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Abstract 

We study the nonparametric identification of gross output production functions under the en­

vironment of the commonly employed proxy variable methods. We show that applying these 

methods to gross output requires additional sources of variation in the demand for flexible in­

puts (e.g., prices). Using a transformation of the firm’s first-order condition, we develop a new 

nonparametric identification strategy for gross output that can be employed even when additional 

sources of variation are not available. Monte Carlo evidence and estimates from Colombian and 

Chilean plant-level data show that our strategy performs well and is robust to deviations from the 

baseline setting. 
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1 Introduction 

The identification and estimation of production functions using data on firm inputs and output is 

among the oldest empirical problems in economics. A key challenge for identification arises because 

firms optimally choose their inputs as a function of their productivity, but productivity is unobserved 

by the econometrician. As first articulated by Marschak and Andrews (1944), this gives rise to a 

simultaneity problem that is known in the production function literature as “transmission bias”. Solv­

ing this identification problem is critical to measuring productivity with plant-level production data, 

which has become increasingly available for many countries, and which motivates a variety of indus­

try equilibrium models based on patterns of productivity heterogeneity found in this data.1 

The recent literature on production function estimation focuses on environments in which some 

inputs satisfy static first-order conditions (flexible inputs) and some do not. In this paper we study 

the nonparametric identification of gross output production functions in this setting. We clarify the 

conditions under which existing estimators can be applied. We then propose an alternative, nonpara­

metric identification and estimation strategy that does not rely on having access to exogenous price 

variation or other exclusion restrictions (e.g., policy variation). 

As discussed in their influential review of the state of the literature, Griliches and Mairesse (1998) 

(henceforth GM) concluded that the standard econometric solutions to correct the transmission bias, 

i.e., using firm fixed effects or instrumental variables, are both theoretically problematic and un­

satisfactory in practice (see also Ackerberg et al., 2007 for a more recent review). An alternative 

early approach to addressing the simultaneity problem employed static first-order conditions for input 

choices. The popular index number methods (see e.g., Caves et al., 1982) recover the production 

function and productivity by equating each input’s output elasticity to its input share. However, when 

some inputs are subject to adjustment frictions, such as adjustment costs for capital or hiring/firing 

costs for labor, these static first-order conditions are no longer valid.2 

More recently, the literature on production function estimation has studied settings in which not all 

inputs satisfy static first-order conditions, and thus standard index number methods cannot be applied. 

1Among these patterns are the general understanding that even narrowly defined industries exhibit “massive” unex­
plained productivity dispersion (Dhrymes, 1991; Bartelsman and Doms, 2000; Syverson, 2004; Collard-Wexler, 2010; 
Fox and Smeets, 2011), and that productivity is closely related to other dimensions of firm-level heterogeneity, such as 
importing (Kasahara and Rodrigue, 2008), exporting (Bernard and Jensen, 1995, Bernard and Jensen, 1999, Bernard et 
al., 2003), wages (Baily et al., 1992), etc. See Syverson (2011) for a review of this literature. 

2Alternatively, these approaches can avoid imposing this assumption for one input by imposing restrictions on returns 
to scale, often assuming constant returns to scale. 
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Instead, transmission bias is addressed by imposing assumptions on the economic environment, which 

allow researchers to exploit lagged input decisions as instruments for current inputs. This strategy is 

fundamental to both of the main strands of structural estimation approaches, namely dynamic panel 

methods (Arellano and Bond, 1991; Blundell and Bond, 1998, 2000) as well as the proxy variable 

methods (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Wooldridge, 

2009, henceforth OP, LP, ACF, and Wooldridge, respectively) that are now prevalent in the applied 

literature on production function estimation.3 Most of these papers (with the exception of LP) focus 

on some form of a value-added production function. Recent work by ACF has carefully examined 

the identification foundations of these estimators in the context of value added. No such analysis has 

been done for gross output.4 

Recently, however, there has been a growing interest in estimating gross output models of pro­

duction. In the international trade literature, researchers are studying the importance of imported in­

termediate inputs for productivity (Amiti and Konings, 2007; Kasahara and Rodrigue, 2008; Halpern 

et al., 2015; and De Loecker et al., 2016). The macroeconomics literature on misallocation is also 

now employing gross output models of firm-level production (Oberfield, 2013 and Bils et al., 2017). 

As another example, papers interested in separating the importance of productivity from demand-side 

heterogeneity (e.g., markups and demand shocks) are using gross output production functions (Foster 

et al., 2008; Pozzi and Schivardi, 2016; and Blum et al., 2017). While in principle the proxy vari­

able and dynamic panel methods can be extended to estimate gross output forms of the production 

function, the identification of such an approach has not been systematically examined. 

We begin by studying the nonparametric identification of these structural methods extended to 

gross output. Our first main result is to show that, absent sources of variation in flexible input de­

mand other than a panel of data on output and inputs, the gross output production function is non-

parametrically non-identified under these approaches. We then show that under the assumption that 

the model structure (e.g., the production function) does not vary over time, time series variation in 

aggregate price indices presents a potential source of identifying variation. However, Monte Carlo 

evidence suggests that this source of variation, while valid in theory, may perform poorly in practice, 

even in relatively long panels. In the context of a parametric setting, Doraszelski and Jaumandreu 

3While the term “proxy variable approach” could encompass a wide-variety of methods (see e.g., Heckman and Robb, 
1985), throughout this paper when we refer to proxy variable methods, we mean those of OP, LP, ACF, and Wooldridge. 

4For a discussion of the relationship between gross output and value-added production functions, see Bruno (1978), 
Basu and Fernald (1997), and Gandhi et al. (2017). 
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(2013) (henceforth DJ) provide an alternative solution that instead incorporates observed firm-level 

variation in prices. In particular they show that by explicitly imposing the parameter restrictions be­

tween the production function and the demand for a flexible input (which underlies the proxy variable 

approaches of LP and ACF), and by using this price variation, they can recover the gross output 

production function. 

Our second contribution is that we present a new empirical strategy that nonparametrically iden­

tifies the gross output production function. Our strategy is particularly useful for (but not limited to) 

settings in which researchers do not have access to long panels with rich aggregate time series price 

variation, or access to firm-specific prices or other external instruments. As in DJ, we recognize the 

structural link between the production function and the firm’s first-order condition for a flexible in­

put.5 The key to our approach is that we exploit this link in a fully nonparametric setting. In particular, 

we show that a nonparametric regression of the flexible input’s revenue share on all inputs (labor, cap­

ital, and intermediate inputs) identifies the flexible input elasticity. We then recognize that the flexible 

input elasticity defines a partial differential equation on the production function, which imposes non­

parametric cross-equation restrictions with the production function itself. We can solve this partial 

differential equation to nonparametrically identify the part of the production function that depends on 

the flexible input. This is a nonparametric analogue of the familiar parametric insight that revenue 

shares directly identify the flexible input coefficient in a Cobb-Douglas setting (e.g., Klein, 1953 and 

Solow, 1957). We then use the dynamic panel/proxy variable conditional moment restrictions based 

on lagged input decisions for the remaining inputs. By combining insights from the index number 

literature (using shares) with those from the dynamic panel literature (using lags as instruments), we 

show that the gross output production function and productivity can be nonparametrically identified. 

This identification strategy—regressing revenue shares on inputs to identify the flexible input 

elasticity, solving the partial differential equation, and integrating this into the dynamic panel/proxy 

variable structure to identify the remainder of the production function—gives rise to a natural two-step 

nonparametric sieve estimator in which different components of the production function are estimated 

via polynomial series in each stage. We present a computationally straightforward implementation of 

this estimator. Furthermore, as the numerical equivalence result in Hahn et al. (2016) shows, our 

5The use of optimality conditions to exploit cross-equation restrictions for identification is well established in Eco­
nomics. See e.g., Heckman (1974) for labor supply, Hansen and Singleton (1982) for consumption, and the book by Lucas 
and Sargent (1981) for many examples of the use of cross-equation restrictions in the context of the rational expectations 
literature. 
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estimator has the additional advantage that inference on functionals of interest can be performed 

using standard two-step parametric results. This gives us a straightforward approach to inference. 

We validate the performance of our empirical strategy on simulated data generated under three 

different production functions (Cobb-Douglas, CES, and translog). We find that our nonparametric 

estimator performs quite well in all cases. We also show that our procedure is robust to misspecifica­

tion arising from the presence of adjustment costs in the flexible input. We then apply our estimator, 

as well as several extensions of it, to plant-level data from Colombia and Chile. We show that our 

estimates correct for transmission bias present in OLS. Consistent with the presence of transmission 

bias, OLS overestimates the flexible intermediate input elasticities and underestimates the elasticities 

of capital and labor. OLS estimates also tend to understate the degree of productivity heterogeneity 

compared to our estimates. Finally, we show that our estimates are robust to allowing for fixed effects, 

alternative flexible inputs, or some additional unobservables in the flexible input demand. 

The rest of the paper is organized as follows. In Section 2 we describe the model and set up 

the firm’s problem. In Section 3 we examine the extent to which the proxy variable/dynamic panel 

methods can be applied to identify the gross output production function. Section 4 presents our 

nonparametric identification strategy. In Section 5 we describe our estimation strategy. Section 6 

compares our approach to the related literature. In Section 7 we present estimates from our procedure 

applied to Monte Carlo simulated data as well as plant-level data from Colombia and Chile. Section 

8 concludes. 

2 The Model 

In this section we describe the economic model of the firm that we study. We focus attention in the 

main body on the classic case of perfect competition in the intermediate input and output markets. We 

discuss the case of monopolistic competition with unobserved output prices in Online Appendix O5. 

2.1 Data and Definitions 

We observe a panel consisting of firms j = 1, . . . , J over periods t = 1, . . . , T . A generic firm’s 

output, capital, labor, and intermediate inputs will be denoted by (Yjt, Kjt, Ljt,Mjt) respectively, 

and their log values will be denoted in lowercase by (yjt, kjt, ljt,mjt). Firms are sampled from an 

underlying population and the asymptotic dimension of the data is to let the number of firms J → ∞ 
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for a fixed T , i.e., the data takes a short panel form. From this data, the econometrician can directly 

recover the joint distribution of {(yjt, kjt, ljt,mjt)}T 
t=1 . 

Firms have access to information in period t, which we model as a set of random variables Ijt.6 

The information set Ijt contains the information the firm can use to solve its period t decision problem. 

Let xjt ∈ {kjt, ljt,mjt} denote a generic input. If an input is such that xjt ∈ Ijt, i.e., the amount of 

the input employed in period t, is in the firm’s information set for that period, then we say the input is 

predetermined in period t. Thus a predetermined input is a function of the information set of a prior 

period, xjt = X (Ijt−1) ∈ Ijt. If an input’s optimal period t choices are affected by lagged values of 

that same input, then we say the input is dynamic. If an input is neither predetermined nor dynamic, 

then we say it is flexible. We refer to inputs that are predetermined, dynamic, or both as non-flexible. 

2.2 The Production Function and Productivity 

We assume that the relationship between output and inputs is determined by an underlying production 

function F , and a Hicks neutral productivity shock νjt. 

Assumption 1. The relationship between output and the inputs takes the form 

νjt Yjt = F (kjt, ljt,mjt) e ⇐⇒ 

yjt = f (kjt, ljt,mjt) + νjt. (1) 

The production function f is differentiable at all (k, l, m) ∈ R3 
++, and strictly concave in m. 

Following the proxy variable literature, the Hicks neutral productivity shock νjt is decomposed as 

νjt = ωjt + εjt. The distinction between ωjt and εjt is that ωjt is known to the firm before making its 

period t decisions, whereas εjt is an ex-post productivity shock realized only after period t decisions 

are made. The stochastic behavior of both of these components is explained next. 

Assumption 2. ωjt ∈ Ijt is known to the firm at the time of making its period t decisions, whereas 

∈ Ijt is not. Furthermore ωjt is Markovian so that its distribution can be written as Pω (ωjt | Ijt−1) = 

Pω (ωjt | ωjt−1). The function h (ωjt−1) = E [ωjt | ωjt−1] is continuous. The shock εjt, on the other 

hand, is independent of the within period variation in information sets, Pε (εjt | Ijt) = Pε (εjt). 

εjt /

6Formally the firm’s information set is the sigma-algebra σ (Ijt) spanned by these random variables Ijt. For simplicity 
we refer to Ijt as the information set. 
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Given that ωjt ∈ Ijt, but εjt is completely unanticipated on the basis of Ijt, we will refer to ωjt as 

persistent productivity, εjt as ex-post productivity, and νjt = ωjt + εjt as total productivity. Observe 

that we can express ωjt = h(ωjt−1)+ ηjt, where ηjt satisfies E [ηjt | Ijt−1] = 0. ηjt can be interpreted 

as the, unanticipated at period t − 1, “innovation” to the firm’s persistent productivity ωjt in period t.7 

Without loss of generality, we can normalize E [εjt | Ijt] = E [εjt] = 0, which is in units of log 

output. However, the expectation of the ex-post shock, in units of the level of output, becomes a 

free parameter which we denote as E ≡ E [eεjt | Ijt] = E [eεjt ].8 As opposed to the independence 

assumption on εjt in Assumption 2, much of the previous literature assumes only mean independence 

E [εjt | Ijt] = 0 explicitly (although stronger implicit assumptions are imposed, as we discuss be­

low). This distinction would be important if more capital intensive firms faced less volatile ex-post 

productivity shocks due to automation, for example. In terms of our analysis, the only role that full 

independence plays (relative to mean independence) is that it allows us to treat E ≡ E [eεjt ] as a con­

stant, which makes the analysis more transparent.9 If only mean independence is assumed, we would 

have E (Ijt) ≡ E [eεjt | Ijt]. We discuss the implications of this distinction below in our discussion 

of Assumption 4 for proxy variable methods and after Theorem 2 for our proposed identification 

strategy. 

Our interest is in the case in which the production function contains both flexible and non-flexible 

inputs. For simplicity, we mainly focus on the case of a single flexible input in the model (but see 

Online Appendix O5), namely intermediate inputs m, and treat capital k and labor l as predetermined 

in the model (hence kjt, ljt ∈ Ijt). We could have also generalized the model to allow it to vary 

with time t (e.g., ft, ht). For the most part, we do not use this more general form of the model in 

the analysis to follow because the added notational burden distracts from the main ideas of the paper. 

However, we revisit this idea below when it is particularly relevant for our analysis. 

7It is straightforward to allow the distribution of Pω (ωjt | Ijt−1) to depend upon other elements of Ijt−1, such as firm 
export or import status, R&D, etc. In these cases ωjt becomes a controlled Markov process from the firm’s point of view. 
See Kasahara and Rodrigue (2008) and DJ for examples. 

8See Goldberger (1968) for an early discussion of the implicit reinterpretation of results that arises from ignoring 
εjt ]E (i.e., setting E≡ E [e = 1 while simultaneously setting E [εjt] = 0) in the context of Cobb-Douglas production 

functions. 
9While independence is sufficient, we could replace this assumption with mean independence and the high level 

assumption that E ≡ E [eεjt ] is a constant. 
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2.3 The Firm’s Problem
 

The proxy variable literature of LP/ACF/Wooldridge uses a flexible input demand, intermediate in­

puts, to proxy for the unobserved persistent productivity ω.10 In order to do so, they assume that 

the demand for intermediate inputs can be written as a function of a single unobservable (ω), the so-

called scalar unobservability assumption,11 and that the input demand is strictly monotone in ω (see 

e.g., Assumptions 4 and 5 in Ackerberg et al., 2015). We formalize this in the following assumption. 

Assumption 3. The scalar unobservablility and strict monotonicity assumptions of LP/ACF/Wooldridge 

place the following restriction on the flexible input demand 

mjt = Mt (kjt, ljt, ωjt) . (2) 

The intermediate input demand M is assumed strictly monotone in a single unobservable ωjt. 

We follow the same setup used by both LP and ACF to justify Assumption 3.12 In particular, 

we write down the same problem of a profit maximizing firm under perfect competition. From this, 

we derive the explicit intermediate input demand equation underlying Assumption 3. The following 

assumption formalizes the environment in which firms operate. 

Assumption 4. Firms are price takers in the output and intermediate input market, with ρt denoting 

the common intermediate input price and Pt denoting the common output price facing all firms in 

period t. Firms maximize expected discounted profits. 

Under Assumptions 1, 2, and 4, the firm’s profit maximization problem with respect to intermedi­

ate inputs is   
ωjt+εjt max PtE F (kjt, ljt,mjt) e | Ijt − ρtMjt, (3)

Mjt 

which follows because Mjt does not have any dynamic implications and thus only affects current 

period profits. The first-order condition of the problem (3) is 

∂ ωjt EPt F (kjt, ljt,mjt) e = ρt. (4)
∂Mjt 

10See Heckman and Robb (1985) for an early exposition (and Heckman and Vytlacil, 2007 for a general discussion) of 
the replacement function approach of using observables to perfectly proxy for unobservables. 

11OP does not include intermediate inputs in the model. 
12See Appendix A in LP and pg. 2429 in ACF. 
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This equation can then be used to solve for the demand for intermediate inputs
 

mjt = M (kjt, ljt, ωjt − dt) = Mt (kjt, ljt, ωjt) , (5) 

where dt ≡ ln 
P
ρt
t 

− ln E . It can also be inverted to solve for productivity, ω. 

Equations (4) and (5) are derived under the assumption that εjt is independent of the firm’s in­

formation set (Pε (εjt | Ijt) = Pε (εjt)). If instead only mean independence of εjt were assumed 

(E [εjt | Ijt] = 0), we would have Pt
∂ F (kjt, ljt,mjt) eωjt E (Ijt) = ρt, and hence

∂Mjt 

mjt = Mt (kjt, ljt, ωjt, Ijt). Assumption 3 is therefore implicitly imposing that, if E (Ijt) is not 

constant, then it is at most a function of the variables already included in equation (2). In theory this 

can be relaxed by allowing the proxy equation to also depend on the other elements of the firm’s infor­

mation set, as long as this is done in a way that does not violate scalar unobservability/monotonicity. 

Given the structure of the production function we can formally state the problem of transmission 

bias in the nonparametric setting. Transmission bias classically refers to the bias in Cobb-Douglas 

production function parameter estimates from an OLS regression of output on inputs (see Marschak 

and Andrews, 1944 and GM). In the nonparametric setting we can see transmission bias more gener­

ally as the empirical problem of regressing output yjt on inputs (kjt, ljt,mjt) which yields 

E [yjt | kjt, ljt,mjt] = f (kjt, ljt,mjt) + E [ωjt | kjt, ljt,mjt] , 

and hence the elasticity of the regression in the data with respect to an input xjt ∈ {kjt, ljt,mjt} 

∂ ∂ ∂ 
E [yjt | kjt, ljt,mjt] = f (kjt, ljt,mjt) + E [ωjt | kjt, ljt,mjt]

∂xjt ∂xjt ∂xjt 

is a biased estimate of the true production elasticity 
∂x
∂ 
jt 
f (kjt, ljt,mjt). 

3 The Proxy Variable Framework and Gross Output 

Both the dynamic panel literature and the proxy literature of OP/LP/ACF/Wooldridge have mainly 

focused on estimating value-added models of production, in which intermediate inputs do not enter 

the estimated production function.13 One exception is LP, which employs a gross output specification. 

13Intermediate inputs, however, may still be used as the proxy variable for productivity (see ACF). 
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However, previous work by Bond and Söderbom (2005) and ACF has identified an identification 

problem with the LP procedure. Therefore, in this section we examine whether the modified proxy 

variable approach developed by ACF for value-added production functions can be extended to identify 

gross output production functions under the setup described in the previous section.14 

Under the proxy variable structure, the inverted proxy equation, ωjt = M−1 (kjt, ljt,mjt) + dt, is 

used to replace for productivity. Here transmission bias takes a very specific form: 

E [yjt | kjt, ljt,mjt, dt] = f (kjt, ljt,mjt) + M−1 (kjt, ljt,mjt) + dt ≡ φ (kjt, ljt,mjt) + dt, (6) 

where dt is a time fixed effect. Clearly no structural elasticities can be identified from this regression 

(the “first stage”), in particular the flexible input elasticity, 
∂m
∂ 
jt 
f (kjt, ljt,mjt). Instead, all the infor­

mation from the first stage is summarized by the identification of the random variable φ (kjt, ljt,mjt), 

and, as a consequence, the ex-post productivity shock εjt = yjt − E [yjt | kjt, ljt,mjt, dt]. 

The question then becomes whether the part of φ (kjt, ljt,mjt) that is due to f (kjt, ljt,mjt) versus 

the part due to ωjt can be separately identified using the second stage restrictions of the model. This 

second stage is formed by adopting a key insight from the dynamic panel data literature (Arellano and 

Bond, 1991; Blundell and Bond, 1998, 2000), namely that given an assumed time series process for 

the unobservables (in this case the Markovian process for ω in Assumption 2), appropriately lagged 

input decisions can be used as instruments. That is, we can re-write the production function as: 

yjt = f (kjt, ljt,mjt) + ωjt + εjt 

= f (kjt, ljt,mjt) + h (φ (kjt−1, ljt−1,mjt−1) + dt−1 − f (kjt−1, ljt−1,mjt−1)) + ηjt + εjt,(7) 

to form the second stage equation. Assumption 2 implies that for any transformation Γjt = Γ (Ijt−1) 

of the lagged period information set Ijt−1 we have the orthogonality E [ηjt + εjt | Γjt] = 0.15 We 

14We restrict our attention in the main body to the use of intermediate inputs as a proxy versus the original proxy 
variable strategy of OP that uses investment. As LP argued, the fact that investment is often zero in plant-level data 
leads to practical challenges in using the OP approach, and as a result using intermediate inputs as a proxy has become 
the preferred strategy in applied work. In Online Appendix O1, we show that our results extend to the case of using 
investment instead, as well as to the use of dynamic panel methods. 

15Notice that since εjt is recoverable from the first stage, one could instead use the orthogonality E [ηjt | Γjt] = 0. 
However, this can only be formed for observations in which the proxy variable, intermediate input demand (or investment 
in OP), is strictly positive. Observations that violate the strict monotonicity of the proxy equation need to be dropped from 
the first stage, which implies that εjt cannot be recovered. This introduces a selection bias since E [ηjt | Γjt, ιjt > 0] �= 
E [ηjt | Γjt], where ιjt is the proxy variable. The reason is that firms that receive lower draws of ηjt are more likely to 
choose non-positive values of the proxy, and this probability is a function of the other state variables of the firm. 
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focus on transformations that are observable by the econometrician, in which case Γjt will serve as 

the instrumental variables for the problem.16 

One challenge in using equation (7) for identification is the presence of an endogenous variable 

mjt in the model that is correlated with ηjt. However, all lagged output/input values, as well as 

the current values of the predetermined inputs kjt and ljt, are transformations of Ijt−1.17 Therefore, 

the full vector of potential instrumental variables given the data described in section 2.1 is given by 

Γjt = (kjt, ljt, dt−1, yjt−1, kjt−1, ljt−1,mjt−1, . . . , d1, yj1, kj1, lj1,mj1).18 

3.1 Identification 

Despite the apparent abundance of available instruments for the flexible input mjt, notice that, by 

replacing for ωjt in the intermediate input demand equation (5) we obtain 

    
mjt = M kjt, ljt, h M−1 (kjt−1, ljt−1,mjt−1) + dt−1 + ηjt − dt . (8) 

This implies that the only sources of variation left in mjt after conditioning on 

(kjt, ljt, dt−1, kjt−1, ljt−1,mjt−1) ∈ Γjt (which are used as instruments for themselves) are the un­

observable ηjt itself and dt. Therefore, for all of the remaining elements in Γjt, their only power as 

instruments is via their dependence on dt. 

Identification of the production function f by instrumental variables is based on projecting output 

yjt onto the exogenous variables Γjt (see e.g., Newey and Powell, 2003). This generates a restriction 

between (f, h) and the distribution of the data that takes the form 

E [yjt | Γjt] = E [f (kjt, ljt,mjt) | Γjt] + E [ωjt | Γjt] 
(9) 

= E [f (kjt, ljt,mjt) | Γjt] + h (φ (kjt−1, ljt−1,mjt−1) + dt−1 − f (kjt−1, ljt−1,mjt−1)) . 

