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19 Abstract 
 

20 1 Bean leaf beetle Cerotoma trifurcata (Förster) (Coleoptera: Chrysomelidae) is a pest of 
 

21 soybean in USA and is becoming a concern in Canada. The projected increase in winter 
 

22 temperatures under climate change could affect overwinter survival, timing of spring 
 

23 emergence, and ultimately, the severity of this pest. 
 

24 2 We assessed the potential effects of warmer winters in field experiments performed in 
 

25 three consecutive years. Three warming levels were applied: heated ~4°C above ambient, 
 

26 unheated with snow cover left intact, and unheated with snow cover removed. Survival and 
 

27 date of emergence were assessed in all years, and beetle lipid content was analyzed in one 
 

28 year to determine rates of energy use. 
 

29 3 Overwinter survival was 6.5–14.5% among years. Winter warming inconsistently affected 
 

30 overwinter survival, increasing survival in one winter, decreasing survival in the warmest 
 

31 winter, and having no effect in one winter. Beetles that received supplemental winter 
 

32 warming emerged ~2 weeks earlier in spring, and lipid content did not differ among 
 

33 treatment groups. 
 

34 4 Earlier spring emergence may allow for the production of an additional generation per 
 

35 year of C. trifurcata under future climate change. However, further experiments are 
 

36 required to establish the relation between overwinter survival and subsequent beetle 
 

37 population growth to determine potential pest status and best management practices 
 

38 under future climate conditions. 

 
39 

 

40 Keywords: bean leaf beetle, climate change, overwintering energetics, phenology, soybean 
 

41 pest, temperature increase 
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42 Introduction 
 

43 Ectothermic animals such as insects are vulnerable to winter temperatures, and their 
 

44 overwinter survival, body condition, and timing of emergence could be affected by climate 
 

45 change-induced increases in the occurrence and frequency of winter warming events (IPCC 
 

46 (Intergovernmental Panel on Climate Change), 2013; Williams et al., 2015). The winter 
 

47 conditions insects experience result from interactions between temperature, snow cover, 
 

48 and thermal variability (Williams et al., 2015). Although low temperatures are the most 
 

49 obvious (and most studied) source of mortality (Bale & Hayward, 2010), overwintering 
 

50 insects also contend with energy drain, water loss, and pathogen pressure, among other 
 

51 stressors (Danks, 2000; Sinclair et al., 2013; Sinclair, 2015), and herbivorous insects are 
 

52 under phenological pressure to emerge in synchrony with their host plants with sufficient 
 

53 post-winter energy reserves to maintain fitness (Williams et al., 2015). In nature, most 
 

54 thermal regimes fluctuate, and such fluctuations can have unexpected consequences, 
 

55 depending on whether the fluctuations lead to cold mortality or energy savings at low 
 

56 temperatures, and energy drain or damage repair at higher temperatures (Colinet et al., 
 

57 2015). Thus, warmer winters could increase survival by reducing chilling injury (Bale & 
 

58 Hayward, 2010) or allowing earlier spring emergence (Hahn & Denlinger, 2007; van Asch et 
 

59 al., 2007; Pozsgai & Littlewood, 2011), but could decrease survival by reducing insulating 
 

60 snow cover (Lawrence & Slater, 2010), leading to exposure to lethal air temperatures (Joshi 
 

61 et al., 2009; Bale & Hayward, 2010) or increased rates of energy use that deplete energy 
 

62 reserves (Bosch & Kemp, 2003; Irwin & Lee, 2003; Williams et al., 2003; Hahn & Denlinger, 
 

63 2007, 2011). The relative importance of each of these scenarios remains to be determined 
 

64 and is likely to be both region and species specific. 
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65 Current understanding of the relationship between temperature and survival is 
 

66 based mainly on results from laboratory studies under relatively constant temperatures, 
 

67 which are poor approximations for performance outcomes under fluctuating temperatures 
 

