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Abstract 

The earliest cell fate specification events during mammalian development occur in the 

blastocyst-stage preimplantation embryo, during which a pluripotent cell population is 

established. These cells form the basis of the developing fetus and must be correctly 

specified in order for successful development to occur. Cell signalling in response to 

environmental cues has a critical role in cell differentiation. The signalling adaptor 

protein p66Shc is expressed in mammalian embryos and promotes apoptosis and 

permanent embryo arrest in response to stress-inducing conditions. However, loss-of-

function studies suggest that p66Shc may be important for embryonic development to the 

blastocyst stage. In this thesis, I aimed to determine the role of p66Shc in mouse 

blastocyst development and mouse embryonic stem cell function. Through a combination 

of environmental modulation of p66Shc expression, experimental knockdown, and 

genetic knockout of p66Shc in mouse preimplantation embryos and mouse embryonic 

stem cells, I demonstrated that p66Shc is required for normal embryo physiology, and 

correct cell lineage-associated marker expression in the blastocyst inner cell mass and 

mouse embryonic stem cells. First, I observed that p66Shc is normally upregulated at the 

blastocyst stage in vivo, and oxygen-induced increases in p66Shc expression are 

associated with altered embryo metabolism in vitro. Secondly, I demonstrated that 

knockdown of p66Shc transcript abundance significantly alters the timing and proportion 

of cells expressing lineage-associated transcription factors in the blastocyst inner cell 

mass. Lastly, I observed that knockout of p66Shc in mouse embryonic stem cells alters 

the expression of the core pluripotency marker NANOG and causes an upregulation of 

mesoderm-associated markers during stem cell differentiation. Collectively, my work 

provides insight into a novel role for p66Shc during preimplantation embryo 

development, expanding the diversity of cellular functions attributed to p66Shc in 

mammalian development. 
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Chapter 1  

1 Introduction 

1.1 Overview 

1.1.1 Embryonic development and cell fate decisions 

Development describes the process of how the structure of an organism changes with 

time, with embryonic development referring to how a single fertilized egg grows and 

forms an entire organism. Embryonic development has conserved mechanisms across the 

Animal Kingdom (Slack, 2006). These encompass four main themes: morphogenesis, 

growth, regional specification, and cell differentiation. Morphogenesis is the mechanism 

behind cell and tissue movement that provides the organism with a three-dimensional 

structure. Growth is an increase in organismal size and the control of body part 

proportions. Regional specification describes how a pattern appears in an originally 

similar population of cells. Lastly, cell differentiation characterizes how different types of 

cells emerge from an originating population (Slack, 2006). Cell differentiation and cell 

fate decisions form the foundation of how a single cell (fertilized egg or zygote) can lead 

to the generation of all cells of the adult body. 

Ongoing research in cell differentiation and cell fate regulation has shown that control of 

gene expression is critical to ensuring the normal development of an organism. 

Observations from cellular cloning and reprogramming of mature cells to de-

differentiated induced pluripotent stem cells (iPSCs) demonstrate that, with a few 

exceptions, every cell in the adult organism has identical genomes (Lokken and Ralston, 

2016; Slack, 2006; Takahashi and Yamanaka, 2006). However, there are over two 

hundred cell types with distinct functions in the adult body. To reconcile this, the genome 

must be differentially regulated/expressed in each specialized cell type. This happens 

through differential transcription, translation, post-transcriptional and post-translational 

modification of gene products, ultimately leading to the cell acquiring a certain 

morphology and function. Understanding how cells acquire their specialized fate requires 

determining which genes are necessary for embryonic development, determining how 
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spatiotemporal regulation of gene expression occurs, and understanding how the 

expression of certain proteins cause cells to differentiate into certain cell types (Lokken 

and Ralston, 2016). Understanding these aspects of cell fate decisions will help us 

understand how normal development occurs and how alterations in cell fate and cell 

differentiation lead to disease and cancer (Lokken and Ralston, 2016). 

Cell fate decisions during development typically undergo sequential phases of 

commitment. Cells are first specified to a fate, meaning that when isolated from a 

developing embryo they can form the specified cell type, but their fate is plastic and can 

be altered, for example, by the type of environment into which they are placed (Slack, 

2006). After specification, cells are determined. Cell determination is defined as 

irreversible development into the specified cell type regardless of the environment post-

transplantation. Some progenitor, or precursor, cells may be restricted to a range of 

possible cell types that they can develop to – a property known as potency (Slack, 2006). 

The first observable cell fate decision in mammalian embryonic development is to 

determine which cells of the embryo will contribute to embryonic tissues or 

extraembryonic tissues after implantation. This is determined during preimplantation 

embryo development, and proper specification and determination of these two cell fates 

is essential to establish a successful pregnancy and support fetal development (Lokken 

and Ralston, 2016). 

1.2 Preimplantation embryo development 

1.2.1 Overview of mouse preimplantation development  

Preimplantation development is defined as the period of mammalian embryonic 

development between fertilization of the egg and implantation of the blastocyst in the 

uterus (summarized in Figure 1-1). This process takes approximately 3-4 days in the 

mouse and up to 7 days in humans. After fertilization, the one cell zygote undergoes a 

series of mitotic divisions (cleavage) during which there is an increase in the number of 

cells (blastomeres), but no net increase in embryo size (Cockburn and Rossant, 2010). 

The maternal to zygotic transition in transcriptional control occurs during the first 

cleavage division in the mouse, when oocyte-stored transcripts and proteins that are  
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Figure 1-1. Overview of mouse preimplantation development. 

Two key events occur during the developmental progression to the blastocyst stage. 

Apico-basal polarization and compaction occur at the 8-cell stage. Compaction results in 

an increase in cell-cell adhesion and surface contact, while intracellular polarity 

components segregate to form apical and basolateral domains in each blastomere. 

Following specification of the trophectoderm the embryo undergoes cavitation to form a 

fluid-filled cavity. Cavitation is mediated by the formation of intercellular tight junctions 

(black rectangles), expression of basolateral Na+/K+-ATPases (black) and trophectoderm-

specific expression of aquaporins (blue).  



4 

 

essential for supporting oocyte maturation and fertilization are progressively degraded 

and the embryonic genome begins transcription. In mouse embryos, embryonic genome 

activation is initiated in the male pronucleus with a minor wave of gene activation, 

followed by a major wave during the one to the two-cell stage transition once syngamy 

and pronuclear fusion have occurred (Hamatani et al., 2004).  

Up to the uncompacted eight-cell stage, blastomeres remain totipotent, as they can 

equally contribute to either the inner cell mass (embryonic) or trophectoderm 

(extraembryonic) lineages. Developmental biases in blastomere contribution to the inner 

cell mass or trophectoderm have been identified as early as the four-cell stage 

(Piotrowska-Nitsche et al., 2005; Tabansky et al., 2013; Torres-Padilla et al., 2007). 

However, blastomeres are not yet committed to their fate, as at this developmental time 

point embryos can adapt to the addition, repositioning, or removal of blastomeres 

(Cockburn and Rossant, 2010). This property is the basis of preimplantation genetic 

diagnosis, an assisted reproductive technology (ART) during which one or a few 

blastomere(s) is/are removed from the embryo and genotyped to avoid the transfer of 

embryos carrying a heritable genetic disease (Handyside et al., 1992; Hardy et al., 1990). 

Totipotency is lost as the embryo further develops and as the lineages of the blastocyst 

are subsequently specified (Suwinska et al., 2008; Tarkowski et al., 2010).   

At the late eight-cell stage, mouse preimplantation embryos undergo compaction, a 

process during which there is an increase in intracellular adhesion resulting in 

blastomeres flattening, and morphological distinction between individual blastomeres is 

lost (White et al., 2016). Adherens and tight junctions subsequently form. The onset of 

compaction is independent of cell number, and it can be artificially induced in four-cell 

embryos if the nuclear to cytoplasmic ratio is increased, if protein synthesis is inhibited, 

or if protein kinase C is activated (Kidder and McLachlin, 1985; Lee et al., 2001; Winkel 

et al., 1990). The initiation signal for compaction is not well understood. However, 

calcium-dependent adhesion mediated by E-Cadherin is required, as chelating Ca2+ ions 

causes the embryo to decompact and ultimately fail to develop to the blastocyst stage 

(Pey et al., 1998). Basolateral E-Cadherin mediates adhesion between blastomeres by 

ligating its extracellular domain to cadherins on neighbouring cells (White et al., 2016).  
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Cell polarization along the inside-outside axis of the embryo occurs simultaneously with 

compaction as apical-basal polarity is established (Cockburn and Rossant, 2010; Leung et 

al., 2016). Actin, microvilli, and apical complexes including Ezrin, the Par proteins Par3 

and Par6, and atypical protein kinase C localize to the apical domain, while E-Cadherin, 

Scribble, and Lgl localize to the basolateral domain (Leung et al., 2016). Functionally, 

the polarization of cell components is linked to the first fate decision in the embryo and 

eventual blastocyst formation. Polarization is not fully dependent on cell-cell contact, as 

blastomeres isolated from embryos can polarize, as well as blastomeres in embryos that 

are inhibited from compacting, but at a lower frequency than in intact embryos 

(Houliston et al., 1989). Together, compaction and polarization are required to ensure 

proper development to the blastocyst stage.  

After specification of the trophectoderm, the blastocyst forms a fluid-filled cavity during 

a process known as cavitation. Formation of a cavity is dependent on ion transport by the 

trophectoderm. Expression of Na+/K+-ATPases in trophectoderm cells causes an osmotic 

gradient to form as Na+ ions accumulate at the basolateral side of the cells (Baltz et al., 

1997; Madan et al., 2007). Water then enters the blastocyst through aquaporins expressed 

in trophectoderm cells (Barcroft et al., 2003; Offenberg et al., 2000). Tight junctions 

composed of occludins, claudins, and junction adhesion molecules form in the 

trophectoderm and act as a permeability seal against paracellular transport, facilitating 

expansion of the cavity (Fleming et al., 2001). The first three cell types – the epiblast, 

primitive endoderm, and trophectoderm – are then specified in the blastocyst and uterine 

implantation occurs at E4.5 in the mouse (Cockburn and Rossant, 2010).  

1.2.2 The first embryonic fate decision: inner cell mass vs. 
trophectoderm 

Cell polarization and cell fate are closely linked and are described by two experimental 

models known as the “inside-outside” and the “cell polarity” models. In the “inside-

outside” model, the cells on the inside and outside of the 8-16 cell morula experience 

different degrees of cell-to-cell contact and this positional information is translated into 



6 

 

differences in cell fate, with the outer cells becoming trophectoderm and the inner cells 

becoming the inner cell mass. In the “cell polarity” model, the presence or absence of an 

apical domain and its inheritance determines cell fate. During symmetric blastomere 

divisions, the daughter cells will inherit the apical domain and remain on the outside of 

the embryo, while asymmetric divisions result in one polar and one apolar cell. The 

apolar cell lacking an apical domain will internalize or remain on the inside of the 

embryo. Increasing evidence suggests that polarity, rather than position, drives cell fate 

specification at this stage of development with research focusing on discovering the 

driving signalling mechanisms that regulate and stabilize cell fate (Anani et al., 2014; 

Yamanaka et al., 2006). Ultimately, cell fate in the blastocyst is determined by 

differential expression of transcription factors in the trophectoderm and inner cell mass. 

CDX2, EOMES, and GATA3 are specific to the trophectoderm lineage, while OCT4, 

NANOG, and SOX2 regulate the inner cell mass. The importance of these transcription 

factors has been outlined in genetic knockout studies. Cdx2 knockout embryos form 

blastocysts, but the trophectoderm expresses ectopic NANOG and OCT4 and cannot 

implant, suggesting that CDX2 is important for maintaining trophectoderm identity in the 

embryo (Strumpf et al., 2005). Oct4 knockout embryos also form blastocysts; however, 

their inner cell masses are not pluripotent and ectopically express trophectoderm markers 

(Nichols et al., 1998).  

More recent work has focused on how these transcription factors are restricted to their 

respective lineages, which has led to the finding that differential cell signalling emerges 

during compaction and polarization. TEAD4, a transcriptional effector of the Hippo 

signalling pathway, was identified as a regulator of Cdx2, and its knockout in mice results 

in a preimplantation lethal defect. Tead4-/- embryos do not form blastocyst cavities 

despite the normal expression of components of adherens junctions and polarity 

complexes. Instead these embryos fail to upregulate trophectoderm markers (Cdx2, 

Eomes, Fgfr2) and fail to specify the trophectoderm (Nishioka et al., 2008; Yagi et al., 

2007). TEAD4 is localized to the nucleus in all cells of the 8-16 cell embryo and thus the 

presence of the transcriptional co-activator YAP in the nucleus and binding to TEAD4 is 

required for Tead4-mediated expression of Cdx2 (Hirate et al., 2012). YAP is nuclear in 

the outer cells of the embryo, while YAP is cytoplasmic in the inner cells of the embryo 
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(Nishioka et al., 2009). Overexpressing LATS, a kinase mediating phosphorylation of 

YAP, in mouse embryos significantly reduced nuclear accumulation of YAP, suggesting 

that LATS regulates YAP localization in the embryo through phosphorylation (Nishioka 

et al., 2009). By experimentally manipulating the position of blastomeres inside the 

embryo, outside cells re-establish polarity and nuclear YAP became detectable, while 

YAP remained cytoplasmic in inner cells, linking cell position to YAP localization 

(Nishioka et al., 2009). TEAD4 also restricts SOX2 to the inner cells of the 

preimplantation embryo, as Tead4-/- embryos and overexpression of Lats2 in the outer 

cells had ectopic SOX2 expression. Therefore, differential Hippo signalling is not only 

required for trophectoderm patterning, but also for proper ICM patterning (Wicklow et 

al., 2014). 

As TEAD4, YAP, and LATS are members of the Hippo signalling pathway, research has 

been focused on identifying known upstream regulators important for signal transduction 

in the preimplantation embryo, and how they could integrate cell position and/or cell 

polarity signals. Disrupting cell polarity by Pard6b short hairpin (sh)RNA knockdown 

reduced nuclear YAP, increased cytoplasmic phosphorylated YAP, and reduced Cdx2 

expression, suggesting that an intact apical domain is required for inhibiting Hippo 

pathway activation (Hirate et al., 2013). Similarly, transplantation of the apical domain 

from a polar to apolar blastomere was sufficient to induce trophectoderm specification in 

the daughter cell inheriting the apical domain after asymmetrical division (Korotkevich et 

al., 2017). Angiomotin (Amot) is a Hippo pathway member that binds tight junctions, and 

thus may mediate the link between cell-cell contact and activation of Hippo signalling in 

the embryo. Amot is localized to the apical membrane in outer cells of the embryo while 

in inner cells, it is detectable across the entire plasma membrane (Hirate et al., 2013; 

Leung and Zernicka-Goetz, 2013). The nuclei of inner cells of Amot-/- embryos do not 

robustly activate Hippo signalling, do not exclude YAP from the nucleus until the 32-cell 

stage, and at E4.5, all cells express CDX2. Thus, these results suggest that polarized 

Amot localization prevents Hippo signalling activation in outer cells, leading to nuclear 

YAP and Cdx2 expression, while in inner cells, Amot activates Hippo signalling, 

phosphorylating and excluding YAP from the nucleus (Hirate et al., 2013).  
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Nf2 (Merlin) is another upstream Hippo component required for activating Hippo 

signalling in the mouse preimplantation embryo. Embryos expressing dominant negative 

Nf2 had localization of YAP to the nucleus in the inner cells, and maternal-zygotic Nf2 

knockout embryos had ectopic trophectoderm gene expression in the inner cells 

(Cockburn et al., 2013). These results suggest that like Amot, Nf2 expression is required 

for activation of Hippo signalling in the inner cells of the embryo. Through co-

immunoprecipitation experiments in NIH 3T3 and HEK293 cells, Nf2 was found to 

associate indirectly with Amot, potentially linking Amot to the E-Cadherin complex in 

preimplantation embryos. It was then found that this interaction mediated LATS-

dependent phosphorylation of Amot, leading to Hippo activation (Hirate et al., 2013). 

Binding sites for RPBJ in the trophectoderm-specific enhancer of Cdx2, and NOTCH1 

localization to the nucleus of only outer cells in the embryo led to the finding that Notch 

signalling also regulates Cdx2 expression concomitant with Hippo signalling (Rayon et 

al., 2014). Thus, a combination of differential Hippo signalling activation mediated by 

the apical domain and Notch signalling regulates the trophectoderm-inner cell mass fate 

decision. 

1.2.3 The second embryonic fate decision: epiblast vs. primitive 
endoderm 

Following specification of the trophectoderm and inner cell mass, a second differentiation 

event establishes the epiblast and primitive endoderm within the inner cell mass. At E3.5, 

the inner cell mass is a mixed population of epiblast and primitive endoderm cell 

progenitors that are identified by mutually-exclusive expression of NANOG (epiblast) 

and GATA6 (primitive endoderm) (Lokken and Ralston, 2016). How these initial 

differences arise in the inner cell mass cell population has been represented by two 

developmental models: the cleavage history-dependent model and the stochastic gene 

activation model (Lokken and Ralston, 2016). The cleavage history-dependent model 

suggests that inner cell mass cell specification depends on the origin of the parental cell, 

e.g. if cells originated from the outer or inner cells. To test this, cell lineage tracing was 

performed in the 8-cell embryo. Inner cell mass cells can be generated during multiple 

rounds of division and thus primary (generated from 8 to 16 cell divisions) and secondary 
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(generated from 16 to 32 cell divisions) inner cells were classified and their cell fate 

mapped. In contrast to previous studies (Morris et al., 2013; Morris et al., 2010), no bias 

was found in restriction of inner cells towards epiblast or primitive endoderm fates 

(Chazaud et al., 2006; Yamanaka et al., 2010). Furthermore, plasticity in primitive 

endoderm specification is maintained until the late blastocyst stage, suggesting that the 

cleavage history of inner cells does not definitively restrict cell fate in the inner cell mass 

(Grabarek et al., 2012). In the stochastic gene activation model, random differences in the 

expression of FGF4 or FGFR2 arise as early as the 32-cell stage, leading to cell fate 

specification to the epiblast (FGF4-expressing cells) or primitive endoderm (FGFR2-

expressing cells) (Guo et al., 2010; Kang et al., 2017; Lokken and Ralston, 2016; 

Molotkov et al., 2017). Strong evidence supporting this model has led it to become the 

predominant model in describing the epiblast versus primitive endoderm cell fate 

decision. 

FGF4/MAPK signalling is thus the predominant signalling pathway mediating the 

epiblast vs. primitive endoderm cell fate decision in the blastocyst inner cell mass. GRB2, 

a receptor tyrosine kinase adaptor protein, was identified as a possible candidate in the 

regulation of epiblast vs. primitive endoderm differentiation as its knockout results in the 

failure to form endoderm lineages in vivo and in vitro (Cheng et al., 1998). Grb2-/- 

blastocysts do not express GATA6 but instead express NANOG in all cells of the inner 

cell mass (Chazaud et al., 2006). Treatment with inhibitors of the FGF receptor and MEK 

recapitulated the Grb2 knockout phenotype, and high doses of FGF4 treatment during 

embryo development resulted in all inner cell mass cells expressing GATA6, suggesting 

that the FGF4/FGFR2/Grb2/MAPK pathway regulates primitive endoderm cell fate 

(Yamanaka et al., 2010). Accordingly, knockout of Fgf4 results in no primitive endoderm 

cells in the inner cell mass despite Gata6 and Nanog expression (Kang et al., 2013; 

Krawchuk et al., 2013). The balance of epiblast and primitive endoderm in the inner cell 

mass therefore relies on the relative levels of FGF4, NANOG, and GATA6 in each cell 

(Schrode et al., 2014). Interestingly, pluripotency-associated transcription factors appear 

to be required for correct primitive endoderm specification, likely through maintaining an 

epiblast fate and production of the FGF4 ligand. Sox2-/- embryos have lower GATA6 

expression in the blastocyst and delayed SOX17 expression, a mature primitive endoderm 
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marker (Wicklow et al., 2014). OCT4 is required for FGF4 expression in epiblast cells 

and operates downstream of FGF4 signalling to regulate primitive endoderm gene 

expression (Frum et al., 2013; Le Bin et al., 2014). These studies suggest that successful 

specification of the primitive endoderm requires a correctly specified epiblast. Following 

specification, primitive endoderm cells upregulate GATA4, SOX17, and PDGFR⍺ 

(Chazaud and Yamanaka, 2016).		

Before implantation, the mixed inner cell mass population of epiblast and primitive 

endoderm cells sort into morphologically distinct layers with the primitive endoderm 

forming an epithelial layer between the layers of epiblast and the blastocyst cavity 

(Chazaud and Yamanaka, 2016). This process occurs through a combination of the 

polarization of primitive endoderm cells, actin-dependent cell movement, and selective 

apoptosis (Meilhac et al., 2009; Plusa et al., 2008; Saiz et al., 2013). Using a H2B:GFP-

Pdgfra reporter, primitive endoderm cell movements were tracked to determine their 

timing and positional changes (Plusa et al., 2008). Cell movements begin in blastocysts 

containing 80 cells, and cells are almost all sorted in embryos with over 100 cells. If 

GFP-positive cells originated in the inner cell mass in the layer of cells bordering the 

cavity, they tended to keep their position, while GFP-positive cells originating in the 

inner layers changed position. If inner cells did not move, they either downregulated GFP 

expression or underwent apoptosis (Plusa et al., 2008). Thus, primitive endoderm cells 

must have some positional-sensing mechanism to determine if movement to the primitive 

endoderm layer is required, and if this mechanism fails, cells can adopt an epiblast fate or 

undergo apoptosis. Cell polarization is thought to drive this position-sensing mechanism 

in the primitive endoderm mediated by atypical protein kinase C (aPKC). LRP2, DAB2, 

and aPKC are localized to the apical side of primitive endoderm cells (Gerbe et al., 2008; 

Saiz et al., 2013). Polarization of aPKC is dependent on FGF/ERK signalling, as its 

inhibition results in diffuse aPKC localization. Furthermore, siRNA knockdown of aPKC 

prevents primitive endoderm cells from sorting, and inhibiting aPKC causes cells to fail 

to maintain their final position in contact with the blastocyst cavity (Saiz et al., 2013).  

Under the appropriate conditions, stem cells can be derived from all three lineages of the 

mouse blastocyst and studied in vitro (Garg et al., 2016). Epiblast cells give rise to mouse 
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embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) (Brons et al., 

2007; Martin and Evans, 1975; Tesar et al., 2007), trophectoderm forms trophoblast stem 

cells (Tanaka et al., 1998), and primitive endoderm cells form extraembryonic endoderm 

cells (XEN) (Garg et al., 2016; Kunath et al., 2005; Niakan et al., 2013). Each lineage-

derived stem cell is representative of their developmental origin from the blastocyst or 

peri-implantation embryo, and thus their potency is restricted to their associated 

embryonic or extraembryonic fates.  

1.3 Mouse embryonic stem cells 

1.3.1 From epiblast to embryonic stem cells 

The epiblast cell population in the mammalian inner cell mass is considered pluripotent 

as these cells have the potential to differentiate into cell types of the three embryonic 

germ layers (endoderm, ectoderm, mesoderm). Pluripotency in the epiblast is transient in 

vivo as these cells subsequently differentiate along their developmental program. 

However, if the preimplantation epiblast is isolated from the embryo and maintained in 

culture, embryonic stem cells (ESCs) can be propagated. ESCs retain the pluripotency of 

the preimplantation epiblast with differentiation potential into the three germ layers and 

the ability to self-renew indefinitely (Nichols and Smith, 2009). Mouse ESCs were first 

derived by culturing intact blastocysts on mitotically inactivated mouse embryonic 

fibroblasts (MEFs) in medium used to culture embryonal carcinoma cells (Evans and 

Kaufman, 1981; Martin, 1981). It was then found that MEFs produce leukemia inhibitory 

factor (LIF), and STAT3 activation downstream of LIF inhibits differentiation and 

promotes viability of ESCs. The mouse preimplantation epiblast was identified as the 

source of mESCs, as microsurgical separation of the epiblast from the trophectoderm and 

primitive endoderm prior to culture resulted in ESC derivation (Brook and Gardner, 

1997). ESC lines were subsequently derived from human blastocysts by culturing isolated 

inner cell masses (Thomson et al., 1998). Human ESCs are pluripotent as they form 

derivatives of all three germ layers in vitro and in vivo but have differences in cell surface 

marker staining and colony morphology compared to mouse ESCs, suggesting species-

specific differences between mouse and human development (Thomson et al., 1998). 

Subsequently, it was discovered that ESCs could also be isolated from the post-
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implantation mouse epiblast with distinct characteristics and culture conditions from cells 

derived from the preimplantation epiblast, known as epiblast stem cells (EpiSC) (Brons et 

al., 2007; Tesar et al., 2007). Interestingly, these cells have properties similar to human 

ESCs (Tesar et al., 2007). Derivation of EpiSCs then suggested that there may be more 

than one pluripotent state that exists in embryonic stem cells, likely corresponding to the 

developmental origins of the cell lines. Two terms for pluripotency were subsequently 

established: “naïve”, corresponding to cells resembling the preimplantation epiblast (e.g. 

mouse ESCs), and “primed”, corresponding to cells resembling the post-implantation 

epiblast (e.g. human ESCs, mouse EpiSCs). 

1.3.2 Characteristics of pluripotency 

Naïve and primed pluripotency represent two metastable pluripotent states of ESCs that 

are morphologically, molecularly, and functionally distinguishable. Naïve ESC 

pluripotency is reliant on LIF/STAT3 signalling, while primed ESCs self-renew in 

FGF/Activin culture conditions (Nichols and Smith, 2009). Morphologically, naïve ESCs 

appear in round, domed-like colonies that can be passaged as single cells that proliferate 

rapidly, while primed ESCs are more flattened and compact, cannot be single cell 

passaged, and proliferate more slowly. In female lines, naïve ESCs have both X 

chromosomes active, while primed ESCs have epigenetic inactivation of one X 

chromosome. Naïve ESCs represent the ground state of pluripotency, e.g., they are 

unrestricted in their developmental potential, and can reincorporate into the inner cell 

mass of the blastocyst and contribute to all embryonic lineages (Nichols and Smith, 

2009). Primed ESCs, however, cannot contribute to chimeras if introduced into the 

blastocyst, but can form derivatives of endoderm, ectoderm, and mesoderm when induced 

to form a teratocarcinoma (teratoma). While both naïve and primed ESCs express the 

core pluripotency factors OCT4, SOX2, and NANOG, they differ in the expression of 

other markers such as Rex1, Dppa3 (naïve), Fgf5, Brachyury/T, and Lefty (primed) (Chen 

and Lai, 2015).  

Naïve and primed pluripotent states can be interconverted by manipulating the culture 

conditions or genetically overexpressing pluripotency markers. Mouse EpiSCs can be 

converted to naïve ESCs by culturing in LIF and inhibitors of GSK3β (CIHR99021) and 
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MEK1/2 (PD0325901) (a combination known as 2i), or at a higher efficiency by 

overexpressing Nanog, Klf4, Stat3, Klf2, Nr5a, c-Myc and Tfcp2l1 (Hassani et al., 2014). 

Conversely, naïve mouse ESCs can be converted to primed EpiSCs by culture in basic 

FGF/Activin (Guo et al., 2009). Efforts have been made to convert primed human ESCs 

to the naïve state by overexpression of the pluripotency markers OCT4, KLF4, and 

KLF2, and culture in 2i/LIF (Hanna et al., 2010). These cells show similarity to mouse 

ESCs with reactivation of the silenced X chromosome and dependence on LIF signalling 

for self-renewal (Hanna et al., 2010). Further work includes identifying small molecules 

supporting self-renewal and pluripotency to make reversion to the naïve state transgene-

free (Chan et al., 2013; Theunissen et al., 2014). Since the standard test for pluripotency, 

blastocyst chimerism, is not ethically feasible to perform with human ESCs, confirmation 

of bona fide naïve human ESCs has not yet been attained (Hassani et al., 2014). 

