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Discrete event simulation model for planning Level 2

�step-down� bed needs using NEMSI,II

F. Rodriguesa,∗, G. S. Zarica, D. A. Stanfordb

aIvey Business School at Western University, London, Ontario, N6G 0N1, Canada
bStatistical & Actuarial Sciences at Western University, London, Ontario, N6A 3K7,

Canada

Abstract

In highly congested hospitals it may be common for patients to overstay at In-

tensive Care Units (ICU) due to blockages and imbalances in capacity. This is

inadequate clinically, as patients occupy a service they no longer need; opera-

tionally, as it disrupts �ow from upstream units; and �nancially as ICU beds are

more expensive than ward beds. Step-down beds, also known as Level 2 beds,

have become an increasingly popular and less expensive alternative to ICU beds

to deal with this issue. We developed a discrete event simulation model that

estimates Level 2 bed needs for a large university hospital. The model innovates

by simulating the entirety of the hospital's inpatient �ow and most importantly,

the ICU's daily stochastic �ows based on a nursing workload scoring metrics

called "Nine Equivalents of Nursing Manpower Use Score" (NEMS). Using data

from a large academic hospital, the model shows the bene�ts of Level 2 beds in

improving both patient �ow and costs.
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1. Introduction1

Contemporary hospitals in developed countries strive to provide the best2

possible patient care while keeping costs at reasonable levels (Doig [12], Batche-3

lor [6], Hoyt [20]). Hospital beds are too costly to remain idle, while insu�cient4

beds can be detrimental to in patient care (Harper [18]). Critical care in par-5

ticular is very expensive: in the USA and Canada, ward beds cost as much6

as $1,000/day while critical care beds surpass $3,500/day (Noseworthy et al.7

[36], Halpern and Pastores [17]).8

The University Hospital (UH) campus of the London Health Sciences Cen-9

tre (LHSC) is a 400 bed hospital responsible for approximately 6,200 surgeries,10

60,000 emergency visits, 300,000 ambulatory visits and 17,000 inpatient admis-11

sions per year (LHSC [29]). It routinely experiences bed utilization rates above12

85% which are high compared to the North American average of 67.6% for com-13

parable sized hospitals (NCHS [34]). When the wards at UH become congested14

there is pressure on the Medical-Surgical Intensive care unit (MSICU) to take15

one of two actions: hold some patients in ICU longer than they care (�overstay�),16

or transfer some patients to a ward other than their intended one ("o�-service").17

Overstay creates a ripple e�ect in upstream units such as the Operating Room18

(OR) and the Emergency Department (ED), resulting in a disruption in pa-19

tient �ow upstream, delayed surgeries and lengthy ED visits. O�-service is20

sub-optimal clinically because of sta� specialization, such as intensivist nurses21
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and physicians. O�-service is also sub-optimal operationally because special-22

ist doctors must visit di�erent wards to see their patients, creating delays and23

coordination issues. Thus, o�-service treatment should be avoided whenever24

possible (Shukla et al. [45]). LHSC estimates that up to 30% of patients at in25

the specialized Multi-Organ Transplant unit are o�-service patients.26

To improve patient �ow, provide adequate care and reduce costs, UH intends27

to implement an intermediary care unit between the MSICU and its downstream28

wards, called "step-down" or, "Level 2" unit (L2). These wards usually do not29

support ventilation, but they can still provide some organ support (see Table 1).30

They are less costly in technology and in the patient/nurse ratio, typically two31

patients per nurse rather than one-on-one found in ICU. Among UH's primary32

concerns is the determination of the ideal capacity a new L2 unit should have33

if such unit were to be employed.34

This research assesses the impact of step-down beds on a number of hospital35

metrics including throughput, length of stay (LOS), � o�-service� and cost. We36

develop a DES model to analyze a hospital's L2 bed needs that incorporates the37

changes in ICU patient health through time, where patient health is modeled38

by the NEMS. We address the following research questions:39

1. What is the impact of a L2 unit on throughput, o�-service, inpatient LOS40

and cost?41

2. What is the optimal allocation of MSICU and Level 2 beds for UH?42

2. Literature Review43

2.1. Research streams44

There ares two main streams of literature related to bed capacity manage-45

ment and planning: queuing models and discrete-event simulation (DES) models46
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(Bountourelis et al. [7]). Queuing models range from analytical queuing method-47

ology such as the use of theM/M/1 (Green [15]) and Erlang loss models (Green48

et al. [16], Rau et al. [38]) to the use of complex network models (Osorio and49

Bierlaire [37], Bretthauer et al. [9], Noghani Ardestani [35], Zonderland et al.50

