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Abstract 

 

Grouted connections are widely used in the precast concrete construction. For instance, in 

precast concrete walls, they are used to connect assemblies of vertically stacked panels. The 

connection is comprised of a grout cylinder bound by a corrugated metallic duct, which is used 

to house a large diameter reinforcing bar bridging the horizontal gap of stacked panels. The 

connection is used to provide vertical continuity to the assembly, and to help resist tensile 

demands from in-plane bending. Current design guidelines consider such connections through 

a bar-in-concrete treatment, disregarding its composite nature and the confinement effect of 

the duct. This has resulted in excessively long connections that could induce planes of reduced 

stiffness in precast wall panels.  

In this thesis, a research program was tailored to investigate the disparity between the real 

behaviour of grouted connections and their current design code idealization to offer alternative 

more realistic design provisions. The experimental program was divided into three phases. 

First, an exploratory study of the bond behaviour of grouted connections under monotonic 

loads was conducted. Second, the behaviour of grouted connections was compared to bar-in-

concrete specimens under monotonic loading. Third, the cyclic behaviour of the connections 

at various embedment lengths was examined under quasi-static loading. Knowledge gained in 

the experimental program was used in analytical treatments to develop a novel model that can 

accurately depict the behaviour of these connections.  

Results from the various experimental phases reveal that the bond failures developed in grouted 

connections are not characterized by brittle tensile splitting modes, irrespective of the level of 

bond stress along the assembly at different embedded lengths. It was observed that the presence 

of the corrugated duct offers a continuous restraining field against radial expansion of the 

grout, causing the bars to be mobilized in much shorter anchored lengths than those suggested 

by current standards. A numerical model was developed to reproduce the behaviour of grouted 

connections with reasonable accuracy. Its accuracy and computational efficiency should allow 

modelling full-scale precast wall assemblies.   
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Chapter 1  

1 INTRODUCTION 

This chapter provides introductory information to the dissertation as follows: i) General; 

ii) Problem Statement; iii) Research Significance; iv) Specific Research Objectives; and v) 

Thesis outline. 

 

 

1.1 GENERAL 

Precast concrete construction is on its way to become a preferred method of construction, 

owing to its cost effectiveness, superior production plant quality control, and speed of 

installation. Its design flexibility, structural efficiency, and aesthetics are amongst the 

reasons for its growing popularity. According to recently published statistics, precast 

concrete annual sales increased by 6.5% between 2013 and 2018 (The Freedonia Group 

2015). In fully precast buildings, precast concrete bearing and shear walls are often used 

conjointly with hollow core slabs. Total precast buildings enjoy the benefits of fast-paced 

erection schemes, with the quality and superiority of shop-manufactured concrete products. 

To ensure its economic advantage, precast concrete walls are dissected into smaller more 

manageable elements that are easier to transport, lift and erect. These elements are then 

connected together in the field using a variety of connections and hardware. Due to this 

modular nature, the behaviour of such wall assemblies is largely dependent on the 

behaviour of their connections or ties. 

Precast concrete wall systems are designed to emulate cast-in-situ concrete structures. 

Since cast-in-situ walls are continuous, they resist lateral loads as a single unit. Conversely, 

precast wall construction consists of panels connected with horizontal and vertical joints. 

According to Fintel (1995), damage is highly concentrated in the joint regions, where 

planes of reduced stiffness can be induced, creating discontinuities in the structural 

framework of large panel precast construction. Thus, to achieve comparable performance 
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to that of conventional reinforced concrete, continuity across all joints is required. In 

horizontal joints, this is achieved by the placement of a vertical reinforcement bar. 

One of the most commonly used ties in precast wall construction is a grouted reinforcing 

bar connection, or simply a grouted connection. The connection has an array of applications 

in connecting various precast elements, primarily due to its ease of application, low cost, 

and forgiving tolerances. Grouted connections are comprised of a large diameter 

reinforcing bar grouted and bound by a corrugated metallic duct, typically embedded in 

one of the connected members as illustrated in Figure 1.1. In the context of a typical precast 

wall assembly, two vertical wall panels are connected by a grouted connection, bridging 

the horizontal joint between the vertically stacked panels, as pictorially shown in Figure 

1.2.  

 

Figure 1.1: Schematic of grouted connections used to connect two walls. 

The main function of the connections is to resist tension induced by in-plane and out-of-

plane straining actions. The connection also provides the assembly with the necessary 

ductility in case of excessive deformations. Once the reinforcing bar yields, its post-yield 

deformation provides such ductility, which is in the form of a horizontal gap opening 

between two vertically stacked panels (Smith et al. 2013; Smith & Kurama 2014; Soudki 

et al. 1995; Kang et al. 2013; Priestley et al. 1999). Thus, the ductility of the assembly is 

limited to the yield strength of the connection bar and its plastic strain capacity.  
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Figure 1.2: Field application of grouted connections: (a) pre-placement of ducts; (b) bar 

extension from lower panel; (c) field grouting; and (d) wall shoring. 

1.2 PROBLEM STATEMENT 

Under current design code recommendations, grouted connections are treated similar to a 

bar-in-concrete idealization, disregarding the composite nature of the corrugated duct. 

Only scant studies were devoted to understanding the bond behaviour of grouted 

connections. In the absence of a comprehensive understanding of the behaviour of these 

connections, designers and manufacturers tend to over-design these connections. Research 

has shown that increased grouted lengths make precast panels weaker since the effective 

wall cross-section is reduced due to the presence of the duct (Seifi et al. 2015). 

Additionally, this This results in excess material and labour expenditures. While limited 
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previous research (listed in Chapter 2) has pointed out that the bond developed by grouted 

connections behaved differently from the code idealization under monotonic loads, most 

of this research was done on grouted connections used in bridge bent-cap systems with 

different dimensions. Due to the sensitivity of bond, the results from these studies cannot 

be used to extrapolate the behaviour of grouted connections used in precast walls. 

Information on the behaviour of grouted connections under cyclic loads was not found in 

the literature. Moreover, most of these studies provided only qualitative information on 

some aspects of the connections, such as the confinement effect of the duct.      

1.3 RESEARCH SIGNIFICANCE 

In light of the above, this thesis strives to create much needed information on the behaviour 

of grouted connections. Structural aspects of such connections, including stiffness, bond 

strength, failure modes and ductility, need to be explored to identify possible limit states 

of failure. This has been undertaken in this thesis via a comprehensive series of 

experimental and numerical tests. The experimental phase should provide quantitative and 

qualitative information, including testing various connection schemes under monotonic 

and quasi-static cyclic loading scenarios. The thesis should also propose alternative design 

equations to calculate the development length of grouted connections based on specimens 

reflective of field conditions. Finally, this study also proposes a novel finite element 

modelling approach to simulate the behaviour of grouted connections. 

1.4 SPECIFIC RESEARCH OBJECTIVES 

This thesis provides the necessary information on the behaviour and design of grouted 

connections used in precast walls. As such, the specific objectives of this research are: 

1) Investigate the bond behaviour of grouted connections under monotonic loads.  

2) Examine the bond performance of grouted connections utilizing various bars to 

explore their potential to replace conventional steel reinforcement.  
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3) Provide quantitative and qualitative experimental and analytical evidence on the 

difference between grouted connections and the commonly used bar-in-concrete 

idealization. 

4) Explore the behaviour of grouted connections under quasi-static cyclic loading. 

5) Propose new empirical expressions to design the development length of grouted 

connections deduced from the tested limit states of the connection. 

6) Examine the effect of changing the embedment length on the behaviour of grouted 

connections. 

7) Deduce and calibrate bond-slip models reflecting the nature of grouted connections, 

to be used in numerical applications. 

8) Develop a novel, computationally efficient, finite element model that can accurately 

reproduce the behaviour of grouted connections.  

1.5 THESIS OUTLINE 

This research thesis was organized into seven chapters as per the requirements of the 

integrated-article format predefined by the Faculty of Graduate Studies at Western 

University. Aside from the current Chapter (Introduction), the remainder of the dissertation 

is organized as follows: 

Chapter 2: presents an overview of the relevant schemes of grouted connections. It 

also provides information on the experimental and analytical literature pertaining to 

grouted connections.  

 Chapter 3: discusses the experimental and analytical findings of a study undertaken 

in this thesis to highlight the disparities between the behaviour of grouted connections and 

that of bar-in-concrete specimens. The data was used to arrive at an empirical design 

equation that can be used to predict the bar stress at a given embedment length. 
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Chapter 4: examines the bond behaviour of grouted connections under monotonic 

loads with changing various parameters known to influence the bond. The study included 

the response of FRP bars to examine their potential use in architectural non-load bearing 

panels.  

Chapter 5: provides experimental information on the behaviour of grouted 

connections subjected to quasi-static cyclic loading under realistic field conditions. The 

study provides unique information on the behaviour of such connections as well as 

measuring the confinement effect of the duct. The results were used to update the design 

expression proposed in Chapter 3 to reflect the damage incurred by connections due to 

cyclic loading. 

Chapter 6: presents a numerical implementation of the various bond-slip models 

deduced from the experimental work into a Finite Element (FE) framework. The model 

used a novel modelling approach to reduce the geometric non-linearity of the anchorage, 

which enabled a computationally efficient simulation. 

Chapter 7: summarizes the results of this research, draws conclusions, and identifies 

future research needs. 

1.6 CONTRIBUTIONS TO STATE-OF-ART 

This dissertation scrutinizes aspects of the bond behaviour of grouted connections that were 

not so far duly explored in the open literature. The thesis delivers several novelties and 

contributions to the state-of-the-art. First, it provides the scientific community and industry 

practitioners with the necessary information on the behaviour of grouted connections and 

proposes alternative more realistic related design equations. Second, it examines the 

underlying design premises, which were originally proposed by relevant design codes, and 

provides critical analysis of the behaviour of the connections versus the bar-in-concrete 

design code idealization. Third, it examines closely and for the first time, information on 

the behaviour of the connections under cyclic loads, utilizing a novel specimen form that 

eliminates the spurious parameters associated with bond testing. Finally, it proposes a 

novel numerical method to model grouted connections using interfacial cohesive elements. 
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The proposed model is computationally very efficient and can be used to model complete 

assemblies. It is expected that these novel contributions to the state-of-the-art will have 

transformative effects on design provisions of emulative connections in the precast 

concrete construction around the world. 
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Chapter 2  

2 BACKGROUND AND RESEARCH CONTEXT 

This chapter presents background information on grouted connections used in precast 

concrete construction. First, it discusses introductory information on the connections and 

the related bond mechanics. Then it highlights the most relevant experimental and 

analytical efforts available in the open literature. 

 

 

2.1 GENERAL 

2.1.1 Precast Walls 

Precast concrete shear walls are vertical, cantilever like, structural elements used to transfer 

lateral forces from the super-structure to the foundation of precast buildings. They can be 

a part of or the sole component of a building’s Lateral Force Resisting System (LFRS). 

They are usually oriented in both principal axes of the building to resist lateral forces in 

both directions. To increase their resistance to overturning and uplifting, it is desirable to 

design shear walls as load bearing elements to increase their resistance against over-turning 

and to reduce rocking of the panels in-case of excessive deformations. ACI 318-14 Section 

18.2.1.6, defines the different types of shear walls as follows: Ordinary structural walls: 

walls with no special detailing related to seismic loads; Intermediate precast concrete 

structural walls: Section 18.5.2.2 of the same standard, necessitates yielding of steel in the 

connections of the walls, the non-yielding components of the connections must provide a 

strength 50% greater than that of the yielding elements; Special precast concrete structural 

walls: walls designed and detailed to emulate cast-in-place concrete shear walls, in addition 

to satisfying requirements of Section 18.5.2.2 pertaining to the connections (ACI 

Committee 318 2014).   

The concept of “Capacity Design” is a design philosophy that allows a building to undergo 

failure at specific elements (where special seismic considerations and detailing are 
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provided), while the rest of the elements are designed to deform in the elastic range. This 

should be achieved without any loss of structural integrity that would result in catastrophic 

failure. Due to the dissected nature of precast concrete construction, the capacity design 

concept is taken into consideration in two stages: the design of the element itself; and more 

importantly in the design of the connection between the elements. Thus, ductility of precast 

concrete construction is largely induced and/or influenced by the design and detailing of 

the connections. The selection of the assembly is largely influenced by the experience and 

judgement of the designer, but also takes into consideration important aspects such as 

constructability and cost. 

2.1.2 Precast Wall Connections 

Under current industry practice pertaining to precast concrete construction, precast walls 

can be connected either by jointed or emulative connections. Jointed connections, typically 

consisting of bolted or welded plates, are those exhibiting different stiffness than that of 

the walls they are connecting. Due to this difference in stiffness, the assemblies show a 

behaviour that differs from cast-in-situ concrete. Apart from their laborious installations, 

the use of jointed connections in precast shear walls is conditional on experimental 

evidence and analysis to prove that they have strength and toughness equivalent to that of 

cast-in-place reinforced concrete.  

Alternatively, emulative connections are defined as those connections allowing a precast 

concrete structure to have an equivalent behaviour to that of a monolithic structure (ACI 

Committee 550 2001). Emulative connections typically consist of grout and vertical/ 

horizontal continuity reinforcement. While this can be achieved by a variety of schemes 

depending on the designer and the fabricator, two main schemes are primarily used: 

Grouted connections; and grouted splice sleeves. Although both connection types are 

emulative, grouted splice sleeves are generally not preferred due to their high cost and 

unforgiving tolerances. A typical wall detail showing both schemes is displayed in Figure 

2.1. As can be observed from this figure, both connections significantly depend on bond, 

the main mechanism through which emulative connections achieve their monolithic-like 

behaviour.  

  



11 

 

 

Figure 2.1:[Left to Right] Grouted connections; grouted splice sleeve (courtesy of IES Associates, Windsor, ON). 
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The concept of emulative connections in precast construction was not used until the early 

1990’s. It is not clear when or by whom exactly the term was coined, but the studies by 

Restrepo et al. (1993) and Park (1995) are amongst the earliest references. In the latter, 

precast buildings were framed using precast beams and columns, where the longitudinal 

columns passed through voids in the beams and protruded above them. The voids were 

formed using corrugated ducts. Prior tests undertaken on the components level by Restrepo 

et al. (1993) showed that the connections exhibited excellent stiffness and ductility. 

Conclusions from both studies confirmed that the behaviour of such connections is 

comparable to their monolithic counterpart. Since emulative connections rely on bond to 

achieve their composite behaviour, it is expedient to provide a review of bond from 

research and relevant design codes so as to fully understand the behaviour of grouted 

connections. 

2.2 BOND  

2.2.1 Bond Mechanics 

Bond between deformed steel bars and concrete is a topic that has been extensively 

investigated in the open literature. This review is not meant to be exhaustive, but merely 

intends to provide relevant fundamental knowledge that would facilitate the understanding 

of the behaviour of grouted connections.  

 

Figure 2.2: [a] Internally cracked zone around a pulled bar; [b] bar forces; [c] forces at 

the bar-concrete interface; and [d] splitting failure. 

 

(a) (c) (d) 
 

(b) 
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In its most basic definition, bond between steel reinforcement and concrete refers to the 

interaction that allows the transfer of tensile stresses in an assembly. Figure 2.2 shows the 

state of stress and forces developed at the interface of an assembly. When a bar embedded 

in concrete is pulled, the developed resultant forces are inclined by an angle θ with respect 

to the longitudinal axis of the bar, as shown in Figure 2.2(b). The value of θ is greatly 

debated in the open literature, but is believed to be roughly proportional to the angle of the 

face rib of the bar. When the resultant force (Figure 2.2(c)) is decomposed into parallel 

and normal components. The parallel component contributes to bond stresses, while normal 

components contribute to splitting stresses. Bond is generated through three main 

mechanisms: chemical adhesion; mechanical bearing; and friction. Chemical adhesion only 

contributes a small portion of the bond stresses (typically ~1-2 MPa) and disappears with 

the onset of slip of the bar. Frictional bond components depend on the surface 

characteristics of the assembly and do not engage until the bar experiences slip. Hence, the 

bond of deformed bars embedded in steel is primarily dependent on mechanical bearing.  

Bond is sensitive to several influential parameters. ACI committees 408R-03 (Bond and 

Development of Straight Reinforcing Bars in Tension) and 408.2R-12 (Bond under Cyclic 

Tests), outlines more than seventeen factors that affect the bond of anchored bars, chief 

among which are:  

1- Compressive strength  

Most descriptive and design expressions are based on the assumption that the bond 

strength is proportional to √𝑓𝑐′. Earlier research has shown that, for normal strength 

concrete (< 70 MPa), the tensile and shear strengths (contributing factors in resisting 

the parallel and radial components discussed above) to be closely approximated by 

√𝑓𝑐′ (ACI Committee 408.2R 2012). Later studies have contested this assumption, 

citing that bond strength increases with an increase in compressive strength. For 

compressive strengths ranging between 50-80 MPa, bond is proportional to 𝑓𝑐
′
3

4 (Zuo 

& Darwin 1998).  
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2- Bar properties 

Bar size: larger bars develop lower bond stresses than that of smaller bars for the 

same embedment length (Orangun et al. 1977; Darwin & Zavaregh 1996);  

Bar geometry: the relative rib area 𝑅𝑟, defined as the ratio of bearing area divided 

by shearing area, has a direct effect on the bond stresses developed. Doubling the 𝑅𝑟 

could reduce the development length and splice lengths of anchorage by 20% (Cairns 

& Jones 1996);  

Steel stress level: under the same conditions, a bar with a lower yield strength 

develops lower bond stresses than that of a higher strength bar when no confinement 

is present, and slightly higher bond stresses when transverse reinforcement is 

provided (Zuo & Darwin 2000; Zuo & Darwin 1998);  

Surface condition: smooth or epoxy coated bars develop lower bond stresses than 

that of their non-coated and ribbed coutnerparts (Treece & Jirsa 1989);  

Steel strain level: increasing the axial strain of the bar beyond yielding reduces the 

bond stress and invokes additional slip. When the bar starts to soften, the lugs 

disengage due to the reduction in cross-sectional area resulting from the Poisson 

effect (Raynor 2000).  

3- Embedment length: 

Generally, an increase in the bonded length of the anchorage will be accompanied by 

a decrease in bond stress and increase in bond capacity. It should be noted that there 

are no conclusive data in the open literature regarding the relationship between 

bonded length and developed bond stress (ACI Committee 408.2R 2012).  

2.2.2 Confinement and Failure Mechanisms 

Increasing the confinement of an anchored bar significantly influences the level of bond 

stress developed and the failure mode of the anchorage. Confinement can help superimpose 

compressive stresses unto the tensile rings developed, as highlighted in Figure 2.2(c). This 



15 

 

influences the failure mechanism of the anchorage depending on the face angle of 

inclination and the frequency and magnitude of the compressive struts. Confinement can 

be classified depending on whether the compressive field is due to an action or a reaction 

force. Example of an active confinement field is due to an applied external load or a result 

of pre-stressing. Passive confinement is one which develops in the steel surrounding the 

anchorage because of pulling. This includes transverse reinforcement in the form of spirals 

or stirrups, or simply the concrete cover, as shown in Figure 2.2(d). Passive and active 

confinement actions impart different mechanisms. Active confinement acts before the 

loading begins and works by suppressing splitting before it starts. Conversely, passive 

confinement only engages after the concrete rings in the vicinity of the bar crack and the 

hoop tensile capacity is exhausted. It works by restricting and delaying the growth and 

progression of such cracks. In general, the efficiency for inhibiting the growth of splitting 

cracks is increased as the confinement field is closer to the bar.  

Eligehausen et al. (1982) conducted pull-out tests on concrete specimens embedded at 5 

diameters-of-bar (db). A variety of parameters were explored in fundamental study on bond 

of deformed bars in concrete, including the magnitude of the compressive field applied 

unto the specimens. This was reflected in the specimens by changing the transverse 

reinforcement of the different specimens and measuring their response. The effect of 

changing the transverse reinforcement details on the bond stress vs slip response is shown 

in Figure 2.3. It can be observed that there is an increase in bond stress as transverse 

pressure increased. However, they pointed out that there is a point of diminishing returns, 

where the transverse pressure is no longer proportional to the increase in bond resistance.  
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Figure 2.3: Influence of confinement on the bond stress vs slip relationship by 

Eligehausen et al. (1982) (reproduced with permission). 

Others have made similar observations prior to the study conducted by Eligehausen et al. 

(1982). For example, Tepfers (1973) compared stirrups and spiral in a series of lapped 

splice beam specimens. Results have shown an increase in bond stress with the increase of 

the diameter of the stirrups and spiral. The influence of an applied normal compressive 

pressure on the bond resistance of bars embedded in concrete blocks was studied by 

Untrauer & Henry (1965). Applied lateral pressure ranged from 0 to 20 MPa 

(corresponding to 0 to 0.5𝑓𝑐
′). Results indicate proportional increase in bond strength as the 

pressure increased, which was attributed to an increase in frictional characteristics of the 

specimens and restricting the tensile failure modes.   

 

Figure 2.4: [Top to Bottom] Bond splitting and pull-out failures, respectively. 
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When a steel bar is pulled out from a surrounding cementitious medium, slippage of the 

bar occurs because of the wedging action of the bar (splitting dominated), or through 

progressive crushing of the shear keys between successive ribs (pull-out dominated), as 

shown in Figure 2.4. It is also possible for a mixed mode failure to occur in moderately 

confined anchorages. When no restriction against the expansion of the concrete is offered, 

splitting failures occur, which depends primarily on the force exerted on the concrete and 

not on the bar stress or embedded area. Because of this independency, tensile splitting 

failures are not accepted in the design of anchorages, especially those designed to yield. It 

is the intent of the design code to reduce the bond stress sufficiently, such that these failures 

do not manifest (ACI Committee 408 2003). If, on the other hand, sufficient confinement 

is provided, failure occurs by shearing of the concrete keys between successive lugs of the 

bar, as shown in Figure 2.4. Such failures are dependent primarily on the load per unit 

length of the bar, thus, showing a proportionality to the bar perimeter (Lutz & Gergely 

1967).  

2.2.3 Bond Tests 

Local bond stress of an embedded bar in an anchorage is described as a characteristic of 

the assembly. As mentioned before in preceding sections, bond stress does not depend on 

the embedment length, as it is proportional to a radical of 𝑓𝑐
′. It is relevant to highlight here, 

that amongst the factors the affect the bond, the method of testing poses an exogenous 

important factor. It influences the nature of the response and failure. Various methods and 

techniques are reported in the literature on bond, some of which are illustrated in Figure 

2.5. Out of the schemes shown, pull-out testing is one of the most widely used due to its 

ease of application. However, this methodology is known to be prone to spurious effects, 

that are considered favourable conditions of testing bond, particularly the compressive 

stresses induced at the boundary conditions associated, as shown in Figure 2.6(b).  
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Figure 2.5: Various bond test methods used in the literature as reported in Gu et 

al.(2015) (reproduced with permission). 

Several attempts have been made in the open literature to reduce the artefacts of this 

compression. The majority of these efforts were concerned with shifting the tested region 

furthest away from the pulled end, so that the magnitude of the compressive field subsides 

(RILEM/CEB/FIP 1983). Other suggested placing the bonded region in the middle of the 

specimen (Losberg 1963). With these modifications and others, pull-out testing is still a 

widely used methodology. The absence of a unified testing methodology also explains the 

scatter of published test results on bond in the literature.  
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Figure 2.6: (a) (i-ii) Machining and instrumentation for determining local bond stress; 

(b) superficial compressive field at the boundary conditions of an anchored bar; and (c-d) 

bar stress and bond stress distribution along the embedment, respectively (Gu et al. 

(2015) reprinted with permission). 

2.2.4 Bond Stresses 

Bond stress, 𝜏, can be more accurately defined as the shear stress per unit surface area of 

an embedded bar, as shown in Figure 2.7.  

 

Figure 2.7: Equilibrium of a bar in a pull-out test. 
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Let the bond stress developed be 𝜏; 𝐴: cross-sectional area of the bar; 𝜎𝑠: bar stress; and 

𝜇𝑠: perimeter of the bar. To obtain an expression for 𝜏, equilibrium of an elementary 

element is considered as shown in Eq. 2.1: 

𝐴((𝜎𝑠 + 𝑑𝜎𝑠) − 𝜎𝑠) = 𝜏 ∙ 𝜇𝑠 ∙ 𝑑𝑥 (2.1) 

Simplifying and solving for 𝜏: 

𝜏 =
𝐴

𝜇𝑠
∙
𝑑𝜎𝑠
𝑑𝑥

(2.2) 

It can be observed from Eq. 2.2 that the value of 𝜏 represents the local bond stress, which 

is defined by the relative displacement between the bar and the cementitious medium at a 

respective location of the anchorage. It is difficult to obtain an accurate quantitative value 

of 𝜏. It is also extremely difficult to verify which ribs are engaged partially or fully, and 

what contribution of the load is being resisted by each rib. Local bond stresses cannot be 

experimentally deduced unless extensive instrumentation has been placed on the bar. This 

is necessary because of the change in stress in the bar along the embedment. Maekawa et 

al. (2005) described an experiment where the bars are split longitudinally, and strain gauges 

are placed along a machined grove, as shown in Figure 2.6(a). They acknowledged the 

difficulties encountered and highlighted that this procedure was not practical. 

If an average bond stress is assumed, implying that every segment of the embedment 

contributes to load resistance, the differential term in Eq. 2.2 disappears, and the average 

bond stress 𝜏̅, is calculated as follows: 

𝜏̅ =
𝐴

𝜇𝑠
∙
𝜎𝑠
𝑙𝑡𝑟

(2.3) 

Re-arranging and substituting, Eq. 2.3 reduces to: 

𝜏̅ =
𝑇

𝜇𝑠 𝑙𝑡𝑟
(2.4) 
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Eq. 2.2 and Eq. 2.4 are both plotted in Figure 2.6(d). Three important observations can be 

made. First, the local bond stress varies along the embedment length, with non-linear 

attenuation away from the loaded end. Second, the maximum average bond stress is smaller 

than the maximum local stress. Third, for a given value of 𝑇 applied unto the bar, only a 

segment of the embedment length is engaged, over which a bond stress develops that is 

sufficient to resist the applied load.  

To help facilitate the understanding of this important concept, Figure 2.8 plots a qualitative 

hypothetical distribution of the bond stress vs slip of a deformed bar in concrete. When the 

magnitude of the pull force is small, the stress peaks near the loaded end. This peak is 

accompanied by minimal slip because of the break of adhesion, at which point, the ribs 

begin to crush the medium. In the absence of a confinement mechanism, failure can occur 

at this early stage. If such mechanisms exist, the load continues to increase, pushing the 

distribution deeper along the embedment engaging additional ribs. Consequently, the 

concrete near the loaded end incurs extensive cracking and enters a state of plastification. 

Hence, additional ribs are engaged along the reserves of the anchorage (portions along the 

embedment that were not previously engaged), which shifts the distribution deeper. These 

reserves continue to engage until they are exhausted, after which pull-out failure is eminent. 

 

Figure 2.8: Bond stress distribution with varying levels of T (Ferguson et al. (1988) 

reproduced with permission). 
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2.3 EXPERIMENTAL STUDIES 

The preceding sections described the bond of deformed bars to concrete. In the following 

sections, a review of the background studies on emulative connections will be examined 

considering the bond discussion presented above.   

2.3.1 Grouted Sleeves 

Grouted splices are often used to connect vertical reinforcing bars in emulative 

connections, as shown in Figure 2.1. ACI 318-014 Clause 25.5.7.1 requires mechanical 

coupling devices to develop at least 125% of the yielding capacity of the bar to ensure that 

ductility is attained (ACI Committee 318 2014). For this, a variety of coupling systems are 

commercially available, some of which, are extensively used in the precast industry. 

Research has shown that, except for the basic evaluation reports supplied by the 

manufacturer, the behaviour of grouted sleeves and the connections built using them 

require attention (Jansson 2008).  

