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Abstract

The purpose of this thesis was to develop tools for studying oxygen-dependent reg-

ulation of red blood cell (RBC) flow distribution in the microcirculation. At the

microvascular level, arterioles dictate the distribution of oxygen (O2) carrying RBCs

to downstream capillaries, a process which needs to be tightly regulated and cou-

pled to O2 off loading from capillaries to the tissue. To investigate potential regula-

tory mechanisms, an O2 exchange platform was developed to manipulate the RBC

hemoglobin O2 saturation (SO2) at the muscle surface while limiting the changes in

SO2 to only a single capillary network. Decreasing SO2 in a single capillary net-

work resulted in an increase in supply rate, while increasing SO2 caused a decrease

in supply rate. This finding is consistent with our hypothesis that ATP released in

capillaries in response to low SO2 is responsible for vasodilation of upstream arterioles

to regulate blood flow. To determine whether the dynamics of ATP was fast enough

to enable RBC signalling in capillaries, an in vitro microfluidic system was developed

to generate a rapid decrease in RBC SO2. The feasibility of this experimental design

was first tested computationally using a mathematical model that consisted of blood

flow, oxygen and ATP transport as well as a model for hemoglobin binding, ATP

release, ATP/luciferin/luciferase reaction and digital camera light detection. The

model demonstrated that the concept was theoretically feasible and yielded impor-

tant insights such as the signal sensitivity to flow rate. The model further revealed

that measured light intensity levels would not be directly related to ATP concentra-

tions, thus, care must be taken when interpreting the data. It was determined that

the microfluidic device would be fabricated using soft lithography techniques that

resulted in a device that differed significantly from our original theoretical design

since all of the layers would be oxygen permeable except for a glass coverslip with a

small opening for gas exchange between the liquid and gas channel. To optimize the

geometric design of this microfluidic device, to maximize the desaturation the RBCs,

a finite element model was developed. Based on this design a device was constructed.

To test whether the design generated a rapid decrease in RBC SO2, a low hematocrit

high SO2 RBC suspension was perfused through the device exposed to 95% N2 and

5% CO2 in the gas channel. Finally, to overcome challenges with existing approaches

for measuring SO2 in the device, a novel image analysis technique using digital in-

painting was developed. The inpainting approach demonstrated a rapid change in

RBC SO2 at the entrance to the window, thus the microfluidic device is ready to be

used to measure the dynamics of O2-dependent ATP release from RBCs. The new

inpainting algorithm was also applied to in vivo video sequences where it was shown
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to provide more accurate SO2 measurements and to work under conditions where

existing approaches fail. In summary, this thesis provides a set of in vivo, in vitro

and computational tools that can be used to study the mechanisms of SO2-dependent

regulation of the microvascular blood flow.

Keywords: oxygen regulation, red blood cells, hemoglobin oxygen sat-

uration, microcirculation, computational modelling, microfluidics, image

processing
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Chapter 1

Understanding Oxygen Regulation
in the Microcirculation

Oxygen (O2) is necessary for normal cell function, and due to diffusion limitations,

the circulatory system is a necessary means of delivering O2 to most cells throughout

the body. In order to meet physiological demands, our bodies must be able to adapt

to changes in metabolism as well as to perturbations in O2 supply. While O2 regula-

tion comprises a vast set of literature, this thesis is focused on O2 regulation at the

microvascular level, and thus this section will provide a broad overview of O2 regula-

tion at global scales as well as examples of proposed mechanisms at the microvascular

level. For a review of vascular control mechanisms in the microcirculation, see the

2005 review by Segal [1].

Most mechanisms control O2 supply by means of blood flow modulation; an increase

in blood flow leads to an increase in O2 supply. Blood flow can be modulated globally

by increasing heart rate or contractility, or locally by controlling the vascular tone of

arterioles. The latter is accomplished by contraction/relaxation of vascular smooth

muscle. Modulation of heart rate can elicit a change in systemic flow rate and pres-

sure, though this form of O2 supply control can be inefficient since blood flow would

be increased everywhere, even to regions that do not require more O2. It is more

1
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efficient to simply redirect flow, rather than increase flow rate everywhere.

The myogenic response provides an example of vascular tone modulation. In this

mechanism, arterioles respond to local increases in blood pressure. The increased

blood pressure causes the smooth muscle in the blood vessel walls to stretch, result-

ing in the contraction of the muscle.

For efficient regulation, O2 supply (blood flow) must be linked to O2 demand (rate of

O2 consumption) [2–4]. There has been evidence of O2 supply being linked directly

to the presence/absence of O2 as well. Several studies report that the presence of O2

leads to vasoconstriction [5–9], while the absence leads to vasodilation [10–12]. The

location of the O2 sensor remains unknown [13]. Some researchers have suggested

that an O2 sensor lies within the blood vessels of the microcirculation [10, 14–21].

Others have proposed the putative sensor is located in the tissue surrounding the

vessels [22, 23]. There have also been suggestions that a sensor for O2 lies within the

RBC.

As the carrier of O2, the RBC would be a logical choice for the sensor. For instance,

in a study of hypoxia, Stein et al. suggested that SO2 is a more critical determinant

of O2 supply to tissue than oxygen tension (PO2) [24]. Since PO2 affects the diffusion

of oxygen from the blood to the tissue, and the RBCs are the only component of the

system that is affected by SO2 (through their binding to hemoglobin); this suggests

that the mechanism responsible for sensing oxygen likely occurs within the RBC.

There have been three mechanisms proposed where the O2 sensor is located in the

RBC.
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One of the proposed RBC-mediated mechanisms is through the release of S-nitrothiol

(SNO) from hemoglobin [25]. SNO has been shown to be released from the hemoglobin

in RBCs in response to the conformational change associated with the deoxygenation

of hemoglobin. SNO is suggested to be a vasoactive molecule that elicits vasodilation

in arterioles, increasing blood flow to downstream capillaries. Despite the evidence

supporting the role of SNO as a mechanism for O2 regulation, there are numerous

studies refuting this as a viable mechanism [26–28].

Another proposed mechanism suggests that fully deoxygenated hemoglobin acts as a

nitrite reductase. In this mechanism, nitrite is converted to nitric oxide, which plays

an important role in vasodilation [26, 29, 30]. Due to the slow dynamics associated

with the reduction of nitrite, this mechanism likely lacks the temporal resolution re-

quired to tightly regulate O2 supply [31].

Finally, ATP has been shown to be released from RBCs in response to low O2 [32]

and other stimuli [32–34]. The ATP released into the plasma of blood vessels binds

to receptors on the membrane of the endothelial cells lining the vessel lumen [35].

This is thought to trigger a conducted signal through gap junctions in the endothe-

lium, leading to vasodilation of upstream arterioles [36, 37]. Of the three mechanisms

discussed above, this third mechanism is the only mechanism capable of triggering

a conducted vasodilatory response, enabling the capillaries, the primary site of O2

exchange, to contribute to regulation of O2 [31].

The main goal of this thesis is to develop tools to study O2-dependent ATP release

in RBCs. Evidence for O2-dependent ATP release will be presented in Section 1.1,

followed by an introduction to some important methodology that can be applied
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to the study of the local regulation of O2 distribution. In particular, fundamental

principles of hemoglobin SO2 measurements (Section 1.2), the basics of computational

modelling (Section 1.3), and an introduction into microfluidics (Section 1.4) will be

discussed. Finally, the outline of this thesis will be presented in Section 1.5.

1.1 Oxygen-Dependent ATP Release from Red Blood

Cells

In 1919, August Krogh proposed a mathematical model of O2 delivery to tissue [38].

His idealized model assumed that each capillary in a tissue supplied a cylinder of

tissue surrounding it. In his model, all of O2 delivery was assumed to happen at the

level of capillaries, thus each capillary had the same entrance O2 concentration. The

model suggested that the size of the tissue cylinder is dictated by the concentration

of O2 in the capillaries and the O2 consumption rate of tissue. Based on this, it was

proposed that increasing capillary density could compensate for increased metabolic

demand.

Since Krogh’s work, many researchers have been searching for mechanisms for cap-

illary recruitment. However, this view that capillaries have uniform O2 content is

over-simplistic; in 1970, Dulling and Berne demonstrated a substantial loss of O2 in

artierioles [39]. Various animal models and tissue preparations have confirmed this

finding [40–42]. There is also evidence for O2 exchange from arterioles to capillaries

[18]. These findings suggest that there is a diffusional loss of O2 in arterioles, leading

to a radial gradient across the arteriole where O2 content of RBCs nearest to the wall

would be lower than those travelling near the centreline [43, 44], since O2 would be

lost through the wall. At asymmetric bifurcations, slower flowing RBCs near the wall
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would flow down the low-flow branch of the bifurcation, leading to a heterogeneous

distribution of O2. This evidence lead to a contradiction of the original assumptions

in Krogh’s model. Due to the complexity of O2 distribution in the circulation, a more

locally sensitive mechanism is required to regulate the distribution of O2 to meet

metabolic demands. As discussed in the previous section, one potential mechanism

is the O2-dependent release of ATP from RBCs.

In the late 1940s, the optical detection and measurement of ATP was made possible

following the finding that firefly lantern extract (known today as firefly luciferin and

luciferase) luminesces in the presence of ATP [45]. This assay was further refined by

Strehler and McElroy in 1957 [46]. Since then, many researchers have used this assay

to investigate the presence of extracellular ATP in various tissues and organs [47–49].

For example, Forrester and Lind detected ATP in human blood plasma [48]; this was

the first hint at ATP release from RBCs.

Oxygen-dependent ATP release from RBCs was first measured by Bergfeld and Forester

in 1992 [32]. They used the firefly luciferase assay to measure a significant increase

in plasma ATP concentrations following exposure to low O2 and high pH. In 1995,

Ellsworth et al. were able to isolate the two effects and measured increased plasma

ATP concentrations in response to O2 with a fixed pH [33].

It was further shown that the injection of ATP into the vascular lumen leads to a dose-

dependent vasodilatory response [50]. This is proposed to be triggered by the binding

of ATP to the purinurgic receptor, P2Y2, on the inner luminal wall [35, 37, 51–53]. The

purinurgic activation results in the synthesis and release of vasodilators, such as nitric

oxide (NO) and prostacyclin (PGI2), which act to relax the vascular smooth muscle in
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arterioles [54]. This cascade also activates calcium-sensitive potassium channels, lead-

ing to hyperpolarization of endothelial and/or smooth muscle cells [55–57]; smooth

muscle hyperpolarization leads to dialtion [58, 59]. Hyperpolarization can be con-

ducted through gap junctions to adjacent endothelial/smooth muscle cells, leading

to a conducted vasodilatory response [55–57]. Further evidence for ATP release has

shown that decreasing the O2 content of blood vessels in the absence of RBCs elicits

no vascular response [34].

Jagger et al. showed a linear relationship between the steady-state RBC SO2 and

the amount of ATP released [60]. This lead to the hypothesis that ATP release was

related to the conformational change in hemoglobin due to its change in saturation.

This hypothesis was supported by using carbon monoxide to keep hemoglobin in its

saturated conformation and varying the O2 content of the RBCs. This was further

confirmed by several human studies [61–63].

The ATP release mechanism for O2 regulation was also supported by Ghonaim et

al. in vivo by manipulating the surface O2 levels of a rat skeletal muscle preparation

using a gas exchange chamber [64]. They showed that a change in tissue O2 leads to

a change in supply rate. ATP release has also been shown to be altered in diseases

such as prediabetes [65, 66], type II diabetes [67] and sepsis [68].

In the current view of ATP release, ATP is released from RBCs into capillaries under

local hypoxic conditions. The ATP released into the plasma is then able to bind to

receptors on the endothelium of the capillary which RBCs are in contact with. This

triggers a conducted vasodilatory response upstream to feeding arterioles that can

then dilate to increase RBC flow, and hence O2 supply. Figure 1.1 shows the pro-
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posed mechanism for a single RBC signalling to capillary endothelial cells. Since the

RBCs (sensors) are moving through the capillaries, the time-dependence (dynamics)

of ATP release dictates the ability of the regulatory system to accurately report the

location of low O2; if ATP is released too late, the RBC will be far downstream from

the site of low O2.

O2
ATP

Figure 1.1: Current understanding of O2-dependent ATP release from RBCs. Anatomic composite
image from a single 40X microscopy video frame (opacity 64%) superimposed on a functional im-
age (left). The video frame was processed as optical density such that low values (black) represent
background and high values (white) represent high absorbers, such as RBCs. The functional image
consists of the minimum pixel intensity over time; in the functional image areas with passing cells ap-
pear dark. The white arrow indicates the direction of RBC flow. (Center) Schematic representation
of a single RBC in close contact with the capillary endothelium. (Right) Schematic representation
of the ATP release mechanism in response to low O2. Following RBC desaturation, ATP is re-
lease through pannexin 1 channels in the RBC membrane. ATP in the vessel lumen either binds to
endothelial P2Y2 receptors or is degraded by ectoATPases. P2Y2 binding activates Ca2+-sensitive
potassium channels, resulting in hyperpolarization of the endothelial cell, which can be conducted
through gap junctions. This figure was adapted from [69].

In summary, ATP release seems to be an important mechanism in the regulation

of O2, however, its dynamics have not yet been fully elucidated. The main goal
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of this thesis is to develop methodology to explore the dynamics of O2-dependent

ATP release. Since this mechanism is dependent on RBC SO2, the methodology

developed in this thesis involves perturbing SO2. Therefore quantifying the degree

of desaturation is imperative. Section 1.2 outlines the methodology behind optical

measurements of SO2 from microscopy images.

1.2 Measuring Hemoglobin Oxygen Saturation

The measurement of hemoglobin oxygen saturation (SO2) is made possible by the

spectral properties of hemoglobin; hemoglobin absorbs light differently based on the

binding of oxygen. Figure 1.2 shows the hemoglobin absorption spectrum for fully

saturated- and fully desaturated-hemoglobin in the visible light spectrum; data in

this figure were tabulated by Scott Prahl [70]. The quantity shown in this figure

is called the molar extinction coefficient, which is a measure of the amount of light

absorbed per concentration of hemoglobin per path length. It is specifically defined

in the relationship between incident and transmitted light:

I = I010−ε(λ)cx, (1.1)

where I0 is the incident light intensity, I is the intensity of light transmitted through

the hemoglobin sample, c is the concentration of hemoglobin and x is the path length.

The extinction coefficient of hemoglobin at wavelength λ is given by ε(λ). The argu-

ment of the exponential is known as optical density OD ≡ εcx and can be calculated

by



9

Figure 1.2: Extinction coefficient for fully oxygen saturated- (red) and fully oxygen desaturated-
(blue) hemoglobin as a function of wavelength in the visible range.
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OD = log10

(
I0

I

)
. (1.2)

Expanding the optical density expression, OD = εcx, the optical density of red bloods

cells can be written as

OD(λ) =
(
εHbO2

(λ)SO2 + εHb(λ)(1− SO2)
)
cx, (1.3)

where SO2 is hemoglobin oxygen saturation and εHbO2
and εHb are the extinction

coefficients for fully saturated- and fully desaturated- hemoglobin, respectively.

Given the optical density of RBCs at two wavelengths, λ1 and λ2 we can determine

SO2 by taking the ratio of the optical densities and solving for SO2.

SO2 =
b1 − b2R

a2R− a1

(1.4a)

R =
OD(λ1)

OD(λ2)
(1.4b)

ai = εHbO2
(λi)− εHb(λi) (1.4c)

bi = εHb(λi) (1.4d)

where the constants a1, a2, b1 and b2 are usually obtained by calibration with RBCs

of known SO2. If the second wavelength, λ2, is chosen to be O2-independent, also

called isosbestic, the relationship between optical ratio and SO2 becomes linear [71].
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The intensity value, I, can be measured from the pixel intensity in an image. The

incident light, I0, however, is not directly measurable. This value is often approxi-

mated using video data to measure the light intensity of the plasma gaps between

the RBCs as they travel single file through the capillaries [72]. As the RBCs move

out of the way, the plasma intensity gives the intensity of the pixels behind the RBC.

This can be accomplished algorithmically by calculating the maximum intensity at

each pixel over a specified number of frames, since RBCs absorb more light, and thus

have lower intensity values than the plasma. In Japee et al., the maximum intensity

minus three standard deviations is used as the value for I0. In more recent studies, the

maximum value is used since low-noise digital cameras are used to acquire the images.

Overall, RBC SO2 provides a good measure of tissue oxygenation [24] and is a in-

valuable tool in the study of O2 regulation. However, there are scenarios in which

we would like to determine concentrations of O2 that may be difficult or impossible

to measure. Computational modelling provides a useful way to predict the spatial

distribution of oxygen and other physical quantities based on mathematical models.

Section 1.3 presents a simplified overview of computational modelling based on con-

servation laws and some useful numerical techniques that can be used to solve the

governing partial differential equations.

1.3 Computational Modelling

Computational modelling consists of using computers to simulate the behaviour of

complex processes based on a mathematical representation; they can be used to sim-

ulate physiological scenarios to facilitate the understanding of the system without the

time or cost associated with experiments. For instance, to study the effect of capil-
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lary perfusion loss on tissue oxygenation, Fraser et al. used a computational model

of O2 transport to predict tissue oxygenation where perfusion loss was simulated by

systematically removing capillaries from the simulation [73]. This approach is more

feasible than using an experimental model where more variability is introduced.

Various types of mathematical models can be constructed based on the goals and

needs of the study. The mathematical models in this thesis are constructed based

on the physical principle of conservation. In conservation models, the dependent

variables are often functions of space. These models can also be either dynamic

(time-dependent), or steady-state (constant in time). This section outlines how these

types of mathematical models are formulated followed by several strategies for solving

the governing equations on a computer.

1.3.1 Mathematical Models

Many mathematical models are formulated as a (set of) partial differential equation(s)

(PDE(s)) that describe the how a physical phenomenon varies through space and/or

evolves over time. These PDEs are generally formulated from conservation laws, such

as the conservation of mass. Once the set of PDEs are determined, a set of initial

and boundary conditions are required to obtain a unique solution. Physical models

based on conservation principles result in PDEs of the following form

∂u

∂t
+ ~v · ∇u = ∇ · (D∇u) + s, (1.5)

where u is the quantity of interest. The first term on the left hand side of the PDE
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represents the evolution of u over time and the second term represents spatial trans-

lation of u at the velocity, ~v. On the right hand side, the first term represents the

diffusion of u where D dictates the extent of diffusion and the second term represent

sources/sinks of u, where s is the strength of the source/sink. For example, in the

context of mass transport, u would be solute concentration. The terms of the PDE

from left to right would represent temporal evolution, convection, diffusion, and se-

cretion/consumption, respectively.

To define the system uniquely, a set of initial/boundary conditions must be defined.

Initial conditions define the system at the beginning of the time of interest at every

point in space and the boundary conditions define the system at the boundaries of

the domain for all time after t = 0. Initial and boundary conditions are generally

given in terms of the dependent variable or its derivatives.

In general, PDEs cannot be solved exactly; in order to obtain a solution, a numerical

approximation must be made. There are three common classes of approximation

techniques for PDEs: (1) the finite difference method (FDM), (2) the finite volume

method (FVM) and (3) the finite element method (FEM). Each discretization method,

solves for the function of interest, u(x, y, z, t), at discrete points in time and space,

uni (where n is the time index and i is the spatial index).

1.3.2 Finite Difference Method

FDM approximates the derivatives in the PDE using a difference approximation. In

order to obtain an approximation of the partial derivatives, the time and spatial

domains need to be discretized into a grid such that the grid lines lie along the

coordinate directions. Continuous functions can then be expressed as a set of discrete
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values organized into a tabular structure (e.g. f(x, y, z, t) ≈ fni,j,k). One example of a

finite difference approximation is called Euler’s method and is defined as follows

∂u

∂t
≈
un+1
i,j,k − uni,j,k

∆tn
, (1.6)

where ∆tn is the nth temporal step size. This FDM approximation is first order,

meaning the error is linearly proportional to ∆t. More accurate schemes can be de-

rived using higher-order Taylor-series expansions.

Using these difference approximations, we can write the entire differential equation

in terms of discrete variables. This procedure transforms the PDE into a system of

algebraic equations which can then be solved computationally.

The finite difference method is generally quite simple to implement and can be used to

discretize even the most complex PDEs. The main disadvantage to the FDM is that

it is not straightforward to implement for complex geometries. For more complicated

geometries, the finite difference method is often used to approximate the temporal

derivatives and the rest of the PDE can be discretized using either FVM or FEM.

1.3.3 Finite Volume Method

FVM uses a discrete approximation of the integral form of the conservation law.

Equation 1.5 can be rewritten as the following integral equation
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∫
∂Ω

n̂ · (~vu−D∇u) dA =

∫
Ω

sdV, (1.7)

where Ω is the spatial domain and ∂Ω is the boundary; n̂ is the unit normal to the

boundary.

The integrals are approximated by a discrete summation. One example would be the

midpoint rule on a cubic volume:

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z)dxdydz ≈ f
(xi

2
,
yi
2
,
zi
2

)
∆x3

i , (1.8)

where i is the volume’s index and ∆xi are the side lengths of the cubic volume

elements. This quadrature rule is first-order accurate; more accurate schemes can be

derived. Once each integral in the equation is approximated, a system of algebraic

equations are obtained and can be solved using a computer.

1.3.4 Finite Element Method

FEM uses variational calculus to minimize the residual, R, of the spatial PDE. The

residual of the PDE presented in Equation 1.5 is given by

R(ũ) = ~v · ∇ũ−∇ · (D∇ũ)− s, (1.9)

for some function ũ. If the residual of the PDE is zero then u = ũ is the solution.
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The fundamental theorem of variation calculus states that if

∫
Ω

v(~x)w(~x)dV = 0, (1.10)

for all w(~x), then v(~x) = 0 for all ~x in Ω. This theorem can be used to constrain the

residual to zero. Rewriting the theorem using the residual we find:

∫
Ω

w(~x) (~v · ∇u−∇ · (D∇u)− s) dV = 0, (1.11)

The dependent variable, u, is then chosen to be

u(~x) =
N∑
i

uiφi, (1.12)

where φi is the ith shape function of the spatial discretization. The shape function has

the properties that φi = 1 at the ith node of the spatial discretization and 0 at every

other node and φi varies according to a polynomial along the adjacent elements (for

example φi can be piecewise linear). This choice of u results in an algebraic equation

with N unknowns; the system is closed with the choice of N different w(~x) functions.

One example is the Galerkin method which chooses wj = φj [74].
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1.3.5 Solution of Algebraic Equations

After obtaining the system of equations, it must be solved to get the approximate

solution to the PDE. There are many methods to solve linear systems of equations,

most of them rely on an iterative procedure. The solver should be chosen based on the

size and shape of the resulting matrix. For example, if the matrix is symmetric and

positive definite, the conjugate gradient method solves the system in O(n) operations.

