View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Scholarship@Western

Western University

Scholarship@Western

Business Publications Business (Richard Ivey School of Business)

2017

Discrete event simulation model for planning Level

2 “step-down” bed needs using NEMS

Felipe F. Rodrigues
Ivey Business School at Western University, frodrigues.phd@ivey.ca

Gregory S. Zaric
University of Western Ontario

David Stanford
Western University

Follow this and additional works at: https://irlib.uwo.ca/iveypub

b Part of the Business Administration, Management, and Operations Commons, Health and
Medical Administration Commons, Health Services Administration Commons, and the

Management Sciences and Quantitative Methods Commons

Citation of this paper:

F. Rodrigues, G.S. Zaric, D.A. Stanford, Discrete event simulation model for planning Level 2 “step-down” bed needs using NEMS, In
Operations Research for Health Care, 2017, ISSN 2211-6923, https://doi.org/10.1016/j.0rhc.2017.10.001.


https://core.ac.uk/display/215383217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/iveypub?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/ivey?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/iveypub?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/663?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/663?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/747?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=ir.lib.uwo.ca%2Fiveypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Discrete event simulation model for
planning Level 2 “step-down” bed needs

using NEMS

F.Rodrigues, G.S.Zaric, D.A.Stanford

This is the peer reviewed version of the following article: F. Rodrigues, G.S. Zaric, D.A.
Stanford, Discrete event simulation model for planning Level 2 “step-down” bed needs using
NEMS, In Operations Research for Health Care, 2017, which has been published in final form
at https://doi.org/10.1016/j.0rhc.2017.10.001. This article may be used for non-commercial
purposes in accordance with Elsevier’s Terms and Conditions for Self-Archiving."



https://doi.org/10.1016/j.orhc.2017.10.001

Discrete event simulation model for planning Level 2
“step-down” bed needs using NEMS™ "~

F. Rodrigues®*, G. S. Zaric®, D. A. Stanford”

*Jvey Business School at Western University, London, Ontario, N6G ON1, Canada
bStatistical & Actuarial Sciences at Western University, London, Ontario, N6A 3K7,
Canada

Abstract

In highly congested hospitals it may be common for patients to overstay at In-
tensive Care Units (ICU) due to blockages and imbalances in capacity. This is
inadequate clinically, as patients occupy a service they no longer need; opera-
tionally, as it disrupts flow from upstream units; and financially as ICU beds are
more expensive than ward beds. Step-down beds, also known as Level 2 beds,
have become an increasingly popular and less expensive alternative to ICU beds
to deal with this issue. We developed a discrete event simulation model that
estimates Level 2 bed needs for a large university hospital. The model innovates
by simulating the entirety of the hospital’s inpatient flow and most importantly,
the ICU’s daily stochastic flows based on a nursing workload scoring metrics
called "Nine Equivalents of Nursing Manpower Use Score" (NEMS). Using data
from a large academic hospital, the model shows the benefits of Level 2 beds in

improving both patient flow and costs.
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1. Introduction

Contemporary hospitals in developed countries strive to provide the best
possible patient care while keeping costs at reasonable levels (Doig [12], Batche-
lor [6], Hoyt [20]). Hospital beds are too costly to remain idle, while insufficient
beds can be detrimental to in patient care (Harper [18]). Critical care in par-
ticular is very expensive: in the USA and Canada, ward beds cost as much
as $1,000/day while critical care beds surpass $3,500/day (Noseworthy et al.
[36], Halpern and Pastores [17]).

The University Hospital (UH) campus of the London Health Sciences Cen-
tre (LHSC) is a 400 bed hospital responsible for approximately 6,200 surgeries,
60,000 emergency visits, 300,000 ambulatory visits and 17,000 inpatient admis-
sions per year (LHSC [29]). It routinely experiences bed utilization rates above
85% which are high compared to the North American average of 67.6% for com-
parable sized hospitals (NCHS [34]). When the wards at UH become congested
there is pressure on the Medical-Surgical Intensive care unit (MSICU) to take
one of two actions: hold some patients in ICU longer than they care (“overstay”),
or transfer some patients to a ward other than their intended one ("off-service").
Overstay creates a ripple effect in upstream units such as the Operating Room
(OR) and the Emergency Department (ED), resulting in a disruption in pa-
tient flow upstream, delayed surgeries and lengthy ED visits. Off-service is

sub-optimal clinically because of staff specialization, such as intensivist nurses
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and physicians. Off-service is also sub-optimal operationally because special-
ist doctors must visit different wards to see their patients, creating delays and
coordination issues. Thus, off-service treatment should be avoided whenever
possible (Shukla et al. [45]). LHSC estimates that up to 30% of patients at in
the specialized Multi-Organ Transplant unit are off-service patients.

To improve patient flow, provide adequate care and reduce costs, UH intends
to implement an intermediary care unit between the MSICU and its downstream
wards, called "step-down" or, "Level 2" unit (L2). These wards usually do not
support ventilation, but they can still provide some organ support (see Table 1).
They are less costly in technology and in the patient/nurse ratio, typically two
patients per nurse rather than one-on-one found in ICU. Among UH’s primary
concerns is the determination of the ideal capacity a new L2 unit should have
if such unit were to be employed.

This research assesses the impact of step-down beds on a number of hospital
metrics including throughput, length of stay (LOS), “ off-service” and cost. We
develop a DES model to analyze a hospital’s L2 bed needs that incorporates the
changes in ICU patient health through time, where patient health is modeled

by the NEMS. We address the following research questions:

1. What is the impact of a L2 unit on throughput, off-service, inpatient LOS

and cost?