[47]). Green [15] presents a survey of this stream of literature, and taxonomies51

have been devised by Mielczarek and Uzialko-Mydlikowska [31], Lakshmi C.52

[26], Bountourelis et al. [7].53

2.2. Discrete Event Simulation in Health Care Capacity Management54

DES is a popular alternative to queuing models because it is possible to55

study applications with large scale and scope and to relax many of the assump-56

tions necessary in queuing models. The DES literature most often focuses on57

a single unit of a hospital (e.g. ED, OR) and/or on a single type of patients58

(e.g. trauma, surgery, cardiac). Research is usually focused on designing a new59

patient �ow strategy (early transfers, faster service, better schedules) often in60

combination with structural improvements, such as pooling, or increased capac-61

ity. For example, Harper [18] tested pooling respiratory patients into a single62

unit similar to a L2 unit. Harper [18] found pooling to show signi�cant improve-63

ments in patient throughput and �ow balance. Rohleder et al. [40], Rau et al.64

[38] share those �ndings, but stress that pooling patients seems to be partic-65

ularly bene�cial in high variance service time settings such as ICU's. Shahani66

et al. [44] simulate a high dependency unit (HDU) and they found that pooling67

alone only managed to reduce transfers/o�-service but kept similar through-68

put and utilization levels. They could only achieve better results when pooling69

was combined with earlier stepping-down of long stay patients. Van Berkel70

and Blake [46] found that capacity increase alone is not enough to stabilize71

OR patient �ows, often requiring faster service times as well. Comparable re-72

sults are found by Duguay and Chetouane [13], Khare et al. [23], Konrad et al.73
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[25] in emergency department settings. Ridge et al. [39], Kolker [24], Marmor74

et al. [30] investigated congestion by smoothing surgery schedules, which en-75

abled performance gains in ICU utilization, LOS and o�-service. Seung-Chul76

et al. [43], Dobson et al. [11], Anderson et al. [4, 3], KC and Terwiesch [22]77

suggest that highly congested health care systems may trigger other responses -78

such as early discharges/transfers/o�-service - in order to accommodate higher79

demands, often with negative results.80

2.3. Contributions of this paper81

Our model attempts to correctly represent the complex �ow and interac-82

tions present in modern general hospitals without some of the simpli�cations83

found in the literature. Our DES model includes �bounce-backs� (patients be-84

ing transferred back from wards to units upstream), overstay and o�-service85

endogenously. In other words, those phenomena are consequences of congestion86

as opposed to exogenous parameters of the simulation. Thus, we are able to87

observe congestion and the impact of changes in capacity and bed mix on con-88

gestion. We �nd a clear trade-o� between added capacity and changes in bed89

mix that might otherwise be absent in previous models due to simplifying as-90

sumptions. A model that does not include all these characteristics may provide91

little help in capacity planning problems.92

In addition, we include in the ICU simulation the patient's daily health93

changes in the form of a death/NEMS scoring routine. This stochastic process94

provides a precise, realistic simulation of an ICU patient and endogenously95

creates reliable LOS for bed capacity purposes.96
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3. Materials and Methods97

3.1. Initial Steps98

The �rst step of the research was to meet with several managers at LHSC to99

understand the problem and agree upon stakeholder involvement as suggested100

by Brailsford et al. [8]. The research objective was de�ned during the �rst three101

exploratory meetings and validated after an initial research proposal draft was102

presented. The research proposal was reviewed and approved by ethics boards103

of LHSC and Western University. Management at LHSC were highly involved104

with the research, periodically revising goals and methods and validating each105

step to ensure meaningful and actionable results.106

3.2. Model Overview107

We built the DES model using the software package Simul8®. This software108

was chosen for three main reasons. First, it has become a popular choice in the109

healthcare DES literature (Almashra� and Vanderbloemen [2], Mohiuddin et al.110

[33], Salleh et al. [41]). Secondly, its ease of coding allows for �exible modeling,111

and it features a graphical interface that plays an important role in conveying112

results to multiple stakeholders. Thirdly, and because of the former two, our113

institution has experience in using this software for healthcare DES research.114

We built the model representing the current capacity allocation of UH as115

a baseline scenario (Figure 1; for a detailed model, see A.10). There are six116

entry points for inpatients: Emergency Department (ED), Operating Room117

(OR), Clinics, Victoria Hospital (the other major hospital in the LHSC sys-118

tem), OneConsult (inpatient transfers from other hospitals outside of the LHSC119

system), ADT (Admission/Discharge/Transfer). ADT is is a mock entry point120

the hospital uses to temporarily admit patients while they are not assigned a121

bed in a ward. Each entry point has its own inter-arrival time distributions122
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(see AppendixA). Inpatients �ow from the entry points to the remaining units.123