The generalized minimal residual (GMRES) method is a more robust linear solver

that works for any matrix [75]. With GMRES, speed is sacrificed in order to handle

a more general problem.

1.3.6 Mathematical Modelling in This Thesis

This thesis uses numerous computational models and numerical techniques in the

development of tools to study microvascular O2 regulation. In particular, we use

the finite difference and finite element methods. The finite difference method is the

simplest to implement for simple geometries; for more complex geometries, the finite

element method is used.

In Chapter 2, an in vivo microfluidic device is developed to perturb the local O2

levels in a rat skeletal muscle preparation. A time-dependent computational model

of O2 transport is used to estimate how far into the muscle the perturbations extend;

this model is discretized using the finite difference method and parallelized to reduce

computation time. Chapters 3, 4 and 6 present the design, development, fabrication

and validation of an in vitro microfluidic device designed to measure the release time

of ATP from RBC in response to low O2. In Chapter 3, computational modelling is

used to simulate the in vitro experiment to determine if it is theoretically feasible;
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these PDEs are discretized using the finite difference method. In Chapter 4, a 3D

model of the O2 transport through the microfluidic device is used to optimize its

geometry. The finite element method was used for the discretization to facilitate the

use of arbitrarily complex geometries. Finally, Chapter 5 presents an image analysis

method to estimate RBC SO2. Though no physical models are used, partial differ-

ential equations are used to estimate the incident light intensity; these equations are

discretized using the finite difference method.

In summary, mathematical modelling is a useful tool for predicting the transport of

O2 in systems used to study microvascular O2 regulation, both in vivo and in vitro.

Computational modelling, however, does not address design considerations related to

the fabrication of microfluidic devices. Section 1.4 presents a selective overview of

microfluidic fabrication techniques.

1.4 Microfluidic Device Fabrication Principles

Microfluidics is a rapidly emerging field with a wide range of scientific applications.

It is defined as the manipulation of fluids in channels having characteristic lengths on

the order of tens to hundreds of micrometers [76]. Microfluidics were first developed

in the 1970s using techniques from the well-established field of microelectronics [77].

In the 1990s, microfluidics began to rapidly grow as research expanded into the use of

new classes of materials, notably polymers [76]. Applications include rapid analysis

of bodily fluids (e.g. blood) [78], point of care diagnosis [79], analysis of environmen-

tal contaminants [80], fluid dynamics [81], in vivo drug delivery [82] and biomimetic

systems [83].



19

Microfluidics have several advantages over many other experimental methods since

they have lower reagent consumption due to the small volumes used and allow for

higher throughput. Further, with the advances in polymer fabrication techniques,

microfluidic devices have low manufacturing costs and their fabrication process has

become accessible to general scientists [84]. This allows for the fabrication of spe-

cialized microfluidic devices with relative ease, therefore, microfluidic devices can be

rapidly prototyped, accelerating research progress.

The objective of this section is to outline the basic principles of common fabrication

techniques. Section 1.4.1 will begin with considerations with regards to the materials

used in the fabrication of microfluidic device. Next, Section 1.4.2 will describe several

common techniques used to fabricate components used in the production. Finally,

select popular bonding techniques will be discussed in Section 1.4.3.

1.4.1 Material Considerations

Early microfluidic devices were primarily fabricated in glass or silicon using pho-

tolithography and chemical etching [85, 86]. Glass has the benefit of being optically

transparent, electrically insulating, thermally conducting, rigid and resistant to most

organic solvents. Silicon has similar benefits to glass, though it is optically opaque

and is electrically conductible. During the etching process, silicon is able to main-

tain vertical side walls, whereas channels etched in glass result in curved side walls

[87]. Additionally, the fabrication process for both materials requires a clean room,

dangerous chemicals in the etching process and high pressures or temperatures in the

bonding process [85, 88]. Thus, the manufacturing process for microfluidic devices

fabricated in glass or silicon generally require a special facility and often have large

costs.
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More recently, polymers have become a popular class of materials to use in the fab-

rication of microfluidic device [76]. Polymers can be classified into three categories;

(1) thermosets, (2) thermoplastics and (3) elastomers.

Thermosets are polymers that become cross-linked and harden when heated or irra-

diated. After hardening, thermosets cannot be reshaped, thus they are stable at high

temperatures. Further, they are resistant to most solvents and optically transparent.

Their high strength makes them ideal for fabricating channels with high aspect ratios.

One thermoset used in microfluidics is the UV-sensitive epoxy SU-8 [89]. Though,

due to the high cost of thermosets, they have limited applications in microfluidics [90].

Thermoplastics are solid polymers that, when heated become soft and moldable.

Common thermoplastics include poly(methylmethacrylate) (PMMA), polycarbonate,

polystyrene, polyvinyl chloride (PVC) and polyethylene terephthalate (PET) [91].

Thermoplastics can be reshaped multiple times, which allows for a flexible manufac-

turing process. Like thermosets, they are typically rigid and impermeable to gases,

though they are incompatible with most organic solvents (e.g. ketones and hydro-

carbons). Due to the high temperatures required, thermoplastics tend to have more

applications in commercial manufacturing of microfluidics than in an academic set-

ting [90].

Elastomers are polymers that consist of entangled cross-linked polymer chains. The

entanglement gives elastomers their elastic property. Due to their porous structure,

elastomers tend to be permeable to gases and other small molecules. This makes

elastomers incompatible with many solvents, since small molecules dissolved in the
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solvent can be adsorbed into the elastomer [92]. However, their elasticity allows

them to be used as valves in microfluidic devices [93]. The most common elastomer

in microfluidics is poly(dimethyl siloxane) (PDMS) [76]. PDMS is inexpensive and

optically transparent.

1.4.2 Fabrication Techniques

In the fabrication of microfluidic channels, a cavity is made in the material to form

a channel, the channel is then sealed with a flat piece of material by some bonding

process. The process by which the channel is formed depends on the material used.

For glass and silicon, the most common method for forming the channel is using

photolithography to etch the cavity into the material. The glass or silicon is first

cleaned thoroughly, then a photoresist is spin coated onto the substrate. Following

this, a photomask is applied and the substrate with photoresist is exposed to light.

The glass/silicon is then treated with a chemical to etch the material where the pho-

toresist is absent. The depth of the channel is dictated by the length of exposure.

After the etching is done, the remaining photoresist is removed. This process yields

rectangular channels for silicon and rounded channels for glass, where the curvature

depends on the chemical used for etching and depth.

For polymers, the most common method is replica molding, where the polymer is

cast onto a master containing a positive resist of the channel. After the polymer is

cured, the replica is removed from the mold and is ready to be sealed. The master

molds are usually fabricated using photolithography [84] or micro-machining [93].
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Thin membranes are often required for applications in microfluidics; for elastomers,

this is generally formed by way of spin coating. The spin coating process allows for

a thin, even layer of the polymer to be made. The thickness of the layer is controlled

by the angular frequency of the rotating plate. The time for spin coating must be

carefully chosen; the time must be sufficient for the process to reach steady state, but

not so long that evaporation occurs.

1.4.3 Bonding Techniques

Once the individual components are fabricated, they are bonded together to form

the final microfluidic device. This section will outline popular bonding techniques

for PDMS. For components made from glass or silicon, fusion or anodic bonding can

be used. For a complete review, see [94]. Four methods will be discussed: oxygen

plasma, varying curing ratio, partial curing and corona treatment.

In the oxygen plasma method, the contact surfaces of two PDMS components are

brought into conformal contact after being treated with oxygen plasma. This process

oxidizes the surfaces to allow the PDMS structures to be irreversibly bonded [84].

This method results in hydrophilic surfaces, which have the benefit of allowing easier

fluid filling, though this benefit subsides over time [95]. The main drawbacks of this

method are that it is expensive and must be done in an evacuated chamber in clean-

room conditions.

In the varying curing agent method, different ratios of prepolymer and cross-linker

are used to create the bond. In this method, one of the components is made with

more prepolymer than cross-linker, while the second component will be made with

more cross-linker [96]. This approach is advantageous since it does not require ad-
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ditional surface treatment, however, it may not be suitable for all applications since

the material properties will vary throughout the PDMS [95].

In the partial curing method, a fully cured component is put into contact with a

partially cured component, resulting in an irreversible bond. This method has been

shown to be effective and inexpensive for making multilayered devices [95].

In the corona discharge method, a handheld device generates a high electric field on

the surface of fully cured PDMS, causing surface oxidization [97]. This process can

be done at room temperature and pressure, without the need of a vacuum system

[95].

1.5 Purpose

The objective of this thesis is to develop methodology that can be used to study the

complex regulatory mechanisms involved in the regulation of O2 distribution. Overall,

it presents the development of two microfluidic devices. The first device, presented

in Chapter 2 is an in vivo device that can be used to perturb the local O2 content

of specific networks of capillaries in order to interrogate the regulatory mechanisms

of the microvasculature. The next two chapters detail mathematical models used

to design an in vitro device that can probe the O2-dependent ATP release from

RBCs in isolation. Specifically, Chapter 3 presents a theoretical model of an in

vitro experiment designed to measure the temporal behaviour of O2-dependent ATP

release from RBCs. Chapter 4 uses a finite element model of O2 transport through

the proposed device in order to optimize the geometric design. To assess the ability

of this device to desaturate RBCs, current in vivo methodology for measuring SO2
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needs to be extended in order to apply to the in vitro images; Chapter 5 details an

image processing algorithm to we developed to do this. Chapter 6 presents the actual

fabrication of this in vitro microfluidic device, and verifies its ability to deoxygenate

RBCs. Finally, Chapter 7 discusses the implications of the findings of this work and

potential avenues to be pursued in the future.
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Chapter 2

Localized oxygen exchange
platform for intravital video
microscopy investigations of
microvascular oxygen regulation

2.1 Introduction

Oxygen (O2) regulation is a critical physiological function where precise regulatory control

is required to ensure the metabolic demands of the tissues of the body are met. In order for

such a level of control to be possible, there must be various mechanisms in place to sense

O2 demand and correspondingly adjust O2 supply.

Numerous studies have confirmed that the presence/absence of O2 in the microcirculation

results in a vasoactive response such that high levels of O2 result in vasoconstriction [1–5]

and low levels of O2 result in vasodilation [6–8]. These findings allude to the existence of

an O2 sensor, the location of which remains unclear [9]. Potential locations include the red

blood cell (RBC), arteriolar smooth muscle, arteriolar endothelium and even extra-vascular

cells; see [9] for an in-depth review.
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There has been substantial evidence pointing to the RBC as the sensor for O2 in the mi-

crocirculation; see review by Ellsworth et al. [10]. One potential mechanism that has been

proposed is the O2-dependent release of ATP from RBCs. In this mechanism, ATP is re-

leased from RBCs in response to decreased oxygen tension leading to increased plasma ATP

[11, 12]. The intra-luminal ATP then binds to P2Y2 receptors on the blood vessel endothe-

lium triggering an upstream vasodilatory response [13–16]. Several pathological conditions

have been associated with an impaired ability to release ATP, such as sepsis [17] and type

II diabetes [18–20], potentially affecting the ability to regulate oxygen.

Various studies have used microscopy in conjunction with methods to alter the tissue oxy-

genation to interrogate the regulatory system [4, 5, 8]. For instance, suffusion solutions with

varying levels of O2 have been used to control O2 in several tissue preparations to study

the regulatory response [5, 8]. In previous studies, we used intravital video microscopy that

combines a gas exchange platform with computer controlled gas flow meters to manipu-

late the gas composition at the surface of rat extensor digitorum longus (EDL) muscle to

study the response of the microcirculation to a range of O2 concentrations [21–23]. In these

studies, the entire surface of the muscle was affected by the change in O2. While these

approaches were able to elicit vasodilatory responses, more localized changes in O2 could

potentially reveal information leading to the location of the O2 sensor.

More recently, a localized micro-delivery system was developed that was capable of limiting

the change in RBC oxygen saturation (SO2) to a circular area of approximately 175 µm in

diameter [24], however, changes in supply rate were not reported [24]. This finding was sup-

ported by a mathematical model of the regulatory system that suggests that the signal for

vasodilation is additive and depends on the number of capillaries that are stimulated [25].

A later study used a larger exchange window (1 mm long by 0.1 mm wide) to manipulate

the RBC SO2 of a much larger area; this larger exchange window elicited a flow response

[26]. This work further supports the idea that the vasodilatory signal is additive.
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The work in Ghonaim et al. [26] showed promising results which were consistent with the

proposed ATP release mechanism, however, there were some limitations for studying O2

regulatory mechanisms. First, stimulating multiple microvascular units at the same time

potentially affects multiple feeding arterioles. Additionally, the setup in Ghonaim et al.

could only resolve capillaries that were less than 60 µm from the surface; one challenge as-

sociated with using gas exchange chambers with intravital microscopy is that the chamber

must be placed in between the objective and the muscle, reducing the effective focal depth.

This impedes the ability to focus on structures deeper in the tissue.

This study presents a refined gas exchange design that is modular and capable of changing

local tissue O2 tension in small regions affecting single microvascular units. One potential

benefit of such a device is to determine if stimulation of a single microvascular unit is

sufficient to elicit a flow response. By making the design modular, the device can be easily

adjusted to suit different needs. For example, the shape and size of the exchange surfaces

can easily be changed. This design also aims to maximize the focal plane in order to view

structures deeper in the tissue as well as allowing for viewing of adjacent regions in the

tissue. In addition, we used a GPU accelerated computational model of oxygen transport

to estimate O2 content in the tissue and the temporal affects of changing O2 in the chamber.

Overall, we developed a modular gas exchange device for studying oxygen regulation in the

microcirculation.

2.2 Methods

2.2.1 Gas Chamber Design and Fabrication

The gas exchange chamber was comprised of a microscope stage insert, a gasket to form the

side walls of the channel and a platform for the inlet and outlet of the channel (see Figure
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6.1). The bottom of the channel was closed by a replaceable glass slide. The top of the chan-

nel was closed by a custom, laser-cut glass slide with five windows for gas exchange using a

process described in [27]; the windows were sealed with a thin, gas-permeable, membrane.

The components were assembled together using vacuum grease to ensure no gas leakage.

Stage 
Insert

Inlet and  
Outlet

Gas Channel  
Gasket

Figure 2.1: Three dimensional CAD model of gas chamber components. Inlet/outlet mount
and stage insert were 3D printed. The gas channel gasket was made out polymethyl-methacrylate
(PMMA). The gas channel is sealed on the bottom with a glass cover slide and on the top with a
laser-cut glass cover slide.

The stage insert and platform for the inlet and outlet were designed in FreeCAD and

3D printed. The gasket was fabricated by hand cutting 100-µm sheets of polymethyl-

methacrylate (PMMA) to the desired shape. The gas-permeable membrane was fabricated

in PDMS using a spin-coating technique similar to [28]. PDMS (Sylgard 184, Dow Corning

Corporation) in a 10:1 prepolymer to cross-linker ratio by weight was spin-coated at 1700

rpm for 30 seconds; resulting membranes were approximately 45 µm in thickness.

Gas composition (O2, CO2 and N2) was controlled using computer controlled mass flow

meters. Gas temperature was maintained at 37 °C.
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2.2.2 Animal Preparation

Male Sprague-Dawley (150-200g) rats were anesthetized with 65 mg per kg of body weight

of pentobarbital sodium by intraperitonial injection. Following injection, the animals were

tracheotomized for ventilation as previously described [20, 29]. Animals were mechanically

ventilated with 30% oxygen and balance nitrogen while their inspired O2, heart rate, and

blood pressure levels were continuously recorded as described in [20]. The Extensor dig-

itorum longus (EDL) muscle of the hind limb was prepared for microscopy as described

in [30]; this preparation was based on that by Tyml and Budreau [31]. The muscle was

extended on the microscope stage using suture attached to the edge of the muscle. The

muscle was then covered with oxygen-impermeable Saran Wrap and a glass cover slip to

isolate it from the room oxygen conditions. The tissue was trans-illuminated with a 75

W xenon lamp (Olympus U-LH75XEAPO) using an Olympus IX-81 inverted microscope

equipped with 10X (Olympus U Plan S-APO; 0.4 NA) and 20X (Olympus U Plan LWD;

0.45 NA) objectives. The corresponding images were captured using the dual video camera

system previously described in [20]. The experiments used in this study were approved by

the University of Western Ontario’s Animal Care and Use Committee (see Appendix A).

2.2.3 Data Analysis

Intravital video microscopy images were acquired at 21 frames per second at two wave-

lengths, 438 nm and 450 nm using a beam splitter. Images were analyzed offline using

software developed in MATLAB (Mathworks) to quantify SO2 and hemodynamics as pre-

viously described [30, 32–34].

2.2.4 Mathematical Model of Tissue Oxygenation

A mathematical model of tissue oxygenation is used to determine the extent of oxygen

diffusion in the tissue from the gas exchange chamber. Tissue oxygenation was simulated in
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Figure 2.2: Intravital video microscopy experimental setup. This figure shows the experimental
setup for an intravital experiment to allow for oxygen exchange to a localized area of tissue. In this
setup, the muscle is extended over the gas exchange window and covered in gas-impermeable saran
wrap to isolate the muscle from the surrounding environment.

3D over time. Tissue oxygen partial pressure, PO2, was determined by numerically solving:

k
∂P

∂t
= Dk∇2P +Kk

(
1− P

P0

)
−M0

P

P + Pcrit

where D and k are oxygen diffusivity and solubility in tissue, respectively, M0 is the max-

imal tissue oxygen consumption, Pcrit is the PO2 at which consumption is half V O2, P0 is

the average capillary PO2 and K is the rate of oxygen transport from the capillaries into

the tissue. The parameters used in our model are summarized in Table 4.1.

This model assumes the tissue is homogeneously consuming oxygen and that there is a

homogeneous supply of oxygen from the capillaries. Similar models were implemented in

previous studies to predict tissue oxygenation [24, 38].

The temporal derivative was discretized using an implicit-explicit method similar to [40]
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Table 2.1: Parameters used in mathematical model.

Parameter Value Reference
D 2.41× 10−5 cm2/s Bentley et al. [35]
k 3.89× 10−5 mL O2/mL/mmHg Mahler et al. [36]
M0 1.57× 10−4 mL O2/mL/s Sullivan & Pittman [37]
K 30 mmHg Goldman [38]
P0 48 mmHg Goldman [38]
Pcrit 0.5 mmHg Honig & Gayeski [39]

and the spatial derivatives were discretized using a second order central difference scheme.

In this scheme, the linear source term was evaluated at the current time step, where as the

other terms were evaluated at the previous time step. This scheme was chosen since it is fully

explicit and has greater stability than the forward Euler scheme. The numerical solution was

parallelized on a graphical processing unit (GPU) and implemented in C++/CUDA. The

numerical grid was spatially decomposed onto a 1024-core GPU. A four-minute simulation

with one million spatial nodes was solved in under five minutes. Computation time is limited

by the solution write-out frequency.

2.3 Results

Five gas exchange windows were patterned into glass slides to facilitate positioning of the

muscle relative to the exchange window (Figure 2.3). Windows were designed to be 200 by

400 µm. The spacing of the windows was chosen to allow for regions between the windows

that are unaffected by the change in O2. This was verified with our mathematical model;

see Figure 2.4. Dark markings can been seen around the edges of the windows; this is due

to the laser fabrication process. It can be noted that these marks only appear on one side

of the glass slide. We chose the non-marked side to be in contact with the muscle to ensure

that the markings are out of the focal plane when focused on the muscle; this can be seen

in Figure 2.3 panel C.

We used a model of O2 transport that was modified from that used in [24, 38] to predict the
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Figure 2.3: Gas exchange window design. Panel A shows a diagram of the design of the gas
exchange windows. Panel B shows a 4X micrograph of the two of the exchange windows cantered
in the field of view. Dark markings can be seen around the edges of the window. Panel C shows a
20X micrograph of an exchange window focused on the edge closest to the objective. Panel D shows
a 10X functional image of the minimum intensity values over time.
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distribution of O2 in the tissue. This model only considers diffusion, neglecting convective

effects caused by RBCs transporting O2. The model suggests that only a small area will be

affected by the window (Figure 2.5).

Figure 2.4: Computational simulation predicting the extent of diffusion between the five windows.
Contour map of the steady-state O2 distribution in the tissue around the gas exchange windows. The
displayed plane is oriented with the imaging plane of the microscope and at a depth of 25 µm into
the tissue from the surface of the glass slide.

To verify that the exchange window is affecting RBC SO2, we performed step changes in gas

O2 and measured the resulting RBC SO2. At baseline, the gas composition contained 5%

O2, 5% CO2, and balance N2. After one minute, the gas composition was changed to 2 %

O2, 5% CO2 and balance N2. An example of a step change for various capillaries in the field

of view is shown in Figure 2.6. After the drop in gas chamber O2, the SO2 drops rapidly then

steadily increases. This increase may be explained by the increased flow rate in response to

the low O2. It can also be noted that the trend is similar for all capillaries in the field of view.

A further demonstration of the desaturation capabilities of this device are shown in Figure

2.7. This figure shows the distribution of capillary SO2 values when the window O2 is set
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80 µm

28 mmHg

42 mmHg

Figure 2.5: Predicted oxygen distribution. The top pannel shows an intravital video minimum
intensity functional image with contour lines displaying constant oxygen; each line is 2 mmHg apart.
The model assumes the plane is 25 µm from the surface of the window. The bottom panel shows a
colormap of the oxygen distribution as a function of depth in the tissue.
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b
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Figure 2.6: Capillary SO2 in response to a step change in O2. The top panel shows the minimum
intensity function image of the field of view. The capillaries analyzed are identified by white boxes,
with arrows to indicate the direction of RBC flow, and the white dashed line indicates the position
of the exchange window. The bottom panel shows RBC SO2 as a function of time; the time at which
O2 was changed is indicated with the black dashed line.
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to 2%, 5% and 7% (5% CO2 and balance N2). These results demonstrate the large varia-

tions in RBC SO2 experienced in the microcirculation, even when subjected to variations in

window O2. The variations are probably due to the variability in RBC supply rate between

vessels, which vary from approximately 2 RBC/s to 40 RBC/s in this field of view.

80 µm

Figure 2.7: Distribution of RBC SO2 in response to three window O2 levels (2%, 5% and 7%). The
top panels shows the minimum intensity functional image of the analyzed field of view; the analyzed
capillaries are indicated with white boxes. The bottom panel shows the distribution of the average
capillary SO2 binned into 1 second intervals for window O2 of 2% (orange), 5% (blue) and 7% (red).
Histogram bins are partially transparent to show the overlap.

