CXCL1/3/8), IL6 and CSF1 were 

significantly lower in shNODAL CM (p<0.05). Interleukin 11 (IL11), on other the 

hand, was significantly higher (~1.85 fold, p<0.05). These factors have been 

associated with malignant phenotypes and may contribute to MSC chemotaxis 

given that they can promote chemotaxis of various immune cells and, in some 

cases, MSC [29–31]. Similar to previous findings, PDGFA was significantly lower 

in shNODAL CM (-2.31 fold) [17]. 

As a corollary, we performed label-free quantitative proteomics on Strong Cation 

Exchange (SCX)-fractionated CM digests obtained from Green Fluorescent 

Protein (GFP) and NODAL overexpressing SUM149 cells (Figure 5.3a). 

Approximately 1500 proteins were annotated as “extracellular” and quantified in 

≥2 out of 3 biological replicates, and 344 proteins were significantly different (two-

sided, two-sample t-test, p<0.05) between NODAL and GFP expressing SUM149 

cells (Figure 5.3b, ESM5.3). GOBPs that were significantly enriched/depleted (BH 

FDR threshold<0.02) included terms associated with inflammation, cell 

migration/locomotion, translation and transcription (Figure 5.3c, ESM5.4). 

Unexpectedly, GOBPs depleted in shNODAL MDA-MB-231 samples were also 

depleted in NODAL overexpressing SUM149 CM.  For example, proteins matching 

to the cytokine- mediated signalling pathway had a mean log2 fold-change of -2.28 

and -2.44 following NODAL knockdown and overexpression, respectively. 

Conversely, proteins matching to “mRNA metabolic process” were increased 

significantly by NODAL knock down in MDA-MB-231 and NODAL over-expression 
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in SUM149 with mean log2 fold-changes of 1.51 and 1.88, respectively. We also 

plotted log2 protein fold-changes for SUM149 secretomes (NODAL-GFP) versus –

log10 p-values and highlighted all proteins annotated with the aforementioned 

GOBPs (Figure 5.3d). Several inflammatory and migratory factors decreased 

following NODAL overexpression while translational and transcriptional proteins 

were elevated. For instance, CXCL1 and 3, IL6 and CSF1 levels decreased 

following NODAL knockdown in MDA-MB-231 cells and NODAL overexpression in 

SUM149 cells. Although PDGFA was not detected in SUM149 CM, the angiogenic 

factors Angiopoietin-1 (ANGPT1) and Angiogenin (ANG) were significantly 

elevated in CM from NODAL overexpressing SUM149 cells [32,33]. Highly similar 

proteomic results were also observed when comparing CM from NODAL 

overexpressing SUM149 cells to cells expressing an empty vector (EV) (Figure 

5.4, ESM5.5 and ESM5.6). In total, 56 proteins were significantly altered by 

NODAL in both MDA-MB-231 and SUM149 datasets; however, only a handful 

were associated with NODAL expression in a positive (CLU and CLSTN3) and 

negative (Leukemia Inhibitory Factor [LIF] and Neuropillin-2 [NRP2]) manner in 

both cell lines. To verify the proteomic findings, ELISAs were performed with CM 

from MDA-MB-231 cells for CXCL1, CXCL8, IL6 and CSF1 and CM from SUM149 

cells for CXCL1 and IL6 (Figure 5.5a). For reference, CXCL1 and IL6 levels were 

substantially higher in GFP expressing SUM149 cells compared to MDA-MB-231 

cell lines (Figure 5.5b and c). In effect, NODAL appears to influence a subset of 

cellular processes involved in inflammation, motility, transcription and translation, 

albeit differentially based on the breast cancer line.  
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Figure 5.1 MS-based proteomics workflow for interrogating the NODAL 

regulated secretome in breast cancer. 

Serum free conditioned media (CM) were isolated from MDA-MB-231 (shControl 

and shNODAL) or SUM149 (EV, GFP and NODAL overexpressing) breast cancer 

cell lines. Extracellular proteins from MDA-MB-231 cell lines were concentrated 

from CM, fractionated by SDS-PAGE and digested into peptides. For SUM149 cell 

lines, extracellular proteins were concentrated, digested into peptides, and 

fractionated with SCX StageTips. Fractions were analyzed by liquid 

chromatography-mass spectrometry to detect secreted proteins altered by 

NODAL. 
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Figure 5.2 NODAL knockdown alters the MDA-MB-231 secretome. 

(a) NODAL expression in lysates from MDA-MB-231 breast cancer cells stably 

expressing scrambled (shControl) or NODAL knockdown (shNODAL) shRNA 

cultured in serum free media (SFM), SFM+0.5%BSA (0.5%BSA), or complete 

media (10% FBS).  Extracellular proteins from serum free, isotopically (SILAC) 

labelled shControl and shNODAL conditioned media (CM) were concentrated 

using 3kDa MWCO filter units, fractionated and in-gel digested using SDS-PAGE, 

and analyzed on a Q Exactive mass spectrometer. Raw files were searched in 

MaxQuant and protein lists were filtered and annotated in Perseus. (b) Venn 

diagram highlighting total protein identifications, number of “extracellular” and 

quantified proteins, and significantly different proteins between shControl and 

shNODAL CM. A two-tailed, one sample t-test was used to identify differentially 

expressed proteins (p<0.05).  (c) Number of significant proteins (bars) matching to 

a subset of significantly enriched GO biological processes (GOBPs). Mean log2 

fold-changes in GOBPs are indicated by black dots.  Blue and red bars highlight 

GOBPs decreased and increased in MDA-MB-231 CM following NODAL 

knockdown, respectively. (d)  Volcano plot of quantified “extracellular” proteins. 

Negative and positive Log2 Heavy/Light ratios indicate proteins decreased and 

increased in MDA-MB-231 CM following NODAL knockdown, respectively (n=3). 

All proteins matching to corresponding GOBPs mentioned are highlighted in blue 

and red.  Several cytokines and chemokines altered by NODAL are labelled in 

black. Vertical and horizontal dotted lines indicate log2 fold-changes ≥2 and the –

log10 p-value cut-off corresponding to p<0.05, respectively. 
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Figure 5.3 NODAL overexpression alters the SUM149 secretome. 

(a) NODAL expression in lysates from GFP or NODAL over-expressing SUM149 

breast cancer cells. Extracellular proteins from serum free CM (GFP or NODAL) 

were concentrated using 3kDa MWCO filter units, digested with trypsin, 

fractionated using SCX StageTips and analyzed on an Orbitrap Elite mass 

spectrometer. Raw files were searched with MaxQuant and protein lists were 

filtered and annotated in Perseus. (b) Venn diagram highlighting total protein 

identifications, “extracellular” and quantified proteins, and significantly different 

proteins between GFP and NODAL CM. A two-tailed, two sample t-test was used 

to identify differentially expressed proteins (p<0.05).  (c) Number of significant 

proteins (bars) matching to subset of significantly enriched GOBPs. Mean log2 fold-

changes in GOBPs are indicated by black dots.  Blue and red bars highlight 

GOBPs decreased and increased in SUM149 CM following NODAL 

overexpression. (d)  Volcano plot of quantified “extracellular” proteins. Negative 

and positive log2 fold-changes indicate proteins decreased and increased in 

SUM149 CM following NODAL overexpression, respectively (n=3). All proteins 

matching to corresponding GOBPs mentioned are highlighted in blue and red.  

Several cytokines, chemokines and growth factors altered by NODAL are labelled 

in black. Vertical and horizontal dotted lines indicate log2 fold-changes ≥2 and the 

–log10 p-value cut-off corresponding to p<0.05, respectively. 
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Figure 5.4 NODAL overexpression alters the SUM149 secretome compared 

to an empty vector control.  

Extracellular proteins (CM) from empty vector (EV) or Nodal overexpressing 

SUM149 cell lines were concentrated using 3kDa MWCO filter units, digested with 

trypsin, fractionated using SCX StageTips and analyzed on an Orbitrap Elite mass 

spectrometer. Raw files were searched with MaxQuant and protein lists were 

filtered and annotated in Perseus. (a) Venn diagram highlighting total protein 

identifications, “extracellular” and quantified proteins, and significantly different 

proteins between GFP and NODAL CM. A two-tailed, two sample t-test was used 

to identify differentially expressed proteins (p<0.05).  (c) Number of significant 

proteins (bars) matching to significantly enriched GO biological processes 

(GOBPs). Mean log2 fold-changes in GOBPs are indicated by black dots.  Blue 

and red bars highlight GOBPs decreased and increased in SUM149 CM following 

NODAL overexpression. (d)  Volcano plot of quantified “extracellular” proteins. 