2. What is the optimal allocation of MSICU and Level 2 beds for UH?

2. Literature Review

2.1. Research streams

There ares two main streams of literature related to bed capacity manage-

ment and planning: queuing models and discrete-event simulation (DES) models



2.1 Research streams

Table 1: Levels of care characteristics at LHSC

Level of care Bed characteristics Patient /nurse ratio Estimated cost NEMS?
$ /patient-day *
1 Standard Ward bed: 3 or more to 1 $600 <10
No organ support, no ventilation
2 Step-down bed: 2to1 $2,000 11 to 25
Support single failed organ
system, no ventilation
3 Intensive care bed: 1to1l $3,500 26 to 56

Invasive ventilation and
multiple organ support

!Estimated cost provided by LHSC Management;
2 Nine equivalents of nursing manpower use score (Miranda et al. [32])
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2.2 Discrete Event Simulation in Health Care Capacity Management 5

(Bountourelis et al. [7]). Queuing models range from analytical queuing method-
ology such as the use of the M /M /1 (Green [15]) and Erlang loss models (Green
et al. [16], Rau et al. [38]) to the use of complex network models (Osorio and
Bierlaire [37], Bretthauer et al. [9], Noghani Ardestani [35], Zonderland et al.
[47]). Green [15] presents a survey of this stream of literature, and taxonomies
have been devised by Mielczarek and Uzialko-Mydlikowska [31], Lakshmi C.

[26], Bountourelis et al. [7].

2.2. Discrete FEvent Simulation in Health Care Capacity Management

DES is a popular alternative to queuing models because it is possible to
study applications with large scale and scope and to relax many of the assump-
tions necessary in queuing models. The DES literature most often focuses on
a single unit of a hospital (e.g. ED, OR) and/or on a single type of patients
(e.g. trauma, surgery, cardiac). Research is usually focused on designing a new
patient flow strategy (early transfers, faster service, better schedules) often in
combination with structural improvements, such as pooling, or increased capac-
ity. For example, Harper [18] tested pooling respiratory patients into a single
unit similar to a L2 unit. Harper [18] found pooling to show significant improve-
ments in patient throughput and flow balance. Rohleder et al. [40], Rau et al.
[38] share those findings, but stress that pooling patients seems to be partic-
ularly beneficial in high variance service time settings such as ICU’s. Shahani
et al. [44] simulate a high dependency unit (HDU) and they found that pooling
alone only managed to reduce transfers/off-service but kept similar through-
put and utilization levels. They could only achieve better results when pooling
was combined with earlier stepping-down of long stay patients. Van Berkel
and Blake [46] found that capacity increase alone is not enough to stabilize
OR patient flows, often requiring faster service times as well. Comparable re-

sults are found by Duguay and Chetouane [13], Khare et al. [23], Konrad et al.
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2.3 Contributions of this paper 6

[25] in emergency department settings. Ridge et al. [39], Kolker [24], Marmor
et al. [30] investigated congestion by smoothing surgery schedules, which en-
abled performance gains in ICU utilization, LOS and off-service. Seung-Chul
et al. [43], Dobson et al. [11], Anderson et al. [4, 3], KC and Terwiesch [22]
suggest that highly congested health care systems may trigger other responses -
such as early discharges/transfers/off-service - in order to accommodate higher

demands, often with negative results.

2.3. Contributions of this paper

Our model attempts to correctly represent the complex flow and interac-
tions present in modern general hospitals without some of the simplifications
found in the literature. Our DES model includes “bounce-backs” (patients be-
ing transferred back from wards to units upstream), overstay and off-service
endogenously. In other words, those phenomena are consequences of congestion
as opposed to exogenous parameters of the simulation. Thus, we are able to
observe congestion and the impact of changes in capacity and bed mix on con-
gestion. We find a clear trade-off between added capacity and changes in bed
mix that might otherwise be absent in previous models due to simplifying as-
sumptions. A model that does not include all these characteristics may provide

little help in capacity planning problems.

In addition, we include in the ICU simulation the patient’s daily health
changes in the form of a death/NEMS scoring routine. This stochastic process
provides a precise, realistic simulation of an ICU patient and endogenously

creates reliable LOS for bed capacity purposes.
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3. Materials and Methods

3.1. Initial Steps

The first step of the research was to meet with several managers at LHSC to
understand the problem and agree upon stakeholder involvement as suggested
by Brailsford et al. [8]. The research objective was defined during the first three
exploratory meetings and validated after an initial research proposal draft was
presented. The research proposal was reviewed and approved by ethics boards
of LHSC and Western University. Management at LHSC were highly involved
with the research, periodically revising goals and methods and validating each

step to ensure meaningful and actionable results.

3.2. Model Overview

We built the DES model using the software package Simul8@®). This software
was chosen for three main reasons. First, it has become a popular choice in the
healthcare DES literature (Almashrafi and Vanderbloemen [2], Mohiuddin et al.
[33], Salleh et al. [41]). Secondly, its ease of coding allows for flexible modeling,
and it features a graphical interface that plays an important role in conveying
results to multiple stakeholders. Thirdly, and because of the former two, our
institution has experience in using this software for healthcare DES research.

We built the model representing the current capacity allocation of UH as
a baseline scenario (Figure 1; for a detailed model, see A.10). There are six
entry points for inpatients: Emergency Department (ED), Operating Room
(OR), Clinics, Victoria Hospital (the other major hospital in the LHSC sys-
tem), OneConsult (inpatient transfers from other hospitals outside of the LHSC
system), ADT (Admission/Discharge/Transfer). ADT is is a mock entry point
the hospital uses to temporarily admit patients while they are not assigned a

bed in a ward. Each entry point has its own inter-arrival time distributions



3.2 Model Overview

*Emergency
Department
(ED)

sOperating
Room (OR)

»Clinics

s OneConsult

*Temporary
admission
(ADT)

*Victoria
Hospital

sMedical-
surgical
Intensive Care
unit (MSICU)

s Cardiovascular
Surgery
Recovery unit
(CSRU)

L

*Multi-Organ
Transplant
(MOTP)

sNeurology
Ohservation
(NOBS)

