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Abstract

Recently, among various analysis methods of physiological signals, automatic anal-
ysis of Electrocardiogram (ECG) signals, especially heart rate variability (HRV) has
received significant attention in the field of machine learning. Heart rate variability
is an important indicator of health prediction and it is applicable to various fields of
scientific research. Heart rate variability is based on measuring the differences in time
between consecutive heartbeats (also known as RR interval), and the most common
measuring techniques are divided into the time domain and frequency domain. In
this research study, a classifier based on analysis of HRV signal is developed to clas-
sify different activities including sleep, exam, and exercise. The performance of the
classifier is improved using a novel feature construction approach named as baseline
assisted classifier.

ECG data are collected from 39 subjects and RR intervals are derived from ECG
data using Firstbeat analysis software to compute HRV metrics. These metrics are
utilized as features in a logistic regression, SVM, decision tree, random forest classi-
fiers. Performance of all classifiers is assessed by leave one person out cross-validation
technique. Features are derived by statistical time domain method from HRV seg-
mentation during 5-minutes recording. Using a combination of 5-min segmentation
feature vector and 5-min segmentation feature vector of sleep record results in a me-
dian area under the receiver operating curve (AUC) of 88% for sleep and 74% for the
exam on leave one person out cross-validation test set data by SVM classifier. These
results demonstrate that adding a baseline feature vector of sleep data improves the
classification accuracy and classification AUC accuracy of almost all classifiers from
HRV measures, and tracking of activity can be achieved by measuring the HRV signal.

Keywords: ECG signal, heart rate variability (HRV), signal processing, feature
extraction, classification, machine learning.
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Chapter 1

Introduction

1.1 Purpose

Recently among the various physiological signals, processing of Electrocardiogram
(ECG) signal, especially heart rate variability (HRV) has received a significant atten-
tion, since it has been used for health prediction, and it is applicable to the variety of
science from sport to physiology. Heart rate variability (HRV) is based on evaluating
the differences in time between consecutive heartbeats (also known as R-R interval).

In an identical situation, HRV values of a healthy person are usually larger than
someone with pathological cases. Evidence says that a stressful situation due to
exercise, psychological events, or other internal or external stressful factors, results
in a reduced HRV (smaller changes in the heartbeats). Meanwhile, a higher HRV
(larger changes in the heartbeats) indicates that the body has a greater capacity
to withstand stress, or recovers better from a past stressful situation [24]. This
biomedical signal is an important health assessment parameter, for example, it has
been used for detection and prediction of human stress [38], stroke, hypertension,
sleep disorder and many more. In traditional medical methods, HRV signals were
analyzed by specialized physicians who monitor and inspect the signals. Due to
development of computer technology, the signals are now analyzed automatically by
taking advantage of machine learning techniques.

The popular techniques to analyze the heart rate variability fall into three cate-
gories as:

• time domain

• spectral or frequency domain based on fast Fourier transform (FFT) [18]

• nonlinear methods consisting of Markov modeling [56], entropy-based metrics
[21], probabilistic modeling [7].

In this study, HRV analysis of three main activities including sleep, exam, and ex-
ercise has been performed for 39 individuals. Seven commonly-used statistical time
domain parameters [15][58] [11] which are calculated from HRV segmentation dur-
ing 5-minutes recording, comprising of RMSSD, SDNN, SDANN, SDANNi, SDSD,
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PNN50, and AutoCorrelation are considered and described in Section 2.2.2. Machine
learning techniques are applied for classifying the statistical parameters above, to
predict the individual’s physical states including sleep, exam, and exercise based on
an important physiological factor named HRV.

1.2 Contribution

In recent years, artificial intelligence and machine learning techniques have led to a
wide range of HRV analysis results. Supervised learning algorithms were applied in
many clinical studies by analyzing heart rate variability. The neural network is a
well-known technique of HRV analysis [10].

In this study, the most widely-used machine learning techniques including logistic
regression, support vector machine, decision tree, and random forest are discussed
and examined to classify each activity based on corresponding heart rate variability
signals. In order to achieve a desired level of accuracy, a novel method named as
baseline assisted classification is introduced and compared for different methods.

1.3 Outline

In Chapter 2, a summary description is given on heart rate variability principles and
related measuring methods. Also, applicable machine learning algorithms are ex-
plained. In Chapter 3, details of calculation based on introduced methods in Chapter
2 are discussed, and the new method of baseline assisted classification is introduced.
The results and the conclusions of this study are reported in Chapters 4 and 5.



Chapter 2

Background

Basic concepts of heart rate (HR), heart rate variability (HRV), and analysis methods
for HRV is provided in this chapter.

2.1 Heart Rate

Heart rate (HR) contains vital information about the level of an individual’s health.
It is the number of heartbeat per minute (bpm). Contrary to common belief, a normal
heartbeat rate doesn’t repeat regularly and varies from person to person.

Several studies indicate that the normal resting range of heart rate for an adult is
between 50 and 90 beats per minutes [3] [30], while hte American Heart Association
indicates a normal resting range for an adult is between 60 and 100 beats per minute
[5].

Many physiological factors influence heartbeats such as physical demands, men-
tal/emotional stress, sitting or moving state, and many more. While running, for
example, the number of beats in a minute exceeds the normal resting rate [6], whereas
during sleep, based on the level of individual’s fitness it decreases to 50 beats per min-
utes [70]. Generally, a high HR demonstrates physical activity or exertion, whereas
a low HR corresponds with rest.

Each heartbeat is as a result of electrical impulse that is supplied by Sinoatrial
(SA) node which is located at the right upper chamber of the heart (Figure 2.1). The
SA node is known as the pacemaker of the heart as it sends electrical impulses at a
certain rate and regulates the heart rate by sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS) which are two main branches of Autonomic
Nerve System (ANS). ANS expresses the balance between SNS and PNS [27] [53] [28]
[26] and it is the part of the peripheral nervous system located in the spinal cord,
brain stem, and hypothalamus (Figure 2.1). The ANS controls all non-voluntarily
systems and organ in the body such as functions of the heart, circulatory system,
lungs, muscular system and endocrine system [1]. The SNS increases heart rate by
sending a signal to the heart during stress or a demand for increased cardiac output
and the PNS slows it down at rest. Therefore, ANS regulates the states of a body in
stressful or recovery situations by balancing between SNS and PNS [11] [50].

3
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Figure 2.1: The sinoatrial node is the peacemaker of the heart, and sympathetic and
parasympathetic nervous system are two branches of ANS

Typically, electrocardiography (ECG or EKG) is a simple cardiology test for mea-
suring the heartbeats and has been used for a long time because of minimum tech-
nology requirements. The electrical activity of the heart is monitored by electrodes
over time and displayed graphically [4]. These electrodes are attached to the chest
(around the heart) and Limbs (arms and legs) to identify the small electrical changes
during each heartbeat. A single normal cycle of the ECG which is corresponding to
one heartbeat is comprised by three peaks, named P wave, QRS (a wave complex),
and T as shown in Figure 2.2. The P wave represents atrial depolarisation. The QRS
complex includes a Q wave, R wave and S wave and indicates ventricular depolariza-
tion. After the QRS complex, the T wave shows ventricular repolarization [62][33]
[66].

Figure 2.2: The figure describes two idealized heartbeats. The R–R interval shows
the duration of a heartbeat. The major ECG complexes including one heartbeat are
shown by P, QRS, and T.
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Detection of the accurate and reliable QRS complex is an important task in ECG
signal analysis since its characteristic shape is used for automatic determination of the
heart rate which is an essential factor for schematic classification of cardiac cycles.
[40] Recently, several accurate algorithms have been proposed for detection of the
QRS complex. for example, wavelet transforms [42] , genetic algorithms [51][49][60],
artificial neural networks [59][37] and many other signal analysis algorithms which
is used in software applications such as smartphone applications. The time interval
between successive heartbeat is measured in milliseconds (ms), and it is called the R-
R interval or inter-beat interval (IBI) ”since it is the time interval between R points”.
A series of R-R intervals contains important information about the physiological state
of an individual.
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2.2 Heart Rate Variability

While heart rate defines the number of beats per minute, heart rate variability (HRV)
quantifies the variation in time between consecutive heartbeats and is measured based
on R-R interval time series as it is the time interval between successive R points
of QRS complex of the ECG. The clinical significance of heart rate variability was
first determined by Hon and Lee [31] in 1965. They noted that fetal distress was
associated with reduced beat-to-beat variation before any notable change happened
in the heart rate itself. In 1977 Wolf [69] was first reported the association between
increased mortality and decreased HRV in patients with myocardial infraction. This
was confirmed later by several studies indicating that reduced HRV is associated with
higher mortality in patients with acute myocardial infarction [12] [47], and HRV is
an important indicator of sudden death [63]. However, high HRV in a resting state
and low HRV in an active state are assumed more favorable for a body.

In recent years, heart rate variability has gained great interest in clinical and
physiological research due to ongoing interactions between scientists, physicians and
physiologists [35]. It has been used as an indicator of many cardiovascular conditions,
including hypertension [29], chronic heart failure, and myocardial infarction, and it is
applied to predict of mortality, autonomic balance, exercise response, sleep disorder,
and many more [16]. Also, Heart rate variability (HRV) is a useful metric to analyze
the functionality of the autonomic nerve system. Previous studies have proposed the
correlation between HRV and ANS [61]. Generally, normal HR and its variation are
associated with the regulation of an autonomic nervous system (ANS) [38]. Increas-
ing HRV reflects better adaption status, while the reduction in HRV demonstrates
stress and a worse recovery status. There are benefits to understanding the state of
ANS at any moment by measuring HRV. For example, researchers have claimed that
the ANS has a significant role in the sudden cardiac death [65] [55]. Therefore, HRV
is a useful metric for the cognition of overall health, resilience, and ability to coping
with stress and managing it from all sources, and is a good indicator in the clas-
sification of stress versus relaxation, estimation of ANS balance, exercise responses,
sleep disorder, assessment of mental or physical workload. In this research, heart
rate variability (HRV) is recorded during three activities comprising sleep, exam, and
exercise. The main purpose of this study is to improve automatic segmentation of
HRV using machine learning techniques.

2.2.1 Heart Rate Variability Analysis

Heart rate variability is evaluated by a number of methods which are categorized as
time-domain, spectral or frequency domain, geometric, and nonlinear methods. This
study concentrates on time-domain measurements, which are used in most research
studies of HRV analysis. The time-domain measures the change in normal R wave to
normal R wave (NN) intervals over time and states the activity of circulation system
[2].
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Table 2.1: Time domain measures of HRV

Parameter Unit Description
RMSSD ms The root-mean-square of successive differences
SDNN ms The standard deviation
SDANN ms The standard deviation of mean values of intervals
SDANNi ms The mean standard deviation of intervals
SDSD ms The standard deviation of differences
PNN50 % The percentage of differences greater than 50 (ms)
AutoCorrelation the correlation of successive intervals, called lags

2.2.2 Statistical HRV Features

Seven commonly used statistical time-domain parameters [15][58] which are calculated
from HRV segmentation during 5-minute recording windows as proposed in previous
study [46], comprised of RMSSD, SDNN, SDANN, SDANNi, SDSD, PNN50, and Au-
toCorrelation, are considered in this study. Each of these HRV assessment techniques
is described in Table 2.1 and the detail formula of them is described in more detail
by the following equations.