68 (Colinet et al., 2015). Studies using controlled fluctuating temperatures show that sufficient 
 

69 frequency and duration of warm periods can allow repair of accumulated chilling injuries 
 

70 and improvements in low-temperature survival (Renault et al., 2004; Colinet et al., 2006; 
 

71 Marshall & Sinclair, 2011). However, energy demands are greater under fluctuating 
 

72 temperatures because metabolic rates increase at higher temperatures (Colinet et al., 2015), 
 

73 so cumulative warming duration may deplete energy stores. Overwintering in the field often 
 

74 involves additional mortality risks from desiccation, predators, and pathogens (Payah & 
 

75 Boethel, 1986; Lam & Pedigo, 2000), as well as exposure to unpredictably changing 
 

76 temperatures that require continuous physiological adjustments (Colinet et al., 2015; 
 

77 Kingsolver et al., 2015). Thus, a greater understanding of the relative importance of survival 
 

78 and energy use for overwintering insects under field conditions is required. 
 

79 The bean leaf beetle Cerotoma trifurcata (Förster) (Coleoptera: Chrysomelidae) is a 
 

80 pest of soybean Glycine max (L.) Merrill and other legumes. It is native to eastern North 
 

81 America, but sources of anecdotal information disagree about when its range extended into 
 

82 southern Ontario, Canada (Chittenden, 1898; McCreary, 2013). Coincident with increases in 
 

83 soybean production, C. trifurcata has increasingly been considered a pest of potential 
 

84 economic importance (Witkowski & Echtenkamp, 1996; McCreary, 2013) because of its 
 

85 ability to cause feeding damage to soybean plant tissues and root nodules (Smelser & 
 

86 Pedigo, 1992; Lundgren & Riedell, 2008) and to transmit Bean pod mottle virus and fungi 
 

87 that reduce grain yield and quality (Shortt et al., 1982; Giesler et al., 2002). 
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88 Ceratoma trifurcata overwinters as an adult under leaf litter and is freeze intolerant, 
 

89 with Minnesota populations having a mean supercooling point of –8.9°C in February 
 

90 (Carrillo et al., 2005). It currently produces 2–3 generations/year in central and southern 
 

91 United States (Pedigo, 1994), and 1 generation/year in southern Ontario (McCreary, 2013). 
 

92 An increase in the number of generations produced per year could be problematic because 
 

93 although insecticide treatments can suppress overwintered and first-generation populations, 
 

94 subsequent generations can still reach economic injury levels (Bradshaw et al., 2008). 
 

95 Overwintering stress could be a bottleneck limiting the ability of C. trifurcata to attain high 
 

96 population numbers and high reproductive fitness in its northern range. If so, increasing 
 

97 temperatures might allow expansion of its distribution (Berzitis et al., 2014), improved 
 

98 survival and fitness, and development of additional generations. 
 

99 Our objective was to determine the likely effects of increasing winter temperatures 
 

100 on overwintering C. trifurcata. Using field experiments conducted in three years, we 
 

101 examined the effect of warmer winters on the overwinter survival, rates of energy use, and 
 

102 date of spring emergence of C. trifurcata. First, we hypothesized that increased winter 
 

103 temperatures with coincident decreased snow cover affect C. trifurcata overwinter survival 
 

104 and timing of emergence. We predicted that beetles would emerge earlier and have better 
 

105 survival with supplemental heating during winter, but that the loss of snow cover would 
 

106 reduce the positive effect of heating in colder winters. Second, we hypothesized that 
 

107 increasing mean temperatures lead to increased overwinter energy use. We predicted that 
 

108 beetle lipid content would decrease faster in beetles that received supplemental winter 
 

109 heating. 