«Coronary Care
(ccu)

*New L2 unit

Figure 1: L2 patient flow

model

*ED decant
sGeneral
Medicine
»Cardiac
s Acute Care
sCardiovascular
Surgery
#Clinical
MNeurosciences
*Hyper Acute
Stroke
sGeneral
Surgery,
Plastic,
Urology and
Gynecology
sHigh Acuity
Surgery
s5ub Acute
Medical
»Palliative Care

sEpilepsy




123

124

126

127

129

130

132

133

135

136

137

138

141

143

146

147

3.3 Patient Flow Data 9

(see AppendixA). Inpatients flow from the entry points to the remaining units.
There are two independent Level 3 units (MSICU and Cardiac-Surgical Inten-
sive Care Unit (CSRU), three existing Level 2 units (tailored to other specific
patient groups) and twelve specialized wards (Table A.8). Patients exit the
hospital via three routes: Discharge, “Signed Out”, or Death.

Since the level of care is closely related to patient/nurse ratio, LHSC has
historically used nursing workload as a proxy for patient readiness to step down
to a lower level of care. As part of the MSICU’s routine, every patient is scored
daily in a 56 point scale known as "Nine equivalents of nursing manpower use
score" or "NEMS" (Miranda et al. [32]). The NEMS gives a measurement of the
workload a nurse has for each patient over time and is closely related to patient
health because as the patient’s health improves, less nursing attention is needed,
resulting in a lower NEMS. Empirically, LHSC considers a score below 10 to be
a "Ward type" patient; scores between 11-25 would be "L2 type" patient, and

from 26-56 an "ICU type" patient (see Table 1).

3.3. Patient Flow Data

The model was fit using the most recent one year of data in which UH’s
bed allocation was stable (i.e., same number of beds in all units over the entire
year), from December 1%t 2013 to November 30" 2014. Data was gathered from

the hospital’s patient management system, including:

1. Inpatient arrivals: patient registry number, age, sex, diagnosis, entry
point, exit point, service at arrival, service at discharge, discharge category
(discharge, death, transfer), dates and time of arrival and of discharge.

2. Inpatient Transfers: all of the above plus the date and time of entry and
of exit of patients into each unit of UH, origin and destination unit.

3. Hospital bed capacity: number of available beds in each unit during the

research period
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3.4 ‘Transition Probabilities 10

4. Nursing workloads: patient registry number, age, sex, diagnosis, discharge
category (discharge, death, transfer), time and daily NEMS measurements

at MSICU

5. Costs: Estimated daily bed costs at each unit

We estimated length-of-stay (LOS) distributions for each unit, patient outcome
distributions and patient transfer matrix to represent transitions between hospi-
tal units. Note that LOS is ward-specific but does not depend on patient type.
For all cases, several distributions were considered (Banks [5]) and chosen on
basis of Akaike information criterion(AIC, Akaike [1]) and Bayesian informa-
tion criterion (BIC, Schwarz [42], Hastie et al. [19]), as is common in this line

of research (e.g. Shukla et al. [45], Rau et al. [38]).

3.4. Transition Probabilities

There were 17,380 patients representing 42,012 internal movements (an av-
erage of 2.41 records/patient) represented in the patient flow matrix (Figure
A.11). Each transfer has an unique destination. However, if the intended unit
is full, then the practice is to transfer the patient to an alternate unit, caus-
ing off-service care. In this way, individual off-service decisions are determined
probabilistically. Deaths from the MSICU were modeled separately using a

logarithmic function (Figure A.13).

During the patient’s stay at MSICU, patients receive a NEMS upon arrival
to MSICU, and a revised score every morning during their stay in MSICU.
Once the patient reaches a NEMS consistent with a L2 type, she attempts to
exit the MSICU and reach the new L2 unit. In the baseline scenario, patients

exit MSICU if they reach a ward type NEMS.
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3.5 Cost Data 11

3.5. Cost Data

LHSC supplied cost per patient-day for each level of care (Table 1) as well
as capital expenditure estimates for 8 and 15 L2 beds (originated for a previous
investment in another site) . We calculated annualized capital expenditures for
the entire range from two to 28 L2 beds by linear extrapolation and 10 year

linear depreciation, consistent with Canadian accounting practice (Table A.10).

3.6. Simulation scenarios and runs

We evaluated the following scenarios:

1. Capacity increase with a L2 unit: Adding a range from 2 to 20 L2 beds
into the existing baseline model.

2. Capacity re-allocation: Maintain a total of 25 beds while shifting capacity
from MSICU into the new L2 unit.

3. Capacity re-allocation: Increase the total to 30 beds while shifting capacity

from MSICU into the new L2 unit.

Each configuration of each scenario was simulated 200 times, using a one year
warm-up period followed by a one year data collection period. A different ran-
dom seed number was used for each run. Trial run times varied from 20 to 40

minutes using an Intel®) Core i5-2400 CPU 3.10GHz 8GB RAM server.

4. Results

4.1. Model Validation

Our simulation model captures the individual physician’s and nurse’s deci-
sions to transfer or discharge individual patients via a macro approach, using
LOS distributions for each ward and a probabilistic transition matrix for each
patient movement. To validate this approach, we compared patient arrival,

throughput, LOS and cost results from the baseline simulation with aggregate
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4.2 Scenario 1: Capacity increase with a New L2 unit 12

empirical data and cost data from publicly available documents such as LHSC’s
financial statements LHSC [28] and the Canadian Institute for Health Infor-
mation yearly reportsCIHI [10]. The model is accurate in reproducing entry
data, MSICU LOS and cost data (Table 2). Average throughput is within 1%
of empirical data, while total LOS is within 0.4%. MSICU LOS is slightly
high (2.9%) but with a lower standard deviation, resulting in no statistically
significant difference compared to the empirical data. We concluded that the
simulation model is sufficiently valid to address the research questions. Results

for all scenarios are summarized in Table 4.