The unknown functions underlying equation (9) are given by (f, h), since φ (kjt−1, ljt−1,mjt−1) + 

dt−1 is known from the first stage equation (6). The true (f 0, h0) are identified if no other f, ˜ h̃

among all possible alternatives also satisfy the functional restriction (9) given the distribution of the 

16The idea that one can use expectations conditional on lagged information sets, in order to exploit the property that the 
innovation should be uncorrelated with lagged variables, goes back to at least the work on rational expectations models, 
see e.g., Sargent (1978) and Hansen and Sargent (1980). 

17If kjt and/or ljt are dynamic, but not predetermined, then only lagged values enter Γjt. 
18Following DJ we exclude dt from the instruments, as current prices and the innovation to productivity are determined 

contemporaneously and hence may be correlated (see also Ackerberg et al., 2007). 
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In Theorem 1, we first show that in the absence of time series variation in prices, dt = d ∀t , the 

proxy variable structure does not suffice to identify the gross output production function.20 Specifi­

cally, we show that the application of instrumental variables (via the orthogonality restriction 

E [ηjt + εjt | Γjt] = 0) to equation (7) is insufficient to identify the production function f (and the 

Markovian process h). Intuitively, if dt does not vary over time in equation (8), then the only re­

maining source of variation in mjt is the innovation ηjt which is by construction orthogonal to the 

remaining elements of Γjt. 

Theorem 1. In the absence of time series variation in relative prices, dt = d ∀t, under the model 

defined by Assumptions 1 - 4, there exists a continuum of alternative f, ˜ h̃ defined by 

f̃ (kjt, ljt,mjt) ≡ (1 − a) f 0 (kjt, ljt,mjt) + aφ (kjt, ljt,mjt)j j 

h̃ (x) ≡ ad + (1 − a) h0 1
(x − ad)

(1 − a) 

for any a ∈ (0, 1), that satisfy the same functional restriction (9) as the true (f 0, h0). 

Proof. We begin by noting that from the definition of φ, it follows that E [yjt | Γjt] = 

E [φ (kjt, ljt,mjt) + dt | Γjt] . Hence, for any (f, h) that satisfy (9), it must be the case that 

E [φ (kjt, ljt,mjt) + dt − f (kjt, ljt,mjt) | Γjt] = h (φ (kjt−1, ljt−1,mjt−1) + dt−1 − f (kjt−1, ljt−1,mjt−1)) . 

(10) 

Next, given the definition of f, ˜ h̃ , and noting that dt = d ∀t, we have 

f̃ (kjt, ljt,mjt) + h̃ φ (kjt−1, ljt−1,mjt−1) + d − f̃ (kjt−1, ljt−1,mjt−1) = 

f 0 (kjt, ljt,mjt) + a (φ (kjt, ljt,mjt) − f 0 (kjt, ljt,mjt)) + adj j 
= (1−a)(φ(kjt−1,ljt−1,mjt−1)+d−f0(kjt−1,ljt−1,mjt−1))

+ (1 − a) h0
1−a 

f 0 (kjt, ljt,mjt) + a (φ (kjt, ljt,mjt) + d − f 0 (kjt, ljt,mjt)) 

+ (1 − a) h0 (φ (kjt−1, ljt−1,mjt−1) + d − f 0 (kjt−1, ljt−1,mjt−1)) . 

19Some researchers may not be interested in recovering h. In our results below, regardless of whether h is identified, 
the production function f is not (except in the degenerate case in which there are no differences in ω across firms, so 
φ (kjt, ljt,mjt) = f (kjt, ljt,mjt)). 

20In Online Appendix O1 we show a similar result holds for the case of investment as the proxy variable and for the 
use of dynamic panel techniques under this same structure. 
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Now, take the conditional expectation of the above (with respect to Γjt): 

E f̃ (kjt, ljt,mjt) | Γjt + h̃ φ (kjt−1, ljt−1,mjt−1) + d − f̃ (kjt−1, ljt−1,mjt−1) = 

E [f 0 (kjt, ljt,mjt) | Γjt] + ah0 (φ (kjt−1, ljt−1,mjt−1) + d − f 0 (kjt−1, ljt−1,mjt−1)) 
= 

+ (1 − a) h0 (φ (kjt−1, ljt−1,mjt−1) + d − f 0 (kjt−1, ljt−1,mjt−1)) 

E f 0 (kjt, ljt,mjt) | Γjt + h0 φ (kjt−1, ljt−1,mjt−1) + d − f 0 (kjt−1, ljt−1,mjt−1) , 

where the first equality uses the relation in equation (10). Thus (f 0, h0) and f, ˜ h̃ satisfy the func­

tional restriction (9) and cannot be distinguished via instrumental variables. 

We now provide two corollaries to our main theorem to describe the extent to which time series 

variation (via dt) can be used to identify the model. (In Online Appendix O2 we provide an illustration 

of these results in the context of the commonly employed Cobb-Douglas parametric form.) 

In Corollary 1 we show that if T = 2 (the minimum number of periods required by these proce­

dures), the model cannot be identified, even if dt varies. Intuitively, since the second stage already 

conditions on d1, the only remaining potential source of variation is in d2, which of course does not 

vary. 

Corollary 1. For T = 2, under the model defined by Assumptions 1 - 4, there exists a continuum of 

alternative f, ˜ h̃ defined by 

f̃ (kjt, ljt,mjt) ≡ (1 − a) f 0 (kjt, ljt,mjt) + aφ (kjt, ljt,mjt)j j
h̃ (x) ≡ ad2 + (1 − a) h0 1

(x − ad1)
(1 − a) 

for t = 1, 2 and for any a ∈ (0, 1), that satisfy the same functional restriction (9) as the true (f0, h0). 

Proof. The proof follows from the same steps in the proof of Theorem 1. 

In Corollary 2, we show that when one relaxes the assumption of time homogeneity in either the 

production function or the Markov process for productivity, the model similarly cannot be identified, 

even with T > 2. Intuitively, once the model varies with time, time series variation is no longer 

helpful. 

Corollary 2. Under the model defined by Assumptions 1 - 4, then 
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a) if the production function is time-varying, ft 
0, there exists a continuum of alternative f̃  

t, h̃

defined by,21 

f̃  
t (kjt, ljt,mjt) ≡ (1 − a) ft 

0 (kjt, ljt,mjt) + aφt (kjt, ljt,mjt) + adtj j
h̃ (x) ≡ (1 − a) h0 1 

x ,
(1 − a) 

or 

b) if the process for productivity is time-varying, h0 
t , there exists a continuum of alternative f, ˜ h̃t 

defined by, 

f̃ (kjt, ljt,mjt) ≡ (1 − a) f 0 (kjt, ljt,mjt) + aφ (kjt, ljt,mjt)j j
h̃t (x) ≡ adt + (1 − a) h0 1

(x − adt−1) ;t (1 − a) 

such that for any a ∈ (0, 1), these alternative functions satisfy the functional restriction (9). 

Proof. The proof follows from the same steps in the proof of Theorem 1. 

The result in Theorem 1 and its two corollaries is a useful benchmark, as it relates directly to 

the econometric approach used in the proxy variable literature. However, this instrumental variables 

approach does not necessarily exhaust the sources of identification inherent in the proxy variable 

structure. First, since instrumental variables is based only on conditional expectations, it does not 

employ the entire distribution of the data (yjt,mjt, Γjt). Second, it does not directly account for 

the fact that Assumption 3 also imposes restrictions (scalar unobservability and monotonicity) on 

the determination of the endogenous variable mjt via M (·). Therefore, the proxy variable structure 

imposes restrictions on a simultaneous system of equations because, in addition to the model for 

output, yjt, there is a model for the proxy variable, in this case intermediate inputs, mjt. In Online 

Appendix O3, we extend our result to the full model involving f , h, and M, using the full distribution 

of the data. 
21Notice that when the production function is allowed to be time-varying, the first stage estimates also need to be 

time-varying (i.e., E [yjt | kjt, ljt,mjt] = φt (kjt, ljt,mjt) + dt). 
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3.1.1 Monte Carlo Evidence on the Use of Time Series Variation 

The result in Theorem 1 shows that under the model described above, there are not enough sources 

of cross-sectional variation that can be used to identify the gross output production function. In 

particular, the problem is associated with flexible intermediate inputs. While aggregate time series 

variation provides a potential source of identification, relying on it runs a risk of weak identification 

in practice. 

In order to evaluate the performance of using time series variation as a source of identification, we 

conduct several Monte Carlo experiments. The parameters of the data generating process are chosen 

to roughly match the properties of our Chilean and Colombian datasets, as well as the variances of 

our productivity estimates, described below in Section 7. A full description of the setup is provided 

in the Appendix. The key features are as follows. Firms maximize the expected stream of future 

discounted profits. The law of motion for capital is given by Kjt = (1 − κj ) Kjt−1 + Ijt−1, where 

investment I is chosen a period ahead in t−1, and the depreciation rate κj ∈ [0.05, 0.15] varies across 

firms. Intermediate inputs are chosen flexibly in period t as a function of capital, productivity, and 

the relative price of intermediates to output. Productivity is assumed to evolve according to an AR(1) 

process with a persistence parameter of 0.8. For simplicity we abstract away from labor and specify 

a Cobb-Douglas production function in capital and intermediate inputs, with elasticities of 0.25 and 

0.65, respectively. 

We construct 12 different panel structures: 200 vs. 500 firms and 3, 5, 10, 20, 30, and 50 peri­

ods. For each panel, we simulate 500 datasets based on four different levels of variation in relative 

prices. The first two levels of time series variation correspond to what we observe in our Colombian 

and Chilean datasets, respectively. In addition, we create a version with twice the degree of what 

we observe for Chile (the largest of the two), and another corresponding to 10 times the observed 

variation. We estimate a version of the proxy variable technique applied to gross output, as described 

above, using intermediate inputs as the proxy. In order to reduce the potential noise from nonpara­

metric estimation, we impose the true parametric structure of the model in the estimation routine (i.e., 

a Cobb-Douglas production function and an AR(1) process for productivity). 

As the results in Figure 1 illustrate, even with twice the level of time series variation observed in 

the data, and even with very long panels (50 periods), the proxy variable technique applied to gross 

output consistently generates significantly biased estimates of the production function. It is only 
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when we boost the level of aggregate variation to 10 times what we observe, and for relatively large 

panels, that the estimates start to converge to the truth. However, even in this case, the 2.5% - 97.5% 

interquantile range of the estimates is quite wide (see Figure O4.1 in the Online Appendix). 

The results described above show that using time series variation as a source of identification, 

while valid in theory, may not perform well in practice. However, it also suggests that if there were 

observed shifters that varied across firms, which entered the flexible input demand M, but were ex­

cluded from the production function, then this additional variation could be used to better identify the 

production function.22 In particular, firm-varying flexible input and output prices are one source of 

such variation that has been considered recently by Doraszelski and Jaumandreu (2013, 2015), which 

we discuss in more detail in Section 6. In the next section, we develop an alternative identification and 

estimation strategy that does not rely on researchers having access to long panels with rich aggregate 

time series variation or additional sources of exogenous cross-sectional variation such as firm-specific 

prices. 

4 Nonparametric Identification via First-Order Conditions 

In this section, we show that the restrictions implied by the optimizing behavior of the firm, combined 

with the idea of using lagged inputs as instruments employed by the dynamic panel and proxy variable 

literatures, are sufficient to nonparametrically identify the production function and productivity, even 

absent additional sources of exogenous variation in flexible inputs.23 The key idea is to recognize that 

the production function and the intermediate input demand, f and M, are not independent functions 

for an optimizing firm. The input demand M is implicitly defined by f through the firm’s first-

order condition. This connection generates cross-equation restrictions that have been recognized and 

exploited in parametric settings (see Klein, 1953; Solow, 1957; and Nerlove, 1963 for early examples, 

and Doraszelski and Jaumandreu, 2013, 2015 more recently).24 Our contribution is to show that this 

functional relationship can be exploited in a fully nonparametric fashion to nonparametrically identify 

the entire production function. The reason why we are able to use the first-order condition with 

22It may be possible to achieve identification in the absence of exclusion restrictions by imposing additional restrictions 
(see Koopmans et al., 1950 and Heckman and Robb, 1985). One example is using heteroskedasticity restrictions (see e.g., 
Rigobon, 2003; Klein and Vella, 2010; and Lewbel, 2012), although these approaches require explicit restrictions on the 
form of the error structure. We thank an anonymous referee for pointing this out. We are not aware of any applications of 
these ideas in the production function setting. 

23Please see Online Appendix O5 for the extension to the case of multiple flexible inputs. 
24See Section 6 for a more detailed discussion of this literature. 
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such generality is that the proxy variable assumption—Assumption 3—already presumes intermediate 

inputs are a flexible input, thus making the economics of this input choice especially tractable. 

The first step of our identification strategy is to recognize the nonparametric link between the 

production function (1) and the first-order condition (4). Taking logs of (4) and differencing with the 

production function gives 

j j
∂ 

sjt = ln E + ln f (kjt, ljt,mjt) − εjt (11)
∂mjt 

≡ ln DE (kjt, ljt,mjt) − εjt 

ρtMjt where sjt ≡ ln is the (log) intermediate input share of output. In the following theorem we 
PtYjt 

prove that, since E [εjt | kjt, ljt,mjt] = 0, both the output elasticity of the flexible input and εjt can 

be recovered by regressing the shares of intermediate inputs sjt on the vector of inputs (kjt, ljt,mjt). 

Theorem 2. Under Assumptions 1 - 4, and that 
P
ρt
t 

(or the relative price-deflator) is observed, the 

share regression in equation (11) nonparametrically identifies the flexible input elasticity 
∂m
∂ 
jt 
f (kjt, ljt,mjt) 

of the production function almost everywhere in (kjt, ljt,mjt). 

Proof. Given the flexible input demand mjt = Mt (kjt, ljt, ωjt), and since kjt, ljt, ωjt ∈ Ijt, Assump­

tion 2 implies that E [εjt | Ijt, kjt, ljt,mt] = E [εjt | Ijt] = 0. Hence E [εjt | kjt, ljt,mjt] = 0 by the 

law of iterated expectations. As a consequence, the conditional expectation based on equation (11) 

E [sjt | kjt, ljt,mjt] = ln DE (kjt, ljt,mjt) (12) 

identifies the function DE . We refer to this regression in the data as the share regression. 

Observe that εjt = ln DE (kjt, ljt,mjt) − sjt and thus the constant 

E = E exp ln DE (kjt, ljt,mjt) − sjt (13) 

can be identified.25 This allows us to identify the flexible input elasticity as 

∂ DE (kjt, ljt,mjt)
D (kjt, ljt,mjt) ≡ f (kjt, ljt,mjt) = . (14)

∂mjt E 

25DJ suggest using this approach to identify this constant in the context of a Cobb-Douglas production function. 
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Theorem 2 shows that, by taking full advantage of the economic content of the model, we can 

identify the flexible input elasticity using moments in εjt alone. The theorem is written under the 

assumption that Pε (εjt | Ijt) = Pε (εjt) (in Assumption 2). Much of the previous literature assumes 

only mean independence E [εjt | Ijt] = 0. As with the proxy variable methods, our approach can be 

adapted to work under the weaker mean independence assumption as well. In this case we would have 

that, from the firm’s problem, E (Ijt) ≡ E [eεjt | Ijt]. Since εjt (and hence eεjt ) is identified from the 

share regression (12), E (Ijt) can also be identified. In terms of the proof, the elasticity would then be 
DE (kjt,ljt,mjt,Ijt)obtained as D (kjt, ljt,mjt) = , where notice that now DE (kjt, ljt,mjt, Ijt) dependsE(Ijt) 

on Ijt, and hence the share regression would need to be adjusted accordingly.26 

The next step in our approach is to use the information from the share regression to recover the 

rest of the production function nonparametrically. The idea is that the flexible input elasticity defines 

a partial differential equation that can be integrated up to identify the part of the production function 

f related to the intermediate input m.27 By the fundamental theorem of calculus we have 

∂ 
f (kjt, ljt,mjt) dmjt = f (kjt, ljt,mjt) + C (kjt, ljt) . (15)

∂mjt 

Subtracting equation (15) from the production function, and re-arranging terms we have 

∂ Yjt ≡ yjt − εjt − f (kjt, ljt,mjt) dmjt = −C (kjt, ljt) + ωjt. (16)
∂mjt 

Notice that Yjt is an “observable” random variable as it is a function of data, as well as the flexible 

input elasticity and the ex-post shock, which are recovered from the share regression. 

We then follow the dynamic panel literature (as well as the proxy variable literature) and use the 

Markovian structure on productivity in Assumption 2 in order to generate moments based on the panel 

structure of the data and recover C (kjt, ljt). By replacing for ω in equation (16), we have 

Yjt = −C (kjt, ljt) + h (Yjt−1 + C (kjt−1, ljt−1)) + ηjt. (17) 

Since (Yjt−1, kjt−1, ljt−1) are all known to the firm at period t − 1 and (kjt, ljt) are predetermined, we 

26In practice, conditioning on the entire information set is infeasible, but one could include just a rolling subset of Ijt, 
for example (kjt, ljt), and recover E (Ijt) by running a nonparametric regression of eεjt on the relevant elements of Ijt. 

27See Houthakker (1950) for the related problem of how to recover the utility function from the demand functions. 
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have the orthogonality E [ηjt | kjt, ljt, Yjt−1, kjt−1, ljt−1] = 0 which implies 

E [Yjt | kjt, ljt, Yjt−1, kjt−1, ljt−1] = −C (kjt, ljt) + h (Yjt−1 + C (kjt−1, ljt−1)) . (18) 

A regression of Yjt on (kjt, ljt, Yjt−1, kjt−1, ljt−1) identifies the LHS of equation (18). Intuitively, if 

one can vary (kjt, ljt) separately from (Yjt−1, kjt−1, ljt−1), for all points in the support of (kjt, ljt), 

then C can be separately identified from h up to an additive constant.28 

We now establish this result formally in Theorem 3 based on the above discussion. In order to 

do so, we first formalize the support condition described in the paragraph above in the following 

regularity condition on the support of the regressors (kjt, ljt, Yjt−1, kjt−1, ljt−1) (adapted from Newey 

et al., 1999). 

¯ ¯ ¯Assumption 5. For each point Yjt, kjt−1, ljt−1 in the support of (Yjt−1, kjt−1, ljt−1), the boundary 

¯ ¯ ¯of the support of (kjt, ljt) conditional on Yjt, kjt−1, ljt−1 has a probability measure zero. 

Assumption 5 is a condition that states that we can independently vary the predetermined inputs 

(kjt, ljt) conditional on (Yjt−1, kjt−1, ljt−1) within the support. This implicitly assumes the existence 

of enough variation in the input demand functions for the predetermined inputs to induce open set 

variation in them conditional on the lagged output and input values (Yjt−1, kjt−1, ljt−1). This con­

dition makes explicit the variation that allows for nonparametric identification of the remainder of 

the production function under the second stage moments above. A version of this assumption is thus 

implicit in the second stage of the proxy variable procedures. Note that this assumption rules out mass 

points in the boundary of the support, which may arise from discrete decisions such as entry and exit. 

In footnote 29, in the proof of Theorem 3 below, we discuss how one can still identify the production 

function if this is the case, under a mild additional restriction. 

Theorem 3. Under Assumptions 1 - 5, if 
∂m
∂ 
jt 
f (kjt, ljt,mjt) is nonparametrically known, then the 

production function f is nonparametrically identified up to an additive constant. 

Proof. Assumptions 2, 3, and 5 ensure that with probability 1 for any (kjt, ljt,mjt) in the support of 

the data there is a set 

{(k, l, m) | k = kjt, l = ljt,m ∈ [m (kjt, ljt) ,mjt]} 

28As it is well known, a constant in the production function and mean productivity, E [ωjt], are not separately identified. 
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also contained in the support for some m (kjt, ljt). Hence with probability 1 the integral 

mjt ∂ 
f (kjt, ljt,m) dm = f (kjt, ljt,mjt) + C (kjt, ljt) 

m(kjt,ljt) ∂mjt 

is identified, where the equality follows from the fundamental theorem of calculus. Therefore, if 

two production functions f and f̃  give rise to the same input elasticity 
∂m
∂ 
jt 
f (kjt, ljt,mjt) over the 

support of the data, then they can only differ by an additive function C (kjt, ljt) . To identify this 

additive function, observe that we can identify the joint distribution of (Yjt, kjt, ljt, Yjt−1, kjt−1, ljt−1) 

for Yjt defined by (16). Thus the regression function 

E [Yjt | kjt, ljt, Yjt−1, kjt−1, ljt−1] = µ (kjt, ljt, Yjt−1, kjt−1, ljt−1) (19) 

can be identified for almost all xjt = (kjt, ljt, Yjt−1, kjt−1, ljt−1), where given equation (18) 

˜µ (kjt, ljt, Yjt−1, kjt−1, ljt−1) = −C (kjt, ljt) + h (Yjt−1 + C (kjt−1, ljt−1)). Let C̃  , h be an al­

ternative pair of functions. (C , h) and C̃  , h̃ are observationally equivalent if and only if 

−C (kjt, ljt) + h (Yjt−1 + C (kjt−1, ljt−1)) = −C̃ (kjt, ljt) + h̃ Yjt−1 + C̃ (kjt−1, ljt−1) , (20) 

for almost all points in the support of xjt. Our support assumption (Assumption 5) on (kjt, ljt) allows 

us to take partial derivatives of both sides of (20) with respect to kjt and ljt 

∂ ∂ 
C (kjt, ljt) = C̃ (kjt, ljt)

∂z ∂z 

for z ∈ {kjt, ljt} and for all xjt in its support, which implies C (kjt, ljt)−C̃ (kjt, ljt) = c for a constant 

c for almost all xjt.29 Thus we have shown the production function is identified up to a constant. 

Theorem 3 demonstrates that if one can recover the elasticity of the flexible input, as we do via 

the share regression, the production function is nonparametrically identified. This result highlights 

¯¯¯

¯¯¯¯¯¯

¯¯¯

Yjt, kjt−1, ljt−1 

However, even if such mass points exist, the steps of the proof above show that one can identify C (kjt, ljt) everywhere 
else (besides the mass points), up to a constant c. In order to identify C (kjt, ljt) at the mass points, consider a mass 

Yjt, kjt−1, ljt−1 

Yjt−1, kjt−1, ljt−1 Yjt−1, kjt−1, ljt−1 

29Assumption 5 rules out mass points in the boundary of the support of (kjt, ljt) conditional on . 

k∗ 
jt, l

∗ 
jt kjjt, l

j
jt point conditional on As long as there exists a point in the interior of the support . ¯¯Ȳjt, kjt−1, ljt−1 

, we can construct the unknown C k∗ 
jt, l

∗ 
jt conditional on as: 

k ∗ 
jt, l 

∗ = −E jt, l 
∗ 

jt Yjt | k ∗ 
jt, jt, l

jYjt | kj jt, + C kj jt, l
j 
jt ,+ E 

again up to the constant c. 
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the importance of recognizing the nonparametric link between the production function and the first-

order condition of the firm that allowed us to recover the flexible elasticity in the first place. It also 

demonstrates the power of dynamic panel methods under a (typically implicit) rank condition like 

Assumption 5. Under this rank condition, if there were no flexible inputs and ε were known, one 

could nonparametrically identify the gross output production function (and productivity) based on 

dynamic panel methods alone. We revisit this in our discussion of dynamic panel methods in Section 

6.3. 

Our results in Theorems 2 and 3 are derived under the assumption that the model structure is time 

invariant. It is straightforward to generalize them to the time-varying case by indexing the production 

function f and the Markov process h by time t, simply repeating the steps of our analysis separately 

for each time period t ∈ {2, ..., T }. 