Suppose that Ri, i = 1, 2, .., N be the time intervals between successive R points of a
heartbeat signal. (I.e., Ri is the interval between the ith R point and the i + 1st R
point.) Each of the measures below is typically computed over a fixed-size window,
e.g. 5 minutes.

1. RMSSD refers to the root mean square differences of adjacent R-R intervals in
a window.

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(Ri+1 −Ri)2 (2.1)

2. SDNN refers to the standard deviation of the R-R intervals in a window.

SDNN =

√√√√ 1

N

N∑
i=1

(Ri −R)2 (2.2)

whereR (ms) is the arithmetic mean value of the normal R-R intervals computed
as follow:

R =
1

N

N∑
i=1

Ri (2.3)

3. SDANN is the standard deviation of average values of consecutive R—R inter-
vals in a window.

4. SDANNi is defined by the mean standard deviation of consecutive R—R inter-
vals within a window.
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5. SDSD refers to the standard deviation of differences between the successive
R—R intervals within a window.

SDSD =

√√√√ 1

N

N∑
i=1

(dRi − dR)2 (2.4)

where dRi = Ri+1 −Ri and dR is the mean value of all dRi

6. PNN50 calculates percentage of the differences between consecutive R-R inter-
vals which are greater than a 50 ms.

7. AutoCorrelation

CORR(τ) =

∑N−τ
i=1 (Ri −R)(Ri+τ −R)∑N

i=1(Ri −R)2
(2.5)

where τ is a time lag

2.3 Machine Learning Techniques

Machine learning refers to a collection of techniques that provide computers with
the ability to learn automatically and discover patterns among data from experience
without direct human intervention. Several kinds of machine learning algorithms are
applied to find patterns among data which leads to decision making based on the
example that is provided. These algorithms are classified into different categories
of supervised, unsupervised learning, semi-supervised learning, and active learning.
Some methods fall into more than one category.

Supervised Learning: Making predictions by using a labelled set of training exam-
ples.

Unsupervised Learning: Finding patterns in unlabeled data.

Semi-supervised Learning: Identifying patterns from the combination of labelled
and unlabeled data.

Active Learning: Selecting the most informative training examples to manually
label them.

In recent years, artificial intelligence and machine learning techniques have led
to a wide range of HRV analysis results. Supervised learning algorithms were ap-
plied in many clinical studies by analyzing heart rate variability. Although the neural
network is a well-known technique of HRV analysis [57][8][23], different classification
methods have been used for classification and prediction of clinical studies by analyz-
ing the HRV signal. Some of them are described as follow: Maryam Mohebbi et. al
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[48] applied a support vector machine classifier (SVM) to predict paroxysmal atrial
fibrillation based on feature extraction including nonlinear analysis, spectrum and
bispectrum features of HRV. The performance of the classifier in terms of sensitivity
and specificity indicates the reliable and accurate classifier. P. Karthikeyan et. al [38]
purposed a new method for detection of human stress through HRV and ECG signals
analysis. Different time and frequency ranges were applied and compared to extract
features from HRV and ECG signals. For example, statistical time domain mea-
sures were derived from HRV signals including SDNN, SENN (standard error of RR
intervals), RMSSD, SDNN, and PNN50. The K-Nearest Neighbour (KNN) and prob-
abilistic neural network (PNN) were considered as a classifier to determine a stress
versus not stress. Argyro Kampouraki et al. [36] described a method which classifies
heartbeat time series to distinguish healthy subjects from those with coronary artery
disease with Support Vector Machines algorithm (SVM), learning vector quantization
(LVQ) neural network and backpropagation neural network. To extract features from
the heart rate variability, analysis techniques and statistical methods were applied.
First, RR detection algorithm developed to get the RR features. Then, statistical
methods such as standard deviation (SDNN), RMSSD, SDANN, SDANNi, SDSD,
PNN50, and Autocorrelation were selected as features for the Gaussian kernel-based
SVM classifier. To validate the performance of the algorithm, leave-one-out cross-
validation was applied for SVM. The results of each classifier demonstrated that
SVM with the accuracy of 100% performs better than both neural networks with
the accuracies of 92% approaches. Alan Jovic et al. [34] proposed a novel feature
extraction for binary and multiple classifications of ECG signal based on HRV anal-
ysis. Features were derived from a combination of linear and non-linear methods.
Different learning algorithms were performed including K-means, Bayesian Network,
Artificial neural network (ANN), Decision Tree, Random Forest, and SVM. It was
shown that Random Forest classifier had a better performance in comparison with
the other proposed algorithms.

2.3.1 Supervised Learning Algorithms

Supervised learning methods are commonly used in machine learning, and there are
many applications of this model in practice. In this model, learning algorithms make
predictions based on a set of examples (in our application, a sequence of R-R intervals)
which are labelled with the desired values (in our application, the activity, i.e. exercise,
exam, or sleep.) A supervised learning algorithm searches for best patterns among
given labelled data and then use that pattern to make predictions of the desired
values for unlabeled data. Supervised learning problems are grouped into regression
(continuous-labeled) and classification (discrete-labeled) problems [22].

Regression problem is the task of predicting continues output which could be
an integer or a floating-point value. Linear regression, regression tree, and support
vector regression are some examples of regression techniques [22]. Linear regression is
the simplest method but it is useful for a large number of applications. In this model
the learning algorithm generates a function that maps given input variables xi(also
known as explanatory variables or features) to desired outputs (also known as target,
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or response variables) yi by looking at several observations (xi, yi) (i is an index into
the training set). In the field of machine learning this function called hypothesis and
usually presented as:

hθ(x) = θ0 + θ1x (2.6)

The accuracy of the hypothesis can be calculated by a cost function which measures
the difference between actual value and the estimated value (the prediction).

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
i)− yi)2 (2.7)

Where the θ values are parameters which is called coefficients or weights, xi is input
of ith data point , and m is the number of training examples.
This function is also called squared error function, or mean squared error, and the
goal is to choose θ values such that hθ(x) is close to y for the training data (x, y).

Gradient descent is one of the most common optimization algorithms that min-
imize an objective function J(θ0, θ1) by simultaneously updating parameters in the
inverse direction of the gradient of the cost function . The learning rate α defines
the size of each step to find a local optimal which should be adjusted for converges
of the algorithm in a reasonable time [54]. If α is too small, gradient descent could
be very slow and if α is too large, the gradient descent may fail to converge. With a
fixed value of learning rate α the gradient descent can converge to the local minimum
since the gradient descent automatically takes smaller steps as the magnitude of the
gradient shrinks near a minimum.

Multivariate linear regression is a linear regression with multiple features. The
hypothesis function fitting with these multiple features is as follows:

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + ....+ θnxn (2.8)

Using the definition of matrix multiplication, the hypothesis function can be deter-
mined for one training example as:

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + ....+ θnxn = θTx (2.9)

Gradient Descent for multiple variables is generally the same with repeating it for n
features:

repeat until convergence:

θj := θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)).x(i)j j = 1, .., n (2.10)

Where x
(i)
j is the value of feature j in the ith training example.

Classification problem is the second task in the supervised learning which maps
input variables into a discrete-valued output. In the simplest setting, the output may
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have only two values which is called binary classification, or in the more complicated
case with more than two values it is called multi-class classification. There are many
possible classification learning methods that are used for predicting a discrete output.

In recent years, machine learning classification techniques led to many approaches
to HRV analysis. Supervised learning algorithms were applied in many clinical stud-
ies by analyzing heart rate variability. In this study, heartbeat signals are used to
classify each activity using most widely-used classification algorithms such as logistic
regression, decision tree, random forest, and support vector machine. Each of them
is described in the following section.

Many machine learning algorithms make use of linearity. Linear classification
algorithms assume that classes can be separated by a straight line (or its higher-
dimensional analog). These include logistic regression and support vector machines.

Baseline Linear Classifier

Baseline linear classifier is the simplest classifier, which classifies input vector using
hyper-plane (decision boundaries), the hyperplane with two-dimension is called a
line, with three-dimensions called a plane. The decision boundary is created by the
hypothesis function which is a linear function of the parameters θ, and is calculated
by the weighted sum of the input vector. The hypothesis maps all weighted sums
larger than zero to class one and smaller than zero to class zero.

hθ(x) = θ0 + θ1x
i
1 + ...+ θmx

i
m = θTxi (2.11)

if hθ(x) ≥ 0→ y = 1 (2.12)

if hθ(x) < 0→ y = 0 (2.13)

However, this method does not always perform well for classification problems, as
sometimes the true separator is not a linear function.

Furthermore, we may wish to estimate probabilities that convey our uncertainty in
the classification. In order to address this problem the Sigmoid Function or Logistic
Function is introduced, which constrains the outputs to lie between zero and one,
0 ≤ hθ(x) ≤ 1.

Logistic Regression Classifier

Logistic regression is a statistical method which uses one or more explanatory vari-
ables to classify data into discrete outcomes. It estimates the probability of occurrence
of an event by fitting the hypothesis hθ(x) into a logistic function which satisfies the
following inequality: 0 ≤ hθ(x) ≤ 1
The sigmoid function is defined as follows and is represented in (Figure 2.3) :

g(z) =
1

1 + e−z
(2.14)
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Figure 2.3: The function g(z), maps any real number to the (0, 1) interval.

Plugging θTx into a logistic function results in:

θ0 + θ1x1 + ...+ θmxm =
m∑
i=0

θixi = θTx = z (2.15)

hθ(x) = g(θTx) (2.16)

hθ(x) =
1

1 + e−θTx
(2.17)

In order to calculate the probability, the logistic regression applies the concept of
odds-ratio, which is defined as follow:

odds =
Pr(y = 1|x)

1− Pr(y = 1|x)
(2.18)

Then the logistic equation is calculated by taking the natural logarithm of the odds
ratio:

logit(Pr(x)) = ln

(
Pr(y = 1|x)

1− Pr(y = 1|x)

)
(2.19)

The Logit of the probability is linear with respect to x, which means that:

logit(Pr(x)) = θ0 + θ1x (2.20)

So, the probability is:

Pr(y = 1|x) =
1

1 + e−θTx
(2.21)

Therefore the hypothesis function (hθ(x)) defines the conditional probability, which
means that a certain output belongs to the class one given its features x. For example,
hθ(x) = 80% means that the output has 80% probability to the class one. The
probability of class zero is the complement of the probability of class one.

hθ(x) = 1− Pr(y = 0|x; θ) (2.22)

Pr(y = 1|x; θ) + 1− Pr(y = 0|x; θ) = 1 (2.23)
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In order to separate output values into class one or zero (decision boundary), the
result of the hypothesis function can be interpreted as follows:

hθ(x) ≥ 0.5→ y = 1 θTx ≥ 0→ y = 1

hθ(x) < 0.5→ y = 0 θTx < 0→ y = 0
(2.24)

So, the decision boundary is the property of the hypothesis and is defined by param-
eters of the hypothesis. The decision boundary for logistic regression is a hyperplane.
The training set is used to fit the parameters θ and finding the best parameters
for logistic regression is not the same as the linear regression because there is no
closed form, but the cost function is still convex and has a unique global optimum
(Figure2.4) as long as the data are not linearly separable or we use regularization
(discussed below.) The log-likelihood is an objective function that is used to find
the best parameters for a logistic regression model, because the logistic regression
predicts conditional probabilities of the output, the likelihood function is used:

l(θ) =
N∏
i=1

Pr(y(i)|x(i), θ) (2.25)

By taking the assumption of equation 2.21 and equation 2.25, the log-likelihood func-
tion is:

log
n∏
i=1

Pr(Y (i) = y(i)|x(i)) =
n∑
i=1

[ y(i) log(hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)) ] (2.26)

There are two equivalent approaches to find the best parameters of the logistic regres-

Figure 2.4: convex and non-convex function

sion model, maximizing the log-likelihood (MLE) by using optimization algorithms
such as gradient ascent or minimizing the logistic cost function using gradient descent.
In this study, the second approach is described.