4.2. Scenario 1: Capacity increase with a New L2 unit

We evaluated the addition of extra beds in a general-purpose “net new ca-
pacity” step-down ward. We simulated a range of 2 to 20 L2 beds in a dedicated
unit immediately downstream from the MSICU and did not alter the capacity
of the MSICU (25 beds). We first assessed the impact of the new capacity
on off-service utilization. In the base case (i.e. no new capacity), the existing
specialized Level 2 units (MOTP, CCU, NOBS) have a combined off-service
load of 573 patients/year. This value drops to 225 patients/year as we add L2
beds. In the base case, the Level 3 units (MSICU and CSRU) have a combined
off-service of 621 patients/year. As L2 beds are added, the off-service reduces
to approximately 110 patients/year, representing a reduction of 82%. This re-
duction may represent a significant improvement in terms of patient care, as
approximately 500 more Level 3 patients are now able to be transferred to their
intended wards.

Next we evaluated the impact of the new L2 beds on throughput. The ad-
dition of an L2 unit increases MSICU throughput up until 8-10 new beds where
it stabilizes at approximately 1,068 patients/year (Figure 2). The L2 unit’s

throughput grows until 12-14 beds are added, reaching 730-732 patients/year.
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4.2 Scenario 1: Capacity increase with a New L2 unit

patients/year

1,200
1,100
1,000
900
800
700
600
500
400
300
200

100

Throughput

—— MSICU throughput - scenario 1
N ........// \ s MSICU throughput - scenario 2
. oo e MSICU throughput - scenario 3
\ ..,..,.. N —— L2 throughput - scenario 1
N — - =12 throughput - scenario 2

\ ..,... \ — = L2 throughput - scenario 3

6 8 10 12 14 16 18 20 22 24 26 28
L2 Beds

Figure 2: MSICU and L2 throughput vs. number of New L2 beds added
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4.3 Scenario 2: Capacity re-allocation 15

This suggests that until the L2 unit capacity reaches 12 beds, MSICU is still
hosting “step-down ready” patients but after that point there is little clinical
need for extra beds.

Utilization and LOS have a similar pattern (Figure 3). The MSICU has a
high initial utilization rate (above 85%) that drops dramatically as L2 capacity
is increased, eventually stabilizing around 29% at 12 beds. As L2 beds are
added, there is a rapid decline in MSICU LOS until we reach 12 beds, where
it stabilizes at approximately 59 hours (Figure 4). Moreover, the percentage of
patients who stay more than 21 days in the MSICU reduces to approximately
zero after 8 beds. This suggests that additional L2 capacity allows the MSICU
to return to its clinical role of intensive care.

Finally, we find that a maximum of 29 total beds (MSICU and L2 beds
combined) are ever occupied, which exceeds MSICU’s current capacity of 25
beds. This supports further investigation of increased capacity in MSICU in

Scenario 3 (Section 4.4).

4.8. Scenario 2: Capacity re-allocation

This scenario involves creating a new L2 unit, but rather than creating new
capacity, beds in the existing MSICU would be closed and reallocated to the L2
unit. This scenario would apply in case the hospital does not have additional
space to create a new L2 unit or budget for net new beds. Off-service loads
are slightly higher than in Scenario 1. The minimum off-service load is reached
when there are 15 MSICU and 10 L2 beds, leading to total L3 off-service load
of 150 instances per year. This figure represents an improvement in terms of
patient care, as approximately 470 patients can now be transferred to their
intended wards. Off-service performance then deteriorates as more beds are
shifted from MSICU to the L2 unit. MSICU becomes a bottleneck and upstream

units are forced to send off-service patients to CSRU. This situation represents
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4.3 Scenario 2: Capacity re-allocation 18

a clear clinical misfit, as CSRU is a cardiac surgery unit, where both nurses and
physicians are heavily specialized in cardiac care. The treatment of patients
intended for MSICU in CSRU could result in deterioration of patient care and

disruption of the cardiac surgery patient flow.

MSICU throughput improvements start when there are 4 beds reaching an
optimal value of 1,050 patients/year when there are 15 MSICU and 10 L2 beds
(Figure 2). The L2 unit reaches a peak throughput of 720 patient/year when
there are 13 MSICU and 12 L2 beds. This is similar to the maximum throughput
achieved when we evaluated net new capacity in Scenario 1. After that point,
as MSICU beds are converted into L2 beds, the smaller number of MSICU beds
becomes a bottleneck to upstream units such as the ED and OR. Patient flow
reduces significantly and blockage becomes more frequent in those units due to
high utilization rates at MSICU. As the L2 unit is a dedicated downstream unit

of MSICU, its throughput is also reduced after 12 L2 beds.

MSICU LOS begins to improve after creating 4 L2 beds. The minimum LOS
of 60.66 h/patient occurs when there are 13 MSICU and 12 L2 beds, representing
a 63% improvement relative to the base case. As more capacity is shifted to L2
beds, the LOS rises back to the 70 h/patient mark. This reduction represents a
gain of at least 2,000 patient-days/year in the combined MSICU and L2 capacity.
This confirms our earlier finding in Scenario 1: a L2 unit provides opportunity

for MSICU to go back to its clinical role, with minimum overstay.

