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Abstract 

Despite the emergence of stemless humeral implants that utilize short fixation features to 

gain purchase solely in the metaphysis, the literature contains little information regarding 

the morphology and mechanical properties of the humerus’ proximal trabecular-canal, 

and how stemless implants impact bone response. The present work employs in-silico 

tools, including CT-based and Finite Element (FE) methods, to define parameters that 

may influence stemless implant design. 

The density and morphology of the proximal humerus were assessed using CT-derived 

point clouds of the trabecular-canal. Bone density was found to diminish 15-20mm 

beneath the humeral head resection and was greater peripherally. The depth, path and 

bounding diameters of the proximal trabecular-canal were also quantified and established 

the spatial constraints in which implants should be designed. 

To address the lack of consensus regarding the FE modelling of humeral trabecular-

stiffness, eight (8) FE models were constructed then duplicated six different trabecular-

stiffness relationships. The deviation induced in FE outcomes by stiffness relationship 

selection was quantified. It was determined that inhomogeneous stiffness definition is 

important; however, the anatomic site from which the stiffness is defined induced minor 

deviations in the implant-bone contact area, the change in bone stresses and the potential 

bone response following stemless reconstruction. 

Finally, with humeral FE modelling parameters defined, a series of ten generic stemless 

implants were designed with fixation features that were primarily central, peripheral or 

boundary-crossing. A population of five (5) cadaveric humeral FE models were 

constructed for each implant. Tradeoffs were found, with central implants producing the 

least resorbing potential, and peripheral implants maintaining the most implant-bone 

contact. Regardless of fixation feature design, predicted bone changes were most 

prominent within the lateral quadrant of the humerus, directly beneath the humeral head 

resection. 



 iii 

The present work advances the understanding of stemless humeral arthroplasty. The 

morphological parameters defined provide a spatial definition of the region in which 

stemless implants function. Through the development of humeral FE models, general 

trends in bone response following stemless reconstruction were noted; along with 

tradeoffs regarding the placement of stemless fixation features. These methods can be 

applied in the design of future stemless implants. 

Keywords: Shoulder Arthroplasty, Stemless Implants, Joint Reconstruction, Humerus 

Morphology, Finite Element Analysis  
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Chapter 1 

Introduction 

It is often necessary to rely on collaborative knowledge to advance the 

understanding of complicated questions. One example of this is the application 

of mechanical engineering tools, such as the Finite Element (FE) method, in 

the field of orthopaedics. With the improvement of computational power easing 

the burden of analyzing complicated models, in-silico engineering methods are 

becoming more popular. The present investigation relies on mechanical 

engineering tools, including three-dimensional (3D) modelling and FE 

analysis, to improve the understanding of stemless implants for humeral 

reconstruction during shoulder arthroplasty. This chapter provides an 

introduction to the anatomy of the shoulder (focusing on the proximal 

humerus), as well as an overview of shoulder arthroplasty and the engineering 

tools utilized within this thesis, followed by the specific objectives and 

hypotheses*. 

1.1 Anatomy of the Shoulder 

The shoulder is a complicated assembly that is comprised of three bones, along with 

several ligaments and musculotendinous units, which function together to form three 

principle joints (i.e., glenohumeral, sternoclavicular and acromioclavicular joints), as well 

as two lesser articulations (i.e., scapulothoracic and subacromial articulations) (Figure 

1.1). When acting in unison these anatomical constructs appear to function as a single 

joint, known more colloquially as the shoulder. The complicated motions performed by 

the shoulder, which can exceed the range-of-motion (RoM) of a simple ball-in-socket 

[1,2], are only possible through the collective action of these articulations. Together, the 

joints of the shoulder articulate with the support and action of soft tissues (i.e., ligaments, 

musculotendinous units, etc.) to provide the greatest RoM in all three anatomic planes  

                                                      
* Due to the clinical and technical nature of this investigation, a glossary can be found in Appendix A. 
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Figure 1.1: Joints of the Shoulder 

The shoulder is comprised of five joints, the primary of which is the glenohumeral 

articulation.  



   

 

3 

(coronal, sagittal and transverse) of any articulation in the body [1,2]. Unfortunately, the 

function and motion of the shoulder can be negatively impacted by the injury of any of 

the many sub-components outlined above [3]. 

1.1.1 The Glenohumeral Joint 

The glenohumeral joint contributes the largest RoM to the shoulder [4–8]. It is a ball-in-

socket style articulation that can be categorized into its osseous constructs (i.e., bones), 

soft tissues (i.e., ligaments, musculotendinous units) and joint capsule. It is formed by the 

articulation between the glenoid fossa (a dish-like cartilage-coated surface extending 

laterally outwards from the scapula) and the humeral head (a convex hemisphere atop the 

humerus that is angled medially, posteriorly and superiorly) (Figure 1.1). 

An understanding of the joint reaction forces that exist between the glenoid and humerus 

is critical to the analysis of shoulder arthroplasty. In-vitro analyses [9–11], along with 

musculoskeletal computational models [12,13], have been developed to quantify contact 

within the glenohumeral joint; however, due to the number of muscles that contribute to 

joint positioning, there exist too many unknowns to properly calculate the glenohumeral 

joint reaction force. Accordingly, Bergmann et al have developed a telemetrized shoulder 

implant to directly measure the in-vivo loads passing through the glenohumeral joint 

following arthroplasty [14–16]. While their findings are reflective of post-operative 

loads, the magnitudes and orientations of forces that they report are the most reliable 

source of glenohumeral joint reaction forces available in the literature; and suggest that 

loads within the shoulder can exceed a bodyweight, despite it not being a weight-bearing 

joint. 

1.1.2 Motions of the Shoulder 

Movement of the upper arm (i.e., the humerus) relative to the axial skeleton is commonly 

reported via four motions: axial rotation, elevation, forward flexion, and horizontal 

flexion-extension (Figure 1.2). These gross shoulder movements are the consequence of 

the independent motions of both the humerus and scapula. Axial rotation refers to motion 

about the diaphyseal axis of the humerus and can be classified as either internal or 

external rotation. Elevation refers generally to lateral movement of the arm away from   
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Figure 1.2: Basic Movements of the Shoulder 

The complex motions performed by the shoulder can be broken down into 

four basic movements: axial rotation, extension (abduction), forward flexion 

and horizontal flexion-extension.  
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the body. Though elevation solely in the coronal plane is possible, from a biomechanics 

perspective it is often advantageous to describe elevation which takes place in the 

scapular plane (~30 anterior); as this is where the deltoid and supraspinatus are better 

aligned to produce elevation [17,18]. For the remainder of this thesis, elevation within the 

scapular plane will be referred to as abduction. Abduction is typically limited to 167 for 

men and 171 for women, though it can exceed 180 [17]. Forward flexion is a special 

case of elevation in which the motion of the humerus is away from the body in the 

anterior direction. Finally, horizontal flexion-extension refers to the anterior-posterior 

movement of the humerus constrained to the horizontal plane; it is often associated with 

throwing motions in sports. The division between positions of horizontal flexion and 

extension is generally regarded as the scapular plane. In the case of a healthy shoulder, 

maximum glenohumeral stability can be achieved when the arm is placed in this plane 

and externally rotated [17]; however, the opposite is true for this position (and moving 

the arm further posterior) if the shoulder is compromised by anterior instability [19]. 

1.1.3 Glenohumeral Soft Tissue Constructs 

1.1.3.1 Passive Soft Tissues – Ligaments and Joint Capsule 

Stability of the glenohumeral joint is provided in-part by passive soft tissues including 

several ligaments, the glenoid labrum and the joint capsule, which are engaged through 

the relative movement of the glenoid and humerus, as opposed to contractile action. The 

glenoid labrum is a fibrocartilaginous tissue that surrounds the glenoid’s articular dish, 

increasing the depth and conformity of the glenohumeral articulation without resisting 

motion as much as an osseous construct, while also serving as an attachment site for 

several glenohumeral ligaments [1,20]. Another important passive soft tissue is the joint 

capsule, which is a thin membrane that surrounds the glenohumeral articulation, 

connecting the glenoid labrum and rim medially with the articular margin of the humeral 

head laterally. The capsule encloses the joint and provides nutrients and synovial fluid to 

the articulation. For the glenohumeral joint, the capsule can become tensioned when at 

the extremes of the shoulder’s RoM, but usually remains relatively loose [2]. 

Collectively, these passive soft tissues assist with stabilized joint motion in a way that 
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osseous constructs cannot; by resisting tensile loads while permitting compressive 

deformation [1,21–24]. 

1.1.3.2 Active Soft Tissues – Muscles 

The motions observed by the glenohumeral joint are a consequence of the action of 

several muscles working together to orient the joint in space and assist with stability. 

These muscles are generally categorized using the bones between which they originate 

and terminate. The scapulohumeral muscles (which originate on the scapula and 

terminate on the humerus) include: the coracobrachialis, deltoid, infraspinatus, 

subscapularis, supraspinatus, teres major and teres minor. Of these, the deltoid provides 

up to 50% of the total abduction moment for the humerus [23], and can be divided into 

independently functioning anterior, middle and posterior sub-sections, based on where it 

originates along the acromion (of the scapula) and the clavicle. The deltoid then traverses 

the glenohumeral joint and terminates on the lateral aspect of the humerus’ diaphysis at 

the deltoid tuberosity. 

Another important musculotendinous construct of the shoulder is the rotator cuff, which 

provides some abduction and axial rotation moments [3] as well as stability during joint 

motion [1]. It is composed of several scapulohumeral muscles (infraspinatus, 

subscapularis, supraspinatus and teres minor), along with their associated tendons, and 

some passive stabilizers (ligaments and the joint capsule). Though individual activation 

of these muscles is possible, the interconnected nature of the rotator cuff can cause the 

passive tension of some components to be influenced by the loading of others [25]. 

In addition, humerothoracic muscles (originate on the thoracic cage and terminate on the 

humerus) of the latissimus dorsi and pectoralis major can also influence glenohumeral 

motion. Both muscles are associated with adductive motions, as well as internal rotation 

of the humerus, but the latissimus dorsi assists with extension, while the pectoralis major 

contributes to flexion [26,27]. Three biarticular muscles (i.e., the short and long heads of 

the biceps brachii, and the triceps brachii) originate on the scapula, cross the 

glenohumeral joint, and terminate on the bones of the forearm (i.e., the ulna and radius). 
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While these biarticular muscles primary functions pertain to elbow motion, they can 

provide resistance to shear forces and assist with overall glenohumeral stability [17,28]. 

1.1.4 Glenohumeral Osseous Constructs 

1.1.4.1 Bone Structure and Elastic Properties 

Bone is an integral part of the body, supporting loads and working with soft tissues to 

carry the mass of the body throughout a variety of motions [29,30]. The long bones of the 

appendicular skeleton (i.e., the arms, legs, etc.) are composite structures that can be 

divided into two types: cortical and trabecular (Figure 1.3). Regionally, these bones are 

also segmented into three sub-sections corresponding to: the epiphysis (cortical and 

trabecular structures that are nearest to the articular surface of a bone), the diaphysis 

(cortical structure and hollow canal that forms the shaft) and the metaphysis (cortical and 

trabecular structures that transition between the epiphysis and diaphysis). 

As a material, bone is also a composite, formed of both organic (i.e., type I collagen, 

noncollagenous proteins, proteoglycans and phospholipids) and inorganic (i.e., calcium 

phosphate hydroxyapatite) matter that together provide the resilience and strength 

necessary to support and respond to the environment in which we live [31]. The organic 

collagen provides the bone with viscoelastic properties, varying the strength and stiffness 

of the structure as a function of loading rate. It is also important to note that bone is an 

optimized structure that is constantly undergoing cellular destruction and restructuring to 

provide adequate stiffness while minimizing mass [29,32]. Cells known as osteoclasts 

and osteoblasts are responsible for the removal (i.e., resorption) and addition (i.e., 

remodeling) of bone tissue, respectively [33,34]. 

Cortical bone is a dense and macroscopically uniform material that forms the outer ‘shell’ 

of the bone. On a microscopic scale, cortical bone is formed by elongated cells (osteons) 

that typically run parallel to the bone’s diaphysis. Trabecular bone is less uniform, 

macroscopically appearing sponge-like, and is composed of a branching structure of 

individual trabeculae, which produce an anisometric and inhomogeneous layout that is 

aligned to accommodate the transfer and dispersion of loads through the epiphyseal and 

metaphyseal regions of the bone [35].  
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Figure 1.3: Cortical and Trabecular Bone 

Bone is a composite material consisting of a hard, dense cortical shell and spongy 

trabecular bone. Long bones are further divided into the epiphysis, diaphysis and 

metaphysis. Figure adapted with permission from “Principles of Human Anatomy” 

12th edition by Tortora (see Appendix B).  
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The compressive and tensile stiffness of a structure is defined by its elastic (i.e., Young’s) 

modulus (commonly denoted by the letter ‘E’). Due to its macroscopic homogeneity, 

cortical bone is generally regarded as having a constant stiffness of approximately 20GPa 

[36–38]. Conversely, the stiffness of trabecular bone varies both by region, and the scale 

at which it is investigated. It can be a challenge to test the stiffness of individual 

trabeculae; however, regionally varying stiffness has been well correlated with changes in 

apparent bone density [39–42]. Accordingly, Computed Tomography (CT) imaging 

techniques are commonly used to quantify regional shifts in bone density, through the use 

of CT scans that are calibrated to convert radiation attenuation into bone density in small 

cubic regions known as voxels (typically on the scale of about a millimeter cubed). At 

this scale, correlations between trabecular bone density and elastic modulus are 

developed through compressive loading of small bone segments, whose elastic response 

is monitored under known loads [40,43–45]. 

1.1.4.2 The Scapula 

The scapula, more commonly known as the shoulder blade, is the triangular bone that 

connects the upper extremity to the axial skeleton. It aids in positioning the arm in space 

by hosting the initiation of several ligaments and musculotendinous units that are 

required for shoulder motion [20]. The compressive joint reaction forces of the 

glenohumeral articulation are transferred to the scapula by the concave cartilage covered 

surface of the glenoid fossa, which extends laterally from the scapula to meet the humeral 

head (Figure 1.4). In addition, the scapula has two lateral protrusions, the acromion and 

the coracoid, which extend superior to the glenohumeral joint on the posterior and 

anterior sides, respectively, and serve as insertion sites for several muscles. The scapular 

spine is another boney protrusion that forms a ridge-like structure along the posterior and 

superior aspect of the scapula. The curved shape of the scapula’s anterior face mates with 

the posterior rib-cage to form the scapulothoracic joint, which permits the scapula to slide 

dynamically over the ribcage during shoulder motion. This movement is commonly 

attributed 1/3 of the motion of total shoulder elevation, with the balancing 2/3 of 

elevation attributed to the glenohumeral joint [46]. 
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Figure 1.4: The Boney Anatomy of the Scapula 

The scapula (shoulder blade) is a triangular bone that transmits shoulder loads into the 

axial skeleton. Of particular interest is the glenoid fossa, which supports glenohumeral 

articulation.  
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1.1.4.3 The Proximal Humerus 

The humerus is the long bone of the proximal upper extremity, which connects the 

articulations of the shoulder and elbow. Its role is to transfer the loads of the upper 

extremity to the scapula, and to position the hand and arm in space. The key landmarks of 

the proximal humerus are the humeral head, the greater tuberosity, the lesser tuberosity 

and the bicipital groove (Figure 1.5). The humeral head is a hemispherical articular 

surface covered in cartilage (nearly uniform in thickness) [47,48], which is oriented 

posteriorly, superiorly and medially [20]. The bicipital groove is the trough formed 

between the greater and lesser tuberosities, which are lateral to the humeral head and 

serve as the insertion site for some of the rotator cuff muscles. In addition, the greater 

tuberosity provides mechanical advantage for shoulder motion by elevating supraspinatus 

above 30 of abduction and permitting deltoid wrapping below 60 [26,28]. Distal 

humeral landmarks include the deltoid tuberosity, where the deltoid inserts along the 

lateral side of the mid-diaphysis, and the medial and lateral epicondyles. While the distal 

epicondyles do not contribute to shoulder motion, they often act as landmarks that can be 

used to form humeral-based coordinate systems [49]. 

Several studies have been undertaken to quantify the gross structural morphology of the 

proximal humerus [50–54]. On average, the humerus is reported to be 33cm in length, 

with a head center offset posteriorly by 2mm and medially by 7mm from the humeral 

axis [50]. The humeral head is reported to have a radius of curvature ranging from 17mm 

to 32mm [50–54], and a thickness ranging from 12mm to 24mm [50–53]. It has been 

suggested by Robertson et al that morphological variability is an important factor that 

should influence implant selection and design [50].  As such, with the leading cause of 

shoulder arthroplasty being osteoarthritis, variation in the density and morphology of sub-

articular trabecular bone should also be of interest. This is supported by studies of hip 

arthroplasty, which demonstrate that bone density at the time of surgery is an important 

factor that is inversely correlated to peri-implant bone loss following joint reconstruction 

[55–58]. 

Unfortunately, to date few studies have investigated the regional variation of trabecular 

bone quality in the proximal humerus, as it pertains to arthroplasty [59–62]. Some studies  
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Figure 1.5: The Boney Anatomy of the Humerus 

The humerus is the long bone of the upper arm, whose proximal articular 

surface, the humeral head, articulates with the glenoid of the scapula to form the 

glenohumeral joint.  



   

 

13 

have reported regional variations in subchondral bone density in the proximal humerus 

using CT osteoabsorbtiometry (CT-OAM), which uses intensity plots of Hounsfield Units 

(HU) projected onto the articular surface [60,61]. These methods have demonstrated that 

71-79% of humeri exhibited bicentric density distribution patterns (with posterior and 

anterior maxima), and that 21-29% were classified with a monocentric (centro-posterior) 

maxima. Unfortunately, by projecting density data onto the articular surface of the 

humerus, these studies included tissue that was above the humeral head resection plane 

and prevented a truly 3D understanding of the density distribution. 

Yamada et al (2007) performed an age-based assessment of bone density in the proximal 

humerus and found that the medial region of every bone (n = 41) consisted of more bone 

tissue than the lateral side; however, the coordinate system of their region of interest was 

aligned with the humerus’ diaphyseal axis, and did not include all of the medial bone 

beneath a typical proximal humerus arthroplasty resection plane [62]. Similarly, Hepp et 

al found that the medial and dorsal aspects of the proximal humerus were of the greatest 

strength, but bone slices were again aligned with the diaphyseal axis as opposed to a 

coordinate system that would reflect bone tissue available post-resection of the humeral 

head [59]. This study also used a cadaveric population that was free of osteoarthritis and 

focal bone diseases. As such, the results may not be consistent with a clinical population 

receiving humeral arthroplasty. Only one study has investigated the distribution of 

humeral bone density in a 3D coordinate system that is relative to the humeral head 

resection plane [63]. In that 2017 investigation, Alidousti et al found that the humeral 

density increased peripherally and above the humeral epiphyseal plate, but the population 

size was small (n = 8), and again, they did not include osteoarthritic humeri. 

Accordingly, there is a need to identify the regional variation in bone density remaining 

post-resection during humeral arthroplasty within a clinically relevant population; and to 

map out canal-based landmarks to assist with the sizing and design of humeral implants. 

1.2 Shoulder Arthroplasty 

Originally developed by Neer in the 1950’s, shoulder arthroplasty (i.e., shoulder 

reconstruction or replacement) is a surgical procedure used to treat severe degradation of 
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the shoulder joint by replacing the damaged or diseased tissue with an engineered implant 

[64,65]. The purpose of this procedure is to alleviate pain for the patient, while restoring 

more natural biomechanics and RoM. Through reconstruction of the articular surface, 

shoulder arthroplasty attempts to mimic the glenohumeral joint by replacing the natural 

anatomy with a ball-in-socket style assembly (Figure 1.6). Traditionally, this is done by 

replacing the glenoid surface with an open dish, while the dome of the humeral head is 

reconstructed by a hemispherical component [66]. This form of reconstruction is referred 

to as ‘anatomic’ shoulder arthroplasty. The anatomic procedure can be divided further 

into two forms, anatomic Total Shoulder Arthroplasty (TSA), whereby both sides of the 

joint (i.e., the glenoid dish and humeral head) are reconstructed with implants; and 

hemiarthroplasty, where only one side (either the glenoid dish or the humeral head) is 

replaced by an implant, while the other side remains anatomically intact. In addition, to 

increase the utility of the deltoid muscle for abduction, the ‘Reverse’ Shoulder 

Arthroplasty (RSA) procedure has been introduced. This procedure is only performed as 

a total arthroplasty, as it reverses the natural ball-in-socket form of the glenohumeral joint 

by reconstructing the glenoid dish with a hemisphere and replacing the humeral head 

with a concave dish [66]. The focus of the present body of work pertains to the humeral 

component of anatomic shoulder arthroplasty. 

1.2.1 The Implants of Anatomic Shoulder Arthroplasty 

1.2.1.1 The Glenoid Implant 

Briefly, the glenoid implant, if required, is used to reconstruct the natural socket of the 

glenohumeral joint. It can be broken down into the ‘dish component’, which is the 

articulating surface of the implant, and the ‘fixation component’, which is generally 

formed by several pegs or a keel that protrudes medially from the backside of the dish; 

and is responsible for stabilizing the dish component within the underlying bone [66]. 

1.2.1.2 The Humeral Implant 

Similarly, the humeral component for anatomic shoulder arthroplasty can be subdivided 

into the ‘head (or articular) component’ and the ‘fixation component’. As above, the head 

component is responsible for maintaining unimpeded articulation with the glenoid, and is   
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Figure 1.6: Forms of Shoulder Arthroplasty 

When an intact joint is damaged, it can be reconstructed either to mimic the native 

anatomy (TSA, hemiarthroplasty) or to reverse the native anatomy (RSA).  
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generally formed by an axisymmetric hemisphere, that is usually constructed from a hard 

metal such as cobalt chrome [66]. While the humerus’ anatomic articular surface is not 

axisymmetric, the head component of humeral implants maintains an axisymmetric shape 

to provide a more uniform contact throughout the shoulder’s RoM. 

The fixation component of the humeral implant has been the focus of several design 

iterations. The style of fixation component can be used to classify humeral implants into 

three general forms: standard stemmed, short stemmed and stemless (i.e., metaphyseal) 

(Figure 1.7). Originally, humeral implants were introduced with long stems that were 

seated in the canal of the diaphysis [64,65], but distal cortical impingement was found to 

produce severe stress shielding that could lead to implant failure [67–70]. Accordingly, 

implant designers reduced the length of the implant stem to avoid seating the fixation 

component where the canal narrowed to the point of impingement. In 2004 a group of 

French designers introduced the first stemless humeral implant, the Total Evolutive 

Shoulder System (TESS; Biomet, Warsaw, IN, USA), which sought fixation exclusively 

in the trabecular bone of the metaphyseal region in the proximal humerus [71]. Since 

then, several other manufacturers have also released stemless implants for shoulder 

arthroplasty. 

1.2.2 Indications for Shoulder Arthroplasty 

Since its inception for the reconstruction of comminuted fractures to the humeral head 

[64], shoulder arthroplasty has become a treatment for several disorders of the shoulder 

including: osteoarthrosis, avascular (i.e., aseptic) necrosis, disorders of bursae and 

tendons, rheumatoid arthritis and other arthropathies of the shoulder (including rotator 

cuff tear) [65,72,73]. 

The incidence of total and hemiarthroplasty of the shoulder has been increasing in recent 

years [72–74]. In 2008 nearly 47,000 shoulder arthroplasty procedures were conducted in 

the United States (57% pooled: TSA and RSA, 43% hemiarthroplasty) [73], and as of 

2011 this number exceeded 66,000 (44% TSA, 23% hemiarthroplasty, 33% RTSA) [72]. 

Based on Schairer et al’s assessments in 2011, the leading indications for TSA were 

osteoarthritis (93%), followed by avascular necrosis (2%), inflammatory arthritis (1%)   
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Figure 1.7: Evolution of Shoulder Arthroplasty Humeral Components 

In the hopes of reducing the impact of humeral implants and to preserve more bone 

tissue, humeral implants have evolved from long (i.e., standard) stems, to short 

stems, and now stemless implants that seek metaphyseal fixation without 

diaphyseal penetration.   
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and proximal humerus fractures (1%). For hemiarthroplasty, osteoarthritis was again the 

most prominent indication, accounting for 45% of procedures, followed by proximal 

humerus fractures (38%), avascular necrosis (7%), malunion/non-union (3%) and rotator 

cuff tear (3%). Similarly, the top indications for RSA were osteoarthritis (59%), rotator 

cuff tear (21%), proximal humerus fractures (10%) malunion/non-union (3%) and 

revision arthroplasty (3%) [72]. In a review article by van de Sande et al in 2006, the 

incidence of revision surgeries were found to be 8% overall, but were significantly higher 

for hemiarthroplasty (15%) compared to TSA (6%) [75]. In the United States in 2007, the 

average hospital charges (excluding physician fees, and in January 2009 equivalent US 

dollars) were found to be $44,456 for TSA and RSA (pooled), and $41,801 for 

hemiarthroplasty [74]. As such, with the prominence of these procedures growing, 

implant performance (i.e., longevity) is an important issue that can impact future patient 

outcomes and health care costs. 

1.2.3 Complications of Shoulder Arthroplasty 

In a review by van de Sande et al in 2006, several common surgical complications were 

assessed. They found the most common perioperative (i.e., during surgery) complications 

reported on were nerve injury (average: 0.9% of cases, range: 0-8%) and periprosthetic 

fractures to the glenoid and humeral shaft (average: 1.2%, range: 0-8%). Following 

surgery, complications of deep infection (sepsis) were uncommon (0.8%: TSA = 0.4%, 

hemiarthroplasty = 0.9%). However, instability was found to be one of the most common 

issues of shoulder arthroplasty (TSA = 5%, hemiarthroplasty = 20%). Other postoperative 

complications included: proximal humeral head migration (TSA = 19%, hemiarthroplasty 

= 31%), severe pain (TSA = 9%, hemiarthroplasty = 9%), glenoid component loosening 

(2% requiring revision) and humeral component loosening (3.6% prevalence, accounting 

for 2.5% of all revisions). Glenoid erosion is a complication unique to hemiarthroplasty, 

due to the mating of an implanted humeral head with the native glenoid. It has been 

reported with a prevalence that increases with time (mean follow-up under 60 months = 

5%, greater than 60 months = 31%), with 41% of the cases of glenoid erosion eventually 

requiring revision surgery. Overall, van de Sande et al found that patients were 

unsatisfied in 9% of TSA cases, and 20% of hemiarthroplasty cases; and that patient 
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satisfaction decreased with long term follow-ups (greater than 60 months), for both TSA 

(83% to 67%) and hemiarthroplasty (80% to 54%) [75]. 

Some shoulder arthroplasty complications can be attributed, at least in part, to the design 

of the humeral prosthesis. In particular, long term concerns pertaining to the humeral 

stem include proximal bone loss arising from stress shielding, osteolysis and humeral 

stem loosening [67–69,75–78]. In addition, the seating of humeral stems can be a 

contributing factor to perioperative and post-operative humeral fractures [79,80]. Due to 

anatomic variation in the angle of the humerus’ proximal articular surface, it can be a 

challenge to balance the alignment of the stem with the diaphyseal canal, while 

maintaining proper head alignment. This issue has led to the development of stemmed 

prostheses with adjustable head-neck angles. Unfortunately, even with adjustable 

prostheses, revision of a well-fixed humeral stem can result in the damage and loss of 

humeral bone stock [81–84]. This reduction in bone tissue limits the reconstructive 

options and the potential success of the revision surgery [81,82,84,85]. 

Accordingly, with these concerns in mind, implant manufacturers have gradually reduced 

the length and invasiveness of stemmed implants in an attempt to maintain as much of the 

natural loading conditions and bone tissue as possible. The most recent evolution of 

humeral prostheses has been the introduction of stemless implants that seek fixation in 

the metaphyseal bone beneath the humeral head resection plane [71,86,87]. As a 

consequence, their alignment relies only on the humeral head resection, not on the 

diaphyseal canal, simplifying the surgical procedure and leaving more bone tissue in the 

event that revision surgery is required. These stemless implants should not be confused 

with humeral resurfacing implants that preserve the majority of the humeral head, 

resurfacing only the articular surface, making it challenging if not impossible to expose 

the glenoid, thereby complicating the joint reconstruction [87]. As stemless humeral 

implants utilize a standard humeral neck cut, they are a more natural design evolution for 

humeral arthroplasty; and are the focus of this thesis. 

1.2.4 Present State of Stemless Humeral Components 

1.2.4.1 Stemless Humeral Implants Currently Manufactured 
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Several implant manufacturers (Tornier1, Zimmer Biomet, Mathys, Arthrex, Lima and 

FX Solutions) have released stemless humeral implants in recent years [86,87]. While 

these implants all rely on fixation features that seek to establish purchase in the trabecular 

bone of the proximal humerus, their designs vary from simple pegs to elaborate 

branching structures (Figure 1.8). A certain amount of design variation is expected (for 

patent and other purposes); however, the diversity of fixation features in these first-

generation stemless implants suggests a lack of a concise understanding regarding how 

they should be shaped, and where these components should be seated in the available 

bone to best mimic the intact bone response. 

Specifically, if we classify fixation feature location into three categories: central, 

peripheral and boundary-crossing, the Arthrex Eclipse is centrally fixed, while the FX 

Solutions Easytech is fixed by a series of pegs that are independently either central or 

peripheral, with the remainder (Wright Medical Simpliciti, Mathys Affinis Short, Lima 

SMR Stemless and the Zimmer-Biomet TESS, Nano and Sidus) all relying on constructs 

that cross the central-peripheral boundary. There is a general consensus regarding the 

mode of implantation, with all of these implants (except the Eclipse) utilizing impaction 

(Eclipse is screwed into the bone). Additionally, they all rely on some form of surface 

texturing to promote implant-bone fixation (e.g., Grit blast, porous coating, trabecular 

titanium, etc.). However, the geometry with which they seek fixation varies greatly, with 

several (Simpliciti, Sidus, SMR Stemless and Affinis Short) electing finned designs, 

while some rely on branching arms that curl proximally from a central peg (TESS, Nano). 

Others utilize a threaded central peg (Eclipse) or a combination of barbed pegs 

(Easytech) for implant stability. A breakdown of these implant features is presented in 

Table 1.1. 

1.2.4.2 Performance of Stemless Shoulder Implants in the Literature 

Between 2010 and 2017 there have been several in-vivo assessments of anatomic 

stemless implants in clinical populations [71,88–102]. These studies agree that stemless   

                                                      
1 In March of 2015 the first stemless shoulder implant (Tornier Simpliciti, Wright Biomedical) was 

approved by the FDA for use in the USA 

(http://investor.tornier.com/releasedetail.cfm?ReleaseID=900866). 



   

 

21 

 

Figure 1.8: Variation in Stemless Humeral Implants 

Since their introduction to the market, stemless humeral implants have utilized a 

wide variety of fixation features, which have taken many forms and that seek 

fixation in different locations within the proximal metaphysis.  



   

 

22 

Table 1.1: Features of Currently Available Stemless Implants 

 
*FDA approved, but not yet commercially sold within the US.  
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implants are capable of reproducing the biomechanics (e.g., RoM, etc.) of a healthy 

shoulder, while offering patients pain relief. The most commonly reported clinical 

outcomes are the Constant score and RoM, which are summarized along with study 

details in Tables 1.2a/b. Several of these assessments have compared stemless to 

stemmed implants, and have indicated that the stemless implants perform just as well, if 

not better than their stemmed alternatives [89,90,92,98,102].  

Stemless implants have been documented as requiring less operative time than stemmed 

implants [90,102], and having lower estimated surgical blood loss [90]. In addition, these 

implants have done well in recreating the anatomic articular geometry of the humeral 

head [95,96,100], though it has been suggested that special care should be given to the 

positioning of the humeral head resection, as there can be a tendency to implant stemless 

prostheses in a varus position [96]. 

Only one clinical investigation directly compared two stemless implants (TESS and 

Nano; Zimmer Biomet); indicating that the two did not present with significantly 

different outcomes [95], though these findings are not surprising due to the similarity 

between the two designs. Finally, though complication rates were low, three studies did 

report reduced bone mineral density or increased radiolucency with a prevalence between 

29%-36% in the superior-lateral region of the trabecular bone adjacent to the implant 

[91,99,101]; this region was also where the highest rate of initial metabolic activity was 

reported by Berth et al in 2016 using SPECT/CT. 

In addition to the in-vivo results outlined above, in-silico (i.e., computer-based) FE 

methods can also be applied to assess the performance of stemless shoulder implants. 

While there have been several FE models of the shoulder construct [11,13,103–110], only 

two studies (by Razfar et al and Farve et al) directly assessed the performance of a 

stemless implant [111,112], with only one of these quantifying the bone’s response [111]. 

In 2016, Razfar et al published a FE comparison of generic standard, short and stemless 

implants within the proximal humerus. By utilizing identical meshing techniques, they 

were able to normalize bone stress results to the intact state, providing strength to their 

analysis. This technique is unique and permits direct element-to-element comparisons 

between the intact and reconstructed bone around an implant to assess the bone’s   
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Table 1.2a: Summary of In-Vivo Anatomic Stemless Humeral Studies (2010-2016) 

 
Note: ABD: Abduction, FF: Forward Flexion, ER: External Rotation, IR: Internal Rotation.  
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Table 1.2b: Summary of In-Vivo Anatomic Stemless Humeral Studies (2017-2018) 

 
Note: ABD: Abduction, FF: Forward Flexion, ER: External Rotation, IR: Internal Rotation.  
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response to reconstruction. Their analysis determined that there was a trade-off between 

cortical and trabecular bone stress; where reducing implant length (from standard to short 

and stemless implants) resulted in cortical humeral stresses that better matched the intact 

state but led to an increase in the change in trabecular stress. Unfortunately, their analysis 

was limited to a single stemless implant design, as the focus of the study was on implant 

evolution; however, these methods are easily adaptable to the study of further stemless 

humeral implant designs. 