The difficulty in deriving or obtaining naïve human ESCs suggests that either the 

derivation conditions have not been fully optimized for human-specific ESCs, or that 

there is a species-specific difference between human and mouse embryonic development 

that precludes the capture of the human naïve state. There is mounting evidence 

suggesting that the role of lineage-specific transcription factors and cell signalling 

pathways differs for human blastocyst development compared to in the mouse. For 

example, the FGF-MAPK pathway is not critical for establishing primitive endoderm 

versus epiblast identity in the inner cell mass of the human blastocyst (Kuijk et al., 2012). 

In addition, lineage-specific transcription factors such as CDX2, OCT4, and SOX17 have 

a different spatiotemporal expression pattern in the human than in mouse (Niakan and 

Eggan, 2013), and with the use of genome editing, functions of these transcription factors 

in human development are now being elucidated (Fogarty et al., 2017). A major 

developmental difference between humans and mice is the formation of the rodent egg 

cylinder, in contrast to human embryos developmentally proceeding to the embryonic 

disc stage. The organization of the egg cylinder into an epithelium likely results in a 

longer time frame for ESCs to remain in the naïve state, thus allowing for a large time 

window for the derivation of naïve mouse ESCs. Furthermore, rodents are capable of 

embryonic diapause, a hormonally-regulated state of delayed implantation, which may 

permit the derivation of naïve ESCs in these species in contrast to those that cannot 
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undergo diapause (Nichols and Smith, 2009). Thus, while the mouse is an important 

model for studying early mammalian development, it is becoming increasingly evident 

that observations made in the mouse cannot be directly translated to human development.  

1.3.3 Embryonic stem cell differentiation 

When removed from factors maintaining pluripotency, ESCs can differentiate into 

derivatives of mesoderm, endoderm, and ectoderm lineages in vitro. ESC differentiation 

into specific lineages is typically achieved using three established methods (Murry and 

Keller, 2008). Firstly, under low adherence culture conditions, mESCs aggregate and 

form three-dimensional embryoid bodies (EBs) which mimic early post-implantation 

mouse development (Doetschman et al., 1985; Martin and Evans, 1975). If EBs remain in 

suspension, they form cystic structures and spontaneously generate endoderm, blood 

islands, and myocardium (Doetschman et al., 1985).  If EBs adhere to a substrate (e.g. 

gelatin), differentiated cells emerge from the EB and form morphologically identifiable 

derivatives of the three germ layers (e.g. myocardial cells, neural cells, glandular cells, 

skeletal/smooth muscle cells, etc.) (Doetschman et al., 1985; Martin and Evans, 1975). 

The three-dimensional aspect of EB formation allows for cell-cell interactions, promoting 

the differentiation of certain lineages. However, the signalling factors and cytokines 

generated in these structures are complex and may confound investigation into the role of 

certain signalling pathways in ESC differentiation. Another disadvantage of forming 

large EB aggregates is the disorganization of differentiating cells that emerge, which does 

not fully recapitulate early mouse postimplantation development or gastrulation. To 

overcome this, it was recently discovered that smaller aggregates of mESCs 

(approximately 300 cells) form structures known as gastruloids, which self-organize and 

behave developmentally similar to gastrulating mouse embryos (van den Brink et al., 

2014). Similarly, human ESCs can be spatially confined in culture to form structures with 

organized germ layers in response to BMP4 (Warmflash et al., 2014). As a second 

method of differentiation, ESCs can be co-cultured on stromal cells or cultured in stromal 

cell conditioned medium, particularly to generate hematopoietic lineages (Nakano et al., 

1994; Vodyanik et al., 2005). However, stromal cells produce undefined factors and are 

difficult to separate from ESCs for downstream applications. Lastly, ESCs can be 
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cultured in a monolayer on defined extracellular matrix proteins to promote 

differentiation of certain lineages. This method is the simplest and allows for selection of 

lineage commitment depending on the type of extracellular matrix protein used. For 

example, neural differentiation is promoted by culture on gelatin (Ying et al., 2003), 

hematopoietic differentiation by culture on type IV collagen (Nishikawa et al., 1998), and 

cardiac differentiation by culture on Matrigel (Laflamme et al., 2007). Ultimately, the 

goal of ESC differentiation strategies is to recapitulate the in vivo developmental program 

as closely as possible to have the most potential for regenerative medicine applications 

(Keller, 2005). 

In vivo, gastrulation is the process by which the three germ layers of the embryo are 

formed. Gastrulation begins with the formation of the primitive streak, which defines the 

posterior end of the embryo. Uncommitted cells of the epiblast then sequentially migrate 

through the primitive streak and adopt either mesoderm or endoderm fates. Cells that 

migrate through the posterior parts of the primitive streak become mesoderm, while cells 

that migrate through the most anterior parts become definitive endoderm. Cells that 

remain in the anterior region of the epiblast and do not migrate through the primitive 

streak become ectoderm. This process is not random but is spatially and temporally 

regulated, likely through different signalling environments generated in the primitive 

streak that induce specific lineages. It is now known that cell fate regulation during 

gastrulation is dependent on the relative balance of BMP, Wnt, and Nodal signalling, 

which can be used for in vitro applications to direct ESC differentiation to the three germ 

layers. Ectoderm differentiation is inhibited by BMP, Wnt, and Nodal signalling, which 

underlies why ESCs appear to default to the neural differentiation program when 

removed from culture conditions promoting pluripotency. However, this process is 

dependent on FGF signalling produced by the differentiating ESCs and thus cannot be 

defined as a true default pathway (e.g. a pathway that requires no input signals) (Ying et 

al., 2003). High levels of Nodal/Activin signalling promote differentiation to definitive 

endoderm. Interestingly, it is thought that ESCs pass through a mesendoderm 

intermediate progenitor stage characterized by the expression of Gsc and Cdh1 before 

forming definitive endoderm, as both endoderm and mesoderm cells are observed at the 

primitive streak stage in culture (Tada et al., 2005). Mesoderm differentiation is 



16 

 

dependent on BMP and Wnt signalling initially, but subsequent inhibition of Wnt/β-

Catenin signalling is required to generate cardiac mesoderm (Naito et al., 2006). Once 

cells have passed through their initial germ layer specification, lineage-specific protocols 

can be used to generate more committed, progenitor cell populations of organs such as 

the pancreas, liver, heart, brain, and the hematopoietic lineages (reviewed in (Murry and 

Keller, 2008). Thus, differential activation of cell signalling pathways and their 

subsequent regulation of gene expression is critical to the specification and commitment 

of cells as they follow their developmental program.  

1.4 The role of p66Shc in preimplantation embryos and 
embryonic stem cells 

1.4.1 Receptor tyrosine kinase signalling 

As a critical and recurring cell signalling pathway during development, fibroblast growth 

factor (FGF) is an example of a ligand that signals through receptor tyrosine kinases 

(RTK) to mediate its effects. RTK signalling is a mechanism for cells to respond to 

external stimuli and to communicate signals for proliferation, differentiation, cell 

survival, metabolism, cell migration, and cell cycle control (Lemmon and Schlessinger, 

2010). Mechanisms of RTK activation across family members of receptors is generally 

conserved. Growth factor ligand binding to a receptor induces receptor dimerization or 

oligomerization, followed by autophosphorylation of tyrosines on the intracellular 

domain of the receptor. Tyrosine phosphorylation then serves as a site for the recruitment 

and activation of signalling proteins leading to the assembly of signalling complexes. 

Proteins with Src homology 2 (SH2) and/or phosphotyrosine binding (PTB) domains 

either directly bind phosphorylated RTKs or interact indirectly with the receptor through 

docking proteins phosphorylated by the receptor (Lemmon and Schlessinger, 2010). 

Assembly of these complexes then link activated RTK to intracellular signalling 

pathways such as the Ras/MAPK and PI3K/Akt pathways. RTK pathway activation and 

regulation is critical to ensure proper preimplantation embryo development and ESC 

function, including signalling by the epidermal growth factor receptor (EGFR) and 

fibroblast growth factor receptor (FGFR). Embryos are capable of producing autocrine 

growth factors as they can be cultured in simple medium without the addition of any 
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exogenous factors. EGF and transforming growth factor alpha both signal through the 

EGFR to promote trophectoderm differentiation and, to a lesser extent, mitogenic 

signalling (Brice et al., 1993). As previously outlined, regulation of the 

FGF4/FGFR2/MAPK signalling mediates epiblast and primitive endoderm differentiation 

in the inner cell mass, while inhibition of ERK1/2 signalling in ESCs maintains naïve 

pluripotency (Nichols et al., 2009; Yamanaka et al., 2010). RTK signalling is regulated at 

multiple levels including dephosphorylation of signalling pathway components, cross-

talk between signalling pathways, and regulation at the level of the receptor (Lemmon 

and Schlessinger, 2010). 

1.4.2 Shc isoforms and functions 

Src homology 2 domain-containing transforming proteins (Shc) are RTK signalling 

adaptor proteins expressed in mammalian cells with four identified genes: ShcA (also 

known as Shc1), ShcB, ShcC, and ShcD (Wills and Jones, 2012). These adaptor proteins 

transduce external stimuli within cells by identifying changes in phosphorylation residues 

via the SH2 domain. Shc proteins all have a common N-terminal PTB, C-terminal SH2 

domain, and CH1 region (Figure 1-2). Unlike other SH2-containing proteins like Src and 

PLC𝛾, Shc proteins have no catalytic function but instead recruit downstream signalling 

components of RTK pathways (Wills and Jones, 2012). ShcA is composed of three 

isoforms transcribed from the same genetic locus and defined by their molecular weight: 

p46Shc, p52Shc, and p66Shc. P46Shc/p52Shc are ubiquitously expressed, while p66Shc 

is absent from mature cells of the central nervous system and hematopoietic cells (Wills 

and Jones, 2012). Differential regulation of Shc1 isoform expression is due to the 

regulation of a p66Shc-specific promoter, which can be epigentically modified through 

acetylation or methylation (Ventura et al., 2002). Treatment with histone deacetylase 

inhibitors (Trichostatin A) or demethylating agents (5-Aza-dC) results in increased 

p66Shc expression in bone marrow cells, and p66Shc expression levels in different 

tissues and cell lines are correlated with the degree of methylation in its promoter 

(Ventura et al., 2002). ShcB and ShcC are thought to mainly act in neural derived cells, 

as knockout mice are viable but have lower numbers of specific neural cells. ShcD is the  
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Figure 1-2. Protein and genetic structures of Shc1.  

(A) Protein structure of p66Shc, p52Shc, and p46Shc. Phosphorylation sites are indicated 

in orange (S = serine, Y = tyrosine) with the amino acid number above. CH2 = collagen 

homology domain 2, PTB = phosphotyrosine binding domain, CH1 = collagen homology 

domain 1, SH2 = Src homology 2 domain. (B) Shc1 genetic locus. P66Shc transcription 

is under the control of a unique promoter located in the intronic region of exon 1 and 

exon 2, while the p52Shc/p46Shc promoter is located upstream of exon 1. (C) Structure 

of the p66Shc transcript and translational start site (ATG). (D) Structure of the 

p52Shc/p46Shc and translational start sites (ATG).   
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most recently identified Shc family member, and shares the highest identity with ShcA 

(Jones et al., 2007).  

All Shc1 family members have conserved tyrosine 239/240 and 317 motifs that when 

phosphorylated act as recognition motifs for GRB2 (Lai and Pawson, 2000). GRB2 is 

constitutively associated with Son of Sevenless (SOS) a guanine nucleotide exchange 

factor, and recruitment to Shc proteins results in SOS localization to the membrane, 

which activates Ras. Ras then activates Raf, which then phosphorylates MEK1/2, which 

then phosphorylates and activates ERK1/2. ERK1/2 then has many potential downstream 

effects including transcription factor regulation of c-Myc and c-Fos. Shc1 participation is 

not an absolute requirement in the EGFR-MAPK pathway as Grb2 can directly bind 

phosphotyrosines on the EGFR. However, Shc1 adaptors are required to sensitize the 

cellular response to low concentrations of growth factors present in the extracellular 

environment (Lai and Pawson, 2000; Wills and Jones, 2012). 

Unlike p52Shc, p66Shc does not result in MAPK phosphorylation downstream of EGFR 

activation. Treatment with EGF following the overexpression of p52Shc cDNA in COS-1 

cells (monkey kidney fibroblasts) increases MAPK phosphorylation by 14 to16-fold, 

while overexpression of p66Shc cDNA results in no significant increase in MAPK 

phosphorylation (Migliaccio et al., 1997). In a separate study, overexpression of p52Shc 

increases p52Shc co-immunoprecipitation with GRB2, while overexpression of p66Shc 

decreases p52Shc co-immunoprecipitation with GRB2 and concomitantly increases 

p66Shc co-immunoprecipitation with GRB2. P66Shc overexpression also decreases 

EGFR co-immunoprecipitation with GRB2, suggesting reduced EGFR-GRB2 

interactions under these conditions (Okada et al., 1997). These observations have led to a 

model that p66Shc competes with p52Shc for GRB2 binding, then sequesters GRB2 

away from the EGFR, inhibiting subsequent Ras/MAPK activation. The most updated 

model outlines that upon EGF stimulation, p66Shc is recruited to the EGFR, 

phosphorylated on Tyr239/240, Tyr317, and Ser/Thr residues of CH2 domain by MEK. 

Phosphorylated p66Shc recruits GRB2-SOS, but due to the additional Ser/Thr 

phosphorylation, the EGFR-p66Shc interaction is destabilized, which sequesters GRB2-

SOS away from Ras (Okada et al., 1997; Wills and Jones, 2012). This may lead to 
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accelerated inactivation of ERK1/2, leading to reduced downstream c-Fos transcription 

(Migliaccio et al., 1997; Okada et al., 1997). 

A number of genetically modified mice have been generated to investigate the role of the 

Shc1 proteins and p66Shc-specific biochemical and biological functions. Deletion of all 

three Shc1 proteins results in embryonic lethality at E12 with major cardiovascular 

developmental defects, predominantly in vascular morphogenesis. The cardiac 

vasculature in Shc1-/- embryos is less complex, dilated, and immature, leading to outflow 

tracts becoming congested with blood and abnormal cardiac contractions (Lai and 

Pawson, 2000). This suggests that Shc1 proteins are required to sensitize blood vessel 

progenitor cells to stimuli required for angiogenic remodelling, particularly in areas of 

low growth factor concentration (Lai and Pawson, 2000). To overcome embryonic 

lethality, a Shc1-loxP transgenic mouse was generated for tissue-specific conditional 

knockout using Cre-loxP recombination (Zhang et al., 2002). Lymphocyte-specific 

deletion of Shc1 led to reduced numbers of mature thymocytes, pointing to a role in T-

cell maturation, and Shc1 has since been identified as mediating its effects through 

MAPK signalling in T-cells (Trampont et al., 2006; Zhang et al., 2002). However, 

because these knockout strategies target exons common to all three Shc1 isoforms, these 

knockout models prevent investigation into the specific functions of p66Shc.  

The first p66Shc-specific, body-wide knockout mouse was generated around the same 

time as the Shc1 knockout mice (Migliaccio et al., 1999). A novel role for p66Shc in 

mediating the cellular response to oxidative stress was identified in experiments 

demonstrating that cell death was reduced in p66Shc-/- MEFs after treatment with H2O2 

(Migliaccio et al., 1999). When p66Shc-/- mice were injected with paraquat (a chemical 

that generates superoxide anions), 3 of 5 mice had lengthened survival (72 hours to 

weeks after injection) compared to wild type mice that died within the first 48 hours of 

injection, indicating that p66Shc-/- mice have increased resistance to oxidative stress. 

When basal lifespan was assessed, all wild type animals died after 28 months, while 73% 

of p66Shc-/- mice lived another 8 months, an approximate 30% increase in lifespan 

(Migliaccio et al., 1999). These results implicated p66Shc as one of the first aging-related 

proteins identified whose deletion resulted in a prolonged lifespan. However, when the 
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same group repeated the study several years later with a larger population of mice at two 

separate research centres, there was no significant difference in lifespan between p66Shc-

/- and wild type mice raised on three different strain backgrounds (Ramsey et al., 2014). 

Furthermore, p66Shc deletion is detrimental to mice raised in natural conditions, e.g., not 

in traditional laboratory animal housing (Giorgio et al., 2012). When p66Shc-/- mice were 

exposed to cold and food competition, there was an increase in mortality compared to 

wild type mice with only 10 of 62 p66Shc-/- mice surviving 8 months after exposure to 

natural conditions (Giorgio et al., 2012). P66Shc-/- mice were found to have reduction in 

body fat deposits and reduced fertility with repeated breeding cycles (Giorgio et al., 

2012). Thus, benefits of p66Shc deletion appear to be selective to preventing diseases 

associated with metabolism, and p66Shc deletion instead is detrimental under conditions 

requiring body fat storage and thermoregulation. Fertility was reported to be normal in 

p66Shc-/- mice, however, it is unclear if homozygote mice were mated for the longevity 

studies, as mating heterozygote mice could result in a maternal rescue effect due to 

p66Shc expression in the oocyte (Migliaccio et al., 1999). Furthermore, the neomycin 

resistance gene used as a selectable marker in the targeting vector is retained in p66Shc-/- 

mice, which may affect the expression of the other Shc isoforms, leading to a 

confounding phenotype (Tomilov et al., 2011). In fact, p52Shc decreases and p46Shc 

increases in certain tissues in this mouse, while their expression is unaffected in another 

genetic knockout with the selectable marker removed (Tomilov et al., 2011). 

The oxidative stress response function unique to p66Shc is attributed to its N-terminal 

extension containing serine/threonine sites that are phosphorylated when cells are treated 

with UV or H2O2 (Migliaccio et al., 1999). Mutation of the serine-36 site to alanine does 

not restore the oxidative stress response when expressed in p66Shc-/- MEFs, suggesting 

that phosphorylation of this site is critical to the oxidative stress response function of 

p66Shc (Migliaccio et al., 1999). Work has since been done to characterize the 

downstream response of p66Shc occurring in the mitochondria. Under basal conditions, a 

fraction of cellular p66Shc is localized to the mitochondria based on co-localization with 

Mitotracker, which increases slightly after treatment with UV or H2O2 (from 

approximately 6% to 12% of total cellular p66Shc) (Orsini et al., 2004). Subcellular 

fractionation of purified mitochondria confirms p66Shc localization to the inner 
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mitochondrial membrane (Orsini et al., 2004). Mitochondrial p66Shc appears to form a 

complex with Hsp70, translocase of the outer membrane (TOM), and translocase of the 

inner membrane (TIM), while oxidative stress promotes dissociation of p66Shc from the 

complex (Orsini et al., 2004). Phosphorylation of p66Shc at serine-36 is thought to be 

predominantly through PKCβ activation in response to oxidative stress, as treatment with 

hispidin, a PKCβ inhibitor, inhibits p66Shc phosphorylation in vitro. The prolyl 

isomerase Pin-1 binds to p66Shc at the Ser36/Pro37 binding site, which then mediates its 

translocation to the mitochondria (Pinton et al., 2007). Experiments performed on 

purified liver mitochondria then demonstrated that p66Shc mediates electron transfer 

between itself and cytochrome C, which could lead to generation of H2O2, cleaved 

caspase-3 activation, and apoptosis (Giorgio et al., 2005). Work leading to the generation 

of this model of p66Shc activation and function during oxidative stress, however, has 

been performed mostly in vitro or in purified mitochondrial preparations, and should be 

confirmed in a physiological context (Galimov, 2010). 

Other groups speculated that results from the oxidative stress studies in p66Shc-/- mice 

may be due to p66Shc directly regulating reactive oxygen species (ROS) production 

through regulating mitochondrial metabolism. Oxidative phosphorylation metabolism 

generates ROS as a by-product, which could accelerate cellular aging. Supporting this, C. 

elegans mutants with extended lifespan are associated with decreased mitochondrial 

metabolism (Rea and Johnson, 2003). P66Shc-/- MEFs had a reduction in basal oxygen 

consumption by 30-50% compared to wild type MEFs, and a reduction in oxygen 

consumption when treated with a mitochondrial uncoupler (Nemoto et al., 2006). P66Shc-

/- MEFs increase lactate production, suggesting that their metabolic profile switches to 

become more glycolytic to compensate for the lack of ATP production by oxidative 

phosphorylation (Nemoto et al., 2006). Similarly, short-hairpin mediated knockdown of 

p66Shc in HeLa cells increases the abundance of glycolytic and anabolic intermediates 

such as lactate and citrate (Soliman et al., 2014). There are multiple suggested models of 

how p66Shc regulates metabolism which are cell signalling context-dependent (Acin-

Perez et al., 2010; Nemoto et al., 2006; Soliman et al., 2014). P66Shc appears to 

negatively regulate mTOR signalling downstream of IGF-1 or insulin binding, but not 

EGF binding, inhibiting anabolic metabolism and favouring oxidative phosphorylation 
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(Soliman et al., 2014). Another model suggests that p66Shc acts as an adaptor in the inner 

mitochondrial membrane to relay PKCδ signalling to cytochrome c downstream of 

retinoic acid, which ultimately regulates pyruvate dehydrogenase activity and influx of 

acetyl CoA into the TCA cycle (Acin-Perez et al., 2010). Direct regulation of metabolism 

is an alternative explanation for the increased lifespan in p66Shc-/- mice. If tissues in 

these mice use alternative metabolic pathways such as glycolysis, overall, they generate 

less ROS in their tissues, which could slow aging (Hoyos et al., 2012). 

Interestingly, expression of p66Shc has been identified during preimplantation 

development (Favetta et al., 2007b; Ren et al., 2014). Its role in the oxidative stress 

response suggests that p66Shc is present in early embryos in order to prevent 

developmentally compromised embryos from proceeding to the blastocyst stage (Betts 

and Madan, 2008). However, knockdown of p66Shc in bovine embryos reduces 

blastocyst development, and p66Shc overexpression in mESCs promotes a pluripotent 

colony morphology, suggesting that p66Shc may have an important physiological role 

during early development (Favetta et al., 2007a; Papadimou et al., 2009). The following 

section summarizes research into the role of p66Shc in preimplantation embryos and 

embryonic stem cells to date. 

1.4.3 P66Shc in bovine preimplantation embryos 

Studies thus far regarding the role of p66Shc during bovine preimplantation development 

have shown a link between its expression and the promotion of permanent embryo arrest, 

a senescence-like state, or apoptosis. In bovine embryos produced by in vitro fertilization, 

p66Shc exhibits a steadily decreasing expression pattern during which its expression is 

highest in the GV oocyte and lowest in the blastocyst (Favetta et al., 2004). This pattern 

is different than the pattern which most transcripts follow during mammalian 

preimplantation development, as transcript levels typically increase after embryonic 

genome activation up to the blastocyst stage (Hamatani et al., 2004). Favetta et al. further 

hypothesized that bovine embryos arrested at the 2-4 cell stage would have increased 

levels of both p66Shc and p53, characteristic of senescence in other cell types. However, 

2-4 cell arrested bovine embryos had significant increases only in p66Shc transcript 

levels compared to embryos that continued to cleave. Furthermore, late cleaving 
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embryos, associated with poor embryo quality and a reduced likelihood to develop to the 

blastocyst stage, also contained higher p66Shc mRNA abundance and higher p66Shc 

immunofluorescence intensity compared to early cleaving embryos (Favetta et al., 2004). 

Conditions that promote embryo arrest and decrease blastocyst development, such as 

culture under 20% oxygen, result in a significant increase in p66Shc mRNA levels in 

bovine embryos (Favetta et al., 2007b). These initial studies suggest that p66Shc 

expression levels predict bovine embryo developmental competence, and that the 

elevation in p66Shc mRNA in late cleaving embryos may precede and functionally 

promote embryo arrest at the 2-4 cell stage. 

To understand the functional role of p66Shc in early embryo arrest, RNA interference 

using both shRNA and short interfering (si)RNA was employed in two separate studies. 

When GV oocytes were injected with p66Shc shRNA, then fertilized by IVF, embryos 

were less likely to undergo the first division (cleavage) and were less likely to develop 

into blastocysts. However, if p66Shc injected oocytes did cleave, fewer of them were 

arrested at the 2-4 cell stage (Favetta et al., 2007a). In contrast, when bovine zygotes 

were injected with p66Shc siRNA, embryo development to the blastocyst stage improved 

compared to non-injected and siRNA controls (Betts et al., 2014). The difference in 

developmental phenotypes could be attributed to the timing of siRNA introduction, as 

p66Shc may be critical for events involved in oocyte maturation and fertilization. 

Knockdown at the zygote stage may bypass these requirements and instead improve 

baseline embryo development by conferring protection to exogenous stress present in the 

culture system. These studies together suggest that p66Shc has more than one function 

during preimplantation development, and these functions are temporally and 

environmentally context-dependent. 

Additional studies have linked p66Shc levels with redox imbalance in the bovine embryo. 

Treatment with 50 µM H2O2 significantly increases p66Shc transcript levels and 

increases histone 𝜸-H2AX immunostaining, a marker of DNA damage, while treatment 

with PEG-conjugated catalase significantly decreases p66Shc transcript abundance and 

𝜸-H2AX immunostaining compared to non-treated controls (Bain et al., 2013). 

Furthermore, p66Shc siRNA-injected zygotes produce less ROS, have decreased 
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detectable 𝜸-H2AX immunostaining, have improved development to the blastocyst stage, 

and reduced permanent embryo arrest and apoptosis when treated with 50 µM H2O2 

(Betts et al., 2014). This suggests that the embryo’s response to conditions promoting 

oxidative stress are mediated by p66Shc regulating the release of ROS.  

While p66Shc’s role in mediating the bovine embryo’s response to oxidative stress has 

been thoroughly investigated, it remains unclear whether p66Shc has an important 

functional role in development to the blastocyst stage, since its knockdown in GV 

oocytes ultimately reduces bovine blastocyst development. Based on the roles of p66Shc 

in other cell types, it may be acting to modulate metabolism or mitogenic signalling 

through receptor tyrosine kinases. Furthermore, blastocysts produced by p66Shc 

knockdown embryos were not investigated for the correct allocation of the trophectoderm 

and inner cell mass and were not tested for developmental competence by embryo 

transfer or by in vitro outgrowth assays. P66Shc is expressed in mouse and human 

embryonic stem cells (Papadimou et al., 2009; Shimizu et al., 2012; Smith et al., 2016), 

and thus may be important early in development to specify the pluripotent cell population 

in the blastocyst. 

1.4.4 P66Shc in mouse preimplantation embryos 

The role of p66Shc during mouse preimplantation development is less well studied than 

in the bovine model. Studies so far have focused on its role in mediating the embryo’s 

response to arsenic exposure. P66Shc protein abundance increases 48 hours after arsenic 

exposure in vitro, which can be reduced if the embryos are incubated in medium 

supplemented with the antioxidant N-acetyl cysteine (Zhang et al., 2010). An increase in 

p66Shc expression correlates with an increase in ROS production, an increase in 

apoptosis, and a decrease in embryonic development, suggesting that p66Shc may 

mediate the release of ROS in the embryo in response to arsenic (Zhang et al., 2010). 

Embryos injected with siRNA targeting all Shc1 isoforms and then subsequently exposed 

to arsenic did not develop to the blastocyst stage but were able to form morulae and had 

lower levels of ROS as measured by DCF fluorescence (Ren et al., 2014). Together, these 

results suggest that p66Shc expression is regulated by ROS after arsenic exposure, and 
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increased expression of p66Shc may result in a further increase in ROS that is ultimately 

detrimental to preimplantation development.  

Interestingly, pronuclear injection of 20 µM Shc1 siRNA in mouse zygotes resulted in a 

decrease in development to the blastocyst stage and an increase in arrest at the 2-cell and 

morula stages, suggesting that p66Shc may have an important role in progression through 

preimplantation development (Ren et al., 2014). However, this study did not address this 

and used a lower concentration of siRNA (2 µM) instead to observe effects of 

knockdown to the embryo’s response to arsenic. Another limitation is that the siRNA 

employed targeted all three Shc1 isoforms, and thus decreased p52/p46Shc expression 

may also negatively affect early embryo development. Due to species-specific differences 

between bovine and murine preimplantation development and the level of optimization of 

culture systems, the biological function of p66Shc in normal blastocyst development may 

be better elucidated in a mouse model. 

