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Abstract 

Porous media prevail in industry e.g. heat transfer equipment, drying, food storage and 

several other applications. Integrated in engineering, they form conjugate Fluid/Porous 

domains. Physical modelling requires characterizing the microscale heat and mass 

(moisture) transfer interstitially within porous media and their macroscale counterparts 

across regional interfaces. Characterizing turbulence and its effects on phase coupling is 

often needed too. The modeling literature survey shows phase coupling assumptions 

depending on empiricism, phase equilibrium and lack of generality. Modeling of the 

dynamic variations for the modes of phase exchanges, i.e. heat, mass and heat 

accompanying mass exchanges, on both scales and generic turbulent coupling across 

fluid/porous interfaces are absent. Thus, the objectives of this thesis are to, i) develop a 

dynamic coupling model for phase heat and mass transfer in conjugate fluid/porous 

domains, ii) validate the model in terms of interstitial phase exchange, macroscopic 

interfaces and behaviors in different modes of heat and mass transfer, iii) extend the 

model to turbulent flows characterizing turbulence correctly for different porosities and 

permeabilities. The modeling process depends on a finite volume approach. Continuity, 

momentum, turbulence, energy and mass equations are solved in point form for fluid 

regions. In porous media, a volume averaged version is formulated and solved using one 

equation per phase e.g. fluid temperature, solid temperature, vapor in fluid mass fraction 

and liquid in liquid/solid mixture mass fraction. Mathematical conditions are utilised at 

macroscopic interfaces reconciling the point-volume form differences, to ensure 

continuity of conservation variables and numerical robustness. Physical phase exchange 

formulae and numerical implementations for macroscopic interface heat/mass and 

turbulence treatments are introduced. The model is validated interstitially by comparing 

to experiments of Coal particles drying, for macroscopic coupling by comparing to 

experiments and other models of apple and mineral plaster drying, respectively. The 

results showed good agreement for all the cases. The turbulent coupling model has been 

tested for a channel with porous obstruction high and low permeability cases and 

compared well to other studies in the literature. Finally, full turbulent flow, heat and mass 
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transfer was tested and produced physically correct trends and contours for apple and 

potato slices drying.  
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Chapter 1  

1 Introduction 

1.1 Background and scope to contribution  

This thesis is concerned with the development of a reliable, time efficient and physically 

dynamic modelling approach that characterizes fluid flow processes around and through 

porous media, predicting heat and mass transfer locally and globally for different 

processes, materials and physical conditions.  

1.1.1 General Background 

Porous media are abundant in everyday life. To name some: particles, grains, sands, soil, 

fabrics, bricks, metal foams, produce, food stacks, catalytic honeycombs, biological tissues 

and even liquid mists and sprays are all of porous nature, involving variety of sizes and 

physical properties. Thus, a wide range of engineering processes and industries are 

interested in fluid flow, heat and mass transfer around and through these media. Examples 

include, porous metal foams, porous heat sinks, air conditioning, drying (fabrics, 

construction materials and foodstuffs, etc.), food cooling and storage, food quality 

forecasting and ripening, prediction of undersoil smoldering, forest fires, planetary 

boundary layer through rough terrains and forests, engine catalytic converters and porous 

burners, some of which are included in Fig. 1.1. This widespread application within these 

diverse areas of engineering, necessitates a thorough understanding of the different 

physical processes like fluid flow, heat and mass transfer around and through porous media 

to facilitate engineering design and analysis and accelerate the process of development. 

For the purpose of this work, the term “porous media” refers to structures that are 

comprised of solid and fluid constituents in a relatively homogeneous distribution such that 

it may be considered a continuum of both. While a porous material may be permeable or 

impermeable, the interest herein is directed towards fluid-permeable porous materials, 

where air, water or some other fluid can pass through the solid structure under the influence 

of a pressure gradient. Examination of the solid and fluid constituents (or phases) of the 

porous material leads to the consideration of different important length scales. 
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If one zooms in and considers the internal structure of a porous medium, the length scale 

of some physical process may be characterized by the distance between two chunks of 

solid, or the diameter of a pore or void space, or it can be the averaged size or diameter of 

individual solids (particles, ligaments, etc.), or any other suitable dimension at this 

microscale. The presence of other forms of matter may also be observed inside what are 

characterized as the solid or fluid constituents of the porous structure; consider, for 

example, water vapor in air or liquid water trapped within the solid constituent in tiny 

interconnected micro-pores (see left panel of Fig 1.2). The presence of temperature 

 

Figure 1.1: Applications of porous media including a) modeling of tomato stacks 

(taken from Elhalwagy, Dyck and Straatman [1]); b) convective drying of an apple 

slice; c) modeling of the human lung (taken from DeGroot and Straatman [2]); d) 

modeling of Graphite foam(taken from Dyck and Straatman [3]). 
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gradients or species concentration gradients between the two phases causes heat and mass 

transfer on this local (sub-micro) scale as well.  

 

Figure 1.2: Porous media micro- and macroscales. The left panel depicts a 

microscopic representation of Porous media with liquid trapped inside the solid’s 

micro-pores while the right panel shows the continuum or macroscale equivalent 

perception.   

Depending on the microscale and the geometric nature of the solids or the voids within a 

porous medium, the physics of the fluid flow or any transfer of heat or mass (e.g. moisture 

evaporation/condensation) can differ significantly and hence, the resolution of different 

phenomena is very important on this small scale.  

Zooming out, the most prevalent length scale is related to the geometric size of the entire 

porous medium. On this macroscale, bulk flow variations and pressure drop, and bulk heat 

and mass transfer is often the goal of net characterization of the physics. Both scales 

interact considerably and cause different possible behaviors (see Fig 1.2 for porous media 

scales). Another aspect of interest for physical studies is the different interactions at the 

interface between the surrounding fluid region and the porous medium; this is often the 

most difficult part of modelling a process of fluid, heat or mass transfer. The interface is 

also often complicated by the heterogeneity present in the structure of porous media, i.e. 

rapid changes in porosity, and the variations of the fluid flow behavior due to shear and 

obstruction. For heat and moisture transfer, other factors like conduction and diffusion 

enhancement/inhibition, fluid acceleration/deceleration, phase change, capillarity, surface 

tension effects, etc., interplay together to pose modelling challenges at interfaces under 

different conditions. For turbulent flow, the presence of multiple time scales adds to the 
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already-complicated physics. Instantaneous time-local variations in the flow velocity, 

temperature or moisture concentration with time are of a small time scale and transient 

physical phenomena observation (e.g. drying) is of a larger time scale. Hence, in addition 

to the presence of multiple length scales, processes are affected by multiple time scales as 

well. 

Characterization and study of different phenomena in porous materials often relies on 

empiricism and is based on some insight into the physical processes. To this end, 

experimental studies carried out on a bulk scale can quantify the overall drying rate, heat 

transfer, flow resistance, etc., through a permeable porous material. A more in-depth 

analysis often depends on numerical simulations based on computational fluid dynamics 

(CFD) and done at the pore-level. Such analyses can take the place of costly and 

sophisticated experimentation conducted to resolve the physics inside complex structures 

subject to multiple length and time scales. Modeling the porous structure at the pore-level 

depends on resolving the microscale and hence, phenomena is characterized for all voids 

and particles/ligaments inside the porous material, which can also be prohibitive and time-

expensive. A second computational approach is to resolve only the macroscale (i.e. 

continuum approach) but with upscaling mathematically the microscale information using 

volume-averaging. Within this approach, with respect to heat and mass transfer, a simple 

technique is to consider a single temperature and/or mass fraction to characterize a small 

representative region of porous material, thereby enlisting the assumption of local thermal 

and mass equilibrium. This equilibrium approach, while successful when this homogeneity 

is physically acceptable, is of restricted applicability to different classes of problems in 

which the equilibrium is partially or fully unachieved. Separating the two phases with 

respect to heat and mass transfer is a solution to this problem and is of an affordable time 

expense however, it requires a reliable and accurate microscopic phase exchange modeling.  

In engineering applications and designs, porous materials are often combined with other 

solid materials and immersed in a fluid environment to form conjugate domains of 

fluid/porous/solid regions.  Across the clear fluid/porous transition, different modeling 

approaches have been considered including forcing a gradual change of obstruction 

between the two regions i.e. porosity gradient, segregate the modeling between both 
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regions, i.e. either model one region and link it to an empirically estimated effect to the 

other, or, model one region at a time and obtain the result from this region then use it to 

carry the interface effect on to the second one (indirect coupling approach). These three 

approaches are of additional time cost and/or loss of accuracy. The conjugate approach 

depends on linking the two regions in a single simulation step and ending up with a full 

characterization of both fluid and porous regions which is time-efficient. While the 

approach is challenging, considerable success is achieved with room for further 

development. The process of coupling turbulent flow through both regions in particular is 

an active area for improvement especially to achieve capability for modeling different 

ranges of porosity that allow turbulence to penetrate/dissipate into the porous region 

depending on the level of flow resistance. 

1.1.2 Scope 

Industrial modelling of general heat and mass transfer and/or drying/rehydration (i.e. heat-

affected moisture transfer) in conjugate fluid/porous/solid domains has depended on the 

above-mentioned design tools and basic CFD studies. Departure from these simple, 

accuracy-limited, empirical ad-hoc or case-specific techniques has been long under 

development. It is interesting to mention that to-date (to the best of the author’s knowledge) 

no commercial CFD software contains a generic, accurate, conjugate fluid/porous/solid, 

time-efficient and physically dynamic; capability for modelling combined flow, heat and 

mass transfer. The research community is focused on either in-house coding, coupling 

between different softwares/codes for simulating different regions and is heavily loaded 

with the different above mentioned empirical or non-generic assumptions. Few studies in 

the recent years have made progress with conjugate and physically-based CFD for these 

problems. The present work is a basic step towards the development of a generic, highly-

coupled and physically-dynamic approach. The scope herein is directed towards the void 

areas in CFD literature, as will be shown shortly, where heat and mass exchanges locally 

(interstitially) and macroscopically (across regional interfaces) are either: 

- Overlooked  

- Empirically adjusted in a non-generic way that requires case to case calibration  

- Coupled with a numerical technique that is conditionally stable or time-consuming   
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- Formulated with limited reactivity to dynamic physical changes and modes of flow, 

heat and mass transfer  

The approach taken herein is a compromise between very detailed physical modelling for 

multiple length and time scales, empiricism and time efficiency and it provides alternatives 

that are capable of solving the above mentioned problems. The resulting work provides a 

framework that is generic, conjugate, simultaneous for all regions, and physically dynamic 

with a significant reduction of empiricism which provides a starting point for further 

development. 

The rest of this chapter focuses on reviewing the modelling state of the art, objectives of 

thesis, research methodology (i.e. averaging techniques, model development background, 

necessary terminology and numerical discretization) and closes with the thesis outline. 

 

Figure 1.3: Schematic showing a microscopic representation of a moist Porous 

material. 

1.2 Literature survey 

1.2.1 Modelling heat and mass transfer of moist porous materials 

A moist porous material is a porous material that includes four phases within it. The four 

phases are, solid matrix or particles, void space including moist air (dry air and water 

vapor), free liquid water that lies on the surface of the solid constituent and is in contact 
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with both air and solid phases, and the bound water which is liquid water embedded inside 

the solid constituent and is not free to move or evaporate (See Fig. 1.3). Drying and 

rehydration studies are focused on modelling the heat and mass transfer techniques for 

moist porous materials. One school of practice was established on the work of Luikov [4-

5] which tackles the problem from a thermodynamic point of view and does not depend on 

macroscopic averaging techniques but on a phenomenological approach. It also 

standardizes the inclusion of the Soret and Dufour effects (i.e. mass and heat transfer due 

to temperature and species concentration gradients, respectively). This school often refers 

to moist porous media as capillary-porous and hence it depends highly on characterizing 

moisture transfer by capillarity. The approach is usually applied in CFD by solving the 

capillary pressure as a transport variable [6-7] and utilizing a convection term in the liquid 

transport equations to represent moisture travel macroscopically. The method is of wide 

use for construction materials. The approach while successful, is non-generic due to its 

specificity to one certain form of moisture presence (i.e. liquid only) and the fact that it 

solves the capillary pressure to characterize moisture transfer instead of the mass fraction 

or species density which are the real conserved variables in this case. Another school of 

work is Whitaker’s [8-9]. His work started by taking the analogy between transport in space 

and time and coming up with the concept of volume averaging following Reynold’s 

approach for time averaging. The approach ended up by obtaining all the flow, heat and 

mass transfer volume-averaged forms of conservation equations for the main three phases 

i.e. air, liquid and solid. The drawback was the very complicated form of the transport 

equations and the mathematically complex equations of closure [10-11] that need to be 

solved for a useful utilization of the approach. Closure may also be sought using 

microscopic data or void level simulations [3, 12]. Special interest has been given to the 

bound water phase in the literature. Some researchers solved an individual transport 

equation for this phase separating it from the free liquid phase [13]. Others included them 

in one equation, but they introduced special terms for diffusion [14] to characterize the 

different phases e.g. Arrhenius-type expressions or entropy-based approximations to model 

the gradual freeing of the bound water by heating [15]. Moist porous materials are also 

categorized to hygroscopic and non-hygroscopic materials [16]. Where a hygroscopic 

material is defined as a moist porous material that retains moisture and frees it gradually 
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based on gradual variation of diffusivity or gradual variation of moisture-bond energy e.g. 

Food [16] while, non-hygroscopic materials are of reduced affinity for moisture. They 

contain limited amount of free moisture and the moisture-bond to it for the bound phase is 

very difficult to free i.e. a relatively high diffusivity in the beginning of drying that drops 

several orders of magnitude in a very short drying time until the material is of nearly 

neglected diffusivity [6] e.g. some building materials. For both types of materials, the 

mechanism of moisture transport depends on diffusion, capillarity and surface tension 

effects [4, 6, 16]. It is also common in the literature to neglect the void phase presence 

inside the moist porous material and model only liquid and solid phases [17-18]. The 

approach is again non-generic as it neglects the mechanism of vapor diffusion and the 

presence of vapor moisture which is not realistic in a lot of cases. Other studies tend to 

include vapor diffusion mechanism but they incorporate it within a single equation for 

liquid and vapor [6-7, 14] which is better physically however the segregated species 

modeling offers more general applicability and it also allows modelling of local phase 

exchange. 

1.2.2 Phase-heat and mass interstitial exchange                

Generally, heat and mass transfer inside porous media is categorized to equilibrium and 

non-equilibrium approaches. An equilibrium approach depends on considering one 

homogeneous presence of heat and mass transfer for all the phases i.e. one discrete equation 

for temperature and another for moisture concentration or mass fraction only per each 

control volume (elaboration will follow in a subsequent section). While non-equilibrium 

approaches separate each phase’s characterization into one equation i.e. a number of 

equations equal to the number of phases per control volume. The first approach is widely 

used in the literature [17-20] however it does not model the phase exchange processes 

because it considers the transport for the sum of the phases. Our discussion here is relevant 

to the second approach. Some studies resorted to close the interstitial phase exchange using 

empirical adjustment [21-22] to account for different modes of heat and mass transfer 

locally e.g. forcing a mass transfer coefficient of exchange to decrease empirically near the 

dry out [22]. Studies of packed beds or grain drying [23-27] gave their focus to the 

microscopic phase exchange area of work. The surface of the solid constituent or the solid 
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particle has either been assumed as fully saturated with vapor [22], or a thermodynamic 

equilibrium approach is invoked (more details about thermodynamic equilibrium will 

follow) to allow a relation between solid surface relative humidity and water activity of the 

solid particle to form [23-24]. In this approach, the liquid moisture content inside the solid 

is correlated to the surface vapor concentration on the fluid/solid interface, allowing a 

driving potential for mass transfer to link both phases using an analogue of Newton’s law 

of cooling [22-24] in which a local interstitial mass transfer coefficient is estimated based 

on the physics of the flow and the geometric structure of the porous material. This 

thermodynamic equilibrium expression based on this definition has some limitations close 

to drying out and does not consider an explicit introduction of the resistance to mass 

transfer inside the solid constituent. Another problem with the analogue of Newton’s law 

of cooling is that it considers only the diffusive effects in the boundary layer for vapor 

transport without inclusion of advective effects [17, 22] i.e. Stefan flow. Other studies has 

considered both a thermodynamic equilibrium approach outside of the solid constituent 

and a diffusion resistance model on the inside. They either solved an equation inside the 

solid particle for the solid side’s resistance [25-26] or empirically estimated the solid side’s 

resistance from drying kinetics data [27]. Both types of treatments however preserved the 

thermodynamic equilibrium at the interstitial interface. In a different case, the drying 

kinetics data were solely used for representation of the phase exchange mass flux without 

including a fluid side expression [28]. Most of the grain and particle drying studies were 

applied on one or two dimensional models [13,27-29] mostly because of the complicated 

local phase coupling approaches, which is not feasible for implementation in cases of high 

three dimensionality.   

The second aspect regarding local phase exchange concerns with the phase exchange 

energy (i.e. energy accompanying species transport across phases). This energy is mostly 

representing the latent heat of vaporization for moisture. It is common for applications of 

evaporative cooling or cases where deviation from thermal equilibrium is minimal [22, 30], 

to apportion this energy (i.e. withdraw it) completely to the fluid phase. In other cases 

where the liquid is mostly embedded inside the solid (e.g. packed beds), the practice was 

to apportion it completely to the solid phase [24, 27-29]. While both assumptions are 

relevant approximations to their respective cases, they both present a loss of generality. 
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The physics of vaporization dictates that when liquid is placed at the interface between two 

phases, it may vaporize and travel between them based on whichever source that can supply 

the vaporization energy i.e. for free liquid water both phases may contribute to the 

vaporization heat in different proportions [31].  

1.2.3 Coupling across fluid/porous interfaces  

Now, the heat and mass transfer coupling between a surrounding fluid region and a moist 

porous region is reviewed. The fluid/porous regions’ linking is achieved either, with an 

overall empirical/semi-analytical assessment e.g. a drying kinetics technique, a single 

phase approach which solves single equation of heat and another for mass inside each CFD 

cell, an uncoupled phase approach that solves the different regions without direct coupling 

or a conjugate technique that directly couple the different phases. In the first approach, the 

overall phenomenon is characterized without local variations i.e. no discrete or CFD 

approach is utilized. This overall behavior is determined based on a drying experiment for 

a certain specimen of the material of interest and/or a semi-analytical approach that 

represents an equation for the overall diffusion inside the moist material and its correlation 

with time or utilizes an Arrhenius-type expression to correlate the kinetic data to overall 

moisture content and temperature [32-36]. The second category solves only one equation 

for temperature and one other equation for the overall moisture in the porous region i.e. 

utilizes an equilibrium approach within the porous media [17-20] (See Fig. 1.4 for a 

complete description of the different types of CFD regional coupling). While these studies 

provide a discrete CFD solution, they utilize an empirical estimate of overall heat and mass 

transfer coefficients at the macroscopic interface i.e. clear fluid/porous interface that carry 

the effect of the surrounding fluid region on the porous region. These empirical estimates 

are based mainly on Nusselt and Sherwood number correlations existing in the literature. 

This single phase approach also provides an overall characterization of the heat and mass 

transfer however, it is restricted by the applicability, accuracy and case-specificity of these 

empirical estimations. It may also suffer from the non-equilibrium errors within the porous 

domain due to the absence of interstitial phase exchange modelling. 
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Figure 1.4: Heat and mass transfer coupling in CFD studies of Fluid/Porous 

domains.  

The third group of studies utilize an uncoupled phase technique which means that both, the 

fluid and porous regions, are discretized and heat and mass transfer are solved 
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numerically/analytically within them however no interface coupling is present [37-39]. The 

linking is achieved by using the discrete solution of the fluid region to estimate an interface 

heat transfer coefficient and utilizing the heat and mass transfer analogy to deduce the 

corresponding mass transfer coefficient. A convective boundary condition is then set from 

both transfer coefficients to solve the heat and mass transfer inside the porous region. 

Figure 1.4 illustrates the process.  This technique utilizes equilibrium approaches inside 

the porous region as well. The last approach for coupling is a conjugate approach in which 

the full characterization for heat and mass transfer is carried out within both regions. This 

approach is subdivided to explicit and implicit subcategories. The explicit technique [6, 

40] depends on separating the numerical solution of both regions in a way that the interface 

side coupling is set in the discrete form as a boundary condition and hence multiple 

iterations or overlapping time steps have to be performed in which multiple explicit updates 

need to be made for the interface coupling fluxes. A way to reduce these multiple iterations 

is to reduce the time stepping size so that one update is enough per time step in which the 

information is carried from the fluid region to the porous region. An obvious disadvantage 

for this approach is the computational expensiveness and potential stability problems that 

may require adaptive time stepping to overcome [40]. Few studies have achieved an 

implicit form of coupling in which both regional equation sets are solved simultaneously. 

Of these studies a two dimensional approach that is based on using a stream function for 

the fluid flow is notable [41]. The approach while successful is restricted to two 

dimensional cases only. A second study achieved this form of coupling with the use of non-

equilibrium heat and mass transfer inside porous media however they utilized ad-hoc 

resistance-altering coefficients for mass transfer coupling at the fluid/porous interface that 

varied from a simulation to another which is case-specific [30]. The resistances of heat and 

mass transfer implicit coupling are shown in Fig. 1.4.  

1.2.4 Turbulence within porous media 

Turbulence plays a major role in heat and mass transfer processes related to porous media 

hence, it is very important to study the different approaches utilized for modeling within 

the porous material and across the macroscopic interface. The present section is concerned 

with the former. One school of work depended on simple modeling techniques [42-43]. 
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The models were single equation models that resolved the turbulent kinetic energy (TKE) 

and utilized a mathematical expression for its dissipation rate rather than adding another 

equation. The first version of this expression depended on four empirical constants [42] 

and the enhanced version eliminated two of them [43]. Generally, the approach simplified 

the porous media flow modeling by using the Darcy equation with its Forchheimer-added 

drag resistance with neglecting convection and diffusion transport. It also carried the 

turbulence effect into heat transfer by using a turbulence intensity-dependent Nusselt 

number correlation. The main direction of work in the literature focused on two equation 

modelling, following the direction of volume averaging the time averaged k-ɛ equations. 

One group of studies attempted the time-volume-averaging process i.e. Double 

decomposition (discussion will follow in a subsequent section), based on a definition of 

TKE that time averaged the square of the volume-averaged velocity fluctuation 𝐯′ [44-47]. 

The definition caused the order of the averaging processes to change the final output for 

different cases and it also lacked the inclusion of a volume-deviation-time-fluctuation term 

for the TKE and its dissipation rate. A more general definition was introduced later [48-

49] that squared the velocity fluctuation first and then performed the two averaging 

processes i.e. the double decomposition. This definition included the above mentioned 

volume-deviation-time-fluctuation term and resulted in an immaterial order of integration. 

Another introduced definition added to the last one, another term that relates to the porous 

media dispersion [50-51] to form a TKE equation that resolves the velocity variations 

macroscopically for time and space integrations. Based on these different definitions for 

TKE, three different attempts [48, 49, 51] for closure of a k-ɛ model were performed inside 

porous media using pore level simulations and ended up successfully adding three different 

forms of drag terms in the k-ɛ equations. All three forms are suitable for macroscopic 

modeling and may be closed for different variations of void level simulations [12]. More 

advanced modeling have also been carried out. Reynolds stress modeling (RSM) has been 

utilized [52-53]. While it has been used without any additional change inside porous media 

for one study [52], macroscopic scaling and closure has been achieved as well [53]. Also, 

multiple-equation versions of the k-ɛ model have been created in the literature for cases 

that added a separate two equations of TKE and its dissipation to characterize dispersive 

effects [54] and cases that separated macroscopic, microscopic and dispersive TKE and its 
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dissipation into separate k-ɛ sets [55]. The three-way splitting approach of k and ɛ have 

been developed later into a second moment closure approach as well [56]. A low Reynolds 

number model have also been developed based on a Lam-Bremhorst version that utilized 

direct numerical simulations (DNS) inside porous media for validation [57]. Generally, all 

the turbulence modeling work inside porous media has been successful however, due to 

the complication of characterizing the additional dispersive and tortuous effects to an 

already existing random characterization for turbulence for any of the above modeling 

frames, most of the models were too complex and the multiple equation models were too 

computationally expensive rendering the standard double decomposed versions of the k-ɛ 

model to be the most useful.   

In regards to turbulent heat and mass transfer studies, two significant areas of work are 

concerned with drying and food stacking, respectively. In the first category of work, 

significant amount of the studies depended on the same assumptions that were utilized 

inside porous media for laminar flows (see sections 1.2.2 and 1.2.3). They included two 

equation models of turbulence with standard wall functions to account for boundary layer 

effects at the macroscopic interface with the exception of few studies. A standard version 

of k-ɛ model with standard wall function was utilized by, to name a few, Curcio et al. [58] 

(parallel flow over food sample, continuity heat and mass transfer flux boundary condition 

and thermodynamic equilibrium at fluid/sample interface with a non-porous equilibrium 

approach inside the sample), DeBonis and Ruocco [59] (jet impingement over a general 

wet protrusion, non-porous approach, non-equilibrium inside the protrusion with lumped 

vapor/liquid diffusion into a single diffusivity and an Arrhenius expression for macroscopic 

interface evaporation) and Caccavale et al. [60] (parallel flow over a general wet protrusion 

utilizing the same approach as [59]). Ateeque et al. [61] utilized a k-ω SST two equation 

model for modeling the flow around a potato slice based on testing different two equation 

models for a backward facing step as they considered the separation of the flow and re-

attachment as the most significant turbulent behavior for such a kind of flow. For turbulent 

heat and mass transfer, they considered a non-porous/non-conjugate model that relied on 

surface transfer coefficients for coupling at the fluid/slice interface. The turbulence effect 

was incorporated for heat and mass transfer via the flow-spatially dependent surface 

transfer coefficients, predicting higher values at the upstream face and lower ones at the 
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downstream one. Another approach for brick drying by Van Belleghem et al. [7], used a 

realizable k-ɛ model with a low-Reynolds number region at the macroscopic interface 

instead of a wall function. The heat and mass transfer approach depended on the capillary 

pressure and incorporating both vapor and liquid transports into one equation inside the 

drying sample with an empirical specification of the transfer fluxes at the air/brick 

interface. Studies in this category of work did not consider porosity effects, turbulence 

inside the drying samples and suffered from the same case-specific empiricism at the 

macroscopic interface and the time consuming coupling between air heat and mass transfer 

and the inside of the drying sample and/or equilibrium assumption’s inaccuracy. A notable 

study was conducted by Defraeye et al. [62]. They considered flow around an apple slice 

and assessed multiple turbulence models in the prediction of drag coefficient, Nusselt 

number, Separation angle and back reciriculation length. Models included different types 

of  k-ɛ, k-ω and RSM. In interface adjacent regions, low Reynolds number modelling as 

well as standard wall-functions were utilised. They concluded that the k-ω SST with low 

Reynolds number modeling behaves the best in terms of the above mentioned criteria. The 

drawback was dependence on fine meshes in this case. It is also noted that switching from 

low-Re modeling to standard wall function was a highly pronounced effect on the k-ω SST 

as compared to the same switch for a k-ɛ model.    

In the second category of work, porosity inside the food stacks or boxes could not be 

neglected and hence, turbulence was mostly switched on inside the porous region. To 

characterize this macroscopic porosity, void level simulations were mainly utilized to 

provide closure for the macroscopic porous models. The closure path either depended on, 

empiricism [63], sensitivity analysis for different closure parameters of flow, heat and mass 

transfer [64], experimental evidence [65] or physical analysis utilizing a representative 

elementary volume (REV) and averaging the microscopic information through it [66-67]. 

In these studies the RNG k-ɛ [63, 68], k-ω SST [64-67] and RSM [69] were utilized. A 

choice of a model was mainly based on assessment of different models based on the 

average error between the experiments and CFD predictions of velocity [66] and 

temperature [65]. A drawback was that the deviations of different turbulence models near 

the fluid/porous interface was not considered. One study by Tutar et al. [68] came to a 

conclusion that the inlet level of turbulence for the flow was not a significant factor for 
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heat and mass transfer and that other effects like presence of three dimensionality and  

changing the flow rate are more significant. The disadvantages for this category of studies 

was the absence of interest in closure of additional porous media terms in the turbulence 

models and the lack of an investigation of the fluid/porous interface mathematics for 

coupling turbulence across both regions i.e. all of the above studies depended on the 

technique that is available in the utilised commerical software ANSYS FLUENTTM [70] 

plus forcing a switch off for turbulence in some regions (porous and fluid)[63].  

1.2.5 Turbulence coupling across macroscopic interfaces   

Due to the different natures of the volume averaged equations of porous media and the 

clear fluid equations, it is important to have a valid coupling approach of turbulence 

between both regions. Such a process is reliant on an understanding of the physical changes 

across the transition between both regions. One group of studies focused on utilizing 

different turbulence models for the macroscopic interface-adjacent layer from the clear 

fluid side and the free stream region. Such an approach was utilized with a k-l model near 

the interface, a k-ɛ model in the free stream and a compatibility mathematical condition in 

between [71]. The work utilized a dimensionless fully developed pipe flow around a porous 

layer and a Brinkman-Forchheimer-extended Darcy equation through it. Another version 

of the work utilized a Cebecci-smith two-layered turbulence model [72-73] and analyzed 

the thermal dispersion process inside the porous region [73]. The main disadvantage was 

relying on a dimensionless analytical expression for the pipe flow, rendering the findings 

to be case-specific and not generally applicable for other CFD studies. One other study 

utilized an Analytical wall function [74] for the flow adjacent to a porous region and 

matched it to an approximation of the Darcy equation solution inside it. Again, this 

approach was not possible to generalize on other CFD studies. Another work used enough 

refinement to well capture the viscous layer without modelling and utilized simple 

turbulence modeling (Prandtl mixing length, Han-Van Driest and Baldwin-Lomax) on the 

outside region [75] which is considered an over-simplification. Multiple coupling of 

different models have been utilized by Beyhaghi et al. [76] with a pore-network model (for 

fluid flow and its moisture coupling) inside the porous region, FLUENTTM [70] for clear 

fluid region’s turbulence modeling and a mass transfer code for the inside mass transfer 
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process. A no-slip condition was imposed at the macroscopic interface. This group of 

studies neglected turbulence inside the porous region which is a significant loss of 

generality.  

A second school of work depended entirely on void-level CFD simulations for 

characterizing the fluid/porous transition. They utilized case specific geometries like group 

of rods [77] or cubic blocks [78] and their interaction with clear fluid regions with no need 

for mathematical interface treatments. Sophisticated modeling has been carried out as well 

in which both a large eddy simulation (LES) or (DNS) is utilized for void level simulations 

on clear fluid transition to inline/staggered blocks/spheres and continuum approaches for 

porous media with the same geometry. Jin and Kuznetsov [79] used DNS and volume and 

time averaged the data to form a basis for comparison to continuum modeling. They 

concluded that zero equation modeling is enough inside the porous region and turbulence 

scale is restricted by the pore size. Forcing a gradual change of porosity between the fluid 

and porous region for the continuum modeling was deemed useful as well [80-81]. The 

approach enabled using one form of equations for both regions and a turbulence coupling 

mathematical condition was not necessary. Also, PIV experiments outside the porous 

region and LES simulations on the inside of it were utilized with the gradual porosity 

transition technique to develop a four-equation multiscale k-ɛ model that was successful 

for analyzing the turbulence within and across the porous region [81]. One may comment 

that these sophisticated models while capable, they are not general, require extremely fine 

meshes and have long computational times.  

A successful and economic approach for devising a mathematical condition for turbulence 

across fluid/porous interface was reported [82-83]. The approach utilized a jump condition 

at the interface for momentum [84] with a continuity condition for k and ɛ [82] and later 

another jump coefficient was introduced for k and ɛ as well [83]. The technique while 

successful did not provide a general guideline on the estimation of these jump coefficients 

and was also based on an assumption of a highly permeable media. In cases of low-

permeability media like produce e.g. apples and potatoes, the interface condition may not 

necessarily be valid because of the wall-like blockage and shear in these cases.                       
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1.3 Gaps in the literature and Research Objectives 

This section is devoted to presenting the thesis objectives based on the critique for the 

literature and the knowledge gaps. In view of the literature presented, it has been shown 

that: 

 Modelling of the moisture phase exchange inside porous media has either been, 

overlooked by the use of equilibrium heat and mass transfer, empirically forced to 

change near the dry out with an ad-hoc predetermination of a critical moisture 

content, depended on a surface of solid that is either fully saturated with vapor or 

was based on a thermodynamic equilibrium expression that is not necessarily 

accurate near the dry out, or, have been fully resolved analytically/numerically in a 

complicated technique that is not suitable for three dimensional CFD 

implementation. 

 Energy accompanying the moisture phase exchange has been either fully 

apportioned to the fluid side for cases relevant to evaporative cooling, or, fully 

apportioned to the solid side for cases relevant to moisture that is mainly embedded 

inside the solid. Both cases have a loss of generality. 

 Coupling between fluid and porous regions has either been empirically achieved, 

explicitly achieved in a time consuming technique, or, implicitly achieved with ad-

hoc adjustment of the mass transfer resistances in the solid and fluid portions of the 

porous region. 

 Turbulence coupling across fluid/porous interfaces has either been overlooked with 

assuming laminar flow inside porous region, achieved by assuming the validity of 

a porous modelling technique across the regions with inclusion of a porosity 

gradient in the transition region, achieved with a complicated modeling approach 

like multiscale k-ɛ models, LES or DNS, or, achieved by using an ad-hoc jump 

coefficient for k and ɛ equations. 

 Turbulence penetration/dissipation inside a low permeability porous region has not 

been allowed to develop dynamically and has been forced to be switched off. 
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In view of these limitations, it is clear that a physically based, fully implicit and 

simultaneous technique is absent from the literature survey. A technique of this type is 

developed herein which is referred to as a “Dynamic Coupling” technique. A dynamic 

coupling technique is defined as a generic, physically-dynamic, implicit, simultaneous, and 

non-equilibrium technique for phase coupling microscopically (i.e. interstitially) and 

macroscopically (i.e. across clear fluid/porous interfaces) for conjugate fluid/porous 

regions. It is characterized as physically dynamic because it allows a numerical reaction to 

the physics that is dynamically changing based on the different resistances to flow, heat 

and mass transfer that emerges for different modes and are manifested through space and 

time. It also allows the tracking of the values of these resistances in a way that needs a 

reduced level of empiricism or calibration and hence, this enables versatility for vast areas 

of work and allows an applicability to a wide range of materials and operating conditions 

and may be considered generic as will be discussed in Chapters 2 and 3. The main objective 

of the present work is to develop a full flow, heat and mass transfer numerical CFD 

framework that is capable of achieving a dynamic coupling simulation for the physics of 

the flow, heat and mass transfer for conjugate domains. Specifically, we may break down 

this overall goal of work to the following objectives: 

1. Develop a dynamic coupling framework that implicitly solves heat and mass 

transfer for conjugate fluid/porous regions in laminar flows by tracking heat and 

mass resistances and allow a stable numerical switching between different 

expressions of different modes for heat and mass transfer, allows a physically based 

apportioning of the vaporization energy on different phases, and, allows an implicit 

coupling between fluid and porous regions taking into account the numerical 

stability, the different species (liquid and vapor) and the two forms (i.e. two 

resistance legs) of transport of the two phases at the macroscopic interface. 

2. Extend the applicability of the dynamic coupling approach to turbulent flows 

utilizing a technique that allows for penetration/dissipation of turbulence inside 

porous regions to evolve naturally without any ad-hoc switch off, taking into 

consideration the computational time and the reflection of turbulence on the flow, 
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heat and mass transfer inside the porous region and across the macroscopic 

interface. 

3. Develop a capability of characterizing both high and low permeability porous 

region in turbulence, flow, heat and mass transfer interstitially and 

macroscopically, taking into consideration the additional blockage and the wall-

like shear of low permeability porous media so that a single modeling approach 

may be able to treat media that is of dynamic porosity and permeability.         