Favre et al published two assessments of the Sidus stemless implant in 2016, one using 

in-vitro mechanical loading of the implant and the other a validation of an in-silico FE 

model. Their FE assessment focused on validating and quantifying stemless implant 

micromotion through a variety of daily activities, while their in-vitro assessment 

indicated that bone density and applied load, but not implant size, had significant effects 

on measured micromotion. Their in-vitro results indicated the importance of having 

adequate trabecular bone density when using a stemless prosthesis in order to reduce 

implant-bone micromotion [113]. These studies provide a good understanding of implant-

bone motion, and assist with comprehending the type of activities that should be avoided 

immediately following surgery (e.g., hammering a nail, lifting heavy weights, etc.). Their 

FE results indicated that 99% of the implant surface maintained micromotion levels 

within the threshold necessary for bone-ongrowth (i.e., <150m), suggesting that the 

stemless implant should maintain adequate fixation [112]; however, they did not present 

any information regarding the bone’s response to stemless reconstruction, and they did 

not assess different implant designs. Furthermore, they modelled the trabecular bone as a 

homogeneous structure within their FE assessment, which could alter bone strains if these 

models were to be used to quantify bone response in the future. 

In 2014 Schmidutz et al reported on the development of a FE model of the proximal 

humerus that was used to compare the geometry of two humeral resurfacing implants. 

Though different from stemless implants, as resurfacing implants do not resect the 

humeral head, this model does provide support for the use of the FE method in comparing 

multiple implant designs in the proximal humerus. They utilized volume-weighted 

compressive strains to compare the bone’s response to implantation of the resurfacing 
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prostheses and found that load transfer became more inhomogeneous following 

reconstruction, but that the implant with the peripheral conical-crown design appeared to 

induce a more homogeneous distribution than the centrally pegged design [110]. They 

also indicated a substantial decrease in compressive strain beneath the implant shell, 

suggesting bone resorption may be an issue following reconstruction. 

Though not directly comparable to stemless shoulder arthroplasty, a study by Long et al 

in 2006 used the FE method to assess the stress, strain and loading response of the femur 

to changes in the positioning of a stemmed articular resurfacing implant. They 

determined that a valgus stem orientation, while covering reamed trabecular bone, 

reduced the local stresses and strains associated with implant loosening [114]. Regardless 

of implant orientation and other variables assessed, the implants unloaded the femoral 

head, again demonstrating the utility of the FE method in predicting a potentially 

unfavorable bone remodeling response following joint reconstruction. 

Though not an assessment of humeral reconstruction, Dahan et al validated a FE model 

for the intact proximal humerus, which was constructed with 2mm quadratic tetrahedral 

elements and an isotropic inhomogeneous trabecular stiffness using uniaxial compressive 

loading. They reported strong correlations between experimental and FE results (slope = 

1.09; R2 = 0.98), providing support for developing humeral models with these mesh and 

material properties [109]. Other FE models of the shoulder have also been developed to 

simulate overall joint biomechanics [11,13,103,107] or to specifically investigate glenoid 

revision [104–106,108]. While these assessments and those outlined above are less 

directly comparable to stemless humeral arthroplasty, they all suggest that the FE method 

may be a useful tool capable of assessing the bone’s response to variation in parameters, 

such as the design of stemless humeral implants. 

Though the in-vivo results of stemless humeral arthroplasty have been promising to date, 

no study has directly compared several stemless implants that rely on different fixation 

features head-to-head. Accordingly, an evaluation assessing the bone’s response to 

varying stemless fixation feature geometry is warranted. The FE method is well suited to 

permit the direct comparison of implant designs within the same population, thereby 

increasing statistical power (i.e., repeated measures study construct). 
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1.3 Wolff’s Law and Stress Shielding 

Wolff’s Law, which states that bone resorbs and remodels in-part due to mechanical 

stimulus (i.e., loads) [32], suggests that when the loads that act on a section of bone 

diminish beyond, or exceed, some threshold, the bone will respond in-kind by resorbing 

or remodeling. In a reconstructed joint, the implant stem or keel (introduced to provide 

stability to the articular head) shares some of the load that was initially born solely by the 

bone [115]. This reduces bone stimulus, leading to the phenomena termed stress shielding 

[55,116,117], which can be a cause of bone resorption and can contribute to implant 

loosening [55,76,118]. For the shoulder, a radiographic study by Nagels et al reported 

evidence of stress shielding surrounding humeral implants in 9% of their cases (n=70); 

but as they only assessed variations in cortical bone, they pose that the true incidence of 

stress shielding surrounding shoulder implants may be higher [67]. Others have also 

documented bone resorption around humeral implant stems [68–70]. 

One mechanical measure that has been shown to correlate well with bone adaptation is 

Strain Energy Density (SED) [119,120]. As an object is distorted under load, the applied 

force is producing ‘external work’ (the multiple of force by distance) on the object; this is 

balanced by the strain energy, or ‘internal work’, that is stored within the object as it 

distorts. This strain energy is often expressed per unit of volume, yielding the SED 

(Eq.1.1 and Eq.1.2). 

𝑆𝐸𝐷 =
𝜎2

2𝐸
 (Eq.1.1) 

For linear isotropic materials undergoing small strains, SED can be expressed as, 

𝑆𝐸𝐷 =  
1

2
(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜎𝑥𝑦𝜀𝑥𝑦 + 𝜎𝑦𝑧𝜀𝑦𝑧 + 𝜎𝑥𝑧𝜀𝑥𝑧) (Eq.1.2) 

With iterative computer models using SED to accurately predict the density distribution 

of bone in response to loads [30,119,121,122], this is a promising engineering measure 

that can be used to estimate the bone’s potential response to arthroplasty. 
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1.4 Scientific Methods for Analyzing Shoulder Arthroplasty 

1.4.1 Radiographic Tools – Computed Tomography 

X-ray Computed Tomography (CT) is a medical imaging modality that uses radiation 

projected through a patient to quantify tissue attenuation (in Hounsfield Units, HU). To 

capture 3D attenuation data helical CT scanners rotate the radiation emitter and detector 

in a circular fashion while the patient moves linearly through the scanner, perpendicular 

to the plane of rotation (Figure 1.9) [123]. This data is then reconstructed into 3D voxels, 

whose attenuation is proportional to density. In orthopaedics, CT scanning has become 

common for quantifying the density distributions within bones, and for quantifying the 

geometry of bones for use in computer models of joint reconstruction [39,41,42,111,124]. 

CT scan attenuation is calibrated to apparent bone density through the use of calibration 

phantoms, which are placed alongside the patient at the time of data collection. These 

phantoms consist of two or more materials of known apparent density; then by measuring 

their attenuation in the scan, a linear relationship between apparent bone density and CT 

attenuation can be formed and applied to all voxels (Figure 1.9). Accordingly, CT 

imaging is a useful tool for non-invasively quantifying the geometry and density of bones 

for both medical and engineering applications. 

1.4.2 The Finite Element Method 

In the field of orthopaedic implant design and assessment, the use of in-silico 

computational methods such as Finite Element (FE) analysis, has become common 

[119,125–133]. These methods allow a variety of parameters (e.g., implant material 

stiffness, interface friction, loading constraints, implant geometry, etc.) to be altered 

relatively easily and evaluated at reduced costs compared to traditional prototype-

evaluation cycles. As these methods require discretized approximations of continuous 

structures, they must be constructed to resemble the geometry and properties of the true 

system as best as possible. Accordingly, FE analysis should be paired with in-vitro 

cadaveric testing in order to validate models. 
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Figure 1.9: Computed Tomography Scanning and Density Calibration 

A CT scanner’s emitter and detector rotate circumferentially around the 

patient, who is linearly slid through the scanner. Using a calibration phantom 

of known density, which is placed alongside the patient during the scan, CT 

attenuation can be calibrated to apparent bone density.  
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1.4.2.1 Finite Element Theory 

The elastic deflection of a simple bar in response to a force can be simply calculated 

using Hooke’s law, where deflection is equal to the applied force divided by the stiffness; 

however, analyzing the response of more complicated structures is not always so simple. 

The FE method is a numerical approach that breaks complicated geometry down into a 

finite number of simpler structures known as elements (hence the name ‘Finite Element’ 

method), which are connected at points called nodes, whose displacements can be 

individually determined from a series of algebraic expressions. Individual nodal 

displacements are then combined to estimate the overall response of the continuous 

structure at discrete locations (Figure 1.10) [134]. 

1.4.4.2 The Finite Element Mesh 

The act of dividing the geometry of the humerus into elements is known as ‘meshing’, 

with the term ‘mesh’ referring to the assembly of elements as a whole. There are two 

main types of elements that are commonly used when developing 3D models in 

orthopaedics: tetrahedral and hexahedral, which are triangular and rectangular prisms, 

respectively (Figure 1.11). Traditionally, hexahedral elements are viewed as more 

favorable because they converge faster, have good accuracy, and their alternative (i.e., 

linear tetrahedral elements) can exhibit excessive stiffness [135–137]. However, varying 

the configuration of the tetrahedral elements so that element edges are not linear, but 

quadratic (or higher order) can avoid these issues and provide results that are less 

susceptible to mesh refinement [135–139]. This is favorable, as it can be difficult to fit 

hexahedral elements to complex surface geometries, compared to tetrahedral elements. 

Accordingly, the quadratic tetrahedral elements are used for all FE investigations herein. 

Another important concern regarding the mesh of FE models is the element size. The 

mesh is a discrete approximation of a continuous construct; accordingly, the smaller each 

element is, the better the mesh can approximate reality. If the mesh is not refined 

sufficiently, it can be susceptible to the formation of artificial stress concentrations which 

may impact results. Unfortunately, there is a trade-off; the computational time for a 

model to complete is inversely proportional to the number of elements within the mesh.   
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Figure 1.10: Discretized Finite Element Mesh 

The FE mesh approximates a continuous structure by discretizing it into a finite 

number of elements, which are connected to each other via vertices known as nodes. 

This permits the approximation of strain throughout the structure by calculation of a 

discrete number of nodal displacements.  
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Figure 1.11: Tetrahedral and Hexahedral Elements 

Elements within a 3D FE mesh are generally classified as tetrahedral or hexahedral, 

taking the form of a triangular or rectangular prism, respectively.  
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As such, it is necessary to assess how sensitive each FE outcome measure is to the mesh 

size by performing a mesh convergence analysis. This analysis is performed by running 

the model at multiple mesh sizes to determine the element size at which further 

refinement does not vary the results appreciably. A complete mesh convergence analysis 

for modelling stemless shoulder arthroplasty is provided in Appendix C; the results of 

which indicate that 2mm is an appropriate element edge length for modelling stemless 

arthroplasty in the proximal humerus. 

Finally, as mentioned in Section 1.2.4.2, Razfar et al utilized a method for identical mesh 

development in their FE analysis of shoulder arthroplasty. This method retains the same 

bone mesh surrounding the implant in both the intact and reconstructed models. This is 

done by using the implant surface as a geometric boundary which divides the mesh into 

sub-sections, then merging nodes between the necessary mesh segments (Figure 1.12). 

This division and merging of basic mesh sub-sections permits the evaluation of FE 

outcomes on an element-to-element basis, thereby reducing the variation attributable to 

mesh changes when comparing the response of the two models. Accordingly, this method 

is adapted to each FE investigation within this thesis, and is included in the FE validation 

presented in Appendix D. 

1.4.2.3 Modelling Joint Reaction Forces 

As discussed in Section 1.1.1 the complexity of the shoulder makes the calculation of 

joint reaction forces an indeterminate problem. The most reliable source of joint reaction 

force data is the in-vivo telemetrized implant data reported by the OrthoLoad group in 

Germany (website: https://orthoload.com) [14–16,140,141]. They have developed several 

telemetrized implantable joint replacement systems that dynamically measure load within 

patients following surgery. From this data we can determine the breakdown of orthogonal 

loads (expressed as percentage of body weight) acting on the humeral head in the ISB 

coordinate system (Table 1.3). Since the glenohumeral joint’s purpose is to support joint 

motion in the most efficient way possible, it is assumed that surface friction within the 

joint is negligible [114]. This implies that the joint reaction force must act normal to the 

articular surface, with a line-of-action passing through the center of the humeral head. As 

such, the site of load application can be reconstructed by starting at the center of   
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Figure 1.12: Identical Mesh Preparation 

An identical bone mesh is formed for both the intact and reconstructed 

models of the humerus by using the implant geometry to segment the 

humerus; then meshing the bone and merging/deleting the necessary sub-

meshes to form the two models.  
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Table 1.3: Cartesian Ratios and Resultant Joint Reaction Forces for the Glenohumeral 

Joint. 

Abduction 

Angle 

Cartesian Force Components [% Bodyweight] Joint 

Reaction 

Force [N] 
Superior-

Inferior 
Posterior-Anterior 

Medial-

Lateral 

45 44% 21% 16% 440 

75 74% 34% 25% 740 

Note: Derived from Bergmann et al (2007).  
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the humeral head’s articular hemisphere and using the orthogonal components of the 

reported joint reaction force to quantify a loading direction-vector in 3D space. The 

intersection of this direction-vector with the humeral articular surface (or in the case of a 

reconstructed joint, the implant’s articular surface), is where the joint reaction force 

should be applied. The joint reaction force can then be applied at the magnitude reported 

by Bergmann et al and directed towards the center of the humeral head (Figure 1.13). 

Joint reaction forces change in magnitude and orientation throughout a joint’s RoM. 

Accordingly, for each position under investigation, the orientation and magnitude of the 

joint reaction force can be applied as outlined above. The breakdown of joint reaction 

force orthogonal components for shoulder abduction angles of 45 and 75 are presented 

in Table 1.3. In order to convert the loads from percentage bodyweight into a physical 

force (measured in Newtons, N) a uniform bodyweight of 88.3kg (representing 50th 

percentile male weight) was assumed for all analyses in this thesis; this was done to 

provide consistency across all models [111]. 

1.4.2.4 Modelling Bone as a Material 

While the material properties of implants are highly controlled, and macroscopically 

uniform (typically titanium or cobalt chrome alloys), the stiffness (represented by the 

elastic modulus [E]) of bone can vary regionally. It is generally accepted that the cortical 

shell of a bone can be simulated using a homogeneous modulus (approximately 20GPa) 

[36,38], and that trabecular bone stiffness should vary regionally as a function of the 

apparent density of the bone [37,38,40,44,59,106,142–145]. This is done using CT 

software (e.g., Mimics; Materialize Inc., Plymouth, MI, USA) that can import a bone 

mesh and assign material stiffness to each element independently using two equations: 

one that linearly calibrates the CT attenuation to apparent bone density, and one that 

calculates elastic modulus from its exponential relationship with apparent density [39–

43,111]. 

To date, a number of studies have been conducted to develop equations relating the 

elastic modulus of bone to the apparent density of CT scan data [38,40,44,106]. Some 

studies by Morgan et al and Keaveny et al are of particular interest to FE investigations, 

as they use only trabecular bone samples, and have compared equations derived from   
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Figure 1.13: Finite Element Joint Reaction Force Application 

To apply the joint reaction force to the surface of the FE model, a 

loading axis is formed using the Cartesian components of Bergmann et 

al’s telemetrized implant joint reaction force data. When forced to 

travel through the center of the humeral head, the intersection between 

the articular surface and the loading axis dictates the position of joint 

reaction force application.  
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several sites across the body in an attempt to better understand regional variation in 

trabecular bone mechanical properties [37,40,142–144]. Interestingly, these results 

indicate that density-modulus equations are site-specific, and should be developed for 

each bone separately [40,106]. As shown in Table 1.4, to-date a density-modulus 

equation has not been developed for the trabecular bone of the proximal humerus. Hepp 

et al (2003) performed density and strength (i.e., max force [N]) assessments of the 

proximal humerus but did not assess the correlation between density and elastic modulus.  

Moreover, their indentation testing was not aligned with the trabeculae (perpendicular to 

the resection plane) [59]. A study by Zumstein et al (2012) demonstrated that 

subchondral mineralization (i.e., attenuation [HU]) was linearly correlated to mechanical 

strength (i.e., force [N]) in the proximal humerus (0.35  R2  0.93), but again, they did 

not develop the necessary humerus-specific density-modulus relationship required for FE 

investigations [145]. 

In the absence of a density-modulus relationship specific to the proximal humerus, the 

site-pooled density-modulus equation developed by Morgan et al in 2003 has been used 

to construct a FE model of humeral arthroplasty [111]. In addition, a femoral density-

modulus relationship has predicted the linear elastic response of intact humeral FE 

models well [109]. However, as stemless implant fixation features interface with the 

trabecular bone of the proximal humerus, it is important to understand if the selection of 

the density-modulus relationship will affect the FE outcomes reported. This has not been 

investigated to date and is of particular interest for models that employ identical meshing 

techniques; as the same stiffness is applied to both intact and reconstructed models, 

perhaps diminishing the necessity for site-specific stiffness-relationships. 

As such, before choosing a density-modulus relationship for trabecular bone when 

modelling stemless humeral reconstruction, the variance attributed to stiffness 

relationship selection should be quantified to determine if it is substantial enough to 

warrant the development of a density-modulus relationship specific to the proximal 

humerus. 
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Table 1.4: Summary of several relevant density-modulus investigations. 

Reference Anatomic Site Method 
N 

(donors) 

Reported E 

[GPa] 

E = AB 

[GPa] 

Developed 

Carter and 

Hayes (1977) 

Human 

Trabecular (Site 

Unknown), 

Bovine 

Trabecular (Site 

Unknown) 

Indentation 100 

(N/A), 

24 (N/A) 

0.05 – 0.1 E=3.7903 

Schaffler et 

al (1988) 

Bovine 

Trabecular (Site 

Unknown) 

Uniaxial Tension 20 (N/A) 14.9 – 26.2 E=0.097.4 

Ulrich et al 

(1997) 

Human Femoral 

Head 

Experiment-FEA 6 (6) 3.5 – 8.6 N/A 

Rho et al 

(1997) 

Human 

Vertebra 

Nanoindentation 72 (2) 13.4  2.0 N/A 

Hou et al 

(1998) 

Human 

Vertebra 

Experiment-FEA 28 (28) 5.7  1.6 N/A 

Ladd et al 

(1998) 

Human 

Vertebra 

Experiment-FEA 5 (5) 6.6  1.0 N/A 

Anglin et al 

(1999) 

Human Glenoid Indentation 10 (8) 0.0067 – 

0.0171 

N/A 

Kabel et al 

(1999) 

Whale Vertebra Experiment-FEA 29 (1) 4.49 – 7.48 N/A 

Turner et al 

(1999) 

Human Distal 

Femur 

Nanoindentation, 

Acoustic 

Microscpoy 

30 (1), 

3 (1) 
18.1  1.7, 

17.5  1.1 

N/A 

Zysset et al 

(1999) 

Human Femoral 

Neck 

Nanoindentation N/A (8) 11.4  5.6 N/A 

Niebur et al 

(2000) 

Bovine 

Proximal Tibia 

Experiment-FEA 7 (7) 18.7  3.4 N/A 

Morgan et al 

(2003) 

Human 

Vertebra, 

Proximal Tibia, 

Greater 

Trochanter, 

Femoral Neck, 

Pooled 

Uniaxial 

Mechanical 

Testing-FEA 

61 (25), 

31 (16), 

23 (21), 

27 (23), 

142 (61) 

N/A, 

23  4, 

24  2, 

22  3, 

N/A 

E=4.7301.56, 

E=15.5201.93, 

E=15.0102.18, 

E=6.8501.49, 

E=8.9201.83 

Hepp et al 

(2003) 

Human 

Proximal 

Humerus 

Indentation 24 (24) N/A N/A 

Bayraktar et 

al (2004) 

Human Femoral 

Neck 

Experiment-FEA 12 (11) 18.0  2.8 N/A 

Austman et 

al (2009)* 

Human Ulna Bending-FEA 8 (8) 17 - 21 E=8.3461.5 

Zumstein et 

al (2012) 

Human 

Proximal 

Humerus 

Indentation-CT-

OAM 

32 (32) N/A N/A 

Vijayakumar 

et al (2016) 

Human 

Proximal Tibia 

Indentation 113 (5) 0.042 - 1.2 N/A 

*Young’s modulus reported for cortical bone, not trabecular bone.  
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1.4.2.5 Finite Element Outcome Variables 

Traditionally, FE models have been used to quantify terms such as the contact area and 

contact stress between two surfaces, stress at individual nodes and the strain between two 

nodes. However, several more elaborate FE outcomes have been developed. As outlined 

in Section 1.3, SED has been used to approximate the stimulus that bone uses to dictate 

when to resorb or remodel. Accordingly, FE models of bones have been developed that 

adapt to variation in SED to change the density distribution of bone through several 

iterations [30,119,122,146], though iterative models can be expensive, both 

computationally and in terms of time. Furthermore, with the advent of identical meshing 

techniques [111] it is possible to draw a direct comparison between stress and strains in 

the same element before and after joint reconstruction. 

Throughout this thesis, three primary outcome measures are assessed: (1) the percentage 

of the implant’s area that remained in contact with the surrounding bone during load 

application, (2) the volume-weighted absolute percentage change in bone stress, relative 

to the intact state [111] and (3) the time-zero potential bone response, as estimated by the 

percentage of bone volume that would be expected to (a) resorb, (b) remain unchanged or 

(c) remodel based on SED changes between the reconstructed and intact models 

[30,119,121,122]. Each of these outcomes is expressed as a percentage in order to permit 

the direct comparison of results between multiple implant geometries (as the available 

contact area and bone volume around the implant vary depending on the implant shape). 

Implant-Bone Contact Area 

Implant-bone contact area is represented as a percentage of the available contact area. To 

quantify this variable, the area attributed to each node (A) and the contact pressure 

(CPRESS) at that node is determined for the implant side of the implant-bone interface. 

Those nodes with CPRESS greater than zero are classified as being in contact. Then, the 

contact area percentage is calculated as outlined below (Eq.1.3). 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑟𝑒𝑎 [%] =  
𝐴𝐶𝑃𝑅𝐸𝑆𝑆 > 0

𝐴𝑇𝑜𝑡𝑎𝑙
× 100% (Eq.1.3) 
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Volume-Weighted Absolute Average Change in Bone Stress 

The volume-weighted absolute average change in bone stress outcome () provides a 

measure of the magnitude of bone stress change within a region-of-interest, relative to the 

intact state. The change in bone stress is calculated by directly comparing the intact and 

reconstructed stress state of each element within a specified bone region as follows: for 

each element within the region, the six stress components of the element are determined 

through FE analysis (i.e., 11, 22, 33, 12, 13, 23). The change in each of these stress 

components is calculated (xy; Eq.1.4), to account for both the magnitude and 

directional changes in stress. Then, the von Mises of the change in stress is calculated 

(VM; Eq.1.5). To ensure that the contribution of each element to the overall stress 

change in a region is appropriate, the change in stress is normalized to the intact values 

using a volume-weighted average (Eq.1.6). Since this outcome measure is an absolute 

change in stress, it does not indicate whether the stress state was overall higher or lower 

within the reconstructed bone; rather, it reflects the overall magnitude of change from the 

intact state. The idealized reconstructed state would perfectly mimic the stress of the 

intact bone, as such, a greater change in this bone stress outcome measure should be 

interpreted as less favorable.  

∆𝜎𝑥𝑦 =  ∆𝜎𝑥𝑦 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
−  ∆𝜎𝑥𝑦 𝐼𝑛𝑡𝑎𝑐𝑡

 (Eq.1.4) 

∆𝜎𝑉𝑀 =  √0.5 × [(∆𝜎11 − ∆𝜎22)2 + (∆𝜎22 − ∆𝜎33)2 + (∆𝜎11 − ∆𝜎33)2 + 6 × (∆𝜎12
2 + ∆𝜎23

2 + ∆𝜎31
2 )]

 (Eq.1.5) 

∆𝜎 =  
∑(∆𝜎𝑉𝑀 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ×𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡)

∑(𝜎𝑉𝑀𝐼𝑛𝑡𝑎𝑐𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡)×𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑔𝑖𝑜𝑛−𝑜𝑓−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
× 100% (Eq.1.6) 

Time-Zero Potential Bone Response 

While it is important to quantify the bone stress changes relative to the intact state, it is 

also important to understand if that change is expected to manifest as bone remodeling or 

bone resorption. To do this, the SED (U) of each element in a region-of-interest within 

the reconstructed model is compared to the SED of the identical element in the intact 

model. The undeformed volume of each element is also determined. If the SED of the 
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element is less than 45% of its intact counterpart it is classified as having resorbing 

potential; if it is greater than 155% of the intact SED it is classified as having remodeling 

potential; and if it falls between these two thresholds, it is classified as having the 

potential to remain unchanged (Eq.1.7). Since there have not been any SED-based 

adaptive models developed for the proximal humerus, the threshold value of 55% on 

either side of the intact SED was taken from a validated ulna model developed in 2013 

[119]. To permit comparison between implants with different peri-implant bone volumes, 

the potential bone response is represented by the percentage of regional bone volume that 

falls into each of these categories. 

𝑅𝑒𝑠𝑜𝑟𝑏: 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 < 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 (Eq.1.7) 

𝑅𝑒𝑚𝑎𝑖𝑛 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑: 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 ≤ 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 ≤ 1.55𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 

𝑅𝑒𝑚𝑜𝑑𝑒𝑙: 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 > 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 

where, 𝑈 = 𝑆𝐸𝐷 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

Since the models used in this assessment are quasi-static (i.e., non-iterative), 

classification of bone elements in this manner is only conducted for a single point in time 

(i.e., immediate post-operative state), this outcome represents the amount of bone volume 

that has potential to respond according to its SED classification, and the outcome is 

termed ‘time-zero’. Model iteration would be required to approximate the manifestation 

of bone density changes, which was excluded from the present analyses due to the 

associated computational expense and the number of implant models under investigation. 
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1.5 Thesis Rationale 

With the advancement of computational power, in-silico investigative tools are becoming 

more appealing for assessing complex structures numerically. One complex structure 

requiring assessment is the most recent evolution of shoulder arthroplasty implants: the 

stemless humeral component. While in-vivo assessments of these stemless implants have 

indicated promising results, the diversity present in implant fixation feature geometry 

suggests a lack of consensus regarding the best form for these implants. Consequently, 

our understanding of how these implants should be designed to best interact with the 

underlying bone of the proximal humerus requires advancement. 

The application of computational tools such as 3D CT reconstruction and the FE method 

can assist with better understanding the morphology of the underlying bone of the 

humerus and can be used to estimate how the bone may respond to stemless 

reconstruction when fixation feature geometry is varied. The ability to probe within the 

bone in a non-invasive manner uniquely suits in-silico methods to further our 

understanding of stemless humeral reconstruction; especially considering the ethical 

boundaries associated with assessing implants invasively within patients. Developments 

within the application of clinical CT tools and the FE modelling of the reconstructed 

proximal humerus are presented within this work. 

 

 

 

 

 

 

 

 



   

 

45 

1.6 Objectives and Hypotheses 

The overall goal of this dissertation was to develop a better understanding of the 

morphology of the proximal humerus, and to construct a FE model capable of simulating 

multiple stemless implant geometries for comparison and interpretation within that 

morphological understanding. 

1.6.1 Specific Objectives 

1. To assess the morphology of the underlying bone following proximal humerus 

articular reconstruction by: 

a. Quantifying the regional changes in apparent bone density within the 

proximal humerus’ trabecular bone in a coordinate system that is relevant 

to humeral head resection. 

b. Mapping out the regional change in canal features within the proximal 

humerus’ trabecular-canal in order to gain insight into the volume 

envelope that constrains the design of stemless humeral implants. 

2. To understand how variation in the modelling of proximal humeral trabecular 

bone stiffness influences FE outcome measures when using identical meshing 

techniques. 

3. To assess how variation in stemless implant fixation feature geometry influences 

the response of the post-reconstructed peri-implant bone of the proximal humerus. 

1.6.2 Specific Hypotheses 

1.  

a. The apparent density of trabecular bone within the proximal humerus is 

non-uniform and perhaps higher peripherally near the cortical-trabecular 

division, as well as proximally beneath the humeral articulation, 

decreasing to a plateau at a quantifiable depth beneath the humeral head 

resection plane. 
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b. The trabecular-canal of the proximal humerus follows a path whose depth, 

curvature and bounding diameter change in a quantifiable manner, thereby 

permitting pooled observations to be made regarding the volume envelope 

available for the design of stemless implants. 

2. Changing the inhomogeneous trabecular stiffness relationship applied to proximal 

humerus FE models, based on several anatomic-sites throughout the body, will 

result in low variation (i.e., standard deviations < 10%) in identical mesh-based 

FE outcome measures; and that these deviations will be less that those associated 

with transitioning to a homogeneous trabecular stiffness model. 

3. Changing the fixation feature geometry of stemless implants will result in 

quantifiable changes in the peri-implant bone response; specifically, that implants 

obtaining peripheral fixation and those that follow the natural curvature of the 

proximal trabecular-canal will produce more favorable bone responses compared 

to stemless implants with central, boundary-crossing or axisymmetric designs. 

1.7 Thesis Overview 

Chapter 2 describes an investigation conducted to quantify the regional variation in 

proximal humeral bone density in a resection-based humeral coordinate system using the 

reconstruction of clinical CT images, as detailed in Objective 1a in Section 1.6.1. Chapter 

3 then presents a study quantifying several morphological parameters of the proximal 

humerus’ canal path, also through the application of CT-based tools, as outlined in 

Objective 1b. Chapter 4 describes an analysis of the response of the identical mesh-based 

FE outcomes, as presented in Section 1.4.2.5, to variation in the modelling of trabecular 

stiffness in the proximal humerus, as outlined in Objective 2. Chapter 5 then presents a 

FE investigation into the peri-implant humeral bone response following stemless shoulder 

reconstruction with a variety of fixation features whose geometry is inspired by the 

morphological analyses completed in Chapters 2 and 3, as outlined in Objective 3. In 

closing, Chapter 6 provides a discussion of the work competed within this dissertation 

and concluding reflections on the implications of this work as well as the future 

directions for this research.  
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Chapter 2 

An Assessment of Proximal Humerus Density with 

Reference to Stemless Implants 

A version of this chapter has been accepted for publication [1]. 

2.1 Introduction 

Shoulder arthroplasty is an effective surgical treatment for osteoarthritis (OA), fracture, 

inflammatory arthritis, and cuff tear arthropathy. Implant manufacturers have recently 

designed shorter stem and stemless implants, which are less invasive and preserve bone, 

in the hopes of decreasing stress shielding and bone remodeling. 

Wolff’s Law states that bone is resorbed and remodeled in-part because of the loads that 

it is subjected to, which suggests that when the loads acting on a section of bone are 

diminished beyond some strain energy density threshold [2], the bone will be resorbed in 

response [3,4]. In a reconstructed joint, the implant stem or fins shares some of the load 

that was initially borne solely by the bone [5]. This load sharing can reduce bone 

stimulus, leading to the phenomenon termed stress shielding [6–8], which is a cause of 

bone resorption, and can contribute to implant loosening [6,9,10]. A radiographic study 

by Nagels et al reported evidence of stress shielding surrounding proximal humeral 

implants in 9% of the cases investigated (n=70); but they pose that the true incidence may 

be higher because they were unable to account for changes in the trabecular bone density 

[11]. 

With the concern of stress shielding in mind, implant manufacturers have gradually 

reduced the length of traditional stemmed implants to maintain as much of the natural 

loading conditions and bone as possible. Most recently, the development of ultra-short 

shoulder implants termed, “stemless” have been released by several implant 

manufacturers (Section 1.2.4) [12–18]. Whereas these stemless implants all seek to 

maintain implant fixation through establishing purchase in the trabecular bone of the 
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proximal humerus, their designs vary from simple pegs to elaborate branching structures 

(Figure 2.1). This disparity in the metaphyseal fixation features suggests that the optimal 

design for stemless shoulder implants (that will reduce stress shielding, while maintaining 

adequate implant fixation) has yet to be quantified; perhaps because there has not been a 

thorough investigation of the morphology of the underlying trabecular bone. 

Whereas much is known about the overall structural morphology of the proximal 

humerus [19–32], few investigations have focused on how that morphology may have an 

impact on arthroplasty [19,22]. Studies suggest that morphologic variability is an 

important factor that should influence implant selection and design [19,33]. As such, 

variation in the quality of subarticular trabecular bone, in which stemless implants seek 

fixation, may be of interest. This is supported by studies of hip arthroplasty, which 

demonstrate that bone density at the time of surgery is an important factor inversely 

correlated to peri-implant bone loss after arthroplasty [6,34–36]. Accordingly, proximal 

humerus implants should seek fixation in denser regions of trabecular bone. 

A few studies have investigated the regional variation of trabecular bone quality in the 

proximal humerus, as it pertains to arthroplasty [37–42]. Although there seems to be 

some consensus that the medial and dorsal regions of the proximal humerus consist of the 

highest density bone [37,40], only one study has begun to assess the regional variations in 

trabecular bone density in a three-dimensional coordinate system that is relevant to 

stemless shoulder arthroplasty (Figure 2.2); however, this study had a small sample size 

(n = 8) and did not include osteoarthritic humeri [42]. Accordingly, the purpose of this 

anatomic study was to quantify regional variations in trabecular bone apparent density 

(AVG) in a three-dimensional, stemless implant-relevant, coordinate system (Objective 

1a, Section 1.6.1). To do so appropriately, gender and osteoarthritic (OA) condition were 

accounted for as between-subject factors. 

2.2 Materials and Methods 

Shoulder computed tomography (CT) scans from 98 subjects were obtained and 

classified into three categories per their OA condition by an experienced shoulder 

surgeon (GSA), using a method that has been shown to be clinically reliable [43,44].   
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Figure 2.1: Selection of Currently Available Stemless Implants. 

A selection of currently available stemless implants is shown to demonstrate the 

variability present in metaphyseal designs for attaining fixation in the trabecular 

bone of the proximal humerus.  
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Figure 2.2: Stemless Relevant Cartesian Coordinate System 

As an example, the Tornier Simpliciti implant is presented to 

demonstrate that a stemless implant-relevant Cartesian 

coordinate system should be constructed with axes directed (A) 

superior-laterally, anteriorly and (B) perpendicular to the 

underside of the implant.  
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Subjects were categorized as either symmetrically (Walch Type A) osteoarthritic (15 

men: 6211 years; 16 women: 6914 years), Walch B2 osteoarthritic (11 men: 6411 

years; 15 women: 697 years), or non-arthritic (25 men: 7116 years; 16 women: 7012 

years). Non-arthritic subject scans were taken from a database of cadaveric shoulders, 

whereas the scans of the OA cohorts were obtained from patients who later underwent 

shoulder arthroplasty (see Appendix E for institutional ethics approval). 