1.4.5 P66Shc in embryonic stem cells 

As a component of a mitogenic cell signalling pathway, studies are emerging on the role 

of Shc proteins in embryonic stem cell function. Papadimou et al. observed that all three 

Shc1 isoforms are upregulated in the early stages of directed neuronal differentiation of 

mouse embryonic stem cells, and that overexpressing p66Shc accelerated directed neural 

differentiation and the loss of OCT4 expression. Overexpression of p66Shc did not affect 

self-renewal by alkaline phosphatase staining, though notably, p66Shc overexpression 

altered cell morphology to produce smaller and more compact colonies, characteristic of 

naïve pluripotency (Papadimou et al., 2009). Overexpressing p66Shc in human 

embryonic stem cells produced a similar morphological phenotype. Additionally, 

overexpression of p66Shc during neural differentiation increased β-catenin signalling 

through increased phosphorylation of GSK-3β, without affecting phosphorylated ERK1/2 

(Papadimou et al., 2009). Interestingly, other studies suggest that p66Shc can modulate 

Wnt/β-catenin signalling through production of ROS (Vikram et al., 2014). Shc1 proteins 

have also been implicated in mESC differentiation through modulating the cellular 

response to substrate stiffness downstream of Src, transduced through ERK1/2 signalling 

(Shimizu et al., 2012).  
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ShcD, the most recent family of Shc proteins to be discovered, has also been studied in 

the context of embryonic stem cells. ShcD is detectable by in situ hybridization in the 

epiblast of E4.5 mouse blastocysts and is highly expressed in mouse epiblast stem cell 

lines (Turco et al., 2012). Turco et al. generated ShcD knockout mESCs and observed 

that during the ESC to EpiSC transition, loss of ShcD accelerated the decline in OCT4 

expression and significantly increased the number of apoptotic cells. Differentiating cells 

also displayed higher phosphorylated ERK1/2 levels than controls, suggesting that ShcD 

may regulate ERK1/2 signalling downstream of receptor tyrosine kinase activation 

(Turco et al., 2012).  

Thus, our insight into the roles of Shc proteins in embryonic stem cells so far suggests 

that they regulate cell signalling pathways during differentiation with potential cross talk 

between pathways, particularly, RTK/MAPK and Wnt/β-Catenin.  

1.5 Rationale and study aims 
Both cow and mouse preimplantation embryo development are effective animal models 

of human preimplantation development. While bovine embryos better recapitulate certain 

aspects of human reproduction and development such as oocyte maturation, fertilization, 

and timing of the embryonic cell cycle, mouse embryos are the most frequently used 

model for embryo micromanipulation and quality control testing of reagents for human 

embryo culture (Ménézo and Hérubel, 2002; Quinn and Horstman, 1998). Furthermore, 

morphological and developmental events such as cleavage, compaction, and formation of 

the blastocyst cavity in the mouse embryo closely resembles these events in the human 

embryo (Quinn and Horstman, 1998). Thus, for my thesis work, I used mouse 

preimplantation development to assay the entire preimplantation period in vivo, to use 

embryo micromanipulation, and to use embryo culture to determine the role of p66Shc in 

mouse blastocyst development. Additionally, I used mESCs for their ease of genome 

editing and the ability to clearly distinguish the naïve and primed pluripotent states in 

order to understand the role of p66Shc in ESC function and biology. 

P66Shc promotes apoptosis and senescence in many cell types, including early embryos 

(Favetta et al., 2007a). P66Shc is expressed throughout preimplantation development 
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including at the blastocyst stage (Ren et al., 2014), and knockdown of p66Shc appears to 

negatively impact bovine blastocyst development (Favetta et al., 2007a). Furthermore, 

increased p66Shc expression appears to promote embryonic stem cell pluripotency 

(Papadimou et al., 2009). Given these observations, I predict that p66Shc is required for 

normal mouse blastocyst development and mouse embryonic stem cell function. Thus, 

the overall hypothesis of my thesis is that loss of p66Shc expression in the mouse 

preimplantation embryo will dysregulate blastocyst development and mouse embryonic 

stem cell pluripotency. First, I will determine the expression and localization of p66Shc 

during mouse preimplantation development, and if oxygen tension and/or medium 

glucose concentrations alter p66Shc expression (Chapter 2). Secondly, I aim to determine 

the effects of p66Shc knockdown on mouse blastocyst development and blastocyst cell 

lineage specification (Chapter 3). Lastly, I aim to determine if genetic knockout of 

p66Shc in mouse embryonic stem cells alters pluripotency and biases spontaneous 

differentiation of embryonic stem cells into germ layer derivatives (Chapter 4). Taken 

together, my work will advance our knowledge of p66Shc function during mammalian 

development and contribute to a greater understanding of how pluripotency and cell fate 

are established in the mouse preimplantation embryo. 
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Chapter 2  
 

2 P66Shc is expressed in mouse preimplantation 
embryos and is dysregulated by mouse embryo culture 

 

A version of this chapter has been published: 

Edwards, N.A., Watson, A.J., Betts, D.H. (2016) P66Shc, a key regulator of metabolism 

and mitochondrial ROS production, is dysregulated by mouse embryo culture. Molecular 

Human Reproduction. 22(9): 634-647. 

Reproduced here with permission from Oxford University Press. 
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2.1 Introduction 
In assisted reproductive technologies (ART), embryo culture routinely follows in vitro 

fertilization (IVF) to permit growth to the blastocyst stage. Despite improvements in 

culture medium formulations and the use of physiological oxygen environments, the rate 

of successful pregnancy after embryo culture remains low. In 2014, the average live birth 

rate per IVF cycle for women in Canada was 23% (CFAS, 2015). Low success rates may 

be due to exposure of the preimplantation embryo to stresses introduced by the artificial 

culture environment (Feuer and Rinaudo, 2012; Wale and Gardner, 2016). The 

mammalian preimplantation embryo may adapt to these adverse culture conditions. 

However, these stress induced responses can result in major changes to gene expression, 

epigenetic modifications, and cellular metabolism (de Waal et al., 2014; Rinaudo and 

Schultz, 2004; Wale and Gardner, 2012). These changes are currently undetectable 

according to non-invasive morphological assessment methods, and thus embryos selected 

by morphology for transfer may still not be the most developmentally competent. This is 

a particular concern in current efforts to reduce multiple pregnancies by performing 

single embryo transfer (Grady et al., 2012). 

To further advance embryo culture and optimize culture parameters, it is important to 

understand the biological mechanisms of the preimplantation embryo and its interactions 

with the reproductive tract environment in vivo and the culture environment in vitro. 

Metabolism has emerged as an important research avenue in efforts to understand how 

culture conditions affect the developmental competence of early embryos (Gardner et al., 

2001; Seli et al., 2010; Wale and Gardner, 2013). Modulating oxygen tension during 

embryo culture alters glucose metabolism, demonstrating that the culture atmosphere can 

dramatically influence embryo metabolism and subsequent viability (Wale and Gardner, 

2012). This may affect the later stages of development in particular, as the trophectoderm 

must generate ATP to power the Na+/K+ ATPases and form the blastocoele cavity (Betts 

et al., 1998; Houghton et al., 2003). The adaptor protein p66Shc is responsive to oxygen 

tension and is involved in the bovine embryo’s oxidative stress response by promoting 

permanent embryo arrest and apoptosis under adverse environmental conditions (Betts et 

al., 2014; Favetta et al., 2007a). P66Shc is a member of the Shc1 family of adaptor 



42 

 

proteins with functions in growth factor receptor signalling, reactive oxygen species 

(ROS) production, and oxidative phosphorylation metabolism (Acin-Perez et al., 2010; 

Migliaccio et al., 1999; Migliaccio et al., 1997; Nemoto et al., 2006). Loss-of-function 

studies in mouse embryonic fibroblasts (MEFs) and more recently in HeLa cells provide 

evidence that p66Shc is involved in ATP production by oxidative phosphorylation 

(Nemoto et al., 2006; Soliman et al., 2014). Dysregulated p66Shc function in the 

mammalian embryo may therefore not only negatively impact development through high 

ROS production inducing embryo arrest or apoptosis (Betts et al., 2014; Favetta et al., 

2007a; Favetta et al., 2007b), but also may affect cellular metabolism (Favetta et al., 

2007a). 

To define a new metabolic route through which preimplantation embryo culture may 

affect early embryonic development, the objective of our study was to determine if 

p66Shc expression changes in cultured embryos compared to in vivo derived embryos, 

and if altered p66Shc expression is a marker of altered embryo metabolism. In the 

following study, we use a well-defined preimplantation mouse embryo culture model to 

modulate atmospheric conditions (oxygen) and culture media (glucose concentration) to 

determine their effects on p66Shc expression and readouts of oxidative phosphorylation 

metabolism. Our results demonstrate that preimplantation developmental variations in 

p66Shc expression observed in vivo are further exacerbated by culture and correlate with 

aberrant mitochondrial ATP and ROS production. 

2.2 Materials and Methods 

2.2.1 Animal Source and Ethical Approval 

Experimental protocols were approved by the Canadian Council of Animal Care and the 

University of Western Ontario Animal Care and Veterinary Services (Watson #2010-

021). Female and male CD1 mice were obtained from Charles River Canada (St-

Constant, Quebec, Canada). Mice were housed in the conventional manner, with a 12h 

light/dark cycle and access to food and water ad libitum. For all experiments, mice were 

euthanized by CO2 asphyxiation.  
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2.2.2 Embryo Collection and Culture 

Three-to-four-week-old female mice were injected i.p. with 7.5 IU pregnant mare’s 

serum gonadotrophin (Merck Animal Health, Canada) followed by injection of 7.5 IU 

hCG (Merck Animal Health, Canada) 48 hours later. Female mice were then placed with 

males for mating. Confirmation of mating was determined by checking for the presence 

of a vaginal plug the next morning; presence of a vaginal plug indicated embryonic day 

0.5 (E0.5). Embryos were flushed with M2 medium (Sigma Aldrich, Canada) from the 

oviducts and/or uteri of female mice according to the number of hours post injection 

(hpi): zygotes (18 hpi), 2-cell embryos (44 hpi), 8-cell embryos (68 hpi) and blastocysts 

(90 hpi). Zygotes were briefly incubated in M2 medium containing 1% hyaluronidase 

(Sigma Aldrich, Canada) to remove cumulus cells. Embryos were washed twice in M2, 

then transferred to Extraction Buffer or radioimmunoprecipitation assay buffer (RIPA 

buffer, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM 

Tris) until analysis, or to pre-equilibrated KSOMaa (potassium simplex optimized media 

with amino acids) Evolve medium supplemented with 1% bovine serum albumin (Zenith 

Biotech, USA). Embryos were cultured under low (5% O2) or high (in air: ~20%) oxygen 

tensions in a 5% CO2, 37°C incubator. For glucose experiments, D- or L-glucose (Sigma 

Aldrich, Canada) was added to KSOMaa Evolve to the desired concentration and 

embryos were cultured under low oxygen. For transcriptional inhibition experiments, 10 

mg/ml a-amanitin (Sigma Aldrich, Canada) in water was diluted to 10 µg/ml in KSOMaa 

Evolve. 

2.2.3 Real time RT-qPCR 

Pools of twenty embryos collected from 1-3 mice were stored in Extraction Buffer (Life 

Technologies, USA) at -80°C until use. Total RNA was extracted using the PicoPure 

RNA isolation kit (Life Technologies, USA) according to the manufacturer’s guidelines. 

For glucose treatment experiments, 0.5 pg of exogenous luciferase mRNA (Promega, 

USA) was added to the extract prior to ethanol precipitation. Eluted RNA was reverse 

transcribed to cDNA using SuperScript III (Life Technologies, USA) according to 

manufacturer’s instructions, with final concentrations of 150 ng random hexamers (Life 

Technologies, USA) and 2 pmol p66Shc-specific reverse primer (Table 2-1). Real time 
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quantitative RT-PCR (qRT-PCR) was performed in a CFX384 thermocycler (BioRad, 

Canada) with each reaction containing 7 µl PerfeCTa SYBR Green 2X SuperMix 

(Quanta BioSciences, USA), 200 nM each of forward and reverse primers (see Table 2-1 

for all primer sequences) and 4 µl cDNA (equivalent to 0.25 embryo per reaction). PCR 

conditions are as follows: 95°C for 3 minutes, followed by 45 cycles of 95°C for 15 

seconds, 59°C for 15 seconds, and 72°C for 30 seconds. Relative transcript abundance 

was determined using the delta-delta CT method using expression of Ppia (peptidylprolyl 

isomerase A) and H2afz (H2A Histone Family, Member Z), or luciferase, for 

normalization (Mamo et al., 2007). To determine amplification specificity after PCR 

amplification of p66Shc in blastocyst cDNA, PCR products were purified using the 

PureLink Quick Gel Extraction and PCR Purification Kit (Life Technologies, USA) 

according to manufacturer’s instructions. PCR products were sequenced by the Robarts 

Research Institute DNA Sequencing Facility (London, Ontario, Canada). Amplified 

p66Shc PCR products displayed 96% sequence identity to Mus musculus src homology 2 

domain-containing transforming protein C1 (Shc1), transcript variant 1 

(NM_001113331.2) after BLAST analysis (NCBI database), indicating specific 

amplification of the p66Shc isoform. 

2.2.4 Western Blot Analysis 

Pools of 30-50 embryos collected from 2-4 mice were stored in RIPA buffer containing 

protease and phosphatase inhibitor cocktails (Millipore, USA) at -80°C until use. Total 

protein lysates were resolved on a 4-12% Bis-Tris gel (Life Technologies) and transferred 

to a polyvinylidene diflouride membrane (PVDF: Millipore, USA). Membranes were 

blocked in 5% skim milk or 5% bovine serum albumin in TBS with 0.1% Tween-20 

(TBST, Sigma Aldrich) for 1 hour at room temperature, followed by overnight incubation 

in primary antibody at the indicated concentration at 4°C. Primary antibodies used were: 

anti NT-Shc (Acris Antibodies, USA, 1:100), anti-(phospho S36) p66Shc (Abcam, USA, 

1:100), anti-(phospho Y239/Y240) p66Shc (Cell Signaling Technologies, USA, 1:500), 

and horse-radish peroxidase (HRP)-conjugated anti b-actin (Sigma Aldrich, Canada, 

1:20,000). Membranes were then incubated in HRP-conjugated secondary antibody 

(Jackson Laboratories, USA). Membranes were visualized by detection of Forte enhanced  
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Table 2-1. Oligonucleotide primer sequences.  

  

Gene Sequence Product 
size 

p66Shc R (reverse 
transcription) 

5’-GGTGGATTCCTGAGATACTGTTT-3’ N/A 

p66Shc (qPCR) F: 5’-CCGACTACCCTGTGTTCCTTCTT-3’ 
R: 5’-CCCATCTTCAGCAGCCTTTCC-3’ 

111 bp 

Ppia F: 5’-GTCCTGGCATCTTGTCCATG-3’ 
R: 5’-TGCCTTCTTTCACCTTCCCA-3’ 

126 bp 

H2afz F: 5’-CGCAGAGGTACTTGAGTTGG-3’ 
R: 5’-TCTTCCCGATCAGCGATTTG-3’ 

176 bp 

Luciferase F: 5’-TTGACAAGGATGGATGGCTAC-3’ 
R: 5’-TTCGGTACTTCGTCCACCAAAC-3’ 

336 bp 
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chemiluminescence (Millipore, USA). Densitometry analysis was performed in Image 

Lab 4.0 (BioRad, USA). 

2.2.5 HT-22 culture and transfection 

The HT-22 cell line (immortalized mouse hippocampal cells) and human p66Shc-HA 

expression plasmid were obtained from Dr. Robert Cumming (University of Western 

Ontario, London, Canada). Cells were cultured in DMEM supplemented with 10% fetal 

bovine serum and 1% penicillin/streptomycin (Life Technologies, USA), at 37°C and 5% 

CO2 in air. Cells were transfected with the p66Shc-HA expression plasmid using 

Lipofectamine 3000 according to the manufacturer’s protocol (Life Technologies, USA), 

fixed in 4% paraformaldehyde in PBS and processed for immunofluorescence and 

confocal microscopy. 

2.2.6 Immunofluorescence and Confocal Microscopy 

Embryos were fixed in 2% paraformaldehyde in PBS and permeabilized in 0.1% Triton 

X-100 in PBS (Sigma Aldrich, Canada) for 30 minutes. Fixed cells were blocked in 5% 

normal goat serum (Sigma Aldrich, Canada) for 1 hour at room temperature, followed by 

overnight incubation in primary antibody at the indicated concentration at 4°C. Primary 

antibodies used were: anti NT-Shc (Acris Antibodies, 1:100), anti phospho-S36-p66Shc 

(Abcam, 1:100), anti CDX2 (Abcam, 1:100), anti HA-Alexa 647 (Santa Cruz, USA, 

1:50). Embryos were incubated in rabbit-anti-mouse Alexa 488 (Life Technologies) for 

30 minutes, followed by incubation in goat-anti-rabbit Alexa 488 (Life Technologies) for 

signal amplification. For caudal type homeobox 2 (CDX2) immunoreactivity, embryos 

were incubated in goat-anti-rabbit Alexa 547 (Life Technologies). Cells were 

counterstained with 0.5 µg/ml DAPI (Sigma Aldrich, Canada) and mounted on a glass 

microscope slide in VectaShield antifade medium (Vector Laboratories, USA). Cells 

were imaged with a laser scanning confocal microscope (Zeiss LSM510). Laser settings 

were unchanged when detecting the same primary antibody.  
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2.2.7 ATP content assay 

Pools of 5 blastocysts collected from individual mice after treatment under each oxygen 

tension group were transferred to 96-well plates containing KSOMaa Evolve. ATP 

content was measured using the Luminescent ATP Detection Assay Kit (Abcam, USA) 

according to manufacturer’s guidelines. Luminescence was quantified using an eight-

point ATP standard curve (0.78 pmol to 100 pmol) and normalized to blastocyst cell 

number. 

2.2.8 MitoSOX superoxide staining 

Blastocysts from each oxygen tension group were transferred to KSOMaa Evolve 

containing 5 µM MitoSOX red mitochondrial superoxide indicator (Life Technologies, 

USA) and incubated for 1 hour at 37°C, 5% CO2, 5% O2 (in vivo and low oxygen groups) 

or in air (high oxygen groups). Blastocysts were transferred to a drop of PBS covered by 

embryo culture grade mineral oil (Zenith Biotech, USA) for imaging. Blastocysts were 

imaged using laser scanning confocal microscopy (Zeiss LSM510). Relative fluorescence 

was quantified by measuring the mean gray value in Image J (National Institutes of 

Health). Only blastocyst images with visible inner cell mass were quantified for 

fluorescence and compared between groups. 

2.2.9 Blastocyst Cell Counts 

Blastocysts were fixed in 4% paraformaldehyde in PBS, permeabilized in 0.2% Triton X-

100 in PBS, and stained with DAPI for 1 hour at room temperature. Stained blastocysts 

were imaged using laser scanning confocal microscopy, with three z-stacks taken per 

embryo. DAPI-positive nuclei from three stacks were counted using ImageJ. 

2.2.10 Statistical Analyses 

Experiments were performed a minimum of three times using independent replicates with 

the indicated sample sizes. Statistical analyses were performed in Graph Pad Prism (6.0) 

for Student’s t-test (unpaired, two-tailed, equal variance) or one-way analysis of variance 

(ANOVA) followed by Tukey’s honestly significant difference (HSD) test to correct for 

multiple comparisons. Values presented in figures are the mean ± the standard error of 
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the mean (SEM). Probability values less than 0.05 (p < 0.05) were considered statistically 

significant. 

2.3 Results 

2.3.1 P66Shc expression increases in blastocysts during mouse 
preimplantation development 

P66Shc mRNA and protein have been previously detected in bovine (Favetta et al., 2004) 

and murine embryos (Ren et al., 2014), but an analysis of expression during the 

progression of mouse preimplantation development in vivo has not been carried out. To 

determine the expression profile of p66Shc during preimplantation development, we 

performed real time qRT-PCR and immunoblotting on pools of embryos from four 

developmental stages. P66Shc mRNA transcript and protein were detectable in all stages 

observed. We observed a significant increase in both transcript and protein abundance 

from the 8-cell to blastocyst stages. P66Shc mRNA or protein did not significantly 

change between the zygote and 8-cell stages (Fig. 2-1A, B; for uncropped immunoblot, 

see Fig. 2-2A). To determine the cellular localization of p66Shc during preimplantation 

development, we performed whole mount immunofluorescence followed by confocal 

microscopy using a p66Shc-specific antibody on embryos from six developmental stages. 

We observed p66Shc immunoreactivity throughout the cytoplasm of pre-compaction 

stage embryos (Fig. 2-3A-D), with restriction to the apical cell periphery of compacted 

16 cell morulae (Fig. 2-3E). To determine if p66Shc localization is restricted to the 

trophectoderm lineage, we co-stained blastocysts with CDX2. Of all blastocysts 

observed, p66Shc showed detectable cell periphery localization in only CDX2 positive 

cells (Fig.3 2-3F). P66Shc immunoreactivity was undetectable in CDX2 negative cells 

(Fig. 2-3F). These results indicate that p66Shc expression is normally upregulated in the 

blastocyst and may be restricted primarily to the trophectoderm of in vivo produced 

blastocysts. 

2.3.2 Validation of NT-Shc antibody specificity 

To verify that the antibodies used to detect p66Shc and phosphorylated (S36) p66Shc 

only recognized the 66-kDa Shc isoform by immunofluorescence confocal microscopy,  
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Figure 2-1. p66Shc expression increases during mouse preimplantation development 

in vivo. 

A) Quantitative real time RT-PCR (qRT-PCR) for p66Shc relative transcript abundance 

was performed on three replicates of pools of 20 embryos per stage. P66Shc relative 

transcript abundance significantly increases from eight cell to blastocyst-stage embryos 

(n=3, mean ± SEM, p=0.0476 1W-ANOVA). (B) Immunoblotting for total p66Shc 

protein abundance was performed on three replicates of pools of 30-50 embryos per 

stage. P66Shc relative protein abundance increases from eight cell to blastocyst-stage 

embryos (n=3, mean ± SEM, p=0.0331 one way-ANOVA). A representative blot is 

shown (for uncropped immunoblot, see Figure 2-2). 
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Figure 2-2. Full Western blots for anti-NT-Shc, anti-pSer36-p66Shc, and anti-

pY239/Y240-Shc. 

Positive control samples of 10 µg whole mouse embryonic stem cell lysate were loaded 

right of the protein marker lane in all blots shown. Images shown are merged enhanced 

chemiluminescence (ECL) and protein marker (Cy5 fluorescence) performed in Image 

Lab. (A) Full immunoblot corresponding to the representative blot in Figure 1B between 

50 and 100 kDa using anti-NT-Shc. (B) Full immunoblot corresponding to the 

representative blot in Figure 4A between 50 and 150 kDa using anti-NT-Shc. (C) Full 

immunoblot corresponding to the representative blot in Figure 4B between 50 and 150 

kDa using anti-pSer36-p66Shc. (D) Full immunoblot corresponding to the representative 

blot in Figure 4C between 50 and 150 kDA using anti-pY239/Y240-Shc. 
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Figure 2-3. p66Shc progressively localizes to the cell periphery during mouse 

preimplantation development. 

Immunofluorescence and confocal microscopy for p66Shc was performed on 10-20 

embryos per stage. Representative confocal images are shown: (A) Zygote (B) 2-cell 

embryo (C) 4-cell embryo (D) 8-cell non-compacted embryo (E) 8-16 cell compacted 

morula (F) Blastocyst, counterstained for caudal type homeobox 2 (CDX2) (G) Primary 

antibody omitted. Green = p66Shc, Red = CDX2, Blue = DAPI. Scale bar = 20 µm. 
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we cultured mature neurons known to have undetectable basal p66Shc expression 

(Ventura et al., 2002). We performed immunofluorescence using both antibodies on the 

mouse HT-22 hippocampal cell line. HT-22 cells transfected with a HA-tagged p66Shc 

DNA construct showed p66Shc and HA immunoreactivity, while non-transfected cells 

showed no detectable p66Shc or HA immunoreactivity (Fig. 2-4A). Transfected HT-22 

cells also displayed phosphorylated S36 p66Shc and HA immunoreactivity compared to 

undetectable levels in non-transfected cells Fig. 2-4B). These results validate the use of 

these antibodies for immunofluorescent detection of p66Shc and S36-phosphorylated 

p66Shc cell localization in mouse preimplantation embryos. 

2.3.3 P66Shc expression is sensitive to oxygen tension, but not 
glucose concentration, during embryo culture 

Under in vivo conditions, p66Shc expression levels may be fine-tuned to prevent adverse 

developmental events. Given our observations within in vivo derived mouse embryos, we 

then aimed to determine whether certain embryo culture conditions induce aberrant 

changes in embryonic p66Shc expression levels. Mouse zygotes were cultured to the 

blastocyst stage under low oxygen tension (5% O2) or high oxygen tension (21% O2). 

Embryos cultured in low or high oxygen tensions in KSOMaa Evolve show comparable 

rates of blastocyst formation (Fig. 2-5A). However, blastocysts cultured in low oxygen 

have significantly increased cell numbers compared to flushed in vivo-derived blastocysts 

(Fig. 2-5B). Real time qRT-PCR was performed on pools of embryos to determine 

changes in p66Shc transcript abundance. Blastocysts examined after 96 hours of culture 

showed increasing p66Shc transcript abundance with increasing oxygen tension (Figure 

2-6A). This increase was dependent on de novo transcription of p66Shc, as the increase in 

p66Shc abundance was abolished in blastocysts cultured at high oxygen tension in the 

presence of the transcriptional inhibitor a-amanitin (Figure 2-6B). It is interesting to note 

that some p66Shc transcripts were still detectable in treated blastocysts, suggesting that 

maternally stored p66Shc may still be present at the blastocyst stage (Figure 2-6B). 

Overall, these observations suggest that p66Shc is actively transcribed by the embryo 

under atmospheric oxygen conditions.  
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Figure 2-4. NT-Shc and phosphorylated S36 p66Shc antibody validation for 

immunofluorescence and confocal microscopy. 

(A) Immunofluorescence and confocal microscopy images of p66Shc-HA transfected 

HT-22 cells (left) and non-transfected cells (right). Green = total p66Shc, Red = HA, 

Blue = DAPI. Scale bar = 50 µm. (B) Images of p66Shc-HA transfected HT-22 cells 

(left) and non-transfected cells (right). Green = pSer36-p66Shc, Red = HA, Blue = DAPI. 

Scale bar = 50 µm. 
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Figure 2-5. Developmental outcomes of embryos cultured in KSOMaa Evolve under 

low and high oxygen tensions. 

(A) Percent blastocyst formation from the zygote stage does not significantly change 

between embryos cultured under low or high oxygen tension (n=3, mean ± SEM, 

p=0.1867 Student’s t-test). (B) Blastocyst cell number significantly increases in embryos 

cultured at low oxygen tension (n=46 in vivo, n=31 low oxygen, n=30 high oxygen, mean 

± SEM, p=0.0022 1W-ANOVA). 
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Figure 2-6. Culture and high oxygen tension increases the relative p66Shc mRNA 

abundance in mouse blastocysts. 

(A) RT-qPCR for p66Shc was performed on four replicates of pools of 20 blastocysts. 