5 A Computationally Simple Estimator 

In this section we show how to obtain a simple nonparametric estimator of the production function 

using standard sieve series estimators as analyzed by Chen (2007). Our estimation procedure consists 

of two steps. We first show how to estimate the share regression, and then proceed to estimation of 

the constant of integration C and the Markov process h. 

We propose a finite-dimensional truncated linear series given by a complete polynomial of degree 

r for the share regression. Given the observations {(yjt, kjt, ljt,mjt)}T for the firms j = 1, . . . , J t=1 

sampled in the data, we propose to use a complete polynomial of degree r in kjt,ljt,mjt and to use the  
sum of squared residuals, ε2 , as our objective function. For example, for a complete polynomial jt jt

of degree two, our estimator would solve: 

⎧ ⎛ ⎞⎫2  γ k2 l2⎨ 
0 + γ kjt + γ ljt + γ mjt + γ ⎬ ⎝ k l m kk jt + γll

 
jt ⎠min sjt − ln . 

γ� ⎩ 2 ⎭+γ 
j,t mmmjt + γ kjtljt + γ kjtmjt + γ ljtmjt kl km lm

The solution to this problem is an estimator 

 
DE γ krk lrl rm 
r (kjt, ljt,mjt) = rk,rl,rm jt jtmjt , with rk, rl, rm ≥ 0 (21) 

rk+rl+rm≤r 
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of the elasticity up to the constant E , as well as the residual εjt corresponding to the ex-post shocks 
1 ˆ γ̂to production.30 Since we can estimate Ê = eεjt , we can recover γ̂ ≡ , and thus estimate 
JT j,t Ê

∂m
∂ 
jt 
f (kjt, ljt,mjt) from equation (21), free of this constant. 

Given our estimator for the intermediate input elasticity, we can calculate the integral in (15). 

One advantage of the polynomial sieve estimator we use is that this integral will have a closed-form 

solution: 

γrk,rl,rm krk lrl rm+1Dr (kjt, ljt,mjt) ≡ Dr (kjt, ljt,mjt) dmjt = .jt jtmjt rm + 1 
rk+rl+rm≤r 

For a degree two estimator (r = 2) we would have 

⎛ ⎞ 
γmγ0 + γkkjt + γlljt + mjt + γkkk2 

jt jt + γlll2 

D2 (kjt, ljt,mjt) ≡ ⎝ 2 ⎠ mjt. 
γmm 2 γkm γlm+ mjt + γklkjtljt + kjtmjt + ljtmjt 3 2 2 

With an estimate of εjt and of Dr (kjt, ljt,mjt) in hand, we can form a sample analogue of Yjt inj j
equation (16): ˆ Yjt .Yjt ≡ ln 

ˆε̂jt e 
Dr (kjt,ljt,mjt)e 

In the second step, in order to recover the constant of integration C in (17) and the Markovian 

process h, we use similar complete polynomial series estimators. Since a constant in the production 

function cannot be separately identified from mean productivity, E [ωjt], we normalize C (kjt, ljt) to 

contain no constant. That is, we use 

kτk lτlCτ (kjt, ljt) = ατk ,τl jt jt, with τk, τl ≥ 0 (22) 
0<τk+τl≤τ 

and 

ωahA (ωjt−1) = δa jt−1, (23) 
0≤a≤A 

for some degrees τ and A (that increase with the sample size). Combining these and replacing for 

ωjt−1 we have the estimating equation: 

� �a 

ˆ kτk lτl ˆ kτk lτlYjt = − ατk ,τl jt jt + δa Yjt−1 + ατk,τl jt−1 jt−1 + ηjt. (24) 
0<τk+τl≤τ 0≤a≤A 0<τk +τl≤τ 

30As with all nonparametric sieve estimators, the number of terms in the series increases with the number of ob­
servations. Under mild regularity conditions these estimators will be consistent and asymptotically normal for sieve 
M-estimators like the one we propose. See Chen (2007). 
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We can then use moments of the form E ηjtk
τk lτl = 0 and E ηjt Ŷa = 0 to form a standard jt jt	 jt−1 

sieve moment criterion function to estimate (α, δ).31 Putting the two stages together we have the 

following moments 

∂ ln Dr (kjt, ljt,mjt)
E εjt	 = 0,

∂γ 
E ηjtk

τk lτl = 0,jt jt 

E ηjtYa = 0,jt−1 

where the first set of moments are the nonlinear least squares moments corresponding to the share 

equation. 

Under the just-identified case described above, our two-step sieve procedure is a sieve-M esti­

mator. Therefore we can apply the numerical equivalence results of Hahn et al. (2016) and conduct 

inference as if our sieve was the true parametric structure.32 In order to compute standard errors for 

the functionals of interest (e.g., elasticities), we employ a nonparametric bootstrap (see e.g., Horowitz, 

2001).33 

6 Relationship to Literature 

6.1 Price Variation as an Instrument 

Recall that Theorem 1 (and its extensions in the Online Appendix) shows that absent additional 

sources of variation, dynamic panel/proxy variable methods cannot be used to identify the gross 

output production function. As discussed in Section 3, cross-sectional variation in prices can po­

tentially be used to identify the production function by providing a source of variation for flexible 

inputs. The literature, however, has identified several challenges to using prices as instruments (see 

GM and Ackerberg et al., 2007). First, in many firm-level production datasets, firm-specific prices 

ˆ	 ˆ31Alternatively,	 for a guess of α, one can form ωjt−1 (α) = Yjt−1 + C (kjt−1, ljt−1) = Yjt−1 + 
kτk lτl 
jt−1 , and use moments of the form E [ηjtωjt−1 (α)] 0 to estimate δ. Notice that since 0<τk +τl≤τ ατk,τl jt−1 = 

ωjt (α) = Ŷjt + ατk ,τl k
τk lτl , this is equivalent to regressing ωjt on a sieve in ωjt−1. Then the moments 0<τk +τl≤τ jt jt


lτl
E ηjtk
τk = 0 can be used to estimate α.jt jt 

32One could also use higher-order moments, as well as lags of inputs, to estimate an over-identified version of the 
model. In this case, the second stage of our estimator becomes a sieve-MD estimator. We are not aware of any similar 
numerical equivalence results for such estimators. 

33In Online Appendix O4, we present Monte Carlo simulations which show that our bootstrap procedure has the correct 
coverage for the nonparametric estimates. 
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are simply not observed. Second, even if price variation is observed, in order to be useful as an in­

strument, the variation employed must not be correlated with the innovation to productivity, ηjt; and 

it cannot solely reflect differences in the quality of either inputs or output. To the extent that input and 

output prices capture quality differences, prices should be included in the measure of the inputs used 

in production.34 

This is not to say that if one can isolate exogenous price variation (for example if prices vary due 

to segmented geographic markets or due to policy shocks), it cannot be used to aid in identification. 

The point is that just observing price variation is not enough. The case must be made that the price 

variation that is used is indeed exogenous. For example, if prices are observed and serially correlated, 

one way to deal with the endogeneity concern, as suggested by DJ, is to use lagged prices as instru­

ments. This diminishes the endogeneity concerns, since lagged prices only need to be uncorrelated 

with the innovation to productivity, ηjt. Doraszelski and Jaumandreu (2015) demonstrate empirically 

that the majority of wage variation in the Spanish manufacturing dataset they use is not due to vari­

ation in the skill mix of workers, and therefore is likely due to geographic and temporal differences 

in labor markets. This work demonstrates that prices (specifically lagged prices), when carefully em­

ployed, can be a useful source of variation for identification of the production function. However, as 

also noted in DJ, this information is not available in most datasets. Our approach offers an alternative 

identification strategy that can be employed even when external instruments are not available. 

6.2 Exploiting First-Order Conditions 

The idea of using first-order conditions for the estimation of production functions dates back to at least 

the work by Marschak and Andrews (1944), Klein (1953), Solow (1957), and Nerlove (1963)35 who 

recognized that, for a Cobb-Douglas production function, there is an explicit relationship between the 

parameters representing input elasticities and input cost or revenue shares. This observation forms 

the basis for index number methods (see e.g., Caves et al., 1982) that are used to nonparametrically 

recover input elasticities and productivity.36 

34Recent work has suggested that quality differences may be an important driver of price differences (see GM and Fox 
and Smeets, 2011). 

35Other examples of using first-order conditions to obtain identification include Stone (1954) on consumer demand, 
Heckman (1974) on labor supply, Hansen and Singleton (1982) on Euler equations and consumption, Paarsch (1992) and 
Laffont and Vuong (1996) on auctions, and Heckman et al. (2010) on hedonics. 

36Index number methods are grounded in three important economic assumptions. First, all inputs are flexible and 
competitively chosen. Second, the production technology exhibits constant returns to scale, which while not strictly 
necessary is typically assumed in order to avoid imputing a rental price of capital. Third, and most importantly for our 
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More recently, Doraszelski and Jaumandreu (2013, 2015) and Grieco et al. (2016) exploit the 

first-order conditions for labor and intermediate inputs under the assumption that they are flexibly 

chosen. Instead of using shares to recover input elasticities, these papers recognize that given a 

particular parametric form of the production function, the first-order condition for a flexible input (the 

proxy equation in LP/ACF) implies cross-equation parameter restrictions that can be used to aid in 

identification. Using a Cobb-Douglas production function, DJ show that the first-order condition for 

a flexible input can be re-written to replace for productivity in the production function. Combined 

with observed variation in the prices of labor and intermediate inputs, they are able to estimate the 

parameters of the production function and productivity. 

Doraszelski and Jaumandreu (2015) extend the methodology developed in DJ to estimate pro­

ductivity when it is non-Hicks neutral, for a CES production function. By exploiting the first-order 

conditions for both labor and intermediate inputs they are able to estimate a standard Hicks neutral 

and a labor-augmenting component to productivity. 

Grieco et al. (2016) also use first-order conditions for both labor and intermediate inputs to recover 

multiple unobservables. In the presence of unobserved heterogeneous intermediate input prices, they 

show that the parametric cross-equation restrictions between the production function and the two first-

order conditions, combined with observed wages, can be exploited to estimate the production function 

and recover the intermediate input prices. They also show that their approach can be extended to 

account for the composition of intermediate inputs and the associated (unobserved) component prices. 

The paper most closely related to ours is Griliches and Ringstad (1971), which exploits the rela­

tionship between the first-order condition for a flexible input and the production function in a Cobb-

Douglas parametric setting. They use the average revenue share of the flexible input to measure the 

output elasticity of flexible inputs. This, combined with the log-linear form of the Cobb-Douglas pro­

duction function, allows them to then subtract out the term involving flexible inputs. Finally, under 

the assumption that the non-flexible inputs are predetermined and uncorrelated with productivity (not 

just the innovation), they estimate the coefficients for the predetermined inputs. 

Our identification solution can be seen as a nonparametric generalization of the Griliches and 

Ringstad (1971) empirical strategy. Instead of using the Cobb-Douglas restriction, our share equation 

(11) uses revenue shares to recover input elasticities in a fully nonparametric setting. In addition, 

comparison, there are no ex-post shocks to output. Allowing for ex-post shocks in the index number framework can only 
be relaxed by assuming that elasticities are constant across firms, i.e., by imposing the parametric structure of Cobb-
Douglas. 
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rather than subtract out the effect of intermediate inputs from the production function, we instead 

integrate up the intermediate input elasticity and take advantage of the nonparametric cross-equation 

restrictions between the share equation and the production function. Furthermore, we allow for pre­

determined inputs to be correlated with productivity, but uncorrelated with just the innovation to 

productivity. 

6.3 Dynamic Panel 

An additional approach employed in the empirical literature on production functions is to use the 

dynamic panel estimators of Arellano and Bond (1991) and Blundell and Bond (1998, 2000). As 

discussed in Section 3, a key insight of the dynamic panel approaches is that by combining panel 

data observations with some restrictions on the time series properties of the unobservables, internal 

instruments can be constructed from within the panel. In contrast to the proxy variable techniques, 

there is no first stage and the model consists of a single equation that is an analogue of the proxy 

variable second stage. Since there is no first stage to recover ε, ωjt−1 is solved for from the production 

function. In the context of our gross output production function described above, we can write: 

yjt = f (kjt, ljt,mjt) + h (yjt−1 − f (kjt−1, ljt−1,mjt−1) − εjt−1) + ηjt + εjt. 

Notice that the unknown εjt−1 appears inside the nonparametric function h. Typically these methods 

proceed under a linearity restriction on h, often an AR(1): ωjt = δ0 + δωjt−1 + ηjt, which implies37 

yjt = f (kjt, ljt,mjt) + δ0 + δyjt−1 − δf (kjt−1, ljt−1,mjt−1) + (−δεjt−1 + ηjt + εjt) . (25) 

ψjt 

The error ψjt is then used to construct moment conditions to estimate the model. 

In Online Appendix O1 we show that, under the assumptions underlying the proxy variable tech­

niques, an analogue of our identification result in Theorem 1 can be obtained for the dynamic panel 

approaches. As with the proxy variable approach, there are not enough sources of cross-sectional 

variation available to identify the gross output production function. However, it is important to note 
37Dynamic panel models also typically include fixed effects, which involves additional differencing to remove the fixed 

effect. For simplicity we focus here on the case without fixed effects. The essence of our discussion does not depend on 
whether or not fixed effects are included. In Online Appendix O5, we show that if we impose a linear process for ω, as in 
the dynamic panel literature, our methodology described in Section 4 can be similarly extended to handle fixed effects by 
differencing them out. 
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that one potential advantage of dynamic panel is that it does not involve inverting for productivity in 

a first stage. As a result, the scalar unobservability / monotonicity assumption of the proxy literature 

(Assumption 3) is not needed,38 and dynamic panel methods can accommodate other sources of unob­

served variation in the demand for intermediate inputs. This variation could then be used to identify 

the gross output production function. This would require a version of Assumption 5 that includes 

all inputs in the production function, including intermediate inputs.39,40 As pointed out by ACF, the 

trade-off is that stronger assumptions are needed on the process for productivity (linearity), and the 

two components of productivity, ω and ε, cannot be separated. 

7 Empirical Results and Monte Carlo Experiments 

In this section we evaluate the performance of our proposed empirical strategy for estimating the 

production function and productivity. Using our approach from Section 5, we estimate a gross output 

production function using a complete polynomial series of degree 2 for both the elasticity and the 

integration constant in the production function. That is, we use 

DE (kjt, ljt,mjt) = k2 l2 
2 γ0 + γkkjt + γl ljt + γmmjt + γkk jt + γll jt 

2+γmmmjt + γklkjtljt + γkmkjtmjt + γlmljtmjt 

to estimate the intermediate input elasticity and 

C2 (kjt, ljt) = αkkjt + αlljt + αkkk
2 

jt + αklkjtljt jt + αlll
2 

for the constant of integration. 

We first illustrate the performance of our approach using Monte Carlo simulations. We then apply 

our estimator, as well as several extensions of it, to real data using two commonly employed plant-

level manufacturing datasets. 

38A related benefit is that these methods do not need to assume anything about E [eεjt | Ijt]. 
39See also ACF for a discussion of serially uncorrelated shocks in the context of a value-added production function. 
40Note that not satisfying the proxy variable assumption does not guarantee identification in the presence of a flexible 

input. For example, unobserved serially correlated intermediate input price shocks violate the proxy variable assumption. 
However, this variation generates a measurement problem, since intermediate inputs are typically measured in expendi­
tures (see Grieco et al., 2016). 
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7.1 Monte Carlo Evidence on Estimator Performance
 

Under Assumptions 1-5, our procedure generates nonparametric estimates of the production function. 

In order to evaluate the performance of our estimator, we first simulate data under these assumptions. 

To simplify the problem we abstract away from labor and consider a production function in capital 

and intermediate inputs only. We begin by examining how our estimator performs under our baseline 

Monte Carlo specification of a Cobb-Douglas production function, using the same basic setup as 

described in Section 3.1.1 and the Appendix. (See Online Appendix O4 for additional details.) 

The first two columns of Table 1 summarize the results of estimating the production function using 

our nonparametric procedure on 100 simulated datasets. The data is generated under a constant output 

elasticity of intermediate inputs and capital of 0.65 and 0.25, respectively. Under our nonparametric 

procedure, the estimated elasticities are allowed to vary across firm and time. Therefore, for each 

simulation, we calculate three statistics of our estimated elasticities: the mean, the standard deviation, 

and the fraction that are outside of the (0,1) range. In the table we report the average of each statistic 

and its standard error (calculated across the 100 simulations) in parentheses below. 

As shown in the table, the average mean elasticities of intermediate inputs and capital obtained 

by our procedure are very close to the true values. This is also true across simulations, as evidenced 

by the very small standard errors. The standard deviations of the estimated elasticities are also very 

small, indicating that our procedure is doing a good job of recovering the constant elasticties implied 

by the Cobb-Douglas specification. Finally, none of the estimated elasticities are either below 0 or 

above 1. 

While our procedure correctly recovers the lack of variation in elasticities implied by Cobb-

Douglas, we also want to evaluate how well our estimator recovers the distribution of elasticities, 

when they are allowed to be heterogeneous across firms and periods in the data. In the remaining 

columns of Table 1, we estimate our model using data generated from both CES and translog produc­

tion functions.41 As with Cobb-Douglas, our procedure does exceptionally well in replicating the true 

distribution of elasticities for both CES and translog. 

The Monte Carlo results summarized in Table 1 illustrate that our new identification and esti­

mation strategy performs extremely well under the assumptions described above (Assumptions 1-5). 

Since our approach relies on the first-order condition with respect to a flexible input holding, we also 

0.541The specific parametrized production functions we use are, for CES: Yjt = 0.25K0.5 + 0.65M0.5 
0.9 

eωjt +εjt , and jt jt 
2for translog (in logs): yjt = 0.25kjt + 0.65mjt + 0.015k2 + 0.015m − 0.032kjtmjt + ωjt + εjt.jt jt 
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investigate the robustness of our estimator to violations of this assumption. In order to do so, in Online 

Appendix O4, we discuss results from a Monte Carlo experiment in which we introduce adjustment 

frictions in the flexible input into the data generating process. Specifically, intermediate inputs are 

now subject to quadratic adjustment costs, ranging from zero adjustment costs to very large adjust­

ment costs. For the largest value of adjustment costs, this would imply that firms in our Chilean and 

Colombian datasets, on average, pay substantial adjustment costs for intermediate inputs of almost 

10% of the value of total gross output. 

We generate 100 Monte Carlo samples for each of 9 values of adjustment costs. For each sample 

we estimate the average capital and intermediate input elasticities in two ways. As a benchmark, 

we first obtain estimates using a simple version of dynamic panel with no fixed effects as described 

in equation (25). Under dynamic panel, the presence of adjustment costs generates cross-sectional 

variation in intermediate input demand (via lagged intermediate inputs) that can be used to identify 

the model. We then compare these estimates to those obtained via our nonparametric procedure, which 

assumes adjustment costs of zero. We impose the (true) Cobb-Douglas and AR(1) parametric forms 

in the estimation of dynamic panel (but not in our nonparametric procedure) to give dynamic panel 

the best possible chance of recovering the true parameters and to minimize the associated standard 

errors. We use a constant and kjt, kjt−1,mjt−1 as the instruments. 

Since the novel part of our procedure relates to the intermediate input elasticity via the first stage, 

we focus on the intermediate input elasticity estimates. The comparison for the capital elasticities is 

very similar. The results are presented graphically in Figures O4.2 and O4.3 in the Online Appendix. 

As expected, for zero adjustment costs, our procedure recovers the true elasticity very precisely and 

dynamic panel breaks down. As we increase the level of adjustment costs, the performance of dynamic 

panel improves, also as expected. Somewhat surprisingly though, our procedure continues to perform 

quite well, even for the largest values of adjustment costs, with our estimates reflecting only a small 

bias in the elasticities. 

7.2 Estimation Results on Chilean and Colombian Data 

Having established that our estimator performs well in Monte Carlo simulations, we now evaluate 

the performance of our estimator on real data. The first dataset we use comes from the Colombian 

manufacturing census covering all manufacturing plants with more than 10 employees from 1981­
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1991. This dataset has been used in several studies, including Roberts and Tybout (1997), Clerides et 

al. (1998), and Das et al. (2007). The second dataset comes from the census of Chilean manufacturing 

plants conducted by Chile’s Instituto Nacional de Estadística (INE). It covers all firms from 1979-1996 

with more than 10 employees. This dataset has also been used extensively in previous studies, both 

in the production function estimation literature (LP) and in the international trade literature (Pavcnik, 

2002 and Alvarez and López, 2005).42 

We estimate separate production functions for the five largest 3-digit manufacturing industries 

in both Colombia and Chile, which are Food Products (311), Textiles (321), Apparel (322), Wood 

Products (331), and Fabricated Metal Products (381). We also estimate an aggregate specification 

grouping all manufacturing together.43 As described above, we use a complete polynomial series of 

degree 2 for both the elasticity and the integration constant in the production function.44 

In Table 2, for each country-industry pair, we report estimates of the average output elasticities for 

each input, as well as the sum. We also report the ratio of the average capital and labor elasticities, 

which measures the capital intensity (relative to labor) of the production technology in each industry. 

The table includes estimates both from our procedure (labeled “GNR”) and, for comparison, estimates 

obtained from applying simple linear regression (labeled “OLS”). 

Our estimation approach generates output elasticities that are quite reasonable and that are pre­

cisely estimated, as evidenced by the low standard errors. Intermediate inputs have the highest elastic­

ity, with an average ranging from 0.50-0.67, across country/industry. The ranges for labor and capital 

are 0.22-0.52 and 0.04-0.16, respectively. The sum of the elasticities, a measure of the local returns to 

scale, are also sensible, ranging from 0.99-1.15. Food Products (311) and Textiles (321) are the most 

capital intensive industries in Colombia, and in Chile the most capital intensive are Food Products, 

Textiles, and Fabricated Metals (381). In both countries, Apparel (322) and Wood Products (331) are 

the least capital intensive industries, even compared to the aggregate specification denoted “All” in 

42We construct the variables adopting the convention used by Greenstreet (2007) with the Chilean dataset, and employ 
the same approach with the Colombian dataset. In particular, real gross output is measured as deflated revenues. Interme­
diate inputs are formed as the sum of expenditures on raw materials, energy (fuels plus electricity), and services. Labor 
input is measured as a weighted sum of blue collar and white collar workers, where blue collar workers are weighted 
by the ratio of the average blue collar wage to the average white collar wage. Capital is constructed using the perpetual 
inventory method where investment in new capital is combined with deflated capital from period t − 1 to form capital in 
period t. Deflators for Colombia are obtained from Pombo (1999) and deflators for Chile are obtained from Bergoeing et 
al. (2003). 

43For all of the estimates we present, we obtain standard errors by using the nonparametric bootstrap with 200 replica­
tions. 

44We also experimented with higher-order polynomials, and the results were very similar. In a few industries (specifi­
cally those with the smallest number of observations) the results are slightly more heterogeneous, as expected. 
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the tables. 

Our nonparametric procedure also generates distributions of the elasticities across firms that are 

well-behaved. For any given industry, at most 2% of the labor and intermediate input elasticities are 

outside of the range (0,1). For capital, the elasticities are closer to zero on average, but even in the 

worst case less than 9.4% have values below zero. Not surprisingly, these percentages are highest 

among the the industries with the smallest number of observations. 

In order to evaluate the importance of transmission bias, we compare estimates from our proce­

dure to those using simple linear regression (OLS). A well-known result is that failing to control for 

transmission bias leads to overestimates of the coefficients on more flexible inputs. The intuition is 

that the more flexible the input is, the more it responds to productivity shocks and the higher the 

degree of correlation between that input and unobserved productivity. The estimates in Table 2 show 

that the OLS results substantially overestimate the output elasticity of intermediate inputs in every 

case. The average difference is 34%, which illustrates the importance of controlling for the endo­

geneity generated by the correlation between input decisions and productivity. The output elasticities 

of capital and labor are also affected, with OLS underestimating both elasticities. The effect is larger 

for labor, and as a result, the average elasticity of capital relative to labor is underestimated as well, 

implying much different factor intensities in the technology. In summary, we find that our approach 

provides reasonable estimates of the gross output production function while simultaneously correcting 

for transmission bias. 