Using Mimics Research software (Materialise Inc., Plymouth, Michigan, USA) CT 

DICOM (Digital Imaging and Communications in Medicine) data were reconstructed, 

and voxels corresponding to the proximal humerus were manually isolated from the 

surrounding soft tissues using masking features available within the program. The 

proximal humerus masks were then further divided into two regions corresponding to (1) 

the cortical shell, and (2) the proximal trabecular bone and canal (hereby referred to as 

the trabecular-canal). A shoulder surgeon (GSA) then manually selected the location of 

several landmarks on the proximal humerus to define the humeral head resection plane, 

along with superior-lateral and inferior-medial points on the resection surface (Figure 

2.3). The resection plane and points were then used to construct a proximal humerus 

coordinate system that was relevant to the positioning of stemless humeral implants (X: 

directed from inferior-medial to superior-lateral along the resection plane, Y: from 

posterior to anterior, Z: perpendicular to the resection plane and into the bone) (Figure 

2.3). 

All CT voxel information for the trabecular-canal was then exported as a 4-dimensional 

point cloud (i.e., [x, y, z, HU]) and analyzed using a custom LabVIEW code (National 

Instruments; Austin, Texas, USA). Voxel apparent density (g/cm3) was linearly calibrated 

from CT scan attenuation data (HU) (see Appendix F). The trabecular-canal was divided 

into 13 slices (3 above the resection plane and 10 below the resection plane), each 5mm 

thick, with dividing cuts parallel to the humeral head resection plane. The geometric 

center of each slice was used to further divide the slices into five sub-sections: a central 

circular section (with diameter equal to half of the canal diameter), and four peripheral 

quadrants corresponding to anterior, posterior, medial and lateral directions of the bone  
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Figure 2.3: Division of the Proximal Humerus 

Division of the proximal humerus into cortex and trabecular-canal sections was done 

manually for each subject. The humeral head surgical resection plane was used to 

construct a coordinate system relevant to stemless humeral implants. The x-axis points 

superior-laterally, the y-axis points anteriorly, and the z-axis points into the surgical 

resection plane.  
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 (Figure 2.4). The average apparent density (AVG) was then determined in each sub-

section of the trabecular-canal. 

Statistical significance was assessed using SPSS (version 23, IBM; Armonk, New York, 

USA). A 4-way mixed repeated-measures analysis of variance was used to compare 

AVG, with the threshold for significance set at P < 0.05 (with an effect size 10%). The 

repeated independent variables were slice depth and slice sub-section; the between-

subject factors were gender and OA classification. With a sample size of 98 statistical 

power was found to be 0.95 for all main effects and was 0.78 for all interactions. 

2.3 Results 

The average apparent density (AVG) was quantified in each sub-section of the proximal 

humerus. In general, AVG was found to be highest in the proximal slices and decreased 

distally down the canal. Slice depth was found to have a significant effect on AVG, with 

most of the proximal slices being significantly different from each other (P < 0.001; 

power = 1.00) (Figures 2.5 and 2.6). Only the most distal slices were not found to vary 

significantly from each other (9 vs. 10, 10 vs. 11, 10 vs. 12, 10 vs. 13, 11 vs. 12, 11 vs. 

13, 12 vs. 13). 

Slice sub-section was also found to have a significant effect on AVG, with the central 

sub-section having significantly lower AVG (0.080.40g/cm3) than all the peripheral (i.e., 

endosteal edge) sections (medial: 0.150.49g/cm3, lateral: 0.140.49g/cm3, anterior: 

0.150.49g/cm3, posterior: 0.150.56g/cm3; P < 0.001; power = 1.00) (Table 2.1, Figures 

2.5 and 2.6). In addition, the medial section had significantly greater AVG than the lateral 

and posterior sub-sections (P < 0.007; power = 1.00). Gender was also found to cause a 

significant difference in trabecular-canal AVG, with men having significantly greater 

AVG than women (men: 0.150.81g/cm3, women: 0.120.74g/cm3; P < 0.001; power = 

0.95). 

Osteoarthritis (OA) condition was not found to have an independent significant impact on 

AVG (P = 0.238; power = 0.30); however, it did interact with slice depth and slice sub-

section to produce significant differences (P < 0.001; power = 1.00). The slice depth-by-   
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Figure 2.4: Humeral Regions-of-Interest for CT 

Assessment 

A: Anterior-Medial view of the proximal humerus, 

highlighting how the trabecular-canal was divided into 13 

slices, each 5mm in thickness, with dividing planes parallel to 

the resection plane. This is also shown in anterior (C) and 

medial (D) views of the proximal humerus. B: A top-view of 

the fourth slice (resection plane) indicates how further sub-

divisions were made to separate each slice into 5 sub-sections: 

a central circular section (with diameter half that of the canal 

diameter for each slice), and four peripheral sections (anterior, 

posterior, medial and lateral).  
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Figure 2.5: Average Apparent Density Results for Male Subjects 

Results of meanstandard deviation average apparent density for male subjects. Separate 

graphs are provided for each sub-section of the proximal humerus' trabecular-canal 

(central, anterior, posterior, medial and lateral). OA classifications are indicated as 

different coloured bars (non-arthritic: Black, B2 OA: White, Symmetric: Grey).  
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Figure 2.6: Average Apparent Density Results for Female Subjects 

Results of meanstandard deviation average apparent density for female subjects. 

Separate graphs are provided for each sub-section of the proximal humerus' trabecular-

canal (central, anterior, posterior, medial and lateral). OA classifications are indicated as 

different coloured bars (non-arthritic: Black, B2 OA: White, Symmetric: Grey).  
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Table 2.1: Mean (standard deviation) average apparent density (g/cm3) of 

the trabecular-canal. 

  Non-Arthritic B2 OA Symmetric OA Overall 

Medial 0.13 (0.22) 0.16 (0.32) 0.16 (0.30) 0.15 (0.49) 

Lateral 0.15 (0.27) 0.13 (0.27) 0.15 (0.30) 0.14 (0.49) 

Anterior 0.13 (0.23) 0.15 (0.29) 0.16 (0.33) 0.15 (0.49) 

Posterior 0.13 (0.26) 0.14 (0.38) 0.14 (0.32) 0.14 (0.56) 

Central 0.08 (0.18) 0.08 (0.25) 0.09 (0.26) 0.08 (0.40) 

Males 0.14 (0.40) 0.14 (0.52) 0.16 (0.48) 0.15 (0.81) 

Females 0.11 (0.34) 0.13 (0.45) 0.12 (0.48) 0.12 (0.74) 

* Pooled across all slices and slice sub-sections. 
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OA condition interaction found that non-arthritic subjects had significantly higher AVG 

than B2 OA subjects in slices 2 and 3, but significantly lower AVG than B2 OA subjects 

in slices 9-13. Non-arthritic subjects also had significantly lower AVG than symmetric 

OA subjects in slices 8-13. No significant differences were found between B2 and 

symmetric OA subjects. Furthermore, the slice depth-by-OA condition interaction also 

found that most slice depths were significantly different from one another for non-

arthritic subjects (with the except of slices 11-13 with one another), whereas significant 

differences in slice depth were found only for slices 1-4 (with all slices), and slice 5 with 

slices 6-9. Symmetric OA subjects had significant density differences for slices 1-6 with 

all slices. Overall, more proximal slices were found to have higher AVG, with significant 

differences between slices persisting more distally for non-arthritic subjects compared 

with B2 and symmetric OA subjects. 

A slice sub-section-by-OA condition interaction also presented as significant (P < 0.001; 

power = 1.00). Within the medial sub-section, non-arthritic subjects had significantly 

lower AVG (0.130.22g/cm3) than both B2 (0.160.32g/cm3) and symmetric OA subjects 

(0.160.30g/cm3); whereas in the anterior sub-section, non-arthritic subjects were only 

found to have significantly lower AVG (0.130.23g/cm3) than only symmetric OA 

subjects (0.160.33g/cm3). For non-arthritic subjects, the central sub-section was found 

to have significantly lower AVG (0.080.18g/cm3) than all other sub-sections (medial: 

0.130.22g/cm3, lateral: 0.150.27g/cm3, anterior: 0.130.23g/cm3, posterior: 

0.130.26g/cm3), and the lateral sub-section was found to have significantly higher AVG 

than all other sub-sections. For B2 OA subjects, the central sub-section was again found 

to have significantly lower AVG (0.080.25g/cm3) than all other sub-sections (medial: 

0.160.32g/cm3, lateral: 0.130.27g/cm3, anterior: 0.150.29g/cm3, posterior: 

0.140.38g/cm3), the medial sub-section was found to have significantly higher AVG 

than all other sub-sections, and the lateral sub-section had significantly lower AVG than 

the anterior sub-section. Finally, for symmetric OA subjects, the central subsection was 

also found to have a significantly lower AVG (0.090.26g/cm3) than all other sub-

sections (medial: 0.160.30g/cm3, lateral: 0.150.30g/cm3, anterior: 0.160.33g/cm3, 
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posterior: 0.140.32g/cm3), and the medial sub-section had significantly higher AVG than 

the posterior sub-section. 

The only other interaction to produce significant differences was the slice depth-by-slice 

sub-section interaction (P < 0.001; power = 1.00); however, significances did not follow 

a discernable trend, with most slice depths being significantly different from one another 

in most sub-sections, and vice versa. 

2.4 Discussion 

Significant differences in apparent density (AVG) were found within the proximal 

humerus because of slice depth, slice sub-section and gender main effects, along with 

interactions between slice depth, slice sub-section and OA condition. Overall, AVG 

within the proximal humerus is greatest in the most proximal slices (i.e., closer to the 

articular surface), and gradually is reduced farther down the proximal canal. Figures 2.5 

and 2.6 indicate that the AVG is highest in the slices above the resection plane (slices 1-

3), and drops off by the second or third slice (~10-15mm) beneath the resection plane 

(slices 4-6), after which AVG plateaus to levels that are below those expected to contain 

trabecular bone (<0.1g/cm3) [45,46]. Unfortunately, this suggests that humeral head 

resection removes the region with the highest trabecular density, thereby forcing implants 

(stemless or stemmed) to seek fixation in relatively lower density bone. An equally 

important trend that presented in the data was that AVG in the central region was 

consistently lower than in any of the peripheral (i.e., anterior, posterior, medial and 

lateral) regions of the trabecular-canal. This, coupled with the understanding that peri-

implant bone density is inversely correlated to bone loss around an implant after 

arthroplasty [6,34–36], suggests that stemless implant fixation features should be 

designed and positioned such that they take advantage of purchase peripherally, and not 

just centrally. This peripheral density trend is a key finding that should be considered 

during the design of the next generation of stemless humeral implants. The medial sub-

section of the proximal humerus’ trabecular-canal also generally presented as the region 

with the highest apparent density, perhaps indicating a significant, but small in 

magnitude, AVG increase that could be applied to the design of stemless implant 
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metaphyseal features to improve fixation. These general trends were found for both men 

and women, but it should be noted that AVG was significantly lower in women compared 

with men, regardless of slice depth, sub-section or OA classification. 

Whereas this study investigated regional variations in the proximal humerus’ trabecular-

canal using a unique coordinate system that is oriented with respect to stemless implants, 

there have been other investigations of proximal humerus density in the past. In general, 

the results of these studies agree well with the present findings in accounting for 

coordinate system orientation changes and two-dimensional limitations. Some studies 

have reported regional variations in subchondral bone density in the proximal humerus by 

CT-osteoabsorbtiometry, which uses intensity plots of Hounsfield Units (HU) projected 

onto the articular surface [38,39]. These methods have demonstrated that 71%-79% of 

humeri exhibited bicentric density distribution patterns (with posterior and anterior 

maxima), and that 21%-29% were classified with monocentric (centro-posterior) 

maxima. Unfortunately, by projecting density data onto the articular surface of the 

humerus, these studies did not separate bone that was above and below the humeral 

arthroplasty resection plane; thereby making it impossible to separate subchondral bone 

that would not be present after arthroplasty. Accordingly, they were unable to give a truly 

three-dimensional understanding of the trabecular bone distribution, and given the 

present study findings, it is likely that the higher subchondral bone density would 

overshadow variations in bone density beneath the surgical resection plane. A study by 

Yamada et al (2007) performed an age-based assessment of bone density in the proximal 

humerus and found that the medial region of every bone (n=41) consisted of more bone 

tissue than the lateral side; however, the coordinate system of the region of interest was 

aligned with the humerus’ diaphyseal axis, and did not include all of the medial bone 

beneath a typical humeral head arthroplasty resection plane [40]. Similarly, Tingart et al 

also reported on the distribution of bone density in the proximal humerus in a coordinate 

system that was aligned with the diaphyseal axis, and found that the proximal and 

articular portions of the humeral head were of the greatest trabecular density [41]. Hepp 

et al also found that the medial and dorsal aspects of the proximal humerus were of the 

greatest strength, but bone slices were again aligned with the diaphyseal axis as opposed 

to a coordinate system that would reflect bone tissue available after humeral head 
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resection for arthroplasty [37]. Hepp et al also determined that strength was greatest in 

the cranial region and decreased caudally, which agrees with the present findings. Most 

recently, Alidousti et al, performed an assessment of proximal humerus bone density 

(n=8) in a coordinate system similar to the one suggested herein, and their work supports 

the conclusion that trabecular bone density is greatest proximally and peripherally [42]. 

This investigation is not without limitations. Whereas cadaveric subjects were obtained as 

‘fresh-frozen’, reducing the likelihood of bone degradation post-mortem, the use of 

cadavers as the non-arthritic control resulted in a non-arthritic group that was of higher 

age than the arthritic groups. In addition, quantitative CT was chosen as the method of 

investigation, as it provided a non-destructive mechanism for determining AVG within 

customizable regions of the proximal humerus; however, because of the diversity of 

subjects included in the investigation (i.e. cadaveric and preoperative patients with OA), 

clinical CTs were used as opposed to more detailed micro-CTs. Accordingly, the voxel 

dimensions in which CT attenuation was quantified were larger than they could have 

been; however, the mean slice thickness in the present study population was 0.90.3mm, 

which is far smaller than the slice sub-sections (5mm thick) within which the AVG was 

calculated. Despite the limitations associated with using clinical CT scans, the inclusion 

of pre-operative patient scan data is a strength of this study, as it permitted the assessment 

of AVG within a population that would eventually receive the procedure for which 

stemless implants are designed. Interestingly, OA classification was not found to 

contribute significantly to variations in AVG as a main effect; however, it did interact 

with the other parameters to showcase some differences in AVG between subjects 

classified as non-arthritic, B2 osteoarthritic and symmetrically osteoarthritic. This finding 

suggests that future investigations should take a closer look at the variance of proximal 

humerus bone density within additional sub-classifications of OA (e.g., A1, A2, B1, B2, 

C, etc.). 

The findings of this investigation also have implications for computational modeling of 

shoulder joint reconstruction for these implant systems. The variations in bone properties 

noted support the use of non-homogeneous models when using the finite element method 

to model shoulder arthroplasty. Typically, non-homogeneous trabecular bone models are 
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constructed by converting CT attenuation data into density, which can then be further 

converted to an elastic modulus that varies regionally from element to element on the 

basis of CT voxel attenuation. The application of a uniform elastic modulus for all the 

trabecular bone of the proximal humerus would neglect the slice depth and central vs. 

peripheral density differences that are present within the proximal humerus, very likely 

altering the results obtained when assessing humeral implants with the finite element 

method. 

2.5 Conclusion 

The apparent density of the trabecular bone and canal of the proximal humerus is non-

uniform. When oriented in a coordinate system relative to stemless humeral implants, 

apparent density is greatest above the humeral head resection plane, and decreases 

rapidly beneath the resection plane. Importantly, bone density also demonstrates a 

peripheral preference, whereby the central region of the trabecular-canal is always lower 

in density than the peripheral anterior, posterior, medial and lateral sub-sections. These 

findings have implications for the design of stemless shoulder implants, indicating that 

implants that seek purchase in the highest density bone should take advantage of the 

peripheral regions of the trabecular-canal within the first 15-20mm beneath the humeral 

head resection plane. 
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Chapter 3 

An Analysis of Proximal Humerus Morphology with 

Special Interest in Stemless Shoulder Arthroplasty 

A version of this chapter has been accepted for publication [1]. 

3.1 Introduction 

Shoulder replacement, or arthroplasty, was first popularized in the 1950’s by Neer, using 

a Vitallium implant to treat comminuted fractures of the proximal humerus [2]. For the 

proximal humerus, hemi-arthroplasty involves replacing the humeral head, while total 

arthroplasty involves replacing both the humeral head and the glenoid [3]. The incidence 

of shoulder arthroplasty has been increasing, in 2008 nearly 47,000 shoulder arthroplasty 

procedures were conducted in the United States [4], and as of 2011 this number rose 

above 66,000 [5]. Accordingly, with more shoulder arthroplasty procedures being 

performed, implant performance and longevity are becoming ever-more important issues 

that could have an impact on outcomes and costs. 

The extra-medullary anatomy of the proximal humerus (i.e., overall length, neck-shaft 

angle, degree of retroversion, humeral head height, radius of curvature, and head offset) 

is well understood [6–19]. Studies have sought to better quantify the overall shape of the 

humerus to comprehend structural changes that take place over time in response to 

activity, arm dominance, and aging. It has been suggested by Robertson et al that 

morphological variability is also an important factor that should influence implant design 

and selection [6]. Accordingly, the humeral morphological parameters quantified in the 

literature typically relate to the design of either the humeral implant stem, or the head 

component. For example, there has been substantial research on quantifying the neck-

shaft angle of the proximal humerus [9,12,16,19] because traditional implants seek 

fixation by a stem press-fit into the diaphyseal portion of the humeral canal. However, 

with the advent of shorter implants for humeral head reconstruction, the humeral 

geometry of interest is expanding. 
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In recent years, implant manufacturers have reduced the length of traditional stemmed 

humeral implants [20–27]. This reduction of implant stem length is most evident in the 

new generation of ‘stemless’ implants, which seek fixation in the most proximal region of 

the post-resected humeral metaphysis (Section 1.2.4). The metaphyseal characteristic of 

stemless implants allows fixation and central positioning in the sub-resection region of 

the proximal humerus, irrespective of the neck-shaft angle, the degree of retroversion, or 

the location of the humeral canal [22]. Accordingly, the primary region-of-interest for the 

placement and fixation of stemless proximal humerus implants is the bone directly 

beneath the humeral head resection plane (Figure 3.1). It follows that it is important to 

understand the spatial limits of the region of the proximal humerus in which the implant 

is placed. However, the morphology of this region-of-interest has not been well 

quantified in the literature. Therefore, the spatial limits of this region-of-interest must be 

defined by measuring the shifts in the proximal canal direction, the bounding diameters 

along the canal, and the canal depth beneath the center of the resection plane. 

Accordingly, the purpose of this anatomic study was to quantify morphological 

parameters of interest relevant to the design of stemless implants in the proximal humerus 

(Objective 1b, Section 1.6.1). 

3.2 Materials and Methods 

Shoulder computed tomography (CT) scans were obtained with ethics approval from 98 

subjects. Each was visually inspected for osteoarthritis (OA) by an experienced shoulder 

surgeon (GSA), and classified into one of three OA conditions: non-arthritic (25 men: 

7116 years; 16 women: 7012 years), Walch type B2 OA (11 men: 6411 years; 15 

women: 697 years) or symmetric (Walch type A) OA (15 men: 6211 years; 16 women: 

6914 years) using a clinically reliable method [28,29]. The non-arthritic scans were 

obtained from a database of cadaveric CT scans, whereas OA scans were pre-operative 

scans from patients who later underwent shoulder arthroplasty (see Appendix E for 

institutional ethics approval). 

CT Digital Imaging and Communications in Medicine (DICOM) data were reconstructed 

using Mimics Research software (version 19; Materialise Inc., Plymouth, Michigan, 

USA), and the proximal humerus was manually isolated from the surrounding soft tissues   
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Figure 3.1: Region-of-Interest for the Proximal Humerus 

The division between the cortical shell and the trabecular-

canal. The region-of-interest for the proximal humerus, as it 

pertains to stemless implant design, is the trabecular-canal 

directly below the resection plane.  
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using masking features available within the software program (Appendix G). Each 

humerus was then manually divided into two regions corresponding to: (1) the cortical 

shell, and (2) the combination of trabecular bone and canal (i.e., trabecular-canal) (Figure 

3.1). The same shoulder surgeon (GSA) then identified the location for the articular 

resection plane, and inferior-medial and superior-lateral points on the humeral head 

resection plane. These points were used to construct a proximal humerus coordinate 

system that the authors thought would best describe the proximal humerus in a manner 

relevant to shoulder reconstruction with a stemless implant. The coordinate system 

consisted of an x-axis directed from the inferior-medial point towards the superior-lateral 

point along the resection plane, a y-axis directed anteriorly, and a z-axis perpendicular to 

the resection (positively directed into the remaining bone; z = 0 corresponding to the 

resection plane) (Figure 3.2). The use of a subject-specific anatomic resection plane, as 

opposed to a standard cut at 30° of retroversion, was done to highlight the independence 

of the stemless implant from the humeral canal.  

To quantify the outcome measures of interest, the three-dimensional point cloud data for 

voxels corresponding to both the cortical shell and trabecular-canal were exported as text 

files, and were analyzed using custom LabVIEW scripts (National Instruments; Austin, 

Texas, USA). The trabecular-canal was divided into 13 slices (3 above the resection 

plane, 10 below the resection plane), each 5mm thick, with divisions parallel to the 

humeral head resection plane. The geometric center (xo,yo,zo) of each slice was then 

quantified, by averaging the coordinates of all points within each slice, to determine the 

frontal plane (i.e. x-z values) and sagittal plane (i.e. y-z values) directional changes along 

the canal path. At each point along the canal path, the fitted canal diameter (∅𝐶𝑎𝑛𝑎𝑙) was 

determined by positioning a circle (parallel to the resection plane) at the canal path center 

point, and expanding its diameter as large as possible without any part of the circle 

exceeding the inner canal (i.e., endosteal surface). 

The depth beneath the center of the resection surface (𝐷𝑅𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛) was determined as the 

average depth into the trabecular-canal that was contained within a 10mm-diameter 

cylinder whose central axis passed through the center of the resection plane. Furthermore, 

to quantify the hemispherical nature of the humeral head, the articular aspect ratio (∅: 𝐻)   
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Figure 3.2: Landmarks and Coordinate System for the 

Proximal Humerus 

Landmarks of the proximal humerus, the surgical 

resection plane, and the superior-lateral and inferior-

medial points, were used to construct a stemless implant-

relevant coordinate system. The x-axis is directed from the 

inferior-medial point to the superior-lateral point, the y-

axis is directed from posterior to anterior, and the z-axis is 

directed perpendicular to the resection plane (into the sub-

resection plane bone).  
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was determined for each subject by quantifying the approximate diameter of the resection 

surface (∅𝑅𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛) including the cortex, and the maximum height of the articular surface 

above the resection surface (𝐻). 

Statistical significance was assessed using SPSS software (version 23, IBM; Armonk, 

New York, USA). The canal path and fitted canal diameter variables, which repeated 

across slices, were evaluated using a mixed repeated-measures analysis of variance; while 

the resection depth and articular aspect ratio terms were evaluated using a univariate 

analysis of variance. The between-subject factors were OA condition and gender, while 

slice depth was a repeated independent variable where applicable. The threshold for 

significance was chosen as P < 0.05 (with an effect size 10%). 

3.3 Results: 

3.3.1 Canal Path: 

In the x-axis or inferior-medial to superior-lateral direction, slice depth was found to have 

a significant impact on the canal path location (P < 0.001; power = 1.000). Most slice 

points were found to be significantly different from each other, with the exceptions of 

slices 1 vs. 4, 1 vs. 7 and 2 vs. 4. The first four slices (above and directly below the 

resection plane) remained more-or-less unchanged (i.e., in-line) with one another 

(Figures 3.3 and 3.4). The fifth and sixth points were then located laterally, with the 

remaining points moving medially relative to the center of the resection plane (Figures 

3.3 and 3.4). Gender was also found to significantly affect the frontal plane direction of 

the canal path, with female paths tending to be 2.01.1mm more inferior-medial than 

male canal paths (P < 0.001; power = 0.997). A slice depth-by-gender interaction 

demonstrated that this medialization of the female canal path was significant only in 

slices 6-13 (10 to 50mm below the resection plane; P < 0.001; power = 0.996). Within 

genders, frontal plane direction again tended to be significantly different between most 

slices (P < 0.001; power = 0.996). 

In the y-axis or anterior-posterior (A-P) direction, the only variable that had a significant 

impact on the canal path direction was OA condition (P = 0.008; power = 0.814). It was   
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Figure 3.3: Visualization of the Proximal Humerus’ Canal Path Results 

Canal path results for the proximal humerus. Results are presented (A) for all male 

subjects, (B) for all female subjects, and (C) pooled across osteoarthritis (OA) conditions. 

Graphs on the left depict the sagittal plane coordinates, whereas graphs on the right 

depict the frontal plane coordinates. Markers are mean values, with SD error bars shown.  
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Figure 3.4: Visualization of the 

Proximal Humerus’ Fitted Canal 

Diameter Results 

The mean (solid lines) and one 

standard deviation (dashed lines) 

fitted canal diameters at the geometric 

center of each of the 13 slices of the 

proximal humerus. Diameter values 

are pooled across the osteoarthritis 

conditions for men and women.  
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determined that non-arthritic subjects had canal paths that were 0.80.3mm more anterior 

than in B2 OA subjects, and 0.30.6mm more posterior than in symmetric OA subjects. 

3.3.2 Fitted Canal Diameter: 

The fitted canal diameter varied significantly with changing slice depth (P < 0.001; power 

= 1.000). These were significantly different in each slice compared with all other slices, 

with the exceptions of slices 1 vs. 8 and 2 vs. 5. Overall, a pattern presented in which the 

slices immediately above and below the resection plane (slices 3 and 4) tended to have 

the largest canal diameters (Slice 3: Men ∅𝐶𝑎𝑛𝑎𝑙 = 443 mm, Women ∅𝐶𝑎𝑛𝑎𝑙 = 382 

mm; Slice 4: Men ∅𝐶𝑎𝑛𝑎𝑙 = 433 mm, Women ∅𝐶𝑎𝑛𝑎𝑙 = 372 mm), with canal diameters 

decreasing as the distance away from the resection plane increased (Figure 3.4, Table 

3.1). Gender was also found to have a significant effect on canal diameter, with men 

having 61 mm significantly larger canal diameters than women (P < 0.001; power = 

1.000). This gender difference was found to be approximately constant regardless of slice 

depth (Table 3.1). For each slice, canal diameter was also correlated with subject height 

(Figure 3.5); correlations were weak to moderate and ranged from R2 = 0.272 to R2 = 

0.498 (P < 0.001). 

3.3.3 Resection Depth: 

The only variable that produced a significant effect in resection depth was gender. Men 

had a 54 mm significantly larger resection depth than women (P < 0.001; power = 

1.000), with the mean resection depths for men and women being 363 mm and 

313mm, respectively. The concentration of resection depths within the study population 

can be seen in Figure 3.6. A linear regression between resection depth (D) and resection 

plane diameter (∅) was also conducted (Figure 3.7) and demonstrated a moderated 

correlation (R2 = 0.472; P < 0.001) between the two measures when results were pooled 

(D = 0.601∅ + 5.145). Resection depth was also found to be moderately correlated (R2 = 

0.378; P < 0001) with subject height (Figure 3.8; D = 0.231h - 5.327). 
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Table 3.1: Mean (standard deviation) fitted canal diameters in the 

13 proximal humerus slices. 
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Figure 3.5: Sample Linear Regression Between 

Canal Diameter and Subject Height (Slice 4) 

Linear regression between the canal diameters and 

subject height demonstrated weak to moderate 

(0.272 ≤ R2 ≤ 0.498; P < 0.001) linear correlations. 

The regression for slice 4 is given as a 

representative sample, and R2-values for all slices 

are listed.  
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Figure 3.6: Histogram of the Proximal Humerus’ Resection Depth Results 

The resection depth for all (A) male and (B) female subjects (98 total) in the present 

study. The resection depth is measured as the maximum distance between the articular 

resection plane and the cortex beneath the center of the resection plane. Osteoarthritis 

(OA) conditions are presented as different shades in the stacked bars.  
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Figure 3.7: Linear Regression Between the 

Proximal Humerus’ Resection Depth and 

Resection Diameter 

Linear regression between the resection depth and 

resection diameter of the proximal humerus 

demonstrated a moderate (R2 = 0.472; P < 0.001) 

linear correlation, perhaps suggesting that resection 

depth is dependent on more than scaling of the 

bone.  
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Figure 3.8: Linear Regression Between the 

Proximal Humerus’ Resection Depth and 

Subject Height 

Linear regression between the resection depth and 

subject height demonstrated a moderate (R2 = 

0.378; P < 0.001) linear correlation, perhaps 

suggesting that resection depth is dependent on 

more than subject height alone.  
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3.3.4 Articular Aspect Ratio: 

The articular aspect ratio was found to be significantly lower in non-arthritic subjects 

(2.60.2:1) when compared with B2 OA (2.70.3:1) subjects (P = 0.008; power = 0.840) 

and approached significance between non-arthritic and symmetric OA (2.70.3:1) 

subjects (P = 0.061; power = 0.840). Gender did not have a significant impact on the 

articular aspect ratio directly; however, men did have 64 mm significantly larger 

resection diameters (P < 0.001; power = 1.000), and 2.42.3mm significantly larger 

articular heights (P < 0.001; power = 1.000) compared with women. This gender bias was 

neutralized when expressed as a ratio (∅: 𝐻). The significant impact of OA condition on 

articular aspect ratio arose because of the resection diameter, with non-arthritic subjects 

having significantly smaller resection diameters (464 mm) than B2 OA subjects (484 

mm) and symmetric OA subjects (484 mm) (P < 0.001; power = 1.000). The 

distribution of articular aspect ratios within the study population can be seen in Figure 

3.9. 

3.4 Discussion 

This study has introduced three new morphological concepts that can be used to describe 

the proximal trabecular-canal of the humerus: (1) the central locations along the proximal 

canal path, (2) the bounding diameter of the trabecular-canal at the central locations, and 

(3) the canal depth beneath the center of the articular resection plane. Similar to how past 

quantifications of neck-shaft angle assisted with the determination of how to orient 

humeral articular components relative to the implant stem, it is expected that these 

morphological parameters can aid implant manufacturers in the design of the next 

generation of stemless implants for proximal humeral arthroplasty. Together, the 

direction and bounding limits on the proximal humerus’ trabecular-canal provide a 

clearer understanding of the spatial envelope in which stemless metaphyseal fixation 

features are to be implanted. 

The results indicate that the canal path of the proximal humerus remains largely straight 

in the sagittal plane (A-P direction) in the first 50mm beneath the articular resection 

plane. Whereas OA condition did have a significant effect on the canal’s A-P direction,   
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Figure 3.9: Histogram of the Proximal Humerus’ Articular Aspect Ratio Results 

The articular aspect ratio for all (A) male and (B) female subjects (98 total) in the present 

study. The articular aspect ratio is calculated as the resection diameter divided by the 

humeral head height. Osteoarthritis (OA) conditions are presented as different shades in 

the stacked bars.  
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the mean differences between the non-arthritic and the two OA populations was <1mm, 

which is unlikely to have any clinical impact on stemless implant design features. It is 

suggested that these difference in A-P canal path direction may be attributed to the 

orientation of the resection plane. Slight changes in the A-P tilt of this resection plane 

(due to poor articular geometry: articular wear and bone spurs in the CT) could account 

for the slight variances noted in the results. Alternatively, whereas the canal path remains 

relatively perpendicular to the resection above the resection plane and for the first slice 

beneath the resection, 5-50 mm beneath the resection plane (i.e., slices 5 through 13), the 

trabecular-canal demonstrates significant frontal plane shifts that, when coupled with the 

decreasing canal diameter along these points, may have an impact on how implant 

fixation features should be angled (should they seek to remain directed along the center 

of the trabecular-canal) (Figure 3.3). Interestingly, women were found to have more 

inferior-medially directed canal paths in slices 6-13 than men. This is likely a 

consequence of the use of an absolute, not scaled, coordinate system. Because women 

tend to have smaller humeri than men, the same absolute depth corresponds to a greater 

percentage along the humeral length. Given the trend of canal path medialization with 

increased depth, the present gender bias is explained. 

Our results from the fitted canal diameter presented with the largest diameters near the 

resection surface, with smaller diameters progressing away from the articular resection. 

The quantification of these bounding circles is important for improving the understanding 

of the spatial envelope available for implanting stemless features. Furthermore, the 

determination of an approximate 6mm difference in canal diameter between men and 

women at most locations in the proximal humerus should be accounted for in designing 

implant features that may rely on circumferential fixation. The moderate correlations 

(0.272 ≤ R2 ≤ 0.498) found between canal diameters and subject height indicates a 

scaling relationship between subjects and canal dimensions; however, the strength of the 

correlation suggests that subject height alone does not account for all variance in the 

magnitude of the fitted canal diameters. 

It was also noted that the canal depth beneath the center of the resection plane was shorter 

for women than for men. With the female humerus being shorter on average than the 
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male humerus, this was to be expected; however, quantifying the 6mm mean reduction in 

this length may be important for creating depth guides for centrally drilled holes that 

assist in boring and positioning procedures for stemless arthroplasty. Canal depth was 

found to be moderately correlated to subject height (R2 = 0.378), which suggests that 

although height may be an influential factor in estimating canal depth, it cannot solely 

account for the variance seen within the present population. The moderate linear 

correlation between resection depth and resection plane diameter (R2 = 0.472, p < 0.001) 

suggests that these two terms are also related, but that more affects the resection depth 

than just the scale of the bone (e.g., resection orientation). It should also be noted that the 

resection depth is dependent on the placement and orientation of the resection plane, 

which is a subjective, not absolute, feature of the bone; however, a strength of stemless 

implants is their ability to be inserted at the anatomic resection plane, permitting a better 

match to intact articular geometry. 