 

Figure 2.9: Tapered smooth grout sleeve: (a) photo; and (b) dimensions (Aragon & 

Kurama (2015) reproduced with permission). 
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A summary of the recent research efforts carried out on grouted sleeve connections is 

provided in Table 2.1. These efforts primarily consist of non-proprietary splice sleeve 

proposed by authors, and emulative connections utilizing these sleeves. Grouted sleeves 

generate high confinement stresses, thus allowing large bond stresses to develop. In most 

cases, 6 to 8 db of embedment will usually suffice to mobilize the capacity of the bars 

connected. Most sleeves reported were in the form of a thick-walled steel pipe, with 

modifications to enhance the bond internally. For example: tapered pipe diameter and 

welded bars (Ling et al. 2012); steel rings, steel spirals (Hosseini et al. 2015); internal 

threading (Henin & Morcous 2015); bolts (Sayadi et al. 2014); or a combinations thereof  

have been used (Ling et al. 2014). Despite their favourable performance, grouted splices 

require extensive machining and fabrication. They also offer poor construction tolerances, 

which explains why most precast fabricators prefer not to use them. The grouted sleeve 

proposed by Aragon & Kurama (2016) presents the most recent effort in the field. Their 

splice sleeve (Figure 2.9), offers the same qualities as discussed above, but provides 

construction tolerances similar to those offered by duct connections.  
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Table 2.1: Synopsis of studies on grouted sleeve. 

Authors 

Specimen 

Main Findings Specimen 

Description  

Specimen 

Tag 

Grout 

Strength 

(MPa) 

Bar 

Dia. 

(mm) 

Ld 

(mm) 

Sleeve 

Dia 

(mm) 

Peak 

Load 

(kN) 

Failure Types 

(Einea, 
Yamane, 

and 

Tadros 
1995) 

Grouted 

sleeve with 
a spliced 

reinforced 

bar under 
direct 

tension. 

Type 1-1 

44 - 68 

29 

254 

76.2 

364 

Bond Failure 

Strength of the bar using a simple 

steel tubing.  

Increasing compressive strength and 
confinement pressure provided 

shorter development lengths. More 

tests on various grout strength and 
other sleeve geometries are 

necessary. Cyclic and fatigue 

loading investigations are necessary 
to further understand the 

performance of the connection.  

Specimens that were spliced using 
in-line splices were the most 

suitable from a construction 

tolerance perspective.  

Type 1-2 203 341 

Type 1-3 152 294 

Type 2-1 

19 

203 

50.8 

181 

Type 2-3 152 119 

Type 3-2 152 113 

Type 3-3 127 105 

Type 3-5 152 199 Bar Fracture 

Type 3-6 127 147 

Bond Failure 
Type 4-1 

16-19 

127 

38.1 

133 

Type 4-2 152 198 

(Henin 
and 

Morcous 

2015) 

Grouted 

sleeves with 

a spliced 
reinforced 

bar using a 

non-
proprietary 

sleeve. 

8T16 

67.5 

25 

406 

76.2 

383 Pull out 

The spliced connections achieved 
strength equivalent to 100% of the 

ultimate tensile strength of the bar 

within a development length of 16-
in. This was attributed to an 

increase in confinement offered by 

the sleeve. 

8P16 406 384 Bar Pullout 

8T18 457 385 
Rupture 

8T20 508 378 

9T16 

29 

406 403 
Bar Pullout 

9P16 406 444 

9T20 508 458 
Rupture 

9P20 508 431 

(Hosseini 

et al. 

2015) 

Pullout and 

beam 

specimens 
consisting 

of a bar 

splice 
inside a 

spiral 
sleeve.  

S1-A 

62 16 160 

25 
24 Grout Failure 

The bond strength increased by 

34% when the spiral diameter 
decreased from 45 to 15 mm. The 

confinement effect of the spiral 

(sleeve) played an important role in 
reducing the length required to 

develop the bars.  

S3-A 70 

Bar Pull-out 

P15 D25-A 25 70 

P15 D35-A 35 60 

P15 D45-A 45 52 

P25 D35-A 35 59 

P25 D45-A 45 50 

P35 D25-A 25 66 

P35 D35-A 35 58 

P35 D45-A 45 49 

(Ling et 

al. 2012)  

Spliced 
sleeve 

specimen 

tested under 
incremental 

tensile 

loads. 

AS-01 

58 

16 

150 

43-65 

133 Bar Fracture 
A variety of spliced sleeve 

connectors were tested to determine 

the feasibility of their use to replace 

mechanical couplers. The tensile 
capacity of the sleeve, bar-grout 

bond, and the sleeve-concrete bond 

were detrimental factors on the 
performance of the connection. The 

authors recommended testing the 

connection under cyclic loading. 

AS-02 300 12 
Sleeve 

Fracture 

BS-01 
63 150 

136 
Bar Fracture 

BS-03 119 

CS-01 

43 

100 87 

Bond Failure CS-02 50 98 

CS-03 150 80 

DS-01 
49 150 

129 Bar Fracture 

DS-03 123 Bar Fracture 

(Ling, 

Ahmad, 

and 
Ibrahim 

2014) 

Spliced 
sleeve 

specimen 

tested under 
incremental 

tensile 

loads. 

WBS-1 

50 16 

75 
50 86 

Bar Slip The tensile capacity of the sleeve 

played a vital role in the ultimate 

tensile capacity of the splice 
connecter. This is because it bridges 

the gap that exists between the two 

in-line spliced bars. Sleeves with 
mechanisms that engage more 

mechanical interlock in the concrete 

generate superior bond capacities.  
Analytical and experimental results 

are in agreement.   

WBS-3 75 75 

WBS-4 
125 

50 132 Bar Fracture 

WBS-6 75 126 Bar Slip 

WBS-7 
175 

50 134 
Bar Fracture 

WBS-9 75 133 

THS-1 
75 

50 112 
Bar Slip 

THS-3 75 96 

THS-4 
125 

50 137 
Bar Fracture 

THS-6 75 135 
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2.3.2 Grouted Connections Under Monotonic Loads 

As highlighted earlier, grouted connections offer favourable advantages, including weld 

elimination and forgiving erection tolerances. The use of these connections is not 

customarily restricted to precast wall construction, but is rather used to connect a variety 

of precast elements including columns, walls, beam-column connections, and bridge bent 

caps. Despite their increased use, research has shown that sparse information is currently 

available on the bond of such connections. Additionally, a reliable equation to accurately 

predict the required development length is yet to be developed. The following is a summary 

of the major research findings in the literature. For additional information, the reader is 

referred to Chapters 3 and 4, Sections 3.1 and 4.1, respectively.  

Amongst the earliest observations made on grouted connections were those presented by 

Crisafulli et al. (2002), where the performance of lightly reinforced precast concrete wall 

panels for use in areas of high seismicity has been examined. The walls were connected 

using two 16 mm diameter dowels with embedment lengths equal to 43 db grouted into 

50.8 mm diameter corrugated ducts. Despite the satisfactory performance of the 

connection, the embedment length (43 db) was likely overdesigned. This observation was 

based on strain measurements taken along the connecting bar, which found peak strains 

developed at the connection and decreased nearly linearly over 20 db once the yield strength 

was reached (Crisafulli et al. 2002). 

Raynor et al. (2002) were among the earliest studies focusing specifically on the bond of 

grouted connections. They examined the use of these connections in precast framing 

systems, what later came to be known as hybrid frames. These frames use a combination 

of post-tensioning and mild steel to achieve superior ductility. Beam-columns of such 

frames are typically connected using grouted connections, where a certain length of the bar 

is de-bonded to reduce strains and prevent low cycle fatigue. The bars had short embedment 

lengths and were tested using monotonic and cyclic loading. Exceptionally high bond 

stresses were observed and were attributed to the confinement effect of the duct. 
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Most of the remaining studies on grouted connections revolve around the use in precast 

segmental construction, specifically bridge bent cap systems. For instance, Brenes et al. 

(2006) undertook a comprehensive study to explore the influence of changing the 

corrugated duct materials on the behaviour of grouted connections used in bridge cap 

systems. The main test parameters investigated were the bar coating, duct material, 

transverse reinforcement, bar eccentricity and number of connections. It was observed that 

the behaviour of grouted connections was largely dependent on the stiffness of the duct 

material and its ability to accommodate lateral strains. 

Steuck et al. (2009) conducted pull-out tests on large diameter bars grouted in vertical ducts 

to be used in a bridge bent cap system. A total of 14 pull-out tests were conducted on bars 

with varying sizes and embedment lengths, with or without the addition of polypropylene 

fibre reinforcement. Embedment lengths 3 times smaller than that recommended by the 

ACI 318-05 were sufficient to mobilize the tensile capacity of the bar. This was ascribed 

to the additional passive confinement provided by the duct. However, the test setup was 

done to replicate a bridge bent cap system, using a much larger concrete block than a wall 

connection would require. This extra concrete contributes greater confinement. 

Additionally, this research focused on large diameter bars (db = 32 mm, 43 mm, and 57 

mm) with a larger duct/bar ratio (3.6). Typical wall panel connections use 25 mm diameter 

bars with a duct/bar ratio of 3.0.  

Mandawe et al. (2002) and Matsumoto et al. (2008) investigated the performance of precast 

bridge bent caps equipped with grouted vertical duct connectors. Their study examined the 

cyclic behaviour of epoxy-coated 28.5 mm bars embedded in galvanized steel ducts. It was 

concluded that bars embedded 10 db failed by yielding of the bar before pull-out, while 

specimens embedded 16 db failed by bar fracture. 

Based on the conclusions made from the survey of studies available, there is consensus on 

the differentiation between the bond failure of deformed bars grouted in corrugated ducts 

and that of deformed bars in concrete. Most pertinent studies dealt with the use of grouted 

connections in precast bent cap systems where the specimens’ dimensions were different, 

which influences the bond behaviour. Additionally, these studies reported empirical 
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models to predict the behaviour of such connections based on experimental testing 

(Matsumoto et al. 2008; Einea et al. 1999; Steuck et al. 2009; Brenes et al. 2006). 

Considering the sensitivity of bond to various influential factors, the results of these studies 

cannot be extrapolated to the behaviour of grouted connections used in precast walls. In 

view of the sparsity of information available on the behaviour of grouted connections used 

in precast walls, a dedicated experimental methodology is yet to be conducted to explore 

the behaviour of the connections in precast walls. 

2.3.3 Grouted Connections Under Cyclic Loads 

Very limited information is available on the cyclic behaviour of grouted connections. This 

sparsity was highlighted in the ACI Committee 408.2R and is reflected in the mere fact 

that only one study was found in the open literature addressing this topic directly. The 

investigation conducted by Raynor et al. (2002) studied grouted connections typically used 

in hybrid precast frames (small cover/diameter ratio). The specimens were subjected to 

constant amplitude and variable displacement histories. The bars had short embedment and 

the specimens were sufficiently confined. A comparison between the response of the 

connections under monotonic and cyclic loading is presented in Figure 2.10. Their 

experimental results indicate that bond stresses due to cyclic loads are 10 to 70% less than 

those from monotonic loading, depending on the level of slip. However, the reported data 

in this study were mostly qualitative and lacked experimental evidence on the real failure 

mechanisms. 

Other studies reported on precast walls briefly reported on behavioural aspects of these 

connections. For example, Seifi et al. (2015) tested under cyclic loading, precast walls 

having grouted connections that use 16 mm bar and a grouted length of 37.5 db. The panels 

did not suffer premature failure and displayed favourable ductile behaviour characterized 

by panel sliding via yielding and elongation of the connection reinforcement. Other studies 

acknowledged the ductility and favourable energy dissipation of grouted connections. 

However, large embedment lengths were used in such studies and no information 

pertaining to the bond of the connections was reported.  
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Figure 2.10: Comparison between the bond-slip response of grouted connections under 

monotonic and cyclic loads after Raynor et al. (2002) (reprinted with permission). 

Kang et al. (2013) explored the behaviour of precast concrete wall panels subjected to 

cyclic lateral loading to evaluate the energy dissipation and ductility of emulative precast 

walls. They examined the concept of a weaker dowel connection through partial reduction 

of the bar cross-sectional area, which would result in greater ductility. This is because the 

weaker connection pushes the plastic hinge formation away from the horizontal joint 

between the panel and the base, thus resulting in avoidance of local failures anticipated at 

the joints in the form of shear slip and gap opening. Results revealed that, although the 

specimen with a reduced rebar connection sustained 30% lower load than that of its non-

reduced counterparts, improvements in energy dissipation capabilities and ductility were 

observed. 

Balleri & Riva (2012) investigated the cyclic behaviour and post-seismic repair of columns 

connected to foundations using grouted connections. Six specimens were considered in the 

study. Five specimens had different connection configurations with similar bending 

moment capacities. One specimen was retrofitted and retested. Specimens were tested 

under constant 600 kN compressive load and cyclic lateral load was applied atop the 

column, increasing the drift from 0.25 to 5%. Results indicated the suitability of using 
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grouted duct connections where large seismic demand is anticipated. The increased 

ductility of the duct connection was attributed to the confining effect of the duct on the 

grout, which was transferred to the reinforcing bar.  

Similar observations were also reported by Popa et al. (2015) when they compared grouted 

connections to cast-in-place concrete. They noted that the cast-in-place specimen 

dissipated more energy, yet had more severe damage than that of the precast specimen. It 

was concluded that the grouted connection was sufficient for use in column-foundation 

connections subjected to high seismicity. However, in both preceding studies, the 

connection length was designed as a reinforcing bar in concrete, likely overestimating the 

required embedment length.  

Considering the lack of data pertaining to the cyclic behaviour of grouted connections, 

further testing and experimental evidence is yet to be conducted and presented to address 

these knowledge gaps. 

2.3.4 Bond-Slip Modelling of Grouted Connections 

Most available bond slip models are based on phenomenological observations rather than 

analytical or mechanistic approaches. A closed form solution to Eq. 2.2 is difficult, but 

may be possible under limited contexts. Considering the compatibility of the longitudinal 

slip-bar strain; and longitudinal slip-radial translation, under various strain and slip 

domains quickly complicates the problem. As mentioned earlier, it is extremely difficult to 

know the contribution of lugs to the load capacity. It is also not feasible to deduce such a 

relationship when the bond and bar enter a state of plastification. Several attempts have 

been made to approach this problem analytically, for example, Tepfers (1973). 

Amongst most recent analytical efforts in this pursuit is the work of Tastani & 

Pantazopoulou (2013), where the governing differential equations were solved separately 

for the concrete cover and the bar. They were later coupled using kinematic conditions 

derived from experimental observations from earlier studies (Tastani & Pantazopoulou 

2010). While the model was found to be in good agreement when compared with bond 
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experiments by the same authors utilizing the same form, no corroboration was undertaken 

with external studies, which makes the applicability of such model questionable.  

Results of such calibrated analytical expressions, when used to correlate results from the 

international database of bond tests, produces significant scatter. Several plausible 

explanations can explain this. First, the local bond slip law required to calibrate these 

analytical expressions is not reported in most studies. Researchers on bond often report 

average bond stresses for the reasons discussed above. Second, bond is never measured 

directly. It is only observed through the complex response of a tested specimen, whereby 

the superficial stresses often obscure the mechanics of bond.  

Considering this, phenomenological models based on results from specimens utilizing 

good form (specimen form reducing or eliminating boundary effects) usually perform 

better in corroborative efforts. The monotonic bond-slip law presented by Eligehausen et 

al. (1982) is shown in Figure 2.11. Commonly known as the BPE model, this forms the 

basis of most bond-slip laws proposed by other researchers in most recent studies, with 

some modifications. This bond slip law was also adopted by the European Model Code 

(CEB-FIP 2010). A detailed discussion of model equations and their highlights is presented 

in Chapter 6. 

 

Figure 2.11: Bond-slip law after Eligehausen et al. (1982) 
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A summary of the bond modelling efforts of grouted connections is graphically illustrated 

in Figure 2.12. The first efforts made to model grouted connections were presented by 

Raynor (2000) and Raynor et al. (2002). This was achieved by fitting a large set of 

experimental data obtained from testing grouted connections in hybrid frames. The bond-

stresses recorded were exceptionally high. This was due to the grout characteristics and the 

unusually low duct-bar ratio. Steuck et al. (2009) also deduced a similar model for grouted 

connections to be used in bridge cap segmental construction. The bars used were No.10 – 

18. The duct-bar ratio was unusually large is customarily in bridge cap construction. The 

effect of the specimen form and method of testing on the bond-slip models is evident from 

comparison of the models. One of the objectives of this work is to arrive at a 

phenomenological model reflective of the behaviour of grouted connections in precast 

walls. The calibrated law would then be used in a Finite Element (FE) platform to model 

grouted connections. Discussion of the model derivations and constitutive relationship 

along with the FE model are presented in Chapter 6. 

 

Figure 2.12: Comparison of bond-slip models of grouted connections (Steuck et al. 

2009). 
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2.4 CODES AND STANDARDS 

The PCI Design Handbook provides governing design and construction specifications of 

grout-filled metallic conduit connections (PCI 2010). It specifies a minimum concrete 

cover of 76.2 mm; a minimum duct thickness of 0.6 mm; 9.5 mm of minimum clearance 

around the bar; and a grout compressive strength of no less than 35 MPa. Typically, a large 

diameter bar (20-30 mm) is used in a grout-filled bar connection depending on the size of 

the wall and its lateral loads. The length of connection is governed by the development 

length in tension as per clauses of the ACI-318-14. The minimum specified development 

length of a 25 mm bar is 1067 mm for 35 MPa concrete (ACI Committee 318 2014; PCI 

2010). The minimum embedment length of any bar should not be less than 305 mm.    

Before presenting common expressions used to design grouted connections, it is prudent 

to highlight the basis of such expressions. Starting from Eq. 2.3, and substituting 𝐴 =
𝜋

4
𝑑𝑏

2
 

and 𝜇𝑠 = 𝜋𝑑𝑏, we arrive at Eq. 2.5: 

𝜏̅ =
𝑑𝑏
4
∙
𝜎𝑠
𝑙𝑡𝑟

(2.5) 

Re-arraning and solving for the bar stress results in Eq. 2.6: 

𝜎𝑠 = 4 ∙ 𝜏̅  
𝑙𝑡𝑟
𝑑𝑏

(2.6) 

and: 

𝑙𝑡𝑟 = 
𝜎𝑠
4 ∙ 𝜏̅

𝑑𝑏 (2.7) 

Eq. 2.7 forms the basis for code development length design equations with some 

adaptations to account for a variety of influential factors.  

The ACI 318-14 and the Association of State Highway and Transportation Officials 

(AASHTO 2017) provide equations to calculate the development length required to 

mobilize and fully develop a bar. The ACI equation is given by Eq. 2.8 expressed as 

follows: 
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𝐿𝑑 = (
3

40

𝑓𝑦

√𝑓𝑐
′

𝜓𝑙𝜓𝑒𝜓𝑠𝜆

(
𝑐𝑏 + 𝑘𝑡𝑟
𝑑𝑏

)
)𝑑𝑏 (2.8) 

Where: 𝐿𝑑 = tension development length in in.; 𝑓𝑦 = specified yield strength of the bar 

psi; 𝜓𝑙 = reinforcement location factor; 𝜓𝑒 = reinforcement coating factor; 𝜓𝑠 = 

reinforcement size factor; 𝜆 = lightweight aggregate factor; 𝑐𝑏 = cover dimension 

measured from center of the bar;  and 𝑘𝑡𝑟 = transverse reinforcement index. 

Eq. 2.8 is based on the work of Orangun et al. (1975) and relies on the assumption that the 

bond strength is proportional to √𝑓𝑐
′
. It also includes an embedded steel stress factor of 

1.25 to satisfy ductility requirements; a strength reduction factor, 𝜙 equal to 0.9 to give 

consideration for deviations in material properties. An upper theshold limit of 2.5 is placed 

on the term (
𝑐𝑏+𝑘𝑡𝑟

𝑑𝑏
) and a more conservative value of 1 is encouraged. This limitation on 

the confinement factor is to safeguard against pullout type failures. 

AASHTO provides three equations depending on the diameter of the bar. For a No. 8 bar, 

Eq. 2.9 can be used:  

𝐿𝑑 =
1.25𝐴𝑓𝑦

√𝑓𝑐
′

(2.9) 

Eq. 2.9 is adopted with minor modifications from ACI 318-71. The differences between 

the two terms are due to a unit conversion factor from psi to ksi, and some minor rounding 

of the coefficients. 
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Chapter 3  

3 EXPLORATORY INVESTIGATION OF GROUTED 

CONNECTIONS UNDER DIRECT TENSILE LOAD 

 

 

3.1 INTRODUCTION  

Grouted reinforcing bar connections (or simply grouted connections) are versatile ties 

widely used in precast construction to resist tensile loads. The connection is attractive due 

to its simple application, forgiving tolerance, and weld elimination. It is generally 

comprised of a large diameter reinforcing bar (usually 25 mm or greater) projected from 

one panel and grouted into a metallic duct placed in the other, as shown in Figure 3.1. 

Despite their increased use in precast wall construction, a limited number of studies have 

been devoted to study the behaviour of such connections.  

 

Figure 3.1: Grouted connection and its use in precast walls. 

The use of grouted connections in precast wall buildings generally satisfies one of two 

requirements: (i) structural integrity (Section 16.2.5 in the ACI 318-14), which prevents 

progressive collapse (ACI Committee 318 2014); and (ii) as a ductile device used to yield 
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when subjected to large in-plane deformations. Currently, the grouted length of the 

connections is determined per the provisions of ACI 25.4.2.3 based on the minimum 

development length in tension. The minimum specified development length of a No. 8 bar 

is 1067 mm for a 28 MPa concrete and the minimum embedment length of any bar should 

not be less than 305 mm (ACI Committee 318 2014; PCI 2010). This usually results in 

excessive grouting lengths and introduces a plane of reduced stiffness at the interface 

between the connection and the wall (Seifi et al. 2015). A recent study by the present 

authors emphasized the differences between grouted connections and the current code 

treatment (Elsayed & Nehdi 2017). 

Raynor et al. (2002) investigated the behaviour of grouted connections used in hybrid 

frames using short bar embedment lengths under monotonic and cyclic pull-out loads. They 

concluded that bars embedded in corrugated ducts behave differently from their non-ducted 

counterparts, primarily due to the confinement effect of the duct. Steuck et al. (2009) 

performed pull-out tests on grouted connections used in bridge bent cap structures, where 

a large diameter bar (No. 10, 14, and 18) is customarily used. The corrugated duct 

generated confinement sufficient to suppress splitting failures of the concrete. Similar 

studies on bridge bent cap structures were conducted by Brenes et al. (2006) and  

Matsumoto et al. (2008) who explored various configurations of the connection and 

reached similar conclusions. Belleri & Riva (2012) showed that grouted connections used 

in column-footing assemblies have favourable ductility compared to that of monolithic 

assemblies, attributing this to the additional confinement effect of the duct. Although there 

is agreement among the limited number of studies on the additional confinement imparted 

by the corrugated duct, quantitative supporting evidence has often not been provided. 

Most of the published literature on grouted connections pertains to its use in bridge bent 

cap structures. Bond is not measured directly and is known to be sensitive to several 

influential factors such as the cover-to-bar ratio, testing configuration, material properties, 

and confinement. Hence, the relevant sparse experimental results and associated models 

cannot be directly extrapolated to the specific case of grouted connections used in precast 

walls. Accordingly, the present study is a dedicated experimental methodology to address 

these knowledge gaps. The specific objectives of this paper are: i) provide quantitative and 
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qualitative experimental evidence on the behaviour of grouted connections in precast walls; 

ii) examine the behaviour of grouted connections equipped with Fibre Reinforced Polymer 

(FRP) bars that can be used in non-seismic application; and iii) develop and calibrate 

suitable analytical treatments to explain the behaviour of these connections. 

3.2 EXPERIMENTAL PROGRAM 

In the present study, 22 full-scale pull-out tests were carried out to investigate the behaviour 

of grouted connections. The main test parameters are shown in Table 3.1, were:  

Table 3.1: Matrix of tested parameters 

  

Parameters 

Embedment Length (1) Duct 

6 8 10 12 D ND 

B
a

r 
T

y
p

e
 

Grade 60 x x x x x x 

Grade 100 x    x  x   

BFRP x    x  x   

GFRP x    x  x   
(1) D and ND refer to ducted and non-ducted, respectively 

 

• Embedment length: anchored lengths of 6, 8, 10 and 12 db (where db is bar 

diameter) were chosen to explore the bond over short and medium anchorages.  

• Bar type:  the bars tested included Grade 60 and Grade 100 rebar, Glass FRP, and 

Basalt FRP. Bars were selected to examine the bond behaviour of grouted 

connections under different bar strain domains and the associated effect on the bond 

(e.g. Grade 60 (plastic bar strain); Grade 100 (elastic bar strain); FRP (elastic bar 

strain)). Exploring the effects of different strain levels and surface treatments of 

bars responds to specific construction needs. For example, ductile bars were studied 

for use in panels subjected to large tensile and ductility demands. FRP bars were 

considered in light panels to satisfy structural integrity requirements.  

• Duct: both ducted and non-ducted specimens were considered to investigate the 

role of the corrugated duct. Specimen details, materials properties and test 

methodology are presented below. 
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3.2.1 Materials Properties 

Table 3.2: Concrete mixture proportions 

Materials Per 1 m3 

CSA Type 30 Cement 435 kg 

Sand 842 kg 

14 mm aggregate (round) 842 kg 

Water 200 Litres 

Air 5% 

Air Entrainment/Lubricant 20 ml/100 kg cement 

High Range Water Reducer 630 ml/100 kg cement 

Total 2,322 kg 

Self-consolidating concrete having average 28-d compressive (ASTM C39 2016) and 

splitting tensile strengths (ASTM C496/C496M 2011) of 50.6 MPa and 4.9 MPa, 

respectively was used to pour the specimens. Its mixture proportions are shown in Table 

3.2. A high-strength non-shrink grout with an average 28-d compressive strength of 39.3 

MPa and tensile strength of 6 MPa was used. Mechanical properties of the concrete and 

grout are summarized in Table 3.3. The mechanical properties of the various bars measured 

per ASTM guidelines (ASTM 370 2014) are reported in Table 3.4. The dowel bars used 

included Grade 60 and Grade 100 rebar along with GFRP and BFRP bars (Figure 3.2). 