The computational model was also used to verify how quickly changes in chamber O2 affect

tissue O2 at varying depths in the tissue. The model assumes the gas composition at the

window changes instantly; thus the model is determining the temporal diffusion limitation.
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Figure 2.8 A shows the simulation results for a step change in O2 from 5% to 2% centred in

the window at varying tissue depths. The results of a square wave in O2 are shown in panel

B. The simulation demonstrates that diffusion reaches steady-state within 3 seconds of the

the step change. The delay in the change in chamber O2 was measured experimentally using

a PO2 sensor in the outlet of the gas channel; typical delays are on the order of 2 seconds.

Thus, we expect a total delay of 5 seconds.

A B
Figure 2.8: Predicted time-dependent changes in tissue O2. Panel A shows predicted tissue O2 for
a step change in chamber O2 for different depths in the tissue. Panel B shows the predicted tissue
O2 in response to a square wave in chamber O2 (one minute of 5% O2, two minutes of 7% O2, two
minutes of 2% O2 and one minute of 5% O2).

To demonstrate that the device can induce flow rate responses, we measured both RBC

SO2 in selected in-focus capillaries as well as RBC supply rate in response to a square wave

change in chamber O2. The square wave consisted of one minute of 5% O2 followed by

two minutes of 7% percent, two minutes of 2% percent and one minute of 5% with 3% and

balance N2. The analyzed field of view and results of the square wave are shown in Figure

2.9.
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40 µm

Figure 2.9: Oxygen saturation and supply rate change in response to square wave oxygen challenge.
The top panel shows the minimum intensity function image of the analyzed field of view at 20X
magnification. The analyzed capillary is indicated with a white box. The bottom panel shows the
induced SO2 changes along with the corresponding change in RBC supply rate. The black dashed
lines indicate the time at which the chamber O2 was changed.

2.4 Discussion

In this study, we developed a modular gas exchange platform to deliver a localized gas

composition to the surface of tissue for use in intravital microscopy studies. Our platform

is able to change RBC SO2 to capillaries within a localized area of approximately 560 by

360 µm (Figure 2.5). The changes in capillary RBC O2 were demonstrated both experi-

mentally (Figures 2.6, 2.7) and computationally (Figure 2.5); the later was able to predict

the extent of the affected area. This gas exchange platform is able to induce both increased

and decreased microvascular flow response to changing levels of O2. The computational
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model predicts that O2 diffusion into the tissue will reach steady-state within 5 seconds

of changing the chamber O2. This prediction may be impacted by the presence of blood

vessels, for which the model does not account.

In previous work, we used a smaller gas exchange window to induce RBC SO2 changes

[24]. Ghonaim et al. suggested that not enough capillaries were stimulated to elicit a flow

response [25, 26]. This is supported by the use of a larger gas exchange window to induce

RBC SO2 changes in more capillaries to which the vasculature responded [26]. In the cur-

rent study, we used a window size that was larger than that used in [24] but smaller than

that used in [26] and were able to get consistent vascular response with our chamber. The

changes in SO2 in both [24, 26] were consistent with those in our chamber. This finding

supports the hypothesis that the ATP release signal is additive since we are affecting more

capillaries than in [24].

Various studies in the literature have been successful in causing changes in RBC SO2 both

in vivo and ex vivo [1–8]. One approach is to alter the inspired O2 levels as in [3], result-

ing in changed RBC SO2, though this may result in systemic hyper/hypoxia [9]. Another

approach involves using superfusion solutions with different gas compositions to bathe the

tissue in order to control the surface O2 levels [5, 8]. While this method confines the changes

in O2 to the tissue being studied, the changes affect the entire muscle surface. Additionally,

these methods may affect the physiological pathways as molecules may be continuously

washed away with the superfusate. Superfusion solutions are likely to cause confounding

results and make isolating specific vessels challenging since they may be affecting mecha-

nisms at difference levels of the vasculature [9]. Further, due to the low solubility of O2 in

water, superfusion solutions have a limited in their ability carry O2. For these reasons, gas

exchange chambers may be more advantageous than superfusion solutions in the investiga-

tions of localized O2 regulation.
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Despite the many benefits of the approach employed in this work, there are a few challenges

that are worth noting. Firstly, due to the opening in the glass, the tissue view through the

window is on a different focal plane than the surrounding tissue at the same tissue depth.

Because of this, it is not possible to focus on capillaries in and out of the window at the

same tissue depth simultaneously. However, due to the optical clarity outside the window,

we are able to focus on capillaries outside of the window, enabling us to look at the effects

of changing gas composition on the surroundings.

Another challenge associated with this experiment is placement of the muscle over the ex-

change windows. This requires careful manipulation of the muscle in order to place the

muscle over the windows such that the window would be affecting the capillary bundle of

interest. It seems that moving the muscle multiple time may increase the likeliness that the

muscle become stressed and stops responding to changes in O2. Including more windows

closer together would increase the probability of one of the windows being over an interest-

ing area in the muscle, though care must be taken to ensure that the other windows do not

affect vessels that come into the area of interest.

In the current study, the longer side of the window was placed perpendicular to capillaries,

though it is just as easy to rotate the windows ninety degrees such that the long direction

is oriented with the capillaries. This allows for stimulation of the capillaries along their

length without crossing over too many networks.

It would be interesting to determine if changes in capillary RBC distribution are due to

simple rheology (i.e. bifurcation law) or if there are other active mechanisms in place, such

as pericytes to control flow in capillaries. One interesting application of this platform would

be to position the window over multiple capillaries fed from the same arteriole to determine

if their distribution of flow rates remains constant in response to oxygen; this should be

the case if flow is dictated by simple rheology since capillaries cannot change their diameter.
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This device is well-suited to studying oxygen regulation at the microvascular level. For

instance, this platform could be used to determine if stimulating capillaries in one bundle

affects all bundles connected to the same feed arteriole. Such an experiment could help

support the SO2-dependent ATP release from RBC hypothesis. Conversely, if the O2 sen-

sor is located in the extravascular space rather than the RBCs, the O2 exchange platform

could further be used to stimulate areas of the muscle that lack capillaries to investigate

the presence of an RBC sensor.

Additionally, this approach could be used in ex vivo and in vitro studies where the control

of gas composition needs to be locally confined. For example, this gas exchange platform

could be used in conjunction with a microfluidic device to desaturate flowing RBCs as sug-

gested in [41, 42]. As proposed in these studies, such a device could probe the dynamics of

the ATP release mechanism if it is indeed caused by RBC desaturation.

In summary, we have developed a gas exchange platform capable of causing local changes

in RBC SO2. We have also shown that these changes are consistent with the ATP release

hypothesis that multiple capillaries need to be stimulated in order to elicit a microvascular

flow rate response. While our device stimulates a large enough region to obtain a flow

response, it is also localized enough that we will be able to probe individual parts of the

microvascular bed, and it is optically clear enough that we can observe the response both

in the stimulated, as well as neighbouring regions. This tool offers exciting possibilities to

study microvascular regulation, and may be able to definitively determine the location of

the elusive oxygen sensor.
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Chapter 3

A Computational Model of a
Microfluidic Device to Measure the
Dynamics of Oxygen-Dependent
ATP Release from Erythrocytes1

3.1 Introduction

In the human body, the regulation of oxygen transport is an important process to ensure

that the demands for oxygen are met. The circulatory system has various mechanisms re-

sponsible for the delivery of oxygen to regions of high metabolic activity. Oxygen regulation

can occur on a large scale or locally within specific tissue. The vessels responsible for local

regulation mechanisms are known to be the small arterioles and capillaries, which comprise

the microcirculation.

Erythrocytes have been shown to release ATP in response both to low erythrocyte hemoglobin

oxygen saturation (SO2) [2, 3] and to increased shear stress on the erythrocyte membrane

[2, 4]. Both mechanisms are suspected to be involved in the regulation of flow in the mi-

crocirculation. In a recent study, the dynamics of shear-dependent release of ATP from

erythrocytes was measured by flowing erythrocytes through a constriction in a microfluidic

1A version of this chapter has been published in PLoS One [1].
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device to induce a brief period of increased shear stress [4]. The authors report that the

ATP release occurred within 25 to 75 milliseconds after the period of increased shear.

The oxygen-dependent release of ATP is hypothesized to be a mechanism involved in regu-

lating the distribution of oxygen within the microvasculature, where the erythrocyte plays

the role of the oxygen sensor [5]. An important aspect of this hypothesis is the time re-

quired for ATP release to occur following a change in SO2, since this determines the spatial

accuracy with which the erythrocyte can signal for vasodilation. Our ultimate goal is to

measure the dynamics of oxygen-dependent release of ATP by applying a similar approach

to the study by Wan et al. [4]. In the place of the constriction in the microfluidic device, we

will use an oxygen-permeable membrane to cause a rapid change in SO2 as the erythrocytes

flow through the channel.

Understanding this mechanism may also have important clinical implications. In patients

with type II diabetes, ATP release is known to be significantly lower for the same change

in oxygen saturation [6]. However, we do not know if the time course is also altered in type

II diabetes and other cardiovascular diseases [6].

Several concerns must be assessed to design an effective microfluidic device for the study

of oxygen-dependent ATP release. First, we must determine whether a practical device can

cause a sufficient drop in SO2 to cause ATP release and whether the change in SO2 is fast

enough to measure the dynamics. Second, we must assess whether the experimental setup

can resolve ATP release times as fast as 25 milliseconds. In this study, we will describe a

computational model of a microfluidic system to address the aforementioned concerns.

The microfluidic device should be designed such that the majority of the channel is oxygen-

impermeable and should contain an oxygen-permeable region at which the oxygen partial

pressure (PO2) is held at a lower PO2 than that of the blood. As the blood passes the
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oxygen-permeable region, oxygen diffuses out of the blood causing a drop in SO2. We im-

plemented a similar approach to decrease PO2 in a 2011 study of methods for localized

oxygen delivery in vivo [7]. In the current study, oxygenated blood would flow through

the channel at a constant flow rate to produce a steady state distribution of SO2 and ATP

levels within the channel. A possible design for a microfluidic device is shown in Fig. 3.1.

gas stream maintaining PO2 = PL

O2 permeable membrane (DmKm)

erythrocyte suspension with luciferin/luciferase (DpKp)Q

z = 0 z = a z = b z = L
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Figure 3.1: Two-dimensional representation of a microfluidic device for measuring
oxygen-dependent ATP release from erythrocytes. A. shows the side view along the centerline.
This view of the diagram is to scale; the vertical dashed lines indicate where the diagram is broken to
allow for the entire device to be shown. B. shows the top view; the dotted line indicates the centerline.
Note: this view of the diagram is not to scale.

To measure ATP levels, the blood in the system will be mixed with a solution of luciferin

and luciferase as it enters the microfluidic device. Luciferin and luciferase react with ATP,

producing light proportional to the concentration of ATP [8, 9] . The light intensity levels

will be measured using a microscope and still-framed camera with appropriate exposure

time. Since ATP release will be measured in steady state, changes in time can be measured

as changes in position along the channel. Exploiting time in terms of distance allows for the

measurement of time on the order of milliseconds without having to use a light detection
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system with high temporal resolution. In this paper we present a mathematical model of the

microfluidic system to aid in the design the experimental setup and to gain further insights

into this phenomenon. The mathematical model will also give us the tools necessary to

analyze future experimental results.

3.2 Methods

3.2.1 Overview of Model

The model is comprised of a number of coupled modules, each corresponding to a compo-

nent of the mass transport and light detection system. The first underlying module in this

simulation is a model for the hemodynamics of system. This module determines how the

blood plasma and erythrocytes will behave and interact as they flow through the microflu-

idic device. Based on the hemodynamic module, a second module for oxygen transport was

developed. This module describes the convection and diffusion of oxygen within the blood

and it also includes the relationship between PO2 and SO2.

A module for ATP release was added based on both SO2 and the hemodynamic module.

The ATP module describes the rate of ATP release throughout the microfluidic device. A

simple linear relationship between SO2 and ATP release rate was used, as this is sufficient

to determine whether the device is capable of measuring ATP. A linear model was also used

in a previous study [10] . A time delay term was included in this module, which accounts

for the time required for ATP to be released following the change in SO2. This term was

included to ensure the device was capable of measuring the dynamics of ATP release. A

further module for ATP transport was constructed based on the diffusion and convection of

ATP in the blood plasma. The degradation of ATP due to the reaction with the luciferin

and luciferase solution was also included.
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In addition to the degradation of ATP, a module for the light generated by the luciferin

and luciferase reaction was developed. This luminescence module was based on the kinetics

of the reaction between ATP and the luciferin and luciferase solution. From this module,

the amount of light coming from the system was determined and used to calculate the light

intensity signal that would be measured by a digital camera. This module includes both

the attenuation of light as it passes through hemoglobin based on extinction coefficients

and the efficiency of a scientific digital camera for measuring light levels at a wavelength of

560 nm. In this configuration, image acquisition is taken from the top of the channel to ac-

quire the information closest to the oxygen-permeable membrane. A detailed mathematical

description of each module follows below.

3.2.2 Hemodynamic Module

The geometry of this model is presented in Fig. 3.1; it considers a slice in the yz-plane

along the centerline. Blood flow is assumed to be viscous and in steady state. The module

incorporates a core region of blood flow mixed with erythrocytes where hematocrit is as-

sumed to be constant and a cell-free plasma layer along the channel walls where hematocrit

is assumed to be zero.

In this model, velocities in the x and y directions are assumed to be zero. The velocity

profile of the blood plasma was derived from the Navier-Stokes equations for fluid dynamics.

Steady state is assumed, and the shear stress between the cell-free layer and core region is

assumed to be equal at the interface. Equation 3.1 governs the flow velocity of the blood

plasma.

vp(y) =
3Q

4w
[
h3 +

(
µp
µc
− 1
)
y3
i

]

((
h2 − y2

i

)
+
µp
µc

(
y2
i − y2

))
0 ≤ y ≤ yi(

h2 − y2
)

yi ≤ y ≤ h
(3.1)

In this equation Q is the flow rate, h is half the height of the channel, w is the width of the
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channel, y is the distance from the center of the channel, yi is the position of the interface

between the cell-free layer and the cell-plasma mixture, µp is the dynamics viscosity of the

cell-free layer and µc is the dynamic viscosity of the cell-plasma mixture and is calculated

empirically based on the work of Pries et al. [11] .

The erythrocytes flow at a velocity slower than the plasma due to slipping. The slip velocity,

slp, defines the magnitude of slipping between the plasma and erythrocytes [12]. Equation

3.2 governs the flow velocity of the erythrocytes.

vRBC = vp (1− slp) (3.2)

Tube hematocrit in a flowing system is different from inlet or discharge hematocrit, and is

defined as the fraction of erythrocytes flowing in the core region of blood flow [13]. Equation

3.3 defines the relationship between tube hematocrit (HT ), discharge hematocrit (HD) and

the channel height. τ is the cell-free plasma layer thickness.

HT

HD
=

(1− slp)(
2−

(
1− τ

h

)) (3.3)

3.2.3 Oxygen Transport Module

Oxygen movement is dictated by diffusion and convection in a flowing system. In this

module, oxygen is assumed to diffuse in the y-direction and to move by convection in the

z-direction. Oxygen is also transported by erythrocytes through the binding of oxygen

to hemoglobin. Equation 3.4a governs oxygen transport in the cell-free plasma layer and

Equation 3.4a governs oxygen transport in the blood mixture [12].

PO2 is the partial pressure of oxygen; Dp is the diffusion coefficient of oxygen in blood

plasma; Kp and KRBC are the oxygen solubility in the cell-free plasma layer and blood
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mixture respectively; [HbT ] is the total hemoglobin concentration, and is the derivative

of the Hill equation (see Eq. 3.5 below). The initial condition is described by Equation

3.4c and the boundary conditions are described by Equation 3.4d. The oxygen-permeable

membrane is present on the upper wall of the channel and extend from z = a to z = b

where the PO2 is set to PL. Dm and Km are the diffusion coefficient and solubility of

the oxygen-permeable membrane respectively. T is the thickness of the oxygen-permeable

membrane.

vp
∂PO2

∂z
= Dp

∂2PO2

∂y2
(3.4a)(

vp (1−HT ) + vRBCHT
KRBC

Kp

(
1 +

[HbT ]

KRBC

dSO2

dPO2

))
∂PO2

∂z
= Dp

∂2PO2

∂y2
(3.4b)

PO2(y, 0) = P0, −h ≤ y ≤ h (3.4c)

∂PO2

∂y
(h, z) = 0

0 ≤ z ≤ a,

b ≤ z ≤ L
∂PO2

∂y
(−h, z) = 0 0 ≤ z ≤ L (3.4d)

DpKp
∂PO2

∂y
(h, z) = DmKm

PL − P (h)

T
a ≤ z ≤ b

SO2 was calculated based on the Hill equation, and depends on the PO2 output of the

oxygen transport module. Equation 3.5 is the Hill equation, where N is the Hill coefficient,

which characterizes the binding cooperativity of hemoglobin, and P50 is the PO2 at 50%

saturation.

SO2 =
PON2

PON2 + PN50

(3.5)

3.2.4 ATP Release Module

This module describes ATP release rates and assumes that the relationship between ATP

release rate and SO2 is linear with a minimum release rate (Rmin) when hemoglobin is fully
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saturated and a maximum release rate (Rmax) when it is fully de-saturated. Finally, the

module assumes that there is a delay between the change in saturation and the change in

ATP release rate. Equation 5.12 governs ATP release rate for these assumptions, where td

is the time delay.

R = (Rmin −Rmax)SO2(y, z − vptd) +Rmax (3.6)

3.2.5 ATP Transport Module

This module assumes that ATP diffuses in the y-direction and moves by convection in

the z-direction. It assumes that ATP cannot diffuse through the erythrocyte membrane.

This module includes erythrocytes as an ATP source and the depletion of ATP due to the

reaction with luciferin and luciferase. Equation 3.7 governs ATP transport, where [ATP ]

is the concentration of ATP; DATP is the diffusion coefficient of ATP in blood plasma and

kt is the reaction rate constant for the luciferin and luciferase reaction with ATP.

vp
∂[ATP ]

∂z
(1−Ht) = DATP

∂2[ATP ]

∂y2
(1−HT ) +R ·HT − kt[ATP ] (1−HT ) (3.7)

The differential equation was solved assuming that there is no ATP flux at the channel walls

and that the luciferin and luciferase solution is being mixed at the inlet of the channel. It

is assumed that there is no ATP entering the channel at the inlet and there is no ATP flux

at the O2-permeable membrane.

3.2.6 Luminescence Module

The luminescence in this system is derived from the kinetics of the reaction between ATP

and luciferin/luciferase. Equation 3.8 shows the complete reaction [9].
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ATP + luciferin + O2
luciferase−−−−−⇀↽−−−−− oxyluciferin + AMP + PPi + CO2 + hν (3.8)

This reaction has first order kinetics such that the rate of reaction only depends on the

concentration of ATP [8] ; therefore, the rate at which light is produced is proportional

to the rate of ATP consumption. For the amount of ATP released from erythrocytes, the

concentration of the luciferin and luciferase solution will be much greater than that of ATP;

therefore product inhibition can be assumed to be negligible. Equation 3.9 describes the

rate, I, at which light is produced, where α is the quantum efficiency, V is the volume of

each voxel, NA is Avogadro’s number and kt is the rate constant of the reaction [9] . The

reaction constant kt varies typically between 0.1 and 1.0 s-1 [9].

I = α · V NA · kt · [ATP ] (3.9)

3.2.7 Optics Module

Photon detection is based on the number of photons that reach the digital camera’s charge-

coupled device (CCD) and the device’s ability to undergo the photoelectric effect. This

module accounts for photon attenuation by hemoglobin and the fact that a point source

emits light in all directions. Equation 3.10 describes the number of photons acquired per

pixel; where ts is the camera’s shutter speed; Apixel is the surface area of the pixel and µ is

the attenuation coefficient.

γ =

∫ 2h

0
I · ts ·Apixel

e−κy

4πy2
dy (3.10)

It is known that oxyhemoglobin and deoxyhemoglobin have different attenuation coefficients

depending on wavelength. Equation 3.11 describes the light attenuation coefficient through

the blood mixture as a function of saturation, where κp, κHb and κHbO2 are the attenuation

coefficients of the blood plasma, deoxyhemoglobin and oxyhemoglobin respectively at the
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wavelength of light produced by the luciferin/luciferase reaction with ATP, 560 nm.

κ = (1−HT )κp +HT ((1− SO2)κHb + SO2κHbO2) (3.11)

The signal read by the device comes from the amount of electrons released by the photons

collected from the photoactive region of each well of the CCD. Thus the signal depends

on the efficiency of the photoelectric effect (η) and the amount of photons collected on the

surface of each well. Equation 3.12 describes the signal read by the device, where Stotal is

measured in electrons.

Stotal = η · γ (3.12)

The device reads out each well and converts the number of electrons measured into a

digital signal that depends on the memory information of the device. Equation 3.13 gives a

measurement of the output signal relative to the maximum measurable signal by the CCD;

this will be referred to as the relative output signal. The full-well capacity (FWC) of the

CCD is the maximum number of electrons that each well can hold.

Srelative =


Stotal
FWC

, Stotal < FWC

1, Stotal ≥ FWC

(3.13)

3.2.8 Simulations

All numerical analyses were done in Mathworks MATLAB 7.11.0 (R2010b). Grid spacing

for the model was 321 × 4000 (y-z). The parameters of the model are specified in Table

4.1. All simulations reached a stable solution. The default simulation was performed with

a grid spacing of 321 × 4000, 642 × 8000 and 1284 × 16000; these simulations reached the

same stable solution.
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Table 3.1: Model Parameters

Parameter Variable Value
Flow Rate (µL/min) Q 7.8
Device Height (µm) H 100
Device Width [13] (µm) W 1500
Plasma Viscosity (Pa·s) µp 0.001
Slip Coefficient [12] slp 0.1
Discharge Hematocrit HD 0.2
Plasma Layer Thickness (µm) τ 1
O2 Diffusivity in Plasma [12] (µm2/s) Dp 2750
O2 Solubility in RBCs [12] (µM/mmHg) KRBC 1.47
O2 Solubility in Plasma [12] (µM/mmHg) Kp 1.33
Total Heme Concentration [12] (µM) HbT 5350
Inlet PO2 (mmHg) P0 150
O2-Permeable Membrane PO2 (mmHg) Pb 10
O2-Permeable Membrane Start Position (µm) a 7000
O2-Permeable Membrane End Position (µm) b 7700
Device Length (µm) L 14000
O2 Diffusivity in O2-Permeable Membrane (µm2/s) Dm 160000
O2 Solubility in O2-Permeable Membrane (µM/mmHg) Km 17.959
O2-Permeable Membrane Thickness (µm) T 100
Hill Coefficient [12] N 2.7
Partial Pressure at 50% Saturation [12] (mmHg) P50 27
Minimum ATP Release Rate (µM/s) Rmin 0
Maximum ATP Release Rate (µM/s) Rmax 14
ATP Release Time (s) td 0
ATP Diffusivity in Plasma [14] (µm2/s) DATP 475
ATP/Luciferin Reaction Rate [9] (s-1) kt 0.1
Quantum Efficiency [9] α 0.88
Shutter Speed (s) ts 10
Pixel Surface Area* (µm2) Apixel 166.41
Plasma Attenuation Coefficient (µm-1) kp 0.1
Oxyhemoglobin Attenuation Coefficient** (µm-1) kO2Hb 0.040176
Hemoglobin Attenuation Coefficient** (µm-1) kHb 0.066261
Camera Efficiency* η 0.7
Full Well Capacity* (electrons) FWC 22000

Units are given in the first column. One asterisk (*) indicates parameters taken from the specification
of Qimaging’s Rolera XR camera. Two asterisks (**) indicates parameters calculated from tabulated
molar extinction coefficients for hemoglobin in water at 560 nm; these values were compiled by Scott
Prahl (prahl@ece.ogi.ed).
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3.3 Results

The computational model simulated experiments with the parameters specified in Table 1.