There is a significant increase in p66Shc mRNA abundance in blastocysts cultured at 

high oxygen tension compared to in vivo controls (n=4, mean ± SEM, p=0.0305 one 

way-ANOVA). (B) Blastocysts cultured for 24h in 10 µg/ml a-amanitin showed 

significantly decreased p66Shc transcript abundance compared to controls (n=3, mean ± 

SEM, p=0.0477 Student’s t-test). 
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We next aimed to determine if p66Shc protein abundance also increased with increasing 

oxygen tension. Immunoblotting for total p66Shc on pools of embryos showed a 

significant increase in p66Shc protein abundance in cultured blastocysts compared to in 

vivo derived blastocysts (Fig. 2-7A). This induction of p66Shc expression was unique to 

the blastocyst stage, as p66Shc transcript abundance decreased and protein abundance 

was unchanged in cultured 2-cell and 8-cell embryos (Fig. 2-8A and B). We then saw that 

culture in both low and high oxygen tensions significantly decreased the ratio of 

phosphorylated S36 p66Shc to total p66Shc in blastocysts, suggesting a possible change 

in the mitochondrial fraction of p66Shc in cultured blastocysts (Fig. 2-7B) as serine-36 

phosphorylation of p66Shc promotes Pin-1, isomerization, and ultimately p66Shc 

translocation to the mitochondria (Pinton et al., 2007). Oxygen tension did not alter the 

ratio of phosphorylated Y239/Y240 p66Shc to total p66Shc (Fig. 2-7C).  These are two 

residues on Shc1 proteins that are known to be phosphorylated after interaction with 

receptor tyrosine kinases (Gotoh et al., 1997). This result suggests that the shift in the 66-

kDa band seen in cultured blastocysts may be due to an alternative (e.g. Ser138, Y317) or 

novel post-translational modification induced by culture. 

To determine if p66Shc cellular localization changed with embryo culture, cultured 

blastocysts were stained for p66Shc immunoreactivity and were compared to freshly 

flushed, in vivo derived blastocysts. Blastocysts cultured in high oxygen conditions 

showed an increase in p66Shc fluorescence intensity and detectable diffuse p66Shc 

staining in inner cells, compared to that of in vivo and low oxygen cultured blastocysts 

(Fig. 2-9A-C). As we did not co-stain for lineage markers, we cannot definitively identify 

these inner cells as the inner cell mass. However, p66Shc fluorescence is undetectable in 

inner cells of in vivo derived and low oxygen blastocysts in culture, suggesting that high 

oxygen may induce abnormal p66Shc expression in the inner cell mass. To determine the 

localization of phosphorylated S36 p66Shc, cultured blastocysts were stained for 

phosphorylated S36 p66Shc immunoreactivity and compared to in vivo controls. 

Consistent with the immunoblotting results, neither the fluorescence levels of 

phosphorylated S36 p66Shc nor its localization appeared to change between treatment 

groups. However, phosphorylated S36 p66Shc did show a distinct cellular localization 

pattern compared to total p66Shc, showing cytoplasmic and nuclear immunoreactivity in  
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Figure 2-7. Culture and high oxygen tension increases the relative p66Shc protein 

abundance in mouse blastocysts. 

(A) Immunoblotting for p66Shc was performed on four replicates of pools of 50 

blastocysts. P66Shc protein abundance significantly increases in blastocysts cultured at 

low oxygen tension compared to in vivo controls (n=4, mean ± SEM, p=0.0306 one way-

ANOVA). A representative blot is shown (for uncropped immunoblot, see 

Supplementary Figure 1B). (B) Immunoblotting for phosphorylated p66Shc on serine 36 

(S36) and total p66Shc was performed on three replicates of pools of 40-50 blastocysts. 

The ratio of phosphorylated serine 36 (S36)-p66Shc to total p66Shc significantly 

decreases in blastocysts cultured in low and high oxygen tensions compared to controls 

(n=3, mean ± SEM, p=0.0057 for low O2; p=0.0219 for high O2 one way-ANOVA). A 

representative blot is shown (for uncropped immunoblot, see Supplementary Figure 1C). 

(C) Immunoblotting for phosphorylated tyrosine 239/240 (Y239/Y240)-p66Shc and total 

p66Shc was performed on three replicates of pools of 20-30 blastocysts. The ratio of 

phospho Y239/Y240-p66Shc to total p66Shc does not significantly in cultured 

blastocysts compared to controls (n=3, mean ± SEM, p=0.5043, one way-ANOVA). A 

representative blot is shown (for uncropped immunoblot, see Supplementary Figure 1D). 

  



59 

 

 

Figure 2-8. Relative p66Shc mRNA and protein abundance in cultured 2-cell and 8-

cell embryos.  

(A) qRT-PCR was performed on pools of 20 2-cell embryos for p66Shc relative 

transcript abundance. P66Shc transcript abundance significantly decreases with culture 

and increasing oxygen tension (n=4, mean ± SEM, p=0.0310 1W-ANOVA). 

Immunoblotting was performed on pools of 50 2-cell embryos for p66Shc relative protein 

abundance. A representative blot is shown (n=3, mean ± SEM, p=0.7256 1W-ANOVA). 

(B) qRT-PCR was performed on pools of 20 8-cell embryos for p66Shc relative transcript 

abundance, which significantly decreases with culture and increasing oxygen tension 

(n=4, mean ± SEM, p=0.0004 1W-ANOVA). Immunoblotting was performed on pools of 

50 8-cell embryos for p66Shc relative protein abundance. A representative blot is shown 

(n=4, mean ± SEM, p=0.8375 1W-ANOVA). 
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Figure 2-9. Total p66Shc becomes detectable in the inner cells of mouse blastocysts 

cultured under atmospheric oxygen tension. 

Representative immunofluorescence and confocal microscopy images for total p66Shc in 

pools of 10-15 blastocysts per treatment group. (A) In vivo flushed blastocysts. (B) 

Blastocysts after 96 h culture under low oxygen tension. (C) Blastocysts after 96 h 

culture under high oxygen tension. Green = p66Shc, Blue = DAPI. Scale bar = 20 µm. 
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the outer and inner cells of the blastocyst (Fig. 2-10A-C). In addition, phosphorylated 

S36 p66Shc was also detectable in inner cells of the in vivo produced blastocyst while 

total p66Shc was not. We observed similar cytoplasmic staining of both total p66Shc and 

pSer36-p66Shc in HT-22 cells, suggesting that the NT-Shc (total p66Shc) antibody can 

detect phosphorylated p66Shc. However, we overexpressed p66Shc in these cells, 

whereas we assessed basal p66Shc expression in mouse blastocysts. Overexpression of 

the protein and differences in antibody sensitivities may explain why total p66Shc 

fluorescence appears to differ from pSer36-p66Shc fluorescence in blastocysts. (Figs. 2-

9A and 2-10A). The localization pattern may also suggest that the phosphorylated S36 

p66Shc fraction in blastocysts produced in vivo or in culture may be localized to a 

distinct compartment in the cytoplasm or nucleus compared to non-phosphorylated, or 

p66Shc phosphorylated at a different residue.  

In addition to its role in mediating the oxidative stress response, several studies have 

implicated p66Shc in regulating cellular glucose uptake through growth factor receptor 

signalling, actin cytoskeleton regulation, or modulation of anaerobic respiration 

(Natalicchio et al., 2009; Soliman et al., 2014). Thus, we next aimed to determine if 

p66Shc expression is sensitive to culture medium glucose concentration, a component 

often modified in embryo culture to simulate in vivo microenvironmental conditions. We 

cultured flushed 8-cell stage embryos for 24 hours in KSOM varying in glucose 

concentrations under low oxygen tension: 0.2 mM (standard KSOM), 3.4 mM (equivalent 

to normal mouse oviductal glucose levels, (Gardner and Leese, 1990)), 30 mM D-glucose 

(hyperglycemia, (Moley et al., 1998)) and 30 mM L-glucose to control for increased 

osmolarity. We observed that embryos cultured in 30 mM D-glucose have decreased 

rates of blastocyst cavitation (Fig. 2-11A). The embryos did not fail to cavitate due to 

glucose toxicity, as 18 hours culture in 0.2 mM D-glucose rescued cavitation (Fig. 2-

11B). Furthermore, cell number in non-cavitated embryos did not significantly change 

with high glucose culture compared to control, suggesting that these embryos were not 

developing slower than the controls (Fig. 2-11C).  

To determine if p66Shc expression changed during culture in high glucose, we performed 

qRT-PCR and immunoblotting for p66Shc in pools of blastocysts cultured in the four  
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Figure 2-10. Phosphorylated S36 p66Shc localization does not change in cultured 

mouse blastocysts. 

Representative immunofluorescence and confocal microscopy images for phosphorylated 

(S36) p66Shc in pools of 15-20 blastocysts per treatment group. (A) In vivo flushed 

blastocysts. (B) Blastocysts after 96 h culture under low oxygen tension. (C) Blastocysts 

after 96 h culture under high oxygen tension. Green = p66Shc, Blue = DAPI. Scale bar = 

20 µm. 
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Figure 2-11. High glucose media concentrations reversibly inhibit mouse embryo 

cavitation. 

(A) Percent cavitation of blastocysts after 24h culture in each treatment group, indicated 

by the formation of any cavity in the embryo (n=4, mean ± SEM, p=0.0052 1W-

ANOVA). (B) Bright field microscopy images of embryos after 24h treatment in 30 mM 

D-glucose, followed by recovery in low glucose potassium simplex optimized media 

(KSOM) for 18 hours. Arrows in the left panel indicate examples of embryos classified 

as non-cavitated. Thirteen of sixteen non-cavitated embryos after high glucose treatment 

cavitated after 18 hours of recovery. (C) Blastocyst cell number after 24h culture in each 

treatment group (n=19-21 per group, mean ± SEM, p=0.5099 one way-ANOVA). 
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glucose concentrations. Neither transcript levels nor protein abundance significantly 

changed in embryos cultured in varying glucose conditions (Fig. 2-12A-B), suggesting 

that p66Shc expression levels are not sensitive to increased glucose in embryo culture 

media. To determine if p66Shc cellular localization changed with glucose concentration, 

embryos cultured in 30 mM D-glucose were stained for p66Shc immunoreactivity and 

compared to embryos cultured in KSOM. We saw comparable peripheral and 

cytoplasmic p66Shc immunoreactivity in non-cavitated embryos after high glucose 

culture compared to controls, suggesting that p66Shc cellular localization is not impacted 

by media glucose concentrations (Fig. 2-12C). 

2.3.4 Changes to p66Shc expression in culture correlate with 
altered embryo metabolism 

To determine if increased p66Shc expression levels in cultured embryos could be a 

marker of altered embryo metabolism, we performed two metabolic assays on blastocysts 

derived in vivo and after culture under low and high oxygen. We first assessed total ATP 

content of blastocysts from each group and observed that ATP levels per cell 

significantly decreased in blastocysts cultured under low oxygen compared to in vivo 

blastocysts (Fig. 2-13A). As oxidative phosphorylation in the trophectoderm is the major 

source of cellular ATP in the blastocyst (Houghton, 2006), we then assayed for 

production of superoxide in the same treatment groups. Superoxide is a free radical 

produced as a by-product of oxidative phosphorylation that is normally present at low 

levels and is readily scavenged by superoxide dismutase. Blastocysts were incubated in 

MitoSOX red superoxide indicator and imaged using confocal microscopy. We observed 

that blastocysts cultured under low and high oxygen showed significantly higher 

MitoSOX fluorescence compared to in vivo controls, suggesting increased superoxide 

production or decreased antioxidant scavenging in these culture conditions (Fig. 2-13B). 

Our results suggest that even under low oxygen conditions, cultured blastocysts contain 

less ATP and increased superoxide levels, correlating with increased mRNA and protein 

abundance of p66Shc. 
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Figure 2-12. High glucose media concentrations do not significantly change relative 

p66Shc mRNA and protein abundance in mouse blastocysts. 

(A) qRT-PCR was performed on pools of 10 blastocysts for relative p66Shc transcript 

abundance, normalized to levels of exogenously added luciferase (n=3, mean ± SEM, 

p=0.3783 one way-ANOVA). (B) Immunoblotting was performed on pools of 30 

blastocysts per treatment group for total p66Shc protein abundance, normalized to levels 

of b-actin. A representative blot is shown (n=3, mean ± SEM, p=0.5549 one way-

ANOVA). (C) Representative immunofluorescence and confocal microscopy images of 

blastocysts cultured in 30 mM D-glucose (right panel) and KSOM only (left panel) for 

total p66Shc reactivity. Green = p66Shc, Blue =DNA. Scale bar = 20 µm. 
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Figure 2-13. Increased p66Shc expression correlates with decreased ATP and 

increased superoxide in cultured mouse blastocysts. 

(A) Total ATP content was quantified from pools of 5 blastocysts in each treatment group 

and normalized to blastocyst cell number. ATP content per cell significantly decreases in 

blastocysts cultured in low oxygen for 96h compared to in vivo controls (n=3, mean ± 

SEM, p=0.0.0199 one way-ANOVA). Mean cell numbers for each treatment group are: 

in vivo = 27.43 ± 10.31 (n=46), low oxygen = 35.03 ± 7.36 (n=31), high oxygen = 31.41 

± 9.49 (n=30). (B) MitoSOX relative fluorescence was quantified in blastocysts in each 

treatment group. MitoSOX fluorescence significantly increases in blastocysts cultured 

under low or high oxygen compared to in vivo controls (in vivo n=28, low oxygen n=26, 

high oxygen n=23, mean ± SEM, p<0.0001 1W-ANOVA). Representative images of 

MitoSOX staining are shown in the three panels. 
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2.4 Discussion 
Here we demonstrate that p66Shc is basally expressed in mouse preimplantation embryos 

and its expression is altered by embryo culture. We also show that dysregulated p66Shc 

expression coincides with metabolic changes in culture that may negatively affect 

embryo developmental viability. Our results suggest that p66Shc mRNA is stored in the 

oocyte and degraded during the maternal-to-embryonic transition. P66Shc mRNA is later 

upregulated by the blastocyst stage, and predominately located at the cell periphery of 

trophectoderm cells. Blastocysts grown in vitro show increasing p66Shc mRNA and 

protein abundance with increasing oxygen tension, coupled with alterations to 

phosphorylated residues that have implications for the protein’s cellular 

compartmentalization and function. These changes appear to be oxygen-sensitive, while 

changing media glucose concentrations did not significantly affect p66Shc expression 

levels in the blastocyst. Lastly, we are the first to correlate these changes in culture and 

high oxygen tension to dysregulated ATP and superoxide production within in vitro 

produced blastocysts.   

Our expression analysis of p66Shc during in vivo blastocyst development suggests that 

p66Shc is normally upregulated during the eight-cell embryo to blastocyst transition. This 

basal level of expression during in vivo development implies that despite promoting 

apoptosis, p66Shc expression may be necessary for survival and prevents blastocysts 

from being selected against during development. One possible biological function of 

p66Shc during preimplantation development may be the promotion of oxidative 

phosphorylation. Basal oxygen consumption in p66Shc-null MEFs decreases by 30-50% 

with no change in mitochondrial or cytochrome c content, with a compensatory increase 

in ATP production by anaerobic respiration (Nemoto et al., 2006). There is also evidence 

suggesting that in MEFs, p66Shc forms a complex with cytochrome c in the inner 

mitochondrial membrane to regulate pyruvate dehydrogenase kinase, ultimately 

regulating the activity of pyruvate dehydrogenase) depending on the redox state of 

cytochrome c (Acin-Perez et al., 2010). In the mouse blastocyst, the trophectoderm 

produces ATP through oxidative phosphorylation to support development, but the inner 

cell mass is relatively metabolically quiescent (Houghton, 2006). Metabolic differences 
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between the two embryonic linages could account for our immunolocalization results, as 

p66Shc appears to localize predominately to the trophectoderm in vivo and under low 

oxygen conditions, suggesting that p66Shc could be involved in trophectoderm 

metabolism.  Although our study did not directly test the role of p66Shc in oxidative 

phosphorylation, we have correlated increasing p66Shc transcript and protein abundances 

after embryo culture with alterations to ATP and superoxide production, suggesting that 

dysregulated p66Shc levels in the embryo may have a negative impact on embryo 

metabolism.  

Studies of p66Shc in mammalian embryos have thus far focused primarily on the 

apoptosis- and senescence-promoting functions of p66Shc, basally or in stress-inducing 

culture conditions. In bovine preattachment embryos, siRNA-mediated knockdown of 

p66Shc reduces levels of intracellular ROS, DNA damage, and apoptosis in untreated and 

oxidant-treated culture conditions (Betts et al., 2014). Early bovine embryos exhibit high 

levels of developmental arrest (>50%) in culture (Leidenfrost et al., 2011), likely due to 

suboptimal culture conditions, which could result in increased p66Shc transcript levels, 

leading to senescence (permanent embryo arrest) and apoptosis. Due to species-specific 

differences in early development, or better optimized conditions, mouse preimplantation 

embryos from inbred strains exhibit high developmental rates with >75% of zygotes 

reaching the blastocyst stage in optimized media and low oxygen conditions (Karagenc et 

al., 2004). It is possible that p66Shc expression is carefully regulated during 

preimplantation development, such that both abnormally high and low p66Shc expression 

levels are detrimental to the embryo.  

Consistent with our findings in our mouse embryo culture model, there is strong evidence 

associating p66Shc induction with negative developmental outcomes under adverse 

bovine and murine embryo culture conditions. Bovine embryos grown in oviductal 

epithelial cell co-culture, considered a suboptimal culture environment, show a 

significantly increased p66Shc transcript abundance compared to culture under 

chemically defined synthetic oviductal fluid media at lower oxygen tension. This increase 

was associated with increased markers of oxidative stress (intracellular ROS, DNA 

damage) and embryo arrest (Favetta et al., 2007b). Mouse embryos cultured in media 
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containing arsenic show significantly decreased blastocyst development and increased 

p66Shc immunofluorescence intensity, suggesting that p66Shc may mediate a stress 

response to arsenic. Treatment with the antioxidant N-acetyl cysteine rescued apoptosis 

and p66Shc expression levels observed in arsenic-treated embryos, suggesting that 

arsenic-induced ROS increases p66Shc expression, which may in turn further increase 

ROS and lead to apoptosis (Zhang et al., 2010). Preimplantation development under both 

cases improved when p66Shc was knocked down by RNA interference (Betts et al., 

2014; Favetta et al., 2007a; Ren et al., 2014).  Previous RNA-interference experiments 

may have normalized an adverse environment-induced “spike” in p66Shc expression, but 

not completely deplete the embryo of maternal- or zygotic-derived p66Shc, thus masking 

any loss-of-function phenotype. Maternally-derived p66Shc function may be important to 

preimplantation development, as embryo cleavage and blastocyst development is 

impaired when p66Shc is knocked down in immature bovine oocytes (Favetta et al., 

2007a). We are the first to show that p66Shc transcript and protein expression is 

upregulated at the blastocyst stage during mouse in vivo development, indicating that 

p66Shc may also have an important physiological function other than promoting 

apoptosis and embryo arrest. 

We found that the induction of p66Shc transcription in cultured blastocysts appears to be 

specific to oxygen, as increasing media glucose concentrations did not significantly 

change p66Shc transcript abundance compared to controls. Oxygen-sensitive induction in 

our results is consistent with findings that p66Shc transcription can be regulated by the 

Nrf2-antioxidant response element (ARE) pathway under stress-inducing conditions. 

Chromatin immunoprecipitation assays performed in hemin-treated human 

erythroleukemic cells demonstrated that Nrf2 binds to an ARE enhancer upstream of the 

transcriptional start site of p66Shc and that Nrf2 induction of expression is isoform-

specific (Miyazawa and Tsuji, 2014). This could be the upstream mechanism in our 

model of p66Shc transcriptional upregulation in blastocysts cultured under high oxygen. 

High glucose concentrations in the culture media did not significantly change p66Shc 

expression in blastocysts but did affect cavitation. This is consistent with previous reports 

of hyperglycemic conditions negatively affecting blastocyst development (Fraser et al., 

2007). Thus, it is unlikely that the cell’s response to high glucose regulates the 
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transcription of p66Shc, but instead may affect other genes known to be involved in 

cavitation (e.g. ATPase Na+/K+ transporting subunit beta 1, aquaporin 3, aquaporin 9, 

cadherin 1). Furthermore, it is not known whether p66Shc is important for the regulation 

of glucose uptake in preimplantation embryos or if this function is dependent on 

mammalian target of rapamycin (mTOR) or growth factor receptor signalling pathways 

(Natalicchio et al., 2009; Soliman et al., 2014). It is possible that p66Shc could mediate a 

response to high glucose levels in embryos independent of an increase in its transcript or 

protein abundance, through phosphorylation of certain residues.  

It is possible that culture conditions increase p66Shc expression to promote its apoptotic 

functions, removing it from its metabolic function in the mitochondria. Our results 

suggest that culture-mediated changes to phosphorylated residues on p66Shc may impact 

its cellular compartmentalization and may ultimately be a key factor in its cellular 

function. Subcellular fractionation of untreated MEF lysates showed that p66Shc is 

detectable in the soluble, mitochondrial, and endoplasmic reticulum fractions (Orsini et 

al., 2004). Phosphorylation of the serine-36 residue, which is unique to the 66 kDa 

isoform of the Shc1 family, has been implicated in its cellular localization. Serine-36 

phosphorylation of p66Shc under oxidizing conditions increases its association with the 

prolyl isomerase Pin-1, ultimately resulting in p66Shc translocation to the mitochondria. 

Fibroblasts lacking Pin-1 have a decreased mitochondrial fraction of p66Shc after H2O2 

treatment compared to wild type fibroblasts, linking the modification of this residue to 

the protein’s mitochondrial localization (Pinton et al., 2007). In our study, blastocysts 

cultured under low or high oxygen conditions show decreased ratios of phosphorylated 

36 to total p66Shc, suggesting that these conditions may decrease the mitochondrial 

fraction of p66Shc despite an increase in total p66Shc protein abundance. This alteration 

in cellular localization may affect the functions of p66Shc in the mitochondria, which our 

results of altered embryo metabolism may reflect.  

Despite using optimal culture conditions, both p66Shc expression and the metabolic 

parameters measured were significantly altered in blastocysts grown under low oxygen 

tension. No significant difference between increased superoxide production in blastocysts 

after culture in low or high oxygen tension suggests that oxidative phosphorylation 
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metabolism may be adversely affected regardless of oxygen tension, or that there is 

another parameter in the microenvironment that must be further optimized to limit 

metabolic alterations in cultured embryos. Levels of p66Shc may therefore be an 

indicator of altered blastocyst metabolism, particularly of the trophectoderm, which is 

responsible for generating nearly all of the blastocyst’s ATP content (Houghton, 2006). 

Altered expression levels and/or p66Shc function in culture may lead to adverse 

trophectoderm development through increases in ROS-mediated apoptosis or decreases in 

ATP production, which may impact implantation and placentation.  

Our study did not follow up on peri- and post-implantation stage embryos and p66Shc 

expression levels, but we suspect that p66Shc expression is likely altered in the 

trophoblast or post-implantation trophoblast-derived tissues after embryo culture. 

Supporting this is evidence that p66Shc CpG promoter methylation is decreased in 

human placental tissue of intrauterine growth restricted neonates compared to neonates 

appropriate and small for gestational age (Tzschoppe et al., 2013). This is also consistent 

with the finding that most culture-induced embryo abnormalities affect the trophoblast 

and placenta, and to a lesser extent the fetal tissues (de Waal et al., 2014; Fauque et al., 

2010). Post-implantation development is affected by oxygen tension, as transferred 

blastocysts cultured at 20% oxygen show a significant increase in the number of uterine 

resorption sites and a decrease in living fetuses compared to blastocysts cultured at 5% 

oxygen (Karagenc et al., 2004). Additionally, transferred blastocysts cultured in both 

oxygen tensions resulted in decreased fetal weights compared to freshly flushed 

blastocysts, suggesting that some component of culture aside from oxygen tension 

impacts fetal development (M Harlow and Quinn, 1979). These studies used different 

culture medium conditions from ours, which may be critical to the developmental 

outcomes observed. Culture effects observed in our study may impact fetal development 

through abnormal increases in p66Shc expression and/or altered oxidative 

phosphorylation metabolism.  

Our study correlated increased p66Shc expression levels with altered oxidative 

phosphorylation metabolism, however, we did not directly implicate a mechanism for 

p66Shc involvement in dysregulated metabolism. Further work must be performed to 
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determine the mechanism of p66Shc function during preimplantation development and its 

implications for post-implantation development. Additionally, we used one formulation 

of embryo culture medium that differs from media used in other mouse model studies and 

from clinical media used to support human blastocyst development. Our findings may be 

limited to this media or may be a species-specific phenomenon. However, as increases in 

p66Shc expression due to culture are observed in another large animal model (bovine) 

(Favetta et al., 2007b), it would be interesting to explore whether cultured human 

embryos exhibit varying p66Shc levels and if this correlates with developmental 

outcome. For clinical applications, using increased p66Shc expression as a molecular 

marker of altered metabolism may impact on which blastocyst may be the most 

developmentally competent for embryo transfer. 
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Chapter 3  

3 Loss of p66Shc accelerates primitive endoderm identity 
in the inner cell mass of mouse blastocysts 

A version of this chapter has been submitted for publication, entitled: 

Edwards, N.A., Watson, A.J., Betts, D.H. (2018) Knockdown of p66Shc alters lineage-

associated transcription factor expression in mouse blastocysts. 
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3.1 Introduction 
Mouse preimplantation embryo development results in the formation of a blastocyst 

containing three distinct cell types: the trophectoderm (TE), the primitive endoderm 

(PrE), and the epiblast (EPI). Post-implantation, the TE and PrE form extraembryonic 

structures, while the EPI will contribute to the fetal germ layers and germ cells. Proper 

specification of these three cell lineages requires spatiotemporal activation of signalling 

pathways that promote the expression of lineage-specific markers, some of which are 

required to maintain cell fate and identity. In the 8-16 cell embryo, the HIPPO signalling 

pathway is the main signalling pathway critical to establishing TE versus inner cell mass 

(ICM) cell identity (Cockburn et al., 2013; Hirate et al., 2013; Nishioka et al., 2009). In 

the blastocyst, differential fibroblast growth factor 4 (FGF4)/mitogen-activated protein 

kinase (MAPK) signalling drives the acquisition of an EPI or PrE fate in the ICM 

(Frankenberg et al., 2011; Krawchuk et al., 2013; Yamanaka et al., 2010). Disrupting 

components of either signalling pathway results in aberrant cell fate specification and 

failure to maintain embryonic development post-implantation, or failure to generate 

lineage-specific stem cells (Cockburn et al., 2013; Hirate et al., 2013; Krawchuk et al., 

2013; Lorthongpanich et al., 2013).  

Of these signalling pathway components, receptor tyrosine kinase (RTK) signalling in 

response to FGF4 binding is required for PrE cell fate determination. Growth factor 

receptor-bound protein 2 (GRB2) is an adaptor protein linking activated RTKs to 

Ras/MAPK signalling. Grb2 knockout (KO) embryos have ICMs containing no PrE cells 

as identified by the absence of Gata6 expression. Instead, all cells of Grb2 KO blastocyst 

ICMs are Nanog positive, an EPI cell marker (Chazaud et al., 2006). These results 

therefore demonstrate that MAPK signalling downstream of RTK activation is required 

for PrE specification. Similarly, embryos treated with the extracellular signal-regulated 

kinase (ERK) inhibitor PD0325901 from the 8-cell to the blastocyst stage generate ICMs 

containing all EPI cells (Yamanaka et al., 2010). However, this phenotype is partially 

reversible if the inhibitor is removed by embryonic day 3.75 (E3.75), indicating that ICM 

cells maintain plasticity until E4.0-E4.5. Similarly, cell aggregation experiments showed 

that ICM cells lose plasticity by E4.5 (Grabarek et al., 2012). Thus, MAPK signalling is 
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important for stabilizing PrE specification in the blastocyst until commitment occurs just 

prior to implantation. 