Bars were sourced from a single production from one supplier. Ductile Grade 60 and 100 

rebars had ribs, which were 5.1 mm and 4.5 mm, respectively. The relative rib area for both 

bars was equal to (0.15). Elastic BFRP was of a generic type and pultruded using an epoxy 

resin. BFRP bars had uniform spiral indentations of 2.6 mm spaced at 10.5 mm. GFRP was 

sourced from Pultrall (V-rod Type). According to the manufacturer’s specifications, GFRP 

bars were pultruded using a Vinyl ester resin. The bars had a uniform sand coating along 

its length. Detailed mechanical properties of the bars are given in Table 3.4. 
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Table 3.3: Mechanical properties of concrete and grout 

Material Age Compressive Strength (MPa) Tensile Strength (MPa) Young's Modulus (MPa) Poisson's Ratio 

Concrete 
7 43.1 4.2 26,075 0.255 

Testing Day 50.6 4.9 26,036 0.234 

Grout 
7 38.4 4.5 20,712 0.229 

Testing Day 39.3 6.3 22,713 0.235 

Table 3.4: Mechanical properties of bars 

Bar 

Type 

Diameter 

(mm) 

Yield Stress 

(MPa) 

Tensile Strength 

(MPa) 

Strain at Failure 

(%) 

Nominal 
Measured Rib 

height 
Nominal Measured Nominal Measured Nominal Measured 

With ribs Without ribs 

Steel 25.40 26.24 23.17 1.535  400 421 602.0 598.0 21.0 24.4 

GFRP 26.99 30.52 - - - 1,264.0 1,063.1 2.0 2.1 

BFRP 25.00 24.72 0.71 - - 613.0 757.0 3.1 1.7 

X100 25.40 27.57 24.27 1.650 690 800 1,158.0 1,220.7 10.0 18.7 
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Figure 3.2: Bar types 

3.2.2 Test Specimens 

Grouted specimens used in this study are based on actual connections of a typical precast 

bearing wall (10 ft x 10 ft x 8 in). They mimic actual loading, dimensions, materials and 

curing conditions encountered in the field.  A depiction of a test specimen is shown in 

Figure 3.3. A non-reinforced rectangular concrete prism with a cross-section of 203.2 mm 

x 203.2 mm was used to represent the portion of a wall with a grouted connection. The 

concrete prisms were intentionally non-reinforced (as opposed to mesh reinforcements 

found in typical precast walls) to capture a conservative view of their bond behaviour. A 

76.2 mm, 30-gauge thick corrugated duct was placed concentrically in the specimen. After 

concentric placement of the bars inside the duct, the specimens were grouted (in the vertical 

direction) with a non-shrink high-strength grout, which was mixed at low speed for 10 

minutes then at high speed for 5 minutes, adding water until a flowing consistency was 

achieved (3.75 L/25 kg). The top and bottom segments of the bar were de-bonded using a 

Grade 60 

Grade 100 

BFRP 

GFRP 
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2 mm (14 gauge) thick polystyrene wrap. Both the concrete and the grout were individually 

left to cure after casting. All specimens were cured for 28-d before and after grouting at a 

temperature of 23°C and relative humidity of 60%. To prevent premature crushing of the 

FRP in the grips, hollow steel tubing with an inside diameter of 50.8 mm was grouted along 

203.2 mm of the bar. Grouting of the steel tubing was performed using high-strength non-

shrink grout cured for 20 days.  

406 mm (16 in)

610 mm

(24 in)(6, 8, 10 or 12 db)25.4 mm

(1 in)

 

Figure 3.3: Dimensions of test specimens 

3.2.3 Test Setup and Procedure 

The experimental test setup is exhibited in  

Figure 3.4Figure 3.4. To verify repeatability of results, two identical specimens were 

tested for each set of parameters. After curing, specimens were placed atop the active 

pulling end of an open-loop Tinius Olsen testing machine with a maximum capacity of 530 

kN. The strains in the bar were measured by a strange gauge placed amid the distance 

between the heads of the testing machine. The slip of the bar at the loaded and unloaded 

ends was measured using two strain-based linear variable displacement transducers 

(LVDT). The reading of the LVDT at the loaded end was corrected by subtracting the 

elongation of the bar along the length L as shown in Figure 3.4. Rebar pull-out tests in 

concrete have long been a simple and economical methodology to compare the bond of 

anchored bars (Steuck et al. 2009; Raynor et al. 2002; Matsumoto et al. 2008; Achillides 
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& Pilakoutas 2004), yet it is still a subject of contention among investigators, primarily 

because of the induced compression at the boundary conditions of the specimen. This 

imposes additional confinement, which artificially enhances the bond. Such induced 

compression was mitigated in the present study by de-bonding the bars near the loaded end 

of the specimen, which reduced the intensity of the compressive field on the anchored 

region. Additionally, a 215.9 mm x 215.9 mm x 25.4 mm hollow steel cradle with a 152.4 

mm x 152.4 mm opening was used, which limited the contact area to 25.4 mm along the 

perimeter of the specimen (5 db away from the centre-line of the bar). Darwin & Zavaregh 

(1996) performed pull-out tests with the edge of the bearing plate 4.5 and 12 db from the 

centre of the test bar and found no significant difference in confinement. For this reason, 

the hollow steel cradle was thought to be sufficient in mitigating the artefacts of the end 

conditions.  

LVDT

8.5"x8.5"x2.5" Steel Bearing Plate

Corrugated Steel Conduit

Non Shrink High Strength Grout

Concrete

Grips

De-bonded Regions

LVDT

Moving Head
L

 

Figure 3.4: Test setup 

The bar was extended to the lower plate and gripped by two steel jaws over a length of 

165.1 mm. The tensile load was applied monotonically at a rate of 60 MPa/min. A data 
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acquisition system recorded the test readings at a rate of 10 readings per second. Specimens 

were labelled as follows: the first two characters represent the type of grout used (NS for 

non-shrink), followed by a numeral that represents the embedment length (6, 10, and 12 

db), followed by a letter indicating the bar type (B for basalt, D for deformed, G for glass, 

and X for high strength steel), followed by a number representing the specimen designation 

in its group (1 and 2). To differentiate non-ducted specimens, they were designated by ND. 

For example, NS-12-D2 refers to a deformed bar specimen with an embedment length 

equal to 12 times the bar diameter.  

3.3 EXPERIMENTAL RESULTS  

The test was stopped when a pull-out failure (defined as rigid body displacement of the bar 

equal to the spacing between two successive ribs) or bar fracture was observed. The bar 

stress, fmax, was calculated based on the nominal area. Two specimens were tested for each 

set of parameters to verify repeatability of the results. The average of the two measured 

responses was used for analysis purposes unless otherwise mentioned. The assumption of 

uniform bond stress along the length of an embedded bar is not accurate, specifically when 

the embedment is longer than (3-7 db) (Tastani & Pantazopoulou 2013). The distribution 

of bond stresses along the embedded length peaks close to the loaded end of the bar and 

attenuates non-linearly towards the passive end. The exact distribution of the bond stresses 

along the embedded length of a bar cannot be determined without extensive 

instrumentation. For this reason, several researchers often find it practical to resort to this 

simplification (Steuck et al. 2009; Einea et al. 1995; Ganesan et al. 2014; Ashtiani et al. 

2013; Tastani & Pantazopoulou 2010; El Refai et al. 2015; El-Hacha et al. 2006; Marchand 

et al. 2015). It is also relevant to highlight that this assumption is supported by ACI 

Committee 408R-03 which states “…it is both convenient and realistic for design purposes 

to treat bond forces as if they were uniform over the anchored, developed, or spliced length 

of the reinforcement.” (ACI Committee 408 2003). It should be noted that the assumption 

of uniform bond stress is just used in this study to provide a basis for comparison between 

the different specimens, and does not imply, by any means that such a distribution is 

realistic.  Accordingly, the average bond stress U is calculated as the force along the 

embedded length per unit surface area of the bar as follows (Eq. 3.1),  
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𝑈 =  
𝐹

𝜋 𝑑 𝐿𝑑
(3.1) 

where F = tensile load; d = nominal bar diameter; and Ld = bar embedment length: 

3.3.1 Failure Modes 

The experimental results are reported in Table 3.5. Typical failure of representative 

specimens is portrayed in Figure 3.5. At the end of each test, grouted specimens were split 

to visually assess the conditions of the bar and the surrounding concrete. The profiles of 

representative failed bars are further shown in Figure 3.6. Ducted specimens equipped with 

Grade 60 rebar embedded at 6, 8 and 10db failed in a pull-through mode by crushing of the 

grout keys between successive ribs (Figure 3.6). Grade 100 bars anchored at 6db and 12db 

showed a similar response. Grade 60 bars embedded at 12db failed by bar fracture. 

Specimens grouted with ductile bars did not suffer splitting failures at any loading stage. 

The concrete block did not exhibit cracking during the test, except for NS-12-X1 and X2, 

where some hairline cracking was observed on the exterior of the concrete prism. These 

cracks did not appear to influence the overall behaviour since they initiated when the 

specimen approached the 400 kN mark. At this load level, it is likely for specimens to 

experience some cracking in the absence of transverse reinforcement.  
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Figure 3.5: [Top Left] Splitting failures in ductless Grade 60 at 12 db (NS-12-D1-ND); 

[Top Right] Splitting cracks between duct and concrete block (NS-12-G1); [Bottom Left] 

Duct pull-out (NS-12-G2); [Bottom Right] Failed cones between duct ribs (NS-12-G2). 
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Table 3.5: Test results 

(1) Specimen Tag Failure Type 
Uav max 

(MPa) 

Fmax  

(kN) 

fmax 

(MPa) 

εmax 

 

SFmaxU 

(mm) 

SLmaxU 

(mm) 

εmaxU 

 

Ures 

(MPa) 

Umax BPE 

(MPa) 
α P 

'NS-6-D1' 'Pull-out' 22.38 272.12 537.03 0.102 0.89 3.69 0.098 21.97 22.16 0.15 0.05 

'NS-6-D2' 'Pull-out' 21.73 264.31 521.61 0.086 0.94 2.94 0.078 20.00 21.70 0.11 0.05 

'NS-8-D1' 'Pull-out' 17.64 286.10 564.63 0.170 0.66 6.03 0.160 15.65 17.50 0.14 0.06 

'NS-8-D2' 'Pull-out' 17.75 287.76 567.89 0.159 0.66 1.90 0.153 15.84 17.69 0.13 0.08 

'NS-10-D1' 'Pull-out' 14.08 285.30 563.05 0.177 0.56 6.15 0.163 13.71 13.76 0.15 0.08 

'NS-10-D2' 'Pull-out' 14.47 293.38 578.98 0.192 0.73 6.93 0.183 13.66 14.43 0.07 0.07 

'NS-12-D1' 'Bar Fracture' 12.18 296.31 584.78 0.277 0.06 8.39 0.220 12.18 - - - 

'NS-12-D2' 'Bar Fracture' 12.20 296.64 585.42 0.267 0.06 7.73 0.202 12.20 - - - 

'NS-12-D1-ND' 'Grout Splitting' 10.60 257.70 508.58 0.064 0.42 2.33 0.061 - 10.58 0.21 0.39 

'NS-12-D2-ND' 'Grout Splitting' 09.46 230.20 454.31 0.040 0.63 1.51 0.040 - 9.46 0.26 0.71 

'NS-6-G1' 'Pull-out' 17.98 232.30 406.03 0.007 0.24 3.40 0.007 3.98 17.59 0.29 0.02 

'NS-6-G2' 'Pull-out' 18.92 244.52 427.39 0.007 0.41 3.48 0.007 7.74 18.77 0.14 0.05 

'NS-12-G1' 'Pull-out' 13.41 346.50 605.63 0.009 0.24 3.87 0.009 3.87 13.34 0.21 0.01 

'NS-12-G2' 'Duct pull-out' 13.59 351.10 613.67 0.009 0.49 2.98 0.009 5.42 13.55 0.23 0.04 

'NS-6-B1' 'Pull-out' 16.57 198.30 403.97 0.006 3.49 2.85 0.006 15.56 16.51 0.10 0.07 

'NS-6-B2' 'Pull-out' 14.19 169.90 346.12 0.007 0.80 2.84 0.006 13.37 13.68 0.09 0.12 

'NS-12-B1' 'Pull-out' 10.74 257.00 523.56 0.010 0.78 4.35 0.010 4.10 10.50 0.06 0.06 

'NS-12-B2' 'Pull-out' 10.89 260.68 531.04 0.011 3.35 3.01 0.010 8.07 10.80 0.04 0.13 

'NS-6-X1' 'Pull-out' 21.21 257.90 508.97 0.033 0.64 0.82 0.022 18.07 19.50 0.27 0.04 

'NS-6-X2' 'Pull-out' 23.14 281.40 555.35 0.030 0.58 0.72 0.019 19.77 21.03 0.34 0.06 

'NS-12-X1' 'Pull-out' 17.27 420.10 829.08 0.046 0.30 1.26 0.033 15.18 16.81 0.28 0.03 

'NS-12-X2' 'Pull-out' 18.56 451.30 890.65 0.054 0.36 1.67 0.044 12.98 18.45 0.19 0.04 

Note: Fmax = ultimate load; f = peak stress in bar; Uav max= bond strength; ε max = peak strain in bar; SFmaxU = slip corresponding to maximum bond stress at the free end; 

SLmaxU = slip corresponding to maximum bond stress at the loaded end; ε maxU = strain corresponding to maximum bond stress; Ures= Residual bond strength; Umax BPE = 

analytical bond strength; α and p =model fitting parameters 
(1) NS refer to Non-Shrink grout; 6, 8, 10, and 12 refer to the bar anchored length, respectively; D, G, B and X refer to Grade 60 rebars, GFRP bars, BFRP bars, Grade 100, 

respectively; ND refer to Non-Ducted specimens 
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Figure 3.6: Profile of failed bars; [LEFT to RIGHT] a) Crushing of grout keys (NS-6-D1); b) Cracked cones inside a ductless grout 

cylinder (NS-12-D2-ND); c) Damage localization near the loaded end of BFRP bars (NS-6-B2); and (d) Interfacial damage along the 

anchored length (NS-12-G1). 
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All BFRP and GFRP specimens failed by bar pull-out, except for NS-12-G2, which failed 

by duct pull-out in a very brittle mode, as shown in Figure 3.5. Although the pull-out of 

FRP bars was similar to that of their ductile counterparts (no cracking in the grout cylinder 

was observed), a difference in their failure mechanisms was observed. All FRP specimens 

had a splitting crack that propagated radially from the duct until it reached the exterior of 

the block. These cracks had varying intensity and propagated as the load approached the 

recorded peak of the specimen. BFRP bar specimens had finer cracks than that suffered by 

specimens having GFRP bars. While these splitting cracks were due to insufficient concrete 

cover, their absence in specimens with ductile bars suggests that grouted FRP bars behaved 

differently. This can be further explained by examining Figure 3.6 where traces of crushed 

resin (white residue) can be observed along the anchored length, indicating that the shear 

capacity of the interfacial layer (between the bar core and the exterior layer) was exceeded. 

For BFRP bars, these traces appear to be more localized near the loaded end, although resin 

traces were still visible along the embedment. GFRP bars had similar white traces as their 

BFRP counterparts, except that such traces appear to be more distributed over the anchored 

length. The presence of these traces with sand coated GFRP bars indicates that bond failure 

took place along the full anchored length. Similar observations were also reported by El 

Refai et al. (2015) and Davalos et al. (2008). This further explains the splitting cracks 

suffered in all specimens with FRP bar. The uniform load distribution along the entire 

anchored length resulted in the corrugated duct, enclosed grout, and FRP bar behaving as 

a single large diameter bar embedded in concrete. With such a large diameter bar, the low 

cover-to-diameter ratio (0.83) made the specimens more susceptible to splitting failures. 

The duct pull-out type failure of specimen NS-12-G2 is a magnified manifestation of this 

phenomenon.  

It should be noted that, unlike non-ducted specimens where grout splitting/expansion 

dominated the failure as shown in Figure 3.5 and Figure 3.6, the grout enclosed by the 

corrugated duct in all ducted specimens did not incur cracking, irrespective of the bar type 

or anchored length. In the case of non-ducted specimens, the absence of failure cones close 

to the loaded specimen end suggests that disengagement of the ribs occurred during earlier 

stages of the loading, which was accompanied by severe cracking as the grout around the 
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bar was dilatated. Consequently, the load was redistributed over the remainder of the 

length. This is evident from the shear cones present on the profile of the bar close to the 

unloaded end (Figure 3.6). Typical failure of the non-ducted specimens highlights the 

effectiveness of the corrugated duct in providing uniform restraining action along the 

anchored length.  

3.3.2  Load/Strain vs Slip 

 

Figure 3.7: Load vs loaded end slip envelopes (representative specimens): [Left] Ductile 

bars (negative abscissa represents Grade 100); [Right] Brittle Bars (negative abscissa 

represents BFRP). 

The load versus slip response of the tested specimens is illustrated in Figure 3.7 (bars 

plotted on the negative abscissa represent a different bar material). Additionally, the 

ultimate load at different embedment lengths is plotted in Figure 3.9.  As previously 

discussed, this test setup is prone to inducing artificial compression, which can enhance 

the bond of the test specimen. Although a compressive field was introduced unto the 

specimens with varying embedment, the failure was consistent among the specimens with 

an embedment length of 6, 8 and 10 db. It should be noted that, the magnitude of the induced 

compressive field increases with an increase in embedment due to the reduction of the de-

bonded lengths close to the loaded end.  
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Figure 3.8: Strain vs free end slip at different embedment length. 

However, given that the specimens at 8 and 10 db failed by shearing of the grout keys at an 

average load of 286.93 and 289.34 kN, respectively, it is believed that the magnitude of 

this compressive field did not significantly influence the results. The response of Grade 60 

bars was identical up to the average yielding point of the bars (~220 kN). Grade 60 bars 

achieved an average load carrying capacity of 296.47 kN at 12 db. Considering that the bar 

was exposed to loads exceeding the measured yield stress, it appears that the length of the 

anchorage marginally affects the load carrying capacity of the connection. The length of 

the anchorage, however, significantly affected the slippage of the bars. A significant 

increase in slip was observed as the anchored length increased (at 12 db bars slipped 2.5 
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times more than at 6 db). The strain-slip relationship for the different bars is plotted in 

Figure 3.8 to highlight the effects of yield penetration in invoking additional slippage of 

the bars. This additional slip is apparent when Grade 60 bars are examined, as indicated in 

Figure 3.8. The level of strain hardening of the bars had a detrimental effect on the 

corresponding slip domain. This is confirmed by the softening of the curves observed at 

different slip levels, as observed by Bonacci & Marquez (1994) and Tastani & 

Pantazopoulou (2013), where cracking in the shorter direction initiated after the yielding 

of the bar, indicating that cracking of the matrix is expected with such strain penetrations. 

Yet, grouted connections did not incur cracking resulting from similar strain levels. Further 

comparisons with data in the open literature was not possible due to the scarcity of 

information pertaining to bond in grouted connections, particularly that the scant relevant 

data published focused on shorter embedment lengths (bar remained elastic). 

 

Figure 3.9: Ultimate load vs embedment length: [Top] ductile bars; [Bottom] brittle bars.  
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The difference between the performance of specimens made with Grade 60 and Grade 100 

bars are illustrated in Figure 3.7. For the same load level, Grade 60 bars at 6 and 12 db 

slipped 2 and 8 times more than their Grade 100 counterparts, respectively. This was 

primarily due to the yielding of grade 60 bars. Plasticity of the bars forces the cross-section 

to contract, thus disengaging the lugs close to the loaded end due to Poisson’s effect. This 

phenomenon is not expected when Grade 100 bars are considered because the longitudinal 

strains are within the elastic range. Given that both bars failed by shearing of the grout 

keys, Grade 60 bars required an appreciable amount of displacement to reach similar load 

level to that of Grade 100 bars. This is significant because grouted connections are often 

used as ductile devices designed to yield in tension. Since the design of yielding anchorages 

is associated with displacements, requiring more displacement to develop the bar (and 

mobilize fracture) is desirable, so long as this additional displacement is not due to 

splitting. For rational comparison of the slip domains over which the maximum load 

occurred, the slip of each specimen was normalized by the loaded end slip corresponding 

to the maximum bond stress recorded (Table 3.5: SLmaxU). Figure 3.10 exhibits this 

relationship, showing the amount of displacement required to mobilize the largest load 

recorded by the various specimens, where the degree of slip was measured as the slope of 

the line. The steeper the slope of the line, the more displacement was required to mobilize 

ductile behaviour. Slopes for specimens with Grade 60 rebar became steeper as the 

anchored length increased until fracture of the bars was observed (12 db).  
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Figure 3.10: Normalized slip vs slip (loaded end) at 6db and 12db for various bars (Grade 

60 at 8db and 10db are also shown). 

The responses of specimens made with GFRP and BFRP bars were similar to that of 

specimens having Grade 100 bars (increase in anchorage results in an increase in load, but 

not slip). It showed similar ascending branch for each type of bar regardless of the 

embedment length. An almost linear increase in load carrying capacity was accompanied 

by a corresponding increase in slip till bars failed by pull-out. However, FRP bars 

experienced local slippage along the tubing length (used for gripping) at several locations 

along the response as characterized by sudden change in slope (Figure 3.7). GFRP bars 

had 29.5 and 34.5% higher in load carrying capacity than its BFRP counterparts at 6 and 

12 db, respectively. This was attributed to the larger GFRP bars diameter since for a given 

embedment length, larger bars require more force per unit surface area to initiate slip (ACI 

Committee 408 2003). However, both bars recorded low strain values (>1%). Slip at the 

unloaded end was not initiated until later during the test, after which failure suddenly 

occurred as the bond generated by the anchorage was exhausted. It can be observed in 
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Figure 3.10 that both BFRP and GFRP bars developed their maximum loads over a 

comparable slip domain, despite the 30% higher load level resisted by the GFRP. 

3.3.3 Bond Stress-Slip Response 

Representative bond stress-vs-slip response for specimens tested in this study is shown in 

Figure 3.11. There are two distinctive branches: one where a gradual increase in bond 

stress is accompanied by minor increase in slip values until a maximum bond stress is 

attained (ascending branch); and a second branch where a decrease in bond stress is 

accompanied by significant increase in slip values (softening branch). Between these two 

branches and depending on the type of rebar and its geometry, a region where the maximum 

bond stress is constant exists. The general bond behaviour is characterized by three main 

branches: i) elastic response (ascending branch) valid for 0 < S < S1; ii) As the maximum 

bond stress is attained, plastification of bond is assumed to occur in the region bound 

between S1 and S2. If splitting cracks are restricted, and depending on the anchorage length, 

the specimen can exhibit a plateau; and iii) Loading beyond S2 and up to S3 results in 

deboning and progressive detachment of the engaged ribs. The resulting slope depends 

primarily on the confinement and its subsequent effect on the coefficient of friction. 
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Figure 3.11: Bond stress vs free end slip envelopes of grouted specimens for different 

bars tested. 

Bond-slip curves of the tested ductile metallic bars had similar overall trend to that 

discussed above. Grade 60 and 100 bars embedded at 6db achieved a comparable average 

bond stress of 22 MPa. This was expected since both bars had similar relative rib areas. 

However, this behaviour changed when the embedment length increased from 6 to 12 db, 

where Grade 60 bars achieved an average bond stress of 12.19 MPa, which is 31.9% less 

than those of their Grade 100 counterparts. Two different mechanisms of bond are observed 

and can be explained considering the classical equilibrium requirement of the stresses at 

an anchored zone as described by Eq. 3.2: 

A 

B 
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𝑈𝑎𝑣 = 
𝐸𝜀𝑑𝑏
4 𝐿𝑑

(3.2) 

Where: Uav = average bond stress; E = elastic modulus of the bar; ε = strain in the bar; db 

= diameter of bar; Ld = development length. 

In the case of Grade 100 rebar, the increase in embedment length (from 6 to 12 db) was 

accompanied by a corresponding increase in elastic strain in the bar. This explains the 

similarity between the bond stress estimates at both embedment lengths. If the bars are 

pulled beyond their elastic limit, as in the case of Grade 60 bars, the increase in embedment 

length further brings about significant increase in slip. If a medium or long anchorage 

length (non-uniform distribution) is provided, the bond stresses are redistributed over the 

remainder of the anchorage towards the free end as it utilizes the anchorage reserves. This 

can be observed in Figure 3.11 where the length over which the maximum bond stress 

plateaus, which increases with the increase in embedment.  

Theoretically, a limit of Ld exists where an increase in the anchored length does not result 

in a corresponding increase in the average load carrying capacity. This can be observed 

from the trend of Grade 60 bars at different embedment lengths, where the estimated 

maximum average bond stress and the increase in embedment length were inversely 

proportional. In the present study, the above stated limit appears to be between 10 and 12 

db since a shift in the failure mode between 10 and 12 db was observed. Bonacci (1994) 

reported similar observations when the anchorage length fell between 11 to 12 db, 

highlighting that the change between acceptable and non-acceptable anchorage occurs 

rather abruptly.   

Specimens with FRP bars behaved differently from their counterparts made with ductile 

bars. Beyond the maximum bond stress, sudden drop in bond stress along the failing branch 

was observed. This was due to the different nature of transmitting bond forces along the 

length of an embedded FRP bars since they transmit bond through chemical adhesion and 

frictional stresses between the outermost layers of the bars and concrete. This explains the 

higher bond stresses achieved by sand coated GFRP bars regardless of their embedment 
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length. GFRP bars achieved an average bond strength of 20.25 and 13.49 MPa at 6 db and 

12 db, respectively, which compares to the maximum average bond stress of ductile 

metallic bars, despite their sole reliance on frictional aspects of the interface.  

BFRP bars did not have a sand coated layer (Figure 3.2), but rather uniform indentations 

along their entire length. At 6 db embedment length, BFRP bars achieved a bond strength 

of 15.38 MPa, 16.6 % less than that of their GFRP counterparts. This was primarily due to 

the smoother surface of the bars, although some mechanical bearing is expected due to 

their surface geometry. 

3.3.4 Residual Bond Stress 

To further assess frictional resistance along the descending branch, it is important to 

examine the residual bond stress of the different bars, which describes the post maximum 

bond stress attained at the end of the descending branch of the response. The residual bond 

stresses normalized by the maximum average bond stress for different bars were plotted in 

Figure 3.12. This was done by inspection of individual bond stress-slip responses to 

determine the point on the descending branch where a sudden change in slope (Figure 3.11 

point A) or flattening (Figure 3.11 point B) of the branch occurred. The corresponding 

values of bond stress were recorded in Table 3.5. Ductile bars had higher residual bond 

stresses than that of their FRP counterpart due to the engagement of the frictional bond 

mechanisms after bearing of the ribs was exhausted, which is likely magnified due to the 

confinement effect of the duct and its subsequent effect on the coefficient of friction at the 

interface between the bar and the concrete. GFRP specimens had the lowest increase since 

they relied primarily on friction to transmit bond stress. Once the shear capacity of the 

interface was exhausted, the bars slipped abruptly. The flowing consistency of the grout is 

thought to have enhanced the bar-grout interfacial characteristics, which was reflected in 

higher load capacity of specimens (Figure 3.7). 
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Figure 3.12: Normalized residual bond stress (dotted line represents the average). 

3.3.5 Duct Confinement 

To highlight the confining mechanism in grouted connections, two ductless specimens 

under identical conditions were tested. The bond stress versus unloaded end slip response 

of the NS-12-D1 and NS-12-D2-ND specimens is shown in Figure 3.13.  Ducted 

specimens achieved a maximum average bond strength of 12.18 MPa, while the non-ducted 

specimens achieved an average bond strength of 10.03 MPa. The free end slip reflects the 

damage incurred by the non-ducted specimens, given that the ducted specimens 

experienced almost no slip, indicating that the anchorage reserve was progressively 

engaged. The free end slip of ductless specimens was at least 10 times more than that in 

their ducted counterparts. The ascending branch stiffness of both envelopes was 

comparable up to a bond stress of 3 MPa, after which a reduction in stiffness was observed. 

It is believed that, at this low bond stress, the onset of bond plastification of the non-ducted 

specimens was initiated. The increase in the slip rate was accompanied by an increase in 

strain as more of the anchorage reserves was utilized. Another plateau was observed as the 

bars yielded, causing significant yield penetration. The specimen failed by bar pull-out 
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shortly thereafter. This failure was characterized by large splitting cracks emanating from 

the inside of the bar, penetrating the grout cylinder radially, and propagating through the 

concrete block, as shown in Figure 3.5. Four features underscore the effect of the duct 

confinement: i) Consistently higher bond stress values were observed for the ducted 

specimens. The slip corresponding to the bond strength of the ducted specimens was one 

order of magnitude lower than that of their ductless counterparts (Table 3.5; Figure 3.13); 

ii) Enhanced ductility of the response as cracks were neither observed in the specimen 

within the grout cylinder bound by the duct, nor on the concrete block. Conversely, the 

absence of the duct resulted in severe cracking towards the loaded end of the ductless 

specimen, which occurred earlier during the test. This is visible from the reduced stiffness 

as discussed earlier (Figure 3.13), and the absence of the failed shear cones towards the 

loaded end (Figure 3.6); iii) Difference in failure modes as observed in Figure 3.13 where 

sudden failure was a result of bar fracture in the case of ducted specimens with an anchored 

length of 12db, while brittle pull-out accompanied by splitting characterised failure for the 

ductless specimens; and iv) the curve fitting parameter 𝛼 (discussed hereunder) 

consistently had lower values for grouted specimens, implying more confinement. 