This result makes sense due to the drastic reduction in long-stay patients in
the MSICU (MSICU LOS above 21 days - Figure 5). Those patients often reach
a L2 NEMS, triggering their stepping-down into the New L2 unit. The result is
higher availability of MSICU beds (Figure 3 (b)) for patients originating from

upstream units, thus improving patient flow.
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4.4 Scenario 3: New capacity and capacity reallocation 20

4.4. Scenario 3: New capacity and capacity reallocation

In this scenario we evaluated reallocation of beds along with net new capacity
of 5 beds. Off-service loads are between the two previous scenarios, with lowest
values within a range of 20 to 16 MSICU beds. MSICU throughput is stable
at 1,050 patients/year anywhere from 20 to 16 beds reaching a peak of 1.063
patients/year (Figure 2), while L2 throughput is stable within the range of 10
to 18 beds, peaking at 720 patients/year. Therefore any mix from 20 MSICU
and 10 L2 beds to 12 MSICU and 18 L2 beds have comparable results with the
Scenario 2 while providing a stable combined throughput. MSICU utilization
rates are also significantly lower than in the in Scenario 2, as seen in Figure 3.
With MSICU reaching a minimum slightly below 40% (20 MSICU and 10 L2)
and reaching a balanced utilization of approximately 45-47% at 16 MSICU and
14 L2 beds.

Any mix from 20 MSICU and 10 L2 beds to 12 MSICU and 18 L2 beds
yield approximately 60h LOS, similar of the previous scenarios (Figure 4). As
in previous analysis, the ability to step down long stay patients with low NEMS

plays an important role in improving patient flow (Figure 5).

4.5. Costs

In all three scenarios a significant cost saving was possible relative to the
current cost of $3,500/patient-day in MSICU (Figure 6). Combined MSICU
and L2 costs decrease steadily in all scenarios until they reach a minimum of
$2,869.46 /patient-day at 12 L2 beds under scenario 3. From that point on, under
all scenarios, costs escalate, but never reach the current baseline cost. This result
can be explained by two factors. First, L2 operational costs represent only 57%
of MSICU’s. Initial increases in L2 capacity permit a timely step-down and
immediate savings occur. Second, after 12 L2 beds, the new L2 unit starts to

have idle capacity. This is due to lack of demand in Scenario 1 and to MSICU
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4.6 Increased arrivals 21

constrained flow in Scenarios 2 and 3. Idle L2 beds carry high fixed costs in the

form capital expenditure, thus forming the upward half of the curve.

4.6. Increased arrivals

By increasing throughput capacity, the hospital may receive more patients.
Thus, we simulated an increase in the inpatient flow from ED and OR to see
how well our optimal configurations stand a hypothetical surge in demand. For
Scenario 1, we focused on ED and OR, where inpatients spend relatively lit-
tle time waiting for their disposition from ED, or their scheduled surgeries in
OR!'. A 10% increase in ED and OR demand, representing an extra 1,200 pa-
tients/year, is enough to negate any gains achieved by the introduction of net
new L2 capacity (Table 3).

Next, we focused on MSICU performance in Scenario 3. The inpatient surge
is mostly absorbed by MSICU and L2, reaching maximums of 1,300 and 930 pa-
tients/year respectively (Figure 7 (a)). There is a gradual shift in the optimum
bed mix to 16 MSICU and 14 L2 beds. Utilization rates increase accordingly,
reaching approximately 60% in the optimum throughput bed mix (Figure 7
(b)). MSICU LOS changes little with the increase in ED and OR demand (Fig-
ure 8(a)). At 30% increase in demand, MSICU LOS rises to approximately 65
hours/patient. In terms of LOS, the optimal configuration shifts slightly to 16
MSICU beds and 14 L2 beds. Thus, the increase in inpatient volume does affect
the values of MSICU patient flow indicators but the optimal solution is robust
to increased volumes.

Higher utilization in MSICU triggers congestion upstream. Particularly in

the ED, at the 30% demand increase, there is an increase of 317% in the use of

1This is not the wait time to enter the ED, as we simulated only inpatient flow. This wait
is for patient disposition, i.e. the moment the patient is ready to receive a decision to admit
until the true admission and transfer to the intended location.
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4.7 Management Feedback 26

temporary ED beds (the ED decant ward, with a capacity of 6 beds).
Combined MSICU and L2 patient-day costs remain similar even with a 30%
inpatient arrival increase (Figure 9 (a)), but the minimum shifts slightly from
18 MSICU beds and 12 L2 beds to 16 MSICU beds and 14 L2 beds. Figure 9 (b)
shows that Scenario 3 had a robust range in terms of total cost, with an approx-
imate value of $14.5 million/year for a range of 18 to 12 MSICU beds and 12
to 18 L2 beds. In the 30% demand increase, however, total cost is continuously
decreasing, with the optimal mix costing an extra $4.7 million/year, or 33.4%
more than Scenario 3. This a direct result of MSICU’s diminishing capacity to
absorb the increased demand. However, even a 30% increase in ED and OR
volume in the optimal configuration is not enough to return total MSICU and
L2 cost to the level of the baseline scenario of $24 million, demonstrating the

impact the L2 unit has in UH’s cost structure (Figure 9 (b)).

4.7. Management Feedback

Preliminary results from this analysis were presented to a team of managers
of LHSC in January 2017. The team consisted of the Vice President of Access
and Flow, the Director of Clinical Redesign, the Director of Critical Care, and
the City-wide Chair and Chief of Medicine, among others. Our research con-
firmed their intuition about the need for an L2 unit, but revealed unanticipated
findings in terms of the L2 unit’s ability to improve flow, reduce MSICU LOS
(63% from current levels) and reduce cost by approximately 40%. Implementa-
tion of the new L2 unit is likely to occur in the near future.

The managers in attendance stated that our model was the first large scale
DES model to be used in UH. Our results led to questions about the need for
a clinical study about the MSICU long-stay population and their desired care
pathway, as well as about UH’s capacity to deal with increased demand. They

concluded that our DES model provides support for further L2 capacity studies
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in other LHSC sites as well, such as Victoria Hospital’s L2 clinical redesign.

5. Conclusions

We found that there are considerable performance gains to be made with the
addition of a step-down unit. In all scenarios, the optimal performance occurs
when there are approximately 12 L2 beds yielding MSICU LOS of approximately
60 hours/patient, a cost reduction of 18% per patient-day and 40% in total cost
per year (see Table 4).