There are two independent Level 3 units (MSICU and Cardiac-Surgical Inten-124

sive Care Unit (CSRU), three existing Level 2 units (tailored to other speci�c125

patient groups) and twelve specialized wards (Table A.8). Patients exit the126

hospital via three routes: Discharge, �Signed Out�, or Death.127

Since the level of care is closely related to patient/nurse ratio, LHSC has128

historically used nursing workload as a proxy for patient readiness to step down129

to a lower level of care. As part of the MSICU's routine, every patient is scored130

daily in a 56 point scale known as "Nine equivalents of nursing manpower use131

score" or "NEMS" (Miranda et al. [32]). The NEMS gives a measurement of the132

workload a nurse has for each patient over time and is closely related to patient133

health because as the patient's health improves, less nursing attention is needed,134

resulting in a lower NEMS. Empirically, LHSC considers a score below 10 to be135

a "Ward type" patient; scores between 11-25 would be "L2 type" patient, and136

from 26-56 an "ICU type" patient (see Table 1).137

3.3. Patient Flow Data138

The model was �t using the most recent one year of data in which UH's139

bed allocation was stable (i.e., same number of beds in all units over the entire140

year), from December 1st 2013 to November 30th 2014. Data was gathered from141

the hospital's patient management system, including:142

1. Inpatient arrivals: patient registry number, age, sex, diagnosis, entry143

point, exit point, service at arrival, service at discharge, discharge category144

(discharge, death, transfer), dates and time of arrival and of discharge.145

2. Inpatient Transfers: all of the above plus the date and time of entry and146

of exit of patients into each unit of UH, origin and destination unit.147

3. Hospital bed capacity: number of available beds in each unit during the148

research period149
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4. Nursing workloads: patient registry number, age, sex, diagnosis, discharge150

category (discharge, death, transfer), time and daily NEMS measurements151

at MSICU152

5. Costs: Estimated daily bed costs at each unit153

We estimated length-of-stay (LOS) distributions for each unit, patient outcome154

distributions and patient transfer matrix to represent transitions between hospi-155

tal units. Note that LOS is ward-speci�c but does not depend on patient type.156

For all cases, several distributions were considered (Banks [5]) and chosen on157

basis of Akaike information criterion(AIC, Akaike [1]) and Bayesian informa-158

tion criterion (BIC, Schwarz [42], Hastie et al. [19]), as is common in this line159

of research (e.g. Shukla et al. [45], Rau et al. [38]).160

3.4. Transition Probabilities161

There were 17,380 patients representing 42,012 internal movements (an av-162

erage of 2.41 records/patient) represented in the patient �ow matrix (Figure163

A.11). Each transfer has an unique destination. However, if the intended unit164

is full, then the practice is to transfer the patient to an alternate unit, caus-165

ing o�-service care. In this way, individual o�-service decisions are determined166

probabilistically. Deaths from the MSICU were modeled separately using a167

logarithmic function (Figure A.13).168

During the patient's stay at MSICU, patients receive a NEMS upon arrival169

to MSICU, and a revised score every morning during their stay in MSICU.170

Once the patient reaches a NEMS consistent with a L2 type, she attempts to171

exit the MSICU and reach the new L2 unit. In the baseline scenario, patients172

exit MSICU if they reach a ward type NEMS.173
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3.5. Cost Data174

LHSC supplied cost per patient-day for each level of care (Table 1) as well175

as capital expenditure estimates for 8 and 15 L2 beds (originated for a previous176

investment in another site) . We calculated annualized capital expenditures for177

the entire range from two to 28 L2 beds by linear extrapolation and 10 year178

linear depreciation, consistent with Canadian accounting practice (Table A.10).179

3.6. Simulation scenarios and runs180

We evaluated the following scenarios:181

1. Capacity increase with a L2 unit: Adding a range from 2 to 20 L2 beds182

into the existing baseline model.183

2. Capacity re-allocation: Maintain a total of 25 beds while shifting capacity184

from MSICU into the new L2 unit.185

3. Capacity re-allocation: Increase the total to 30 beds while shifting capacity186

from MSICU into the new L2 unit.187

Each con�guration of each scenario was simulated 200 times, using a one year188

warm-up period followed by a one year data collection period. A di�erent ran-189

dom seed number was used for each run. Trial run times varied from 20 to 40190

minutes using an Intel® Core i5-2400 CPU 3.10GHz 8GB RAM server.191

4. Results192

4.1. Model Validation193

Our simulation model captures the individual physician's and nurse's deci-194

sions to transfer or discharge individual patients via a macro approach, using195

LOS distributions for each ward and a probabilistic transition matrix for each196

patient movement. To validate this approach, we compared patient arrival,197

throughput, LOS and cost results from the baseline simulation with aggregate198
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empirical data and cost data from publicly available documents such as LHSC's199