1.4 Research Methodology 

1.4.1 Volume and time averaging  

Before the introduction of our transport equations, we need to shed some light on the 

different averaging processes in the present work. The porous media modelling herein 

depends on the theory of volume averaging by Whitaker [85]. Since the presence of solid 

and fluid phases in the porous region is characterized in an up-scaled manner, an averaging 

process has to be considered to integrate the microscopic effects that include phase-

interaction and small scale spatial variations to the macroscopic scale. So that the volume 

averaged equations resolve the transport through this macroscopic scale and models the 

filtered variations in the microscale through closure terms that are introduced to replace the 

microscale part of the physics. Whitaker [85] defined the macroscale of interest utilizing 

different scale assumptions, arriving at the concept of a representative elementary volume 

(REV), which herein we associate a volume 𝑉 to (see Fig. 1.5). The choice of 𝑉 is made in 

a way that it is large enough so that the point value of the volume-averaged quantities is 

not dependent on value of 𝑉 but small enough so that it is valid to assume a uniform value 

of the volume-averaged quantities through it. In our analysis, two types of volume averages 

are important for any locally-varying entity of interest 𝜑. An extrinsic or superficial 

average 〈𝜑𝑥〉 and an intrinsic or phase-specific average 〈𝜑𝑥〉𝑥. Over the REV, the former 

is expressed as,  

 〈𝜑𝑥〉 =  
1

𝑉
∫ 𝜑𝑥

𝑉𝑥

𝑑 𝑉 (1.1) 
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while the latter is given by, 

 〈𝜑𝑥〉𝑥 =  
1

𝑉𝑥
∫ 𝜑𝑥

𝑉𝑥

𝑑 𝑉 =
〈𝜑𝑥〉

𝑉𝑥/𝑉
 (1.2) 

where 𝑥 is a phase index and 𝑉𝑥 is the volume of phase 𝑥 inside the REV. One notices that 

𝑉𝑥/𝑉 represents the porosity (herein as 𝜀) for the fluid phase and the solidity (herein as 

(1 − 𝜀)) for the solid phase. In order to treat transport terms that include the divergence of 

different quantities, we introduce the spatial averaging theorem (SAT) [85] as, 

 〈∇ ∙ 𝜑𝑥〉 = ∇〈𝜑𝑥〉 +  
1

𝑉
∫ 𝒏𝑥𝑦 ∙ 𝜑𝑥

𝐴𝑥𝑦

𝑑 𝐴 (1.3) 

where the first term represents the gradient of the extrinsic quantity of  𝜑 through phase 𝑥 

and the second term is the extrinsic average of the amount of 𝜑 that crosses from phase 𝑦 

to phase 𝑥, 𝒏𝑥𝑦 is the microscopic local unit normal vector between the two phases and 

𝐴𝑥𝑦 is the interfacial surface area through the REV. The introduction of a spatial deviation 

to transport quantities for characterizing microscopic spatial variations is often needed 

when applying volume averaging where the spatial deviation 𝜑�̃� may be defined as, 

 𝜑�̃� = 𝜑𝑥 − 〈𝜑𝑥〉𝑥 (1.4) 

and 〈𝜑�̃�〉 = 0. Through the volume averaging process of the transport equations one often 

needs to transform the volume average of products into the product of volume averages. 

Utilizing the above definition for deviations, we may cast the volume average of a product 

of two variables in the following form, 

〈𝜑𝑥,1
𝜑𝑥,2

〉 =
𝑉

𝑉𝑥

〈𝜑𝑥,1
〉 〈𝜑𝑥,2

〉 + 〈𝜑𝑥,1̃
𝜑𝑥,2̃

〉 =
𝑉𝑥

𝑉
 〈𝜑𝑥,1

〉𝑥 〈𝜑𝑥,2
〉𝑥 + 〈𝜑𝑥,1̃

𝜑𝑥,2̃
〉 (1.5) 

It is often encountered also in the volume averaging process, the need to close the terms 

1

𝑉
∫ 𝒏𝑓𝑠 ∙ 𝐯

𝐴𝑓𝑠
𝑑 𝐴 and 

1

 𝑉
∫ 𝒏𝑓𝑠𝐴𝑓𝑠

𝑑 𝐴. The first term is deemed neglected since 𝐯 |𝐴𝑓𝑠
 is 

neglected to satisfy the no slip condition. For the second term, with the use of the SAT and 
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the facts that 〈∇ (1)〉 is of zero value and 〈1〉 = 𝜀 , we may introduce the following 

equation, 

 
1

 𝑉
∫ 𝒏𝑓𝑠

𝐴𝑓𝑠

𝑑 𝐴 =  ∇ 𝜀 ≈ 0 (1.6) 

where in our formulation no spatial or temporal gradient of porosity is considered. Now, 

we shift our attention to time averaging. It is often needed in the presence of turbulence to 

express the transport equations in a time averaged framework. In analogy with volume 

averaging, one may cast the time average of a time-fluctuating entity 𝜑 over a period of 

time ∆𝑡 as, 

 �̅� =
1

∆𝑡
∫ 𝜑 𝑑𝑡

𝑡+∆𝑡

𝑡

 (1.7) 

where ∆𝑡 is large enough so that �̅� does not depend on its value but small enough so that 

�̅� value does not change through it. Similarly a time fluctuation 𝜑′ is defined as,  

 𝜑′ = 𝜑 − �̅� (1.8) 

where 𝜑′̅̅ ̅ = 0. The time averaging approach is used often on a clear fluid domain [86]. 

Here, it is the applicability of both time and volume averaging to a porous domain that is 

intricate. The process is termed Double-decomposition [87]. It depends on applying time 

averaging followed by volume averaging or vice-versa. Since the time change and volume 

change are not correlated (i.e. there is no shrinkage and volume is rigid and does not change 

with time), the order of integrals does not affect the final result [87] i.e.〈�̅�〉 =  〈𝜑〉̅̅ ̅̅ . Based 

on the above, one may decompose any locally-varying time-fluctuating fluid entity 𝜑 as, 

 𝜑𝑓 = 〈𝜑𝑓̅̅̅̅ 〉𝑓 + 𝜑𝑓̅̅̅̃̅ + 〈𝜑𝑓
′〉𝑓 + 𝜑𝑓

′̃ (1.9) 

Different other combinations are possible and may be used based on the above equations. 

It may also be concluded that 𝜑′̃ = �̃�′ and 𝜑′̃̅̅ ̅̅ =  〈𝜑′̃〉𝑓 = 0 [87].  
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Now, that the averaging processes are introduced, we may introduce the transport equations 

development. 

 

 

Figure 1.5: Schematic of a representative elemental volume (REV) illustrating the 

different phases and their volume averages. 

1.4.2 Evolution of the transport equations in the present work 

Herein, the developed forms for the transport equations that were utilized in chapters 2 and 

3, are presented. We utilize an incompressible system of equations. One may cast the 

equations for continuity and Navier-Stokes for a clear fluid region in their usual forms 

without inclusion of any external mass or momentum sources [85], as, 

 
𝜕𝜌𝑓

𝜕𝑡
+ ∇. (𝜌𝑓𝐯)  = 0 (1.10) 

 
𝜕(𝜌𝑓𝐯)

𝜕𝑡
+ ∇. (𝜌𝑓𝐯𝐯) = −∇𝑃 + 𝜇𝑓∇2𝐯 (1.11) 

We may also give the vapor mass fraction equation [8-9] for a clear-fluid mixture of moist 

air (dry air and water vapor) by, 
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𝜕(𝜌𝑓𝑌𝑣)

𝜕𝑡
+ ∇. (𝜌𝑓𝑌𝑣𝐯) = ∇. (𝜌𝑓𝐷𝑓𝛻𝑌𝑣) (1.12) 

For the heat transfer equation, we separate the sensible and latent energies in transient, 

advective and diffusive terms [22]. To elaborate on the development of the equation, we 

start by considering the sum of the enthalpy equations for species, given in the absence of 

external sources by, 

 ∑ (
𝜕 (𝜌𝑓𝑖

ℎ𝑖)

𝜕𝑡
+ ∇. (𝜌𝑓𝑖

ℎ𝑖  𝐯𝒊))

𝑖

= 𝑘𝑓∇2𝑇 (1.13) 

In order to arrive at the final form in chapter 2, we introduce a mass fraction decomposition 

for species densities 𝜌𝑓𝑖
= 𝜌𝑓𝑌𝑖 to utilize a fixed overall mixture density 𝜌𝑓. We also 

decompose the total species velocity 𝐯𝒊 with the introduction of species diffusion 

velocity 𝐯𝒊 = 𝐯 + 𝐯𝒅𝒊𝒇𝒇𝑖
. We may also use Fick’s law of species diffusion and total 

enthalpy decomposition by specific and latent heats given by, 

 𝜌𝑓𝑖
𝐯𝒅𝒊𝒇𝒇𝑖

= −𝜌𝑓𝐷𝑓∇𝑌𝑖                      ,                   ℎ𝑖 =  𝑐𝑝,𝑖𝑇 + ℎ𝑓𝑔,𝑖 (1.14) 

Allowing the use of the next final form, 

 

∑ 𝑐𝑝,𝑖

𝜕(𝜌𝑓𝑌𝑖𝑇)

𝜕𝑡
𝑖

+ ∑ ℎ𝑓𝑔,𝑖

𝜕(𝜌𝑓𝑌𝑖)

𝜕𝑡
𝑖

+ ∑ 𝑐𝑝,𝑖∇. (𝜌𝑓𝑌𝑖𝑇𝐯) +

𝑖

∑ ℎ𝑓𝑔,𝑖∇. (𝜌𝑓𝑌𝑖𝐯)

𝑖

= 𝑘𝑓∇2𝑇 + ∑ ∇. [𝜌𝑓𝐷𝑓 (∇ 𝑌𝑖) (𝑐𝑝,𝑖𝑇 + ℎ𝑓𝑔,𝑖)]

𝑖

 

(1.15) 

Now that the clear fluid form of equations is presented, the task turns to volume-averaging 

and arrival at the porous region form of equations. In order to start the volume 

decomposition process we introduce the relation between different averages of variables 

and their spatial-deviations. It is considered that |〈𝑌𝑖,𝑓〉𝑓| ≫ |𝑌𝑖,�̃�|, |∇〈𝑌𝑖,𝑓〉𝑓| ≫
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|∇𝑌𝑖,�̃�|, |〈𝑇𝑓〉𝑓| ≫ |𝑇�̃�| and| 〈𝑇𝑠〉𝑠| ≫ |𝑇�̃�| [8-9, 85] while |〈𝐯〉𝑓| ≈ |𝐯|̃ to satisfy the no slip 

condition at the microscopic interface between fluid and solid phases. It is noted that 

although the microscopic interface is moisture permeable, it is still considered as a no slip 

and no penetration surface for overall mixture fluid flow i.e. 𝐯𝒊 = 𝐯𝒅𝒊𝒇𝒇𝑖
at the microscopic 

interface. As for the density |〈𝜌𝑓〉𝑓| it is deemed comparable to |𝜌𝑓 |̃ because of the transfer 

of moisture at the fluid phase/solid phase interface that is allowed to simulate drying. 

Utilizing the above assumptions and the different equations of volume averaging in a 

similar approach to Whitaker’s [8-9] we may arrive at the final form of mass conservation. 

Consideration of the density deviation herein |𝜌𝑓 |̃ instead of Whitaker’s assumption of 

neglecting it [85] results in a mass exchange interfacial term to be present in the continuity 

equation (i.e. a mass source that emerges due to phase change from liquid inside the solid 

constituent to vapor inside the fluid mixture). Herein we omit this source term from the 

continuity equation by utilizing a discretization approach that allows for the update of the 

density within each non-linear iteration in our in-house code [22]. The final continuity 

equation form may be cast as, 

 𝜀
𝜕〈𝜌𝑓〉𝑓

𝜕𝑡
+ ∇. (〈𝜌𝑓〉𝑓〈𝐯〉)  = 0 (1.16) 

The reflection term of the above-mentioned mass exchange source term of the continuity 

equation is neglected in the momentum equation allowing a straight forward derivation 

similar to Whitaker’s [85] to arrive at its final closed form cast as [85],  

 

𝜕(〈𝜌𝑓〉𝑓〈𝐯〉)

𝜕𝑡
+

1

𝜀
∇. (〈𝜌𝑓〉𝑓〈𝐯〉〈𝐯〉)

= −𝜀∇〈𝑃〉𝑓 + 𝜇𝑓∇2〈𝐯〉 −
𝜀𝜇𝑓

𝐾
〈𝐯〉 −

𝜀〈𝜌𝑓〉𝑓𝑐𝐸

√𝐾
|〈𝐯〉|〈𝐯〉 

(1.17) 

The above forms of the continuity and momentum equations are identical to Whitaker’s 

[85]. The mass and heat equations differs herein because of considering only one 

microscopic interface between the fluid phase and the other phases i.e. the solid and liquid 

phases are lumped inside one constituent comprising of liquid and solid with defining the 

liquid water transport equation to represent moisture transport inside this constituent rather 
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than treating liquid as a separate phase. Utilizing the above assumptions, the volume 

decomposition equations and the volume average-deviation relations, we arrive at a vapor 

mass fraction equation of the following form, 

 

𝜀
𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑣,𝑓〉𝑓)

𝜕𝑡
+ 𝜀∇. (〈𝜌𝑓〉𝑓〈𝑌𝑣,𝑓〉𝑓〈𝐯〉𝑓)

= ∇. (〈𝜌𝑓〉𝑓𝜀𝐷𝑓∇〈𝑌𝑣,𝑓〉𝑓 + 〈𝜌𝑓〉𝑓𝐷𝑓

1

𝑉
∫ 𝒏𝑓𝑠 ∙ 𝑌�̃�

𝐴𝑓𝑠

𝑑 𝐴

− 〈𝑌𝑣,𝑓〉𝑓〈𝜌�̃��̃�〉 − 〈𝐯〉𝑓〈𝜌�̃�𝑌�̃�〉 − 〈𝜌𝑓〉𝑓〈𝑌�̃� �̃�〉)

+
1

𝑉
∫ 𝒏𝑓𝑠 ∙ 𝜌𝑓𝐷𝑓 (∇ 𝑌𝑣)

𝐴𝑓𝑠

𝑑 𝐴 

(1.18) 

Arrival at this form was possible by omitting single correlation and triple correlation terms, 

moving the advective term deviations to the RHS to incorporate them with the elliptic 

gradient term and neglecting transient gradients of deviation terms. The last term on the 

RHS represents the mass transfer across the microscopic interface i.e. 〈�̇�𝑓𝑠〉 while the 

resulting gradient term includes, respectively, a diffusion term which may also include any 

capillary or surface tension effects, a tortuosity term that represents the deviations of the 

mass fractions encountered along the tortuous path of the microscopic interface, and three 

mass dispersion terms coming from double correlation of deviations for 𝜌𝑓, 𝑌𝑣 and 𝐯. The 

above form for the mass fraction equation needs closure to be useful in CFD simulations. 

All the gradient transport terms are lumped inside an effective diffusivity 𝐷𝑒𝑓𝑓,𝑓. Now, the 

equation may be expressed in its final closed form as, 

 
𝜀

𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑣,𝑓〉𝑓)

𝜕𝑡
+ ∇. (〈𝜌𝑓〉𝑓〈𝑌𝑣,𝑓〉𝑓〈𝐯〉)

= ∇. (〈𝜌𝑓〉𝑓𝐷𝑒𝑓𝑓,𝑓∇〈𝑌𝑣,𝑓〉𝑓) + 〈�̇�𝑓𝑠〉 

(1.19) 

and in a similar way for the liquid mass fraction, we arrive at, 

 (1 − 𝜀)
𝜕(〈𝜌𝑠〉𝑠〈𝑌𝑤,𝑠〉𝑠)

𝜕𝑡
= ∇. (〈𝜌𝑠〉𝑠𝐷𝑒𝑓𝑓,𝑠∇〈𝑌𝑤,𝑠〉𝑠) − 〈�̇�𝑓𝑠〉 (1.20) 
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Following the same approach for the fluid energy equation, it may be written in this form, 

∑ ε𝑐𝑝,𝑖

𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈𝑇𝑓〉𝑓)

𝜕𝑡
𝑖

+ ∑ εℎ𝑓𝑔,𝑖

𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓)

𝜕𝑡
𝑖

+ ∑ 𝑐𝑝,𝑖

𝑖

∇. (ε〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈T𝑓〉𝑓〈𝐯〉𝑓)

+ ∑ ℎ𝑓𝑔,𝑖

𝑖

∇. (ε〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈𝐯〉𝑓)

= ∇. (ε𝑘𝑓∇〈𝑇𝑓〉𝑓 + 𝑘𝑓

1

𝑉
∫ 𝒏𝑓𝑠�̃�𝑓𝑑𝐴

𝐴𝑓𝑠

− ∑ 𝑐𝑝,𝑖(〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓⟨�̃��̃�𝑓⟩ + 〈𝜌𝑓〉𝑓〈𝐯〉𝑓⟨𝑌𝑖,�̃��̃�𝑓⟩ + 〈𝑌𝑖,𝑓〉𝑓〈𝐯〉𝑓⟨𝜌�̃��̃�𝑓⟩)− ∑(𝑐𝑝,𝑖〈T𝑓〉𝑓 +

𝑖

ℎ𝑓𝑔,𝑖)(〈𝜌𝑓〉𝑓⟨�̃��̃�𝑖,𝑓⟩

𝑖

+ 〈𝑌𝑖,𝑓〉𝑓⟨𝜌�̃��̃�⟩ + 〈𝐯〉𝑓⟨𝜌�̃��̃�𝑖,𝑓⟩))

+ ∑ ∇. (ε𝐷𝑓〈𝜌𝑓〉𝑓∇〈𝑌𝑖,𝑓〉𝑓(𝑐𝑝,𝑖〈T𝑓〉𝑓 + ℎ𝑓𝑔,𝑖) + 𝐷𝑓〈𝜌𝑓〉𝑓
1

𝑉
∫ 𝒏𝑓𝑠

𝐴𝑓𝑠

�̃�𝑖,𝑓 (𝑐𝑝,𝑖〈T𝑓〉𝑓 + ℎ𝑓𝑔,𝑖) 𝑑𝐴)

𝑖

+
1

𝑉
∫ 𝒏𝑓𝑠

𝐴𝑓𝑠

. 𝑘𝑓∇𝑇𝑓𝑑𝐴 + ∑
1

𝑉
𝑖

∫ 𝒏𝑓𝑠
𝐴𝑓𝑠

. 𝜌𝑓𝐷𝑓∇𝑌𝑖(𝑐𝑝,𝑖𝑇𝑓 + ℎ𝑓𝑔,𝑖)𝑑𝐴 

(1.21) 

This form of fluid energy equation was arrived at by omitting single, triple and quadruple 

correlation terms and following the same assumptions as for fluid species equation 

derivation. There is two gradient transport terms in this case with the first one related to 

sensible energy diffusion i.e. conduction and thermal/species energy dispersion and the 

second one is for latent energy or energy accompanying species transport. The first bracket 

on the RHS includes respectively, a conduction term, thermal tortuosity term and six 

component terms of thermal/species energy dispersion depending on six double correlation 

terms. The second bracket represents, respectively, species energy diffusion and species 

energy tortuosity. One may utilize an effective conductivity and diffusivity 

𝑘𝑒𝑓𝑓,𝑓 and 𝐷𝑒𝑓𝑓,𝑓, respectively, to close the terms in the two brackets. The second last term 

on the RHS represents sensible energy transfer across the microscopic interface and is 

closed herein with a local heat transfer coefficient for exchange as ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓). 

The last term on the RHS is the latent energy exchange based on mass exchange and by 

looking at its composition, one notices that it includes the mass exchange closure term 

within it and hence it may be closed as �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 = ∑  〈�̇�𝑓𝑠〉𝑖  ℎ𝑖𝑓𝑠𝑖 where ℎ𝑖𝑓𝑠

is the enthalpy 
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of species 𝑖 at the microscopic interface as it crosses between phases. Chapters 2 and 3 

include a technique of calculating the value for this enthalpy for drying processes and 

another one that reconciles the form of this term with the unique approach utilized for 

discretization that omits the mass exchange term from the continuity equation as mentioned 

earlier and thus, this process has a reflection on the fluid energy equation discretization as 

well. Based on the above decomposition and for a similar treatment of solid energy 

equation, the energy equations in their final forms are cast as, 

 

∑ 𝜀𝑐𝑝,𝑖

𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈𝑇𝑓〉𝑓)

𝜕𝑡
𝑖

+ ∑ 𝜀ℎ𝑓𝑔,𝑖

𝜕(〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓)

𝜕𝑡
𝑖

+ ∑ 𝑐𝑝,𝑖∇. (〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈𝑇𝑓〉𝑓〈𝐯〉)

𝑖

+ ∑ ℎ𝑓𝑔,𝑖∇. (〈𝜌𝑓〉𝑓〈𝑌𝑖,𝑓〉𝑓〈𝐯〉)

𝑖

= 𝑘𝑒𝑓𝑓,𝑓∇2〈𝑇𝑓〉𝑓

+ ∑ ∇. [〈𝜌𝑓〉𝑓𝐷𝑒𝑓𝑓,𝑓∇〈𝑌𝑖,𝑓〉𝑓(𝑐𝑝,𝑖〈𝑇𝑓〉𝑓 + ℎ𝑓𝑔,𝑖)]

𝑖

+ ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓) +  �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 

(1.22) 

 

∑(1 − 𝜀)𝑐𝑝𝑠,𝑖

𝜕(〈𝜌𝑠〉𝑠〈𝑌𝑖,𝑠〉𝑠〈𝑇𝑠〉𝑠)

𝜕𝑡
𝑖

= 𝑘𝑒𝑓𝑓,𝑠∇2〈𝑇𝑠〉𝑠 + ∑ ∇[〈𝜌𝑠〉𝑠𝐷𝑒𝑓𝑓,𝑠∇〈𝑌𝑖,𝑠〉𝑠(𝑐𝑝𝑠,𝑖〈𝑇𝑠〉𝑠)]

𝑖

− ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉𝑠 − 〈𝑇𝑓〉𝑓) −  �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 

(1.23) 

In regards to the turbulent version of these transport equations which is presented in chapter 

3, a full mathematical treatment may be found for clear fluid region by Wilcox [86], and 

for Porous media by De Lemos [87]. Herein, the major features only are discussed. 

Regarding the point continuity equation, both a time averaged version for �̅� or a time-

fluctuation version for 𝐯′ may have the same form as an instantaneous version for 𝐯 after 

carrying out the time averaging. In regards to the Navier-Stokes equations, the main 

difference arises from the turbulent stresses (i.e. double correlation fluctuation terms 
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arising from time-averaging of the instantaneous advective transport term, which are 

analogous to the above dispersive terms for laminar porous media modeling). Herein, our 

work depends on the Boussinesq approach [86] which incorporates the turbulent stresses 

inside a diffusion term and closes them using an eddy viscosity 𝜇𝑡. A similar approach is 

used for heat and mass transfer analogous terms as well in which an eddy conductivity and 

diffusivity are linked by analogy to the eddy viscosity using a turbulent Prandtl 𝑃𝑟𝑡 and 

Schmidt 𝑆𝑐𝑡 numbers. The turbulent fluctuation terms may all be represented as, 

 

𝜇𝑡 = 𝐶𝜇𝜌𝑓̅̅ ̅
𝑘2

𝜀
  , −𝜌𝑓̅̅ ̅  𝐯′𝐯′̅̅ ̅̅ ̅ = 𝜇𝑡 2�̅� −

2

3
𝜌𝑓̅̅ ̅ 𝑘 𝑰 , −𝜌𝑓̅̅ ̅𝐯′T′̅̅ ̅̅ ̅̅ =

𝜇𝑡𝑐𝑝,𝑓

𝑃𝑟𝑡
∇ �̅� 

−𝜌𝑓̅̅ ̅𝐯′𝑌𝑖
′̅̅ ̅̅ ̅̅ =

𝜇𝑡

𝑆𝑐𝑡
∇ 𝑌�̅� 

(1.24) 

where herein the eddy viscosity is given by the standard k-𝜀 model approximation wherein 

𝐶𝜇 is a constant , �̅� is the fluid deformation tensor estimated by, �̅� = (∇ �̅� + (∇ �̅�)𝑇)/2, 𝑘 

is the turbulent kinetic energy which is given as,  𝐯′𝐯′̅̅ ̅̅ ̅/2, 𝑰 is the unit dyadic and 𝜀 is the 

turbulence energy dissipation which is estimated by, 𝜇𝑓(∇ 𝐯′ ∶  ∇ 𝐯′𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)/𝜌𝑓. The turbulent 

diffusion terms are all lumped inside the main diffusion term where the eddy diffusivities 

act as an enhancement to the molecular diffusion while the term −(2𝜌𝑓̅̅ ̅ 𝑘/3) 𝑰 is 

incorporated with the pressure term to form the kinematic pressure in the momentum 

equation as it represents normal turbulent stresses. As for the 𝑘-equation, the classic 

approach for arriving at its mathematical form depends on multiplying the time-averaged 

Navier-Stokes equations by 𝐯′ and then redo the time averaging on the product to obtain a 

turbulent stress transport equation [86]. 𝑘-equation is simply obtained by taking the trace 

of the turbulent stress equations and carrying out some mathematical manipulations. The 

𝜀-equation is obtained by subtracting the time averaged momentum equation from the 

instantaneous counterpart and differentiating the result with respect to space followed by 

some mathematical manipulations. The interested reader may turn to Celik [88] for details. 

Due to the presence of multiple double and triple correlation terms, the exact form of the 

equations is not utilized and closure is sought in this case. Additional diffusion utilizing 

the eddy diffusivity, a turbulent kinetic energy Prandtl number 𝜎𝑘 and a dissipation Prandtl 
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number 𝜎𝜀 is introduced for closure of some diffusive higher-order correlation terms. Both 

equations are characterized with their production and destruction or dissipation source/sink 

terms which represent the main turbulence transport mechanism that converts inertia to 

turbulent kinetic energy and dissipates it to the molecular viscosity. For 𝑘-equation, the 

production and dissipation are given by, 

 𝑃𝑘 =  −𝜌𝑓̅̅ ̅  𝐯′𝐯′̅̅ ̅̅ ̅ ∶  ∇ �̅� = 𝜇𝑡(∇ �̅� + (∇ �̅�)𝑇) ∶  ∇ �̅�  ,    𝜖𝑘 =   𝜌𝑓̅̅ ̅ 𝜀            (1.25) 

It should be mentioned that the turbulent energy dissipation term is added as a source to 

the energy equation since it is a loss of kinetic energy that is transformed by viscosity to 

internal energy. In order to close the production and destruction for 𝜀-equation, one should 

utilize the local scale equilibrium assumption for turbulence. The assumption indicates that 

𝑃𝑘 and 𝜖𝑘 are of comparable orders of magnitude and shares the same time and length 

scales that are assumed dependent on location only. While the assumption has its 

restrictions, it has shown decent success for a wide class of problems in which free stream 

effects are not as powerful as local effects which indicates that local scales govern the 

turbulence. It follows from this assumption that 𝑃𝜀  𝛼 
𝑃𝑘 

1/𝜏
 and 𝜖𝜀 𝛼 

 𝜖𝑘 

1/𝜏
 where 1/𝜏 is a 

turbulence time scale that is estimated by dimensional analysis as 
𝑘

𝜀
. It also follows from 

these expressions that, 

 𝑃𝜀 =  𝐶1𝜀 𝑃𝑘

𝜀

𝑘
           ,               𝜖𝜀 =   𝐶2𝜀 𝜌𝑓̅̅ ̅ 

𝜀2

𝑘
 (1.26) 

where 𝐶1𝜀 and 𝐶2𝜀 are constants.  

In regards to turbulence in porous media, a volume averaged version of the above-

described turbulence equations is sought. Several additional fluctuation-deviation 

correlation terms are emerged however the closure path is identical to the laminar one in 

most cases [87]. Most of the turbulent quantities are transformed to their intrinsic averages 

resulting in a porosity multiplier (herein as 𝜙) in several terms. The turbulent eddy 

viscosity is utilized to enhance diffusion to include the turbulent stresses for momentum 

herein as well. Instead of utilizing different turbulent Prandtl or Schmidt numbers for heat 
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and mass transfer, the turbulent fluxes and dispersion terms are all added inside 

𝜆𝑒𝑓𝑓,𝑓 and 𝐷𝑒𝑓𝑓,𝑓. 〈𝑘〉𝑓 is defined by 〈𝐯′𝐯′̅̅ ̅̅ ̅〉𝑓/2 [87] since the definition is deemed 

inclusive to all necessary terms and is also not depending on the order of the double 

decomposition [87]. While the turbulence dissipation 〈𝜀〉𝑓 takes the 

form 𝜇𝑓 〈∇ 𝐯′ ∶  ∇ 𝐯′𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉𝑓 /〈𝜌𝑓̅̅ ̅〉𝑓. The forms for 〈𝑘〉𝑓and 〈𝜀〉𝑓equations are very similar to 

their point counterparts with intrinsic averaged production and dissipation terms. All of the 

present formulation equations described for turbulence are presented in their final forms in 

Chapter 3 and are omitted here for brevity. 

The above discussion concludes this section for transport equations’ development. The 

following section is concerned with Conjugate domains and non-equilibria. 

1.4.3 Conjugate domains and non-equilibria 

In Chapters 2 and 3, the terms of conjugate domains, thermal, mass and thermodynamic 

non-equilibria are mentioned. In the present section, we elaborate on the meanings and 

consequences of each of these terms.  

Thermal non-equilibrium 

A thermal equilibrium approach of study for a porous region implies that at each and any 

point through the region, the phase specific temperatures are equal i.e. through each REV, 

the intrinsic temperatures are equal to each other and to the superficial temperature 〈𝑇𝑓〉𝑓 =

〈𝑇𝑠〉𝑠 = 〈𝑇〉. Consequently, one energy equation for 〈𝑇〉 is enough to characterize heat 

transfer inside the domain. Such an equation may be derived by summing the earlier-

presented two phase-specific energy equations of 〈𝑇𝑓〉𝑓and 〈𝑇𝑠〉𝑠. Resulting in the 

cancellation of the interfacial exchange closure terms, the 〈𝑇〉 equation is not capable of 

modeling or quantifying the local phase energy exchange. Another result would be the 

representation of diffusion inside all the phases utilizing a single effective diffusivity. The 

approach is widely used in the literature [17-20] due to its simplicity. For a number of 

reasons, the deviation from thermal equilibrium becomes significant in a lot of porous 

media heat transfer problems. The fact that the 〈𝑇〉 equation is the sum of the phase-specific 

equations falsely gives an impression that the heat transfer conservation achieved is 
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physically accurate or that characterizing the exchange between phases is not required. 

That false impression is the reason behind the over or under prediction of the overall heat 

transfer characteristics that results from such an assumption because any local non-

equilibrium effect magnifies through discretization and integration. In cases where the two 

phases are of considerable difference in respect to conductivity and heat capacity, this local 

deviation from equilibrium and the consequent error on the overall heat transfer are further 

magnified. One famous example is the case of porous metal foam in which the two phase 

conductivities are orders of magnitude different. For a very transient phase exchange 

phenomenon such as drying, the vaporization energy withdrawal from different phases and 

its apportioning becomes very important. Because the enthalpies of liquid water and water 

vapor are very different in their orders of magnitudes, the non-equilibrium effect becomes 

more pronounced even for small differences in conductivities. Such a problem cannot be 

overcome unless by estimating the heat exchange accompanying mass exchange. Since the 

heat and mass transfer processes are also highly coupled in such a case, the error in overall 

predictions of drying rates and heat transfer becomes even higher because it is reflected on 

both equations and further magnified. For the above reasons, a thermal non-equilibrium 

approach is deemed necessary in the present work.  

Mass non-equilibrium          

The mass or moisture equilibrium approach is analogous to the thermal equilibrium one 

however in the present framework the equilibrium does not mean equality of both phase 

mass fractions because of the occurring phase change (i.e. liquid to vapor or vice versa) 

and the difference in definitions and magnitudes between both of them. Herein, the 

meaning of equilibrium mass transfer is the capability of representing the total superficial 

averaged moisture fraction inside an REV using only one transport equation that carries 

the two phases’ moisture in it i.e. 〈𝑀〉 (kg moisture/m3 of PM) = 𝜀〈𝜌𝑓〉𝑓〈𝑌𝑣,𝑓〉𝑓 + (1 −

𝜀)〈𝜌𝑠〉𝑠〈𝑌𝑤,𝑠〉𝑠. Arrival to such an equation is obtained in analogy to heat transfer by 

summing the two phase-specific moisture equations. Herein as well, the process results in 

cancellation of the moisture exchange terms and the lack of their modeling capability plus 

the aggregation of diffusion terms and being able to close them with a single diffusivity. 

The approach has been widely used in the literature [17-20] and is often accompanied by 
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neglecting the gaseous phase, considering the drying material as a wall. Assigning a single 

physical state of water to the moisture i.e. liquid for all the moisture present locally is 

another loss of generality that often accompanies this approach. The approach suffers from 

accumulation of error due to the heterogeneity of the distributed moisture mass inside a 

porous medium (i.e. affinity for moisture is different between fluid and solid phases) that 

is assumed homogenous in this case i.e. the mass transfer profiles are more diffusive. It 

also produces overall mass transfer and drying rate inaccuracy and has its effect reflected 

on heat transfer for the same logical reasons as in the above discussed case of thermal 

equilibrium. Since it often neglects the presence of vapor, a main mechanism for transport 

that is important in simulations of construction materials moisture removal is absent [6-7]. 

To avoid all of the above, the present work models both moisture phases.  

Thermodynamic non-equilibrium 

Is a different type of non-equilibrium that is often encountered in drying processes. The 

origin of the term thermodynamic equilibrium herein is relevant to the state at which an 

equal chemical potential (i.e. Gibbs free energy) exists between the liquid water and its 

adjacent vapor layer. In such a situation, if we think of the evaporation/condensation as a 

chemical equilibrium reaction, this reaction will no longer change the mixture composition 

i.e. when chemical potential is equal for both water phases, no more detectable phase 

change occurs [16]. The term is of more relevance to hygroscopic materials (e.g. fruits and 

vegetables), which are materials that have considerable room or allowance to absorb 

moisture and retain it. For these materials, present vapor and liquid are adjacent and hence, 

the vapor pressure is fully exerted on the liquid and the energy required to allow any more 

vaporization/condensation is of dependence on it. In cases where the liquid is embedded or 

partially bound from vapor, the vapor pressure in its classical definition is not directly 

related to chemical potential. In thermodynamic equilibrium situations, liquid and vapor 

are directly in contact and it follows from the above discussion that vapor pressure in the 

moist air is correlated to the liquid concentration in the liquid/solid solution according to 

Raoult’s and Henry’s laws. In order to further simplify this equal chemical potential 

assumption, the water activity 𝑎𝑊 is defined. Where water activity is the relative humidity 

that corresponds to a specific liquid concentration during thermodynamic equilibrium [16]. 
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In short, if thermodynamic equilibrium condition is achieved,  𝑎𝑊 = 𝑅𝐻 at the liquid/vapor 

surface i.e. solid/fluid microscopic interface. As, Gibbs free energy is also function of 

temperature, the water activity 𝑎𝑊 is function of both the liquid water concentration or 

mass fraction and temperature. This dependence of 𝑎𝑊 allows it to be correlated to liquid 

mass fraction alone at a fixed temperature i.e. a sorption isotherm [16]. The expression of 

the mass transfer driving potential based on 𝑅𝐻 and 𝑎𝑊 is also often referred to as 

thermodynamic equilibrium expression for moisture transfer. This expression could be 

written when combined with our thermal non-equilibrium assumption as [17], 

 〈𝑌𝑣〉𝑓𝑠 − 〈𝑌𝑣,𝑓〉𝑓 =
1

𝑅𝑣〈𝜌𝑓〉𝑓
(
𝑎𝑊𝑃𝑠𝑎𝑡.𝑠

〈𝑇𝑠〉𝑠
−

𝑅𝐻 𝑃𝑠𝑎𝑡.𝑓

〈𝑇𝑓〉𝑓
) (1.27) 

A deviation from thermodynamic equilibrium occurs in such a situation where the bulk 

liquid and bulk vapor are partially or no longer in contact, which occurs when the drying 

out is imminent and the liquid is shrinking inside the solid constituent of the porous 

material as per our formulation since we do not allow vapor to entrain where solid 

shrinkage happen i.e. we do not consider shrinkage of the solid/liquid material mass. We 

also do not allow the presence of liquid water to be zero through the dry layer that forms 

between the wet core of the solid constituent and the fluid mixture (i.e. a volume averaging 

restriction) which is another reason for this deviation from equilibrium to occur. It is also 

worth mentioning that even if these model assumptions were overcome, eventually near to 

the dry out, the thermodynamic equilibrium assumption in its current form becomes less 

valid due to the dominance of the liquid diffusion mechanism of mass transfer within the 

solid with its capillary and surface tension effects that alter the definition of chemical 

potential and makes it deviate from the classical one. In our frame work, for mathematical 

convenience and based on our model assumptions of no shrinkage and no complete dry 

out, the thermodynamic non-equilibrium expression for mass transfer is switched on as 

soon as it becomes rate-limiting and a mass transfer liquid-in-solid diffusion potential is 

utilized as explained in Chapter 2.  