Another RTK signalling pathway component expressed in many cell types is the family 

of SHC1 adaptor proteins. P66Shc is an isoform of the Shc1 gene that, unlike the p52Shc 

isoform, negatively regulates RTK/MAPK signalling. P66Shc contains a phosphotyrosine 

binding domain that associates with activated RTKs but does not activate downstream 

Ras-MAPK signalling (Migliaccio et al., 1997; Okada et al., 1997). Under conditions of 

oxidative stress, p66Shc is phosphorylated, translocates to the mitochondria, and 

promotes the release of reactive oxygen species (ROS), leading to apoptosis. We have 

demonstrated that p66Shc is expressed in mouse preimplantation embryos, is upregulated 

at the blastocyst stage, and that its expression is modulated by the culture environment 

(Edwards et al., 2016). Loss of function studies using RNA interference (RNAi) showed 

that p66Shc promotes apoptosis and senescence associated with an increase in ROS in 

cow and mouse embryos exposed to stress-inducing environmental conditions (Betts et 

al., 2014; Favetta et al., 2007; Ren et al., 2014). However, whether p66Shc has a 

biological function that is required to ensure proper preimplantation development remains 

unknown.  

Due to its role in RTK/MAPK signalling in other cell types, we hypothesize that p66Shc 

might act as a regulatory component in the pathways underlying blastocyst cell lineage 

specification. Thus, the objective of our study was to determine the role of p66Shc in 

mouse blastocyst development using short interfering RNA (siRNA) knockdown in 

mouse preimplantation embryos. Interestingly, our results show that mouse embryos with 

decreased p66Shc levels formed blastocysts with faster restriction of OCT4 to the inner 

cells, had an earlier onset of GATA4 expression, and had earlier sorting of PrE cells to 

the PrE layer. P66Shc knockdown ICMs contained significantly more PrE cells than EPI 

cells most likely mediated through altered regulation of ERK signalling. Thus, we have 

uncovered a novel role for p66Shc associated with the timing and expression of lineage-

associated transcription factors in the inner cell mass of mouse blastocysts. 
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3.2 Materials and Methods 

3.2.1 Animal source and ethical approval 

Female and male wild type CD1 mice were obtained from Charles River Canada (St-

Constant, Quebec, Canada). Mice were housed with a 12h light/dark cycle and access to 

food and water ad libitum. All experimental protocols were approved by the University of 

Western Ontario Animal Care and Veterinary Services and the Canadian Council of 

Animal Care (protocol Watson #2010-021). For all experiments, mice were euthanized 

by CO2 asphyxiation.   

3.2.2 Mouse zygote collection and culture 

Three- to four-week old female CD1 mice were superovulated by intraperitoneal (i.p.) 

injection of pregnant mare serum gonadotropin (Merck Animal Health, Canada) followed 

by i.p. injection of human chorionic gonadotropin (Merck Animal Health, Canada) 48 

hours later. Female mice were then singly housed with male mice for mating. The 

following morning, female mice were checked for the presence of a vaginal plug. 

Females with vaginal plugs were euthanized and oviducts were dissected. Zygotes were 

collected by flushing the oviducts with M2 medium (Sigma-Aldrich, Canada). To remove 

cumulus cells, zygotes were briefly incubated in M2 medium containing hyaluronidase 

(Zenith Biotech, USA). Zygotes were washed through drops of M2 medium, followed by 

washes in embryo culture medium (potassium simplex optimized media with amino 

acids, KSOMaa, Zenith Biotech, USA). Embryos were cultured in KSOMaa in a 5% O2, 

5% CO2, 90% N, 37ºC humidified incubator. Zygotes underwent a recovery period for a 

minimum of one hour after collection prior to microinjection. Post injection, mouse 

embryos were cultured for up to 110 hours post siRNA injection in KSOMaa in a 5% O2, 

5% CO2, 90% N, 37ºC humidified incubator. For MEK inhibitor experiments, embryos 

were incubated in KSOMaa containing 1 µM PD0325901 (Selleck Chemicals, USA) or 

DMSO (vehicle control; Sigma Aldrich, Canada) for 24 hours. For the in vitro blastocyst 

outgrowth assay, the zona pellucida was removed by briefly incubating blastocysts in 

Acidic Tyrode’s Solution (Sigma Aldrich, Canada). One to three blastocysts were 

transferred to one well of an 8-well chamber slide (Ibidi, USA) on a feeder layer of 
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irradiated mouse embryonic fibroblasts (ATCC, Canada). Embryos were cultured for four 

days in Knockout DMEM/F12 containing 20% Knockout Serum Replacement (Life 

Technologies, Canada), 1% GlutaMAX (Life Technologies, Canada), non-essential 

amino acids, 55 µM β-mercaptoethanol, and 1000 U/ml mouse LIF (Sigma Aldrich, 

Canada). 

3.2.3 Cytoplasmic microinjection of siRNA 

Short interfering RNA (siRNA) oligonucleotide sequences targeting the mouse p66Shc 

transcript and scrambled control targets used in previous studies (Betts et al., 2014; 

Nemoto et al., 2006) (see Table 3-1 for sequences), were synthesized by Thermo Fisher 

Scientific (Silencer Select siRNA, Canada). SiRNA were stored at -20ºC as a 100 µM 

stock and diluted in nuclease-free water. Diluted siRNA solutions were back filled into 

Femtotips (outside diameter 1µM, Eppendorf, Germany). Mouse zygotes were held in 

M2 medium overlaid with embryo culture grade oil (Zenith Biotech, USA) during 

injection periods. The cytoplasm of mouse zygotes was injected with 10 pl of 50 µM of 

either p66Shc-specific or scrambled sequence siRNA using a FemtoJet Microinjector 

(Eppendorf, Germany) at the following settings: injection pressure 75 hPa, injection time 

0.1s, constant pressure 15 hPa (Betts et al., 2014). After injection, mouse zygotes were 

placed into KSOMaa and any embryos that had lysed were immediately removed from 

culture. Twenty zygotes were injected at a time, then moved to a 5% CO2, 37ºC 

humidified incubator until all injections were completed.  

3.2.4 Mouse embryonic stem cell transfection 

R1 mouse embryonic stem cells (Sick Kids, Toronto, Canada) were cultured without 

mouse embryonic fibroblast feeders on 0.1% gelatin in Knockout 

DMEM/F12/Neurobasal media (Life Technologies, Canada) supplemented with 1% N2, 

2% B27 (Life Technologies, Canada), 1000 U/ml mouse LIF (Esgro, Millipore, USA), 3 

µM CHIR99021 (Selleck Chemicals, USA), and 1 µM PD0325901 (Selleck Chemicals, 

USA). Cells were transfected with 60 pmol of siRNA with Lipofectamine 3000 (Thermo 

Fisher Scientific, Canada) according to manufacturer’s protocols. Twenty-four hours post  
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Table 3-1. siRNA sequences. 

p66Shc siRNA #1 Sense: UGAGUCUCUGUCAUCGCUGtt 
Antisense: CAGCGAUGACAGAGACUCAtt 

Scrambled siRNA #1 Sense: AUGCGUCGCGAUUAUAUCUtt 
Antisense: AGAUAUAAUCGCGACGCAUgc 

p66Shc siRNA #2 Sense: ACAACCCACUUCGGAAUGAtt 
Antisense: UCAUUCCGAAGUGGGUUGUac 

Scrambled siRNA #2 Sense: AGCCGUCAAUCACUACAGUtt 
Antisense: ACUGUAGUGAUUGACGGCUUc 
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siRNA transfection, cells were lysed in radioimmunoprecipitation assay (RIPA, 150 mM 

NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris) buffer for 

immunoblotting. 

3.2.5 Quantitative real time RT-PCR 

RNA was extracted from pools of 20 cleavage stage embryos or 10 blastocysts using the 

PicoPure RNA Isolation Kit (Thermo Fisher Scientific, Canada) according to 

manufacturer’s instructions. During extraction, RNA was incubated with RNase-Free 

DNase I (Qiagen, Canada) to digest genomic DNA from the samples. RNA was reverse 

transcribed to cDNA using SuperScript III (Thermo Fisher Scientific, Canada) according 

to manufacturer’s instructions with the following modifications: priming was done with 

random hexamers (Thermo Fisher Scientific, Canada) and a gene specific reverse primer 

(Edwards et al., 2016). Quantitative real time qPCR was performed on a CFX384 thermal 

cycler (BioRad, Canada) using SensiFAST SYBR (FroggaBio, Canada) and a final 

concentration of 400 nM primers with the following cycling conditions: 95ºC for 2 mins, 

39 cycles of 95º for 5 seconds, 60ºC for 10 seconds, 72ºC for 20 seconds. Ct values were 

obtained from Bio-Rad CFX Manager 3.1 (BioRad, Canada). Relative transcript 

abundance was determined by using the delta-delta Ct method using the geometric mean 

of Ct values of Ppia and Hprt for normalization. Primer sequences are in Table 3-2. 

3.2.6 Immunoblotting 

Cells and embryos were lysed in RIPA buffer containing protease and phosphatase 

inhibitors (Millipore, USA) and stored at -80ºC until processing. Total protein lysates 

were resolved on a 4-12% Bis-Tris polyacrylamide gel (Thermo Fisher Scientific, 

Canada) and transferred to a PVDF membrane (Millipore, USA). Membranes were 

blocked in 5% skim milk in TBST for one hour at room temperature. Membranes were 

then incubated in primary antibody diluted in 5% skim milk in TBST overnight at 4ºC at 

the following dilutions: mouse anti-Shc (BD Biosciences 610879, 1:500), rabbit anti-

CDX2 (Abcam ab76541, 1:500), rabbit anti-EOMES (Abcam ab23345, 1:1000). 

Membranes were then incubated in HRP-conjugated secondary antibody (Jackson Labs, 

1:2000) diluted in 5% skim milk in TBST for one hour at room temperature prior  
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Table 3-2. Oligonucleotide primer sequences. 

Gene Sequences Expected RT-PCR 
product size 

p66Shc F: 5’- CCGACTACCCTGTGTTCCTTCTT-3’ 
R: 5’- CCCATCTTCAGCAGCCTTTCC-3’ 

111 bp 

Cdkn1a F: 5’- TCCAGACATTCAGAGCCACAGG-3’ 
R: 5’- ACGGGACCGAAGAGACAACG-3’ 

97 bp 

Rb1 F: 5’- CTTGCATGGCTTTCAGATTCACCT-3’ 
R: 5’- ATGGTTACCCTGGAGAGGCAG-3’ 

117 bp 

Trp53 F: 5’- GGACCATCCTGGCTGTAGGT-3’ 
R: 5’- GGCAGTCATCCAGTCTTCGG-3’ 

113 bp 

Gadd45a F: 5’- TGCTGGTGACGAACCCACAT-3’ 
R: 5’- CATGTAGCGACTTTCCCGGC-3’ 

86 bp 

Dusp4 F: 5’- AAACTGGGTGCCGTTCAGAT-3’ 
R: 5’- AACACCCAATGTATCCGCGA-3’ 

116bp 

Ppia F: 5’- GTCCTGGCATCTTGTCCATG-3’ 
R: 5’- TGCCTTCTTTCACCTTCCCA-3’ 

126 bp 

Hprt F: 5’- GCTTACCTCACTGCTTTCCG-3’ 
R: 5’- ATCATCGCTAATCACGACGC-3’ 

128 bp 

  



86 

 

to ECL detection (Luminata Forte, Millipore, USA). Western blot images were taken 

with a ChemiDoc Imaging System (BioRad, Canada) and densitometry analysis of band 

intensity was performed in ImageLab 4.0 (BioRad, Canada). Membranes were stripped 

for 20 minutes using Antibody Stripping Buffer (FroggaBio, Canada), then blocked and 

probed with mouse anti-β-actin-HRP (Sigma A3854, 1:10,000). 

3.2.7 Immunofluorescence and confocal microscopy 

Embryos were fixed in 2% paraformaldehyde in PBS for 30 minutes at room temperature. 

Embryos were then permeabilized in 0.25% Triton X-100 in PBS for 30 minutes, blocked 

in 5% normal goat serum in PBS, and incubated overnight at 4ºC in the following 

primary antibodies: mouse anti-NT-Shc (Acris AM00143PU-N, 1:100, validated in 

Edwards et al., 2016), mouse anti-OCT3/4 (C-10, Santa Cruz Biotech sc-5279, 1:50), 

goat anti-GATA4 (Santa Cruz Biotech sc-1237, 1:200), rabbit anti-cleaved caspase-3 

(R&D Systems AF835, 1:50), rabbit anti-CDX2 (Abcam, 1:100), rabbit anti-Nanog 

(ReproCell, RCAB001P, 1:200), rabbit anti-DUSP4 (Abcam ab216576, 1:200). Embryos 

were then incubated at room temperature for 1 hour in either Alexa Fluor 488 or 594 

conjugated secondary antibodies (Thermo Fisher Scientific, Canada), then mounted in 

VectaShield antifade solution (Vector Labs, USA) on a glass microscopy slide. Confocal 

microscopy was performed with a Zeiss LSM510 laser scanning confocal microscope 

with ten z-sections taken through each blastocyst. Laser settings were unchanged when 

detecting the same primary antibody between treatment groups. Nuclei with detectable 

antibody staining were manually counted in duplicate in ImageJ (National Institutes of 

Health). For fluorescence intensity quantification, 3D z-stack projections were created in 

ZEN Black (Zeiss, Germany) exported as TIFF files and opened in ImageJ. Images were 

converted to grayscale and LUT inverted. The mean grey value was measured, and the 

average mean grey value of three images of embryos with no primary antibody was 

subtracted to control for background fluorescence. 

3.2.8 BrdU incorporation assay 

Embryos were incubated in KSOMaa containing 10 µM of bromodeoxyuridine (BrdU, 

Acros Organics, USA) for 45 minutes before fixation with 2% paraformaldehyde. 
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Embryos were then processed for immunofluorescence as described above with the 

following additions: after permeabilization, embryos were incubated in 300 ug/ml DNase 

for 30 minutes at 37ºC (Xie et al., 2006). Embryos were incubated overnight at 4ºC in 

mouse anti-BrdU antibody (G3G4, Developmental Studies Hybridoma Bank deposited by 

Kaufman, S.J., 1:100), then incubated at room temperature for 1 hour in goat-anti-mouse 

Alexa Fluor 488 (1:400). Confocal microscopy was performed as described above. 

3.2.9 Statistical Analyses 

Statistical tests were performed using Prism 6 (GraphPad Inc.) for Students’ t-test 

(unpaired, two-tailed with equal variance) or Fisher’s exact test (two-tailed). At least 

three independent replicates were performed for each experiment. 

3.3 Results 

3.3.1 Specific knockdown of p66Shc in mouse preimplantation 
embryos  

To target p66Shc for knockdown by RNAi, two siRNA sequences were designed to 

recognize the unique N-terminal exon of the p66Shc transcript variant of mouse Shc1 

(sequences in Table 3-1). 50 µM of each sequence, designated #1 and #2, and its 

associated control (scrambled nucleotide) sequence was microinjected into the cytoplasm 

of zygotes. Pools of embryos were then collected at different time points post siRNA 

injection to assess knockdown efficiency by quantitative real time RT-PCR. We were 

unable to detect a statistically significant decrease in p66Shc transcript abundance 24 

hours post siRNA #1 injection due to the high variability of p66Shc transcript levels in 

control 2-cell embryos (Edwards et al., 2016) (Fig. 3-1A). However, p66Shc transcript 

abundance significantly decreased to 33% of control levels in embryos injected with 

p66Shc siRNA #1 48 hours post injection (p < 0.05, Fig. 3-1A). By 72 and 96 hours post 

injection p66Shc transcript abundance levels in embryos injected with p66Shc siRNA 

became comparable to controls (Fig. 3-1A). P66Shc sequence #2 also significantly 

knocked down p66Shc transcript abundance 48 hours post siRNA injection (Fig. 3-2A). 

Due to the higher knockdown efficiency at 48 hours post injection, the remaining  
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Figure 3-1. p66Shc siRNA reduces p66Shc transcript and protein abundance in 

mouse preimplantation embryos.  

(A) RT-qPCR was performed on pools of 20 embryos or 10 blastocysts at four-time 

points post injection of 50 µM siRNA (24h N=5 pools of embryos, 48h N=4, 72h N=4, 

96h N=3). P66Shc transcript abundance is significantly reduced at 48 hours post siRNA 

injection (mean ± SD, * p<0.05, Student’s t-test). (B) Immunofluorescence and confocal 

microscopy for p66Shc protein was performed on embryos taken at three-time points post 

siRNA injection. The relative fluorescence intensities of z-stack projections were 

quantified. P66Shc fluorescence intensity was significantly decreased at 24 (n=15 

embryos), 48 (n=17), and 72 hours (n=14) post p66Shc-siRNA injection compared to 

controls (mean ± SEM, *p<0.05, **p<0.01, ****p<0.00001, Student’s t-test). Scale bars 

are 20 µm.  
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Figure 3-2. Efficiency of p66Shc knockdown by siRNA. 

(A) P66Shc is significantly knocked down in mouse embryos by p66Shc siRNA sequence 

#2 48 hours post injection (n=3 pools of 20 embryos, mean ±SD, * p <0.05, Student’s t-

test). (B) p66Shc is knocked down in mouse embryonic stem cells by both p66Shc 

siRNA sequences 24 hours post transfection. A representative immunoblot of three 

independent experiments is shown. 
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experiments were performed with sequence #1. Some experiments were replicated by 

injection of sequence #2 to confirm gene-specific phenotypes. 

To confirm knockdown at the protein level, zygotes were injected with siRNA #1 

sequences, fixed 24, 48, and 72 hours post injection, and stained for p66Shc 

immunofluorescence. Significant decreases in p66Shc fluorescence intensity were 

detected at all three time points post siRNA injection, with the greatest reduction in 

fluorescence intensity observed at 48 hours post siRNA injection (29% of control levels, 

p < 0.0001, Fig. 3-1B, additional microscopy pictures in Fig. 3-3). Thus, our results 

demonstrate that 50 µM of p66Shc-specific siRNA significantly reduces p66Shc 

transcript and protein levels during mouse preimplantation development. Knockdown 

specificity and efficiency were confirmed in R1 mouse embryonic stem cells (Fig. 3-2B). 

3.3.2 P66Shc knockdown embryos form blastocysts containing 
more cells than controls 

We next aimed to determine if embryos receiving p66Shc siRNA could form blastocysts. 

Blastocyst formation did not significantly change in embryos receiving p66Shc siRNA 

compared to controls with frequencies of blastocyst development observed between 60-

70% (Fig. 3-4A). Blastocysts formed by embryos that received p66Shc siRNA were 

morphologically identical to scrambled siRNA injected controls (Fig. 3-4B). However, 

p66Shc knockdown blastocysts contained, on average, 12 more cells than scrambled 

controls at 96 hours post injection (Fig. 3-4C, middle panel). Interestingly, p66Shc 

knockdown embryos at 72 hours post injection contained significantly fewer cells than 

scrambled controls, while p66Shc knockdown embryos at 110 hours post injection 

contained cell numbers comparable to controls (Fig. 3-4C). This suggests that although 

embryos receiving p66Shc siRNA can form blastocysts, they produce blastocysts with 

more total cells than controls four days after p66Shc siRNA introduction.  

We next investigated the effects of p66Shc knockdown on cell apoptosis and proliferation 

at 96 hours. There was no difference in the percentage of cleaved caspase-3 positive cells 

in p66Shc knockdown blastocysts compared to controls, suggesting that apoptosis is not 

contributing to the change in total cell number (Fig. 3-5A). However, p66Shc knockdown  
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Figure 3-3. P66Shc protein knockdown confirmed post siRNA injection in mouse 

embryos. 

Panels show additional immunofluorescent confocal microscopy images at 24 (upper 

panel) and 48 hours (lower panel) post siRNA injection.  
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Figure 3-4. p66Shc knockdown embryos form blastocysts containing more cells than 

controls. 

(A) Embryos receiving p66Shc siRNA form blastocysts at equivalent rates to scrambled 

controls (N=3 experimental replicates, mean ± SD). (B) p66Shc knockdown embryos 

form morphologically similar blastocysts compared to scrambled controls (scale bars = 

200 µm). (C) Total cell number in p66Shc knockdown embryos is significantly lower 

than controls at 72 hours post siRNA injection (n=15 per group, *p<0.05, Student’s t-

test), significantly higher than controls at 96 hours post siRNA injection (n=25 per group, 

*p<0.05, Student’s t-test) and not significantly different at 110 hours post siRNA 

injection (n=41 per group). Graphs are the mean ± SEM.  
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Figure 3-5. Altered proliferation in p66Shc knockdown blastocysts. 

(A) p66Shc knockdown blastocysts have similar levels of cleaved caspase-3 cells 

compared to controls (n=16, mean ± SEM, white asterisks indicate cells positive for 

cleaved caspase-3). However, p66Shc knockdown blastocysts have a significantly 

increased percentage of cells positive for BrdU incorporation after 45 minutes of 

incubation compared to controls (n=46, *p<0.05, mean ± SEM, Student’s t-test). (B) RT-

qPCR was performed on pools of 10 blastocysts for transcript abundance of cell cycle 

markers. P66Shc knockdown blastocysts have significantly lower Rb1 transcript 

abundance compared to controls (N=3 pools of 10 embryos, *p<0.05, mean ± SD, 

Student’s t-test).  
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embryos at 96 hours displayed significantly increased BrdU incorporation, which reflects 

the increased total cell number observed (Fig. 3-5A). Interestingly, p66Shc knockdown 

blastocysts had significantly reduced Rb1 transcript abundance compared to controls, 

suggesting that the G1/S checkpoint was altered in these embryos (Fig. 3-5B). 

3.3.3 P66Shc knockdown accelerates the onset of primitive 
endoderm identity in mouse blastocysts 

Though p66Shc knockdown embryos formed blastocysts at the same frequency and 

appeared morphologically like controls, we hypothesized that loss of p66Shc might 

produce differences in cell allocation of the TE and ICM. To investigate this directly, we 

processed blastocysts 96 hours post siRNA injection for immunofluorescence and 

confocal microscopy for CDX2 and OCT3/4, markers of the TE and ICM respectively. 

Two patterns of OCT3/4 staining were observed in both scrambled control and p66Shc 

knockdown blastocysts. Sixty percent of p66Shc knockdown blastocysts showed OCT3/4 

restriction to the inner cells compared to 25% of scrambled control blastocysts when 

fixed at 96 hours post siRNA injection (Fig. 3-6). Total protein abundance of CDX2 and 

EOMES was unaffected by p66Shc knockdown, suggesting that p66Shc knockdown does 

not affect the expression of TE markers in the blastocyst (Fig. 3-7A). 

To further quantify the differences in OCT3/4 staining, nuclei were counted for 

detectable OCT3/4 and CDX2 staining. To analyze blastocysts at approximately the same 

developmental time point, we determined the total cell number and categorized embryos 

from both groups into blastocysts containing 32-64 cells or blastocysts containing 64-128 

cells. In 32-64 cell blastocysts, p66Shc knockdown blastocysts contained approximately 

the same percentage of double positive (OCT3/4+ and CDX2+) nuclei. However, at the 

64-128 cell stage, p66Shc knockdown embryos contained a significantly lower 

percentage of double positive nuclei, supporting the observation that OCT3/4 expression 

is restricted earlier in p66Shc knockdown blastocysts compared to controls (Fig. 3-6). 

Since OCT3/4 is restricted earlier to the inner cells in p66Shc knockdown blastocysts, we 

hypothesized that the ICMs in these embryos might be developmentally advanced in 

regard to their differentiation program and may be specifying EPI versus PrE fate earlier   
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Figure 3-6. Earlier restriction of OCT3/4 to the inner cells in p66Shc knockdown 

blastocysts. 

Embryos were categorized according to cell number before analysis (32-64 cells or 64-

128 cells). Sixty percent of p66Shc knockdown blastocysts showed restricted OCT3/4 

immunofluorescent staining to the inner cells of the blastocyst compared to 25% of 

scrambled control blastocysts (n=23). Numbers in the image panels indicate how many 

embryos had the displayed staining pattern. P66Shc knockdown blastocysts had similar 

CDX2+/OCT3/4+ nuclei compared to scrambled controls in 32-64 cell blastocysts, but 

significantly fewer CDX2+/OCT3/4+ nuclei in 64-128 cell blastocyst (n=23, *p<0.05, 

mean ± SEM). Scale bars are 20 µm. 
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Figure 3-7. P66Shc knockdown increases percent GATA4-positive cells of total cells 

in blastocysts but does not affect expression of TE markers. 

(A) CDX2 and EOMES protein abundance in blastocysts 96 hours post siRNA injection 

are not significantly changed by p66Shc knockdown. Immunoblots show results from 

three independent microinjection experiments and the graph below is the densitometry 

values of the immunoblot (n=3 pools of 25 blastocysts). (B) The percent GATA4+ cells 

of total cells in p66Shc knockdown blastocysts (32-64 cells) is significantly higher than 

control embryos using both p66Shc siRNA sequence #1 and #2 (n=16 per group, mean ± 

SEM, ** p< 0.01, Student’s t-test). The percentage of GATA4+ cells of total cells in 64-

128 cell blastocysts is not significantly different than controls (n=47, mean ± SEM, 

Student’s t-test).  
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than controls. To investigate this, blastocysts were fixed and processed for 

immunofluorescence for GATA4 and Nanog, markers of the PrE and EPI fates 

respectively. In 32-64 cell p66Shc knockdown blastocysts, we observed that the 

percentage of total cells and inner cells expressing GATA4 was significantly higher than 

that for scrambled controls (Fig. 3-8, Fig. 3-7B). This increase in the GATA4 positive 

cell proportion of inner cells was at the expense of Nanog positive cells, and not due to 

selective proliferation of GATA positive cells, as the total number of inner cells was 

unchanged between knockdown and control blastocysts (Fig. 3-8). The percentage of 

GATA4 positive cells of total cells was also significantly increased in embryos receiving 

the second p66Shc siRNA sequence (Fig. 3-7B). 

As ICM cells are not committed until E4.0, we aimed to determine whether the shift to 

PrE fate in p66Shc knockdown blastocysts persisted in late blastocysts. Blastocysts were 

cultured to 110 hours post siRNA injection, then fixed and processed for GATA4 and 

Nanog immunofluorescence. We observed a significant increase in the percentage of 

GATA4 positive cells of total inner cells and a decreased percentage of Nanog positive 

cells in p66Shc knockdown blastocysts, though this difference was not as extensive as 

was observed in 32-64 cell blastocysts (Fig. 3-9A). The total number of inner cells did 

not significantly change between groups, nor did it significantly increase from 32-64 cell 

blastocysts, indicating that some GATA4 positive cells altered their fate to become 

Nanog positive. Additionally, when blastocysts were categorized based on their GATA4 

and Nanog staining pattern to determine the extent of primitive endoderm sorting (Plusa 

et al., 2008), 36% of p66Shc knockdown blastocysts contained GATA4 positive cells 

categorized as sorted, versus only 14% of the control blastocyst population containing 

sorted GATA4 positive cells (Fig. 3-9B). Together, our results suggest that not only does 

the EPI/PrE imbalance in p66Shc knockdown blastocysts persist until E4.5, but these 

blastocysts also show much earlier sorting to the PrE layer. 

We next aimed to determine if the changes to the composition of the ICM in p66Shc 

knockdown blastocysts affect post-implantation development. Blastocysts were plated for 

an in vitro outgrowth assay under conditions promoting pluripotency for four days and  
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Figure 3-8. Loss of p66Shc promotes primitive endoderm fate in the inner cell mass 

at E3.5. 

Blastocysts were fixed and processed for immunofluorescence and confocal microscopy 

96 hours post siRNA injection. p66Shc knockdown blastocysts have significantly 

increased percentage of inner cells positive for GATA4 and significantly decreased 

percentage positive for Nanog (n=19 per group, mean ± SEM, ****p<0.0001, Student’s 

t-test). The total cell number of the inner cell mass was not significantly different 

between p66Shc knockdown embryos and controls (n=19 per group, mean ± SEM, 

Student’s t-test). Scale bars are 20 µm.  
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Figure 3-9. Loss of p66Shc accelerates sorting of the primitive endoderm in 64-128 

cell blastocysts. 