�nancial statements LHSC [28] and the Canadian Institute for Health Infor-200

mation yearly reportsCIHI [10]. The model is accurate in reproducing entry201

data, MSICU LOS and cost data (Table 2). Average throughput is within 1%202

of empirical data, while total LOS is within 0.4%. MSICU LOS is slightly203

high (2.9%) but with a lower standard deviation, resulting in no statistically204

signi�cant di�erence compared to the empirical data. We concluded that the205

simulation model is su�ciently valid to address the research questions. Results206

for all scenarios are summarized in Table 4.207

4.2. Scenario 1: Capacity increase with a New L2 unit208

We evaluated the addition of extra beds in a general-purpose �net new ca-209

pacity� step-down ward. We simulated a range of 2 to 20 L2 beds in a dedicated210

unit immediately downstream from the MSICU and did not alter the capacity211

of the MSICU (25 beds). We �rst assessed the impact of the new capacity212

on o�-service utilization. In the base case (i.e. no new capacity), the existing213

specialized Level 2 units (MOTP, CCU, NOBS) have a combined o�-service214

load of 573 patients/year. This value drops to 225 patients/year as we add L2215

beds. In the base case, the Level 3 units (MSICU and CSRU) have a combined216

o�-service of 621 patients/year. As L2 beds are added, the o�-service reduces217

to approximately 110 patients/year, representing a reduction of 82%. This re-218

duction may represent a signi�cant improvement in terms of patient care, as219

approximately 500 more Level 3 patients are now able to be transferred to their220

intended wards.221

Next we evaluated the impact of the new L2 beds on throughput. The ad-222

dition of an L2 unit increases MSICU throughput up until 8-10 new beds where223

it stabilizes at approximately 1,068 patients/year (Figure 2). The L2 unit's224

throughput grows until 12-14 beds are added, reaching 730-732 patients/year.225
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4.3 Scenario 2: Capacity re-allocation 15

This suggests that until the L2 unit capacity reaches 12 beds, MSICU is still226

hosting �step-down ready� patients but after that point there is little clinical227

need for extra beds.228

Utilization and LOS have a similar pattern (Figure 3). The MSICU has a229

high initial utilization rate (above 85%) that drops dramatically as L2 capacity230

is increased, eventually stabilizing around 29% at 12 beds. As L2 beds are231

added, there is a rapid decline in MSICU LOS until we reach 12 beds, where232

it stabilizes at approximately 59 hours (Figure 4). Moreover, the percentage of233

patients who stay more than 21 days in the MSICU reduces to approximately234

zero after 8 beds. This suggests that additional L2 capacity allows the MSICU235

to return to its clinical role of intensive care.236

Finally, we �nd that a maximum of 29 total beds (MSICU and L2 beds237

combined) are ever occupied, which exceeds MSICU's current capacity of 25238

beds. This supports further investigation of increased capacity in MSICU in239

Scenario 3 (Section 4.4).240

4.3. Scenario 2: Capacity re-allocation241

This scenario involves creating a new L2 unit, but rather than creating new242

capacity, beds in the existing MSICU would be closed and reallocated to the L2243

unit. This scenario would apply in case the hospital does not have additional244

space to create a new L2 unit or budget for net new beds. O�-service loads245

are slightly higher than in Scenario 1. The minimum o�-service load is reached246

when there are 15 MSICU and 10 L2 beds, leading to total L3 o�-service load247

of 150 instances per year. This �gure represents an improvement in terms of248

patient care, as approximately 470 patients can now be transferred to their249

intended wards. O�-service performance then deteriorates as more beds are250

shifted from MSICU to the L2 unit. MSICU becomes a bottleneck and upstream251

units are forced to send o�-service patients to CSRU. This situation represents252
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4.3 Scenario 2: Capacity re-allocation 18

a clear clinical mis�t, as CSRU is a cardiac surgery unit, where both nurses and253

physicians are heavily specialized in cardiac care. The treatment of patients254

intended for MSICU in CSRU could result in deterioration of patient care and255

disruption of the cardiac surgery patient �ow.256

MSICU throughput improvements start when there are 4 beds reaching an257

optimal value of 1,050 patients/year when there are 15 MSICU and 10 L2 beds258

(Figure 2). The L2 unit reaches a peak throughput of 720 patient/year when259

there are 13 MSICU and 12 L2 beds. This is similar to the maximum throughput260

achieved when we evaluated net new capacity in Scenario 1. After that point,261

as MSICU beds are converted into L2 beds, the smaller number of MSICU beds262

becomes a bottleneck to upstream units such as the ED and OR. Patient �ow263

reduces signi�cantly and blockage becomes more frequent in those units due to264

high utilization rates at MSICU. As the L2 unit is a dedicated downstream unit265

of MSICU, its throughput is also reduced after 12 L2 beds.266

MSICU LOS begins to improve after creating 4 L2 beds. The minimum LOS267

of 60.66 h/patient occurs when there are 13 MSICU and 12 L2 beds, representing268

a 63% improvement relative to the base case. As more capacity is shifted to L2269

beds, the LOS rises back to the 70 h/patient mark. This reduction represents a270

gain of at least 2,000 patient-days/year in the combined MSICU and L2 capacity.271