The cost function is given as follows and is visualized in Figure 2.5:

cost(hθ(x
(i)), y(i)) =

{
− log(hθ(x

(i))) if y = 1

− log(1− hθ(x(i))) if y = 0
(2.27)

Where hθ(x) is a predicted value and y is an observed training value. After simplifying
the equation 2.27 the cost function looks like:

cost(hθ(x
(i)), y(i)) = −y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i))) (2.28)

The gradient descent optimization algorithm is the same as linear regression for lo-
gistic regression.
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Figure 2.5: Penalize wrong predictions with an increasingly larger cost

Overfitting and Underfitting in Classification

Generalization in learning algorithm refers to how well a learning algorithm learns
from the training data and generalize to the new data which helps to make the pre-
diction in future for unseen data. Overfitting and underfitting are two terminologies
in machine learning model to see the performance of the model in a new data. Over-
fitting means that the model fits well on the training data but leads to poor model
performance for new data. Typically, it happens when the model tries to learn the
details of training data and separates data very precisely. Generally, large estimated
coefficients are associated with overfitting (high variance). In contrast, underfitting
(high bias) occurs when the model not only fails to fit the training data but also has a
poor result on test data (Figure2.6) In order to identify high bias (called underfitting)

Figure 2.6: Overfitting

or high variance (called overfitting) of the model, training error and testing error is
compared. The training error decreases when model complexity increases, however,
the testing error tends to decreases first and then increases as the complexity of the
model increases, the Figure 2.7 summarizes training error versus testing error.

Overfitting in Logistic Regression Classifier In the logistic regression model,
the data are said to be linearly separable when there exist coefficients θ such that
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Figure 2.7: High variance vs high bias

for all class one examples θTx ≥ 0 and for all class zero example θTx < 0. In this
case, both θ and the optimal decision boundary are not uniquely defined, and during
the optimization process the values of θ tend toward positive or negative infinity.
The Figure 2.8 shows that how the larger value of the θ leads to increasing the class
probability.

Furthermore, the learner in logistic regression tries to find a decision boundary
which separates data very well, and this may lead to a very complicated decision
boundary that does not generalize well if the number of features is large compared to
the number of training examples.

Regularization

Regularization is a technique which reduces the overfitting problem and can lead to
better performance of learning algorithms. This technique adds a penalty on different
parameters to prevent training a flexible model, therefore the model is less probable
to fit the noise and the generalization capability is improved. The L1 regularization
(Lasso) and the L2 regularization (Ridge) are two types of this method which avoid
overfitting by penalizing large coefficients.

Lasso or L1 norm is sum of absolute value of parameters:

||θ||1 = |θ0|+ |θ1|+ ...+ |θn| (2.29)

Ridge or L2 norm is sum of squares of parameters:

||θ||22 = θ20 + θ21 + ...+ θ2n (2.30)

Regularization in Logistic Regression As discussed above, logistic regression
is prone to overfitting with high order polynomial features and large coefficients. In
order to penalize the coefficients, the cost function can be modified as follows for L2
regularized method:

J(θ) = − 1

m

n∑
i=1

[ y(i) log(hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)) ] +

λ

2m

n∑
j=1

θ2j (2.31)
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Figure 2.8: The class probability increases when θ is very large
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Where λ is a tuning parameter that balances fit and magnitude of coefficients, if the
value of λ is too large, it causes underfitting and if it is too small (zero), it results in
overfitting. So, there should be an area for λ between zero and infinity that balances
the fitting model against the magnitude of parameters θ. Choosing a λ can be done
by cross-validation method which is explained in the evaluation section [71].

Support Vector Machine (SVM) Classifier

Support vector machine (SVM) is another powerful supervised learning algorithm.
This algorithm is related to logistic regression. The logistic regression classifier pre-
dicts the probability of class one for input x if and only if θTx ≥ 0.5 and similarly,
predicts the probability of the class zero for input x if and only if θTx < 0.5. The
larger value of θTx means a higher degree of confidence to predict class one and a
small value of θTx corresponds to a highly confident prediction of class zero. In this
model, the larger distance of training examples from the decision boundary results in
the higher probability to be class one or zero, and examples near the boundary are
less certain. Unlike logistic regression, SVM does not output a probability. Instead,
it looks for a classifier that can separate classes by building a hyperplane (linearly
separable) which maximizes the margin. The margin is the space between the hyper-
plane and the closest data points on each side to the decision boundary, these points
are called support vectors and are shown in Figure(2.9). Essentially, the SVM avoids
having training points that are uncertain, that is, points that are near the separating
hyperplane. In order to classify the positive examples from negative examples with

Figure 2.9: Maximum margin classification

a hyper-plane, the decision boundary is denoted as θTx+ θ0 = 0, and the hypothesis
function for a given training example (x(i), y(i)) where y ∈

{
1,−1

}
is defined as:

hθ(x) =

{
1 if θTx+ θ0 ≥ 0

−1 if θTx+ θ0 < 0
(2.32)
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With some calculation, the distances between the two lines called margin is measured
as:

2

||θ||
(2.33)

The objective function looks for the decision boundary that maximizes the margin
while classifying positive and negative examples correctly, which means that:

max
θ

2

||θ||
while y(i)(θTx(i) + θ0) ≥ 1 ∀i (2.34)

The equation 2.34 is equivalent to the following equation which can be solved by
quadratic programming:

min
θ

1

2
||θ||2 while y(i)(θTx(i) + θ0) ≥ 1 ∀i (2.35)

For mislabeled examples, the Soft Margin method is introduced which is a modified
version of maximum margin. The soft margin chooses a hyperplane that split data
points while maximizing the margin in misclassification problems. It uses the slack
variable ξ which measures how much point x(i) is on the wrong side of the margin.
The objective function penalizes non-zero ξ and the optimization is regularized by
the trade-off between a small error penalty and a large margin [17] [14].

min
θ,ξ

{ 1

2
‖θ||2 + C

n∑
i=1

ξi
}

while y(i)(θTx(i) + θ0) ≥ 1− ξi ∀i (2.36)

The equation 2.36 and its constrains can be solved by introducing a Lagrange multi-
pliers and transforming it into dual maximization problem of the following equations:

θ =
∑
i

αiyixi (2.37)

max
αi

{∑
i

αi −
1

2

∑
i

∑
j

αi αj yi yj xi .xj
}

while
∑
i

αiyi = 0, α ≥ 0 (2.38)

where nonnegative αi are Lagrange multipliers associated with the constrains:
y(i)(θTx(i) + θ0) ≥ 1− ξi .
Note that αi are mostly zero satisfying the constrains:∑

i αiyi = 0, αi ≥ 0.
The data points for which the corresponding non-zero αi are called support vectors.

However in most real problems, there is no hyperplane that classify positive exam-
ples from negative examples and the decision boundaries are nonlinear. The general
idea for creating nonlinear classifiers that maximize the margin hyperplanes is using
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a function φ : x → φ(x) that maps lower-dimensional input feature space to higher-
dimensional feature space [67] which leads to kernel-based SVMs [41]. Therefore, the
optimization problem for new points can be summarized as follow:

min
θ,ξ

{ 1

2
‖θ||2 + C

n∑
i=1

ξi
}

while y(i)(θTφ(x(i)) + θ0) ≥ 1− ξi ∀i (2.39)

Similar to the linear case the equation 2.39 is solved by Lagrange multipliers and
transforming it into dual maximization problem as follow:

max
αi

{∑
i

αi−
1

2

∑
i

∑
j

αi αj yi yjK( xi , xj)
}

while
∑
i

αiyi = 0, α ≥ 0 (2.40)

where K(xi, xj) = φ(xi)
Tφ(xj) which creates a nonlinear decision boundary in the

original feature space. Several kernel function are described by Genton [25]. How-
ever, some typical kernel functions are Radial Basis Function (RBF), Polynomial,
Hyperbolic tangent, and Sigmoid and choosing an appropriate kernel function can be
performed by cross-validation method. Finally, the decision function becomes:

f(x) = sign
(∑

i

(αi yi K(x, xi) + θ0)
)

(2.41)

Decision Tree Classifier

One of the algorithms which are considered for classifying the data in this project
is a Decision Tree (DT) method. This method is very useful when the data has a
large number of features which might predict the output through complex, non-linear,
interacting relationships.

A decision tree classifies examples by asking questions about the value of different
features that are either true or false. The result of a question determines the next
question that is asked. Questions are organized into a tree structure as it shown in
Figure 2.10. If a decision tree classifier has no more questions, it produces a class label
called the leaf. The quality of a question (its ability to separate positive examples
from negative examples) is measured by a statistical property called information gain,
which is based on a change in entropy from before to after asking the question.

Entropy Entropy is the amount of uncertainty that an event would occur. For
example, if the probability of occurring an event is equal to one (all examples belong
to the same class), then that event would have zero uncertainty or zero entropy.
On the other hand, if the probability of occurring is 0.5 (each class in a binary
classification problem has an equal number of examples), then we would be very
uncertain about the occurrence of that event, and entropy is one. Thus, distributions
with high probability events should have relatively low entropy and distributions with
evenly distributed probability should have relatively high entropy. Shannon developed
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Figure 2.10: Decision Tree

a model which defines that the empirical entropy of a set is a logarithmic function of
the proportion of positive and negative examples and mathematically it is defined as:

Entropy(S) = −(A logA+B logB) (2.42)

Where S is a set of examples, A is the proportion of positive examples, and B is the
proportion of negative examples.

Information Gain Information gain is a simple mathematical way to measure the
amount of information that is gained by asking a question using a particular feature.
It is the expected decrease in entropy of a training set after testing a descriptive
feature. If each class label is pure (do not contain a mix labels) after asking the
question, the feature would provide maximum information about the label at the
leaf. The information gain based on a set of examples (S) associated with asking a
question about a certain feature X is defined as:

Gain(S,X) = Entropy(S)−
∑
i

Si
S
· Entropy

(
Si
)

(2.43)

In which, Si is a subset of S that feature X has a value of i [43]. If X is continuous,
typically features of the form X < x are considered for different values of x, and these
are used to build the tree.