 

Figure 3.13: Comparison between the behaviour of ducted and non-ducted specimens at 

12 db. 
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3.4 ANALYTICAL MODELLING 

Two constitutive bond-slip laws were considered in this study. The Elighausen, Popov and 

Bertero (BPE) model presented by Eligehausen et al. (1982) was used to describe the 

behaviour of ductile bars. The modified BPE (mBPE) proposed by Cosenza et al. (1997) 

was used to capture the behaviour of FRP bars. Figure 3.14 depicts these two models. The 

experimental results from pull-out tests (Table 3.5) were used to calibrate these models for 

the respective bar types. The ascending branch (𝑠 ≤ 𝑠1) of both models is essentially 

identical and can be expressed by Eq. 3.3 as follows: 

𝜏

𝜏𝑚𝑎𝑥
= (

𝑠

 𝑠𝑚𝑎𝑥
)
𝛼

(3.3) 

Where 𝜏 and 𝑠 are the corresponding bond stress and slip at a given loading increment; 

𝜏𝑚𝑎𝑥 and 𝑠𝑚𝑎𝑥 are the maximum recorded average bond stress and slip, respectively; and 

𝛼 is a model fitting parameter. 

 

Figure 3.14: Bond-slip law: [Left] BPE; and [Right] mBPE. 

According to the CEB-FIP (2010), which adopts the BPE model to explain the bond stress 

of bars, the model parameter 𝛼 reflects the degree of stiffness of the ascending branch and 

should have values between 0 and 1. Per the same standard, the recommended value of 

parameter 𝛼 for confined concrete is 0.4. The closer the value of 𝛼 to zero, the more it is 
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indicative of a stiffer ascending branch of the response. To calibrate 𝛼, Eq. 3.4 is solved 

by integrating the ascending branch of the experimental data, allowing an estimation of 𝛼.   

𝐴𝜏 = ∫ 𝜏(𝑠) 𝑑𝑠 =  𝜏𝑚𝑎𝑥 (
𝑠

 𝑠𝑚𝑎𝑥
)
𝛼

𝑑𝑠

𝑠1

0

(3.4) 

Where 𝐴𝜏 is the area underneath the ascending branch of each specimen. The BPE model 

describes a branch where the bond strength plateaus (𝑠1< 𝑠 <𝑠2), which is expressed by 

Eq. 3.5: 

𝜏 =  𝜏𝑚𝑎𝑥 (3.5) 

As observed in Figure 3.14, the mBPE model accounts for the unique behaviour of the 

FRP bond (by eliminating this branch). This was supported by applying the classical BPE 

model to experimental data, which showed a lack of this second branch when the bond of 

FRP bars was considered Cosenza et al. (1997). This was also observed in the experimental 

results discussed earlier.  

The failing branch of the BPE model, (𝑠2< 𝑠 <𝑠3) calls for a linearly descending branch up 

until 𝜏 = 𝜏𝑓, after which a horizontal branch that expresses the frictional resistance of the 

envelope when (𝑠 >𝑠3). Values of 𝑠2, 𝑠3, and 𝜏𝑓 are based on the experimental data. The 

descending branch of the mBPE (𝑠1< 𝑠 <𝑠2) is given by Eq. 3.6 as presented by Cosenza 

et al. (Cosenza et al. 1997):  

𝜏

𝜏𝑚𝑎𝑥
= 1 − 𝑃 (

𝑠

 𝑠1
− 1) (3.6) 

Where 𝑃 is the slope of the descending branch from (𝑠1, 𝜏𝑚𝑎𝑥) to (𝑠2, 𝜏𝑓). Beyond this 

descending branch, (𝑠 >𝑠2), the mBPE was identical to the BPE model.  

The calculated parameters (𝛼 and 𝑃) are shown in Table 3.5, while the mean values, 

standard deviations, and coefficients of variation of calibrated model parameters are listed 

in Table 3.6. Ducted specimens with Grade 60 bars had a mean calibrated parameter 𝛼 of 

0.1255, approximately 50% less than that of their ductless counterparts, which should be 
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considered in view of the very different failure modes of both types of specimens which 

indicated the superior ductility provided by of the confinement action of the duct. 

Specimens with Grade 100 bars and GFRP bars had comparable 𝛼 values. Specimens with 

BFRP bar had the lowest calculated values of 𝛼, which is consistent with the finding of El 

Refai et al. (2015). The descending branch slope, 𝑃, for GFRP specimens was slightly 

higher than that of specimens with BFRP bars, though a sharper and more sudden decrease 

in bond was observed for GFRP bars. This can possibly be attributed to the larger scatter 

in the data as indicated by the high coefficient of variation observed for GFRP bars. 

Comparison between the experimental and the predicted envelopes are shown in Figure 

3.15. The predicted values appear to be in good agreement with the experimental results. 

The mBPE model appears to render the experimental behaviour of FRP bars accurately.  

Table 3.6: Mean, standard deviation, and coefficient of variation of calibrated parameters 

Parameter 

Ductile FRP 

Grade 60 
Grade 

100 
BFRP GFRP 

Ducted 
No 

Duct 

αBPE αBPE PmBPE αBPE PmBPE 

Mean  0.1255 0.2376 0.2699 0.0737 0.093 0.2165 0.0315 

Standard Deviation 0.0320 0.0387 0.0599 0.0233 0.037 0.0599 0.0171 

Coeff. of Var. 25.4670 16.2677 22.1887 31.6307 40.007661 27.6800 54.3977 

 

 

Figure 3.15: Corroboration of the analytical model: [Left] BPE model; [Right] modified 

BPE model. 
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3.5 SUMMARY AND CONCLUSIONS 

Twenty-two full-scale pull-out test specimens were used to investigate the behaviour of 

grouted connections used in precast wall construction and the difference in their bond 

behaviour due to the passive confinement effect of the duct. The test set-up was carefully 

designed to mimic field grouting conditions. The results provided useful insights into the 

behaviour of grouted connections under various changing parameters. Based on the 

experimental and analytical results presented above, the following conclusions can be 

drawn: 

Grouted connections tested experimentally did not suffer splitting failures resulting from 

expansion in the grout cylinder surrounding the bar, regardless of the different embedment 

lengths and their subsequently different bond stress. The corrugated duct was able resist 

the dilatation of the grout. When the duct was absent, brittle failure mechanisms prevailed 

and cracks propagated from the unloaded end of the bar radially splitting the grout cylinder 

and the concrete block. 

Grouted connection specimens using ductile bars failed by shearing of the grout keys, 

regardless of the stress level in the bar and the embedment length. Conversely, specimens 

made with FRP bars incurred shearing failure along the interface of the bar and the 

surrounding grout. FRP bars achieved a high load carrying capacity despite their surface 

geometry (mechanical bearing was absent). Specimens with FRP bar had splitting tensile 

cracks between the corrugated duct and the concrete block, which was more pronounced 

in the case of GFRP. This is believed to be a direct result of the high frictional bond 

components due to GFRP’s sand blasted surface.  

The bar’s strain level had a detrimental effect on the magnitude of its recorded slip. Yield 

penetration seemed to invoke significant slip on deformed bars. However, this was not 

associated with cracking and deterioration of the assembly. Considerable displacement was 

required to mobilize the full capacity of the bars at 12 db 

The BPE and mBPE bond-slip models were calibrated based on the experimental results 

and produced acceptable estimation of the experimental behaviour. The analytical 
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envelopes resembled the experimental behaviour accurately. Values of the calibrated 

model parameter 𝛼 provided evidence of confinement when compared to those listed in the 

CEB-FIP model code (Table 3.6). 
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Chapter 4  

4 EXPERIMENTAL AND ANALYTICAL STUDY ON 

GROUTED CONNECTIONS IN PRECAST CONCRETE 

CONSTRUCTION 

 

 

4.1 INTRODUCTION AND BACKGROUND 

Precast concrete construction has gained a great momentum over the past couple of decades 

owing to combining the speed and accuracy of a plant manufactured products and the 

related body of knowledge, in terms of design specifications and research data, that have 

been cumulated. Design schemes for precast systems can take several forms. Load-bearing 

precast walls and double tees or hollow core flooring are often used conjointly. Vertical 

precast wall panels can be conveniently connected in the field using a grouted connection, 

often used due to its favourable tolerances and weld elimination. The connection can also 

be used to resist in plane tension arising from lateral loads. Figure 4.1 displays a typical 

wall-to-wall detail highlighting such a grouted connection. A large diameter reinforcing 

bar (No.8 or larger) is typically bridged over the horizontal joint between two vertical 

panels via a mechanical coupler. The extended length is then grouted inside a corrugated 

metallic duct, which is embedded in the precast panel. 
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Figure 4.1: Schematic diagram showing a grouted connection. 

The use of grouted connections in precast load-bearing walls is subject to the following 

requirements: (i) to satisfy structural integrity requirements (a minimum of two ties per 

panel according to ACI 318-14 Section 16.2.5) (ACI Committee 318 2014); and (ii) to 

carry tensile loads induced from in-plane lateral loads. During excessive seismic demands 

and damage accumulation, the connection provides ductility to the assembly, which is often 

in the form of the horizontal gap opening between two vertically stacked walls. This is 

manifested due to the yielding of the bar. This non-linearity releases energy and enables a 

more ductile structure. Recent seismic events mandate dedicated investigation of these 

modes. This topic will be addressed by the authors in later publications. 

Per ACI 318-14 and PCI 2010, grouted connections are modelled after the equations 

describing the development of deformed bars in tension. Some of the equations that 

describe the development length in tension are shown in Table 4.1 (where; Ld = 

development length in tension; fy = reinforcement yield stress; fc’ = concrete compressive 

strength; (
cb+ktr

db
) = confinement factor; db = diameter of bar; dduct = diameter of duct; β = 
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modification factor for duct material; fs,cr = critical level of stress in reinforcement; γ = 

modification factor due to group effect; fcg’ = grout compressive strength).Yet, while there 

is common perception among experts that the behaviour of bars grouted ducts has shown 

substantial discrepancy with the bar-in concrete idealization, this is neither quantified nor 

documented in the open literature. 

Table 4.1: Various Empirical equations for grouted connections 

Source* Model Variables 

ACI 318-

14 
𝐿𝑑 =

3𝑓𝑦

40√𝑓𝑐
′(
𝑐𝑏+𝑘𝑡𝑟
𝑑𝑏

)

  
𝐿𝑑 = 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 

𝑓𝑦 = 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑠𝑠 

𝑓𝑐
′ = 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

(
𝑐𝑏 + 𝑘𝑡𝑟
𝑑𝑏

) = 𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑑𝑏 = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐵𝑎𝑟 

𝑑𝑑𝑢𝑐𝑡 = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐷𝑢𝑐𝑡 
𝛽 = 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐷𝑢𝑐𝑡 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑓𝑠,𝑐𝑟
= 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑆𝑡𝑟𝑒𝑠𝑠 𝑖𝑛 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 
𝛾 = 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐺𝑟𝑜𝑢𝑝 𝐸𝑓𝑓𝑒𝑐𝑡 
𝑓𝑐𝑔

′ = 𝐺𝑟𝑜𝑢𝑡 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 
 

Steuck et 

al. (2009) 
𝐿𝑑 =

𝑓𝑦

130√𝑓𝑔
′
𝑑𝑏 + (

𝑑𝑑𝑢𝑐𝑡−𝑑𝑏

2
)  

Brenes et 

al. (2006) 
𝐿𝑑 =

𝛽𝑓𝑠,𝑐𝑟

45𝛾√𝑓𝑐
′
𝑑𝑏 

Matsumoto 

et al. 

(2008) 

𝐿𝑑 =
0.024𝑓𝑦

√𝑓𝑐𝑔
′

𝑑𝑏 

Einea et al. (1995) were among the first studies on the confinement effect of metallic 

sleeves. In their work, they proposed a grout-filled steel tubing as a splice sleeve to bridge 

reinforcement bars with variable bar diameter and embedment length. The degree of 

confinement was varied by changing the connection scheme. All their specimens failed by 

pull-out of the reinforcing bars via shearing of the grout keys. Raynor et al. (2002) 

evaluated the bond between deformed bars in grouted ducts commonly used in hybrid 

frames. The bars had short embedment lengths and were tested using monotonic and cyclic 

loading. Higher bond stresses for grouted connections were observed and attributed to the 

confinement effect of the duct. Similar observations were also reported by (Steuck et al. 

2009) who conducted pull-out tests on large diameter bars grouted in vertical ducts to be 

used in a bridge bent cap system. Embedment lengths 3 times smaller than that 

recommended by the ACI 318-05 were sufficient to mobilize the tensile capacity of the 

bar. This was ascribed to the additional passive confinement provided by the duct (Steuck 

et al. 2009).  
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Brenes et al. (2006) undertook a comprehensive study to explore the influence of changing 

the corrugated duct materials on the behaviour of grouted connections. The main test 

parameters investigated were the bar coating, duct material, transverse reinforcement, bar 

eccentricity and number of connections. It was observed that the behaviour of grouted 

connections was largely dependent on the stiffness of the duct material and its ability to 

accommodate lateral strains. Matsumoto et al. (2008) tested various schemes used as 

grouted connections under pull-out and cyclic conditions. Test parameters included the bar 

diameter and embedment length. It was found that splitting failures did not occur in grouted 

connections, which was attributed to the role of the duct.   

Based on the above literature, there is general consensus on the differentiation between the 

bond failure of deformed bars grouted in corrugated ducts and the that of deformed bars in 

concrete. Nonetheless, the majority of pertinent studies deal with the use of grouted 

connections in precast bent cap systems and often reported empirical models to predict the 

behaviour of grouted connections as summarized in Table 4.1 (Matsumoto et al. 2008; 

Einea et al. 1999; Steuck et al. 2009; Brenes et al. 2006).  

Considering the sensitivity of bond to various influential factors, the results of these studies 

cannot be extrapolated to the behaviour of grouted connections used in precast walls. In 

view of the sparsity of information available on the behaviour of grouted connections used 

in precast walls, a dedicated experimental methodology is presented herein to address 

remaining knowledge gaps. Thus, the objective of this paper is threefold: (i) 

Experimentally evaluate the behaviour of a typical grouted connection detail; (ii) Provide 

quantitative experimental evidence to differentiate between the behaviour of grouted 

connections and bars embedded in concrete; and (iii) Coin a reliable empirical expression 

which can estimate the behaviour of grouted connections and ultimately serve as a user-

friendly design tool. This paper reports the findings of experimental and analytical 

programmes that describe the characteristic bond stress of grouted connections. Direct 

comparison between the connections and their duct-less counterparts show that, under the 

same conditions, grouted connections do not suffer from splitting failures, which is 

attributed to the restraining effects of the corrugated duct. 
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4.2 EXPERIMENTAL PROGRAM 

4.2.1 Test Specimens 

To compare the behaviour of grouted connections to that of bars embedded in concrete, the 

experimental program was designed to measure the response of specimens under identical 

conditions. The first test set consisted of bars embedded in concrete, while the second set 

comprised grouted connections anchored at a similar embedment length and tested under 

similar setting. As depicted in Figure 4.2, the specimens consisted of non-reinforced 

concrete prisms measuring 203.2 x 203.2 x 406.4 mm mimicking the case of a typical 

precast wall.  
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Figure 4.2: Test specimens: (left) Grouted specimen; (right) Bar in concrete specimen. 

Grouted connection specimens had a 76-mm diameter and 30-gauge corrugated steel duct 

embedded concentrically in the prism. De-bonding of the bars was carried out by wrapping 

them with 2-mm thick polystyrene wrap. The de-bonded length varied depending on the 
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embedment length of the specimens (2, 4, 6, 8, 10 and 12 db embedment were considered 

in this study). The embedment lengths were chosen to allow for an assessment of the bond 

at the elastic and inelastic segments of the idealized bond stress versus slip curve. After 

concentric placement of the bars inside the corrugated duct, non-shrink grout was mixed at 

low speed for 10 minutes then at high speed for 5 minutes, adding water until a desirable 

flowing consistency was achieved, after which grouting of the specimens was carried out 

in the vertical position.  

4.2.2 Materials Properties 

Table 4.2: Concrete mixture design and mechanical properties 

Materials Per 1 m3 

Comp. 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Young's 

Modulus x 

103 (MPa) 

Poisson's 

Ratio 

Age (Days) 

7 28 7 28 7 28 7 28 

Concrete 

CSA Type 30 Cement 435 kg 

53.7 61.6 5.1 6.1 26.0 26.0 0.25 0.24 

Sand 842 kg 

14 mm aggregate (round) 842 kg 

Water 200 Litres 

Air 5 % 

Air Entrainment/Lubricant 
20 ml/100 kg 

cement 

High Range Water Reducer 
630 ml/100 kg 

cement 

Grout 

Proprietary High Strength 

Non-Shrink grout (ASTM 

C1107 

- 38.4 39.3 4.5 6.3 20.7 22.7 0.22 0.23 

The concrete mixture composition and mechanical properties of the concrete used in the 

study are shown in Table 4.2. Concrete used in this study was self-consolidating produced 

at an industrial plant. The mechanical properties of the concrete and grout were determined 

as per the procedure outlined in ASTM C39 (2016) for compressive strength, ASTM 

C496/C496M (2011) for splitting tensile strength, ASTM C469/C469M-14 (2014) for 

modulus of elasticity. The 28-day compressive and splitting tensile strengths (average 

values obtained on three identical 100 x 200 mm cylinders) were 50.6 MPa and 5 MPa, 

respectively. The grout used in connections is a proprietary high-strength non-shrink 

mixture with an average 28-day compressive strength of 40 MPa and tensile strength of 6 

MPa. 
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As per the manufacturer’s recommendations, 3.8 litres (1 US gal) of water was added to 

each 25 kg (55 lb) dry bag to achieve a self-levelling consistency. All specimens were 

cured for 28 days at ambient conditions (T of 23°C and RH of 60%). The connector dowels 

used in the specimens consisted of grade 400 No .8 (25-mm) deformed bars. All steel used 

in this study was sourced from a single production from the same supplier. Mechanical 

properties of the connector dowel were tested according to the ASTM 370 guidelines 

(ASTM 370 2014). The average yield stress and the corresponding yield strain were 418 

MPa and 0.2-0.23%, respectively. The ultimate tensile stress and strain were 603 MPa and 

1.2-1.8%, respectively.    

4.2.3 Pull-out Testing 

The adequacy of using of pull-out tests to evaluate the bond between concrete and 

reinforcement has been a matter of controversy. Indeed, stresses at the anchored end of a 

pull-out specimen vary considerably from those typically encountered in service. This un-

realistic stress state where the bar is exposed to tensile stresses and a longitudinal normal 

compressive field is applied unto the concrete can artificially enhance the bond of the bar 

through additional confinement (Figure 4.3). 

 

Figure 4.3: Strut and Tie analysis of the superficial compressive fields resulting from the 

boundary conditions at: (from left to right) 2, 4, 6, 8, 10, and 12 db embedment length. 

Friction between the specimen and bearing plates additionally magnifies this effect. 

Likewise, bond is not directly measured by the commonly used tests and is known to be 

sensitive to a multitude of influential factors, including confinement, compressive strength 
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and the physical and mechanical properties of the bar. Nevertheless, pull-out tests provide 

a simple and economical means to comparing anchored bars tested under similar conditions 

(Achillides & Pilakoutas 2004; El Refai et al. 2015; Steuck et al. 2009; Matsumoto et al. 

2008). In the present study, pull-out testing was adopted while careful consideration is 

exercised to reduce the artefacts mentioned above. The mitigation of such bond enhancing 

conditions was achieved through a two-tier strategy: first, a 215.9 mm x 215.9 mm x 25.4 

mm hollow steel cradle with 152.4 mm x 152.4 mm opening was used beneath the 

specimen to reduce the confinement in the immediate vicinity of the bars, and for a length 

of 5 db in both directions. Second, the de-bonding of the bars away from the active end of 

pulling (where the effects of the induced compression are most prevalent) helped shift the 

tested zone to regions where the magnitude of the compressive field is of a lesser intensity.  

4.2.4 Test Procedure 

Two specimens were tested for each set of parameters to verify repeatability of the results. 

The average of the two measured responses was used for analysis purposes unless 

otherwise mentioned. After curing each specimen for 28 days, it was placed atop the active 

pulling end of an open loop Tinius Olsen testing machine with a maximum capacity of 530 

kN, as shown in Figure 4.4. 

The loading machine was calibrated prior to the beginning of the testing to ensure that the 

load was consistent among the specimens. The bar was extended to the lower plate and 

gripped by two steel jaws over a length of 165.1 mm, where the load was applied 

monotonically at a rate of 60 MPa/min. To record the slip of the bar, a 25-mm strain based 

linear variable displacement transducer (LVDT) was mounted by a steel tripod and placed 

on the protruding bar from the top (unloaded end) to record the slip relative to the top 

surface of the specimen. The elongation of the bar at the loaded end of the specimen was 

monitored by measuring the relative movement between the fixed and moving heads of the 

machine via a 150-mm spring LVDT. Prior to each test, the calibration of both LVDTs 

used in the study was checked with the aid of precision gage blocks to ensure accuracy. 

During the test, a data acquisition system recorded the load and slip readings at a rate of 10 

reading per second.  
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Figure 4.4: Test setup and instrumentation. 

4.3 EXPERIMENTAL RESULTS AND DISCUSSION 

Results from the 24 pull-out test specimens are presented in Table 4.3 where: Ld = 

embedment length in db; Fmax = ultimate load; Uav = maximum average bond stress; Urs = 

maximum residual bond stress; f = stress in the reinforcement; Smax = slip corresponding 

to maximum average bond stress; Dmax = displacement at peak load; αBPE = coefficient 

corresponding to the level of confinement.  
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Table 4.3: Pull-out test results 

(1) Specimen 

Tag 

Ld 

(db) 

Fmax  

(kN) 

Uav 

(MPa) 

Urs 

(MPa) 

f 

(MPa) 

Smax 

(mm) 

Dmax 

(mm) 
αBPE k-s 

Failure 

Type 

B
ar

 i
n

 C
o

n
cr

et
e
 

C-2-D1 
2 

60.90 15.02 14.26 120.19 1.33 9.50 0.25 0.49 Pull-out 

C-2-D2 74.50 18.38 15.02 147.03 3.22 11.90 0.27 0.45 Pull-out 

C-4-D1 

4 

191.92 23.67 19.18 378.76 1.21 13.50 0.34 
0.30 Splitting + 

Pull-out 

C-4-D2 179.76 22.17 18.78 354.76 3.36 15.40 0.34 
0.37 Splitting + 

Pull-out 

C-6-D1 
6 

204.80 16.84 5.31 404.18 2.04 17.10 0.32 
0.34 Splitting + 

Pull-out 

C-6-D2 245.52 20.16 (2) NA 484.54 0.78 35.60 0.49 0.32 Splitting  

C-8-D1 
8 

297.33 18.33 - 586.78 0.86 87.00 - - Bar Fracture 

C-8-D2 295.88 18.24 - 583.93 0.62 87.70 - - Bar Fracture 

C-10-D1 
10 

298.52 14.73 - 589.14 0.06 82.00 - - Bar Fracture 

C-10-D2 296.65 14.64 - 585.45 0.06 81.70 - - Bar Fracture 

C-12-D1 
12 

297.08 12.21 - 586.29 0.04 74.60 - - Bar Fracture 

C-12-D2 296.33 12.18 - 584.82 0.03 69.81 - - Bar Fracture 

D
u

ct
ed

 S
p

ec
im

en
s 

NS-2-D1 
2 

72.42 17.87 13.57 142.92 0.82 11.60 0.18 0.40 Pull-out 

NS-2-D2 76.33 18.12 14.69 150.64 1.07 11.10 0.19 0.35 Pull-out 

NS-4-D1 
4 

214.41 26.45 22.73 423.14 0.60 17.40 0.23 0.39 Pull-out 

NS-4-D2 206.35 25.45 21.02 407.23 0.62 12.70 0.26 0.30 Pull-out 

NS-6-D1 
6 

263.97 21.71 19.57 520.95 0.62 33.70 0.23 0.44 Pull-out 

NS-6-D2 250.91 20.63 18.86 495.17 0.94 43.51 0.19 0.55 Pull-out 

NS-8-D1 
8 

286.10 17.64 15.65 564.63 0.66 85.10 0.17 0.58 Pull-out 

NS-8-D2 287.76 17.75 13.58 567.89 0.66 77.70 0.13 0.56 Pull-out 

NS-10-D1 
10 

285.30 14.08 12.84 563.05 0.56 82.60 0.11 0.53 Pull-out 

NS-10-D2 293.38 14.47 13.66 578.98 0.73 93.20 0.07 0.63 Pull-out 

NS-12-D1 
12 

304.90 12.54 - 601.73 0.06 94.60 - - Bar Fracture 

NS-12-D2 303.24 12.46 - 598.40 0.09 98.90 - - Bar Fracture 

Note: Fmax = ultimate load; f = peak stress in bar; Uav= average bond stress; Urs= residual bond stress Smax = 

slip corresponding to maximum bond stress; Dmax = displacement corresponding to maximum bond stress; k-s = 

Kolmogorov-Smirnov statistic. 
(1) NS and C refer to Non-Shrink grout and Concrete, respectively; 2, 4, 6, 8, 10 and 12 refer to the bar embedded 

length, respectively; D1 and D2 refer to the specimen repetition identifier. 
(2) Data became unreliable 

Specimens were labelled as follows: the first set of characters represents the type of matrix 

used (NS for non-shrink and C for concrete), followed by a numeral representing the 

embedment length (2, 4, 6, 8, 10 or 12 db). The next set of characters represents the type of 

bar used (D for deformed steel bars) and the following number refers to the specimen 

number in its group (1 or 2). For example, NS-12-D2 refers to a deformed bar connection 

specimen with an embedment length equal to 12 times the bar diameter, while specimen 

C-4-D1 refers to a deformed bar in concrete embedded along 4 times the bar diameter.  
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The assumption of uniform bond stress along the length of an embedded bar is not an 

accurate simplification, specifically when the embedment is longer than 3-7 db (Tastani & 

Pantazopoulou 2013). As the embedment length increases, non-linearity in the distribution 

is introduced. The distribution tends to peak closer to the loaded end of the bar and 

attenuates non-linearly towards the passive end. The exact distribution of the bond stresses 

along the embedded length of a bar cannot be determined without extensive 

instrumentation. For this reason, several researchers often find it practical to resort to this 

simplification (Steuck et al. 2009; Einea et al. 1995; Ganesan et al. 2014; Ashtiani et al. 

2013; Tastani & Pantazopoulou 2010; El Refai et al. 2015; El-Hacha et al. 2006; Marchand 

et al. 2015). It is also relevant to highlight that this assumption is supported by ACI 

Committee 408R-03 which states that “…it is both convenient and realistic to treat bond 

forces as if they were uniform over the anchored, developed, or spliced length of the 

reinforcement” (ACI Committee 408 2003). Given that, the average bond stress U was 

calculated as the force along the embedded length per unit surface area of the bar, as shown 

in Eq. 4.1 as follows: 

𝑈 =  
𝐹

𝜋 𝑑 𝐿𝑑
(4.1) 

Where 𝐹 is the tensile load; 𝑑 is the nominal bar diameter; and 𝐿𝑑 is the bar embedment 

length. 