(A) Blastocysts were processed for immunofluorescence and confocal microscopy 110 

hours post siRNA injection. p66Shc knockdown late blastocysts had a significant 

increase in the percentage of inner cells positive for GATA4 and a significant decrease in 

cells positive for NANOG (n=41 blastocysts, mean ± SEM, *p<0.05, Student’s t-test). 

(B) At E4.5, p66Shc knockdown blastocysts also had a significantly higher proportion of 

embryos displaying sorted primitive endoderm staining compared to scrambled controls 

(n=41 blastocysts per group, *p<0.05, Fisher’s exact test). Scale bars are 20 µm. (C) 

Bright field microscopy of in vitro blastocyst outgrowths. A significantly lower 

proportion of p66Shc knockdown blastocysts formed inner cell mass-derived outgrowths 

compared to scrambled controls (n=23 and 24 outgrowths per group, *p<0.05, Fisher’s 

exact test). Numbers in the image panels indicate the number of outgrowths resembling 

the displayed morphology. Scale bars are 100 µm.  
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then assessed for the presence of an inner cell mass-derived outgrowth (Figure 3-9C). 

Eighty-two percent of scrambled siRNA-injected blastocysts formed inner cell mass-

derived outgrowths (n=19 of 23), while only 46% of p66Shc siRNA-injected blastocysts 

formed inner cell mass outgrowths (n=11 of 24). We observed formation of trophoblast 

giant cells in all plated blastocysts, suggesting that p66Shc knockdown does not affect the 

survival of the trophectoderm in vitro. Instead our results suggest that p66Shc 

knockdown in preimplantation embryos significantly affects the formation of inner cell 

mass-derived lineages in vitro. 

3.3.4 P66Shc knockdown increases the number of DUSP4-
positive cells in the blastocyst 

As the allocation of EPI and PrE cells in the inner cell mass is dependent on FGF4-

MAPK signalling (Yamanaka et al., 2010), we next determined if decreased p66Shc 

levels resulted in a greater number of PrE cells to emerge due to increased or 

inappropriate MAPK signalling. Like previous studies, we were unable to detect 

phosphorylated-ERK1/2 in ICM cells by immunofluorescence (Frankenberg et al., 2011). 

Although we attempted localization of total-ERK1/2 to detect nuclear translocation of 

ERK1/2, we encountered high background staining by immunofluorescence microscopy 

(Fig. 3-10A). To overcome the challenge of reliably detecting ERK1/2 activation, we 

proceeded to define DUSP4 localization, (a transcriptional target of FGF4-MAPK 

signalling), specific to ICM cells committing to the PrE fate (Kang et al., 2017). 

Accordingly, we observed DUSP4 co-localization with GATA4 in blastocysts (Fig. 3-

11A). We did not observe a significant change in DUSP4 positive cells or Dusp4 

transcript abundance in embryos 72 hours post siRNA injection (Fig. 3-10B). However, 

p66Shc knockdown blastocysts at 96 hours post siRNA injection contained a 

significantly higher percentage of DUSP4 positive cells compared to scrambled controls, 

suggesting that these blastocysts have more cells with active ERK1/2 compared to 

controls (Fig. 3-11A). The imbalance between EPI and PrE allocation in the inner cell 

mass of p66Shc knockdown blastocysts was reversed by ERK1/2 inhibition, as treatment 

for 24 hours with 1 µM PD0325901 resulted in all inner cells of p66Shc knockdown 

blastocysts to become Nanog positive 96 hours post siRNA injection (Fig. 3-11B). 
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Figure 3-10. High background after immunofluorescent staining of total and 

phosphorylated ERK1/2. 

(A) Representative confocal microscopy images of blastocysts stained for phosphorylated 

ERK1/2 (left panel) and total ERK1/2 (right panel). High background staining was 

observed using both antibodies. (B) P66Shc knockdown does not significantly change 

Dusp4 transcript abundance or the percentage of DUSP4-positive cells in embryos 72 

hours post siRNA injection. Graphs represent the mean ± SEM, n=4 pools of 20 embryos 

(left), n=10 embryos (right), Student’s t-test.  
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Figure 3-11. p66Shc knockdown blastocysts displayed altered ERK1/2 activity. 

(A) p66Shc knockdown blastocysts had a significant increase in cells positive for 

DUSP4, an ERK1/2 transcriptional target downstream of FGF/MAPK signalling, 

compared to controls (n=13 blastocysts, mean ± SEM, *p<0.05). (B) When treated with 1 

µM PD0325901, all cells of the ICM of p66Shc knockdown blastocysts were Nanog+ 

(n=17 blastocysts per group). Scale bars are 20 µm.  



108 

 

Together, our results suggest that decreased expression of p66Shc leads to increased cells 

in the blastocyst with active ERK1/2, and that the increase in GATA4 positive cells in the 

inner cell mass is reversible by MEK1/2 inhibition. 

3.4 Discussion 
Here we show a novel role for p66Shc during mouse preimplantation development, 

demonstrating that p66Shc is mechanistically linked to the expression dynamics of 

blastocyst lineage-associated transcription factors. Our results demonstrate that 

knockdown of p66Shc during preimplantation embryo development affects the balance of 

EPI to PrE cells in blastocysts. Knockdown of p66Shc in mouse embryos leads to 

blastocysts with more PrE cells than EPI cells in the ICM compared to controls. This 

imbalance is partially resolved by the late blastocyst stage, but PrE cells appear to sort to 

the PrE layer earlier in knockdown blastocysts compared to controls. When explanted in 

vitro, p66Shc knockdown blastocysts have a decreased ability to generate inner cell 

mass-derived outgrowths compared to controls. Furthermore, decreased p66Shc 

expression leads to increased cells expressing DUSP4, and the increased proportion of 

PrE cells is rescued by ERK1/2 inhibition. Our study also suggests a possible novel role 

for p66Shc in regulating the cell signaling pathways that lead to cell commitment to 

extraembryonic endoderm. 

Regulation of cell fate is a novel proposed function for p66Shc, as the protein has thus far 

been shown to negatively regulate embryo development by promoting apoptosis and 

senescence (embryo arrest). However, many of these effects were stimulated by stressful 

environmental conditions including treatment with H2O2 (Favetta et al., 2007) and arsenic 

(Ren et al., 2014). In these cases, p66Shc may act to ensure that embryos that cannot 

adapt to stress do not continue to develop by increasing mitochondrial ROS and 

promoting apoptosis or senescence. In our study, mouse embryos were cultured under 

low oxygen conditions and medium supplemented with amino acids to minimize 

exposure to environmental stress following siRNA injection thus potentially minimizing 

the stress response function of p66Shc. In contrast to studies with bovine embryos, we 

did not observe a significant increase in the number of embryos developing into 

blastocysts after p66Shc knockdown compared to controls, suggesting that knockdown of 
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p66Shc in our experimental model did not improve blastocyst formation in vitro (Betts et 

al., 2014). Interestingly, our results also suggest that p66Shc knockdown blastocysts may 

be more developmentally advanced than controls, which suggests that they are following 

the developmental timeline of embryos developing in vivo. It is well known that late 

blastocyst development is delayed in embryos cultured in vitro relative to their in vivo 

counterpart (Dietrich and Hiiragi, 2007). However, culture does not appear to 

significantly alter the timing of lineage-specific marker patterning, as in vivo derived 

blastocysts also show initial OCT3/4 expression in the TE until the late blastocyst stage 

(Dietrich and Hiiragi, 2007). This apparent developmental advancement in p66Shc 

knockdown embryos may be due to enhanced stress resistance to the culture environment 

conferred by reduced p66Shc expression. 

Our results instead point to a critical cell fate specification role for p66Shc during the late 

morula to early blastocyst stages during mouse preimplantation development, when 

p66Shc is typically upregulated in vivo (Edwards et al., 2016). This function is potentially 

through its function as RTK adaptor, binding phosphotyrosine sites on the activated 

receptor and negatively regulating downstream ERK1/2 signalling. These results provide 

insight into the biological role of p66Shc and some explanation as to why the gene has 

not been selected against, despite its deletion having several beneficial effects in adult 

mice (Berniakovich et al., 2008; Giorgio et al., 2012; Migliaccio et al., 1999; Tomilov et 

al., 2011). It would be interesting to see the effects of culturing knockdown blastocysts in 

atmospheric (20% oxygen) conditions as we have observed increases in p66Shc 

expression correlated with altered metabolic function in embryos (Edwards et al., 2016).  

We were unable to detect differences in MAPK signaling between p66Shc knockdown 

and control embryos at 72 hours post siRNA injection, when p66Shc protein expression 

is still significantly decreased by RNAi. Instead, we observed phenotypic differences at 

the blastocyst stage, when the knockdown effect is no longer present at the transcriptional 

level. RNA interference using siRNAs is a limitation of our study as knockdown effects 

did not persist at the transcript level to the blastocyst stage (Betts et al., 2014; Edwards et 

al., 2016). However, due to protein turnover and stability, the timing of maximal 

phenotypic effects does not necessarily correspond to maximal knockdown effects. 
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Several studies using siRNA to knockdown p66Shc in preimplantation embryos also 

observe restoration of p66Shc transcript levels to wild type levels at the blastocyst stage, 

but the transient knockdown of p66Shc during preimplantation development significantly 

affected the ability of blastocysts to develop under basal and stress-inducing culture 

conditions (Betts et al., 2014; Favetta et al., 2007; Ren et al., 2014).  Our results suggest 

that transient knockdown of p66Shc up to 72 hours of development has an effect on cell-

lineage transcription factor expression at the blastocyst stage. This could be through 

affecting earlier events in PE specification such as differences in FGF4/FGFR2 signaling 

that first occurs in the early ICM (Guo et al., 2010), or through regulating the levels of 

OCT3/4 in morulae that in turn would affect FGF4 levels (Dietrich and Hiiragi, 2007; 

Nichols et al., 1998). Additionally, there may be effects of p66Shc on other signaling 

pathways that have not yet been identified but are independently required for the onset of 

Gata6 expression (Frankenberg et al., 2011). Our future experiments are being directed 

towards producing maternal and embryonic genetic knockout models of p66Shc in 

preimplantation embryos and the production of these lines will determine the extent of 

p66Shc regulation of OCT3/4 expression during preimplantation development, its 

requirement for establishing cell fate in the ICM, and the consequences of its loss on fetal 

and postpartum development. 

Knockdown of p66Shc during mouse preimplantation development resulted in 

morphologically normal blastocysts. However, we detected an increased total cell number 

in p66Shc knockdown blastocysts compared to controls, and attribute this increase to 

altered proliferation. P66Shc has not been extensively linked with cell cycle regulation in 

other studies, but it could indirectly affect cell proliferation through regulating epidermal 

growth factor receptor (EGFR) signalling activity (Migliaccio et al., 1997). The time 

frame for altered proliferation is short, as knockdown embryos 72 hours post siRNA 

injection contained fewer total cells, and knockdown embryos 110 hours post injection 

did not significantly differ in cell number than controls. Though we only observed 

changes in Rb1 transcript abundance, the effects of p66Shc knockdown to other key cell 

cycle genes (Ccnd1, Ccne1) would be useful and could provide insight into the role of 

p66Shc in cell cycle regulation in the mouse blastocyst. Other studies with EPI/PrE 

imbalance phenotypes also have altered proliferation, suggesting that the cell cycle may 
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be linked to cell fate specification in the mouse blastocyst (Azami et al., 2017; Chen and 

Yu, 2012).  

Our results suggest that the effects of p66Shc on mouse blastocyst cell fate are mediated 

through ERK1/2 signalling. However, we did not directly confirm that these effects were 

downstream or upstream of FGF4 and cannot conclude that p66Shc regulates this specific 

pathway. No other signalling pathway aside from FGF4/MAPK has been identified as 

being critical for EPI/PrE specification, however, and thus we speculate that in the 

blastocyst p66Shc is acting as a canonical adaptor protein to negatively regulate ERK1/2 

activity downstream of FGF4/RTK activation. It is possible that p66Shc could be acting 

through another RTK, such as EGFR, and ERK1/2 activity is regulated through pathway 

cross talk. For example, p66Shc overexpression is associate with increased β-Catenin 

activity in mouse embryonic stem cells undergoing directed neural differentiation, which 

may be regulated through p66Shc-mediated generation of reactive oxygen species 

(Papadimou et al., 2009). Though its interactions with the EGFR are the most well-

studied, there is evidence that Shc proteins are recruited to and phosphorylated by 

FGFR1,3, and 4, and indirectly associate with FGFR2 in vivo (Schuller et al., 2008). It is 

also possible that FGFR1 versus FGFR2 expression is altered downstream of p66Shc 

knockdown, which would affect the EPI/PrE balance in the ICM (Kang et al., 2017). 

Determining how p66Shc fits into the hierarchy and regulation of cell fate signalling in 

the blastocyst ICM would provide insight into how it may affect EPI establishment and 

ultimately the pluripotency of mouse embryonic stem cells. Our work outlines an 

additional novel role of p66Shc in mouse blastocyst development associated with the 

onset and relative abundance of lineage-associated transcription factors. 
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Chapter 4  

4 Knockout of p66Shc alters pluripotency-associated 
transcription factor expression in mouse embryonic 
stem cells 

This chapter is a version of a manuscript under preparation entitled, “Knockout of 

p66Shc alters pluripotency-associated transcription factor expression in mouse embryonic 

stem cells”. 
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4.1 Introduction 
Embryonic stem cells (ESCs) are derivatives of the inner cell mass (ICM) of the 

preimplantation blastocyst that can be maintained in culture indefinitely (Evans and 

Kaufman, 1981). ESCs are self-renewing and pluripotent, as they can differentiate into 

lineages representing the three embryonic germ layers (endoderm, mesoderm, ectoderm) 

(Murry and Keller, 2008). ESCs can be isolated from both mouse and human blastocysts 

(Evans and Kaufman, 1981; Martin, 1981; Thomson et al., 1998). However, key 

characteristics of ESCs derived from human blastocysts differ from ESCs derived from 

mouse blastocysts. Human ESCs resemble stem cells derived from the mouse post-

implantation epiblast (Tesar et al., 2007). Thus, ESC pluripotency exists in more than one 

state, and two metastable pluripotent states are defined as naïve and primed pluripotency 

(Nichols and Smith, 2009). Naïve ESCs (mouse ESCs) represent the ground state of 

pluripotency and can reincorporate into the ICM of a blastocyst when introduced into the 

preimplantation embryo (Nichols and Smith, 2009). Primed ESCs (human ESCs and 

mouse epiblast stem cells) cannot reincorporate into the blastocyst but are capable of 

generating teratocarcinomas (teratomas) with tissues representative of the three 

embryonic germ layers. ESCs derived from many species can be interconverted between 

these two states through genetic and/or environmental manipulation (Manor et al., 2015). 

Pluripotency is maintained in ESCs by a network of transcription factors including 

OCT4, KLF4, NANOG, and SOX2 that promote self-renewal and prevent differentiation 

(Niwa, 2007). Expression of these transcription factors (along with c-MYC) can induce 

pluripotency in terminally differentiated cells (e.g. mouse embryonic or adult fibroblasts) 

to create induced pluripotent stem cells (iPSCs) with characteristics of naïve pluripotent 

stem cells (Takahashi and Yamanaka, 2006). Naïve pluripotency can be stabilized in 

ESCs by providing exogenous factors. LIF/STAT3 signalling is required for self-renewal 

and pluripotency in mESCs, but naïve pluripotency can be maintained if mESCs are 

cultured in a combination of MEK, FGFR3, and GSK-3β inhibitors without LIF 

supplementation (Manor et al., 2015). The combination of MEK and GSK-3β inhibition 

with LIF supplementation (“2i/LIF”) has thus far represented  the optimal conditions to 
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capture and stabilize naïve pluripotency in non-permissive mouse strains (Hanna et al., 

2009). Conversely, MEK signalling stabilizes the primed pluripotent state (Nichols et al., 

2009). The contrasting effects of MEK signalling on naïve and primed pluripotency 

states, suggests that it is a key pathway involved in the interconversion between these two 

pluripotent states. 

The Shc1 (also known as ShcA) family of adaptor proteins are key components of 

receptor tyrosine kinase (RTK)-MEK-ERK signalling. These RTK adaptors sensitize 

cells to low levels of growth factors present in the environment (Lai and Pawson, 2000). 

Three isoforms are expressed from the Shc1 locus and differ in their protein domain 

composition and cellular functions. P46Shc/p52Shc promote Ras/MAPK signalling 

downstream of RTK activation, while p66Shc does not. Additionally, p66Shc promotes 

mitochondrial reactive oxygen species (ROS) release under stress-inducing conditions.  

We have demonstrated that knock down of p66Shc, the largest isoform of Shc1, in mouse 

preimplantation embryos results in a higher proportion of primitive endoderm cells and a 

lower proportion of epiblast cells in the mouse blastocyst ICM (Chapter 3, Edwards et al., 

under review). P66Shc knockdown blastocysts form fewer ICM-derived outgrowths 

when explanted in vitro (Chapter 3, Edwards et al., under review). This suggests that 

p66Shc plays a role in the establishment and/or maintenance of the pluripotent cell 

population in the mouse preimplantation embryo. Interestingly, p66Shc overexpression in 

mouse and human ESCs changed colony morphology to a more compact and rounded 

appearance, characteristic of naïve pluripotent stem cells (Papadimou et al., 2009). 

Furthermore, preliminary p66Shc knockdown experiments in human ESCs resulted in 

decreased expression of pluripotent markers and an increase in neural differentiation 

markers (Smith et al., 2016).  

Together, these observations suggest that p66Shc functions to promote pluripotency in 

ESCs. Thus, the objective of the present study was to determine the effects of p66Shc 

genetic knockout to mouse ESC pluripotency. We show that targeted CRISPR-Cas9 

deletion of p66Shc in mESCs results in altered expression of pluripotent markers, 

notably, a consistent reduction in NANOG expression detected by immunofluorescence. 

Furthermore, we show that p66Shc knockout mESCs downregulate neuroectoderm 
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transcriptional markers and upregulate mesoderm transcriptional markers during 

spontaneous embryoid body differentiation. Our results suggest that p66Shc may be 

required to maintain naïve pluripotency and to maintain the complete ability to 

spontaneously differentiate into the three embryonic germ layers in vitro. 

4.2 Materials and Methods 

4.2.1 Generation of p66Shc knockout mESCs with CRISPR-Cas9  

Two pairs of guide (g)RNA sequences were designed in-house (http://crispr.mit.edu) to 

target the intronic region where the p66Shc-specific promoter is located and the 5’ region 

of coding exon 2 and synthesized by Life Technologies. Pair 1: 5’-

TCGGGGTCTACCCCTCCGG-3’ and 5’-ATATATCTGTAGGTCCGAG-3’; Pair 2: 5’- 

TAGTCGGACTATCGTCCCCC-3’ and 5’- AATATATCTGTAGGTCCGAG-3’ (Fig. 4-

1A). Guide RNA sequences were cloned into the pSpCas9(BB)-2A-Puro (PX459) 

plasmid (Feng Zhang, deposited in Addgene #48139, (Ran et al., 2013)) by BbsI 

restriction enzyme digest. Cloned plasmids were transfected into R1 mouse embryonic 

stem cells with Lipofectamine 3000 (Life Technologies) according to manufacturer’s 

guidelines. Cells were selected for transfection of the plasmid by puromycin. Surviving 

colonies were mechanically picked, trypsin digested to single cells, then plated at a 

density of 1 cell/well of a 96-well plate on MEFs to generate clonal lines. Clonal lines 

were then expanded under both feeder-free conditions (MEF-conditioned DMEM 

containing 2i/LIF) for genotyping and on MEFs for maintenance. For experimental 

analyses, p66Shc knockout lines were compared to isogenic unedited R1 mESCs. 

Genomic (g)DNA was isolated using the GenElute Mammalian Genomic DNA Miniprep 

Kit (Sigma) according to manufacturer’s guidelines. Genomic DNA from eighty-nine 

clonal lines was then genotyped by PCR for deletions using LA Taq DNA polymerase 

(Takara Bio, USA) according to manufacturer’s protocol and using the primer sequences 

in Table 4-1. PCR products were visualized by agarose gel electrophoresis. Twenty-six 

out of the eighty-nine screened identified as compound heterozygous deletions after 

genomic DNA PCR screening were screened for deletion of p66Shc protein by   
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Table 4-1. Oligonucleotide primer sequences. 

Gene Primer Sequences Expected 
product size 

p66Shc 
(gDNA) 

F: 5’-CTGTGGCAGGAAACTGTGGGCAA-3’ 
R: 5’-GCCAGCCTCGTGTGGGCTTAT-3’ 1689 bp 

T 
(Brachyury) 

F: 5’-GCTTCAAGGAGCTAACTAACGAG-3’ 
R: 5’-CCAGCAAGAAAGAGTACATGGC-3’ 117 bp 

Thy1 F: 5’-TGCTCTCAGTCTTGCAGGTG-3’ 
R: 5’-TGGATGGAGTTATCCTTGGTGTT-3’ 121 bp 

Tagln F: 5’-CAACAAGGGTCCATCCTACGG-3’ 
R: 5’-ATCTGGGCGGCCTACATCA-3’ 

133 bp 
 

Eng F: 5’-AGGGGTGAGGTGACGTTTAC-3’ 
R: 5’-GTGCCATTTTGCTTGGATGC-3’ 

155 bp 
 

Fgf2 F: 5’-GCGACCCACACGTCAAACTA-3’ 
R: 5’-TCCCTTGATAGACACAACTCCTC-3’ 62 bp 

Gapdh F: 5’-TGACGTGCCGCCTGGAGAAA-3’ 
R: 5’-AGTGTAGCCCAAGATGCCCTTCAG-3’ 98 bp 

Pax6 F: 5’-TACCAGTGTCTACCAGCCAAT-3’ 
R: 5’-TGCACGAGTATGAGGAGGTCT-3’ 194 bp 

Gfap F: 5’-CCCTGGCTCGTGTGGATTT-3’ 
R: 5’-GACCGATACCACTCCTCTGTC-3’ 238 bp 

Scn1a F: 5’-TCAGAGGGAAGCACAGTAGAC-3’ 
R: 5’-TTCCACGCTGATTTGACAGCA-3’ 138 bp 

Isl1 F: 5’-ATGATGGTGGTTTACAGGCTAAC-3’ 
R: 5’-TCGATGCTACTTCACTGCCAG-3’ 

174 bp 
 

Meis1 F: 5’-GCCCATGATAGACCAGTCCAA-3’ 
R: 5’-ACCGTCCATTACAAAACCTCC-3’ 

91 bp 
 

Sox3 F: 5’-TTGGGACGCCTTGCTGTTTA-3’ 
R: 5’-CGGCTCTAGCAAGTCCCATT-3’ 

147 bp 
 

Dppa5a F: 5’-ATGATGGTGACCCTCGTGAC-3’ 
R: 5’-CCTGCTCGATGTGAGACATTC-3’ 151 bp 

Sox2 F: 5’-GGAAAGGGTTCTTGCTGGGT-3’ 
R: 5’-ACGAAAACGGTCTTGCCAGT-3’ 

148 bp 
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Pou5f1 F: 5’-GGCGTTCTCTTTGGAAAGGTGTTC-3’ 
R: 5’-CTCGAACCACATCCTTCTCT-3’ 

313 bp 
 

Otx2 F: 5’-AACTTGCCAGAATCCAGGGT-3’ 
R: 5’-GCCTCACTTTGTTCTGACC-3’ 148 bp 

Fgf5 F: 5’-CCAGTGTGTTAAGCCAAATTTACG-3’ 
R: 5’-CCACTCTCGGCCTGTCTTTT-3’ 117 bp 

Rex1 F: 5’-AGAAGAAAGCAGGATCGCCT-3’ 
R: 5’-TATGACTCACTTCCAGGGGG-3’ 108 bp 

Zic2 F: 5’- GGTGACCCACGTCTCTGTG-3’ 
R: 5’-CGGATGTGGTTGACCAGTTT-3’ 126 bp 

Nr5a2 F: 5’- TTGAGTGGGCCAGGAGTAGT-3’ 
R: 5’-TCAAGAGCTCACTCCAGCAG-3’ 90 bp 

Dppa3 F: 5’-AAAGTCGACCCAATGAAGGA-3’ 
R: 5’-CGGGGTTTAGGGTTAGCTTT-3’ 127 bp 

Ppia F: 5’-GTCCTGGCATCTTGTCCATG-3’ 
R: 5’-TGCCTTCTTTCACCTTCCCA-3’ 126 bp 
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immunoblotting. Densitometry was performed to determine which lines had 

p52Shc/p46Shc protein abundance not significantly different from wild type R1 controls. 

Two lines were chosen for experimental analysis: 4D (gRNA pair 1) and 10D (gRNA 

pair 2). Genomic PCR products from 8A, 4D (gRNA pair 1), 10D and 10D2 (gRNA pair 

2) were gel extracted, purified, and sequenced at the London Regional Genomics Center 

(Robarts Research Institute, London, Canada). Deleted sequences were determined by 

comparing sequenced DNA to mouse genomic DNA using NCBI BLAST and UCSC 

Genome Browser Basic Local Alignment Tool (BLAT). Off-target predictions were 

generated using the Wellcome Trust Sanger Institute Genome Editing website 

(http://www.sanger.ac.uk/htgt/wge/) (Table 4-2) (Hodgkins et al., 2015). 

4.2.2 Embryonic stem cell culture 

R1 mouse embryonic stem cells (Sick Kids, Toronto, Canada, (Nagy et al., 1993) and 

p66Shc knockout clonal lines were maintained on a mouse embryonic fibroblast (MEF) 

feeder layer and in DMEM containing 15% embryonic stem cell-qualified FBS (Life 

Technologies) and 1000 U/ml mouse leukemia inhibitory factor (mLIF, Esgro, Millipore 

Sigma). To reintroduce p66Shc expression, cells were transfected with a human p66Shc-

HA expression plasmid (obtained from Dr. Robert Cumming, University of Western 

Ontario) using Lipofectamine 3000 according to manufacturer’s protocol. 

4.2.3 Immunofluorescence and confocal microscopy 

Cells and EBs grown on glass coverslips were fixed with 4% paraformaldehyde for 30 

minutes, then stored in PBS at 4ºC until processing. Coverslips were permeabilized for 30 

minutes in 0.25% Triton X-100 in PBS, then blocked in 5% donkey serum in PBS. 

Coverslips were incubated overnight at 4ºC in primary antibody in the indicated 

concentrations in Table 4-3. Coverslips were incubated in donkey anti-mouse Alexa 

Fluor-488 or donkey anti-goat Alexa Fluor-488, and/or donkey anti-rabbit Alexa Fluor-

568 (Life Technologies) for 45 minutes at room temperature. Coverslips were stained for 

5 minutes with DAPI (NucBlue Fixed Cell ReadyProbes Reagent, Life Technologies)   
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Table 4-2. Summary of predicted Cas9-gRNA off-target effects. 

gRNA sequence Off target sequence Details 

TTCGGGGTCTACCCCTCCGG 

AGG 

CCTGGGGGCTACCCCTCAGG TGG Exonic – 

Adrbk1 

 GTCGGTGTCTACACCGCCGG CGG Exonic – 

Stox2  

AATATATCTGTAGGTCCGAG 

GGG 

AATAGATCTGTGGGTCAGAG AGG Intronic – 

Entpd4 

 TATATTTCACTAGGTCCGAG AGG Exonic – 

Plch2 

 AATATTTCTGTAGGCTCCAG GGG Exonic – 

Pydc3  

GTAGTCGGACTATCGTCCCC 

CGG 

GAAGTGGGTCTATCTTCCCC AGG Intronic – 

Adgrg4 

 GGAGTAGGACTATTTTCCCC TGG Intronic – 

Slc44a5  

 GTAGTCAGAGCATCGTTCCC AGG Intronic – Slit3  

CAATATATCTGTAGGTCCGA 

GGG 

No data available  
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Table 4-3. Primary antibody information. 