This con�rms our earlier �nding in Scenario 1: a L2 unit provides opportunity272

for MSICU to go back to its clinical role, with minimum overstay.273

This result makes sense due to the drastic reduction in long-stay patients in274

the MSICU (MSICU LOS above 21 days - Figure 5). Those patients often reach275

a L2 NEMS, triggering their stepping-down into the New L2 unit. The result is276

higher availability of MSICU beds (Figure 3 (b)) for patients originating from277

upstream units, thus improving patient �ow.278
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4.4 Scenario 3: New capacity and capacity reallocation 20

4.4. Scenario 3: New capacity and capacity reallocation279

In this scenario we evaluated reallocation of beds along with net new capacity280

of 5 beds. O�-service loads are between the two previous scenarios, with lowest281

values within a range of 20 to 16 MSICU beds. MSICU throughput is stable282

at 1,050 patients/year anywhere from 20 to 16 beds reaching a peak of 1.063283

patients/year (Figure 2), while L2 throughput is stable within the range of 10284

to 18 beds, peaking at 720 patients/year. Therefore any mix from 20 MSICU285

and 10 L2 beds to 12 MSICU and 18 L2 beds have comparable results with the286

Scenario 2 while providing a stable combined throughput. MSICU utilization287

rates are also signi�cantly lower than in the in Scenario 2, as seen in Figure 3.288

With MSICU reaching a minimum slightly below 40% (20 MSICU and 10 L2)289

and reaching a balanced utilization of approximately 45-47% at 16 MSICU and290

14 L2 beds.291

Any mix from 20 MSICU and 10 L2 beds to 12 MSICU and 18 L2 beds292

yield approximately 60h LOS, similar of the previous scenarios (Figure 4). As293

in previous analysis, the ability to step down long stay patients with low NEMS294

plays an important role in improving patient �ow (Figure 5).295

4.5. Costs296

In all three scenarios a signi�cant cost saving was possible relative to the297

current cost of $3,500/patient-day in MSICU (Figure 6). Combined MSICU298

and L2 costs decrease steadily in all scenarios until they reach a minimum of299

$2,869.46/patient-day at 12 L2 beds under scenario 3. From that point on, under300

all scenarios, costs escalate, but never reach the current baseline cost. This result301

can be explained by two factors. First, L2 operational costs represent only 57%302

of MSICU's. Initial increases in L2 capacity permit a timely step-down and303

immediate savings occur. Second, after 12 L2 beds, the new L2 unit starts to304

have idle capacity. This is due to lack of demand in Scenario 1 and to MSICU305
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constrained �ow in Scenarios 2 and 3. Idle L2 beds carry high �xed costs in the306

form capital expenditure, thus forming the upward half of the curve.307

4.6. Increased arrivals308

By increasing throughput capacity, the hospital may receive more patients.309

Thus, we simulated an increase in the inpatient �ow from ED and OR to see310

how well our optimal con�gurations stand a hypothetical surge in demand. For311

Scenario 1, we focused on ED and OR, where inpatients spend relatively lit-312

tle time waiting for their disposition from ED, or their scheduled surgeries in313

OR1. A 10% increase in ED and OR demand, representing an extra 1,200 pa-314

tients/year, is enough to negate any gains achieved by the introduction of net315

new L2 capacity (Table 3).316

Next, we focused on MSICU performance in Scenario 3. The inpatient surge317

is mostly absorbed by MSICU and L2, reaching maximums of 1,300 and 930 pa-318

tients/year respectively (Figure 7 (a)). There is a gradual shift in the optimum319

bed mix to 16 MSICU and 14 L2 beds. Utilization rates increase accordingly,320

reaching approximately 60% in the optimum throughput bed mix (Figure 7321

(b)). MSICU LOS changes little with the increase in ED and OR demand (Fig-322

ure 8(a)). At 30% increase in demand, MSICU LOS rises to approximately 65323

hours/patient. In terms of LOS, the optimal con�guration shifts slightly to 16324

MSICU beds and 14 L2 beds. Thus, the increase in inpatient volume does a�ect325

the values of MSICU patient �ow indicators but the optimal solution is robust326

to increased volumes.327

Higher utilization in MSICU triggers congestion upstream. Particularly in328

the ED, at the 30% demand increase, there is an increase of 317% in the use of329

1This is not the wait time to enter the ED, as we simulated only inpatient �ow. This wait
is for patient disposition, i.e. the moment the patient is ready to receive a decision to admit
until the true admission and transfer to the intended location.