Given estimates of the production function, we now examine the resulting estimates of productiv­

ity. Following OP, we define productivity (in levels) as the sum of the persistent and unanticipated 
ω+ε 45components: e . In Table 3 we report estimates of several frequently analyzed statistics of the 

resulting productivity distributions. In the first three rows of each panel we report ratios of percentiles 

of the productivity distribution, a commonly used measure of productivity dispersion. As the table 

illustrates, OLS implies different patterns of productivity heterogeneity. For both countries, the OLS 

estimates of productivity dispersion are systematically smaller compared to our estimates. As an ex­

ample, for the case in which we group all industries together (labeled “All” in the table), the 95/5 

ratio of productivity is 21% larger for Colombia under our estimates compared to OLS, and 16% for 

Chile. The OLS estimates also imply smaller levels of persistence in productivity over time. The 

45We conduct our analysis using productivity in levels. An alternative would be to use logs. While measuring pro­
ductivity in levels can exacerbate extreme values, the log transformation is only a good approximation for measuring 
percentage differences in productivity across groups when these differences are small, which they are not in our data. 
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average correlation coefficient between current and lagged productivity is 0.64 for our estimates and 

0.53 under OLS. 

The OLS estimates also tend to underestimate the relationship between productivity and other 

plant characteristics.46 For example, in almost every industry, we find no evidence of a difference 

in productivity between exporters and non-exporters under the OLS estimates. After correcting for 

transmission bias, we find that in many cases exporters are more productive. Examining importers 

of intermediate inputs, we find an even larger disparity. On average OLS estimates productivity 

differences of 1% for Colombia and 6% for Chile. Our estimates imply much larger importer premia 

of 8% and 13%, respectively. Finally, when we compare firms based on advertising expenditures, 

not only are there sizeable differences in average productivities between OLS and our estimates, but 

in many cases the sign of the relationship actually changes. When compare productivity between 

plants that pay wages above versus below the industry median, the OLS estimates of the differences 

in productivity are between 28% and 44% smaller for Colombia and between 19% and 44% for Chile. 

7.2.1 Robustness Checks and Extensions 

Alternative Flexible Inputs Our approach exploits the first-order condition with respect to a flex­

ible input. We have used intermediate inputs (the sum of raw materials, energy, and services) as the 

flexible input, as they have been commonly assumed to be flexible in the literature. We believe that 

this is a reasonable assumption because a) the model period is typically a year and b) what is required 

is that they can be adjusted flexibly at the margin. To the extent that spot markets for commodities ex­

ist, including energy and certain raw materials, this enables firms to make such adjustments. However, 

it may be the case that in some applications researchers do not want to assume that all intermediate 

inputs are flexible, or they may want to test the sensitivity of their estimates to this assumption. 

As a robustness check on our results, we estimate two different specifications of our model in 

which we allow some of the components of intermediate inputs to be non-flexible. In particular, the 

production function we estimate is of the form F (kjt, ljt, rmjt, nsjt) eωjt+εjt , where rm denotes raw 

materials and ns denotes energy plus services. In one specification we assume rm to be non-flexible 

46As discussed by De Loecker (2013) and DJ, one should be careful in interpreting regressions of productivity on 
characteristics of the firms, to the extent that these characteristics (such as exporting or R&D) affect the evolution of 
productivity and are not explicitly included in estimation procedure. Our estimates are only intended as a means of 
comparing OLS to our approach. 
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and ns to be flexible, and in the other specification we assume the opposite. See Online Appendix O6 

for these results. Overall the results are sensible and the comparison to OLS is similar to our main 

results. 

Fixed Effects As we detail in Online Appendix O5, our identification and estimation strategy can 

be easily extended to incorporate fixed effects in the production function.47 The production func­

tion allowing for fixed effects, aj , can be written as Yjt = F (kjt, ljt,mjt) eaj +ωjt+εjt .48 A common 

drawback of models with fixed effects is that the differencing of the data needed to subtract out the 

fixed effects can remove a large portion of the identifying information in the data. In the context of 

production functions, this often leads to estimates of the capital coefficient and returns to scale that 

are unrealistically low, as well as large standard errors (see GM). 

In Online Appendix O6, we report estimates corresponding to those in Tables 2 and 3, using our 

method to estimate the gross output production function allowing for fixed effects. The elasticity 

estimates for intermediate inputs are exactly the same as in the specification without fixed effects, as 

the first stage of our approach does not depend on the presence of fixed effects. We do find some 

evidence in Colombia of the problems mentioned above as the sample sizes are smaller than those 

for Chile. Despite this, the estimates are very similar to those from the main specification for both 

countries, and the larger differences are associated with larger standard errors. 

Extra Unobservables As we show in Online Appendix O5, our approach can also be extended to 

incorporate additional unobservables driving the intermediate input demand. Specifically, we allow 

for an additional serially uncorrelated unobservable in the share equation for the flexible input (e.g., 

optimization error). This introduces some changes to the identification and estimation procedure, 

but the core ideas are unchanged. In Online Appendix O6 we report estimates from this alternative 

specification. Our results are remarkably robust. The standard errors increase slightly, which is 

not surprising given that we have introduced an additional unobservable into the model. The point 

estimates, however, are very similar. 

Relaxing Independence of the Ex-Post Shock In order to investigate the importance of our as­

sumption that E = E [eεjt ] is a constant, in Online Appendix O6 we present estimates in which we 
47We follow the dynamic panel literature in this case and assume that the process for ω is an AR(1). 
48See Kasahara et al. (2015) for an important extension of our approach to the general case of firm-specific production 

functions. 
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allow E [eεjt | Ijt] to vary with Ijt. In particular, we let it depend on kjt and ljt and regress eεjt on 

(kjt, ljt) to form the expectation. There is some evidence that the expectation varies with these vari­

ables (according to the F-test), although the overall explanatory power is quite low, with R-squared 

values around 1%. As shown in Tables O6.9 and O6.10, the results are overall very similar to our 

baseline estimates in Tables 2 and 3. 

8 Conclusion 

In this paper we show new results regarding the nonparametric identification of gross output produc­

tion functions in the presence of both flexible and non-flexible inputs, under the model structure of the 

proxy variable approach. We first show that with panel data on output and inputs alone, there are not 

enough sources of cross-sectional variation for the gross output production function to be identified 

nonparametrically, using either the proxy variable or dynamic panel techniques. We then show that, 

while in theory aggregate price variation can be used to resolve this, Monte Carlo evidence suggests 

it may perform poorly in practice. 

We offer a new identification strategy, and a simple corresponding estimator, that does not rely 

on researchers having access to long panels with rich aggregate time series variation or other sources 

of exogenous cross-sectional variation. The key to our approach is exploiting the nonparametric 

cross-equation restrictions between the first-order condition for the flexible inputs and the production 

function. We also show that our approach can accommodate additional features, for example, fixed 

effects. 

We provide Monte Carlo simulation evidence that our nonparametric procedure performs well 

in recovering the true underlying production function. Using two commonly employed firm-level 

production datasets, we show that our nonparametric estimator provides reasonable estimates of the 

production function elasticities. When we compare our estimates to those obtained by OLS we find 

that average output elasticities are biased by at least 23% and as much as 73%. OLS also underesti­

mates the degree of productivity dispersion and the correlation between productivity and other plant 

characteristics. 

As discussed in the introduction, there is a growing interest in the literature in estimating gross 

output models that include intermediate inputs. The results in this paper should provide researchers 

with a stronger foundation and additional tools for using gross output production functions in practice. 
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Figure 1: Monte Carlo--Proxy Variable Estimator Applied to Gross Output 
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Notes: This figure presents the results from applying a proxy variable estimator extended to gross output to Monte Carlo data generated as described in Online Appendix O4. The data are generated under four different levels of time-series variation. The x-axis 
measures the number of time periods in the panel used to generate the data. The y-axis measures average of the estimated intermediate input elasticity across 100 Monte Carlo simulations. The true value of the elasticity is 0.65. The first panel includes 500 firms, 
and the second inlcudes 200. 
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Table 1: Monte Carlo--GNR Estimator Performance 

True Functional Form 
Cobb Douglas CES Translog 

Intermediates 

At True 
Parameters 

GNR 
Estimates 

At True 
Parameters 

GNR 
Estimates 

At True 
Parameters 

GNR 
Estimates 

Average Mean Elasticity 0.6500 

--

0.6502 

(0.0015) 

0.6747 

(0.0027) 

0.6746 

(0.0030) 

0.6574 

(0.0007) 

0.6572 

(0.0014) 

Average St. Dev. 0 

--

0.0038 

(0.0012) 

0.1197 

(0.0014) 

0.1193 

(0.0018) 

0.0321 

(0.0004) 

0.0324 

(0.0012) 

Average Fraction Outside of (0,1) 0 

--

0.0000 

(0.0000) 

0 

--

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

Capital 

Average Mean Elasticity 0.2500 

--

0.2492 

(0.0063) 

0.2253 

(0.0027) 

0.2196 

(0.0066) 

0.2263 

(0.0006) 

0.2251 

(0.0075) 

Average St. Dev. 0 

--

0.0086 

(0.0041) 

0.1197 

(0.0014) 

0.1209 

(0.0022) 

0.0333 

(0.0004) 

0.0347 

(0.0018) 

Average Fraction Outside of (0,1) 0 

--

0.0000 

(0.0000) 

0 

--

0.0090 

(0.0047) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

Sum 

Average Mean Elasticity 0.9000 

--

0.8994 

(0.0064) 

0.9000 

--

0.8942 

(0.0067) 

0.8836 

(0.0002) 

0.8823 

(0.0074) 

Average St. Dev. 0 

--

0.0090 

(0.0044) 

0 

--

0.0221 

(0.0034) 

0.0056 

(0.0001) 

0.0114 

(0.0061) 

Notes: 
a. In this table we compare estimates of the production function elasticities using our nonparametric procedure (GNR) to the true values. We simulate data from thee different parametric 
production functions: Cobb-Douglas, CES, and translog. See Online Appendix O4 for the details. 
b. For each parametric form of the production function, the numbers in the first column are computed using the true parameter values.  The numbers in the second column are estimated using 
a complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) of our approach. 
c. For each simulated dataset, we calculate the mean and standard deviation of the output elasticities of capital and intermediate inputs (as well as the sum) across firms and time periods. We 
also calculate the fraction of the elasticities outside of the range of (0,1). In the table we report the average of these three statistics across each of the simulated datasets, as well as the 
corresponding standard error (calculated across the 100 simulations). 

d. Monte Carlo standard errors are computed by calculating the standard deviation of the statistic of interest across the 100 Monte Carlo samples and are reported in parentheses below the 
point estimates. 

e. For cases in which there is no variation in a statistic across simulations under the true parameter values, we report "--" for the associated standard error. For example, under Cobb-Douglas, 
the true production function elasticites are constant across simulations. Also, for cases in which a given statistic is identically equal to zero under the true parameter values, we report this as 
"0" with no decimals. For example, under CES, the elasticities are always strictly positive and less than 1 given our chosen parameter values. 
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Table 2: Average Input Elasticities of Output 
(Structural vs. Uncorrected OLS Estimates) 

Industry (ISIC Code) 
Food Products Textiles Apparel Wood Products Fabricated Metals 

(311) (321) (322) (331) (381) All 

GNR OLS GNR OLS GNR OLS GNR OLS GNR OLS GNR OLS 
Colombia 

Labor 0.22 0.15 0.32 0.21 0.42 0.32 0.44 0.32 0.43 0.29 0.35 0.26 
(0.02) (0.01) (0.03) (0.02) (0.02) (0.01) (0.05) (0.03) (0.02) (0.02) (0.01) (0.01) 

Capital 0.12 0.04 0.16 0.06 0.05 0.01 0.04 0.03 0.10 0.03 0.14 0.06 
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00) 

Intermediates 0.67 0.82 0.54 0.76 0.52 0.68 0.51 0.65 0.53 0.73 0.54 0.72 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00) (0.00) 

Sum 1.01 1.01 1.01 1.03 0.99 1.01 0.99 1.00 1.06 1.05 1.04 1.04 
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.04) (0.02) (0.01) (0.01) (0.00) (0.00) 

Mean(Capital) / 
Mean(Labor) 0.55 0.27 0.49 0.27 0.12 0.04 0.08 0.08 0.23 0.11 0.40 0.23 

(0.08) (0.07) (0.09) (0.06) (0.04) (0.02) (0.05) (0.05) (0.04) (0.04) (0.03) (0.01) 

Chile 

Labor 0.28 0.17 0.45 0.26 0.45 0.29 0.40 0.20 0.52 0.32 0.38 0.20 
(0.01) (0.01) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02) (0.01) (0.01) 

Capital 0.11 0.05 0.11 0.06 0.06 0.03 0.07 0.02 0.13 0.07 0.16 0.09 
(0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) 

Intermediates 0.67 0.83 0.54 0.75 0.56 0.74 0.59 0.81 0.50 0.71 0.55 0.77 
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) 

Sum 1.05 1.05 1.10 1.06 1.08 1.06 1.06 1.04 1.15 1.10 1.09 1.06 
(0.01) (0.00) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00) 

Mean(Capital) / 
Mean(Labor) 0.39 0.28 0.24 0.22 0.14 0.12 0.18 0.12 0.25 0.21 0.43 0.42 

(0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.05) (0.03) (0.04) (0.02) (0.02) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers in the first column are based on a gross output specification using a complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) of our approach (labeled GNR). The numbers in the second column are 
also based on a gross output specification and are estimated using a complete polynomial series of degree 2 with OLS. 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 

d. The row titled "Sum" reports the sum of the average labor, capital, and intermediate input elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the average labor elasticity. 
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Table 3: Heterogeneity in Productivity 
(Structural vs. Uncorrected OLS Estimates) 

Industry (ISIC Code) 
Food Products Textiles Apparel Wood Products Fabricated Metals 

(311) (321) (322) (331) (381) All 

Colombia 
GNR OLS GNR OLS GNR OLS GNR OLS GNR OLS GNR OLS 

75/25 ratio 1.33 
(0.02) 

1.16 
(0.01) 

1.35 
(0.03) 

1.21 
(0.01) 

1.29 
(0.01) 

1.17 
(0.01) 

1.30 
(0.04) 

1.23 
(0.02) 

1.31 
(0.02) 

1.23 
(0.01) 

1.37 
(0.01) 

1.24 
(0.00) 

90/10 ratio 1.77 
(0.05) 

1.42 
(0.02) 

1.83 
(0.07) 

1.51 
(0.04) 

1.66 
(0.03) 

1.44 
(0.02) 

1.80 
(0.12) 

1.57 
(0.06) 

1.74 
(0.03) 

1.53 
(0.02) 

1.86 
(0.02) 

1.58 
(0.01) 

95/5 ratio 2.24 
(0.08) 

1.74 
(0.05) 

2.38 
(0.14) 

1.82 
(0.08) 

2.02 
(0.05) 

1.74 
(0.04) 

2.24 
(0.22) 

2.01 
(0.15) 

2.16 
(0.06) 

1.82 
(0.04) 

2.36 
(0.03) 

1.94 
(0.02) 

Exporter 0.14 
(0.05) 

0.09 
(0.04) 

0.02 
(0.03) 

-0.01 
(0.01) 

0.05 
(0.03) 

0.00 
(0.01) 

0.15 
(0.14) 

0.10 
(0.09) 

0.08 
(0.03) 

0.03 
(0.02) 

0.06 
(0.01) 

0.01 
(0.01) 

Importer 0.04 
(0.02) 

-0.02 
(0.01) 

0.05 
(0.04) 

0.00 
(0.01) 

0.12 
(0.03) 

0.02 
(0.01) 

0.05 
(0.08) 

-0.03 
(0.02) 

0.10 
(0.02) 

0.05 
(0.01) 

0.11 
(0.01) 

0.04 
(0.01) 

Advertiser -0.03 
(0.02) 

-0.07 
(0.02) 

0.08 
(0.03) 

-0.04 
(0.02) 

0.05 
(0.02) 

-0.03 
(0.01) 

0.04 
(0.04) 

-0.02 
(0.03) 

0.05 
(0.02) 

0.00 
(0.01) 

0.03 
(0.01) 

-0.02 
(0.01) 

Wages > Median 0.09 
(0.02) 

0.06 
(0.02) 

0.18 
(0.03) 

0.10 
(0.02) 

0.18 
(0.02) 

0.13 
(0.01) 

0.15 
(0.04) 

0.11 
(0.03) 

0.22 
(0.02) 

0.13 
(0.01) 

0.20 
(0.01) 

0.13 
(0.01) 

Chile 

75/25 ratio 1.37 
(0.01) 

1.30 
(0.00) 

1.48 
(0.02) 

1.40 
(0.01) 

1.43 
(0.02) 

1.36 
(0.01) 

1.50 
(0.02) 

1.39 
(0.01) 

1.53 
(0.02) 

1.46 
(0.01) 

1.55 
(0.01) 

1.45 
(0.00) 

90/10 ratio 1.90 
(0.02) 

1.72 
(0.01) 

2.16 
(0.05) 

1.97 
(0.04) 

2.11 
(0.05) 

1.91 
(0.03) 

2.32 
(0.05) 

2.03 
(0.04) 

2.33 
(0.05) 

2.14 
(0.04) 

2.39 
(0.02) 

2.14 
(0.01) 

95/5 ratio 2.48 
(0.05) 

2.15 
(0.02) 

2.91 
(0.09) 

2.57 
(0.07) 

2.77 
(0.09) 

2.45 
(0.05) 

3.11 
(0.11) 

2.77 
(0.07) 

3.13 
(0.10) 

2.80 
(0.06) 

3.31 
(0.04) 

2.86 
(0.03) 

Exporter 0.02 
(0.02) 

-0.01 
(0.02) 

0.02 
(0.03) 

-0.02 
(0.02) 

0.09 
(0.03) 

0.01 
(0.02) 

0.00 
(0.03) 

-0.02 
(0.02) 

-0.01 
(0.03) 

0.00 
(0.02) 

0.03 
(0.01) 

-0.01 
(0.01) 

Importer 0.14 
(0.02) 

0.03 
(0.01) 

0.10 
(0.02) 

0.04 
(0.02) 

0.14 
(0.02) 

0.06 
(0.01) 

0.15 
(0.03) 

0.07 
(0.03) 

0.11 
(0.02) 

0.06 
(0.02) 

0.15 
(0.01) 

0.09 
(0.01) 

Advertiser 0.04 
(0.01) 

0.00 
(0.01) 

0.04 
(0.02) 

0.01 
(0.01) 

0.06 
(0.02) 

0.02 
(0.01) 

0.03 
(0.01) 

0.01 
(0.01) 

0.01 
(0.02) 

0.01 
(0.02) 

0.06 
(0.01) 

0.04 
(0.01) 

Wages > Median 0.21 
(0.01) 

0.12 
(0.01) 

0.19 
(0.02) 

0.15 
(0.02) 

0.22 
(0.02) 

0.16 
(0.02) 

0.21 
(0.02) 

0.13 
(0.02) 

0.22 
(0.02) 

0.16 
(0.02) 

0.30 
(0.01) 

0.24 
(0.01) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers in the first column are based on a gross output specification using a complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) of our approach (labeled GNR). The numbers in the second column are 
also based on a gross output specification and are estimated using a complete polynomial series of degree 2 with OLS. 
c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants (as a fraction) based on whether they have exported 
some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for Chile our estimates imply that a firm that advertises is, on average, 4% more productive than a firm that does 
not advertise. 
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Appendix: Monte Carlo Setup
 

In this appendix we describe the general structure of our simulated data, which we then vary depend­

ing on the Monte Carlo experiment. We consider a panel of (up to) 500 firms over (up to) 50 periods, 

and repeat the simulations (up to) 500 times. To simplify the problem we abstract away from labor 

and consider the following Cobb-Douglas production function 

= Kαk Mαm ωjt+εjt ,Yjt jt jt e 

where αk = 0.25, αm = 0.65, and εjt is measurement error that is distributed N (0, 0.07). ωjt follows 

an AR(1) process 

ωjt = δ0 + δωjt−1 + ηjt, 

where δ0 = 0.2, δ = 0.8, and ηjt ∼ N (0, 0.04). We select the variances of the errors and the AR(1) 

parameters to roughly correspond to the estimates from our Chilean and Colombian datasets. 

The environment facing the firms is the following. At the beginning of each period, firms choose 

investment Ijt and intermediate inputs Mjt. Investment determines the next period’s capital stock via 

the law of motion for capital 

Kjt+1 = (1 − κj ) Kjt + Ijt, 

where κj ∈ {0.05, 0.075, 0.10, 0.125, 0.15} is the depreciation rate which is distributed uniformly 

across firms. Depending on the simulation, intermediate inputs may be subject to quadratic adjustment 

costs of the form 
2(Mjt − Mjt−1)

CM = 0.5b ,jt Mjt 

where b ∈ [0, 1] is a parameter that indexes the level of adjustment costs, which we vary in our 

simulations. The case of b = 0 corresponds to intermediate inputs mjt being chosen flexibly in period 

t. 

Firms choose investment and intermediate inputs to maximize expected discounted profits. The 
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problem of the firm, written in recursive form, is thus given by 

Mαm ωjt − P IV (Kjt,Mjt−1, ωjt) = max PtK
αk ejt jt t Ijt − ρtMjt 

Ijt,Mjt 

2(Mjt − Mjt−1)−0.5b
Mjt 

+ βEtV (Kjt+1, Mjt, ωjt+1) 

s.t. 

Kjt+1 = (1 − κj ) Kjt + Ijt 

Ijt ≥ 0,Mjt ≥ 0 

ωjt+1 = δ0 + δωjt + ηjt+1. 

The price of output Pt and the price of intermediate inputs ρt are set to 1. The price of investment Pt
I 

is set to 8, and there are no other costs to investment. The discount factor is set to 0.985. 

In order for our Monte Carlo simulations not to depend on the initial distributions of (k, m, ω), we 

simulate each firm for a total of 200 periods, dropping the first 150 periods. The initial conditions, k1, 

m0, and ω1 are drawn from the following distributions: U (11, 400) , U (11, 400) , and U (1, 3). Since 

the firm’s problem does not have an analytical solution, we solve the problem numerically by value 

function iteration with an intermediate modified policy iteration with 100 steps, using a multi-linear 

interpolant for both the value and policy functions.49 

49See Judd (1998) for details. 
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Online Appendix O1: Extensions of Theorem 1 

In what follows we show that the results of Theorem 1 can be extended to the cases in which 1) 

dynamic panel data methods are used and 2) investment is used as the proxy instead of intermediate 

inputs. 

Dynamic Panel Methods Equation (25) in Section 6.3 sets up dynamic panel methods under the 

common AR(1) assumption on ω in terms of the following conditional moment restriction: 

E yjt | ΓDP = E f (kjt, ljt,mjt) + δ0 + δ (yjt−1 − f (kjt−1, ljt−1,mjt−1)) | ΓDP , (26)jt jt 

where ΓDP = 50 One difference from the proxy variable method is that there is no first jt Γjt \ yjt−1. 

stage, and everything is based on the analogue of the second stage, i.e., the functional restriction in 

equation (26). 

Theorem 4. In the absence of time series variation in relative prices, dt = d∀t, under the model 

defined by Assumptions 1 - 4 and assuming an AR(1) process for ω, there exists a continuum of 

alternative f, ˜ h̃ defined by 

M0 −1 
f̃ (kjt, ljt,mjt) ≡ f 0 (kjt, ljt,mjt) + a (kjt, ljt,mjt)j j

h̃ (x) ≡ ad + (1 − a) h0 1
(x − ad)

(1 − a) 

for any a ∈ (0, 1) that satisfy the same functional restriction (26) as the true (f 0, h0). 