The parameters that are varied during the simulations are summarized in Table 2. The

first simulation was used to test the feasibility of the experimental setup. This simulation

shows that the PO2 decreases from 150 mmHg to below 57 mmHg in the vicinity of the

oxygen-permeable membrane and to 95 mmHg across the entire width of the channel 3 mm

downstream from the end of the membrane (Fig. 3.2A). This simulation also shows that the

SO2 decreases from 99% to below 65% in the immediate vicinity of the oxygen-permeable

membrane (Fig. 3.2B) but rapidly rises back up to 97% within 1.9 mm downstream. It

should be noted that this erythrocyte resaturation occurs due to the diffusion of oxygen

from regions further from the membrane that were initially less affected by low O2 at the

membrane surface. The ATP concentration, accounting for both the release from erythro-

cytes and degradation by luciferin/luciferase, is shown to reach a peak value of 0.2 µM in

the vicinity of the oxygen-permeable membrane with the concentration decreasing immedi-

ately after the end of the membrane (Fig. 3.2C). The relative output signal shown in Fig.

3.2D is the accumulated light produced by the luciferin/luciferase reaction as measured by

the camera; this measurement is normalized by the maximum signal measurable by the

camera for the parameter settings given in Table 1. The relative output signal begins a

rapid increase from 0.032 at the position of the beginning of the membrane and reaches a

maximum value of 0.191 at the end of the membrane.

The second simulation was used to analyze the choice of channel height and its effect on

the resulting output signal (Fig. 3.3). All the channel heights show a rapid increase at

the beginning of the oxygen-permeable membrane, this corresponds to ATP release being

turned on due to the rapid desaturation of the erythrocytes. However, the 25 and 50 µm

channels do not show a clear turn off of ATP release; this is because the O2-permeable

membrane reduces O2 levels across the entire channel and hence the erythrocytes do not

resaturate downstream of the membrane (Fig. 3.3A).
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Table 3.2: Simulation Parameter Range

Parameter Range Simulation Number
Device Height (µm) 25 – 400 2
Membrane Permeability (M·µm2/(mmHg·s)) 0.06 – 3.84 7
Flow Rate (µL/min) 3.30 – 18.24 4
ATP Release Time (s) 0.00 – 4.00 3, 4
Maximum ATP Release Rate (µM/s) 10.0 – 25.0 5
Minimum ATP Release Rate (µM/s) 0.0 – 1.5 5
ATP/luciferin Reaction Rate (s-1) 0.0 – 1.0 6

Model parameters that were varied in each of the simulations along with the range of the parameter
values. Units are given in the first column and simulation number is indicated in the last column.

The third simulation was used to analyze the change in output signal when varying the

ATP release time. Increasing release times resulted in a downstream shift in the output

signal peak by 1304 µm per second of ATP release time. It should be noted that for this

case the mean velocity in the channel is 1263 µm/s (Fig. 3.4).

The fourth simulation was used to analyze the effect of flow rate on the maximum signal

strength and spatial resolution (Fig. 3.5). Increased flow rate resulted in an increased flux

in oxygen across the oxygen-permeable membrane (Fig 3.5A). Increased flow rate resulted

in increased spatial resolution (Fig. 3.5B); however, it also resulted in decreased signal

strength (Fig. 3.5C). For a 5.5 fold increase in flow rate, signal strength decreases by a

factor of 3.6. For the 25-millisecond ATP release time, the peak signal shifts linearly with

flow rate.

The fifth simulation considered two parameters that control the ATP release module. The

first parameter determines the release rate when the erythrocyte is fully saturated; this is

the minimum ATP release rate, Rmin. The second parameter determines the release rate

when the erythrocyte is fully desaturated; this is the maximum ATP release rate, Rmax.

The results of increasing Rmin and Rmax are shown in Figs 3.6A and 3.6B, respectively.
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Figure 3.2: Shows the simulation results for the parameters in Table 1. A. displays the
oxygen partial pressure (mmHg) as a function of position (µm) throughout the microfluidic device.
B. displays hemoglobin oxygen saturation as a function of position (µm) throughout the microfluidic
device. C. displays the ATP concentration (µM) as a function of position (µm) throughout the
microfluidic device. D. displays the relative output signal as a function of longitudinal position.

Changing the minimum and maximum ATP release rates resulted in a change in the shape

of the output signal.

The sixth simulation was used to investigate the effect of the rate of the luciferin/luciferase

reaction on the concentration of ATP in the channel; three degradation rates (0, 0.1, 1.0

s-1) were simulated. Although the case with zero degradation does not result in an output

signal that can be measured by the camera, this simulation shows the ATP concentration

due to the release from erythrocytes (Fig. 3.7A). As the degradation rate increases, ATP

concentration in the channel decreases. With increasing degradation rate, the amount of

light produced increases and hence the signal strength as measured by the camera also in-

creases. This results in the apparent paradox that the highest signal strength occurs with

the lowest ATP concentration in the channel. The total concentration of ATP in the channel

for the zero degradation case is a factor of 1.3 and 4.9 larger than the total concentration

for the degradation rates of 0.1 s-1 (Fig. 3.7B) and 1.0 s-1 (Fig. 3.7C), respectively. The
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Figure 3.3: Shows the effect of increasing channel height. A. displays the mean hemoglobin
oxygen saturation across the channel as a function of position (µm) along the microfluidic device for
channel heights of 25, 50, 100, 200 and 400 µm. B. displays the relative output signal as a function
of position (µm) for channel heights of 25, 50, 100, 200 and 400 µm.

maximum output signal is 5.2 fold larger with a degradation rate of 1.0 s-1 compared to 0.1

s-1 (Fig. 3.7D).

The seventh simulation was used to analyze the effect of the permeability of the oxygen-

permeable membrane on SO2 (Fig. 3.8). The membrane with the highest permeability

(3.84 (M µm2)/(mmHg s)) had the ability to cause a maximum decrease from 99% to 12%

whereas the membrane with the lowest permeability (0.06 (M m2/(mmHg s)) was able to

cause a maximum decrease from 99% to 53%.

3.4 Discussion

The first simulation predicts that this design of a microfluidic device will be able to cause a

sufficient drop in oxygen partial pressure across the width of the channel (Fig. 3.2A). This
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Figure 3.4: Shows the effect of increasing ATP release times. The figure displays the
relative output signal for increasing ATP release times (0 s, 1 s, 2 s and 3 s) as a function of
longitudinal position (µm) throughout the microfluidic device. ATP release turn on and turn off
time is indicated on the graph for the 1 s delay time.

finding also verifies that the design of the device is effective for the purpose of causing a

decrease in oxygen saturation. From this simulation, it is evident that a similar experimen-

tal procedure to that of the study of shear-dependent ATP release [4] can be repeated with

this microfluidic device to study the oxygen-dependent release of ATP.

The first simulation also confirms that a digital camera will be able to measure a signal

given the small concentration of ATP released from red blood cells using an exposure time

of 10 seconds. The advantage of using a digital camera over a photomultiplier tube (a

common method of acquiring low intensity light) is the ability to acquire all of the spatial

light intensity data simultaneously at a high spatial resolution. The resulting image in

combination with the simulation can be used to estimate the ATP concentration prior to

degradation by the luciferin and luciferase reaction.

From the results of simulation 2 (Fig. 3.3), larger channel heights cause a peak in the
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Figure 3.5: Shows the effects of flow rate on the system. A. displays the oxygen flux (µL
O2/min) across the oxygen-permeable membrane as a function of flow rate (µL/min) using a log-log
scale. The data lie on a straight line with slope of 0.37. B. displays the local maximum shift (mm)
caused by a 25 ms delay in ATP release as a function of flow rate (µL/min). The data lie on a
straight line with slope 4.2. C. displays the magnitude of the local maximum of the output signal as
a function of flow rate (mL/min) using a log-log scale. The data lie on a straight line with slope of
20.75.

output signal, allowing us to determine the location where ATP release turns off as the

erythrocytes resaturate with oxygen from deeper in the channel.

Varying ATP release times and analyzing the corresponding output signals shows a visible

change in the output signal curve. Increasing the ATP release time results in a downstream

shift in the signal peak. This implies that ATP release time is measurable with this setup

provided that the system remains in steady state. This allows us to use our system of high

spatial resolution to obtain high temporal resolution. Measuring the distance between the

beginning of the oxygen-permeable membrane and the start of the rapid increase in signal

gives us information about the amount of time it take for ATP release to turn on. Measuring

the distance between the end of the oxygen-permeable membrane and the peak in signal

gives us information about the time it takes ATP release to turn off. In our model these
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Figure 3.6: Shows the effect of ATP release rate parameters on output signal. A. displays
the relative output signal for increasing minimum ATP release rates (0.0 µM/s, 0.5 µM/s, 1.0 µM/s,
1.5 µM/s) as a function of longitudinal position (mm) in the microfluidic device. B. displays the
relative output signal for increasing maximum ATP release rates (10 µM/s, 15 µM/s, 20 µM/s, 25
µM/s) as a function of longitudinal position (µm) in the microfluidic device. The system is more
sensitive to changes in minimum ATP release rate.

two times are modelled as being the same, however, a recent study modelling the dynamics

of the signal transduction pathway for ATP release suggests they may be different [15].

Varying flow rate and analyzing the corresponding change in the peak signal position shows

that the system’s resolution increases as flow rate increases, allowing us to control temporal

resolution. However, the signal strength decreases with increasing flow rate. This finding

demonstrates that there is a compromise between our system’s resolution and the amount

of measurable signal. Additionally, oxygen flux across the oxygen-permeable membrane

increases with increasing flow rate; this follows a power law with a power of 0.37. This find-

ing is consistent with mass transport theory, which results in a power of 1/3 for high shear

Péclet number [16]. The small discrepancy in the power may be due to the inhomogeneous

distribution of oxygen throughout the oxygen-permeable membrane and because the shear

Péclet number for our simulations may not be sufficiently large. The shear Péclet number
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Figure 3.7: Shows the effect of ATP degradation on output signal. A. displays ATP
concentration (µM) as a function of position (µm) throughout the microfluidic device where the blood
does not contain the luciferin/luciferase solution. B. displays ATP concentration (µM) as a function
of position (µm) throughout the microfluidic device where the blood contains the luciferin/luciferase
solution with a degradation rate of 0.1 s21. C. displays ATP concentration (µM) as a function of
position (µm) throughout the microfluidic device where the blood contains the luciferin/ luciferase
solution with a degradation rate of 1 s21. D. shows output signal as a function of longitudinal
position along the microfluidic device for the two degradation rates. The higher degradation rate
results in a larger output signal.

for oxygen transport in our simulations range from 108.78 and 601.72. Despite the increase

in O2 flux with increasing flow rate, the signal strength decreases due to the decrease in

erythrocyte transit time from leading to trailing edge of the membrane. As transit time

decreases there is less time for erythrocytes to release ATP.

The flow rates used in this study (3.30-18.24 µL/min) are much smaller than the flow rate

used in the study by Wan et al. (50 µL/min) [4], implying that the shear-dependent ATP

release can be ignored. Varying the exposure time is another parameter that can be con-

trolled to increase signal strength.

Another important finding from this study is that to calculate ATP release time, we need to
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Figure 3.8: Displays the effect of the permeability of the oxygen-permeable membrane
on oxygen saturation. This figure shows hemoglobin oxygen saturation near the oxygen-permeable
membrane as a function of time (s) for increasing permeability of the oxygen-permeable membrane
in units M·µm2/(mmHg·s).

know the velocity of the blood, which is variable across the device. Deciding which velocity

to use is necessary to calculate the correct release time. This time can be calculated using

our model.

ATP release rate and ATP concentration can be determined from the simulation, providing

useful information about the system that would be difficult to measure directly. Compar-

ing the simulations with and without the degradation due to the luciferin and luciferase

reaction (Fig. 3.7), it is shown that the concentrations of ATP in the system differ by over

a factor of two. This finding demonstrates that in order to determine the concentration of

ATP released by the erythrocytes in a dynamic system, the calculations must account for

the degradation due to the reaction. The light intensity profile measured by the camera

does not directly reflect the ATP concentration produced by the oxygen-dependent release;

this is due to the ATP degradation by the luciferin and luciferase reaction in a flowing

system. Fig. 3.7 demonstrates that different degradation rates can have a substantial ef-
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fect on the estimated ATP concentrations indicating that one must carefully determine

what the ATP degradation rate is for the experimental system used. Relying solely on the

measured light intensity signal may result in misinterpretation of the ATP release dynamics.

From the results of the sixth simulation (Fig. 3.8), it is demonstrated that with increasing

O2 diffusivity of the O2-permeable membrane, the drop in saturation becomes independent

of the diffusivity.

Varying the minimum and maximum ATP release rates independently and analyzing the

resulting output signal shows a measurable signal difference between the different parame-

ters of the ATP release module. This finding supports the objective of being able to study

the oxygen-dependent release of ATP because the model allows for the differentiation of

individual components of the ATP release module. Further, the model can be used with

the experimental procedure to adjust the three parameters (minimum and maximum release

rate and release time) in the model so they match the experimental results.

A recent study suggests that ATP release may be proportional to the rate of oxygen desatu-

ration rather than the magnitude of the saturation [15]. By varying the oxygen permeability

of the oxygen-permeable membrane, the model shows that the rate of desaturation may be

controlled. By varying the length of the membrane, we can control the magnitude of desat-

uration; this will allow for the verification of this theory (see Fig. 3.8).

As we gain a better understanding of the dynamics of the signalling pathway for ATP re-

lease, these can be incorporated into our simulation. Ultimately, model parameters could be

varied to yield the best fit with experimental measurements. Improving the model of ATP

release will allow it to be used for modelling local oxygen regulation in the microvasculature

in vivo and for the design and interpretation of in vivo experiments.
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The results of such experiments can then be compared to the ATP release magnitude and

dynamics that occur in cardiovascular disease. Finding differences between the ATP re-

lease magnitude and dynamics will allow the device combined with the model to be used to

screen blood from patients with cardiovascular disease to determine whether cardiovascular

disease is present.

In conclusion, a microfluidic device can be designed to produce a rapid decrease in the

oxygen saturation of erythrocytes across the width of the channel resulting in a measurable

ATP signal that can be analyzed for the dynamics of oxygen saturation-dependent ATP

release. In addition, this computational model is an effective tool to optimize the microflu-

idic experiment to be able to determine the time course of ATP release from erythrocytes.

Further, it can be used to determine other unknown parameters such as the minimum and

maximum ATP release rate. The model may also be used in the analysis of experimental

results that may be difficult to interpret, such as determining the concentration of ATP

in the system prior to the degradation from the luciferin and luciferase reaction and the

conversion of the spatial displacement of ATP release into ATP release time. The model

can also be modified based on experimental results to further develop the model leading

to a better understanding of the ATP release pathway. Further, this model is testable;

experimental measurements of oxygen saturations [17] and ATP concentrations [8] can be

made to justify the results of the model. In future studies, the model may be also used for

the analysis of systems in vivo where parameter may often be very difficult to measure.
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Chapter 4

Finite Element Model of Oxygen
Transport for the Design of
Geometrically Complex
Microfluidic Devices Used in
Biological Studies1

4.1 Introduction

Red blood cells (RBCs) have been shown to release adenosine triphosphate (ATP) in re-

sponse to numerous stimuli [2–5], including hemoglobin oxygen saturation (SO2) [6]. Follow-

ing release, ATP binds to purinergic receptors on capillary endothelial cells which conduct

an electrical response to upstream arterioles, leading to their vasodilation [7]. Therefore,

RBCs are believed to play an important role in the local regulation of oxygen (O2) distri-

bution through the SO2-dependent release of ATP [8, 9].

In addition to its importance in regulatory physiology, SO2-dependent ATP release has been

shown to be impaired in many cardiovascular diseases such as sepsis [10], prediabetes [11]

and type II diabetes [12]. In these studies, the amount of ATP released was decreased for

1A version of this chapter has been published in PLOS ONE [1].
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the same stimulus. Therefore, RBCs become a potential screening target for cardiovascular

disorders.

Although SO2-dependent ATP release has been measured, there are currently no studies

that quantify the dynamics of this process. Since ATP release is believed to be involved

in the regulation of O2 distribution, understanding the dynamics is crucial for our under-

standing of the regulatory pathway. The time required for ATP to be released determines

the spatial sensitivity for the RBC to signal to the endothelium changes in their SO2.

The ultimate goal of our research is to develop a cost effective tool to quantify the dynamics

of ATP release from RBCs furthering our ability to characterize the underlying physiology

of blood flow regulation. Various studies in the literature have developed means of control-

ling O2 in microfluidic devices for a variety of applications [13–20], e.g. microfluidic devices

for establishing hypoxia in cell cultures [13]. Many of these studies apply mathematical

modelling to verify that they are correctly maintaining their target O2 levels [14–16, 18, 19].

In an earlier study, we employed a novel micro-delivery approach to change local oxygen

levels in vivo [21, 22]. We also previously described a computational model of an idealized

microfluidic device to measure the dynamics of SO2-dependent ATP release in vitro [23].

The objective of the design was to create a spatial step change in SO2 in a steady flow-

ing channel, then measure the corresponding ATP released from the RBCs. The resulting

spatial information can then be translated into temporal. This approach was adapted from

Wan et al [24], and is described in detail in our previous study [23]. In contrast to other

devices for controlling oxygen, our application is intended to spatially control the O2 con-

tent of flowing RBCs.

Although the previous model predicted that the device was able to create a sufficient drop

in O2, the idealized microfluidic device was not practical to fabricate using common soft
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lithography techniques. This motivated a new device design that is both practical and

functional. However, the complex geometric design of the new device and the use of O2-

permeable materials makes predicting the SO2 of the RBCs more difficult. Therefore, in

this study we develop a 3D computational model of the new device, in order to optimize the

dimensions, and to ensure that O2 characteristics in the device are sufficient for quantifying

the dynamics of SO2-dependent ATP release. Additionally, this model will be crucial to aid

in the analysis of results of subsequent studies using this design.

4.2 Methods

In this work, we take a computational approach to design a device for measuring the dy-

namics of SO2-dependent ATP release from RBCs. We propose a device that consists of two

parts (see Fig 4.1), the first part being a microfluidic channel fabricated in PDMS using soft

lithography techniques. This channel will be embedded in PDMS using a mould, and sealed

with a PDMS spin coating technique. The second part being a large oxygen-impermeable

gas flow channel with a window to allow gas exchange between the two channels. The

two parts are aligned orthogonal to each other with the gas exchange window centred at

their intersection. The bottom channel is designed to deliver a gas with a low concentra-

tion of oxygen, whereas the top microfluidic channel will deliver fully oxygen-saturated red

blood cells suspended in a physiological buffer. The large gradient in oxygen partial pres-

sure at the exchange window between the two channels drives the desaturation of the RBCs.

In the present work, we will explore the influence of geometry on the device’s ability to

control the oxygen levels the cells are exposed to using a computational model of fluid

dynamics and mass transfer (kinetics of ATP release and reaction with luciferin/luciferase

will be simulated in a subsequent model); see Fig 4.1 for the geometry. Due to the large

number of geometric parameters we can vary, we start by analyzing a 1D analytic model of

oxygen exchange to guide our choice of parameters to vary with the 3D model.
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Figure 4.1: Device Design Diagram of x-normal (left) and z-normal (right) views of the RBC
channel and exchange window. The light blue colour represents PDMS and the grey colour represents
glass.

4.2.1 Analytic Model

The following equation describes the oxygen partial pressure, PO2, of the blood in a mi-

crofluidic device with an exchange window of length Lw centred at x = 0.

D
d2PO2

dx2
− cdPO2

dx
=



k1(PO2 − P0), x ∈
(
−∞,−Lw

2

)
k1(PO2 − P0) + k2(PO2 − Pl), x ∈

[
−Lw

2 ,
Lw
2

]
k1(PO2 − P0), x ∈

(
Lw
2 ,∞

)
(4.1)

with boundary conditions,

lim
x→−∞

P (x) = P0 (4.2a)

lim
x→∞

P (x) = P0 (4.2b)

whereD is diffusivity of oxygen in plasma, c is the flow velocity, and k1 and k2 are the rates of

oxygen permeation through the walls of the channel and the exchange window respectively;

they depend on the thickness of the PDMS walls and the permeability of PDMS to O2. P0

is the external oxygen partial pressure and Pl is the oxygen partial pressure of the gas in the
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exchange window. The microfluidic device is assumed to be infinitely long so that we can

neglect inlet/outlet effects and the effects of oxygen binding to hemoglobin are neglected in

the model.

Non-Dimensional Analysis

Non-dimensionalization allows us to determine the parameters that effect the behaviour of

the solution. We introduce the following dimensionless parameters: ξ = x
Lw

+ 1
2 , v = PO2−Pl

P0−Pl
,

u = 1− v, Pe = cLw
D , S1 = k1L2

w
D and S2 = k2L2

w
D which gives,

d2u

dξ2
− Pedu

dξ
− S1u =



0, ξ ∈ (−∞, 0)

S2(u+ 1), ξ ∈ [0, 1]

0, ξ ∈ (1,∞)

(4.3)

with homogeneous boundary conditions at infinity. Dimensionless O2 is represented by v

and the dimensionless drop in O2 is represented by u. From the non-dimensionalization, we

see that the behaviour of the solution depends on three independent parameters, Pe, S1 and

S2. Pe is the Peclet number and represents the ratio of convective to diffusive transport. S1

and S2 are dimensionless k1 and k2, respectively. The dimensionless solution for a specific

case is shown in Fig 4.2.