Conjugate Domains  
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The conjugate domains are domains that contain fluid/porous/solid regions (see Fig. 1.6). 

A fluid/porous/solid region may contain a clear fluid and/or porous and/or void-less solid 

regions with multiple possible macroscopic interfaces between them (i.e. CFD integration 

faces that separate two cells of different regions). The conjugacy here is based on CFD 

simulations i.e. conjugate domain approach. All transport equations through all regions and 

their interface treatments are solved simultaneously without deferral or explicit coupling. 

The term conjugate is different from coupled in the sense that it is simultaneous. It is also 

different from conjugate heat and mass transfer as the latter expresses the coupling between 

heat and mass transfer equations and not the simultaneous coupling of both and each of 

them through the different regions. It is also worth mentioning that a conjugate domain 

approach does not utilize any convective boundary conditions at any of the macroscopic 

interfaces. Different other approaches utilized this boundary conditions and either provided 

the information for coupling from empirical correlations or segregated the different region 

solutions and performed iterative updates between them. The merits of the conjugate 

domain approach over this approach are: the fact that its accuracy is not constrained by the 

accuracy of empirical estimates and its time-to-solution is not affected by an explicit 

iterative update between regions. 

 

The above discussion concludes this section for conjugate domains and non-equilibria. The 

following section is concerned with discretization. 

 

1.4.4 Numerical discretization and solution 

The discretization in the present work follows the finite volume approach by Patankar [89]. 

In order to discuss the discrete form of different terms for our transport equations, one  
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Figure 1.6: Conjugate Fluid/Porous/Solid domains. 

 

Figure 1.7: Finite volume CFD discretization in structured orthogonal frameworks. 

introduces a partial differential equation (PDE) for a generic conserved entity of interest 𝜑 

in an incompressible fluid flow field, cast as, 
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𝜕(𝜌𝑓𝜑)

𝜕𝑡
+ ∇. (𝜌𝑓𝜑𝐯) = ∇ (Γ𝜑 ∇ 𝜑) + 𝑆𝜑  (1.28) 

where the terms from left to right are the unsteady, advective, diffusive and source, 

respectively. All transport equations may be represented in the above form with suitable 

substitutes for 𝜑 (e.g. 𝜑 = 1 for continuity equation), its diffusion coefficient Γ𝜑 and its 

source term 𝑆𝜑. The utilized finite volume approach depends on integrating the PDEs in 

time over a period ∆𝑡 using an implicit time integration approach and in space over a CFD 

cell of a control volume 𝑉𝑃 containing a node (P) located in its geometric center and has a 

number of integration faces 𝑁 that links it to 𝑁 neighboring control volumes (See Fig. 1.7). 

Herein also, the continuity equation, multiplied by a reference value of 𝜑 (often chosen 

as 𝜑𝑃), is subtracted from all other 𝜑-equations in order to reduce the dependence of a 𝜑-

equation convergence on the mass conservation. Utilizing an orthogonal and structured 

framework while applying this integration process on a 𝜑-equation, we arrive at, 

 
𝑉𝑃𝜌𝑓,𝑃

𝑜 (𝜑𝑃 − 𝜑𝑃
𝑜)

∆𝑡
+  ∑ �̇�𝛾(𝜑𝛾 − 𝜑𝑃)

𝑁

𝛾

= ∑ Γ𝜑 (𝐴
𝜕𝜑

𝜕𝒏
)

𝛾

𝑁

𝛾

+ 𝑉𝑃𝑆𝜑𝑃
 (1.29) 

where the mass flux at each integration face 𝛾 is defined as  �̇�𝛾 = 𝜌𝑓𝛾
𝐴𝛾 �̂� 𝛾. Noting 

that �̂� 𝛾 is the advecting velocity, 𝜑𝛾 is the advected value of 𝜑 from cell (P) to the 

neighboring cell (𝑛𝑏𝛾) and  (
𝜕𝜑

𝜕𝒏
)𝛾 is the spatial gradient of 𝜑 at face 𝛾 in the perpendicular 

direction. The aim of the discretization process is to cast the above equation in the 

following form, 

 𝑎𝑃 𝜑𝑃 = ∑ 𝑎𝑛𝑏𝛾 𝜑𝑛𝑏𝛾
+ 𝑏𝑃

𝑁

𝛾

 (1.30) 

where the above equation is incorporated with the counterparts of other cells to form a 

sparse non-symmetric system of algebraic linear equations to be preconditioned and 

iteratively solved. When the active coefficients 𝑎𝑃, 𝑎𝑛𝑏𝛾 and active source 𝑏𝑃 are functions 

of 𝜑𝑃 and 𝜑𝑛𝑏𝛾
, the system of equations is linearized by considering the 𝜑s explicitly inside 
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and reiterating using the above equation and hence, we break the non-linear problem into 

a sequence of linear ones. This process of linearization is done inside each time step where 

multiple iterations may be required to reach convergence i.e. an inner non-linear CFD loop 

inside the outer time CFD loop. The advection and diffusion terms are cell coupling terms 

and hence they have to be implemented implicitly. To that end, starting with the advection 

term, we estimate 𝜑𝛾 using a first order upwind approach, as it is the most stable, as, 

 𝜑𝛾 =
1

2
(1 + 𝜓𝜑𝛾

�̇�𝛾

|�̇�𝛾|
) 𝜑𝑃 +

1

2
(1 − 𝜓𝜑𝛾

�̇�𝛾

|�̇�𝛾|
) 𝜑𝑛𝑏𝛾

 (1.31) 

where 𝜓𝜑𝛾
 is a factor that may or may not be utilized to hybridize the upwind scheme based 

on a local Peclet number estimate and make it depend on both the two adjacent cell values 

of 𝜑. This choice is made as needed for different 𝜑s and is standardized for 𝜌𝑓𝛾
. Whenever 

a Fluid/Porous interface advection condition or a different advection scheme is 

implemented i.e. QUICK, CDS, second order upwind or limited upwinding, to preserve 

stability, we implement an explicit difference between the above implicit implementation 

and the corresponding scheme which is known as the deferred correction approach of 

Khosla and Rubin [90]. Turning attention to the diffusion term, the estimate of the gradient 

of 𝜑 at the integration face is given by, 

  (
𝜕𝜑

𝜕𝒏
)𝛾 =

𝜑𝑛𝑏𝛾
− 𝜑𝑃

Δ𝒏𝑃−𝑛𝑏
 (1.32) 

This is a straight forward estimate that is very useful for orthogonal frameworks. In cases 

of non-linearly varying diffusion i.e. Γ𝜑 is a variable, one utilizes the harmonic mean 

formulation by Patankar [89, 91] to force the continuity of fluxes given by, 

 Γ𝑃
𝜑

( 
𝜑𝛾 − 𝜑𝑃

Δ𝒏𝑃−𝛾
) = Γ𝑛𝑏𝛾

𝜑
( 

𝜑𝑛𝑏𝛾
− 𝜑𝛾

Δ𝒏𝛾−𝑛𝑏
) (1.33) 

as, 



Chapter 1                                               39 

 

 

 

 
(Γ𝜑

𝜕𝜑

𝜕𝒏
)𝛾 =  

𝜑𝑛𝑏𝛾
− 𝜑𝑃

Δ𝒏𝑃−𝛾

Γ𝑃
𝜑 +

Δ𝒏𝛾−𝑛𝑏

Γ𝑛𝑏𝛾

𝜑

 
(1.34) 

The source terms 𝑆𝜑 are either constants or 𝜑-dependent. Sources and transient terms are 

often apportioned between implicit and explicit implementation. In a constant source term 

a full explicit implementation is easy to converge. For a 𝜑 dependent source term, the 

apportioning is defined as, 

 𝑆𝜑𝑃
= 𝑄𝜑𝑃

+ 𝑅𝜑𝑃
𝜑𝑃 (1.35) 

where 𝑅𝜑𝑃
has to be negative for implicit implementation into 𝑎𝑃 while 𝑄𝜑𝑃

 is explicit. For 

sink terms, we often stabilize the solution by a fully implicit implementation as, 

 𝑄𝜑𝑃
= 0       ,     𝑅𝜑

𝑃
= 𝑆𝜑𝑃

/𝜑𝑃 (1.36) 

Which is often useful for phase exchange and turbulent dissipation terms. For highly non-

linear source terms, they are decomposed as, 

 𝑄𝜑𝑃
= 𝑆𝜑𝑃

− (
𝜕𝑆𝜑

𝜕𝜑
)𝑃 𝜑𝑃             ,            𝑅𝜑𝑃

= (
𝜕𝑆𝜑

𝜕𝜑
)𝑃                       (1.37) 

The last aspect of implementation concerns the pressure-velocity coupling. Herein, we 

utilize the collocated approach by Rhie and Chow [92]. The approach utilizes two different 

definitions for the two velocities inside the momentum equation advection term ∇. (𝜌𝑓𝐯𝐯). 

One is 𝐯𝛾 which is known as the advected velocity and is estimated using an advection 

scheme as explained above. The second one is used inside the mass flux �̇�𝛾 which is 

known as �̂� 𝛾 or the advecting velocity. The pressure velocity coupling depends on 

expressing �̂� 𝛾 in a form that includes pressure dependence and hence the continuity and 

momentum equations may be closed as now they both include pressure and velocity 

dependences. If an imaginary control volume 𝑉𝛾 is to be centered at 𝛾 integration face, an 

active coefficient equation for  �̂� 𝛾 may be cast as, 
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 𝑎𝛾  �̂� 𝛾 = �̃�𝛾 −  (
𝜕𝑃

𝜕𝒏
)

𝛾
𝑉𝛾 (1.38) 

where  (
𝜕𝑃

𝜕𝒏
)

𝛾
𝑉𝛾 is the pressure source term and �̃�𝛾 is given as, ∑ 𝑎𝑛𝑏 𝐯𝑛𝑏 + 𝑏𝛾

𝑁𝛾

𝑃  for control 

volume 𝛾. The above equation is simplified to alter its form from the classic discretized 

momentum equation (i.e. a special momentum equation) and several interpolations are 

introduced to link �̃�𝛾, 𝑎𝛾 and 𝑉𝛾 to their P and 𝑛𝑏𝛾 counterparts, arriving finally at,  

  �̂� 𝛾 = 𝐯𝛾
𝑎𝑝𝑝𝑟𝑜𝑥.

−
𝑉𝛾

𝑎𝛾 
[ (

𝜕𝑃

𝜕𝒏
)

𝛾
−  (

𝜕𝑃

𝜕𝒏
)

𝛾

𝑎𝑝𝑝𝑟𝑜𝑥.

] (1.39) 

  where 𝐯𝛾
𝑎𝑝𝑝𝑟𝑜𝑥.

may be a central differencing or inverse distancing approximation for 𝐯 in 

clear fluid cells. The second term is a fourth-order correction to the first term including 

pressure gradients to damp any unconstrained mode of convergence. The above form for 

 �̂� 𝛾 is implemented so that 𝐯𝛾
𝑎𝑝𝑝𝑟𝑜𝑥.

 and  (
𝜕𝑃

𝜕𝒏
)

𝛾
are implicit while  (

𝜕𝑃

𝜕𝒏
)

𝛾

𝑎𝑝𝑝𝑟𝑜𝑥.

 is deferred 

explicitly. For porous media cells and Fluid/Porous interface coupling, the above equations 

for pressure-velocity coupling are valid but they include different approximations for 

pressure, pressure gradients and interpolated velocity terms [91]. Herein, the approach for 

solving the continuity and momentum equations is a direct coupled approach. All other 

equations for temperature and species are directly coupled between phases as well similar 

to the continuity/momentum coupling while the turbulence equations are segregated. It is 

also worth mentioning that the turbulence equations solution has a lead over the rest of the 

equations to improve the stability of convergence by updating turbulence-related terms in 

the rest of the equations before solving them.  

With the pressure-velocity coupling, the discretization discussion is concluded. 

1.5 Thesis Outline 

Next chapters in this thesis focus on carrying out the work necessary to accomplish the 

thesis objectives. Description of each chapter is provided as: 
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 Chapter 2: presents the development of a dynamic coupling model for laminar flow, 

heat and mass transfer inside porous media and through the fluid/porous transition. 

Introduction of the work is presented followed by the model formulation including 

the transport equations in the point form for clear fluid region and their volume 

averaged counterparts in porous region. This is followed by mathematical coupling 

conditions across the macroscopic interface and the formulation of novel physical 

dynamic coupling models interstitially and new resistance networks for coupling 

across the macroscopic interface. Three verification cases that were selected 

carefully to provide a spectrum of applicability for the model that shows its viability 

and usefulness are presented next. The three cases represent a coal particle study to 

show the interstitial coupling technique’s efficacy and two different cases for 

conjugate fluid/porous coupling that represent a porous material of material-side 

mass transfer resistance domination (i.e. drying of an apple slice) and another 

material of convective mass transfer resistance domination (i.e. dehydration of 

mineral plaster). The model produced very good agreement with reported 

experimental data. The overall purpose of this chapter is to present this generic 

approach for treatment of different materials and its flexibility for dealing with 

different physical cases. This chapter is the basis of work in the whole thesis and 

the following chapter builds on it for achieving the rest of the objectives for 

turbulent flows.           

 Chapter 3: extends the dynamic coupling approach to include turbulent flows within 

porous media and across the transition between clear fluid and porous regions and 

formulates a novel technique for turbulence coupling across the macroscopic 

interface that is capable of treating both high and low permeability porous 

materials. The introduction was followed by a detailed description of the 

formulation enhanced with the turbulence equations and their reflection on other 

transport equations followed by the mathematical conditions at the fluid/porous 

interface including turbulence coupling. Next, an extension of the dynamic 

modeling to turbulent flows is presented including the novel formulation for 

interface coupling that includes an enhanced wall-like treatment for the 
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macroscopic interface that is of relevance to low permeability porous materials. A 

two dimensional test case for flow around and through a porous obstruction was 

presented to show the efficacy of the model for turbulence coupling in different 

permeability materials including properties of apple (moderately permeable) and 

potato slice (low permeability). This is followed by a full flow, heat and mass 

transfer verification for both produce slices including analysis for the different 

behaviors of heat and mass transfer in both cases. The technique predicts accurate 

trends for drying and affirms the applicability of the dynamic coupling approach 

for turbulent flows as well as proving that an interface coupling approach for 

turbulence is not capable alone to treat a low permeability material and an enhanced 

wall-like treatment is required.    

 Chapter 4: is the last chapter of the thesis, providing summary of the work, original 

thesis contributions and future recommendations.  
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Chapter 2  

2 Dynamic Phase Coupling for laminar flows in 
Fluid/Porous domains*  

2.1 Introduction  

Studies that involve heat and mass exchange in porous media are of significant practical 

interest and involve various applications. The importance of the subject has grown over the 

past decade and the computational fluid dynamics (CFD) capability of treating the 

microscopic heat and mass exchanges between the different phases of porous materials in 

an accurate and timely fashion is an active research topic. It is also necessary to develop 

rigorous techniques to couple porous materials to the surrounding moist air for 

computational modeling of heat and mass transfer. Such macroscopic coupling techniques 

should ensure accuracy and robustness as well as be computationally efficient. This will 

assist in the design of dryers and storage facilities for moist materials as well as enabling 

better forecasting for the quality of stored foodstuffs, processing of building materials and 

the study of packed bed dryers, among other applications. 

The modeling interest here is directed towards moist porous materials. A moist porous 

material is considered to contain a solid matrix, liquid water and void or moist air space 

i.e. (dry air and water vapor) [1-2]. Two sources of liquid water exist within the porous 

material: free liquid water that occupies the interconnected pores, and bound water within 

the solid constituent’s closed micro-pores. As the moist material loses its moisture content, 

the closed pores open up and the bound water gradually becomes free. This process is 

correlated to changes in temperature and suggests the use of activation energy-type models 

[3-5]. Whether the material is hygroscopic (i.e. exhibits a high degree of moisture retention 

and gradual variation of moisture diffusivity, like most food stuffs) or non-hygroscopic 

(i.e. not considered to have a significant affinity for moisture and involves more sharp 

drops in moisture diffusivity, like most building materials) [6], moisture transport within a 

porous material involves factors like vapor diffusion, liquid capillary forces and surface 
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tension effects [7-8], and all of these factors are functions of moisture content and 

temperature. Adding the difficulty of coupling clear fluid regions with the porous material 

itself, and the dynamic nature of the changes in moisture content near the macroscopic 

interfaces, physical modelling becomes a significant challenge, and a compromise must be 

struck between the microscopic and macroscopic scale information to avoid making 

simulation models too computationally expensive.   

The current state of the literature for the coupling of clear fluid and porous regions in these 

types of problems varies across: drying kinetics, single-phase, uncoupled-phase and 

conjugate coupling of phases (See reference [9] for a detailed literature review on the 

topic). In the first category, an overall drying curve is determined for the moist material by 

either experimentally and/or semi-analytically utilizing the concept of overall drying 

effective diffusivity and Arrhenius-type drying expressions. Thus, by this approach, it is 

the overall phenomenon that is modelled, as opposed to discrete solutions of heat and mass 

transfer [10-14]. Models in the second category solve for discrete quantities, but use single-

phase values to describe the presence of moisture or temperature in a CFD cell. Such 

models are not capable of resolving the liquid to vapor exchanges or the solid phase to fluid 

phase energy flux. This category of modelling is referred to as the Equilibrium approach 

for heat and mass transfer [15-18]. By this approach, a specified boundary flux for the 

fluid to porous regions is empirically assigned utilizing correlations for Nusselt and 

Sherwood numbers available in the literature. This method is capable of characterizing the 

overall heat and mass transfer, but is case specific and is dependent on empirical estimates 

of the fluxes assigned at the boundaries. For the uncoupled-phase approach, the local 

solution inside the porous material is still based on an equilibrium model, in which a single 

transport equation characterizes the two phases. As for the macroscopic interface treatment, 

both the clear fluid region and the porous region are discretized and solved, however, they 

are uncoupled from one another. The fluid side solution is utilized to evaluate an interface 

heat transfer coefficient and through the Chilton-Colburn heat and mass transfer analogy, 

a mass transfer coefficient is obtained. These coefficients are then utilized as boundary 

conditions for the porous side solution [19-21]. The conjugate category of models mainly 

uses a non-simultaneous technique that solves each phase on its own, and then couples 

them explicitly by updating the fluxes at the boundaries at each time step [8],[22]. This 
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technique is effective, but similar to the uncoupled approach, computationally time-

consuming due to its explicit nature. In addition, most of the work in the conjugate category 

either simplifies the porous material to a non-porous material – i.e. the technique typically 

neglects the gas transport inside the porous region – or is an equilibrium-type model that 

solves one entity to characterize the two phases. Implicit conjugate coupling has also been 

achieved. Lamnatou et al. [23] have used a simultaneous conjugate coupling technique for 

two dimensional convective drying simulations using a stream function formulation. This, 

however, restricts its application to two-dimensional simulations. Most recently, Khan and 

Straatman [9], presented an implicit conjugate approach for the simulation of produce 

drying. The model considers non-equilibrium heat and mass transfer, however, the 

macroscopic interface treatment involves empirical coefficients to characterize the changes 

in liquid and vapor mass transfer resistances, which are simulation dependent, i.e. changes 

with change of boundary conditions. 

Local exchanges of heat and mass between the phases of porous materials have also been 

studied, however, generally they have been ignored in equilibrium-type models, or they are 

empirically adjusted for non-equilibrium models [24-25]. Particle and grain packed-bed 

studies have given the subject more practical interest mainly in terms of the dynamic nature 

of the change in mass transfer resistances that is more pertinent in these studies [26-30]. 

The state of the art in the literature is either to treat the surface of the solid constituent as 

fully-saturated with water vapor, i.e. 100 % relative humidity [25], or to define water 

activity for the moist material. Where water activity is defined as the thermodynamic 

equilibrium value of the relative humidity at the surface of a wet particle, which is based 

on the particle’s liquid moisture content and temperature [6],[15]. The driving potential for 

mass transfer is then usually determined based on the surface-to-fluid vapor concentration 

difference, and local mass transfer coefficients that are functions of the nature of the flow 

and internal geometry of the porous material; and such models do not usually take the solid-

side resistance to mass exchange into account [15],[25].  Another drawback is that these 

models only consider the diffusive effects in the fluid side resistance without consideration 

of advective effects, which are important in cases where the porosity and thus the 

evaporation rate can be high. The solid-side mass transfer resistance has been considered 

in different ways in the literature however, it mostly involves intensive empirical 
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calibration of the resistance and is dependent on data from thin-layer or single-particle 

kinetics’ experiments [30-32]. The assumption of thermodynamic equilibrium, i.e. 

depending entirely on water activity to represent the solid side potential for mass transfer, 

is also utilised in different studies [27],[30],[33]. Whenever the surface of the solid 

constituent becomes relatively dry – i.e. when drying out becomes imminent – a liquid 

moisture front starts shrinking inside the solid constituent forming a dry layer at the solid 

surface. In these situations the thermodynamic equilibrium assumption is no longer valid, 

specifically in a macroscopic model that characterizes the local solid constituent moisture 

content with one moisture fraction value. In such a case it is not possible to split the solid 

constituent to a dry part and a wet part. It is also a common weakness in packed-bed drying 

models to have phase exchange techniques that are too complicated for time-efficient 

implementation in three dimensional models, i.e. such models are mainly one-dimensional 

[30],[31],[33]. Another aspect to shift attention to the phase exchange processes is the 

moisture-accompanied heat exchanges, i.e. mass flux enthalpy exchange between the 

phases. The amount of heat that is withdrawn is the heat of vaporization associated with 

the mass transfer. Some existing models in the literature withdraw this energy entirely from 

the void (air-vapour mixture) constituent [9],[25]. Such studies have been modeling 

evaporative cooling processes or cases that do not involve high temperature variation. 

Other cases – especially in packed beds, and problems with high thermal non-equilibrium 

– withdraw this energy entirely from the solid portion, since it is assumed that the liquid is 

mostly either bound inside the solid portion or due to high solid conductivity compared to 

the fluid side, both liquid and solid constituents are in thermal equilibrium [27],[30],[32]. 

This is another loss of generality as the physics of the process of evaporation dictates the 

withdrawal of vaporization energy from both phases in different proportions [34].  

The present paper describes a computational technique for characterizing dynamic 

coupling of the phases in porous media applications which, to the best of the authors’ 

knowledge, has not yet been achieved. Herein, we define ‘Dynamic Coupling’ as an 

implicit, simultaneous, non-equilibrium approach for characterizing microscopic 

(interstitial) and macroscopic interfaces. In this manner, the interstitial heat and mass 

exchanges between the solid and fluid phases of the porous medium are captured, as well 

as those between the fluid and porous cells at macroscopic interfaces that separate fluid 
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and porous regions of conjugate domains. The key to the approach is that interface heat 

and mass transfer resistances are formulated to vary locally and dynamically in response 

to changes that occur during the physical process under consideration. This approach 

removes the need for ad-hoc or empirical specification of the fluxes at the interfaces and 

nearly eliminates case-to-case calibration. In the remaining sections of the paper, the 

general formulation is first presented for the clear fluid and porous regions, followed by 

the approach developed for dynamic coupling at microscopic and macroscopic interfaces. 

The presence of a macroscopic interface has a strong influence on the heat and mass 

transfer phenomenon as it is often rate-determining, especially in low porosity materials 

like food stuffs or building materials, and requires special attention in the formulation. 

Different cases for modeling dynamic coupling at the fluid/porous interfaces are then 

presented, followed by verification cases that demonstrate the viability of the formulation 

under various drying conditions. 

2.2 Model formulation 

The governing equations and mathematical conditions relevant to the conjugate modeling 

of fluid and porous regions as well as the interstitial and macroscopic phase coupling 

approaches are presented in this section. A simple depiction of a conjugate fluid-porous 

domain is given in Fig. 2.1 to illustrate what is meant by fluid region, porous region and 

macroscopic interface. The porous region of the domain is comprised of solid and void 

(fluid) constituents, which interact via microscopic interfaces. The general formulation is 

adopted from the work of Khan et al. [25] with improvements and modifications discussed 

in the relevant subsections. The fluid in the present formulation is assumed to be comprised 

of a mixture of dry air (i.e. includes all the dry gas species of atmospheric air) and water 

vapor and is referred to as ‘moist air’. The flow is considered to be density-varying due to 

the change in the local vapor moisture content and the moisture transport phenomenon 

under study, characterized by the local vapor moisture mass fraction in the moist air (𝑌𝑣). 

Expressions utilized for the mixture density 𝜌𝑓 and vapor moisture fraction 𝑌𝑣 are,  

 𝜌𝑓 = 𝜌𝑎 + 𝜌𝑣 =
𝑃 − (𝑅𝐻 ∙ 𝑃𝑠𝑎𝑡)

𝑅𝑎𝑇
+
𝑅𝐻 ∙ 𝑃𝑠𝑎𝑡
𝑅𝑣𝑇

 (2.1) 



Chapter 2                                               58 

 

 

 

 𝑌𝑣 =
𝑅𝐻 ∙  𝑃𝑠𝑎𝑡
𝜌𝑓𝑅𝑣𝑇

  (2.1) 

where 𝜌𝑎 is the dry air density, 𝜌𝑣 is the vapor moisture density, 𝑃 is the local pressure, 

𝑅𝐻 is the local relative humidity, 𝑃𝑠𝑎𝑡 is the saturation vapor pressure at the local 

temperature, 𝑅𝑎 and 𝑅𝑣 are the gas constants for dry air and water vapour, respectively, 

and 𝑇 is the local temperature of the fluid volume.  

 

Figure 2.1: A discrete conjugate Fluid-Porous domain. 

2.2.1 Fluid Region 

To fully characterize the fluid flow and heat and mass transfer in the fluid region, vapor 

(moisture) mass fraction (𝑌𝑣) and energy equations are solved in addition to the Navier-

Stokes and conservation of mass equations. In the absence of external forces, mass or heat 

sources, the equations of mass and momentum conservation, vapor moisture and fluid 

energy are given, respectively, as, 

 
𝜕𝜌𝑓

𝜕𝑡
+ ∇. (𝜌𝑓𝐯) = 0 (2.2) 

 
𝜕(𝜌𝑓𝐯)

𝜕𝑡
+ ∇. (𝜌𝑓𝐯𝐯) = −∇𝑃 + 𝜇𝑓∇

2𝐯 (2.3) 
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𝜕(𝜌𝑓𝑌𝑣)

𝜕𝑡
+ ∇. (𝜌𝑓𝑌𝑣𝐯) = ∇. (𝜌𝑓𝐷𝑓𝛻𝑌𝑣) (2.4) 

 

∑𝑐𝑝,𝑖
𝜕(𝜌𝑓𝑌𝑖𝑇)

𝜕𝑡
𝑖

+∑ℎ𝑓𝑔,𝑖
𝜕(𝜌𝑓𝑌𝑖)

𝜕𝑡
𝑖

+∑𝑐𝑝,𝑖∇. (𝜌𝑓𝑌𝑖𝑇𝐯) +

𝑖

∑ℎ𝑓𝑔,𝑖∇. (𝜌𝑓𝑌𝑖𝐯)

𝑖

= 𝑘𝑓∇
2𝑇 +∑∇. [𝜌𝑓𝐷𝑓∇𝑌𝑖(𝑐𝑝,𝑖𝑇 + ℎ𝑓𝑔,𝑖)]

𝑖

 

(2.5) 

Here, 𝑖 represents a counter of species, 𝑐𝑝,𝑖 is the specific heat of species 𝑖 and is calculated 

with a reference at 0°C for vapor mositure, and ℎ𝑓𝑔,𝑖 accounts for the latent heat of 

vaporization at a reference temperature of 0°C, which is of zero value for dry air. The 

formulation accounts for the sensible and latent portions of the mixture energy in separate 

terms for both the transient and advective terms [25]. This approach provides a means for 

reducing non-linearity that is not needed in cases where the specific heat accounts for both 

types of energy. It is also a method that enables the control of convergence using different 

time steps [25]. We also include two terms for the energy diffusion: a conductive term and 

a term that accounts for the species energy diffusion or the species energy transfer 

accompanying mass transfer. This term is of special importance at macroscopic interfaces. 

2.2.2 Porous Region 

The general framework of the porous model is based on the theory of volume-averaging 

for flow, heat and mass transfer by Whitaker [2]. In this framework, every representative 

elementary volume (REV) for the porous material includes a fluid or void phase, a solid 

phase, and a liquid phase with multiple microscopic interfaces between them. Following 

the approach by Khan et al. [25], a simplification is introduced in which only a single 

microscopic interface is considered between the moist air (void part) and the solid matrix 

which holds the liquid water. Thus, in this simplification, we consider bound water. We 

also consider the free water by allowing the variation of the effective liquid-in-solid 

diffusivity to account for transport of both types of water. Figure 2.2 gives a schematic of 
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a representative elemental volume (REV) showing how the phases are characterized in the 

present formulation.  

 

Figure 2.2: Illustration showing the different constituents in the porous region and the 

simplification of the problem. 

Two types of volume averages are useful for porous media models; an intrinsic average, 

which is the averaged value of a property 𝜑 over a specific phase volume within an REV, 

and an extrinsic average defined as the average value of  𝜑 over the total volume of the 

REV. The expressions for both averages are, respectively, given by,  

 〈𝜑𝑥〉
𝑥 = 

1

𝑉𝑥
∫ 𝜑𝑥
𝑉𝑥

𝑑 𝑉 (2.7) 

 〈𝜑𝑥〉 =  
1

𝑉
∫ 𝜑𝑥
𝑉𝑥

𝑑 𝑉 (2.8) 

where 𝑥 represents the phase index, 𝑉𝑥 is the volume of phase 𝑥 within the REV and 𝑉 is 

the total volume of the REV. The following expression is also useful for linking the two 

averages for fluid phases,  

 〈𝜑𝑓〉 = 휀〈𝜑𝑓〉
𝑓  (2.9) 
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with 휀 indicating the porosity defined by the void volume over the total volume of the moist 

material. All the quantities solved for in the porous region are intrinsic averages except for 

the velocity as it is useful to obtain an extrinsic average to characterize the averaged fluid 

flow. In the absence of external forces and external heat and mass sources, the volume-

averaged form of the Navier-Stokes equations for the continuity, momentum, moisture 

mass fractions and energy for the relevant phases are cast, respectively, as,  

 휀
𝜕〈𝜌𝑓〉

𝑓

𝜕𝑡
+ ∇. (〈𝜌𝑓〉

𝑓〈𝐯〉)  = 0 (2.10) 

 

𝜕(〈𝜌𝑓〉
𝑓〈𝐯〉)

𝜕𝑡
+
1

휀
∇. (〈𝜌𝑓〉

𝑓〈𝐯〉〈𝐯〉)

= −휀∇〈𝑃〉𝑓 + 𝜇𝑓∇
2〈𝐯〉 −

휀𝜇𝑓

𝐾
〈𝐯〉 −

휀〈𝜌𝑓〉
𝑓𝑐𝐸

√𝐾
|〈𝐯〉|〈𝐯〉 

(2.11) 

 
휀
𝜕(〈𝜌𝑓〉

𝑓〈𝑌𝑣,𝑓〉
𝑓)

𝜕𝑡
+ ∇. (〈𝜌𝑓〉

𝑓〈𝑌𝑣,𝑓〉
𝑓〈𝐯〉)

= ∇. (〈𝜌𝑓〉
𝑓𝐷𝑒𝑓𝑓,𝑓∇〈𝑌𝑣,𝑓〉

𝑓) + 〈�̇�𝑓𝑠〉 

(2.12) 

 (1 − 휀)
𝜕(〈𝜌𝑠〉

𝑠〈𝑌𝑤,𝑠〉
𝑠)

𝜕𝑡
= ∇. (〈𝜌𝑠〉

𝑠𝐷𝑒𝑓𝑓,𝑠∇〈𝑌𝑤,𝑠〉
𝑠) − 〈�̇�𝑓𝑠〉 (2.13) 

 

∑휀𝑐𝑝,𝑖
𝜕(〈𝜌𝑓〉

𝑓〈𝑌𝑖,𝑓〉
𝑓〈𝑇𝑓〉

𝑓)

𝜕𝑡
𝑖

+∑휀ℎ𝑓𝑔,𝑖
𝜕(〈𝜌𝑓〉

𝑓〈𝑌𝑖,𝑓〉
𝑓)

𝜕𝑡
𝑖

+∑𝑐𝑝,𝑖∇. (〈𝜌𝑓〉
𝑓〈𝑌𝑖,𝑓〉

𝑓〈𝑇𝑓〉
𝑓〈𝐯〉)

𝑖

+∑ℎ𝑓𝑔,𝑖∇. (〈𝜌𝑓〉
𝑓〈𝑌𝑖,𝑓〉

𝑓〈𝐯〉)

𝑖

= 𝑘𝑒𝑓𝑓,𝑓∇
2〈𝑇𝑓〉

𝑓

+∑∇. [〈𝜌𝑓〉
𝑓𝐷𝑒𝑓𝑓,𝑓∇〈𝑌𝑖,𝑓〉

𝑓(𝑐𝑝,𝑖〈𝑇𝑓〉
𝑓 + ℎ𝑓𝑔,𝑖)]

𝑖

+ ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉
𝑠 − 〈𝑇𝑓〉

𝑓) + �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 

(2.14) 
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∑(1− 휀)𝑐𝑝𝑠,𝑖
𝜕(〈𝜌𝑠〉

𝑠〈𝑌𝑖,𝑠〉
𝑠〈𝑇𝑠〉

𝑠)

𝜕𝑡
𝑖

= 𝑘𝑒𝑓𝑓,𝑠∇
2〈𝑇𝑠〉

𝑠 +∑∇. [〈𝜌𝑠〉
𝑠𝐷𝑒𝑓𝑓,𝑠∇〈𝑌𝑖,𝑠〉

𝑠(𝑐𝑝𝑠,𝑖〈𝑇𝑠〉
𝑠)]

𝑖

− ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉
𝑠 − 〈𝑇𝑓〉

𝑓) − �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 

(2.15) 

The additional terms in the volume-averaged equations result from the closure of the 

volume-averaging process. The last two terms of the momentum equation (Eq. 2.11) are 

the heuristic skin and form drag terms, respectively, resulting from the frictional effects on 

the flow in the void constituent that are filtered through the volume-averaging. The non-

equilibrium approach to treating heat and mass transfer is achieved through the solution of 

two coupled phase equations for energy transfer, (Eqs. 2.14-2.15), and mass transfer, (i.e. 

vapor mass fraction equation for the fluid constituent and liquid mass fraction equation for 

the solid constituent; Eqs. 2.12-2.13). The terms ℎ𝑓𝑠𝐴𝑓𝑠(〈𝑇𝑠〉
𝑠 − 〈𝑇𝑓〉

𝑓) , 〈�̇�𝑓𝑠〉 and �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 

are the heat and mass transfer closure terms that require careful consideration for dynamic 

coupling. The first term represents the convective interfacial heat transfer term between the 

fluid and solid phase of the porous region. This convective coefficient hfs is evaluated using 

a local empirical heat transfer correlation as it is only a function of the fluid mixture 

properties, the fluid flow, and the internal geometry of the porous material. This term is 

not dynamic in nature and is present with the same form as in non-mass-transfer problems 

[36]. 〈�̇�𝑓𝑠〉 is the local interfacial mass exchange term representing the mass flux 

exchanged between the moist solid and fluid mixture phases (see Fig. 2.2). This term is 

dynamically varying and will be discussed extensively in subsequent sections. �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 is the 

interfacial closure term that is analogous to the species energy diffusion term. It represents 

the heat exchanged between the phases accompanying mass exchange. It is also 

dynamically varying and is related to the source of the vaporization energy and the 

apportioning of this energy on the different phases. This term will also be discussed in 

subsequent sections. It is also worth mentioning that the effective conductivities and mass 

diffusivities in the heat and mass transfer transport equations are considered porous 

material properties that are functions of the nature of the heat and mass transfer processes. 
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They represent effects of the transport phenomena (i.e. whether diffusive, capillary or 

surface tension effects) microscopically and are scaled-up through the volume-averaging 

process. They also represent dispersion and tortuosity effects and are often functions of 

moisture content and temperature. It is noted here however, that existing studies contain a 

great deal of empiricism when they handle these coefficients. It is noted that experiments 

are required to accurately estimate these properties at the microscopic level at different 

conditions, so that pore level simulations may be effectively used to arrive at the correct 

volume-averaged values for these effective properties.  