Finally, although not new, the articular aspect ratio terms of resection diameter and 

humeral head height were presented for completeness. In general, the articular aspect 

ratio was found to remain relatively constant (means between 2.6 and 2.7); however, the 

OA-classified cohorts did have higher ratios than the non-arthritic group. It is suggested 

that this difference arose because of the quality of the articular surfaces of the OA 

cohorts; and indicates some articular wear decreasing the humeral head height, thereby 

increasing the articular aspect ratio. Whereas more complicated non-axisymmetric terms 

have been developed in the literature to represent the elliptical nature of the natural 

humeral head [13], most implants currently manufactured use axisymmetric articular 

components, so the simplified axisymmetric terms were chosen for investigation. This 

study would be incomplete if these articular terms were not presented, at least to compare 

the current study population with those in the literature. The overall humeral head heights 

(men: 191 mm, women: 172 mm) and resection diameters (men: 503mm, women: 

443mm) determined in this study agree well with those found in the literature (typical 

diameter: 36mm to 57mm, humeral head height: 12mm to 22mm) [12,13,16,19]; perhaps 

indicating that the new stemless morphologic parameters introduced earlier in this study 
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are reflective of a larger population, since Humphrey et al determined linear correlation 

between several morphological measures of the proximal humerus [13]. 

The morphological measures reported were obtained from a clinical CT scanner, not a 

micro-CT scanner. Accordingly, the precision of the scans is a limitation of the current 

study and is expected to influence the reported measures. However, to use pre-operative 

images from patients, clinical CT resolution was a necessary limitation of this study. 

Furthermore, the largest slice thickness in the study population was 1.5mm (mean 

0.90.3mm), which is orders of magnitude smaller than the diameter, depth and height 

measurements quantified. Although the canal path positions are closer in magnitude to 

this uncertainty, the position is reported as an average of all voxels contained within the 

5mm-thick slices, which are far larger in cross-section, and that would be equally 

affected by this error around the circumference of the slice. Accordingly, we are 

confident in the morphological terms quantified in this study. Finally, inter-surgeon and 

intra-surgeon reliability was not assessed for the selection of the surgical resection plane. 

Whereas variation in the orientation of the anatomic resection plane is not expected to 

have an impact on the fitted canal diameter and path, it could impact the articular aspect 

ratio and canal depth measures. Accordingly, reliability of the new outcome measures 

should be assessed in future studies. All outcome measures were quantified by custom-

built LabVIEW programs to avoid user-bias; however, the manual segmentation of the 

humerus from the CT scans is an additional source of variability worthy of future 

investigation. 

The inclusion of pre-operative patient scans is a strength in this study. The morphological 

results presented are reflective not only of a non-arthritic population, but also of B2 and 

symmetric OA demographics. After all, it is the OA sub-population that accounts for 

most shoulder arthroplasty cases performed [4]. In this manner, the present study has 

sought to include a clinically relevant population in the analysis of proximal humerus 

morphological measures specific for stemless shoulder arthroplasty. Interestingly, 

significant differences arising as a result of the OA condition were found only in the 

terms of the articular aspect ratio and the A-P direction of the canal path, the latter of 

which are thought to be too small to be clinically relevant. 
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3.5 Conclusions 

Three new morphological measures have been introduced that together help to quantify 

the spatial limits for stemless implants in the proximal humerus. Gender was found to be 

the most recurrent contributor to significant differences in the proximal humerus’ 

morphological measures, with OA condition inducing lesser variations. It is suggested 

that future investigations regarding stemless implants in the proximal humerus should be 

conducted in coordinate systems relative to the articular resection plane because this is 

the defining landmark of the stemless shoulder arthroplasty implant. 
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Chapter 4 

The Effect of Trabecular Modulus Anatomic Site Selection 

on FE Outcomes for Shoulder Arthroplasty 

A version of this chapter has been submitted for publication [1]. 

4.1 Introduction 

With the computational power of desktop computers increasing, the use of in-silico 

methods is becoming increasingly popular in orthopaedic research. In particular, the 

Finite Element (FE) method (Section 1.4.2), is commonly used to assess bone and 

implant strain-based outcome measures following joint arthroplasty [2–9]. FE models are 

well established for the joints of the lower extremity (i.e., knee, hip, etc.) [2,5–13], and 

have also more recently been developed for the joints of the upper extremity [14–18]; 

including the shoulder [3,4,19,20]. Accordingly, when developing a FE model for 

shoulder arthroplasty, previous literature can guide the overall model construction (e.g., 

frictional contact between implants and bone, etc.); however, model properties that are 

joint-specific, such as the magnitude of joint reaction forces, material properties and 

boundary conditions, must be applied based on evidence. 

One important feature for developing realistic FE models of bone is the material stiffness 

(i.e., elastic modulus) that is applied to the tissue. It is generally accepted that cortical 

bone can be modelled as a homogeneous and isometric structure, with a uniform stiffness 

that is independent of orientation [3,21,22]. Despite trabecular bone having anisometric 

stiffness, Kabel et al have suggested that there is little benefit realized from modelling 

trabecular bone as anisometric when constructing a FE model, provided that the model 

utilizes an inhomogeneous stiffness derived from bone density [23]. Accordingly, there 

has been much work in the literature indicating that trabecular stiffness should be 

modelled as inhomogeneous and isometric [11,24–28]. Trabecular stiffness has also been 

shown to vary exponentially as a function of bone density, which can be obtained using a 

calibrated CT scan [29,30]. Morgan et al have demonstrated that the regression equation 
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and resulting mechanical properties (i.e., stiffness, yield strain, etc.) depend on the 

anatomic site from which the regression is formed [24,31]; however, the variation in FE 

outcomes in response to varying the regression equation based on anatomic-site has not 

yet been documented. 

Several density-stiffness regressions have been developed for the joints of the knee, hip 

and spine [24,25,32,33]; however, no equation has been developed for the proximal 

humerus of the shoulder. As such, FE investigations of the shoulder utilize regression 

equations that have been developed for other anatomic-sites, or that pooled results from 

several sites throughout the body [3,19]. Again, the effect that this has on the outcomes of 

shoulder FE investigations is unknown. Furthermore, with the advent of identical 

meshing techniques, which can be used to partially normalize results to an intact state 

(subject to the same trabecular model) [3], there is the potential that the stiffness 

relationship of trabecular bone may have a minor impact on FE outcomes. 

In light of the foregoing, the purpose of this investigation is to quantify the deviation 

induced in FE outcome measures for humeral arthroplasty when the trabecular stiffness 

relationships are changed (Objective 2, Section 1.6.1). It is hypothesized that varying the 

inhomogeneous trabecular stiffness based on anatomic-site (i.e., anatomic-site deviation) 

would result in low standard deviations (less than 10%); and that these deviations would 

be less than those arising within the FE specimen population (i.e., FE population 

deviation). Furthermore, it was hypothesized that the standard deviations induced from 

applying a homogeneous trabecular modulus, as opposed to a site-pooled inhomogeneous 

one (i.e., homogeneous-inhomogeneous deviation), would also be greater than the 

inhomogeneous anatomic-site deviation. 

4.2 Materials and Methods 

Eight cadaveric upper extremities (left arms; mean±SD age = 68±6 years) were CT 

scanned using a GE 750HD Discovery scanner (GE Healthcare; Chicago, IL, USA), 

alongside a SB3-H2O density calibration phantom (SB3 Model number 450; GAMMEX, 

Middleton, WI). Three axial planes were constructed along the length of the calibration 

phantom, dividing the SB3 bone-surrogate into quarters. In each plane, the average 
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attenuation (in Hounsfield Units, HU) corresponding to the distilled water and bone 

surrogate were determined. A linear regression was then performed between the known 

apparent densities (SB3: ρAPP = 1.82 g/cm3; H2O: ρAPP = 0 g/cm3) and CT attenuation-

values to obtain the calibration relationship between attenuation and apparent density. 

In each scan, the proximal humerus was manually segmented to remove it from the 

surrounding soft tissues using Mimics (version 19, Materialize, Leuven, BE), and was 

divided into two components: (1) the cortical shell and (2) the trabecular-canal. These 

regions were exported into SolidWorks (Dassault Systèmes Corp, Waltham, MA, USA) 

where 3D solid models were formed. A shoulder surgeon then virtually selected the 

surgical resection plane; further dividing the cortical shell and trabecular-canal into top 

and bottom sections. The geometric centroid of the surgical resection plane was used to 

position a stemless shoulder implant (Tornier Simpliciti; Wright BioMedical, Staines-

upon-Thames, Middlesex, UK) centrally, as per surgical practice. To reduce the 

computational demand, the proximal humeral diaphysis was resected 180mm beneath the 

most superior point on the surgical resection plane (Figure 4.1). In addition, the 

trabecular-canal was trimmed 40mm beneath the surgical resection plane. 

All components were then imported into Abaqus (Dassault Systèmes Corp, Waltham, 

MA, USA) and were assembled to form two models: (1) an intact proximal humerus and 

(2) a stemless anatomic reconstruction. Identical meshing practice was followed to ensure 

that both models had the exact same bone mesh (quadratic tetrahedral elements with 

2mm edge length, based on mesh convergence, Appendix C) for the cortical-bottom and 

trabecular-bottom segments [3]. For all models, the implant material was modeled as 

Titanium, with a stiffness of 110GPa, and Poisson’s ratio of 0.3 [3,34,35]; and the 

implant-bone contact was divided into two frictional groups corresponding to polished (µ 

= 0.40) [3,34] and grit blast (µ = 0.63) [3,36] surface textures. Additionally, the cortical 

bone was considered isometric and homogeneous with an elastic modulus of 20GPa, and 

a Poisson’s ratio of 0.3 [3,21,22]. Trabecular stiffness was modelled as isotropic but was 

inhomogeneously mapped to the trabecular-canal using a density-based elastic modulus 

regression, as outlined below. 
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Figure 4.1: Humeral Joint Reaction Force Application 

Depiction of articular load application in the FE model. Loads 

were oriented such that the force vector would pass through the 

humeral head’s center of curvature and satisfy the in-vivo 

Cartesian component ratios (AP: Anterior-Posterior, ML: 

Medial-Lateral, SI: Superior-Inferior).  
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To assess the effect of changing trabecular material properties, five elastic modulus-

density regression equations were independently mapped to the trabecular-canal (Figure 

4.2). All relationships were derived by Morgan et al (2003), with four corresponding to 

anatomic sites throughout the body (i.e., Vertebra, Proximal Tibia, Greater Trochanter 

and Femoral Neck), while the fifth was based on pooling results from the other sites (i.e., 

Pooled) [24]. In addition to these material properties, a homogeneous trabecular stiffness 

of 155MPa (Model 3404 - 4th Generation Humerus Sawbone equivalent; Sawbones, 

Vashon Island, Washington, USA) was applied to assess the effect of trabecular 

homogeneity.   

Identical joint reaction forces were applied to the articular surfaces of both the intact bone 

and the stemless implant, based on in-vivo shoulder data from Bergmann et al (2007). 

Force magnitudes were 440N and 740N representing 45° and 75° of abduction, 

respectively (50th-percentile male weight = 88.3kg) [3,37]. Joint loads were oriented 

using their Cartesian components, such that the force passed through the center of the 

humeral head (Figure 4.1). 

The three outcome measures assessed were: (1) the percentage of the implant-bone 

surface area that was in contact during load application, (2) the percentage change in 

bone stress (relative to the intact state) and (3) the percentage of bone volume with 

potential to (a) resorb, (b) remodel, or (c) remain unchanged immediately following 

surgery. To establish which potential bone response category that an element was 

assigned to, the Strain Energy Density (SED) of each reconstructed bone element was 

compared to the exact same element in the intact bone model. The change in SED of an 

element has been well correlated to predicting changes in bone density [16,38–41]. In 

keeping with strain-adaptive FE models of the upper limb, an unchanged bone response 

threshold of 55% was set on either side of the intact model’s SED value; if the 

reconstructed element’s SED was below this, the element was categorized as having 

resorbing potential, and if the SED was above this threshold, the element was categorized 

as having remodeling potential [16]. To assess variation regionally, the change in stress 

and potential bone response were evaluated separately for cortical and trabecular bone, 

and in eight 5mm thick slices; parallel to and beneath the humeral head resection plane.  
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Figure 4.2: Density-Modulus Relationships Applied to the 

Proximal Humerus 

Density-modulus relationships are presented for all 

inhomogeneous anatomic-sites that were utilized in the present 

investigation. The mean (solid vertical line) and SD (dashed 

vertical lines) density of the present FE population is shown for 

reference.  
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As the objective of this study was to assess the influence of trabecular stiffness selection 

on the deviation of these outcome measures, the comparison of the standard deviations 

(SD) of each outcome measure was the principle focus [42]. Standard deviations were 

calculated for the variance attributed to changing the inhomogeneous trabecular stiffness 

relationship based on anatomic-site (i.e., anatomic-site deviation). In addition, as a 

comparative metric, the SD pertaining to differences between FE specimens (i.e., FE 

population deviation) was also quantified. Finally, the SD comparing the site-pooled 

inhomogeneous results to the homogeneous trabecular results (i.e., homogeneous-

inhomogeneous deviation) was also determined for comparison. These deviations were 

quantified for each of the outcome measures outlined above; and were the primary basis 

for comparing trabecular relationships within this study. 

4.3 Results 

4.3.1 Implant-Bone Contact 

The implant-bone contact percentage remained relatively constant regardless of which 

inhomogeneous trabecular stiffness anatomic-site equation was used; however, greater 

differences were found between the homogeneous and site-pooled inhomogeneous 

trabecular models (Figure 4.3). The SDs for inhomogeneous anatomic-site selection were 

found to be 0.8±0.3% for 45°, and 0.7±0.2% for 75°. As a comparison, the FE population 

deviation was 2.9±0.3% for 45°, and 3.1±0.3% for 75°, while the deviation associated 

with changing from a pooled inhomogeneous stiffness to a constant homogeneous 

stiffness was 6.4±2.8% for 45°, and 6.9±3.0% for 75°. Regardless of the loading 

configuration, the inhomogeneous anatomic-site SD was approximately 4-times lower 

than the FE population SD (45°: 3.8x less, 75°: 4.3x less), and approximately 20-times 

less than the homogeneous-inhomogeneous SD (45°: 20.1x less, 75°: 25.2x less). 

4.3.2 Change in Bone Stress 

The regional changes in cortical bone stress also remained relatively constant despite 

changing the inhomogeneous trabecular stiffness relationship (Figures 4.4 and 4.5). The 

mean SDs attributed to anatomic-site changes varied from 0.3% to 2.9% across slices 

(Table 4.1), with the means being 1.70.4% for 45, and 1.90.4% for 75.   
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Figure 4.3: Implant-Bone Contact Percentage Results 

Mean  SD percentage of the implant-bone contact area that 

remained in contact under joint loading for (A) the 

inhomogeneous anatomic-site comparison and (B) the 

homogeneous-inhomogeneous comparison.  
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Figure 4.4: Inhomogeneous Anatomic-Site Change in Bone Stress 

Results (45) 

Mean  SD percentage change in cortical and trabecular bone stress for 45 

of abduction for the inhomogeneous anatomic-site comparison.  
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Figure 4.5: Inhomogeneous Anatomic-Site Change in Bone Stress Results 

(75) 

Mean  SD percentage change in cortical and trabecular bone stress for 75 

of abduction for the inhomogeneous anatomic-site comparison.
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Table 4.1: Standard deviations attributed to inhomogeneous anatomic-site, FE population and homogeneous-inhomogeneous 

differences in the change in bone stress outcome measure; broken down regionally according to slice depth. 
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Comparatively, the mean FE population SDs ranged from 0.6% to 8.4% regionally, with 

means of 4.00.2% for 45, and 4.20.2% for 75. Accordingly, the FE population SDs 

were 2.5-times, and 2.3-times greater than the anatomic-site deviations for 45 and 75, 

respectively. In addition, the SDs associated with changing from an inhomogeneous to 

homogeneous trabecular model were 3.2 and 2.5-times greater than the inhomogeneous 

anatomic-site SDs for 45 and 75, respectively; with mean SDs ranging from 2.2% to 

5.1% regionally (Figures 4.6 and 4.7). 

The regional changes in trabecular bone stress exhibited greater SDs attributable to the 

selection of trabecular stiffness anatomic-site than any other outcome measure (Figures 

4.4 and 4.5); with overall values of 6.20.8% for 45, and 5.90.8% for 75 (means 

ranging from 1.0% to 10.3% regionally; Table 4.1). The regional mean anatomic-site SDs 

exceeded 10% for slices 2 and 3 (5-15mm beneath the resection) in 45° only, with values 

of 10.2±3.3% and 10.3±2.5%, respectively. The SDs attributable to FE population and 

changing to a homogeneous trabecular modulus were also found to be greatest in the 

trabecular stress change outcome measure (Table 4.1). FE population SDs were found to 

be 10.50.8% for 45, and 10.30.7% for 75 (means ranging from 2.1% to 23.5% 

regionally), corresponding to 1.8 and 1.9-times greater than the anatomic-site SDs 

overall, respectively. Again, the homogeneous-inhomogeneous SDs were found to be the 

greatest, at 69.26.6% for 45, and 71.16.6% for 75 (means ranging from 24.6% to 

105.2% regionally). Overall, the homogeneous-inhomogeneous SDs were 21.5 and 21.6-

times greater than those attributable to inhomogeneous anatomic-site selection (Figures 

4.6 and 4.7). Interestingly, the homogeneous-inhomogeneous SDs tended to be greatest in 

slices 4-8 (depth of 20-40mm), while the anatomic-site and FE population SDs tended to 

diminish in the same region (Table 4.1). 

4.3.3 Potential Bone Response 

4.3.3.1 Cortical Region 

Standard deviations for the resorbing potential of cortical bone were small for changing 

the trabecular stiffness’ regression based on anatomic-site (Table 4.2, Figures 4.8 and 

4.9), with values of 1.30.4% for 45, and 1.10.3% for 75 (Ranging from 0.0% to 3.5%   
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Figure 4.6: Homogeneous-Inhomogeneous Change in Bone Stress Results (45) 

Mean  SD percentage change in cortical and trabecular bone stress for 45 of 

abduction for the homogeneous-inhomogeneous comparison.  
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Figure 4.7: Homogeneous-Inhomogeneous Change in Bone Stress Results (75) 

Mean  SD percentage change in cortical and trabecular bone stress for 75 of 

abduction for the homogeneous-inhomogeneous comparison.  
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Table 4.2: Standard deviations attributed to inhomogeneous anatomic-site, FE population 

and homogeneous-inhomogeneous differences in the potential bone response outcome 

measure for cortical bone; broken down regionally according to slice depth. 
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Figure 4.8: Inhomogeneous Anatomic-Site Potential Time-Zero Bone Response 

Results for Cortical Bone (45) 

Potential cortical bone response for 45 of abduction for the inhomogeneous anatomic-

site comparison. 



 

 

 

122 

 
Figure 4.9: Inhomogeneous Anatomic-Site Potential Time-Zero Bone Response 

Results for Cortical Bone (75) 

Potential cortical bone response for 75 of abduction for the inhomogeneous anatomic-

site comparison. 
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regionally). The overall FE population SDs were 4.8 and 4.7-times greater for 45° and 

75°, respectively (45°: 6.0±0.1%; 75°: 5.4±0.2%); ranging from 0.0% to 10.5% between 

slices. Additionally, the cortical resorbing potential had SDs of 9.9±2.4% (7.9-times 

greater) and 3.6±1.0% (3.2-times greater), for 45° and 75°, respectively; that arose due to 

switching the trabecular stiffness from a pooled inhomogeneous model to a homogeneous 

one. Regionally, the homogeneous-inhomogeneous SDs ranged from 0.0% to 23.4% on 

average (Figures 4.10 and 4.11). 

Similarly, the cortical bone’s unchanged bone response was relatively constant despite 

changes to the trabecular stiffness based on anatomic-site selection (Figures 4.8 and 4.9). 

Overall anatomic-site SDs were 1.9±0.4% for both 45° and 75° (ranging from 0.0% to 

3.6% regionally; Table 4.2). In comparison, the FE population SDs ranged from 0.0% to 

12.3% regionally, which were 3.2 and 3.4-times greater than the anatomic-site SDs 

overall, for 45° (6.1±0.2%) and 75° (6.2±0.2%), respectively. Similarly, the 

homogeneous-inhomogeneous SDs were found to be 4.0 and 5.4-times greater than the 

inhomogeneous anatomic-site SDs for 45° (7.6±2.1%) and 75° (10.0±2.4%), respectively 

(ranging from 0.0% to 23.8% regionally; Figures 4.10 and 4.11). 

Finally, the cortical bone’s remodeling potential also demonstrated minor variation 

attributable to changing the inhomogeneous trabecular stiffness’ anatomic-site (Figures 

4.8 and 4.9). The anatomic-site SDs ranged from 0.0% to 3.4% by slice depth (Table 

4.2); with mean values of 1.8±0.4% for both 45° and 75°. The overall SDs due to FE 

population variance were 3.0±0.3% (1.7-times greater) and 3.8±0.3% (2.1-times greater) 

for 45° and 75°, respectively (ranging from 0.0% to 8.6% regionally). Moreover, the 

homogeneous-inhomogeneous SDs were greater still, with overall values of 3.2±0.9% for 

45° (1.8-times greater), and 7.6±2.0% for 75° (4.2-times greater). The homogeneous-

inhomogeneous SDs ranged from 0.0% to 17.4% for cortical remodeling potential 

(Figures 4.10 and 4.11). 

4.3.3.2 Trabecular Region 

The trabecular bone’s resorbing potential remained relatively unchanged when the 

inhomogeneous trabecular stiffness relationship was varied by anatomic-site   
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Figure 4.10: Homogeneous-Inhomogeneous Potential Time-Zero Bone Response 

Results for Cortical Bone (45) 

Potential cortical bone response for 45 of abduction for the inhomogeneous anatomic-

site comparison. 
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Figure 4.11: Homogeneous-Inhomogeneous Potential Time-Zero Bone Response 

Results for Cortical Bone (75) 

Potential cortical bone response for 75 of abduction for the inhomogeneous anatomic-

site comparison. 
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(Figures 4.12 and 4.13). The SDs for anatomic-site changes were 0.7±0.2% and 

0.6±0.2% for 45° and 75°, respectively (ranging from 0.1% to 2.5% regionally; Table 

4.3). The FE population SDs were also low, though greater than the anatomic-site SDs, 

with mean values of 2.6±0.1% for 45° (3.9-times greater), and 2.2±0.1% for 75° (3.5-

times greater). Regionally, the FE population SDs ranged from 0.4% to 6.7%. Similarly, 

the homogeneous-inhomogeneous SDs ranged from 0.3% to 9.2% between slices 

(Figures 4.10 and 4.11); with overall values that were 3.9-times greater than the 

inhomogeneous anatomic-site SDs, for both 45° (2.6±0.9%) and 75° (2.5±0.8%). 

The trabecular bone’s unchanged potential was also only minorly affected by the 

trabecular bone’s anatomic-site stiffness relationship (Figures 4.12 and 4.13). The 

corresponding SDs were 3.7±0.5% for 45°, and 3.6±0.5% for 75° (ranging from 2.0% to 

5.5% regionally; Table 4.3). In comparison, the FE population SDs were 2.6-times 

greater for both 45° and 75°, with overall values of 9.5±0.4% and 9.2±0.4%, respectively 

(ranging from 6.9% to 14.5% regionally). The SDs attributable to homogeneous-

inhomogeneous changes in trabecular stiffness were the largest (Table 4.3), with means 

of 19.5±2.7% for 45° (5.2-times greater), and 19.7±2.6% for 75° (5.5-times greater). 

Furthermore, the homogeneous-inhomogeneous SDs ranged from 6.2% to 45.7% across 

the slices investigated (Figures 4.10 and 4.11). 

Finally, similar trends presented in the trabecular bone’s remodeling potential, with low 

SDs attributable to changes in the trabecular stiffness’ anatomic-site relationship (Figures 

4.12 and 4.13). Specifically, anatomic-site SDs ranged from 2.3% to 5.5% between 

slices; with overall values of 4.2±0.5% and 4.1±0.5% for 45° and 75°, respectively (Table 

4.3). The FE population SDs were 2.6-times greater for both 45° (11.1±0.4%), and 75° 

(10.7±0.5%); and ranged from 7.1% to 14.4% regionally. The homogeneous-

inhomogeneous SDs were also greater than the anatomic-site deviations, with overall 

values of 20.3±3.1% for 45° (4.8-times greater), and 20.7±3.1% for 75° (5.1-times 

greater). These values ranged from 7.1% to 43.7% between slices. Interestingly, the 

homogeneous-inhomogeneous SDs for the trabecular bone’s unchanged potential and 

remodeling potential exhibited the same SD increase in slices 4-8 (20-40mm deep) as 

were exhibited in the trabecular stress change outcome variable.  



 

 

 

127 

 
Figure 4.12: Inhomogeneous Anatomic-Site Potential Time-Zero Bone Response 

Results for Trabecular Bone (45) 

Potential cortical bone response for 45 of abduction for the inhomogeneous anatomic-

site comparison.  
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Figure 4.13: Inhomogeneous Anatomic-Site Potential Time-Zero Bone Response 

Results for Trabecular Bone (75) 

Potential cortical bone response for 75 of abduction for the inhomogeneous anatomic-

site comparison.  
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Table 4.3: Standard deviations attributed to inhomogeneous anatomic-site, FE population 

and homogeneous-inhomogeneous differences in the potential bone response outcome 

measure for trabecular bone; broken down regionally according to slice depth. 
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4.4 Discussion 

Overall, the FE outcomes under investigation suggest that stemless humeral arthroplasty 

results in stress changes to both cortical and trabecular bone. These bone stress changes 

are greatest proximally beneath the humeral head resection plane and decrease moving 

further down the cortex/trabecular-canal. The SED-based bone response classification 

suggests that the cortical bone’s resorbing potential and the trabecular bone’s remodeling 

potential follow the same trends. These trends are largely observed, regardless of the 

trabecular stiffness relationship applied to the model; however, greater differences in 

mean values arose between homogeneous and inhomogeneous models, than between 

inhomogeneous models that were derived from different anatomic-sites.  

The SDs attributable to changing the trabecular bone’s inhomogeneous stiffness based on 

anatomic-site were less than those arising within the FE population, or from changing the 

trabecular stiffness from a pooled inhomogeneous relationship to a homogeneous one, 

regardless of the FE outcome measure. These findings suggest that changing the 

trabecular stiffness induces less variation in the outcomes investigated than would 

normally be found within the present population of FE specimens, provided that the 

trabecular-canal is modelled as inhomogeneous, not homogeneous. This supports the 

previous work by Kabel et al, who suggested that, while anisotropy may not be necessary 

for trabecular modelling, inhomogeneity of the trabecular-canal should be accounted for 

[23]. These findings further suggest that FE outcome variation remains largely dominated 

by population differences despite fluctuations in the trabecular bone’s inhomogeneous 

modelling based on anatomic regression-site selection. 

Overall, the cortical bone outcomes were less susceptible to variance than the trabecular 

bone outcomes, likely because the cortical stiffness was constant, while the trabecular 

stiffness varied. Changes in FE population SDs seemed to increase and decrease along 

with the inhomogeneous anatomic-site SDs; however, the homogeneous-inhomogeneous 

SDs exhibited some regional differences. Specifically, the outcomes pertaining to 

trabecular stress change, and trabecular unchanged and remodeling potential both 

presented with peaks in homogeneous-inhomogeneous differences in slices 4-8 (20-

40mm beneath the resection). These differences between homogeneous and 
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inhomogeneous models are likely due to the morphology of the proximal humerus. It has 

been suggested that the apparent density of the trabecular-canal diminishes greatly 

beyond 20mm beneath the humeral head resection [43]. Accordingly, the homogeneous 

and inhomogeneous trabecular stiffness diverge in this region, with the inhomogeneous 

stiffness diminishing along with density, while the homogeneous stiffness remains 

constant. In response, the homogeneous trabecular model results predict greater changes 

in trabecular stress (Figures 4.6 and 4.7), and more trabecular volume within the expected 

remodeling classification (Figures 4.10 and 4.11). This suggests that inhomogeneity is an 

important factor that can influence FE outcomes. 

At the onset of this assessment, it was thought that the bone response and stress change 

outcome measures may be less susceptible to variances attributable to anatomic-site 

selection, as both outcomes utilize the identical mesh between the intact and 

reconstructed bone models (which was subject to the same fluctuations in trabecular 

stiffness) to represent results relative to the intact state. This seems to agree with the 

present findings. Interestingly, the implant-bone contact outcome presented with low SDs 

attributable to inhomogeneous anatomic-site selection. This is likely because of the direct 

role that the implant plays in implant-bone contact. The difference between implant and 

trabecular-canal stiffness is far larger than the fluctuation in trabecular stiffness arising 

from changing the inhomogeneous anatomic-site stiffness relationship. This implant-bone 

stiffness difference is thought to overshadow the variations in implant-bone contact that 

take place because of changing the inhomogeneous trabecular stiffness. It is possible that 

trabecular model anatomic-site selection may have a more profound effect on implant-

bone contact if the implant’s stiffness were diminished and approached that of the 

trabecular structure. 

Returning to the specific hypotheses of the present investigation; it was found that SDs 

attributable to inhomogeneous anatomic-site stiffness relationship selection were 

generally below the hypothesized 10% SD threshold, except for the trabecular stress 

change from 5-15mm beneath the humeral resection plane during 45° abduction. Despite 

the mean anatomic-site SDs of 10.2% and 10.3% in this region, all anatomic-site 

attributable SDs were consistently less than those arising because of FE population 
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differences and those of homogenous-inhomogeneous model differences. Accordingly, 

the hypotheses are accepted. 

It is important to note that this investigation was not without limitations. Specifically, 

while the FE population size of 8 specimens is large compared to most FE investigations 

in the literature (which typically include only 1 or 2 specimens), it is expected that as the 

number of specimens grows, the corresponding FE population SDs would decrease. 

Diminishing the FE population differences could in turn result in the inhomogeneous 

anatomic-site changes becoming more apparent in the outcome measures. One must also 

consider that the strength of a FE investigation is not its ability to perfectly simulate 

reality, but rather, to provide insight into the trends of strain-based outcomes across 

complicated geometries. With this in mind, while the magnitude of the results in the 

present investigation did fluctuate based on the trabecular stiffness model employed, the 

trends in potential bone response, stress changes and implant-bone contact remained 

relatively constant between inhomogeneous trabecular stiffness models. 

4.5 Conclusions 

In conclusion, these findings reaffirm the choice of inhomogeneous trabecular models 

over homogeneous models for the analysis of shoulder arthroplasty; and suggest that, 

without a trabecular density-modulus regression specific to the proximal humerus, the 

best choice for modeling trabecular bone may be to continue using a site-pooled 

inhomogeneous regression that is based on results from several anatomic sites throughout 

the body. 
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Chapter 5 

The Effect of Stemless Humeral Component Fixation-

Feature Design on Bone Stress and Strain Response 

A version of this chapter has been accepted for publication [1]. 

5.1 Introduction 

Since Neer first popularized shoulder arthroplasty in the 1950’s [2], there have been 

several iterations of humeral implant design [3–8]. The focus of these iterations has been 

to improve the longevity of the reconstructed joint by multiple factors, one of which is 

reducing stress shielding in periprosthetic bone. Radiographic studies have reported 

regional full thickness cortical resorption with a prevalence between 4% to 18% in the 

proximal humerus, [9–11] which is attributed to stress shielding. 

Accordingly, implant manufacturers have reduced the length of the humeral stem to 

maintain as much natural bone tissue as possible. In 2004, the first humeral implant with 

an ultra-short fixation feature, the Total Evolutive Shoulder System (TESS; Biomet Inc, 

Warsaw, IN, USA), was introduced [4,12]. Since then, several manufacturers have 

introduced similar, “stemless”, canal-sparing implants [4,5,8,12–15]; all of which seek 

fixation in the metaphysis of the proximal humerus (Section 1.2.4). The fixation features 

of these canal-sparing stemless implants vary from simple pegs to elaborate branched 

structures. To date, stemless shoulder implants have performed well in the in-vivo studies 

undertaken, demonstrating similar outcomes to stemmed implants, but with less operative 

time and blood loss [12–14,16–22]. 

The computer based Finite Element (FE) method (Section 1.4.2) has gained popularity in 

orthopaedics for its ability to estimate stress and strain changes in bone following joint 

replacement [5,23–29]. Specifically, strain adaptive FE models estimate changes in bone 

density using the amount of energy stored within bone elements [25,30–32]. These 

models approximate the bone’s resorbing and remodeling response by measuring changes 

in Strain Energy Density (SED) in each element to assess if the bone’s local energy 
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drops, or exceeds, a specified threshold. No studies to date have applied these methods to 

humeral reconstruction; however, for the ulna, the SED threshold has been estimated as a 

variance of 55% from the bone’s natural SED [25]. 

Recently, several studies have undertaken morphological analyses of the proximal 

humerus in humeral head coordinate systems [33–35], making their findings of particular 

interest for the design of stemless implants. Specifically, based on the findings of Chapter 

2, the density of the trabecular-canal dissipates approximately 20mm beneath the humeral 

resection plane [34], and there exists greater trabecular density peripherally [33,35]. 

Previous hip literature indicates that periprosthetic bone loss is inversely correlated to 

bone density at the time of surgery [36–39], suggesting that stemless implants may 

perform better with peripheral fixation features as oppose to central ones, but this has not 

been tested. 

Accordingly, the purpose of the present investigation was to assess how variations in 

stemless humeral fixation feature geometry alter bone response following replacement 

(Objective 3, Section 1.6.1). To directly compare implant performance, the FE method 

was applied to humeral replacements with a variety of central, peripheral and boundary-

crossing fixation features. It was hypothesized that implants that obtain peripheral 

fixation, and implants that follow the anatomic curvature of the humerus’ trabecular-

canal would produce more favorable bone responses compared to central and 

axisymmetric designs. 