Negative and positive log2 fold-changes indicate proteins decreased and increased 

in SUM149 CM following NODAL overexpression, respectively (n=3). All proteins 

matching to corresponding GOBPs mentioned are highlighted in blue and red.  

Several cytokines, chemokines and growth factors altered by NODAL are labelled 

in black. Vertical and horizontal dotted lines indicate log2 fold-changes ≥2 and the 

–log10 p-value cut-off corresponding to p<0.05, respectively. 
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Figure 5.5 Cytokine and chemokine levels in breast cancer CM. 

Cytokine and chemokine levels in breast cancer CM. (a) SILAC quantification in 

MaxQuant and ELISAs report similar fold-changes in secreted factors between 

shControl  and shNODAL MDA-MB-231 cells. (b and c) ELISAs reveal 

substantially higher levels of CXCL1 and IL6 in CM derived from GFP expressing 

SUM149 cells compared to MDA-MB-231 cell lines. Black and grey dots indicate 

replicate values.  
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 The NODAL-regulated breast cancer secretome impacts 

MSC chemotaxis and NODAL induces fibroblast 

activation 

The breadth of changes in the NODAL-regulated breast cancer secretome indicate 

that this morphogen may affect components of the TME via both direct and indirect 

mechanisms. Given the involvement of MSC in tumour growth and 

neovascularization, we first examined how NODAL affects the capacity of breast 

cancer cells to promote MSC chemotaxis. We first compared the ability of CM from 

shControl and shNODAL knockdown MDA-MB-231 breast cancer cells to 

influence MSC chemotaxis (Fig. 5.6a-d). Several primary human bone marrow 

(BM)-derived MSC lines were utilized herein, some of which have been previously 

shown to form tubes in vitro and stimulate islet regeneration and revascularization 

in vivo [34,35]. Compared to shControl CM, in 3 out 4 MSC lines, chemotaxis was 

significantly decreased (~1.8 to 3.5 fold, p<0.0001, Dunnett’s multiple comparison 

test) towards shNODAL CM. We did not observe appreciable differences in 

proliferation or viability of MSC cultured in CM for 24h, suggesting that the effects 

observed were not due to alterations in cell numbers, but rather a result of altered 

chemotaxis (Figure 5.7a; data not shown). As a corollary, we investigated whether 

CM derived from empty vector (EV), GFP and NODAL overexpressing SUM149 

breast cancer cells could also affect MSC chemotaxis (Figure 5.6e). In accordance 

with our proteomics results, CM from NODAL overexpressing SUM149 cells 

induced less chemotaxis in MSC2 cells compared to the GFP expressing control. 

Again, we confirmed by flow cytometry that differences in chemotaxis were not due 

to altered proliferation or viability (Figure 5.7b; data not shown). 

 

The reduction in MSC chemotaxis observed when NODAL was knocked down 

could not be rescued by the addition of 100ng/mL of recombinant human NODAL 
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(rhNODAL) (Figure 5.6 a,b and d) suggesting that MSC are unable to sense this 

morphogen, perhaps due to an absence of receptor components. Hence, we 

performed Real time-PCR and Western blotting for NODAL, its receptor (ALK4) 

and co-receptor (CRIPTO) on two MSC lines (Figure 5.84a and b). MSC expressed 

moderate levels of NODAL and high levels of ALK4 at the transcript and protein 

level (Figure 5.8a and b). CRIPTO mRNA expression approached the reliable limit 

of detection by quantitative real-time PCR (35 cycles). Hence, while MSC appear 

to make NODAL and to express NODAL receptors, they may not express enough 

CRIPTO to sense NODAL. Indeed, stimulation with 10 and 100 ng/mL rhNODAL 

had no effect on canonical or non-canonical signalling through SMAD2 or ERK1/2 

phosphorylation, respectively (Figure 5.8c).   

 

Fibroblasts are critical components of the TME and studies indicate CAFs can 

originate from BM-derived populations including MSC [14,36]. We examined 

whether NODAL affects breast cancer-induced fibroblast phenotypes by 

performing chemotaxis assays using primary Human Foreskin Fibroblasts (HFFs) 

(Figure 5.9a and b). We did not detect differences in HFF chemotaxis towards CM 

from shControl and shNODAL MDA-MB-231 cells; however, CM from NODAL 

overexpressing SUM149 cells significantly increased HFF chemotaxis compared 

to the GFP expressing control (two-sample t-test, p<0.001). We therefore asked if 

NODAL could directly promote fibroblast activation. Indeed, rhNODAL (10 and 100 

ng/mL) increased HFF chemotaxis (Figure 5.9c), invasion (Figure 5.9d) (Dunnett’s 

multiple comparison test, p<0.05) and proliferation (Figure 5.9e). In contrast to 

MSC, which did not respond to NODAL, we found that rhNODAL (10 and 

100ng/mL) caused an increase in both SMAD2 and ERK1/2 activation in fibroblast 

cells (Figure 5.9f). In addition, Real time RT-PCR revealed that rhNODAL (10 and 

100ng/mL) induced expression of α-Smooth Muscle Actin (α-SMA), Desmin and 

Connective Tissue Growth Factor (CTGF) (Figure 5.9g). We performed gene 
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expression profiling on human dermal fibroblasts (HDFs) treated with 10ng/mL 

rhNODAL for 6h. Transcripts upregulated by at least 1.7 fold were analyzed in 

DAVID and gene clusters associated with the GO terms “wound healing”, “cell 

motion”, “extracellular matrix” and “growth factor” were significantly enriched 

(Figure 5.9h; ESM5.7) [37]. We overlapped proteins differentially expressed from 

the proteomics and microarray datasets, and found several factors to be 

consistently altered by NODAL, albeit some inversely correlated with NODAL 

levels (Figure 5.9i). IL6, LIF and NRP2 were shared amongst all three datasets; 

however, CXCL1/3 appeared be exclusive to breast cancer cells. Hence, while 

NODAL indirectly affects MSC chemotaxis by altering the breast cancer 

secretome, NODAL can directly induce fibroblast activation. Moreover, certain key 

factors, such as IL6 and LIF, are commonly affected by NODAL in all cell types 

investigated here.  
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Figure 5.6 CM from NODAL expressing breast cancer cells indirectly 

modulates MSC migration. 

Human bone-marrow derived MSC lines (MSC1-4) were plated onto fibronectin-

coated transwells in the presence CM (shControl or shNODAL +/-100ng/mL 

recombinant human NODAL; rhNODAL). (a-d) MSC chemotaxis was quantified 

after ~24h and was significantly lower (p<0.05) towards shNODAL CM compared 

to shControl CM. Moreover, rhNODAL could not rescue MSC chemotaxis. (e) 

Paradoxically, CM from NODAL overexpressing SUM149 cells was less 

chemotactic compared to empty vector (EV) and GFP controls. Data are presented 

as mean fold-changes relative to controls from a minimum of 3 biological replicates 

± standard deviation (SD). Black dots indicate replicate values and asterisks 

indicate significance differences (one way ANOVA, Dunnett’s multiple comparison 

test) in MSC chemotaxis compared to shControl or GFP conditions (** p<0.01, **** 

p<0.0001). 
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Figure 5.7 MDA-MB-231 and SUM149 CM have a negligible effect on MSC 

proliferation.  