Another aspect to highlight is the fact that the closure mass exchange source term is absent 

from the continuity equation. The present formulation utilizes a unique discretization 

approach that allows for the update of the mixture density within each time step for the 

continuity, momentum and energy equations, while it explicitly includes a source term in 

the mass transfer equations. This technique was described in the work of Khan et al. [25] 

and also resulted in the absence of the  �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 source term from their formulation, as the 

total vaporization energy was apportioned to the void constitiuent of the porous material. 

While this assumption is not an issue for evaporative cooling cases, it is relatively 

inaccurate for cases with high temperature gradients. A solution for this issue will be 

presented in subsequent sections. Another difference from Khan et al. [25] is in regards to 

the liquid mass fraction 〈𝑌𝑤,𝑠〉
𝑠. Herein, we define the liquid mass fraction on a dry basis, 

as opposed to a wet basis, so that 〈𝑌𝑠,𝑠〉
𝑠 = 1, and the solid density 〈𝜌𝑠〉

𝑠 is a constant value, 

which removes a non-linearity in the computational solution that is no longer required. By 

this approach, the level of water saturation of the porous material is not required to be 

specified in the formulation, unlike the work of Khan and Straatman [9], as they specified 

their solid matrix to be volume-saturated with water at the start of drying, which is not 

necessarily true. 

2.2.3 Macroscopic Coupling Conditions 

Interface conditions are required to robustly and accurately couple the transport equations 

in the pure fluid and porous regions. They also ensure the smoothness and continuity of 

solved quantities across interfaces. The interface conditions take into account the different 
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nature of the point equation on the fluid side compared to the volume-averaged equation 

on the porous side. The conditions for the fluid flow and pressure are cast as: 

 𝐯𝑓𝑙 = 〈𝐯〉𝑝𝑜𝑟 (2.16) 

 𝑃𝑓𝑙 = 〈𝑃〉𝑝𝑜𝑟
𝑓
  (2.17) 

in which the extrinsic velocity and intrinsic pressure are continuous (see reference [37] for 

specifics). The fluxes of mass transfer have to match as well, i.e. the sum of the (liquid and 

vapor) diffusive mass fluxes leaving/entering on the porous side has to be continuous with 

the entering/leaving vapor flux on the fluid side. This is expressed mathematically as, 

 (−𝜌𝑓𝐷𝑓
𝜕𝑌𝑣
𝜕𝒏
)
𝑓𝑙
= (−〈𝜌𝑓〉

𝑓𝐷𝑒𝑓𝑓,𝑓
𝜕〈𝑌𝑣,𝑓〉

𝑓

𝜕𝒏
− 〈𝜌𝑠〉

𝑠𝐷𝑒𝑓𝑓,𝑠
𝜕〈𝑌𝑤,𝑠〉

𝑠

𝜕𝒏
)
𝑝𝑜𝑟

 (2.18) 

For a combined heat and mass transfer problem, the macroscopic interface condition is 

different from that described by Betchen et al. [37]. In this case, the sum of both sensible 

and latent fluxes must be in balance, and this is expressed as, 

 

(−𝑘𝑓(
𝜕𝑇

𝜕𝒏
) −∑[𝜌𝑓𝐷𝑓(

𝜕𝑌𝑖
𝜕𝒏
)(𝑐𝑝,𝑖𝑇 + ℎ𝑓𝑔,𝑖)]

𝑖

)

𝑓𝑙

= (−𝑘𝑒𝑓𝑓,𝑓
𝜕〈𝑇𝑓〉

𝑓

𝜕𝒏

−∑[〈𝜌𝑓〉
𝑓𝐷𝑒𝑓𝑓,𝑓 (

𝜕〈𝑌𝑖,𝑓〉
𝑓

𝜕𝒏
) (𝑐𝑝,𝑖〈𝑇𝑓〉

𝑓

𝑖

+ ℎ𝑓𝑔,𝑖)]−𝑘𝑒𝑓𝑓,𝑠
𝜕〈𝑇𝑠〉

𝑠

𝜕𝒏

−∑[〈𝜌𝑠〉
𝑠𝐷𝑒𝑓𝑓,𝑠 (

𝜕〈𝑌𝑖,𝑠〉
𝑠

𝜕𝒏
) (𝑐𝑝𝑠,𝑖〈𝑇𝑠〉

𝑠)]

𝑖

)

𝑝𝑜𝑟

 

(2.19) 

Equations (2.16-2.19) represent the mathematical conditions of the conjugate coupling 

across macroscopic interfaces. The actual implementation and discretization selected to 
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achieve these conditions is presented in detail for the hydrodynamics by Betchen et al. [37]. 

In regards to heat and mass transfer, a discussion will follow in a subsequent section. 

2.3 Dynamic Coupling models 

Now that the formulation of the conjugate problem is presented along with a means for 

coupling regions across interfaces, the task turns to formulating physics-based dynamic 

models that account for mass and energy transfers at microscopic (interstitial) and 

macroscopic interfaces. As noted in section 2.2, the terms that require specific attention are 

the mass exchange terms and their associated vaporization energy terms. In the subsections 

to follow, models are formed for these terms at microscopic and macroscopic interfaces 

that, when combined with the formulation of section 2.2, yield a complete non-equilibrium 

heat and mass transfer model that can be used for a variety of drying processes. 

2.3.1 Coupling of phase heat and mass transfer at microscopic 
interfaces 

When one considers the mass exchange term, a first choice and a seemingly reasonable 

form for this term would be a mass transfer analogue for Newton’s law of cooling, as given 

by Khan et al. [25], 

 〈�̇�𝑓𝑠〉 = 〈𝜌𝑓〉
𝑓ℎ𝑓𝑠𝑚𝐴𝑓𝑠(〈𝑌𝑣〉

𝑓𝑠 − 〈𝑌𝑣,𝑓〉
𝑓) (2.20) 

where ℎ𝑓𝑠𝑚 is a convective mass transfer coefficient that is obtained from an empirical 

correlation of mass transfer based on the characteristics of the flow and the geometry of 

the porous material and 〈𝑌𝑣〉
𝑓𝑠 is the surface fluid mass fraction (assumed at 100 % relative 

humidity in the work of Khan et al. [25]). The above expression is suitable whenever the 

moist solid has sufficient liquid water present, however if drying out is imminent, either 

the expression is not suitable or it has to be empirically adjusted [25]. Equation 2.20 is also 

based on pure diffusion through the mass transfer boundary layer and does not consider an 

advective flux near the solid surface which, in cases where advective effects are 

considerable, will compromise the accuracy. The physics of the mass transfer process 

indicates the existence of two main resistances. The first is an internal resistance from the 

core of the solid to the microscopic interface. This resistance becomes important when the 
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moist material gets relatively dry, meaning the solid constituent supply of moisture 

becomes less than the air side capacity for moisture withdrawal. The second resistance is 

on the air side as the surface vapor diffuses and is advected to the air stream. Phase change 

is considered to occur at the microscopic interface and is assumed not to interplay with 

these resistances. Furthermore, the higher of these two described resistances is considered 

rate-determining. To develop an air side resistance expression, we assume the solid portion 

of the porous medium to consist of uniform sized spherical particles (See Fig. 2.2). These 

particles are analogous to spray droplets in an air stream [38] when we consider mass 

transfer.  

 

Figure 2.3: Schematic showing a spherical solid holding liquid water within its 

micro-pores subjected to a stream of moist air. 

Figure 2.3 shows a schematic of a spherical solid showing the profiles of liquid and vapor 

mass fraction in the solid and moist air. If we consider the thin vapor mass fraction 

diffusion layer using a quasi-steady, one dimensional (i.e. radial) diffusion point equation, 

then taking both advection and diffusion into consideration [38], we obtain, 

 〈�̇�𝑓𝑠〉 = 〈𝜌𝑓〉
𝑓ℎ𝑓𝑠𝑚𝐴𝑓𝑠 𝑙𝑛 (

1 − 〈𝑌𝑣,𝑓〉
𝑓

1 − 〈𝑌𝑣〉𝑓𝑠
) (2.21) 
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Or, in the interest of implicit implementation and convergence control, we cast Eq. 2.21 as, 

 〈�̇�𝑓𝑠〉 =  〈𝜌𝑓〉
𝑓ℎ𝑓𝑠𝑚𝐴𝑓𝑠 

ln( 1 + 𝐵)

𝐵
(
〈𝑌𝑣〉

𝑓𝑠 − 〈𝑌𝑣,𝑓〉
𝑓

1 − 〈𝑌𝑣〉𝑓𝑠
) (2.22) 

where B is the local Spalding mass transfer number, defined by (〈𝑌𝑣〉
𝑓𝑠 − 〈𝑌𝑣,𝑓〉

𝑓)/(1 −

〈𝑌𝑣〉
𝑓𝑠). Another change we introduce is in regards to the surface vapor mass fraction.  To 

prolong the validity of Eq. 2.22 as the material loses moisture with time, we introduce the 

deviation from surface vapor saturation using the water activity concept. It has been 

mentioned earlier that the water activity is an application of the thermodynamic 

equilibrium for the moist material; it introduces a relation between the liquid water mass 

fraction 〈𝑌𝑤,𝑠〉
𝑠 and the solid surface vapor relative humidity (i.e. water activity) that is 

based on an equal chemical potential for both phases [6]. This relation is often referred to 

as the sorption isotherm, as it is different for different surface temperatures. Based on this 

approximation, the surface vapor mass fraction is defined as, 

 〈𝑌𝑣〉
𝑓𝑠 = 

𝑎𝑤𝑃𝑠𝑎𝑡.
〈𝜌𝑓〉𝑓𝑅𝑣〈𝑇𝑠〉𝑠

 (2.23) 

with 𝑎𝑤 representing the water activity and 𝑃𝑠𝑎𝑡 calculated at the particle surface 

temperature. Equation 2.22 is valid as long as the thermodynamic equilibrium assumption 

is valid. If the solid side resistance is rate-determining, the expression will not be accurate. 

In this case, as drying out becomes imminent, the surface of the solid becomes almost dry 

and the moisture is mostly embedded in the core of the solid constituent, which violates 

the thermodynamic equilibrium assumption, since the present formulation does not include 

the effect of shrinkage. Given that the process of liquid diffusion in the solid constituent is 

assigned an effective diffusivity 𝐷𝑒𝑓𝑓,𝑠, it is physically reasonable to assume a significant 

diffusion thickness within the solid particle, in which the significant part of the liquid 

concentration difference occurs based on this effective diffusivity; a concept that is 

analogous to the one widely used in the lumped conduction models [39]. Usually lumped 

conduction models have a strong dependence on the order of the transient. In the present 

model however this dependence on the transient can impose time step restrictions. Thus, 
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instead of the lumped diffusion approach, we estimate a significant diffusion thickness 

using the concept of the volume-averaging. Since the boundary layer thickness on the vapor 

side is considered of a length scale that is small enough not to violate a fixed volume 

averaged quantity throughout the fluid volume in a CFD cell, the significant diffusion 

thickness 𝛿𝑑𝑖𝑓𝑓. is reasonable to be of the same order of magnitude, but with respect to the 

solid volume. If we assume that the ratio of length scales associated with both resistances 

is proportional to the phase volume ratio then, 

 𝛿𝑑𝑖𝑓𝑓. = 
𝑑𝑝

𝑆ℎ
(
1 − 휀

휀
)1/3 (2.24) 

with (𝑑𝑝/𝑆ℎ) representing that ratio of the average particle diameter over the local 

Sherwood mass transfer number; i.e. the vapor mass transfer boundary layer thickness. 

Then, based on Eq. 2.24, the solid side mass exchange expression can be cast as, 

 〈�̇�𝑓𝑠〉 = 〈𝜌𝑠〉
𝑠
𝐷𝑒𝑓𝑓,𝑠
𝛿𝑑𝑖𝑓𝑓.

𝐴𝑓𝑠 (〈𝑌𝑤,𝑠〉
𝑠 − 〈𝑌𝑤,𝑠〉

𝑓𝑠) (2.25) 

For the solid side resistance to be dominant, the surface liquid fraction 〈𝑌𝑤,𝑠〉
𝑓𝑠 must be 

negligible. A check is performed locally within the non-linear CFD loop on whether the 

mass transfer by Eq. 2.22 or Eq. 2.25 is lower in value and the lower value is implemented 

implicitly.  When Eq. 2.25 is utilized, we equate the expression given by Eq. 2.20 to Eq. 

2.25, and obtain a mass transfer coefficient that is smoothly declining as a function of 

〈𝑌𝑤,𝑠〉
𝑠. The implicit technique of implementation ensures smooth convergence. 

Now we turn our attention to the energy exchange closure term �̇�𝑓𝑠
𝑚𝑎𝑠𝑠. This term basically 

accounts for the addition/subtraction of enthalpy due to the mass flux entering/exiting each 

of the phase volumes. In this respect, the moisture mass either leaves the solid phase as a 

liquid – i.e. indicating it takes its vaporization energy from the fluid constituent – or it 

leaves as a vapor, withdrawing its vaporization energy from the solid constituent. In 

evaporative cooling applications [25], the former approximation could be selected, while 

for materials that are highly resistive to liquid diffusion and involve a significant difference 
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between solid and fluid constituents’ temperature – i.e. significant thermal non-equilibrium 

– the latter approximation is usually selected (an observation that is made for most of the 

particle and grain drying studies [27],[30],[32]). Both approximations, however, introduce 

a loss of generality as both phases participate in the evaporation process [34]. To obtain a 

general expression for the energy of mass exchange, we assume that the shares of the 

vaporization energy are closely correlated to the heat transfer, i.e. conductive/advective 

resistances for both phases. We consider the local Biot number defined as, 

 
𝐵𝑖 =

ℎ𝑓𝑠(
𝑑𝑝
𝑁𝑢 (

1 − 휀
휀 )

1
3
)

𝑘𝑒𝑓𝑓,𝑠
 

(2.26) 

noting that we estimate the length scale of solid conduction by a local nusselt number (𝑁𝑢) 

in a manner similar to Eq. 2.24. Since this local Biot number represents the ratio between 

the resistances of solid conduction to the outside fluid convection, we use it to define a 

proportioning factor 𝛼, where this factor represents the fraction of the vaporization energy 

that the solid constituent contributes.  Assuming that solid-to-fluid ratio of the share of 

mass transfer energy is proportional to the inverse ratio of heat resistances, we define the 

proportioning factor as, 

 𝛼 = 
1

𝐵𝑖 + 1
 (2.27) 

Based on this proportioning factor 𝛼, the heat transfer exchange term is defined as, 

 �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 = 〈�̇�𝑓𝑠〉[𝛼ℎ𝑣(〈𝑇𝑠〉

𝑠) + (1 − 𝛼)ℎ𝑙(〈𝑇𝑠〉
𝑠)] (2.28) 

where ℎ𝑣 and ℎ𝑙 are the vapor and liquid specific enthalpies evaluated at the surface particle 

temperature. This apportioning process is valid when the surface of the solid constituent is 

relatively wet. For cases when Eq. 2.25 is used, the surface of the solid is assumed dry and 

hence the outer fluid region is assumed not to be in contact with the liquid embedded in 

the core of the solid constituent.  In this case 𝛼 = 1, indicating that all of the vaporization 

energy is obtained from the solid constituent. In Eq. 2.28, ℎ𝑣 and ℎ𝑙 are absolute enthalpies 

referenced at absolute zero temperature. Specific heats of liquid and vapor moistures, 
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referenced at 0 K are used for this purpose as adopted from Pakowski et al. [40]. To perform 

the proportioning described here within the context of the unique discretization approach 

used in Khan et al. [25], the term 〈�̇�𝑓𝑠〉ℎ𝑣(〈𝑇𝑓〉
𝑓) is added explicitly to the source term in 

the fluid temperature energy equation in the porous region. 

2.3.2 Coupling of heat and mass transfer at macroscopic interfaces 

The present subsection introduces an approach for practical implementation of the 

mathematical conditions that were presented in section 2.2.3. The main focus is directed at 

coupling the fluid side equation to the two non-equilibrium equations on the porous side 

for heat and mass transfer. If we idealize the interface condition to be one dimensional, 

following on the work of Betchen et al. [37] and Khan et al. [25], we are able to produce 

moisture and temperature circuit analogues for mass and heat transfer exchange processes, 

respectively. First, we consider the moisture exchange circuit illustrated in Fig. 2.4, which 

shows a clear fluid cell (P) with a porous cell (E) adjacent to its east face, separated by face 

‘e’. The diffusion mass fluxes obtained from the defined resistances are implemented 

implicitly, as the in-house code solves both regions and both equations simultaneously.  

Five resistances are introduced: 𝑅𝑣1𝑓 and 𝑅𝑣𝑓 represent the fluid leg resistances that link 

the nodal fluid vapor mass fractions. 𝑅𝑣2𝑠, 𝑅𝑓−𝑠 and 𝑅𝑊𝑠 are the solid leg resistances that 

link the porous node’s solid phase liquid fraction to the fluid node’s vapor fraction. The 

fluid leg of the resistance is straightforward and is treated using a technique similar to Khan 

et al [25], where the relevant resistances are defined as, 

 𝑅𝑣1𝑓 =
∆𝑥𝑃𝑒

𝜌𝑓𝑃휀𝐴𝑒𝐷𝑓
          , 𝑅𝑣𝑓 =

∆𝑥𝑒𝐸
〈𝜌𝑓〉𝑓𝐸

𝐴𝑒𝐷𝑒𝑓𝑓,𝑓
 (2.29) 

Using the harmonic mean formulation [37] to couple the two cells, we obtain, 

 �̇�𝑣𝑓 =
〈𝑌𝑣,𝑓〉

𝑓
𝐸
− 𝑌𝑣  𝑃

𝑅𝑣1𝑓 + 𝑅𝑣𝑓
 (2.30) 

Now, we shift attention to the solid leg of the resistance, which requires consideration of 

two factors: the dynamic nature of the variation in its resistances which vary strongly in 
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space and time and necessitate a strong and implicit form of coupling; and, the fact that the 

two nodal values are for different quantities, i.e. liquid and vapor fractions. The driving 

potential difference for mass exchange in this case has to be consistent with both sides and 

representative of the physical transport occurring. A technique for achieving these 

requirements is presented here. Two modes of mass transfer are considered. In the first 

mode, the surface of the solid constituent at the macroscopic interface is considered wet, 

meaning that the liquid availability is high enough so that the clear fluid side capacity to 

entrain vapor is the controlling factor for mass transfer. Usually as the convective flow 

moves across and through the moist material, this capacity remains relatively unchanged 

on the fluid side as the fluid is renewable and hence, in the literature this mode of mass 

transfer is referred to as the Constant drying rate period [5],[7],[8].  

 

Figure 2.4: Moisture circuit analogue at the macroscopic interface. 

In the present paper, without loss of generality, we introduce the term Convectively 

dominant for this mode. Referring to Fig. 2.4, consider a spherical solid that is the closest 
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to the fluid/porous interface between cells P and E. The liquid moisture mass fraction inside 

of this spherical solid is 〈𝑌𝑤,𝑠〉
𝑠
𝑒
 and has the value of the liquid moisture presence based 

on the diffusion resistance within half the control-volume at E. The surface vapor fraction 

of this spherical solid 〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.

, is then obtained using Eq. 2.23 since the surface is 

considered wet in this mode of mass transfer. Utilizing the same vapor moisture boundary 

layer concept developed in section 2.3.1, Eq. 2.22 may be used with a driving potential 

difference (〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.
− 〈𝑌𝑣,𝑓〉

𝑓
𝑒
) and an area 𝐴𝑒(1 − 휀) to characterize the mass transport 

between this spherical solid and the clear fluid side. An interface Spalding mass transfer 

number 𝐵𝑖𝑛𝑡𝑒𝑟𝑓. is defined based on the same potential difference, and an interface 

Sherwood number 𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓. is utilized to obtain the mass transfer coefficient. The same 

empirical correlation that is used interstitially is used for 𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓., however the magnitude 

of the velocity calculated to arrive at the interface Reynolds number is estimated at the 

interface based on cell (E)’s two transverse extrinsic velocities and the axial interface 

intrinsic velocity. Using the above approximations, the solid leg resistances are, 

 𝑅𝑣2𝑠 =
∆𝑥𝑃𝑒

𝜌𝑓𝑃(1 − 휀)𝐴𝑒𝐷𝑓
  (2.31a) 

 𝑅𝑓−𝑠 =
𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓. (1− 〈𝑌𝑣,𝑓〉

𝑓
𝑠𝑜𝑙.
)

𝜌𝑓𝑃(1 − 휀)𝐴𝑒𝐷𝑓𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.  ln(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)
  (2.31b) 

 𝑅𝑊𝑠 =
∆𝑥𝑒𝐸

〈𝜌𝑠〉𝑠𝐸𝐴𝑒𝐷𝑒𝑓𝑓,𝑠
   (2.31c) 

One can then obtain the following expression for the mass flux �̇�𝑤𝑠 which is equal to: 

𝜌𝑓𝑃(1 − 휀)𝐷𝑓𝐴𝑒(〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.
− 𝑌𝑣  𝑃)

∆𝑥𝑃𝑒 +
𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓.(1− 〈𝑌𝑣,𝑓〉𝑓𝑠𝑜𝑙.)

𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓. ln(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)

=
〈𝜌𝑆〉

𝑆
𝐸

  𝐷𝑒𝑓𝑓𝑠
𝐴𝑒(〈𝑌𝑤,𝑆〉

𝑆
𝐸
− 〈𝑌𝑤,𝑆〉

𝑆
𝑒
)

∆𝑥𝑒𝐸
 

(2.32) 

Equation 2.32 achieves the required physical transport, but is not useful for coupling. In 

order to achieve the implicit coupling, we have to define a single value for the moisture 

driving potential at the interface that is compatible with both sides so that it is possible to 
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ensure the continuity of the flux across the interface by utilizing the harmonic mean 

formulation. The concept of the equilibrium ratio, developed by Whitman [41], was useful 

in that sense. However, unlike the equilibrium ratio between the two phases’ concentrations 

in his two liquid films, the phase ratio we define here is not of fixed value. It is non-linearly 

varying in space and time. Instead of developing a ratio between both liquid and vapor 

mass fractions, the phase ratio (K) is defined herein as, 

 K =
〈𝜌𝑠〉

𝑠
𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉

𝑠
𝑒

𝜌𝑓𝑃(1 − 휀)𝐷𝑓〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.

 (2.33) 

The ratio is dimensionless and is selected to include densities and diffusivities as a means 

for controlling its order of magnitude and variation. Using the harmonic mean formulation 

[37], Eq. 2.32 can now be recast as, 

 

�̇�𝑊𝑠 =
𝐴𝑒(〈𝜌𝑠〉

𝑠
𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑆〉

𝑆
𝐸
− K 𝜌𝑓𝑃(1 − 휀)𝐷𝑓𝑌𝑣  𝑃)

K  (∆𝑥𝑃𝑒 +
𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓. (1− 〈𝑌𝑣,𝑓〉𝑓𝑠𝑜𝑙.)

𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓. ln(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)
) + ∆𝑥𝑒𝐸

 

(2.34) 

which is implemented implicitly. The ratio K is locally available for convectively dominant 

cases, since Eqs. 2.23 and 2.32 make the calculation of 〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.

and 

〈𝑌𝑤,𝑆〉
𝑆
𝑒
 straightforward. 

In the second mode of mass transfer, the surface of the solid constituent at the fluid/porous 

interface is considered dry; i.e. the delivered mass flux from the solid side is lower than the 

air side capacity to withdraw vapor moisture so that the solid side transport of liquid is the 

controlling factor. Since the ability to transport moisture depends on the amount of 

moisture present, this case is referred to in the literature as the Falling drying rate period 

[5],[7],[8], which we refer to as Diffusively dominant. A dry interface leads to the presence 

of a traveling liquid moisture front that shrinks inside the porous material and develops a 

dry layer of porous material at the interface rendering the mechanism of mass transport as 

mainly vapor diffusion [8]. In a non-volume-averaged porous domain, the dry layer 

thickness will increase significantly with time as the substance dries up. However, in the 
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present formulation we use a single value for liquid mass fraction to characterise the whole 

control volume and hence, to satisfy the concept of volume-averaging, this thickness has 

to be small enough and compatible with the microscopic scales of the volume-averaging 

process such that the values of the volume-averaged liquid mass fraction for the porous 

cells adjacent to the macroscopic interface are representative of the moisture present. Thus, 

we assume the dry layer thickness to be of the same order of magnitude as the drying 

boundary layer thickness. The interface resistance network shown in Fig. 2.4 is also used 

to represent diffusively dominant cases. For this case, the dry layer resistance is 𝑅𝑓−𝑠. The 

main solid leg circuit resistances 𝑅𝑣2𝑠 and 𝑅𝑊𝑠 have the same definition as in Eq. 2.31, 

while the dry layer resistance is modified to, 

 𝑅𝑓−𝑠 =
𝑑𝑝/𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.

𝜌𝑓𝑃(1 − 휀)𝐴𝑒𝐷𝑓
 (2.35) 

Based on Eq. 2.35, the solid leg mass flux for diffusively dominant cases is then given by, 

 �̇�𝑊𝑠 =
𝐴𝑒(〈𝜌𝑆〉

𝑆
𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑆〉

𝑆
𝐸
− K 𝜌𝑓𝑃(1 − 휀)𝐷𝑓𝑌𝑣  𝑃)

K  (∆𝑥𝑃𝑒 +
𝑑𝑃

𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.
) + ∆𝑥𝑒𝐸

 (2.36) 

Thus, while Eq. 2.33 still represents the phase ratio in the diffusively dominant mode, as 

the surface of the solid constituent becomes dry, the 〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.

 is no longer valid as 

estimated by Eq. 2.23. Moreover, 〈𝑌𝑤,𝑆〉
𝑆
𝑒
 is no longer available. Since we assume the 

liquid mass fraction to be negligible at the interface, the following equation representing 

an estimate of the mass transfer at the dry layer can be cast as,  

 𝜌𝑓𝑃(1 − 휀)𝐷𝑓 (〈𝑌𝑣,𝑓〉
𝑓
𝑠𝑜𝑙.
− 〈𝑌𝑣,𝑓〉

𝑓
𝑒
) = 〈𝜌𝑆〉

𝑆
𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉

𝑠
𝑒
 (2.37) 

After inserting Eq. 2.33 into Eq. 2.37, we arrive at, 

 
K = 1 −

1

1 +
〈𝜌𝑠〉𝑠𝐸𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉

𝑠
𝑒

𝜌𝑓𝑃(1 − 휀)𝐷𝑓〈𝑌𝑣,𝑓〉
𝑓
𝑒

 
(2.38) 
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In the solution procedure, the ratio 〈𝑌𝑤,𝑠〉
𝑠
𝑒
/〈𝑌𝑣,𝑓〉

𝑓
𝑒
 is estimated explicitly from the 

solution of the previous time step, since extrapolation of either of the mass fraction values 

independently could artificially increase the importance of one side’s resistance over the 

other side. 

To determine the mode of mass transfer of the problem, a check based on Eq. 2.32 is 

performed locally at every time step before calculating the values of any of the solid leg 

resistances. The check sets 〈𝑌𝑤,𝑠〉
𝑠
𝑒
 to zero and considers the interface convectively 

dominant if the left hand side is lower than the right, and diffusively dominant otherwise.   

We now turn our attention to the energy exchange closure term, �̇�𝑓𝑠
𝑚𝑎𝑠𝑠, at the macroscopic 

interface. Recall that Eq. 2.19 represents the mathematical condition of heat transfer at the 

interface. In a manner similar to the notion that the pressure and normal stresses at the 

interface balance separately on each side instead of their sum (Betchen et al. [37]), we 

assume that the conduction and the species diffusive energy terms also balance separately. 

The conduction terms are set in balance using the approach presented in Betchen et al. [37] 

and is implemented implicitly. The fluid species diffusion energy balance between the clear 

fluid and the fluid portion of the porous cell is implemented explicitly as source terms in 

the discrete transport equations and is represented through the species diffusion energy 

term in Eqs. 2.6 and 2.14. The solid portion of the porous cell to the clear fluid cell’s species 

diffusion energy balance is expressed as,  

 �̇�𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑚𝑎𝑠𝑠 = ‖ �̇�𝑊𝑠 . ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.

𝑆 ‖. 𝒏 =  ‖�̇�𝑊𝑠 . ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑓

‖. 𝒏  (2.39) 

where �̇�𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑚𝑎𝑠𝑠  represents the energy source/sink that is explicitly added/subtracted from 

the solid portion of the porous cell and subtracted/added to the clear fluid cell. ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑆   and 

ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑓

 are the interface values for the specific enthalpy at the solid and fluid sides, 

respectively. To determine the value for these enthalpies, we follow an approach that is 

analogous to Eqs. 2.26-2.28 for the apportioning of vaporization energy between the phases 

on the solid side leg of the species energy exchange. Defining an interface Biot number 

and an interface proportioning factor as, 
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 𝐵𝑖𝑖𝑛𝑡𝑒𝑟𝑓. =
(1 − 휀)𝑘𝑓

𝑘𝑒𝑓𝑓,𝑠
         ,        𝛼𝑖𝑛𝑡𝑒𝑟𝑓. = 

1

𝐵𝑖𝑖𝑛𝑡𝑒𝑟𝑓. + 1
 (2.40) 

and following on with the same reasoning as for the microscopic interface, we obtain, 

 �̇�𝑓𝑠𝑚𝑎𝑐𝑟𝑜.
𝑚𝑎𝑠𝑠 = �̇�𝑊𝑠[𝛼𝑖𝑛𝑡𝑒𝑟𝑓.ℎ𝑣(〈𝑇𝑠〉

𝑠
𝑒
) + (1 − 𝛼𝑖𝑛𝑡𝑒𝑟𝑓.)ℎ𝑙(〈𝑇𝑠〉

𝑠
𝑒
)] (2.41) 

which is utilised for convectively dominated transport. For diffusively dominated transport 

𝛼𝑖𝑛𝑡𝑒𝑟𝑓. = 1.  The interface solid temperature value is evaluated using the harmonic mean 

formulation. We also add the term �̇�𝑊𝑠ℎ𝑣(𝑇𝑃) explicitly in the energy equation in the fluid 

cell adjacent to the interface to be consistent with the unique discretization approach used 

in Khan et al. [25]. 

2.4 Verification of heat/mass transfer formulation  

The models described in section 2.3 are implemented into the in-house conjugate CFD 

code described in [25]. Cases have been chosen to demonstrate the viability of the dynamic 

coupling formulation across a wide range of drying applications. Note once again that the 

key feature of the present approach is that the microscopic and macroscopic interface 

treatments are self-adjusting in response to physical changes that occur during the process 

such that no ad-hoc coefficients require adjustment from case to case.  It is shown in the 

following cases that an expression is required to characterize the dependence of 𝐷𝑒𝑓𝑓,𝑠 with 

respect to moisture and temperature; a relationship that could be provided experimentally.  

The verification considers drying of a bed of coal particles, which focuses on heat and mass 

exchanges inside the porous bed without the presence of a macroscopic interface. Cases 

are then presented to demonstrate the efficacy of the formulation in diffusively-dominant 

and convectively-dominant drying modes by considering conjugate domain cases with 

microscopic and macroscopic interfaces. All simulations were run serially using a single 

2.4 GHz Intel ® Core ™ i7 processor with 6 GB of RAM.  

2.4.1 Hot air drying of a packed bed of coal particles 

The microscopic interface treatment inside the porous region is validated using a study of 

coal packed-bed particle drying (Stakić and Tsotsas [33]), which is depicted in Fig. 2.5. 
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For this case, air flowing at 1 m/s, with 0.008 specific humidity and 100°C enters the 

bottom of a vertical cylindrical bed containing coal particles at 20°C and 〈𝑌𝑤,𝑆〉
𝑆
𝑖𝑛𝑖𝑡.

=

 0.423 kg/kg dry solid. A distributor is mounted at the bed inlet so that the inlet velocity 

profile can be assumed uniform. The distributor also prevents back conduction and 

diffusion making possible the exclusion of macroscopic interfaces in the problem. The bed 

is cylindrical and the walls are considered insulated. Making use of axisymmetry, the two 

dimensional half of the bed is simulated with one side as a symmetry boundary condition 

and the other side as a heat and mass insulated wall. The domain consists of structured 

Cartesian elements with mesh refinement at the cylinder wall (y=D/2). After grid and 

temporal convergence testing, a mesh of 25×25×1 and a time step of 5 seconds were 

utilised. This yielded overall heat and mass transfer results that were grid-independent to 

better than 0.1%, and smoothly varying profiles within the domain. A typical simulation 

of this case required approximately 8 minutes of wall-clock time.  Table 1 shows the 

relevant information for the simulations, where most properties are obtained from Stakić 

and Tsotsas [33]. The permeability is evaluated using the Ergun equation [42] and the 

specific interfacial surface area is evaluated as 6(1 − 휀)/𝑑𝑃. The Forchheimer coefficient 

𝑐𝐸  and fluid effective diffusivity 𝐷𝑒𝑓𝑓,𝑓 were obtained from Khan et al. [25]. 𝐷𝑒𝑓𝑓,𝑓was not 

assumed to vary because the porosity is relatively high and hence, capillary  and other 

effects that contribute to the change in the fluid diffusivity can be neglected.  

Boundary conditions are imposed as follows: on the inlet (x=0) plane, the velocity was set 

to (u,v,w) = (1,0,0) m/s, pressure extrapolated from inside the domain, and temperature and 

specific humidity at 100°C and 0.008, respectively; at the outlet (x=h) plane, a zero-

gradient boundary condition is specified for all quantities except for pressure, which is set 

to an atmospheric value; on the symmetry (y=0) plane, normal gradients are set to zero for 

all quantities with the exception of the normal (v) velocity component, which is set to zero; 

on the wall (y=D/2), no-slip/impermeable conditions are set for velocity combined with  a 

zero flux (i.e. insulated) condition for heat and mass transfer, while pressure was 

extrapolated. 
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Table 2.1: Coal Particles Properties [33], [25]. 

ℎ (m) 
0.2  

Dry Solid specific heat, 𝑐𝑝𝑠 

(kJ/kg.K) 
1.55  

𝐷 (m) 0.15  Specific interfacial area, 𝐴𝑓𝑠 (m
-1) 125.2  

Porosity,  휀 0.52 Average Particle diameter, 𝑑𝑝 (m) 0.023  

Permeability, K (m2) 
2.152x10-6  

Solid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑠 (W/m.K.) 
0.058  

Forchheimer Coefficient, 𝑐𝐸 
0.244 

Fluid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑓  (W/m.K.) 
0.0237  

Dry Solid density, 〈𝜌𝑠〉
𝑠 

(kg/m3) 
1250  

Fluid effective diffusivity, 𝐷𝑒𝑓𝑓,𝑓 

(m2/s) 

1.522 

x10-6  

The coal particles water activity is defined as [33], 

 𝑎𝑊 = 1 − exp  (−14.027 〈𝑇𝑠〉
𝑠0.62〈𝑌𝑊𝑆

〉𝑠2.7) (2.42) 

We also introduce an expression to characterize the effective liquid-in-solid diffusivity as, 

 𝐷𝑒𝑓𝑓,𝑠 = (2.0 x10
−10)x

(〈𝑌𝑊𝑆
〉𝑠)𝑛

𝑆ℎ
(〈𝑇𝑠〉

𝑠 − 273.15)3.3  (2.43) 

where 𝑛 is a calibration exponent, having a range between 3.5 and 6.5 for different particle 

liquid moisture fractions. It is worth mentioning that 𝐷𝑒𝑓𝑓,𝑠 is the only element of 

calibration required in the present formulation, and this is simply required to give the 

correct dependence of 𝐷𝑒𝑓𝑓,𝑠 with moisture and temperature, a relationship that can be 

provided experimentally 
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Figure 2.5: A schematic of the Coal packed bed and simulation setup. 