Proof. We begin by noting that under the AR(1), h0 (x) = 0 + δ0 h (x) = δ̃0 + ˜δ0 x and ˜ δx, where 

δ̃0 = ad (1 − δ0) + (1 − a) δ0
0 and δ̃ = δ. Next, given the definition of f, ˜ h̃ and noting that 

50Note that yjt−1 needs to be excluded from the conditioning set since by definition it is correlated with εjt−1, which 
is part of ψjt, the error term in yjt. 
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dt = d ∀t, we have 

f̃ (kjt, ljt,mjt) + δ̃0 + δ̃ yjt−1 − f̃ (kjt−1, ljt−1,mjt−1) = 

f 0 (kjt, ljt,mjt) + a M0 −1 
(kjt, ljt,mjt) + ad 1 − δ0 + (1 − a) δ0

0 

+δ0 M0 −1 
yjt−1 − f 0 (kjt−1, ljt−1,mjt−1) − (kjt−1, ljt−1,mjt−1) = 

f 0 (kjt, ljt,mjt) + δ0
0 + δ0 yjt−1 − f 0 (kjt−1, ljt−1,mjt−1) 

−1 −1 
+a M0 (kjt, ljt,mjt) + d − δ0

0 − δ0 M0 (kjt−1, ljt−1,mjt−1) + d . 

Now, take the conditional expectation of the above (with respect to ΓDP )jt 

+ ˜ yjt−1 | ΓDP E f̃ (kjt, ljt,mjt) | ΓDP 
jt δ0 + δ̃ E jt − f̃ (kjt−1, ljt−1,mjt−1) = 

E f 0 (kjt, ljt,mjt) | ΓDP E jt − f 0 (kjt−1, ljt−1,mjt−1)+ δ0
0 + δ0 yjt−1 | ΓDP 

jt 

−1 −1M0 − δ0 − δ0 M0+a E (kjt, ljt,mjt) + d | ΓDP 
0 (kjt−1, ljt−1,mjt−1) + d = jt 

E f 0 (kjt, ljt,mjt) | ΓDP 
jt + δ0

0 + δ0 E yjt−1 | ΓDP − f 0 (kjt−1, ljt−1,mjt−1)jt . 

ωjt | ΓDP 

˜

The last equality follows from the observation that (M0)
−1 

(kjt, ljt,mjt)+d = ωjt and E jt = 

δ0
0 + δ0ωjt−1. Thus (f 0, h0) and f, h̃ satisfy the functional restriction and cannot be distinguished 

via instrumental variables. 

Investment as the Proxy Using investment as the proxy variable requires an analogue of Assump­

tion (3) for investment. 

Assumption 6. Investment in physical capital, denoted ijt, is assumed strictly monotone in a single 

unobservable ωjt: 

ijt = It (kjt, ljt, ωjt) . (27) 

Using investment, the first stage of the proxy variable procedure applied to gross output would 

recover 

E [yjt | kjt, ljt,mjt, ijt] = f (kjt, ljt,mjt) + E [ωjt | kjt, ljt,mjt, ijt] . (28) 

Under Assumption 6, ωjt = I−
t 
1 (kjt, ljt, ijt) and under Assumption 3, ωjt = M−1 (kjt, ljt,mjt) + dt, 

and therefore ijt = Ĩt (kjt, ljt,mjt). This implies that we can rewrite the first stage in equation (28) 
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as:
 

E [yjt | kjt, ljt,mjt, ijt] = f (kjt, ljt,mjt) + I−1 (kjt, ljt, ijt) ≡ φi (kjt, ljt,mjt, ijt) .t t 

But we can also write it as 

E [yjt | kjt, ljt,mjt, ijt] = f (kjt, ljt,mjt) + M−1 (kjt, ljt,mjt) + dt = φ (kjt, ljt,mjt) + dt, 

where notice that ijt has dropped out, and the first stage corresponds exactly to the case of using 

intermediate inputs as the proxy. Therefore we have that 

φit (kjt, ljt,mjt, ijt) = φ (kjt, ljt,mjt) + dt. (29) 

This leads to an analogue of the functional restriction (9) given by 

E yjt | Γi = E f (kjt, ljt,mjt) | Γijt + h (φ (kjt−1, ljt−1,mjt−1) + dt−1 − f (kjt−1, ljt−1,mjt−1))jt 

= E f (kjt, ljt,mjt) | Γi + h φi (kjt−1, ljt−1,mjt−1, ijt−1) − f (kjt−1, ljt−1,mjt−1) .jt t 

(30) 

Theorem 5. In the absence of time series variation in relative prices, dt = d ∀t, under the model 

defined by Assumptions 1 - 4 and 6, there exists a continuum of alternative f, ˜ h̃ defined by 

f̃ (kjt, ljt,mjt) ≡ (1 − a) f 0 (kjt, ljt,mjt) + aφ (kjt, ljt,mjt)j j
h̃ (x) ≡ ad + (1 − a) h0 1

(x − ad)
(1 − a) 

for any a ∈ (0, 1) that satisfy the same functional restriction (30) as the true (f 0, h0). 
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Proof. Let Γi f, ˜ ˜ , we have jt = Γjt ∪ {ijt, ...ij1}. Given the definition of h 

f̃ (kjt, ljt,mjt) + h̃ φ (kjt−1, ljt−1,mjt−1) + d − f̃ (kjt−1, ljt−1,mjt−1) = 

φ (kjt−1, ljt−1,mjt−1) + d − f̃ (kjt−1, ljt−1,mjt−1) − ad 
f̃ (kjt, ljt,mjt) + ad + (1 − a) h0 = 

1 − a 

f 0 (kjt, ljt,mjt) + a (φ (kjt, ljt,mjt) − f 0 (kjt, ljt,mjt))j j 
= (1−a)(φ(kjt−1,ljt−1,mjt−1)+d−f0(kjt−1,ljt−1,mjt−1))

+ad + (1 − a) h0
1−a 

f 0 (kjt, ljt,mjt) + a (φ (kjt, ljt,mjt) + d − f 0 (kjt, ljt,mjt)) 

+ (1 − a) h0 (φ (kjt−1, ljt−1,mjt−1) + d − f 0 (kjt−1, ljt−1,mjt−1)) . 

Given equation (29), this can be re-written as 

f 0 (kjt, ljt,mjt) + a (φi (kjt, ljt,mjt, ijt) − f 0 (kjt, ljt,mjt))t (31) 
+ (1 − a) h0 (φit (kjt−1, ljt−1,mjt−1, ijt−1) − f 0 (kjt−1, ljt−1,mjt−1)) . 

Next notice that for any (f, h) that solve the functional restriction (30), it must be the case that 

φiE = E f (kjt, ljt,mjt) | Γi + h (kjt−1, ljt−1,mjt−1, ijt−1) − f (kjt−1, ljt−1,mjt−1) .yjt | Γijt jt t 

Furthermore, from the definition of φi, it also follows that 

φiE = E (kjt, ljt,mjt, ijt) | Γi .yjt | Γijt t jt 

Hence, 
E φi (kjt, ljt,mjt, ijt) − f (kjt, ljt,mjt) | Γi = t jt (32) 

h (φit (kjt−1, ljt−1,mjt−1, ijt−1) − f (kjt−1, ljt−1,mjt−1)) . 

Now, take the conditional expectation of equation (31) (with respect to Γi )jt

φiE f 0 (kjt, ljt,mjt) | Γi + ah0 (kjt−1, ljt−1,mjt−1, ijt−1) − f 0 (kjt−1, ljt−1,mjt−1)jt t 

+ (1 − a) h0 φt
i (kjt−1, ljt−1,mjt−1, ijt−1) − f 0 (kjt−1, ljt−1,mjt−1) = 

E f 0 (kjt, ljt,mjt) | Γi + h0 φi (kjt−1, ljt−1,mjt−1, ijt−1) − f 0 (kjt−1, ljt−1,mjt−1) ,jt t 
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where the first line applies the relation in equation (32) to equation (31). Thus (f 0, h0) and f, ˜ h̃

satisfy the functional restriction and cannot be distinguished via instrumental variables. 

As discussed in Section 6.3, in the context of dynamic panel, it may be possible to relax the scalar 

unobservability / montonicity assumption on intermediate inputs. This is also the case for using 

investment in a proxy variable setup. A key difference for the case of investment as the proxy is that 

one must be careful that the way in which this assumption is relaxed does not also violate the scalar 

unobservability / monotonicity assumption for investment, Assumption (6). 

Online Appendix O2: A Parametric Example 

In order to further illustrate the mechanisms behind Theorem 1 and its corollaries, we consider a 

parametric example. Suppose that the true production function is Cobb-Douglas F (kjt, ljt,mjt) = 

Kαk Lαl Mαm , and productivity follows an AR(1) process ωjt = δ0 + δωjt−1 + ηjt. Replacing the first jt jt jt 

stage estimates of φ into the production function we obtain: 

yjt = constant + αkkjt + αlljt + αmmjt 

+δ (φ (kjt−1, ljt−1,mjt−1) + dt−1 − αkkjt−1 − αlljt−1 − αmmjt−1) + ηjt + εjt. 

If we plug in for mjt using the first-order condition and combine constants we have 

j j j j j j j j
αk αl αm δ
 

yjt = ˜ kjt + dt + dt−1
constant + ljt − 
1 − αm 1 − αm 1 − αm 1 − αmj j

δ 1 
+ (φ (kjt−1, ljt−1,mjt−1) − αkkjt−1 − αlljt−1 − αmmjt−1) + ηjt + εjt. 
1 − αm 1 − αm 

Plugging in for the Cobb-Douglas parametric form of M−1, it can be shown that φ (kjt−1, ljt−1,mjt−1) = 

mjt−1 − ln αm, which implies 

j j j j j j j j
αm δ αk αl 

yjt = ˜ dt + dt−1 + kjt + ljt constant − 
1 − αm 1 − αm 1 − αm 1 − αmj j j j j j

αk αl 1 −δ kjt−1 − δ ljt−1 + δmjt−1 + ηjt + εjt. 
1 − αm 1 − αm 1 − αm 
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First consider the case in which there is no time series variation in d. From the equation above we 

can see that although variation in mjt−1 identifies δ, the coefficient on kjt is equal to the coefficient 

on kjt−1 multiplied by −δ, and the same is true for l. In other words, variation in kjt−1 and ljt−1 do 

not provide any additional information about the parameters of the production function. As a result, 

all we can identify is αk 
1 and αl 1 . To put it another way, the rank condition necessary 

1−αm 1−αm 

for identification of this model is not satisfied. 

In terms of our proposed alternative functions in Theorem 1, we would have 

α̃k = (1 − a) αk ; α̃l = (1 − a) αl ; α̃m = (1 − a) αm + a ; δ̃ = δ . 

α̃k αk α̃l αlIt immediately follows that = and = , and thus our continuum of 
1−α̃m 1−αm 1−α̃m 1−αm 

alternatives indexed by a ∈ (0, 1) satisfy the instrumental variables restriction. 

For the case in which there is time series variation in d, this variation would identify αm, and 

the model would be identified. However, as we discuss in the main body, relying on time series 

variation runs a risk of weak identification in applications. Doraszelski and Jaumandreu (2013) avoid 

this problem by exploiting observed cross-sectional variation in (lagged) prices as an instrument for 

identification. In contrast, our approach uses the first-order condition to form the share regression 

equation, which gives us a second structural equation that we use in identification and estimation. 

In terms of our Cobb-Douglas example, the second equation would be given by the following share 

equation sjt = ln E + ln αm − εjt. Given that E [εjt] = 0, {ln E + ln αm} is identified, therefore 

E = E [exp ({ln E + ln αm} − sjt)] is identified, and we can identify αm. 

Online Appendix O3: Extension of Theorem 1 Using Distributions 

Following Hurwicz (1950) and using the language of Matzkin (2013), in what follows we define 

a structure as a distribution of the exogenous variables and a system of equations that generate the 

distribution of endogenous variables. In our case the endogenous variables are output and intermediate 

inputs, and these equations are the output and intermediate input demand equations. The functions f , 

h, and M are defined as features of the structure. 

We now extend our result in Theorem 1 to show that absent time series variation in relative prices, 

dt = d∀t, the triple of unknown functions Θ = (f, h, M) cannot be identified from the full joint 
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distribution of the data
 

GyjT ,mjT ,kjT ,ljT ,...,yj2,mj2,kj2,lj2,yj1,mj1,kj1,lj1,d = GyjT ,mjT |ΓjT × ... × Gyj2,mj2|Γj2 × GΓj2 , 

where note that Γj2 includes all period 1 variables.51 The model described by Assumptions 1-4 im­

poses restrictions on Gyjt,mjt|Γjt for t = 2, ..., T . In what follows we show that one can generate an 

observationally equivalent structure that rationalizes Gyjt,mjt|Γjt for any arbitrary t, and therefore the 

triple Θ = (f, h, M) cannot be identified from the full joint distribution of the data. 

For a given Θ, let 

εΘ = yjt − f (kjt, ljt,mjt) − M−1 (kjt, ljt,mjt) − d,jt 

and 

ηΘ = M−1 (kjt, ljt,mjt) − h M−1 (kjt−1, ljt−1,mjt−1) + d .jt 

In order to relate Θ to the (conditional) joint distribution of the data for an arbitrary period t, Gyjt,mjt|Γjt , 

through the model, a joint distribution of the unobservables GηΘ needs to be specified. Let 
jt,ε

Θ |Γjt jt

EG (·) denote the expectation operator taken with respect to distribution G. We say that a triple 

Θ = (f, h, M) rationalizes the data if there exists a joint distribution GηΘ ,εΘ = GηΘ × GεΘ|Γjt |Γjt 

that (i) generates the joint distribution Gyjt,mjt|Γjt ; (ii) satisfies the first stage moment restriction 

EG εΘ | kjt, ljt,mjt = 0; (iii) satisfies the IV orthogonality restriction EG ηΘ = 

jt jt jt jt 

εΘ jt ,εΘ jt | Γjt ηΘ jt + εΘ 

jt jt jt
|Γjt 

0; and (iv) satisfies Assumption 3 (i.e., scalar unobservability and monotonicity of M). Following 

Matzkin (2007), we say that, if there exists an alternative Θ̃ �= Θ0 that rationalizes the data, then 

Θ0 = (f 0, h0 , M0) is not identified from the joint distribution Gyjt,mjt|Γjt of the data. 

Theorem 6. Given the true Θ0 = (f 0, h0 , M0), in the absence of time series variation in relative 

prices, dt = d∀t, under the model defined by Assumptions 1 - 4, there always exists a continuum of 

51As we also note in the main body, in our discussion before Theorem 1, one may not be interested in recovering h or 
M. In our results below, regardless of whether h or M is identified, the production function f is not identified. 
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alternatives Θ̃ = Θ� 0, defined by 

−1 
f̃ (kjt, ljt,mjt) ≡ f 0 (kjt, ljt,mjt) + a M0 j

1
 
(1 − a)
 

(kjt, ljt,mjt) 

(x − ad)

j
h̃ (x) ≡ ad + (1 − a) h0

˜ M0 −1M−1 (kjt, ljt,mjt) ≡ (1 − a) (kjt, ljt,mjt) 

52for any a ∈ (0, 1) that exactly rationalize the data Gyjt,mjt|Γjt .
 

Proof. Let x̊ denote a particular value of the random variable x in its support. We first observe that,
 

for any hypothetical Θ = (f, h, M), there always exists a distribution GηΘ ,εΘ |Γjt 
defined by 

jt jt

GηΘ ,εΘ |Γjt 
(η̊jt, ε̊jt | Γjt) = 

jt jt

f (kjt, ljt, M (kjt, ljt, h (M−1 (kjt−1, ljt−1,mjt−1) + d) + η̊jt − d)) 
⎛
 ⎡
 ⎤
 ⎦


Γjt 

⎞
 ⎟⎟⎟⎠
 

⎜⎜⎜⎝
 

⎣
 ,
 
+h (M−1 (kjt−1, ljt−1,mjt−1) + d) + η̊jt + ε̊jt Gyjt,mjt|Γjt 

M (kjt, ljt, h (M−1 (kjt−1, ljt−1,mjt−1) + d) + η̊jt − d) 

that generates the conditional distribution of the data Gyjt,mjt|Γjt through the model, hence (i) is satis­

fied. 

Second, since the true model rationalizes the data, it follows that EG εΘ
0 | kjt, ljt,mjt = 0. 

εΘ
0 jt 

jt 

ΘThe ε˜ implied by our alternative Θ̃ is given by jt 

ε Θ̃ 
jt = yjt − f̃ (kjt, ljt, mjt) − M̃−1 (kjt, ljt, mjt) − d 

= yjt − f 0 (kjt, ljt, mjt) − a M0 −1 
(kjt, ljt, mjt) − (1 − a) M0 −1 

(kjt, ljt, mjt) − d 

= yjt − f 0 (kjt, ljt, mjt) − M0 −1 
(kjt, ljt, mjt) − d 

= εΘ
0 

jt , 

so it trivially satisfies the moment restriction in (ii). 

52Notice that this is the same set of alternative functions in Theorem 1, replacing for the fact that M−1 (kjt, ljt,mjt) = 
φ (kjt, ljt,mjt) − f (kjt, ljt,mjt) . 
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Third, it follows that
 

˜ ˜Θ Θηjt + εjt = yjt − f̃ (kjt, ljt,mjt) − h̃ M̃−1 (kjt−1, ljt−1,mjt−1) + d 

= yjt − f 0 (kjt, ljt,mjt) − a M0 −1 
(kjt, ljt,mjt) + d 

− (1 − a) h0 M0 −1 
(kjt−1, ljt−1,mjt−1) + d 

= yjt − f 0 (kjt, ljt,mjt) − h0 M0 −1 
(kjt−1, ljt−1,mjt−1) + d _


ηΘ
0 
+εΘ

0 
jt jt 

_
 
⎡
 ⎤
 ⎢⎢⎢⎣
 ⎥⎥⎥⎦
 −1	 −1M0 (kjt, ljt,mjt) + d − h0 M0−a
 (kjt−1, ljt−1,mjt−1) + d _


ηΘ
0 

jt 

_
 
= (1 − a) ηΘ

0 
+ εΘ

0 
.jt jt 

Θ εΘ
0	 Θ ΘSince ε˜ = , it immediately follows that EG ε

˜
= 0. It also follows that η ˜ = jt jt	 ˜ ˜ jt | Γjt jt Θ Θ 

jt jt
|Γjt η ,ε 

(1 − a) ηΘ
0 . By a simple change of variables we have that jt 

˜	 ˜Θ	 ΘEG	 ˜ ˜
ηjt | Γjt = EG ˜

ηjt | Γjt Θ Θ Θ 
jt jt

|Γjt jt
|Γjt η ,ε	 η 

Θ̃ηjt 
= EG | Γjt 

ηΘ
0 |Γjt (1 − a)jt 

ηΘ
0 

= EG jt | Γjt 
ηΘ

0 
jt |Γjt 

= 0. 

Hence, our alternative Θ̃ satisfies the moment restriction in (iii). 
−1−1	 −1Finally we notice that, since (M0) is invertible given Assumption 3, M̃ ≡ (1 − a) (M0)

is therefore also invertible and hence satisfies Assumption 3 (i.e., (iv)) as well. Since both Θ̃ and Θ0 

satisfy requirements (i)-(iv), i.e., both rationalize the data, we conclude that Θ0 = (f 0, h0 , M0) is not 

identified. 

Online Appendix O4: Monte Carlo Simulations 

We begin by reminding the reader of the general structure of our simulated data. We consider a panel 

of (up to) 500 firms over (up to) 50 periods, and repeat the simulations (up to) 500 times. To sim­
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plify the problem we abstract away from labor and consider the following Cobb-Douglas production 

function 

= Kαk Mαm ωjt+εjt ,Yjt jt jt e 

where αk = 0.25, αm = 0.65, and εjt is measurement error that is distributed N (0, 0.07). ωjt follows 

an AR(1) process 

ωjt = δ0 + δωjt−1 + ηjt, 

where δ0 = 0.2, δ = 0.8, and ηjt ∼ N (0, 0.04). We select the variances of the errors and the AR(1) 

parameters to roughly correspond to the estimates from our Chilean and Colombian datasets. 

The environment facing the firms is the following. At the beginning of each period, firms choose 

investment Ijt and intermediate inputs Mjt. Investment determines the next period’s capital stock via 

the law of motion for capital 

Kjt+1 = (1 − κj ) Kjt + Ijt, 

where κj ∈ {0.05, 0.075, 0.10, 0.125, 0.15} is the depreciation rate which is distributed uniformly 

across firms. Depending on the simulation, intermediate inputs may be subject to quadratic adjustment 

costs of the form 
2(Mjt − Mjt−1)

CM = 0.5b ,jt Mjt 

where b ∈ [0, 1] is a parameter that indexes the level of adjustment costs, which we vary in our 

simulations. The case of b = 0 corresponds to intermediate inputs mjt being chosen flexibly in period 

t. 

Firms choose investment and intermediate inputs to maximize expected discounted profits. The 

problem of the firm, written in recursive form, is thus given by 

PtK
αk Mαm ωjt − P IV (Kjt,Mjt−1, ωjt) = max jt jt e t Ijt − ρtMjt 

Ijt,Mjt 

2(Mjt − Mjt−1)−0.5b
Mjt 

+ βEtV (Kjt+1, Mjt, ωjt+1) 

s.t. 

Kjt+1 = (1 − κj ) Kjt + Ijt 

Ijt ≥ 0,Mjt ≥ 0 

ωjt+1 = δ0 + δωjt + ηjt+1. 
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The price of output Pt and the price of intermediate inputs ρt are set to 1. The price of investment Pt
I 

is set to 8, and there are no other costs to investment. The discount factor is set to 0.985. 

In order for our Monte Carlo simulations not to depend on the initial distributions of (k, m, ω), we 

simulate each firm for a total of 200 periods, dropping the first 150 periods. The initial conditions, k1, 

m0, and ω1 are drawn from the following distributions: U (11, 400) , U (11, 400) , and U (1, 3). Since 

the firm’s problem does not have an analytical solution, we solve the problem numerically by value 

function iteration with an intermediate modified policy iteration with 100 steps, using a multi-linear 

interpolant for both the value and policy functions.53 

Monte Carlo 1: Time Series Variation 

In this set of Monte Carlo simulations, we evaluate the performance of using time series variation as 

a source of identification for gross output production functions as described in Section 3. Since we 

are proceeding under the proxy variable approach, we set adjustment costs in intermediate inputs to 

zero (b = 0). We augment our baseline Monte Carlo setup by introducing variation in relative prices 

and simulate data based on four different levels of variation in relative prices. The first two levels 

correspond to what we observe in our Colombian and Chilean datasets, respectively. In addition, we 

create a version with twice the degree of what we observe for Chile (the largest of the two), and another 

corresponding to ten times the observed variation. In order to examine the importance of sample size, 

for each of these values of time series variation, we construct 12 different panel structures: 200 vs. 

500 firms and 3, 5, 10, 20, 30, and 50 periods. 

We estimate a version of the proxy variable technique applied to gross output, as described in 

Section 3, using intermediate inputs as the proxy. In order to reduce the potential noise from nonpara­

metric estimation, we impose the true parametric structure of the model in the estimation routine (i.e., 

Cobb-Douglas and the AR(1)). Figure 1 in the main text reports average elasticity estimates across 

the 500 simulations. In the first panel, we report estimates of the output elasticity of intermediate 

inputs for 500 firms and for varying numbers of time periods, averaged across 500 simulations. In the 

second panel, we do the same but with 200 firms. Each line corresponds to a different level of time 

series variation in prices. For the levels of time series variation corresponding to what we observe in 

our data (labeled “Colombia” and “Chile”), the proxy variable estimator performs quite poorly (re­

gardless of the number of firms/periods), substantially overestimating the true elasticity of 0.65, and 
53See Judd (1998) for details. 