4.3.1 Bond Failure Mechanisms 

Illustrations of the failure modes encountered in this study are shown in Figure 4.5. Failure 

modes of representative test specimens are also exhibited in Figure 4.6. Additionally, 

Figure 4.7 shows the profile of the failed bars.  
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Figure 4.5: Failure modes of different specimens 

All concrete specimens failed by a mixed (splitting/ pull-out) mode, except specimens 

embedded at 8, 10 and 12 db, which failed by bar fracture. Ducted specimens failed by pull-

out, except for NS-12-D1 and D2, where a bar fracture occurred. At an embedment length 

of 2 db, comparable specimens from the two groups failed by bar pull-out. At this short 

embedment length, the engagement of the ribs did not generate sufficient hoop tension to 

cause an apparent splitting failure. The slip of the bars is rather dependant on the local 

failure at the interface between the concrete and bar ribs. This was not the case when the 

embedment length was 4 and 6 db, where concrete specimens experienced splitting cracks 

propagating to the surface since the concrete hoop tension was the primary confining action 

contributing to the slip resistance (Figure 4.6). At 4 db and 6 db, longitudinal cracks started 

initiating towards the loaded end and continued to grow along the embedment length. As 

the loading continued, these cracks propagated transversally, causing portions of the block 

to completely separate, as observed in Figure 4.6. The bars eventually failed by pull-out 

with splitting along a plane that extended from the crest of a rib to the bottom of a 

successive one, as exhibited in Figure 4.7.  
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Figure 4.6: (left to right) Split tensile cracking (C-4-D1); Pull-out failures vs splitting 

failures of comparable specimens at 6 and 4 db (NS-6-D1/ C-6-D1 and C-4-D2/ NS-4-

D1, respectively); and Slippage of bars vs bar fracture at 10 db embedment (C-10-D2 and 

NS-10-D2). 

 

Figure 4.7: (left to right) Wedging of grout keys between ribs in a (C-6-D2); and 

Crushing of grout keys between ribs at 6 and 10 db embedment (NS-6-D1 and NS-10-D2, 

respectively). 

Comparable grouted specimens (4 and 6 db embedment) had a failure that differed 

considerably from their concrete counter parts. As shown in Figure 4.7, bars from these 

specimens failed by crushing of the concrete between the ribs, indicating a compression 
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failure. No splitting cracks were observed inside the grout cylinder or anywhere on the 

outer surface of the concrete block (Figure 4.8).  

The absence of splitting failures at this embedment length points to the contribution of the 

corrugated duct in resisting the lateral expansion of the grout. This observation is supported 

by three main arguments: (i) consistently higher bond stresses were achieved by grouted 

specimens; (ii) scatter of the results between the subgroups of the concrete specimens 

inherent from the nature of concrete exposure to tension (average COV of 70% and 350% 

for 4 and 6 db, respectively); and (iii) the additional resistance against slip provided by 

ducted specimens. 

 

Figure 4.8: Stress state inside corrugated grouted connection vs cracked concrete 

cylinder. 

Concrete specimens with bars embedded at 8 and 10 db failed by rupture of the bars at a 

stress corresponding to the average measured tensile capacity. Comparable grouted 

specimens failed by pull-out of the bars via shearing of the grout keys, similar to their 4 

and 6 db specimens, as depicted in Figure 4.7(c). It should be noted that the crushing of 

the grout keys in the failure of grouted specimens occurred irrespective of the value of the 

bond stress. This observation, when viewed considering the bar strain levels, reveals that 
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the bond of grouted connections did not seem to be affected by the level of strain of the 

bar, but rather by the amount of slip mobilized unto it.  

4.3.2 Bond Stress - Slip Behaviour 

A comparison of the bond behaviour of grouted specimens compared to that of their duct-

less concrete counterparts is portrayed in Figure 4.9 (representative specimens at different 

embedment lengths). 

 

Figure 4.9: Bond stress vs slip response of representative grouted specimens (positive 

slip) and concrete specimens (negative slip) at 2, 4, 6, 8, 10 and 12 db embedment. 

The typical bond stress-slip response was characterized by an ascending branch, a region 

where the maximum bond plateaus over a certain slip domain, followed by a softening 

branch with varying slope. The softening branch of the bond-slip response of grouted 

specimens was characterized by predominant slip (Figure 4.9). Although this trend 

prevailed regardless of the embedment length, significant differences can be observed 

between the responses of the two types of specimens tested.  

Up until an embedment length of 8 db, the ascending branch of the bond of grouted 

connections appeared to have a stiffer response. The increased stiffness of grouted 

specimens was highlighted when comparable specimens failed in the pull-through mode 
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and not via bar fracture. This observation was specifically pronounced when the 

embedment length was 4 and 6 db since these embedment lengths present a loading case 

which imposes critical hoop tension levels. Additionally, grouted specimens consistently 

achieved, on average, 7.7%, 13.2%, and 14.4% higher bond stress than that of their 

concrete counterparts for the 2, 4, and 6 db embedment lengths, respectively.  

Considering the nominal increase in the maximum average bond stress, it is important to 

examine this under the slip domain over which it occurred. To highlight this, the slip 

recorded for each specimen was normalized by the value of slip at maximum bond stress 

(Table 3: Smax). Figure 4.10 exhibits the slip versus its value when normalized by the slip 

at maximum bond stress of various specimens. The degree of slip under a certain level of 

bond stress is illustrated as the slope of the plotted line, whereby a steeper slope indicates 

higher slip. It can be observed in Figure 4.10 that grouted specimens incurred less slip than 

that in their concrete counterparts, irrespective of the embedment length. 

 

Figure 4.10: Comparison between slippage of bars at different embedment: (left) 

Concrete; (right) Grouted connections. 

However, at shorter development lengths, bars in concrete slipped significantly more. This 

was partly attributed to the exposure of the concrete cover to excessive tensile stresses and 
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its subsequent dilatation. Moreover, grouted connections had an arresting mechanism 

through the confinement effect provided by the corrugated duct. Comparable slopes were 

obtained once the failure of the specimens shifted from a mixed/pull-out to a bar fracture 

failure (10 and 12 db).  

Comparable concrete specimens had a steep softening branch after the maximum bond 

stress was attained. This can be further examined by analysing the post-maximum bond 

stress, or residual bond stress, which describes the bond behaviour after reaching its 

maximum capacity, giving insight into the additional resistance along the failing branch of 

the bond stress-slip response. Residual bond stresses were extracted by examination of 

individual bond-slip curves of grouted and concrete specimens via determining the 

corresponding bond stress of the point on the softening branch at which either a flattening 

of the curve or a sudden change in slope occurred. The recorded values are given in Table 

4.3. Grouted specimens achieved an average residual stress increase of 4.9, 15.9 and 72% 

at 2, 4 and 6 db, respectively. A possible reason would be the normal confining pressure of 

the corrugated duct specimens, enhancing the frictional aspects of the bond, which was not 

engaged until the rib bearing components of bond have been exhausted.  

4.3.3 Bond Stress - Bar Strain Behaviour 

The elongation of the bars was measured via an LVDT affixed to the testing machine 

(Figure 4.4), which monitored the relative movement between the moving and fixed heads. 

The starting point of all tests (distance between the fixed and moving heads) was kept 

constant. Hence, the initial length of the bars was taken as the distance between the upper 

end of the grips and the end of the de-bonded length. The measured elongation was then 

corrected by subtracting the recorded slip at the unloaded end. With the knowledge of the 

original and elongated lengths of the bars, the average strain during the test was calculated. 

Figure 4.11 depicts the average bond stress versus strains and provides useful insights into 

the bond behaviour (and its corresponding failure) under different bar strain levels (elastic, 

yielding, and plastic). 
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Figure 4.11: Bond Stress vs. Bar Strain for representative specimens: (Left) bars 

embedded in concrete; (right) grouted connections at 2, 4, 6, 8, 10 and 12 db embedment. 

Comparable bond stress and corresponding strain values (<0.1%) can be observed from the 

comparison of concrete and grouted specimens at 2 db embedment length. This is consistent 

with failure patterns discussed earlier. At 4 db, the grouted specimens had 7% increase in 

bond at a comparable strain (0.20 and 0.21% for grouted and concrete, respectively). Visual 

examination did not indicate bar yielding. However, this strain level is very close to the 

yield strain recorded from test coupons (0.2-0.6%). Yet, the increase in bond stress did not 

invoke tensile failure in the grouted specimens, which was the primary mode of failure of 

comparable concrete specimens. It is important to note that the concrete specimens had an 

average 28-day compressive strength 56% higher than that of the grout. At 6 db 

embedment, bars representing both groups indicated a visible yield plateau at 18.53 and 

16.51 MPa for the grouted and concrete specimens, respectively, with splitting cracks 

dominating the pull-out failure of the concrete specimens. Grouted specimens failed by 

crushing of the grout keys (pull-out) in the strain hardening zone. It is interesting to 

highlight that at an 8 db embedment; the concrete block did not suffer splitting cracks 

despite the maximum average bond stress of 18.24 MPa (10.5% increase from 6 db). This 

is a result of the engagement of additional bar ribs, which effectively reduced the transverse 

tension on the concrete cover, since the force is divided by a greater number of ribs. 



89 

 

 

Grouted specimens embedded at 8 and 10 db yielded similar observations to the grouted 6 

db specimens, all of which displayed pull-out failures at a strain level equal or slightly 

exceeding the ultimate tensile strain of the bar.  

4.3.4 Analytical Analysis 

In an attempt to mimic the behaviour of grouted connections, the analytical bond-slip law 

proposed by Eligehausen et al. (1982), BPE model was considered. This model was 

adopted by the CEB-FIP code (1990) and has been utilized by several other (El Refai et al. 

2015; Comite Euro-International Du Beton 1993; Cosenza et al. 1997; Baena et al. 2009; 

Ashtiani et al. 2013). In the present study, the model was calibrated using experimental 

results obtained from pull-out through the average bond stress calculated using Eq. 4.2 and 

the free-end slip values measured and reported in Table 4.3. The ascending branch (𝑠 ≤ 𝑠1) 

of the BPE model is expressed by the following relation: 

𝜏

𝜏𝑚𝑎𝑥
= (

𝑠

 𝑠𝑚𝑎𝑥
)
𝛼

(4.2) 

Where 𝜏 and 𝑠 are the corresponding bond stress and slip at any loading increment; 𝜏𝑚𝑎𝑥 

and 𝑠𝑚𝑎𝑥 are the maximum recorded average bond stress and slip, respectively; and 𝛼 is a 

model fitting parameter. 

According to MC90, the value of 𝛼 should be between 0 and 1 to be physically meaningful 

and a recommended value of  0.4 should be used for confined and un-confined concrete 

(Comite Euro-International Du Beton 1993). A value of 𝛼 closer to 0 implies stiffer 

response where a steep increase in bond stress is reached without much slip. The second 

branch of the model calls for a constant bond stress region (𝜏 = 𝜏𝑚𝑎𝑥) when the slip domain 

is between 𝑠1 and 𝑠2, at which point, a linearly descending branch describes the behaviour 

of the softening branch of the bond (𝑠2< 𝑠 <𝑠3). For 𝑠 > 𝑠3, a horizontal branch depicts the 

friction as 𝜏 = 𝜏𝑓. Thus, to adapt the model to the current state, parameters 𝛼, 𝑠2, 𝑠3 and 𝜏𝑓 

should be calibrated using experimental results. 
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To calibrate the parameter α, Cosenza et al. (1997) presented the following relationship: 

𝐴𝜏 = ∫ 𝜏𝑚𝑎𝑥 (
𝑠

 𝑠𝑚𝑎𝑥
)
𝛼

𝑑𝑠

𝑠1

0

= 
𝜏𝑚𝑎𝑥 . 𝑠1
1 + 𝛼

(4.3) 

where 𝐴𝜏 is the area underneath the ascending branch of each specimen. 

The parameter 𝛼 was calibrated by equating the areas underneath the ascending branch of 

the experimental data to Eq. 4.3. However, careful consideration was taken when equating 

the two areas so as not to compromise the trend of the curve (Cosenza et al. 1997). The 

goal was to calibrate the model for grouted connections, but later expanded to the concrete 

group to provide a basis of comparison between the two groups. The values of 𝛼 obtained 

for each specimen (failing in pull-out) are shown in Table 4.3.  

To facilitate the comparison between the experimental and analytical results, the goodness-

of-fit was analysed using the two-sample Kolmogorov-Smirnov test (K-S test). The K-S 

test examines the difference between experimental and analytical results at each point, thus 

it is sensitive to both the location and magnitude of the differences between two 

distributions. In a typical K-S test, the cumulative difference between two distributions is 

used to calculate the Kolmogorov-Smirnov statistic (K-S), a scalar quantity between 0-1 

that represents the maximum difference between the two distributions (Massey 1951). 

Hence, the K-S stat is a powerful tool that can be used to assess similarity (values of which 

are reported in Table 4.3). The reported K-S stat values show that experimental and 

analytical results are in good agreement, given the differences in both domains.  

The calibrated parameter 𝛼 for each specimen was used to plot the analytical envelopes for 

each specimen. Comparisons between the experimental and predicted analytical curves of 

grouted connections are depicted in Figure 4.12 for representative specimens at 

embedment lengths of 4, 6, 8, and 10 db. Good correlation can be observed between the 

analytical and actual curves. An important observation is that the analytical predictions of 

the horizontal branch, attained after the maximum bond stress was achieved, was improved 

at longer embedment (8 and 10 db).  



91 

 

 

 

Figure 4.12: Experimental results vs analytical predictions of grouted specimens based 

on the BPE model. 

Analytical results of the concrete specimens showed that the parameter 𝛼 fell in the range 

of 0.25 to 0.49 with a mean value of 0.34. Comparable grouted specimens had a range of 

0.18 to 0.26 and a mean value of 0.18. The comparatively higher values recorded for 

parameter α indicate a reduction in the stiffness of the ascending branch for concrete 

specimens. Grouted specimens had a steeper ascending branch despite the grout’s lower 

compressive strength. This is believed to be due to the duct’s pressure, which effectively 

restrained the grout and augmented the bond capacity.  

4.4 IMPLEMENTATION AND DISCUSSION 

Under the current practice, the design of grouted connections adheres to the model used by 

the ACI 318-14 following the development of reinforcing bars in tension. Several design 

equations have been proposed primarily by studies investigating grout connections in 

bridge bent applications (Steuck et al. 2009; Matsumoto et al. 2008; Brenes et al. 2006). 

Such equations (Table 4.1) are empirical expressions with similar approach to the ACI 

318-14, which was developed by Orangun et al. (1977) using statistical techniques. It is 

worth mentioning that under the current design procedures, a maximum confinement factor 

(
𝑐𝑏+𝑘𝑡𝑟

𝑑𝑏
) of 2.5 is allowed for confined concrete, and a value of 1 is encouraged, which 
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yields more conservative results. A comparison between the predictions of these models is 

plotted in Figure 4.13.  

 

Figure 4.13:Predicted bar stress at corresponding development length of various models 

(Table 4.1). 

One fundamental weakness can be observed; the developed models depict a linear 

relationship between the development length and the normalized bond stress, and 

consequently with the stresses developed in the bar. While these depictions yield simplified 

design expressions suitable for use by practitioners, they are essentially based on assuming 

uniform stress distribution along the length of developed bars, disregarding the nonlinear 

variations of the bond stress, which tends to increase with the increase in embedment. 

To facilitate comparisons with previous equations, pull-out results from five embedment 

lengths (10 specimens) tested in this study were plotted and fitted using a power regression 

curve with 98% confidence, as shown in Figure 4.13. The goodness of fit was assessed by 

the R-squared value, which was 99%. The resulting equation takes the following: 
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𝜙 𝛾𝑠 𝐿𝑑 = 𝑑𝑏

(

 0.629 − 0.0057
𝑓𝑠

√𝑓𝑔
′

)

 

−0.98

(4.4) 

where 𝑓𝑠 is the stress in the steel connector in MPa; 𝑓𝑔
′
 is the grout compressive strength 

MPa; Ld is the predicted development length and 𝛾𝑠 is a steel stress normalization factor; 

𝜙 is a safety factor taken as 1.2 to account for variability in the materials. 

Only grouted specimens failing in pull-through mode were used in the development of Eq. 

4.4 (2, 4, 6, 8 and 10 db). Since this proposed equation was intended to describe 

development lengths that mobilize the tensile capacity of bars, it is interesting to note that 

the predictions of the equation at 12 db produced a normalized bar stress that was 0.31% 

less than the average recorded from the experimental data. The development length can be 

calculated at any desired stress level in the bar. Figure 4.13 compares the predictions of 

the various models (Table 4.1) to that of Eq. 4.4. It can be observed that for a given 

development length, the level of stress prediction of the ACI 318-14 equation is greatly 

conservative. This is inherent from the fundamental difference between grouted 

connections and the behaviour of bars in concrete assumed in the ACI 318-14 model. The 

Steuck et al. (2009) model overestimated the development length requirements, even 

though a larger duct-to-bar diameter ratio was used. On the other hand, predictions from 

Brenes et al. (2006) and Matsumoto et al. (2008) underestimated the level of stress due to 

assumed failures which were not encountered in the present study. 𝛾𝑠 is given by Eq. 4.5: 

𝛾𝑠  =
𝑓𝑡
605

(4.5) 

where 𝑓𝑡 is the tensile strength of the used connector. 

The factor 𝛾𝑠 accounts for variations in steel tensile strength and adjusts Ld accordingly. 

For example, if steel having an average tensile strength of 680 MPa was used, an 

embedment length of 16.32 db should be adopted to fracture the bar versus 12 db for the 

steel used in the present study.  
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4.5 SUMMARY AND CONCLUSIONS 

An experimental program was conducted to explore the difference in behaviour between 

bars grouted in corrugated ducts versus that in concrete. Regression analysis carried out on 

the experimental results allowed deducing an empirical expression which takes into 

consideration factors influencing the bond. The results were further compared to relevant 

data retrieved from the open literature as well as the current ACI 318-14 equation. 

Moreover, the well-known BPE model was calibrated using the experimental bond stress 

versus slip envelopes. In light of the experimental and analytical effort presented above, 

the following conclusions can be drawn: 

1. Under similar conditions and regardless of the level of stress in the bar, the bond of 

grouted connections did not fail in splitting. The failure was in the form of crushing 

of the grout keys between successive ribs, which is a favoured pull-through 

mechanism, being a form of a compression failure. Control bar-in-concrete 

specimens rather suffered split tensile cracks accompanied by pulling out of the 

bars.  

2. The maximum average bond stress of grouted connections was consistently higher 

than that of its concrete counterpart for a given embedment length. The slip 

recorded after the maximum average bond stress attained was also lower, indicating 

a stiffer ascending branch. The softening branch of the bond stress-slip curve of 

grouted specimens after reaching maximum values exhibited more ductility with 

better frictional resistance than that for bars in concrete.  

3. Varying the embedment length played a vital role in the load carrying capacity of 

specimens, but did not determine the failure mechanism. Strain levels in the dowel 

bars were higher at lower embedment lengths and comparable when the 

development length was 8 db. The full capacity of the bar was achieved at an 

embedment length of 12 db. At 6 db, the bars yielded but the bond failed in the strain 

hardening zone. At the same embedment length, the bar strain did not seem to affect 

the failure of grouted connections, yet it had a detrimental effect on the failure of 

its concrete counterpart.  
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4. Predictions of the calibrated BPE model yielded satisfactory agreement with the 

experimental results. Values of the parameter 𝛼 for grouted connections indicated 

a consistently stiffer response as compared to that for the bar-in-concrete 

counterpart.  

5. A design equation was obtained using regression analysis of experimental results.  

The equation was able to predict the behaviour at 12 db with favourable accuracy. 

This equation takes into account the compressive strength of the grout, tensile 

strength of the bar, and variations in the ultimate strength of the bars. The use of 

this equation is limited to the dimensions and mechanical properties of the 

specimens used in this study. 

4.6 FURTHER RESEARCH  

The purpose of the present study was to acquire an enhanced understanding of the 

characteristic behaviour of grouted connections used in precast wall applications under 

monotonic tensile loads. The cyclic behaviour and subsequent bond deterioration should 

further be explored. Results from such studies should either confirm the validity of Eq. 4.4 

or modify it to account for seismic effects.  This study was conducted under the assumption 

that the bond of grouted connections shares the same dependencies as bars in concrete. 

However, it was observed that the confinement effect provided by the corrugated duct and 

the failure mechanisms differed substantially from that of the bar-in-concrete counterpart. 

A dedicated study to investigate this has been undertaken by the authors. This study should 

lead to the development of numerical and analytical tools that can serve for conducting a 

parametric investigation to examine those factors known to influence bond.   
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Chapter 5  

5 EXPERIMENTAL AND ANALYTICAL STUDY ON 
PRECAST CONCRETE DOWEL CONNECTIONS 

UNDER QUASI-STATIC LOADING 

 

 

5.1 INTRODUCTION AND BACKGROUND 

Grouted connections are composite connections often used to connect a variety of precast 

concrete elements. The connection is comprised of a large-diameter reinforcing bar grouted 

into a corrugated duct, bridging the horizontal joint between two vertically stacked walls. 

Grouted connections provide a straight force path extending along the height of a precast 

wall, reducing the risk of brittle failure. Two of the most common schemes of these 

connections are illustrated in Figure 5.1, with detail 1 being the most prevalent. It is shown 

that bond is the main mechanism through which grouted connections achieve composite 

action. 
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Figure 5.1: Common schemes of grouted connections used in precast walls. 
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Currently, grouted connections are designed in accordance with the recommended 

development length in tension of ACI 318-14 (Sections 25.4.2.3), which treats the 

connection as a bar-in-concrete scheme. A recent study questioned the efficacy of this 

assumption and showed that grouted connections did not suffer sudden splitting failures 

owing to the passive confinement effect of the duct (Elsayed & Nehdi 2017). In the absence 

of dedicated design provisions that reflect the composite action between the corrugated 

duct and the grout, designers and precast fabricators tend to over-design these connections, 

thus increasing field grouting operations. For example, the recommended development 

length of a 25-mm bar is typically 1200 mm for a concrete with a compressive strength, fc
’ of 

27 MPa. Such excessive grouted lengths could result in a wall panel with reduced stiffness 

because excessive deformations can result in spalling of the concrete along the length of 

the corrugated duct (Seifi et al. 2015). Despite its extensive use in precast wall structures, 

a dearth of information on grouted connections currently exists in the open literature, 

particularly under cyclic loads.  

For instance, a single study was found in the open literature directly addressing this type 

of connection under cyclic loading. This investigation conducted by Raynor et al. (2002) 

studied grouted connections typically used in hybrid precast frames (small cover/diameter 

ratio). The specimens were subjected to a constant amplitude and variable displacement 

history. The bars had short embedment and the specimens were sufficiently confined. Their 

experimental results indicate that bond stresses due to cyclic loads are 10 to 70% less than 

those from monotonic loading, depending on the level of slip. It was shown that grouted 

connections behave differently from their bar-in-concrete counterparts. However, the 

reported data in this study were mostly qualitative and lacked experimental evidence on 

the real failure mechanisms.  

Other studies on precast walls having grouted connections briefly reported on some 

behavioural aspects of these connections. For example, Seifi et al. (2015) tested under 

cyclic loading precast walls having grouted connections that use 16 mm bar and a grouted 

length of 37.5 db. The panels did not suffer premature failure and displayed favourable 

ductile behaviour characterized by panel sliding via yielding and elongation of the 

connection reinforcement. Other studies acknowledged the ductility and favourable energy 
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dissipation of grouted connections. However, large embedment lengths were used in such 

studies and no information pertaining to the bond of the connections was reported (Kang 

et al. 2013; Peng et al. 2015; Pang et al. 2010). 

When a deformed bar is pulled/pushed under a cyclic load, adhesion is first lost, then 

mechanical bearing of the ribs is the primary mechanism of bond. The line of action of the 

bearing force resultant is approximately 30° (ACI Committee 408.2R 2012). This value 

strongly depends on various influential parameters, including the geometry of the lugs, 

confinement and the characteristics at the cement-aggregate interface. The exact value of 𝜃 is 

not known and remains a matter of great contention in the open literature. This concept was 

originally proposed by Lutz & Gergely (1967) and experimentally verified by others. For 

example, Cairns & Jones (1996) observed an inclination angle of 45°. Similar observations 

were made by Goto (1971), who observed that the initiation of cracks at the bar-concrete 

interface occurs at an angle of approximately 60°. More relevant experimental studies on 

precast concrete connections reported similar findings. For example, Steuck et al. (2009) 

reported conical grout break-out failures forming an angle of 45- 60° with the longitudinal axis 

of the bar in grouted connections. Ameli & Pantelides (2017) and Parks et al. (2016) reported 

similar break-outs with an angle of 45° in grouted splice sleeves. 

The amount of damage accumulation is strongly dependant on the strain range of the cycles 

and the type and rate of loading (RILEM TC 65-MDB 1986; Shah & Chung 1986).  The 

escalating slip due to constant amplitude cyclic loading decreases after the first few cycles. 

According to the Palmgren-Miner Hypothesis, the relationship between damage 

accumulation and number of cycles is linear at a certain load level. To further induce slip, 

loading should approach or exceed that in the previous cycle (Balzas 1986; ACI Committee 

408.2R 2012). Transverse reinforcement can delay the occurrence of splitting failures 

resulting from cyclic loads. If sufficient restraining action is provided, the failure can shift 

from splitting to pull-out failure (Eligehausen et al. 1982b; Stavridis et al. 2013). The 

relationship between the anchored length of the bar and the number of cycles to pull-out is 

not understood quantitatively. Per the ACI Committee 408.2R (2012) guidelines, the 

anchored length is proportional to the total number of cycles required to achieve a pull-out 

failure. 
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Considering the current knowledge gaps and lack of data, the cyclic behaviour of grouted 

connections is explored in the present study through a carefully designed experimental 

methodology. The primary objectives are fourfold: i) devise an experimental scheme that 

eliminates the spurious effects known to be associated with bar bond testing; ii) explore 

the cyclic behaviour of grouted connections under realistic specimen and loading 

conditions; iii) provide quantitative evidence on the confinement of the corrugated duct 

and exploit this information to calibrate a frictional model; and iv) develop an empirical 

equation capable of predicting the capacity of the connection under a desired level of stress 

in the dowel and compare it with a similar model developed by the authors for grouted 

connections under monotonic loading (Elsayed & Nehdi 2017).  

5.2 EXPERIMENTAL SETUP 

In the present study, the behaviour of grouted connections under cyclic loading was 

explored under realistic field conditions. The novel specimen form presented in this study 

was designed to accurately reflect the state of stress arising in grouted connections in the 

critical zones of precast shear walls.  A total of 16 specimens were tested. The effects of 

changing the embedment length and wall thickness of the duct were investigated. Two 

identical specimens were tested for every set of parameters to ensure reproducibility of the 

data. The average of results on the two specimens was used in the analysis. Details on the 

materials, specimens, instrumentation and loading are provided in subsequent sections.  

5.2.1 Materials Testing 

Tests performed on the materials were done as per corresponding ASTM standards. The 

concrete used in the study was manufactured and placed in a precast production facility 

and was subject to strict quality control protocols. The mechanical properties of the 

concrete and grout were assessed using ASTM C39 (2016) for compressive strength;  

ASTM C496/C496M (2011) for splitting tensile strength; ASTM C469/C469M-14 (2014) 

for modulus of elasticity. The mixture proportioning and mechanical properties of the 

concrete and grout are reported in Table 5.1 and Table 5.2, respectively. The average 

compressive and tensile strengths of the concrete were 61.6 and 5.7 MPa, respectively. The 

grout used was a proprietary non-shrink cementitious mixture with average compressive 
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and tensile strengths of 39.9 and 6.3 MPa, respectively. It should be noted that the grout 

compressive strength was achieved from cylinders constructed based on actual field 

observations made by the authors from a number of precast wall site visits. An identical mix 

was reproduced in the lab to be reflective of actual field conditions. 

Table 5.1: Concrete mixture proportions 

Mixture Constituents Per 1 m3 

Concrete 

Grey Type 30 Cement 435 kg 

Sand 842 kg 

14-mm round aggregate 842 kg 

Water 200 L 

Air 5% 

Air Entraining agent/lubricant 20 ml/100 kg of cement 

High Range Water Reducer 
630 ml/100 kg of 

cement 

Total 2,322 kg 

Grout 

Proprietary non-shrink high-strength formulation conforming to ASTM C1107. 