 
110  

 

111 Materials and Methods 
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112 Winter warming experiment 
 

113 An outdoor field experiment was repeated in 2011, 2012, and 2013, with slight differences 
 

114 in timing and sample sizes. Adult C. trifurcata were collected each fall from soybean fields 
 

115 near Wroxeter (43.86° N, 81.19° W) and Ennotville (43.65° N, 80.32° W), Ontario. Beetles 
 

116 were collected over a period of 2–4 weeks when soybean plants were physiologically 
 

117 mature. After collection, beetles were maintained in outdoor mesh cages (Bugdorm BD2120, 
 

118 MegaView Science, Taiwan) for up to 8 weeks and were provided with potted soybean and 
 

119 alfalfa plants. The outdoor conditions allowed natural acclimation of beetles to decreasing 
 

120 temperatures and photoperiod. In preparation for the experiments, beetles were brought 
 

121 indoors briefly for counting in December (2011) or November (2012, 2013), placed in 6-L 
 

122 pots (20 cm diameter) containing packed soil collected from an agricultural field (Elora, 
 

123 Ontario: 43.64° N, 80.41° W; Gleyed Brunisolic Grey Brown Luvisol developed on loam till), 
 

124 and covered by 4 cm (depth) of loose leaf litter collected from mixed-deciduous hedgerows 
 

125 at the Elora agricultural field. There were 25, 70, and 50 beetles/pot in 2011, 2012, and 
 

126 2013, respectively, reflecting beetle availability. The pots were then buried with their tops 
 

127 level with the soil surface in an open area on the University of Guelph campus (43.527° N, 
 

128 80.229° W) that had been prepared by light tilling. Pots were covered by mesh to prevent 
 

129 beetle escape, and left to overwinter. 
 

130 Three levels of a warming treatment were applied to the buried pots in a 
 

131 randomized complete block design with six (2011) or eight (2012, 2013) replicates: heated 
 

132 ~4°C above ambient temperature, unheated with snow cover left intact (control), and 
 

133 unheated with snow cover removed. Snow was removed manually by sweeping it off of the 
 

134 mesh within 24 h of snowfall. Heating prevented snow accumulation, so the snow removal 
 

135 treatment controlled for this effect. Heat lamps (model 100011596, Zilla, Franklin, 
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136 Wisconsin) were installed ~30 cm above all pots, but only those in the heated group 
 

137 contained 150 W ceramic bulbs (ExoTerra PT-2047, Hagen, Montreal, Quebec). Ambient 
 

138 temperature at the soil surface under the leaf litter was measured at 15-min intervals in 
 

139 each pot using a sensor connected to an Argus greenhouse control system (Argus Control 
 

140 Systems, White Rock, British Colombia) that turned the heat lamps on and off to maintain 
 

141 4°C differential between heated and control pots. Although heat lamps tended to run 
 

142 continuously, realized temperature differences were often <4°C (Fig. 1). In 2013, a Hobo Pro 
 

143 v2 data logger (U23-001, Onset Computer Corporation, Bourne, Massachusetts) was placed 
 

144 under the leaf litter in one control and one heated pot in the same block to record humidity 
 

145 at 30-min intervals. 
 

146 In spring (mid-March 2012, early April 2011, 2013), each pot and lamp were covered 
 

147 by an emergence tent (Bugdorm BD2400, MegaView Science) with the bottom cut open and 
 

148 the edges buried under the soil to prevent beetle escape. The mesh was then removed from 
 

149 the pots, and potted alfalfa plants were placed in each tent as a food resource. Tents and 
 

150 foliage were searched thoroughly for emerged beetles daily after 10:00 h, when C. trifurcata 
 

151 is reported to be most active (Krell et al., 2003); beetles that had emerged were removed 
 

152 and counted. Tents were searched daily for 2-3 weeks after the last emerged beetle 
 

153 detection, after which pots were removed, and the leaf litter (and soil in 2011) were 
 

154 searched for live beetles. 
 