Overfitting in Decision Tree Decision Trees are highly prone to overfitting, even
if the number of features is small. As discussed previously, overfitting happens when
the training error decreases as the model complexity increases, but the true error goes
down and then climbs back up. In the context of decision trees, overfitting happens
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when the depth of the tree increases, which means that the decision boundary becomes
more and more complex. There are two approaches to avoid overfitting in decision
trees, consisting of early stopping in learning the decision tree before tree gets very
complex, and pruning the tree, which means simplify the tree after terminating the
learning algorithm.
The following procedures are commonly used to prevent overfitting:

• Restrict the maximum depth of the tree

• Define a minimum node size which means stop splitting when the number of
data points is too small

• Calculate classification error and do not grow the tree further if the error does
not decrease significantly (often measured by a hypothesis test)

The advantages of decision trees are that they are easy to interpret and visualize,
also they are a useful method for identifying patterns among data that cannot be
expressed by linear methods such as logistic regression and linear SVMs. However,
small changes in training data can lead to decision trees with very different structures,
which is sometimes undesirable [52].

Random Forest Classifier

Random Forest (RF) which was proposed by Breiman [13] is known as random deci-
sion forests, it is based on the collection of decision trees. This data mining algorithm
addresses the problem of decision tree overfitting.

Similar to decision trees, random forest makes binary splits to create subgroups
by applying simple rules repeatedly. This model first selects the subset of features
randomly from a random subset of data, then find a feature among subset that has
the large association with response variable (based on Gini index, which is an approx-
imation of Entropy) to create subgroups or segmentation. After first segmentation,
the new subset is selected at random and this procedure continues until the tree is
completely created. The number of trees that are created is associated with the ac-
curacy of the model. Finally, random forest classifier makes a prediction for a new
data based on the averaging from the outputs of several trees which will result in
significant decrease of the variance in comparison to a single Decision Tree.

2.3.2 Unsupervised Learning Algorithms

In contrast with supervised learning, instances are not labelled in unsupervised learn-
ing models and the learning algorithm looks for unknown but useful structure within
the collection of data points. This method is used for searching for similarities, finding
patterns, detecting outliers, and reducing dimension. High dimensional data refers
to the data that need more than two, or three dimensions to represent. Exploring
such data visually to observe the distributions of the specific variable or viewing the
potential correlations among clusters as well as data points is challenging. t-SNE and
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Principle Component Analysis (PCA) are two unsupervised learning techniques that
are widely used for reducing the dimensionality of data prior to visualization.

t-SNE Visualization Method

t-SNE is a new popular method of high dimensional data visualization which embeds
high dimensional data points into a two or three dimensional space by converting the
similarities of data points to joint probabilities (the likelihood of occurring two events
at the same time) and minimizing the relative entropy between the joint probabilities
of high and low dimensional data points [39]

This method is a sort of Stochastic Neighbor Embedding with relatively better
optimization and visualization that reduces the trend of data points concentration.
Unlike traditional dimensionality reduction method which use linear approaches to
separate dissimilar data points, the t-SNE method focuses on grouping similar data
points by taking advantage of non-linear techniques [44].

Principle Component Analysis Visualization Method

Another dimensionality reduction method is the Principle Component Analysis (PCA)
which projects the high dimensional features (n) to the lower dimensional features (k).
It finds a lower dimensional linear sub-space (k vectors) while the average squared
projection error of the projected data is minimized. The projection error is computed
by the distances between the original data points and the projected version. In other
words, it says how far on average are the training data from the projected data when
using k dimensions. It should be noted that before applying PCA the mean normal-
ization or feature scaling is needed to compute for the original feature vectors. The
procedure to reduce data from n-dimensions to k-dimensions is as follows:

• Normalize the data (For each original dimension, subtract the mean, divide by
standard deviation.)

• From the covariance matrix (equation 2.44 ) compute the Eigenvectors (the
principal components) and Eigenvalues (length of Eigenvectors)

Σ =
1

m

m∑
i=1

(x(i))(x(i))T (2.44)

eig(Σ) (2.45)

• Choose the k eigenvectors corresponding to the k largest eigenvalues

• From the k eigenvectors, construct the projection matrix

• Convert the original n-dimensional data set via the projection matrix to k di-
mensional subspace
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2.3.3 Evaluating Learning Algorithms

As discussed in the previous section, supervised learning algorithms try to find pa-
rameters θ which minimize the training error, however, small training error does not
necessarily indicate a good hypothesis because it may not fit well for new examples.
Generally, training error is not a good metric to evaluate the hypothesis for unseen
data. The standard way to evaluate hypothesis is to use statistical techniques (called
resampling) which estimate the performance of the model on unseen data. Many
different methods may be used evaluate the hypothesis; for example:

• Train and Test Set

• K-Fold Cross Validation

• Leave One Out Cross Validation

• Repeated Random Test/Train and Test set

Train and Test Set

The simplest approach for evaluating the performance of the learning algorithm is to
use different training and testing data, which means that the original dataset is split
into two partitions. The algorithm is learned on the first partition called training set,
and predictions are made on the second partition called the testing set, and then the
model is evaluated against the expected results. Although the size of training and
testing depends on the size of the dataset, typically 70% of data is assigned for the
training set, and 30% is assigned for testing set. This evaluation technique is very
fast especially for a large dataset, however, this technique has a high variance if the
size of the dataset is small. There are some metrics for interpreting the test error
which will be introduced later.

K-Fold Cross Validation

Cross-Validation is a method that estimates the performance of a model with less
variance if the data set is small. It splits the dataset into k equal parts or folds,
for example, k = 5 or k = 10. Then the algorithm is trained on k − 1 folds and
tested using the remaining fold. This procedure is repeated k times. The Figure
2.11 demonstrates the procedure of this technique. Running cross-validation results
in k different performance scores, which can be summarized by mean and standard
deviation. This method typically has lower variance than a single train/test split,
since the model is trained and assessed multiple times on various data. Choosing the
size of k depends on the size of the dataset, usually for large datasets k values of
three, five, and ten are common.

Leave One Out Cross Validation

When the size of each fold is chosen to be 1 (equivalently, k is assumed to the number
of observations) the method is called leave one out cross-validation. There are pros
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Figure 2.11: Representation of Train/Test Split and Cross Validation

and cons to this method. The advantage is that almost all of the data may be used
for training which is important for small datasets. The drawback is that it is more
expensive computationally, and may give a higher variance estimate of performance
than 5- or 10-fold.

In our study, described in the next chapter, each person produces many data
points. In order to evaluate the performance, we use a variant of leave one out: we
hold one person out and train on the rest, and test on the held-out person.

Metrics For Evaluation Of Hypothesis

Measuring the error or accuracy of the classifier was explained in the previous section.
However, in many real classification problems, error or accuracy is not a good measure
to examine the hypothesis [20]. Machine learning algorithms work well when the
classes are balanced, the number of examples in each class are equal, however, many
classification problems in practice are imbalanced, there are a lot more samples on
one class (majority class) versus the other (minority class) [20]. In this situation,
many machine learning techniques ignore the minority class. The confusion matrix is
a useful method to understand the performance of classifiers on imbalanced data, and
summarizes the accuracy of the hypothesis with four performance metrics as follow:

• True positive - (TP): The positive label correctly predicted as positive

• True negative - (TN): The negative label correctly predicted as negative

• False positive - (FP): The negative label incorrectly predicted as positive
(type 1 error)

• False negative - (FN): The positive label incorrectly predicted as negative
(type 2 error)

These figures are demonstrated in a 2× 2 matrix as shown in table 2.2:
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Predicted − Predicted +

Actual − TN FP
Actual + FN TP

Table 2.2: Confusion Matrix

Smaller values in the off diagonal and higher values of the diagonal in the confusion
matrix indicate better model performance. A high value of false negatives means
classifying positive class is problematic and high values of false positive means classi-
fying negative class is problematic. From the confusion matrix, many indicators can
be calculated that can be directly used to choose between models [9]:

• Classification Accuracy

TP + TN

TP + TN + FP + FN
(2.46)

• Misclassification Rate

FP + FN

TP + TN + FP + FN
(2.47)

• Recall - True Positive Rate

TP

TP + FN
(2.48)

• Specificity – True Negative Rate

TN

TN + FP
(2.49)

• Precision – Positive Predicted Value

TP

TP + FP
(2.50)

• F1 Score
2TP

2TP + FP + FN
(2.51)

Precision and recall are two important types of metrics to evaluate the performance of
the classifier. The portion of the positive prediction that is actually positive is called
precision, and the portion of positive instances predicted to be positive is called recall.
A classifier which predicts everything as positive has a high recall and low precision
since some of the true negative instances are label as a positive. For addressing this
problem, the precision can be increased while decreasing the recall, which means
that positive instances are predicted as positive only when very sure, which result
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Figure 2.12: Higher value of AUC represents better performance of the classifier

in losing many positive examples [9]. Therefore, balancing precision and recall helps
to find the right model. This can be done by visualizing the precision-recall curves,
which are extremely useful to understanding how well a classifier is performing [9]. An
alternative way to visualize the performance of a binary classifier is called ROC curve.

Receiver Operating Characteristic (ROC) curve plots true positive rate
against the false positive rate for all classification threshold, the metric which is
considered is the Area Under the Curve which is called AUROC. The Figure 2.12
illustrates the Area Under the curve of the ROC with a different threshold. The ideal
classifier would reach the upper left corner of this plot, and the higher value of AUC
demonstrates the better classifier which is used as a single number to evaluate the
performance of the classifier. This metric indicates the likelihood that the classifier
devotes a higher predicted probability to the positive instances [20].



Chapter 3

Methods

In this chapter we present rate variability segmentation and classification methods,
and a novel classification technique which increases the performance of the classifiers
that are introduced in this chapter.

3.1 Heart Rate Variability (HRV) Recording

Although measuring HRV requires more accuracy than measuring heart rate, advances
in computer technology and signal processing algorithms accelerated the science of
understanding of the heart rate signals produced by electrocardiograph (ECG) de-
vices. A wide range of wearable heartbeat measuring devices has been designed and
developed as a simpler alternative to full ECG. In this study, a product supplied by
Firstbeat (https://www.firstbeat.com) company has been used. This product assisted
us in deriving heart rate of 39 individuals for three different activities consisting of
sleep, exam, and exercise. The 39 participants consisted of 23 men and 16 women.
Relatively similar conditions governed the three activities of all participants. For
example, all of them experienced a similar night time sleeping condition and similar
exercising activities. Also, the typical duration of exams was from 1 to 2 hours for
all participants.

For the purpose of data acquisition, an electronic chip is attached to the chest
of participants and their heart activity is recorded over the time and saved in on-
board memory. Later, the logged data on the memory card is downloaded. Firstbeat
analysis software is used to detect QRS complex and R-R intervals from heart sig-
nal. Finally, data sets are created by collecting the R-R intervals and corresponding
activity recordings for each individual.