MSC were labelled with cell trace violet (CTV) in suspension and plated onto tissue 

culture plates. After ~48h, MSC were rinsed in PBS and cultured for additional 24h 

in CM from MDA-MB-231 (shControl and shNODAL) or SUM149 (EV, GFP and 

NODAL) cells. MSC were then trypsinized, pelleted and resuspended in 5% 

FBS/PBS. (a and b) Histograms and tables showing median CTV intensity of MSC 

after 24h in CM from MDA-MB-231 and SUM149 conditions.  Histograms are 

representative images from 3 biological replicates.  
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Figure 5.8 NODAL signalling in MSC 

(a) Real time PCR cycle threshold (Ct) values for NODAL, ALK4 and Cripto in 

MSC. (b) Western blots showing expression of NODAL and ALK4 (receptor) in 

lysates from four MSC lines. Lysates from shControl and shNODAL MDA-MB-231 

breast cancer cells were used as positive controls. (c) Serum starved MSC treated 

with varying concentrations (ng/mL) of recombinant human NODAL (rhNODAL) for 

1h had no effect on downstream SMAD2 (p-SMAD2) or ERK1/2 (p-ERK1/2) 

activation. TGF- β (10ng/mL for 30mins) and cell culture media were used as 

positive controls for SMAD2 and ERK1/2 activation, respectively. Data are 

presented as mean Ct values ± SD from 3 biological replicates except for Cripto 

(n=2 for MSC2). High Ct values indicate low transcript expression with the 

horizontal dotted line corresponding to a Ct value of 35 or the reliable limit of 

detection. Western blots are representative images taken from 3 biological 

replicates. 
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Figure 5.9 NODAL directly promotes phenotypes associated with activated 

fibroblasts in HFFs. 

(a and b) HFF chemotaxis towards CM from MDA-MB-231 and NODAL SUM149 

breast cancer cells (n=6). (c to e) Exposure to rhNODAL (10 and 100ng/mL) for 

24h significantly increased HFF chemotaxis, invasion and proliferation (n=3). (f) 

Stimulation with rhNODAL (10 and 100 ng/mL) for 30mins dose dependently 

activates SMAD2 and ERK1/2 phosphorylation in HFFs. (g) HFFs upregulate 

transcripts (a-SMA, DESMIN and CTGF) associated with activated fibroblasts 

following treatment with rhNODAL (10 and 100ng/mL) for 72h (n=3, n=2 for α-SMA 

from 100ng/mL treatment). (h) Total genes (bars) upregulated by NODAL 

(10ng/mL) more than 1.7 fold in human dermal fibroblasts (HDFs) after 6h 

treatment and their corresponding enrichment (black dots) following GO analysis 

in DAVID. (i) Overlap in proteins differentially expressed (increased or decreased) 

in MDA-MB-231 (shControl versus shNODAL), SUM149 (NODAL versus GFP) 

and HDF (treated versus untreated) datasets. Data are presented as mean fold-

changes relative to controls or mean values ± SD. Black dots indicate replicate 

values and asterisks indicate significance differences (one way ANOVA, Dunnett’s 

multiple comparison test) in MSC chemotaxis compared to controls (* p<0.05, *** 

p<0.001). Conditions stimulated with 10ng/mL and 100ng/mL rhNODAL were 

significantly different when compared using a paired two-tailed, two sample t-test 

(p<0.05).  
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 IL6 promotes MSC migration 

Given that NODAL consistently altered CXCL1 and IL6 levels in breast cancer CM, 

concomitant with differential MSC chemotaxis, we sought to determine whether 

receptors for these ligands were expressed by MSC. While three MSC lines were 

highly positive for IL6R based on flow cytometry (Figure 5.10a, Figure 5.11a and 

b), surface CXCR1 and CXCR2 expression could not be detected on 4 MSC lines 

by real-time PCR or flow cytometry (Figure 5.11c; data not shown). Accordingly, 

treatment with 10 and 25ng/mL recombinant human IL6 (rhIL6) induced STAT3 

phosphorylation in MSC2 cells, which could be blocked by the addition of an IL6 

neutralizing monoclonal antibody (mAb, Figure 5.10b). Moreover, low doses of 

rhIL6 (1 and 10ng/mL) significantly increased MSC2 chemotaxis by ~1.6 fold 

(Dunnett’s multiple comparison test, p<0.05) although higher concentrations had 

no effect (Figure 5.10c). Neutralizing IL6 in shControl CM or supplementing 

shNODAL CM with rhIL6 (1ng/mL) resulted in a small, but significant, reduction 

and increase in MSC2 chemotaxis, respectively (Figure 5.10d and 6e). These 

findings suggest that IL6 may be involved in promoting MSC recruitment to breast 

cancers. Notably, IL6 levels in CM from shControl MDA-MB-231 cells were far 

lower than in CM from GFP expressing SUM149 cells (~40pg/mL versus 

~800pg/mL), suggesting different regulatory mechanisms between these cell lines, 

which could explain the differential effects of NODAL. 
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Figure 5.10 IL6 contributes to MDA-MB-231 mediated MSC chemotaxis.  

(a) Flow cytometry showing nearly homogenous expression of the IL6 receptor 

(IL6R) by MSC. (b) Stimulation with rhIL6 (10 and 25ng/mL) for 30 minutes induced 

phosphorylation of STAT3 in MSC2 which could be blocked by a 5 minute pre-

incubation with an IL6 neutralizing mAb (2.5µg/mL).  (c) MSC chemotaxis towards 

0, 1, 10, 25 or 100ng/mL recombinant human IL6 (rhIL6) after 24h (n=4-8). Low 

concentrations (1 and 10ng/mL) of rhIL6 significantly induced MSC chemotaxis. 

(d) Neutralizing endogenous IL6 in MDA-MB-231 CM with an IL6 mAb (2.5µg/mL) 

significantly attenuates MSC chemotaxis. (e) Exogenous rhIL6 (1ng/mL) 

significantly increased MSC chemotaxis towards shNODAL CM.  Flow histogram 

and Western blots are representative images from 3 biological replicates.  Data 

are presented as mean fold-changes relative to controls ± SD. Black dots indicate 

replicate values and asterisks indicate significance differences (one way ANOVA, 

Dunnett’s multiple comparison test for IL6 dose response and two tailed, two 

sample t-test for MDA-MB-231 treatments) in MSC chemotaxis compared to 

controls (* p<0.05, ** p<0.01).  
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Figure 5.11 MSC express IL6R but lack CXCR1/2 gene expression.  

(a and b) Flow cytometry showing high surface expression of IL6R (grey region) 

on two additional MSC lines compared to unstained MSC (white region). (c) Real-

time PCR results reveal no detectable transcript or reliable gene expression for 

CXCR1 or CXCR2 in four primary MSC lines. Individual data points correspond to 

real-time PCR readings from 2 biological replicates. A Ct value of 0 indicates no 

transcript was detected. The dotted line indicates a Ct value of 35 or the reliable 

limit of detection. Histograms are representative images from 3 biological 

replicates. 
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 Differential signalling pathways may dictate cell-type 

dependent effects of NODAL 

NODAL/ACTIVIN regulates cell fate specification and phenotype by activating 

signal transduction pathways that directly affect transcription and/or mediate 

epigenetic modifications [38]. The ability of NODAL to broadly affect gene 

expression is context-dependent. These differential responses may be due, in part, 

to which signal transduction pathways are induced by NODAL. Canonically, 

NODAL triggers phosphorylation of SMAD2/3 via binding to its receptors 

ActRIIB/ALK(4/7) and co-receptor CRIPTO [39]. Phospho-SMAD2/3-SMAD4 

heterodimers subsequently translocate into the nucleus to regulate the epigenetic 

status and transcription of target genes. NODAL can also signal non-canonically 

to activate ERK1/2, which is required for the induction of Epithelial-to-

Mesenchymal Transition (EMT) and invasion [40].  

Given the disparate effects of NODAL on cytokine secretion in MDA-MB-231 

versus SUM149 cells, we hypothesized that NODAL may activate different 

signalling mediators in a cell-type dependent manner like TGF-β.  Accordingly, the 

activation of two documented mediators of NODAL signalling (SMAD2/3 and 

ERK1/2) were measured by Western blotting in breast cancer cells wherein 

NODAL levels were modified and then cells were cultured under serum free 

conditions for 24 hours (Figure 5.12). NODAL knockdown in MDA-MB-231 resulted 

in an expected and previously described reduction in both SMAD2/3 and ERK1/2 

phosphorylation [40]. While overexpression of NODAL in SUM149 increased 

SMAD2 phosphorylation, a small reduction in ERK1/2 phosphorylation was 

observed. Moreover, constitutive SMAD2 and ERK1/2 activation was respectively 

higher and lower in SUM149 cells as compared to MDA-MB-231 cells. We also 

probed for p38 activation, which is regulated by TGF-β. NODAL expression was 

associated with decreased p38 activation and increased STAT3 signalling. 
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Hence, NODAL appears to modulate several signalling pathways both positively 

and inversely correlated with the secretion of factors such as IL6 and CXCL1 in a 

cell-type dependent manner (Figure 5.13). One notable difference that may explain 

some of the cell-type-specific effects of NODAL relates to the levels of SMAD2/3 

and ERK1/2 activation; MDA-MB-231 cells have higher levels of ERK activation 

and lower levels of SMAD2/3 activation as compared to SUM149 cells. Hence 

NODAL may preferentially signal through SMAD2/3 or ERK1/2 in SUM149 and 

MDA-MB-231 cells, respectively.  
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Figure 5.12 Effects of NODAL manipulation on signalling pathways in MDA-

MB-231 and SUM149 cells. 