There are three main criteria that we will use to assess the performance of the device. First,

the device must be able to cause a large enough change in O2 to elicit ATP release from

the RBCs. This first criterion can be quantified by taking the maximum drop in PO2. Eq

4.4 gives this criterion in terms of the 1D model parameters,

∆PO2max = (P0 − Pl)umax (4.4)
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Figure 4.2: Dimensionless Solution Solution to the 1D dimensionless model. The dimensionless
O2, v, is shown as a function of dimensionless position, ξ for Pe = 10, S1 = 5 and S2 = 20. The
exchange window is between 0 and 1. The red arrow indicates ∆ξ = 1.04 with umax of 0.68. For
this set of conditions, dimensionless O2 begins to fall just before the window and continues to fall
across the length of the window before beginning to rise.

where umax is the maximum value of u(ξ).

Second, the drop in O2 must be sufficiently rapid to resolve the dynamics of ATP release.

This can be quantified as the amount of time between the maximum and the minimum

PO2. Since this time depends on ∆PO2max , we normalize it with respect the drop. This

criterion is a representation of the rate of O2 drop. Eq 4.5 gives the second criterion in

terms of the 1D model parameters,

∆PO2max

∆t
=
c(P0 − Pl)

L

umax
∆ξ

(4.5)

where ∆ξ is the change in dimensionless position between when the maximum and mini-

mum value of u(ξ) deviate by 1% of their original values.

Third, the temporal resolution of the system has to be able to resolve the dynamics. This
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can be quantified in terms of the spatial resolution, ε, of the system and the flow velocity,

c, as τ = ε
c .

Parameter Selection

To select the ideal parameters for the 1D model, we optimize our three performance cri-

teria. The parameters involved are the physical parameters (P0 − Pl), c, and L and the

dimensionless parameters umax and ∆ξ, which are dependent on Pe, S1 and S2. In or-

der to maximize the maximum drop in PO2, umax has to be maximized. Fig 4.3 shows

umax as a function of Pe for different values of S1 and S2. From Fig 4.3, umax is maximized

as Pe→ 0, S1 → 0 and S2 →∞. As S2 increases, umax becomes less sensitive to S1 and Pe.
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Figure 4.3: Dimensionless O2 Drop The maximum dimensionless O2 drop, umax, as a function
of Péclet number, Pe. The solid, dashed and dot-dashed curves represent S1 values of 1, 5 and 10,
respectively. The red, black and blue curves represent values of S2 of 5, 20 and 80 respectively.

In order to maximize the rate of O2 drop, umax/∆ξ should be maximized. Fig 4.4 shows

umax/∆ξ as a function of Pe for varying values of S1 and S2. From Fig 4.4, umax/∆ξ is

maximized for large Pe, small S1, and large S2. The effect of S2 on O2 drop rate is larger

than that of S1.
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Figure 4.4: Dimensionless Drop Rate The dimensionless rate of O2, umax/∆ξ, as a function
of the Péclet number, Pe. The solid, dashed and dot-dashed curves represent S1 values of 1, 5 and
10, respectively. The red, black and blue curves represent values of S2 of 5, 20 and 80 respectively.

To optimize both umax and umax/∆ξ a compromise in Pe must be chosen since umax is

maximized for small Pe and umax/∆ξ is maximized for large Pe. However, since the effects

of Pe on umax are small for large S2, if we can choose large S2, we can choose the Pe to

satisfy the optimization of umax/∆ξ.

Since we cannot control diffusivity, the dimensionless parameters must be controlled by

altering c, L, k1 and k2. To minimize S1, k1 should be as small as practical; physically this

can be achieved by making the walls as thick as possible. To maximize S2, k2 should be

made as large as possible; this can be achieved by making the spin coat layer as small as

possible. (P0 − Pl) should also be made as large as practical.

The flow velocity, c, affects Pe, ∆PO2max/∆t and the temporal resolution, τ . All three

parameters are optimized with a larger c. The effect of window length, Lw, is less straight-

forward since it effects the dimensionless parameters and ∆PO2max/∆t. S1 and S2 are

sensitive to Lw since they are related quadratically, and since they have opposite optima,
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care must be taken while choosing the length of the exchange window. The effect of the

window length will be explored with the 3D model.

4.2.2 Computational Model

Mesh Generation

The geometry construction and mesh generation were performed using the open source soft-

ware GMSH [25]. The same mesh was used for both the fluid dynamics simulations and the

mass transfer simulations.

For each geometry, a hybrid mesh was used, with structured regions in the flow channels and

an unstructured region in the PDMS area (which is far from the region of interest) to reduce

the number of elements. Element sizes were decreased until the solution no longer changed

with mesh resolution. The resulting meshes varied between simulations, but typically the

smallest elements (located in the RBC channel) were on the order of 0.01 mm, and the

largest elements (located in the PDMS) were 0.5-1.0 mm.

Fluid Dynamics Simulations

The flow in both channels were assumed to be Newtonian, incompressible and isothermal.

The blood was assumed to be a single homogeneous fluid. The resulting steady-state equa-

tions for flow in both channels are given by:

∇ · ~vi = 0 (4.6a)

ρi~vi · ∇~vi = µi∇2~vi −∇p (4.6b)

where ~vi, ρi, µi are the velocity, density and dynamic viscosity of the fluid respectively

and p is the hydrodynamic pressure in the fluid. The subscripts i = g, p, rbc refer to the
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gas, plasma and red blood cells. Since the blood is assumed to be homogeneous ~vp = ~vrbc,

ρp = ρrbc and µp = µrbc.

Eq 4.6a and 4.6b were solved numerically using open source software OpenFOAM [26].

The software discretizes the equations using a finite volume method and solves the coupled

system of equations using the Semi-Implicit Method for Pressure Linked Equations [27].

Mass Transfer Simulations

The following equations were used to model the oxygen transport throughout the microflu-

idic device [28]:

Dpdmskpdms∇2PO2 = 0 ∈ Ωpdms (4.7a)

kg~vg · ∇PO2 = Dgkg∇2PO2 ∈ Ωg (4.7b)[
(1−Ht)kp~vp +Ht

(
krbc + [HbT ]

dSO2

dPO2

)
~vrbc

]
· ∇PO2 =

Dpkp∇2PO2 ∈ Ωrbc (4.7c)

where Di, ki, PO2, Ht, and [HbT ] are the diffusivity, solubility, oxygen partial pressure,

hematocrit and total heme concentration of the blood respectively. The different regions

of the device are designated by Ωj , where the subscripts j = pdms, g, rbc, p represent the

PDMS, gas, red blood cells and plasma respectively. The derivative dSO2
dPO2

can be found

from the Hill equation [29]:

SO2 =
PON2

PN50 + PON2
(4.8)

where SO2 is hemoglobin oxygen saturation, N is the Hill coefficient and P50 is the partial

pressure of oxygen at 50% saturation.
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Eqs 4.7a-c were discretized using in-house software that utilizes a stabilized Galerkin finite

element method programmed in C++; a least squares stabilizer was used in the convective

regions of the domain [30]. The resulting non-linear system of equations were iteratively

linearized and solved with the Generalized Minimal Residual Method [31]. Convergence

was verified for the extreme cases by refining the mesh to be sure that the solution was in-

dependent of the choice of discretization. All simulations were run on a personal computer

with an 8 core 4.2 GHz processor with 16 GB of RAM. Simulation times were less than an

hour on one core.

To quantify the O2 exchange in the 3D model we define the weighted drop in PO2 by the

following,

WD = maxPO2∈x
1

Wr

∫ z=Wr
2

z=−Wr
2

∫ y=y0+Hr

y=y0

PO2(x, y, z)e−µ(y−y0)dydz (4.9)

where Wr and Hr are the width and height of the RBC channel, respectively, y0 is the

location of the bottom of the channel and µ is the optical attenuation of blood plasma.

This is a weighted integral of the PO2 along the depth of the channel (y-direction) to give

a stronger weighting to the PO2 values closer to the bottom of the channel since that is

where the detector will be located. It is then averaged across the width of the channel

(z-direction) and the maximum value is taken along the stream-wise direction (x-direction).

The spatial drop time is quantified in the same way as for the 1D model; the 3D profile is

reduced to one dimension by using the same weighted integral in y and taking the centreline

in z.
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4.3 Results

To investigate the effects of 3D geometric features, we simulated the O2 transport in the

microfluidic device for various dimensions of the RBC channel. In particular, we varied

cross-sectional area of the RBC channel, as well as its aspect ratio to capture the effects

of channel cross-section. In addition, we varied the length of the exchange window to de-

termine how the O2 drop and its rate are affected. We also varied spin-coat thickness to

determine how important it is for our particular geometry and physical conditions. Fig 4.5

shows a specific solution of the 3D model using the parameters in Table 4.1; this figure

shows the weighted centreline profile.

Parameter Value
Baseline Oxygen Partial Pressure (mmHg) 160
Gas Oxygen Partial Pressure (mmHg) 0
Diffusivity of Oxygen in Nitrogen (mm2/s) 17.6
Solubility of Oxygen in Nitrogen (µM/mmHg) 5.342105
Solubility of Oyxgen in RBCs (µM/mmHg) 1.47
Diffusivity of Oxygen in Plasma (mm2/s) 0.00275
Solubility of Oxygen in Plasma (µM/mmHg) 1.33
Diffusivity of Oxygen in PDMS (mm2/s) 0.00355
Solubility of Oxygen in PDMS (µM/mmHg) 17.959
Total Heme Concentration (µM) 5350
Oxygen Partial Pressure at 50 % Saturation (mmHg) 37
Hill Coefficient 2.7
Hematocrit 0.1

Table 4.1: Model Parameters

First, the cross-sectional area of the RBC channel was varied maintaining a constant mean

velocity. The channels simulated were square in cross-section ranging from 100x100 µm2

to 500x500 µm2. The maximum drop in PO2 increased with increasing cross-sectional area

(see Fig 4.6). This appears to be due to the increased surface area for exchange as well as

the increased volume in the channel contributing to the weighted drop. In contrast, rate

of drop decreases with area. This is likely due to the increasing volume of the RBC channel.
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Figure 4.5: Solution to the 3D model The top left colormap shows the y-normal plane close
to the bottom edge of the channel (y = 0.5775). The bottom left colormap shows the z-normal plane
through the center of the geometry. The colormap on the top right shows the x-normal plane through
the center of the geometry. The white dashed line indicates the RBC channel. The plot in the bottom
right shows the weighted centreline drop in PO2. The black dashed line indicates the location of the
exchange window.

From Fig 4.7, channels with smaller height to width ratio perform better at dropping the

O2 compared to short, wide channels of the same area. This is due to multiple factors: first,

the channels that are taller have more volume contributing to the weighted drop (see Eq

4.9). Second, the taller channels are thin, allowing the more surface area on their sides to

be exposed to low O2. Fig 4.8 shows colour maps for the two extreme cases. The change in

drop rate follows the same trend as with the weighted drop.

Increasing the length of the window causes an increased drop in PO2 and an increased drop

rate (see Fig 4.9). The increase in PO2 drop can be explained by having a longer window,

exposing more of the channel to low O2.

Increasing the spin-coat layer thickness causes a decrease in the drop in PO2; this relation-

ship is approximately linear. The change in drop rate follows a similar trend to the drop

in O2 (see Fig 4.10). In terms of the 1D model, increasing the spin-coat thickness increases
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Figure 4.6: Effect of RBC Channel Cross Sectional Area The weighted O2 drop (blue)
and weighted O2 drop rate (red) as a function of RBC channel cross-sectional Area. The channels
simulated are square in cross-section.

S2, which causes a smaller drop in O2 and a smaller drop rate (see Figs 4.3 and 4.4); this

trend agrees with our 3D results. Hematocrit has negligible effect on both the weighted

drop and the drop rate (Fig 4.11).

4.4 Discussion

Ellsworth et al suggested that ATP release time is less than 500 milliseconds [32] based

on the RBC transit time in an isolated arteriole preparation exposed to low oxygen levels.

Based on this estimate, we require a system with a resolution on the order of milliseconds.

Wan et al measured shear-dependent ATP release time and reports it to be on the order of

25-75 milliseconds [24]. If the mechanisms responsible for ATP release are similar for both

shear-dependent and O2-dependent release, then we expect, ATP release time to be similar

to the value measured in their study. Understanding the time course for ATP release from

RBCs is important since it determines where in the vasculature ATP is released and where

the vessels will sense ATP. Further, many inflammatory diseases have been associated with
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Figure 4.7: Effect of RBC Channel Aspect Ratio The weighted O2 drop (blue) and weighted
O2 drop rate (red) as a function of RBC channel aspect ratio (width:height). The area of the channels
simulated was held constant (0.15 mm2).

impaired ATP release, thus a measurement of ATP release dynamics could be used to screen

for these diseases.

In previous work, we showed the feasibility of using steady-state flow to measure the dy-

namics of SO2-dependent ATP release in vitro [23]. This work was based on an ideal device

in order to test the viability of the concept. We demonstrated two important design criteria,

first, that the device was able to cause a sufficient drop in O2 and second, that we were

able to recover time-dependent changes in the ATP signal. Although this study was able

to show the feasibility of our device, the idealized design described in this article was not

practical to fabricate.

With the practical considerations in mind, we developed a simple 1D model of oxygen trans-

port in our device in order to qualitatively evaluate some of the simulation parameters to

reduce the number of simulations required to determine the optimal design for our appli-

cation. The 1D model is an idealization of the device and does not account for geometric

information such as the RBC channel’s cross-section dimensions, though some of the ge-
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Figure 4.8: Simulation of RBC Channel Aspect Ratios The PO2 solution showing the x-
normal plane through the center of the geometry for two different aspect ratios. The colormap on
the top shows the simulation results for a channel with 1:5 width to height ratio. The colormap on
the bottom shows the simulation results for a channel with a 5:1 width to height ratio. The white
dashed line indicates the RBC channel.

ometric information is embedded in the model parameters, such as PDMS thickness. To

compare the performance of the 1D model against our 3D simulations, we show the weighted

O2 drop predicted by the 1D model for varying exchange window lengths and PDMS spin

coat thicknesses (see Fig. 4.12).

The 1D model predicts the O2 drop to level off and reach a steady value as the exchange

window length increases. The 3D model predicts the O2 drop to increase with increasing

window length, though for the parameters used, the simulation results do not reach a steady

drop. Further, the value of the drop is considerably lower than predicted by the 1D model.

Considering the PDMS spin coat thickness, the 1D model predicts the O2 drop to approach

zero as the thickness increases; the O2 drop is predicted to approach the maximum drop as

the thickness approaches zero. Comparing these results to the 3D simulations, the O2 drop

is substantially lower than predicted by the 1D model and does not begin to level off for

the lowest thickness simulated. While the 1D model predictions appear reasonable, the O2

drop is overestimated compared to the 3D model and is more sensitive to the variations in
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Figure 4.9: Effect of Exchange Window Length The weighted O2 drop (blue) and weighted
O2 drop rate (red) as a function of exchange window length.

the geometric parameters.

The 1D model approaches the 3D model as the RBC channel becomes infinitely wide and

its height becomes infinitesimally small. It assumes cross-stream diffusion in the RBC flow

is negligible and diffusion in the PDMS occurs only vertically. Further, the 1D model also

assumes that the fluid velocity in the gas channel is infinite, so that the low oxygen is main-

tained at the gas channel side of the exchange surface. Due to these simplifications, the

1D model overestimates the drop in O2; these simplifications also account for the increased

sensitivity of the geometric parameters. Although the 1D model does not accurately ac-

count for the O2 content in the device, it allows us to qualitatively determine the behaviour

of changing certain parameters. Also, since the model can be solved analytically, we can

simulate a large range and achieve practically continuous information. Therefore, the 1D

analytical model is a useful tool for qualitatively understanding the physical details of our

system, but a 3D model is required to quantify the extent of the behaviour.

Though the 1D model was useful in helping us determine how the O2-permeable walls will
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Figure 4.10: Effect of Spin Coat Thickness The weighted O2 drop (blue) and weighted O2 drop
rate (red) as a function of PDMS spin-coat thickness.

affect the O2 exchange, it fails to capture some of the important 3D features. Thus, we

used a 3D model to explore how the O2 exchange is affected when we have a channel of

finite cross-section and diffusion around the sides of the RBC channel from the exchange

window and outside surfaces.

The first 3D aspect of the device geometry we look at is the RBC channel’s cross-section.

From Fig 4.6, it is clear that there is an optimal cross-sectional area. Channels with larger

cross-sectional areas have larger surface areas, leading to more area for the exchange. How-

ever, the exchange is limited to the lower walls of the channel since the exchange window

is on the bottom. For the larger channels, the width of the window limits how much of the

side walls’ surface area is exposed to the low levels of O2. If we now allow the channel to

increase in surface area, but not get any wider, we can optimize the amount of surface area

exposed to the low levels of oxygen; this is demonstrated in Figs 4.7 and 4.8. In contrast

our previous results showed channels that are less deep are more beneficial since the drop

extends across the whole channel [23]. However, this was because the 2D model in [23]

assumes that the channel and window are infinitely wide; thus, it neglects the effect of low

oxygen on the sides of the channel.
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Figure 4.11: Effect of Hematocrit The weighted O2 drop (black bars) and weighted O2 drop rate
(white bars) for 0% and 20% hematocrit. A negligible effect is shown for both.

Figure 4.12: 1D Model Prediction of Geometric Parameters Weighted O2 drop was sim-
ulated using the 1D model to determine the effect of varying exchange window length (left) and
PDMS spin-coat thickness (right). The inset in the right panel shows the parameter range used in
the 3D simulations. The results of the simulations were re-dimensionlized in order to be comparable
to the 3D simulation results (see Fig. 4.9 and 4.10). Note: the parameters range used in the 3D
simulations for the exchange window length was 0.1-1.
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In the 1D model, the length of the window is the characteristic length. Thus it not only

effects O2 exchange through Equation 4.5, but it also effects umax and umax/∆ξ through

the dimensionless parameters. From Fig 4.9, we see that having a longer window is better

for both the drop and the drop rate of O2. The benefits of longer windows will become less

important as O2 in the channel approaches zero. Practically, a very large exchange window

will result in a structurally weak device; the thin PDMS layer separating the RBC and gas

channel may rupture or deform. Therefore, the exchange window should be large enough

to cause a sufficient drop in oxygen, but not so long that the device becomes structurally

compromised.

The 1D model indicates that the ideal device would have an infinitely thin spin-coat layer.

However, practically, we need a barrier that closes the RBC channel so that it does not

leak; thus it has to be thick enough so that it does not rupture under the pressure of the

flow. Physically, we can fabricate spin-coat thicknesses on the order of 20 µm and these

channels do not rupture under the pressure of the flow. From Fig 4.10, we can see that in

the range of practical spin-coat sizes (20-100 µm), the spin-coat thickness does not affect

the O2 exchange substantially. Therefore, small variability in the thickness of the spin coat

layer will not affect the effectiveness of the device.

Interestingly, hematocrit has only a small effect on the O2 exchange in our device. From

Fig 4.11, we can see that lower hematocrit is better for exchange, though, the change is

not large. An important point to consider is that larger hematocrit will result in more

RBCs available to release ATP, increasing the amount of signal coming form the system.

However, the amount of RBCs affects the optics of the system since they absorb visible

light. Therefore, we should use a hematocrit that is large enough to attain a measurable

ATP signal, but not so large that all the signal is attenuated by the cells. We considered

this effect in a previous study [23].
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In this study, we did not simulate every possible geometric parameter, such as the length

of the RBC channel, the height of the PDMS around the channel, the width of the window,

and the dimensions of the gas channel. We no not expect the length of the RBC channel to

be too important for exchange. For the purposes of the analysis of the experimental results,

the flow should be fully developed. Therefore the channel should be longer than the en-

trance length, though at the flow rates typically used in microfluidics, the entrance lengths

are quite small (on the order of 3-30 µm). As for oxygen exchange in shorter channels, the

drop will be smaller since the source of oxygen is closer to the exchange window. This will

also result in a steeper rate. However, these effects are only important for channels on the

order of the entrance length.

Practically, the exchange window cannot exceed a width of 1 mm due to the risk of the

PDMS spin-coat deforming into the window causing distortion to the optical image. Intu-

itively, wider windows will improve exchange since there will be more area for exchange,

though the effect will become insignificant as the window becomes much wider than the

channel. From the 1D model, we expect more PDMS around the RBC channel to be bet-

ter as this decreases the effective permeability of the walls. However, if there is too much

PDMS above the channel, there may be optical problems.

This study focuses on the ability of the proposed microfluidic device to cause a drop of

PO2 in a flowing RBC suspension. However, the main goal of this device is to measure the

release of ATP from RBCs in response to their SO2. The relationship between PO2 and

SO2 is modelled by the Hill equations (Equation 4.8). Fig 4.13 shows the Hill equation for

human RBCs. This figure demonstrates that for low and high PO2, large changes in PO2

are required to change saturation. In contrast, in the mid-range of PO2, only small changes

in PO2 are required to produce large changes in SO2. Since the RBCs in our simulation

span PO2 values from zero to 160, we expect our device to almost fully desaturate the RBCs.
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Figure 4.13: Hemoglobin Binding Curve Hemoglobin oxygen saturation as a function of partial
pressure determined by the Hill equation.

The ideal device should have a low width to height ratio with a large area such that the

width of the channel is much less than that of the exchange window. The device should

have a spin-coat layer that is thin as possible, while still being able to withstand the flow

pressure The exchange window should be long enough, but not so long that though it that

the spin-coat layer sinks into the window. The hematocrit should be chosen to get a large

enough signal from the ATP but small enough to not lose light from attenuation. The

weighted centreline PO2 and SO2 drop are shown in Fig 4.14.

Microfluidic devices have become increasingly popular for use in biological studies due to

their reduced sample consumption, relative low costs and length scales that are comparable

to dimensions on the cellular level. Microfluidic devices are used in a wide range of biological

applications including hemodynamics at the microvascular scale [33–35] and cell behaviour

under shear stress [24, 36, 37]. Microfluidic devices can be used to establish gradients of

small molecules [38–41]. Further, in recent years, microfluidic devices have been used to cre-

ate micro-scale cell cultures that mimic in vivo micro-environments to study physiological

tissue interactions [42–45]. Due to their vast applications in biological settings, microfluidic
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Figure 4.14: Simulation of Ideal Design The ideal device was simulated with channel height
of 0.5 mm and width of 0.3 mm, a 0.02 mm spin coat and a 1 mm long exchange window. This
figure shows the weighted centreline drop in PO2 (blue) and the weighted centreline SO2 (red) as
a function of position along the RBC channel. The black dashed line indicates the location of the
exchange window.

devices must be designed to meet the oxygen requirements of the study. Living cells are

highly sensitive to the oxygen levels in their environment and may behave irregularly when

exposed to unphysiological levels [46–48]. And since the results of our study demonstrate

the crucial role that geometry can play in oxygen transport, it is an important consideration

for the design of microfluidic channels. Our methods can also be applied to other gases and

solutes as well as temperature.