3.1.1 Segmentation of Heart Rate Variability

The analysis procedure used in this study is shown in Figure 3.1. Firstbeat analysis
software detected QRS complexes from heart rate inputs and extracts R-R intervals
in every millisecond. Then, the recording of each individual was divided into five-
minute windows which is seems reasonable based on existing literature [46]. In next
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step, seven statistical features including RMSSD, SDNN, SDANN, SDANNi, SDSD,
PNN50, and AutoCorrelation were calculated for the five-minute window. As an

Figure 3.1: HRV Segmentation

example, in order to calculate (equation 2.1) statistical feature over a five minute
window, the following procedure has been applied:

• The squared difference between consequent R-R intervals are calculated.

• Accumulative squared difference values are computed for every five minutes

• RMSSD is measured for each five minutes as mean squared root of accumulative
values

3.1.2 Binary Classification of Activities

The resulting 5-minute windows were then used for binary classification of each ac-
tivity by machine learning techniques. Activities are labeled as sleep or not sleep,
exam or not exam, exercise or not exercise. For each individual, a unique identifica-
tion number (id) is assigned. Different statistical features are computed as discussed
before and recorded in a comma separated value file, as shown in the table 3.1 and
appendix A. The table consists of person id, features and the corresponding window
id which indicates five minute intervals.

Person id Window id RMSSD SDNN SDANN SDANNi SDSD PNN50 AutoCorrelation Sleep Exam Exercise
1 1 10.1601989 82.42967079 81.93725255 33.90453136 8.032826262 0.004885993 0.550448534 0 1 0
1 2 4.481905972 23.65754239 15.68495122 17.12199659 3.034860396 0 0.541422255 0 1 0
1 3 3.956323125 20.40099581 14.17543118 14.65812411 2.710140032 0 0.528634328 0 1 0
1 4 7.795485873 55.06107565 52.52526412 27.27875136 6.533259288 0.0016 0.544430998 0 1 0
1 5 12.24581234 34.61908866 19.30346804 28.57027337 9.489709748 0.01002004 0.579442 0 1 0
1 6 14.60315503 31.32816731 9.647425609 28.17999487 11.17161386 0.008547009 0.584279968 0 1 0

Table 3.1: Partial Data Set

Before performing machine learning techniques to classify activities within each
5-minutes window, two tests were examined, consisting of P-values and null accuracy.
P-values are computed to test the null hypothesis that there is no difference between
the average feature values within each class, and the null accuracy is the accuracy of
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the predicting the most frequent class in the testing set, which is used as a baseline
for the classifier accuracy. If the null accuracy is the same as classifier accuracy the
model is not useful for prediction, since the predictions made are no better than
always predicting the more prevalent class.

Logistic regression, Support vector machine, decision tree, and random forest are
the methods that have been applied in this experiment to classify activities. For all
applied methods, hyper-parameters are tuned to prevent overfitting and find the best-
fitted model. Hyper-parameters are parameters which control the model behaviour.
Unlike main algorithm parameters (like θ for logistic regression), hyperparameters
cannot be directly learned from training data. For example, C, kernel and gamma
for support vector classifier, maximum depth for decision tree are some of the typical
hyper-parameters. These parameters which are described later in this chapter must be
tuned using cross-validation error as the target. The Bayesian optimization algorithm
is currently a common optimization approach to find the best hyper-parameters. This
method relays on the Gaussian Process (GP) to minimize and estimate the error
function of hyper-parameters. However, this method is not efficient, since it requires
a large number of evaluations. [45].

A novel and efficient approach is known as HORD introduced by Ilievski et. al [32].
This method employs RBF (Radial Basis Function) interpolation model as error sur-
rogates. ”HORD searches the surrogate for the most promising hyper-parameter val-
ues through dynamic coordinate search and requires many fewer function evaluations
”[32]. The HORD algorithm is implemented in an open-source optimization software
toolbox called pySOT which is used in this study to find the best hyper-parameters.
PySOT is a toolbox based on asynchronous parallel optimization methods. The most
important application of this tool is to optimize objective functions containing the
high volume of integer or continuous variables and need to be processed by several
processors. In order to use pySOT for a bounded set of optimization problems the
following steps are applied:

• Declaring the optimization problem

• Creating pySOT objects from its module

• Running the optimization in serial

Leave one person out cross validation method is applied for tuning the hyperpa-
rameters of all classifiers, which means that the algorithm is trained on all individuals
with one left out and test on the held back repeatedly. After running leave one person
out cross validation, the 39 different performance scores are summarized using mean
and standard deviation.

The confusion matrix function in the metric module of scikit-learn is used to
describe the performance of the classifiers. Also, receiver operating characteristic
(ROC) curve is plotted to visualize the performance of the learning algorithm and
analyze how well the model separates two classes from each other. AUC is computed
to evaluate the probability of the classifier correctly distinguishes between pairs of
instances with different labels.



30

Logistic Regression Estimator: LogisticRegression classifier on the top of sklearn
library estimates the coefficients θ values by using ”l2” penalty (regularized classi-
fiers) and the optimization algorithm is solver with the values of ”liblinear” which is
an open source library for large-scale linear classification based on coordinate descent
optimization algorithm [19]

Support Vector Machine (SVM): The following parameters are tuned for SVM
to find the optimal hyper-parameters.

• kernels range:
[

’linear’, ’rbf’, ’sigmoid’
]

• C range:
[

0.01 , 1
]

– C controls the trade of between small error penalty and large margin

• gamma range:
[

0.01 , 1
]

– gamma defines how far the influence of a single training example reaches
and the small value means the training examples far to the decision bound-
ary has low weights and the large value means the training examples close
to the decision boundary has a lot weights.

For the parameters with string values a dictionary is defined with the key and its
associated value. For example, kernels range is defined as a dictionary as follows:

kernels =
{

0 : ‘rbf’, 1 : ‘linear’, 2 : ‘sigmoid’
}

(3.1)

Decision Tree: The following parameters are tuned for Decision Tree to find the
optimal hyper-parameters.

• max depth range:
[
3, 7
]

– max depth defines the maximum depth of the tree

• criterion: [’gini’, ’entropy’]

– criterion measure the quality of a split

• max leaf node range:
[
5, 20

]
– by defining max leaf node the number of leaf nodes that are created can

be controlled.

• min samples leaf range:
[
3, 7
]

– min samples leaf defines the minimum number of samples required to be
at a leaf node
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• min sample split range:
[
4, 8
]

– min sample split defines the minimum number of samples required to split
an internal node

Random Forest: The following parameters are tuned for Random Forest to find the
optimal hyper-parameters.

• number of estimators range:
[

1 , 300
]

– number of estimators defines the number of trees in the forest

• criterion range:
[

’gini’ , ’entropy’
]

– criterion measure the quality of a split

• max depth range:
[

1 , 12
]

– max depth defines the maximum depth of the tree

• min samples leaf range:
[

1 , 10
]

– min samples leaf defines the minimum number of samples required to be
at a leaf node

• min sample split range:
[

2 , 10
]

– min sample split defines the minimum number of samples required to split
an internal node

Scikit-Learn implementation of t-SNE and PCA are applied for dimensionality
reduction in the dataset while preserving most information. The Barnes-Hut algo-
rithm has been proposed which accelerates the computation with t-SNE [64]. Then
plotting the results of t-SNE and PCA by scatterplot of the two, three dimensions
and colouring each of sample by its corresponding label.
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3.2 Baseline Assisted Classification

As described above, typically in supervised learning we want to classify an object
(in our case 5-minute window) based on its features. Typically, supervised learning
techniques assume that examples are independent and identically distributed (iid).
This is not true in our application because examples are grouped by person in the
dataset. Also, it is known that there is significant variability in ECG signal from
person to person. So, the differences between windows can be caused by differences
in activity but also differences in person.

As we will show in the next chapter, classifiers built using the standard supervised
learning approach do not generalize very well to other people. Therefore, we propose a
new method to build a classifier that is person-independent which can be generalized
to new people who are not in the data set. For this purpose, a new feature vector is
augmented to the data set which is the sleep windows from the same person. In other
words, the new feature vector consist of two vector-valued inputs, the first input is
the features for the 5-minute window that needs to be classified, and the second one
is the features for a 5-minutes window of sleep from that same individual. Table 3.2
is an example of two persons with a sleep, exam, and exercise segmentation and the
augmented portion derived from their sleep windows.

Person id Sequence id Feature Vector I Feature Vector II

1 1 Sleep11 Sleep11
1 2 Sleep21 Sleep11
1 3 Sleep31 Sleep11
1 1 Exam11 Sleep11
1 2 Exam21 Sleep11
1 3 Exam31 Sleep11
1 1 Exercise11 Sleep11
1 2 Exercise21 Sleep11
1 3 Exercise31 Sleep11
2 1 Sleep21 Sleep21
2 2 Sleep22 Sleep21
2 3 Sleep23 Sleep21
2 1 Exam21 Sleep21
2 2 Exam22 Sleep21
2 3 Exam23 Sleep21
2 1 Exercise21 Sleep21
2 2 Exercise22 Sleep21
2 3 Exercise23 Sleep21

Table 3.2: Feature Augmentation

Then all standard learners are applied to this new augmented data set as described in
previous section. Note that to use this new classifier for a new window with unknown
activity, it must be provided with a window from the same person that is known to
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be sleep and note that, this new feature vector has noting to do with individuals.
However, sleep windows are often easy to identify manually based on heart rate and
time of day so we think that is not a significant problem. In next chapter, the results
from both approaches are reported.



Chapter 4

Results

In this section we present a sumary of the data, followed by visualizations, followed
by the results of our supervised learning algorithms. Logistic regression, Support
Vector Machine (SVM), Decision Tree, and Random Forests classifiers are applied to
classify each activity, based on the segmentation of heart rate variability. Our novel
approach, baseline assisted classifier (BAC), is performed with all the classifiers. The
results of these methods are explained in this chapter.

4.1 Baseline metrics and P-Value

A baseline metric is defined to compare against the performance of all classifiers. As
discussed in Chapter 2 Section 2.3.3, the accuracy of the classifier is the percentage
of correct predictions, and the null accuracy is defined as the accuracy of predicting
the most frequent class. Note that because of the way the additional examples in the
BAC dataset is constructed, the null accuracy is changed from the original. The null
accuracy of three activities and two methods are computed as follows:

4.1.1 Null accuracy of HRV

• Null accuracy for sleep: 0.551855895197

• Null accuracy for exam: 0.573144104803

• Null accuracy for exercise: 0.875

4.1.2 Null accuracy of BAC

• Null accuracy for sleep: 0.520712528554

• Null accuracy for exam: 0.579291864347

• Null accuracy for exercise: 0.89

34



35

4.1.3 Features

Table 4.1 on itemized the features x1 to x14 and its respective label.