Transgenic MDA-MB-231 and SUM149 cells were serum starved and then 

cultured in serum free media for an additional 24h. Western blotting revealed 

similarities and differences in activation of downstream pathways. NODAL 

expression (NODAL and shControl cell lines) was associated with increased 

phosphorylation of STAT3, SMAD2 and SMAD3 and decreased phosphorylation 

of p38. Basal levels of p-SMAD2 and p-ERK1/2 were substantially higher in 

SUM149 and MDA-MB-231 cell lines, respectively. p-ERK1/2 decreased slightly 

following NODAL overexpression in SUM149 cells, respectively.  Western blots 

are representative images taken from 3 biological replicates and asterisks denote 

high contrast image settings. 
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Figure 5.13 Proposed model for NODAL signalling in the breast cancer 

microenvironment. 

NODAL directly signals to breast cancer cells and CAFs. NODAL indirectly 

regulates inflammatory, chemotactic and angiogenic factors which act on 

endothelial cells and MSC and possibly immune cell types. Collectively, NODAL 

promotes tumorigenic phenotypes including tumour growth, neovascularization 

and cell migration. 
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5.4 Discussion 

We demonstrate for the first time that NODAL signals directly on fibroblasts to 

induce an activated phenotype and that it can modulate the chemotaxis of MSC 

cells indirectly, by altering the breast cancer secretome (Figure 5.13). NODAL has 

been shown to directly induce migration and/or invasion of breast, pancreatic and 

hepatocellular cancer cell lines in vitro [22,40,41]. Moreover, ectopic 

overexpression of NODAL in breast cancer cells indirectly promotes endothelial 

tube formation by increasing the expression of pro-angiogenic proteins such as 

PDGFA [17]. We build upon these studies by showing that NODAL broadly 

regulates the breast cancer secretome, which may affect TME composition. 

Our robust proteomics approach allowed us to uncover dozens of secreted 

proteins that are affected by NODAL expression in breast cancer cells.  For these 

studies, we took two approaches: We knocked down NODAL in MDA-MB-231 that 

are claudin-low and basally express NODAL, and we overexpressed NODAL in 

SUM149, which represent inflammatory breast cancer cells and express low levels 

of NODAL. Consistent with the effects of NODAL in vitro and in vivo, the levels of 

several pro-angiogenic factors (PDGFA, ANGPT1, and ANG) in breast cancer CM 

were positively correlated with its expression [17]. However, we also made the 

seemingly paradoxical discovery that the expression of NODAL in MDA-MB-231 

and SUM149 breast cancer cells oppositely regulates cytokines involved in 

chemotaxis. This may be coincident with the models chosen: MDA-MB-231 

express relatively low levels of pro-inflammatory cytokines as compared to 

SUM149 and thus the epigenetic regulation of the genes encoding these proteins 

may vary dramatically. Genes regulated by NODAL appear to be dictated, at least 

in part, by accessibility of genomic regions, and NODAL induces histone 

modifications to affect gene expression [42]. Hence the differential effects of 

NODAL in MDA-MB-231 versus SUM149 cells may be due to differences in 

chromatin accessibility in the areas surrounding chemotactic and inflammatory 
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cytokines. The differences observed may be also due to the ability of NODAL to 

activate ERK signaling in MDA-MB-231 cells but not in SUM149 cells.  Several 

studies have demonstrated the role of ERK signaling in the up-regulation of 

inflammatory cytokines such as IL6 [43,44]. Hence the effects of NODAL knock 

down in MDA-MB-231 cells may be due to reduced ERK signalling.  

Our discordant results are not uncommon for studies involving members of the 

TGF-β family, which function in a context dependent manner.   TGF-β1, for 

example, induces IL6 production in PC3 and DU145 prostate cancer cells via 

SMAD2/TGFBRII and p38 MAPK [45]. Moreover, in MDA-MB-231 and MDA-MB-

468 breast cancer cells, TGF-β1 stimulates IL8(CXCL8) and IL11 secretion via 

SMAD3/TGFBRI and p38 MAPK [46]. However, in Polyoma virus middle T antigen 

transformed mouse mammary carcinoma, loss of TGF-β signalling results in an 

up-regulation of CXCL1, CXCL5 and CCL20 [47]. Remarkably, these factors 

decreased substantially in SUM149 CM following NODAL overexpression, thus 

suggesting negative regulatory roles for both NODAL and TGF-β. We did not 

observe significant differences in the levels of TGF-β1/2 between breast cancer 

lines; hence the effects of NODAL were not likely mediated via alterations in TGF-

β1/2. Taken together, both NODAL and TGF-β may differentially regulate 

chemokine and cytokine expression in cancer, depending on context. This should 

be considered as treatment modalities designed to target these pathways evolve 

[48].  

While IL6R was detected on MSC, CXCR1 and CXCR2 were not. Heterogeneity 

in MSC receptor expression has been reported among multiple studies and may 

be a product of culture conditions and donor heterogeneity [9,49]. For reference, 

Ponte et al. observed CXCR4 and CXCR5 but not CXCR1 or CXCR2 on human 

BM-MSC [50]. Chamberlain et al. also reported high expression for CXCR4 and 

CXCR5 but low to intermediate expression of CXCR1 and CXCR2, respectively 

[51]. Conversely, Ringe et al. extensively profiled chemokine receptors on human 
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BM-MSC and detected CXCR1 and CXCR2 but noted loss of expression following 

10 passages [52]. While these pathways may play a role in MSC recruitment to 

tumours in breast cancer patients, we were unable to test this possibility.  

In our hands, MDA-MB-231 cells produced less IL6 and CXCL1 compared to work 

by Hartman et al. who investigated the role of cytokines in triple negative breast 

cancer cell growth [29]. Notwithstanding, neutralizing IL6 in MDA-MB-231 CM was 

sufficient to attenuate MSC chemotaxis [12,53,54]. We did not neutralize IL6 in 

SUM149 CM, however CM from either SUM149 and/or SUM159 breast cancer 

cells was previously shown to promote migration of aldehyde dehydrogenase-high 

MSC or macrophage-educated MSC in an IL6 dependent manner [31,54].  

Although CXCR1/2 was not detected on MSC, differences in CXCL1 and CXCL8 

levels following NODAL knockdown/overexpression remain important for cancer 

progression and trafficking of additional cell types and justifies additional 

interrogation. For instance, CXCL1 mediated recruitment of CD11b+Gr1+ myeloid 

cells enhanced breast cancer cell survival, chemoresistance and metastasis [30]. 

Moreover, obesity-associated CXCL1 expression in prostate tumours was linked 

to adipose derived stromal cell migration in vitro and tumour engraftment in vivo 

[55]. Given the importance of NODAL-regulated cytokines in the TME, future 

studies interrogating the extent to which NODAL may modulate TME composition 

are warranted.  

In summary, our findings demonstrate the capacity of NODAL to bi-directionally 

regulate a number pro-tumorigenic factors in the breast cancer secretome. 