Various studies have implemented mathematical models in order to validate and optimize

microfluidic designs [14–16, 18, 19]. In these studies, the use of mathematical modelling

was necessary for ensuring the proper distribution of oxygen in their application. Some

of these studies considered only 2D models of their devices [14–16], while others used 3D

models [18, 19]. In the studies that employed 2D models, 2D geometry was often sufficient

to approximate the overall transport due to inherent symmetries in the device. In our

application, a 3D geometry was crucial for two reasons. First, our device possessed two

stream-wise directions (gas flow direction and RBC flow direction). Further a 2D model
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would not allow us to vary parameters that lay orthogonal to the plane that was being

modelled.

In conclusion, although the 1D model provided important qualitative insights, the 3D model

demonstrated that diffusion through the PDMS surrounding the RBC channel yielded un-

expected relationships important to the design of the device. Thus the use of a 3D transport

model is crucial for guiding our optimal design.
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Chapter 5

Using digital inpainting to estimate
incident light intensity for the
calculation of red blood cell oxygen
saturation from microscopy
images1

5.1 Introduction

Adequate oxygen supply is crucial to the proper functioning of most tissues in the body,

and therefore blood oxygenation is an important indicator of tissue function. For instance,

measurements of blood oxygenation have implications for the study of pre-diabetes [1] and

sepsis [2–4]. Red blood cells (RBCs) are the primary carriers of oxygen (O2) in the circula-

tory system, accounting for approximately 98% of the O2 carried in the blood [5]. Due to

the low solubility of O2 in blood plasma, O2 binds with high affinity to the vast quantity

of hemoglobin in RBCs. Since most of the O2 in the blood is bound to the hemoglobin in

RBCs, hemoglobin oxygen saturation (SO2) is an appropriate measure of O2 content in the

blood [5].

1A version of this chapter has been accepted to the Journal of Biophotonics.
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Advances in the accuracy and ease of SO2 measurements were made when it was recognized

that a second, oxygen-independent wavelength could be used to calibrate SO2 measure-

ments, without the need to calculate optical path lengths and hematocrit. The proposition

of using a two-wavelength spectroscopic method to measure SO2 was first proposed by

Matthes et al. [6] in 1935, who built an apparatus to measure ear SO2 . Since then, many

methods have been developed based on this principle [5, 7–12]. In particular, Ellsworth et

al., 1987 developed a computer-based approach for measuring SO2 of a single RBC flowing

through capillaries in live in vivo experiments by using the light intensity measurements

along the centerline of vessels. This method was improved by Ellis et al. [11, 13] to allow for

simultaneous image acquisition at both wavelengths by introducing a second video camera.

Further advances were made by Japee et al., 2005 [12], who extended the analysis to full

frame images, instead of being limited to single pixel line. Many recent animal studies have

relied on these methods to make measurements of SO2 [1, 4, 14–17].

Theoretically, dual-wavelength SO2 measurements are calculated from the ratio of optical

densities between two wavelengths, as outlined in Ellsworth 1987 [5]. The optical densities

can be calculated from:

OD = log10

(
I0

I

)
, (5.1)

where I is the light intensity that was transmitted through the RBCs and I0 is the incident

light. Therefore, SO2 calculations require not only the measured light intensities, I, at

two wavelengths, but also the incident light, I0, at both wavelengths. Previous researchers

[5, 11, 13] have estimated I0 by using video data to measure the light intensity of the plasma

gaps between the RBCs as they travel single file through the capillary. As the RBCs move

out of the way, the plasma intensity gives the intensity of the pixels behind the RBC. This

can be accomplished algorithmically by calculating the maximum intensity, Imax at each
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pixel over a specified number of frames, since RBCs absorb more light, and thus have lower

intensity values than the plasma. In a maximum intensity image, moving RBCs disappear

[18] revealing the plasma light intensity.

The efficacy of Imax as an approximation for I0 is dependent on RBC velocity, the size of

plasma gaps, as well as camera exposure time. The RBCs must move quickly enough to

show the background tissue, and the plasma gap must be large enough that the camera

captures the background light intensity. If the exposure is too long, the RBC can appear

blurred throughout the plasma gap, artificially decreasing the size of the plasma gap or ab-

sorbing light, thus attenuating I0. Ensuring that Imax captures the incident light intensity

at all pixels is controlled by using an appropriate number of frames, a fast frame rate, and

a short exposure time. However, Imax will fail if there are stationary cells, or if hematocrit

is large enough that there are no plasma gaps. Additionally, if the background varies more

rapidly than the time between I0 estimations, Imax will be a poor estimation of I0; this will

be more problematic when slow RBC velocities require a large number of frames to calculate

Imax. In general, provided we can use a small number of frames, Imax is a good estimation of

I0 for digital cameras with high signal to noise ratio (SNR) under the acquisition conditions.

In this study, we propose an alternate, and complementary method for estimating I0 that

does not suffer from the aforementioned deficiencies, through the use of digital inpainting.

Digital inpainting is an image processing technique used to estimate missing information in

an image. In this paper we demonstrate the use of inpainting to determine the incident light

intensity to calculate SO2. Specifically, we will compare two different inpainting methods

to the method currently employed in the literature to estimate the incident light intensity.
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5.2 Methods

5.2.1 Maximum Intensity Images

The maximum intensity images, Imax, were calculated by determining the maximum inten-

sity of each pixel over a specified number of frames, expressed as a time, ∆t. This method

is modified from methods presented in the literature [5, 11, 18, 19] which approximate I0

as Imax − 3σ, where σ is the standard deviation of the intensity over time. However, the

cost of calculating σ is relatively large, so with the advent of low-noise digital cameras, it

is sufficient to use Imax [1, 4, 14–17].

5.2.2 Inpainting

Digital inpainting is traditionally used to remove unwanted features from images using

global and/or local image information [20–22]. Many inpainting methods are based on

solving partial differential equations (PDEs) using the surrounding pixel intensity values as

fixed-value boundary conditions. Analogies are often made to mass transport in order to

derive the PDE for inpainting. To estimate I0, we considered two inpainting methods, the

first based on diffusion and the second on convection.

Diffusion-Based Inpainting

An inpainting method based on simple diffusion would solve Laplace’s equation with fixed-

value boundary conditions representing steady-state diffusion:

∇2Id0 = 0 ∈ Ω (5.2a)

Id0 = I ∈ ∂Ω , (5.2b)
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where Id0 is the diffusion-based in-painted image, Ω is the inpainting domain, ∂Ω is the

inpainting boundary and I is the original image (see, e.g., [23]).

This equation can be solved numerically using a number of well-known schemes. In this

study, Equation 5.2 was discretized using the second-order central difference scheme, and

the system was then solved using the Gauss-Seidel method with successive over-relaxation.

Inpainting based on simple diffusion has a tendency to blur sharp features, and for this

reason, anisotropic diffusion is often used [22]; these methods use a diffusion coefficient that

depends on the gradient of the image. However, we suspect simple diffusion will perform

sufficiently well when the image has a relatively homogeneous background, which is often

the case for our application.

Convection-Based Inpainting

An inpainting method based on convection would solve:

~c · ∇Ic0 = 0 ∈ Ω (5.3a)

Ic0 = I ∈ ∂Ω , (5.3b)

where Ic0 is the convection-based in-painted image, I is the original image and ~c is a vec-

tor field that dictates the direction of convective transport. For this study, the direction

field was chosen as a modification to the coherence direction of the image as described in

Bornemann and Marz 2007 [24]. Figure 5.1 shows the coherence direction (in white) of a

40x in-vivo microscopy image of capillaries and other microvessels in skeletal muscle.
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Figure 5.1: Modified coherence direction of 40x in-vivo microscopy image of a capillary network in
rat skeletal muscle (extensor digitorum longus).

The modified coherence direction of an image can be calculated from the eigenvector corre-

sponding the smallest eigenvalue of the matrix described by the modified structure tensor

of the image. The modified structure tensor can be calculated as:

J =
Gρ ? (1Γ∇uσ ⊗∇uσ)

Gσ ? 1Γ
(5.4a)

uσ =
Gσ ? (1ΓI)

Gσ ? 1Γ
, (5.4b)

where ? denotes convolution, ⊗ denotes the tensor product, I is the known image intensi-

ties, 1Γ is the indicator function describing the region that has already been inpainted and

Gσ is a Gaussian with mean 0 and standard deviation of σ.

In order to solve this non-linear convection problem rapidly, we discretize and solve the

PDE using a fast-marching scheme as described in various studies [24–26]. A fast-marching

scheme is solved by calculating each point in the domain sequentially following a specified

order. The value at each point, ~x, in the inpainting domain can be calculated by a weighted
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sum of the neighbouring values that have already been calculated,

Ic0(~xk) =
∑
nb

w(~xk, ~xnb)I
c
0(~xnb), (5.5)

where the index k denotes the current node and nb denotes the neighbouring nodes that

have already been in-painted such that |~xnb − ~xk| ≤ ε, where ε dictates the size of the

neighbourhood used in this scheme.

If the order and weighting function are chosen appropriately, one can solve the PDE. We

solved each value in the domain in the order of increasing distance from the boundary. We

chose to use the weighting function described in Bornemann et al., 2007 [24] given by:

w(~x1, ~x2) =

√
π

2

µ

|~x1 − ~x2|
exp

(
− µ2

2ε2

(
~c⊥(~x1) · (~x1 − ~x2)

)2
)
, (5.6)

where µ is a user specified parameter.

Due to the nature of this fast-marching scheme, instead of solving Equation 5.3, the following

PDE is solved:
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~v · ∇Ic0 = 0 ∈ Ω (5.7a)

Ic0 = I ∈ ∂Ω (5.7b)

~c n̂ · ~c > 0

~v =

−~c n̂ · ~c < 0 (5.7c)

n̂ n̂ · ~c = 0 ,

where n̂ is the normal to the boundary, ∂Ω, and ~c is the desired convection field (i.e. the

coherence direction).

If the direction field is parallel to the domain boundary (i.e. n̂ · ~c = 0), the fast-marching

scheme will convect the image information perpendicular to the boundary instead of along

the convection field. For this reason, we exclude parts of the boundary that are parallel to

the convection field in the determination of the distance ordering, as in Marz et al. 2011

[26]. Specifically, we require that:

(n̂ · ~c)2 < γ. (5.8)

For convection inpainting there are five user-specified parameters: ε, σ, ρ, µ and γ. For this

study, unless stated otherwise, we used ε = 15, σ = 2.5, ρ = 10, µ = 20 and γ = 0.2. These

parameters were based on the recommendations in the studies by März [24, 26], modified to

ensure the vector field was parallel to the muscle fibres. The parameters were determined

on different fields of view than the one used for the analyses below. All image intensities

were normalized such that 0 ≤ I ≤ 1.



113

5.2.3 Oxygen Saturation Calculation

We calculated SO2 from:

SO2 =
b1 − b2R
a2R− a1

(5.9a)

R =
OD(λ1)

OD(λ2)
(5.9b)

ai = εHbO2
(λi)− εHb(λi) (5.9c)

bi = εHb(λi), (5.9d)

where εHbO2
and εHb are the extinction coefficients of oxy- and deoxy- hemoglobin at wave-

length λi, respectively.

5.2.4 Image Acquisition

The images used in this study were captured using two QImaging Rolera XR digital cam-

eras attached to the side port of an Olympus XI-81 inverted microscope using a 50/50

beam-splitter to two narrow bandpass filters centred at 442 nm and 454 nm. The images

were taken from an in vivo preparation of rat extensor digitorum longus (EDL) muscle. For

more information on the in vivo preparation, see Fraser et al. 2012 [15].

5.3 Results

Image inpainting was applied to intravital video microscopy images to recover the incident

intensity behind the RBCs. The inpainting domain was constructed by masking out RBCs

using a thresholding technique to locate the RBCs similar to Japee et al. [12, 19]. Figure

5.2 shows the results of inpainting a 40x image. This image was chosen since it is highly
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textured and therefore demonstrates the ability of inpainting to recover local features within

an image. From Figure 5.2, diffusion-based inpainting tends to blur features in the image,

whereas the convection-based approach tends to recover the structures in the image.

Figure 5.2: (A) A single frame from a 40x in vivo capture of rat EDL. (B) Maximum intensity
image calculated over 5 frames (∆t = 0.24 s). (C) Masked regions (in white) indicating the inpainting
domain. (D) Diffusion-based inpainting image. (E) Convection-based inpainting image (ε = 6,
σ = 0.5, ρ = 8, µ = 100 and γ = 0.2).

Ultimately, Imax is sensitive to the number of frames used to calculate the maximum, which

we express as ∆t (the number of frames divided by the frame rate). To demonstrate how

Imax depends on ∆t, we track the pixel intensities of a single pixel within a capillary in a

20x image, as shown in Figure 5.3—this demonstrates that when the time step is too small,

as when ∆t = 0.2 s, Imax sometimes fails to capture the background intensity. However,

as ∆t is increased, Imax also increases, leading to an over-approximation of the background

intensity. To demonstrate the sensitivity of Imax to the fluctuations in the image, we also

track a pixel in a tissue region, as shown in the bottom panel of Figure 5.3.

To compare the effectiveness of inpainting, we calculated the difference between Imax and

the inpainted image on a pixel-by-pixel basis in an example 20x image. However, since Imax

is not the true solution, this does not accurately measure the error in inpainting. To esti-

mate the true error in I0, we inpaint plasma regions that do not have RBCs, and compare

the inpainting solution to the original image. This method is also used to estimate the error

in Imax.
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Figure 5.3: Pixel intensity (black) of a representative pixel in a capillary (top) and the tissue
(bottom) for a 20x in vivo capture of a rat EDL. Imax calculated with 5 (∆t = 0.24 s) and 1050
(∆t = 50 s) frames is shown in blue and red, respectively.
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Figure 5.4 shows the image used to assess the error in I0 (panel A), as well as the masked

RBCs (panel B) and the masked plasma regions (panel C). The RBC masked region consists

of 3675 pixels, and the plasma masked region consists of 2900 pixels.

Figure 5.4: (A) An example 20x in-vivo microscopy image. (B) Masked RBC regions (in white)
indicating the inpainting domain used to calculate I0 behind the RBCs. (C) Masked plasma regions
(in white) indicating the inpainting domain used to determine the error of our I0 calculations.

The error in the different I0 estimations is shown in Figure 5.5. This is plotted over a wide

range of ∆t values, since Imax is sensitive to this parameter. The top panel compares the

inpainted I0 values to Imax, calculated as the absolute value of the difference between the

inpainted region and Imax and then averaged over all pixels. The difference is higher for

very low ∆t since Imax does not remove the RBC. Then, as discussed, after the optimum

∆t, Imax does increasingly worse as ∆t increases.

Thus far, we have compared the inpainting solution to the Imax solution; however, we are

primarily interested in how all three I0 estimates compare to the true I0. To estimate the

true error in the inpainting solution, we estimate I0 within the plasma regions since these

regions do not contain RBCs, and are thus equal to I0. Using the masked plasma region

shown in Figure 5.4C, the error is calculated as the mean of the absolute value of the differ-

ence between the masked regions of an image, and the three estimates of I0 (Imax, Id0 and

Ic0), as shown in bottom panel of Figure 5.5. This figure clearly shows the increasing error in
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Imax with ∆t. It also shows that the inpainting methods perform quite well, outperforming

Imax even at small ∆t values. It also appears that convection-based inpainting outperforms

diffusion-based inpainting, as expected, though the difference is surprisingly small.

Figure 5.5: Error estimation for an example image. (Top) Comparison of I0 calculated using
inpainting to the maximum intensity-based, Imax, calculation. Error is calculated as the mean of the
absolute value of the difference between the inpainted image and the Imax image, averaged across all
pixels in the masked region. (Bottom) Comparison of I0 estimates to true I0. The images used were
captured at 21 frames/s.

Histograms of the different pixel errors calculated above are shown in Figure 5.6. Since

Imax is always larger than the true I0, the errors are always negative as shown in the left

panel. For ∆t = 2s and 50s, the average absolute errors are −0.06± 0.03 and −0.13± 0.04,

respectively. For the inpainting methods, both diffusion and convection inpainting have

average absolute errors 0.00± 0.03.
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Figure 5.6: Distribution of errors for the example image shown in Fig 5.4. The distribution of
errors measured as I0 − Ĩ0, where Ĩ0 = Imax, Id0 and Ic0. Imax (left) is calculated with 5 (∆t = 0.24
s) and 1050 (∆t = 50 s) frames. Errors are always negative, since Imax over-approximates the
background light intensity. Diffusion (middle) and convection (right) based inpainting methods have
similar errors, and a standard deviation of 0.03.

To relate these errors in I0 to the errors in SO2 measurements, we first express the true

incident intensity, I0, for both wavelengths in terms of the estimated incident intensity, Ĩ0,

as:

Ii0 = Ĩi0 + ξi, (5.10)

where the index, i, indicates the wavelength, λi, and ξi is the estimation error.

We can then write the error in saturation as:

Es = SO2 − S̃O2, (5.11)
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where SO2 is the true saturation and S̃O2 is the estimated saturation. The estimated

saturation can be expressed as a function of the I0 errors, ξ1 and ξ2 and the true saturation,

SO2 using Equation 5.9 with the estimated optical density ratio, R̃,

R̃ =
OD(λ1) + log10

(
1− ξ1

I10

)
OD(λ2) + log10

(
1− ξ2

I20

) , (5.12)

where OD(λi) is the true optical density at wavelength, λi, which can be expressed by:

OD(λi) =
(
εHb(λi)(1− SO2) + εHbO2

(λi)SO2

)
cx, (5.13)

where c is RBC hemoglobin saturation, x is path length and εHbO2
and εHb are the extinc-

tion coefficients of oxy/deoxy-hemoglobin, respectively.

Since the errors in I0 only show up as relative error, and assuming a typical RBC hemoglobin

concentration of 20 mM and a path length of 8 µm, the error in saturation is only a function

of true saturation, SO2, and the relative errors ξ̂1 and ξ̂2, where ξ̂i = ξi
Ii0

. Figure 5.7 shows

a contour plot of the absolute error in SO2 as a function of relative errors in incident in-

tensities at both wavelengths. Since the error in saturation is also dependent on true SO2,

we show the worst case error at SO2 = 0, the best case at SO2 = 1 and a typical case

(SO2 = 0.65).

Finally, we calculated SO2 for individual RBCs using all three methods, as shown in Fig-

ure 5.8. SO2 was calculated as outlined in Section 5.2.3 using the median optical densities

of each cell. The coefficients a1, a2, b1 and b2 were calculated according to Equation 5.9

c-d using the hemoglobin extinction coefficients (λ1 = 442 nm, λ2 = 454 nm) tabulated by
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Figure 5.7: Contour plot of the absolute errors in SO2 as a function of the relative errors in I0,
for three different SO2 values.

Scott Prahl [27].

5.4 Discussion

In this paper, we have applied digital inpainting to estimate the background intensity image,

I0, in order to calculate SO2. We evaluated the accuracy of our I0 estimates by performing

the calculation on regions where I0 was already known. Overall, inpainting was more accu-

rate at estimating I0 than the previous Imax method in most cases, with convection slightly

outperforming diffusion. Though convection-based inpainting outperformed its diffusion-

based counterpart, diffusion-based inpainting is much more straightforward to implement

and is less computationally demanding. The Imax method, however, performs better than

inpainting when the ∆t parameter is sufficiently small since the background intensity is less

likely to vary over short periods of time and there is less chance for outlier noise to appear.

In practice, ∆t values used to measure SO2 typically range from 3 s to 60 s, with a mode of

4 s. In this range of ∆t, inpainting is more accurate than the maximum intensity image for

estimating I0. Further, there are many cases where Imax fails: capillaries with very slow or
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Figure 5.8: Calculated SO2 values for selected in-focus cells, using (A) Ĩ0 = Imax (∆t ≈ 4 s), (B)
Ĩ0 = Id0 and (C) Ĩ0 = Ic0. The top half of the figure shows the SO2 overlaid on top of the original
image. The bottom half shows the distribution of the SO2 values.

stopped flow and vessels with high hematocrit are not able to be analyzed. Additionally,

in some instances, long exposure times are required to collect enough light to visualize the

tissue; this results in an attenuated approximation of I0 using the maximum intensity based

estimation. In all of these cases, digital inpainting can be used to estimate I0 since it is not

dependent on temporal data. However, though inpainting methods can correctly recover I0

for long exposure times, the resulting SO2 would not be correct if the RBC of interest is

blurred due to motion since the estimated intensity of the RBC would be larger than the

true intensity.

Based on the errors in our I0 estimation, we can predict what the errors in SO2 will be.

Figure 5.7 shows that SO2 error is more sensitive to positive errors than negative errors.

Thus since our Imax estimation always over-approximates I0, errors in SO2 are less sensitive

to errors in Imax. The errors in I0 for the inpainting methods are symmetric about zero,

though they have a very low standard deviation, thus the resulting errors in saturation are

low. It is interesting to note that the errors are saturation dependent, with SO2 errors

being more sensitive to errors in I0 at low SO2. However, SO2 values close to zero are
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rarely seen in-vivo. Although not explicitly shown, the errors in SO2 are also dependent

on the wavelengths chosen. If we chose one wavelength (λ2) to be isosbestic, then the error

in SO2 is inversely proportional to the difference in the extinction coefficient of oxy- and

deoxy-hemoglobin. Therefore, choosing a wavelength such that there is a large difference

in extinction coefficients would result in an SO2 error that is less sensitive to errors in I0

estimation. It is important to note that we presented the results for only one representative

image as a demonstration of the use on inpainting to estimate incident light. Inclusion of

more images would be necessary to generalize our inferences.

Additionally, we calculated SO2 values on a cell-by-cell basis using each of the three meth-

ods. All three I0 estimations give comparable SO2 values, though there is a larger range of

SO2 values from the Imax approach. In practice, rather than using extinction coefficients

to calculate the SO2 coefficients, we can calculate the coefficients using data from RBCs

with known SO2 values. This improves the performance of the Imax-based approach since

the calibration values account for the over-approximation in Imax. This is not required for

inpainting since the inpainting approach does not systematically overestimate I0.