O-11

http:functions.53


  

in some cases generating estimates exceeding 1. For twice the level of time series variation as what 

we observe in Chile, we start to see some convergence towards to the truth as the number of periods 

increases, but even for the largest case of 500 firms/50 periods, the estimator is still substantially 

biased. It is only when we give ourselves ten times the level of variation in Chile that the estimator 

starts to significantly improve, although again, only when the panel is sufficiently long. 

In order to illustrate the precision of the estimator, in Figure O4.1 we plot the 2.5 and 97.5 per­

centiles of the Monte Carlo estimates (in addition to the mean) for the largest degree of time series 

variation and largest number of firms. While the mean estimate does converge towards to truth as the 

number of periods increases, the distribution of the estimates across simulations is quite dispersed. 

With 10 periods, the 95% interquantile range covers both 0 and 1. Even with 50 periods of data, the 

range runs from 0.24 to 0.83, implying fairly noisy estimates. 

Monte Carlo 2: Performance of Our Baseline Identification Strategy 

In order to evaluate the performance of our proposed identification strategy, we simulate 100 datasets 

consisting of 500 firms and 30 periods each, setting adjustment costs to zero. In order to highlight that 

our procedure does not rely on time series variation in prices, we impose that relative prices are con­

stant over time. We examine the performance of our estimator under three different underlying pro-

Kαk Mαm ωjt+εjt duction technologies. We first use the baseline Cobb-Douglas technology: Yjt = jt jt e , 

with αk = 0.25, αm = 0.65. In the second set of simulations we employ the following CES technol­
0.9 
0.5ogy: Yjt = 0.25K0.5 + 0.65M0.5 eωjt+εjt . Finally we simulate data from a translog production jt jt 

function, which in logs is given by yjt = 0.25kjt + 0.65mjt + 0.015k2 + 0.015m2 − 0.032kjtmt +jt jt 

ωjt + εjt. 

For each of the specifications, we estimate the production function using our nonparametric pro­

cedure described in Sections 5. In Table 1 in the main body, we summarize the estimates of the 

production function from these simulations. For each simulated dataset, we calculate the mean output 

elasticity of both capital and intermediate inputs (as well as the sum), as well as the standard deviation 

and the fraction outside of the range of (0, 1). In the table we report the average of these statistics 

across each of the simulated datasets, as well as the corresponding standard error (calculated across 

the 100 simulations). 

Across all three technology specifications, our procedure performs very well in recovering the 
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mean elasticities. For both inputs, the average mean elasticities obtained by our procedure are very 

close to the true values. The largest difference is the mean capital elasticity for CES, which is 0.2196 

compared to a true value of 0.2253. They also have consistently very low standard errors. 

Not only is our estimator capable of replicating the true mean elasticities, it also does an excellent 

job of recovering the heterogeneity in elasticities across firms when it exists (CES and translog) and 

the absence of such heterogeneity when it does not (Cobb-Douglas). This is reflected in the average 

standard deviations of elasticities that very closely match the truth. Finally we note that in only one 

case does our estimator produce elasticity estimates outside of the range of 0 to 1 (the capital elasticity 

for CES). Even then less than 1% fall outside this range. 

Monte Carlo 3: Robustness to Adjustment Costs in Flexible Inputs 

In our third set of simulations, we evaluate how well our estimator performs when the first-order 

condition for intermediate inputs does not hold. We generate 100 Monte Carlo samples for each 

of 9 values of the adjustment cost parameter b, ranging from zero adjustment costs to very large 

adjustment costs. In each sample we simulate a panel of 500 firms over 30 periods. For the largest 

value, b = 1, this would imply that firms in our Chilean and Colombian datasets, on average, pay 

substantial adjustment costs for intermediate inputs of almost 10% of the value of total gross output. 

For each sample we estimate the average capital and intermediate input elasticities in two ways. 

As a benchmark, we first obtain estimates using a simple version of dynamic panel with no fixed 

effects, as this procedure provides consistent estimates under the presence of adjustment costs. We 

compare these estimates to ones obtained via our nonparametric procedure, which assumes adjustment 

costs of zero. 

We impose the (true) Cobb-Douglas parametric form in the estimation of dynamic panel (but not 

in our nonparametric procedure) to give dynamic panel the best possible chance of recovering the true 

parameters and to minimize the associated standard errors. Given the Cobb-Douglas structure and the 

AR(1) process for productivity, we have 

yjt − αkkjt − αmmjt − δ0 − δ (yjt−1 − αkkjt−1 − αmmjt−1) = ηjt − δεjt−1 + εjt. 

The dynamic panel procedure estimates the parameter vector (αk, αm, δ0, δ) by forming moments in 

the RHS of the equation above. Specifically we use a constant and kjt, kjt−1,mjt−1 as the instruments. 
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Since the novel part of our procedure relates to the intermediate input elasticity via the first stage, 

we focus on the intermediate input elasticity estimates. The comparison for the capital elasticities is 

very similar. The results are presented graphically in Figures O4.2 and O4.3. Not surprisingly, the 

dynamic panel data method breaks down and becomes very unstable for small values of adjustment 

costs, as these costs are insufficient to provide identifying variation via the lags. This is reflected both 

in the large percentile ranges and in the fact that the average estimates bounce around the truth. Our 

method on the other hand performs very well, as expected. This is the case even though for dynamic 

panel we impose and exploit the restriction that the true technology is Cobb-Douglas, whereas for our 

procedure we do not. 

As we increase the level of adjustment costs, our nonparametric method experiences a small up­

ward bias relative to the truth and relative to dynamic panel, although in some cases our estimates 

are quite close to those of dynamic panel. The percentile range for dynamic panel is much larger, 

however. So while on average dynamic panel performs slightly better for large values of adjustment 

costs, the uncertainty in the estimates is larger. Overall our procedure performs remarkably well, both 

compared to the truth and to dynamic panel. This is true even for the largest value of adjustment 

costs (b = 1), the worst case for our estimator and best case for dynamic panel. In this case our 

average estimated elasticity is 0.688 is less than 4 percentage points larger than the truth and about 

2.5 percentage points larger than the dynamic panel estimate. 

Monte Carlo 4: Inference 

In the final set of Monte Carlo simulations, we provide evidence that our bootstrap procedure has the 

correct coverage for our estimator. For this set of simulations, we set the adjustment cost parameter for 

intermediate inputs, b, to zero to correspond with our data generating process. We begin by simulating 

500 samples, each consisting of 500 firms over 30 periods. For each sample we nonparametrically 

bootstrap the data 199 times.54 For each bootstrap replication we estimate the output elasticities of 

capital and intermediate inputs using our nonparametric procedure as described in Section 5. We then 

compute the 95% bootstrap confidence interval using the 199 bootstrap replications. This generates 

500 bootstrap confidence intervals, one for each sample. We then count how many times (out of 500) 

the true values of the output elasticities (0.25 for capital and 0.65 for intermediate inputs) lie within 

the bootstrap confidence interval. The results are presented graphically in Figures O4.4 and O4.5. 
54See Davidson and MacKinnon (2004). 
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The true value of the elasticity is contained inside the 95% confidence interval 95.4% (capital) and 

94.2% (intermediate inputs) of the time. Hence, for both the capital and intermediate elasticities, we 

obtain the correct coverage, suggesting that we can use our bootstrap procedure to do inference even 

in the nonparametric case. 
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Online Appendix O5: Extensions 

In this section we discuss four modifications to our baseline model: allowing for fixed effects, incor­

porating additional unobservables in the flexible input demand, allowing for multiple flexible inputs, 

and revenue production functions. 

O5-1. Fixed Effects 

One benefit of our identification strategy is that it can easily incorporate fixed effects in the production 

function. With fixed effects, the production function can be written as 

yjt = f (kjt, ljt,mjt) + aj + ωjt + εjt,	 (33) 

where aj is a firm-level fixed effect.55 From the firm’s perspective, the optimal decision problem for 

intermediate inputs is the same as before, as is the derivation of the nonparametric share regression 

(equation (11)), with ω�jt ≡ aj + ωjt replacing ωjt. 

The other half of our approach can be easily augmented to allow for the fixed effects. We follow 

the dynamic panel data literature and impose that persistent productivity ω follows a first-order linear 

Markov process to difference out the fixed effects: ωjt = δωjt−1 + ηjt.56 The equivalent of equation 

(17) is given by: 

Yjt = aj − C (kjt, ljt) + δ (Yjt−1 + C (kjt−1, ljt−1)) + ηjt. 

Subtracting the counterpart for period t − 1 eliminates the fixed effect. Re-arranging terms leads to: 

Yjt − Yjt−1 =	 − (C (kjt, ljt) − C (kjt−1, ljt−1)) + δ (Yjt−1 − Yjt−2) 

+δ (C (kjt−1, ljt−1) − C (kjt−2, ljt−2)) + (ηjt − ηjt−1) . 

Recall that E [ηjt | Γjt] = 0. Since Γjt−1 ⊂ Γjt, this implies that E [ηjt − ηjt−1 | Γjt−1] = 0, where 

Γjt−1 includes (kjt−1, ljt−1, Yjt−2, kjt−2, ljt−2, Yjt−3, ...). 

55Kasahara et al. (2015) generalize our approach to allow for the entire production function to be firm-specific. 
56For simplicity we use an AR(1) here, but higher order linear auto-regressive models (e.g., an AR(2)) can be incor­

porated as well. We omit the constant from the Markov process since it is not separately identified from the mean of the 
fixed effects. 
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Let
 

µ (kjt, ljt, kjt−1, ljt−1, (Yjt−1 − Yjt−2) , kjt−2, ljt−2) = − (C (kjt, ljt) − C (kjt−1, ljt−1)) (34) 

+δ (Yjt−1 − Yjt−2) 

+δ (C (kjt−1, ljt−1) − C (kjt−2, ljt−2)) . 

From this we have the following nonparametric IV equation 

E [Yjt − Yjt−1 | kjt−1, ljt−1, Yjt−2, kjt−2, ljt−2, kjt−3, ljt−3] 

= E [µ (kjt, ljt, kjt−1, ljt−1, (Yjt−1 − Yjt−2) , kjt−2, ljt−2) | kjt−1, ljt−1, Yjt−2, kjt−2, ljt−2, kjt−3, ljt−3] , 

which is an analogue to equation (19) in the case without fixed effects. 

Theorem 7. Under Assumptions 2 - 4, plus the additional assumptions of an AR(1) process for ω 

and that the distribution of the endogenous variables conditional on the exogenous variables (i.e., 

instruments), 

G (kjt, ljt, kjt−1, ljt−1, (Yjt−1 − Yjt−2) , kjt−2, ljt−2 | kjt−3, ljt−3, kjt−1, ljt−1, Yjt−2, kjt−2, ljt−2), is com­

plete (as defined in Newey and Powell, 2003), the production function f is nonparametrically identi­

fied up to an additive constant if 
∂m
∂ 
jt 
f (kjt, ljt,mjt) is nonparametrically known. 

Following the first part of the proof of Theorem 3, we know that the production function is iden­

tified up to an additive function C (kjt, ljt). Following directly from Newey and Powell (2003), we 

know that, if the distribution G is complete, then the function µ () defined in equation (34) is identi­

fied. 

C̃  , ̃ C̃  , ̃Let δ be a candidate alternative pair of functions. (C , δ) and δ are observationally 

equivalent if and only if 

− (C (kjt, ljt) − C (kjt−1, ljt−1)) + δ (Yjt−1 − Yjt−2) + δ (C (kjt−1, ljt−1) − C (kjt−2, ljt−2))
 

= − C̃ (kjt, ljt) − C̃ (kjt−1, ljt−1) + δ̃ (Yjt−1 − Yjt−2) + δ̃ C̃ (kjt−1, ljt−1) − C̃ (kjt−2, ljt−2) .
 

(35) 

By taking partial derivatives of both sides of (35) with respect to kjt and ljt we obtain 

∂ ∂ 
C (kjt, ljt) = C̃ (kjt, ljt)

∂z ∂z 
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for z ∈ {kjt, ljt}, which implies C (kjt, ljt) − C̃ (kjt, ljt) = c for a constant c. Thus we have shown 

the production function is identified up to an additive constant. 

The estimation strategy for the model with fixed effects is almost exactly the same as without fixed 

effects. The first stage, estimating Dr (kjt, ljt,mjt), is the same. We then form Ŷjt in the same way. 

We also use the same series estimator for C (kjt, ljt). This generates an analogue to equation (24): 

kτk lτlYjt − Yjt−1 = − 0<τk+τl≤τ ατk,τl jt jt + δ (Yjt−1 − Yjt−2) 

kτk lτl+(δ + 1) ατk,τl jt−1 jt−1 (36)
0<τk+τl≤τ 

kτk lτl−δ ατk,τl + (ηjt − ηjt−1) .0<τk +τl≤τ jt−2 jt−2 

We can use similar moments as for the model without fixed effects, except that now we need to lag 

the instruments one period given the differencing involved. Therefore the following moments can be 

used to form a standard sieve GMM criterion function to estimate (α, δ): E (ηjt − ηjt−1) k
τk lτl ,jt−ι jt−ι 

for ι ≥ 1. 

O5-2. Extra Unobservables 

Our identification and estimation approach can also be extended to incorporate additional unobserv­

ables driving the intermediate input demand. In our baseline model, our system of equations consists 

of the share equation and the production function given by 

sjt = ln D (kjt, ljt,mjt) + ln E − εjt 

yjt = f (kjt, ljt,mjt) + ωjt + εjt. 

We now show that our model can be extended to include an additional structural unobservable to the 

share equation for intermediate inputs, which we denote by ψjt: 

sjt = E − εjt − ψjt ln D (kjt, ljt,mjt) + ln � (37) 

yjt = f (kjt, ljt,mjt) + ωjt + εjt, 

ψjt+εjt where E ≡ � E e . 

Assumption 7. ψjt ∈ Ijt is known to the firm at the time of making its period t decisions and is not 
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persistent: Pψ (ψjt | Ijt−1) = Pψ (ψjt). 

O5-2.1. Interpretations for the extra unobservable 

We now discuss some possible interpretations for the non-persistent extra unobservable ψ, arising 

from potentially persistent shocks to the firm’s problem. 

Shocks to prices of output and/or intermediate inputs Suppose that the prices of output and 

intermediate inputs, Pt and ρt, are not fully known when firm j decides its level of intermediate 

inputs, but that the firm has private signals about the prices, denoted Pjt 
∗ and ρ∗ 

jt, where57 

ln Pjt 
∗ = ln Pt − ξjt, 

ln ρ∗ = ln ρt − ξM 
jt jt . 

Notice that, ex-post, once production occurs and profits are realized, firms can infer the true prices. 

As a consequence, ξjt−1, ξ
M are in the firm’s information set in period t, Ijt. We allow the noise jt−1 

in the signals ξ, ξM to be potentially serially correlated by writing them as 

ξjt = g (ξjt−1) + νjt, 

ξM M ξM + νM= gjt jt−1 jt . 

For concreteness we assume a first-order Markov process, but other processes can be accommodated 

as long as they can be expressed as functions of Ijt and a separable innovation. 

Firms maximize expected profits conditional on their signals: 

M (kjt, ljt, ωjt) = max Eε,ν,νM PtF (kjt, ljt,mjt) e 
ωjt+εjt − ρtMjt | Ijt 

Mjt 

gM (ξM νM 
= max Eε,ν,νM Pjt

∗ eg(ξjt−1)e νjt F (kjt, ljt,mjt) e 
ωjt+εjt − ρ ∗ 

jte jt−1)e jt Mjt | Ijt 
Mjt 

νjt ) E (e εjt ) P ∗ ωjt − E jt ρ ∗ gM (ξM 
max E (e jte

g(ξjt−1)F (kjt, ljt,mjt) e e ν
M 

jte jt−1)Mjt. 
Mjt 

57Since only relative prices matter, we could alternatively rewrite the problem in terms of a single signal about relative 
prices. 

O-24



� �

� �

  

  

  

This implies that the firm’s first-order condition for intermediate inputs is given by
 

∂ νM M (ξM 
jt E (e νjt ) E (e εjt ) Pjt

∗ eg(ξjt−1) F (kjt, ljt,mjt) e 
ωjt − E e ρjt

∗ eg jt−1) = 0,
∂Mjt 

which can be rewritten as 

j j 
νjt ) E (eεjt ) jt ρtMjt E (e ∂ e ν

M 

= f (kjt, ljt,mjt) . 
νM evjt eεjt PtYjt E ∂mjt jt e 

Letting ψjt ≡ νjt − νM , we have jt 

ρtMjt 
ln = sjt = ln D (kjt, ljt,mjt) + ln �E − εjt − ψjt. 
PtYjt 

Optimization error Suppose that firms do not exactly know their productivity, ωjt, when they make 

their intermediate input decision. Instead, they observe a signal about productivity ω∗ = jt ωjt − ξjt, 

where ξjt denotes the noise in the signal, and similarly to above 

ξjt = g (ξjt−1) + ψjt. 

Ex-post, once production occurs, the firm can infer the true ω. As a consequence, ξjt−1 is in the firm’s 

information set in period t, Ijt. 

The firm’s profit maximization problem with respect to intermediate inputs is 

jt+ψjt+εjt M (kjt, ljt, ωjt) = arg maxPtEε,ψ F (kjt, ljt,mjt) e 
ω∗ − ρtMjt. 

Mjt 

This implies the following first-order condition 

∂ ω∗ 
jt e ψjt+εjt Pt F (kjt, ljt,mjt) e 

g(ξjt−1)Eε,ψ e = ρt
∂Mjt 

Re-arranging to solve for the share of intermediate inputs gives us the share equation 

ρtMjt 
ln = sjt = ln D (kjt, ljt,mjt) + ln �E − εjt − ψjt. 
PtYjt 

Notice that for both interpretations of ψ, the firm will take into account the value of � eεjt+ψjt E ≡ E 
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when deciding on the level of intermediate inputs, which means we want to correct the share estimates 

by this term. As in the baseline model, we can recover this term by estimating the share equation, 
εjt+ψjt forming the residuals, εjt + ψjt, and computing the expectation of e . 

O5-2.2. Identification 

The identification of the share equation is similar to our main specification, but with two differences. 

The first is that, since ψjt drives intermediate input decisions and is in the residual of the modified 

share equation (37), intermediate inputs are now endogenous in the share equation. As a result, we 

need to instrument for mjt in the share regression. We can use mjt−1 as an instrument for mjt, since 

it is correlated with mjt and independent of the error (εjt + ψjt). Since in the share regression we 

condition only on kjt and ljt (and no lags), mjt−1 generates variation in mjt (conditional on kjt and 

ljt), due to Assumptions 3 and 5. Identification follows from standard nonparametric IV arguments 

as in Newey and Powell (2003). 

The second difference is that the error in the share equation is εjt + ψjt instead of εjt. We can 

form an alternative version of Yjt, which we denote YYjt: 
YYjt ≡ yjt − D (kjt, ljt,mjt) dmjt − (εjt + ψjt) = Yjt − ψjt. (38) 

This generates an analogous equation to equation (16) in the paper: 

YYjt = −C (kjt, ljt) + ωjt − ψjt ⇒ ωjt = YYjt + C (kjt, ljt) + ψjt. 

Re-arranging terms and plugging in the Markovian structure of ω gives us: ⎛ ⎞ ⎜ ⎟Y ⎝ �Yjt = −C (kjt, ljt) + h Yjt−1 + C (kjt−1, ljt−1) + ψjt−1⎠ + ηjt − ψjt, (39) 
ωjt−1 

which is an analogue of equation (17). 

The challenge is that we cannot form ωjt−1, the argument of h in equation (39), because ψjt−1 

is not observed. We can, however, construct two noisy measures of ωjt−1: (ωjt−1 + εjt−1) and 
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(ωjt−1 − ψjt−1) where 

ωjt−1 + εjt−1 = yjt−1 − f (kjt−1, ljt−1,mjt−1) 

= yjt−1 − D (kjt−1, ljt−1,mjt−1) dmjt−1 + C (kjt−1, ljt−1) 

ωjt−1 − ψjt−1 = (ωjt−1 + εjt−1) − (εjt−1 + ψjt−1)j j
= yjt−1 − D (kjt−1, ljt−1,mjt−1) dmjt−1 + C (kjt−1, ljt−1)

− (sjt−1 − ln D (kjt−1, ljt−1,mjt−1)) . 

We could proceed to identify h and C from equation (39) by adopting methods from the measurement 

error literature (Hu and Schennach, 2008 and Cunha et al., 2010) using one of the noisy measures 

as our measure of ωjt−1 and using the other as an instrument. However, such an exercise is not 

straightforward and is beyond the scope of the current paper. 

Instead, we illustrate our approach using an AR(1) process for the evolution of ω: h (ωjt−1) = 

δ0 + δωjt−1 + ηjt. We can then re-write equation (39) as 

YYjt = −C (kjt, ljt) + δ0 + δ Yjt−1 + C (kjt−1, ljt−1) + ηjt − ψjt + δψjt−1, (40) 

where now the residual is given by ηjt − ψjt + δψjt−1. Given Assumptions 2 and 7, we have that 

E [ηjt − ψjt + δψjt−1 | Γjt−1] = 0, where recall that Γjt−1 = Γ (Ijt−2), i.e., a transformation of the 

period t − 2 information set. If we let 

µ kjt, ljt, Yjt−1, kjt−1, ljt−1 = −C (kjt, ljt) + δ0 + δ Yjt−1 + C (kjt−1, ljt−1) , 

then identification of equation (40) follows from a parallel argument to that in Theorem 7 (i.e., in­

cluding the completeness assumption and following the nonparametric IV identification arguments in 

Newey and Powell, 2003). Therefore we can identify the entire production function up to an additive 

constant. We can also identify δ0 and δ, as well as productivity: ω + ε. 
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O5-3. Multiple Flexible Inputs 

Suppose that, in addition to intermediate inputs being flexible, the researcher believes that one or 

more additional inputs are also flexible.58 Our approach can also be extended to handle this case. In 

what follows we assume that labor is the additional flexible input, but the approach can be extended 

to allow for more than two flexible inputs. 

When labor and intermediate inputs are both assumed to be flexible, we have two share equations. 

We use superscripts M and L to distinguish them. The system of equations is then given by 

M sjt = ln DM (kjt, ljt,mjt) + ln E − εjt 

L sjt = ln DL (kjt, ljt,mjt) + ln E − εjt (41) 

yjt = f (kjt, ljt,mjt) + ωjt + εjt. 

These two input elasticities define a system of partial differential equations of the production function. 

By the fundamental theorem of calculus we have 

mjt ∂
f (kjt, ljt,mjt) dmjt = f (kjt, ljt,mjt) + C M (kjt, ljt) 

m0 
∂mjt 

and 

ljt ∂
f (kjt, ljt,mjt) dljt = f (kjt, ljt,mjt) + C L (kjt,mjt) 

l0 
∂ljt 

where now we have two constants of integration, one for each integrated share equation, C M (kjt, ljt) 

and C L (kjt,mjt). Following directly from Varian (1992), these partial differential equations can be 

combined to construct the production function as follows: 

mjt ljt 

∂ ∂ 
f (kjt, ljt,mjt) = f (kjt, l0, s) ds + f (kjt, τ, mjt) dτ − C (kjt) . (42)

∂mjt ∂ljt 
m0 l0 

That is, by integrating the (log) elasticities of intermediate inputs and labor, we can construct the 

58See, for example, Doraszelski and Jaumandreu (2013, 2015). 
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production function up to a constant that is a function of capital only.59 Identification of C and h can 

be achieved in the same way as described in Section 4 for equation (18), with the difference that in 

this case C only depends on capital. 

Notice that the model described by equation (41) imposes the testable restriction that the residuals 

in both share equations are equivalent. If this restriction does not hold, then we could allow for an 

additional structural error in the model, ψ, as described in the preceding sub-section.60,61 Our system 

of equations is thus given by: 

s M = ln DM (kjt, ljt,mjt) + ln E�M − εjt − ψM 
jt jt 

s L = ln DL (kjt, ljt,mjt) + ln � jt jt EL − εjt − ψL 

yjt = f (kjt, ljt,mjt) + ωjt + εjt. 