Moreover, NODAL regulates stromal cell recruitment and activation through direct 

and indirect means. Characterizing the effects of NODAL on cytokines and 

chemokine expression in additional cell lines and cancers may further improve our 

understanding of its complex roles during development and cancer progression. 
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5.5 Materials and methods 

 Cell culture 

MDA-MB-231 cells stably expressing scrambled (shControl) or NODAL targeting 

(shNODAL) short hairpin RNAs as previously described and validated[17,23,40] 

were maintained in DMEM/F12 (Gibco) supplemented with 10% FBS (Gibco) and 

500ng/mL puromycin. To generate SUM149 cells stably expressing an empty 

vector (EV), green fluorescent protein (GFP) or NODAL, cells were transduced 

with lentiviral particles (GeneCopia) overnight then selected and maintained in 

HAM’s F10 (Gibco) supplemented with 10% FBS, 5µg/mL insulin (Santa Cruz 

Biotechnology, Dallas TX, USA), 1µg/mL hydrocortisone (Sigma-Aldrich, St. Louis, 

MO, USA) and 100 ng/mL puromycin. Human BM-MSC lines were maintained in 

Amniomax with C100 supplement (Life Technologies, Carlsbad, CA, USA) and 

previously confirmed to express characteristic stromal markers (>95% CD90+, 

CD105+, and CD73+) and exhibit multipotent differentiation.[35,56] HFFs were 

maintained in DMEM/F12 supplemented with 10% FBS.  For SILAC labelling, 

shControl and shNODAL MDA-MB-231 cells were cultured in DMEM F12 

supplemented with dialyzed FBS (Life Technologies) containing light (Advanced 

ChemTech, Louisville, KY, USA ) or heavy (Cambridge Isotope Laboratories, 

Tewksbury, MA, USA and Silantes GmbH, Germany) isotopes of arginine 

(0.398mM) and lysine (0.274mM) for at least 9 days to achieve >90% label 

incorporation. SILAC media was additionally supplemented with 400 mg/L of 

proline (Sigma-Aldrich) to limit arginine to proline conversion.[57] CM was 

prepared by plating equal cell numbers onto flasks in culture media (Corning, NY, 

USA). After 24h (MDA-MB-231 cells) or 48h (SUM149 cells), media was removed 

and cells were thoroughly rinsed 3 times in PBS (with Ca2+ and Mg2+) to remove 

serum components. Cells were incubated in serum free media (SFM) with 0.5% 

BSA for an additional 24h to generate CM (BSA was omitted for LC-MS samples). 
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Conditions used to stimulate cells with rhNODAL and rhIL6 are specified in main 

text.  

 Sample preparation for liquid chromatography-mass 

spectrometry (LC-MS) 

CM (without BSA) were concentrated using 3 kDa molecular weight cut-off 

(MWCO) Amicon ultracentrifugal units (Millipore) and lyophilized overnight. The 

following day, CM was reconstituted in lysis buffer (8M urea, 50mM ammonium 

bicarbonate, 10mM dithiothreitol and 2% SDS), sonicated (3 X 0.5s pulses) with a 

probe sonicator (Level 1; Fisher Scientific, Waltham, MA) and quantified using a 

Pierce™ 660 nm assay (Thermo Scientific™) with ionic detergent compatibility 

reagent. For SlLAC samples, light shControl and heavy shNODAL CM was pooled 

based on equal cell numbers and ~100µg of protein was fractionated using SDS-

PAGE on 12% acrylamide tris-glycine gels. In-gel digestion with trypsin (1:25 

enzyme:protein ratio) was performed on 16-17 slices (fractions) from each lane in 

biological triplicate as previously described [58]. For label free samples, ~50µg of 

protein from SUM149 CM was precipitated in chloroform/methanol, digested 

overnight with trypsin (1:50 ratio) on a water bath shaker and fractionated on SCX 

StageTips as previously described [58–60]. Peptides were dried in a SpeedVac, 

reconstituted in 0.1% formic acid (FA; Fisher Scientific) and a volume 

corresponding to 1/10th of the total material recovered or 1µg as determined by 

BCA (Pierce™) was injected for each in-gel and SCX fraction, respectively. 

 LC-MS 

In-gel and SCX fractions were analyzed using a Q Exactive or Orbitrap Elite mass 

spectrometer (Thermo Scientific™), respectively. Samples were injected using a 

nanoAcquity HPLC system (Waters) and initially trapped on a Symmetry C18 Trap 

Column (5 µm, 180 µm x 20 mm) for 4 or 5 minutes in 99% Solvent A (Water/0.1% 

FA)/1% Solvent B (acetonitrile/0.1% FA) at a flow rate of 10 µl/min. Peptides were 
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separated on an ACQUITY Peptide BEH C18 Column (130Å, 1.7µm, 75µm X 

250mm) at a flow rate of 300 nL/min maintained at 35°C. The LC-MS gradient for 

in-gel digests consisted of 1-7% B over 1 minute and 7-37.5% B over 79 minutes. 

SCX fractions were separated using gradient consisting of 7.5% B over 1 minute, 

25% B over 179 minutes, 32.5% B over 40 minutes and 60% B over 20 minutes. 

Column washing and re-equilibration was performed following each run and 

settings for data acquisition are outlined in ESM5.8. 

 Data analysis and statistics 

MS files were searched in MaxQuant (1.5.2.8) with the Human Uniprot database 

(reviewed only; updated May 2014 with 40,550 entries) [61]. Missed cleavages 

were set to 3 and I=L. Cysteine carbamidomethylation was set as a fixed 

modification. Oxidation (M), n-terminal acetylation (protein), and deamidation (NQ) 

were used as variable modifications (max. number of modifications per peptide = 

5) and min ratio count was set to 1. All other settings were left default. The match-

between-runs feature was utilized to maximize proteome coverage and 

quantitation between samples. Datasets were loaded into Perseus (version 

1.5.5.3) and proteins identified by site, reverse and potential contaminants were 

removed [28]. Protein identifications with quantitative values in ≥2 biological 

replicates were retained for downstream analysis unless specified elsewhere. 

Missing values were imputed using a width of 0.3 and down shift of 1.8 for label 

free datasets. Statistical analysis was performed in Perseus or GraphPad Prism 

version 6.01 (San Diego, CA). All experiments were carried in at least 3 biological 

replicates unless specified otherwise. Where specified, replicate treatment values 

were normalised to the control group and relative fold-changes were reported. 

Two-tailed, one sample and two-sample t-tests (p<0.05) were performed to 

determine statistical differences unless more than 2 conditions were being 

compared and a one way ANOVA using Dunnett’s multiple comparison test 

(p<0.05) was performed instead. 
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 Chemotaxis and invasion assays 

MSC were rinsed in warm PBS (with Ca2+ and Mg2+) and serum starved for ~2h 

in Amniomax prior to dissociation with trypsin for chemotaxis assays. In parallel, 

8µM transwells (Falcon) were coated with 10µg/cm2 of bovine fibronectin (Sigma-

Aldrich) in 100µL of PBS for 2h. After coating, excess solution was aspirated and 

40K MSC in 0.5mL of DMEM F12+0.5% BSA were plated in each transwell. HFFs 

were serum starved 24h prior to dissociation and plated at a density of 50K 

cells/transwell. For HFF chemotaxis and invasion assays, fibronectin and 

Matrigel™ were omitted and included, respectively. To the bottom chamber, 1mL 

of DMEM/F12+0.5%BSA or CM was added +/- rhNODAL (R&D systems), rhIL6 

(eBioscience), isotype or IL6 neutralizing monoclonal antibodies (R&D systems). 

After ~24h, transwells were rinsed in warm PBS and placed in cold methanol for 

20 minutes to fix migrating cells. After fixing, transwells were rinsed in PBS and 

the inside membrane was thoroughly wiped with a cotton swab to remove non-

migrated cells. Membranes were excised and mounted onto glass slides with 

ProLong™ Gold Antifade Mountant with DAPI (InvitrogenTM). Migrated cells were 

counted from at least 5-10 high power fields uniformly distributed across the entire 

membrane for each condition.    

 Western blotting 

Cells were thoroughly washed with PBS (with Ca2+ and Mg2+) and directly lysed 

on tissue culture plates in lysis buffer. Lysates recovered by pipetting were 

sonicated with a probe sonicator (20 X 0.5s pulses) to shear DNA and reduce 

viscosity. Equal protein amounts (15-25µg) were separated on hand cast 8-20% 

acrylamide Tris-glycine gels then transferred to Immobilon-P® PVDF membranes 

(Millipore™, Billerica, MA, USA). Membranes were stained with amido black and 

rinsed in ddH2O for 5 minutes followed by blocking for 1h on rocker in 5% non-fat 

dry milk in TBST (Tris-buffered saline, 0.1% Tween 20) and overnight incubation 
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in primary antibody at 4°C. Chemiluminescent detection was performed using film 

or a VersaDoc CCD camera with Clarity™ Western ECL Substrate and 

horseradish peroxidase-conjugated secondary antibodies (Bio-Rad) the next day. 

Antibody information is available in ESM5.9 and ACTIN and TUBULIN were used 

as loading control. PVDF membranes were stippled in 0.2 M NaOH and reprobed 

when possible, otherwise Western blots were run in duplicate. 