155 The proportion of individuals surviving the winter was calculated based on the total 
 

156 number placed in the pot at the start of the experiment and the number that emerged in 
 

157 the spring. The dates of first and median emergence were determined for pots with at least 
 

158 one emerging beetle. Based on daily minimum and maximum temperatures recorded under 
 

159 the leaf litter, the number of degree-days accumulated at first emergence was calculated 
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160 for each pot for 2011 and 2012 beginning March 1 and using a base of 10°C, estimated as 
 

161 the lower developmental threshold in Ontario (McCreary, 2013). Several malfunctioning 
 

162 temperature probes in May prevented degree-day calculations for 2013 (heat lamps were 
 

163 left on in affected pots during this time). 

 
164  

 

165 Lipid analysis 
 

166 In 2013, rates of energy use by C. trifurcata were compared in the heated and control 
 

167 groups by collecting individuals for lipid analysis before the experiment began (baseline) 
 

168 and at three times during the winter. Fifteen baseline individuals were sampled in 
 

169 November prior to placing beetles into pots. For the next two sampling times, 15 individuals 
 

170 were enclosed in a 10 cm diameter flattened mesh bag filled with leaf litter, and one bag 
 

171 was placed between the soil surface and leaf litter in each heated and control pot at the 
 

172 beginning of the experiment. Bags were removed from one-half of the replicates on 28 
 

173 January and from the other half on 13 March, taking care to minimize disturbance to the 
 

174 overlying leaf litter. Bags were allowed to warm at room temperature for 3 h, and then all 
 

175 live individuals, identified as those whose legs moved when their body was prodded, were 
 

176 collected. For the final sampling time, individuals were collected immediately following 
 

177 emergence in spring. All collected beetles were lyophilized for 48 h (Free Zone 4.5-L Freeze 
 

178 Dry System model 7751020, Labconco, Kansas City, Missouri) and stored at –20°C until 
 

179 analysis. 
 

180 Lyophilized beetles were sexed, and neutral lipids and soluble protein were 
 

181 quantified individually in one female and one male from each pot as available. Because we 
 

182 expected lipids to compose the majority of the body mass and to decline during winter, we 
 

183 used protein as an estimate of metabolizing tissue mass to standardize body size. Beetles 
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184 were homogenized in 100 μL 0.05% Tween 20 and diluted tenfold in Tween 20 solution. One 
 

185 aliquot was taken for lipid extraction and quantification while another was centrifuged for 
 

186 10 min at 12,000 ×g and used for protein assay. Lipids were extracted using a Folch 
 

187 extraction, with the diacylglycerol glyceryl 1,3 distearate (D8269, Sigma-Aldrich Canada) 
 

188 added as an internal standard, and measured by thin layer chromatography coupled to a 
 

189 flame ionization detector (TLC-FID; Iatroscan MK-6 TLC-FID Analyzer, Iatron Laboratories, 
 

190 Tokyo, Japan) following the protocol of Williams et al. (2011). Total protein content was 
 

191 measured spectrophotometrically in triplicate using a bicinchoninic acid assay based on the 
 

192 methods of Gefen et al. (2006). 

 
193  

 

194 Statistical analysis 
 

195 Proportion survival was compared among treatments using generalised linear mixed models 
 

196 with a binomial distribution and log-log link function. Maximum likelihood estimation was 
 

197 performed via the Laplace approximation in SAS 9.4 (SAS Institute, Cary, North Carolina). 
 

198 Warming was a fixed effect, block was a random effect, and years were analysed separately 
 

199 due to different numbers of blocks among years. The block effect was excluded from the 
 

200 model for 2011 because it did not explain any variance and caused a nonpositive definite 
 

201 covariance matrix. Overdispersion was evaluated using the Pearson χ2 statistic divided by 
 

202 the degrees of freedom. Significant warming effects were decomposed using Tukey-Kramer 
 

203 tests. 
 