4.6 Increased arrivals 22

F
ig
u
re

6
:
C
o
m
b
in
ed

M
S
IC
U
+
L
2
co
st

p
er

p
a
tien

t
d
ay



4.6 Increased arrivals 23

T
a
b
le
3
:
S
en
si
ti
v
it
y
in

In
p
a
ti
e
n
t
�
ow

W
a
it
fo
r
D
is
p
o
si
ti
o
n

E
D
D
ec
a
n
t

Q
u
eu
e
fo
r
W
C
O
R

T
o
ta
l
L
O
S

S
ce
n
a
ri
o

w
a
it
(h
)

st
d
(h
)

≤
5
m
in

L
O
S
(h
)

st
d
(L
o
S
)

≤
1
h
o
u
r

w
a
it
(h
)

st
d
(h
)

≤
1
h
o
u
r

L
O
S

st
d
(h
)

B
a
se
li
n
e

0
.1
2

4
.9
9

9
9
%

1
.2
7

7.
9
5

9
0
%

0
.4
3

1.
2
6

8
7
%

1
6
4
.9
3

2
1
2
.8
3

2
5
M
S
IC
U
a
n
d
1
2
L
2

0
.2
2

2.
5
7

9
8
%

2
.0
7

6.
3
3

8
4
%

0
.3
5

1.
0
3

9
3
%

1
6
2
.6
9

1
9
6
.7
7

5
%

in
cr
ea
se

0
.3

2
.5
7

9
7
%

2
.0
8

6.
3
5

8
2
%

0
.3
5

1.
0
3

8
8
%

1
6
3
.6
9

1
9
4
.6
7

1
0
%

in
cr
ea
se

1
.1
3

6
.3
4

9
4
%

3
.0
1

7.
5
6

7
5
%

0
.7
5

1.
6
9

7
9
%

1
6
4
.8
3

1
9
4
.2

2
0
%

in
cr
ea
se

2
.0
9

7
.8
8

8
7
%

3
.2
2

7.
3
6

6
9
%

1
.0
1

1.
9
8

7
4
%

1
6
5
.2

1
9
4
.3

3
0
%

in
cr
ea
se

2
6
.6
7

5
0
.1

5
5
%

5
.2
6

8.
9
6

5
2
%

1
.2
8

2.
2
4

6
9
%

1
7
3
.2
5

1
8
9
.6
5



4.6 Increased arrivals 24

F
ig
u
re

7
:
S
en
sitiv

ity
a
n
a
ly
sis

-
th
ro
u
g
h
p
u
t
a
n
d
u
tiliza

tio
n



4.6 Increased arrivals 25

F
ig
u
re

8
:
S
en
si
ti
v
it
y
A
n
a
ly
si
s
-
L
O
S
a
n
d
L
o
n
g
st
ay
s



4.7 Management Feedback 26

temporary ED beds (the ED decant ward, with a capacity of 6 beds).330

Combined MSICU and L2 patient-day costs remain similar even with a 30%331

inpatient arrival increase (Figure 9 (a)), but the minimum shifts slightly from332

18 MSICU beds and 12 L2 beds to 16 MSICU beds and 14 L2 beds. Figure 9 (b)333

shows that Scenario 3 had a robust range in terms of total cost, with an approx-334

imate value of $14.5 million/year for a range of 18 to 12 MSICU beds and 12335

to 18 L2 beds. In the 30% demand increase, however, total cost is continuously336

decreasing, with the optimal mix costing an extra $4.7 million/year, or 33.4%337

more than Scenario 3. This a direct result of MSICU's diminishing capacity to338

absorb the increased demand. However, even a 30% increase in ED and OR339

volume in the optimal con�guration is not enough to return total MSICU and340

L2 cost to the level of the baseline scenario of $24 million, demonstrating the341

impact the L2 unit has in UH's cost structure (Figure 9 (b)).342

4.7. Management Feedback343

Preliminary results from this analysis were presented to a team of managers344

of LHSC in January 2017. The team consisted of the Vice President of Access345

and Flow, the Director of Clinical Redesign, the Director of Critical Care, and346

the City-wide Chair and Chief of Medicine, among others. Our research con-347

�rmed their intuition about the need for an L2 unit, but revealed unanticipated348

�ndings in terms of the L2 unit's ability to improve �ow, reduce MSICU LOS349

(63% from current levels) and reduce cost by approximately 40%. Implementa-350

tion of the new L2 unit is likely to occur in the near future.351

The managers in attendance stated that our model was the �rst large scale352

DES model to be used in UH. Our results led to questions about the need for353

a clinical study about the MSICU long-stay population and their desired care354

pathway, as well as about UH's capacity to deal with increased demand. They355

concluded that our DES model provides support for further L2 capacity studies356
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in other LHSC sites as well, such as Victoria Hospital's L2 clinical redesign.357