Features label of Feature
x1 RMSSD
x2 SDNN
x3 SDANN
x4 SDNNi
x5 SDSD
x6 PNN50
x7 Autocorrelation
x8 RMSSD-sleep
x9 SDNN-sleep
x10 SDANN-sleep
x11 SDNNi-sleep
x12 SDSD-sleep
x13 PNN50-sleep
x14 Autocorrelation-sleep

Table 4.1: Features and corresponding label

4.1.4 HRV P-Value

The p-values are computed for the hypothesis that the mean value of each feature
is the same in the positive class and negative class. This gives us an idea of which
features may be relevant for discrimination on their own. They are shown in table
4.2, and table 4.3, table 4.4. The result from P-values shows that all features except
for SDSD (x5), are significantly associated with the class label for the sleep, and all
features are significantly associated with the class label for the exam. However, the
only significant feature is SDNNi (x4) for the exercise.

coef std err z p �| z |
[
0.025 0.975

]
x1 4.6830 1.187 3.945 0.000 2.356 7.010
x2 4.0782 0.753 5.415 0.000 2.602 5.554
x3 -1.5302 0.317 -4.821 0.000 -2.152 -0.908
x4 -5.5595 0.615 -9.044 0.000 -6.764 -4.355
x5 1.1225 0.854 1.315 0.189 -0.551 2.796
x6 -1.4151 0.429 -3.301 0.001 -2.255 -0.575
x7 -1.3387 0.099 -13.547 0.000 -1.532 -1.145

Table 4.2: HRV Sleep P-value
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coef std err z p �| z |
[
0.025 0.975

]
x1 1.6428 0.643 2.554 0.011 0.382 2.903
x2 -3.7610 0.658 -5.714 0.000 -5.051 -2.471
x3 0.8519 0.264 3.223 0.001 0.334 1.370
x4 5.2509 0.531 9.888 0.000 4.210 6.292
x5 -3.3322 0.540 -6.166 0.000 -4.391 -2.273
x6 -0.9739 0.250 -3.889 0.000 -1.465 -0.483
x7 0.8857 0.071 12.425 0.000 0.746 1.025

Table 4.3: HRV Exam P-value

coef std err z p �| z |
[
0.025 0.975

]
x1 -0.4421 0.540 -0.818 0.413 -1.501 0.617
x2 0.3529 0.496 0.711 0.477 -0.620 1.326
x3 0.2955 0.206 1.436 0.151 -0.108 0.699
x4 -0.8910 0.391 -2.276 0.023 -1.658 -0.124
x5 0.3322 0.431 0.771 0.441 -0.512 1.177
x6 0.0947 0.209 0.453 0.650 -0.315 0.504
x7 0.0654 0.054 1.213 0.225 -0.040 0.171

Table 4.4: HRV Exercise P-value

4.1.5 BAC P-Value

The p-values are computed for the baseline assisted classification and it is shown in
table 4.5, table 4.6, and table 4.7. Note that because the BAC data set is much larger
than the original, the p-values are much smaller. The absolute z values can be used
as a rough measure of how much the feature is associated with the class. here is my
white text color
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coef std err z p �| z |
[
0.025 0.975

]
x1 5.1978 0.319 16.281 0.000 4.572 5.823
x2 6.5430 0.205 31.938 0.000 6.141 6.945
x3 -2.2442 0.082 -27.493 0.000 -2.404 -2.084
x4 -8.1861 0.173 -47.359 0.000 -8.525 -7.847
x5 2.0137 0.238 8.450 0.000 1.547 2.481
x6 -1.0464 0.112 -9.345 0.000 -1.266 -0.827
x7 -1.3247 0.023 -57.546 0.000 -1.370 -1.280
x8 0.7851 0.220 3.564 0.000 0.353 1.217
x9 -1.9110 0.196 -9.748 0.000 -2.295 -1.527
x10 0.3885 0.077 5.025 0.000 0.237 0.540
x11 2.5268 0.160 15.780 0.000 2.213 2.841
x12 -1.3354 0.170 -7.854 0.000 -1.669 -1.002
x13 -1.6655 0.082 -20.224 0.000 -1.827 -1.504
x14 1.2057 0.020 59.552 0.000 1.166 1.245

Table 4.5: BAC Sleep P-value

coef std err z p �| z |
[
0.025 0.975

]
x1 1.9971 0.146 13.639 0.000 1.710 2.284
x2 -4.4325 0.150 -29.530 0.000 -4.727 -4.138
x3 0.9014 0.057 15.739 0.000 0.789 1.014
x4 5.9263 0.123 48.286 0.000 5.686 6.167
x5 -3.4905 0.122 -28.717 0.000 -3.729 -3.252
x6 -1.6221 0.059 -27.550 0.000 -1.737 -1.507
x7 0.7905 0.015 51.999 0.000 0.761 0.820
x8 -0.6883 0.114 -6.060 0.000 -0.911 -0.466
x9 0.5447 0.130 4.185 0.000 0.290 0.800
x10 -0.0171 0.050 -0.342 0.733 -0.115 0.081
x11 -0.7571 0.107 -7.065 0.000 -0.967 -0.547
x12 0.0739 0.095 0.781 0.435 -0.112 0.259
x13 1.2204 0.046 26.392 0.000 1.130 1.311
x14 -0.5384 0.013 -40.730 0.000 -0.564 -0.512

Table 4.6: BAC Exam P-value

4.2 Unsupervised Dimensionality Reduction and

Visualization

Here, we present visualizations of our data after performing dimensionality reduction.
In these visualizations the algorithms do not use the training labels. However, when
we plot the data points, we indicate the labels using colour. This shows whether the
chosen features could ”naturally” divide the data according to the labels or not.



38

coef std err z p �| z |
[
0.025 0.975

]
x1 -0.4426 0.111 -3.984 0.000 -0.660 -0.225
x2 0.6201 0.106 5.869 0.000 0.413 0.827
x3 0.1416 0.042 3.362 0.001 0.059 0.224
x4 -0.9941 0.084 -11.809 0.000 -1.159 -0.829
x5 0.1718 0.088 1.945 0.052 -0.001 0.345
x6 0.2090 0.045 4.603 0.000 0.120 0.298
x7 0.1205 0.011 10.606 0.000 0.098 0.143
x8 -0.1879 0.091 -2.068 0.039 -0.366 -0.010
x9 0.2981 0.104 2.871 0.004 0.095 0.502
x10 -0.1106 0.040 -2.757 0.006 -0.189 -0.032
x11 -0.3353 0.086 -3.899 0.000 -0.504 -0.167
x12 0.5492 0.077 7.162 0.000 0.399 0.700
x13 0.0571 0.036 1.584 0.113 -0.014 0.128
x14 -0.1885 0.011 -17.688 0.000 -0.209 -0.168

Table 4.7: BAC Exercise P-value

4.2.1 Results of t-SNE

For visualizing our high dimensional dataset, the t-SNE method based on the Barnes-
Hut-SNE algorithm which reduces the computation from O(n2) to O(n log n) [64] is
used for HRV and BAC dataset.

HRV results

• Visualizations of high dimensional HRV data along with the labels for sleep,
exam, and exercise are shown using t-SNE is shown in Figures 4.1, 4.2, 4.3. In
each figure, the green markers represent the positive class. Note that the labels
were not used by the t-SNE algorithm.

BAC results

• Visualizations of high dimensional BAC data along with the labels for sleep,
exam, and exercise using t-SNE are shown in Figures 4.4, 4.5, 4.6. In each
figure, the green markers represent the positive class. Note that the labels were
not used by the t-SNE algorithm.
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Figure 4.1: HRV data visualized with t-SNE. Green markers are sleep. Although the
t-SNE do not use the training labels, data are separating into two groups naturally.

Figure 4.2: HRV data visualized with t-SNE. Green markers are exam. Although the
t-SNE do not use the training labels, it seems data are separating into two groups
naturally
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Figure 4.3: HRV data visualized with t-SNE. Green markers are exercise. Less number
of observation for exercise results in more overlaps with this activity

Figure 4.4: BAC data visualized with t-SNE. Green markers are sleep. Although the
t-SNE do not use the training labels, data are separating into two groups naturally
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Figure 4.5: BAC data visualized with t-SNE. Green markers are exam. Although the
t-SNE do not use the training labels, it seems data are separating into two groups
naturally

Figure 4.6: BAC data visualized with t-SNE. Green markers are exercise. Less number
of observation for exercise results in more overlaps with this activity
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4.2.2 Results of PCA

We also apply the PCA algorithm for dimensionality reduction and visualization of
HRV and BAC.

HRV results

• Visualizations of high dimensional HRV data along with the labels for sleep,
exam, and exercise are shown using PCA is shown in Figures 4.7, 4.8, 4.9, 4.10,
4.11, 4.12. In each figure, the green markers represent the positive class. Note
that the labels were not used by the PCA algorithm.

Figure 4.7: HRV data visualized with PCA, 2 dimensions. Green markers are sleep.

BAC results

• Visualizations of high dimensional BAC data along with the labels for sleep,
exam, and exercise are shown using PCA is shown in Figures 4.13, 4.14, 4.15,
4.16, 4.17, 4.18. In each figure, the green markers represent the positive class.
Note that the labels were not used by the PCA algorithm.
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Figure 4.8: HRV data visualized with PCA, 3 dimensions. Green markers are sleep.

Figure 4.9: HRV data visualized with PCA, 2 dimensions. Green markers are exam.
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Figure 4.10: HRV data visualized with PCA, 3 dimensions. Green markers are exam.

Figure 4.11: HRV data visualized with PCA, 2 dimensions. Green markers are exer-
cise.
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Figure 4.12: HRV data visualized with PCA, 3 dimensions. Green markers are sleep.

Figure 4.13: BAC data visualized with PCA, 2 dimensions. Green markers are sleep.
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Figure 4.14: BAC data visualized with PCA, 3 dimensions. Green markers are sleep.

Figure 4.15: BAC data visualized with PCA, 2 dimensions. Green markers are exam.
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Figure 4.16: BAC data visualized with PCA, 3 dimensions. Green markers are exam.

Figure 4.17: BAC data visualized with PCA, 2 dimensions. Green markers are exer-
cise.
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Figure 4.18: BAC data visualized with PCA, 3 dimensions. Green markers are exer-
cise.
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4.3 Supervised Learning Results

In this section, we present the performance results for each of the algorithms, both
for the original HRV data and the new BAC data. The complete results are presented
here, and are summarized in Chapter 5.

4.3.1 Results of Logistic Regression

Logistic Regression learning algorithm is applied, the accuracy of the model is com-
puted with leave one person out, the confusion matrix is plotted and Area Under
the Curve (AUC) is measured for both methods. The quality and quantity of the
classifier is measured with precision and recall. Note that, the support is the number
of true response that falls in that class and average total value is a weighted average
(support values) of precision, recall and f1-score. The following results are obtained:

Logistic Regression HRV classification of sleep versus not sleep:

Applying leave one person out cross-validation results in the accuracy of 0.833 (+/-
0.223) and AUC accuracy of 0.8272.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.8. Visualizing Recall and Precision are shown by two

precision recall f1-score support
0 0.84 0.86 0.85 1011
1 0.82 0.80 0.81 821

avg / total 0.83 0.83 0.83 1832

Table 4.8: Sleep Precision and Recall with Logistic Regression

metrics as follow:

• Normalized confusion is shown in Figure 4.19

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.20.