To this end, the temperature dependence in Eq. 2.43 is directly adopted from Stakić and 

Tsotsas [33]. The liquid moisture dependence requires calibration however, since the 

model they used for the drying kinetics had some dependence on the shrinking particle 

diameter [33], [43] while our model neglects shrinkage. The average values of the solid 

diffusion coefficient fall between 2.0 x10-8 and 2.4 x10-10, which match relatively well with 

reported literature on the overall drying effective diffusivity [44]. Local Nusselt and 

Sherwood numbers are based on correlations reported by Ginzburg and Savina [45], which 

are preferred in cases of relatively large particles [33]. The correlations take the forms, 

 𝑁𝑢 =  
ℎ𝑓𝑠𝑑𝑃

𝑘𝑓
= 𝐶𝑇 . 𝑅𝑒𝑑𝑃

𝑚𝑇 . 𝑃𝑟𝑑𝑃
𝑛𝑇 (2.44) 

 𝑆ℎ =
ℎ𝑓𝑠𝑚𝑑𝑃

𝐷𝑓
= 𝐶𝑚. 𝑅𝑒𝑑𝑃

𝑚𝑚 . 𝑆𝑐𝑑𝑃
𝑛𝑚   (2.45) 

where, 𝑛𝑇 = 𝑛𝑚 = 0.33 and for 𝑅𝑒𝑑𝑃 > 300, 𝐶𝑇 = 𝐶𝑚 = 0.977 and 𝑚𝑇 = 𝑚𝑚 = 0.595 

while for, 𝑅𝑒𝑑𝑃 ≤ 300, 𝐶𝑇 = 𝐶𝑚 = 1.83 and 𝑚𝑇 = 𝑚𝑚 = 0.485.  

Figures 2.6 and 2.7, show the average solid constituent’s moisture content and temporal 

temperature variation for the coal packed bed on the symmetry line of the bed. The 
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comparison between the present model and the experiment reported by Stakić and Tsotsas 

[33] shows excellent agreement in terms of the physical trends suggesting that the dynamic 

coupling model correctly represents the physics of the drying problem. The rate of drying 

is observed to change as a function of different factors that interplay together to cause the 

observed drying regimes. These factors include the temperature variation, water activity, 

effective diffusivity variation and mode of interstitial mass transfer (i.e. whether the 

convective expression is active or the diffusive one). One may conclude however that the 

rate of drying becomes very low at an average moisture content of about 0.17 kg/kg dry 

solid which may be called ‘the equilibrium moisture content’ of the present case of drying. 

The temperature variation shown in Fig. 2.7 indicates that heating of the cold bed solid 

particles is non-linear in time, depending on whether the drying rate is high enough so that 

the energy supplied with incoming air is utilized directly in evaporation (i.e. supplies an 

amount of heat that is almost equal to the amount that the solid constituent contributes with 

in the evaporation) or is utilized sensibly to heat the bed (i.e. the drying rate is small so that 

heat is mostly raising the enthalpy of the solid constituent). Arriving at the correct trend 

for heat transfer in Fig. 2.7 was possible using the �̇�𝑓𝑠
𝑚𝑎𝑠𝑠 term as defined in Eq. 2.28.  

Figure 2.8 illustrates the variation of the liquid moisture fraction, fluid temperature and 

particle temperature along the height of the bed at different instants in time. A typical 

drying scenario is observed for the liquid moisture, wherein a drying front propagates from 

inlet to outlet with increasing time. The drying front moves as the air capacity becomes 

exhausted. The drying capacity is different in the coal-drying case as compared to other 

more highly saturated materials (i.e. particles with saturated surfaces), since lower water 

activities tend to decrease this capacity, resulting in a final moisture content that is still 

relatively high. To elaborate further on this point, the rate of local mass transfer is much 

lower in the present case as the local difference between the coal temperature-dependent 

water activity and air relative humidity decreases. This is consistent with information 

present in the literature about coal drying. If we compare this to the case of drying of wet 

wood wool that was reported by Khan et al. [25], the absence of water activity and its 

temperature-dependence in their interface model results in predictions of dry-out of the 

wood wool. 
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Figure 2.6: Temporal variation of the coal bed averaged liquid mass fraction 

compared to the experimental results reported in Stakić and Tsotsas [33]. 

 

Figure 2.7: Temporal variation of the coal bed averaged solid particle temperature 

compared to the experimental results reported in Stakić and Tsotsas [33]. 
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Figure 2.8: Axial variation of the centerline value for liquid moisture fraction, 

particle and void temperatures at different simulation times. 

 

A gradual increase of fluid and particle temperature is also illustrated in Fig. 2.8, in which 

a heating front propagates in an analogous manner to the drying front. The rate at which 

fluid is being heated is significantly faster than the rate of particle heating which indicates 

the strong thermal non-equilibrium and the fact that the thermal resistance inside the solid 

is low as compared to the fluid-side resistance. This also indicates that most of the mass 

transfer energy is withdrawn from the solid constituent. 

2.4.2 Drying of an apple slice 

The present section builds on the coal particle drying simulation, which focused on 

dynamic coupling at microscopic interfaces inside a porous region, and presents a 
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conjugate case that contains both microscopic and macroscopic interfaces, where the 

macroscopic interface is subject to diffusively dominant mass transfer. The problem 

considered is the convective drying of an apple slice. The domain that we adopt here is the 

same as that utilized by Khan and Straatman [9] to mimic experiments conducted by Velić 

et al. [35]. In their study, a 20× 20 ×5 mm3 rectangular (peeled) apple slice was placed in 

an air stream with an inlet condition of 60°C and 9% relative humidity, with inlet air 

velocities in the range 0.64 - 2.75 m/s. Herein, our base case is selected to have an inlet air 

velocity of 1.5 m/s. The domain of study utilizes symmetry to reduce the domain of the 

problem to a quarter of the apple slice with part of the surrounding air stream simulated 

[9]. The simulation setup is directly adopted from Khan and Straatman [9], including the 

mesh (30×20×20 control-volumes with refinement in proximity of all fluid/porous 

interfaces) and the time-step specification (50 seconds with gradual increase from the 

beginning of the simulation for purposes of numerical stability). A typical simulation of 

this case required approximately 29 minutes of wall-clock time.  Figure 2.9 shows the 

simulation setup. Boundary conditions were imposed as follows: at the inlet (x=0) plane, 

velocity was specified as (u,v,w)=(1.5,0,0) m/s with a temperature of 60°C and 9% relative 

humidity, with pressure extrapolated from inside the domain; at the outlet (x=L) plane, 

zero-gradients were specified for all quantities except for pressure, which was set to 

atmospheric; on the symmetry planes (y=0 and z=0), zero-gradients for all quantities 

except for the normal velocity component, which was set to zero; on the top and right-side 

faces of the domain, a zero-gradient is specified for all quantities except for pressure, which 

is extrapolated from inside the domain. The apple slice is specified to have an initial 

moisture content of 7.45 kg/kg dry solid [9]. Table 2 summarizes the values of the 

properties required for the present simulations, as cited from [9]. To evaluate the two apple 

diffusivities, 𝐷𝑒𝑓𝑓,𝑓 and  𝐷𝑒𝑓𝑓,𝑠, a simulation was carried out setting 𝐷𝑓 = 𝐷𝑒𝑓𝑓,𝑓 = 

𝐷𝑒𝑓𝑓,𝑠= 𝐷𝑒𝑓𝑓, where 𝐷𝑒𝑓𝑓 is the drying process effective diffusivity obtained directly from 

Velić et al. [35], and resulting trend have been matched to their experiment. 

This approach is identical to the one used by Khan and Straatman [9], given the absence of 

reliable diffusivity information from the literature. Herein, 𝐷𝑒𝑓𝑓,𝑓 is evaluated by carrying 

out the fluid leg mass flux balance given by Eq. 2.30 using this simulation result and setting 
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𝐷𝑓 to its true value. The same procedure was used to obtain an initial estimate for 𝐷𝑒𝑓𝑓,𝑠, 

which was calibrated later to obtain a better match with the experiment at different inlet 

velocities. Figure 2.10 shows the variation of the diffusivities with liquid moisture ratio 

(ratio of moisture content to initial moisture content). 

 

Figure 2.9: Schematic and grid used for simulation of drying of an apple slice. 

The trend for the variation of the fluid diffusivity is similar to the variations reported for 

vapor diffusion in the literature [46]. The trend of the liquid-in-solid effective diffusivity 

varies within the same orders of magnitude as given by Khan and Straatman [9] and is 

reasonable in terms of the order of magnitude comparison to the overall drying effective 

diffusivity obtained from Velić et al [35]. Local heat and mass transfer correlations are 

different from calibrated correlations utilized in the work of Khan and Straatman [9], which 

are taken from Geankoplis [47] for spherical particles. The correlations involve a fixed 

term that is independent of the flow and a variable term, given as, 

 𝑁𝑢 =  
ℎ𝑓𝑠𝑑𝑃

𝑘𝑓
= 𝐶𝑇1 + 𝐶𝑇 . 𝑅𝑒𝑑𝑃

𝑚𝑇 . 𝑃𝑟𝑑𝑃
𝑛𝑇 (2.46) 
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 𝑆ℎ =
ℎ𝑓𝑠𝑚𝑑𝑃

𝐷𝑓
= 𝐶𝑚1 + 𝐶𝑚. 𝑅𝑒𝑑𝑃

𝑚𝑚 . 𝑆𝑐𝑑𝑃
𝑛𝑚   (2.47) 

where 𝐶𝑇1 = 𝐶𝑚1 = 2, 𝐶𝑇 = 𝐶𝑚 = 0.552, 𝑚𝑇 = 𝑚𝑚 =0.53 and 𝑛𝑇 = 𝑛𝑚 =0.33 for 1 <

 𝑅𝑒𝑑𝑃
 < 48000. 

Table 2.2 : Apple slice drying properties [9]. 

Porosity,  휀 0.206 Specific interfacial area, 𝐴𝑓𝑠 (m
-1) 11650 

Permeability, K (m2) 8.89x10-13  
Average Particle diameter, 

𝑑𝑝 (𝜇m) 
103 

Forchheimer Coefficient, 𝑐𝐸 0.244 
Solid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑠 (W/m.K.) 
0.3335 

Dry Solid density, 〈𝜌𝑠〉
𝑠 

(kg/m3)(1) 124.85  

Fluid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑓 

(W/m.K.) 

0.0865 

Dry Solid specific heat, 𝑐𝑝𝑠 

(J/kg.K) 
252    

(1) The dry solid density is the solid matrix density multiplied by the solid volume fraction, provided by 

Khan and Straatman [9].  

In regards to the local water activity, Toujani et al. [48] obtained the water activity of apple 

slices at temperatures up to 70°C. Water activities below 70 % occur for moisture contents 

below 0.3 kg/kg dry. Given that the present apple slice starts at 7.45 kg/kg dry solid, it was 

deemed suitable to assume particle surface saturation for the convective interstitial mode 

of mass transfer.  

The present case starts with a diffusively-dominant mode for mass transfer, since the 

liquid-in-solid diffusivity is small enough that the macroscopic diffusive resistance at the 

fluid/porous interface is the rate determining resistance. 
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Figure 2.10: Apple diffusivities as a function of the liquid moisture ratio. 

This is consistent with the reports in the literature about absence of a constant drying rate 

period for some fruits and vegetables drying experiments [35],[49],[50]. The ratio 

〈𝑌𝑊,𝑠〉
𝑠
𝑒
/〈𝑌𝑣,𝑓〉

𝑓
𝑒
 in Eq. 2.38 for the present case is determined based on the instantaneous 

average moisture content of the whole apple slice for all the macroscopic interfaces as a 

means for simplification and better convergence characteristics. Figure 2.11 shows the 

variation of the average moisture ratio with time for inlet velocities of 0.64, 1.5 and 2.75 

m/s, and shows that the physical effect of changing flow velocities is achieved with the 

current coupling technique; i.e., the higher the velocity, the faster the drying rate. The 

agreement between the model and experiment is generally good and is best for the middle 

flow velocity in terms of the trend and margin. While the low and high speeds show 

qualitative agreement, larger discrepancies between model and experiment are evident. 

One reason for the larger discrepancies could be the velocity effect on enhancing vapor 

diffusion through the interface dry solid layer. It is observed that the present model 

accounts for advective effects on the drying boundary layer for convectively-dominant 

modes of mass transfer. However, for the diffusively-dominant mode, the expression used 

for the vapor transport inside the dry solid layer given by Eq. 2.37 is purely diffusive. It is 

physically reasonable however that the higher the velocity passing across the macroscopic 



Chapter 2                                               87 

 

 

 

interface, the higher the rate of vapor transport that can happen through the dry layer into 

the air stream [51]. This effect can be accounted for by modifying the expression used for 

the phase ratio as, 

 K =
1

𝛽

(

 
 
1 −

1

1 +
〈𝜌𝑠〉𝑠𝐸𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉

𝑠
𝑒

𝜌𝑓𝑃(1 − 휀)𝐷𝑓〈𝑌𝑣,𝑓〉
𝑓
𝑒)

 
 

 (2.48) 

where 𝛽 is a coefficient that we introduce as a vapor diffusion enhancement factor [52]. 

Figure 2.12 reproduces the drying rate plots given in Fig. 2.11, with the inclusion of Eq. 

2.48 using 𝛽 values of 0.87, 1 and 1.11 for 0.64, 1.5 and 2.75 m/s, respectively. While this 

approach introduces a calibration factor, it is shown to reduce the discrepancies to within 

a maximum of 4 % of the experiments. 

 

Figure 2.11: Temporal variation of the averaged apple moisture ratio for different 

inlet velocities compared to the experimental results of Velić et al. [35]. 

It is of particular interest to show how the present model approaches the physical threshold 

of moisture capacity. In Khan and Straatman [9], the moisture threshold was achieved, but 

an adhoc exponentially-varying coefficient was required to properly approach the 
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threshold. Considering first the influence of inlet relative humidity, Fig. 2.13 shows the 

temporal variation of the average moisture ratio for 1.5 m/s with inlet relative humidities 

of 9, 40, 70 and 90%. The drying rate is shown to decline smoothly as the relative humidity 

increases until it becomes very weak at the 90% case, adhering to the expected physical 

behavior as the capacity of the air to entrain vapor moisture decreases. Considering the 

influence of increasing inlet temperature, Fig. 2.14 shows the different drying rates 

achieved at a fixed inlet specific humidity. A decrease of the drying rate is observed with 

increasing incoming air stream temperature, which is also consistent with the physics of 

the problem. In this manner, the present formulation inherently incorporates the changing 

physics associated with approaching moisture thresholds without the need for additional 

tuning or calibration.  

 

Figure 2.12: Temporal variation of the averaged apple moisture ratio for different 

inlet velocities accounting for the advective effects; comparison to the experimental 

results of Velić et al. [35]. 

Spatial and temporal variation of the solved moisture and temperature fields are shown in 

Figs. 2.15-2.17. Temporal variation of the liquid moisture distribution is shown in Fig. 

2.15, where it is observed that the liquid moisture decreases inside the apple slice gradually 
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as the material dries up with faster rate closer to the leading edge of the apple slice. The 

relative humidity is highest inside the apple flesh. In this case the void space becomes 

quickly saturated with vapor indicating that most of the mass transfer occurs at the 

fluid/porous interfaces, which is attributed to the low porosity of the apple slice. The 

relative humidity of the surroundings is highest when the drying rate is high and it declines 

as the rate that air picks up moisture from the apple slice decreases. The contours of fluid 

and solid temperature inside the apple slice, shown in Figs. 2.16-2.17, show similar 

variation with a small degree of thermal non-equilibrium. The core of the apple is cool 

when the mass transfer rate (drying rate) is high, as seen at 500 seconds, because the inner 

part of the apple slice supplies most of the vaporization energy. As the apple slice dries, 

the rate of mass transfer decreases and the core starts to warm up, taking sensible heat from 

the surrounding. The behavior is physically reasonable and it is consistent with the fear of 

frost injuries that is of concern to the drying industry of fruits and vegetables. 

 

Figure 2.13: Temporal variation of the averaged apple moisture ratio as a function 

of inlet airflow relative humidity for 1.5 m/s inlet velocity. 
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Figure 2.14: Temporal variation of the averaged apple moisture content as a 

function of the inlet temperature at a fixed inlet specific humidity for 1.5 m/s inlet 

velocity. 

2.4.3 Dehydration of mineral plaster 

Convectively-dominant mass transfer is verified herein by simulating a case of dehydration 

of mineral plaster, as adopted from the work of Defraeye et al. [8]. This case was selected 

because it provides the necessary information and relevant properties, especially the 

diffusivities, which are not easily found in the literature, and because the constant drying-

rate period is long and clearly visible [8].  This particular case has not been experimentally 

tested but different modeling approaches have been utilized to simulate and analyze it [8]. 

While the total simulation time of the case is 15 days, which is the time it takes to fully 

dehydrate the mineral plaster under consideration, we are mainly interested in the first two 

hours of the simulation since this is a period of convectively-dominant drying and is well 

within the constant drying rate period as reported by Defraeye et al [8]. The simulation 

setup is based on a small-scale wind tunnel test section reported in the work of James et al. 

[53] shown in Fig. 2.18.  A long inlet section (not included in the simulation) provides 

fully-developed laminar flow to the surface of a plaster substrate, which is comprised of 
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mineral plaster placed inside a heat and mass insulated enclosure. The test section is 500 

mm long with heights of the porous and air regions of 37.5 mm and 20.5 mm, respectively.  

 

Figure 2.15: Contour plots for liquid apple moisture spatial variation along the 

domain-cutting symmetry planes at different time instances. 

Boundary conditions were imposed as follows: at the inlet, air enters the channel at 23.8 

°C and 71.9 % relative humidity with a mass flow rate based on a bulk air velocity of 0.8 

m/s with pressure extrapolated from inside the domain; all walls were assigned no-slip, no-

penetration boundary conditions with pressure extrapolated from inside the domain. In 

addition, the walls did not admit heat or mass transfer. At the channel outlet, a zero-gradient 

condition was used for all variables, with the exception of pressure, which was set to 

atmospheric. The plaster was given an initial temperature of 20°C. A mesh of 172 x 74 x 1 

control volumes was used based on the same spatial resolution as the work of Defraeye et 

al [8]. The simulation was carried out based on an adaptive time stepping approach that 

was necessary to achieve convergence given the high time and space non-linearity of the 
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problem. A typical simulation requires several hours in this problem given the above 

reasons, which is expected based on information from Defraeye et al. [8]. 

 

Figure 2.16: Contour plots for fluid temperature spatial variation along the domain-

cutting symmetry planes at different time instances. 

Mineral plaster is a form of plaster that have a low chemical content of water, given by the 

formula (CaSO4∙
1

2
 H2O). Table 3 summarizes the relevant mineral plaster properties. Since 

Defraeye et al [8], treated the material as non-porous, they did not specify the values of the 

pore diameter and the porosity, which were selected herein from Bochen [54]. The 

permeability was calculated using the Ergun equation [42] and the specific surface area 

using the porosity and the particle diameter. The solid specific heat was based on Defraeye 

et al [8] while the fluid and solid conductivity were apportioned based on the porosity and 

their overall porous material conductivity. 
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Figure 2.17: Contour plots for solid temperature spatial variation along the domain-

cutting symmetry planes at different time instances. 

 

 

Figure 2.18: Simulation setup for the mineral plaster dehydration process. 
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Table 2.3: Mineral Plaster properties. 

Porosity,  휀 0.15 
Specific interfacial area, 

𝐴𝑓𝑠 (m
-1) 

112500 

Permeability, K (m2) 2x10-15  
Average Particle diameter, 

𝑑𝑝 (𝜇m) 
8 

Forchheimer Coefficient, 𝑐𝐸 0.244 
Solid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑠 (W/m.K.) 
1.02 

Dry Solid density, 〈𝜌𝑠〉
𝑠 

(kg/m3)(1) 1900  

Fluid effective thermal 

conductivity, 𝑘𝑒𝑓𝑓,𝑓 

(W/m.K.) 

0.18 

Dry Solid specific heat, 𝑐𝑝𝑠 

(J/kg.K) 
1050    

The dry solid density and the initial moisture content was calculated based on an initial 

water content and a total solid mass of 126 kg/m3 and 1615 kg/m3 of the whole porous 

material, respectively [8]. The initial liquid moisture mass fraction is 0.078021 kg/kg dry 

solid. Figure 2.19 shows the trends of variation for the fluid and solid diffusivities. The 

fluid diffusivity was calculated based on the provided expression of vapor permeability by 

Defraeye et al. [8]. The primary liquid transport mechanism considered in their work is the 

capillary forces as they solved for capillary pressure as a transport variable. In our 

formulation we consider the capillary effect through a gradient-type diffusion expression 

and hence, it was necessary to link both approaches by equating the two expressions for 

the liquid transport flux. Utilizing their correlation for relating the capillary pressure and 

the liquid mass fraction, we were able to arrive at a suitable correlation after smoothing 

and curve fitting. The liquid diffusivity endures a sharp drop that is consistent with the fact 

that mineral plaster is a non-hygroscopic material. This sharp drop and the relatively high 

initial value of the diffusion coefficient are the main reason why the convective domination 
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is observed clearly in this simulation. With respect to the water activity, the surface of the 

solid constituent is assumed saturated as the case should be for a non-hygroscopic material 

[6]. Eqs. 2.46-2.47 are used for the local heat and mass transfer correlations and the mass 

transfer correlation is also utilised at the macroscopic interface. 

Figure 2.20 displays the average moisture ratio change with time. The material only loses 

1.75% of its moisture content in this time, since the total drying time is on the order of 15 

days. The profile shows a consistent decrease of moisture with time without any abrupt 

changes in the drying rate, which is compatible with the notion of a constant drying rate 

period. The contour plots for the liquid moisture content displayed in Fig. 2.21 are very 

similar to those displayed in Defraeye et al. [8]. The plots show a gradual moisture 

decrease, which starts at the leading edge of the plaster and moves into the core slowly 

until it reaches the downstream bottom corner. The contours for relative humidity and 

temperature are shown in Figs. 2.22-2.23. Typical boundary layer growth is observed for 

both relative humidity and fluid temperature, as relative humidity increases along the 

channel and temperature decreases indicating that the air stream is the main source of 

vaporization energy. Within the porous region itself, the temperature is nearly constant at 

a value that is very close to the wet bulb temperature (approximately 20°C [8]), indicating 

that vaporization heat removed from the porous region is restored sensibly by energy 

provided from the air. Very small temperature deviations (less than 0.3°C) are computed 

inside the porous material, but not resolved in the figures. These temperatures are higher 

for locations that have lower moisture contents forming fronts that are analogous to the 

ones shown in Fig. 2.21. 

As a final means of comparison, the average surface heat and mass transfer coefficients 

over the length of the macroscopic interface are evaluated based on the definitions used by 

Defraeye et al. [8]. The present simulation yields a mass transfer coefficient of 5.73 x 10-8 

s/m (based on vapor pressure) as compared to 3.77 x 10-8 s/m, while for heat transfer, an 

average coefficient of 2 W/m2K was computed compared to 5.34 W/ m2K. Given the 

different modelling approaches, and in particular, our porous verses their non-porous 

formulation, the computed values compare very well for both heat and mass transfer. 
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Figure 2.19: Mineral plaster diffusivities as a function of the moisture ratio. 

 

Figure 2.20: Variation of the average moisture ratio as a function of the drying time 

for mineral plaster. 
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Figure 2.21: Temporal variation for the distribution of liquid moisture content of 

mineral plaster (a scale with four decimal places was necessary to observe the 

moisture fronts). 

 

Figure 2.22: Relative humidity distribution at 1 hour of simulation time for mineral 

plaster. 
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Figure 2.23: Distributions of temperatures at 1 hour of simulation time for mineral 

plaster. 

2.5 Summary 

In the present study, a dynamically-coupled approach has been introduced for modelling 

heat and mass transfer in conjugate fluid/porous domains. The dynamic-coupling means 

that heat and mass exchanges between constituents inside the porous media (microscopic 

level) and across fluid/porous interfaces (macroscopic level), vary dynamically in response 

to the local spatial and temporal condition of the interface.  The key novelties are 

summarized as: 

 Models are presented that track the variations of heat and mass transfer resistances 

inside the fluid and solid phases and allow for switching between expressions 

developed for these heat and mass exchanges on both scales without the sacrifice 

of numerical stability.  
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 A technique for apportioning of the vaporization energy on different phases is 

incorporated.  

 A concept is introduced for the phase ratio, which is implemented to achieve 

implicit conjugate coupling at the macroscopic interfaces.  

The model involves details that allow the application to very different interface heat and 

mass transfer problems. Three cases were introduced to validate and illustrate the capability 

of the model. A coal packed bed of particles is simulated to verify the interstitial coupling 

approach of the formulation. Results of the moisture and temperature profiles showed 

excellent agreement in terms of trends and thresholds. The case of drying of an apple slice 

was tested to verify the efficacy of the dynamic macroscopic coupling for diffusively-

dominant mass transfer. Comparison to experiments indicated an agreement to within 4% 

in terms of drying rates and time. In addition, the physical thresholds of relative humidity 

and temperature were approached smoothly without the need for additional tuning, a 

feature that makes the present formulation particularly attractive. Finally, a convectively-

dominant case of mineral plaster dehydration was simulated. The predicted boundary layer 

growth, nearly constant material temperature and the gradual propagation of the drying 

fronts inside the porous materials showed that the physics of the problem are accurately 

represented, and heat and mass transfer rates compare well to previous work on the same 

problem. Thus, it is concluded that the present dynamic-coupling approach is capable of 

representing the physics of heat and mass transfer across interfaces between different 

phases in a generic way without case specificity and with a lesser level of empiricism than 

any existing modelling approach.  This means that the present model, with little calibration 

or tuning, is capable of modelling non-equilibrium heat and mass transfer for both 

diffusively and convectively-dominated interfaces. 
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Chapter 3  

3 Heat and mass transfer in Conjugate Fluid/Porous 

domains under turbulent flow conditions 

3.1 Introduction  

Study of processes involving Porous media and Conjugate Fluid/Porous/Solid domains [1-

2] has attracted significant attention in the past two decades. The applications are numerous 

including flow, heat and mass transfer processes in packed beds, metal foams, dryers, food 

processing and storage facilities and different other chemical and catalytic multi-phase 

applications. It is becoming crucial to characterise the heat and mass transfer processes 

between the different phases inside a porous material as well as between a porous 

continuum and its surrounding air regions. Most of the above mentioned applications are 

turbulent in nature and hence, the challenges of characterizing turbulence also need to be 

addressed. Due to the fact that all of these applications involve multiple spatial and 

temporal scales with the presence of turbulence, porous media and macroscopic transport, 

measurement techniques that characterise these processes locally are either nonexistent or 

limited, leaving only three options for physical model development. The first option is to 

depend on empiricism as a tool to establish physical thresholds for flow, heat and mass 

transfer [3-5]. The second option is to undertake detailed physical modelling for these 

multiple spatial and time scales [6-7]. The third option is to compromise between 

computational time, empiricism and detailed scale modeling in order to have a successful, 

general and economic modeling process (i.e. a dynamic Coupling approach) [8] (the 

interested reader is encouraged to look into the work of Elhalwagy and Straatman [8] for 

details). 

Turbulent heat and mass transfer modeling is of special importance to drying and food 

processing applications and numerous studies have been reported in the literature. The first 

category of applications is concerned with drying. Curcio et al. [9] modeled the coupled 

turbulent air flow around a cylindrical food sample and the heat and mass transfer as the 
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sample dries. A continuity condition for the heat and mass transfer fluxes is utilised as a 

boundary condition and a thermodynamic equilibrium assumption at the interface is 

invoked for linking the liquid and vapor moisture concentrations. It was not mentioned 

whether the model used to obtain sample solutions was conjugate or non-conjugate with 

respect to the surrounding air. The two-equation k-ɛ turbulence model was utilised with 

standard wall function to account for the boundary layer effects. The vapor diffusion within 

the sample was neglected and hence the approach is not capable of treating problems like 

porous foods, where non equilibrium heat and mass transfer is present. Another study by 

De Bonis and Ruocco [10] investigated the jet-impingement of air into a wet protrusion to 

enhance moisture removal. They also utilised a non-porous approach but with considering 

conjugate local thermal non-equilibrium. Standard k-ɛ turbulence model and wall function 

were used. While considering the vapor inside the protrusion, they lumped the diffusion of 

liquid and vapor into a single diffusivity. An Arrhenius expression was utilised for surface 

evaporation, i.e. the interface mass exchange, rendering the technique to be non-generic 

[8]. The same modeling approach was used for parallel convective flow over the wet 

protrusion by Caccavale et al. [11]. Ateeque et al. [12] reported on a study that considered 

turbulent airflow around a potato slice. They utilised a k-ω SST model based on an 

investigation of flow separation for a backward facing step with different turbulence 

models. A non-conjugate/non-porous heat and mass transfer model was used to couple the 

slice and the surrounding air via surface transfer coefficients. Spatial dependence of heat 

and mass transfer coefficients was observed to develop based on the turbulent flow field 

solution with higher values at the upstream face and lowest values at the back face. A 

saturated ceramic brick drying process has been investigated by Van Belleghem et al. [13]. 

They utilised a realizable k-ɛ model with low Reynolds number modeling near the Air/brick 

interface to resolve turbulent effects. The liquid and vapor transport processes have been 

lumped into one equation for moisture in which the liquid flux is modeled by the Darcy 

law using capillary pressure as a transport variable in their discretization. They had 

empirical specification for the transfer fluxes at the Air/brick interface. They also neglected 

the transport of any turbulence to the inside of the drying specimen. Turbulent flow around 

an apple slice has been investigated in terms of drag coefficient, Nusselt number, 

Separation angle and back reciriculation length by Defraeye et al. [14]. A wide range of 
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models were tested including different versions of k-ɛ, k-ω and Reynolds stress models 

(RSM). A low Reynolds number model was utilised in the wall-adjacent region, as well as 

a standard wall-function. The k-ω SST was selected with low Reynolds number modeling 

for its accurate wake size, effect on heat transfer and sepration. It is noted however that a 

significant refinement was utilised in that case. A switch to standard wall-functions 

deteriorated the performance of the k-ω SST model significantly in comparison to the k-ɛ 

model solution for the same conditions.  

The second category of applications concerns produce stacking and storage that depend 

upon a porous media modeling approach within boxes or stacks of produce. This approach 

relies on obtaining information from a void-level simulation to provide closure of 

resistance and heat and mass exchange terms for a macroscopic porous media model. The 

closure process is either empirical so that it depends on empirical equations [15], final 

experimental verification [16] or sensitivity analysis [17] for closure parameters; or is 

physically based, i.e. depends on choosing a representative elementary volume (REV) of 

the porous media [18-19]. Turbulence has been modelled with the RNG k-ɛ [15, 20], k-ω 

SST [16-19] and RSM [21] models. Comparisons between turbulence models were carried 

out to arrive at the choice of these models based on the average relative error between 

simulations and experiments with respect to velocities [18] and temperatures [16] however 

local differences in regions near the interfaces were not considered. Tutar et al. [20] 

concluded that inlet turbulence intensity has only a small effect on heat and mass transfer. 

They also concluded that increase of flow rate has a more pronounced effect on heat and 

mass transfer as compared to turbulent and three dimensional effects. Most of the produce 

stacking studies did not involve any details on the porous media closure terms for the 

turbulence equations or the special turbulence mathematical conditions for fluxes at the 

air/porous interface [15-20], relying only on the techniques available in the utilised 

commercial software ANSYS FLUENTTM [22]. Some of the studies resorted to a switch 

to force the tubulence model to be off within porous media [15]. 

Another group of studies focuses on detailed modeling for turbulence inside porous 

materials. Simplified modeling approaches were developed by Alvarez et al. [23] and 

Alvarez and Flick [24]. The models depended only on Darcy–Forchheimer equation, 
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neglecting convective and Brinkman effects. They were one-equation models in which the 

k equation is solved while the dissipation is estimated with an algebraic expression 

involving four empirical constants [23] and enhanced later to include only two constants 

[24]. The turbulence effect has been carried into the heat transfer utilising only a heat 

transfer Nusselt number correlation that includes turbulence intensity. The main work for 

modeling took the direction for development of a Porous media k-ɛ model using volume 

and time averaging, known as Double decomposition [25]. Early attempts were made by 

Lee and Howell [26], Wang and Takle [27], Antohe and Lage [28] and Getachew et al. 

[29]. The turbulent kinetic energy was defined based on a time average of the square of the 

volume-averaged velocity fluctuation. Later, Nakayama and Kuwahara (NK) [30] and 

Pedras and De Lemos (PDL) [31] adopted another definition based on squaring the local 

velocity fluctuation first and then carrying out the Double decomposition. A third definition 

of k was developed by Teruel and Rizwan-uddin (TR) [32-33]. Their definition added to 

the former a term characterising dispersive kinetic energy based on spatial deviations of 

the volume averaged process for velocity. The three forms for the macroscopic k-ɛ model 

by PDL, NK and TR are the most widely used forms through the literature. They utilised 

different pore-level simulations to close these models and include the additional drag terms. 

They arrived at three different estimates for the drag terms. Pore level simulations may be 

used to close all these three forms successfully [34]. There is no conclusive judgement as 

yet, however, as to which one of them is better. Another group of models have been created 

that did not use the k-ɛ modeling approach. RSM has been used by Moureh et al. [35], 

however the model was used without additional porous media terms. It has also been used 

and mathematically analyzed inside porous media by Mößner and Radespiel [36]. Drouin 

et al. [37] added two more equations to treat dispersive k and ɛ separately in addition to the 

standard macroscopic ones. Kuwata et al. [38] and Kuwata and Suga [39] used a multiscale 

modeling approach that separated the dispersive, macro and microscopic k and ɛ treatments 

within a k and ɛ approach [38] and a second-moment closure approach [39]. Low Reynolds 

number approaches were also utilised including the work of Kundu et al. [40] that 

developed a Lam-Bremhorst version and compared it to DNS data for a pore level study. 

While these modeling approaches are all successful they are time-consuming due to the 

additional equations (e.g. RSM and Multiscale models) and/or additional non linearity or 
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stability effects (e.g. Low-Re-LB) rendering the usual two equation k-ɛ model to be the 

most versatile in most applications.  

A special treatment for coupling turbulence through transition regions between porous and 

clear fluids is deemed necessary and hence significant research has been carried out to 

understand the physics of the process and formulation of the necessary transport equations 

to model it. One approach depends on utilizing different turbulence models for the 

interface-adjacent air region and the free-stream air region. Kuznetsov [41] utilized 

dimensionless fully-developed pipe flow equations to represent turbulence for flow around 

and through a porous layer. A k-l model was used for the adjacent layer while a k-ɛ model 

was used in the outer air stream with a suitable compatibility condition in between. The 

porous region was modeled using the Brinkman-Forchheimer-extended Darcy equation. 

The same group has also utilised a Cebecci-Smith two-layer model for the two regions [42-

43] with dedicating more interest to thermal dispersion effects inside the porous region 

[43]. One disadvantage was the dependence on dimensionless analytical expressions that 

made their modeling case-specific and hence not suitable in other CFD studies. Suga and 

Nichiguchi [44] had a similar approach utilising what is known as an analytical wall-

function that carries the effect of roughness and matches the profile on the outside of the 

porous material to an analytical approximation to the Darcy equation solution inside the 

porous region. Fetzer et al. [45] resolved the viscous layer around the porous region with 

sufficient refinement and utilised an algebraic turbulence model (Prandtl mixing length, 

Han-Van Driest and Baldwin-Lomax) on the outer region. A capillary pressure technique 

has been used for mass transfer modeling in this work. Another study by Beyhaghi et al. 

[46] used a three-way coupling approach between a pore-network model inside the porous 

region, a mass transfer code for the outside of the porous region and an outside solution of 

flow and turbulence by FLUENTTM [22] with a no-slip condition at the interface. The main 

disadvantage in all the papers that utilised this approach is a laminar treatment inside the 

porous region which makes it not suitable when turbulence penetrates a macroscopic 

interface.  