5. Conclusions358

We found that there are considerable performance gains to be made with the359

addition of a step-down unit. In all scenarios, the optimal performance occurs360

when there are approximately 12 L2 beds yielding MSICU LOS of approximately361

60 hours/patient, a cost reduction of 18% per patient-day and 40% in total cost362

per year (see Table 4).363

It has been recognized for some time in health care simulation literature364

that implementation does not necessarily follow the recommendations proposed365

by researchers (Lane et al. [27], Bountourelis et al. [7], Brailsford et al. [8]).366

Forsberg et al. [14] report that from 59 articles surveyed in the literature, only367

14 mentioned implementation. Many reasons for this gap are possible, such as368

lack of client involvement, lack of clear methodology and failure to communicate369

results properly. To avoid such problems, we followed a general framework of370

the methodology based on previous literature (Lane et al. [27], Bountourelis371

et al. [7], Forsberg et al. [14]) and the best practices (Karnon et al. [21]). In372

particular, stakeholders were involved right from the beginning of the study,373

validating and providing input in every step of the research.374

Our model has limitations. Our data represents only inpatient arrivals so375

our model does not consider balking or reneging at any entry points. This means376

that all ED and OR arrivals are admitted patients and must go through the sys-377

tem. We use a simpli�ed model of the ED and thus our model does not capture378

ED congestion. However, we believe that this does not have signi�cant impact379

on our analysis since ED arrivals that eventually visit MSICU are unlikely to380

be turned down by UH due to their health status. Also, the Death/Stay/Step-381

down routine has a minor drawback: once the patient is prevented from leaving382
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MSICU due to blockage downstream, the patient has to wait for the next morn-383

ing to have a new chance to leave the MSICU. In spite of this drawback, the384

model validation found accurate MSICU LOS.385

There are several directions for further research. First, we will explore fur-386

ther the pooling e�ects that one might have from merging inpatient wards387

and/or other specialized L2 units. These units are all highly congested and388

susceptible to blockage, bounce-backs and grid-locks. Also, we modeled all389

routing and discharge decisions between wards and other hospital units proba-390

bilistically. An interesting avenue for future research would be to incorporate391

decision rules for these occurrences. Second, we can use the data set to create392

predictive models for LOS based on NEMS. These can then be used to create393

dynamic sta�ng models. Finally, we will develop an analytical model that in-394

corporates MSICU's unique position in which it is squeezed between ED/OR's395

e�orts to minimize wait times and the wards e�orts to avoid re-admissions. This396

may involve a combination of queuing and game theory.397

Glossary of Terms398

ADT Admission/Discharge/Transfer temporary entry in pacient management399

system400

AIC Akaike information criterion401

BIC Bayesian information criterion402

CCU Coronary Care Unit403

CSRU Cardiac-Surgical Intensive Care Unit404

DES Discrete Event Simulation405

ED Emergency Department406
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ICU Intensive Care Unit407

ISPOR-SMDM International Society for Pharmacoeconomics and Outcomes408

Research - Society for Medical Decision Making modeling good research409

practices task force410

L2 Level 2 unit411

Level 2 Intermediary level of care, usually used as a step-dwon from an Intensive412

Care Unit413

LHSC London Health Sciences Centre414

LOS Length of Stay415

MOTP Multi-Organ Transplant Unit416

MSICU Medical Surgical Intensive Care Unit417

NEMS Nine Equivalents of Nursing Manpower Use Score418

NOBS Neurological Observation Unit419

OR Operating Room420

UH University Hospital421

AppendixA. Model design details422

AppendixA.1. Overview423

The Appendix contains a detailed explanations of the DES model (screenshot424

in Figure A.10) and its input parameters.425
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Figure A.10: Screen capture from Simul8
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Figure A.11: Inpatient �ow matrix (origins in rows, destinations in columns, values in %)
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Table A.5: Average number of scheduled surgery arrivals per working day

Hour Patients / hour
5 a.m. 2.8
6 a.m. 6.1
7 a.m. 1.3
8 a.m. 1.6
9 a.m. 2.3
10 a.m. 1.9
11 a.m. 0.9

AppendixA.2. ER and OR arrivals426

We modeled seasonality in Emergency Department (ED) and Operating427

Room (OR) arrivals. The OR performs both scheduled and emergency/unscheduled428

surgeries. These unscheduled surgeries come from patients either in ED or in429

other wards that require a surgical procedure and are then transferred to the430

OR. After surgery they are transferred back to other units in the hospital includ-431

ing MSICU. Unscheduled surgeries happen at any time of the day and any day432

of the week. Because unscheduled surgeries are comprised of patients already433

inside the hospital, we modeled the unscheduled surgeries as part of the inpa-434

tient �ow matrix so they are not part of the external inpatient arrival pattern435

of the OR.436

Scheduled surgeries are originated from outside of the hospital and have a437

separate arrival pattern. They typically are scheduled between 5am and 11am438

on weekdays. There was no signi�cant di�erence between the months or days439

of the week, but there was variation throughout the day (Table A.5).440

ED arrivals had variation by day of the week and hour of the day. Our441

simulation of the ED is simpli�ed by not capturing ED waiting room congestion.442