Antibody Species Application Catalog number 

SHC1 Rabbit WB; 1:1000 BD Biosciences 610879 

OCT4 Mouse IF; 1:100 Santa Cruz sc-5279 

SOX2 Mouse IF; 1:100 Santa Cruz sc-365823 

NANOG Rabbit IF; 1:200 ReproCell RCAB001P   

T/Brachyury Goat IF; 1:100 R&D Systems AF2085 

OTX2 Rabbit IF; 1:250 EMD Millipore AB9566  

PAX6 Rabbit IF; 1:100 Invitrogen A24340 

HA-AF647 Rabbit IF; 1:50 Santa Cruz sc-805 
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then mounted onto glass microscopy slides in VectaShield antifade mounting medium 

(Vector Labs). Images were obtained using an LSM 510 laser-scanning confocal 

microscope (Zeiss). Laser settings were unchanged when imaging the same primary 

antibodies across cell lines. 

4.2.4 Immunoblotting 

Cells prepared for immunoblotting were cultured in feeder-free conditions with 2i/mLIF. 

Cells were scraped into radioimmunoprecipitation assay (RIPA) buffer and stored at -

80ºC until processing. 10 µg of total protein lysate was resolved on a 4-12% gradient 

polyacrylamide gel (NuPage, Life Technologies) and transferred to a PVDF membrane 

(Millipore). Membranes were blocked with 5% milk in PBST and incubated overnight at 

4ºC with anti-total Shc1 (BD Biosciences, 1:1000), which recognizes all three Shc 

isoforms (p46Shc, p52Shc and p66Shc). Membranes were then incubated in HRP-

conjugated secondary antibody for 45 minutes at room temperature. Membranes were 

visualized using enhanced chemiluminescence (Forte ECL, Millipore) and imaged using 

a ChemiDoc MP Imaging system (BioRad). Densitometry was performed in ImageLab 

4.0 (BioRad).  

4.2.5 Embryoid body formation and differentiation 

Wild type and p66Shc KO mESCs were trypsinized and removed from MEF feeders by 

incubating for 45 minutes at 37ºC in DMEM containing 10% fetal bovine serum. Cells 

were plated into AggreWell 400 6-well plates (STEMCELL Technologies) at 9.5 x 105 

cells per well to generate EBs composed of approximately 500-1000 cells. EBs were 

formed in EB medium (KnockOut DMEM/F12 supplemented with 15% KnockOut 

Serum Replacement, non-essential amino acids and GlutaMAX (Life Technologies)). 

EBs were formed over 72 hours with a 50% medium change every day. EBs were 

harvested from the AggreWell plates, counted, and seeded at 1000 EBs per well onto 

0.1% gelatin-coated 6-well plate and 200 EBs per gelatinized coverslip, and allowed to 

adhere for 24 hours in EB medium containing 10% FBS. Adhered EBs were then 

cultured for up to 14 days in EB medium, with a complete medium change every 24 

hours. 
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4.2.6 RNA extraction, RT2 Profiler PCR array and quantitative real 
time (qRT)-PCR 

Cells and EBs were scraped into TRIzol reagent (Thermo Fisher Scientific) and stored at 

-20ºC until RNA extraction. RNA was extracted with chloroform and purified using the 

RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions. Genomic DNA 

digestion was performed using the RNase-free DNase Set (Qiagen). For the RT2 Profiler 

PCR array, 400 ng of RNA was reverse transcribed to cDNA using the RT2 First Strand 

Kit (Qiagen). For validating targets using qRT-PCR, 400 ng of RNA was reverse 

transcribed using qScript XLT cDNA SuperMix (Quanta Biosciences) according to 

manufacturer’s protocol. Quantitative real time PCR was performed using the Mouse 

Embryonic Stem Cells RT2 Profiler PCR Array (Qiagen) according to manufacturer’s 

guidelines. Data generated from the PCR Array was analyzed using the Qiagen Data 

Analysis Center (www.SABiosciences.com/pcrarraydataanalysis.php). Genes identified 

by Qiagen software that were either upregulated or downregulated by 5-fold between 

p66Shc KO (clone 4D) and wild type cells were validated by qRT-PCR using SensiFast 

SYBR (FroggaBio) using a CFX384 thermal cycler (BioRad) at the following cycling 

conditions: 95ºC for 2 minutes, then 30 cycles of 95ºC for 5 seconds, 60ºC for 10 

seconds, 72ºC for 30 seconds. Relative transcript abundance was determined by the delta-

delta Ct method normalizing to Ct values for Gapdh or Ppia. Primer sequences are in 

Table 4-1. 

4.2.7 Statistical analyses 

Statistical tests were performed in Prism 6 (GraphPad Inc.) using Student’s t-test (equal 

variance, unpaired, two-tailed) and one-way ANOVA followed by Tukey’s honestly 

significant difference test to correct for multiple comparisons. Experiments were 

performed a minimum of three times using independent replicates unless otherwise 

indicated in the figure legends. 

 



126 

 

4.3 Results 

4.3.1 Generation of p66Shc-specific knockout mESCs 

We hypothesized that deletion of the p66Shc-specific promoter and transcriptional start 

site would specifically target p66Shc for knockout without affecting the expression of 

p42Shc/p52Shc. To delete the p66Shc-specific promoter, transcriptional start site, 5’ 

untranslated region (UTR) and part of coding exon 2, pairs of two gRNAs were designed 

to induce two Cas9-mediated double stranded DNA breaks and subsequently delete 

approximately 1kb in the mouse Shc1 locus (Fig. 4-1A). The first gRNA for both pair 1 

and pair 2 overlap in 19 of 20 nucleotides in the sequence. The second gRNA for pair 1 

targets amino acids 26 through 32 of p66Shc, while the second gRNA targets amino acids 

50 through 57. Both pairs of gRNAs resulted in deletions detectable by PCR 

amplification of genomic DNA in transfected mESCs (Fig. 4-1B). P66Shc deletion was 

verified by immunoblotting (Fig. 4-1C). PCR products generated by genomic DNA 

amplification were then sequenced to determine the precise deletions produced by each 

pair of gRNAs. Clone 4D (gRNA pair 1) has deleted genomic sequences from upstream 

of the p66Shc promoter up to amino acid 30 in coding exon 2, while clone 10D (gRNA 

pair 2) is missing genomic sequences from upstream of the promoter up to amino acid 71 

in coding exon 2 (Fig. 4-1D). Deleted sequences were similar between clones using the 

same pairs of guide RNAs with the exception of clone 10D2. Clone 10D2 retained 

approximately 30bp of genomic sequence upstream of the deletion in clone 10D. 

However, a 66-kDa band is undetectable in protein lysates from clone 10D2, 

demonstrating that p66Shc is not translated in this clonal line. Predicted off-target effects 

of the gRNAs used show that at least 3 nucleotide mismatches with off target genomic 

DNA sequences is required for gRNAs to bind and to produce off-target Cas9 editing 

(Table 4-3). Our genotyping results thus demonstrate that we have successfully generated 

several p66Shc-specific knockout mESC lines with our targeting strategy. 

4.3.2 Altered pluripotency marker expression in p66Shc knockout 
mESCs 

P66Shc knockout did not alter mESC colony morphology or cause mESCs to 

spontaneously differentiate at a higher frequency than controls when maintained in  
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Figure 4-1. CRISPR-Cas9 knockout of p66Shc in mESCs. 

(A) Structure of wild type Shc1 indicating the targeting sequences of the gRNA pairs. 

PAM sequences are blue and underlined, while the gRNA sequences are red. The 

predicted deleted region between the gRNA pairs is indicated with the dashed line 

between the gRNAs. (B) Gel electrophoresis of genomic DNA PCR amplification to 

detect Cas9-induced deletions (WT = wild type R1 mESCs; 10D, 10D2, 8A, 4D = p66Shc 

knockout mESC clonal lines). (C) Immunoblotting for total Shc to detect p66Shc 

knockout. (D) Sequencing of deleted regions from each gRNA pair. Dashed lines indicate 

deleted sequences. Size of deleted sequences are in parentheses.  
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serum/LIF medium and on a MEF feeder layer (Fig. 4-2). To determine if p66Shc 

knockout mESCs maintained pluripotency, we investigated the expression of 

pluripotency-associated markers in knockout mESCs by immunofluorescence and 

confocal microscopy, and by qRT-PCR. Knockout lines 4D, 10D, and 10D2 all had 

detectable OCT4 immunostaining comparable to wild type mESCs (Fig. 4-3). SOX2 was 

detectable in p66Shc knockout mESCs but restricted to the edge of cell colonies in 

knockout clonal 4D and 10D cell lines. Similarly, NANOG expression was detected at 

the edge of mESC colonies in knockout line 10D, while wild type mESCs had detectable 

NANOG expression throughout most of the cell colonies. NANOG expression was 

undetectable in knockout line 4D and reduced in knockout line 10D2. Preliminary 

experiments (n=1) demonstrate that NANOG fluorescence intensity is restored in 

knockout line 4D transfected with a p66Shc-HA expression plasmid, supporting that the 

loss of NANOG expression is due to p66Shc knockout and not due to off-target effects of 

CRISPR-Cas9 (Fig. 4-4). P66Shc knockout lines had significant differences in the 

relative abundance of naïve (Rex1, Nanog, Dppa3, Nr5a2, Fig. 4-5A) and primed (Fgf5, 

Otx2, Zic2, Brachyury, Fig. 4-4B) transcriptional markers compared to wild type mESCs. 

Knockout line 4D had significantly decreased transcript abundance of Rex1, but 

significantly increased Nanog transcript abundance (p<0.05, Fig. 4-5), and no significant 

changes in transcriptional abundance of primed markers compared to wild type mESCs. 

Knockout line 10D had significantly decreased transcript abundance of Dppa3 and 

significantly increased transcript abundance of the primed markers Fgf5 and Otx2 

compared to wild type mESCs (p<0.05, Fig. 4-5). Our results thus suggest that knockout 

of p66Shc alters the expression of pluripotency-associated markers compared to unedited 

controls.  

4.3.3 p66Shc knockout upregulates markers of mesoderm-
derivatives during spontaneous embryoid body differentiation  

We next determined if the changes observed to the pluripotent state of p66Shc knockout 

mESCs affected their differentiation capacity. To test this, we performed an EB 

differentiation assay and investigated which lineages emerged spontaneously during 

differentiation. After a 72-hour period of EB aggregation, EBs were plated on gelatin   
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Figure 4-2. p66Shc knockout does not change morphology of mESCs cultured on 

MEFs in serum/LIF conditions. 

Phase contrast images of unedited (R1 wild type) and two p66Shc knockout lines (4D and 

10D). ESC colonies are shown grown on a MEF feeder layer. Scale bars are 100 µm. 
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Figure 4-3. Reduced SOX2 and NANOG expression in p66Shc knockout mESCs. 

Representative confocal microscopy images of mESC colonies stained for OCT4 (green), 

SOX2 (red), and NANOG (yellow). DAPI (blue) co-stains nuclei. Scale bars are 50 µm.  
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Figure 4-4. Reintroduction of p66Shc expression rescues NANOG fluorescence 

intensity in 4D p66Shc knockout mESCs. 

Representative confocal microscopy images of mESC colonies stained for HA (red) and 

NANOG (yellow). DAPI (blue) co-stains nuclei. Upper panels (+ p66Shc-HA) are 4D 

p66Shc knockout mESCs transiently transfected with 3 µg of p66Shc-HA expression 

plasmid, lower panels are non-transfected controls. Scale bars are 50 µm.  
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Figure 4-5. Altered expression of naïve and primed pluripotent markers in p66Shc 

knockout mESCs. 

(A) p66Shc knockout mESCs have significantly altered transcript abundance of the naïve 

pluripotent markers Rex1, Nanog, and Dppa3 compared to wild type mESCs (n=3 

biological replicates, mean ± SEM, 1W-ANOVA, different letters indicate statistically 

significant (p<0.05) groups). (B) p66Shc knockout line 10D has significantly increased 

transcript abundance of the primed markers Fgf5 and Otx2 compared to wild type mESCs 

(n=3 biological replicates, mean ± SEM, 1W-ANOVA, different letters indicate 

statistically significant (p<0.05) groups). MEFs (mouse embryonic fibroblasts) samples 

were included to control for MEF contamination during separation of mESCs from the 

feeder layer.  
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and differentiated for up to 14 days in medium without specific inductive signals. PCR 

array analysis for markers of mESC pluripotency and differentiation demonstrated that 

relative to wild type-derived EBs, p66Shc knockout (4D)-derived embryoid bodies 

upregulated transcriptional markers of mesoderm-derived lineages (T, Thy1, Tagln, Eng, 

Fgf2) and downregulated transcriptional markers of neuroectoderm-derived lineages 

(Pax6, Gfap, Scn1a, Sox2, Sox3) after 14 days of spontaneous differentiation (Fig. 4-6A). 

Transcripts displaying at least a 5-fold up- or down-regulation in the p66Shc knockout-

derived embryoid bodies were validated by qRT-PCR. Tagln and Fgf2 were significantly 

upregulated in p66Shc knockout-derived embryoid bodies, while Scn1a, Gfap, and Pax6 

were significantly downregulated relative to wild type-derived embryoid bodies after 14 

days of spontaneous differentiation (Fig. 4-6B). At 7 days post differentiation, Fgf2 was 

also significantly upregulated in p66Shc knockout-derived EBs relative to wild type 

controls, while Pax6 and Sox2 were significantly downregulated (Fig. 4-7A). Twenty-

four hours post adhering to gelatin (Day 0 of differentiation), there was no significant 

differences in analyzed transcripts between p66Shc knockout-derived EBs compared to 

wild type-derived EBs (Fig. 4-7B).  

To verify our characterization of cell lineages emerging from p66Shc knockout derived-

EB after spontaneous differentiation, we performed immunofluorescence and confocal 

microscopy using markers of mesoderm (T/Brachyury) and neuroectoderm (OTX2, 

PAX6, SOX2) at day 14, day 7, and day 0 of differentiation. At day 14 of differentiation, 

PAX6/Brachyury-positive projections emerged from wild type EBs that were not present 

in p66Shc knockout EBs. In contrast, structures that emerged from p66Shc knockout EBs 

had colonies of PAX6/Brachyury positive cells surrounded by Brachyury positive 

outgrowths (Fig. 4-8). At day 7 of differentiation, OTX2/Brachyury immunofluorescence 

appeared to increase in p66Shc knockout EBs, while OTX2 and Brachyury were 

restricted to the edges of the EB aggregate (Fig. 4-9). Furthermore, elongated 

PAX6/SOX2 positive cells emerged from wild type EBs, while PAX6/SOX2 positive 

cells were small and remained in compacted colonies in p66Shc knockout EBs (Fig. 4-

10). At day 0 of differentiation, both OTX2 and Brachyury were detectable in EBs 

formed from p66Shc knockout and wild type cells.  
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Figure 4-6. Embryoid bodies derived from p66Shc knockout mESCs upregulate 

markers of mesoderm derivatives and downregulate markers of neuroectoderm 

after 14 days of spontaneous differentiation. 

(A) Heat map displaying relative fold regulation of transcripts in p66Shc knockout EBs 

(4D) from day 14 of differentiation compared to wild type EBs at day 14. Transcripts are 

displayed from greatest fold upregulation (top, red) to greatest fold downregulation 

(bottom, blue) (n=1 biological replicate). (B) Validation of select genes showing greater 

than five-fold upregulation or downregulation from the RT2 qPCR array by RT-qPCR 

(n=3 biological replicates, mean ± SEM, * p <0.05, *** p<0.001 Student’s t-test).  
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Figure 4-7. Embryoid bodies derived from p66Shc knockout mESCs upregulate 

Fgf2 and downregulate neuroectoderm markers at day 7 of spontaneous 

differentiation. 

(A) Relative transcript abundance of Fgf2 and select neuroectoderm markers (Pax6, 

Sox2, Sox3) in wild type and p66Shc knockout (4D)-derived EBs at day 7 of spontaneous 

differentiation (n=3 biological replicates, mean ± SEM, *p<0.05, **p<0.01, n.s.: non-

significant, Student’s t-test). (B) Relative transcript abundance of Fgf2 and select 

pluripotency markers (Nanog, Pou5f1, Sox2) in wild type and p66Shc knockout-derived 

EBs at day 0 of spontaneous differentiation (n=3 biological replicates, mean ± SEM, 

Student’s t-test).  
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Figure 4-8. PAX6/Brachyury-positive projections emerge from wild type EBs and 

are absent in p66Shc knockout EBs after 14 days of spontaneous differentiation. 

Representative confocal microscopy images of wild type and p66Shc knockout (4D) EBs 

stained for PAX6 (red) and Brachyury (cyan). DAPI (blue) co-stains nuclei. White 

arrows indicate examples of Brachyury/PAX6-positive projections present in wild type 

EBs. Scale bars are 50 µm.  



137 

 

 

Figure 4-9. Brachyury and OTX2 is detectable in wild type and p66Shc knockout 

EBs after 7 days of spontaneous differentiation. 

Representative confocal microscopy images of EBs stained for Brachyury (cyan) and 

OTX2 (red). DAPI (blue) co-stains nuclei. Scale bars are 50 µm. 
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Figure 4-10. PAX6/SOX2-positive cells present in wild type and p66Shc knockout 

EBs after 7 days of spontaneous differentiation. 

Representative confocal microscopy images of EBs stained for PAX6 (red) and SOX2 

(cyan). DAPI (blue) co-stains nuclei. White arrows indicate examples of elongated 

PAX6-positive cells emerging from wild type EBs. Scale bars are 50 µm. 
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 However, OTX2 fluorescence intensity was visibly decreased in p66Shc knockout EBs 

compared to controls (Fig. 4-11). Our immunofluorescence and confocal microscopy 

results suggest that morphologically different cell types emerge from p66Shc knockout 

EBs compared to wild type-derived EBs, while the analysis of lineage-associated 

transcripts suggests that p66Shc knockout EBs upregulate markers of mesoderm 

derivatives and downregulate markers of neurectoderm derivatives relative to wildtype 

EBs.  

4.4 Discussion 
Here, we demonstrate that genetic knockout of p66Shc significantly alters the expression 

of pluripotency-associated markers. Specific deletion of p66Shc by CRISPR-Cas9 does 

not change morphology of mESC colonies but causes a consistent downregulation of 

NANOG expression detected by immunofluorescence that is rescued by reintroduction of 

p66Shc expression. Additionally, p66Shc knockout results in an upregulation of 

mesoderm-associated markers and a downregulation of neuroectoderm-associated 

markers relative to wild type controls during spontaneous differentiation of EBs. Our 

results suggest that p66Shc may be important for promoting the naïve pluripotent state 

observed in unedited mESCs, and the ability to differentiate into derivatives of all three 

germ layers in an unbiased manner. 

Three isoforms are transcribed from the Shc1 loci with shared sequences, and thus it is 

challenging to specifically target a Shc genetic knockout to one isoform. The only 

difference between the coding sequences of p66Shc compared to p52Shc/p46Shc is an N-

terminal extension to exon 2 (Migliaccio et al., 1999). However, the transcription of 

p52Shc/p46Shc and p66Shc is under regulation of two different promoters (Ventura et 

al., 2002). We are the first to use a genetic knockout strategy that targets the known 

promoter region of p66Shc and its transcriptional start site. Other studies have targeted 

p66Shc in mice by deleting the unique N-terminal CH2 domain (Migliaccio et al., 1999). 

However, this strategy has been shown to affect the expression levels of p52Shc/p46Shc 

in certain tissues, precluding investigation into the specific role of p66Shc (Tomilov et 

al., 2011). We selected knockout clonal lines that had unaffected levels of 

p52Shc/p46Shc protein relative to wild type controls to ensure that the observed 
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Figure 4-11. Reduced OTX2 fluorescence in p66Shc knockout EBs after 24 hours 

(Day 0) of spontaneous differentiation. 

Representative confocal microscopy images of EBs stained for Brachyury (cyan) and 

OTX2 (red). DAPI (blue) co-stains nuclei. Scale bars are 50 µm.  
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phenotype was due to the loss of p66Shc expression specifically. Supporting this, 

transient reintroduction of p66Shc expression restored NANOG expression in the 4D 

knockout line, an overlapping phenotype observed in knockout lines generated from both 

gRNA pairs. Our specific knockout of p66Shc in mESCs validates the targeting strategy 

our group is using to generate a transgenic p66Shc-loxP mouse model by flanking the 

promoter and transcriptional start site with loxP sites. Furthermore, CRISPR-Cas9 

knockout mESCs could be used to create full p66Shc knockout mice by blastocyst 

injection and chimera generation. 

P66Shc knockout mESCs remained capable of self-renewal as they maintained a 

pluripotent colony morphology with no overt tendency to differentiate over six passages 

when cultured on a MEF-feeder layer in serum/LIF medium, comparable to wild type 

mESCs cultured in parallel. However, the transcriptional abundance of selected naïve and 

primed pluripotency markers was variably and significantly altered in different p66Shc 

knockout mESC clonal lines compared to wild type controls. Interestingly, knockout line 

4D had significantly increased Nanog transcript abundance levels, which contradicts the 

reduced NANOG protein expression seen by immunofluorescence and confocal 

microscopy. Furthermore, Rex1 (Zfp42) is a known transcriptional target of Nanog and its 

expression should be maintained if Nanog expression is elevated (Shi et al., 2006). 

Interestingly, increased transcript abundance of Fgf5 and Otx2 in knockout line 10D 

suggests that it has a more primed pluripotent phenotype. However, it is known that 

mESCs cultured in serum/LIF conditions have dynamic expression of pluripotency 

markers and likely have a mix of naïve and primed characteristics (Manor et al., 2015). 

Variability in the changes in pluripotent markers could also be due to off-target effects of 

the CRISPR-Cas9 editing. Reintroducing p66Shc expression and determining if these 

transcripts return to wild type levels will confirm a gene-specific phenotype and elucidate 

any off-target effects. Our results suggest that p66Shc knockout mESCs may have exited 

naïve pluripotency and may have entered an intermediate stage between naïve and primed 

(e.g. formative pluripotency) (Smith, 2017). More stringent tests of pluripotency such as 

teratoma formation or chimera contribution should be used to determine the extent of 

alterations in pluripotency observed in p66Shc knockout mESCs. Additionally, we did 

not culture p66Shc knockout mESCs in 2i/LIF medium, which promotes and stabilizes a 
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more homogeneous naïve phenotype. It would be interesting to compare p66Shc 

knockout mESCs cultured in 2i/LIF compared to mESCs cultured in serum/LIF 

conditions to determine if the pluripotency markers assessed become comparable to wild 

type mESCs. 

A common, overlapping phenotype observed between three p66Shc knockout mESC 

lines is the reduced or undetectable expression of NANOG by immunofluorescence and 

confocal microscopy. The relative importance of NANOG for maintaining mESC 

pluripotency is controversial and appears to depend on the culture conditions. NANOG 

expression is dynamic in mESCs, as it is undetectable in a population of OCT4 positive 

cells, and isolated NANOG negative cells can regenerate colonies that become NANOG 

positive (Abranches et al., 2013; Chambers et al., 2007). NANOG knockout mESCs can 

self-renew but are more prone to spontaneous differentiation into primitive endoderm-

like cells (Chambers et al., 2007). NANOG is likely not required for pluripotency as 

iPSCs can be generated from NANOG-/- MEFs with characteristics of naïve pluripotency, 

particularly if the reprogramming medium is supplemented with ascorbic acid (Carter et 

al., 2014; Schwarz et al., 2014). NANOG blocks neural differentiation and can reverse 

mesoderm differentiation by repressing the expression of T/Brachyury (Suzuki et al., 

2006). Thus, we speculate that the bias towards mesoderm differentiation observed in 

spontaneous EB differentiation of p66Shc knockout mESCs may be due to decreased 

NANOG repression of mesoderm specification. However, we do not observe significant 

changes in T/Brachyury expression at our selected time points, and thus future studies 

will investigate if there is a relationship between decreased NANOG expression and the 

bias in spontaneous differentiation towards mesoderm derivatives seen in p66Shc 

knockout mESCs. 

Additionally, we observed that relative to EBs derived from wild type mESCs, EBs 

derived from p66Shc knockout line 4D had significantly lower expression of 

neuroectoderm markers (Pax6, Scn1a, Gfap, Sox2). Our results thus suggest that 

knockout of p66Shc biases spontaneous differentiation of EBs away from neuroectoderm 

lineages. Directed differentiation of p66Shc knockout mESCs will determine if p66Shc is 

required for neuroectoderm differentiation. Overexpression of p66Shc accelerates ESC 
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neural differentiation under neural-promoting conditions (Papadimou et al., 2009; Ying et 

al., 2003). However, it is not sufficient to cause spontaneous neural differentiation, as 

overexpression of p66Shc in pluripotency-maintaining conditions causes mESCs to adopt 

a colony morphology characteristic of naïve cells (Papadimou et al., 2009). This dual role 

of p66Shc may be due to regulation of signalling pathways important for both 

maintaining pluripotency and promoting differentiation, such as the MEK/ERK and 

Wnt/β-Catenin pathways. Maintaining active Wnt/β-catenin signalling through inhibition 

of GSK-3β promotes pluripotency and inhibits ectoderm differentiation. Overexpression 

of p66Shc in self-renewal conditions increases phosphorylated GSK-3β, causing its 

inactivation and the promotion of β-catenin signalling, which would further promote ESC 

pluripotency (Papadimou et al., 2009). Notably, phosphorylated ERK1/2 did not change 

with p66Shc overexpression in self-renewal conditions (Papadimou et al., 2009). One 

limitation of our study is that we did not investigate changes to signalling pathways in 

p66Shc knockout mESCs to determine the mechanism of p66Shc knockout in affecting 

mESC pluripotency and differentiation. Future studies will investigate whether the 

reverse, e.g., reduced phosphorylated GSK-3β and destabilization of β-catenin, occurs in 

p66Shc knockout mESCs, which would reduce their ability to differentiate towards 

neural lineages under the same culture conditions used by Papadimou et al. Interestingly, 

Fgf2 is upregulated at later stages of spontaneous differentiation (e.g. day 7 and day 14) 

in p66Shc knockout EBs, and therefore changes to FGF/MAPK/ERK signalling should 

also be investigated in differentiating p66Shc knockout EBs. Ultimately, these 

differentiation experiments must be repeated in additional p66Shc knockout mESCs to 

determine reproducibility and the extent of the effects of p66Shc knockout to mESC 

function. 
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Chapter 5  

5 General Discussion and Conclusions 

5.1 Discussion and Significance of Research 
In addition to promoting apoptosis and senescence in embryos exposed to stress-inducing 

culture conditions or agents, p66Shc is expressed throughout mammalian preimplantation 

development, suggesting an additional important physiological role in regulating early 

development. The overall hypothesis of my thesis is that loss of p66Shc expression in the 

mouse preimplantation embryo will dysregulate blastocyst development and mouse 

embryonic stem cell pluripotency. With my thesis work, I have advanced our 

understanding of p66Shc function both in mouse blastocyst development and the 

regulation of pluripotency by discovering a novel role for p66Shc in cell fate 

specification. The main findings that support my hypothesis and advance this knowledge 

are that: 

(1) P66Shc expression likely needs to be maintained at a level which promotes 

normal blastocyst physiology and cell fate specification. 

 

(2) P66Shc promotes the expression of pluripotency-associated markers in mouse 

embryonic stem cells. 

I have provided insight into the possible mechanisms by which p66Shc regulates 

blastocyst physiology in response to external stimuli (culture, oxygen tension), possibly 

through the generation of ROS which may in turn modulate cell signalling pathways such 

as the Wnt/β-catenin pathway. On the other hand, p66Shc may be acting as an adaptor 

protein in RTK/MAPK signalling, negatively regulating ERK1/2 activation and 

promoting a pluripotent or epiblast fate (Figure 5-1). 
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Figure 5-1. Summary of p66Shc functions and potential mechanisms in the mouse 

preimplantation embryo and mouse embryonic stem cells. 