5.2 Materials and Methods 

5.2.1 Bone Model Development: 

Computed Tomography (CT) scans of five (n = 5) cadaver shoulders (Mean±SD age = 

68±6 years) were obtained using a clinical CT scanner (GE 750HD Discovery Scanner; 

GE Healthcare, Chicago, Il). A calibration phantom consisting of a cortical bone 

surrogate (i.e., SB3 model 450; GAMMEX, Middleton, WI) and distilled water, was 

placed alongside each arm to calibrate apparent density (g/cm3) from CT attenuation 

(HU) [40]. Manual thresholding divided the proximal humerus into the cortical shell and 

trabecular-canal. An experienced shoulder surgeon (GSA) identified the humeral head 
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resection plane, along with superior-lateral and inferior-medial points of reference. These 

landmarks were used to construct a resection-relative coordinate system with axes 

directed: (A) from inferior-medial to superior-lateral along the humeral head resection 

plane, (B) anteriorly, and (C) perpendicular to the resection plane, positively oriented into 

the remaining bone [33,34] (Figure 5.1). The trabecular-canal was limited to a depth of 

40mm, and the cortical diaphysis was resected 180mm from the superior-lateral resection 

point. This humeral division allowed for the development of ‘intact’ and ‘reconstructed’ 

bone models that could be identically meshed to permit element-to-element comparisons 

[5]. 

5.2.2 Implant Designs 

Ten generic stemless shoulder implants were developed using SolidWorks CAD software 

(Dassault Systèmes Corp, Waltham, MA), each with a fixation feature having a depth of 

20mm (Figure 5.2, additional details available in Appendix H). Implants were classified 

generally into one of three categories according to fixation feature location: (1) central, 

(2) peripheral, or (3) boundary-crossing. Central implants consisted of two pegged 

implants (i.e., PegStraight and PegAnatomic), each with a diameter that varied with depth 

to remain half of the proximal humerus’ pooled canal-diameter [34]. PegStraight was 

axisymmetric and perpendicular to the implant’s humeral head back-side, while 

PegAnatomic followed the pooled coronal plane curvature reported in the literature [34]. 

The base peripheral implant (i.e., Peripheral4x5S) had four rectangular pegs (width: 

5mm, thickness: 3mm). Pegs were located 90° apart, and were centered at the medial, 

lateral, anterior and posterior sides of the implant on a circle that represented 75% of the 

pooled canal diameter [34] to ensure that they were predominantly peripheral. A variation 

of the Peripheral4x5S was formed by doubling the peg width to 10mm (i.e., 

Peripheral4x10S). In addition, each peripheral implant also had an anatomically curved 

counterpart (i.e., Perpiheral4x5A, and Peripheral4x10A) with pegs that followed the same 

curvature as PegAnatomic. The boundary-crossing implants consisted of straight 3mm 

thick, 17mm wide, flanged fixation features that tapered slightly inward at an angle of 

14° to accommodate the tapering of the canal diameter. Either four (i.e., QuadFlange) or 

six (i.e., HexFlange) flanges protruded perpendicularly from the back-side of the implant 
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Figure 5.1: The Division and Coordinates of the 

Proximal Humerus 

Depiction of the proximal humerus’ coordinate system 

and sub-division into eight slices and four anatomic 

quadrants.
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Figure 5.2: Stemless Implants Used for Humeral Reconstruction 

Ten generic stemless implants were designed and categorized as having fixation features that were either: central, peripheral or 

boundary-crossing. Further sub-variations included: axisymmetric vs. anatomic curvature, widening peripheral pegs, and four 

vs. six flanged fixation features.
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into the metaphyseal bone-space. These flanged implants were also hybridized with 

PegStraight to form two more implants (i.e., QuadPeg, HexPeg) that had a core peg 

structure (Figure 5.2). Humeral head components were formed with an aspect ratio of 

2.8:1 (diameter:height) [34], and varied by changing the articular diameter in 2mm 

increments to match each humerus’ resection diameter; they were further fused to implant 

fixation features to represent a rigid Morse taper union. 

5.2.3 Finite Element Modeling 

FE models were developed in Abaqus (version 6.14; Dassault Systèmes Corp, Waltham, 

MA). All components were meshed with 2mm quadratic tetrahedral elements (based on 

mesh convergence, Appendix C). Cortical bone was applied a constant elastic modulus of 

20GPa [5,41,42], as it is generally regarded as homogenous, while the trabecular-canal 

was assigned elastic moduli that varied as a function of CT density; using a site-pooled 

linear regression [5,43]. All implants were assigned an elastic modulus of 110GPa 

[44,45], representing Titanium. All materials had a Poisson’s ratio of 0.3 [5]. Implant-

bone contact was assumed to be grit-blast on wet-bone, and was represented as frictional 

(µ=0.63) [5,46]. 

Two loading scenarios, representing 45° and 75° of shoulder abduction, were simulated 

by applying joint reaction forces to the articular surface [5]. The orientation and 

magnitude of the applied force (45°: 440N, 75°: 740N; based on 50th percentile male 

bodyweight of 88.3kg [5]) were taken from in-vivo telemetrized implant data [5,47], and 

were consistent for both the intact and reconstructed models. Forces passed through the 

center of the humeral head, such that the Cartesian components of the force matched the 

in-vivo data [5]. 

5.2.4 Outcome Variables 

Three outcome measures were assessed: (1) the percentage of the implant’s area that 

remained in contact with the surrounding bone during load application, (2) the volume-

weighted absolute percentage change in bone stress, relative to the intact state [5] 

(Equation 5.1), and (3) the time-zero potential bone response, as estimated by the 

percentage of bone volume that would be expected to (a) resorb, (b) remain unchanged, 
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or (c) remodel based on SED changes between the reconstructed and intact models 

[25,30–32]. 

∆𝜎 =  
∑(∆𝜎𝑉𝑀𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ×𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡)

∑(𝜎𝑉𝑀𝐼𝑛𝑡𝑎𝑐𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡)×𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝑒𝑔𝑖𝑜𝑛−𝑜𝑓−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
× 100% (Eq.5.1) 

∆𝜎𝑉𝑀 =  √0.5 × [(∆𝜎11 − ∆𝜎22)2 + (∆𝜎22 − ∆𝜎33)2 + (∆𝜎11 − ∆𝜎33)2 + 6 × (∆𝜎12
2 + ∆𝜎23

2 + ∆𝜎31
2 )]  

where, ∆𝜎𝑥𝑦 =  ∆𝜎𝑥𝑦𝐼𝑀𝑃𝐿𝐴𝑁𝑇
− ∆𝜎𝑥𝑦𝐼𝑁𝑇𝐴𝐶𝑇

 

The elements were categorized into the potential bone response groups as follows: 

 𝑅𝑒𝑠𝑜𝑟𝑏: 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 < 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 (Eq.5.2) 

 𝑅𝑒𝑚𝑎𝑖𝑛 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑: 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 ≤ 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 ≤ 1.55𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙  

 𝑅𝑒𝑚𝑜𝑑𝑒𝑙: 𝑈𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 > 0.45𝑈𝐼𝑛𝑡𝑎𝑐𝑡 𝑀𝑜𝑑𝑒𝑙 

 where, 𝑈 = 𝑆𝐸𝐷 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

Both the change in stress, and the potential bone response were quantified separately for 

the cortical shell and trabecular-canal; and were further divided into 32 subsections 

(Figure 5.1) corresponding to eight 5mm thick slices (parallel to the resection), and four 

anatomic quadrants (i.e., medial, lateral, anterior, and posterior). 

5.2.5 Statistical Approaches 

To assess statistical significance, a 2-way RM ANOVA was conducted for the implant-

contact area, and a 4-way RM ANOVA was conducted for the stress and potential bone 

response outcomes. All statistical analyses were completed using SPSS (version 23; IBM, 

Armonk, NY, USA), with the threshold for significance set as P0.05. 

5.3 Results 

5.3.1 Implant-Bone Contact 

Implant-bone contact area varied significantly between implants (P<0.001, 

power=1.000). Specifically, Peripheral4x5S and Peripheral4x5A were found to have 

significantly greater contact percentages than all other implants (P≤0.033), except each 
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other (P=0.072; Figure 5.3). Moreover, all peripheral implants were found to produce 

significantly greater contact percentages than the flanged implants and peg-flange hybrids 

(P≤0.017). Peripheral4x10A also produced significantly greater contact percentages than 

both PegAnatomic (P=0.026) and Peripheral4x10S (P=0.002), while the pegged implants 

had significantly higher contact percentages than QuadFlange (P≤0.032), and both peg-

flange hybrids (P≤0.032). PegStraight was also significantly better than HexFlange 

(P=0.020) and PegAnatomic (P=0.003). QuadPeg produced significantly greater contact 

percentage than QuadFlange (P=0.037). 

Changing fixation features from straight to anatomic curvature resulted in a slight 

decrease in pegged implant contact area, but a slight increase in peripheral implant 

contact area. Overall, flanged implants were found to have the lowest implant-bone 

contact percentages, with the hybrids falling between the peg and flange designs, and the 

peripheral implants producing the greatest implant-bone contact percentages. 

5.3.2 Absolute Change in Bone Stress 

5.3.2.1 Cortical Bone 

A quadrant main effect (P<0.001, power=1.000) indicated higher changes in cortical 

stress in the lateral quadrant compared to the medial (13.6±3.4% difference; P=0.001) 

and anterior (13.5±4.0% difference; P=0.002) quadrants; as well as in the posterior 

quadrant compared to anterior (5.5±3.1% difference; P=0.017) (Figures 5.4 to 5.7). 

Significant slice depth (P<0.001, power=1.000) and abduction angle (P=0.027, 

power=0.726) main effects indicated that cortical stress changes significantly varied 

between all slices, and were greater when loading the humerus at 45° compared to 75° 

abduction (1.5±1.0% difference; P=0.027). Cortical stress differences were found to vary 

significantly based on the type of implant chosen (P=0.001, power=0.980), with 

PegStraight producing significantly less cortex stress change than all other implants 

(P≤0.047) except Peripheral4x5S (P=0.919) and Peripheral4x5A (P=0.916). Additionally, 

Peripheral4x5S and Peripheral4x5A were both found to induce significantly less cortex 

stress change than Peripheral4x10S (P≤0.046) and Peripheral4x10A (P≤0.001). HexPeg 

also caused significantly greater cortex changes compared to PegAnatomic (P=0.015),   
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Figure 5.3: Implant-Bone Contact Results for All 

Stemless Implants 

The mean  SD percentage of each implant that 

remained in contact with bone when loaded 

according to either 45 or 75 of abduction.  
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Figure 5.4: The Percentage Change in Anterior Quadrant Cortical Bone Stress 

Results for All Stemless Implants 

The mean  SD percentage change in anterior quadrant cortical bone stress relative 

to the intact state broken down by slice depth for loading corresponding 45 and 

75 of abduction.  
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Figure 5.5: The Percentage Change in Posterior Quadrant Cortical Bone 

Stress Results for All Stemless Implants 

The mean  SD percentage change in posterior quadrant cortical bone stress 

relative to the intact state broken down by slice depth for loading corresponding 

45 and 75 of abduction.  
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Figure 5.6: The Percentage Change in Medial Quadrant Cortical Bone Stress 

Results for All Stemless Implants 

The mean  SD percentage change in medial quadrant cortical bone stress relative 

to the intact state broken down by slice depth for loading corresponding 45 and 

75 of abduction.  
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Figure 5.7: The Percentage Change in Lateral Quadrant Cortical Bone Stress 

Results for All Stemless Implants 

The mean  SD percentage change in lateral quadrant cortical bone stress relative 

to the intact state broken down by slice depth for loading corresponding 45 and 

75 of abduction.  



 

 

152 

 

HexFlange (P=0.020), QuadFlange (P=0.010) and QuadPeg (P=0.004). Furthermore, 

QuadFlange produced significantly less change in cortex stress than HexFlange 

(P=0.010), QuadPeg (P=0.047) and Peripheral4x10S (P=0.043; Figures 5.4 to 5.7). More 

specific implant comparisons, broken down by slice depth and quadrant, agree with these 

findings (See Appendix I). Overall, all implants elicited similar responses, with the 

greatest changes from the intact cortical stress occurring 0-5mm beneath the humeral 

resection, and tapering off down the diaphysis (Figures 5.4 to 5.7).2 

5.3.2.2 Trabecular Bone 

Again, a quadrant main effect (P<0.001, power=1.000) indicated that the change in 

trabecular stress was significantly greater in the lateral quadrant compared to all others 

(medial: 14.6±6.4% difference, P=0.007; anterior: 15.0±4.4% difference, P=0.002; 

posterior: 7.2±3.6% difference, P=0.011), as well as posteriorly compared to both 

anterior (7.7±4.4% difference; P=0.018) and medial (7.3±4.3% difference; P=0.019) 

quadrants. 45° humeral loading produced a significantly greater change in trabecular 

stress (1.1±0.6% difference) compared to 75° humeral loading (P=0.014, power=0.871) 

(Figures 5.8 to 5.11). Again, all slice depths produced significantly different trabecular 

stress responses (P<0.001, power=1.000). Overall, an implant main effect (P<0.001, 

power=1.000) demonstrated that the pegged implants produced significantly less 

trabecular stress changes compared to all other implants (P≤0.014), except each other 

(P=0.064), Peripheral4x5S (P≥0.073) and Peripheral4x5A (P≥0.110). Peripheral4x10S 

and Peripheral4x10A were found to produce significantly greater changes in trabecular 

stress compared to all implants (P≤0.044), except each other (P=0.708) and HexPeg 

(P≥0.679). Finally, QuadFlange and QuadPeg both created significantly less changes in 

trabecular stress than HexFlange (P≤0.043) and HexPeg (P≤0.005; Figures 5.8 to 5.11). 

Specific implant differences according to slice depth and quadrant agree with these 

findings (See Appendix I). 

The greatest divergence from intact trabecular stress was found 0-5mm beneath the 

resection (Figures 5.8 to 5.11). Trabecular stress returned closer to the intact state further   

                                                      
2 See Appendix J for supplementary von Mises stress plot cross-sections of all specimens. 
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Figure 5.8: The Percentage Change in Anterior Quadrant Trabecular Bone 

Stress Results for All Stemless Implants 

The mean  SD percentage change in anterior quadrant trabecular bone stress 

relative to the intact state broken down by slice depth for loading corresponding 

45 and 75 of abduction.  
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Figure 5.9: The Percentage Change in Posterior Quadrant Trabecular Bone 

Stress Results for All Stemless Implants 

The mean  SD percentage change in posterior quadrant trabecular bone stress 

relative to the intact state broken down by slice depth for loading corresponding 

45 and 75 of abduction.  
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Figure 5.10: The Percentage Change in Medial Quadrant Trabecular Bone 

Stress Results for All Stemless Implants 

The mean  SD percentage change in medial quadrant trabecular bone stress 

relative to the intact state broken down by slice depth for loading corresponding 

45 and 75 of abduction.  
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Figure 5.11: The Percentage Change in Lateral Quadrant Trabecular Bone 

Stress Results for All Stemless Implants 

The mean  SD percentage change in lateral quadrant trabecular bone stress 

relative to the intact state broken down by slice depth for loading corresponding 

45 and 75 of abduction.  
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down the diaphysis, except in the lateral and anterior quadrants, where there was an 

elevation in stress change 15-25mm beneath the resection plane. This effect was most 

pronounced within QuadPeg, HexPeg, Peripheral4x10S, and Peripheral4x10A (Figures 

5.8 to 5.11). 

5.3.3 Expected Bone Response 

5.3.3.1 Cortical Bone 

 Below Threshold 

An abduction angle main effect (P=0.027, power=0.729) indicated that the percentage of 

cortical bone volume expected to resorb was slightly higher when the humerus was 

loaded corresponding to 45° instead of 75° of abduction (1.3±0.9% difference). 

Moreover, the first three slices beneath the humeral head resection plane (0-15mm) 

contained greater percentages of cortical bone volume with a potential to resorb 

compared to all other slices (P<0.001, power=1.000) (Figures 5.12 and 5.13). Though the 

bone quadrant main effect was significant (P=0.013, power=0.833), the pairwise 

comparison didn’t indicate any significant differences attributable to quadrant alone. The 

choice of implant also presented as a significant main effect (P<0.001, power=1.000). 

Specifically, the pegged implants were found to have a lower volume percentage with 

resorbing potential than all other implants (P≤0.015), except Peripheral4x5S (P≥0.085) 

and Peripheral4x5A (P≥0.185); with PegStraight having a lower resorbing potential than 

PegAnatomic (P=0.025). HexPeg was additionally found to have a higher potential 

resorbing volume percentage than QuadPeg (P=0.030), QuadFlange (P=0.042), and 

HexFlange (P=0.037). The Peripheral4x5S (P<0.001), Peripheral4x5A (P=0.001) and 

QuadFlange (P=0.032) all produced significantly less expected resorbing volume 

percentages than Peripheral4x10A; with Peripheral4x5S (P=0.035) and QuadFlange 

(P=0.013) also being significantly lower than Peripheral4x10S. These results were 

supported by the implant comparisons broken down by slice depth and bone quadrant. 

Overall, the mean differences between implants were small (≤3.9% difference), with all 

eliciting similar cortical bone resorbing potentials; which were highest near the resection 

plane, dissipating 15-20mm beneath the resection (Figures 5.12 and 5.13). These findings
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Figure 5.12: The Potential Time-Zero Cortical Bone Response for All Stemless Implants (45 

Abduction) 

Potential cortical bone response of all stemless implants assessed (results for 45 of abduction shown). 

Available bone volume in each slice (pooled across quadrants) is divided into the percentage expected to 

resorb (black), remain unchanged (white) and remodel (grey).  
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Figure 5.13: The Potential Time-Zero Cortical Bone Response for All Stemless Implants (75 

Abduction) 

Potential cortical bone response of all stemless implants assessed (results for 75 of abduction shown). 

Available bone volume in each slice (pooled across quadrants) is divided into the percentage expected to 

resorb (black), remain unchanged (white) and remodel (grey).
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were supported by the implant comparisons broken down by slice depth and bone 

quadrant (See Appendix I). 

 Within Threshold 

Similarly, an abduction angle main effect suggested that there is a slight increase in the 

unchanged cortical bone volume percentage (1.4±1.0% difference; P=0.036, 

power=0.645) when the humerus is loaded at 75° abduction, compared to 45° abduction. 

The lateral quadrant also produced significantly less unchanged volume potential 

compared to the anterior quadrant (11.1±8.8% difference; P=0.048, power=0.781). 

Furthermore, the first four slices beneath the humeral head resection plane (0-20mm) 

retained significantly lower percentages of unchanged cortex volume compared to all 

other slices (P<0.001, power=1.000) (Figures 5.12 and 5.13). Moreover, an implant main 

effect (P<0.001, power=0.997), indicated that the pegged implants produced significantly 

greater volume percentages expected to remain unchanged compared to QuadPeg 

(P≤0.029), HexPeg (P≤0.014), HexFlange (P≤0.010), Peripheral4x10S (P=0.008) and 

Peripheral4x10A (P=0.026). PegAnatomic was also found to produce significantly less 

unchanged cortex volume percentage than QuadFlange (P=0.049). Peripheral4x5S also 

produced significantly more unchanged volume percentage than both Peripheral4x10S 

(P=0.037) and Peripheral4x10A (P<0.001); as did Peripheral4x5A compared to 

Peripheral4x10A (P=0.001), and QuadFlange compared to Peripheral4x10S (P=0.028). 

HexPeg further produced significantly less unchanged cortex volume percentage 

compared to QuadPeg (P=0.016), QuadFlange (P=0.033) and HexFlange (P=0.029). 

These differences were again supported by the implant-by-slice depth-by-bone quadrant 

interaction. Overall, mean differences between implant types were small (≤3.5% 

difference), suggesting that implant type has a minor effect on the percentage of 

unchanged cortical bone volume (Figures 5.12 and 5.13). Again, these findings were 

supported by the implant comparisons broken down by slice depth and bone quadrant 

(See Appendix I). 
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 Above Threshold 

Slice depth was the only significant main effect (P=0.001, power=0.986), with the 

percentage of cortex volume with remodeling potential being significantly greater in slice 

3 (10-15mm) compared to slices 2 (5-10mm) and 4-6 (15-30mm); and significantly less 

in slice 4 (15-20mm) compared to slices 5-8 (20-40mm). Implant choice was not 

significant as a main effect (P=0.097, power=0.712). Overall, all implants produced 

similar (mean differences ≤0.6%), and small, cortical bone volume percentages within the 

expected remodeling threshold (Figures 5.12 and 5.13). Finally, these findings were 

supported by the implant comparisons broken down by slice depth and bone quadrant 

(See Appendix I). 

5.3.3.2 Trabecular Bone 

 Below Threshold 

Slice depth was found to have a main effect on the percentage of trabecular bone 

expected to resorb (P<0.001, power=1.000); with all slices being significantly different 

than each other, except slice 8 (35-40mm) compared to slices 5-7, and slice 7 (30-35mm) 

compared to slices 6 (25-30mm) and 8 (35-40mm) (Figures 5.14 and 5.15). Though not 

significant as a main effect (P=0.085, power=0.525), a bone quadrant pairwise 

comparison indicated that resorbing potential was higher in the posterior quadrant 

compared to the medial quadrant (1.8±1.5% difference; P=0.048). The only other 

significant main effect was that of implant choice (P<0.001, power=1.000). All implants 

produced significantly different trabecular volume percentages within the resorbing 

potential category (P≤0.047), with the exceptions of QuadPeg compared to HexPeg 

(P=0.054), Peripheral4x5S compared to Peripheral4x5A (P=0.971), Peripheral4x10S 

compared to Peripheral4x10A (P=0.834), and HexFlange compared to QuadFlange 

(P=0.558) and Peripheral4x5A (P=0.173). The mean differences ranged from 0.2-9.6%, 

with the lowest resorbing potential found with pegged implants, followed by the peg-

flange hybrids, flanged implants, Peripheral4x5 implants, and finally, the Peripheral4x10 

implants. Neither increasing the number of flanges, nor changing the fixation feature to 

follow the anatomic canal path produced appreciable trends in the mean results (Figures 
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Figure 5.14: The Potential Time-Zero Trabecular Bone Response for All Stemless Implants (45 

Abduction) 

Potential trabecular bone response of all stemless implants assessed (results for 45 of abduction shown). 

Available bone volume in each slice (pooled across quadrants) is divided into the percentage expected to 

resorb (black), remain unchanged (white) and remodel (grey).  
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Figure 5.15: The Potential Time-Zero Trabecular Bone Response for All Stemless Implants (75 

Abduction) 

Potential trabecular bone response of all stemless implants assessed (results for 75 of abduction shown). 

Available bone volume in each slice (pooled across quadrants) is divided into the percentage expected to 

resorb (black), remain unchanged (white) and remodel (grey).
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5.14 and 5.15). Again, these findings were supported by the implant comparisons broken 

down by slice depth and bone quadrant (See Appendix I). 

 Within Threshold 

Slice depth had a main effect on the percentage of unchanged trabecular bone volume 

(P<0.001, power=1.000), with all slices being significantly different from each other, 

except slices 3, 4 and 6, between which there were no significant differences. Less 

unchanged volume was present in the slices directly beneath the humeral head resection 

plane, and again at a depth of 20-30mm (Figures 5.14 and 5.15). As above, the posterior 

quadrant had a significantly greater percentage of unchanged trabecular volume 

compared to the medial quadrant (2.8±1.9% difference; P=0.030), despite bone quadrant 

not being a significant main effect (P=0.354, power=0.243). Implant choice was 

significant (P<0.001, power=1.000); indicating that the pegged implants produced 

significantly more unchanged trabecular volume (by percentage) than all other implants 

(P≤0.037), except for each other (P=0.115), Peripheral4x5S (P≥0.108) and 

Peripheral4x5A (P≥0.541). Similarly, QuadPeg produced significantly more unchanged 

trabecular volume than HexPeg (P=0.002), HexFlange (P=0.004), Peripheral4x10S 

(P=0.007) and Peripheral4x10A (P=0.020). HexFlange (P≤0.049), Peripheral4x10S 

(P<0.001) and Peripheral4x10A (P≤0.003) all had significantly less unchanged potential 

than Peripheral4x5S and Peripheral4x5A; with QuadFlange also being significantly lower 

than Peripheral4x5A (P=0.045). Finally, there was significantly less unchanged 

trabecular potential for Peripheral4x10S (P=0.003) and Peripheral4x10A (P=0.011) 

compared to QuadFlange; as well as Peripheral4x10S compared to HexPeg (P=0.040). 

Mean differences in unchanged trabecular volume ranged from 1.9-9.1% between 

implants. Similar to the trabecular resorbing potential, the highest unchanged trabecular 

volume percentages were found for the pegged implants, followed by peg-flange hybrids, 

flanged implants, and peripheral implants (Figures 5.14 and 5.15). These findings were 

again supported by the implant comparison broken down by slice depth and bone 

quadrant (See Appendix I). 
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 Above Threshold 

Despite bone quadrant not being a significant main effect (P=0.141, power=0.425), the 

medial quadrant had significantly more trabecular remodeling potential than the posterior 

quadrant (4.6±2.6% difference; P=0.016). All slices were significantly different from 

each other (P<0.001, power=1.000), except for slice 1 (0-5mm) compared to slices 4-6 

(15-30mm), as well as slice 2 (5-10mm) compared to slices 3-6 (10-30mm), slice 3 (10-

15mm) compared to slice 7 (30-35mm), and finally, slice 4 (15-20mm) compared to slice 

6 (25-30mm). The choice of implant also had a significant main effect (P<0.001, 

power=1.000) on the trabecular remodeling potential. Peripheral4x5S and 

Peripheral4x5A had significantly less remodeling potential than all other implants 

(P≤0.048), except for PegAnatomic (P≥0.059); with Peripheral4x5A also significantly 

less than Peripheral4x5S (P=0.049). HexPeg produced significantly more trabecular 

remodeling potential compared to QuadPeg (P=0.022), QuadFlange (P=0.015), 

HexFlange (P=0.035) and PegAnatomic (P=0.022). Finally, QuadPeg had significantly 

greater trabecular remodeling potential compared to QuadFlange (P=0.023). Mean 

significant differences between implants ranged from 1.3-7.3%. The implant differences 

by slice depth and bone quadrant are presented in Appendix I. Overall, all implants 

elicited a high remodeling potential in the first slice (0-5mm), which reduced with depth 

until about 15-30mm beneath the resection plane, where the remodeling potential was 

again higher. These two regions of higher remodeling potential did appear to differ 

between implant designs, with the greatest remodeling potential in peg-flange hybrids, 

and the wider peripheral implants (Figures 5.14 and 5.15). 

5.4 Discussion 

Since stemless humeral implants were first developed, there have been several in-vivo 

assessments of their performance [12–14,16–22]; the results of which have been 

favorable. To the authors’ knowledge there are only two published FE studies assessing a 

stemless humeral implant [5,48]. The first investigation, by Razfar et al, suggested that 

stemless implants may reduce stress shielding in the cortex compared to stemmed 

implants, but with the tradeoff of increasing changes in trabecular stress [5]; while the 

second study, by Favre et al, quantified implant-bone micromotion, and suggested that 
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99% of the interface was at levels that would promote bone-ongrowth [48]. The present 

FE investigation assessed changes in expected bone response following stemless humeral 

reconstruction with 10 implant designs. 

The choice of implant had a significant effect on all outcome measures, though some 

general trends did present for all implants. One such observation was that the greatest 

changes in bone stress occurred directly beneath the humeral head resection plane, with 

changes reducing in magnitude (approaching the intact bone state) 30-40mm beneath the 

resection. Moreover, changes in bone stress were most prominent in the lateral quadrant, 

followed by the posterior, then medial and anterior. These findings agree well with 

radiographic assessments of stemless implants by Habermeyer et al and Uschok et al, as 

well as a SPECT/CT study by Berth et al, all of which suggested the superior-lateral 

region around the implant is subject to the greatest changes following stemless 

reconstruction [14,21,49]. Furthermore, all implants in the present investigation exhibited 

similar time-zero bone responses, with the greatest resorption potential 0-20mm beneath 

the humeral resection, and two peaks in the trabecular remodeling potential: directly 

beneath the resection, and near the termination of the implants (i.e., 20-25mm down the 

trabecular-canal). 

One aspect of stemless implant geometry investigated was the curvature of the pegged 

and peripheral implants. The change from simpler axisymmetric implants to a canal-path 

oriented anatomic curvature did not have any appreciable effect on bone stress changes, 

nor on the potential bone response; however, anatomic curvature did moderately improve 

the percentage of implant-bone contact for peripheral implants, while the opposite was 

true for the pegged implant. Given the additional surgical complexity associated with the 

insertion of anatomically curved implants, this moderate benefit in contact, without 

appreciable improvement in the expected bone stress and response, suggests that 

axisymmetric stemless implants may remain favorable. 

Widening the pegs of the peripheral implants from 5mm to 10mm (i.e., Peripheral4x5 vs. 

Peripheral4x10) was also assessed. Wider peripheral pegs resulted in greater changes 

from intact bone stress; as well as more potential for resorption, and a consequential drop 

in the unaltered bone response. Interestingly, the widening of peripheral implants resulted 
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in a marginal increase in the trabecular remodeling potential, though no effect was 

observed in the cortical bone. Widening peripheral pegs also resulted in a decrease in the 

mean implant-bone contact percentage. Accordingly, widening peripheral pegs may not 

be advisable; though the size of these pegs should be the subject of further investigation, 

as the current study was limited to only two embodiments. 

The final fixation feature variation that was directly assessed was changing the number of 

fins on the flanged implants from 4 to 6. There were only very minor changes in 

magnitude associated with this increase; with slightly more stress changes presenting, as 

well as slightly less favorable bone responses (except for trabecular remodeling, which 

was found to slightly increase with 6 flanges). Moreover, there was a minor decrease in 

the percentage of implant-bone contact when 6 flanges were present instead of 4. These 

differences were small, suggesting that there is no real advantage to either embodiment. 

The principle variation in implant geometry that was assessed was fixation feature 

positioning. Specifically, whether stemless implants should have central, peripheral or 

boundary-crossing fixation features. Generally, peripheral implants produced the greatest 

percentage of implant-bone contact. The cortical response (both change in stress and 

SED-based) seemed to favor centrally pegged implants and the less wide Peripheral4x5 

implants, followed by flanged and hybrid implants, with the wider Peripheral4x10 

implants producing the least favorable effects. The trabecular bone response was mixed, 

with centrally pegged implants and Peripheral4x5 implants again producing the best 

response, followed by peg-flange hybrids, flanged implants, except for trabecular 

remodeling, where hybrids seemed most advantageous; while Peripheral4x10 implants 

again produced the least favorable response for everything except trabecular remodeling, 

where Peripheral4x5 elicited less of an effect. Given the above observations, it seems that 

central pegged implants and Peripheral4x5 implants both have similar bone responses, 

that are perhaps moderately better than the boundary-crossing implants. It should be 

noted that the centrally pegged implants did produce less cortical and trabecular resorbing 

potential compared to all peripheral implants. This may be of more substantial 

consequence, given that bone resorption may lead to implant loosening over time; though 
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this should be assessed in future in-vitro investigations. An in-vitro assessment of implant 

stability may also be necessary for further implant differentiation. 

Two loading positions (45 and 75) were investigated and yielded only minor 

differences in results, with 45 producing greater stress changes and cortical resorbing 

potential. While statistically significant, the differences were small in magnitude, and 

would likely not be clinically significant. The applied load was larger for 75; however, 

the orientation (derived from telemetrized implant data) was quite similar to 45; this 

along with presenting results as percentage-change could explain the similarity between 

outcomes. Computational demand limited the number of positions assessed to two. Other 

orientations are suspected to yield similar results as the telemetrized load did not move 

substantially throughout abduction, though future investigations should assess this. 

This study was not without limitations. The bone models were developed using cadaveric 

humeri, which may not exactly represent the bone morphology of a clinical population. 

While clinical CT scans could have been used, cadaveric humeri permit the use of CT 

settings that provide the best contrast for accurately representing the bone geometry. 

These settings require additional radiation exposure, which would be unethical for living 

subjects. In addition, the cadavers used were all males, and were slightly larger than the 

pooled population from which the trabecular-canal measures that were used in implant 

construction were derived (resection diameter: current cadavers = 511mm, pooled 

database = 472mm). Despite this, the authors are confident that peripheral, central and 

boundary-crossing implants were seated in their respective bone regions. Furthermore, 

the potential bone response outcome was adapted from previous in-silico FE models that 

used several iterations to adapt bone properties, while the current bone model did not 

iterate. Present trends in bone response make sense, and agree with previous radiographic 

stemmed and stemless implant literature (with the greatest changes occurring proximally 

and within the lateral quadrant) [10,14,21,49], though the implant differences were 

smaller than expected. This could be attributed to the use of non-iterative models, as it is 

uncertain how bone adaptations would affect further changes over time. Accordingly, the 

current results are representative of time-zero (i.e., immediately following surgery), and 

should be interpreted as such; however, the authors feel that time-zero results are 
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important, with greater variation from the preoperative state being less favorable. Finally, 

the present investigation compared stemless fixation features based on only 10 generic 

implant designs. While there was more than one implant per category (i.e., central, 

peripheral, and boundary-crossing), future investigations should continue to assess 

additional fixation feature designs, as this investigation could only begin to assess broad 

variations in implant geometry. 

5.5 Conclusion 

The design of implant fixation features impacts humeral bone response following 

stemless anatomic shoulder arthroplasty. Stemless implants elicited the greatest changes 

from the intact bone in the lateral quadrant directly beneath the humeral head resection 

plane. Changing the fixation feature curvature to follow the anatomic canal path did not 

appear to produce an appreciable benefit in outcome that would outweigh the surgical 

complexity necessary for implantation. Similarly, changing the number of fins in 

boundary-crossing implants was inconsequential; however, widening the peripheral pegs 

from 5mm to 10mm produced less favorable results. The use of implants with fixation 

features that were centrally located in the trabecular-canal produced the least potential 

bone resorption; however, some peripheral implants elicited similar changes in bone 

stress, and peripheral implants had the greatest implant-bone contact percentages. 
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Chapter 6 

General Discussions and Concluding Thoughts 

This chapter provides concluding thoughts regarding this thesis as a whole. 