Instead, the process starts with the "ready for disposition" time, which is the443

time when the �rst assessment has been done and the patient is to be admitted444

into one of the units of the hospital (Figure A.12).445
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Figure A.12: UH/LHSC ED �ow
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In our data set there were 8,793 ED inpatients with average daily arrivals446

ranging from 21 on Sundays to 26 patients on Tuesdays. To avoid the possibility447

of simulating no patients in a given hour, we divided the day into 4 parts: Late448

night/Early morning (from 12am to 6am), Morning (6am to 12pm), Afternoon449

(12pm to 6pm) and Evening (6pm to 12am). ED inpatients are then simulated450

via Poisson process being sampled from the Table A.6.451

AppendixA.3. UH structure and service time parameters452

Ward capacities and service time parameters can be found in Table A.8.453

AppendixA.4. Detailed MSICU simulation454

The simulation model of the MSICU starts with a patient arrival from other455

units (Figure A.14). Upon arrival, the patient receives a "Level 3" NEMS that456

will represent her current status as a MSICU patient (Table A.9). We then457

use a fork-join model and divide the patient into "physical" and "procedural"458

entities. The "physical" entity occupies a bed in the MSICU to ensure that459

MSICU capacity is not exceeded and that the appropriate queues form when460

capacity is reached. The "procedural" entity goes to the Death/Stay/Step-down461

process to model changes in health status and disposition from MSICU.462

The �rst part of the Death/Stay/Step-down process is a daily routine that463

culminates in either death or survival. From our empirical data we built a464

logarithmic regression to estimate the probability of death as a function of time465

in MSICU (Figure A.13). We observed that no deaths occurred after 45 days, so466

we truncated the function at that point. If the patient dies then the two entities467

are joined and the patient exits the MSICU and exits the simulation. Thus,468

MSICU LOS is a consequence of the patient's health progression over time, as469

opposed to an exogenously generated parameter. If the patient survives, then470

the "procedural" entity enters a NEMS scoring routine to sample a new NEMS.471
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Table A.8: Ward capacities and service time parameters
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Figure A.13: MSICU Death probability as a function of time
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Figure A.14: MSICU Death probability as a function of time. (*WC stands for Work Centre)

The score either stays as at "Level 3", or changes to "Level 2" or "Level 1".472

In case of a "Level 3" NEMS, the procedural entity returns to the death process473

to repeat the survival and NEMS routine, with updated survival probability474

based on LOS (Figure A.13). In case of a Level 2 score, in the baseline scenario,475

the patient still stays at the MSICU since there are no L2 beds available. In the476

other scenarios, a "Level 2" NEMS will trigger the procedural entity to be joined477

with its physical entity, exit the MSICU and move to a step-down unit. In the478

case of a Level 1 NEMS, in both scenarios, the entities join and the patient is479

transferred to a ward.480

In case the patient is headed to a unit that is full or blocked, the simula-481

tion forces the procedural entity to return to the death process and await the482

next morning for new death odds and NEMS scoring. This procedure guar-483

antees that every patient goes through the death/stay/step-down process once484

every day inside MSICU . The process continues until a patient is able to move485

downstream.486
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Table A.9: NEMS probability

NEMS Probability
Level 1 7%
Level 2 24%
Level 3 69%
Total 100%

Note that this captures the fact that a patient's health �uctuates over time487

and may improve or deteriorate. This model also allows for overstay patients488

to have their health change due to congestion downstream and captures sud-489

den deaths in the MSICU with a more detailed distribution than the one used490

elsewhere in the hospital, re�ecting the high risk of the patient.491

AppendixA.5. Capital expenditures estimates492

Hospital stay cost data was retrieved from the Canadian Institute for Health493

Information (CIHI [10]). Operational cost and capital expenditures were ob-494

tained via consultation with LHSC Decision Support Sta� and publicly available495

�nancial statements (LHSC [28]). Capital expenditures were linearly extrapo-496

lated from estimates of 8 and 15 beds ($3 million and $5 million respectively)497

and linearly depreciated over 10 years per Canadian accounting practice (Table498

A.10).499

AppendixA.6. Model validation500

In the one year period of the data set, there were in total N = 17,380 inpatient501

arrivals, while our simulation averages 17,350, well within the 95% con�dence502

intervals (Table A.11).503
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