It has been recognized for some time in health care simulation literature
that implementation does not necessarily follow the recommendations proposed
by researchers (Lane et al. [27], Bountourelis et al. [7], Brailsford et al. [§]).
Forsberg et al. [14] report that from 59 articles surveyed in the literature, only
14 mentioned implementation. Many reasons for this gap are possible, such as
lack of client involvement, lack of clear methodology and failure to communicate
results properly. To avoid such problems, we followed a general framework of
the methodology based on previous literature (Lane et al. [27], Bountourelis
et al. [7], Forsberg et al. [14]) and the best practices (Karnon et al. [21]). In
particular, stakeholders were involved right from the beginning of the study,
validating and providing input in every step of the research.

Our model has limitations. Our data represents only inpatient arrivals so
our model does not consider balking or reneging at any entry points. This means
that all ED and OR arrivals are admitted patients and must go through the sys-
tem. We use a simplified model of the ED and thus our model does not capture
ED congestion. However, we believe that this does not have significant impact
on our analysis since ED arrivals that eventually visit MSICU are unlikely to
be turned down by UH due to their health status. Also, the Death/Stay/Step-

down routine has a minor drawback: once the patient is prevented from leaving
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MSICU due to blockage downstream, the patient has to wait for the next morn-
ing to have a new chance to leave the MSICU. In spite of this drawback, the
model validation found accurate MSICU LOS.

There are several directions for further research. First, we will explore fur-
ther the pooling effects that one might have from merging inpatient wards
and/or other specialized L2 units. These units are all highly congested and
susceptible to blockage, bounce-backs and grid-locks. Also, we modeled all
routing and discharge decisions between wards and other hospital units proba-
bilistically. An interesting avenue for future research would be to incorporate
decision rules for these occurrences. Second, we can use the data set to create
predictive models for LOS based on NEMS. These can then be used to create
dynamic staffing models. Finally, we will develop an analytical model that in-
corporates MSICU’s unique position in which it is squeezed between ED/OR’s
efforts to minimize wait times and the wards efforts to avoid re-admissions. This

may involve a combination of queuing and game theory.

Glossary of Terms

ADT Admission/Discharge/Transfer temporary entry in pacient management

system
AIC  Akaike information criterion
BIC  Bayesian information criterion
CCU Coronary Care Unit
CSRU Cardiac-Surgical Intensive Care Unit
DES Discrete Event Simulation

ED Emergency Department
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ICU Intensive Care Unit

ISPOR-SMDM International Society for Pharmacoeconomics and Outcomes
Research - Society for Medical Decision Making modeling good research

practices task force

L2 Level 2 unit

Level 2 Intermediary level of care, usually used as a step-dwon from an Intensive

Care Unit

LHSC London Health Sciences Centre

LOS Length of Stay

MOTP Multi-Organ Transplant Unit

MSICU Medical Surgical Intensive Care Unit

NEMS Nine Equivalents of Nursing Manpower Use Score

NOBS Neurological Observation Unit

OR Operating Room

UH University Hospital

AppendixA. Model design details

AppendizA.1. Overview

The Appendix contains a detailed explanations of the DES model (screenshot

in Figure A.10) and its input parameters.



32

(zanou) 2w

(zanou) 2w

o0zsil oesst orist 03601 02:8 0zsiL orist 028
—
o)
2
0§ ak w
sz T sz
[ 2
[x] 03 oA isusuay | X 03 DAk 404 3N3NY 15300
(sanou) suiL
o0zsil oesst orLsL o0l nase
)
«
02k 4o
i
| O Ui D sauzue Y
fsanou) suiy
zsiL oesst orist o0l 02:8
i
s &
[
a1
X OIS ananG sAusRues
Em
R A A T B L
5L
0 %
¥
i
ix 215 anand ) Bugnany

(samou) L

02521 0EEGL 3% 0s60L

Overview

_m TN 2 13437 ARIM DA FuEgUan

AppendixA.1

A
e

o

a

1z

¥ %
2=

a5 60}

spealLY

i

T anang) :awi] Bunang

&

r
Dopatbisxam

@®

o
WYOIPIBEIAA NS N

\ 5

L
aLom cm

AN iz

afiepsp

o
10aj0pabienaR g NS A

pRERD

g

=4
nesaam

@ @

o o
Ao pIR3A 142 N

=

129
aBiEfoR 0 am

@®

[l

]
30910 K290 NASH G MWD

@ @ @

o
Z19 Qe nasn

o
ior (s avann

® @ M

o o
MIa0an NS o JOr AISI oM oS

vaeg

@®

o
ior NS0 oM

@®

o
nusT o0

@®

o
¥aEE N@Sa

.00 AN E [a]

3010 K230 NASN W),

o o
SHEN NS DV #33001d K230 NS D0

I n aubcm

£
30014 G2 NASH WL NN

Aepsan]
00o

SOl HEsAh

[ wooy Aupasdo m

o
sz e dam
@ painpaELas

o
panetra 3o o0

[

o
i3 wooy GErado g 1D

[l

1]
pastos woy Bigeladg oy o @y

) )

e |

1 mm mm fustin wroy G0 o

a
B 4108 PN 4TI I MMD

@®

o
panda a2

® [

@

o
pad@ 023N

e, ®

o
P )