Another group of studies have focused entirely on pore level simulations like bundles of 

rods [47] or cubic blocks [48] and their interaction with an adjacent fluid region to better 
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understand the physics of the process without including any interface treatments. The third 

approach resorted to using both Direct numerical simulations (DNS) through a layer 

modeled as an inline or staggered cubic blocks/spheres and an adjacent clear fluid region, 

as well as a continuum modeling approach for the same geometry but with considering a 

porous media region. Jin and Kuznetsov [49] utilised this approach and then volume- and 

time-averaged the DNS data to obtain macroscopic results from which they concluded that 

turbulence scaling is restricted by the pore size and hence, a zero equation model was 

enough to model turbulence inside the porous region. Breugem and Boersma [50] used the 

same equations for both porous and fluid regions however they introduced a transition 

region with a gradient of porosity to induce a gradual change between the two regions and 

hence, a k-ɛ interface condition was not necessary in this case. Suga [51] used the same 

gradual change in porosity with PIV experiments outside the porous region and LES inside 

of it to develop a four-equation k-ɛ model [38] and to study the physics of turbulence at the 

interface. While all of these sophosticated modeling approaches are promising, they are 

very complex, often case-specific, or require prohibitive refinement for general-purpose 

CFD. The final approach to be discussed herein was developed by Silva and DeLemos 

[52]. The model followed on the work of Ochoa-Tapia and Whitaker [53] for velocity at 

Fluid/Porous interfaces and introduced a continuous flux condition for k and ɛ to be utilised 

with a jump coefficient for the momentum transfer [53] and later, DeLemos [54] introduced 

a jump coefficient for the k and ɛ as well. The model is absolutely suitable for general 

purpose CFD and has been used with multiple values of the jump coefficent [54]. However, 

it has two drawbacks. The first issue is that the modification of turbulence at the interface 

depends on a jump coefficient that is adjustable and there is no specific guideline on how 

to estimate it. The second issue is that it is based on an assumption of a highly-permeable 

porous media. Generally, turbulence inside porous media is important for larger 

microscales e.g. particle sizes and relatively higher porosities i.e. 𝜙 > 0.3. While there is a 

tendency to neglect turbulence in cases of lower permeabilities and porosities, resolving 

the decay of turbulence at Fluid/Porous interfaces in these cases is of importance as it 

affects other physical processes like heat and mass transfer. For low-permeability materials 

like fruits and vegetables (in drying processes), the interface condition of DeLemos is not 

necessarily valid since the porosity is of the order of 0.2 and lower [8], resulting in very 
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low fluid permeability and hence turbulence is expected to decay at the interface which is 

not considered in the interface model by De Lemos [54]. 

The present paper aims at extending the Dynamic Coupling technique developed by 

Elhalwagy and Straatman [8] to handle turbulent flow in addition to the heat and mass 

transfer capability. This extension is introduced to treat turbulence at the interface and 

inside Porous materials for cases of high and low permeabilities with implementing a 

capability to allow turbulence decay at the interface for low permeability media to evolve 

naturally without an ad-hoc switch off that is not accurate for heat and mass transfer 

predictions at the interface. The merits of a dynamic coupling approach are: that it is 

developed to allow the micro- and macroscopic interfaces to react in a physically correct 

manner to local and temporal changes that happen during different transport phenomena 

with minimal case-specificity or empiricism; and it lends itself to numerical solution in a 

reasonable computational time. A full mathematical treatment of the flow, turbulence, heat 

and mass transfer is described in the next section, and their respective dynamic coupling 

processes at the microscopic level, i.e. interstitially within the porous media or at the 

macroscopic level at the Fluid/Porous interface are presented in the following section. This 

section also includes a new interface turbulence coupling technique that works on high or 

low permeability porous media (See Fig. 3.1). This is followed by CFD studies for two 

dimensional channel flow cases with a porous obstruction; testing the different turbulence 

coupling approaches; followed by the drying of produce slices. An apple slice with a 

porosity of 0.206 and a potato slice with a porosity of 0.04 are considered. 

3.2 Model formulation 

The present work utilizes a conjugate flow, heat and mass transfer technique formulated to 

work simultaneously in fluid/porous/solid regions. The technique solves the conservation 

of mass, momentum, energy and moisture equations, along with a turbulence model, in the 

clear fluid and porous regions while considering the local non-equilibrium heat and mass 

transport inside the porous material as well as conjugate coupling at the macroscopic 

fluid/porous interface. Turbulence is approximated in the momentum, mass and energy 

balances using the Boussinesq approach with the use of an eddy viscosity, turbulence 
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conductivity and turbulence diffusivity, and is modeled using the standard k-ɛ model. A 

mixture approach is utilised herein with the fluid considered as moist air (dry air and water 

vapor). While the system of equations is treated as incompressible, due to the transport of 

vapor, the technique considers a subtle variation for density 𝜌𝑓 which does not affect the 

 

Figure 3.1: Schematic of a Fluid/porous transition showing the differences between 

a micro- and macroscopic interface and low and high permeability porous regions 

(moist air is white, liquid is blue and solid is grey). 

incompressibility, but is necessary for a moisture transport solution. The vapor moisture is 

characterised in the mass transfer equations with the local vapor mass fraction 𝑌𝑣. 

Thermodynamic relations are used to relate the local pressure 𝑃, temperature 𝑇, density 𝜌𝑓, 

mass fraction 𝑌𝑣 and relative humidity 𝑅𝐻 to achieve the necessary coupling [8].  

3.2.1 Fluid Region  

In a time-averaged framework in the absence of external forces, external heat and mass 

sources, the clear fluid point forms of the mass, momentum, turbulent kinetic energy, 
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turbulence energy dissipation, moisture and heat transfer equations may be cast, 

respectively, as: 

 
𝜕𝜌𝑓̅̅ ̅

𝜕𝑡
+ ∇ (𝜌𝑓 ̅̅ ̅̅ �̅�) = 0 (3.1)  

 
𝜕(𝜌𝑓̅̅ ̅ �̅�)

𝜕𝑡
+ ∇ (𝜌𝑓̅̅ ̅ �̅� �̅�) = −∇ (�̅� +

2

3
𝜌𝑓̅̅ ̅ 𝑘) + ∇ [ (𝜇𝑓 + 𝜇𝑡) . (∇ �̅� + (∇ �̅�)𝑇) ] (3.2)  

 
𝜕(𝜌𝑓 ̅̅ ̅̅ 𝑘)

𝜕𝑡
+ ∇ (𝜌𝑓̅̅ ̅ 𝑘 �̅�) = ∇ [(𝜇𝑓 +

𝜇𝑡

𝜎𝑘
) ∇ 𝑘] +  𝑃𝑘  −  𝜌𝑓̅̅ ̅ 휀 (3.3)  

 
𝜕(𝜌𝑓 ̅̅ ̅̅ 휀)

𝜕𝑡
+ ∇ (𝜌𝑓̅̅ ̅ 휀 �̅�) = ∇ [(𝜇𝑓 +

𝜇𝑡

𝜎𝜀
) ∇ 휀] + 𝐶1𝜀 𝑃𝑘

휀

𝑘
 − 𝐶2𝜀 𝜌𝑓̅̅ ̅ 

휀2

𝑘
 (3.4)  

 
𝜕(𝜌𝑓̅̅ ̅ 𝑌�̅�)

𝜕𝑡
+ ∇ (𝜌𝑓̅̅ ̅ 𝑌𝑣 ̅̅̅̅ �̅�) = ∇ [𝜌𝑓̅̅ ̅ (𝐷𝑓 +

𝜇𝑡

𝜌𝑓̅̅ ̅𝑆𝑐𝑡
) ∇ 𝑌�̅�] (3.5)  
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𝑖

+ ∑ ℎ𝑓𝑔,𝑖

𝜕(𝜌𝑓 ̅̅ ̅̅ 𝑌�̅�)

𝜕𝑡
𝑖
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𝑖

∑ ℎ𝑓𝑔,𝑖∇. (𝜌𝑓 ̅̅ ̅̅ 𝑌�̅��̅�)

𝑖

= ∇ [(𝜆𝑓 +
𝜇𝑡𝑐𝑝,𝑎

𝑃𝑟𝑡
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+ ∑ ∇. [𝜌𝑓 ̅̅ ̅̅ (𝐷𝑓 +
𝜇𝑡

𝜌𝑓̅̅ ̅𝑆𝑐𝑡
) (∇ 𝑌𝑖

̅̅̅). (𝑐𝑝,𝑖�̅� + ℎ𝑓𝑔,𝑖)]

𝑖

+  𝜌𝑓̅̅ ̅ 휀 

(3.6)  

where, 

 𝜇𝑡 = 𝐶𝜇𝜌𝑓̅̅ ̅ 
𝑘2

휀
 (3.7)  

and, 

 𝑃𝑘 =  −𝜌𝑓̅̅ ̅  𝐯′𝐯′̅̅ ̅̅ ̅ ∶  ∇ �̅� = 𝜇𝑡(∇ �̅� + (∇ �̅�)𝑇) ∶  ∇ �̅�  (3.8)  

Herein, the ‘overbar’ signifies time averaging, 𝜇𝑡 is the eddy viscosity and 𝑃𝑘 is the 

turbulence energy production. The use of 𝑖 represents a species counter, 𝑐𝑝,𝑖 is the specific 

heat of species 𝑖 and is calculated with a reference at 0 °C for water vapor, and ℎ𝑓𝑔,𝑖 
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accounts for the latent heat of vaporization at a reference temperature of 0 °C, which 

vanishes for dry air. The model constants: 𝜎𝑘, 𝜎𝜀, 𝐶𝜇, 𝐶1𝜀 and 𝐶2𝜀 take the values of 1, 1.3, 

0.09, 1.44, and 1.92, respectively [55], while the turbulent Prandtl 𝑃𝑟𝑡 and Schmidt 𝑆𝑐𝑡 

numbers take the values of 0.85 and 0.7 [22], respectively. The model adopts a 

discretization technique that separates the sensible and latent energies in transient, 

advective and diffusive terms for the reasons described in detail by Elhalwagy and 

Straatman [8] and Khan et al [2].   

3.2.2 Porous Region 

The porous media modelling utilises the theory of volume-averaging by Whitaker [56]. 

The moist porous material is comprised of a void portion that contains the moist air and a 

solid portion. Herein, we lump the solid matrix, the free water (i.e. liquid exposed to air) 

and the bound water (i.e. liquid within the solid’s micropores) into the solid portion 

assuming only one microscopic interface separating the moist air from the solid/water 

portion [8]. Fig. 3.1 depicts the structure of porous regions and the microscopic interfaces. 

This approach greatly simplifies the complex equations of the problem. Turbulence 

modeling of the porous material requires both time- and volume-averaging (i.e. double 

decomposition) [25] in this case. For a time-averaging process of any instantaneous 

entity 𝜑, the time-averaged value of this entity over a period of time ∆𝑡 is given by: 

 �̅� =
1

∆𝑡
∫ 𝜑 𝑑𝑡

𝑡+∆𝑡

𝑡

 (3.9)  

Then one can estimate the time-fluctuation 𝜑′ by: 

 𝜑′ = 𝜑 − �̅�  (3.10)  

From the volume averaging theory, an average of the entity 𝜑 over the volume of an REV 

(i.e. an extrinsic average) may similarly be defined as: 

 〈𝜑𝑥〉 =  
1

𝑉
∫ 𝜑𝑥

𝑉𝑥

𝑑 𝑉 (3.11)  
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where 𝑥 is a phase index (here we consider an entity that is relevant only to phase 𝑥), 𝑉𝑥 is 

the volume of phase 𝑥 within the REV and 𝑉 is the total volume of the REV. Alternatively, 

by averaging only over the volume of phase 𝑥 (i.e. an intrinsic average), one arrives at: 

 〈𝜑𝑥〉𝑥 =  
1

𝑉𝑥
∫ 𝜑𝑥

𝑉𝑥

𝑑 𝑉 (3.12)  

It may be noticed from the definition of these averages that the ratio 〈𝜑𝑓〉/〈𝜑𝑓〉𝑓 defines 

the porosity 𝜙. Similar to time averaging, a spatial-deviation for 𝜑𝑥 may be cast as, 

 𝜑�̃� = 𝜑𝑥 − 〈𝜑𝑥〉𝑥 (3.13)  

In order to model the turbulence for porous media, one applies time-averaging followed by 

volume-averaging, or vise-versa, on the point instantaneous form of the relevant transport 

equations. This process (i.e., the double decomposition) is well-studied by PDL [31], who 

showed that the order of the averaging processes does not affect the final result. The interest 

in porous media herein is on intrinsic volume-averages except for the velocity field where 

an extrinsic average is useful for flow characterisation. In the absence of external forces, 

external heat and mass sources, the double-decomposed forms of the mass, momentum, 

turbulent kinetic energy, turbulence energy dissipation, moisture mass fractions and energy 

for the relevant phases are cast, respectively, as: 

 𝜙
𝜕〈𝜌𝑓̅̅ ̅〉𝑓

𝜕𝑡
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(3.15)  
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= 𝜙 ∇ [(𝜇𝑓 +
𝜇𝑡

𝜎𝜀
) ∇〈휀〉𝑓] + 𝐶1𝜀 〈𝑃𝑘

̅̅ ̅〉
〈휀〉𝑓

〈𝑘〉𝑓
 − 𝜙𝐶2𝜀 〈𝜌𝑓̅̅ ̅〉𝑓  

〈휀〉𝑓𝟐

〈𝑘〉𝑓

+
𝜙 𝐶2𝜀 𝑐𝑘 〈𝜌𝑓̅̅ ̅〉𝑓 〈휀〉𝑓

√𝐾
|〈�̅�〉| 

 

(3.17)  

 
𝜙

𝜕(〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑡
+ ∇. (〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅ 〈�̅�〉) = ∇. (〈𝜌𝑓̅̅ ̅〉𝑓𝐷𝑒𝑓𝑓,𝑓∇〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅ ) + 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ 

 

(3.18)  

 
(1 − 𝜙)

𝜕(〈𝜌𝑠〉𝑠̅̅ ̅̅ ̅̅  〈𝑌𝑤,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑡
= ∇. (〈𝜌𝑠〉𝑠̅̅ ̅̅ ̅̅  𝐷𝑒𝑓𝑓,𝑠 ∇ 〈𝑌𝑤,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅̅ ) − 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ 

 

(3.19)  
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∑ 𝜙𝑐𝑝,𝑖

𝜕(〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑖,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅   〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅)

𝜕𝑡
𝑖

+ ∑ 𝜙ℎ𝑓𝑔,𝑖

𝜕(〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑖,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑡
𝑖

+ ∑ 𝑐𝑝,𝑖∇. (〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑖,𝑓〉𝑓 ̅̅ ̅̅ ̅̅ ̅̅ ̅  〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅〈�̅�〉) +

𝑖

∑ ℎ𝑓𝑔,𝑖∇. (〈𝜌𝑓̅̅ ̅〉𝑓〈𝑌𝑖,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅ 〈�̅�〉)

𝑖

= ∇ (𝜆𝑒𝑓𝑓,𝑓 (∇  〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅))

+ ∑ ∇. [〈𝜌𝑓̅̅ ̅〉𝑓𝐷𝑒𝑓𝑓,𝑓 ( ∇〈𝑌𝑖,𝑓〉𝑓 ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑐𝑝,𝑖 〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅ + ℎ𝑓𝑔,𝑖)]

𝑖

+ 𝜙 〈𝜌𝑓̅̅ ̅〉𝑓 〈휀〉𝑓 + ℎ𝑓𝑠𝐴𝑓𝑠( 〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅ −  〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅) + �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅  

(3.20)  

 

∑(1 − 𝜙)𝑐𝑝𝑠,𝑖

𝜕(〈𝜌�̅�〉𝑠〈𝑌𝑖,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅  〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅)

𝜕𝑡
𝑖

= ∇ (𝜆𝑒𝑓𝑓,𝑠 (∇  〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅))

+ ∑ ∇. [〈𝜌�̅�〉𝑠𝐷𝑒𝑓𝑓,𝑠 (∇ 〈𝜌�̅�〉𝑠̅̅ ̅̅ ̅̅ )(𝑐𝑝𝑠,𝑖〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ )]

𝑖

− ℎ𝑓𝑠𝐴𝑓𝑠( 〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅ −  〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅) −  �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅  

(3.21)  

where, 

 𝜇𝑡 = 𝐶𝜇〈𝜌𝑓̅̅ ̅〉𝑓  
〈𝑘〉𝑓𝟐

〈휀〉𝑓
 (3.22)  

and, 

 〈𝑃𝑘
̅̅ ̅〉 =  −〈𝜌𝑓̅̅ ̅〉𝑓  〈𝐯′𝐯′〉̅̅ ̅̅ ̅̅ ̅̅ ∶  ∇ 〈�̅�〉 = 𝜇𝑡(∇ 〈�̅�〉 + (∇ 〈�̅�〉)𝑇) ∶  ∇ 〈�̅�〉 (3.23)  

where 〈 〉 signifies volume averaging. Several additional terms are present in the double-

decomposed equations. The last two terms in the momentum equation (Eq. 3.15) are drag 

terms that carry the effects of the additional porous media resistance to the flow. PDL [31] 

added a reflection term for this effect in the k and 휀 equations (last term in Eq. 3.16 and 

last term in Eq. 3.17). All of the k-휀 model constants take the usual values as above [55]. 

The closure term constant 𝑐𝑘 takes a value of 0.28 [31]. Four coupled phase equations for 

moisture (Eq. 3.18 and 3.19) and heat (Eq. 3.20 and 3.21) are present in the formulation to 
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carry the effect of local phase non-equilibrium. The vapor fluid mass fraction is defined 

for a gas mixture approach to be per unit mass of the whole fluid mixture while the water 

liquid fraction is defined on a dry basis due to the better numerical discretization and 

stability for this definition [8]. The turbulence energy dissipation term is added to the fluid 

phase energy equation to reflect the turbulence effect on the temperature field. As the water 

mechanism of transport inside the porous material is a combination between diffusion, 

capillary and surface tension phenomena, turbulence inside the solid phase is not 

considered. To couple these different phase equations, a mass exchange term 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ is 

present in the moisture equations. Also, a sensible energy exchange (i.e. convective) term 

ℎ𝑓𝑠𝐴𝑓𝑠( 〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅ −  〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅), where ℎ𝑓𝑠 is a local convective (interstitial) heat transfer 

coefficient that is evaluated based on a local heat transfer Nusselt number correlation, is 

added to the energy equations. Another energy coupling term is the latent energy 

term, �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ , which characterizes the enthalpy exchange accompanying mass exchange. 

These terms are the core of the dynamic coupling process for local microscopic interfaces 

[8] and will be described in the next section. The effective conductivities and diffusivities 

represent all the elliptic transport effects that may be lumped inside a diffusion term for the 

different phases. They contain the effects of diffusion, capillary, surface tension, tortuosity, 

thermal/mass dispersion, turbulence fluxes (if applicable) and turbulent dispersion effects 

(if applicable) [8, 34]. They are often functions of both the moisture content and the local 

temperature. Most of the literature evaluates them as a single quantity based on average 

measurements or empirical formulae [8] because of the very expensive process to perform 

non-invasive experiments to predict local and phase specific quantities. Numerical 

simulations are used to obtain an approximate expression for the individual phases that 

may be calibrated later to match an experimental trend for the moisture loss process during 

drying [4, 8]. 

3.2.3 Fluid/Porous Interface Conditions 

In order to reconcile the two different natures of the point equation in a clear fluid region 

with a Volume-averaged equation in a porous media region, creative mathematical 

techniques are devised to satisfy a smooth continuity of the mathematical quantities as well 
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as achieve a strong and implicit form of numerical coupling across the macroscopic 

interface i.e. (Fluid/Porous interface) (See Fig. 3.1). The present work builds on the 

previous works of Betchen et al. [1], Khan et al. [2] and Elhalwagy and Straatman [8] to 

achieve this purpose for turbulent flow, heat and mass transfer. For velocity, we adopt the 

extrinsic continuity condition [1] given by,   

 �̅�𝑓𝑙 = 〈�̅�〉𝑝𝑜𝑟 (3.24)  

We also adopt the continuity of the intrinsic shear and normal stresses across the interface 

[1] which are given, respectively, by, 

 (𝒏 . 𝒕 . 𝜏̅ )𝑓𝑙 = (𝒏 . 𝒕 . 〈𝜏̅〉𝑓 )𝑝𝑜𝑟 (3.25)  

 (𝒏 . 𝒏 . 𝜏̅ )𝑓𝑙 = (𝒏 . 𝒏 . 〈𝜏̅〉𝑓 )𝑝𝑜𝑟 (3.26)  

While the condition was presented in Betchen et al. [1] for laminar flow, herein, we extend 

it to turbulent flow as well; i.e., 𝜏 here is the total fluid stress tensor including molecular 

and turbulent diffusive effects. Applying Eqs. 3.25 and 3.26 to Eqs. 3.2 and 3.15 is possible 

by allowing a fraction 𝜙 of the total fluid stress from the fluid side to be carried into the 

fluid portion of the porous side implying that the rest is carried by the solid portion [1]. For 

low permeability porous media (illustrated in Fig. 3.1), i.e. low porosity foods, the authors 

could not simplify (Eq. 3.25) further unless by considering a Wall-function-like approach 

for treating the macroscopic interface (more details will follow in the next section). 

Following the same approach by Betchen et al. [1], for a highly permeable porous media, 

(Eq. 3.25) may be simplified as, 

 [(𝜇𝑓 + 𝜇𝑡)(
𝜕�̅� 

𝜕𝒏
)]𝑓𝑙 = [

(𝜇𝑓 + 𝜇𝑡)

𝜙
(
𝜕〈�̅�〉 

𝜕𝒏
)]𝑝𝑜𝑟 (3.27)  

(Eqs. 3.24-3.27) are the momentum coupling conditions at the interface. As a result of 

generalising the form of (Eq. 3.26) to include turbulent flows, following the same approach 

by Betchen et al. [1], the continuity of the kinematic pressure is intrinsically forced as, 

 (�̅� +
2

3
𝜌𝑓̅̅ ̅ 𝑘)𝑓𝑙 = (〈�̅�〉𝑓 +

2

3
〈𝜌𝑓̅̅ ̅〉𝑓 〈𝑘〉𝑓)𝑝𝑜𝑟 (3.28)  
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(Eq. 3.28) is utilised as a pressure condition at the interface and is important for pressure-

velocity coupling as well. In order to develop a k-휀 model interface condition that is 

compatible with the above conditions for velocity and pressure, a similar derivation to De 

Lemos [54] is carried out starting with (Eq. 3.27) instead of the jump coefficient version 

for the same equation. For brevity, the final result only is shown here as,  

 [(𝜇𝑓 +
𝜇𝑡

𝜎𝑘
) (

𝜕𝑘 

𝜕𝒏
)]𝑓𝑙 = [𝜙 (𝜇𝑓 +

𝜇𝑡

𝜎𝑘
) (

𝜕〈𝑘〉𝑓 

𝜕𝒏
)]𝑝𝑜𝑟 (3.29)  

 [(𝜇𝑓 +
𝜇𝑡

𝜎𝜀
) (

𝜕휀 

𝜕𝒏
)]𝑓𝑙 = [𝜙 (𝜇𝑓 +

𝜇𝑡

𝜎𝜀
) (

𝜕〈휀〉𝑓 

𝜕𝒏
)]𝑝𝑜𝑟 (3.30)  

Eqs. (3.29-3.30) represent the turbulence coupling at the fluid/porous interface. For the 

turbulent mass transfer coupling, we directly adopt the continuity of the diffusion fluxes 

condition [2, 8] in the time-averaged form which is cast as, 

 

(−𝜌𝑓̅̅ ̅  (𝐷𝑓 +
𝜇𝑡

𝜌𝑓̅̅ ̅𝑆𝑐𝑡
)

𝜕𝑌�̅�

𝜕𝒏
)

𝑓𝑙

= (−〈𝜌𝑓̅̅ ̅〉𝑓𝐷𝑒𝑓𝑓,𝑓

𝜕〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅

𝜕𝒏
− 〈𝜌�̅�〉𝑠𝐷𝑒𝑓𝑓,𝑠

𝜕 〈𝑌𝑤,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅̅

𝜕𝒏
)

𝑝𝑜𝑟

 

(3.31)  

For heat transfer, we adopt the continuity of the sum of the sensible and latent energy fluxes 

[8] given in the time averaged frame by, 
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(− (𝜆𝑓 +
𝜇𝑡𝑐𝑝,𝑎

𝑃𝑟𝑡
) (

𝜕 �̅�

𝜕𝒏
) − ∑ [𝜌𝑓̅̅ ̅ (𝐷𝑓 +

𝜇𝑡

𝜌𝑓̅̅ ̅𝑆𝑐𝑡
) (

𝜕𝑌�̅�

𝜕𝒏
)(𝑐𝑝,𝑖 �̅� + ℎ𝑓𝑔,𝑖)]

𝑖

)

𝑓𝑙

= (−𝜆𝑒𝑓𝑓,𝑓

𝜕〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅

𝜕𝒏

− ∑ [〈𝜌𝑓̅̅ ̅〉𝑓𝐷𝑒𝑓𝑓,𝑓 (
𝜕〈𝑌𝑖,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅

𝜕𝒏
) (𝑐𝑝,𝑖 〈𝑇𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅

𝑖

+ ℎ𝑓𝑔,𝑖)] −𝜆𝑒𝑓𝑓,𝑠

𝜕〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅

𝜕𝒏

− ∑ [〈𝜌�̅�〉𝑠𝐷𝑒𝑓𝑓,𝑠 (
𝜕〈𝑌𝑖,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅

𝜕𝒏
) (𝑐𝑝𝑠,𝑖〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ )]

𝑖

)

𝑝𝑜𝑟

 

(3.32)  

Eqs. (3.31-3.32) close the macroscopic interface conjugate coupling process with the mass and heat 

transfer conditions, respectively. Implementation and discretization to achieve the above conditions 

will be discussed in a subsequent section. 

3.3 Extended dynamic coupling models 

After presenting the conjugate modeling framework and the mathematical conditions for 

the macroscopic coupling of the different regions, this section focuses on the dynamic 

treatment for different closure and exchange terms interstitially and macroscopically 

involving turbulence, heat and mass transfer. The interest herein is directed to the 

interstitial closure for heat and mass transfer, the macroscopic k-휀 model coupling across 

macroscopic interfaces for high and low permeability porous interfaces and the turbulent 

heat and mass transfer circuit analogues for macroscopic coupling. When combining these 

dynamic models with the formulation in section 3.2, a full model for non-equilibrium 

turbulent flow, heat and mass transfer is achieved, which is suitable for use with different 

drying problems.  

3.3.1 Interstitial closure for heat and mass transfer 

Herein, due to the similarity between the laminar and turbulent description of the interstitial 

closure terms and their implementation, a concise treatment will be presented. The 
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interested reader is encouraged to look up all the details of the derivation and 

implementation in the work of Elhalwagy and Straatman [8].  

Considering mass transfer, there are two main modes describing the process. Either, the 

mass transfer is convectively dominant [8] in which enough liquid water is present inside 

the solid constituent of the porous region and, hence, the moisture capacity of the fluid 

constituent and its capability to withdraw vapor moisture is the controlling factor. Or, 

drying out is imminent and the solid constituent is starting to run out of water, and hence 

the controlling factor is the availability of liquid water and the ability of the solid 

constituent to supply it to the interstitial interface to be convected as vapor to the fluid 

constituent. This second mode is termed as diffusively dominant [8]. We will state the 

equations for the mass exchange closure term 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ for each case. In our in-house code, a 

check is performed within the non-linear loop to determine the lower amount of mass 

exchange from both expressions (i.e. the rate determining value) and the result is 

implemented implicitly to control convergence [8]. This technique eliminates the need for 

specification of an empirical threshold in which a predetermined amount of moisture inside 

CFD cells is chosen to separate convective from diffusive dominance transport. 

Convective dominance 

 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ =  〈𝜌𝑓̅̅ ̅〉𝑓ℎ𝑓𝑠𝑚𝐴𝑓𝑠 

ln( 1 + 𝐵)

𝐵
(

〈𝑌𝑣〉𝑓𝑠̅̅ ̅̅ ̅̅ ̅̅ − 〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅

1 − 〈𝑌𝑣〉𝑓𝑠̅̅ ̅̅ ̅̅ ̅̅
) (3.33)  

where ℎ𝑓𝑠𝑚 is an interstitial mass transfer coefficient estimated with a local mass transfer Sherwood 

number correlation, 𝐵 is the Spalding mass transfer number which is equal to the last bracket on 

the RHS of Eq. 3.33 and 〈𝑌𝑣〉𝑓𝑠̅̅ ̅̅ ̅̅ ̅̅  is the vapor mass fraction at the interstitial interface and is evaluated 

based on the relative humidity of the air adjacent to the interface (i.e. Water activity [8]) and the 

temperature of the interface 〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅. 

Diffusive dominance 

 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ = 〈𝜌�̅�〉𝑠
𝐷𝑒𝑓𝑓,𝑠

𝛿𝑑𝑖𝑓𝑓.
𝐴𝑓𝑠 〈𝑌𝑤,𝑠〉𝑠̅̅ ̅̅ ̅̅ ̅̅                 ,              𝛿𝑑𝑖𝑓𝑓. =  

𝑑𝑝

𝑆ℎ
(
1 − 𝜙

𝜙
)1/3 (3.34)  
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where 𝛿𝑑𝑖𝑓𝑓.is a significant liquid-in-solid diffusion thickness [8] and 
𝑑𝑝

𝑆ℎ
 is the drying boundary 

layer thickness (i.e. the porous media particle diameter over the Sherwood number). 

Now we shift our attention to the heat transfer closure term �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ . This term is an enthalpy 

exchange term that accounts for the energy accompanying the mass flux 〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅ as it leaves the solid 

phase to the fluid phase. For convectively dominant mass transfer, liquid is available at the surface 

of the solid constituent and hence, the vaporization energy is withdrawn from both phases in 

different proportions [8]. An apportioning factor 𝛼 is evaluated based on a local Biot number 𝐵𝑖 to 

determine, based on the capability of the fluid flow to convect heat in comparison to the capability 

of the solid phase to conduct heat, the fraction of transported vapor that absorbed its latent energy 

from the solid portion. The rest of the transported vapor absorbs its latent energy from the fluid 

constituent. As for diffusively dominant mass transfer, the surface of the solid constituent is deemed 

dry. Thus, the latent energy is totally apportioned to the solid constituent, i.e., 𝛼 = 1. Based on the 

above description, �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅  is given by [8], 

 �̇�𝑓𝑠
𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ =  〈�̇�𝑓𝑠〉̅̅ ̅̅ ̅̅ ̅[𝛼ℎ𝑣

̅̅ ̅(〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ ) + (1 − 𝛼)ℎ�̅�(〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅ )] (3.35)  

where ℎ𝑣 is the absolute enthalpy of water vapor and ℎ𝑙 is absolute liquid water enthalpy. The 

model for the mass enthalpy exchange is capable to treat evaporative cooling as well as drying due 

to the generic form of Eq. 3.35 that allows a dynamic applicability [8]. 

3.3.2 Turbulence coupling across macroscopic interfaces 

This subsection is dedicated to the interface k-휀 model treatment. It is well reported in the 

literature that k-휀 models are not suitable on their own to characterize turbulence transport 

very close to walls [55]. Due to the steep gradients of turbulent quantities very near to the 

viscous sublayer and the presence of the viscous sublayer itself which cannot be resolved 

by Reynolds-averaged turbulence modeling. At a Fluid/Porous interface while the 

conditions of the turbulent coupling were carefully selected to ensure a stable and 

reasonable treatment of the k and 휀, they apply the usual form of the k-휀 model on both 

sides of the interface and hence, they cannot resolve the blockage and shear wall-like 

effects. For low porosity materials (i.e. 𝜙 = 0.2 or lower) the interface should behave from 

the clear fluid side, in turbulence modeling, similar to a wall. As for the porous side, while 
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it is common to neglect the void space in this porosity range and treat the material as totally 

solid, we choose to treat this side as porous for the following reasons. The first one is the 

fact that vapor diffusion plays a significant role for some low porosity materials, e.g. De 

Bonis and Ruocco [10] and Van Belleghem et al. [13]. Instead of lumping the liquid and 

vapor in one equation to represent total moisture, separation in two equations is more 

physically correct in this case. So while the inside convection may not be important, the 

diffusion for vapor is important and hence the formulation should allow a continuum of 

fluid to be present across both clear fluid and porous regions. The second reason is the fact 

that porosity changes occur during drying in a lot of cases. So as a first step to include a 

spatial and temporal porosity gradient into a model, one should be able to treat low and 

high porosity materials with porous media modeling so that later a model that includes 

shrinkage and porosity gradients may switch between low and high porosity numerical 

treatments dynamically during solution. The third reason actually relates to developing a 

more generic coupling approach for turbulence. It is expected that Eqs. 3.29-3.30 may 

behave very well in high porosities, i.e. 𝜙 > 0.3, as it is a very close approach to the work 

of De Lemos [52, 54] that has been widely used in the literature. At very low porosities 𝜙 

< 0.1, a wall function approach is expected to be more accurate. Between both regimes 

neither of the approaches alone is expected to be accurate and a hybrid approach should be 

the best in that case. The present approach is a first step towards achieving that. Now we 

consider a wall-function-like approach to treat the first row of CFD cells in the clear fluid 

region that is adjacent to the macroscopic interface. Since the pressure-velocity coupling 

technique [1] requires sufficient grid refinement at the macroscopic interface, a standard 

wall function approach was deemed not suitable due to its restriction on refinement. An 

enhanced wall-like treatment is developed in the present work. The treatment has multiple 

features taken from different sources and is modified to be compatible with a low-

permeability porous media rather than a wall. To be able to discuss the enhanced wall-like 

treatment approach, we revert back to some basic definitions for wall functions. In order 

to generally describe the profiles of turbulence and velocity in the interface-adjacent 

region, dimensionless definitions have to be stated. The dimensionless interface-distance 

𝑦+ and dimensionless shear velocity 𝑢+ are given, respectively, by [55, 22], 
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 𝑦+ =
𝜌𝑓̅̅ ̅ 𝐶𝜇

1/4𝑘1/2𝑦 

𝜇𝑓
                       ,                      𝑢+ =  

𝑢 − 𝑢𝑖𝑛𝑡.

𝑢∗
 (3.36)  

where y is the distance between the geometric center of the first clear fluid CFD cell that 

is adjacent to the macroscopic interface and the interface itself, 𝑢 is the shear-component 

velocity value at the same CFD cell (i.e. parallel to the interface), 𝑢𝑖𝑛𝑡.is the slip-shear-

component velocity at the interface (i.e. at the integration point for the same CFD cell). 𝑢∗ 

is the friction velocity [55, 22] which also takes these definitions with the widely known 

approximations of turbulent boundary layer flows, 

 𝑢∗ =  −𝑢′𝑣′̅̅ ̅̅ ̅̅ 1/2
=   (

𝜏𝑖𝑛𝑡.

𝜌𝑓̅̅ ̅
)1/2   =   𝐶𝜇

1/4𝑘1/2 (3.37)  

where  𝜏𝑖𝑛𝑡. here is the interface shear stress. In order to establish a valid interface k-휀 

model treatment, a modification for the definition of turbulent viscosity 𝜇𝑡 near the 

interface needs to be described. One assessed approach was the introduction of a two-layer 

model (i.e. a viscosity affected layer and a fully turbulent layer) with introducing a blending 

function in-between [22]. Because of the complexity of velocity and turbulence transport 

near the interface (i.e. a two sided coupling rather than a usual one sided coupling for 

walls), the introduction of two expressions and their blending may cause stability problems 

and hence the approach was not utilised in the present work. Analytical wall function 

(AWF) [57, 44] was also assessed. Its eddy-viscosity expression was deemed suitable 

herein however, the use of integration was avoided as the form of the exact integrable 

equations affects stability as well [57, 44]. A ramp distribution of turbulent viscosity near 

the interface is adopted. The expression after being adapted to our definitions in Eqs. 3.36-

3.37 may be wrote as, 

 𝜇𝑡 =  𝜇𝑓 𝐶𝜇

3
4𝐶𝑙(𝑦+ − 5) (3.38)  

where 𝐶𝑙 =
𝜅

𝐶𝜇
3/4 = 2.55 [57,44]. The expression was originally developed for the 

turbulent region (i.e. 𝑦+ > 5). We generalise the expression here with setting a suitable 

lower bound as will be shown shortly. To seek easy implementation, Eq. 3.38 is recast in 

the following form, 
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 𝜇𝑡 = 𝐶𝜇𝜌𝑓̅̅ ̅ 
𝑘

𝝉
    ,    𝝉 =

𝜌𝑓̅̅ ̅ 𝑘

𝜇𝑓 휂
    ,      휂 = 𝐶𝜇

−1
4  𝐶𝑙(𝑦+ − 5) (3.39)  

where 𝝉 is the reciprocal of the turbulent time scale and has a definition of, 𝝉 =
𝜀

𝑘
 for 

interior CFD cells to be equivalent to Eqs. 3.7 and 3.22. The parameter 휂 is another 

dimensionless length scale. A lower bound is selected for 𝜇𝑡 for prevention of negative 

values based on Eq. 3.38, (𝜇𝑡 ≥ 0.1𝜇𝑓) and this condition is achieved for 휂 ≥ 1. This 

length scale condition extends the validity of Eq. 3.39 for the different wall function 

regions. For the turbulent layer (i.e. 𝑦+ > 5),  the turbulence energy dissipation of the clear 

fluid interface CFD cell is forced explicitly as [22], 

 휀 =  
𝑘3/2

𝐶𝑙 𝑦
    (3.40)  

At this point, a definition for the dimensionless velocity profile needs to be introduced. 