Embryo culture and high oxygen tension cause an increase in p66Shc (green) expression 

in the mouse blastocyst, which correlates with increased superoxide (O2-) and decreased 

ATP production under the same experimental conditions. P66Shc may indirectly regulate 

the expression of lineage-associated markers through its role as an adaptor protein for 

receptor tyrosine kinase (RTK) signalling, leading to reduced activation of ERK and thus 

reducing GATA4 expression in the blastocyst inner cell mass. Another potential 

mechanism by which p66Shc may promote pluripotency is through ROS-mediated 

regulation of GSK3β activity, which in turn may promote nuclear β-catenin and the 

maintenance of pluripotency. Solid lines represent known effects, dashed lines represent 

putative mechanisms.  
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5.1.1 P66Shc expression likely needs to be maintained at a level 
which promotes normal blastocyst development 

I propose a model in which p66Shc expression must be maintained at a level that 

promotes normal preimplantation development. Aberrant increases in p66Shc transcript 

and protein abundance induced by embryo culture disrupt physiological processes such as 

metabolism (Chapter 2), and RNAi-mediated decreases in p66Shc disrupt lineage 

allocation in the blastocyst ICM (Chapter 3) (Figure 5-2).  

Quantification of p66Shc transcript and protein abundance during in vivo mouse 

preimplantation development demonstrated that p66Shc is normally upregulated at the 

blastocyst stage (Chapter 2). This was confirmed by the reemergence of p66Shc 

expression 96 hours after siRNA knockdown in the zygote (Chapter 3). Increasing 

atmospheric oxygen tension during embryo culture caused additional, de novo 

transcription of p66Shc in blastocysts, correlated with increased superoxide production 

and decreased ATP levels compared to in vivo controls. This is consistent with previous 

work demonstrating that bovine embryos with poor developmental outcomes (e.g. late 

cleaving) had increased p66Shc expression levels compared to embryos with good 

developmental outcomes (e.g. early cleaving) (Favetta et al., 2004). In bovine embryos, 

p66Shc levels are a cause rather than an effect of developmental competency, as siRNA-

mediated knockdown reduces permanent embryo arrest at the 2-4 cell stage (Betts et al., 

2014; Favetta et al., 2007). In contrast, I did not observe significant changes in mouse 

blastocyst development between oxygen treatment groups in this study or with siRNA 

knockdown of p66Shc (Chapter 3). Instead, my results suggest that culture-induced 

increases in p66Shc transcript and protein abundance coincide with altered metabolism. 

Altered metabolism is associated with poor developmental competency to the blastocyst 

stage which likely would also result in poor post-implantation development (Gardner and 

Harvey, 2015; Gardner et al., 2001; Wale and Gardner, 2012; Wale and Gardner, 2013). 

Interestingly, overexpression of p66Shc in multiple cell lines, including embryonic stem 

cells, did not affect cell viability, suggesting that increased p66Shc expression does not  
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Figure 5-2. P66Shc likely needs to be expressed at a certain level to promote normal 

mouse preimplantation development. 

Mouse preimplantation embryos expressing normal levels of p66Shc (e.g. developing in 

vivo, or scrambled siRNA injected) progress normally through blastocyst development, 

maintaining physiology and cell fate specification. Aberrant culture-induced increases in 

p66Shc expression, i.e. increasing oxygen tension in vitro, causes altered metabolic 

physiology in the blastocyst with increased production of superoxide (O2-) and decreased 

total ATP content. However, it is not known if cell specification in the blastocyst ICM 

significantly altered compared to controls. Knockdown of p66Shc expression causes 

altered cell fate specification with a significant increase in the proportion of PrE cells and 

a concomitant decrease in the proportion of EPI cells in the blastocyst ICM compared to 

controls. Thus, both elevated and low levels of p66Shc dysregulate blastocyst 

development. 
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promote apoptosis in non-stress inducing conditions (Migliaccio et al., 1997; Okada et 

al., 1997; Papadimou et al., 2009). Thus, increased p66Shc expression due to 

environmental insults, rather than experimentally overexpressing p66Shc, negatively 

affects embryo physiology and viability, and most interestingly the embryo is able to alter 

its response depending upon the insult and conditions it is placed under. 

Reducing p66Shc levels in mouse preimplantation embryos by siRNA-mediated 

knockdown affected blastocyst development by altering cell fate specification. These 

results significantly advance our understanding of p66Shc function in mammalian 

preimplantation development and reveal a novel role of p66Shc in cell fate regulation. 

Similar observations have been made with knockdown or knockout of genes involved in 

signalling pathways controlling cell fate specification in the ICM, such as FGF4/FGFR2 

(Kang et al., 2017; Krawchuk et al., 2013) GRB2 (Chazaud et al., 2006) and KLF5 

(Azami et al., 2017). Thus, it is likely that p66Shc regulates MEK-ERK signalling 

downstream of FGF4 in the inner cell mass to regulate the proportions of EPI and PrE 

cells. Accordingly, I observed a significant increase in cells expressing DUSP4, a specific 

transcriptional target of FGF4/MAPK, in p66Shc knockdown blastocysts compared to 

controls, suggesting inappropriate activation of MEK-ERK signalling in cells that were 

committed to the EPI fate. When p66Shc binds RTKs, ERK is not activated (Migliaccio 

et al., 1997; Okada et al., 1997),  thus I would predict that a reduction in p66Shc in ICM 

cells allows for increased ERK activation leading to the adoption of PrE fate. However, I 

did not determine the level at which p66Shc acts in this pathway, or whether p66Shc 

could also influence the activation of  other developmental signalling pathways that could 

cross-talk with the FGF4/MAPK pathway (e.g. through ROS signalling) (Lee and 

Esselman, 2002). Additionally, p66Shc knockdown embryos were cultured under optimal 

(e.g. 5% oxygen atmosphere) culture conditions. To potentially link the stress-related 

functions of p66Shc to blastocyst cell fate specification, it would be interesting to assess 

blastocyst lineage specification in embryos cultured at high (~20%) oxygen tension, 

which I have associated with aberrantly increased p66Shc expression. Embryos cultured 

at low (5%) oxygen contain a significantly increased percentage of ICM cells of total 

cells in the blastocyst compared to embryos cultured at high (~20%) oxygen and in vivo 

controls determined by differential propidium iodide staining (Karagenc et al., 2004; 
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Rinaudo et al., 2006), but no study to date has determined the  proportions of EPI vs PrE 

cells in these ICMs. 

Taken together, my results demonstrate that p66Shc is normally expressed in controlled, 

stage-specific levels throughout in vivo embryonic development, but aberrant increases 

above these levels due to exposure to the culture environment impacts blastocyst 

physiology or experimentally-induced decreases affects cell fate specification. 

5.1.2 P66Shc promotes the expression of pluripotency-associated 
markers 

A significant decrease in the proportion of Nanog-expressing cells in the ICM of p66Shc 

knockdown blastocysts suggests that p66Shc is critical for proper establishment and/or 

maintenance of pluripotency during blastocyst cell lineage specification. However, it is 

not fully understood at which point in cell specification p66Shc may be acting on the 

pluripotent cell population in the ICM. Expression of the pluripotency markers OCT4 and 

SOX2 in the ICM are unaffected by p66Shc knockdown, suggesting that EPI identity is 

initially established in these embryos. OCT4 is linked to the promotion of PrE fate, and 

OCT4 levels must be carefully regulated in order to promote EPI cell identity and 

pluripotency in embryonic stem cells (Frum et al., 2013; Le Bin et al., 2014; Niwa et al., 

2000). The high levels of OCT4 fluorescence observed in p66Shc knockdown blastocyst 

ICMs suggests that elevated OCT4 expression promotes a PrE fate. P66Shc expression in 

the ICM thus is likely necessary for maintaining EPI identity and in preventing aberrant 

conversion to the PrE fate. A partial rescue of the Nanog-expressing population in the 

ICM of 64-128 cell blastocysts supports this, as some GATA4-positive cells became 

Nanog-positive as p66Shc knockdown blastocysts advanced their development. However, 

there must be a critical number of Nanog-positive cells required to promote ICM-derived 

outgrowth expansion in vitro, representing a threshold that is not met by a significant 

proportion of p66Shc knockdown blastocysts. To determine if p66Shc is required for the 

establishment of pluripotency, iPSC generation must be attempted in differentiated cells 

(e.g. MEFs) with a genetic knockout of p66Shc. 
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A limitation of the experiments performed in Chapter 3 is that p66Shc expression was 

transiently knocked down by siRNA, and expression was regained at the blastocyst stage. 

Thus, the full extent of p66Shc requirement for EPI fate cannot be elucidated with this 

study. Genetic knockout of p66Shc in preimplantation embryos will overcome this 

limitation (details in Future Studies section below). Furthermore, the complementary 

experiment, e.g. overexpressing p66Shc in mouse preimplantation embryos, should be 

performed to determine if the proportion of Nanog-positive cells significantly increases 

over GATA4-positive cells in the ICM. However, based on results from Chapter 2, the 

culture system currently used may require further optimization to prevent 

environmentally induced increases in p66Shc expression that may become additive with 

experimentally induced p66Shc overexpression, leading to increased embryo 

apoptosis/arrest and decreased development to the blastocyst stage.  

By using mouse embryonic stem cells as a cell model of the EPI, I determined the 

importance of p66Shc in maintaining pluripotency. In serum/LIF culture conditions, 

mESCs with a genetic knockout of p66Shc have consistently decreased or undetectable 

NANOG fluorescence compared to wild type mESCs that is rescued by reintroduction of 

a p66Shc expression plasmid. Together with significant changes to naïve and primed 

transcriptional markers, p66Shc knockout mESCs are evidently different than naïve 

pluripotent, wild type controls. However, they do not fully meet the criteria of primed 

pluripotency with regards to colony morphology, the consistent upregulation of lineage 

specification markers (e.g. T/Brachyury), and the consistent downregulation of naïve 

pluripotency markers (e.g. Rex1). ESCs cultured in serum/LIF conditions are 

intermediate on the pluripotency spectrum, i.e., less naïve than ESCs cultured in 2i 

(Hackett and Surani, 2014). Serum/LIF ESCs can contribute to the germline in chimeras, 

are Rex1 positive, but some cells have primed characteristics (e.g. are OCT4-positive but 

Rex1-negative) (Hackett and Surani, 2014). This heterogeneity in serum/LIF is 

metastable and interchangeable. However, p66Shc knockout mESCs in serum/LIF have 

properties that suggest they may be less naïve than wild type ESCs in serum/LIF. And 

thus, if p66Shc knockout mESCs are neither fully naïve nor fully primed, where do they 

fall on the pluripotency spectrum? 
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Recently, an intermediate state has been proposed that describes cells resembling the in 

vivo epiblast just after implantation (E5.0-6.25) that are transcriptionally different from 

naïve and primed ESCs. Termed formative pluripotency, these cells encompass more 

developmentally advanced ESCs that have acquired lineage competence and can respond 

to inductive cues faster than naïve ESCs (Mohammed et al., 2017; Mulas et al., 2017; 

Smith, 2017) (Figure 5-3). Formative cells express the pluripotency markers OCT4 and 

SOX2, but have low NANOG expression, and express the primed markers FGF5 and 

OTX2. Notably, formative cells display robust primordial germ cell-like cell (PGCLC) 

generation in response to BMP4, in contrast to BMP4 maintaining naïve ESC 

pluripotency and promoting differentiation in primed ESCs. Based on the expression of 

transcriptional markers, p66Shc knockout mESCs, particularly knockout line 10D, have 

exited the naïve pluripotent state and may be in the formative state. To confirm this, the 

transcriptome of p66Shc knockout mESCs should be characterized and compared to the 

existing naïve, formative, and primed transcriptomes. Formative pluripotent cells can 

contribute to chimeras and teratomas (Morgani et al., 2017) and therefore I expect 

p66Shc knockout mESCs to integrate into blastocysts and contribute to the formation of 

embryonic germ layers. However, the defining characteristic will be how p66Shc 

knockout mESCs respond to BMP4. If p66Shc knockout mESCs in serum/LIF 

differentiate into PGCLCs when treated with BMP4, this would provide strong evidence 

that they have exited naïve pluripotency and are in the formative pluripotent state. 

The change in pluripotent characteristics in p66Shc knockout mESCs may be related to 

the bias in spontaneous differentiation observed during embryoid body (EB) 

differentiation. Notably, EBs formed from p66Shc knockout mESCs showed a significant 

reduction in mature neuroectoderm transcriptional markers compared to wild type 

controls, suggesting that p66Shc may be required for either maintaining a pluripotent 

state that facilitates robust neural differentiation or is necessary for the early stages of 

neural differentiation. Supporting this, Papadimou et al. observed increasing p66Shc 

protein abundance in mESCs undergoing directed neural differentiation and that 

overexpressing p66Shc in mESCs accelerated neural differentiation (Papadimou et al., 

2009).  
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Figure 5-3. p66Shc knockout mESCs are likely in the formative pluripotent state. 

Naïve pluripotency encompasses ESCs cultured in 2i/LIF (ground state, or more naïve) 

and ESCs cultured in fetal bovine serum (FBS) and LIF (heterogeneous, or less naïve). 

ESCs in 2i/LIF can be maintained without serum in medium containing inhibitors of 

GSK3beta and MEK. FBS contains BMP4, which maintains self-renewal along with LIF 

in ESCs cultured in FBS/LIF. If treated with FGF/Activin, ESCs exit the naïve state and 

enter formative pluripotency, a developmental window that allows primordial germ cell-

like cell (PGCLC) differentiation if cells are treated with BMP4. Since p66Shc knockout 

mESCs in FBS/LIF display altered pluripotency marker expression that is different from 

wild type mESCs in FBS/LIF, they may instead be in the formative rather than naïve 

pluripotent state. ESCs then exit formative pluripotency with continued FGF/Activin 

stimulation into primed pluripotency. Here, treatment of ESCs with BMP4 will promote 

mesendoderm differentiation. 
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As BMP, Wnt, and Nodal signaling inhibit ectoderm differentiation, loss of p66Shc may 

promote these pathways resulting in a bias to mesendoderm over ectoderm 

differentiation. Furthermore, if p66Shc knockout mESCs are in the formative pluripotent 

state, they might respond more readily to autocrine and/or paracrine inductive signals 

promoting mesendoderm differentiation produced by the three-dimensional environment 

of EBs compared to wild type controls. Future studies include determining the 

mechanism by which p66Shc regulates Wnt/β-catenin signalling in mESCs (e.g. through 

ROS signalling, or cross-talk with RTK/MAPK signalling), and if p66Shc is necessary 

for directed neural differentiation. A detailed time course of pluripotency and 

differentiation transcriptional markers, and changes to components of the Wnt/β-catenin 

and MAPK/ERK pathways during spontaneous and/or directed differentiation will 

provide insight into the relative importance of p66Shc to the signalling pathways 

regulating mESC differentiation. Interestingly, p66Shc is also implicated in the 

proliferation and differentiation of more restricted cell types such as lung epithelia, 

skeletal muscle and osteoclasts (D'Agostino et al., 2018; Lee et al., 2014; Qu et al., 

2018), also likely through the regulation of signalling pathways critical to the 

differentiation of these cell types. 

Consistent with the proposed model of p66Shc knockout mESCs being more 

developmentally advanced than wild type mESCs, p66Shc knockdown blastocyst ICMs 

also appear to be further along their developmental program when compared, at the same 

time point, to control blastocyst ICMs. OCT4 is initially expressed in all cells of the 

blastocyst until restricted to the inner cells at E4.5 (blastocysts containing approximately 

100 cells) (Dietrich and Hiiragi, 2007). I observed that OCT4 restriction is faster in 

p66Shc knockdown blastocysts compared to controls. Furthermore, significantly more 

cells in p66Shc knockdown blastocysts express GATA4, a mature primitive endoderm 

marker, at the 32-64 cell stage compared to controls. Together with the significant 

decrease in Nanog-positive cells, it is possible that cells that were once Nanog-positive 

cannot maintain their EPI fate and instead default towards the PrE fate. Since ICM fate 

remains plastic until E4.0-4.25, these cells are capable of reverting to the EPI fate before 

irreversible commitment occurs (Yamanaka et al., 2010). Since I did not pursue the 

effects of p66Shc knockdown to in vivo peri- and post-implantation development by 
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embryo transfer experiments, it is not known if a more developmentally advanced ICM 

would necessarily negatively affect later development. However, p66Shc knockdown 

significantly affects the ability of blastocysts to form an ICM-derived outgrowth, 

suggesting a similar in vivo phenotype would be observed. 

Collectively, my results demonstrate that p66Shc regulates the maintenance of naïve 

pluripotency by maintaining the EPI cell population in the blastocyst ICM and by 

conserving naïve pluripotent characteristics in mESCs. Nanog expression is significantly 

affected in both the p66Shc knockdown blastocyst ICM and p66Shc knockout mESCs, 

and both appear to be more developmentally advanced than their respective controls. 

5.2  Future studies: generation of p66Shc-loxP mice 
Determining the full extent of p66Shc requirement for the establishing the pluripotent cell 

population in the blastocyst can be achieved by using knockout mouse models. To this 

end, I am generating a p66Shc-specific loxP transgenic mouse to use with oocyte-specific 

Cre-mediated recombination. I employed a similar targeting strategy to the one used to 

generate p66Shc knockout mouse embryonic stem cells (mESCs) (Figure 5-3A). A 

targeting vector was designed to insert the 5’ loxP site upstream of the known p66Shc 

promoter region and insert the 3’ loxP site in the 5’-untranslated region of the p66Shc 

coding sequence (see Materials and Methods in Appendix A). In collaboration with the 

London Regional Transgenic and Gene Targeting Facility (LRTGT), homologous 

recombination was then used to generate mESC clones with one targeted Shc1 allele 

verified by Southern blotting (Figure 5-3B). Chromosome counts were performed on 

clonal cell lines 2A12 and 2F12, which were then injected into blastocysts to form 

chimeras (Figure 5-4A). Pups born from blastocysts injected with 2F12 are shown in Fig. 

5-4B. Final steps in this process include: confirming germline transmission, breeding out 

of the neomycin selectable marker by Flp recombination, and establishment of a 

homozygous p66Shc-loxP mouse colony. 

Mating with Cre-expressing mouse lines and appropriate breeding schemes will be used 

to generate preimplantation embryos with maternal- and/or zygotic-knockouts of p66Shc. 

To generate a body-wide heterozygote knockout of p66Shc, p66Shc-loxP mice can be 
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Figure 5-4. Targeting strategy by homologous recombination to generate p66Shc-

loxP transgenic mice. 

(A) The wild type Shc1 locus will be replaced by homologous recombination with the 

targeting vector containing the neomycin selectable marker flanked by Frt sites and the 

conditional knockout region flanked by loxP sites. Cre recombination will delete the 

sequences between the two loxP sites, resulting in loss of part of coding exon 1. (B) 

Southern blots for the 5’ recombination end, the presence of a neomycin gene, and the 3’ 

recombination end confirm that 2A12 and 2F12 are correctly targeted mESC clones 

compared to wild type R1 mESCs. 
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Figure 5-5. Distribution of chromosome counts, and chimeras generated from 

targeted clones. 

(A) Panels are representative images of DAPI-stained chromosome spreads from targeted 

mESC clones 2F12 and 2A12. The bar graph displays the distribution of chromosome 

counts from 25 image panels for each clonal line. (B) Chimeric pups born from 

blastocysts injected with clone 2F12. Four chimeric pups are shown with agouti (brown) 

fur while a non-chimeric litter mate is shown with black fur. 
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crossed with mice expressing CMV promoter-driven Cre. P66Shc-loxP mice can also be 

crossed with ZP3-Cre mice to generate female offspring with an oocyte-specific deletion 

of p66Shc. These mice can then be mated with p66Shc+/- (heterozygote) males to 

generate embryos lacking maternal p66Shc (50% m-/z+) or lacking both maternal and 

zygotic p66Shc (50% m-/z-). These embryos will help determine the contribution of 

maternally stored p66Shc to mouse preimplantation development. To complement these 

studies, embryos lacking only zygotic p66Shc (m+/z-) can be generated by crossing two 

p66Shc+/- mice. 

Based on my results using siRNA knockdown I predict that zygotic (m+/z-) and 

maternal-zygotic (m-/z-) p66Shc knockout embryos will form blastocysts with inner cell 

masses composed of the majority or all primitive endoderm cells (NANOG-negative, 

GATA4-positive). This will then result in peri-implantation embryonic lethality. I predict 

that these blastocysts will also be incapable of deriving embryonic stem cell lines.  

5.3 Summary 
Cell fate specification and differentiation are integral events that occur in the 

development of a single cell to the hundreds of specialized cell types in the adult 

organism. The first two cell differentiation events in development occur in the 

preimplantation embryo. This ensures that a pluripotent cell population is established as a 

source of cells that will form the developing fetus. Our knowledge in how this occurs has 

been advanced through my discovery that a signalling adaptor protein, p66Shc, regulates 

blastocyst cell lineage specification. Knockdown of p66Shc significantly affects the 

development of the pluripotent epiblast in the blastocyst inner cell mass, and knockout of 

p66Shc in mouse embryonic stem cells significantly changes their pluripotent 

characteristics, resulting in a bias during their spontaneous differentiation. Collectively, 

this work expands on the diversity of cellular functions attributed to p66Shc and provides 

an avenue for further study on this adaptor protein in developmental biology. 
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Appendix A: Materials and Methods for generation of 

p66Shc-loxP mice 

Construction of mShc1 targeting vector 

The targeting vector was designed and synthesized by Cyagen Biosciences Inc (USA). 

Briefly, the targeting vector, homology arms, and conditional knockout region was 

constructed by PCR amplification with high fidelity Taq and BAC clones RP23-137J12 

and RP23-64L17 from the C57BL/6J library as templates. Mouse genomic fragments 

were assembled into the vector with recombination sites and selection markers as shown 

on the vector map (Figure A-1A). The vector identity was confirmed by DraIII digest 

(Fig A-1B). The targeting vector was linearized by NotI digest and electroporated into G4 

mouse embryonic stem cells by the London Regional Transgenic and Gene Targeting 

Facility (University of Western Ontario, London, Ontario, Canada). Electroporated 

mESCs were selected by neomycin resistance. Genomic DNA obtained from clonally 

expanded mESCs was then screened by Southern blotting. 

Southern blotting 

The Southern blotting strategy is outlined in Fig A-2. DNA probes were synthesized by 

PCR amplification of C57BL/6 mouse genomic DNA, cloned, digested and purified by 

gel extraction. Probe sequences are in Table A-1. 10 µg of genomic DNA was digested 

with 100 units of restriction enzyme overnight at 37ºC. The following morning, the 

digestion reaction mixture was spiked with 10-20 additional units of restriction enzyme. 

Digestion reaction mixtures were resolved by gel electrophoresis on a 0.8% agarose gel 

overnight at 30 V. The gel was stained with ethidium bromide to visualize DNA 

digestion and measure migration distances of the DNA ladder. The gel was then washed 

twice for thirty minutes in Buffer 1 (1.5M NaCl, 0.5M NaOH), rinsed with double 

distilled water, then washed twice for thirty minutes in Transfer Buffer (1M ammonium 

acetate, 20 mM NaOH). DNA was transferred overnight onto a nitrocellulose membrane 

(GE Life Sciences) using a Stratagene Posiblot apparatus. The membrane was dried for 

one hour, then baked for one hour at 80ºC in a vacuum oven. The membrane was  
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Figure A-1. Shc1 targeting vector. 

(A) Map of Shc1 targeting vector with DraIII digestion sites. (B) Vector identity was 

confirmed by DraIII digestion and linearized with NotI digestion.  
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Figure A-2. Southern blot strategy for genotyping targeted clones. 

The targeting vector introduces BamHI, KpnI, and EcoRI sites into the Shc1 locus 

sequence. Digestion and blotting using the indicated probes will result in wild type and 

targeted bands of different sizes in correctly targeted clones. 
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Table A-1. Sequences of DNA probes used for Southern blotting. 

5’ probe 
ACCGTACCAGCTTATCTTGCACCTTAACAGAAAACACTTGAAACCTCTA 

TGCGCGCCATGAATGATCAAGTATTTGAAAGGTATCTACCCACGGCCAC 

AGTCTTCATGCCACTCCAAGTCCTGTAAAAGCCTATCTAAAACAAGGCT 

GACAACTACTCATCTTTTTTATAAACTAAAAACCACCAACACTGAGGCT 

CTCTTAGAACCGTCCTTTCATCAAGAGCATGAAACTTTCAGTTCTGCAC 

GGGCTACCTTCTTTCTCCCAGCAGACTTTGAGATTTCAGTAACGCGAGC 

AGTTCCTATTAGGGAAATCGCCACAACAAAGTTGCTTTAGTGATGTGAA 

TTCCCA 
 

3’ probe 
CTGAAGGTGTGGTAAGTGTGACAGAGGTGTGGCAGGGGCTGGTGTGGT 

TTTGCTTTCTAGACTTCCTTTGCCGGAGGCTTCCTGTGGACTCCTTTG 

CCCTTGCTGGACACTTGCATCCACCTGCAGTGGCTCAGGGTTCCTTCC 

CTGCTGTCCTCGAGTCTGAGCTGTGTTCTTCTCAGTTCTGACCAGTCC 

TCACATCCCAGTGAAGCCTGCCAGCCCCCAGAGAGTGCTTACTTGATC 

TTTTGCTAAGTGAGGAAATGACACTGGAAAGGCAGTGGTGCCCAGTGT 

CAGTGGTTAGGGGGTGGAGACCCCAAATTTTCTCTTGCAAGAGGAGTC 

AGGAGCCTCCCTAGCTCCTTAGCTTCAAACTCAGG 
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incubated in Hybridization Buffer (4 mM EDTA, 8 mM Tris Base, 600 mM NaCl, 0.2% 

Ficoll 400, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, 0.1% sodium 

pyrophosphate, 0.025M Na3PO4, 0.2% SDS) for 1 hour at 65ºC. Oligonucleotide probes 

were labelled with 32P-dCTP using the Prime-It II Random Primer Labeling Kit (Agilent 

Technologies, USA) according to manufacturer’s guidelines. Briefly, 25 ng of probe 

DNA was mixed with random primers and water, then denatured for 5 minutes at 95ºC. 
32P-dCTP and dCTP buffer, and Klenow enzyme were added to the reaction, and 

incubated at 37ºC for 30 minutes. Labelled probe was purified using Sephadex beads and 

glass wool, and incorporation percentage was approximated using a Geiger counter. The 

membrane was then incubated in fresh Hybridization Buffer containing 25 ng of labelled 

probe overnight at 65ºC. The membrane was then washed three times in low stringency 

wash buffer (0.1% SDS, 300 mM NaCl, 30 mM Sodium Citrate pH 7.0) at room 

temperature, then washed three times in high stringency wash buffer (0.1% SDS, 30 mM 

NaCl, 3 mM Sodium Citrate pH 7.0) at 65ºC. The membrane was then exposed to film 

for autoradiography for 3 days at -80ºC prior to film development. 

Chromosome Counting 

Targeted mESC clones were incubated in ES cell medium containing 1 ug/ml colcemid 

(Karyomax, Life Technologies, USA) at 37ºC for 1 hour. Cells were then trypsinized, 

pelleted, resuspended in ice cold 0.56% KCl, then incubated for 6 minutes at room 

temperature. Cells were pelleted and resuspended by adding fixative solution (3:1 

mixture of methanol: glacial acetic acid) drop by drop with continuous mixing. Cells 

were pelleted, resuspended in 1 ml of fixative, and dropped from a height onto ethanol-

cleaned glass microscopy slides. Slides were allowed to dry for 1 hour, mounted in 

DAPI-containing mounting medium (Vectashield, Vector Laboratories), and examined at 

100X magnification. At least twenty-five spreads containing 39 to 41 chromosomes were 

photographed and counted for each clonal line. The ratio of spreads containing 39, 40, 

and 41 chromosomes was calculated to determine how likely germline transmission 

would be achieved after injection into blastocysts. 
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