Nonparametric identification of the flexible input elasticities of L and M proceeds as in Appendix 

O5-2. One can then integrate up the system of partial differential equations as above. Next we can 

construct an analogue to equation (38) above using the residual from either share equation. Using the 

intermediate input share equation, we have 

mjt ljt 

Yjt ≡ yjt −
YY ∂

f (kjt, l0, s) ds − 
∂
f (kjt, τ, mjt) dτ − εjt + ψM (43)jt ∂mjt ∂ljt 

m0 l0 

By subtracting equation (43) from the production function and re-arranging terms we have 

YYYjt 
Plugging in the Markovian structure of ω gives us 

59In order to see why this is the case, evaluate the integrals on the RHS of equation (42), we have the following 

f (kjt, ljt,mjt) = f (kjt, l0,mjt) − C M (kjt, l0) − f (kjt, l0,m0) − C M (kjt, l0) 

+ f (kjt, ljt,mjt) − C L (kjt,mjt) − f (kjt, l0,mjt) − C L (kjt,mjt) 

+f (kjt, l0,m0)
 

= f (kjt, ljt,mjt) ,
 

where f (kjt, l0,m0) ≡ C (kjt) is a constant of integration that is a function of capital kjt. 
60In this case since there are two flexible inputs, we allow for two errors, ψM and ψL, corresponding to intermediate 

inputs and labor, respectively. In principle allowing for just one additional error is sufficient, but we add both for symmetry. 
61Alternatively, it may be possible to allow for other sources of productivity heterogeneity, such as a factor-biased 

component of technological change as in Doraszelski and Jaumandreu (2015). 

= −C (kjt) + ωjt − ψM 
jt . 

O-29



��_ __ _ 

� �

�

    

    

⎛ ⎞ Y ⎜ ⎟YYjt = −C (kjt) + h ⎝Yjt−1 + C (kjt−1) + ψM ⎠ + ηjt − ψM (44)jt−1 jt , 

ωjt−1 

an analogue to equation (39). Identification of C and h can be achieved in the same way as described 

in O5-2 for equation (39), with the difference that in this case C only depends on capital. 

O5-4. Revenue Production Functions 

We now show that our empirical strategy can be adapted to the setting with imperfect competition and 

revenue production functions such that 1) we solve the identification problem with flexible inputs and 

2) we can recover time-varying industry markups.62 We specify a generalized version of the demand 

system in Klette and Griliches (1996) and De Loecker (2011), 

j j
Pjt Yjt 

= 
Πt Yt 

1 
σt 

e χjt , (45) 

where Pjt is the output price of firm j, Πt is the industry price index, Yt is a quantity index that plays 

the role of an aggregate demand shifter,63 χjt is an observable (to the firm) demand shock, and σt is 

the elasticity of demand that is allowed to vary over time. 

Substituting for price using equation (45), the firm’s first-order condition with respect to Mjt in 

the (expected) profit maximization problem is 

j j
1 
+ 1

σt 
Πt 

1 
σtYjt 1 ∂ χjt E εjt 

1 
σt 

+1
F (kjt, ljt,mjt) e = ρt.e
11 εjt ∂Mjt σt σteYt 

Following the same strategy as before, we can rewrite this expression in terms of the observed log 

revenue share, which becomes 

sjt = ln 

j j j
1 
+ 1 + ln 

σt 
D (kjt, ljt,mjt) E e
 εjt 

1 
σt 

+1 
�j j j

1 − + 1
σt 

εjt, (46)
 

62This stands in contrast to the Klette and Griliches (1996) approach that can only allow for a markup that is time-
invariant. 

63As noted by Klette and Griliches (1996) and De Loecker (2011), Yt can be calculated using a market-share weighted 
average of deflated revenues. 
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ρtMjt 1where sjt ≡ ln ,  
1 

 is the expected markup, D (·) is the output elasticity of intermediate 
PjtYjt +1


σt
 

inputs, and εjt is the ex-post shock. Equation (46) nests the one obtained for the perfectly competitive 

case in (11), the only difference being the addition of the expected markup, which is equal to 1 under 

perfect competition. 

We now show how to use the share regression (46) to identify production functions among imper­

fectly competitive firms. Letting ε�jt = 
σ
1 
t 
+ 1 εjt, equation (46) becomes 

sjt = Υt + ln D (kjt, ljt,mjt) + ln � εjt,E − � (47) 

where E� = E eε€jt and Υt = ln 
σ
1 
t 
+ 1 . The intermediate input elasticity can be rewritten so 

that we can break it into two parts: a component that varies with inputs and a constant µ, i.e., 

ln D (kjt, ljt,mjt) = ln Dµ (kjt, ljt,mjt) + µ. Then, equation (47) becomes 

sjt = (Υt + µ) + ln E�+ ln Dµ (kjt, ljt,mjt) − ε�jt 
(48) 

= ϕt + ln E�+ ln Dµ (kjt, ljt,mjt) − ε�jt. 
As equation (48) makes clear, without observing prices, we can nonparametrically recover the 

scaled ex-post shock ε�jt (and hence E�); the output elasticity of intermediate inputs up to a constant 

ln Dµ(kjt, ljt,mjt) = ln D(kjt, ljt,mjt) − µ; and the time-varying markups up to the same constant, 

ϕt = Υt + µ, using time dummies for ϕt. Recovering the growth pattern of markups over time is 

useful as an independent result as it can, for example, be used to check whether market power has 

increased over time, or to analyze the behavior of market power with respect to the business cycle. 

As before, we can correct our estimates for E� and solve the differential equation that arises from 

equation (48). However, because we can still only identify the elasticity up to the constant µ, we  
have to be careful about keeping track of it as we can only calculate Dµ (kjt, ljt,mjt) dmjt =  
e−µ D (kjt, ljt,mjt) dmjt. It follows that 

−µ −µf (kjt, ljt,mjt) e + C (kjt, ljt) e = Dµ (kjt, ljt,mjt) dmjt. 

From this equation it is immediately apparent that, without further information, we will not be able to 

separate the integration constant C (kjt, ljt) from the unknown constant µ. 
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To see how both the constant µ and the constant of integration can be recovered, notice that what 

we observe in the data is the firm’s real revenue, which in logs is given by rjt = (pjt − πt) + yjt. 

Recalling equation (1), and replacing for pjt − πt using (45), the observed log-revenue production 

function is j j j j
1 1 1 

rjt = + 1 f(kjt, ljt,mjt) − yt + χjt + + 1 ωjt + ε�jt. (49)
σt σt σt 

1 ϕt e−µHowever, we can write 1 + 
σt 

= e . We know ϕt from our analysis above, so only µ is 

unknown. Replacing back into (49) we get 

ϕt ϕtrjt = e e −µf (kjt, ljt,mjt) − e e −µ − 1 yt (50) 

ϕt −µ+ e e ωjt + χjt + ε�jt. 

We then follow a similar strategy as before. As in equation (16), we first form an observable 

variable 
PjtYjt 

Rjt ≡ ln ϕt 

Πt ,
ε€jt ee Dµ(kjt,ljt,mjt)dmjt e

where we now use revenues (the measure of output we observe), include eϕt , as well as use Dµ instead 

of the (for now) unobservable D. Replacing into (50) we obtain 

ϕt−µ ϕt −µ − 1 ϕt −µRjt = −e C (kjt, ljt) − e e yt + e e ωjt + χjt . 

From this equation it is clear that the constant µ will be identified from variation in the observed 

demand shifter yt. Without having recovered ϕt from the share regression first, it would not be 

possible to identify time-varying markups. Note that in equation (49), both σt and yt change with 

time, and hence yt cannot be used to identify σt unless we restrict σt = σ as in Klette and Griliches 

(1996) and De Loecker (2011). 

Finally, we can only recover a linear combination of productivity and the demand shock, 

1 + 
σ
1 
t 
ωjt + χjt. The reason is clear: since we do not observe prices, we have no way of disentan­

gling whether, after controlling for inputs, a firm has higher revenues because it is more productive 

(ωjt) or because it can sell at a higher price (χjt). We can write ωµ = 1 + 1 ωjt +χjt as a function jt σt 
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of the parts that remain to be recovered 

ωµ ϕt −µ − 1jt = Rjt + e ϕt−µC (kjt, ljt) + e e yt, 

and impose the Markovian assumption on this combination:64 ωµ = h ωµ + ηµ We can use jt jt−1 jt. 

ηµsimilar moment restrictions as before, E |kjt, ljt = 0, to identify the constant of integration jt

C (kjt, ljt) as well as µ (and hence the level of the markups). 

64Note that in general the sum of two first-order Markov processes is not a first-order Markov process itself. In this 
case, one would need to replace Assumption 2 with the assumption that the weighted sum of productivity ωjt and the 
demand shock χjt is Markovian. See De Loecker (2011) for an example that imposes this assumption. 
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Table O6.1: Average Input Elasticities of Output--Energy+Services Flexible 
(Structural vs. Uncorrected OLS Estimates) 

Colombia 
GNR OLS 

Food Products 
(311) 

GNR OLS 

Textiles 
(321) 

GNR OLS GNR OLS 

Industry (ISIC Code) 
Apparel 

(322) 
Wood Products 

(331) 

GNR OLS 

Fabricated Metals 
(381) 

GNR 

All 

OLS 

Labor 0.15 
(0.02) 

0.13 
(0.01) 

0.21 
(0.03) 

0.16 
(0.02) 

0.37 
(0.03) 

0.31 
(0.01) 

0.28 
(0.06) 

0.27 
(0.02) 

0.29 
(0.03) 

0.26 
(0.01) 

0.22 
(0.01) 

0.21 
(0.01) 

Capital 0.06 
(0.01) 

0.03 
(0.01) 

0.05 
(0.02) 

0.04 
(0.01) 

0.05 
(0.01) 

0.02 
(0.01) 

0.01 
(0.03) 

0.02 
(0.01) 

0.04 
(0.02) 

0.02 
(0.01) 

0.08 
(0.01) 

0.05 
(0.00) 

Raw Materials 

Energy+Services 

0.71 

(0.02) 

0.08 

(0.00) 

0.67 

(0.02) 

0.18 

(0.01) 

0.69 

(0.03) 

0.11 

(0.00) 

0.55 

(0.02) 

0.27 

(0.02) 

0.49 

(0.04) 

0.09 

(0.00) 

0.50 

(0.02) 

0.18 

(0.01) 

0.63 

(0.07) 

0.10 

(0.00) 

0.46 

(0.02) 

0.23 

(0.02) 

0.58 

(0.03) 

0.11 

(0.00) 

0.53 

(0.01) 

0.23 

(0.01) 

0.63 

(0.01) 

0.11 

(0.00) 

0.53 

(0.01) 

0.24 

(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.01 
(0.01) 

0.43 
(0.08) 

1.01 
(0.00) 

0.26 
(0.07) 

1.05 
(0.02) 

0.23 
(0.14) 

1.01 
(0.01) 

0.24 
(0.07) 

1.00 
(0.01) 

0.12 
(0.04) 

1.00 
(0.01) 

0.05 
(0.02) 

1.02 
(0.03) 

0.04 
(0.08) 

0.98 
(0.02) 

0.07 
(0.05) 

1.02 
(0.01) 

0.14 
(0.06) 

1.04 
(0.01) 

0.08 
(0.04) 

1.04 
(0.01) 

0.37 
(0.04) 

1.02 
(0.00) 

0.22 
(0.02) 

Chile 

Labor 0.18 
(0.02) 

0.14 
(0.01) 

0.28 
(0.03) 

0.22 
(0.02) 

0.31 
(0.03) 

0.25 
(0.02) 

0.29 
(0.04) 

0.20 
(0.02) 

0.31 
(0.02) 

0.30 
(0.02) 

0.22 
(0.01) 

0.18 
(0.01) 

Capital 0.06 
(0.01) 

0.04 
(0.00) 

0.08 
(0.01) 

0.05 
(0.01) 

0.04 
(0.01) 

0.03 
(0.01) 

0.06 
(0.02) 

0.03 
(0.01) 

0.08 
(0.01) 

0.06 
(0.01) 

0.11 
(0.01) 

0.08 
(0.00) 

Raw Materials 

Energy+Services 

0.77 
(0.02) 

0.07 
(0.00) 

0.72 
(0.01) 

0.14 
(0.00) 

0.65 
(0.02) 

0.07 
(0.00) 

0.62 
(0.01) 

0.16 
(0.01) 

0.65 
(0.02) 

0.06 
(0.00) 

0.64 
(0.01) 

0.13 
(0.01) 

0.59 
(0.05) 

0.11 
(0.00) 

0.65 
(0.01) 

0.17 
(0.01) 

0.63 
(0.02) 

0.07 
(0.00) 

0.58 
(0.01) 

0.15 
(0.01) 

0.67 
(0.01) 

0.07 
(0.00) 

0.63 
(0.00) 

0.16 
(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.08 
(0.01) 

0.36 
(0.04) 

1.04 
(0.00) 

0.27 
(0.03) 

1.08 
(0.01) 

0.28 
(0.05) 

1.05 
(0.01) 

0.21 
(0.04) 

1.06 
(0.01) 

0.13 
(0.04) 

1.05 
(0.01) 

0.13 
(0.04) 

1.05 
(0.02) 

0.20 
(0.06) 

1.04 
(0.01) 

0.12 
(0.04) 

1.10 
(0.01) 

0.26 
(0.04) 

1.09 
(0.01) 

0.20 
(0.04) 

1.08 
(0.00) 

0.49 
(0.03) 

1.05 
(0.00) 

0.42 
(0.03) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification in which energy+services is flexible and raw materials is not flexible. In the first column the results are obtained via our approach (labeled GNR) using a complete polynomial series of degree 2 
for each of the two nonparametric functions (D and C ). The numbers in the second column are estimated using a complete polynomial series of degree 2 with OLS. 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 

d. The row titled "Sum" reports the sum of the average labor, capital, raw materials, and energy+services elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the average labor elasticity. 
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Table O6.2: Heterogeneity in Productivity--Energy+Services Flexible 
(Structural vs. Uncorrected OLS Estimates) 

Colombia 
GNR OLS 

Food Products 
(311) 

GNR OLS 

Textiles 
(321) 

GNR OLS GNR OLS 

Industry (ISIC Code) 
Apparel 

(322) 
Wood Products 

(331) 

GNR OLS 

Fabricated Metals 
(381) 

GNR 

All 

OLS 

75/25 ratio 

90/10 ratio 

95/5 ratio 

Exporter 

Importer 

Advertiser 

Wages > Median 

1.20 
(0.02) 

1.50 
(0.05) 

1.87 
(0.09) 

0.14 
(0.04) 

0.00 
(0.02) 

-0.12 
(0.03) 

0.06 
(0.02) 

1.18 
(0.01) 

1.45 
(0.03) 

1.80 
(0.07) 

0.11 
(0.04) 

-0.03 
(0.01) 

-0.10 
(0.02) 

0.04 
(0.02) 

1.25 
(0.03) 

1.62 
(0.10) 

2.09 
(0.22) 

-0.04 
(0.06) 

-0.03 
(0.06) 

-0.13 
(0.11) 

0.13 
(0.05) 

1.21 
(0.01) 

1.51 
(0.03) 

1.85 
(0.07) 

-0.02 
(0.01) 

-0.01 
(0.01) 

-0.05 
(0.02) 

0.08 
(0.01) 

1.24 
(0.03) 

1.60 
(0.07) 

2.00 
(0.11) 

0.02 
(0.03) 

-0.03 
(0.03) 

-0.10 
(0.04) 

0.14 
(0.02) 

1.19 
(0.01) 

1.49 
(0.02) 

1.80 
(0.04) 

0.01 
(0.02) 

0.00 
(0.01) 

-0.07 
(0.02) 

0.12 
(0.01) 

1.30 
(0.06) 

1.75 
(0.16) 

2.26 
(0.24) 

0.14 
(0.12) 

-0.04 
(0.05) 

-0.07 
(0.06) 

0.09 
(0.05) 

1.25 
(0.02) 

1.57 
(0.06) 

2.00 
(0.13) 

0.07 
(0.09) 

-0.06 
(0.02) 

-0.04 
(0.03) 

0.08 
(0.03) 

1.28 
(0.02) 

1.68 
(0.06) 

2.04 
(0.11) 

0.08 
(0.02) 

0.10 
(0.02) 

0.05 
(0.02) 

0.19 
(0.02) 

1.21 
(0.01) 

1.52 
(0.02) 

1.79 
(0.04) 

0.01 
(0.01) 

0.04 
(0.01) 

-0.02 
(0.01) 

0.11 
(0.01) 

1.33 
(0.01) 

1.83 
(0.03) 

2.43 
(0.08) 

0.01 
(0.03) 

-0.02 
(0.05) 

-0.16 
(0.05) 

0.10 
(0.04) 

1.24 
(0.00) 

1.60 
(0.01) 

2.00 
(0.02) 

0.00 
(0.01) 

0.01 
(0.01) 

-0.05 
(0.01) 

0.10 
(0.01) 

Chile 

75/25 ratio 

90/10 ratio 

95/5 ratio 

Exporter 

Importer 

Advertiser 

Wages > Median 

1.31 
(0.01) 

1.76 
(0.03) 

2.22 
(0.05) 

-0.01 
(0.03) 

0.02 
(0.02) 

-0.01 
(0.01) 

0.12 
(0.01) 

1.29 
(0.01) 

1.71 
(0.01) 

2.12 
(0.03) 

-0.01 
(0.02) 

0.03 
(0.01) 

-0.01 
(0.01) 

0.10 
(0.01) 

1.42 
(0.02) 

2.04 
(0.05) 

2.69 
(0.12) 

-0.06 
(0.03) 

0.04 
(0.02) 

-0.01 
(0.02) 

0.15 
(0.02) 

1.38 
(0.01) 

1.94 
(0.03) 

2.50 
(0.05) 

-0.01 
(0.02) 

0.03 
(0.02) 

0.00 
(0.01) 

0.13 
(0.02) 

1.41 
(0.02) 

2.01 
(0.04) 

2.65 
(0.07) 

0.01 
(0.03) 

0.07 
(0.02) 

0.01 
(0.01) 

0.19 
(0.02) 

1.36 
(0.01) 

1.89 
(0.02) 

2.42 
(0.04) 

0.01 
(0.02) 

0.06 
(0.01) 

0.01 
(0.01) 

0.15 
(0.01) 

1.44 
(0.04) 

2.13 
(0.12) 

2.94 
(0.21) 

0.01 
(0.05) 

0.09 
(0.04) 

0.01 
(0.01) 

0.17 
(0.03) 

1.39 
(0.01) 

2.03 
(0.04) 

2.76 
(0.08) 

-0.03 
(0.02) 

0.07 
(0.03) 

0.01 
(0.01) 

0.13 
(0.01) 

1.48 
(0.02) 

2.23 
(0.05) 

2.94 
(0.08) 

-0.05 
(0.03) 

0.05 
(0.02) 

0.00 
(0.02) 

0.16 
(0.03) 

1.45 
(0.01) 

2.12 
(0.04) 

2.79 
(0.07) 

0.00 
(0.02) 

0.06 
(0.01) 

0.01 
(0.02) 

0.15 
(0.02) 

1.49 
(0.01) 

2.26 
(0.02) 

3.08 
(0.04) 

-0.03 
(0.01) 

0.07 
(0.01) 

0.02 
(0.01) 

0.25 
(0.01) 

1.44 
(0.00) 

2.12 
(0.01) 

2.83 
(0.02) 

-0.01 
(0.01) 

0.09 
(0.01) 

0.03 
(0.01) 

0.22 
(0.01) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification in which energy+services is flexible and raw materials is not flexible. In the first column the results are obtained via our approach (labeled GNR) using a complete polynomial series of degree 2 
for each of the two nonparametric functions (D and C ). The numbers in the second column are estimated using a complete polynomial series of degree 2 with OLS. 
c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants (as a fraction) based on whether they have exported 
some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for Chile our estimates imply that a firm that advertises is, on average, 1% less productive than a firm that does not 
advertise. 
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Table O6.3: Average Input Elasticities of Output--Raw Materials Flexible 
(Structural vs. Uncorrected OLS Estimates) 

Colombia 
GNR OLS 

Food Products 
(311) 

GNR OLS 

Textiles 
(321) 

GNR OLS GNR OLS 

Industry (ISIC Code) 
Apparel 

(322) 
Wood Products 

(331) 

GNR OLS 

Fabricated Metals 
(381) 

GNR 

All 

OLS 

Labor 0.13 
(0.02) 

0.13 
(0.01) 

0.21 
(0.04) 

0.16 
(0.02) 

0.33 
(0.03) 

0.31 
(0.01) 

0.28 
(0.06) 

0.27 
(0.02) 

0.30 
(0.02) 

0.26 
(0.01) 

0.24 
(0.01) 

0.21 
(0.01) 

Capital 0.05 
(0.01) 

0.03 
(0.01) 

0.07 
(0.03) 

0.04 
(0.01) 

0.02 
(0.02) 

0.02 
(0.01) 

0.01 
(0.04) 

0.02 
(0.01) 

0.05 
(0.02) 

0.02 
(0.01) 

0.06 
(0.02) 

0.05 
(0.00) 

Raw Materials 

Energy+Services 

0.60 

(0.01) 

0.22 

(0.02) 

0.67 

(0.02) 

0.18 

(0.01) 

0.44 

(0.01) 

0.30 

(0.05) 

0.55 

(0.02) 

0.27 

(0.02) 

0.41 

(0.01) 

0.23 

(0.03) 

0.50 

(0.02) 

0.18 

(0.01) 

0.42 

(0.02) 

0.26 

(0.07) 

0.46 

(0.02) 

0.23 

(0.02) 

0.42 

(0.01) 

0.28 

(0.04) 

0.53 

(0.01) 

0.23 

(0.01) 

0.43 

(0.01) 

0.29 

(0.02) 

0.53 

(0.01) 

0.24 

(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.00 
(0.01) 

0.39 
(0.12) 

1.01 
(0.00) 

0.26 
(0.07) 

1.01 
(0.04) 

0.33 
(0.26) 

1.01 
(0.01) 

0.24 
(0.07) 

1.00 
(0.03) 

0.07 
(0.06) 

1.00 
(0.01) 

0.05 
(0.02) 

0.97 
(0.05) 

0.04 
(0.15) 

0.98 
(0.02) 

0.07 
(0.05) 

1.05 
(0.04) 

0.16 
(0.07) 

1.04 
(0.01) 

0.08 
(0.04) 

1.02 
(0.01) 

0.26 
(0.09) 

1.02 
(0.00) 

0.22 
(0.02) 

Chile 

Labor 0.19 
(0.02) 

0.14 
(0.01) 

0.34 
(0.03) 

0.22 
(0.02) 

0.35 
(0.04) 

0.25 
(0.02) 

0.38 
(0.04) 

0.20 
(0.02) 

0.42 
(0.05) 

0.30 
(0.02) 

0.26 
(0.02) 

0.18 
(0.01) 

Capital 0.06 
(0.01) 

0.04 
(0.00) 

0.07 
(0.02) 

0.05 
(0.01) 

0.06 
(0.02) 

0.03 
(0.01) 

0.06 
(0.02) 

0.03 
(0.01) 

0.12 
(0.03) 

0.06 
(0.01) 

0.11 
(0.01) 

0.08 
(0.00) 

Raw Materials 

Energy+Services 

0.59 
(0.00) 

0.21 
(0.02) 

0.72 
(0.01) 

0.14 
(0.00) 

0.47 
(0.01) 

0.18 
(0.03) 

0.62 
(0.01) 

0.16 
(0.01) 

0.49 
(0.01) 

0.15 
(0.04) 

0.64 
(0.01) 

0.13 
(0.01) 

0.46 
(0.01) 

0.16 
(0.03) 

0.65 
(0.01) 

0.17 
(0.01) 

0.43 
(0.01) 

0.18 
(0.06) 

0.58 
(0.01) 

0.15 
(0.01) 

0.47 
(0.00) 

0.21 
(0.02) 

0.63 
(0.00) 