Instead of breaking the profile into a viscous layer (𝑢+ = 𝑦+), a buffer layer and a log law 

layer (𝑢+ =
1

𝜅
ln(𝑦+) + 𝐸) [55], we introduce the single expression of Kader [58, 22] 

which represents a single function for all the regions as, 

 𝑢+ = 𝑒Γ𝑦+ + 𝑒1/Γ (
1

𝜅
ln(𝑦+) + 𝐸)                     ,                      Γ =

−0.01𝑦+4

1 + 5𝑦+
 (3.41)  

Equation 3.41 allows the turbulent energy production for a clear fluid interface CFD cell 

in the fully turbulent region to be cast as, 

 𝑃𝑘 = 𝜌𝑓̅̅ ̅ 𝑢∗2 𝜕𝑢

𝜕𝑦
=  𝜌𝑓̅̅ ̅2(

𝑢 − 𝑢𝑖𝑛𝑡.

𝑢+
)2

𝐶𝜇
1/2𝑘

𝜇𝑓

𝜕𝑢+

𝜕𝑦+
 (3.42)  

Equation 3.42 provides a stable implementation for the explicit 𝑃𝑘 term where 𝑢+ and 
𝜕𝑢+

𝜕𝑦+
 

are evaluated based on (Eq. 3.41). For the viscous sublayer (i.e. 𝑦+ < 5), the turbulence 

energy production 𝑃𝑘vanishes [57, 44]. As for the dissipation 휀, the exact approximation 

for the famous low Reynolds number term [59] is forced explicitly as, 
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 휀 =
𝜇𝑓

𝜌𝑓̅̅ ̅
 (

𝜕𝑘1/2

𝜕𝑦
)2 ≈

2𝜇𝑓𝑘

𝜌𝑓̅̅ ̅ 𝑦𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑒𝑑𝑔𝑒
2 ≈

2

25
𝐶𝜇

1
2

𝜌𝑓̅̅ ̅

𝜇𝑓
 𝑘2      (3.43)  

Where the viscous edge is assumed at 𝑦+ = 5. In our in-house code, switching between 

expressions for the two regions is decided based on a check of the dimensionless interface 

distance that occurs within the non-linear CFD loop. Now, we shift our attention to the 

interface shear stress 𝜏𝑖𝑛𝑡. and the reflection of the enhanced wall-like treatment on the 

interface velocity condition. Based on Eq. 3.41, one may cast the interface shear stress as, 

 𝜏𝑖𝑛𝑡. = 𝜇𝑡

𝜕𝑢

𝜕𝑦
= 𝜌𝑓̅̅ ̅𝐶𝜇

1
2

𝜇𝑡

𝜇𝑓
𝑘

𝜕𝑢+

𝜕𝑦+
   (3.44)  

Equation 3.44 does not offer the best numerical stability and may be cast for the interest of 

simplification and implicit implementation as, 

 𝜏𝑖𝑛𝑡. = 𝜌𝑓̅̅ ̅𝑢∗𝑢∗ = 𝜌𝑓̅̅ ̅(𝐶𝜇

1
2

𝜇𝑡

𝜇𝑓
𝑘

𝜕𝑢+

𝜕𝑦+
)1/2

(𝑢 − 𝑢𝑛𝑏)

𝑢+
  (3.45)  

where 𝑢𝑛𝑏 is the neighboring CFD cell shear velocity (i.e. porous cell on the other side of 

the macroscopic interface). Figure 3.2 illustrates the coupling process. The leading term in 

Eq. 3.45 may be thought of as a modified CFD diffusion influence coefficient. The standard 

way to implement the interface velocity condition in our in-house code is to use harmonic 

mean formulation [1] to implement Eq. 3.27. This is generalized whether the porous region 

is considered of high or low permeability. For low permeability, we keep this standard 

approach, however, we also implement Eq. 3.45 implicitly based on Eq. 3.25 using the 

necessary apportioning of the shear stress based on porosity as mentioned earlier. Then, 

we correct for the difference of the two expressions explicitly. In a high permeability 

porous media case, all of the above equations for wall-like treatment are switched off 

leaving the standard condition of Eq. 3.27 and the usual k-휀 model discretization alone as 

they are enough to characterize the coupling process in this case. In regards to heat and 

mass transfer treatments for wall-like behavior, we defer the discussion to the next 

subsection. 
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3.3.3 Turbulent heat and mass transfer circuits for macroscopic 

coupling 

The present subsection extends the macroscopic interface heat and mass transfer coupling 

approach that was developed in the work of Elhalwagy and Straatman [8] to include 

turbulence effects. The coupling approach depends on utilizing heat and mass transfer 

circuit analogues [8] to couple one equation in the fluid side to the two non- equilibrium 

equations in the porous side. Before introducing the circuit analogues, we will introduce 

the wall-like treatment for heat and mass transfer. 

 

Figure 3.2: Shear stress at a macroscopic interface. 

 

Figure 3.3: Moisture resistance analogue for the macroscopic interface. 
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We will consider the clear fluid CFD cell adjacent to the macroscopic interface as above. 

The dimensionless 𝑇+ and dimensionless  𝑌𝑣
+ are defined [22], respectively, by, 

 𝑇+ =
(�̅� − �̅�𝑖𝑛𝑡.)𝜌𝑓̅̅ ̅𝑐𝑝𝑎𝑢∗

𝑞𝑖𝑛𝑡.
′′                    ,                𝑌𝑣

+ =
(𝑌�̅� − �̅�𝑣𝑖𝑛𝑡.

)𝜌𝑓̅̅ ̅𝑢∗

𝐽𝑣𝑖𝑛𝑡.
′′  (3.46)  

where �̅�𝑖𝑛𝑡. is the macroscopic interface temperature, �̅�𝑣𝑖𝑛𝑡.
 is the vapor mass fraction at the 

interface and 𝑞𝑖𝑛𝑡.
′′ and 𝐽𝑣𝑖𝑛𝑡.

′′ are the total interface heat and mass transfer fluxes, 

respectively, that represent the sum of the contributions from the two resistance legs as 

shown in Fig. 3.3. Unlike the explicit implementation for the velocity treatment, we will 

treat the heat and mass transfer wall-like treatment implicitly in order not to complicate the 

resistance circuit implementation. The diffusion terms over the entire heat and mass 

transfer discretization are treated using the harmonic mean formulation [1], therefore, we 

can use different conductivities and diffusivities between adjacent fluid CFD cells. 

Thereby, we decompose 𝑞𝑖𝑛𝑡.
′′ and 𝐽𝑣𝑖𝑛𝑡.

′′  to define a modified conductivity 𝜆𝑓𝑚𝑜𝑑.𝑡
and 

diffusivity 𝐷𝑓𝑚𝑜𝑑.𝑡
 for the interface-adjacent clear fluid CFD cell as, 

 𝑞𝑖𝑛𝑡.
′′ = −𝜆𝑓𝑚𝑜𝑑.𝑡

𝜕�̅�

𝜕𝑦
                     ,                     𝐽𝑣𝑖𝑛𝑡.

′′ = −𝜌𝑓̅̅ ̅𝐷𝑓𝑚𝑜𝑑.𝑡

𝜕𝑌�̅�

𝜕𝑦
  (3.47)  

Inserting Eq. 3.47 and Eq. 3.36 into Eq. .3.46, we arrive at these definitions for the modified 

conductivity and diffusivity, 

 𝜆𝑓𝑚𝑜𝑑.𝑡
= 𝜇𝑓𝑐𝑝𝑎  

𝑦+

𝑇+
                       ,                           𝐷𝑓𝑚𝑜𝑑.𝑡

=
𝜇𝑓

𝜌𝑓̅̅ ̅
 

𝑦+

𝑌𝑣
+     (3.48)  

Now, we define two analogues for Eq. 3.41 to represent temperature and mass fraction 

wall-like profiles [58, 22] , respectively, as, 

𝑇+ = 𝑒Γ𝐻𝑇  𝑇+
𝑙𝑎𝑚. + 𝑒1/Γ𝐻𝑇  𝑇+

𝑡𝑢𝑟𝑏.

=  𝑒Γ𝐻𝑇  𝑃𝑟 𝑦+ +  𝑒1/Γ𝐻𝑇  𝑃𝑟𝑡  ( 
1

𝜅
ln(𝑦+) + 𝐸 +  Ρ𝐻𝑇) 

(3.49)  
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 𝑌𝑣
+ =  𝑒Γ𝑀𝑇  𝑆𝑐 𝑦+ +  𝑒1/Γ𝑀𝑇  𝑆𝑐𝑡  ( 

1

𝜅
ln(𝑦+) + 𝐸 +  Ρ𝑀𝑇) (3.50)  

where  Ρ𝐻𝑇 and  Ρ𝑀𝑇 are functions of the ratios 𝑃𝑟/𝑃𝑟𝑡 and 𝑆𝑐/𝑆𝑐𝑡, respectively [22] and 

are evaluated here as -1.546 and -0.9494, respectively. The profile exponents are given by, 

 Γ𝐻𝑇 =
−0.01 (𝑃𝑟 𝑦+)4

1 + 5 𝑃𝑟3𝑦+
                             ,                       Γ𝑀𝑇 =

−0.01 (𝑆𝑐 𝑦+)4

1 + 5 𝑆𝑐3𝑦+
  (3.51)  

Using Eqs. 3.48-3.51, one can evaluate 𝜆𝑓𝑚𝑜𝑑.𝑡
 and 𝐷𝑓𝑚𝑜𝑑.𝑡

 for low permeability 

interfaces. For high permeability materials they are defined as (𝜆𝑓 +
𝜇𝑡𝑐𝑝,𝑎

𝑃𝑟𝑡
) and (𝐷𝑓 +

𝜇𝑡

𝜌𝑓̅̅ ̅̅ 𝑆𝑐𝑡
), respectively (i.e. equivalent to definitions for effective conductivity and diffusivity 

of interior fluid CFD cells). 

Now we shift our attention to the circuit analog for moisture. Fig. 3.3 depicts the circuit for 

a Fluid cell (P) and a neighboring porous cell (E) at its east face, separated by integration 

face ‘e’. The following description will be concise and, if interested, the reader may look 

up the full details in Elhalwagy and Straatman [8]. The fluid leg of the resistance is identical 

to the laminar version [8] with substituting the molecular diffusivity 𝐷𝑓 with 𝐷𝑓𝑚𝑜𝑑.𝑡
. For 

the solid leg we introduce some changes to the three resistances, 𝑅𝑣2𝑠
, 𝑅𝑓−𝑠 and 𝑅𝑊𝑠

. The 

main resistances 𝑅𝑣2𝑠
and 𝑅𝑊𝑠

 may be given as, 

 𝑅𝑣2𝑠
=

∆𝑥𝑃𝑒

𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐴𝑒𝐷𝑓𝑚𝑜𝑑.𝑡

                          ,                   𝑅𝑊𝑠
=

∆𝑥𝑒𝐸

〈𝜌�̅�〉𝑠
𝐸

𝐴𝑒𝐷𝑒𝑓𝑓,𝑠
 (3.52)  

Equation 3.52 retains its form for both modes of mass transfer. For the convectively 

dominant mode of mass transfer, the availability of liquid in the solid is high as it supplies 

vapor based on the capacity for clear fluid side. Thus, 𝑅𝑓−𝑠 is mainly based on a boundary 

layer expression similar to Eq. 3.33 in which the vapor-saturated surface of a wet particle 

at the interface supplies vapor to the clear fluid integration face. For low permeability 

porous media, as the solid side is filled with water, this vapor diffusion through the 
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boundary layer is assumed laminar since turbulent is highly unlikely to disperse inside such 

a densely packed region. Based on these assumptions, 𝑅𝑓−𝑠𝑐𝑜𝑛𝑣.
may be cast as, 

 𝑅𝑓−𝑠𝑐𝑜𝑛𝑣.
=

𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓.(1 − 〈𝑌𝑣,𝑓〉𝑓̅̅ ̅̅ ̅̅ ̅̅
𝑠𝑜𝑙.

)

𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐴𝑒𝐷𝑓𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓. 𝑙𝑛(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)
 (3.53)  

Equation 3.53 may also be used for high permeability materials with substituting  𝐷𝑓 with 

𝐷𝑓𝑚𝑜𝑑.𝑡
. Regarding the diffusively dominant mode of mass transfer, the interface particle 

surface is deemed dry as the liquid is scarce in this mode and the capability to diffuse it is 

rate-limiting. In this case, 𝑅𝑓−𝑠 represents a vapor diffusion layer within the solid 

constituent. The expression is similar to Eq. 3.53 since we assume a diffusivity for vapor 

that is based on the same length scale as the drying boundary layer [8]. As the liquid in the 

solid region is scarce, turbulence is considered to be a vapor diffusion enhancement factor 

[8]. 𝑅𝑓−𝑠𝑑𝑖𝑓𝑓𝑢𝑠.
is cast as, 

 𝑅𝑓−𝑠𝑑𝑖𝑓𝑓𝑢𝑠.
=

𝑑𝑝/𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.

𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐴𝑒𝐷𝑓𝑚𝑜𝑑.𝑡

  (3.54)  

In order to implement Eqs. 3.52-3.54, we use the concept of the phase ratio [8] to ensure 

the continuity of the mass flux exchange across the macroscopic interface. Defining the 

phase ratio K as, 

 K =
〈𝜌�̅�〉𝑠

𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉𝑠

𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐷𝑓𝑚𝑜𝑑.𝑡
〈𝑌𝑣,𝑓〉𝑓

𝑠𝑜𝑙.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (3.55)  

one may utilise the harmonic mean formulation to express the mass flux through the solid 

leg for convectively dominant cases as, 

 
�̇�𝑊𝑠
̅̅ ̅̅ ̅̅ =

𝐴𝑒(〈𝜌�̅�〉𝑠
𝐸

𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉𝑠
𝐸

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − K 𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐷𝑓𝑚𝑜𝑑.𝑡
𝑌𝑣  𝑃
̅̅ ̅̅ ̅)

K  (∆𝑥𝑃𝑒 +
𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓. (1 − 〈𝑌𝑣,𝑓〉𝑓

𝑠𝑜𝑙.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

휁 𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.  ln(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)
) + ∆𝑥𝑒𝐸

 
(3.56)  
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where  휁 = 1 for highly permeable material and 휁 = 𝐷𝑓/𝐷𝑓𝑚𝑜𝑑.𝑡
 for low permeability 

materials. While Eq. 3.55 is valid for both modes of mass transfer, the implemented form 

for diffusively dominant mass transfer may be given as [8], 

 
K = 1 −

1

1 +
〈𝜌�̅�〉𝑠

𝐸
𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉𝑠

𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐷𝑓𝑚𝑜𝑑.𝑡
〈𝑌𝑣,𝑓〉𝑓

𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(3.57)  

The solid leg mass flux for diffusively dominant mass transfer is also given by, 

 �̇�𝑊𝑠
̅̅ ̅̅ ̅̅ =

𝐴𝑒(〈𝜌�̅�〉𝑠
𝐸

𝐷𝑒𝑓𝑓,𝑠〈𝑌𝑤,𝑠〉𝑠
𝐸

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − K 𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐷𝑓𝑚𝑜𝑑.𝑡
𝑌𝑣  𝑃
̅̅ ̅̅ ̅)

K  (∆𝑥𝑃𝑒 +
𝑑𝑃

𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓.
) + ∆𝑥𝑒𝐸

 (3.58)  

To determine the mode of mass transfer we depend on a check that is performed within the 

non-linear CFD loop [8] which is based on, 

�̇�𝑊𝑠
̅̅ ̅̅ ̅̅ =

 𝜌𝑓̅̅ ̅
𝑃

(1 − 𝜙)𝐷𝑓𝑚𝑜𝑑.𝑡
𝐴𝑒(〈𝑌𝑣,𝑓〉𝑓

𝑠𝑜𝑙.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑌𝑣  𝑃

̅̅ ̅̅ ̅)

∆𝑥𝑃𝑒 +
𝑑𝑃𝐵𝑖𝑛𝑡𝑒𝑟𝑓. (1 − 〈𝑌𝑣,𝑓〉𝑓

𝑠𝑜𝑙.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

휁 𝑆ℎ𝑖𝑛𝑡𝑒𝑟𝑓. ln(1 + 𝐵𝑖𝑛𝑡𝑒𝑟𝑓.)

=
〈𝜌�̅�〉𝑠

𝐸
𝐷𝑒𝑓𝑓,𝑠𝐴𝑒(〈𝑌𝑤,𝑠〉𝑠

𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 〈𝑌𝑤,𝑠〉𝑠

𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

∆𝑥𝑒𝐸
 

(3.59)  

Equations 3.55-3.59 represent a complete implementation technique for the solid leg mass 

transfer coupling process. In regards to heat transfer, Eq. 3.32 is decomposed into two 

balances. The first balance is conductive and represents sensible energy and the second 

balance is diffusive based on latent energy fluxes [8]. A resistance analogue for conduction 

across the macroscopic interface is utilised to ensure the equality of conduction fluxes 

leaving/entering the clear fluid side with their counterparts that are entering/leaving the 

porous side. The implementation follows identically the description of Betchen et al. [1]. 

Herein, we substitute the molecular conductivity on the pure fluid side with the turbulent-

affected conductivity 𝜆𝑓𝑚𝑜𝑑.𝑡
. As for the mass exchange enthalpy balance, it is given by 

[8], 
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 �̇�𝑓𝑠𝑚𝑎𝑐𝑟𝑜.

𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ‖�̇�𝑊𝑠
̅̅ ̅̅ ̅̅ . ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.

𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ‖. 𝒏 =  ‖�̇�𝑊𝑠 
̅̅ ̅̅ ̅̅ . 

 ℎ𝑓𝑠𝑚𝑎𝑐𝑟𝑜.

𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅
‖ . 𝒏 (3.60)  

and is implemented explicitly as, 

 �̇�𝑓𝑠𝑚𝑎𝑐𝑟𝑜.

𝑚𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  �̇�𝑊𝑠
̅̅ ̅̅ ̅̅ [𝛼𝑖𝑛𝑡𝑒𝑟𝑓.ℎ𝑣

̅̅ ̅(〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅
𝑒

)  + (1 − 𝛼𝑖𝑛𝑡𝑒𝑟𝑓.)ℎ�̅�(〈𝑇𝑠〉𝑠̅̅ ̅̅ ̅̅
𝑒

)] (3.61)  

where in a similar manner to Eq. 3.35,  𝛼𝑖𝑛𝑡𝑒𝑟𝑓.=1 for diffusively dominant interfaces and 

is evaluated based on an interface Biot number otherwise [8].  

 

3.4 Verification 

The complete formulation presented in sections 3.2 and 3.3 is implemented in our 

conjugate in-house code [1-2, 8]. The model is the first of its kind and is one of the very 

few models in the literature that treats conjugate flow, turbulence, heat and mass transfer 

simultaneously utilizing porous media modeling.  This section is concerned with 

verification of the turbulence coupling approaches that were presented in subsection 3.3.2, 

followed by turbulent heat and mass transfer verification for the drying of apple and potato 

slices. Apple and potato are chosen as verification cases because they represent moderate 

(apple) and low (potato) porosity materials that facilitate verification of the turbulence 

model enhancements; and, they are both water-filled so convection involves both heat and 

mass transfer. In the first subsection we introduce the properties and relations necessary to 

characterize apple and potato flesh as porous media. This is followed in the remaining 

sections by verification of the turbulence and mass transfer models by studying the drying 

of the two produce slices. 

3.4.1 Porous media properties for Apples and Potatoes 

All the properties for apples are adopted from [8, 4] and presented in Table 1. We will 

mainly direct our attention towards potatoes as it is a lower-porosity flesh and, 

consequently, a low-permeability porous media. Thermophysical properties of individual 

phases, internal geometric parameters and closure coefficient estimates are of interest. 
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Srikiatden and Roberts [60] reported the densities of the solid matrix inside a potato 𝜌𝑠𝑡 

and the density of liquid moisture 𝜌𝑤 as 1480 and 1020 kg/m3, respectively where the 

densities here are defined based on phase specific volumes. Our density of interest 〈𝜌�̅�〉𝑠 is 

defined per unit volume of the solid/water mixture (i.e. the solid matrix density multiplied 

by the solid volume fraction inside the solid/water constituent). We assume the initial 

moisture concentration 〈𝑌𝑤,𝑠〉𝑠
𝑖𝑛𝑖𝑡.

inside the potato slice as 4.886 kg liquid per kg of dry 

solid [12]. In order to estimate the specific phase volume fractions within the solid/water 

constituent, we consider the following definitions [4, 60], 

 
〈𝑌𝑤,𝑠〉𝑠

𝑖𝑛𝑖𝑡.
=

𝛼𝑤𝜌𝑤

𝛼𝑠𝑡𝜌𝑠𝑡
                     ,                𝛼𝑤𝜌𝑤 + 𝛼𝑠𝑡𝜌𝑠𝑡 =  

1 + 〈𝑌𝑤,𝑠〉𝑠
𝑖𝑛𝑖𝑡.

1
𝜌𝑠𝑡

+
〈𝑌𝑤,𝑠〉𝑠

𝑖𝑛𝑖𝑡.

𝜌𝑤

 
(3.62)  

Solving Eq. 3.62, we estimate the phase specific volumes and 〈𝜌�̅�〉𝑠 as reported in Table 

3.1. Krokida and Maroulis [61] recorded the porosity values for different produce during 

different types of drying processes as they vary for different moisture contents. Herein, we 

adopt their porosity recording for the corresponding moisture content as above in a 

convective drying process and we fix it through the drying process. As for the thermal 

conductivity we adopt a value of 0.551 W/m.K [12] for the whole potato slice and we use 

the porosity to apportion it on the different phases [8, 4]. We also adopt a potato specific 

heat value of 3778 J/kg.K [12] and use the solid matrix volume fraction to evaluate the 

solid portion specific heat [8, 4]. In order to estimate the particle diamater 𝑑𝑃, we use a 

suggestion by Feng et al. [62] to utilize the parenchyma cell size as a measure for the 

particle diameter where the parenchyma cell surface area is about 1/54.8 mm2 for potatoes 

[63]. The permeability 𝐾 is evaluated using the famous Ergun equation [64] and the 

interfacial surface area per unit volume 𝐴𝑓𝑠 is evaluated as 6(1 − 𝜙)/𝑑𝑃 [8]. Table 3.1 

summarizes all the properties of interest except for the phase diffusivities as we consider 

them to be functions of the moisture ratio as reported in section 3.4.3. 

Table 3.1: Properties of Potatoes and Apples as Porous materials. 

 Potato Apple 
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Porosity,  𝜙 0.04 0.206 

Permeability, K (m2) 1.12x10-14 8.89x10-13 

Forchheimer Coefficient, 𝑐𝐸 0.244 0.244 

Specific interfacial surface area, 

𝐴𝑓𝑠 (m-1) 
37775.6 11650 

Average Particle diameter, 

𝑑𝑝 (𝜇m) 
152.4 103 

Solid matrix volume fraction, 𝛼𝑠𝑡 0.1236 0.0689 

Liquid volume fraction, 𝛼𝑤 0.8764 0.9311 

Dry Solid density, 〈𝜌𝑠〉𝑠 (kg/m3) 182.96 124.85 

Initial liquid moisture content, 

〈𝑌𝑤,𝑠〉𝑠
𝑖𝑛𝑖𝑡.

(kg Liq./kg dry solid) 
4.886 7.45 

Dry Solid specific heat, 𝑐𝑝𝑠 

(J/kg.K) 
467 252 

Solid effective thermal 

conductivity, 𝜆𝑒𝑓𝑓,𝑠 (W/m.K.) 
0.5287 0.3335 

Fluid effective thermal 

conductivity, 𝜆𝑒𝑓𝑓,𝑓 (W/m.K.) 
0.0223 0.0865 
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3.4.2 Two dimensional simulation of turbulent flow around a porous 
obstruction 

This section considers the flow of air around and through a porous obstruction from the 

point of view of hydrodynamics. The high and low permeability macroscopic interface 

treatments are tested using the hydrodynamic representation of Apple and Potato slices, 

respectively. The numerical setup is comprised of a parallel-walled channel of 1 m in length 

(L) and 0.09 m in height (H) in which a 0.3 x 0.03 m2 (i.e. l x h)  porous obstruction is 

centered (see Fig. 3.4). The flow is two-dimensional in nature and hence a very small depth 

(1 mm) for this setup is utilized with symmetry boundary conditions to enable the use of 

the three dimensional in-house code. A uniform mesh of 90 x 40 x 1 was deemed sufficient 

based on a less than 2% grid independence with respect to the overall pressure drop for a 

base case of 2 m/s inlet velocity; i.e. corresponding to a Reynolds number of 4000. Figure 

3.4 shows the numerical setup for the channel. At the inlet (x = 0) a uniform velocity Uin is 

imposed (with zero transverse components) and pressure is extrapolated from the domain 

interior. An inlet turbulence intensity of 2.5 % and a turbulence length scale of 0.0063 m 

(i.e. 0.07 H) were used to specify k and ɛ at the inlet [22]. At the outlet (x = L), outflow 

boundary conditions are used wherein zero-gradients are forced for all quantities except 

for the pressure which is set as atmospheric. A no slip condition was imposed at the lower 

and upper channel walls (y = 0, y = H) utilizing an enhanced wall treatment (EWT) 

technique, i.e. a refinement-free technique similar to the low-permeability macroscopic 

interface coupling presented earlier, but for walls utilizing a zero-gradient boundary 

condition for turbulent quantities, and pressure extrapolation. All steady state solutions 

were achieved using a non-iterative time advancement technique. Turbulence production 

was controlled using Menter’s limiter [65, 22] only early in the transient whenever the 

velocity gradients evolution was numerically unstable. 
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Figure 3.4: 2D flow numerical setup around and through a porous obstruction. 

The purpose of this section is specifically to show how the enhanced wall-like treatment is 

necessary for low permeability fluid/porous interfaces by physically analyzing the 

turbulent flow behavior at the fluid/porous interface with and without it. The interface 

conditions for turbulent fluxes remain the same as given by Eqs. 3.29-3.30 for both cases. 

Figure 3.5 depicts the dimensionless pressure contours (normalized by 𝜌𝑓𝑈𝑖𝑛
2 ) for a Uin = 

2 m/s inlet velocity case using apple and potato properties. The results are very similar in 

terms of pressure for inclusion or lack of the use of EWT and hence we only report the case 

of an EWT. A gradual decline of pressure through the channel is shown with an 

impingement high pressure region at the porous upstream interface for both cases. One 

may notice two low-pressure leading edge regions as well indicating an acceleration of the 

flow around the upstream of the porous region that characterizes the 

separation/reattachment behavior. It is also observed that the impingement pressure is 

higher in the case of the potato properties due to the very low porosity/permeability. In 

general, the contours show physically reasonable behavior that is well established in the 

literature and very similar to flows around a solid obstruction because of the low 

permeabilities for both cases. This is the case regardless of whether an EWT was utilized 

or not, giving credence to the EWT approach and the fact that it does not cause any negative 

effect on the pressure behavior. It is also established in the present work that the pressure 

velocity coupling technique that was originally introduced by Betchen et al. [1], is 

numerically robust for high Reynolds numbers (herein it was tested for up to 20000), 

turbulent flows and very low permeability porous media.  
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Now, we turn our attention to the velocity contours and stream lines in Figs. 3.6-3.7. Figure 

3.6 shows the axial velocity contours for a Uin = 2 m/s case. Both interface coupling 

techniques predict low velocity values inside the porous region that are on the orders of 10-

7-10-10 m/s, which is compatible with the low permeabilities considered. The two major 

features of such a flow in RANS modelling are the back recirculation zone and the 

separation/reattachment near the leading edge and both behaviors are captured herein. The 

EWT approach predicts longer and more developed back recirculation regions and more 

obvious negative velocity regions close to the leading edge, which characterizes the 

separation bubble. The sizing of the back recirculation is comparable to the work of 

Ateeque et al. [12]. The no-EWT approach under-predicts the size of both regions. The 

values for maximum velocities are generally higher in a no-EWT approach which suggests 

that the approach under-predicts the skin shear of the porous material and the overall drag 

on the flow. A case of higher porosity and permeability, 0.32 and 4.21 x 10-12, respectively, 

were also considered herein to study the behavior for slightly more permeable materials. 

Such properties could be representing carrots for example [66]. While not given in figures, 

the contours show the same behavior as for apples with more pronounced acceleration 

around the porous slice and lesser size for the back recirculation zone. This case shows that 

the high permeability approach is suitable and numerically robust as well for relatively 

higher permeability materials. 

A closer look may be taken by the stream lines for the hydrodynamic behavior of the 

problem in Fig. 3.7. The figure confirms the conclusions drawn from the contour plots. A 

well-developed back recirculation region may be observed for the EWT approach. The 

separation bubble interacts with the weak flow inside the porous region to form two back 

flow regions that are present across the macroscopic shear interfaces on the sides of the 

porous slice. Also, any weak penetration of the flow on the impingement face is drawn by 

the negative pressure points near the separation bubbles to exit the slice from the sides and 

join the accelerating flow. The separation bubble is very weak for the no-EWT approach 

and is not showing in the stream lines as it is very thin in this case and altered by the side 

exiting flow mentioned earlier. The back recirculation is weakly represented as well due to 

the faster acceleration of the flow around the slice that prevents forming a better 

development for the back wake. One may comment that a k-ω SST model may predict 
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better behavior for the separation/reattachment flow [12, 14], however it will require a 

different sophisticated technique for an EWT and will also require a different interface flux 

coupling for turbulence. We may also mention that no closed version for a porous media 

k-ω SST model is available in the literature to the best of the authors’ knowledge. It is 

expected that the major features will remain the same with a k-ω SST model because of the 

lack of proper representation for a wall-like porous material in any interface flux coupling 

technique that is available.     

 

Figure 3.5: Normalized pressure contours for a 2 m/s flow over Potato and apple 

porous obstructions with the use of EWT. 

The two back flow regions in the middle section of the slice are also absent herein as a 

slightly more permeable behavior of the porous media is noticed with a fraction of the 

penetrated flow traveling through the porous slice. Figures 3.8-3.9 depict the contours for 

normalized TKE and its dissipation for the 2 m/s case where TKE is normalized as 

〈𝑘〉𝑓/𝑈𝑖𝑛
2  and the turbulence dissipation is normalized as 〈휀〉𝑓ℎ/𝑈𝑖𝑛

3 . The major feature in 

the contours is the dissipation of turbulence at the EWT-interface and not allowing 

penetration inside the porous regions, which is physically correct, as the porous material 
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with as low a permeability behaves essentially for turbulence as a wall where any weak 

fraction of the flow that dissipates inside is laminar. Using a no-EWT treatment results in 

incorrect penetration for turbulence inside the porous region. The legends of the figures 

depicts a normalized value for turbulence and hence while the value is small for a no-EWT 

technique, it still represents considerable penetration of turbulence. The rest of the physical 

turbulence behavior shown in the contours is typical in which a growth of turbulence at the 

edge of the wall boundary layers starts developing along the channel, an impingement 

generation is observed at the upstream face and a shear and back recirculation turbulence 

for the porous region is generated that disperses and transports along the downstream 

section. The figures also show a higher generation of turbulence for relatively higher 

permeability; i.e., the apple case which is physically reasonable.  

 

Figure 3.6: Axial velocity contours for a 2 m/s flow for cases of different porous 

properties and different interface treatments. 
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Figure 3.7: Streamlines for a flow of 2 m/s for Potato properties. 

Figure 3.10 shows the flow and turbulence behavior for an EWT potato case of high 

velocity; i.e., Uin=10 m./s and Reynolds number of 20000. The physical features observed 

earlier are all preserved in this high velocity case indicating that the coupling holds well 

numerically and physically for higher Reynolds numbers and the unrealistic penetration of 

turbulence is not allowed to evolve. 

It is also interesting to compare the two techniques of the interface coupling quantitatively. 

Following the same representation as De Lemos [54], the magnitude of the extrinsic 

velocity vector |〈�̅�〉|, normalized TKE and its dissipation are plotted transversely in Fig. 

3.11 at an axial location of 0.75 l of the porous region where the flow shear at the interface 

is the main physical effect; i.e., away from recirculations and back flows, in order to 

produce results that are analogous to De Lemos’s [54] for the interface coupling with 

different values of the turbulence jump coefficients. 

The results for the case of no-EWT, in terms of the velocity, TKE and its dissipation, match 

the trends obtained by De Lemos [54] qualitatively for cases of zero or positive turbulence 

jump coefficients. Interestingly the case of EWT shows a behavior that is close to the 

negative jump coefficients coupling for De Lemos [54].  The sign of the jump coefficient 
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may be interpreted as the sign of the direction showing higher diffusion of the turbulence; 

i.e., for positive jumps, the diffusion is enhanced towards the porous region while for 

negative jumps, the diffusion is inhibited towards the porous region. In cases where an 

EWT is used, the turbulence diffusion is reduced to laminar as we consider flow near the 

interface; i.e. a boundary layer behavior and hence in terms of jump coefficients, it may be 

thought of as an explicit technique to include the physics of a negative jump coefficient.       

 

Figure 3.8: Normalized TKE contours for a flow of 2 m/s with different porosities 

and interface treatments (Scale is cut of above the reported maximum to show the 

penetration/dissipation of turbulence). 
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Figure 3.9: Normalized turbulence dissipation contours for a flow of 2 m/s with 

different porosities and interface treatments (Scale is cut of above the reported 

maximum to show the penetration/dissipation of turbulence). 

The advantage here would be that it does not require an empirical specification. For the 

velocity, a turbulent boundary layer profile is observed as we consider clear fluid flow near 

the interface for an EWT technique. The shear is also higher in this case, which is 

compatible with a very low permeability; i.e., wall-like material. Consequently, further 

from the interface in the clear fluid side, the velocity profile for a no-EWT case shows 

over-predicted velocity values. In regards to turbulence profiles, a peak is observed close 

to the interface where the production and dissipation are at their highest. The values of both 

decay fast as we consider clear fluid flow further from the interface in an EWT, while they 

remain high and decay slowly for no EWT. The first behavior is dominated by wall-like 
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behavior for turbulent flows in the literature and is considered physically correct for a low 

permeability material, while the second behavior may be observed for a more permeable 

material. It is also pronounced in Fig. 3.11 that turbulence does not penetrate the interface 

for a low permeability material. One also observes that the profile of TKE does not follow 

exactly that of a negative jump coefficient profile in the work of De Lemos [54]. In a 

negative jump TKE profile, the decay of TKE as we consider clear fluid flows further from 

the interface maintain the same concaved shape while herein for an EWT, an inflection 

point may be observed at about y/h of 0.87. Consequently, one may conclude that the EWT 

may not be substituted by the use of a turbulence jump coefficient. One may conclude from 

the above discussion that the approach of macroscopic interface coupling using an EWT is 

numerically and physically robust and produces correct physical behavior. It is understood 

that an experimental validation of the technique is necessary and of great importance 

however herein the focus is directed to the different physical behaviors for different 

permeability values and interface treatments and resolving them numerically. It is also 

worth to mention that to date, to the best of the authors’ knowledge, no general validation 

experiment for turbulent macroscopic interface coupling is available.  