0

z

i

@ pancg Lot
o
s [l

o
10vn g amD

]
o a0 03 a0

; ®
_|_ e | pacra w3 o

o o
o e 03 20 aom
10 104 1E930 03 I HND M

Jepelson

Sy
e Bigaan

L

o
et B0 Xam

Ieudson e, upada e, o

L

o
pada o

]
auaEn

9

Mmsrogngxam

el
WH0IIND 40

L

o

uz,gﬂ E=1)

ol
1090 dEm

L

o
panetra 53 xam

2]
aupedag ionaEiaug gam

Figure A.10: Screen capture from Simul8



33

Overview

AppendixA.1

oot [zo 61 o0is [cz 8¢ [8T o €T fog o8 0 80 ¥9 €0 T9 €L €0 O L9 60 |£0 os 10 vo [e303 pueig
o1 [0 07z v 0z [89 s€ 18 (10 €T 67 69 €0 0L ([0 TO LT S9T 60 98 nas
oot os L0 |ty 10 9T ([T 10 zo TO S0 L8 T0 90 10 vy nusd
00T T0 LST [8€ 80 10O TO [) Lo ST 10 €0 t0 [T gs  TO sqQ oJnaN - YL
oot [0 0T TEv LT TP |TO o €0 T0 TO 90 €91 voz 80 80 sz €1 a1e) 3R1pIE) - NI - YIS
00T [z0 LT 62 [6s 9T [zo SO 9T TO €0 T9 60 LT L0 €0 TET TO |[T0 Lot (sueqdsuea)) d1IOW - Y
oot [0 60 95T [z0 T'0 €0 L S0 8'6 0s v £ 9t LSt 70 €1 juecaq a3
oot [zo 9¢ so08 [0 TO |[ro o To |ro 0t T 90 v0 TO TO0 O9€ "0 (42 a1e) annel|led - Y16
00T [s0 7E €8 s0 |50 0 T€ ¥I S0 50 187 50 £ [e31PaIAI 23N0Y qnS - Y3g
00T 90T (87 90 60 90 90 v'18 60 9'T AuaZang Aunay ySiH - yig
00T (L0 60 908 [T TO 1o 80 [TO0 8T [0 LT vo 2o zo TT Lo 58 ukg ‘o ‘anse|d ‘s9 - Y38
oot |0 90z |vT  ¥T [TT L0 o o 889 o Lo L axong anoy Jadiy - yaz
oot [0 Tz 99, [0 o |gr To TO [0 7Tz o0 90 0 0 9T €0 |90 88 $33UBISOINAN [E1UN]) - Y3L
00T 80  s0f 99 §0 [ro oz Lo TO ST o €0 TE TE TO [ro g6t TO SAd/oIpIed - Y39
00T [T0 €££ 956 €0 €0 TO 10 zo a1e) 213y - Y9
00T [z0 9T s9 [90 TE S'E 60 SO v'o 7o TE TO v £0 (L4 0] oeipIe) - 13§
oot (0T 9v 6€6 |10 7o o0 SUPIP3A [213USD - iy
00T |90 5'96 90 90 €0 Las Asdayid3 - yaor
oot [zo Ts zve [18 T [T TeT 90 87 vT 70 L9 [TT ve 0 Z0 70 9T v0 BLORIA
[ 90 vo g0 TL S9 [0 Oy TO TO 8L TO &S 9bz TO €8 95 09T 6s TO0 t'9 Lav-n
oot zo SS |re 81T |9 €0 9T (373 SE ST gL ST ¥0o 0 SO €0 wooy Sunesadg
00T LT ST 8T €66 TE IO 0§ TO §§ TO0 OTT #Ss TO0 9% 9¢€ 0 TO 3InsuodINO
00T [TO s0 9§ [sz €0 [rT 9r T [ovT 06 TO TO 60T €T 60T 9L SO L9 TLI Lo x4 (3uawaiedaq Aouagiswa) g3
00T |£0 6z |[€0 €0 T9 LTI [g0 S8 €0 STT 80 ¥L EPI TST  EET 50 e TE
[} 4 [=] [=] o ~ a = m ~ ~ a = = = [=) m 3
§ £ § § |§ g 2 ¢ 2|8 & 222 & & 82 8 3 [§ ? B 5
3 =3 c v v ' v } ' i v . } . . } 2 -
S8 F o5 S 2 |28 = |8 3 oz g9 oFo of 2 Pof oA |F i g ’
3 |e o 3 8 e 2 o©ofg & == &€ &£ 5 5§ 3§ g8 3z &£ = 5 [
g |5 2 &8 & (5 - [~ § » & ¢ § §F & §F & F o %
= 2 S o Eg g2 2 B 2 2 ~ & P o z [

H 2 o & =1 H E p £ > 2 g £ 3 e

8 o T = S ] F S v 2 2 o £ = ] 2

@ @ w =3 o o = £ - [] 1 n ® F o

£ 2 ] H ] £ L & L s -3 0

- e i g £F g & ¢ g 3

) a oa - - =

2 3 i 2 £ 3 - 58 i s 3

E 2 [ 2 2 2

o ) = v o =

H 23 ki 2 =

2. - "

H < H

8 2 T

g 9 2

- =

lumns, values in %)

ions in co

inat

, dest

origins 1 rows

(

1X

Inpatient flow matr

Figure A.11



429

430

432

433

435

436

437

439

443

AppendixA.2 ER and OR arrivals 34

Table A.5: Average number of scheduled surgery arrivals per working day

Hour Patients / hour
5 a.m. 2.8
6 a.m. 6.1
7 a.m. 1.3
8 a.m. 1.6
9 a.m. 2.3
10 a.m. 1.9
11 a.m. 0.9

AppendizA.2. ER and OR arrivals

We modeled seasonality in Emergency Department (ED) and Operating

Room (OR) arrivals. The OR performs both scheduled and emergency /unscheduled

surgeries. These unscheduled surgeries come from patients either in ED or in
other wards that require a surgical procedure and are then transferred to the
OR. After surgery they are transferred back to other units in the hospital includ-
ing MSICU. Unscheduled surgeries happen at any time of the day and any day
of the week. Because unscheduled surgeries are comprised of patients already
inside the hospital, we modeled the unscheduled surgeries as part of the inpa-
tient flow matrix so they are not part of the external inpatient arrival pattern
of the OR.

Scheduled surgeries are originated from outside of the hospital and have a
separate arrival pattern. They typically are scheduled between 5am and 1lam
on weekdays. There was no significant difference between the months or days
of the week, but there was variation throughout the day (Table A.5).