Table 5.2: Mechanical properties of concrete and grout 

Material Age 

Compressive 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Young's 

Modulus 

(MPa) 

Poisson's 

Ratio 

Concrete 
7 53.7 5.1 26075 0.255 

28 61.6 5.7 26036 0.234 

Grout 
7 38.4 4.5 20712 0.229 

28 39.3 6.3 22713 0.235 

All metallic materials were tested to determine their tensile capacity according to the 

ASTM 370 (2014). The dowel bars consisted of Grade 400, 25.4 mm diameter, No. 8 

reinforcing bar with an average measured yield strength of 524.5 MPa. Duct A was 

constructed by winding a 72.5 mm light-gauge steel strip into the cylindrical form of the 

duct. The end of the strip had a lip that interlocked with a successive strip over a length of 

4 mm creating a crimped seam. Duct B had a similar construction, but the strip length was 

28.9 mm and the overlapping had a length of 3 mm. The cross-sectional details of both 

types of ducts are illustrated in Figure 5.2. The sleeves had variable thicknesses (Figure 

5.2) and an average tensile strength of 225.6 MPa. All metallic materials were sourced 

from the same supplier and from the same heat. Further details on mechanical properties 

are reported in Table 5.3.  
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Table 5.3: Mechanical properties of metallic materials 

Bar Type 

Yield 

Stress 

(MPa) 

Tensile 

Strength 

(MPa) 

Ultimate 

Strain 

(%) 

Failure 

Strain 

(%) 

Rebar 524.50 680.18 12.30 24.44 

Sleeve (A & B) 225.59 244.62 10.0 20.0 

 

 

Figure 5.2: Corrugated ducts 

5.2.2 Specimen Details 

The test specimens were carefully designed to mimic field conditions pertaining to precast 

shear wall construction, as shown in Figure 5.3. The specimen was comprised of a 

reinforced concrete block that had dimensions of 254 x 254 x 406.4 mm where 254 mm is 

a typical width for precast shear walls. A 76.2 mm corrugated duct was placed 

concentrically in the middle of the specimen. To assist in the application of the load, four 

16 mm threaded rods (ASTM A1035) were used to reinforce the block longitudinally. The 

bars were designed against breakout as per the requirements of the PCI handbook and 

placed 50.8 mm away from the corners of the specimen. The rods protruded 203 mm from 

the bottom of the specimen, while a 101-mm thick steel cradle was used to adapt the 

Duct A: Thickness 0.6 mm 

Duct B: Thickness 0.3 mm 
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specimen to the loading machine. Transverse reinforcement was in the form of 10 mm, 

closed branch, stirrups spaced 203.4 mm apart.  

Plan

CORRUGATED

SLEEVE

a

THREADED

ROD

Section a-a

a

STIRRUP

 

Figure 5.3: Details of the test specimen 

The dowel bar used in this study was No. 8. The bars were de-bonded by wrapping it with 

2-mm thick polystyrene wrap. The bonded length varied depending on the embedment 

length of the specimens (4, 6, 8, 10, 12, 14 and 16 db embedment were considered in this 

study). The embedment lengths were chosen such that they allow for the assessment of the 

elastic and inelastic bond response of the specimens. After placing of the de-bonded bars 

inside the duct, the non-shrink high strength grout was mixed and placed. The grout was 

mixed at low speed for 10 min and at high speeds for 5-min. Water (about 3.75 L) was 

added until a flowing consistency was achieved. Grouting was then done in the vertical 

position, similar to full-scale field grouting applications. Subsequently, the specimens were 

left to cure for 28-day at a temperature of 22 °C and relative humidity of 60%. 

5.2.3 Test Setup, Instrumentation and Loading 

After completion of the curing, specimens were mounted in a universal 630 kN MTS 

machine. This was done by adapting the specimen to the jaws of the machine via a high 

strength steel adaptor plate having a diameter of 280 mm and thickness of 101 mm. The 
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plate was used to allow the load to be distributed to the four threaded rods embedded in the 

specimen, as shown in Figure 5.4. The threaded rods were then fixed to the plate with the 

aid of lock washers after the plate was levelled in both directions. The use of the threaded 

rods to transmit the tensile force to the concrete (thus placing the grouted duct, concrete 

and the reinforcing bar in tension), subjected the specimen to a realistic stress state 

mimicking that encountered in the field. More importantly, it allowed the boundary 

conditions of the specimens to be free from any supplementary compressive fields 

(associated with classic pull-out tests) that may artificially enhance the bond of the bars.  

LVDT

NO.8

REBAR

FIXED HEAD

MOVING HEAD

DE-BONDED REGIONS

16MM

THREADED

RODS
280MM DIA

STEEL ADAPTOR PLATE

NON SHRINK HIGH STRENGTH

GROUT

CONCRETE

SPECIMEN

LVDT

CORRUGATED

DUCT

50MM EXTENSOMETER

 

Figure 5.4: Test setup and instrumentation. 

Two linear variable displacement transducers (LVDT) were used to capture the 

displacement of the bar at the active and passive ends. The strain in the bar was measured 

using an MTS extensometer with a sensitivity of 1 x 10-3 mm. Additionally, the 

extensometer reading was used to apply the load in strain (displacement) control. The 

horizontal strains in the corrugated duct were measured using two, 120-ohm, 5 mm strain 

gauges placed approximately 100 mm away from the active and passive ends. Readings 

from the strain gauges and LVDTs were recorded with an external DAQ machine with a 

frequency of 12 reading/second.  
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The load cycle adopted in the tests is shown in Figure 5.5. Since grouted connections are 

often used with a Type II mechanical coupling device capable of developing 100% the 

tensile capacity of the bar per the requirements of ACI Committee 318 (2014) as shown in 

Figure 5.1 – Detail 1, it is important that neither the coupler nor the composite duct fail 

below a required strain level. Hence, testing the connection under the same cycle, used to 

certify the coupling device, made sense from an integrity perspective. The threshold 

specifying the minimum acceptable performance of a Type II mechanical coupler is 

specified by the provisions of AC133-1209-R1 and allows exposing the connection to a 

series of low cycle excitations at critical strain values (AC133-1209-R1 2010). The cycle 

was modified such that no compression was applied unto the test specimen. The rationale 

for limiting the compression can be further understood by the consideration of Figure 5.6. 

Inherent from the nature of precast wall detailing practices, the connections are customarily 

placed 0.4-0.6 m away from the extreme fibre in tension or compression (away from the 

specially confined zone dark red zone in Figure 5.6). It is also customary in precast 

construction practices, to place a 25.4 mm layer of high strength (> 60 MPa) non-shrink 

dry pack grout, which is typically placed between the walls. Dependent on the location of 

neutral axis along the length of the wall, the connection will be subjected to limited 

compressive stresses (from in-plane flexure). The compressive demands on the 

connections are thought to be critical only if this dry pack layer has completely crushed. 

Even with such failure, allowing the panel to rotate so that the toe of the precast wall 

engages additional compression, is expected to exhaust the tensile capacity of the 

connection in tension. Hence, to allow the connection’s behaviour to be assessed under 

realistic field conditions pertaining to precast shear walls, the cycles were adjusted so that 

no compression was applied unto the bars. 
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Figure 5.5: Loading cycle. 
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Figure 5.6: Compression in Dry Pack grout. 
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A total of 28 unidirectional cycles were applied to each specimen, as shown in Figure 5.5. 

The first 20 cycles were applied in load-control and reached up to 95% of the bar’s yield 

stress. The next 8 cycles were applied under displacement-control up to strain levels of 200 

and 500% of the yield strain, respectively. The bars were then pulled monotonically until 

failure. Low-cycle fatigue of the bars was not anticipated since: the strain cycles where below 

the limit of 0.85 𝜀𝑢𝑙𝑡; the presence of a de-bonded region of the bar close to the loaded end, 

helped alleviate strain concentrations. It should be noted that the end of each cycle (Figure 

5.5) corresponds to a zero-force condition and not to zero strain. All the cycles were applied 

with a rate of 0.5 mm/s. After failure, the test was halted until all instrumentation was 

removed, after which, the bar was pulled for the profile of the ribs to be examined. 

5.3 EXPERIMENTAL RESULTS AND OBSERVATIONS  

Two specimens were tested for each set of parameters to verify repeatability of the results. 

The average of the two measured responses was used for analysis purposes unless 

otherwise mentioned. A summary of the response of the tested specimens is presented in 

Table 5.4. The applied load was obtained directly from the built-in load cell of the MTS 

machine. The top displacement LVDT reading was corrected by subtracting the recorded 

elongation of the bar at each strain increment (Extensometer reading). The displacement at 

the unloaded end was obtained directly from the bottom LVDT (Figure 5.4).  
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Table 5.4: Test results of specimens 

(1)Specimen 

Tag 

Fail-

ure  

L1 

(kN) 

L20 

(kN) 

L28 

(kN) 

Lmax 

(kN) 

Llast 

(kN) 

FD1 

(mm) 

FD20 

(mm) 

FD28 

(mm) 

FDmax 

(mm) 

FDlast 

(mm) 

LD1 

(mm) 

LD20 

(mm) 

LD28 

(mm) 

LDmax 

(mm) 

LDlast 

(mm) 

f1 

(MPa) 

f28 

(MPa) 

fmax 

(MPa) 

'C-4-D1' P 165.0 - - 165.0 165.0 0.3 - - 0.3 0.3 (2) NA 325.6 - 326.0 

'C-4-D2' P 180.0 - - 180.0 180.0 0.4 - - 0.4 0.4 1.6 - - 1.6 1.6 355.2 - 365.1 

'C-6-D1' P 228.1 - ` 228.1 226.4 0.4 - - 0.4 1.0 1.0 - - 1.0 2.0 450.2 - 450.2 

'C-6-D2' P 219.6 - - 219.6 219.6 0.4 - - 0.4 0.4 1.8 - - 1.8 1.8 433.4 - 433.3 

'C-8-D1' P 228.1 222.7 - 228.1 222.7 0.0 0.6 - 0.0 0.6 0.9 1.6 - 0.9 1.6 450.2 - 451.3 

'C-8-D2' P 228.1 - - 228.1 224.3 0.1 - - 0.1 0.4 0.9 - - 0.9 1.1 450.2 - 450.5 

'C-10-D1' P 228.1 227.7 243.0 303.6 303.6 0.0 0.2 0.4 1.7 1.7 0.8 0.9 2.9 6.1 6.1 450.2 479.6 599.2 

'C-10-D2' P 228.1 226.5 239.7 292.4 292.4 0.0 0.3 0.9 2.0 2.0 0.3 0.9 2.0 (2) NA 450.2 473.1 588.4 

'C-12-D1' P/SS 228.2 227.6 240.8 308.1 308.1 0.0 0.1 0.2 0.2 0.2 0.1 0.2 1.3 1.8 1.8 450.4 475.2 608.6 

'C-12-D2' P/SS 227.7 228.7 256.8 297.1 297.1 0.0 0.2 0.0 0.0 0.0 0.3 0.4 1.2 1.7 1.8 449.4 506.8 586.4 

'C-14-D1' P 228.0 228.4 - 249.0 249.0 0.0 0.9 - 1.7 1.7 1.0 1.5 - 1.6 1.6 450.0 - 492.2 

'C-14-D2' P/SS 228.2 228.6 240.6 303.9 303.9 0.1 0.2 0.4 0.2 0.2 0.3 0.4 1.4 2.0 2.0 450.4 474.8 599.8 

'C-16-D1' P/SS 228.3 228.2 248.3 296.7 296.7 0.0 0.6 1.3 1.4 1.4 0.2 0.2 1.7 2.7 2.7 450.6 490.0 585.5 

'C-16-D2' P/SS 228.3 228.0 244.3 314.1 314.1 0.1 0.2 0.2 1.1 1.1 0.3 0.4 1.3 3.6 3.6 450.6 482.2 619.8 

'C-16-D3' F 228.7 228.0 253.9 344.0 344.0 0.1 0.1 0.1 0.1 0.1 0.2 0.4 1.8 2.1 2.1 451.4 501.1 680.0 

'C-16-D4' F 227.6 228.2 240.8 339.3 339.3 0.1 0.1 0.2 0.2 0.2 0.1 0.2 1.3 1.8 1.8 449.2 475.2 670.3 
Note: L1, L20, L28 = load at the peak of the 1st, 20th, and 28th cycle, respectively. FD1, FD20, FD28 and LD1, LD20, LD28 = displacement at the peak of the 1st, 20th, and 28th 

cycle at the free and loaded ends, respectively. P, SS and F = pull-out, duct splitting and bar fracture failures, respectively. f 1, f28, fmax = stress corresponding to 1st cycle, 20th 
cycle, and maximum;  

  
 

  
 

(1) C refer to Cyclic load; 6, 8, 10, 12, 14, and 16 refer to the bar anchored length, respectively; D refers to Grade 60 rebars   
 

(2) NA refer to equipment failure   
 

(3) Specimen C-14-D1 first test was aborted after 24 cycles due to slippage of the Extensometer for which the test had to be repeated.   
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The specimen label is as follows: the first character represents the type of loading (C for 

cyclic). The second numeral represents the embedment length (4, 6, 8, 10, 12, 14 and 16 

db). This was followed by a character that represents the type of bar used (D for deformed 

steel rebar). The subsequent numeral reflects the specimen number in its group (1 or 2). 

For example, C-14-D2 refers to the second deformed bar specimen with an embedment 

length equal to 14 times the bar diameter tested under cyclic load.  

The average bond stress was used to compare the bond of different specimens. Although 

this does not represent an accurate depiction of the distribution of stresses along the 

embedment, most researchers reporting on bond often resort to this simplification. This 

approximation yields acceptable results in the range of 3-7 db (Tastani & Pantazopoulou 

2010). Averaging the bond stresses over the embedment length usually gives an under-

estimated figure of the local bond stresses. (Tastani & Pantazopoulou 2010) reported local 

bond stresses 4% to 38% higher than the average bond stress. ACI-408.2R-12 (ACI 

Committee 408.2R 2012) reports that local bond stresses can be 4 to 5 times the average 

stress. The assumption of average bond stress can be supported by three arguments: i) the 

ACI 318-14 equation for development length in tension, assumes uniform bond stress. 

Given that the local bond stresses are believed to be higher, a uniform bond stress 

assumption presents a conservative estimate (Orangun et al. 1977); ii) an accurate 

measurement of the local bond stresses cannot be determined without extensive 

instrumentation given the fact that bond cannot be measured directly; and iii) this 

assumption is encouraged by the ACI committee 408 which states that: “it is both 

convenient and realistic to treat bond forces as if they were uniform over the anchored, 

developed, or spliced length of the reinforcement” (ACI Committee 408 2003; ACI 

Committee 408.2R 2012). Thus, in the present study, the average bond stress was 

calculated via dividing the load by the surface area as show in Eq. 5.1: 

𝑈 =  
𝐹

𝜋 𝑑 𝐿𝑑
(5.1) 

Where 𝐹 is the tensile load; 𝑑 is the nominal bar diameter; and 𝐿𝑑 is the bar embedment 

length. 
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5.3.1 Load vs. Displacement 

The load and displacement vs. time responses for representative specimens are shown in 

Figure 5.7. Additionally, recorded values of the displacement measured after 1, 20, 28 

cycles are reported in Table 5.4. Specimens with anchorages of 4, 6 and 8 db were all 

subject to elastic bar strains and all failed during the first 20 cycles, where the load varied 

between 0 and 228 kN (95% the yield stress). The overall trend for these specimens was 

similar in the sense that a stable progression of slip was observed as more cycles were 

imposed. Specimens with an embedment length of 4 db failed during the first cycle 

(monotonic envelope) with an average peak load of 172.5 kN. The increase in the load was 

accompanied by an increase in displacement at the loaded end, which started earlier during 

the loading procedure. Displacement at the unloaded end was not observed until the load 

peaked. The average displacement at the loaded and unloaded ends were 1.6 and 0.36 mm, 

respectively. At 6 db, 3 cycles were needed to fail the bars in pull-through mode. During 

the first cycle, a similar trend to their 4 db counter parts was observed. As the load was 

decreased during the descending branch of the first cycle, some irrecoverable slip was 

observed. The loaded end slip at the peak of the 1st, 2nd and 3rd cycles was 0.97, 1.59 and 

1.61 mm, respectively. Most of the damage to the anchorage occurred during the first cycle. 

However, this damage stabilized during subsequent cycles and was not accompanied by 

apparent cracking inside the grout cylinder. Similarly, specimens with an anchored length 

of 8 db incurred damaged characterized by irrecoverable slip that progressed in an almost 

linear fashion. Yet, this damage was not observed until the 4th cycle, as shown in Figure 

5.7. Comparison between the 6 db and 8 db specimens suggests that an increased anchorage 

length delayed the progression of slip as a longer embedment engaged additional ribs of 

bars. The grout flowing consistency and low elastic shrinkage characteristics are believed 

to be reasons that magnify this behaviour. However, this damage progression was not 

accompanied by a reduction in load before failure was manifested.  
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Figure 5.7: Load vs displacement responses at various embedment lengths obtained from the cyclic load tests. 

A 
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The response of specimens embedded at 10, 12, 14 and 16 db mobilized an inelastic bar 

scenario (Figure 5.7). Examination of the response of these specimens indicates some 

similarities and differences compared to their elastic counterparts (4, 6, and 8 db). For 

instance, no degradation in the load carrying capacity of the specimens was observed during 

the test, except during the second 4 cycles of the procedure, which is due to bar yielding. 

Also, the progression of damage remained constant within the strain ranges of the cycles 

administered. The major observed difference between the response of elastic and inelastic 

bars was in terms of the rate of slip progression and the maximum slip domain.  

At embedment of 10 db, the slope of the slip response exhibited stiffer response compared 

to its 8 db counterpart. This was also observed when the embedment length was 12 db, 

beyond which, the slope stiffness appeared to remain constant. All specimens embedded at 

10, 12, 14 and 16 db equipped with a duct B failed at an average ultimate load of 302.7 ± 

7.46 kN, at about 88% of the tensile strength of the bars, before duct rupture was observed. 

Specimens constructed with a duct A (Figure 5.2) displayed similar response to that of 

their corresponding duct B counterpart, except that they failed via bar rupture mobilizing 

the tensile capacity of the bar.  

5.3.2 Failure Modes 

The failure of representative specimens is illustrated in Figure 5.7 and Figure 5.8. 

Specimens embedded at 4, 6, 8 and 10 db failed by pull-out through shearing of the grout 

keys between ribs. Considering these failures in light of the total number of cycles at failure 

gives indication to whether plasticity of the dowel bars influences the failure. Specimens 

with 4 db embedment failed via a pull-through mode at the first cycle (monotonic envelope). 

Specimens with 6, 8, 10 db embedment failed at an average number of cycles of 2.5 (95% 

fy), 15 (95% fy), 28 (500% εy), respectively. Similar failure could be observed at both the 

elastic and inelastic strains in the dowel bar. At 4, 6, 8 and 10 db, cracks were neither 

observed inside the grout cylinder near the active and passive ends, nor in the concrete 

blocks. At 12 db, no cracks were registered in the grout cylinder. Yet, large radial cracks 

started to from in the concrete block as the load exceeded 290 kN and approached the 

capacity of the specimen (300 kN), as observed in Figure 5.8. These cracks grew rapidly 
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in width, but did not propagate towards the unloaded end. This is believed to be due to the 

onset of splitting in the duct, which occurred along the crimped seam (Figure 5.2). This 

was confirmed when similar failures were suffered by specimens at 14 and 16 db, all of 

which failed by a mixed mode (pull-through + duct splitting), as shown in Figure 5.9. 

Rupture of the duct took place at very low slip levels and was observed only in the case of 

longer anchorages. From the trend of failures observed, the rupture was a result of the strain 

penetration, which was magnified when the last eight load cycles were applied. Once the 

rupture of the duct occurred, it led to extensive cracking and the formation of a plastic hinge 

around the location of the rupture as observed in Figure 5.9. 

 

Figure 5.8: Rib profiles of failed specimens [from top left to right]: C-4-D1; C-6-D1; C-

8-D2; C-10-D2; C-12-D2; C-14-D2. 
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his could also be captured through negative slip reading (due to rotation) at the unloaded 

ends (Figure 5.7 Point A). Examining Figure 5.10, the duct rupture is believed to be the 

result of a localized failure perpendicular to the seam due to the resultant of the tensile 

forces Fres. Two components contribute to Fres: a primary component resulting from the 

lateral expansion of the grout (F1); and a secondary component from the direct pulling of 

the bar due to the composite action (F2). The local loss in confinement can be observed in 

Figure 5.8. since partial cones appeared on the profile of the ribs where the duct rupture 

was characterized. Specimens equipped with duct A (C-16-D3-SA – and C-16-D4-SA) 

sustained all loading cycles and failed by fracturing of the bar at ultimate stresses corresponding 

to those reported in Table 5.3. 

 

Figure 5.9: [Left] Duct rupture (C-16-D2); [Center] Expanded grout as confinement is 

lost (C-16-D2); [Right] Additional confinement causing bar fracture (C-16-D4). 
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Figure 5.10: State of stress on an elementary strip of the duct. 

5.3.3 Passive Confinement Effect 

A typical load vs. duct strain response near the loaded end of a representative specimen is 

displayed in Figure 5.11. Duct strain values and corresponding stresses are given in Table 

5.5. The present study can provide quantitative evidence of the confinement effect provided 

by the corrugated duct, which is only found in the literature in qualitative terms (Raynor et 

al. 2002). The values of the hoop strain in the duct can be beneficial in two ways: i) it gives 

the magnitude of the passive confining field providing restraint to the grout; and ii) reflects 

the level of damage in the grout since an increase in slip corresponds to an increase in the 

radial displacement of the grout near the bar. It is thus believed that an increase in the 

irrecoverable slip would be accompanied by a corresponding increase in the hoop tension 

in the duct, as can be observed in Figure 5.11. At the peak of the 1st and 20th cycles, the 

recorded duct strain was 1890 and 2480, respectively. This 31.2 % increase in hoop strain 

indicates grout damage. The overall trend of the specimens at different anchored lengths 

followed that of Figure 5.11, except that: i) at shorter anchored lengths, the measured peak 
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hoop strain was higher and decreased as the embedment length increased (Table 5.5); and 

ii) at longer embedment lengths, the increase in hoop strain (at the 20th cycle) was 

proportional to the increase in embedment. This was anticipated since the effect of yield 

penetrations increased slip at the loaded end (Figure 5.7). For long embedment lengths (10, 

12, 14, and 16 db), the average duct strain at the end of the 28th cycle was approximately 

50% more than that recorded at the 1st cycle. At 4 and 6 db anchorages, the corresponding 

confinement pressure generated by the duct was 20.7 and 16.6 MPa, respectively. This 

confirms previous findings in the literature suggesting that  a confining stress equivalent to 

0.25 fc’ can completely suppress splitting bond failures (Tastani & Pantazopoulou 2008). 

Similar observations were also made by the authors (Elsayed & Nehdi 2017) comparing 

grouted connections to bars in concrete prisms at 4 db under monotonic loads, attributing 

this to the duct confinement, although no measurements of the duct strains were reported.  

 

Figure 5.11: Load vs. hoop duct strain [specimen C-8-D1]. 
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Table 5.5: Frictional model results 

Specimen 

Tag 

εs,max 

(microStrain)  

σduct 

(kN) 

Umodel 

(kN) 

Uexp 

(kN) 

Error 

(%) 
Rd 

'C-4-D1' 6800 19.28 22.55 20.38 -10.69 0.007 

'C-4-D2' 6028 17.09 21.18 22.82 7.19 0.007 

'C-6-D1' 4000 11.34 17.55 18.76 6.43 0.008 

'C-6-D2' 3580 10.15 16.80 18.06 6.93 0.009 

'C-8-D1' 2500 7.09 14.88 14.10 -5.47 0.012 

'C-8-D2' 1910 5.41 13.82 14.08 1.81 0.010 

'C-10-D1' 4227 11.98 17.96 14.98 -19.90 0.110 

'C-10-D2' 2545 7.21 14.96 14.71 -1.66 0.110 

'C-12-D1' 1730 4.90 10.18 12.68 19.71 0.130 

'C-12-D2' 2097 5.94 10.66 12.22 12.74 0.100 

'C-14-D1' 3443 9.76 12.41 8.79 -41.26 0.010 

'C-14-D2' 1618 4.59 10.04 10.71 6.31 0.119 

'C-16-D1' 2000 5.67 10.53 9.15 -15.13 0.100 

'C-16-D2' 2294 6.50 10.92 9.68 -12.72 0.130 

'C-16-D3' 1605 7.58 11.41 10.62 -7.42 1.000 

'C-16-D4' 1332 6.29 10.82 10.29 -5.15 0.990 

Note: ε s,max = peak strain in duct; σ duct = peak confining stress; Umodel= average bond 

strength (frictional model); Uexp= average bond strength from (experimental); Rd = ductility 
ratio  

5.3.4 Ductility 

When used in precast shear walls, grouted connections are designed and constructed to 

provide ductility to the assembly through the yielding of the bars crossing the horizontal 

joint. To assess this, a ductility ratio was used to compare the tested specimens and its 

values are given in Table 5.5. The ductility ratio was calculated per Eq. 5.2 as follows: 

𝑅𝑑 = 
𝜀𝑚𝑎𝑥
𝜀𝑢𝑙𝑡

(5.2) 

where 𝜀𝑚𝑎𝑥 is the peak strain developed in the bar; 𝜀𝑢𝑙𝑡 is the coupon strain at failure (an 

average value of 2 coupons as given in Table 5.3). 

Figure 5.12 exhibits the ductility ratio vs. embedment length of the tested specimens. 

Specimens at 4, 6, and 8 db embedment all failed at an average ductility ratio of 0.009 and 

COV 22.35%. These values were 0.115% and 3.2% when the anchored length was between 

10 and 16 (duct B) db. The difference in ductility observed between these two groups of 

specimens was due to the flow of plasticity in the bars. Comparison of the specimens 10 to 
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16 db (duct B) to their 16 db (duct A) counterparts is possible since all such specimens 

endured the exact number of cycles, had similar failure modes, and failed under the same 

load (302.7 ± 7.46 kN). The ability of duct A in mobilizing the capacity of the bar (thus 

invoking a ductile failure) was directly related to the thickness of the duct, despite the 

corrugated duct’s dis-continuity along their axial direction. Their behaviour was similar to 

those of cast iron splice sleeves (Haber 2013; Ameli & Pantelides 2017). Accordingly, when 

duct A is used, a fully ductile failure is possible between 10 and 16 db. This is yet to be 

confirmed in future work. Also, an increase in embedment by two bar diameters (from 8 to 

10 db), increased the ductility ratio by approximately one order of magnitude, which is 

attributed to the non-linearity of the bond distribution between the two embedment lengths. 

Similar observations were reported by Bonacci (1994) considering the design of yielding 

anchorages, which suggests that the boundary between acceptable and nonacceptable 

anchorage occurs rather abruptly.  

 

Figure 5.12: Ductility at different anchored lengths. 
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5.3.5 Effects of Induced Compression 

 

Figure 5.13: Comparison between results for 6 db grouted connections using the test 

setup shown in Figure 5.4 (no compression) and test setup shown in Figure 4.4 

(compression). 

To highlight the effects of the boundary conditions on the response of the tested specimen, 

a comparison between the results of 6 db specimens is made for the setup shown in Figure 

5.4 and Figure 4.4. The average bond stress versus free end slip is plotted in Figure 5.13. 

The maximum bond stress was 18.05 and 21.71 MPa for the non-compression and 

compression specimen, respectively. An increase of 20% was observed. Additionally, the 

slip at the onset of the bond strength was delayed for the compressed specimen as a result 

of the additional confinement. This observation further emphasizes the discussion on the 

influence of the specimen form on its bond response as mentioned in the preceding sections.  

5.4 PREDICTIONS OF FRICTIONAL MODEL 

One of the simplest models that describe the stress transfer in bonded regions is the 

frictional model described by Cairns & Jones (1996) based on a Mohr-Coulomb envelope. 