 Real-time PCR 

RNA was isolated from cells and treated with DNAse using a Perfect Pure RNA 

cultured cell kit (5 PRIME). RNA was quantified by NanoDrop™ (Thermo 

Scientific™) and 2µg was reverse transcribed with a High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Carlsbad, CA, USA). Real-time PCR was 

performed with TaqMan™ Universal PCR mastermix on a Bio-Rad CFX96/384 

thermocycler. HPRT1 or RPLPO were used as housekeeping to genes monitor 

variations between biological replicates. TaqMan™ primer probes were purchased 

from Applied Biosystems and are listed in ESM5.10. 

 Flow cytometry 

MSC dissociated in 10mM EDTA/PBS solution for 5-10 minutes were resuspended 

in 5% FBS/PBS, counted and pelleted at 450 xg. Excess buffer was aspirated and 

MSC were divided 50-100K cell aliquots in 100µL of 5% FBS/PBS. Isotype controls 

and primary antibodies were added to cell suspensions and incubated for ~45 

minutes in the dark on ice (ESM5.9). Cell suspensions were washed in excess 5% 

FBS/PBS and pelleted to remove unbound antibody. Flow cytometry data was 

acquired on an LSR II (Becton Dickinson, NJ, USA) using FACSDiva at the London 

Regional Flow Cytometry Facility and analyzed with FlowJo (Treestar, Ashland, 

OR, Version 10.0.8r1). Gating strategy for live singlets was based on forward and 

side-scatter and is illustrated in figure 5.14.  
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 ELISAs 

ELISA kits were purchased from eBioscience (IL6) or R&D systems (CXCL1, 

CXCL8 and CSF1) and performed according to the manufacturer’s specifications 

using CM derived from MDA-MB-231 and SUM149 cell lines. 

 Gene expression profiling 

Human dermal fibroblasts (ATCC) were cultured in DMEM supplemented with 10% 

FBS until ~40-60% confluence, washed twice with PBS and incubated overnight 

in DMEM+0.5%FBS. The following day, cells were treated +/- rhNODAL (10 

ng/mL) for 6h and RNA was harvested using TRIzol™ (Invitrogen). RNA was 

subjected to expression profiling at the London Regional Genomics Centre 

essentially as previously described [62,63]. RNA quality was assessed using an 

Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Palo Alto, CA) prior to 

preparing single stranded complimentary DNA (sscDNA) from 200ng of total RNA 

(Ambion WT Expression Kit for Affymetrix GeneChip Whole Transcript WT 

Expression Arrays; Applied Biosystems, Carlsbad, CA) according to the Affymetrix 

User Manual  (Affymetrix, Santa Clara, CA). In total, 5.5µg of sscDNA was 

synthesized, converted into cRNA, end labeled and hybridized (16h at 45°C) to 

Human Gene 1.0 ST arrays. Liquid handling steps were performed by a GeneChip 

Fluidics Station 450 and GeneChips were scanned (GeneChip Scanner 3000 7G; 

Affymetrix, Santa Clara, CA) using Command Console v1.1 to generate Probe 

level (.CEL file) data. Gene level data was generated using the RMA algorithm 

[64]. Partek Genomics Suite v6.5 (St. Louis, MO) was used to determine gene level 

ANOVA p-values and fold-changes. Fold-changes were obtained by averaging 

data from two experiments (GeneSpring). Fold-changes exceeding 1.7 in 

response to rhNODAL were required to identify a transcript as being altered 

(p<0.05).  Altered genes were annotated using DAVID (version 6.7) and lists 

enriched >3.5 fold and comprised of >10 genes were reported (ESM5.10). 
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Figure 5.14 Gating strategy for flow cytometry analysis. 

(a and b) Forward- and side-scatter gating method used to select live singlets for 

surface marker expression and CTV analyses. 
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6.1 General discussion and conclusions  

Our understanding of the complex and heterogeneous nature of cancer and the 

TME as a whole is constantly evolving. This has significant repercussions for 

patient outcomes which depend heavily on early detection, accurate diagnosis, 

and tailored treatments options. Rapid advances in the proteomics pipeline have 

propelled the study of complex biological systems to an unprecedented depth. 

When applied to models of cancer, proteomics can provide valuable information 

on all aspects of disease progression including subtype specific signatures, 

biomarkers for screening and detection, and signalling pathways involved in 

malignant behaviours. In this thesis, I employed global mass spectrometry-based 

approaches to identify biological features that may aid in the diagnosis and 

detection of ovarian cancer and characterize signalling factors regulated by 

NODAL in the breast cancer secretome. More specifically, in Chapter 2, I 

systematically compared newer fractionation strategies with established methods 

for achieving large proteomic coverage. In Chapter 3, I contrast differences 

between two ovarian cancer subtypes, namely HGSC and EC, for which differential 

diagnosis is lacking. In Chapter 4, I performed detailed proteomic analysis of 

ovarian cancer EVs from malignant bio-fluids to identify novel biomarkers for 

detecting ovarian cancer. In Chapter 5, I demonstrated a role for NODAL in 

regulating cytokines and chemokines that mediate stromal cell recruitment within 

the breast cancer microenvironment. 

6.2 Sample preparation strategies for comprehensive 

proteome coverage 

Within each proteomic workflow, a vast array of parameters can be optimized and 

tweaked to achieve comprehensive proteomic information of complex biological 

samples. Sample preparation strategies remain an active area of the proteomics 

pipeline and are continually being improved. Our work in Chapter 2 has further 
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established high-pH/low-pH reversed phase fractionation (HpH) as a superior 

sample preparation scheme over other methods for large-scale proteomics when 

no other limitations are present (i.e. time/cost/access to specialized equipment) 

[1]. Importantly, our findings are in agreement with recent studies by other groups 

which have implemented HpH fractionation into their workflows [2–5]. For example, 

Kulak et al., whom vastly simplified SCX StageTip fractionation used in our 

comparison, recently developed a Loss-less Nano-fractionator (Spider 

Fractionator under commercial development by PreOmics, GmbH) to help 

streamline and automate LC-based fractionation which is commonly employed 

with HpH [6]. Fortunately, when UHPLC or HPLC systems are not available, HpH 

fractionation can be performed with StageTips [7]. One of the earliest examples of 

this was by Han et al. whom in 2013 performed StageTip-based HpH fractionation 

of digests from BV-2 mouse microglial cells [8]. Although we did not compare 

HPLC- and StageTip-based HpH fractionation, HPLC-based fractionation provides 

slightly better fractionation efficiency and more protein identifications (unpublished 

observations and personal communication with Dr. Kuljanin) [6]. Compared to 

HPLC-based setups, StageTips do not typically employ concatenation schemes 

and fractions are eluted in steps which may reduce orthogonality [9,10]. 

Protein digestion with trypsin remains an integral component of sample preparation 

protocols in nearly all bottom-up proteomic studies [11]. Paradoxically, the majority 

of tryptic peptides (56%) generated by in silico digestion of the yeast proteome are 

≤6 amino acids (AA) long while 97% of all peptides observed by mass spectrometry 

are between 7-35 AA with an average length of 8.4 AA [12]. These differences 

highlight a long standing issue with bottom-up proteomics whereby short peptides 

(≤6 AA) comprise the majority of species within each digest but are often excluded 

during acquisition or searching to avoid non-unique sequences [13]. Alternative 

enzymes and chemical digestions are one means to mitigate these issues and 

increase protein identifications and approach 100% sequence coverage [13]. 

While such adaptations are reported for PTM analysis and antibody sequencing, 
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only a handful of studies have employed multiple enzyme and/or chemical 

digestions for large scale proteomic analysis [14–16]. For example, Wiśniewski et 

al. combined multiple enzyme digestions with filter aided sample preparation 

(MED-FASP) to increase the proteome depth of HeLa cells over digestion with 

trypsin alone [12,17]. More recently, Bekker-Jensen et al. utilized trypsin, LysC, 

chymotrypsin and GluC digestions to report the highest protein identifications and 

greatest sequence coverage achieved in a mammalian cell line to date [5]. While 

these modifications are associated with increased sample handling, they provide 

additional sequence information for detecting species/proteoforms that are missed 

with standard tryptic digests [11]. 