Logistic Regression BAC classification of sleep versus not sleep:

Applying leave one person out cross-validation results in the accuracy of 0.883 (+/-
0.145) and AUC accuracy of 0.8604.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.9.
Visualizing Recall and Precision are shown by two metrics as follow:

• Normalized confusion is shown in Figure 4.21.

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.22.
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Figure 4.19: Normalized confusion matrix for sleep

Figure 4.20: Receiver Operating Characteristic (ROC) curve for sleep

precision recall f1-score support
0 0.88 0.85 0.86 23707
1 0.84 0.87 0.86 21821

avg / total 0.86 0.86 0.86 45528

Table 4.9: Sleep Precision and Recall with Logistic Regression

Logistic Regression HRV classification of exam versus not exam:

Applying leave one person out cross-validation results in the accuracy of 0.777 (+/-
0.205) and AUC accuracy of 0.7443.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.10
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Figure 4.21: Normalized confusion matrix for sleep

Figure 4.22: Receiver Operating Characteristic (ROC) curve for sleep

precision recall f1-score support
0 0.77 0.80 0.79 1050
1 0.72 0.69 0.70 782

avg / total 0.75 0.75 0.75 1832

Table 4.10: Exam Precision and Recall with Logistic Regression

Visualizing Recall and Precision are shown by two metrics as follow:

• Normalized confusion is shown in Figure 4.23

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.24.
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Figure 4.23: Normalized confusion matrix for exam

Figure 4.24: Receiver Operating Characteristic (ROC) curve for exam

Logistic Regression BAC classification of exam versus not exam:

Applying leave one person out cross-validation results in the accuracy of 0.787 (+/-
0.188) and AUC accuracy of 0.7507.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.11:

precision recall f1-score support
0 0.78 0.81 0.80 26374
1 0.73 0.69 0.71 19154

avg / total 0.76 0.76 0.76 45528

Table 4.11: Exam Precision and Recall with Logistic Regression
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Visualizing Recall and Precision are shown by two metrics as follow:

• Normalized confusion is shown in Figure 4.25.

Figure 4.25: Normalized confusion matrix for exam

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.26.

Figure 4.26: Receiver Operating Characteristic (ROC) curve for exam

Logistic Regression HRV classification of exercises versus not exercises:

Applying leave one person out cross-validation results in the accuracy of 0.865 (+/-
0.179) and AUC accuracy of 0.6179.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.12.

Visualizing Recall and Precision are shown by two metrics as follow:
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precision recall f1-score support
0 0.89 0.96 0.93 1603
1 0.41 0.19 0.26 229

avg / total 0.83 0.86 0.84 1832

Table 4.12: Exercises Precision and Recall with Logistic Regression

• Normalized confusion is shown in Figure 4.27

Figure 4.27: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.28.

Figure 4.28: Receiver Operating Characteristic (ROC) curve for exercise
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Logistic Regression BAC classification of exercises versus not exercises:

Applying leave one person out cross-validation results in the accuracy of 0.868 (+/-
0.186) and AUC accuracy of 0.6626.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.13:

precision recall f1-score support
0 0.93 0.95 0.94 40975
1 0.47 0.37 0.42 4553

avg / total 0.89 0.90 0.89 45528

Table 4.13: Exercises Precision and Recall with Logistic Regression

Visualizing Recall and Precision are shown by two metrics as follow:

• Normalized confusion is shown in Figure 4.29.

Figure 4.29: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.30.

4.3.2 Results of Support Vector Machine

Support Vector Machine learning algorithm is applied, the accuracy of the model is
computed with leave one person out, the confusion matrix is plotted and Area Under
the Curve (AUC) is measured for both methods. The quality and quantity of the
classifier is measured with precision and recall. Note that, the support is the number
of true response that falls in that class and average total value is a weighted average
(support values) of precision, recall and f1-score. The following results are obtained:
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Figure 4.30: Receiver Operating Characteristic (ROC) curve for exercise

SVM HRV classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• C: 0.87753

• gamma: 0.21019

• kernel: rbf

Applying leave one person out cross-validation results in the accuracy of 0.855 (+/-
0.215) and AUC accuracy of 0.8205.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.14:

precision recall f1-score support
0 0.83 0.87 0.85 1011
1 0.83 0.77 0.80 821

avg / total 0.83 0.83 0.82 1832

Table 4.14: Sleep Precision and Recall with SVM

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.31

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.32

SVM BAC classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :
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Figure 4.31: Normalized confusion matrix for sleep

Figure 4.32: Receiver Operating Characteristic (ROC) curve for sleep

• C: 0.99807148

• gamma: 0.01117364

• kernel: rbf

Applying leave one person out cross-validation results in the accuracy of 0.903
(+/-0.146) and AUC accuracy of 0.8893.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.15:

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.33

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.34
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precision recall f1-score support
0 0.92 0.79 0.85 23707
1 0.81 0.93 0.86 21821

avg / total 0.87 0.86 0.86 45528

Table 4.15: Sleep Precision and Recall with SVM

Figure 4.33: Normalized confusion matrix for sleep

Figure 4.34: Receiver Operating Characteristic (ROC) curve for sleep

SVM HRV classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• C: 0.92163
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• gamma: 0.74097

• kernel: linear

Applying leave one person out cross-validation results in the accuracy of 0.764 (+/-
0.033) and AUC accuracy of 0.741.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.16:

precision recall f1-score support
0 0.78 0.79 0.78 1050
1 0.71 0.69 0.70 782

avg / total 0.75 0.75 0.75 1832

Table 4.16: Exam Precision and Recall with SVM

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.35

Figure 4.35: Normalized confusion matrix for exam

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.36

SVM BAC classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• C: 0.15142857
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Figure 4.36: Receiver Operating Characteristic (ROC) curve for exam

• gamma: 0.43428571

• kernel: linear

Applying leave one person out cross-validation results in the accuracy of 0.793
(+/-0.194) and AUC accuracy of 0.7619.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.17:

precision recall f1-score support
0 0.79 0.82 0.81 26374
1 0.74 0.70 0.72 19154

avg / total 0.77 0.77 0.77 45528

Table 4.17: Exam Precision and Recall with SVM

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.37

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.38

SVM HRV classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• C: 0.47289701

• gamma: 0.74373271

• kernel: rbf
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Figure 4.37: Normalized confusion matrix for exam

Figure 4.38: Receiver Operating Characteristic (ROC) curve for exam

Applying leave one person out cross-validation results in the accuracy of 0.901 (+/-
0.155) and AUC accuracy of 0.6313.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.18:

precision recall f1-score support
0 0.91 0.97 0.94 1603
1 0.62 0.29 0.39 229

avg / total 0.87 0.89 0.87 1832

Table 4.18: Exam Precision and Recall with SVM

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.39
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Figure 4.39: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.40

Figure 4.40: Receiver Operating Characteristic (ROC) curve for exercise

SVM BAC classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• C: 0.71714286

• gamma: 0.85857143

• kernel: rbf
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Applying leave one person out cross-validation results in the accuracy of 0.856
(+/-0.170) and AUC accuracy of 0.5738.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.19:

precision recall f1-score support
0 0.91 0.90 0.91 40975
1 0.22 0.24 0.23 4553

avg / total 0.85 0.84 0.84 45528

Table 4.19: Exercise Precision and Recall with SVM

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion matrix is shown in Figure 4.41

Figure 4.41: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.42

4.3.3 Results of Decision Tree

Decision Tree learning algorithm is applied, the accuracy of the model is computed
with leave one person out, the confusion matrix is plotted and Area Under the Curve
is measured for both methods. The quality and quantity of the classifier is measured
with precision and recall. Note that, the support is the number of true response that
falls in that class and average total value is a weighted average (support values) of
precision, recall and f1-score. The following results are obtained:
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Figure 4.42: Receiver Operating Characteristic (ROC) curve for exercise

Decision Tree HRV classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: gini

• max depth: 6

• min samples leaf: 5

• min sample split: 6

• max leaf nodes: 13

Applying leave one person out cross-validation results in the accuracy of 0.807 (+/-
0.241) and AUC accuracy of 0.8054.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.20:

precision recall f1-score support
0 0.81 0.86 0.83 1011
1 0.81 0.75 0.78 821

avg / total 0.81 0.81 0.81 1832

Table 4.20: Sleep Precision and Recall with Decision Tree

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.43

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.44
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Figure 4.43: Normalized confusion matrix for sleep

Figure 4.44: Receiver Operating Characteristic (ROC) curve for sleep

Decision Tree BAC classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: gini

• max depth: 5

• min samples leaf: 7

• min sample split: 4

• max leaf nodes:12

Applying leave one person out cross-validation results in the accuracy of 0.895
(+/-0.174) and AUC accuracy of 0.861.
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The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.21:

precision recall f1-score support
0 0.92 0.79 0.85 23707
1 0.81 0.93 0.86 21821

avg / total 0.87 0.86 0.86 45528

Table 4.21: Sleep Precision and Recall with Decision Tree

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.45

Figure 4.45: Normalized confusion matrix for sleep

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.46

Decision Tree HRV classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: gini

• max depth: 5

• min samples leaf: 6

• min sample split: 5
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Figure 4.46: Receiver Operating Characteristic (ROC) curve for sleep

• max leaf nodes: 16

Applying leave one person out cross-validation results in the accuracy of 0.691 (+/-
0.277) and AUC accuracy of 0.6608.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.22:

precision recall f1-score support
0 0.71 0.72 0.71 1050
1 0.62 0.60 0.61 782

avg / total 0.67 0.67 0.67 1832

Table 4.22: Exam Precision and Recall with Decision Tree

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.47

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.48

Decision Tree BAC classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: gini

• max depth: 6

• min samples leaf: 5

• min sample split: 8
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Figure 4.47: Normalized confusion matrix for exam

Figure 4.48: Receiver Operating Characteristic (ROC) curve for exam

• max leaf nodes: 15

Applying leave one person out cross-validation results in the accuracy of 0.758
(+/-0.216) and AUC accuracy of 0.697.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.23:

precision recall f1-score support
0 0.72 0.83 0.77 26374
1 0.71 0.56 0.63 19154

avg / total 0.72 0.72 0.71 45528

Table 4.23: Sleep Precision and Recall with Decision Tree
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Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.49

Figure 4.49: Normalized confusion matrix for exam

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.50

Figure 4.50: Receiver Operating Characteristic (ROC) curve for exam

Decision Tree HRV classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: entropy
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• max depth: 4

• min samples leaf: 6

• min sample split: 7

• max leaf nodes: 10

Applying leave one person out cross-validation results in the accuracy of 0.890 (+/-
0.173) and AUC accuracy of 0.6928.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.24:

precision recall f1-score support
0 0.92 0.94 0.93 1603
1 0.53 0.44 0.48 229

avg / total 0.87 0.88 0.88 1832

Table 4.24: Sleep Precision and Recall with Decision Tree

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.51

Figure 4.51: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.52
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Figure 4.52: Receiver Operating Characteristic (ROC) curve for exercise

Decision Tree BAC classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• criterion: gini

• max depth: 7

• min samples leaf: 5

• min sample split: 7

• max leaf nodes:20

Applying leave one person out cross-validation results in the accuracy of 0.878
(+/-0.164) and AUC accuracy of 0.6513.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.25:

precision recall f1-score support
0 0.93 0.95 0.94 40975
1 0.43 0.36 0.39 4553

avg / total 0.88 0.89 0.88 45528

Table 4.25: Sleep Precision and Recall with Decision Tree

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.53

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.54
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Figure 4.53: Normalized confusion matrix for exercise

Figure 4.54: Receiver Operating Characteristic (ROC) curve for exercise

4.3.4 Results of Random Forest

Random Forest learning algorithm is applied, the accuracy of the model is computed
with leave one person out, the confusion matrix is plotted and Area Under the Curve
is measured for both methods. The quality and quantity of the classifier is measured
with precision and recall. Note that, the support is the number of true response that
falls in that class and average total value is a weighted average (support values) of
precision, recall and f1-score. The following results are obtained:

Random Forest HRV classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 189
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• criterion: gini

• max depth: 5

• min samples leaf: 5

• min sample split: 5

Applying leave one person out cross-validation results in the accuracy of 0.822 (+/-
0.227) and AUC accuracy of 0.8248.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.26:

precision recall f1-score support
0 0.83 0.86 0.85 1011
1 0.82 0.79 0.80 821

avg / total 0.83 0.83 0.83 1832

Table 4.26: Sleep Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.55.