This model relates the average shearing stresses developed along the lateral surface of the 

bar (average bond stress) to two main components: i) the confining pressure with the 

coefficient of friction being the constant of proportionality; and ii) adhesion stresses (an 
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intrinsic property of the interfacial properties of the assembly). The model is given by Eq. 

5.3 as follows: 

𝑓𝑏𝑜𝑛𝑑 =
2𝜇

𝜋
𝑓𝑐𝑜𝑛 + 𝑓𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 (5.3) 

where 𝑓𝑏𝑜𝑛𝑑 is the average bond strength; 𝜇 coefficient of friction; 𝑓𝑐𝑜𝑛 is the confining 

stress; and 𝑓𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 is the adhesion stress developed along the interface.  

Before calibration of this expression, considering the equilibrium of forces along the 

anchored length of the bar is necessary to accurately estimate the model parameters. Figure 

5.14 shows a schematic illustration of an anchored bar of a grouted connection. The 

confinement stress 𝑓𝑐𝑜𝑛, is broken down into contributions from the grout cover, stirrups 

and duct pressure, as given by Eq. 5.4: 

𝑓𝑐𝑜𝑛 = 𝑓𝑠𝑙𝑒𝑒𝑣𝑒 + 𝑓𝑠𝑡𝑖𝑟𝑟𝑢𝑝 + 𝑓𝑐𝑜𝑣𝑒𝑟 (5.4) 

Where 𝑓𝑠𝑙𝑒𝑒𝑣𝑒 is the confinement pressure of the duct; 𝑓𝑠𝑡𝑖𝑟𝑟𝑢𝑝 is the contribution to 

confinement from the stirrups; and 𝑓𝑐𝑜𝑣𝑒𝑟 is the hoop tension in the grout cylinder. From 

the equilibrium of forces (Figure 5.14), it follows that: 

𝑓𝑠𝑙𝑒𝑒𝑣𝑒 = 
2𝑡𝑠𝐸𝑠𝜀𝑠 

𝑑𝑏
(5.5) 

𝑓𝑠𝑡𝑖𝑟𝑟𝑢𝑝 = 
0.33𝐴𝑠𝑡𝑓𝑠𝑡  

𝑑𝑏 . 𝑠
(5.6) 

𝑓𝑐𝑜𝑣𝑒𝑟 = 
𝑓𝑡′ . 𝑐

𝑑𝑏
(5.7) 

where 𝑡𝑠, 𝐸𝑠, and 𝜀𝑠 are the duct thickness, modulus of elasticity, and peak strain, 

respectively; 𝐴𝑠𝑡, 𝑓𝑠𝑡, 𝑠 are the stirrup’s cross-sectional area, yield stress, and spacing, 

respectively; 𝑓𝑡′ and 𝑐 are the grout’s tensile strength and cover thickness, respectively. 
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Figure 5.14: Free-body diagram of the components of the frictional model.  

Values of 𝜇 are believed to be affected by the confining pressure and slip and could be 

estimated at 0.72 to 0.90 as reported by Malvar (1992) and Tastani & Pantazopoulou 

(2010). 𝑓𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 is the interfacial shear stress (due to chemical interaction) and is believed 

to be in the range of 0.8 to 1 MPa (Malvar 1992; Tastani & Pantazopoulou 2010; Eligehausen 

et al. 1982a). The strain, 𝜀𝑠 was calculated as the peak recorded strain in the duct obtained 

from Table 5.5. The stirrup’s parabolic distribution (Figure 5.14) was converted to a 

uniform compressive field equal to the third of the maximum stress averaged over the 

spacing of the stirrups, hence the term 0.33 in Eq. 6. The grout’s tensile strength, 𝑓𝑡′ was 

taken from Table 5.2 as 6.3 MPa.  

The predictions of the calibrated frictional model are given in Table 5.5. Except for 

specimen C-14-D1 (check footnote (3) in Table 5.4), the estimations of the calibrated model 

are in good agreement with the experimental results up until an embedment of 8 db. Beyond 

this, non-linearity in the distribution of bond stresses became more pronounced and an 

averaged stress over the lateral surface of the bar tended to give crude results. This can be 

observed from the increase in the percentage of error reported in Table 5.5. Another 
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possible explanation of this disparity was attributed to the strain values, which are believed 

to be highly localized because of the complex geometry of the duct.  

5.5 IMPLEMENTATION AND DESIGN 

A recent study investigating the bond behaviour of grouted connections under monotonic 

loads proposed an empirical expression that can be used in designing the minimum 

embedment length of grouted connections to develop a certain stress level in the connector 

(Elsayed & Nehdi 2017). This proposed relationship has the following form: 

𝜙 𝛾𝑠 𝐿𝑑 = 𝑑𝑏

(

 0.629 − 0.0057
𝑓𝑠

√𝑓𝑔
′

)

 

−0.98

𝑓𝑜𝑟 

{
 

 
𝑓𝑠

√𝑓𝑔
′

< 100 (5.8) 

where 𝑓𝑠 is the stress in the steel connector in MPa; 𝑓𝑔
′
 is the grout compressive strength in 

MPa; Ld is the predicted development length and 𝛾𝑠 is a steel stress normalization factor 

calculated as 𝛾𝑠 =
𝑓𝑡

605
 where 𝑓𝑡 tensile strength of the connector bar; 𝜙 is a safety factor 

taken as 1.2 to account for variability in the materials. 

This equation was obtained by fitting the bar stresses (normalized by the square root of 𝑓𝑔′) 

vs. the embedment length for ten identical specimens at five different embedment lengths. The 

specimens used were similar to those used in the present study. Only those specimens which 

failed in pull-through mode were considered. A similar approach was adopted in the present 

study and the experimental results were fitted with the same power regression function at 

98% confidence interval. Both equations are shown in Figure 5.15 and plotted against the 

experimental results. Considering the predications of Eq. 5.8 versus the average normalized 

bar stress, it can be observed that when the embedment length was 4, 6 and 8 db, substantial 

differences existed between the model predictions and the experimental results due to the 

deterioration of the anchorage in response to the cyclic load. Moreover, the error in 

predictions seemed to diminish with increasing embedment length. The prediction error for 

the 10, 12, 14 and 16-B db specimens was 2.3, 0.1, 1.34, and 2.8 %, respectively. Since the 

design rationale for grouted connections is concerned with the prediction of a minimum 

embedment length which can invoke a fully ductile behaviour (i.e. tensile capacity of the 
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bar), Eq. 5.8 was found to satisfy this criterion with reasonable accuracy, should the field 

conditions be similar to those encountered in this experimental study.  

It should be noted that beyond the range of  
𝑓𝑠

√𝑓𝑔
′
> 100 (specimens 16-A), parameter 𝛾𝑠 

should be used to adjust the embedment to an acceptable value of Ld capable of mobilizing 

the capacity of the bar. Based on the observations of this study, the use of Eq. 5.8 is limited 

to a duct thickness of 0.6 mm.  

 

Figure 5.15: Normalized bar stress vs. embedment length. 

5.6 SUMMARY AND CONCLUSIONS 

This paper presents the findings of a novel experiment conducted to assess the bond 

behaviour of grouted connections under quasi-static unidirectional excitation. The 

experimental program consisted of testing 16 specimens under realistic field and loading 

conditions. The experimental scheme utilized was free from the common spurious effects 

associated with bond testing. The experimental results were used to calibrate the so-called 

frictional model, after estimation of the confinement stresses of the specimens. The results 

were then used to verify a design expression that can predict the required development 
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length based on a desired level of stress in the bar. Based on the experimental conditions 

presented above, the following conclusions can be made: 

1- Under a unidirectional cyclic load, the damage deterioration observed was in the form 

of irrecoverable slip, which seemed to decrease substantially when the embedment 

length exceeded 8 db. Most of the damage was incurred in the first few cycles, after 

which constant irrecoverable slip propagated. No deterioration in the load carrying 

capacity of the specimens was observed at any anchored length. The load carrying 

capacity of the specimens at 10, 12, 14, and 16 db. was nearly identical and limited 

by the restraining effect of the duct.  

2- The strain level in the bar had a detrimental effect on its slippage. Slippage decreased 

as the embedment increased due to the non-linearity introduced in the distribution of 

bond stresses.  

3- The grout cylinder enclosed by the duct did not fail by splitting regardless of the 

anchored length of the specimens. Failure was consistently via shearing of the grout 

keys between the deformations of the bar. At an embedment length of 12 db and up 

to 16 db, the duct suffered sudden rupture along the seam close to 90% of the tensile 

capacity of the bar. Upon rupturing, a plastic hinge in the concrete block was formed, 

accompanied by severe cracking to the concrete block. Once the restraining pressure 

of the duct was lost, the grout dilatated and splitting of the grout cylinder was 

observed. 

4- The ductility of the connections slightly increased with increasing embedment length 

up to 8 db. Sudden increase in ductility was observed at 10 db and was approximately 

constant up to 16 db. At 16 db, a fully ductile failure was observed when the duct 

thickness was increased from 0.38 to 0.60 mm. 

5- The hoop strains developed in the duct near the loaded end increased with the number 

of load cycles imparted on the specimen. The maximum recorded hoop strain was 

inversely proportional to the increase in embedment up to 10 db, after which, 

approximately no increase in hoop strain was observed.  

6- The experimental results were used to calibrate the so-called frictional model, which 

describes the transfer of stress in the anchorage. The model considers the influential 
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parameters contributing to the bond of grouted connections. Its predictions were 

satisfactorily and in general agreement with the experimental results.  

7- A design equation previously proposed by the authors to determine the minimum 

required development length under monotonic loading was compared to the 

experimental findings of this study. The predictions of this equation were valid under 

the loading conditions of the present study (given the applicable limitations thereof). 

Hence, this simple and refined equation could be used to estimate the development length 

of grouted connections, both under monotonic and cyclic loading similar to those 

experienced in this study. However, before implementation, a dedicated methodology 

exploring other influential effects such as the bar size, grout compressive strength and 

concrete compressive strength should be conducted.  
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Chapter 6  

6 FINITE ELEMENT MODEL OF GROUTED 

CONNECTIONS USING INTERFACIAL COHESIVE 

ELEMENTS 

 

 

6.1 INTRODUCTION AND BACKGROUND 

Grouted reinforcing bar connections, or simply grouted connections, are ties having a wide 

variety of applications in the precast construction industry. When used in the context of 

precast load bearing walls, these connections are attractive owing to eliminating field 

welding and providing a straight force path extending along the height of a precast wall. 

The connection is comprised of a single large-diameter reinforcing bar grouted inside a 

corrugated metallic sleeve using a non-shrink high strength cementitious grout with a 

flowing consistency. Under current guidelines of the ACI 318-14, grouted connections are 

treated as a bar-in-concrete and designed after the development length in tension clauses 

disregarding the composite action of the sleeve. Previous experimental observations 

indicated deviation from this treatment, attributing this to the restraining effects of the 

corrugated duct. Although several recently published studies have provided experimental 

evidence for this disparity (Steuck et al. 2009; Elsayed & Nehdi 2017; Brenes et al. 2006; 

Tazarv & Saiidi 2015), limited information was found in the open literature addressing the 

numerical treatment of grouted connections. For instance, Raynor et al. (2002) modelled 

the connections using a simple one-dimensional model, where the mechanical bearing of 

the bar was simulated using a series of bond springs. The model depicted the experimental 

results with reasonable accuracy; however, it did not physically consider the sleeve, nor did 

it take into consideration the interaction between the connection and the surrounding 

concrete.  

Modelling the bond-slip between a reinforcing bar and the surrounding concrete is of 

special importance in jointed regions, where the effects of slip and strain penetration can 
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be detrimental to the rotational capacity of the joint. A variety of methodologies with 

varying degree of complexity are currently available in the literature to model such bond-

slip interactions. Some authors presented a fibre-section frame element model that takes 

into account slippage of the bar and subsequent bond degradations (Monti & Spacone 2000; 

Zhao & Sritharan 2007). Cho & Pincheira (2006) used rotational springs to model the 

rotation of column joints due to slippage of bars in column splices and used the model to 

calculate the required lap splice length to sufficiently develop the bars. Others presented 

detailed non-linear 3D continuum models that explicitly modelled the geometry of the 

deformations and its bearing on the concrete keys (Salem & Maekawa 2004; Gan 2000; Li 

2010). The merit of such detailed models is that they can be used to conduct investigative 

studies on bond interactions between reinforcing bars and concrete, provided that adequate 

damage parameters are included in the model. However, considering their high 

computational cost, modelling complete reinforced concrete structures is deemed 

unpractical.  

In most recent efforts to model bond-slip, researchers have resorted to interfacial elements 

that can be defined between the reinforcing bar and the concrete. These interfacial elements 

have constitutive relationships through which the characteristics of the bond-slip 

relationship of the assembly can be implemented. Input to such interface models would be 

the bond-slip relationship represented in interfacial elements through equivalent stress vs. 

displacement of the bar in the longitudinal direction.  

Several researchers have proposed interfacial elements for use in a Finite Element (FE) 

platform. Cox & Herrmann (1998) were amongst the earliest studies which presented an 

element that utilizes an elastoplastic treatment for the bond stress-displacement relationship 

at the bar-concrete interface. This treatment modelled the effect of the normal stress on the 

bond stress via a yield function, while the shear dilatation caused by the bar ribs was 

accounted for using a non-associated flow rule. The validation of the model was carried out 

using a series of pull-out tests, which highlighted the accuracy and computational 

efficiency of the model (Cox & Herrmann 1999). A similar model was published by 

Lundgren & Magnusson (2001), who proposed 3D interfacial elements with a different 

elastoplastic treatment to model the bond-slip behaviour in FE simulations.  
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The interfacial elements presented by Lowes et al. (2004) and Murcia-Delso & Shing 

(2015) are different from those discussed above, in the sense that they utilize a 

phenomenological bond-slip law in their element formulations. Such phenomenological 

models were based on experimental observations, similar to that developed by Eligehausen 

et al. (1982), where a basic bond-slip relationship was modified by parameters that account 

for various effects, such as strain in bar, damage to the concrete and bar spacing. This 

methodology is generally more efficient than the plasticity formulation discussed above. 

Unlike plasticity models where iterations are required to calculate stresses at the interface, 

phenomenological models calculate interfacial bond stresses directly for a given slip 

increment. The model presented by Lowes et al. (2004) relied on data from neighbouring 

concrete elements to calculate damage parameters and update the bond stresses for a given 

bar slip. This interdependency complicates the implementation of this interfacial model in 

a FE platform. The formulation presented by Murcia-Delso & Shing (2015) solved this 

problem; however, their phenomenological model was based on experimental observations 

made on bars embedded in well-confined concrete, though tensile cracking in the concrete 

block was reported. In experimental investigation conducted by the present authors on 

grouted connections (Elsayed & Nehdi 2017), splitting failures were not observed inside 

the grout cylinder.  

Accordingly, to allow accurate numerical depiction of the behaviour of grouted connections 

for modelling applications, the present paper discuses a new interfacial formulation to 

model grouted connections. The model simulates the behaviour of reinforcing bars bound 

by grouted metallic ducts using a phenomenological bond-slip derived from a carefully 

conducted set of experiments, which eliminates superficial compression associated with 

bond testing. The interface model was implemented using cohesive element formulation in 

the FE analysis program LS-DYNA (DYNA) and validated using experimental data from 

three different studies. Discussion of the constitutive laws and validation examples are 

presented in the following sections. 

6.2 EXPERIMENTAL PROCEDURE AND RESULTS 

The test specimens used to derive the local bond stress vs slip law are depicted in Figure 

6.1. The specimens were carefully designed to mimic full-scale field conditions pertaining 
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to precast concrete wall construction and to eliminate artificial compressive fields that 

could influence the bond. Test specimens were comprised of a reinforced concrete block 

that had dimensions of 254 x 254 x 406.4 mm (254 mm is a typical width in full-scale 

precast shear walls). A 76.2 mm corrugated duct was placed concentrically in the middle 

of the specimen. To assist in the application of the load, four 16-mm threaded rods (ASTM 

A1035) were used to reinforce the block longitudinally. Transverse reinforcement was in 

the form of 10 mm closed-branch stirrups spaced 203.4 mm apart. The dowel bar used in 

this study was No. 8. The bars were de-bonded by wrapping it in 2-mm thick polystyrene 

wrap. The bonded length was 4 and 6 db. After concentric placement of the de-bonded bars 

inside the duct, non-shrink high-strength grout was mixed at low speed for 10 min and at 

high speeds for 5 min. Water (about 3.75 L) was added until a flowing consistency was 

achieved. Grouting was then done in the vertical position, as per full-scale field grouting 

applications. Subsequently, the specimens were cured for 28-d at temperature of 22 °C and 

relative humidity of 60%. 

 

Figure 6.1: [Left to Right] Experimental setup; Failed bars by shearing of the grout keys 

at 6 db embedment. 

The test results and analytical bond-slip law presented by Eligehausen et al. (1982) are 

portrayed in Figure 6.2. The local bond stresses were determined based on the classical 

equilibrium expression, as given in Eq. 6.1: 
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𝜏 =
𝐴

𝜋𝑑𝑏
∙
𝑑𝜎𝑠
𝑑𝑥

(6.1) 

Where 𝜏 = bond stress; 𝐴 = cross-sectional area of the bar, 𝑑𝑏 = diameter of bar, 𝜎𝑠 = stress 

in bar. 

The procedure for obtaining the bond stress was as follows: first, the strain distribution 

along the bonded length was determined knowing the strain value at the beginning 

(extensometer reading); amid the bonded length (strain gauge); and at the end (zero strain). 

Second, using information of the mechanical properties obtained from the coupons, the 

corresponding stress levels were determined. Third, the stress values were linearly 

connected assuming a linear stress distribution, which is justified given the elasticity of bar 

and shortness of the bonded length (Tastani & Pantazopoulou 2010; Eligehausen et al. 

1982). By assuming a linear distribution of stress, the bond stresses were constant between 

two successive strain readings, and were calculated using the expression given in Eq. 6.2:  

𝜏 =
𝑑𝑏
2
∙
𝜎𝑠
𝐿𝑑

(6.2) 

The experimental results were used to calibrate a local bond stress vs slip envelope to be 

used in the model development. A discussion of the constitutive relationship used in the 

interface model is presented in subsequent sections. 
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Figure 6.2: [Left] BPE bond-slip law recreated after Eligehausen et al. (1982); [Right] 

Experimental results. 

6.3 INTERFACE MODEL 

The development of the constitutive bond-slip law of interfacial elements at the bar-grout 

interface is described in detail below and illustrated in Figure 6.3, which also depicts 

stresses and relative displacements. The nodes of cohesive elements were tied to the nodes 

of their respective neighbouring elements using a tie constraint to ensure compatible 

displacements between respective elements. Relative displacements are comprised of three 

components: normal component, s1, acting perpendicular to the longitudinal axis of the bar; 

a tangential component, s2, acting along the axis of the bar; and a tangential component, s3, 

acting along the transverse direction.  Similarly, stresses along the interface are also defined 

via three components: a normal stress σ1, and two tangential components τ1 and τ2 

corresponding to their respective displacements. 

.  
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Figure 6.3: [Left] Bond modelling using interfacial elements; [Right] Interface 

coordinates, stresses, and relative displacements. 

6.3.1 Bond-Slip Law 

The bond-slip law adopted in this paper was based on the experimental results shown in 

Figure 6.2. The law was derived based on the Bertero, Popov and Eligehausen (BPE) model 

presented by Eligehausen et al. (1982), one of the most widely reported bond-slip models 

in the open literature. This model is mathematically expressed piecewise as follows: 

𝜏2(𝑠2) =

{
 
 

 
 𝜏𝑚𝑎𝑥 (

𝑠2
 𝑠𝑎
)
α

                                                         𝑠 < 𝑠𝑎

𝜏𝑚𝑎𝑥                                                           𝑠𝑎 ≤ 𝑠 < 𝑠𝑏

𝜏𝑚𝑎𝑥 − (
𝑠𝑏 − 𝑠2
𝑠𝑏 − 𝑠𝑟

) (𝜏𝑚𝑎𝑥 − 𝜏𝑓)           𝑠𝑏 ≤ 𝑠 < 𝑠𝑟

𝜏𝑓                                                                         𝑠2 ≥ 𝑠𝑟

(6.3) 

where 𝜏𝑚𝑎𝑥 = maximum bond stress; 𝛼 = curve fitting parameter reflecting the degree of 

confinement, 𝑠𝑎, 𝑠𝑏 = are bar slips corresponding to the onset and outset of maximum 

plateau, respectively, to the beginning and end of the bond strength plateau; 𝑠𝑟 = is the rib 

spacing; and 𝜏𝑓 = residual bond stresses. 

Eq. 6.3 presents the basic bond-slip law, whose variables depend on four main parameters 

that need calibration based on experimental results, namely: 𝜏𝑚𝑎𝑥; 𝑠𝑎; 𝑠𝑟, and 𝜏𝑓. 𝜏𝑚𝑎𝑥 was 

found to be in the range of 18-20 MPa. The curve fitting parameter 𝛼 was found to be in 

the range of 0.21-0.28. 𝑠𝑎 fell in the 1.4-1.55 mm range. 𝑠𝑏 was approximately equal to 1.2 

𝑠𝑎 (1.86 mm). 𝑠𝑟 was 9.75 mm. 𝜏𝑓 was found to be in the range of 12-13 MPa, 
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approximately 50-60% of 𝜏𝑚𝑎𝑥. The values of 𝜏𝑚𝑎𝑥 and 𝑠𝑎 (𝑠𝑚𝑎𝑥) should be determined 

experimentally for each case and no accurate theoretical model could be used to predict 

their values. In the absence of experimental data, Eq. 6.4 and Eq. 6.5 can be used:   

𝜏𝑚𝑎𝑥~𝑓𝑐
′ 0.75 (6.4) 

𝑠𝑚𝑎𝑥~0.06 𝑑𝑏 (6.5) 

To account for the damage of the anchorage due to influencing factors, the effective bond 

stress is calculated as shown in Eq. 6.6: 

𝜏2
∗ = 𝑚𝑛(𝑠1) ⋅  𝑚𝑠(𝜀𝑠) ⋅  𝜏2 (6.6) 

where 𝜏2
∗ = effective bond stress; 𝑚𝑛 = modifier to account for concrete splitting (function 

of 𝑠1); 𝑚𝑠 = modifier to account for post yielding behaviour. 

𝑚𝑛 reflects the severity of splitting stresses in the concrete cover, which is a result of the 

radial compressive stresses induced unto the cover due to bar slip. This generates hoop 

tension, which forces the concrete to dilatate in the absence of transverse reinforcement. 

Consequently, regions where splitting occurs suffer from bond reduction. These failures 

were not observed when grouted connections were tested experimentally, irrespective of 

the intensity of the bond stresses developed. As such, 𝑚𝑛 was taken equal to 1 since the 

corrugated duct provided a continuous compressive field restraining the grout. 𝑚𝑠 accounts 

for the reduction in bearing area resulting from inelastic strains, as shown in  Figure 6.4(a).  

 

Figure 6.4: (a) modifier ms as a function of the bar strain; (b) steel stress-strain 

constitutive relationship; (c) compressive hardening and softening laws; (d) tensile 

softening law. 

(a) (b) (c) (d) 
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Shima et al. (1987) observed bond reductions of as much as 25% at the onset of yielding, 

with further reductions as inelastic strains continued to accumulate. This modifier is only 

active when the elastic strain limit is exceeded. The value of 𝑚𝑠 depends on whether bars 

have yielded when the experimental bond-slip relationship is obtained. If Eq. 6.3 was 

obtained from specimens exhibiting yielding, then the subsequent reduction in the bearing 

area is inherently accounted for by the slip domain. For all other cases, Eq. 6.7 

mathematically expresses 𝑚𝑠 as a function of 𝜀𝑠 as follows: 

𝑚s(𝜀s) =

{
 
 

 
 
1                                                       𝜀𝑠 < 𝜀𝑦

𝜀𝑢 − 𝜀s
𝜀𝑢 − 𝜀𝑦

√
𝜀𝑦

𝜀𝑠

3

                           𝜀𝑦 ≤ 𝜀𝑠 < 𝜀𝑢

0                                                       𝜀𝑠 ≥ 𝜀𝑠

(6.7) 

where 𝜀𝑠 = strain in rebar; 𝜀𝑦 = yield strain of the rebar at the onset of strain hardening; 𝜀𝑢 

= ultimate strain capacity of the rebar. 

6.3.2 Normal Stress 

The normal stress component 𝜎1 is dependent on the use of an appropriate value of 𝜃, the 

angle of inclination. This is imperative for proper simulation of the wedging action at the 

interface since it represents the fraction of bond forces on the inclined face of the ribs. The 

value of 𝜃 strongly depends on various influential parameters, including the geometry of 

the lugs and the characteristics at the cement-aggregate interface. The exact value of 𝜃 is 

not known and remains a matter of great contention in the open literature.  

This concept was originally proposed by Lutz & Gergely (1967) and experimentally 

verified by others. For example, Tepfers (1979) observed the formation of wedges with a 

face angle of 30-40 degrees in front of the lugs of reinforcement. Similar observations were 

reported by Cairns & Jones (1996) who assumed an inclination angle of 45°. Goto (1971) 

observed that the initiation of cracks at the bar-concrete interface occurs at an angle of 

approximately 60°. The importance of 𝜃 lies in the proper simulation of 𝜎1, which controls 

splitting failures of the assembly. It should be noted that splitting failures of grouted 

connections were not observed experimentally in the open literature (Provost-Smith et al. 
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2017; Elsayed & Nehdi 2017; Raynor et al. 2002; Matsumoto et al. 2008; Steuck et al. 

2009). As such, 𝜎1 was suppressed using a penalty stiffness formulation as given by Eq. 

6.8 below: 

𝜎1 = 𝑘1 ⋅ 𝑠1 (6.8) 

6.3.3 Tangential Stress 

The development of tangential stresses 𝜏3 was suppressed by restricting the rotation of the 

bar (tangential slip 𝑠3 in Figure 6.3). This was done via a penalty stiffness formulation, 𝑘3, 

as per Eq. 6.9: 

𝜏3 = 𝑘3 ⋅ 𝑠3 (6.9) 

6.4 IMPLEMENTATION 

The bond-slip law discussed above forms the basis of the constitutive relationship of 

cohesive elements used to model the interface between the reinforcement and the concrete, 

as shown in Figure 6.5. The interfacial cohesive element was implemented in a user 

defined subroutine in the commercial finite element package LS-DYNA. The analysis was 

run using the default explicit non-linear solver, which is based on a modified central 

difference time integration scheme. The grout, concrete, and steel reinforcement were 

modelled using fully integrated selectively reduced 8-noded brick elements utilizing 

element formulation the ELFORM_2. The bond elements were modelled applying solid 

hexahedron elements utilizing element formulation the ELFORM_19, which uses a 

traction-separation law. Encastre boundary conditions were imposed on the extremities of 

the modelled concrete block. The load was assigned to a predefined nodal group close to 

the tip of the bar to ensure uniform stress application unto the bar and avoid stress 

localization at specific nodes. The loading was applied using boundary prescribed motion 

until failure was observed. An overview of the material constitutive laws as well as a 

discussion of mesh sensitivity is presented below. 
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Figure 6.5: [Left] Cohesive elements at bar-grout interface; [Right] Tractions at mid-

surface of cohesive solid elements (Livermore Software Technology Corporation 2016). 

6.4.1 Materials Constitutive Laws 

6.4.1.1  Steel Reinforcement 

Steel reinforcement was modelled using a strain-independent elastoplastic model with 

kinematic hardening as shown in Figure 6.4(b). The model employs simple failure criteria, 

based on the effective failure strain defined, which enables element erosion. The 

mechanical properties of the steel reinforcement were obtained experimentally as per 

ASTM 370 guidelines. The average measured yield stress and corresponding yield strain 

were 418 MPa and 0.20, respectively. The ultimate tensile stress and strain were 603 MPa 

and 16-18%, respectively.  