In addition to sample preparation, ongoing advances in instrumentation hardware 

and software have resulted in significant improvements to the amount and quality 

of spectral data acquired. For instance, segmented quadrupoles on newer Orbitrap 

systems have reduced co-isolation of multiple precursors that are commonly 

encountered when working with complex samples. Impressively, current 

generation Orbitrap Fusion Tribrid mass spectrometers can theoretically achieve 

sequencing speeds of ~60Hz in parallel acquisition mode [18]. Until very recently, 

this potential was not realized due to limitations in assigning correct charge states 

of overlapping and/or low abundance precursors with the standard precursor 

detection algorithm. However, an Advanced Precursor Detection (APD) algorithm 

is now available which can handle these scenarios and maximize the number of 

MS/MS scans to 96% capacity up from 72% [18].  

The field of mass spectrometry-based proteomics is undergoing innovation at a 

staggering pace and it is an exciting time to witness these innovations. In the latest 

2017 report from the Human Proteome Project (HPP), highly stringent protein 

evidence was still missing from an estimated ~18% of the human proteome [19]. 

There is an ongoing effort to accelerate the identification of missing proteins such 

as that noted with olfactory receptors. In this section, I briefly touched on a few of 
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the many areas where sample preparation and data acquisition are having notable 

successes. In effect, a combination of the technologies and their iterations are 

needed to enable complete proteome coverage in future endeavors. 

6.3 Proteomic profiling enables classification of cancer 

subtypes 

Ovarian cancer remains a challenging disease to detect early, diagnose and treat. 

Genomic and histological studies have significantly improved our understanding of 

the mechanisms underlying EOC progression and pathology [20,21]. Mass 

spectrometry-based proteomics is a complementary approach to these techniques 

and is steadily being incorporated into ovarian cancer research [3,22]. In chapter 

3, we performed a global proteomics analysis on fresh frozen EC and HGSC 

tumour samples with the goal of identifying histospecific markers of EC. Using the 

SVM package ‘geNetClassifier’ in R, ~100 proteins were identified with high 

classification power for either EC or HGSC. Our proteomics dataset represents a 

significant contribution to the field of ovarian cancer research which is striving to 

improve patient management through better histopathological assessment. In 

agreement with other studies, TP53 and CDKN2A expression were upregulated in 

several HGSC tumours while PR was elevated in EC tumour samples [21]. To 

validate novel histotype specific markers for EC, we performed IHC for a subset of 

candidates on a large cohort of over 300 EC and HGSC tumour samples. IHC 

corroborated our proteomics findings however limited specificity or sensitivity 

hindered our ability to identify a high performing marker of EC. KIAA1324 was the 

best subtype specific marker of EC next to PR. IHC, although streamlined, remains 

a rate limiting, but necessary step for validation. Fortunately, we now have a 

database with matched staining information for these markers. We will use this 

information for multivariate analyses that may reveal a histotype specific signature, 

rather than a single marker, for detecting EC and correlating patient outcomes. 
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With regard to proteomic coverage, we achieved relatively good depth for 

unfractionated tumour samples analyzed on an Orbitrap Elite (~5600 entries after 

filtering). For a rough comparison, Hughes et al. quantified 8167 proteins (98.5% 

present in all samples) using TMT-labelled, HpH fractionated digests from FFPE 

tumour sections (CCC and HGSC) on an Orbitrap Fusion[3]. Although we 

anticipated an unfractionated approach would be sufficient to detect markers 

enriched in or exclusive to EC, it is possible that low abundance proteins were 

missed. Notably, WT1 is a transcription factor that is specific for HGSC which was 

absent from our proteomic dataset. We verified the presence of numerous nuclear 

proteins and transcription factors and therefore, insufficient extraction of this 

organelle was an unlikely factor. Rather, it is plausible that WT1 expression was 

below the limit of detection of our instrument when analyzing unfractionated 

samples. This observation is supported by previous work by Hughes et al. and 

Coscia et al. in which WT1 expression appears significantly lower than other 

HGSC markers including TP53 and CDKN2A. For example, in the study by Coscia 

et al., WT1 was absent in 19 of 30 cell lines analyzed with log2
 LFQ intensity values, 

when present, ranging from ~20-25. TP53, on the other hand, was detected in 29 

out of 30 ovarian (cancer) cell lines with log2
 LFQ values ranging from ~25-30. 

Using these values as a conservative estimate, the abundance of WT1 is likely 25 

or ~2 orders of magnitude lower than TP53.  Interrogation of our dataset revealed 

an average TP53 log2
 LFQ value of 24.6 in the 3 out of 10 HGSC tumour samples 

it was present in. Accordingly, WT1 would be at or below the limit of detection (LFQ 

value of around 20). If low abundance markers are indeed required to improve 

discrimination of EOC subtypes, it is worthwhile to perform additional analysis on 

fractionated EC and HGSC tumours samples as the cost of instrument time. 

Multiplexing with tandem mass tags (TMT) can mitigate this issue but MS2 based 

quantification on Orbitrap Elite and Q Exactive systems is associated with 

interference in the low mass range, also known as ratio distortion [23]. MS3 based 

quantification, however, can improve quantification accuracy at the cost of 

sensitivity and sequencing speed [23]. Interestingly, an updated quantification 
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strategy based on complementary TMT (peptide) fragments (TMTc+) was recently 

reported [24]. Importantly, this approach is compatible with older generation 

Orbitrap instruments while maintaining the high sensitivity, accuracy and speed 

afforded by synchronous precursor selection (SPS) MS3-based quantification on 

newer Orbitrap Fusion Tribrid instruments [23,24].  

Advances in instrumentation and multiplexing are increasing the rate of proteomic 

profiling of tumours and cancer biopsies. Rapid in depth proteome coverage can 

be obtained within 1 day as demonstrated on recent state of the art Q Exactive HF 

[5]. It is probable that patient biopsies will one day be routinely profiled using 

proteomics.  Moreover, proteogenomics is a growing area of research that 

incorporates both genomics and proteomics [25]. While the field is still in its 

infancy, personalized protein sequence databases containing single amino acid 

variants (SAAVs) missing from publicly available repositories can be derived from 

whole genome, exome and RNA sequencing technologies. However, there are a 

number of challenges associated with generating, searching and integrating 

multiple ‘omic’ datasets. For instance, high quality spectral information may not 

exist in curated databases thereby necessitating the need for de novo peptide 

sequencing tools like Peaks® [26]. Moreover, iterative search strategies are 

required to minimize high FDRs associated with large search spaces involving six-

frame translations and potential SAAVs [25]. Tumours are also heterogeneous 

masses which may consisting of ~20% stromal and immune that further increases 

proteome complexity [27]. Laser capture microdissection combined with 

proteomics can help elucidate cancer- and stromal-specific factors but is manually 

intensive [28]. Unfortunately, we were unable to implement these strategies into 

our workflow given their significant technological barriers and ongoing 

development. Moving forward, advances in the field of proteogenomics will 

hopefully enable its accessibility for mainstream proteomic analysis of tumour 

biopsies. 
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6.4 Strategies for profiling cancer-derived biomarkers 

When detected early (stage I/II), the 5-year overall survival for patients with EOC 

patients is 70% or higher [29]. Unfortunately, most patients present with advanced 

disease (stage III/IV) for which overall survival is dismal [30]. CA-125 plus TVUS 

screening may reduce mortality by a small margin but is associated with a high 

ratio of unnecessary follow-up surgeries to confirm a positive diagnosis [31,32]. 

Non-invasive blood based biomarkers may one day improve early detection of 

ovarian cancer. However, unbiased biomarker discovery approaches are 

hampered by the capacity to detect low abundance tumour derived proteins in 

biological fluids [33]. In chapter 4, EV preparations from different bio-fluids 

(conditioned media, plasma and ascites) were characterized by LC-MS/MS as an 

alternative method for profiling potential plasma based biomarkers of malignant 

EOC. Our proteomics analysis revealed a substantial number of factors associated 

with malignant disease. Furthermore, this analysis extends beyond traditional 

biomarker discovery approaches which focus on soluble signalling factors and 

highlights the potential value in surveying all populations of EVs for detecting EOC. 

This dataset constitutes the most in depth proteome of ovarian cancer ascites EVs 

to date and is a significant contribution to the field of biomarker research.  

Although we extensively profiled and documented EV proteins associated with 

malignant EOC, according Pepe et al., this work encroaches on the first of 5 

phases of biomarker development, namely the pre-clinical exploratory phase. 