3.4.3 Turbulent convective drying of potato and apple slices 

This section is concerned with verification of the turbulent heat and mass transfer capability 

of the dynamic coupling model. A conjugate fluid/porous case that involves both 

microscopic and macroscopic interface treatments is considered for different materials of 

low porosity and permeability, namely, potato and apple slices. The macroscopic interface 

is mainly subjected to diffusively dominant mass transfer. The numerical setup is directly 

adopted from the works of Elhalwagy and Straatman [8] and Khan and Straatman [4]. A 

20 x 20 x 5 mm3 rectangular produce slice is placed in an air stream for convective drying. 

A quarter of the slice is considered herein with two symmetry slice-cutting faces at y = 0 

and z = 0. Figure 3.12 depicts the numerical setup. The domain is conjugate as it considers 

both the porous produce and the air surrounding the slice. A 30 × 20 × 20 computational 

mesh of Cartesian cells with refinement towards all fluid/porous interfaces is utilized [8, 

4]. 
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Figure 3.10: Velocity and turbulence contours of an EWT potato case of 10 m/s 

(Scale is cut of above the reported maximum to show the penetration/dissipation of 

turbulence). 

An air stream with Uin = 4 m/s, 2.5% turbulence intensity, 70°C and 4% relative humidity 

is considered, where the slice is initially at 20°C with a uniform 4.886 kg/kg d.s. for Potato 

and 7.45 kg/kg d.s. for apple. A time step of 2 seconds is utilized that initially varies 

between 0.0005 and 2 s through the early transient for turbulence production control and 

heat and mass transfer stability purposes. A non-iterative time advancement was utilized 

to stabilize the hydrodynamics in the beginning, followed by switching on the heat and 

mass transfer solver. An iterative-implicit time marching technique for resolving all the 

equations for the drying transient is then utilized. At the inlet (x = 0), a uniform velocity, 
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temperature and relative humidity is set. Turbulence is set using the turbulence intensity 

and length scale technique [22] and pressure is extrapolated. At the outlet (x = L), a zero 

gradient condition is set for all quantities except for pressure, which is set as atmospheric. 

On the symmetry planes (y = 0 and z = 0), all quantities had a zero gradient specified except 

for normal velocity that is of zero value. For other boundary faces, a slip condition is 

utilized with zero gradients for all quantities except for an extrapolated pressure. All 

utilized porous media properties are adopted from Table 3.1. 

 

Figure 3.11: Transverse profiles for flow and turbulence across the shear 

macroscopic interface for x=0.75 l along the porous slice for a 2m/s potato case and 

different interface treatments. 

The model has been tested for different velocities and has shown numerically stable and 

physically reasonable behavior. In terms of turbulence, the model also showed the same 

behavior as discussed in subsection 3.4.2, in which turbulence is not penetrating the slice 

for the enhanced treatment case for the potato slice, while the apple case with no EWT 

showed some penetration of turbulence to the inside of the flesh. The purpose of this 
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subsection is to establish the capability of the model for achieving reasonable prediction of 

the physics of heat and mass transfer for turbulent flows qualitatively, i.e. from a 

phenomenological point of view in which the physical behavior and trends are reasonably 

justified. In order to successfully predict the heat and mass transfer field, material 

diffusivities are needed as an input. Numerical simulations were carried out to provide an 

estimate of the variable diffusivities for the potato slice for laminar flow using the 

experiment by Srikiatden and Roberts [67] and utilizing the same technique for estimating 

the diffusivities described by Elhalwagy and Straatman [8] and Khan and Straatman [4]. 

Preliminary trends were obtained by accurately matching the drying simulation trend of 

the moisture ratio (i.e. instantaneous overall moisture content/ initial moisture content) 

versus time to the experimental data. The laminar diffusivities of the apple slice is directly 

adopted from Elhalwagy and Straatman [8].     

 

Figure 3.12: Numerical setup for turbulent convective drying of a slice of produce. 

Herein, due to the effects of turbulence penetration in the case of the apple slice i.e. no 

EWT, and in the fluid side of the interface for the potato EWT case, these diffusivities were 

not utilized without modifications as in this case they should include the turbulence fluxes 

and dispersion effects. Following a sensitivity analysis approach for modifying the 
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diffusivities, we were able to arrive at a suitable estimate based on enhancing the diffusion 

by using a multiplier. It is common in the literature to perform these sensitivity studies and 

investigate the effect of different diffusivity trends on the final result [68-69]. It has also 

been concluded [68-69] that the qualitative physical trending and phenomena are not 

affected by the values of the diffusivities however quantitative differences occur in this 

case. It is stated herein that the utilized diffusivities are not to be considered material 

properties but are close estimates for the purpose of the present work. Figure 3.13 depicts 

the diffusivities variation with the moisture ratio for apple and potato simulations. Both 

trends are similar to the ones reported in the literature [8, 68-69] and they show higher 

values for the diffusivities which are introduced as a representation for turbulence effects. 

Figure 3.14 depicts the moisture ratio plotted against simulation time.  While both trends 

show consistence with reports in the literature the potato case trend is highly diffusive as 

the process, as shown later, is more affected by diffusion inside the slice than is affected 

by the flow field due to the high fluid diffusivity, the low permeability and the EWT 

technique. One may also comment that the Potato slice does not fully dry out which is 

similar to the coal case reported by Elhalwagy and Straatman [8]. Now we turn our 

attention to the temporal and spatial variations observed during the drying process 

presented in Figs. 3.15-3.17. 

Figure 3.15 shows the contour plots of liquid mass fraction variation with time for both 

cases. The results show a gradual decrease of the moisture content inside the produce slices 

with time that starts from the fluid/porous interface inward. The apple case show more 

pronounced drying effect towards the leading edge [8] because of the effect of the 

penetrating flow and the impingement of the flow on the upstream face, while the potato 

slice is showing highly diffusive profiles in the inside that are not affected by the outside 

flow field. This difference between both cases is attributed to the lower porosity of the 

potato slice i.e. 0.04 and the fact that with the EWT, the flow is purely laminar in the inside 

i.e. almost pure diffusion with neglected convection. Both cases show high relative 

humidity inside the flesh because of the small void space that becomes saturated almost 

instantly. Relative humidity on the surrounding starts with high values and as drying rate 

is reduced, it declines as the flesh dries. The profiles are physically correct and very similar 

to the work reported in the literature [4, 8, 69] for cases of both laminar and turbulent flows.  
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Figure 3.13: Diffusivities as a function of the moisture ratio. 
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Figure 3.14: Moisture ratio versus time. 

Figures 3.16 and 3.17, depict the contour plots for the phase temperatures as they vary with 

drying time. On the inside of the slices, both temperatures behave similarly with some 

degree of non-equilibrium present. The heat is conducted/dispersed from the upstream face 

and hence, this side has its lost heat restored sensibly in a faster rate as compared to the 

downstream section of the slice. This part shows some cooling due to the vaporization 

energy withdrawal. After the rate of drying becomes low, this effect gradually negates as 

sensible heat is supplied by conduction. The case of the potato shows a wider range for 

temperatures as compared to the apple case. This is attributed to the turbulence and 

convection penetrating inside the apples and enhancing mixing, which is not the case for 

the potato slice. One may also notice the downstream back wake effect on the fluid 

temperature for the potato slice while this is absent in the apple case. This is explained by 

the under-prediction of the wake effect for the apple case due to using a no-EWT approach 

as explained in subsection 3.4.2. 

One may conclude from the above discussion that the turbulence enhancement to dynamic 

coupling for heat and mass transfer is correctly characterized. The physics of the 

convective drying is reasonably represented as can be seen from the results. It is understood 

that we depend on calibrated diffusivity values herein however the model has been tested 
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with different diffusivities and it showed the same phenomena observed here for all the 

different cases. The presented dynamic coupling technique hinges upon a correct 

specification of the diffusivities as an input to provide a quantitatively accurate solution, a 

specification that can be provided experimentally. The qualitative information however are 

very similar for different cases as found in the present work and in reports in the literature 

[68-69].   

3.5 Summary 

In the present work, a dynamic coupling approach for flow, heat and mass transfer within 

porous media and in conjugate fluid/porous domains is enhanced with the capability to 

treat turbulent flows. The approach utilised the Boussinesq’s approach and the standard 

𝑘 − 휀 model to treat the turbulence in the clear fluid region. A double-decomposed 𝑘 − 휀 

porous media version is utilised inside the porous material [31]. An implicit interface 

coupling between fluid and porous regions is utilised with developing the necessary 

modifications to adapt to the dynamic coupling framework [8]; using turbulent enhanced 

diffusivities at the interface, apportioning of the turbulent-affected interface shear stress, 

introducing resistance networks to couple the two porous media phases to the clear fluid 

region for different modes of heat and mass transfer, and modifying turbulence behavior at 

the macroscopic interface to handle high- and low-permeability porous materials. The key 

modeling novelties may be summarized as: 

 Development of a turbulence-extension to the flow, heat and mass transfer 

dynamic coupling model [8] in which the resistances of heat and mass transfer 

are explicitly tracked through conjugate fluid/porous domains, micro- and 

macroscopically, and physically based expressions are devised and selected to 

allow dynamic reactivity to them based on different physical modes of transport. 
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Figure 3.15: Contour plots for produce liquid moisture spatial variations at 

different time instances. 
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Figure 3.16: Contour plots for fluid temperature spatial variations at different time 

instances. 
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Figure 3.17: Contour plots for solid temperature spatial variations at different time 

instances. 
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 A 𝑘 − 휀 macroscopic interface coupling approach is devised that uses phase 

apportioning for the shear stress with intrinsic continuity of the turbulence 

quantities for high permeability porous media, and a novel enhanced wall-like 

treatment for low permeability materials. It also allows penetration/dissipation in 

porous media for turbulence at the macroscopic interface to evolve physically 

without any ad-hoc numerical switch off. 

 A coupling resistance network for heat and mass transfer at the macroscopic 

interface is enhanced with turbulence capabilities including turbulence-modified 

transport diffusivities for high permeability porous media and a novel EWT heat 

and mass transfer treatment for low permeability porous media. The implicit 

coupling technique utilising the phase ratio concept for the solid leg resistance of 

the circuit is also modified to treat both permeability and porosity cases. 

The turbulent hydrodynamics of high and low permeability interfaces is investigated using 

a case of a porous obstruction in a two-dimensional channel. Testing for different porous 

materials (potato and apple slices), and flow rates for the behavior of turbulence is carried 

out using the interface flux condition and investigating the effect of using an enhanced 

wall-like treatment. Results in terms of the velocity fields, TKE and turbulence dissipation 

fields indicate that the interface flux condition alone is not capable of predicting the 

dissipation of turbulence at the interface, which is associated with low permeability. The 

results for no-EWT showed an over-prediction of the turbulence field inside the porous 

medium, under-predicting the interface shear stress and over-predicting the amount of flow 

penetration to the porous obstruction. This resulted in an undersized separation bubble for 

the flow around the obstruction, reduced size of the back wake and different patterns of the 

weak flow field inside the porous material showing more penetration of the flow with an 

absent negative flow regions that should form near the separation bubble on the inside of 

the material. Utilizing an EWT depicted better physical behavior in terms of all of the 

above, which is more compatible with the behavior described in the literature for a wall-

like obstruction. It is also shown that there is a similarity between the EWT case and the 

negative jump coefficient case by DeLemos [54]. Both predict a clear fluid side diffusion 

potential that is reduced towards the interface since the EWT follows the boundary layer 
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assumptions, however, they showed different clear fluid profiles for the TKE further from 

the interface, indicating that the EWT is not possible to be substituted with negative jump 

coefficients. In regards to heat and mass transfer a turbulent heat and mass transfer 3D case 

is simulated for turbulent convective drying of potato and apple slices. A sensitivity 

approach for the phase diffusivities is used for both materials to characterize the change 

from laminar values to turbulent ones by enhancing diffusion. The results presented trends 

that are compatible with the literature-reported cases. The contours of the moisture 

variation with time for both produce slices showed a gradual decrease of moisture that 

starts from macroscopic interfaces inward. The potato slice case showed almost purely 

diffusive behavior with neglected effect from the outside flow unlike the apple case which 

showed faster drying at the upstream side due to convection and turbulence penetration 

effects. The phase temperatures’ contours depicted a cool inside-flesh region that is formed 

due to the slow sensible restoration of the withdrawn moisture evaporation energy unlike 

the upstream part which restored the energy faster. The temperature variations smooth out 

with time as the slices dry up because the sensible heating overcomes the drying energy. 

The back wake effect on fluid temperature was highly pronounced in the potato case 

because of the use of an EWT while it was neglected for the apple case. The overall heat 

and mass transfer results were physically reasonable and qualitatively comparable to the 

work presented in the literature. One may conclude from the above discussion that upon 

supplying the accurate material properties, the model is capable of predicting the correct 

physics for turbulent flow, heat and mass transfer.        

 

 

 

 

 

 

 



Chapter 3                                               158 

 

 

 

References 

[1] Betchen, L., Straatman, A. G., & Thompson, B. E. (2006). A nonequilibrium finite-

volume model for conjugate fluid/porous/solid domains. Numerical Heat Transfer, Part A: 

Applications, 49(6), 543-565. 

[2] Khan, F. A., Fischer, C., & Straatman, A. G. (2015). Numerical model for non-

equilibrium heat and mass exchange in conjugate fluid/solid/porous domains with 

application to evaporative cooling and drying. International Journal of Heat and Mass 

Transfer, 80, 513-528. 

[3] Kaya, A., Aydın, O., & Dincer, I. (2006). Numerical modeling of heat and mass transfer 

during forced convection drying of rectangular moist objects. International journal of heat 

and mass transfer, 49(17-18), 3094-3103. 

[4] Khan, F. A., & Straatman, A. G. (2016). A conjugate fluid-porous approach to 

convective heat and mass transfer with application to produce drying. Journal of Food 

Engineering, 179, 55-67. 

[5] Mohan, V. C., & Talukdar, P. (2010). Three dimensional numerical modeling of 

simultaneous heat and moisture transfer in a moist object subjected to convective 

drying. International Journal of Heat and Mass Transfer, 53(21-22), 4638-4650. 

[6] Zhang, K., & You, C. (2011). Experimental and numerical investigation of lignite 

particle drying in a fixed bed. Energy & Fuels, 25(9), 4014-4023. 

[7] Lal, S., Lucci, F., Defraeye, T., Poulikakos, L. D., Partl, M. N., Derome, D., & 

Carmeliet, J. (2018). CFD modeling of convective scalar transport in a macroporous 

material for drying applications. International Journal of Thermal Sciences, 123, 86-98. 

[8] Elhalwagy, M. M., & Straatman, A. G. (2017). Dynamic coupling of phase-heat and 

mass transfer in porous media and conjugate fluid/porous domains. International Journal 

of Heat and Mass Transfer, 106, 1270-1286. 



Chapter 3                                               159 

 

 

 

[9] Curcio, S., Aversa, M., Calabrò, V., & Iorio, G. (2008). Simulation of food drying: 

FEM analysis and experimental validation. Journal of Food Engineering, 87(4), 541-553. 

[10] De Bonis, M. V., & Ruocco, G. (2014). Conjugate heat and mass transfer by jet 

impingement over a moist protrusion. International Journal of Heat and Mass 

Transfer, 70, 192-201. 

[11] Caccavale, P., De Bonis, M. V., & Ruocco, G. (2016). Conjugate heat and mass 

transfer in drying: A modeling review. Journal of Food Engineering, 176, 28-35. 

[12] Ateeque, M., Mishra, R. K., Chandramohan, V. P., & Talukdar, P. (2014). Numerical 

modeling of convective drying of food with spatially dependent transfer coefficient in a 

turbulent flow field. International Journal of Thermal Sciences, 78, 145-157. 

[13] Van Belleghem, M., Steeman, M., Janssen, H., Janssens, A., & De Paepe, M. (2014). 

Validation of a coupled heat, vapour and liquid moisture transport model for porous 

materials implemented in CFD. Building and Environment, 81, 340-353. 

[14] Defraeye, T., Verboven, P., & Nicolai, B. (2013). CFD modelling of flow and scalar 

exchange of spherical food products: Turbulence and boundary-layer modelling. Journal 

of Food Engineering, 114(4), 495-504. 

[15] Chourasia, M. K., & Goswami, T. K. (2007). Steady state CFD modeling of airflow, 

heat transfer and moisture loss in a commercial potato cold store. International Journal of 

Refrigeration, 30(4), 672-689. 

[16] Delele, M. A., Ngcobo, M. E., Opara, U. L., & Meyer, C. J. (2013). Investigating the 

effects of table grape package components and stacking on airflow, heat and mass transfer 

using 3-D CFD modelling. Food and Bioprocess Technology, 6(9), 2571-2585. 

[17] Ambaw, A., Verboven, P., Defraeye, T., Tijskens, E., Schenk, A., Opara, U. L., & 

Nicolai, B. M. (2013). Porous medium modeling and parameter sensitivity analysis of 1-

MCP distribution in boxes with apple fruit. Journal of Food Engineering, 119(1), 13-21. 



Chapter 3                                               160 

 

 

 

[18] Delele, M. A., Schenk, A., Tijskens, E., Ramon, H., Nicolaï, B. M., & Verboven, P. 

(2009). Optimization of the humidification of cold stores by pressurized water atomizers 

based on a multiscale CFD model. Journal of food engineering, 91(2), 228-239. 

[19] Delele, M. A., Vorstermans, B., Creemers, P., Tsige, A. A., Tijskens, E., Schenk, A., 

... & Verboven, P. (2012). Investigating the performance of thermonebulisation fungicide 

fogging system for loaded fruit storage room using CFD model. Journal of food 

engineering, 109(1), 87-97. 

[20] Tutar, M., Erdogdu, F., & Toka, B. (2009). Computational modeling of airflow 

patterns and heat transfer prediction through stacked layers' products in a vented box during 

cooling. International Journal of refrigeration, 32(2), 295-306. 

[21] Moureh, J., Tapsoba, M., & Flick, D. (2009). Airflow in a slot-ventilated enclosure 

partially filled with porous boxes: Part I–measurements and simulations in the clear 

region. Computers & Fluids, 38(2), 194-205. 

[22] ANSYS Fluent Theory Guide (2015). ANSYS Inc., Canonsburg, PA. 

[23] Alvarez, G., Bournet, P. E., & Flick, D. (2003). Two-dimensional simulation of 

turbulent flow and transfer through stacked spheres. International Journal of Heat and 

Mass Transfer, 46(13), 2459-2469. 

[24] G. Alvarez, D. Flick, Modelling turbulent flow and heat transfer using macroporous 

media approach used to predict cooling kinetics of stack of food products, J. Food Eng. 80 

(2) (2007) 391–401. 

[25] M.J. De Lemos, Turbulence in Porous Media: Modeling and Applications, Elsevier, 

2012. 

[26] K. Lee, J.R. Howell, Forced convective and radiative transfer within a highly porous 

layer exposed to a turbulent external flow field. In: Proceedings of the 1987 ASME-JSME 

Thermal Engineering Joint Conf., vol. 2, 1987, pp. 377–386. 



Chapter 3                                               161 

 

 

 

[27] H. Wang, E.S. Takle, Boundary-layer flow and turbulence near porous obstacles, 

Bound. Layer Meteorol. 74 (1–2) (1995) 73–88. 

[28] B.V. Antohe, J.L. Lage, A general two-equation macroscopic turbulence model for 

incompressible flow in porous media, Int. J. Heat Mass Transfer 40 (13) (1997) 3013–

3024. 

[29] Getachew, D., Minkowycz, W. J., & Lage, J. L. (2000). A modified form of the κ–ε 

model for turbulent flows of an incompressible fluid in porous media. International 

Journal of Heat and Mass Transfer, 43(16), 2909-2915. 

[30] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a porous 

medium, J. Fluids Eng. 121 (2) (1999) 427–433. 

[31] M.H. Pedras, M.J. de Lemos, Macroscopic turbulence modeling for incompressible 

flow through undeformable porous media, Int. J. Heat Mass Transfer 44 (6) (2001) 1081–

1093. 

[32] F.E. Teruel, Rizwan-uddin, A new turbulence model for porous media flows. Part I: 

Constitutive equations and model closure, Int. J. Heat Mass Transfer 52 (19) (2009) 4264–

4272. 

[33] F.E. Teruel, Rizwan-uddin, Numerical computation of macroscopic turbulence 

quantities in representative elementary volumes of the porous medium, Int. J. Heat Mass 

Transfer 53 (23) (2010) 5190–5198. 

[34] Khan, F. A., & Straatman, A. G. (2016). Closure of a macroscopic turbulence and 

non-equilibrium turbulent heat and mass transfer model for a porous media comprised of 

randomly packed spheres. International Journal of Heat and Mass Transfer, 101, 1003-

1015. 

[35] J. Moureh, M. Tapsoba, D. Flick, Airflow in a slot-ventilated enclosure partially filled 

with porous boxes: Part II–Measurements and simulations within porous boxes, Comput. 

Fluids 38 (2) (2009) 206–220. 



Chapter 3                                               162 

 

 

 

[36] Mößner, M., & Radespiel, R. (2015). Modelling of turbulent flow over porous media 

using a volume averaging approach and a Reynolds stress model. Computers & 

Fluids, 108, 25-42. 

[37] M. Drouin, O. Grégoire, O. Simonin, A consistent methodology for the derivation and 

calibration of a macroscopic turbulence model for flows in porous media, Int. J. Heat Mass 

Transfer 63 (2013) 401–413. 

[38] Kuwata, Y., Suga, K., & Sakurai, Y. (2014). Development and application of a multi-

scale k–ε model for turbulent porous medium flows. International Journal of Heat and 

Fluid Flow, 49, 135-150. 

[39] Y. Kuwata, K. Suga, Modelling turbulence around and inside porous media based on 

the second moment closure, Int. J. Heat Fluid Flow 43 (2013) 35–51. 

[40] Kundu, P., Kumar, V., & Mishra, I. M. (2014). Numerical modeling of turbulent flow 

through isotropic porous media. International Journal of Heat and Mass Transfer, 75, 40-

57. 

[41] Kuznetsov, A. V. (2004). Numerical modeling of turbulent flow in a composite 

porous/fluid duct utilizing a two-layer k–ε model to account for interface 

roughness. International journal of thermal sciences, 43(11), 1047-1056. 

[42] Kuznetsov, A. V., & Xiong, M. (2003). Development of an engineering approach to 

computations of turbulent flows in composite porous/fluid domains. International journal 

of thermal sciences, 42(10), 913-919. 

[43] Kuznetsov, A. V., Cheng, L., & Xiong, M. (2002). Effects of thermal dispersion and 

turbulence in forced convection in a composite parallel-plate channel: investigation of 

constant wall heat flux and constant wall temperature cases. Numerical Heat Transfer: Part 

A: Applications, 42(4), 365-383. 

[44] Suga, K., & Nishiguchi, S. (2009). Computation of turbulent flows over porous/fluid 

interfaces. Fluid dynamics research, 41(1), 012401. 



Chapter 3                                               163 

 

 

 

[45] Fetzer, T., Smits, K. M., & Helmig, R. (2016). Effect of turbulence and roughness on 

coupled porous-medium/free-flow exchange processes. Transport in Porous 

Media, 114(2), 395-424. 

[46] Beyhaghi, S., Xu, Z., & Pillai, K. M. (2016). Achieving the Inside–Outside Coupling 

During Network Simulation of Isothermal Drying of a Porous Medium in a Turbulent 

Flow. Transport in Porous Media, 114(3), 823-842.  

[47] Prinos, P., Sofialidis, D., & Keramaris, E. (2003). Turbulent flow over and within a 

porous bed. Journal of Hydraulic Engineering, 129(9), 720-733. 

[48] Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2018). Numerical 

Simulation of Turbulent Flow and Heat Transfer in a Three-Dimensional Channel Coupled 

with Flow Through Porous Structures. Transport in Porous Media, 1-23. 

[49] Jin, Y., & Kuznetsov, A. V. (2017). Turbulence modeling for flows in wall bounded 

porous media: An analysis based on direct numerical simulations. Physics of Fluids, 29(4), 

045102. 

[50] Breugem, W. P., & Boersma, B. J. (2005). Direct numerical simulations of turbulent 

flow over a permeable wall using a direct and a continuum approach. Physics of 

fluids, 17(2), 025103. 

[51] Suga, K. (2016). Understanding and modelling turbulence over and inside porous 

media. Flow, Turbulence and Combustion, 96(3), 717-756. 

[52] Silva, R. A., & de Lemos, M. J. (2003). Turbulent flow in a channel occupied by a 

porous layer considering the stress jump at the interface. International Journal of Heat and 

Mass Transfer, 46(26), 5113-5121. 

[53] Ochoa-Tapia, J. A., & Whitaker, S. (1995). Momentum transfer at the boundary 

between a porous medium and a homogeneous fluid—I. Theoretical 

development. International Journal of Heat and Mass Transfer, 38(14), 2635-2646. 



Chapter 3                                               164 

 

 

 

[54] De Lemos, M. J. (2009). Turbulent flow around fluid–porous interfaces computed 

with a diffusion-jump model for k and ε transport equations. Transport in porous 

media, 78(3), 331-346. 

[55] D.C. Wilcox, Turbulence Modeling for CFD, vol. 2, DCW industries, La Canada, CA, 

1998. pp. 103–217. 

[56] Whitaker, S. (1977). A Theory of drying. Advances in heat transfer, 13, 119-203. 

[57] Craft, T. J., Gant, S. E., Gerasimov, A. V., Iacovides, H., & Launder, B. E. (2006). 

Development and application of wall-function treatments for turbulent forced and mixed 

convection flows. Fluid Dynamics Research, 38(2-3), 127-144. 

[58] Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent 

boundary layers. International journal of heat and mass transfer, 24(9), 1541-1544. 

[59] Craft, T. J., Gerasimov, A. V., Iacovides, H. E. L. B., & Launder, B. E. (2002). 

Progress in the generalization of wall-function treatments. International Journal of Heat 

and Fluid Flow, 23(2), 148-160 

[60] Srikiatden, J., & Roberts, J. S. (2008). Predicting moisture profiles in potato and carrot 

during convective hot air drying using isothermally measured effective diffusivity. Journal 

of Food Engineering, 84(4), 516-525. 

[61] Krokida, M. K., & Maroulis, Z. B. (2001). Structural properties of dehydrated products 

during rehydration. International journal of food science & technology, 36(5), 529-538. 

[62] Feng, H., Tang, J., Plumb, O. A., & Cavalieri, R. P. (2004). Intrinsic and relative 

permeability for flow of humid air in unsaturated apple tissues. Journal of Food 

Engineering, 62(2), 185-192. 

[63] Gancarz, M., Konstankiewicz, K., & Zgórska, K. (2014). Cell orientation in potato 

tuber parenchyma tissue. International Agrophysics, 28(1), 15-22. 



Chapter 3                                               165 

 

 

 

[64] Q. Yu, B.E. Thompson, A.G. Straatman, A unit cube-based model for heat transfer 

and fluid flow in porous carbon foam, J. Heat Transfer 128 (4) (2006) 352–360. 

[65] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering 

applications. AIAA journal, 32(8), 1598-1605. 

[66] Liu, G., Chen, J., Liu, M., & Wan, X. (2012). Shrinkage, porosity and density behavior 

during convective drying of bio-porous material. Procedia Engineering, 31, 634-640. 

[67] Srikiatden, J., & Roberts, J. S. (2006). Measuring moisture diffusivity of potato and 

carrot (core and cortex) during convective hot air and isothermal drying. Journal of Food 

Engineering, 74(1), 143-152. 

[68] Defraeye, T., Blocken, B., & Carmeliet, J. (2013). Influence of uncertainty in heat–

moisture transport properties on convective drying of porous materials by numerical 

modelling. Chemical engineering research and design, 91(1), 36-42. 

[69] Defraeye, T., & Verboven, P. (2017). Convective drying of fruit: role and impact of 

moisture transport properties in modelling. Journal of Food Engineering, 193, 95-107. 

 

 



Chapter 4   166 

Chapter 4  

4 Thesis summary 

This chapter presents summary of the work done in this thesis, the original research 

contributions and recommendations for future work in this line of research. 

4.1 Summary of chapters 

This thesis presented a dynamic coupling, non-equilibrium, full flow, heat and mass 

transfer, conjugate fluid/porous, finite volume CFD framework for simulating moisture 

transport in cases of convective drying and rehydration. The model is capable of treating 

laminar and turbulent flows for high and low permeability porous materials. The model has 

shown versatility and a wide spectrum of applicability for different materials with cases of 

interstitial phase exchange, convectively-dominant and diffusively-dominant drying of 

moist porous materials. The applicability has been verified by comparison to experiments, 

existing models and physically reasonable trends for heat and mass transfer. 

Chapter 2, described a dynamic coupling approach for CFD simulations of flow, heat and 

mass transfer in conjugate fluid/porous domains in which the phase-heat and mass transfer 

interstitially inside porous media and macroscopically across clear fluid/porous interfaces 

have been allowed to vary dynamically with space and time according to different modes 

for heat and mass transfer. The model allowed for tracking heat and mass transfer 

resistances in the fluid and solid phases to reactively select between different expressions 

for characterizing the exchanges locally (interstitially) and macroscopically (across 

macroscopic interfaces). Heat accompanying mass exchanges has been modelled so that 

the vaporization energy for moisture is withdrawn in different proportions from both 

phases based on a Biot number representation for the ability to conduct/convect heat in 

both fluid and solid constituents. A phase ratio concept has been devised to implicitly 

couple mass transfer across fluid/porous interfaces. Validation of the model has been 

carried out based on three different studies for interstitial coupling, macroscopic coupling 

for diffusively dominant mass transfer and macroscopic coupling for convectively 

dominant mass transport. Results showed very good agreement with experimental data [1-
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2] and/or reported modeling [3] in the literature confirming the efficacy and robustness of 

the modeling approach. 

Chapter 3, described the extension of the model to turbulent flows in which a two equation, 

double decomposition 𝑘 − 𝜀 model was successfully implemented inside the porous media 

and coupled to the free air (pure fluid) region. The turbulence effects on momentum, heat 

and mass transfer have been included successfully and the macroscopic interface coupling 

has been formulated to treat high and low permeability interfaces. A flux based interface 

treatment for turbulence is selected from the literature and adapted to the implementation 

framework herein that successfully represents a high permeability interface. A novel 

enhanced wall-like treatment for macroscopic fluid/porous interfaces is devised for low 

permeability porous interfaces that allows a smooth turbulence coupling between the fluid 

and porous regions and allows, with the use of a flux based condition, a physically correct 

and numerically robust treatment. An extension to this enhanced wall-like approach to heat 

and mass transfer is devised to allow coupling with the dynamic coupling framework. 

Verification is achieved by analyzing the hydrodynamics of the high and low permeability 

interfaces and comparing them to the jump coefficient version developed by De Lemos [4] 

for a 2D channel flow with porous obstruction. A full flow, heat and mass transfer for both 

high and low permeabilities’ verification is carried out using the turbulent convective 

drying cases of potato and apple slices. Results show evidence that the model is 

numerically and physically robust and given the correct material diffusivities is capable of 

representing a reliable discrete CFD solution for flow, heat and mass transfer.                 

One may conclude based on this summary that a formulation for dynamic coupling of flow, 

heat and mass transfer was successfully developed, providing the framework necessary for 

further development. The model is generic, of minimum calibration and a suitable 

compromise between detailed physics, empiricism and short computational time. The wide 

applicability for different materials, flows and modes of flow, heat and mass transfer have 

been considered. The model is also possible to extend to different areas of heat and mass 

transfer and may easily be extended to include the effects of variable porosity and 

shrinkage. 
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4.2 Novel contributions 

 The first and most original contribution in this thesis is the development of a 

dynamic coupling model for flow, heat and mass transfer in conjugate fluid/porous 

domains that was presented in Chapter 2 and enhanced to include turbulence in 

Chapter 3. Throughout the literature, this capability was missing. The model is 

generic, three dimensional and conjugate. It treats the fluid and porous regions 

implicitly and simultaneously. Heat and mas transfer is modeled in it with non-

equilibrium and it is equally capable of characterizing microscopic (interstitial) 

phase coupling and macroscopic coupling (at fluid/porous interfaces). The most 

significant feature in it is that it is physically dynamic; i.e., it tracks local and global 

heat and mass transfer resistances and dynamically reacts to them by using 

physically formulated expressions rather than empirical formulae, which removes 

the need for ad-hoc empirical coefficients and almost eliminates case-to-case 

calibration. The model also represents a compromise between empiricism, physical 

detailing and computational time. The developed framework herein presents a basic 

step towards further research in dynamic coupling. It is also efficiently and reliably 

applicable to a wide spectrum of physical flow, heat and mass transfer processes 

and materials as shown in Chapters 2 and 3. 

 In Chapter 2, a generic vaporization energy apportioning technique was developed 

that is equally capable for problems of evaporative cooling [5] and drying [5-6]. 

The technique is applicable interstitially and between fluid and porous regions 

where the apportioning depends on a comparison between the different phases 

capability to conduct/convect heat characterized by a local Biot number estimate. 

 A novel phase ratio concept was developed in Chapter 2, where a ratio between the 

solid phase moisture presence and the fluid phase is calculated and chosen to 

include diffusion coefficients and densities to control its order of magnitude and 

variation. This technique enabled an implicit implementation for macroscopic 

interface mass transfer coupling that required no calibration, unlike other 

techniques in the literature [6].  
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 A novel enhanced wall-like treatment (EWT) was formulated for low permeability 

porous materials in Chapter 3, that allowed a two sided coupling for turbulence at 

the fluid/porous interface and allowed for turbulence to evolve in a wall-like, 

boundary-layer manner. The technique proved to not allow turbulence penetration 

inside the porous material without any ad-hoc switch off. It also proves to predict 

the unique low-permeability interface behavior that may not be arrived at by using 

different turbulent interface jump coefficients [4, 7]. 

 A coupling technique between turbulence and heat and mass transfer at the 

macroscopic interface is developed in Chapter 3, where variable diffusivities and 

conductivities were inserted in a resistance network approach for coupling at the 

interface. The values were calculated based on turbulent Prandtl and Schmidt 

numbers for high permeability porous media and were based on a novel enhanced 

wall-like treatment approach for heat and mass transfer for low permeability porous 

media.      

4.3 Recommendations for future work 

Based on the work presented in this thesis, the following points were found to be 

important to consider for future enhancements to the present model. 

1- The present modeling approach was implemented in an orthogonal structured CFD 

framework. While the current version is applicable to a wide class of problems, to 

be able to treat an irregular exterior of a porous material or a simulation domain 

that is not Cartesian or orthogonal in shape, the use of an unstructured CFD 

framework [8] is important. Hence, it is a recommendation for future work to utilize 

the present modelling approach on an unstructured technique, developing the 

necessary higher order additions in the numerical discretization and build on the 

interface coupling techniques herein to develop counterparts that are applicable in 

the absence of line structures.   

2- In this thesis, the volume averaged equations of porous media were derived and 

used on the basis that the porosity is fixed in space and time. In many cases the 
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variation in porosity is negligible, however, other cases have considerable 

variations and consequently the solid material shrinks as well due to moisture 

departure. A further generic approach may be developed when building on the 

present one with adding additional terms in the equations to characterize variation 

in porosity and volumetric shrinkage and formulating their effects on the coupling 

processes at micro- and macroscopic interfaces. 

3- The current modeling approach, while capable of treating convectively dominant 

and diffusively dominant mass transfer, has been tested for cases where deviation 

from one mode to the other is neglected. A future study that considers transitioning 

between both modes of mass transfer would be of potential novelty. 

4- The enhanced wall-like treatment of low permeability macroscopic interfaces that 

is developed in Chapter 3 assumes a smooth interface surface. A more generic 

version may be developed with including the effect of roughness for the 

development of the interface boundary layer. 

5- It is expected as mentioned in Chapter 3 that while a high permeability interface 

treatment is suitable for higher porosity ranges and low permeability enhanced 

wall-like treatment enables a physical results for a low porosity porous media, a 

middle range of porosities may need a hybridization of both techniques to behave 

accurately. An investigation of this aspect may also be of potential novelty. 

6- It is of research interest to move the present dynamic coupling framework to the 

area of reactive flows. Combustion, Catalysis and Biological reactive flows are 

within the same class of problems considered herein and hence multiple aspects of 

the present model will be useful for characterizing them and a definite research 

novelty may be achieved. 
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