6.4.1.2  Concrete and Grout 

The concrete and grout constitutive compressive and tensile laws were defined using an 

elastoplastic material model developed by Grassl et al. (2013) as illustrated in Figure 6.4(c) 

and (d). This model combines constitutive laws for compressive and tensile behaviours 

with associated damage parameters. The plasticity rule employed was based on the 

Menetrey & Willam (1995) failure surface, whereas the fracture rule was based on the 

classical smeared crack approach. The compressive stress-strain relationship was described 

by three branches. A linear ascending branch from 0 to the critical stress 𝑓𝑐𝑜, whose values 
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are widely reported to be in the range of 0.6 – 0.8 𝑓𝑐
′
 (Lubliner et al. 1989). The 

compressive hardening rule (Figure 6.4(c)) can be approximated after the Hognestad 

(Hognestad 1951) approach and the compressive stress is given by Eq. 6.10: 

𝜎𝑐 = 𝑓𝑐
′ (
2𝜀

𝜀𝑐𝑜
− (

𝜀

𝜀𝑐𝑜
)
2

) (6.10) 

Where 𝑓𝑐
′ = uniaxial unconfined compressive strength; 𝜀𝑐𝑜 = compressive strain at the onset 

of hardening expressed as 1.71
𝑓𝑐
′

𝐸𝑐
. 

The exponential tensile softening law was idealized using a bi-linear function relating 

tensile stresses to the crack opening displacement width 𝑤𝑐, as shown in Figure 6.4(d). 

The crack opening at the partial (𝑤𝑙) and complete (𝑤𝑐) release of stress is a function of 

𝑤𝑐ℎ, which is defined as the fracture energy of concrete 𝐺𝐹 normalized by the tensile 

strength 𝑓𝑡. 𝐺𝐹 should be obtained experimentally by means of notched beam tests. When 

such tests are not available, Eq. 6.11 can be used after the statistical approach provided by 

Bažant & Becq-Giraudon (2002): 

𝐺𝐹 =  2.5 𝛼0 (
𝑓𝑐
′

0.051
)

0.46

(1 +
𝑑𝑎
11.27

)
0.22

(
𝑤

𝑐
)
−0.30

(6.11) 

Where 𝑑𝑎 = nominal maximum aggregate size; 
𝑤

𝑐
 = water-to-cement ratio; 𝛼0 = aggregate 

sensitive parameter dependent on the surface characteristics, taken as 1 for river aggregates 

and 1.11-1.44 for crushed aggregates. 

6.4.1.3  Cohesive Elements 

The cohesive elements used in the analysis are exhibited in Figure 6.5. The element follows 

the formulation proposed by Tvergaard & Hutchinson (1992). Traction stresses are 

calculated on the mid-surface of the element, which is defined as the mid-points between 

the nodal pairs 1-5, 2-6, 3-7, and 4-8. These tractions are functions of the differences of 

displacements between nodal pairs interpolated to the integration points. Tractions had 

three components, two of which are in the plane of the mid-surface (𝑠2 and 𝑠3), and the 
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third represents the normal component (𝑠1). The model includes three general irreversible 

mixed-mode interaction formulations, reflecting fracture modes in the normal directions 

(mode I) and the tangential directions (mode II), as shown in  

Figure 6.6. The interaction between fracture modes I and II is taken into consideration 

through a dimensionless separation parameter λ, which is given by Eq. 6.12: 

𝜆 = √(
𝑠2

𝛿𝐼𝐼
𝐹)

2

+ (
𝑠3

𝛿𝐼𝐼
𝐹)

2

+ (
𝑠1

𝛿𝐼
𝐹)

2

(6.12) 

Where 𝛿𝐼𝐼
𝐹  and 𝛿𝐼

𝐹 = are the maximum (failure) separation in the tangential and normal 

directions, respectively calculated per Eq. 6.13 and Eq. 6.14, respectively: 

𝛿𝐼
𝐹 =

𝐺𝐼
𝑐

𝐴° × 𝑇
(6.13) 

𝛿𝐼𝐼
𝐹 =

𝐺𝐼𝐼
𝑐

𝐴° × 𝑆
(6.14) 

Where 𝐺𝐼
𝑐 and 𝐺𝐼𝐼

𝑐  = are the fracture toughness in the tangential and normal directions, 

respectively; 𝐴° = the area under the normalized bond-slip curve; 𝑇 and 𝑆 = are the peak 

traction stresses in the normal and tangential directions, respectively. The fracture 

toughness 𝐺𝐼𝐼
𝑐  and the normalized area 𝐴° were calculated using Eq. 6.15 and 6.16, 

respectively: 

𝐺 = ∫ 𝜏(𝑠) 𝑑𝑠
𝑠

0

(6.15) 

𝐴° = ∫ 𝜏(𝜔) 𝑑𝜔
𝜔

0

(6.16) 

Where 𝜔 = is the normalized separation parameter (for example 
𝑠2

𝛿𝐼𝐼
𝐹  for separation in 

direction 2). 

It is important to highlight that, although the separation parameter 𝜆 is calculated based on 

the interaction between the three modes of failure, 𝑠1and 𝑠3 were suppressed using a penalty 
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stiffness formulation as mentioned in Sections 6.3.1 and 6.3.2. This is based on 

experimental observations on grouted connections tested under monotonic loads (Elsayed 

& Nehdi 2017). The failure criterion is initiated when the dimensionless separation 

parameter 𝜆 reaches a critical value of 1. Upon failure, the tangential (𝜏2 and 𝜏3) and normal 

(𝜏1) components of the traction acting on the interface are calculated based on Eq. 6.17, 

expressed in matrix notation as follows: 

[

𝜏1
𝜏2
𝜏3
] =

𝜏(𝜆)

𝜆

[
 
 
 
 
 
 
𝛿𝐼
𝐹

(𝛿𝐼𝐼
𝐹)2

0 0

0
𝛿𝐼
𝐹

(𝛿𝐼𝐼
𝐹)2

0

0 0
1

𝛿𝐼
𝐹]
 
 
 
 
 
 

[

𝑠1
𝑠2
𝑠3
] (6.17) 

 

Figure 6.6: Mixed mode interactions (Livermore Software Technology Corporation 

2016). 

6.5 MODEL VALIDATION 

The preceding sections described the constitutive laws of an interface model describing the 

bond behaviour of grouted connections. The accuracy of the model in depicting the 

behaviour of grouted connections was verified by comparing model calculations to 

experimental findings in the open literature. Due to the scant studies on grouted 

connections, model results could only be compared to the results of three relevant studies. 
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The purpose of the verification was not merely to appraise the accuracy of the model under 

various elastic and plastic bar conditions. As mentioned earlier, one of the features of the 

proposed model is that it requires a simple calibration process by changing three attributes 

of the supposed bond-slip law (Figure 6.2), namely: 𝜏𝑚𝑎𝑥; 𝑠𝑚𝑎𝑥; and 𝑠𝑟. The properties of 

the concrete and steel along with the input parameters used in the analyses are reported in 

Table 6.1. 
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Table 6.1:Material parameters for concrete, steel and grout; and bond-slip model calibration parameters; model validation. 

  
Material  

Parameters Model Calibration  

Parameters 

Model Validation 

Study 
Ld  

(db) 

Steel Concrete Grout Relative  

Error 

(%) 

V  RMSE 
MAPE 

(%) db  

(mm) 

fy  

(MPa) 

fu  

(MPa) 

fc'  

(MPa) 

ft  

(MPa) 

fc'  

(MPa) 

ft  

(MPa) 

(1) τmax 

(MPa) 

smax  

(mm) 

sr  

(mm) 

Elsayed and 

Nehdi (2017) 

6.0 

25.4 418.8 601.2 61.6 6.1 39.3 6.3 20.7 1.6 9.8 

18.36 0.82 26.02 13.93 

8.0 22.13 0.78 44.92 17.80 

12.0 - - - - 

Zhou et 

al.(2017) 

3.9 
25.4 400.0 635.0 44.8 4.0 34.5 3.5 14.7 4.2 12.0 

19.47 0.81 12.18 8.79 

7.8 20.68 0.79 41.98 10.12 

Steuck et 

al.(2009) 
8.0 32.2 421.2 700.0 42.8 3.9 57.0 4.5 18.1 3.8 17.5 23.23 0.77 49.83 13.47 

  
Calculated as 0.6 √𝑓𝑐

′ (Coronado & Lopez 

2006) 
           

Note: RMSE refers to the Root Mean Square Error; and MAPE refers to Mean Absolute Percentage Error    

(1) Calculated as the average bond stresses at 4 and 6 db 
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6.5.1 Validation Metric 

The validation metric described by Oberkampf & Trucano (2002) was used as a basis for 

validation in the present study to provide a quantitative estimate of the relative error 

between the numerical and experimental results. This validation metric, 𝑉, is given by Eq. 

6.18 as follows: 

𝑉 = 1 −
1

𝑠𝑒𝑛𝑑 − 𝑠0
∫ |𝑡𝑎𝑛ℎ

𝑁(𝑠) − 𝐸(𝑠)

𝐸(𝑠)
|

𝑠𝑒𝑛𝑑

𝑠0

ⅆ𝑠 (6.18) 

 Where 𝑠0 and 𝑠𝑒𝑛𝑑 are the initial and final slip, respectively; 𝐸(𝑠) and 𝑁(𝑠) are the 

experimental and numerical domains, respectively. Some key features of Eq. 6.18 can be 

identified. First, it normalizes the difference between the numerical and experimental 

results, thus allowing the relative error to be computed. Second, the error is calculated over 

individual points on the slip domain measuring the relative error at every point in the 

distribution. Third, when the difference between the domains is zero, the validation metric 

is equal to unity, which presents a match between the experimental and numerical results. 

Finally, as the summation of the relative error becomes large, the validation metric 

converges to zero. The values of the calculated validation metrics are given in Table 6.1. 

Additionally, the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) were calculated for the distribution, values of which are reported in Table 6.1. 

The RMSE and the MAPE were calculated to provide a comparison between the error 

estimation of the metric discussed in Eq. 6.18 and more conventional error measures 

reported in the literature. As observed from the error values reported in Table 6.1, the 

validation metric tends to provide an overstated impression of the relative error.   

6.5.2 Validation Examples 

6.5.2.1 Elsayed and Nehdi (2017) 

Finite element models of three monotonic pull-out tests conducted by Elsayed & Nehdi 

(2017) were analysed. The specimens consisted of concrete rectangular prisms having a 

cross-section of 208 x 208 x 406.4 mm, where the grouted ducts were placed concentrically. 
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The specimens were constructed using No. 8 bars with a measured yield stress and strain 

of 418 MPa and 0.2%, respectively. The average 28-day compressive strength of the 

concrete and grout were 50.6 and 40 MPa, respectively. The three specimens had embedded 

lengths of 6, 8 and 12 db. The specimens were carefully selected to highlight several key 

features. First, an embedded length of 6 db was chosen for a direct comparison of the bond-

slip model since it represents a close rendering of the local envelope of the anchorage. At 

such embedment length, the difference between the observed slip at the loaded and free 

ends is nominal, hence the common assumption of uniform bond stress used in bond 

studies. Second, an embedded length of 8 db, represents a departure from the uniform slip 

assumption as moderate non-linearity is perceived. Third, an embedded length of 12 db 

represents a highly non-linear distribution as the effective bond stresses peak closer to the 

loaded end and attenuate towards the un-loaded end. This non-linearity introduces 

redundant lengths along the bar, whose ribs engage as the bond towards the loaded end 

experiences plastification. The choice of the embedment lengths analysed was also based 

on the different failure modes experienced by the specimens.  

The model components, meshes, boundary conditions and loading are shown in Figure 

6.7(a). The force vs free end slip results of the different analyses are displayed in Figure 

6.8. The purpose of this analysis was to appraise convergence to the experimental solution, 

as well as highlight the computational efficiency of the model. The convergence criteria 

were both quantitative and qualitative based on evaluation of the predicted response and 

the relative error calculated from Eq. 18 (max 25%). Four mesh sizes were considered, 

namely 6.5x7; 6x4; 3x2; and 1x2 mm, results of which are displayed in Figure 6.8 for 6 db 

embedment length. It can be observed that the convergence rate dramatically increased 

when the mesh size was decreased from 6.5x7 mm to 6x4 mm. The rate of convergence 

had a slight increase as the mesh size was reduced until a mesh size of 3x2 mm, below 

which no significant improvements were observed. Good agreement between the curves 

was observed when the mesh size was 3x2 mm. The computational effort shown in Figure 

8(a), was calculated as the time required to complete the analysis on a standard single core 

processor of a desktop computer. For instance, the computational time increased by 54% 

when the mesh was refined from 6.5x7 (V ~ 0.23) to 6x4 (V ~ 0.68) mm. A slight increase 

in computational time by 15.4% was observed when the mesh size was refined from 6x4 to 
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3x2 (V ~ 0.82) mm, but was justifiable given the significant improvements in the load 

versus slip response, as observed from Figure 6.8(a). The time required to complete the 

analysis for the 1x2 mm mesh size increased by 5 orders of magnitude than its 6.5x7 

counterpart. Overall, the model exhibited computational efficiency even when the mesh 

size decreased.  

It is noteworthy that due to the presence of some induced compression at the boundary of 

the specimens, the ascending branch was characterised by a stiffer response. This was 

further verified by comparison of the confinement parameter α, which was in the range of 

0.16-0.19. The bond-slip law presented in Eq. 6.3, was based on an α value of 0.21-0.28. 

As anticipated, the analysis at 6 db yielded a close rendering of the bar pull-out behaviour. 

At 8 db, the FE results showed similar overall trend to the experimental results, 

characterized by an ascending plateau and descending branches of the envelope. The 

transition between the ascending branch and plateau observed in the experimental results 

exhibits a smoother higher order curve, apparently a result of the actual nonlinearity in the 

distribution of slip. It is believed that the continuous confining field provided by the 

corrugated duct helped magnify this behaviour. This observation is further supported by 

the plastification of bond elements towards the loaded end as the loading continues as 

depicted in Figure 6.7(b). These modes cannot be predicted by the bond-slip model 

because of the lower order function assigned to the ascending branch (Eq. 6.3), hence the 

disparity between the numerical and experimental envelopes. The analysis at 12 db resulted 

in a bar fracture, which was also observed in experimental results, at a nearly identical load 

level corresponding to the tensile capacity of the bar (~600 MPa). The numerical model 

could simulate the failure observed in the grout cylinder manifested by the exhaustion and 

deletion of the cohesive bond elements, as shown in Figure 6.7(c). The relative error and 

validation metric described above were calculated and reported in Table 6.1. It can be 

observed that the model results were in good agreement with the experimental observations 

from the study.  
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Figure 6.7: FE model parts, elements and boundary conditions Elsayed & Nehdi (2017); (b) bond plastification progression; and (c) 

interfacial element deletion to simulate shearing of the grout keys. 
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Figure 6.8: [Left to Right] FE analysis of bond slip tests by Elsayed & Nehdi (2017): load vs free end slip response at 6, 8 and 12 db, 

respectively. 
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6.5.2.2 Zhou et al. (2017) 

The bond-slip model was implemented in a FE analysis to model the specimens presented 

in Zhou et al. (2017). In their study, a series of monotonic pull-out tests were performed 

on grouted connections to explore the bond-slip response and anchorage of stainless energy 

dissipating bars in segmental bridge columns. The specimen was in the form of a concrete 

beam with embedded corrugated ducts. The concrete beams were 810 x 240 x 900 mm 

(L.W.H). The tests were performed on imperial No. 8 (25.4 mm) and No. 11 (36 mm) bars. 

The average 28-d compressive strength of the concrete and grout was 44 and 57.2 MPa, 

respectively.  

 

Figure 6.9: FE analysis of anchorage tests by Zhou et al. (2017): (a) model showing 

boundary conditions and pulled end; (b and c) bar stress vs loaded end displacements at 

3.94 and 7.87 db, respectively. 
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The FE model of the tests is shown in Figure 6.9(a). The results of the analyses for two 

No. 8 bars embedded at 7.87 and 3.94 db are illustrated in Figure 6.9(b) and (c), 

respectively. The selected specimens were chosen so that they allow the verification of the 

model predictions under elastic and plastic bar conditions. Figure 6.9(b) shows the 

specimens with an embedment length of 7.87 db, where the bars have yielded at a stress 

corresponding to ~400 MPa. The yielding of the bars was accompanied by additional slip, 

which is evident from the sudden dropping of the load curve at ~400 MPa. The overall 

trend of the numerical curve at 400 MPa shows post-yield increase in slip. The small 

differences between the experimental and numerical envelopes observed in the post-yield 

region is attributed to the absence of a yield plateau in the assumed steel model. Overall, 

the model predictions are in good agreement with the experimental results in the ascending, 

plateau, and descending branches of the curve (based on the assumed model). Figure 6.9(c) 

shows the bar stress vs displacements at the loaded end when the bars were embedded at 

3.94 db. Acceptable correlation was observed between the model predictions and 

corresponding experimental results as reflected by the error calculated (19 - 20%) in Table 

6.1. Considering the relative error as calculated from Eq. 6.18., it should be noted that the 

specific results were extracted by digitization of experimental curves. Since most of the 

results were super-imposed on single figures, the accuracy of the digitization was 

decreased. Also, the MAPE was in the range of 8-10%, which reflects good agreement with 

experimental results, further highlighting the stringency of the used validation metric. 

Additional analysis was conducted using a hypothetical bond-slip law based on Eq. 6.4-

Eq. 6.5. The model captured the trend of the experimental curve in terms of initial stiffness 

and plateau regions. Some discrepancies were observed in the descending branch. This is 

due to the assumption of residual bond stress of 50% of 𝜏𝑚𝑎𝑥. While this is a crude 

approximation of a rather complex phenomenon, the results are deemed sufficiently 

acceptable if no experimental results can be utilized to calibrate the model. 

6.5.2.3 Steuck et al. (2009) 

The model components of FE analysis of the pull-out test of Steuck et al. (2009) is shown 

in Figure 6.10(a). The experimental results presented in this study were acquired primarily 

on large diameter reinforcing bars embedded in grouted connections. The bar used in the 
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test was No. 10 (32.3 mm). The specimen was comprised of a 915-mm concrete specimen 

in-which a central corrugated duct was placed. The average 28-d compressive strength of 

the concrete and grout was 42.8 and 57 MPa, respectively. The bar stress vs loaded end 

slip is shown in Figure 6.10. The model reproduces well the ascending branch of the 

experimental results until the bar stress approaches 525 MPa. As stated earlier, the model 

cannot accurately depict the transition between the ascending and plateau branches, 

although close agreement was observed when the maximum bar stresses between both 

envelopes were compared (585 MPa). It is interesting to highlight that the artefacts of 

yielding were not experimentally observed in this study. This was also not observed in 

Elsayed & Nehdi (2017). The effects of bar yielding on reducing the local bond stresses of 

an anchorage acts via two main mechanisms. First, at the onset of yielding, additional slip 

is invoked by the large strains and subsequent deformations of the bars. Second, the plastic 

strain accumulation brings about a reduction in the cross-sectional area of the bar, which 

disengages the ribs close to the loaded end. At approximately 0.2 mm/mm of strain, the 

ribs are completely disengaged. While the reasons for the absence of these observations 

from the experimental results are not obvious, it could be attributed to the intimate 

interfacial characteristics of grouted connections due to the flowing consistency of the 

grout. The relative error between the experimental and numerical results was 23%. As 

mentioned earlier, this metric tends to provide stringent error values (for instance compared 

to MAPE of 13.47). However, as can be observed from Table 6.1, good correlation exists 

highlighting the efficacy of the model in depicting the behaviour of grouted connections. 
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Figure 6.10: FE analysis of anchorage tests by Steuck et al. (2009): (a) model showing 

boundary conditions and pulled end; and (b) bar stress vs loaded end slip at 7.68 db . 

6.6 FURTHER RESEARCH 

The present study proposed an interfacial model of grouted connections under monotonic 

loads. However, an accurate relationship between monotonic and cyclic loading has yet to 

be established and requires further investigation. The extension of the presented bond slip 

model to include deterioration due to cyclic loads is yet to be implemented. Before the 

model can be used to model complete precast wall structures, full-scale experimental 

testing of grouted wall panels should be explored to provide a basis for calibration. 

6.7 CONCLUSIONS 

This paper discusses the development and calibration of an interfacial model suitable for 

use in FE platforms for capturing the behaviour of grouted connections used in precast 

concrete construction. The model utilizes a phenomenological bond-slip model to predict 

the bond slip behaviour of grouted anchorages. This was achieved by removing geometric 

non-linearities associated with modelling bar lugs and replacing it with interfacial cohesive 
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elements. This endowed the simulation with superior computational efficiency while 

yielding acceptable results. The proposed model is easy to calibrate and would allow 

numerical simulation of precast concrete wall assemblies.  

To confirm the ability of the model to capture the bond-slip behaviour in finite element 

analyses, the model was validated using several experimental tests retrieved from the open 

literature, including bond-slip and bar anchorage tests with different embedment lengths. 

The comparison between the numerical and experimental results showed that the model is 

able to reproduce the bond-slip behaviour of bars embedded in grouted connections with 

reasonable accuracy and has the ability to effectively capture bond failures. 
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Chapter 7  

7 SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

This chapter provides: i) A summary of the scope and major objectives of each chapter; 

and ii) Areas requiring future research. 

 

 

7.1 SUMMARY AND CONCLUSIONS 

This study was aimed at exploring the behaviour of emulative grouted connections used in 

precast wall construction under various changing parameters and loading procedures to 

determine the possible limit states of these connections.  

Chapter 3 provided an exploratory study on the bond behaviour of grouted connections. 

Grouted connection specimens designed to mimic actual field conditions were tested under 

monotonically increasing tensile loads. Another objective of the study was to determine 

the adequacy of using FRP bars in connections intended for light architectural panels. The 

testing procedure utilized strategies to reduce the influence of the boundary conditions on 

the bond behaviour of the specimens. The main tested parameters were the embedment 

length, bar strain levels, bar geometry, and the corrugated duct. A total of 22 specimens 

were tested to failure. Results indicate that grouted connections behave quite differently 

from the bar-in-concrete model assumed in design codes, primarily due to the confinement 

mechanism of the duct, which provides restraint to lateral expansion of the grout. Varying 

the embedment length seemed to affect both the bond stress and slip, but did not influence 

the failure mechanism of the connections. The experimental results were used to calibrate 

two well-known bond-slip analytical treatments, whose predictions were in good 

agreement with experimental results. The experimental and analytical findings provide an 

enhanced understanding on the behaviour of such connections, highlighting the need for 

revisions in future relevant design code provisions. 



162 

 

 

In the study presented in Chapter 4, a series of experimental and analytical approaches 

have been adopted to investigate how grouted connections compare to bars embedded 

concrete. A total of 24 grouted connection specimens were compared to their bar-in-

concrete counterparts. The main objective was to critically examine the underlying 

premises and efficacy of using the ACI 318-14 equation to design grouted connections and 

propose alternative empirical expressions more reflective of the unique nature of the 

connections. Results from the experimental and analytical procedures showed that grouted 

connections behaved markedly different from bars in concrete. Under similar conditions 

and regardless of the level of stress in the bar, the bond of grouted connections did not fail 

in splitting. The maximum bond strength recorded was consistently higher than that of the 

bar-in-concrete specimens, and the ascending branch of the envelope was stiffer. Based on 

the experimental findings, a design equation was developed using regression analysis of 

experimental results. The equation was able to predict the behaviour at 12 db with 

favourable accuracy.  

Chapter 5 presented the findings of a novel experimental program which provided 

important information on the behaviour of grouted connections under cyclic loads. An 

extensive survey of literature has shown that the performance of this type of connection 

under cyclic excitation is yet to be explored. In the present study, 16 full-scale grouted 

connection specimens mimicking actual field conditions were tested to failure under quasi-

static loading. Experimental findings revealed that, regardless of the strain level, grouted 

connections failed by grout shearing between the lugs of the bar. For all dowel embedment 

lengths, the load capacity of connections depended primarily on the connection seams of 

the duct, and not on the hoop strain level developed in it. The maximum recorded hoop 

strain measured on the duct was inversely proportional to the increase in embedment up to 

10 db, after which, approximately no increase in hoop strain was observed. The 

experimental results were used to calibrate the frictional model, which describes the 

transfer of stress in the anchorage. The model considers the influential parameters 

contributing to the bond of grouted connections. Its predictions were satisfactorily and in 

general agreement with experimental results. 
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In Chapter 6 of this dissertation, the development and calibration of an interfacial model 

suitable for use in finite element platforms, which can capture the behaviour of grouted 

connections used in precast concrete construction, were presented. The model adopts a 

phenomenological bond-slip law to predict the load versus slip response of the grouted bars 

and considers tensile yielding of the reinforcement. The local bond-slip law used was extracted 

from a set of experiments carefully designed to eliminate the spurious effects often associated 

with bond testing. By removing the geometric non-linearities associated with modelling bar 

lugs and replacing it with interfacial cohesive elements, the model allowed the simulation of 

grouted connections with superior computational efficiency, while yielding acceptable results. 

The model was validated using experimental results on grouted connections retrieved from the 

open literature. Good agreement between the experimental and numerical results was observed, 

highlighting the accuracy of the model in depicting interfacial stresses of the assembly. The 

model requires simple calibration and is computationally very efficient. It also accurately 

simulates the failure behavior of bars embedded in grouted connections. 

It is believed that the substantial advancement in understanding the behaviour of grouted 

connections, both in terms of experimental procedures and numerical modelling, achieved 

in this dissertation, should open the door for the development of new design provisions in 

relevant design codes worldwide. Going beyond the current inaccurate bar-in-concrete 

oversimplification used for designing such connections to the more realistic experimental 

testing and numerical modelling of these widely used connections, should advance the 

agenda of the precast concrete industry in creating more resilient civil infrastructure. 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The undertaking of the multi-phased experimental and numerical studies presented above, 

have revealed critical areas requiring future research: 

1) This research was conducted under the assumption that the bond of grouted 

connections shares the same dependencies as bars in concrete (√𝑓𝑐′). However, it 

was observed that the confinement effect provided by the corrugated duct and the 

failure mechanisms differed substantially from that of the bar-in-concrete 
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counterpart. A dedicated study to investigate this is yet to be undertaken by the 

authors. Results from this study would affect the way this type of bonded 

anchorages are perceived. It will also result in design equations more reflective of 

the nature of the connections.     

 

2) There is a wealth of information on the behaviour of emulative precast walls in the 

literature. Most of these walls had connections designed according to the ACI 318-

14 provisions. Based on the findings of this dissertation, much lower embedment 

lengths are required to mobilize ductile failures. A full-scale comparison between 

the ductility and performance of these types of walls is required to confirm the 

observations of this study.  

 

3) As discussed in preceding sections, emulative connections are either achieved using 

grouted connections or by grouted sleeves. Mechanical coupling devices are 

expensive and have unfavourable tolerances. If the grouted duct can be reinforced 

in such a way that their walls are able to transmit tensile stresses, the duct will act 

as a mechanical coupler. Such a device should be tested, and the results be used to 

certify couplers against prequalifying requirements specified in ACI 318-14. The 

development of this type of duct could see field implementations owing to its 

competitive cost and superior performance. 

 

4) The behaviour of grouted connections using specially engineered grouts is yet to 

be explored. During cold weather grouting, substantial heating costs are involved 

to ensure that temperature is above the freezing point and enable the hydration 

reactions of cement. Specially engineered materials like inorganic polymers, 

chemically bonded ceramics, and acid-alkali cements can provide an alternative to 

conventional binders, though more research is needed on their mixture 

optimization, and mechanical and durability aspects. The use of such materials 

could address industry specific needs, such as cold-weather grouting and 

applications where rapid setting of binders is usually sought. 
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5) The present study proposed an interfacial model of grouted connections under 

monotonic loads. The extension of the presented bond slip model to include 

deterioration due to cyclic loads is yet to be investigated.  
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