Therefore, to move towards the second phase of biomarker development – clinical 

assay and validation – we utilized a targeted PRM strategy as a proof-of-concept 

to determine the performance of EOC candidates in an independent cohort of 

plasma EVs. Notably, over a dozen candidates were found to harbour ROC-AUC 

values with similar or better performance than CA-125 for differentiating malignant 

from non-malignant plasma EVs. However, this approach can be further refined 

using isotopically labelled peptides for more accurate absolute quantification prior 
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to validation in larger patient cohorts (early versus late stage disease). While PRM 

assays may one day be used clinically, ELISAs may be better suited for detecting 

blood based markers in the near term. It remains to be confirmed whether 

membrane bound and intracellular EV markers can be readily detected in this 

format.  Rapid and robust EV purification strategies are also needed to overcome 

the limitations of ultracentrifugation (time and low/variable sample recovery). 

Interestingly, one group reported a technique known as PRotein Organic Solvent 

Precipitation (PROSPR) to selectively isolate EVs [34]. In this approach, soluble 

plasma proteins are precipitated in acetone while lipid containing vesicles remain 

in the organic phase [34]. PROSPR was shown to be superior over 

ultracentrifugation and therefore merits further interrogation in our hands.  

Once clinical assay development has been fully optimized, either using ELISAs or 

PRM assays, a substantial amount or work remains prior to clinical approval. This 

includes retrospective longitudinal studies, prospective screening studies and 

finally cancer control studies. However, TMT and advanced software detection 

algorithms can be implemented with PRM assays to facilitate high-throughput 

biomarker screening and validation in large case studies [35]. For example, Gygi’s 

group developed and applied TOMAHAQ (triggered by offset, multiplexed, 

accurate-mass, high- resolution, and absolute quantification) as a high-throughput 

screening tool for identifying molecular targets associated with drug sensitivity [35]. 

In this study, 69 target proteins (131 peptides) were monitored by TOMAHAQ in 

the entire panel of NCI-60 cell lines. Impressively, TOMAHAQ reliably quantified 

54 proteins in all cell lines (≥2 biological replicates) without fractionation in just 2 

days and revealed a novel role for the DNA damage response protein BAZ1B in 

predicting Doxorubicin sensitivity. TOMAHAQ was only recently developed and 

investigated using cell lines but should be applicable to monitoring biomarkers in 

biological fluids. 
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6.5 Cancer plasticity associated with NODAL signalling 

differentially regulates the breast cancer secretome and 

stromal cell recruitment 

In Chapters 3 and 4, I focused on proteomic characterization of clinical specimens. 

However, cancers are dynamic and plastic entities comprised of multiple cell types 

and extracellular factors within the TME. NODAL is one such embryonic 

morphogen which promotes metastatic phenotypes in cancer in part through 

regulating activities of cells within the TME [36,37]. In chapter 5, I combined 

proteomics with in vitro assays to test whether NODAL contributes directly or 

indirectly to stromal cell recruitment in breast cancer.  Proteomic analysis of 

conditioned media from MDA-MB-231 and SUM149 breast cancer cell lines 

revealed unpublished alterations in a subset of cytokines and chemokines 

following NODAL knockdown or overexpression. Surprisingly, NODAL regulated 

these factors in an agonistic and antagonistic manner depending on the breast 

cancer cell line and model. These opposing functions are not dissimilar to its family 

member TGF-β which also signals though SMAD2/3 and promotes malignant 

progression in some cancers but suppression in others [38]. Moreover, several 

reports have shown TGF-β signalling to positively or negatively regulate IL6, 

CXCL1, and CXCL8(IL8) levels in various cell lines [39–44]. Although we show 

that NODAL induces global shifts in several cytokines/chemokines, additional work 

is needed understand the underlying mechanisms of this regulation. For example, 

does SMAD2/3 transiently regulate gene expression or are epigenetic changes 

involved that may be more permanent? Co-immunoprecipitation (CHIP) 

sequencing and/or bisulfite sequencing of these promoters may reveal differences 

in histone methylation/acetylation and DNA methylation. Moreover, 

phosphoproteomics and affinity-purification mass spectrometry can identify 

downstream factors associated with canonical and non-canonical signalling events 

that may vary between cell types [45,46]. Although we utilized cell lines stably 
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expressing constitutively active NODAL shRNA and overexpression vectors, 

tetracycline inducible systems can aid in evaluating the dynamics NODAL 

induction/inhibition. NODAL signalling can also be robustly targeted with the small 

molecule inhibitor SB431542 however this drug also blocks TGF- β and ACTIVIN 

pathways due to inhibition of their cognate receptors (ALK4/5/7) [47]. 

NODAL has been previously shown induce endothelial tube formation indirectly by 

altering the secretion pro-angiogenic factors in breast cancer cells [36]. In this 

thesis, I investigated whether NODAL could act could act on stromal cells (directly 

or indirectly) to promote migration in vitro. MSC were sensitive to changes in the 

breast cancer secretome while HFFs were not. Conversely, recombinant human 

NODAL protein activated SMAD2/3 and ERK1/2 in HFFs, but not MSC, and was 

associated with increased migration, invasion and expression of CAF markers. We 

examined how NODAL indirectly regulates MSC migration by profiling cognate 

receptors and neutralizing IL6 in breast cancer CM. Our findings suggest that 

factors in addition to IL6 are driving MSC recruitment.  While the cognate receptors 

for CXCL1 and 8 (CXCR1/2) were not detected on MSC, these G-protein coupled 

receptors have been documented on other cell types in TME. For example CXCL8 

can signal to CXCR1/2 present on endothelial cells and transactivate VEGFR2 to 

increase vascular permeability and tube formation [48].  Alternatively, CXCL1 can 

signal to CXCR2 expressing myeoloid derived suppressor cells (MDSCs) and 

neutrophils which are important for fighting infection but are also implicated in 

cancer [49]. In a study by Swarnali et al., CXCL1 produced by mammary tumours 

promoted CD11b+Gr1+ myeloid cell recruitment. Reciprocal signalling to breast 

cancer cells via myeloid cell derived S100A8/9 was linked to increased tumour 

growth and metastasis. Along this line, cell type specific labeling using amino acid 

precursors (CTAP) may be useful to investigate reciprocal signalling events 

between NODAL expressing cancer cell lines and stromal cell types [50]. In 

addition to our in vitro work, we also attempted to trace MSC recruitment to breast 

cancer xenografts in vivo. However, we experienced significant issues with MSC 
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lodging in the lungs following tail vein injections and/or extremely low MSC 

frequencies in mammary fat pad tumours following intraperitoneal injections (data 

not shown). Thus, mice transplanted with labelled bone marrow cells may be 

required to sufficiently determine the effects of NODAL on MSC recruitment in 

breast cancer xenografts. 

In summary, NODAL promotes tumour growth in vivo and its expression is 

associated  disease progression in many human cancers including melanoma, 

breast cancer and prostate cancer [51–53]. Our proteomics and in vitro findings 

reveal an additional, unknown layer of complexity for NODAL in regulating 

inflammatory factors and stromal cell recruitment in breast cancer. Consequently, 

future NODAL targeted therapies may block its intrinsic and extrinsic tumourigenic 

activities while sparing healthy, non-transformed tissues. A recent study by 

Hendrix et al. detected NODAL expression in melanoma lesions of deceased 

patients prior to, and following, treatment with BRAF inhibitors targeting V600E or 

V600K mutations [54]. This observation suggests NODAL expressing cancer cells 

do not respond or acquire resistance to conventional therapy. However, inhibiting 

BRAF with Dabrafenib in combination with an anti-NODAL mAb in vivo significantly 

reduces lung metastasis of the human melanoma cell line A375SM-L1, compared 

to either monotherapy alone [54]. Collectively, NODAL regulates multiple 

phenotypes associated with cellular plasticity in embryonic and malignant settings 

and therefore synergistic or complementary approaches targeting NODAL may 

improve outcomes for cancer patients. 

6.6 Summary 

The realm of proteomics is providing exciting opportunities for interrogating cancer 

biology. In this thesis, I employed and demonstrated the capacity of MS-based 

proteomics for elucidating proteins important for defining cancer subtypes, 

detecting disease using bio-fluids, and regulating intercellular communication and 

cellular behaviours within TME. Advances in proteomic technologies are beginning 
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to bridge the gap between the laboratory and clinical settings and identify 

specialized treatment modalities for targeting not only cancer cells but the TME as 

a whole. 
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