One factor to consider in inpainting is that it requires a defined inpainting region. The

size and shape of the RBC mask may influence the inpainting solution since PDEs are

highly sensitive to geometry. For diffusion-based inpainting, the solution is an average of

the boundary propagated inward equally from every direction. This property makes the

diffusion-based approach sensitive to the location of the boundaries. For example, in some

images the capillaries have a brighter intensity than the surrounding tissue. In this exam-

ple, an inpainting boundary that is fully contained within the capillary will outperform an

inpainting boundary that extends into the sounding tissue. The convection-based approach

is less sensitive to this phenomenon since pixel information convects along the coherence

directions. In our images, the coherence directions run parallel to the muscle fibres, pre-

venting the transport of information from the tissue into the capillary.
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Though the convection inpainting scheme used in this manuscript is not overly sensitive to

the masked region, the method does involve a number of free parameters (ε, σ, ρ, µ and γ).

These may affect the accuracy of our I0 estimation. The ε parameter dictates how many

points the scheme uses to calculate the value at each point in the domain, which influences

how well the scheme can accurately represent the direction of the convection. For exam-

ple, a convection direction that is perpendicular to the boundary requires only one point,

where as small angles to the boundary require more. The σ and ρ parameters dictate the

calculation of the coherence direction; σ determines how sensitive the coherence directions

are to changes in intensity and ρ determines the sensitivity to variations in the gradient.

Images with a large amount of noise should choose large σ values. For our application, we

chose large ρ values to ensure that the coherence direction only follows the larger features.

The µ parameter dictates how much diffusion is allowed; as µ→∞, the artificial diffusion

goes to zero. Artificial diffusion ensures that the solution is continuous when the coherence

direction is not well-defined (i.e. in the center of the domain). The γ parameter dictates

which portions of the boundary are allowed to convect information into the boundary. For

our application, we know that the large features are muscle fibres that run parallel along

capillaries, thus we chose a large γ to ensure that the convection only comes along muscle

fibres. In this work, the parameters were not chosen to minimize the error in I0, though an

optimization could potentially be done to yield better results.

In this study, we only considered two possible inpainting algorithms, though there are nu-

merous other possible schemes in the literature. Another common PDE-based example is

anisotropic diffusion-based inpainting, which uses a diffusion coefficient that is inversely

proportional to the image gradient [22]. This type of scheme yields similar results to a con-

vection based approach, which can be seen by expanding the anisotropic diffusion equation

(see Equation 5.14). There also exists texture-based inpainting approaches which attempt

to preserve the texture of an image throughout the inpainting domain; an example of
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texture-based inpainting is described in [28]. Additionally, there have been advances in ma-

chine learning algorithms to determine inpainting domains. For instance, blind inpainting

determines which regions to inpaint based on their different texture from the background

[29]. Such an algorithm could allow for automatic detection of all RBC regions in the tissue.

∇ ·
(
D(Iad0 )∇Iad0

)
= 0 (5.14a)

∇D(Iad0 ) · ∇Iad0 +D(Iad0 )∇2Iad0 = 0 (5.14b)

~c · ∇Iad0 +D(Iad0 )∇2Iad0 = 0 (5.14c)

~c = ∇D(Iad0 ) (5.14d)

Inpainting techniques have also been applied to many different biological applications. For

example, they can be used to create 3D a reconstruction of MRI images from 2D slices [30],

to pre-process MRI images to help with registration [31, 32], in vascular reconstruction [33]

and to help analyze cDNA microarrays [34].

Despite the many benefits of using digital inpainting to recover I0, there are some draw-

backs. First, inpainting is more computationally demanding than the Imax method with

convection being more demanding than diffusion. Second, inpainting requires a separate

algorithm for determining the locations of the RBCs, making it more difficult to automate.

If computational resources are an issue, one could implement a hybrid approach that uses

digital inpainting when the Imax methods fails or when a higher resolution of I0 is required.

Overall, digital inpainting is a method for restoring images that is beginning to be applied

to biological applications. In this study, we have tested whether digital inpainting can

be used to improve dual-wavelength SO2 measurements, by providing a better estimate of

background light intensity. We have found that inpainting is a viable method for calculat-
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ing I0, and that it is often more accurate than the common Imax method. In addition to

outperforming Imax in most cases, it succeeds in cases where the traditional Imax algorithm

fails, such as for stopped or slow moving cells, capillaries with high hematocrit or rapidly

changing background intensities. Additionally, since inpainting allows I0 to be calculated

for each individual frame, inpainting allows for a higher temporal resolution of the back-

ground intensity than Imax. Taken together these improvements in I0 estimation represent

a major advance for spectrophotometric measurement of red blood cell SO2 in intravital

video applications.
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Chapter 6

Microfluidic Device for the Rapid
Oxygen Desaturation of
Hemoglobin in Red Blood Cells: A
Tool for Studying
Oxygen-Dependent ATP Release

6.1 Introduction

Red blood cells (RBCs) play an important role as the carrier of oxygen (O2) in the circu-

latory system. They are also thought to be involved in the local regulation of O2 supply

through the O2-dependent release of ATP [1–4]. By this mechanism, ATP is released

through pannexin-1 channels in the RBC membrane in response to low hemoglobin oxygen

saturation (SO2). The intraluminal ATP then binds to endothelial P2Y2 receptors causing

a conducted vasodilatory response to increase local blood flow [2, 5–9]. In addition to O2

desaturation [1, 10], RBCs release ATP in response to numerous other stimuli, including

shear-stress [11], pH [1] and osmotic pressure [12]. Although the mechanisms for the release

of ATP from RBCs have been extensively studied [11, 13–15], the role of ATP release as a

mechanism for O2 regulation remains unclear.
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One important consideration in the regulation of O2 is the time required for ATP to be

released from the RBCs following desaturation. Since the RBCs are in motion, the location

of ATP release is dictated by RBC velocity and ATP release time. Thus, the dynamics

dictate the spatial acuity of this regulatory mechanism. Understanding the dynamics of

this process could not only have implications in the understanding of oxygen regulation,

but may also play a role in the investigation of disease since O2-dependent ATP release has

been shown to be impaired in diseases such as type II diabetes [14, 16] and sepsis [17].

The objective of this study is to develop an experimental system to control the spatial

oxygenation of isolated RBCs in vitro to facilitate the measurement of the dynamics of

O2-dependent ATP release. To measure the dynamics, a similar approach to Wan et al.

[18] can be used, where they measured the dynamics of shear-dependent ATP release from

RBCs using a microfluidic device. In their setup, they used a microfluidic device with a

constriction to cause a spatial increase in shear stress to stimulate the release of ATP. ATP

was measured using a firefly luciferase assay and the position of the signal relative to the

change in shear was related to ATP release time. In the place of the constriction, we will

stimulate the release of ATP by using an O2-permeable window interfaced with a gas ex-

change device to cause a rapid change in SO2.

This system was first proposed in Sové et al. [19], where we extensively modelled the ex-

perimental design to see if such a setup would be sensitive enough to detect ATP release

time from RBCs. The computational model consisted of an idealized microfluidic device

whose walls were impermeable to O2, but which contained an O2-permeable window to

cause the rapid change in O2. The computational model not only simulated the transport

of O2 in the microfluidic device, but also the release of ATP and subsequent detection.

This confirmed that the experimental design was theoretically feasible and that we could

measure ATP release time. Additionally, it demonstrated that the relationship between the

ATP concentration and the luminescence from the firefly luciferase was not straightforward.
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While the idealized design was deemed sufficient for our study, fabrication techniques for

oxygen-impermeable materials such as glass are often expensive and require specialized

equipment. Therefore, we revised our design to be cost-effective and easier to manufacture.

Due to the simplicity and cost effectiveness of PDMS-based microfabrication techniques,

we chose to use PDMS (polydimethyl siloxane), a highly O2-permeable material, for the

primary substrate of the device. In order to cause the localized change in O2, we needed

to interface the device with an O2 impermeable material with a window to allow for gas

exchange. Since this design differed significantly from the original idealized design, we used

a 3D computational model of O2 transport to confirm that we could still cause a rapid

change in O2 [20]. This model also allowed us to optimize the device geometry to maximum

the change in O2.

The current study presents the fabrication of an experimental system that can cause a rapid

change in RBC SO2 for the measurement of the dynamics of O2-dependent ATP release

from RBCs. We quantify the changes in SO2 using a dual-wavelength microscopy system

to demonstrate the ability of the device to cause rapid and local desaturation. Finally, we

quantify the sensitivity of our system by determining the minimum ATP concentration we

can measure.

6.2 Methods

6.2.1 Gas Exchange Chamber

The gas exchange chamber design was based on previous work [21]. It was comprised of a

microscope stage insert, a gasket to form the side walls of the gas channel and a platform

for the inlet and outlet of the channel (see Figure 6.1); these components were designed

in FreeCAD and 3D printed. The bottom of the channel was closed by a replaceable glass
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slide and the top of the channel was closed by a custom, laser-cut glass slide with a square

window (1x1 mm) for gas exchange using a process described in [22]. The components were

assembled together using vacuum grease to ensure no gas leakage.

Stage 
Insert

Inlet and  
Outlet

Gas Channel  
Gasket

Figure 6.1: Three dimensional CAD model of gas chamber components. The inlet/outlet mount,
gas channel gasket and stage insert were 3D printed. The gas channel is sealed on the bottom with
a glass slide and on the top with a laser-cut glass slide.

A PDMS microfluidic device (fabrication described in Section 6.2.2) was aligned with the

gas exchange window such that the RBC flow is perpendicular to the gas flow. A schematic

of the microfluidic device-gas channel interface is shown in Figure 6.2.
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Figure 6.2: Schematic of the microfluidic device with gas chamber interface. Red arrow indicates
the direction of RBC flow. The gas channel flow is orthogonal to the RBC flow.
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6.2.2 Microfluidic Device

Fabrication: Microfluidic devices were fabricated with poly-dimethyl siloxane (PDMS;

Dow Corning Corporation Sylgard® 184) using impression molding similar to techniques

described in [23–25]; the master was machined from acrylic by micro-milling using a stan-

dard three-axis CNC mill (TrakK3SX-3 with ProTrakSMX control module; Southwestern

Industries Inc.). It was designed with removable walls to facilitate the removal of PDMS

from the master (Figure 6.3). PDMS was mixed in a 10:1 ratio of prepolymer base to cross-

linking agent. Liquid PDMS was poured into the master and cured at 60 °C for 90 minutes.

After curing, it was removed from the mold and trimmed to the final shape. The bottom of

the channel was fabricated by spin-coating PDMS at 2000 rpm for 60 seconds onto a glass

slide following methods by [23–25] (Figure 6.3). The two components were joined using the

partial curing method described in [25]. In this method, the spin-coated layer was partially

cured at 50 °C for 29 minutes and the bond was formed by bringing the two components

into conformal contact with no external pressure; the assembled device was cured at 60 °C

for 90 minutes. Cured devices were carefully peeled away from the glass slide taking care

not to break the thin PDMS bottom. Once fully cured, the microfluidic devices were placed

firmly on the glass exchange surface to form a temporary bond held together by Van der

Waals forces.

Design considerations: To optimize the rapid desaturation of the RBCs in the microflu-

idic device, we used a 3D O2 transport model of O2 in the microfluidic device [20]. The

model predicted that channels with a larger height to width ratio were able to cause a large

drop in PO2 in the channel. This consideration was weighed against the stability of high

aspect ratio PDMS channels. Resolution of the micro-milling system was also a considera-

tion. Smaller channels could be obtained by photolithography, though micro-milling was a

cheaper alternative for prototyping. In this study we used a channel that was 500 µm high

by 300 µm wide (Figure 6.4). The model also suggested that the PDMS spin coat layer

should be made as small as practical. Various spin-coating speeds were used to produce
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Figure 6.3: Schematic of the fabrication process. Panel A shows a 3D CAD model of the master
to form the PDMS channel. Step 3 shows the removable walls of the master which facilitates PDMS
removal. Panel B shows a schematic of the fabrication process. PDMS is added to the master, cured
and removed from the master. PDMS is spin-coated to a glass slide where is it partially cured. The
two pieces are brought into conformal contact and fully cured.

PDMS spin coats in the range of 5 to 100 µm; the devices were peeled from the glass surface

and inspected for tears in the membrane. The thinest, practical PDMS spin coat layer was

approximately 15-25 µm.

6.2.3 Experimental Setup

Whole blood was collected from the arterial line of anesthetized Sprague-Dawley rats into

a heparinized vacutainer tubes. RBCs were isolated by centrifugation (2000 rpm for 3 min-

utes) and suspended in a physiological buffer solution (2.545 mg/mL (CH2OH)3CNH2, 8.210

mg/mL NaCl, 0.350 mg/mL KCl, 0.295 mg/mL CaCl22H2O, 0.290 mg/mL MgSO47H2O,

5.000 mg/mL bovine albumin, 1.000 mg/mL D-glucose; pH of 7.4). Centrifugation and

resuspension were repeated three times to ensure the solution was free of clotting agents.

The RBC solution was driven through the microfluidic device via polyethylene tubing

(PE50); the flow rate was controlled by gravity feed. The system temperature was moni-

tored using a thermocouple and controlled to 37 °C using a heat lamp; the heat lamp was
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Figure 6.4: Micrograph of the microfluidic device. Panel A shows a 10X micrograph of the mi-
crofluidic device assembled with the glass slide with the gas exchange window (1×1 mm). Panel B
shows a 20X micrograph of the device cross-section orthogonal to the flow direction. The channel
dimensions are approximately 500×300 µm. The PDMS spin coat layer thickness varies between
approximately 18-28 µm.

turned off during capture to prevent optical artifacts.

6.2.4 RBC SO2 Measurement

RBCs were imaged on an Olympus IX-81 microscope at 20X magnification. Images were

captured at approximately 30 frames per second using a Hamamatsu digital camera (ORCA

Flash4.0). The transmitted light was split into two using a beam splitter (Cairn Optosplit

Bypass) to two different 10 nm band pass filters centred at 442 nm and 454 nm. Each beam

of filtered light was projected onto one half of the digital camera charged coupled device

(CCD). In this configuration, both filters are recorded simultaneously.

Image analysis was done in MATLAB 2016b (MathWorks Inc.). Hemoglobin oxygen satu-

ration of RBCs was determined using the ratio of optical densities as described in [26]. The

optical densities were calculated using the diffusion-based inpainting method described in

[27]. The high spatial resolution of the Hamamatsu cameras enabled the calculation of SO2
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on a pixel-by-pixel basis.

Briefly, SO2 can be calculated from the ratio of optical densities according to

SO2 =
b1 − b2R
a2R− a1

(6.1a)

ai = εHbO2
(λi)− εHb(λi) (6.1b)

bi = εHb(λi) (6.1c)

R =
OD(λ1)

OD(λ2)
, (6.1d)

where OD(λ) is optical density at wavelength λ; λ1 is 454 nm and λ2 is 442 nm. εHbO2
and

εHb(λi) are the extinction coefficients of fully oxygen saturated and desaturated hemoglobin,

respectively. Figure 6.5 shows the hemoglobin extinction coefficients as a function of wave-

length for fully oxygen saturated and fully oxygen desaturated hemoglobin, as tabulated in

[28].

Optical densities of individual RBCs were calculated on a pixel-by-pixel basis; this was

done by capturing stationary RBCs on the bottom surface of the microfluidic in two fields

of view, one centred at the beginning of the window the second centred at the end of the

window. The median optical density for each RBC was reported. RBCs were not included

in the calculation if they were obscured by other objects in the image.

6.2.5 ATP Measurement

ATP concentrations were measured using a luciferin and luciferase cocktail. 5 mg of D-

luciferin (Sigma-Aldrich Co.) was diluted into 10 mL of physiological buffer solution. 20

mg of luciferase (Sigma-Aldrich Co.) was diluted in 2 mL of physiological buffer. The



136

Figure 6.5: Extinction coefficients of fully oxygen saturated and fully desaturated hemoglobin as
a function of wavelength. The black dashed lines indicate the wavelengths used in this study. Data
were compiled from [28].

luciferin and luciferase dilutions were mixed one-to-one to produce the final mixture; the

mixture was allowed to stand for 20 minutes before use. ATP standards were prepared by

serial dilution of 5 mg of ATP sodium salt in 1 mL of H2O. Measurements were made using

either a QuantEM EMCCD digital camera or a Photon Technology International D-104

photometer.

125 µL of luciferase cocktail was added to a blackout chamber placed over the objective of

the microscope. 250 µL of ATP was added after a one minute baseline recording. We used

a 15 s exposure for the EMCCD camera and a 1 s exposure for the photometer. Measure-

ments were made using a 4X objective in a dark room. In both methods, the peak intensity

was compared to the baseline.
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6.3 Results

6.3.1 SO2 Measurements

As discussed in Section 6.2.4, RBC SO2 can be measured using the optical properties of

RBCs. Specifically, it can be calculated from the ratio of optical densities at two wave-

lengths, where optical density is given by the logarithm (base 10) of the ratio of incident

light intensity to transmitted light intensity. The transmitted light intensity is measured by

the pixel intensity, and incident light intensity is estimated using diffusion-based inpaint-

ing as described in [27]. Figure 6.6 shows 20X microscopy images of stationary RBCs at

the bottom surface of the microfluidic device at two wavelengths (442 and 454 nm). This

figure visibly shows a change in red blood cell absorption in the 442 nm wavelength. Very

little change can seen in the 454 wavelength; this is because at this wavelength, hemoglobin

absorption is close to isosbestic (i.e. independent of SO2; see Figure 6.5). This figure

demonstrates that RBCs exposed to low oxygen over the window have a higher optical

density as would be expected for desaturated cells.

Median RBC optical densities of individual RBCs as a function of position downstream in

the microfluidic device are shown in Figure 6.7. Data were taken from two fields of view at

the beginning and end of the exchange window; data in the middle of the window were not

included since no fiducial markers were present to allow for the spatial positioning of the

data relative to the window. Outside of the window, optical densities are similar in both

wavelengths, while inside the window there is an increase in optical density at the 442 nm

wavelength in the window and a decrease in optical density at the 454 nm wavelength. This

figure also shows the optical density ratio, R (optical density at 454 nm divided by optical

density at 442 nm). The optical density ratio begins high outside the window and drops

rapidly in the window; the optical density ratio starts to drop before the window.
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Figure 6.6: Images of RBCs in the microfluidic device are shown for wavelengths 442 nm (A)
and 454 (B) inside and outside of the oxygen exchange window. Due to the optical properties of
the microfluidic device, RBCs at the same depth inside and outside of the window are in different
focal planes. Thus for the purpose of this figure two images are stitched together to show inside and
outside the window at the same time.
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Figure 6.7: Optical density of red blood cells as a function of position downstream in the microfluidic
device. The top panel shows the optical density at 442 nm (blue) and 454 nm (red). The bottom
panel shows the ratio of the optical density at 454 nm to the optical density at 442 nm. The dashed
lines indicate the edges of the O2 exchange window.

To quantify the change in saturation, the optical density ratio can be related to SO2 using

the extinction coefficients of hemoglobin at both wavelengths (see Section 6.2.4). Figure 6.8

shows the relationship used to calculate SO2; it was calculated with Equation 6.1 using

the extinction coefficients of fully saturated and desaturated hemoglobin at 442 and 454

nm. It is important to note that this relationship assumes that the filters used are perfect

zero-width bandpass filters centred at their corresponding wavelengths; in reality, our filters

have non-perfect 10 nm bandpasses.

Figure 6.9 shows SO2 as a function of position. We displayed the solution to a simple 1D

analytical model of O2 transport described in [20] on the same axis to demonstrate that the

data are consistent with the physical model. Four free parameters were used to fit the data

(Pe, S1 and S2 from the model presented by Sové et al. [20] and a scaling factor to allow

the model to have saturations greater than 1). The Hill equation was used to convert the

model from oxygen tension to SO2 (N = 2.7, P50 = 37 mmHg). This figure demonstrates
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the rapid change in O2 in the channel. These results demonstrate the device’s ability to

rapidly desaturate the RBCs within 200 µm. SO2 values range from 1.13 before the window

to 0.02 in the window. The values greater than one are likely due to the simplifications

made in the optical density ratio-SO2 relationship.

Figure 6.8: Relationship between the ratio of the optical density at 454 nm to the optical density
at 442 nm and RBC SO2.

Figure 6.9: SO2 as a function of position downstream in the microfluidic device. Each data point
is calculated from the optical density ratios in Figure 6.7 using the relationship in Figure 6.8. The
black dashed lines indicate the position of the window. For comparison, the solution to a 1D model
of O2 transport proposed in [20] (red; Pe = 1, S1 = 6 and S2 = 300) is displayed on the same axis.
The model was scaled to fit the data.
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6.3.2 ATP Measurements

We performed ATP standard measurements to determine the minimum ATP concentration

we could detect. For this, ATP solutions of various concentrations were injected into a

blackout chamber with the luciferase cocktail. The corresponding light flux was measured

with either an EMCCD camera or a photometer. Figure 6.10 shows an example ATP stan-

dard curve measured with the EMCCD camera with a 15 s exposure. Each concentration

was repeated three times. This result indicates the lower limit of the detection of ATP is

between 1×10−8 and 1×10−7 M. Although designed to use with CCD camera, preliminary

tests with a photometer show increased sensitivity; using a 1 s exposure, the photometer

can read ATP concentrations as low as 1× 10−9 M.

Figure 6.10: ATP standard curve for EMCCD camera. Each data point represents the mean
pixel intensity of the peak frame minus the mean pixel intensity of the baseline frames. Error bars
represent standard deviation of the peak frame. The dashed line indicates the standard deviation of
baseline frames.
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6.4 Discussion

This work presents the design and fabrication of a microfluidic device designed to cause a

rapid spatial change in RBC SO2 for the measurement of O2-dependent ATP release from

RBCs. We demonstrate that this device is able to cause a large, rapid change in RBC

SO2 that is localized around the gas exchange window. To quantify the sensitivity of our

experimental system and in particular, to determine the practicality of using an EMCCD

camera for the measurement of ATP, we have determined the minimum ATP concentration

we can measure using our camera to be on the order of 1 × 10−7 M. Finally, we explored

the possibility of using a photometer to measure ATP release, since this was the method

Wan et al. [18] used; preliminary results suggest that this system would be more sensitive

than the EMCCD system.

The design of the device presented in this work was inspired by a similar design by Wan

and colleagues in 2008, where they measured ATP release time for the shear-dependent

release of ATP from RBCs using a microfluidic device. The shear stress was induced us-

ing a constriction in the microfluidic device such that there was a spatial change in shear

in a time-invariant flow. ATP concentration was measured at various positions along the

microfluidic device using a firefly luciferase assay with a photometer. In their setup, ATP

release time was determined by measuring the distance between the beginning of the con-

striction and the start of the increase in ATP concentration and using the average RBC

speed to get release time [18].