204 Date of first emergence, median date of emergence, and degree-days accumulated 
 

205 at first emergence were compared among treatments using mixed-model ANOVA and 
 

206 restricted maximum likelihood estimation, followed by Tukey’s multiple comparisons for 
 

207 significant effects, in JMP 12 (SAS Institute). Warming was a fixed effect, block was a 
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208 random effect, and years were analysed separately. Degree-day data were log transformed. 
 

209 The analysed data met statistical assumptions in all years, except date of first emergence 
 

210 and median date of emergence in 2012; transformation did not improve these data 
 

211 (emergence timing was more variable in heated than other groups), and they were left 
 

212 untransformed for analysis. 
 

213 Lipid content was compared using ANCOVA followed by Tukey’s multiple 
 

214 comparisons in JMP 12. Treatment, time, sex, and their interactions were fixed effects, and 
 

215 protein was a covariate. Because the unit of replication differed, baseline data were 
 

216 excluded from the ANCOVA. Data were Box-Cox transformed to meet statistical 
 

217 assumptions. Data are archived at the University of Guelph Agri-environmental Research 
 

218 Data Repository (Berzitis et al., 2013). 

 
219  

 

220 Results 
 

221 Microclimate conditions 
 

222 Ambient air temperatures were warmer in 2012 than in 2011 or 2013 (see Supporting 
 

223 Information, Appendix S1 for further details). Temperatures under the leaf litter differed 
 

224 substantially among treatments and years (Fig. 1a-c). On average, heated pots were warmer 
 

225 than control pots, and more so in March–April than January–February. In contrast, pots with 
 

226 snow removed were colder than control pots when snow was present (Jan–Feb 2011 and 
 

227 2013), but did not differ in the absence of snow cover (Mar–Apr 2011 and 2013, and most 
 

228 of 2012). Temperature variability was similar among treatments within years (see 
 

229 Supporting Information, Appendix S1). Mean vapour pressure in 2013 was slightly lower and 
 

230 more variable in the heated (mean 660 Pa, range 210–1240 Pa) than the control pot (700 Pa, 
 

231 350–1180 Pa; Fig. 1d). 
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232 

 

233 Overwinter survival 
 

234 At least one beetle survived in each pot except for one control pot in 2011, one heated pot 
 

235 in 2012 and 2013, and two snow removal pots in 2013. Across all treatments, survival was 
 

236 13.3% in 2011, 14.5% in 2012, and 6.5% in 2013 (range of 0–44% survival among pots). 
 

237 Across all years and treatments, survival was 11%. Warming increased overwinter survival 

 
238 compared to the control in 2011 (F2,15 = 4.38, P = 0.03, χ2/df = 1.71), although care should be 

 

239 taken in interpreting this result because the P value is fairly large and the data are 
 

240 somewhat overdispersed. Warming decreased survival compared to the control and snow 

 
241 removal pots in 2012 (F2,14 = 17.6, P = 0.002, χ2/df = 1.41; Fig. 2). There was no effect of 

 
242 warming in 2013 (F2,14 = 2.11, P = 0.2, χ2/df = 1.12). 

 
243 

 

244 Lipid content 
 

245 Triacylglycerols (TAG) were the only neutral lipids detected in C. trifurcata samples. TAG was 
 

246 significantly lower in spring-emerged (April/May) beetles compared to those sampled in 
 

247 January and March (Table 1 and Fig. 3). TAG content did not differ for any other effect or 
 

248 interaction, and the effect of the protein covariate was nonsignificant (Table 1). 