0.16 
(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.05 
(0.02) 

0.32 
(0.04) 

1.04 
(0.00) 

0.27 
(0.03) 

1.06 
(0.02) 

0.20 
(0.06) 

1.05 
(0.01) 

0.21 
(0.04) 

1.05 
(0.02) 

0.16 
(0.04) 

1.05 
(0.01) 

0.13 
(0.04) 

1.07 
(0.02) 

0.16 
(0.06) 

1.04 
(0.01) 

0.12 
(0.04) 

1.14 
(0.03) 

0.28 
(0.07) 

1.09 
(0.01) 

0.20 
(0.04) 

1.05 
(0.01) 

0.41 
(0.04) 

1.05 
(0.00) 

0.42 
(0.03) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification in which raw materials is flexible and energy+services is not flexible. In the first column the results are obtained via our approach (labeled GNR) using a complete polynomial series of degree 2 
for each of the two nonparametric functions (D and C ). The numbers in the second column are estimated using a complete polynomial series of degree 2 with OLS. 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 

d. The row titled "Sum" reports the sum of the average labor, capital, raw materials, and energy+services elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the average labor elasticity. 
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Table O6.4: Heterogeneity in Productivity--Raw Materials Flexible 
(Structural vs. Uncorrected OLS Estimates) 

Colombia 
GNR OLS 

Food Products 
(311) 

GNR OLS 

Textiles 
(321) 

GNR OLS GNR OLS 

Industry (ISIC Code) 
Apparel 

(322) 
Wood Products 

(331) 

GNR OLS 

Fabricated Metals 
(381) 

GNR 

All 

OLS 

75/25 ratio 

90/10 ratio 

95/5 ratio 

Exporter 

Importer 

Advertiser 

Wages > Median 

1.24 
(0.02) 

1.58 
(0.03) 

1.92 
(0.06) 

0.09 
(0.04) 

0.02 
(0.02) 

-0.06 
(0.02) 

0.04 
(0.02) 

1.18 
(0.01) 

1.45 
(0.03) 

1.80 
(0.07) 

0.11 
(0.04) 

-0.03 
(0.01) 

-0.10 
(0.02) 

0.04 
(0.02) 

1.27 
(0.07) 

1.64 
(0.16) 

2.10 
(0.24) 

-0.01 
(0.09) 

0.03 
(0.09) 

0.01 
(0.05) 

0.11 
(0.07) 

1.21 
(0.01) 

1.51 
(0.03) 

1.85 
(0.07) 

-0.02 
(0.01) 

-0.01 
(0.01) 

-0.05 
(0.02) 

0.08 
(0.01) 

1.25 
(0.03) 

1.59 
(0.08) 

1.90 
(0.13) 

0.04 
(0.07) 

0.08 
(0.10) 

-0.01 
(0.04) 

0.14 
(0.03) 

1.19 
(0.01) 

1.49 
(0.02) 

1.80 
(0.04) 

0.01 
(0.02) 

0.00 
(0.01) 

-0.07 
(0.02) 

0.12 
(0.01) 

1.24 
(0.07) 

1.62 
(0.19) 

2.01 
(0.41) 

0.05 
(0.18) 

-0.03 
(0.15) 

-0.02 
(0.05) 

0.09 
(0.06) 

1.25 
(0.02) 

1.57 
(0.06) 

2.00 
(0.13) 

0.07 
(0.09) 

-0.06 
(0.02) 

-0.04 
(0.03) 

0.08 
(0.03) 

1.24 
(0.07) 

1.57 
(0.19) 

1.89 
(0.30) 

0.01 
(0.11) 

0.05 
(0.08) 

-0.02 
(0.05) 

0.11 
(0.07) 

1.21 
(0.01) 

1.52 
(0.02) 

1.79 
(0.04) 

0.01 
(0.01) 

0.04 
(0.01) 

-0.02 
(0.01) 

0.11 
(0.01) 

1.31 
(0.02) 

1.72 
(0.05) 

2.13 
(0.07) 

0.04 
(0.01) 

0.07 
(0.01) 

-0.03 
(0.01) 

0.13 
(0.01) 

1.24 
(0.00) 

1.60 
(0.01) 

2.00 
(0.02) 

0.00 
(0.01) 

0.01 
(0.01) 

-0.05 
(0.01) 

0.10 
(0.01) 

Chile 

75/25 ratio 

90/10 ratio 

95/5 ratio 

Exporter 

Importer 

Advertiser 

Wages > Median 

1.34 
(0.02) 

1.82 
(0.07) 

2.32 
(0.12) 

-0.02 
(0.06) 

0.06 
(0.06) 

0.00 
(0.02) 

0.13 
(0.04) 

1.29 
(0.01) 

1.71 
(0.01) 

2.12 
(0.03) 

-0.01 
(0.02) 

0.03 
(0.01) 

-0.01 
(0.01) 

0.10 
(0.01) 

1.44 
(0.02) 

2.13 
(0.06) 

2.80 
(0.10) 

0.01 
(0.03) 

0.06 
(0.03) 

0.02 
(0.02) 

0.15 
(0.03) 

1.38 
(0.01) 

1.94 
(0.03) 

2.50 
(0.05) 

-0.01 
(0.02) 

0.03 
(0.02) 

0.00 
(0.01) 

0.13 
(0.02) 

1.40 
(0.02) 

2.05 
(0.06) 

2.70 
(0.10) 

0.05 
(0.03) 

0.09 
(0.03) 

0.02 
(0.03) 

0.18 
(0.03) 

1.36 
(0.01) 

1.89 
(0.02) 

2.42 
(0.04) 

0.01 
(0.02) 

0.06 
(0.01) 

0.01 
(0.01) 

0.15 
(0.01) 

1.50 
(0.02) 

2.31 
(0.06) 

3.09 
(0.11) 

-0.01 
(0.03) 

0.12 
(0.04) 

0.03 
(0.01) 

0.19 
(0.02) 

1.39 
(0.01) 

2.03 
(0.04) 

2.76 
(0.08) 

-0.03 
(0.02) 

0.07 
(0.03) 

0.01 
(0.01) 

0.13 
(0.01) 

1.52 
(0.04) 

2.26 
(0.13) 

2.98 
(0.25) 

-0.03 
(0.03) 

0.06 
(0.03) 

-0.02 
(0.02) 

0.17 
(0.04) 

1.45 
(0.01) 

2.12 
(0.04) 

2.79 
(0.07) 

0.00 
(0.02) 

0.06 
(0.01) 

0.01 
(0.02) 

0.15 
(0.02) 

1.51 
(0.01) 

2.32 
(0.02) 

3.19 
(0.04) 

0.01 
(0.01) 

0.13 
(0.01) 

0.04 
(0.01) 

0.25 
(0.01) 

1.44 
(0.00) 

2.12 
(0.01) 

2.83 
(0.02) 

-0.01 
(0.01) 

0.09 
(0.01) 

0.03 
(0.01) 

0.22 
(0.01) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification in which raw materials is flexible and energy+services is not flexible. In the first column the results are obtained via our approach (labeled GNR) using a complete polynomial series of degree 2 
for each of the two nonparametric functions (D and C ). The numbers in the second column are estimated using a complete polynomial series of degree 2 with OLS. 

c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants (as a fraction) based on whether they have exported 
some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for Chile our estimates imply that a firm that advertises is, on average, 0% less productive than a firm that does not 
advertise. 
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Table O6.5: Average Input Elasticities of Output--Fixed Effects 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals 
(381) 

GNR 

All 

GNR 

Labor 0.18 

(0.05) 

0.26 

(0.07) 

0.39 

(0.04) 

0.46 

(0.12) 

0.29 

(0.09) 

0.33 

(0.02) 

Capital 0.09 

(0.07) 

0.04 

(0.06) 

0.06 

(0.04) 

0.25 

(0.16) 

0.09 

(0.11) 

0.07 

(0.02) 

Intermediates 0.67 0.54 0.52 0.51 0.53 0.54 

(0.01) (0.01) (0.01) (0.02) (0.01) (0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

0.95 

(0.12) 

0.52 
(1.42) 

0.84 

(0.11) 

0.16 
(0.66) 

0.96 

(0.07) 

0.15 
(0.09) 

1.22 

(0.26) 

0.55 
(0.34) 

0.90 

(0.18) 

0.30 
(0.35) 

0.95 

(0.04) 

0.21 
(0.07) 

Chile 

Labor 0.20 

(0.03) 

0.33 

(0.07) 

0.50 

(0.05) 

0.37 

(0.03) 

0.60 

(0.15) 

0.30 

(0.02) 

Capital 0.02 

(0.06) 

0.08 

(0.09) 

0.17 

(0.07) 

0.10 

(0.06) 

0.32 

(0.15) 

0.15 

(0.05) 

Intermediates 0.67 

(0.00) 

0.54 

(0.01) 

0.56 

(0.01) 

0.59 

(0.01) 

0.50 

(0.01) 

0.55 

(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

0.89 

(0.08) 

0.09 
(0.25) 

0.95 

(0.13) 

0.23 
(0.23) 

1.24 

(0.11) 

0.35 
(0.11) 

1.05 

(0.07) 

0.27 
(0.14) 

1.42 

(0.29) 

0.53 
(0.35) 

1.01 

(0.07) 

0.50 
(0.15) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification with fixed effects and are estimated using a complete polynomial series of degree 2 for each of the two nonparametric functions (D and 
C ) of our approach (labeled GNR). 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 
d. The row titled "Sum" reports the sum of the average labor, capital, and intermediate input elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the 
average labor elasticity. 

O-39



Table O6.6: Heterogeneity in Productivity--Fixed Effects 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals
 (381) 

GNR 

All 

GNR 

75/25 ratio 1.36 
(0.32) 

1.67 
(0.40) 

1.30 
(0.06) 

1.58 
(0.46) 

1.52 
(0.32) 

1.52 
(0.08) 

90/10 ratio 1.82 
(1.25) 

2.82 
(1.71) 

1.70 
(0.18) 

2.71 
(2.82) 

2.20 
(1.04) 

2.21 
(0.25) 

95/5 ratio 2.30 
(2.66) 

4.14 
(4.01) 

2.09 
(0.35) 

4.04 
(13.90) 

2.78 
(1.75) 

2.84 
(0.41) 

Exporter 0.26 
(0.35) 

0.25 
(0.95) 

0.10 
(0.19) 

-0.04 
(2.64) 

0.41 
(0.50) 

0.22 
(0.11) 

Importer 0.13 
(0.29) 

0.35 
(0.76) 

0.19 
(0.25) 

-0.08 
(2.25) 

0.32 
(0.37) 

0.27 
(0.10) 

Advertiser 0.01 
(0.09) 

0.32 
(0.30) 

0.07 
(0.08) 

-0.17 
(0.41) 

0.19 
(0.24) 

0.14 
(0.04) 

Wages > Median 0.17 
(0.26) 

0.45 
(0.53) 

0.20 
(0.06) 

0.02 
(0.51) 

0.40 
(0.33) 

0.37 
(0.09) 

Chile 

75/25 ratio 1.57 
(0.15) 

1.60 
(0.17) 

1.52 
(0.12) 

1.52 
(0.13) 

2.06 
(0.36) 

1.57 
(0.15) 

90/10 ratio 2.41 
(0.40) 

2.55 
(0.59) 

2.40 
(0.45) 

2.34 
(0.48) 

4.48 
(1.27) 

2.45 
(0.45) 

95/5 ratio 3.14 
(0.61) 

3.38 
(1.20) 

3.38 
(0.98) 

3.20 
(0.99) 

7.30 
(2.55) 

3.41 
(0.77) 

Exporter 0.34 
(0.23) 

0.07 
(0.21) 

-0.07 
(0.12) 

0.07 
(0.42) 

-0.42 
(0.38) 

0.14 
(0.24) 

Importer 0.51 
(0.26) 

0.17 
(0.18) 

-0.02 
(0.11) 

0.22 
(0.31) 

-0.25 
(0.39) 

0.25 
(0.21) 

Advertiser 0.22 
(0.11) 

0.13 
(0.14) 

-0.06 
(0.09) 

0.04 
(0.07) 

-0.20 
(0.23) 

0.12 
(0.10) 

Wages > Median 0.50 
(0.20) 

0.28 
(0.17) 

0.10 
(0.08) 

0.23 
(0.15) 

-0.12 
(0.44) 

0.39 
(0.22) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification with fixed effects and are estimated using a complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) 
of our approach (labeled GNR). 
c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants 
(as a fraction) based on whether they have exported some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for 
Chile a firm that advertises is, on average, 22% more productive than a firm that does not advertise. 
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Table O6.7: Average Input Elasticities of Output--Extra Unobservable 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals 
(381) 

GNR 

All 

GNR 

Labor 0.18 

(0.04) 

0.32 

(0.04) 

0.39 

(0.03) 

0.45 

(0.07) 

0.40 

(0.03) 

0.36 

(0.01) 

Capital 0.13 

(0.03) 

0.18 

(0.02) 

0.08 

(0.02) 

-0.01 

(0.04) 

0.11 

(0.02) 

0.15 

(0.01) 

Intermediates 0.67 0.54 0.52 0.51 0.53 0.54 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

0.98 

(0.02) 

0.72 
(0.65) 

1.03 

(0.03) 

0.55 
(0.13) 

0.99 

(0.02) 

0.21 
(0.09) 

0.95 

(0.08) 

-0.02 
(0.09) 

1.03 

(0.02) 

0.27 
(0.05) 

1.05 

(0.01) 

0.41 
(0.03) 

Chile 

Labor 0.24 

(0.01) 

0.44 

(0.03) 

0.45 

(0.02) 

0.37 

(0.03) 

0.52 

(0.03) 

0.36 

(0.01) 

Capital 0.12 

(0.01) 

0.11 

(0.02) 

0.07 

(0.01) 

0.09 

(0.02) 

0.14 

(0.01) 

0.17 

(0.01) 

Intermediates 0.66 

(0.00) 

0.54 

(0.01) 

0.55 

(0.01) 

0.59 

(0.01) 

0.50 

(0.01) 

0.55 

(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.02 

(0.01) 

0.50 
(0.05) 

1.09 

(0.02) 

0.26 
(0.05) 

1.08 

(0.02) 

0.15 
(0.04) 

1.04 

(0.02) 

0.25 
(0.05) 

1.16 

(0.02) 

0.28 
(0.04) 

1.08 

(0.01) 

0.48 
(0.02) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification allowing for an extra unobservable in the share equation. The estimates are obtained using a complete polynomial series of degree 2 for 
each of the two nonparametric functions (D and C ) of our approach (labeled GNR). 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 
d. The row titled "Sum" reports the sum of the average labor, capital, and intermediate input elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the 
average labor elasticity. 
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Table O6.8: Heterogeneity in Productivity--Extra Unobservable 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals
 (381) 

GNR 

All 

GNR 

75/25 ratio 1.35 
(0.04) 

1.35 
(0.03) 

1.29 
(0.02) 

1.35 
(0.08) 

1.32 
(0.03) 

1.37 
(0.01) 

90/10 ratio 1.82 
(0.13) 

1.83 
(0.08) 

1.68 
(0.06) 

1.94 
(0.30) 

1.76 
(0.05) 

1.88 
(0.02) 

95/5 ratio 2.36 
(0.26) 

2.34 
(0.17) 

2.03 
(0.11) 

2.57 
(0.70) 

2.18 
(0.09) 

2.37 
(0.03) 

Exporter 0.15 
(0.07) 

0.03 
(0.04) 

0.04 
(0.04) 

0.32 
(0.25) 

0.11 
(0.04) 

0.06 
(0.01) 

Importer 0.03 
(0.04) 

0.05 
(0.04) 

0.11 
(0.04) 

0.14 
(0.15) 

0.12 
(0.03) 

0.11 
(0.01) 

Advertiser -0.03 
(0.03) 

0.05 
(0.04) 

0.03 
(0.03) 

0.07 
(0.11) 

0.07 
(0.03) 

0.02 
(0.01) 

Wages > Median 0.09 
(0.04) 

0.18 
(0.04) 

0.18 
(0.02) 

0.21 
(0.10) 

0.23 
(0.03) 

0.19 
(0.01) 

Chile 

75/25 ratio 1.37 
(0.01) 

1.49 
(0.03) 

1.43 
(0.02) 

1.51 
(0.02) 

1.54 
(0.02) 

1.55 
(0.01) 

90/10 ratio 1.92 
(0.03) 

2.18 
(0.09) 

2.12 
(0.04) 

2.35 
(0.05) 

2.35 
(0.06) 

2.40 
(0.02) 

95/5 ratio 2.51 
(0.06) 

2.93 
(0.18) 

2.77 
(0.08) 

3.15 
(0.11) 

3.12 
(0.12) 

3.33 
(0.04) 

Exporter 0.00 
(0.04) 

0.03 
(0.05) 

0.09 
(0.03) 

0.00 
(0.04) 

-0.02 
(0.03) 

0.03 
(0.01) 

Importer 0.12 
(0.04) 

0.10 
(0.04) 

0.13 
(0.02) 

0.15 
(0.04) 

0.09 
(0.03) 

0.15 
(0.01) 

Advertiser 0.04 
(0.02) 

0.04 
(0.03) 

0.06 
(0.02) 

0.04 
(0.02) 

0.01 
(0.02) 

0.06 
(0.01) 

Wages > Median 0.20 
(0.03) 

0.19 
(0.04) 

0.22 
(0.02) 

0.22 
(0.03) 

0.20 
(0.03) 

0.30 
(0.01) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification allowing for an extra unobservable in the share equation. The estimates are obtained using a complete polynomial series of degree 2 for 
each of the two nonparametric functions (D and C ) of our approach (labeled GNR). 
c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants 
(as a fraction) based on whether they have exported some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for 
Chile a firm that advertises is, on average, 4% more productive than a firm that does not advertise. 
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Table O6.9: Average Input Elasticities of Output--Ex-post Shock Robustness 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals 
(381) 

GNR 

All 

GNR 

Labor 0.21 

(0.02) 

0.32 

(0.03) 

0.42 

(0.02) 

0.45 

(0.04) 

0.43 

(0.02) 

0.35 

(0.01) 

Capital 0.12 

(0.01) 

0.15 

(0.02) 

0.05 

(0.01) 

0.04 

(0.02) 

0.10 

(0.01) 

0.14 

(0.01) 

Intermediates 0.67 0.54 0.52 0.51 0.53 0.54 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.01 

(0.01) 

0.59 
(0.09) 

1.01 

(0.02) 

0.49 
(0.09) 

0.99 

(0.01) 

0.12 
(0.04) 

0.99 

(0.04) 

0.08 
(0.06) 

1.06 

(0.01) 

0.23 
(0.04) 

1.04 

(0.01) 

0.40 
(0.02) 

Chile 

Labor 0.28 

(0.01) 

0.45 

(0.03) 

0.45 

(0.02) 

0.40 

(0.02) 

0.52 

(0.02) 

0.38 

(0.01) 

Capital 0.11 

(0.01) 

0.11 

(0.02) 

0.06 

(0.01) 

0.07 

(0.01) 

0.13 

(0.01) 

0.16 

(0.00) 

Intermediates 0.67 

(0.00) 

0.54 

(0.01) 

0.56 

(0.01) 

0.59 

(0.01) 

0.50 

(0.01) 

0.55 

(0.00) 

Sum 

Mean(Capital) / 
Mean(Labor) 

1.05 

(0.01) 

0.39 
(0.02) 

1.10 

(0.02) 

0.24 
(0.05) 

1.08 

(0.02) 

0.14 
(0.03) 

1.06 

(0.01) 

0.18 
(0.03) 

1.15 

(0.02) 

0.25 
(0.03) 

1.09 

(0.01) 

0.43 
(0.02) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
b. For each industry, the numbers are based on a gross output specification allowing for the expectation of e ε  to depend on capital, labor, lagged intermediate inputs, and time. The estimates are obtained using a 
complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) of our approach (labeled GNR). 

c. Since the input elasticities are heterogeneous across firms, we report the average input elasticities within each given industry. 
d. The row titled "Sum" reports the sum of the average labor, capital, and intermediate input elasticities, and the row titled "Mean(Capital)/Mean(Labor)" reports the ratio of the average capital elasticity to the 
average labor elasticity. 
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Table O6.10: Heterogeneity in Productivity--Ex-post Shock Robustness 
(Structural Estimates) 

Colombia 

Food Products 
(311) 

GNR 

Textiles 
(321) 

GNR 

Apparel 
(322) 

GNR 

Wood Products 
(331) 

GNR 

Fabricated Metals
 (381) 

GNR 

All 

GNR 

75/25 ratio 1.35 
(0.03) 

1.35 
(0.03) 

1.29 
(0.01) 

1.30 
(0.03) 

1.31 
(0.02) 

1.37 
(0.01) 

90/10 ratio 1.82 
(0.07) 

1.83 
(0.07) 

1.66 
(0.03) 

1.80 
(0.12) 

1.75 
(0.04) 

1.87 
(0.02) 

95/5 ratio 2.29 
(0.13) 

2.39 
(0.15) 

2.03 
(0.05) 

2.25 
(0.24) 

2.15 
(0.06) 

2.36 
(0.03) 

Exporter 0.14 
(0.05) 

0.02 
(0.04) 

0.05 
(0.03) 

0.15 
(0.17) 

0.08 
(0.03) 

0.06 
(0.01) 

Importer 0.03 
(0.03) 

0.05 
(0.04) 

0.12 
(0.03) 

0.04 
(0.11) 

0.10 
(0.02) 

0.11 
(0.01) 

Advertiser -0.03 
(0.02) 

0.08 
(0.03) 

0.05 
(0.02) 

0.04 
(0.05) 

0.05 
(0.02) 

0.03 
(0.01) 

Wages > Median 0.09 
(0.03) 

0.18 
(0.03) 

0.18 
(0.01) 

0.15 
(0.05) 

0.22 
(0.02) 

0.20 
(0.01) 

Chile 

75/25 ratio 1.38 
(0.01) 

1.48 
(0.02) 

1.43 
(0.02) 

1.50 
(0.02) 

1.53 
(0.02) 

1.55 
(0.01) 

90/10 ratio 1.91 
(0.02) 

2.16 
(0.04) 

2.11 
(0.04) 

2.32 
(0.05) 

2.32 
(0.05) 

2.39 
(0.02) 

95/5 ratio 2.48 
(0.05) 

2.92 
(0.07) 

2.77 
(0.08) 

3.11 
(0.09) 

3.12 
(0.10) 

3.31 
(0.04) 

Exporter 0.02 
(0.02) 

0.02 
(0.03) 

0.09 
(0.03) 

0.00 
(0.03) 

-0.01 
(0.03) 

0.03 
(0.01) 

Importer 0.15 
(0.02) 

0.10 
(0.02) 

0.14 
(0.02) 

0.15 
(0.03) 

0.10 
(0.02) 

0.15 
(0.01) 

Advertiser 0.04 
(0.01) 

0.04 
(0.02) 

0.06 
(0.02) 

0.03 
(0.01) 

0.01 
(0.02) 

0.06 
(0.01) 

Wages > Median 0.22 
(0.01) 

0.19 
(0.02) 

0.23 
(0.02) 

0.21 
(0.02) 

0.22 
(0.03) 

0.30 
(0.01) 

Notes: 

a. Standard errors are estimated using the bootstrap with 200 replications and are reported in parentheses below the point estimates. 
εb. For each industry, the numbers are based on a gross output specification allowing for the expectation of e  to depend on capital, labor, lagged intermediate inputs, and time. The estimates are obtained using a 

complete polynomial series of degree 2 for each of the two nonparametric functions (D and C ) of our approach (labeled GNR). 
c. In the first three rows we report ratios of productivity for plants at various percentiles of the productivity distribution. In the remaining four rows we report estimates of the productivity differences between plants 
(as a fraction) based on whether they have exported some of their output, imported intermediate inputs, spent money on advertising, and paid wages above the industry median. For example, in industry 311 for 
Chile a firm that advertises is, on average, 4% more productive than a firm that does not advertise. 
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