Each of the objectives and hypotheses that were outlined in Chapter 1, Section 

1.6 are reviewed in the context of the corresponding investigations; followed 

by a discussion of some of the overall strengths and limitations of this body of 

work. Finally, the future directions for this research are proposed, and the 

significance is addressed. 

6.1 Summary 

As medical treatments and technology advance, it is important that our understanding of 

the implications of these treatments grows as well. The questions posed by modern 

shoulder arthroplasty are well suited for collaborative exploration through the application 

of mechanical engineering tools. Given the recent advancements in shoulder arthroplasty 

leading to the advent of a diverse line of stemless (humeral) implants, an investigation 

into the effect of stemless prosthesis geometry and the underlying morphology of the 

proximal humerus was warranted. To date the in-vivo studies following patients with 

stemless reconstructions, while early, have indicated promising results that suggest that 

these less invasive implants perform well compared to their stemmed counterparts [1–5]; 

even indicating less operative time and blood loss [1,2]. However, the limited time has 

resulted in few in-vitro and in-silico investigations applying engineering methods to 

assess stemless implant performance [6–8]. The Finite Element (FE) method is 

particularly well suited to assessing joint reconstruction, as it permits a direct comparison 

between several implant geometries in the same bone; thereby increasing the statistical 

power of any findings. 

The two stemless shoulder FE investigations in the literature (Razfar et al and Favre et 

al) have indicated that the stemless implants assessed provide adequate fixation 

throughout a range of shoulder loading scenarios [7] and point to potential trabecular and 

cortical bone stress trade-offs associated with transitioning to a stemless design [6], but 
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neither directly compared multiple stemless implant geometries. Accordingly, this 

research was undertaken to develop a greater understanding of the proximal humerus’ 

morphology in the context of stemless implant design, and to determine how variation in 

stemless fixation feature design can impact the response of the underlying bone. 

The first phase of this research addressed the morphology of the proximal humerus 

(Objectives 1a and 1b) through the analysis of 98 CT scans from non-arthritic and pre-

operative arthritic populations of both men and women. Two investigations were 

undertaken (Chapters 2 and 3), the first regarding the regional trabecular density 

distribution of the proximal humerus (Objective 1a; Chapter 2), and the second to 

introduce new morphological parameters that could aid in mapping out the canal features 

of the proximal humerus (Objective 1b; Chapter 3). The goal of Objective 1a was 

achieved by first developing a new humeral coordinate system that was based on the 

articular resection plane; thereby ensuring that reported results would be relevant to 

stemless shoulder arthroplasty. Then, by quantifying bone density in central and 

peripheral sub-sections following the division of the proximal trabecular-canal into 13 

slices parallel to the resection plane. As such, regional density variations were found 

indicating that the central region of the trabecular-canal was significantly less dense than 

the peripheral regions (central: 0.080.40g/cm3, medial: 0.150.49 g/cm3, lateral: 

0.140.49 g/cm3, anterior: 0.150.49 g/cm3, posterior: 0.150.56 g/cm3), and that density 

decreased quickly beneath the humeral head resection plane. Consequently, Hypothesis 

1a was accepted, as non-uniform density was noted within the proximal humerus, 

following the expected trends, decreasing to a quantifiable plateau approximately 10-

15mm beneath the articular resection. Following this, Objective 1b was achieved by 

quantifying three new parameters of the proximal humerus: (1) the regional shifts in the 

path of the trabecular-canal, (2) the bounding canal diameters and (3) the depth of the 

canal beneath the humeral resection. As hypothesized, these trabecular-canal features 

were quantifiable, and presented with trends that could be pooled across the study 

population to create a spatial envelope that can be used in the design of stemless shoulder 

implants. Specifically, the canal path was found to remain largely unchanged in the 

anterior-posterior directions; however significant shifts in the medial-lateral directions 

were noted progressing down the canal, which could have implications for the orientation 
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of stemless implant fixation features. Moreover, gender-based differences were found to 

be more prevalent than differences between non-arthritic and arthritic populations. These 

findings could be beneficial when sizing implants for men and women, and in 

preliminary cadaveric assessments of novel implant designs. Together the investigations 

undertaken to satisfy the first objective provide a clearer understanding of the 

morphology of the proximal humerus. 

The second phase of this research (Objective 2; Chapter 4) addressed the lack of 

understanding regarding the influence of trabecular stiffness modeling on FE models for 

shoulder arthroplasty. In order to develop an appropriate FE model of stemless shoulder 

arthroplasty, several assumptions are necessary to approximate reality. While many 

inhomogeneous density-modulus relationships have been developed for other joints 

throughout the body, none exist for the proximal humerus. Hence, humeral models to 

date have employed trabecular stiffness relationships based on other joints [6,9], but have 

not quantified how this may influence results. As such, by developing identical FE 

models of stemless humeral reconstruction that varied only in the trabecular stiffness 

relationship employed, the investigation in Chapter 4 was able to quantify this effect for 

the first time. The findings indicated that varying the anatomic-site from which the 

trabecular stiffness was derived consistently produced lower outcome deviations than 

those attributable to subject differences within the FE population, or those that arose from 

using a homogeneous stiffness in place of a site-pooled inhomogeneous one. This was 

true for implant-bone contact, the change in cortical and trabecular stress, as well as the 

time-zero potential bone response. The deviation between homogenous and 

inhomogeneous trabecular models was highlighted well by the divergence of trabecular 

outcomes 20-40mm beneath the humeral resection plane, where bone density and 

corresponding stiffness diminish; indicating the importance of using an inhomogeneous 

stiffness when constructing humeral FE models. Overall inhomogeneous anatomic-site 

deviations were very low, only exceeding 10% in two sub-sections of the trabecular stress 

change at 45 of abduction (mean values of 10.2% and 10.3%). Moreover, changing the 

anatomic-site from which the stiffness relationship was derived did not influence the 

trends in the investigated stemless arthroplasty outcomes, provided an inhomogeneous 

relationship was used. Accordingly, given the unaltered trends and overall low deviations 
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in outcome measures, Hypothesis 2 was confirmed, and the site-pooled inhomogeneous 

relationship was deemed acceptable for use in the construction of a FE model for 

stemless shoulder arthroplasty. 

In the third and final phase of this research (Objective 3; Chapter 5) the humeral response 

to reconstruction with a variety of stemless implants was assessed. Using the bone 

morphology data from Chapters 2 and 3, ten generic stemless implants were designed 

with fixation features that were principally either central, peripheral, or crossing the 

central-peripheral boundary of the proximal humerus. Additional design alterations, such 

as fixation features that followed the canal path (quantified in Chapter 3) as opposed to 

tapering off axisymmetrically, were included as well. These designs were assessed using 

the FE method and outcome variables that were introduced for stemless humeral 

reconstruction in Chapter 4. The design of stemless implants influenced the humeral bone 

response. Whereas the cortical response was largely insensitive to changes in the stemless 

implant fixation feature geometry (<4.0% change across categories of the time-zero 

potential bone response) the trabecular response was more directly affected (potential 

bone response category changes 9.6%). Accordingly, Hypothesis 3 was partially 

accepted, as significant and quantifiable changes in humeral response were detected in all 

outcome measures; however, little benefit was realized from changing the implant 

fixation features to follow the canal path, and there were tradeoffs between central, 

peripheral and boundary-crossing implants. Specifically, central implants elicited the 

least potential bone resorbing responses; however, some central and peripheral implants 

produced similar bone stress changes, and peripheral implants had the greatest percentage 

of implant-bone contact area. 

6.2 Strengths and Limitations 

At the time of undertaking this research, Chapters 1 and 2 were the only morphological 

analyses of the proximal humerus that were conducted in a resection-based coordinate 

system. Since that time, a study by Alidousti et al was published analyzing density 

variations in a similar manner, and with similar conclusions as those found in Chapter 2 

[10]; however, their investigation consisted of only four pairs of humeri, all of which 

were cadaveric. With this in mind, the sample size of 98 subjects and the inclusion of pre-
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operative patient scans, as well as male and female subjects are, in the author’s view, 

major strengths of the morphological analysis of Chapters 2 and 3. Moreover, presenting 

the density and geometric measures relative to a resection-based coordinate system 

makes the interpretation of results far more impactful in the design of stemless humeral 

implants. This presentation permitted the first quantifications of the spatial envelope that 

defines the geometric limits for stemless fixation features. The morphological analyses 

were further strengthened by the automation of measurements (using custom LabVIEW 

code). By analyzing data in this manner, the 4D point-cloud was assessed independent of 

user bias; however, repeatability of masking techniques for the selection of the region-of-

interest was not directly assessed. Another limitation of the morphological analysis was 

the use of clinical CT scans as opposed to higher resolution micro-CT. Clinical CT 

resolution precluded the quantification of micro-architectural outcomes such as trabecular 

orientation; however, this level of detail was not necessary for the outcome measures that 

were quantified and would have limited the use of patient data due to ethical limits 

regarding radiation exposure. Partial volume effects are also an issue with clinical CT 

resolution, and could have contributed to some variation in the selection of the trabecular-

canal boundary; however, partial volume effects are not expected to have influenced the 

density-values reported in Chapter 2, as these were expressed as an average of each 

region-of-interest, and further refinement of the voxel size should not change the average 

value. With this in mind, the resolution of the clinical CT scans obtained was sufficient to 

quantify the dimensional variations of the proximal humerus. It is difficult to say if 

improved resolution would be of benefit for the morphological studies of Chapters 2 and 

3, as geometric variances quantified to the sub-millimeter level would likely not improve 

the clinical use of the data. Finally, neither of the morphological assessments presented 

directly quantified the degree to which some subjects may have had osteoporosis; 

however, the results presented do reflect a clinical population, as the OA dataset was 

derived from a clinical database. Though the apparent density values would likely change 

in cohorts with different levels of osteoporosis, the regional trends regarding higher bone 

density peripherally, etc. are expected to remain similar. 

The trabecular stiffness assessment undertaken in Chapter 4 was the first of its kind to 

directly quantify the deviation in arthroplasty FE outcomes attributable to changing the 
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trabecular material model based on the anatomic-site from which the stiffness was 

derived. While past studies have quantified the change in material properties that can be 

expected between stiffness equations from different anatomic-sites [11], the influence 

this has on FE outcomes has been missing in the literature. A strength of this analysis was 

the use of 5 inhomogeneous stiffness equations from different anatomical locations, but 

that were all derived by a single author using identical methods [11]. Moreover, 

quantifying the FE population deviation, and including a homogeneous trabecular model 

provided additional context regarding the level of deviations that would typically be 

found within a FE analysis of this manner; and helped to confirm that inhomogeneity is 

an important property to model in trabecular bone. It is also important to remember that 

the deviations and conclusions regarding the use of site-pooled inhomogeneous trabecular 

models, are limited to the outcome measures assessed within Chapter 4. Future 

investigations pertaining to other outcome measures (e.g., implant-bone micro-motion) 

should also assess how changes to the trabecular material model may affect results. 

Moreover, the sample size for this investigation (n = 8) could generally be regarded as 

small; however, the inclusion of eight subjects is far greater than the vast majority of FE 

investigations of joint arthroplasty, as many groups often publish results of single-subject 

models, and hence are not able to draw statistically-backed conclusions. 

Similarly, the investigation of stemless implant geometry in Chapter 5 was the first FE 

assessment to directly compare more than one stemless humeral implant. To date only 

one in-vivo investigation directly compared the performance of two stemless implants in 

their patient population [12], and these two implants were very similar in design (TESS 

and Nano by Zimmer Biomet). Consequently, to assess additional designs, the FE method 

was chosen for its ability to directly compare multiple implants within the same bone. By 

applying identical meshing techniques, results were normalized to the intact state on an 

element-to-element basis for each change in implant fixation feature geometry [6]. 

Unfortunately, the time required to construct and analyze each FE model limited the 

sample size (n = 5) and the number of stemless implant fixation feature variations that 

were assessed. In total, Chapter 5 presents the results from 200 FE models (10 implants x 

2 models: intact and reconstructed x 2 abduction angles x 5 specimens). Though 10 

stemless implant geometries were analyzed, infinitely more variations can be assessed in 
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future studies; however, this investigation was interested in the comparison of central, 

peripheral and boundary-crossing fixation features; and implants were designed with this 

in mind. It should also be noted that the surface area and replaced bone volume was 

variable between implants. As a consequence, all results were presented as percentages to 

permit statistical assessment. Another limitation of this work was that the FE models 

were not strain adaptive. The implementation of an adaptive model could provide a more 

detailed understanding of how bone density may be expected to change following joint 

reconstruction; however, the addition of approximately 100 iterations (as per Neuert 

2013) in order to simulate progressive density changes would have further limited the 

number of specimens and implants that were assessed. Accordingly, the SED-based bone 

response outcome measure used in Chapters 1, 4 and 5 was presented as a ‘potential’ for 

change based on time-zero (i.e., immediately post-operative) response. As such, these 

outcomes were offered as the percentage of regional volume with resorbing, unchanged 

or remodeling potential, rather than the physical density change of each individual bone 

element, which would have required further iteration to obtain. These time-zero potential 

bone responses are still meaningful though, as they provide a head-to-head comparison 

between implants at an instance in time, with less potential for resorbing and remodeling 

indicating a state more aligned with the intact state, and therefore more favorable. 

Finally, it must be noted that the FE method is limited as an approximation of reality, and 

future work should further complement arthroplasty FE investigations with prospective 

in-vivo radiographic assessments. While FE studies can provide key insights that would 

otherwise be challenging to obtain via in-vivo or in-vitro methods, their true strength lies 

not in the model’s ability to perfectly quantify individual stress and strain values, but 

rather in the model’s capacity to isolate a single variable (such as an implant geometry 

change) and conduct parametric assessments as were done herein. This is achieved by 

constructing multiple FE models, then assessing the difference in outcome variable trends 

that arise because of these changes. As such, FE outcomes should inform, not dictate 

implant design. 
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6.3 Future Directions 

While this body of work has presented several new results that have implications for the 

design of stemless shoulder arthroplasty, there are many more aspects requiring further 

investigation. The morphological terms quantified in Chapter 3 define a general spatial 

envelope of the proximal humerus’ trabecular-canal. These terms can be refined in the 

future to include non-symmetric canal dimensions, to expand the bounding diameters 

presented in Chapter 3. Such measures would provide additional understanding of how 

the medial-lateral vs. anterior-posterior aspect ratio changes progressing down the canal. 

In addition, future morphological analyses should increase the patient population 

investigated to include addition osteoarthritic classifications (e.g., Walch type A1, A2, 

B1, B2, B3, C, etc). Future morphological work could also assess patients with ranging 

levels of osteoporosis to determine if these morphological terms vary with age and 

disease progression. 

As suggested above, in Section 6.2, additional stemless shoulder FE investigations are 

warranted to further assess fixation feature designs. If the geometric variations of a 

specific investigation can be limited to a few embodiments, then strain adaptive methods 

can be employed to provide more detail regarding regional density changes following 

reconstruction. Such a model would be particularly useful for implant manufacturers 

during the implant design process if it were developed using pre-operative patient CT 

scans, then validated by a paired in-vivo radiographic study following the same patients 

post-operatively. Should a study of this manner be undertaken it may be advisable to 

develop a density-modulus relationship specific to the proximal humerus and compare 

this to the site-pooled relationship employed in this work, as the corresponding deviation 

in adaptive response may be greater than that of the FE outcomes noted in Chapter 4. 

To further develop the FE models from Chapter 5 it is advisable that future studies focus 

on quantifying outcome measures pertaining to implant stability (i.e., implant-bone 

micro-motion, gross implant translations, etc.). The current FE models focused on the 

stress and strain response of bone to quantify differences in fixation feature designs. 

These were chosen as the outcomes of interest since stemless implants have been 

introduced to the market in part to address concerns regarding stress shielding around 
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stemmed implants [13–16]. While there were some differences noted between central, 

peripheral and boundary-crossing implants, the cortical response was largely similar for 

all stemless implants. A retrospective analysis of the models used for mesh convergence 

in this work suggests that a finer mesh (~1mm element edge-length) may be necessary for 

quantifying implant-bone motion. Future use of the SED-based time-zero potential bone 

response should be continued to assess differences between implants; however, without 

the implementation of an adaptive model, this outcome must always be clearly presented 

as only reflecting the immediate post-operative state. 

6.4 Significance 

In-silico radiographic and FE investigations of the proximal humerus are important tools 

for the design of new shoulder implants. Together, these methods assist with 

understanding the spatial limits imposed on implant design and the potential response of 

bone following joint reconstruction. Although FE modeling cannot fully replicate the in-

vivo condition of humeral arthroplasty, it permits the quantification of invasive measures 

of bone stress and strain that would be unethical, if not impossible, to obtain in living 

patients. Though not as important in regulating the use of implants as prospective clinical 

trials, these in-silico methods benefit from their ability to assess several variables that can 

be easily adapted. Moreover, in-silico results can help to guide implant design in the early 

stages of product development. As such, their application to the relatively young field of 

stemless shoulder reconstruction is warranted. 

Accordingly, with the current offering of stemless implants varying greatly in fixation 

feature design, the overall goal of this research was to improve the utility of in-silico 

methods in developing new understanding with regards to the morphology of the 

proximal humerus and the performance of stemless implants. As discussed above, the 

specific goals set out in Chapter 1 have been achieved. The morphological analyses 

undertaken have helped to define a better understanding of the distribution of bone 

density within the proximal humerus, as well as a spatial envelope that quantifies 

previously assumed boundaries for stemless implant design. It is worth noting that 

Chapters 2 and 3 are the first morphological analyses of the proximal humerus using a 

pre-operative clinical population that targeted morphological parameters of interest for 
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the design of stemless implants. The results of these studies have significant implications 

regarding implant design, as the population pooled averages can be directly applied when 

shaping and sizing a fleet of implants to suit a clinically relevant population. 

The FE models developed in Chapters 4 and 5 have provided evidence-based decisions 

regarding the modelling of trabecular bone for stemless shoulder analyses; and have 

begun to assess the differences in bone response that can be expected when changing the 

fixation feature geometry of stemless implants. These models have and will continue to 

assist in quantifying the differences between stemless fixation features as further design 

iterations are made; and provide a strong foundation for future FE models of stemless 

shoulder arthroplasty. The time-zero trade-offs noted regarding bone response when 

switching between central and peripheral fixation features may have been smaller than 

originally anticipated, but none the less could provide meaningful insight should one 

form of stemless design be found to outlast others in future long-term clinical trials. 

Moreover, the consistency of trends in cortical and trabecular bone response across all ten 

implant designs assessed may suggest that these responses are reflective of stemless 

shoulder arthroplasty as a whole. 

With this in mind, the greatest significance of this work pertains to the evidence these in-

silico tools have provided for stemless implants in general. Chapters 2 and 3 have 

demonstrated that radiographic reconstruction can be a useful tool for quantifying bone 

morphology, which can inform decisions made regarding the design of new stemless 

implants (i.e., where bone is most dense, how deep should implants be made, how must 

they curve to remain within the canal, etc). The consistency of cortical and trabecular 

bone responses following stemless reconstruction suggest that postoperative changes are 

most likely to occur in bone directly beneath the humeral resection plane, in particular 

within the lateral quadrant. Accordingly, these regions may play a key role in the early 

identification of implant success or failure following stemless shoulder reconstruction; 

and should be monitored closely in future prospective clinical trials. 
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Appendices 

Appendix A – Glossary 

Abduction The act or state of being drawn away from a position that is 

nearer or more parallel to the centerline of the body. 

Adduction The act or state of being drawn closer to a position that is 

nearer or more parallel to the centerline of the body. 

Anterior Situated near the front of the body. 

Arthropathy  Refers to a disease of a joint. 

Arthroplasty The surgical replacement or reconstruction of a joint. 

Articulation Synonym for a joint. 

Circumduction Limb movement, such that the distal end traverses a circular 

motion when the proximal end is fixed. 

Comminuted Term used to describe a sever fracture, where the object of 

concern has been reduced to several small parts. 

Computed Tomography A procedure commonly used in the medical field, where 

several X-ray scans are taken in succession and compiled 

together to provide 3-dimensional images based on 

radiation attenuation. 

Coronal Plane Imaginary plane that divides the body perpendicular to the 

anterior-posterior axis. 

Distal Situated further from the center of the body, or further from 

the point of attachment. 
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Elastic Modulus Mechanical property referring to the stiffness of an object; 

calculated as the force exerted upon the object divided by 

the resulting deformation. 

Epiphysis The section of a long bone that is located closest to the 

articular surface. 

Diaphysis The shaft or central section of a long bone. 

Glenohumeral Joint The primary joint of the shoulder, responsible for the 

greatest range-of-motion. It is formed by the articulation 

between the glenoid of the scapula and the head of the 

proximal humerus. 

Glenoid The dish-like surface of the scapula that supports 

glenohumeral articulation. 

Hemi-Arthroplasty A surgical procedure wherein only one side of the 

articulation is replaced/reconstructed. 

Hooke’s Law Physical relationship governing the extension of elastic 

objects; indicates that the force applied is equal to the 

stiffness of the object multiplied by its extension under that 

force; alternatively expressed as the stress experienced 

being equal to the elastic modulus multiplied by the strain 

observed. 

Hounsfield Units A unit used to measure radiation attenuation within CT 

scans. 

Humerus The long bone of the upper arm, which is responsible for 

bearing the loads transferred between the shoulder and 

elbow. 

Inferior Situated below. 
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Lateral Situated to one side of the body. 

Medial Situated near the middle of the body. 

Metaphysis Narrow portion of a long bone that is located between the 

epiphysis and diaphysis, which hosts the growth plate. 

Orthopaedics The branch of medicine concerned with the correction of 

deformities to the musculoskeletal system (i.e., bones, 

muscles, tendons, ligaments, etc). 

Osteoarthritis Degeneration of joint cartilage and the underlying bone; 

which can lead to joint pain and stiffness. 

Osteonecrosis Refers to the death of bone tissue. 

Osteotomy The surgical procedure of cutting or removing bone. 

Poisson’s Ratio Mechanical property referring to the ratio of proportional 

decrease in the lateral length of an object to its axial 

elongation. 

Posterior Situated near the back of the body. 

Proximal Situated nearer to the center of the body, or nearer to the 

point of attachment. 

Sagittal Plane Imaginary plane that divides the body perpendicular to the 

medial-lateral axis. 

Sepsis Complication arising due to infection; chemicals released 

into the bloodstream to fight infection trigger inflammatory 

responses throughout the body, which can damage multiple 

organ systems. 

Strain Measure of deformation; calculated as the change in length 

divided by the length of the object that is deformed. 
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Strain Energy Density Measure of the internal work/energy per unit volume that is 

stored within an object as it is distorted. 

Stress Measure of the pressure exerted upon an object; calculated 

as the force exerted divided by the area over which it is 

applied. Alternatively calculated from the strain that the 

object experiences under the applied load using Hooke’s 

law. 

Superior Situated above. 

Total Arthroplasty A surgical procedure wherein both sides of the articulation 

are replaced/reconstructed. 

Transverse Plane Imaginary plane that divides the body perpendicular to the 

inferior-superior axis. 

Wolff’s Law Bone resorbs and remodels in response to the forces/loads 

that it is subjected to.  
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Appendix B – Copyright License for Figure 1.3 
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Appendix C – Mesh Convergence 

C.1 Materials and Methods 

To assess the sensitivity of the finite element model to mesh size, one cadaveric humerus 

was reconstructed in-silico using the Simpliciti stemless shoulder implant (Tornier 

Simpliciti; Wright BioMedical, Staines-upon-Thames, Middlesex, UK). Four Finite 

Element (FE) models were developed for the reconstruction, with the only variable 

between models being the mesh size. Based on previous FE studies of the proximal 

humerus, a 2mm average element edge length was chosen as the reference mesh size 

[1,2]. This mesh size corresponded to 152,449 elements within the cortical and trabecular 

bone that remained following joint reconstruction. In addition to the 2mm mesh, 1.4mm, 

1.2mm, and 1.0mm models were also created, which corresponded to approximately 

doubling (320,751 elements), tripling (449,878 elements), and quadrupling (577,388 

elements) the number of bone elements within the reconstructed models, respectively. 

Larger mesh sizes were not considered, as the intricacies of the stemless implant could 

not be accurately approximated with coarser elements. In addition to the reconstructed 

bone models, intact bone models were also developed with identical bone meshes to 

permit the evaluation of outcome measures that utilize element-to-element comparisons 

[1]. 

The FE model parameters used for mesh convergence assessment are the same as those 

described in Chapters 4 and 5 but are summarized here. All FE models were meshed 

using quadratic tetrahedral elements. The elements corresponding to the cortical bone 

were assigned a homogenous and isotropic elastic modulus of 20GPa, with a Poisson’s 

ratio of 0.3 [1,3,4]; while the trabecular elements were inhomogeneous, and isotropically 

mapped using Morgan et al’s site-pooled density-modulus regression and were again 

assigned a Poisson’s ratio of 0.3 [5]. Bone density was linearly calibrated from CT 

attenuation data (in Hounsfield Units, HU), using a SB3-H2O calibration phantom of 

known apparent densities (1.82g/cm3 and 0g/cm3, respectively) that was scanned 

alongside the cadaver [6]. 
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All FE models were fixed at the mid-diaphysis (180mm from the superior-most resection 

plane point) and were loaded with joint reaction forces derived from in-vivo telemetrized 

implant data [7]. Two loading configurations were considered for each model: 45° 

abduction (440N), and 75° abduction (740N) [1,7]. Joint reaction forces were oriented 

using the telemetrized force vectors and were based on a 50th percentile male body 

weight of 88.3kg [1]. 

FE model sensitivity to mesh size was assessed for outcome measures of: implant-bone 

contact pressure distribution, the absolute percentage change in von Mises stress for 

bone, and the potential time-zero bone response (SED-based). Implant-bone contact 

pressure distribution quantifies what percentage of the available implant-bone contact 

area fall within a distribution of contact pressures (from 0-2+ MPa). The change in bone 

stress outcome calculates the von Mises stress from the difference between each 

reconstructed and intact model element, then presents this as a percentage change relative 

to the intact stress. Finally, the potential bone response categorizes the bone volume into 

three groups corresponding to elements that have potential to resorb, remodel, or remain 

unchanged according to how their Strain Energy Density (SED) varies in the 

reconstructed model compared to the intact model (resorbing potential if: reconstructed 

SED < 0.45x intact SED; unchanged if: 0.45x intact SED ≤ reconstructed SED ≤ 1.55x 

intact SED; remodeling potential if: reconstructed SED > 1.55x intact SED). Both 

changes in bone stress and the potential bone response were quantified separately for 

cortical and trabecular bone, which were sub-divided into eight 5mm thick slices beneath 

and parallel to the humeral head resection plane. Mesh sensitivity was further assessed by 

quantifying the amount of time required to run the FE analysis. 

All models were run using Abaqus (version 6.14; Dassault Systèmes Corp, Waltham, 

MA, USA) on the same computer. The computer specifications were as follows: 48GB of 

ram, socket 2011 dual threaded hex-core Intel i7-4930k CPU (3.40GHz). 

C.2 Results 

The model run time differed depending on mesh size, with run time increasing greatly as 

mesh size decreased (Figure C.1). Doubling, tripling and quadrupling the number of bone   
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Figure C.1: Model run time broken down according to mesh size and 

abduction angle.  
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elements resulted in 6x, 12x and 28x increases in model run time compared to the 2.0mm 

mesh size. 

The implant-bone contact pressure remained relatively constant despite mesh refinement, 

with the most evident changes presenting in the no contact (0MPa) group (Figure C.2), 

where the 2.0mm mesh produced approximately 2% less contact overall than the 1.0mm 

mesh (Table C.1). Overall, the distribution of contact area across different contact 

pressures demonstrated the same trend regardless of mesh size. 

The change in bone stress following joint reconstruction, expressed as an absolute 

percentage change also presented with few variations attributable to mesh size (Figure 

C.3). The changes in cortical bone stress were particularly steady despite mesh 

refinement, regardless of abduction angle and slice depth. The trabecular bone stress 

changes did fluctuate somewhat with mesh refinement. This was most pronounced 0-

5mm beneath the humeral head resection for 45° of abduction (Figure C.3). The trend 

within this region was for the stress changes to increase with denser meshes, before 

returning closer to the 2.0mm results when a 1.0mm mesh size was used. Despite this, 

quadrupling the mesh size resulted in minor changes compared to the 2.0mm mesh, with 

differences less than 4% for trabecular bone and 3% for cortical bone, regardless of slice 

depth and abduction angle (Figure C.4). Overall, the 2.0mm mesh resulted in slightly 

lower reported changes in bone stress compare to the finest 1.0mm mesh. 

The potential time-zero bone responses also presented with minor differences attributable 

to mesh size variations, as is demonstrated by the consistency of Figures C.5 - C.8. The 

breakdown of changes in potential bone response according to slice depth is presented in 

Tables C.2 and C.3. Overall, changing from a 2.0mm mesh to a 1.0mm mesh resulted in 

mean differences (pooled across all slice depths) that ranged from -2.6±3.4% to 2.0±1.5% 

for cortical bone, and from -1.5±1.8% to 2.1±1.3% for trabecular bone. 

C.3 Discussion 

The results of mesh sensitivity analysis suggest that there are only minor differences in 

the implant-bone contact distribution, change in bone stress, and potential time-zero bone 

response outcome measures that can be attributed to refining the FE mesh size beyond  
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Figure C.2: Implant bone contact pressure distribution for all mesh sizes, shown for 

loading corresponding to both 45 (A) and 75 (B) of abduction.  
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Table C.1: Comparison of implant-bone contact pressure distribution for 

mesh refinement. 
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Figure C.3: Comparison of the change in bone stress outcome measure between 

different meh sizes for both cortical and trabecular bone at 45 and 75 of 

abduction.  
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Figure C.4: Direct comparison of the difference in the change in bone 

stress outcome measure between 2.0mm and 1.0mm mesh sizes.  
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Figure C.5: Time-zero potential bone response of cortical bone subject to 45 

loading.  
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Figure C.6: Time-zero potential bone response of trabecular bone subject to 45 

loading.  
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Figure C.7: Time-zero potential bone response of cortical bone subject to 75 

loading.  
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Figure A.C: Time-zero potential bone response of trabecular bone subject to 75 

loading.



 

 

 

 

2
0
9
 

Table C.2: Comparison of the potential bone response for mesh refinement – 45 of abduction. 
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Table C.3: Comparison of the potential bone response for mesh refinement – 75 of abduction. 
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2.0mm. Unfortunately, the intricacies of the stemless implant’s fixation features 

prevented the use of mesh sizes that were coarser than 2.0mm, which made further 

comparisons impossible. 

The computational time required to analyze reconstructed models greatly increased with 

increasing mesh density. When using FE models to compare different implants, it is 

beneficial to use multiple cadavers and assess several designs within the same 

investigation; accordingly, reducing computational demand can be a great benefit, 

permitting the assessment of additional implants within the same time constraints. 

The present investigation was limited to assessing mesh sensitivity within a single 

cadaveric specimen. While further specimens could be beneficial, the consistency of the 

outcome measures regardless of mesh refinement suggests that the 2.0mm mesh size may 

be acceptable for the modeling the humeral side of an anatomic stemless shoulder 

reconstruction. These findings agree with previous humeral reconstruction and fracture 

analyses by Razfar et al and Dahan et al, respectively; who also used 2.0mm quadratic 

tetrahedral meshes for their assessments. 
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Appendix D – Finite Element Validation 

D.1 Introduction 

The Finite Element (FE) method has become a common in-silico tool for assessing 

implant performance following joint reconstruction. This computational method permits 

the probing of stress and strain within an implant-bone construct non-invasively by 

discretizing the continuous structure into a finite number of volume regions, termed 

‘elements’. When paired, models of the intact and reconstructed joint state can provide 

insight into the bone’s response to arthroplasty [1]; which is of particular help when 

assessing the phenomena of stress shielding that is observed in-vivo [2–5]. While FE 

models are useful for their parametric ability to assess several different variations within 

a controlled environment, they rely on numerous assumptions to mimic reality. Some 

common approximations associated with the construction of FE models of bone include: 

(i) the load application, (ii) the stiffness (viz. modulus) applied to cortical and trabecular 

bone, (iii) the interface conditions between the implant and bone, and (iv) the mesh type 

and density. 

Several FE models have been developed for the proximal humerus [1,6–13]. These range 

from assessments focused on fractures of the native humerus [6], to investigations of the 

stress shielding response of bone following arthroplasty [1]. The loads applied to the 

proximal humerus during daily activities are well documented by in-vivo telemetrized 

implant studies [14–16]. With respect to material properties, there is a general consensus 

that bone can be modelled with isotropic stiffness to save computational resources [17]. 

Additionally, cortical bone is usually considered to be homogeneous, with a stiffness of 

approximately 20GPa [18,19]. When modelling the humerus for the purpose of assessing 

the stress and strain response of bone, the trabecular region is usually considered to have 

a stiffness that is inhomogeneous, varying as a function of density (quantified via a CT 

scan) [1,6]. These inhomogeneous relationships that map trabecular stiffness have been 

shown to vary based on the anatomic-site from which they are derived [20]. However, in 

the absence of a relationship specific to the proximal humerus, the results of Chapter 4 

suggest that the site-pooled relationship developed by Morgan et al, and used in the 
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humeral FE models developed by Razfar et al, may be appropriate for FE models of 

humeral reconstruction. 

Considering the number of aforemtioned approximations that go into developing a FE 

model of the humerus, it is important to ensure that the response of the developed 

computational model mimics reality well.  However, only four of the humeral models 

reported in the literature have directly sought to validate their methods by comparing 

their results to controlled in-vitro experiments [6,10]. Dahan et al validated their FE 

model of the humerus by denuding two humeri, applying uniaxial strain gauges to the 

cortex and subjecting the bone to known loads in three orientations via a flat plate. They 

were able to correlate experimental and FE results well, with an R2-value of 0.982 and a 

linear regression that approached the idealized unit scalar relationship [6]. Varghese et al 

developed FE models of the intact humerus that were validated based on 3-point bending 

(R2 = 0.99) and torsion (0.064 ≤ R2 ≤ 0.97) experiments; however, these tests did not 

subject the bone to anatomical boundary conditions, which are important for the analysis 

of humeral arthroplasty. Similarly, Maldonado et al used simplified axial compression 

and torsion loading to validate the stiffness of their humeral defect FE model, prior to 

assessing more physiologic loads in-silico. Finally, Favre et al developed and validated a 

FE model for measuring implant-bone interface stability following stemless humeral 

reconstruction. However, their analysis was limited to assessments of implant-bone 

micromotion, and the humeral strain response was not assessed or validated. 