Figure 4.55: Normalized confusion matrix for sleep

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.56.
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Figure 4.56: Receiver Operating Characteristic (ROC) curve for sleep

Random Forest BAC classification of sleep versus not sleep:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 47

• criterion: gini

• max depth: 12

• min samples leaf: 5

• min sample split: 2

Applying leave one person out cross-validation results in the accuracy of 0.886 (+/-
0.181) and AUC accuracy of 0.8455.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.27:

precision recall f1-score support
0 0.87 0.83 0.85 23707
1 0.82 0.86 0.84 21821

avg / total 0.85 0.84 0.84 45528

Table 4.27: Sleep Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.57.

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.58.
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Figure 4.57: Normalized confusion matrix for sleep

Figure 4.58: Receiver Operating Characteristic (ROC) curve for sleep

Feature selection helps us to determine which features best predict the response
value. In this study, Random Forest classifier is used to find feature importance based
on HRV dataset. The result is demonstrated in Figure 4.59 and Figure 4.60, which
shows that Auto-correlation, PNN50, and RMSSD are most important features in
comparison with the others for sleep data.

Random Forest HRV classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 28

• criterion: entropy
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Figure 4.59: The feature importance of the forest

Figure 4.60: The feature importance of the forest by label

• max depth: 5

• min samples leaf: 10

• min sample split: 3

Applying leave one person out cross-validation results in the accuracy of 0.739 (+/-
0.259) and AUC accuracy of 0.7224.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.28:
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precision recall f1-score support
0 0.77 0.75 0.76 1050
1 0.67 0.70 0.69 782

avg / total 0.73 0.73 0.73 1832

Table 4.28: Exam Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.61.

Figure 4.61: Normalized confusion matrix for exam

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.62.

Figure 4.62: Receiver Operating Characteristic (ROC) curve for exam
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Random Forest BAC classification of exam versus not exam:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 148

• criterion: entropy

• max depth: 12

• min samples leaf: 7

• min sample split: 4

Applying leave one person out cross-validation results in the accuracy of 0.766 (+/-
0.204) and AUC accuracy of 0.6821.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.27:

precision recall f1-score support
0 0.72 0.84 0.77 26374
1 0.71 0.55 0.62 19154

avg / total 0.72 0.72 0.71 45528

Table 4.29: Exam Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.63.

Figure 4.63: Normalized confusion matrix for exam

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.64.
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Figure 4.64: Receiver Operating Characteristic (ROC) curve for exam

Random Forest HRV classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 28

• criterion: gini

• max depth: 5

• min samples leaf: 10

• min sample split: 3

Applying leave one person out cross-validation results in the accuracy of 0.889 (+/-
0.167) and AUC accuracy of 0.6472.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.30:

precision recall f1-score support
0 0.91 0.95 0.93 1603
1 0.51 0.34 0.41 229

avg / total 0.86 0.88 0.87 1832

Table 4.30: Exercise Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.65.

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.66.
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Figure 4.65: Normalized confusion matrix for exercise

Figure 4.66: Receiver Operating Characteristic (ROC) curve for exercise

Random Forest BAC classification of exercise versus not exercise:

Running the optimization in serial with pySOT results in good hyper-parameters as
follow :

• number of estimators: 28

• criterion: gini

• max depth: 5

• min samples leaf: 10

• min sample split: 3

Applying leave one person out cross-validation results in the accuracy of 0.877 (+/-
0.158) and AUC accuracy of 0.6586.
The quality and quantity of the classifier is measured with precision and recall and
the result is shown in table 4.28:
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precision recall f1-score support
0 0.93 0.95 0.94 40975
1 0.46 0.36 0.41 4553

avg / total 0.88 0.89 0.89 45528

Table 4.31: Exercise Precision and Recall with Random Forest

Visualizing Recall and Precision are shown by three metrics as follow:

• Normalized confusion is shown in Figure 4.67.

Figure 4.67: Normalized confusion matrix for exercise

• Receiver Operating Characteristic (ROC) curve is demonstrated in Figure 4.68.

Figure 4.68: Receiver Operating Characteristic (ROC) curve for exercise



Chapter 5

Discussion and Future Work

This chapter provides a brief overview of analyzing heart rate variability and a novel
method to assist the performance of the classifier. The conclusion of this study will
be reviewed based on our results. Finally, the potential area for future work will be
discussed.

5.1 Discussion

The main purpose of this study was to develop an activity classifier for short-term
(5 minutes) HRV signals. Initially, seven statistical time domain features from HRV
are derived and used to predict the labelled classifier as sleep versus not sleep, exam
versus not exam, and exercise versus not exercise.

First, we tested each feature individually for association with class label. For
Sleep, all features except SDSD (x5) were significantly associated with class label.
For Exam, all were significantly associated. For exercise, the only significant feature
was SDNNi (x4). This may indicate that Exercise is a more difficult classification
problem than the other two.

Our visualizations by t-SNE and PCA supports the idea that there are more
overlaps with exercise which means that the data does not contain enough information
for t-SNE and PCA to identify clearly between the classes. This could be due to the
lesser number of observations for this activity or that the classification of exercise
activity was more difficult. Also, there is less overlap in sleep data which indicates
that the selected sleep features can be divided naturally according to their labels.

We used standard supervised learning using these features, and we proposed a
new method based on creating a new feature vector which improves the performance
of most classifiers. Table 5.1 summarises the classification accuracies (%) and AUC
on two datasets (HRV and BAC) and the better performance is highlighted. We note
that because of the small data set size (in terms of number of people) the differences
are not statistically significant, but they are suggestive of improved performance for
the Sleep and Exam tasks.

It can be seen that the categorization of the ECG into three different groups
according to their HRV is most accurate by performing SVM and logistic regression in
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Methods Datasets Accuracy (%) AUC
Logistic Regression Sleep HRV 0.833 (+/-0.223) 0.8272
Logistic Regression Sleep BAC 0.883 (+/-0.145) 0.8604
Logistic Regression Exam HRV 0.777 (+/-0.205) 0.7443
Logistic Regression Exam BAC 0.787 (+/-0.188) 0.7507
Logistic Regression Exercise HRV 0.865 (+/-0.179) 0.6179
Logistic Regression Exercise BAC 0.868 (+/-0.186) 0.6626
Support Vector Machine Sleep HRV 0.855 (+/-0.215) 0.8205
Support Vector Machine Sleep BAC 0.903 (+/-0.146) 0.8893
Support Vector Machine Exam HRV 0.764 (+/-0.033) 0.741
Support Vector Machine Exam BAC 0.793 (+/-0.194) 0.7619
Support Vector Machine Exercise HRV 0.901 (+/-0.155) 0.6313
Support Vector Machine Exercise BAC 0.856 (+/-0.170) 0.5738
Decision Tree Sleep HRV 0.807 (+/-0.241) 0.8054
Decision Tree Sleep BAC 0.895 (+/-0.174) 0.861
Decision Tree Exam HRV 0.691 (+/-0.277) 0.6608
Decision Tree Exam BAC 0.758 (+/-0.216) 0.697
Decision Tree Exercise HRV 0.890 (+/-0.173) 0.6928
Decision Tree Exercise BAC 0.878 (+/-0.164) 0.6513
Random Forest Sleep HRV 0.822 (+/-0.227) 0.8248
Random Forest Sleep BAC 0.886 (+/-0.181) 0.8455
Random Forest Exam HRV 0.739 (+/-0.259) 0.7224
Random Forest Exam BAC 0.766 (+/-0.204) 0.6821
Random Forest Exercise HRV 0.889 (+/-0.167) 0.6472
Random Forest Exercise BAC 0.877 (+/-0.158) 0.6586

Table 5.1: Comparison of the classification accuracy (%) and AUC with leave one
person out on HRV and BAC datasets

comparison with other classifiers. The BAC method improves the performance of the
classifier for about 5% using SVM for sleep and exam data. However, the accuracy of
almost all classifiers decreases using BAC method for exercise data. We hypothesize
that this is because of the more limited number of exercise training examples. It
may also be that exercise is simply a more difficult problem. In this experiment,
we achieved an accurate classification of sleep and exam activities using SVM and
logistic regression. Furthermore, Decision Tree classifier performs well with the new
feature vector; about 10% better for sleep data and 6% better for exam data.

The main characteristic of this research is that we focus on the simple statistical
features of HRV (time domain) and try to improve the performance of the classifiers
according to them, also we apply leave one person out cross-validation to get the
more accurate result with proposed methods. Therefore, this approach can be more
general and flexible.

One limitation is the size of the data set. With only 39 people, we were not able
to use a held-out test set. Because we evaluated several models with cross-validation,
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the estimate of the best performance may have some optimistic bias. However, we
expect the general trends in performance to hold. Furthermore, the small size of
exercise data may be leading to less reliable results for those models in comparison
with sleep and exam data.

5.2 Future Work

There are many opportunities to improve this study as well as further analysis of
heart rate variability, some of which are provided in this section.

First, further verification and experimentation of the BAC technique with larger
datasets would allow us to verify that it provides a performance boost. The idea may
also be applicable to other domains where we have individual people who generate a
significant amount of data that has individual characteristics.

Frequency domain, wavelet transform, and nonlinear methods of heart rate vari-
ability analysis is suggested to be compared to the proposed method. Also, neural
network techniques such as LSTM which is the popular method in analyzing time
series data [68] can be considered for future study. With both of these approaches
we can combine our new baseline adaptive classifier idea to examine if it increases
performance.

Finally, heart rate variability is a significant biological signal which can be used
in many clinical studies. So, increasing the number of participants will be useful
for further investigation of heart rate variability and its relationship with different
clinical fields such as stress.
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Appendix A

The extra table belonging to the analysis in this research is provided here. The
following table represents some partitions of the HRV segmentation during 5-minute
recording windows for exam, sleep, and exercise.
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