ED arrivals had variation by day of the week and hour of the day. Our
simulation of the ED is simplified by not capturing ED waiting room congestion.
Instead, the process starts with the "ready for disposition" time, which is the
time when the first assessment has been done and the patient is to be admitted

into one of the units of the hospital (Figure A.12).
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Figure A.12: UH/LHSC ED flow
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In our data set there were 8,793 ED inpatients with average daily arrivals
ranging from 21 on Sundays to 26 patients on Tuesdays. To avoid the possibility
of simulating no patients in a given hour, we divided the day into 4 parts: Late
night /Early morning (from 12am to 6am), Morning (6am to 12pm), Afternoon
(12pm to 6pm) and Evening (6pm to 12am). ED inpatients are then simulated

via Poisson process being sampled from the Table A.6.

AppendizA.3. UH structure and service time parameters

Ward capacities and service time parameters can be found in Table A.8.

AppendizA.4. Detailed MSICU simulation

The simulation model of the MSICU starts with a patient arrival from other
units (Figure A.14). Upon arrival, the patient receives a "Level 3" NEMS that
will represent her current status as a MSICU patient (Table A.9). We then
use a fork-join model and divide the patient into "physical" and "procedural"
entities. The "physical" entity occupies a bed in the MSICU to ensure that
MSICU capacity is not exceeded and that the appropriate queues form when
capacity is reached. The "procedural" entity goes to the Death/Stay/Step-down
process to model changes in health status and disposition from MSICU.

The first part of the Death/Stay/Step-down process is a daily routine that
culminates in either death or survival. From our empirical data we built a
logarithmic regression to estimate the probability of death as a function of time
in MSICU (Figure A.13). We observed that no deaths occurred after 45 days, so
we truncated the function at that point. If the patient dies then the two entities
are joined and the patient exits the MSICU and exits the simulation. Thus,
MSICU LOS is a consequence of the patient’s health progression over time, as
opposed to an exogenously generated parameter. If the patient survives, then

the "procedural" entity enters a NEMS scoring routine to sample a new NEMS.
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Table A.7: Entry points inter-arrival time distributions

Unit Inter-arrival distribution type Parameter (s), in hours
Clinic Exponential 22.17
OneConsult Exponential 8.2694
ADT Exponential 4.454

Victoria Gamma a= 0.39314 ; 6= 24.142

(u= 9.491 ; 0= 15.137)

ED varies by day of the week and hour of the day (Table A.6)

OR varies by hour of the day (Table A.5)
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Table A.8: Ward capacities and service time parameters
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MSICU Death probability as a function of time
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Figure A.13: MSICU Death probability as a function of time
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Physical MSICU

WC MSICU Fork WC NSICU join
0 0 0 0

B—@ L ®—

A

Procedural MSICU WC Death process'_ WC Level of care
V0 . 0 0
WC Death Collect
L 0

@+

Figure A.14: MSICU Death probability as a function of time. (*WC stands for Work Centre)

The score either stays as at "Level 3", or changes to "Level 2" or "Level 1".
In case of a "Level 3" NEMS, the procedural entity returns to the death process
to repeat the survival and NEMS routine, with updated survival probability
based on LOS (Figure A.13). In case of a Level 2 score, in the baseline scenario,
the patient still stays at the MSICU since there are no L2 beds available. In the
other scenarios, a "Level 2" NEMS will trigger the procedural entity to be joined
with its physical entity, exit the MSICU and move to a step-down unit. In the
case of a Level 1 NEMS, in both scenarios, the entities join and the patient is

transferred to a ward.

In case the patient is headed to a unit that is full or blocked, the simula-
tion forces the procedural entity to return to the death process and await the
next morning for new death odds and NEMS scoring. This procedure guar-
antees that every patient goes through the death/stay/step-down process once
every day inside MSICU . The process continues until a patient is able to move

downstream.
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Table A.9: NEMS probability

NEMS Probability

Level 1 7%

Level 2 24%
Level 3 69%
Total 100%

Note that this captures the fact that a patient’s health fluctuates over time
and may improve or deteriorate. This model also allows for overstay patients
to have their health change due to congestion downstream and captures sud-
den deaths in the MSICU with a more detailed distribution than the one used

elsewhere in the hospital, reflecting the high risk of the patient.

AppendizA.5. Capital expenditures estimates

Hospital stay cost data was retrieved from the Canadian Institute for Health
Information (CIHI [10]). Operational cost and capital expenditures were ob-
tained via consultation with LHSC Decision Support Staff and publicly available
financial statements (LHSC [28]). Capital expenditures were linearly extrapo-
lated from estimates of 8 and 15 beds ($3 million and $5 million respectively)

and linearly depreciated over 10 years per Canadian accounting practice (Table

A.10).

AppendizA.6. Model validation
In the one year period of the data set, there were in total N = 17,380 inpatient

arrivals, while our simulation averages 17,350, well within the 95% confidence

intervals (Table A.11).

[1] Akaike, H., 1974. A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19 (6), 716-723.
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Table A.10: Level 2 unit capital expenditure estimates

Number of beds Yearly capital expenditure Expenditure/bed
2 $128,571 $64,285.71
4 $185,714 $46,428.57
6 $242 857 $40,476.19
8 $300,000 $37,500.00
10 $357,143 $35,714.29
12 $414,286 $34,523.81
14 $471,429 $33,673.47
15 $500,000 $33,333.33
16 $528,571 $33,035.71
18 $585,714 $32,539.68
20 $642,857 $32,142.86
22 $700,000 $31,818.18
24 $757,143 $31,547.62
26 $814,286 $31,318.68
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Table A.11: Inpatient arrival validation

Simulation Results

Simulation Object -95% average 95% Observed data Error
Emergency Department 8,760.48 8,794.50 8,828.52 8,793 0.02%
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