To date no strain (stress)-based validations have been published for humeral FE models 

of shoulder reconstruction. As the strain change between the intact and reconstructed 

bone response is often of principle concern in the design of shoulder implants, it is 

important to verify the validity of FE parameters for both the intact and reconstructed 

humeral models. With this in mind, the purpose of the present investigation was twofold: 

(1) to assess the correlation between experimental and FE strains for the proximal 

humerus for both the intact state and following stemless reconstruction, and (2) to assess 

how well the change in strain following reconstruction can be approximated using the FE 

method. 
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D.2 Materials and Methods 

D.2.1 Experimental Model 

D.2.1.1 Specimen Preparation 

A cadaveric humerus (left arm, male 74 years, 142lbs) was denuded of all soft tissues 

using a scalpel; and was extracted from the upper arm. Upon isolation, the articular 

crown (which defines the outermost edge of the proximal articular surface) was identified 

for each specimen by a shoulder surgeon (G.S.A), and a permanent marker was used to 

trace an approximate humeral head (HH) resection plane. The humerus was then resected 

perpendicular to the diaphysis approximately 190mm from the most superior-lateral (SL) 

point of the HH resection plane. Four 1.5” screws were drilled into the bone in a 40mm-

region from the distal resection, which acted as anchors to secure the bone. Following 

this, each specimen was potted in a 60mm length of PVC tubing using dental cement 

(Denstone Golden, Heraeus Dental; South Bend, IN, USA) such that the diaphyseal axis 

was concentric with the PVC cylinder and the top surface of the cement was 150mm 

from the SL resection point (Figure D.1). Four 6mm uniaxial strain gauges (KFH-6-350-

C1-11L3M3R; Omega Spectris Canada, Laval, QC, Canada) were affixed to the proximal 

humerus beneath the HH resection plane. Two were placed laterally: one as high as 

possible on the lateral side of the greater tuberosity, the other 10mm distal to the 

termination of the first gauge. The remaining two gauges were each placed 10mm 

beneath the HH resection plane on the anterior and posterior sides of the medial divide, 

respectively (Figure D.1). All strain gauges were oriented so that the gauge axis ran from 

proximal to distal; and were secured through a series of successive degreasing and 

adhesive operations to ensure proper gauge adherence to bone [21,22]. 

D.2.1.2 Experimental Protocol 

The potted specimen was secured within an arc that permitted the humerus to be rotated 

and fixed within a single plane. Specimens were oriented such that the HH resection 

plane was horizontal, which was confirmed visually using orthographic assessments with 

a level; this was termed the ‘neutral’ position (i.e., 0°). The orientation arc was  



 

 

216 

 

 
Figure D.1: Experimental Specimen Orientation 

Apparatus  
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positioned within a uniaxial pneumatic loading apparatus that was controlled by a custom 

LabVIEW script written to apply a desired load to the articular surface of the humerus via 

a flat steel plate [6] attached to the pneumatic actuator (Figure D.2). 

Once the specimen was oriented with the load application point centered beneath the 

actuator, pre-conditioning forces cyced 5 times between 5N and 50N were applied. The 

loading plate was then lifted off the specimen and the strain gauge readings were zeroed 

to reflect the unloaded state. Articular forces were then ramped to the desired load of 

250N in 50N increments at a rate of approximately 25N/s. The strain readings were 

recorded for 10s at a rate of 1kHz once the desired load was reached, and the average 

strain was calculated (Experimental). This process was repeated 5-times, then reiterated for 

an articular load of 500N. Following this, the specimen was rotated by 30 in the plane 

defining the medial-lateral arc on the humeral head and testing was repeated at each new 

orientation (+30 = greater abduction, -30 = greater adduction) to represent a reasonable 

range of anatomic joint reaction force orientations. 

Once the intact humerus was tested, a shoulder surgeon (G.S.A.) resected the humeral 

head and reconstructed the articular surface using a Simpliciti stemless shoulder implant 

(Size 3, 52x19mm articular component; Wright Medical, Memphis, TN, USA). Care was 

taken to ensure that the strain gauges remained unaffected by the surgical tooling during 

the implantation process. Testing was then repeated with the reconstructed humerus. 

D.2.2 Computational Model 

The humeral specimen was scanned prior to experimental testing using a helical multi-

slice GE 750HD Discovery Computed Tomography (CT) scanner (GE Healthcare; 

Pollards Wood, Buckinghamshire, United Kingdom). The cortical shell and trabecular-

canal of each bone were identified using a combination of automated and manual 

masking features (Appendix E) within Mimics (version 19; Materialize, Leuven, BE) and 

were reconstructed into 3D bone models within SolidWorks (Dassault Systèmes; 

Waltham, MA, USA). The same shoulder surgeon (G.S.A.) virtually identified the HH 

resection plane, which was used to further divide the cortical bone and trabecular-canal   
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Figure D.2: Experimental and FE Humerus Load Application  
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into top and bottom segments. CAD files for the Simpliciti implant were obtained from 

the manufacturer and were used to create a reconstructed bone model, with the implant 

centered on the HH resection plane. Following successive Boolean operations, all bone 

components and the implant were imported into Abaqus (Dassault Systèmes; Waltham, 

MA, USA) where they were meshed using 2mm quadratic tetrahedral elements (based on 

mesh convergence, see Appendix C) and combined to form intact and reconstructed 

humerus models using identical meshing techniques [1]. In total, the intact bone model 

consisted of 258,373 elements, and the reconstructed model had 257,715 elements (Bone: 

204,572; Implant: 53,143). All models were resected 150mm from the most SL point on 

the HH resection plane, and the trabecular-canal was limited to a depth of 40mm beneath 

the HH resection. 

The Simpliciti was assigned material properties representing Titanium (E = 110GPa, 

Poisson’s ratio of 0.3), as well as smooth ( = 0.4) [23] and porous ( = 0.88) [24] 

frictional contact with bone as necessary. The implant’s articular-nucleus junction was 

rigidly fused together to represent a secure Morse tapper connection. For the cadaveric 

bone, the cortical shell was modelled as isometric and homogenous, with an elastic 

modulus of 20GPa based on previous work [18,19], whereas the trabecular-canal was 

isometric and inhomogeneous, with elastic properties that were dictated by the site-

pooled regression developed by Morgan et al (as per the conclusions of Chapter 4) [20]. 

All models were fixed at the distal cortical resection, and articular loads of 250N and 

500N were independently applied to the articular surfaces to mimic the experimental 

setup (0, +30 and -30; Figure D.2). The location of each of the four strain gauges were 

identified on the 3D bone models in Abaqus using measured images of the experimental 

gauge placement, and two nodes were selected on the cortical mesh to represent each 

strain gauge (Figure D.3). In-silico strain was calculated from the change in length of 

each node-pair (FE). 

D.2.3 Comparative Metrics 

The experimental and finite element strains were compared using a standard linear 

regression for both the intact and reconstructed states separately. As such, a unit slope,  
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Figure D.3: Strain Gauge and Node Pair Locations in Experimental and FE Models  
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zero vertical-intercept, and unit correlation coefficient (R2) would represent a perfect 

correlation. Results were also presented with a Bland-Altman error plot [(Experimental-FE), 

(Experimental+FE)/2]. Furthermore, the error between experimental and FE measured 

strains were quantified by the root mean square error (RMSE) and the mean percentage 

error, which were calculated according to Eq.D.1 and Eq.D.2, respectively. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖 − 𝐹𝐸,𝑖)2𝑁

𝑖=1  [µɛ] (Eq.D.1) 

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =  
100%

𝑁
∑

(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖−𝐹𝐸,𝑖)

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖

𝑁
𝑖=1  [%] (Eq.D.2) 

Finally, the change in strain from intact to reconstruction was calculated both for the 

experimental and FE models to investigate how differences in each model may impact 

the changes reported following joint reconstruction. These changes were calculated as the 

reconstructed strain minus the intact strain and were again compared using a linear 

regression and a Bland-Altman error plot. 

D.3 Results 

The experimental strain values were consistent across the five in-vitro samples taken at 

each loading configuration for both the intact and reconstructed states. The variation in 

experimental strain readings was quantified using the coefficient of variation and 

remained low for all gauge locations (medial-anterior: -2.9±2.4%; medial-posterior: 

2.4±11.07%; lateral-top: -4.7±5.4%; lateral-bottom: -2.8±2.8%). 

Strain values were found to linearly correlate very well between the experimental and FE 

models (P < 0.001) (Figure D.4), with R2-values of 0.975 and 0.926 for the intact and 

reconstructed states, respectively (Table D.1). The intact regression for experimental 

strain as a function of FE strain was defined by a slope of 1.172 and a vertical intercept of 

-9.677µɛ. Similarly, the reconstructed regression was defined by a slope of 1.127 and a 

vertical intercept of -20.428µɛ. Bland-Altman plots comparing the experimental and FE 

strains are presented in Figure D.5.  
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Figure D.4: Linear Correlation Plots for the Intact and Reconstructed State  
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Table D.1: Regression Terms and Correlations for Intact and Reconstructed States 
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Figure D.5: Bland-Altman Plots for the Intact and Reconstructed States  
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The absolute error in both intact and reconstructed models was quantified by the RMSE. 

The overall RMSEs between experimental and FE strains were low, with values of 

55.4µɛ and 68.6µɛ for the intact and reconstructed states, respectively. Pooling all gauge 

locations, the mean percentage error between experimental and FE strains was 18.6% for 

the intact state, and 6.1% for the reconstructed state. Table D.2 presents the error-values 

(RMSE and mean percentage error) broken down according to gauge location. 

Despite errors associated with the modelling of each bone state, the change in strain 

comparing the reconstructed and intact states was also found to correlate well, though 

less so than each state independently, between the experimental and FE models (R2 = 

0.878, P < 0.001). The corresponding regression was defined by a slope of 1.046 and a 

vertical intercept of 4.677µɛ. The regression and Bland-Altman plots for the change in 

strain following joint reconstruction are presented in Figure D.6. 

D.4 Discussion 

The FE method is a strong computational tool for assessing the performance of implants 

following joint reconstruction. In-silico tools such as these can be used for a preliminary 

assessment of implant performance during the design process. The FE method is 

particularly good for assessing multiple implant designs or bone states, as each can be 

directly compared within the same specimen without compromising the underlying bone 

tissue. While there have been many FE models developed for the humerus [1,6–13], few 

have attempted to validate their results [6,10,11,13]. Of the humeral models developed to 

assess implants [1,12,13], only one attempted to validate the reconstructed state of the 

bone [13], with none validating the intact state as well; and none validated based on the 

bones strain response. The purpose of the present investigation was to assess the validity 

of a FE model developed for the humerus both in the intact state and following 

reconstruction with a stemless implant.  
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Table D.2: Error Terms for the Intact and Reconstructed States 
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Figure D.6: Linear Regression and Bland-Altman Plots for the Change in Strain 

Following Humeral Reconstruction  
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The results of the present investigation provide evidence in support of using the FE 

method to assess the strain response of bone in both the intact state and following 

reconstruction with a stemless implant. The experimental and FE strain values correlated 

well for both the intact and reconstructed models, with R2-values exceeding 0.920 for 

both states. The linear regression terms were also reasonable, with slopes of 1.172 and 

1.127 and vertical intercepts of -9.677µɛ and -20.428µɛ for the intact and reconstructed 

states, respectively. In both the intact and reconstructed cases, the FE models tended to 

underpredict the experimental strain response at high strains (both compression and 

tension). This variance between the experimental and FE strains is manifested in the 

deviation of the linear slope term from the unit scalar relationship. Overall, the regression 

terms reported were not as strong, but compare reasonably well with the intact validation 

values presented by Dahan et al, who reported a slope of 0.917 and a vertical intercept of 

90.9µɛ with an R2-value of 0.982 [6]. 

The change in strain attributable to reconstructing the humerus with the stemless implant 

also presented with a strong correlation between the experimental and FE results (R2 = 

0.878). As expected, the correlation was not as strong as the individual intact and 

reconstructed models, as the errors in each of the individual models were compounded in 

the calculation of the percentage change. However, the linear relationship (slope: 1.046, 

vertical intercept: 4.677µɛ) between experimental and FE results was better than that of 

either the intact or reconstructed models independently. The near unit slope and low 

vertical intercept for the change in strain values are attributed to the use of identical 

meshing techniques. By using the exact same mesh for both intact and reconstructed 

models, the node-pairs used for FE strain calculation were identical, as were the 

approximations that went into the construction of each model. This finding supports the 

use of identical meshing techniques to construct both intact and reconstructed 

orthopaedic models in order to present results that focus on the change in FE outcomes as 

opposed to the strain in either state independently. 

A limitation of this study was that the strain response of the proximal humerus was only 

assessed at four locations. This likely contributed to the lower overall correlation strength 

found between experimental and FE strains compared to Dahan et al, who used 12-
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gauges, thereby providing a larger data sample. However, as the focus of the present 

investigation was stemless reconstruction, which influences strains more proximally than 

stemmed humeral reconstruction, the proximal bone response was of primary concern for 

this assessment. 

More generally, there are several differences between the experimental and FE 

configurations that are likely responsible for disparities between the two models. While 

the humerus was cemented at the same length as the rigid fixation of the FE models, the 

potting apparatus did undergo some elastic deflection during articular loading, which 

altered the effective fixation length of the experimental setup. This deflection also 

affected the orientation of the applied loads. Though the FE models were constructed to 

mimic orientation changes by maintaining the initial loading vector direction, only 

deflection from the humerus was accounted for in the FE model, leading to some 

discrepancy between the two assessments. Similarly, the initial orientation of the applied 

loads in both tests were based on the humeral head resection plane. While care was taken 

to align the virtual resection with the experimental one based on several landmarks 

around the humeral crown, differences in the resection plane tilt could further alter 

loading orientation between the experimental and FE models. Additionally, the method 

used to virtually reconstruct the cortical-trabecular boundary in-silico relies on 

maintaining a minimum thickness of 1-voxel (~0.65mm) within the CT scan. In the 

proximal humerus, the cortex can become thinner than this minimum thickness, which 

can cause the artificial stiffening of the humeral construct. This explains why FE strains 

were underpredicted compared to the experimental values. Finally, though the proper 

frictional coefficients were modelled between the implant and bone, the in-vitro tooling 

produced a press-fit between the fixation-feature and bone, while the FE model was 

constructed based on a perfect line-to-line fit. This may have produced some 

discrepancies in implant-bone load transfer between the experimental and FE 

assessments; though the ease with which the implant was inserted into the bone in-vitro 

was noted qualitatively, suggesting that the press-fit may not have played a major role 

experimentally. 
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D.5 Conclusions 

In conclusion, the linear elastic response of the proximal humerus correlates very well 

with FE models for both the intact and reconstructed states. Further, a true strength of the 

FE method seems to be in the assessment of changes in FE outcome between paired 

intact and reconstructed models, which in-part correct for the bias of the FE method to 

underpredict large cortex strains. The strong correlations between experimental and FE 

strains support the validity of modeling the proximal humerus using identical meshing 

techniques with 2mm quadratic tetrahedral elements, an inhomogeneous trabecular 

stiffness (site-pooled regression from Morgan et al), a homogeneous cortical stiffness 

(20GPa), and a frictional implant-bone interface condition. 

D.6 References 

[1] Razfar, N., Reeves, J. M., Langohr, D. G., Willing, R., Athwal, G. S., and Johnson, 

J. A., 2016, “Comparison of proximal humeral bone stresses between stemless, 

short stem, and standard stem length: a finite element analysis,” J. Shoulder Elb. 

Surg., 25(7), pp. 1076–83. 

[2] Nagels, J., Stokdijk, M., and Rozing, P. M., 2003, “Stress shielding and bone 

resorption in shoulder arthroplasty,” J. Shoulder Elb. Surg., 2746(2), pp. 35–39. 

[3] Denard, P. J., Noyes, M. P., Walker, J. B., Shishani, Y., Gobezie, R., Romeo, A. 

A., and Lederman, E., 2017, “Proximal stress shielding is decreased with a short 

stem compared with a traditional-length stem in total shoulder arthroplasty,” J. 

Shoulder Elb. Surg., 27(1), pp. 53–58. 

[4] Spormann, C., Durchholz, H., Audigé, L., Flury, M., Schwyzer, H. K., Simmen, B. 

R., and Kolling, C., 2014, “Patterns of proximal humeral bone resorption after total 

shoulder arthroplasty with an uncemented rectangular stem,” J. Shoulder Elb. 

Surg., 23(7), pp. 1028–1035. 

[5] Inoue, K., Suenaga, N., Oizumi, N., Yamaguchi, H., Miyoshi, N., Taniguchi, N., 

Munemoto, M., Egawa, T., and Tanaka, Y., 2017, “Humeral bone resorption after 

anatomic shoulder arthroplasty using an uncemented stem,” J. Shoulder Elb. Surg., 



 

 

231 

 

26(11), pp. 1984–1989. 

[6] Dahan, G., Trabelsi, N., Safran, O., and Yosibash, Z., 2016, “Verified and 

validated finite element analyses of humeri,” J. Biomech., 49(7), pp. 1094–1102. 

[7] van der Helm, F. C. T., 1994, “A finite element musculoskeletal model of the 

shoulder mechanism,” J. Biomech., 27(5), pp. 551–569. 

[8] Büchler, P., Ramaniraka, N. a., Rakotomanana, L. R., Iannotti, J. P., and Farron,  

a., 2002, “A finite element model of the shoulder: Application to the comparison 

of normal and osteoarthritic joints,” Clin. Biomech., 17(9–10), pp. 630–639. 

[9] Kahn, J. F. K. Æ. J. L., 2006, “Finite element analysis of the strain distribution in 

the humeral head tubercles during abduction : comparison of young and 

osteoporotic bone,” pp. 581–587. 

[10] Varghese, B., Short, D., Penmetsa, R., Goswami, T., and Hangartner, T., 2011, 

“Computed-tomography-based finite-element models of long bones can accurately 

capture strain response to bending and torsion,” J. Biomech., 44(7), pp. 1374–

1379. 

[11] Maldonado, Z. M., Seebeck, J., Heller, M. O. W., Brandt, D., Hepp, P., Lill, H., 

and Duda, G. N., 2003, “Straining of the intact and fractured proximal humerus 

under physiological-like loading,” J. Biomech., 36(12), pp. 1865–1873. 

[12] Schmidutz, F., Agarwal, Y., Müller, P. E., Gueorguiev, B., Richards, R. G., and 

Sprecher, C. M., 2014, “Stress-shielding induced bone remodeling in cementless 

shoulder resurfacing arthroplasty: A finite element analysis and in vivo results,” J. 

Biomech., 47(14), pp. 3509–3516. 

[13] Favre, P., and Henderson, A. D., 2016, “Prediction of stemless humeral implant 

micromotion during upper limb activities,” Clin. Biomech., 36, pp. 46–51. 

[14] Bergmann, G., Graichen, F., Bender, A., Kaab, M., Rohlmann, A., and Westerhoff, 

P., 2007, “In vivo glenohumeral contact forces-Measurements in the first patient 7 

months postoperatively,” J. Biomech., 40(10), pp. 2139–2149. 



 

 

232 

 

[15] Graichen, F., Arnold, R., Rohlmann, A., and Bergmann, G., 2007, “Implantable 9-

Channel Telemetry System for In Vivo Load Measurements With Orthopedic 

Implants,” 54(2), pp. 253–261. 

[16] Westerhoff, P., Graichen, F., Bender,  a, Halder,  a, Beier,  a, Rohlmann,  a, and 

Bergmann, G., 2009, “In vivo measurement of shoulder joint loads during 

activities of daily living.,” J. Biomech., 42(12), pp. 1840–9. 

[17] Peng, L., Bai, J., Zeng, X., and Zhou, Y., 2006, “Comparison of isotropic and 

orthotropic material property assignments on femoral finite element models under 

two loading conditions,” Med. Eng. Phys., 28(3), pp. 227–233. 

[18] Rho, J. Y., Ashman, R. B., and Turner, C. H., 1993, “Young’s modulus of 

trabecular and cortical bone material: Ultrasonic and microtensile measurements,” 

J. Biomech., 26(2), pp. 111–119. 

[19] Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., and 

Keaveny, T. M., 2004, “Comparison of the elastic and yield properties of human 

femoral trabecular and cortical bone tissue,” J. Biomech., 37(1), pp. 27–35. 

[20] Morgan, E. F., Bayraktar, H. H., and Keaveny, T. M., 2003, “Trabecular bone 

modulus-density relationships depend on anatomic site,” J. Biomech., 36, pp. 897–

904. 

[21] Staebler, M., Moore, D., Akelman, E., Weiss, A.-P., Fadale, P., and Crisco, J., 

1999, “The Effect of Wrist Guards on Bone Strain in the Distal Forearm,” Am. J. 

Sports Med., 27(4), pp. 500–506. 

[22] Austman, R. L., Beaton, B. J. B., Quenneville, C. E., King, G. J. W., Gordon, K. 

D., and Dunning, C. E., 2007, “The effect of distal ulnar implant stem material and 

length on bone strains,” J. Hand Surg. Am., 32(6), pp. 848–854. 

[23] Kuiper, J. H., and Huiskes, R., 1996, “Friction and stem stiffness affect dynamic 

interface motion in total hip replacement.,” J. Orthop. Res., 14(1), pp. 36–43. 

 



 

 

233 

 

[24] Zhang, Y., Ahn, P. B., Fitzpatrick, D. C., Heiner, A. D., Poggie, R. A., and Brown, 

T. D., 1999, “Interfacial Frictional Behavior: Cancellous Bone, Cortical Bone, and 

a Novel Porous Tantalum Biomaterial,” J. Musculoskelet. Res., 3(4), pp. 245–251. 

 



 

 

234 

Appendix E – Ethics Approval 

  

 

LAWSON FINAL APPROVAL NOTICE 

 

LAWSON APPROVAL NUMBER: R-15-057 

 

PROJECT TITLE: Morphological and finite element analysis of the normal and 

osteoarthritic glenohumeral joint. 

 

PRINCIPAL INVESTIGATOR: Dr. George Athwal 

LAWSON APPROVAL DATE: March 5, 2015 

Health Sciences REB#: 105912 

 

Please be advised that the above project was reviewed by the Clinical Research Impact 

Committee and Lawson Administration and the project: 

 Was Approved 

 

Please provide your Lawson Approval Number (R#) to the appropriate 
contact(s) in supporting departments (eg. Lab Services, Diagnostic 
Imaging, etc.) to inform them that your study is starting.  The Lawson 
Approval Number must be provided each time services are requested. 

Dr. David Hill 
V.P. Research 
Lawson Health Research Institute 

 
All future correspondence concerning this study should include the Lawson Approval Number 

and should be directed to Sherry Paiva, Research Approval Officer, Lawson Health Research 

Institute, 750 Baseline Road, East, Suite 300. 

cc: Administration 



 

 

235 

Appendix F – Post-Hoc CT Calibration Methods 

A version of this appendix has been accepted for publication [1]. 

F.1 Introduction 

The use of in-silico methods (e.g., finite element (FE) modeling) are becoming 

increasingly popular for the quantification of bone properties. Often, these methods rely 

on volumetric bone mineral density data acquired from computed tomography (CT) scans 

to construct models that accurately depict regional changes in bone density [2–14]. While 

CT scans have been used to aid diagnostics for many years, the use of quantitative CT 

(qCT) to construct bone models, with realistic bone mineral density, remains a useful 

quantitative tool. The accuracy of qCT data depends on the calibration of each scan, as 

the CT attenuation (typically scaled to Hounsfield Units (HU)) is often converted into 

either ash density (ASH = ash mass/bone volume), apparent density (APP = hydrated 

bone mass/total specimen volume), or material density (MAT = bone mass/bone volume), 

all of which are typically reported in g/cm3. The calibration relationship between physical 

density and CT attenuation is linear [15–19], taking the form of  = m*HU + b, where 

‘m’ and ‘b’ are the calibration equation slope and vertical intercepts, respectively, which 

are calculated using a calibration phantom. Schileo et al (2008) reported that apparent 

density can be calculated as a scalar product of ash density, with a common relationship 

for both cancellous and cortical bone (i.e., APP = ASH/0.6) [16]. Since 2008, this 

relationship has been used widely in the literature to convert between ash and apparent 

density. 

The calibration of bone mineral density from CT attenuation for qCT analysis is typically 

conducted for each scan independently, as the calibration equation varies between CT 

scanners, and based on CT settings [18]. As such, calibration phantoms formed with 

materials of known densities, typically either hydroxyapatite (e.g., SB3), or liquid 

dipotassium phosphate (i.e., K2HPO4), are placed within the field of view of the desired 

scan, and the CT scanner’s response to the regions of known density are quantified and 

plotted to determine the linear calibration equation terms. Unfortunately, not all CT scans 

are calibrated in this manner to allow for accurate bone mineral density assessment 
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between patients, specimens, or samples. As such, when utilizing uncalibrated clinical 

scans, post-hoc calibration methods are necessary. 

One method that has been proposed for such a post-hoc calibration develops the 

calibration equation terms by scanning a calibration phantom alone post-hoc in the same 

CT scanner at the same settings [7]; this method will be referred to as the ‘phantom-only’ 

method. Alternatively, since the calibration equations are documented to change as a 

function of CT settings, it is hypothesized that a relationship can be found between those 

settings and the terms of the calibration equation (i.e., slope, m; and vertical intercept, b) 

by assessing several qCT calibrated scans at different settings within a single CT scanner. 

This method can be termed the CT setting ‘regression-based’ post-hoc calibration. 

While studies have been conducted to investigate the variance induced in CT density 

calibration equations due to changes in CT settings and calibration phantom type [18,19], 

there remains a void in the literature documenting the variation induced by post-hoc 

calibration methods. In view of the foregoing, the purpose of this study was two-fold: to 

determine if a post-hoc calibration equation can be quantified based on CT setting 

variations (i.e., peak tube voltage, kVp; and tube current, mA), and to then compare these 

calibration equations to those formed by the post-hoc phantom-only method. It was 

hypothesized (1) that a stepwise linear regression would be able to predict a density 

calibration equation for qCT based on CT settings, and (2) that the regression equation 

would better match standard calibration equations than a post-hoc phantom-only 

calibration at the same settings. 

F.2 Materials and Methods 

Five (n = 5) cadaveric upper limb specimens (scapula through phalanges) with a 

meanSD age of 728 years were procured. Each specimen was screened for bone 

related disease and injury. Helical Computed Tomography (CT) scans were taken of each 

specimen at 11 predetermined clinical settings (Table 1) using a multi-slice GE 750HD 

Discovery CT scanner (GE Healthcare; Pollards Wood, Buckinghamshire, United 

Kingdom). CT settings reflected the clinical ranges in both peak tube voltage (80kV – 

140kV) and current (100mA – 300mA) typically used for shoulder scans at our 
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institution. The reconstruction kernel (BONEPLUS), Field of View (300mm), slice 

thickness (1.25mm) and subsequent pixel size (0.6mm) were consistent for all scans and 

are also summarized in Table F.1. The CT technician set the table height for each scan to 

ensure that the subject was central within the scan volume. For each scan, a dipotassium 

phosphate (K2HPO4) calibration phantom (qCT Pro Model 3, Mindways Software, 

Austin, TX) containing five rods of known density (varying low and high atomic 

number), calibrated with liquid K2HPO4 and water solutions, along with a 

hydroxyapatite-distilled water (SB3-H2O) phantom (SB3 model number 450; GAMMEX, 

Middleton, WI) were present. These phantoms provide linear calibration for high atomic 

number materials of unknown density over a range of attenuation values and are designed 

specifically for extracting quantitative bone mineral density information from CT scans. 

Specimens were placed centrally on top of the K2HPO4 calibration phantom and within 

the scanner (forearm extended and palm down) and remained static during each scan. The 

SB3-H2O calibration phantom was stationed centrally directly alongside the specimen. 

Following the completion of scanning, the specimens were removed from the CT 

scanner, and the phantoms were scanned together, without a cadaver present, at the same 

11 predetermined settings. 

To quantify the relationship between ash density (in g/cm3) and CT attenuation (HU), the 

attenuation (HU) in ten centered circular (150 mm2) regions evenly spaced along the 

length of the K2HPO4 calibration phantom were collected using Mimics software (V.17.0, 

Materialize, Leuven, BE). These values were then averaged and used to determine the 

linear correlation coefficients required to convert any measured HU value to calibrated 

qCT density as outlined by the phantom manufacturer [17,18,20]; this was done for each 

CT scan independently. Furthermore, the SB3 bone surrogate was virtually divided into 

quarters using three axial slices, and the average HU within the SB3 and distilled water 

were determined at these locations. The regions of interest were of the same shape as the 

SB3 (rectangular) and H2O (circular) cross-sections, but represented the inner-50% of 

the cross-sectional area (to avoid partial voxel sampling effects). The known apparent 

density of SB3 (1.82g/cm3) and distilled water (0g/cm3) were then used to plot these six  
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Table F.1: CT settings used for all specimen and 

phantom-only scans. 

Peak Tube 

Voltage 

(kVp) 

Tube Current 

(mA) 

Slice 

Thickness 

(mm) 

Pixel 

Size 

(mm) 

80 100 1.25 0.6 

80 200 1.25 0.6 

80 300 1.25 0.6 

100 100 1.25 0.6 

100 200 1.25 0.6 

100 300 1.25 0.6 

120 100 1.25 0.6 

120 200 1.25 0.6 

120 300 1.25 0.6 

140 100 1.25 0.6 

140 200 1.25 0.6 
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points on graphs of ash density (g/cm3) vs. attenuation (HU) [15]. A linear calibration 

line of best fit was then determined for each scan independently. Accordingly, two 

(K2HPO4 and SB3-H2O) calibration equations were determined for each phantom-with-

specimen scan, and each phantom-only scan. A flow chart outlining the workflow for the 

study is presented in Figure F.1. 

Using the known CT settings and the slope and vertical intercepts from the standard (i.e., 

non post-hoc) the regression post-hoc approach quantified the linear calibration equation 

by performing a forward stepwise multi-variate linear regression analysis for the slope 

and intercept terms from each of the phantom-with-specimen scans. In the regression 

analysis, the slope or intercept were chosen as the dependent variables, while the CT scan 

energy (kV) and the tube current (mA) were the independent variables. In this manner 

equations were developed to predict the slope and intercept of the linear density 

calibration equation as a function of the CT settings. 

In total, six linear relationships were established for each CT setting (3 calibration 

methods: standard calibration, phantom-alone, and regression; for each of the 2 

calibration phantoms: K2HPO4 and SB3-H2O). The standard phantom-with-specimen 

calibrated relationships were taken as the gold standard, by which the phantom-only and 

regression post-hoc equations were judged. 

To assess the two post-hoc calibration methods statistically, the slope and vertical 

intercept terms of the calibration equations were compared across the five specimen scans 

corresponding to CT settings of 80-140kVp and 100-200mA using a four-way repeated 

measures ANOVA. The 300mA settings were excluded from the assessment due to the 

necessity that 300mA be present at all tube voltages when using the repeated measures 

design (140kVp at 300mA was deemed unrealistic during specimen scans due to the 

radiation dosage and expected cooling period). As such, the 4-way repeated measures 

ANOVA quantifies the effect that (1) the type of calibration phantom (K2HPO4 vs. SB3-

H2O), (2) the peak tube voltage (80-140kVp), (3) the tube current (100-200mA), and (4) 

the method by which the calibration equation was formed (standard calibration vs. 

phantom-only vs. regression) had on the slope (m) and vertical intercept (b) terms. Bland 

Altman plots were also created to compare the phantom-only and regression calibration   
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Figure F.1: Process flow diagram, outlining the 

sequence of events for the phantom-only, 

regression and standard calibration methods.  
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methods to the standard calibration method for both slope (m) and vertical intercept (b). 

Plots of percentage error of predicted ash density were then created for each calibration 

phantom and peak tube voltage by subtracting the standard calibrated density from the 

predicted density.  The percentage error comparison was conducted over the range of ash 

density that corresponds to bone (0.06g/cm3 to 1.2g/cm3) [21,22]. All statistical tests were 

performed using SPSS version 23 (IBM, Chicago, Illinois, USA). 

F.3 Results 

The forward stepwise multi-variate linear regression analysis revealed that peak tube 

voltage [kVp], but not tube current [mA], was significantly correlated to the slope (m) 

and vertical intercept (b) calibration terms (Table F.2). The equations to predict slope as a 

function of peak tube voltage (kVp) demonstrated strong correlation for both the K2HPO4 

(R2 = 0.984, p < 0.001) and the SB3-H2O (R2 = 0.853, p < 0.001) calibration phantoms, 

while the equations to predict vertical intercept as a function of tube current (mA) 

demonstrated relatively weaker correlation for both the K2HPO4 (R2 = 0.472, p < 0.001) 

and the SB3-H2O (R2 = 0.420, p < 0.001) calibration phantoms. 

The four-way repeated measures ANOVA demonstrated that the calibration equation 

slope was significantly related to the type of phantom chosen (p < 0.001; Partial-2 = 

0.995, Power = 1.000), the calibration method (p = 0.026; Partial-2 = 0.749, Power = 

0.735), and the peak tube voltage (p < 0.001; Partial-2 = 1.000, Power = 1.000), but not 

the tube current (p = 1.000; Partial-2 < 0.001, Power = 0.050) (Table 3). A Bonferroni 

post-hoc analysis was performed to further investigate differences in calibration method, 

and revealed that the phantom-only calibration method produced significantly different 

slope values than both the standard calibration (p = 0.005) and regression (p < 0.001) 

methods. Similarly, the standard calibration equation vertical intercept was significantly 

related to the type of phantom chosen (p < 0.001; Partial-2 = 1.000, Power = 1.000), and 

the peak tube voltage (p = 0.006; Partial-2 = 0.996, Power = 1.000), but not the 

calibration method (p = 0.682; Partial-2 = 0.046, Power = 0.064), or the tube current (p 

= 0.822; Partial-2 = 0.014, Power = 0.054) (Table F.3). 
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Table F.2: Density calibration equation terms derived from stepwise linear regression 

analysis. 