The objective of our current research is to adapt Wan’s experiment for the measurement

of ATP release time for the O2-dependent release of ATP from RBCs. Though there are

many similarities between the two protocols, inducing a rapid change in RBC oxygenation

is far from straight-forward. To cause the spatial change in O2, we proposed to replace

the constriction in the microfluidic device with a gas exchange window. However, due to
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the nature of molecular diffusion, ensuring the change is large enough and spatially con-

fined is a challenge. This challenge was first addressed using mathematical modelling of an

idealized microfluidic device to determine if the experiment was theoretically feasible [19].

In particular, we determined that we could induce a spatial change in RBC SO2 and that

we could calculate ATP release time from the resulting light signal. This model was also

used to demonstrate the sensitivity of the change in SO2, and as a result released ATP, to

various experimental parameters such as the channel height and flow rate. An important

consideration in the experimental design is to choose a flow rate that is slow enough to in-

duce a large enough change in O2 but fast enough to achieve a sufficient temporal resolution.

One of the largest impeding factors was the fabrication of the microfluidic device. The

device Wan used was fabricated in PDMS, which is one the most common materials for mi-

crofluidic fabrication in academic laboratories [24]. The concern is that PDMS is a highly

O2-permeable material, which complicates the predictions of the RBC desaturation made

with the idealized microfluidic device. To address this complication, a 3D O2 transport

model was used to optimize the geometric dimensions of the microfluidic device [20]. In the

current study, we developed the protocol to fabricate the PDMS-based microfluidic device

designed in [20].

To determine how effective the microfluidic device is at desaturating RBCs, we measured

SO2 in the device using a dual wavelength spectroscopy method. In our lab, these measure-

ments are typically made in our intravital video preparation to assess capillary oxygenation

[21, 29]. In these protocols, SO2 measurements are made for in-focus RBCs flowing single

file through a capillary, and incident light intensity is calculated as the maximum intensity

in a sequence of images. Adapting these methods for use in vitro presents several challenges.

Firstly, in the intravital studies, RBCs are deformed as they flow through the capillaries.

When flowing freely in the microfluidic device, they are not deformed and lens the back-

ground light. Additionally, RBCs in the microfluidic device change focal planes, making it
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difficult to choose a focal plane for the measurement the optical densities of moving RBCs.

Therefore, we decided to only measure SO2 of stationary RBCs on the bottom surface of the

microfluidic device; these RBCs experience the largest change in SO2 while flowing RBCs

deeper in the channel will experience a smaller change. Since the background intensity of

lensed and stationary cells cannot be done using the maximum intensity image, we instead

use the newly proposed inpainting method [27].

Ultimately, the device should have the temporal resolution to measure ATP release time.

For O2-dependent release, ATP release time was suggested to be less than 500 ms based on

the transit time of RBCs in an isolated arteriole preparation exposed to low O2 [2]. If it

is similar to that of shear-dependent release, it is likely to be between 25-75 ms as found

in [18]. Since ATP release time is measured by a spatial displacement, temporal resolution

is affected by two factors (1) the spatial resolution of the detector and (2) the RBC ve-

locity. In the study by Wan et al., the average RBC velocity through the constriction in

their channel was 60 mm/s; this rapid RBC velocity gave them a large temporal resolution.

In our system, RBC velocity influences SO2 such that a larger velocity reduces the drop

in SO2 [19, 20]. Additionally, high RBC velocity results in high shear stress which may

elicit a shear-dependent response. Therefore, using a large RBC velocity is problematic in

our application, limiting our temporal resolution; thus, this application requires excellent

spatial resolution of the detector. In our system, preliminary tests were done using an

EMCCD digital camera with a CCD array of 512 by 512 pixels. At 4X magnification, this

corresponds to a spatial resolution of approximately 3.5 µm. Assuming an average RBC

velocity of 0.08 mm/s, this corresponds to a 44 ms temporal resolution.

A final consideration is whether the detector has the sensitivity to measure the resulting

concentration of ATP from O2-dependent release. We have determined that the detection

limit of the EMCCD camera is of the order of 1×10−7 M. Wan et al. reported peak concen-

trations on the order of 1×10−6 M in their device. If the O2-dependent mechanism releases
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at a similar rate, the system can detect it; this assumes the number of RBCs affected by the

stimulus is similar in both devices. An alternative to a CCD array is to use a photometer,

as in [18]. However, to achieve a high spatial resolution throughout the channel, numer-

ous closely spaced point measurements are required. With a photometer, this procedure

requires manually translating the detector along the channel. Using a CCD array allows

for the simultaneous capture of point measurements of a large region of the channel, but

is less sensitive than a photometer. Therefore, if the CCD array is not sensitive enough to

measure the ATP signal, a photometer may be used.

Using this device to measure ATP release time will strongly support the hypothesis that

RBCs release ATP in response to desaturation. Recent reports in the literature have sug-

gested that hemolysis may responsible for most or all ATP release measured in vitro due to

hypotonic shock, shear stress, and hypoxia [30, 31]. This device can rule out hemolysis as

a cause, since cell lysis would not occur in a time-invariant manner; thus the steady-state

signal would only reflect the O2-dependent release.

In addition to determining ATP release time, this device could be used to study the dynam-

ics of O2-dependent ATP release in both health and disease. For example, healthy RBCs

could be used with signalling pathway inhibitors to help determine the mechanism for ATP

release. Further, since impairments in ATP release have been linked to various diseases

[14, 16, 17], this device could be used as a screening tool.

In summary, we have developed an in vitro tool to rapidly desaturate RBCs spatially for

the purpose of measuring the dynamics of O2-dependent ATP release. The device is capable

of causing a rapid and large spatial desaturation. Our CCD camera approach is able to

detect ATP concentrations on the order of 1 × 10−7 M. This work presents an important

step forward in the study of O2-dependent release of ATP from RBCs as a mechanism for

O2 regulation in the microcirculation.
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[27] R. J. Sové, N. E. Drakos, G. M. Fraser, and C. G. Ellis, “Using digital inpainting to
estimate incident light intensity for the calculation of red blood cell oxygen saturation
from microscopy images,” accepted to Journal of Biophotonics, 2018.

[28] S. Prahl, “Optical absorption of hemoglobin,” tech. rep., Oregon Medical Laser Center,
1999.

[29] N. W. Ghonaim, L. W. Lau, D. Goldman, C. G. Ellis, and J. Yang, “A micro-delivery
approach for studying microvascular responses to localized oxygen delivery,” Microcir-
culation, vol. 18, no. 8, pp. 646–654, 2011.

[30] J. Sikora, S. N. Orlov, K. Furuya, and R. Grygorczyk, “Hemolysis is a primary atp-
release mechanism in human erythrocytes,” Blood, vol. 124, no. 13, pp. 2150–2157,
2014.

[31] A. S. Keller, L. Diederich, C. Panknin, L. J. DeLalio, J. C. Drake, R. Sherman, E. K.
Jackson, Z. Yan, M. Kelm, M. M. Cortese-Krott, et al., “Possible roles for ATP re-
lease from RBCs exclude the cAMP-mediated Panx1 pathway,” American Journal of
Physiology-Cell Physiology, vol. 313, no. 6, pp. C593–C603, 2017.



Chapter 7

Final Summary

The regulation of O2 distribution in the microcirculation is a complex control system that

can adjust vascular tone to alter the distribution of RBCs to precisely match O2 supply with

O2 demand. Numerous researchers provide evidence for the existence of an O2-dependent

mechanism for O2 regulation, however, the location of the O2 sensor remains unclear [1].

The goal of this thesis was to develop tools to facilitate the study of the regulation of

O2 distribution in the microcirculation by applying concepts in mathematics, physics and

engineering. In this thesis, we took a two-tiered approach. First, at the level of the mi-

crovasculature, we developed a gas exchange device that allows for the local manipulation

of capillary RBC SO2 in vivo to study the spatial dependence of ATP release. Secondly,

to study one of the proposed sensors, the RBC, directly, we developed an in vitro device

capable of causing rapid changes in SO2. Due to the challenges associated with the develop-

ment and analysis of the experimental tools, extensive computational modelling was done.

Challenges in measuring RBC SO2 in the in vitro microfluidic device motivated the need

for an image processing technique to calculate the RBC SO2 from light microscopy images;

this new technique was also applicable to measurements in vivo. At a high level, this thesis:

1. presents the novel design for a modular gas exchange platform that was demonstrated

to cause perturbations in RBC SO2 in vivo both experimentally and computationally,

2. demonstrates that localized changes in RBC SO2 in an isolated group of capillaries

149
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can elicit a flow response,

3. proposes a experiment to measure the dynamics of O2-dependent ATP release from

RBCs using a novel microfluidic device design,

4. explores the feasibility of this experimental approach using a comprehensive mathe-

matical model of the experimental system,

5. presents a computational model of O2 transport throughout the wall and channels

of the microfluidic device proposed above for the optimization of various geometric

parameters,

6. demonstrates the use of digital inpainting to calculate the incident light intensity in

microscopy images for calculation of RBC SO2 overcoming many deficiencies with the

methodology currently used in the field,

7. presents the construction and experimental validation of the microfluidic device to

cause a localized spatial deoxygenation of RBCs.

In this chapter, the main results from each study of this thesis are summarized, followed by

a discussion of the future directions of this work.

7.1 Summary of Results

In 2011, our lab developed an O2 delivery platform capable of causing changes in capil-

lary O2 saturation (SO2) limited to a small area of tissue in an intravital video microscopy

system [2]. Although the O2 exchange platform induced changes in red blood cell (RBC)

SO2, corresponding changes in supply rate were not reported [2]. This method was altered

to increase the surface area for exchange; a 100 µm diameter circular exchange area was

replaced by a 1000 by 200 µm rectangular area. As predicted by computational studies [3],

this modification was able to elicit a vascular response despite causing similar changes in
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capillary SO2 [4]; the difference was the number of affected capillaries. Although this setup

was able to elicit a vascular response to O2, ideally we would have a more localized stimu-

lus. Another challenge with the previous apparatus is that it could only resolve capillaries

within 60 µm from the surface of the tissue.

In Chapter 2, we developed an O2 delivery platform with a smaller exchange area that

is also thin enough to allow us to focus on capillaries deeper throughout the muscle. A

GPU-accelerated, 3D O2 transport model of diffusion through the tissue was implemented

to estimate the extent of the change in tissue oxygenation. The O2 exchange platform is

able to cause changes in RBC SO2 of capillaries close to the window. Further, these changes

resulted in corresponding changes in RBC supply rate. The computational model predicted

the drop in O2 is confined to 80 µm from the edge of the window. Overall, we have de-

veloped an O2 delivery system that is capable of causing localized changes in SO2 which

can be used to further investigate microvascular O2 regulation. The observation that RBC

supply rate was tightly linked to the imposed changes in RBC SO2 inspired our interest in

the role of RBCs in O2 sensing and regulation.

RBCs have been proposed to be a sensor in blood flow regulation through the O2-dependent

release of ATP, a potent vasodilator. Chapters 3, 4 and 6 focus on the development of an

experimental device that will allow for the rapid desaturation of RBCs in order to study

this potential mechanism in isolation. In 2008, a study at Harvard measured the dynamics

of shear-dependent ATP release from RBCs using a microfluidic device with a constriction

in the channel to increase shear stress [5]. The brief period of increased shear stress resulted

in ATP release within 25 to 75 milliseconds downstream of the constriction. Thus our goal

is to apply a similar approach to determine the dynamics of O2-dependent ATP release. In

the place of the constriction, an O2-permeable membrane interfaced with a low O2 gas ex-

change chamber would be used to decrease the SO2 of the RBCs flowing through the channel.
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Chapter 3 describes the first stage in achieving this goal: the development of a computa-

tional model of the proposed experimental system to determine the feasibility of altering

SO2 rapidly enough to measure ATP release dynamics. The computational model was con-

structed based on hemodynamics, molecular transport of oxygen and ATP, kinetics of lu-

ciferin/luciferase reaction for reporting ATP concentrations, light absorption by hemoglobin,

and sensor characteristics. A linear model of oxygen saturation-dependent ATP release with

variable time delay was used in this study. The computational results demonstrate that

a microfluidic device with a 100 µm deep channel will cause a rapid decrease in oxygen

saturation over the oxygen-permeable membrane that yields a measurable light intensity

profile. The simulation also demonstrates that the complex dynamics of ATP release from

erythrocytes with ATP degradation by luciferin/luciferase in a flowing system results in

light intensity values that are not directly related to ATP concentrations. A computational

model is required for proper interpretation of experimental data.

The idealized microfluidic device described in Chapter 3 assumed the device was fabricated

using an O2-impermeable material with an O2-permeable window for gas exchange. Consid-

erations to cost and ease of fabrication motivated a new design. With the fast emergence of

microfluidics, non-specialist are able to rapidly prototype microfluidic devices in PDMS [6].

Unfortunately, this revision had a substantial impact on our original design, since PDMS

is highly O2-permeable. This motivated the need for a flexible 3D computational model of

O2 transport.

In Chapter 4, oxygen transport simulations were used to optimize the geometric design

parameters for a similar system which is easier to fabricate using PDMS soft lithography

techniques. The system is composed of a microfluidic device stacked on top of a large, gas-

impermeable flow channel with a window to allow gas exchange. The microfluidic device is

fabricated using soft lithography in polydimethyl-siloxane, an oxygen-permeable material.

Our objective was twofold: (1) optimize the parameters of our system and (2) develop a
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method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D

simulations of oxygen transport were performed to simulate oxygen distribution throughout

the device. The simulations demonstrate that microfluidic device geometry plays a critical

role in molecule exchange, for instance, changing the orientation of the short wide microflu-

idic channel results in a 97% increase in oxygen exchange. Since microfluidic devices have

become a more prominent tool in biological studies, understanding the transport of oxygen

and other biological molecules in microfluidic devices is critical for maintaining a physiolog-

ically relevant environment. We have also demonstrated a method to assess oxygen levels

in geometrically complex microfluidic devices.

To experimentally validate the ability of the microfluidic device to desaturate RBCs, SO2

can to be measured in the device by taking advantage of spectroscopic properties of hemoglobin.

When this technique is applied to transmission microscopy, the calculation of saturation re-

quires determination of incident light intensity at each pixel occupied by the RBC; this value

is often approximated from a sequence of images as the maximum intensity over time. This

methods often fails in our microfluidic system since RBCs in the microfluidic device tend to

lens light due to the biconcave shape of the RBC. This lensing artifact causes a ring of high

intensity light around the RBC, causing the maximum intensity-based algorithm to fail.

RBCs in capillaries must deform to pass through the narrow vessel, in this configuration

there are fewer artifacts, thus this problem is less confounding to in vivo measurements. In

addition, the maximum intensity-based method is not suitable to measure SO2 of stationary

cells.

Therefore, in Chapter 5, we propose a new way of approximating incident light intensity

using digital inpainting. The proposed method estimates incident light intensity with a

percent error of approximately 3% on average, which exceeds the accuracy of the maximum

intensity based method in most cases. The error in incident light intensity corresponds to

a maximum error of approximately 2% saturation. Therefore, though this new method is
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computationally more demanding than the traditional technique, it can be used in cases

where the red maximum intensity-based method fails (e.g. stationary cells), or when higher

accuracy is required. It can also be used to measure SO2 in the microfluidic device.

With all of the required tools in place, the objective of Chapter 6 was to present the design

and development of the experimental system to control the spatial oxygenation of RBCs

facilitating the measurement of the dynamics of ATP release. The experimental system con-

sisted of two parts: our previously developed micro-delivery gas exchange platform and an

O2-permeable microfluidic device designed and refined using computational modelling. The

gas exchange chamber was used to cause a localized change in O2 in the microfluidic device

such that the flowing RBCs suspended in physiological buffer would be experience a rapid

change in O2. To quantify the change, the newly developed inpainting method was used.

RBCs in the microfluidic device were rapidly desaturated to near-zero SO2. In future work,

a firefly luciferase assay can be used to measure the position of ATP released from RBCs,

which can then be used to determine ATP release time. We determined that the EMCCD

camera is capable of detecting changes in ATP as low as 1× 10−7 M; the photometer offers

even better sensitivity detecting down to 1 × 10−9 M using a short exposure time of 1 s

at the cost of lower spatial resolution. In summary, we have developed an experimental in

vitro system to impose a spatial deoxygenation of RBCs in a steady flow microfluidic device

to study the dynamics of O2-dependent ATP release from RBCs.

7.2 Future Directions

In this thesis a variety of tools were developed to study the regulation of O2 in the micro-

circulation. As such, this thesis serves as a basis that future researchers can use to answer

exciting questions in physiology. The following section outlines potential applications of the

developed tools.
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Chapter 2 presented a device for the local desaturation of RBCs in capillaries in vivo. This

device is capable of causing changes in O2 limited to a handful of capillaries. With such

a device, one could explore the potential location of the O2 sensor in the microcirculation.

For example, this device could be used to probe regions of the muscle absent of capillaries

to determine whether the sensor may be extravascular. Further, consistent with the ATP

release hypothesis, one could use this device to stimulate capillaries in one microvascular

unit, to see whether a flow response is elicited in other micro vascular units attached to

the same or different arterioles. This device could also be used to determine whether there

are other factors controlling flow regulation other than passive rheology, such as pericytes.

One could manipulate the SO2 of multiple capillaries coming from the same arteriole to

determine if the distribution of flow rates remains constant. Thus, this device allows for a

number of future studies directed at perturbing the local oxygen microenvironment in the

microcirculation.

Chapters 3, 4 and 6 presented the development of a device that could be used to measure

the dynamics of O2-dependent ATP release. This device would not only allow for the mea-

surement of ATP release time, it could also serve as a confirmation that the ATP released is

not due to hemolysis. However, before this device can be implemented, there are challenges

that still need to be addressed.

For example, one challenge in measuring ATP is that hemoglobin absorption in the emission

range of the luciferase reaction is high and O2-dependent [7]. The firefly luciferase reaction

emits light centered at 560 nm at 25 °C [8]. At this wavelength, hemoglobin absorbs more

light when it is fully oxygen desaturated and thus, the same ATP concentration would

appear to produce more light in RBCs exposed to high O2. Furthermore, the wavelength

emitted is also temperature-dependent and therefore absorption by hemoglobin would also

have a temperature dependence. This may also have an impact on other in vitro measure-
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ments of ATP release. This difficulty was overcome in the study by Jagger et al., where

whole blood was desaturated, but the ATP assay was perform on a dilution of the sample

[9]. At low hematocrit, the absorption of light would be less, thus the effect of the oxygen

dependence of the absorption would be minimal. Therefore, further refinements need to be

made to the experimental protocol in order to measure ATP release dynamics.

After measuring the dynamics of ATP release in healthy blood, one could continue to ex-

plore the dynamics of ATP release in various pathological conditions. There have been

various indications in the literature that ATP release may be impaired in various diseases

including type II diabetes [10] and sepsis [11]. The system developed in this thesis may be

used to determine whether the dynamics are also affected in disease; if so, it could be used

clinically as a diagnostic tool.

As well as having clinical applications, the device can also be used to investigate the sig-

nalling pathway within the RBC. Some preliminary work done using a computational model

of the cellular pathway for ATP release suggests the dynamics of ATP release would be al-

tered when specific mechanisms in the pathway are perturbed (data not shown). In this

preliminary work, a computational model of the pathway was developed by [12]. The com-

putational model was then applied to the model of the experimental system developed in

Chapter 3, replacing the ATP release module. This work had several interesting insights

which can be pursued in the future. Firstly, ATP release turn-off time was different than

ATP turn on-time. Secondly, impairment of specific mechanisms in the pathway leads to

altered ATP release time; ATP turn-off time was affected more than ATP turn-on time.

Therefore, computational modelling in conjunction with this microfluidic device could allow

for the elucidation of the mechanism for ATP release.

In addition to the experimental tools, a set of computational tools were developed in order

to design, evaluate and understand the experimental tools. For instance, in Chapter 4, a
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3D model of O2 transport was implemented using the finite element method to evaluate

the efficacy of O2 exchange in O2-permeable microfluidic devices. This code was developed

to be modular and can be used for any geometry. This program can be used in the devel-

opment of future devices. Additionally, Chapter 5 describes an algorithm that estimates

incident light intensity for the calculation of RBC SO2. One important accomplishment

of this algorithm is its ability to calculate SO2 of stationary RBCs. This was useful for

the quantification of the change in SO2 in the microfluidic device, since we could measure

SO2 for cells adhering to the bottom walls of the device. Further, in sepsis, there are often

very low flow or stopped flow vessels [13, 14], for which this algorithm could be used to

determine SO2. In future work, an automated RBC detection method can be implemented

to facilitate the automation of inpainting. Once automated, inpainting can be incorporated

into the existing analysis software for the calculation of SO2.

7.3 Conclusion

In summary, this thesis has developed both in vivo and in vitro experimental tools, as well

as computational tools to study the regulation of O2 distribution in the microcirculation.

Specifically, we have developed a microdelivery gas exchange platform to cause localized

changes in capillary RBC SO2 that result in a vascular flow response, and a microfludic

device capable of rapidly desaturating RBCs to facilitate the measurement of the dynamics

of O2-dependent release of ATP from RBCs. To guide the development of these exper-

imental devices, we also developed a set of computational and analytical tools including

mathematical models of the physical devices and a novel approach to measuring RBC SO2.

Together these tools provide novel methodology that enable the pursuit of new avenues to

advance the study of microvascular O2 regulation.
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approvals, are complete and accurate;
c) any divergence from this AUP will not be undertaken until the related Protocol Modification is 

approved by the ACC; and
d) AUP form submissions - Annual Protocol Renewals and Full AUP Renewals - will be submitted
and attended to within timeframes outlined by the ACC.   http://uwo.ca/research/services/

animalethics/animal_use_protocols.html 
3) As per MAPP 7.10 all individuals listed within this AUP as having any hands-on animal contact will

a) be made familiar with and have direct access to this AUP;
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c) be overseen by me to ensure appropriate care and use of animals.

4) As per MAPP 7.15,
a) Practice will align with approved AUP elements;
b) Unrestricted access to all animal areas will be given to ACVS Veterinarians and ACC Leaders;
c) UCAC policies and related ACC procedures will be followed, including but not limited to:

i) Research Animal Procurement
ii) Animal Care and Use Records
iii) Sick Animal Response
iv) Continuing Care Visits

5) As per institutional OH&S policies, all individuals listed within this AUP who will be using or potentially exposed to 
hazardous materials will have completed in advance the appropriate institutional OH&S training, facility-level training, and reviewed 
related (M)SDS Sheets,  http://www.uwo.ca/hr/learning/required/index.html 

Submitted by: Copeman, Laura
on behalf of the Animal Care Committee
University Council on Animal Care
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