Calibration 

Phantom 

ASH
 = m(HU) + b 

Slope (m) R
2
 Vertical Intercept (b) R

2
 

K
2
HPO

4
 4.225E-6(kV) + 2.07E-4 0.984 -9.51E-5(kV) + 5.4E-2 0.472 

SB3-H
2
O 3.326E-6(kV) + 2.36E-4 0.853 7.848E-5(kV) - 2E-3 0.420 
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Table F.3: 4-way repeated measures ANOVA results. 

  ρ
ASH

 = m(HU) + b 

  Slope (m) 

Vertical Intercept 

(b) 

  

P-

Value 

Partial 

η
2
 Power 

P-

Value 

Partial 

η
2
 Power 

Phantom 

Type 
<0.001 0.995 1.000 <0.001 1.000 1.000 

Calibration 

Method 
0.026 0.749 0.735 0.682 0.046 0.064 

Peak Tube 

Voltage 
<0.001 1.000 1.000 0.006 0.996 1.000 

Tube 

Current 
1.000 <0.001 0.050 0.822 0.014 0.054 
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The slope and vertical intercepts predicted by standard calibration, phantom-only and 

regression methods are presented in Table F.4. The regression calibration method 

produced lower maximum average ash density percent differences (K2HPO4: 80kV: 

1.6%; 100kV: -1.4%; 120kV: -1.0%; 140kV: 1.3%; SB3-H2O: 80kV: 3.0%; 100kV: -

3.1%; 120kV: -1.0%; 140kV: 1.9%) compared to the phantom-only calibration method 

(K2HPO4: 80kV: -3.9%; 100kV: -4.2%; 120kV: -3.5%; 140kV: -3.2%; SB3-H2O: 80kV: 

-13.4%; 100kV: -7.6%; 120kV: -5.3%; 140kV: -4.1%) over the range of ash density 

corresponding to bone, regardless of peak tube voltage and which calibration phantom 

was used (Figure F.2). Graphs of percentage difference also showed that the K2HPO4 

calibration phantom had lower maximum average ash density percent differences than the 

SB3-H2O calibration phantom. Bland Altman plots further confirmed that the regression 

calibration method produced lower differences than the phantom-only calibration method 

(Figure F.3) for both slope and vertical intercept. 

F.4 Discussion 

The stepwise linear regression successfully predicted ash density calibration terms using the peak 

tube voltage [kVp], but tube current [mA] was rejected as a correlating factor. This result is 

supported by the findings of Giambini et al (2015), who determined that peak tube voltage had a 

significant effect on volumetric bone mineral density measures, but tube current did not [18]. 

Unfortunately, Giambini et al (2015) did not quantify the relationship between peak tube voltage 

and volumetric bone mineral density, so there exists no equation with which to judge the present 

result. The slope was found to have a higher correlation than the vertical intercept to the peak 

tube voltage. While the vertical intercept correlation coefficients are low, it is important to note 

that when using the calibration equation in the range of expected bone mineral density, it is the 

slope that has a larger impact on the resultant ash density. The formulation of an acceptable ash 

density calibration equation using linear regression proves the first hypothesis to be valid. 

The regression-based density calibration method better matched the calibration method than the 

phantom-only method. Accordingly, the second hypothesis was also valid. The repeated measures  
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Table F.4: Density calibration equation terms derived by calibrated, phantom-only and 

regression methods. 

      ASH
 = m(HU) + b 

Phantom 
Evaluation 

Method 
Peak Tube 

Voltage [kVp] Slope (m) Vertical Intercept (b) 

K
2
HPO

4 

Standard 

Calibration  

80 5.359E-4 (6.433E-6) 4.722E-2 (2.529E-3) 

100 6.393E-4 (7.470E-6) 4.427E-2 (2.028E-3) 

120 7.190E-4 (8.094E-6) 4.309E-2 (1.636E-2) 

140 7.875E-4 (8.742E-6) 4.135E-2 (1.755E-3) 

Phantom-

Only 

80 5.139E-4 (9.837E-7) 4.755E-2 (2.110E-4) 

100 6.115E-4 (1.120E-6) 4.431E-2 (9.563E-5) 

120 6.937E-4 (2.720E-6) 4.196E-2 (5.496E-4) 

140 7.619E-4 (7.043E-7) 4.034E-2 (3.860E-5) 

Regression 

80 5.450E-4 (0.000E+0) 4.639E-2 (0.000E+0) 

100 6.295E-4 (0.000E+0) 4.449E-2 (0.000E+0) 

120 7.140E-4 (0.000E+0) 4.259E-2 (0.000E+0) 

140 7.985E-4 (0.000E+0) 4.069E-2 (0.000E+0) 

SB3-H
2
O 

Standard 

Calibration  

80 4.880E-4 (2.111E-5) 4.792E-3 (1.499E-3) 

100 5.880E-4 (2.484E-5) 5.500E-3 (1.571E-3) 

120 6.360E-4 (3.043E-5) 8.020E-3 (2.575E-3) 

140 6.900E-4 (3.162E-5) 9.162E-3 (2.018E-3) 

Phantom-

Only 

80 4.200E-4 (5.611E-20) 8.820E-3 (2.210E-4) 

100 5.400E-4 (1.122E-19) 9.780E-3 (5.848E-4) 

120 6.000E-4 (0.000E+0) 9.700E-3 (4.793E-4) 

140 6.600E-4 (0.000E+0) 9.510E-3 (9.487E-5) 

Regression 

80 5.021E-4 (0.000E+0) 4.278E-3 (0.000E+0) 

100 5.686E-4 (0.000E+0) 5.848E-3 (0.000E+0) 

120 6.351E-4 (0.000E+0) 7.418E-3 (0.000E+0) 

140 7.016E-4 (0.000E+0) 8.987E-3 (0.000E+0) 
*Regression equations do not present with standard deviations, as the regression 

equations are constant for each peak tube voltage (kVp).  
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Figure F.2: Plots of mean  SD ash density percent difference (relative to 

proper calibration equation terms) for both phantom-only and regression 

calibration methods.  
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Figure F.3: Bland-Altman plots for density calibration equation slope and 

vertical intercept terms, comparing phantom-only and regression calibration 

methods.  
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ANOVA demonstrated that the calibration method had a significant main effect on the calibration 

equation slope; and a Bonferroni post-hoc test revealed that the phantom-only calibration method 

predicted slopes that were significantly different than the calibrated and regression methods. 

Bland-Altman and percent difference plots of ash density also revealed that the regression method 

produced smaller differences relative to the standard calibration method compared to the 

phantom-only method. An inherent limitation of the phantom-only method of post-hoc calibration 

is that the volume of solid material present in the scanning chamber changes between the original 

scan, and the post-hoc scan. The removal of the specimen tissue has an effect on the attenuation 

that the CT scanner experiences in each scan.  While there is variation in tissue volume present 

between specimens, which should account for some variance in regression and standard 

calibration terms, there is a far greater change in tissue volume when performing a scan with the 

phantom only. This variation in attenuation present between phantom-only and regular scans is 

suggested as a possible cause of some of the differences seen between the proper and phantom-

only calibration equation terms. These results suggest that, while the proper calibration method 

will always be preferred, in the event that post-hoc qCT scan calibration is necessary, the 

regression method does a better job of replicating calibration compared to the phantom-only 

method. 

The repeated measures ANOVA also indicated that the choice of calibration phantom 

significantly affects the terms of the calibration equation. K2HPO4 was found to significantly 

increase the predicted density compared to SB3-H2O. While differences between solid (i.e., 

calcium hydroxyapatite) and liquid (i.e., dipotassium phosphate) calibration phantoms was also 

reported in 1993 by Faulkner et al, they found the opposite trend, with higher bone mineral 

densities reported from a solid calibration phantom (Image Analysis solid standard) compared to 

a liquid one (University of California San Francisco liquid standard) [19]. It should be noted that 

Faulkner et al (1993) used a solid calcium hydroxyapatite phantom that was contained in ‘water-
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equivalent’ plastic, while the current investigation used actual distilled water as the second 

reference material for the SB3-H2O calibration phantom. This difference in calibration phantom 

may account for the discrepancy in trend between calibration phantom types. Regardless, both 

results suggest that the type of calibration phantom chosen will impact the calibration equation 

quantified. Accordingly, the specific type of calibration phantom should be reported in detail for 

all future qCT studies requiring bone mineral density calibration. 

A limitation of this work is that the resulting calibration equations are specific to the CT scanner 

used in the present study. These equations are expected to change between CT scanners, and 

should not be applied to uncalibrated scans obtained on different devices. Furthermore, it should 

be noted that, when applying the regression method of post-hoc calibration, the tissue present in 

the scans used to construct the regression equations should be similar in volume and density to 

the subject of the scans to which the calibration would be applied (i.e., cadaveric arms should not 

be used for living patients who would have greater tissue volume, and vice-versa). Having said 

this, the purposes of the present investigation were to present the regression post-hoc calibration 

method, and to compare it with phantom-only and standard calibrations, not to develop universal 

calibration equations for all CT scanners. 

Should others seek to replicate the post-hoc regression calibration methods described above, it is 

important to best match the conditions of the uncalibrated scans (i.e., same scanner, 

reconstruction kernel, kVp settings, etc.), and to conduct scans at CT voltages that capture the full 

range of the uncalibrated scans to avoid extrapolating results. Mean percentage errors should also 

be quantified when developing post-hoc calibration scans, so that they can be reported along with 

qCT results that are determined using the regression method. Once equations are formed, they 

permit the determination of calibration equations for a database of uncalibrated scans at a variety 

of known CT peak tube voltages, provided those scans were obtained from the same CT scanner 

that was used to develop the post-hoc regression equations. Furthermore, though the results of the 
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present investigation have been presented in terms of ash density only, the scalar relationship 

developed by Schileo et al (2008) suggests that results apply for apparent density as well [16]. 

Additionally, information regarding the quality assurance scans performed for the CT scanner 

used in this investigation are not presented directly. As the scanner used is an active clinical CT 

scanner used for upper limb diagnostic imaging, quality assurance scans are completed by the 

hospital’s imaging physics department at regular intervals for clinical use. To ensure consistency 

with the quality assurance scans, those performed within this study were completed by the same 

CT technician who conducts the quality assurance scans. Finally, a related limitation of this work 

is that the CT scans performed for the regression analysis were not conducted at multiple time 

points. Documentation of any transient effects on the regression formulation may be of interest 

for future investigations; however, clinical scans performed since this investigation have yielded 

consistent density calibration terms. 

In conclusion, stepwise linear regression can be used to form correlations between peak tube 

voltage and the terms of density calibration equations. This form of post-hoc CT scan calibration 

produced lower percentage errors than post-hoc phantom-only scans, and better replicated the 

proper calibration terms. While proper CT scan calibration, where a calibration phantom is used 

at the time of scan acquisition, is always preferable, post-hoc regression seems to be an 

acceptable calibration method with relatively low mean errors (-3.1% to 3.0%) compared to 

proper calibration methods. 
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Appendix G - Creating Masks and Solid Body Models of 

Bone 

G.1 Introduction 

The method described herein attempts to provide a starting point for developing ‘good’ 

bone masks in Mimics (version 19), then how to use SolidWorks to develop these into 

separate cortical and trabecular solid models. This approach has been developed through 

trial and error, using the proximal humerus as a sample. The general approach is to first 

develop a water-tight and completely-filled overall bone mask, then to develop a mask 

that estimates the trabecular bone and canal, which is smooth (i.e., avoids fissures of 

dense cortical bone in the subchondral region). These two masks can then be developed 

into 3D STL files that can be exported to SolidWorks, where Boolean operations can 

create a cortical shell. 

When developing Finite Element (FE) models, we take apply a constant elastic modulus 

to the cortical shell (~20GPa), and regionally-varying elastic moduli to the trabecular-

canal. A smooth surface that divides the cortical and trabecular-canal regions is desirable 

to permit meshing. The trabecular-canal elastic modulus is derived from the underlying 

bone attenuation in Mimics, so while a smooth transition is not completely anatomic, the 

irregularities in the transition-region are accounted for with higher attenuations 

experienced near the smooth transition surface. 

G.2 Bone Masking Methods 

G.2.1 The Proximal Humerus Mask 

1. Using the right-side panel, create a new mask using Mimic’s default ‘bone’ 

settings. 

a. Name the created mask ‘Bone’. 

2. For the proximal humerus, we are not concerned with the distal end, and as such, 

we can remove this section of the bone. To do so: 

a. Move to the Mimics pane that best represents the transverse (or axial) 

view of the humerus. 
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b. Move down the shaft of the humerus until you are approximately ¾ of the 

total length (or however far you require for your study). 

c. Select the ‘Bone’ mask from the right-side panel. Right-click and select 

‘Edit Mask’. 

i. Remove all the ‘Bone’ mask in this slice. 

ii. Move to the next-most proximal slice, and using the ‘Edit Mask’ 

tool, fill in the humerus canal so that there are no gaps. 

1. This creates a ‘water-tight’ bottom of the proximal humerus 

mask. 

3. Right-click on the ‘Bone’ mask, and select ‘Region Growing. 

a. Click on the humeral shaft portion of the ‘Bone’ mask to try and isolate it 

from the surrounding ‘Bones’ that are also contained in this mask. 

b. Depending on the ‘quality’ of the bone and the resolution of the CT scan 

that you are working with, you may not be able to separate the humerus 

using region growing on the first try.  If this is the case: 

i. Select the ‘Bone’ mask in the right-side panel, right-click and 

select ‘Edit Mask’. 

ii. Remove parts of the ‘Bone’ mask that are bridging between the 

separate bone sections. These will most likely present in the joints, 

between articular surfaces, and must be deleted manually by 

moving slice-by-slice. 

c. Name the isolated humerus bone as ‘ProxHum’. 

4. Right-click on the ‘ProxHum’ mask, and select ‘Morphology’. 

a. Select ‘Close’ from the drop-down menu, and make sure that the mask the 

operation will be performed on is ‘ProxHum’. 

b. Set the closing distance as 2 pixels (Note: This may have to be adjusted, 

but I find 2px is a good starting point). 

c. Apply the operation. 

d. Name the resulting mask ‘ProxHum_Closed’. 
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5. Use the ‘Cavity Fill’ feature (looks like a paint can) on the top-panel to fill the 

empty space outside of the ‘ProxHum_Closed’ mask. This is done by clicking on 

the space outside of the ‘ProxHum_Closed’ mask. 

a. Make sure you are using the ‘ProxHum_Closed’ mask as the driving 

mask, and that the fill will be applied to a new mask. 

b. This operation should fill all the space around the ‘ProxHum_Closed’ 

mask, and should leave the trabecular-canal of the proximal humerus 

hollow (not filled by the new mask). If the trabecular-canal is filled with 

the new mask, you must use the ‘Edit Mask’ tool to fill any gaps that exist 

in the ‘ProxHum_Closed’ mask. These gaps typically present around the 

articular surface. After filling the gaps, try the cavity fill operation again. 

c. Name the resulting mask ‘Space’. 

6. Perform another ‘Cavity Fill’ operation, this time using the ‘Space’ mask as the 

driving mask, and mapping to a new mask. 

a. Click on the void space in the ‘Space’ mask that corresponds to the 

proximal humerus. 

b. This should create a completely solid proximal humerus mask. 

c. Name the resulting mask ‘ProxHum_Filled’. 

7. Select ‘ProxHum_Filled’ from the right-side panel. Right-click and select 

‘Calculate 3D’. 

a. This will generate a 3D representation of the ‘ProxHum_Filled’ mask in 

the ‘3D Objects’ panel that is beneath where the different masks are 

located. 

8. Select the newly created 3D object. Right-click and select ‘Smoothing’. 

a. Make sure smoothing settings are set as: Iterations = 12, Smooth Factor = 

0.3. 

i. These settings can be varied, but I find these values work well. 

9. Now right-click and select ‘Wrapping’. 

a. Make sure the wrapping settings are set as: Smallest Detail = 1mm, Gap 

Closing Distance = 3mm. 
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i. Again, these settings are what I have found work well, but they can 

be changed. 

10. Repeat the ‘Smoothing’ operation one more time. 

a. Iterations of ‘Smoothing’ and ‘Wrapping’ operations should be done to 

suit your needs. These are typically what I use, but can be varied. 

b. Hide all other versions of the proximal humerus 3D object. 

11. Rename the final 3D object ‘ProxHum’. 

12. Export the ‘ProxHum’ in STL format. 

 

G.2.2 The Trabecular Mask 

1. Select the ‘ProxHum_Filled’ mask from the right-side panel. Right-click and 

select ‘Morphology’. 

a. Select ‘Erode’ from the drop-down menu. 

b. Make sure you are using ‘ProxHum_Filled’ as the driving mask, and that 

you are creating a new mask. 

c. Set the erosion to be 2 pixels. 

d. Apply. 

e. Name the resulting mask as ‘ProxHum_Filled_Eroded’. 

2. Create a new mask and manually set the threshold such that you create a cortical-

like mask that maintains the thick cortical shell regions, but that minimizes the 

cortical infiltration beneath the subchondral surface. 

a. This is rather subjective, but the idea is that you want to have a good 

approximation of the cortical shell, without too many (you won’t be able 

to remove them all) of the cortical fissures infiltrating the subchondral 

trabecular-canal. I find that between 600HU and 800HU is a good place to 

start. 

b. Name the resulting mask as ‘Cortical’. 

3. Select the ‘Boolean’ operation from the top-panel. 

a. Select ‘Subtract’ from the drop-down menu. 

b. Subtract the ‘Cortical’ mask from the ‘ProxHum_Filled_Eroded’ mask. 

c. Name the resulting mask as ‘Trab’. 
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4. Select the ‘Trab’ mask from the right-side panel. Right-click and select 

‘Morphology’. 

a. Select ‘Erode’ from the drop-down menu. 

b. Erode the ‘Trab’ mask to a new mask by 1 pixel. 

c. Name the resulting mask as ‘Trab_Eroded’. 

5. Select the ‘Trab_Eroded’ mask from the right-side panel. Right-click and select 

‘Region Growing’. 

a. Click on the main trabecular body in the ‘Trab_Eroded’ mask. 

b. Name the resulting mask as ‘Trab_Eroded_RG’. 

6. Select the ‘Trab_Eroded_RG’ mask from the right-side panel. Right-click and 

select ‘Morphology’. 

a. Select ‘Close’ from the drop-down menu. 

b. Close the ‘Trab_Eroded_RG’ mask to a new mask by 2 pixels. 

c. Name the resulting mask as ‘Trab_Closed’. 

7. Select the ‘Trab_Closed’ mask from the right-side panel. Right-click and select 

‘Morphology’. 

a. Select ‘Dilate’ from the drop-down menu. 

b. Dilate the ‘Trab_Closed’ mask to a new mask by 2 pixels. 

c. Name the resulting mask as ‘Trab_Closed_Dilated’. 

8. Select the ‘Trab_Closed_Dilated’ mask from the right-side panel. Right-click and 

select ‘Calculate 3D’. 

a. This will generate a 3D representation of the ‘Trab_Filled_Dilated’ mask 

in the ‘3D Objects’ panel that is beneath where the different masks are 

located. 

9. Select the newly created 3D object. Right-click and select ‘Wrapping’. 

a. Make sure the wrapping settings are set as: Smallest Detail = 1mm, Gap 

Closing Distance = 3mm. 

i. Again, these settings are what I have found work well, but they can 

be changed. 

10. Now right-click and select ‘Smoothing’. 
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a. Make sure smoothing settings are set as: Iterations = 12, Smooth Factor = 

0.3. 

i. These settings can be varied, but I find these values work well. 

b. Repeat smoothing two more times, or as many times as is necessary to 

prevent you from seeing the trabecular 3D object through the ‘ProxHum’ 

3D object. 

i. Note: as you repeat wrapping and smoothing functions, you will be 

generating 3D objects. To judge your most recent progress, you 

want to hide the older versions and only view the most recent 

(perhaps with the ‘ProxHum’ 3D object shown as well). 

11. Rename the final iteration of the proximal humerus’ trabecular-canal as 

‘Trabecular’. 

12. Export the ‘Trabecular’ 3D object in STL format. 

 

G.3 Solid Body Modeling in SolidWorks 

1. Launch SolidWorks, and click on the open button. 

a. Under file type, select STL. 

b. Click on the options button that appears, and ensure that you are 

attempting to import the STL as a ‘Solid Body’, and that ‘Translate into 

positive coordinates’ is NOT selected. We need each part to remain 

positioned the same as it was in the Mimics. 

c. Select the ‘ProxHum’ file that was exported in the final step of 

‘Developing the Proximal Humerus Mask’ above, and click OK. 

2. The file will take some time to develop a solid model from the STL surfaces, but 

once it completes, you should see that a solid object has been added to the Part’s 

tree on the left hand side of the screen. 

a. To check if the object has been imported as a solid, select the cross-section 

view, and move your cross-section plane through the part to visualize the 

solid interior. 
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b. Occasionally, SolidWorks may take issue with the number of surfaces that 

it needs to convert into a solid object. If this happens, try to trim the mask 

before exporting as an STL if possible, or attempt to smooth it further. 

3. Once the part has been imported as a solid body properly, save it as a .SLDPRT 

file. 

4. Repeat steps 1-3 for the ‘Trabecular’ STL file. 

5. With both parts created, open the ProxHum.SLDPRT in SolidWorks. 

6. Import Trabecular.SLDPRT into ProxHum.SLDPRT. 

a. In ProxHum.SLDPRT, select ‘Insert’ then ‘Part…’. 

b. From the popup box select ‘Trabecular.SLDPRT’. 

c. The program will give you the option of ‘dropping’ the part with the 

window, but you need to ensure that the part remains aligned to the same 

global coordinate system as the Mimics CT scan and the ‘ProxHum’, so 

from the left-side panel, check off ‘Solid Bodies’, then click on the green 

‘checkmark’. 

d. Now, the Trabecular.SLDPRT should be located within the 

ProxHum.SLDPRT, and they should be aligned according to the Mimics 

global coordinate system. 

7. Subtract the volume of Trabecular.SLDPRT from the ProxHum.SLDPRT. 

a. Select ‘insert’, then ‘Features’, then ‘Combine’. 

b. For Operation Type, choose ‘Subtract’. 

c. Select the ProxHum as the main body, and Trabecular as the Bodies to 

Subtract. 

d. Confirm by clicking on the green ‘checkmark’. 

e. Now, you should be left with a hollowed-out version of the proximal 

humerus whose inner surface directly matches the outer surface of the 

Trabecular.SLDPRT. This represents the cortical bone of the proximal 

humerus. 

f. Save the resulting part as ‘Cortical.SLDPRT’. 

8. You can now perform any cuts, implant orientation, etc. that you wish on these 

solid body models. 
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a. When you are satisfied with your models, and wish to move them to 

Abaqus for development into Finite Element models, you should save 

each part as ‘STEP AP214’ files, as these retain the geometry of the parts 

best for importing into Abaqus. 

 

G.4 In-Silico Humeral Head Resection and Positioning a Stemless Implant 

G.4.1 Humeral Head Resection 

To create a surgical resection plane in SolidWorks, I use 3 points.  In order to reduce the 

plane’s orientation sensitivity to the points (permitting easier refinement), it is best to 

place the points far apart. This procedure is best done on the Cortical bone because the 

boney landmarks are more easily discerned. The trabecular bone will be cut afterwards 

using the same points. 

1. Identify the ‘Crown’ of the proiximal humerus. This is the ‘lip’ where the 

articular dome of the humeral head begins to curve back in upon itself to draft 

down to the rest of the proximal humerus. It should more-or-less resemble a 

circular curvature on the medial side of the bone. 

2. Using the Sketch tab, select the ‘3D Sketch’ option (using the arrow next to the 

normal ‘Sketch’ button). 

3. Select the ‘Point’ tool, and select 3 points around the circumference of the 

humeral crown. Ensure that when you drop the points, they fall on the outer 

surface of the cortex, and that they do not lock to an edge or vertex; this will 

permit some movement of the point within the surface that you select. Try to 

select a point superior-laterally, as well as one somewhat anterior and one 

somewhat inferior-medially. 

4. Once you are satisfied with your points, exit the 3D Sketch, and create a 

Reference Plane using the Reference Geometry button. 

a. Select the points and confirm your choice. 

5. From the Insert button, select ‘Cut’, then ‘Surface Cut’. 

a. Use your newly created resection plane as the cutting surface, and select to 

remove the top (or head) of the humerus. 
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b. Confirm your selection. 

6. At this point, it is best to review your resection with a clinician. 

a. In my experience, it takes several iterations of steps 3-5 to get an 

appropriate surgical resection. 

7. Once the proper surgical resection has been formed, make note of the (x,y,z) 

position of each of the resection plane points (and fix/anchor each point so that it 

will not move), so that you can use the same ones for the trabecular bone as well. 

8. Save your part as ‘Cortical_Bottom.SLDPRT’. 

9. Reverse the side to retain in the head resection so that you are keeping only the 

top of the humeral head, and save this as a separate part ‘Cortical_Top.SLDPRT’. 

10. Repeat for the Trabecular bone, but rather than iterating the point position, when 

you drop the three points into the display, use the left-side control pane to indicate 

the exact same (x,y,z) position of each point. In this way, the resection planes 

should be identical between the cortical and trabecular bones. 

11. This should leave you with top and bottom segments for both the cortical and 

trabecular bone. 

 

G.4.2 Resection Coordinates and Stemless Implant Positioning 

To position the humeral head appropriately, we need to form a reproducible resection-

based humeral coordinate system. 

1. In the Trabecular_Bottom.SLDPRT determine the centroid of the humeral 

resection plane. 

a. Select the resection surface. 

b. Under the Evaluate tab, select ‘Section Properties’. This will give you the 

centroid position (x,y,z). 

2. Create a 3D sketch, place a point, and use the left panel to set the point’s 

coordinates to the resection centroid, and fix the point in space. 

3. Now, create another 3D sketch and select the most superior-lateral (SL) and the 

most inferior-medial (IM) points on the resection surface. 

4. Connect SL and IM with a reference axis. Call this the SI-Axis. 
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5. Create a reference plane through the SI-Axis and perpendicular to the resection 

plane. This will be the coronal plane. 

Together the resection plane, resection centroid, SI-axis and the Coronal Plane can be 

used to position stemless implants repeatably in the proximal humerus. 

G.4.3 Stemless Implant Positioning 

1. Open a new assembly file in SolidWorks and insert the 

Trabecular_Bottom.SLDPRT such that it retains its part/mimics coordinate 

system and is fixed in space (by clicking the checkmark, NOT by dropping it in 

the display). 

2. Add the Stemless implant that you are working with, by dropping it into the 

display so that it is floating and can move to mate with the bone as required. 

3. Select the top surface of the implant (or backside of the articular/head 

component), and mate this to be coincident with the resection surface. 

4. Use implant features (fins, etc.) to rotate the implant into alignment with the 

coronal plane (e.g., the Tornier Simpliciti has a superior-laterally directed fin that 

is to be parallel with the coronal plane). 

5. Create a central axis within the implant part (i.e., this would be the rotational axis 

of an axisymmetric fixation feature or would be the central axis of the implants 

head that should be perpendicular to the resection plane), and mate it to be 

coincident with the resection plane’s centroid. 

Together, these mates should completely restrict the implant in all six dimensions. 

6. Right-click on the Implant’s name in the left-side panel, and ‘Fix’ it in space. 

7. Save this file as ‘Implant_Positioning.SLDASM’ 

8. Right-click on the Trabecular_Bottom.SLDPRT and ‘Suppress’ it. 

9. Use Save-as and change the file type to SLDPRT to save the implant positioned in 

space as a separate part file. Name this ‘Implant_Positioned.SLDPRT’. 

G.4.4 Cutting the Implant’s Fixation Features out of the Bone 

1. Open the Trabecular_Bottom.SLDPRT in SoldWorks. 

2. Click ‘Insert’, then ‘Part…’ and select the Implant_Positioned.SLDPRT. 
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a. Again, the program will give you the option of ‘dropping’ the part with the 

window, but we just positioned it relative to the Trabecular_Bottom’s 

coordinate system, so from the left-side panel, check off ‘Solid Bodies’, 

then click on the green ‘checkmark’. 

3. Subtract the volume of Implant_Positioned.SLDPRT from the 

Trabecular_Bottom.SLDPRT. 

a. Select ‘insert’, then ‘Features’, then ‘Combine’. 

b. For Operation Type, choose ‘Subtract’. 

c. Select the Trabecular_Bottom as the main body, and Implant_Positioned 

as the Bodies to Subtract. 

d. Confirm by clicking on the green ‘checkmark’. 

e. Now, you should be left with a hollowed-out version of the 

Trabecular_Bottom whose inner surface directly matches the outer surface 

of the Implant_Positioned.SLDPRT. 

f. Save the resulting part as ‘Trabecular_Bottom_Cut.SLDPRT’. 

4. Also save this part as a STEP AP214 file so that it can be easily imported into 

Abaqus. 
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Appendix H – Generic Stemless Implant Details 

 
Figure H.1: Additional Views of the Stemless Implant Articular Component 
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Figure H.2: Additional Views of the PegStraight Stemless Fixation Feature  
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Figure H.3: Additional Views of the PegAnatomic Stemless Fixation Feature  
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Figure H.4: Additional Views of the Peripheral4x5S Stemless Fixation Feature  
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Figure H.5: Additional Views of the Peripheral4x5A Stemless Fixation Feature  
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Figure H.6: Additional Views of the Peripheral4x10S Stemless Fixation Feature  
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Figure H.7: Additional Views of the Peripheral4x10A Stemless Fixation Feature  
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Figure H.8: Additional Views of the QuadFlange Stemless Fixation Feature  
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Figure H.9: Additional Views of the HexFlange Stemless Fixation Feature  
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Figure H.10: Additional Views of the QuadPeg Stemless Fixation Feature  
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Figure H.11: Additional Views of the HexPeg Stemless Fixation Feature  
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Appendix I – Supplementary Significance Tables for 

Stemless Implant Assessment 

As a compliment to the tables presented in Chapter 5, Figures I.1 - I.8 are presented to 

showcase all significant differences between stemless implant types that arose due to the 

implant-by-slice depth-by-bone quadrant interaction for (1) the change in bone stress 

(Figures I.1 and I.2) and (2) the time-zero potential bone response (Figures I.3 - I.8) for 

all slices and quadrants. The huge number of significant differences that presented within 

these results prevented the classical display of significant differences directly on the 

figures in Chapter 5 by ‘star-bars’. 
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Figure I.1: Summary of Statistical Differences for the Change in Cortical Bone Stress Outcome 
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Figure I.2: Summary of Statistical Differences for the Change in Trabecular Bone Stress Outcome 
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Figure I.3: Summary of Statistical Differences for the Time-Zero Potential Resorbing Response of Cortical Bone 
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Figure I.4: Summary of Statistical Differences for the Time-Zero Potential Unchanged Response of Cortical Bone 
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Figure I.5: Summary of Statistical Differences for the Time-Zero Potential Remodeling Response of Cortical Bone 
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Figure I.6: Summary of Statistical Differences for the Time-Zero Potential Resorbing Response of Trabecular Bone 
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Figure I.7: Summary of Statistical Differences for the Time-Zero Potential Unchanged Response of Trabecular Bone 
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Figure I.8: Summary of Statistical Differences for the Time-Zero Potential Remodeling Response of Trabecular Bone 
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Appendix J – von Mises Stress Plots for Chapter 5 FE 

Models 

 
Figure J.1: von Mises Plots of Specimen 1’s Cortical Shell for Loading at 45 of 

Abduction  
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Figure J.2: von Mises Plots of Specimen 1’s Trabecular-Canal for Loading at 45 of 

Abduction 
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Figure J.3: von Mises Plots of Specimen 1’s Cortical Shell for Loading at 75 of 

Abduction 
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Figure J.4: von Mises Plots of Specimen 1’s Trabecular-Canal for Loading at 75 of 

Abduction 
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Figure J.5: von Mises Plots of Specimen 2’s Cortical Shell for Loading at 45 of 

Abduction 
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Figure J.6: von Mises Plots of Specimen 2’s Trabecular-Canal for Loading at 45 of 

Abduction 
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Figure J.7: von Mises Plots of Specimen 2’s Cortical Shell for Loading at 75 of 

Abduction 
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Figure J.8: von Mises Plots of Specimen 2’s Trabecular-Canal for Loading at 75 of 

Abduction 
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Figure J.9: von Mises Plots of Specimen 3’s Cortical Shell for Loading at 45 of 

Abduction 
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Figure J.10: von Mises Plots of Specimen 3’s Trabecular-Canal for Loading at 45 

of Abduction 
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Figure J.11: von Mises Plots of Specimen 3’s Cortical Shell for Loading at 75 of 

Abduction 
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Figure J.12: von Mises Plots of Specimen 3’s Trabecular-Canal for Loading at 75 

of Abduction 
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Figure J.13: von Mises Plots of Specimen 4’s Cortical Shell for Loading at 45 of 

Abduction 
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Figure J.14: von Mises Plots of Specimen 4’s Trabecular-Canal for Loading at 45 

of Abduction 
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Figure J.15: von Mises Plots of Specimen 4’s Cortical Shell for Loading at 75 of 

Abduction 
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Figure J.16: von Mises Plots of Specimen 4’s Trabecular-Canal for Loading at 75 

of Abduction 
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Figure J.17: von Mises Plots of Specimen 5’s Cortical Shell for Loading at 45 of 

Abduction 
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Figure J.18: von Mises Plots of Specimen 5’s Trabecular-Canal for Loading at 45 

of Abduction 
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Figure J.19: von Mises Plots of Specimen 5’s Cortical Shell for Loading at 75 of 

Abduction 
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Figure J.20: von Mises Plots of Specimen 5’s Trabecular-Canal for Loading at 75 

of Abduction 
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