 
249  

 

250 Date of emergence and degree-day accumulation 
 

251 Cerotoma trifurcata emerged significantly earlier in the heated than control and snow 
 

252 removal groups in all years (2011: F2,9 = 38.2, P < 0.001; 2012: F2,13 = 11.3, P = 0.001; 2013: 
 

253 F2,11 = 7.81, P = 0.009; Fig. 4). Beetles began to emerge approximately 12 d (2013) to 22 d 
 

254 (2012) earlier in the heated than the other groups. Median date of emergence was also 
 

255 significantly earlier in the heated than control and snow removal groups in all years (2011: 
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256 F2,9 = 23.0, P < 0.001; 2012: F2,14 = 10.0, P = 0.002; 2013: F2,11 = 16.9, P < 0.001; data not 
 

257 shown). Median emergence was approximately 8 to 15 d earlier in the heated than the 
 

258 other groups. There was no difference in the number of degree-days (base 10°C) 
 

259 accumulated at the date of first emergence among treatment groups (2011: F2,9 = 0.50, P = 
 

260 0.6; 2012: F2,14 = 2.34, P = 0.13). 

 
261 

 

262 Discussion 
 

263 Consistent with our predictions, C. trifurcata that experienced supplemental winter 
 

264 warming emerged significantly earlier than individuals in the control and snow removal 
 

265 groups across all years of study. Calculated degree-day accumulation at first emergence did 
 

266 not differ among the treatment groups, suggesting that increased late winter and early 
 

267 spring temperatures can advance the phenology of C. trifurcata. Contrary to our predictions, 
 

268 supplemental winter warming in the field did not consistently increase the cold survival of C. 
 

269 trifurcata, but was contingent upon the year of the experiment. The depletion of C. 
 

270 trifurcata lipid energy reserves did not differ among heated, control, and snow removal 
 

271 treatment groups, but was strongly affected by time, with lipid content lower upon spring 
 

272 emergence than at any other sampling time. 

 
273  

 

274 Temperature and beetle survival 
 

275 Cerotoma trifurcata experienced very low winter survival in our field experiment: <15% in 
 

276 any year of the study and as low as 6.5% in 2013. These low rates of survival are consistent 
 

277 with estimates of 11–23% overwinter survival in soybean fields in Iowa, USA (Lam & Pedigo, 
 

278 2000), which has a similar climate to southern Ontario, and are greater than the low of 0% 
 

279 survival in soybean fields in North Carolina, USA (Boiteau et al., 1980), which has a more 
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280 moderate climate. However, most C. trifurcata tend to overwinter in less exposed areas 
 

281 than soybean fields such as field margins and woodlands, where individuals shelter inside 
 

282 rolled leaves and hollow acorns (Lam & Pedigo, 2000; Lam et al., 2002); survival may be 
 

283 somewhat higher in these habitats across the beetle’s U.S. range, e.g., 18–51% in Iowa (Lam 
 

284 & Pedigo, 2000), 34–59% in Minnesota (Carrillo et al., 2005), 33% in North Carolina (Boiteau 
 

285 et al., 1980), and 4–67% in Louisiana (Payah & Boethel, 1985). Thus, overwinter survival of C. 
 

286 trifurcata appears to be highly variable, and potentially lower in Ontario than in other areas 
 

287 of its range. 
 

288 Contrary to expectations, the application of supplemental winter warming did not 
 

289 consistently improve C. trifurcata overwinter survival, but differed by year, likely due to 
 

290 complex interactions of temperature and snow cover. In the warmest winter (2012), 
 

291 supplemental warming decreased beetle survival, suggesting that C. trifurcata overwinter 
 

292 survival in Ontario could remain low under climate warming. There are a number of 
 

293 hypotheses for decreased beetle survival at warmer winter temperatures. First, higher 
 

294 metabolism under warmer winter temperatures could lead to higher rates of energy use 
 

295 and reduced survival (Irwin & Lee, 2003; Hahn & Denlinger, 2007; Sinclair, 2015). Our 
 

296 measurements of C. trifurcata lipid content in 2013 suggest that this was likely not the case: 
 

297 lipid content was relatively stable until March, suggesting that beetles do not begin 
 

298 depleting this energy reserve until early spring. Additionally, Boiteau et al. (1979), who 
 

299 visually classified the size of C. trifurcata’s internal fat body as lean, intermediate, or fat in 
 

300 dissected beetles, noted little depletion of fat reserves during diapause. Although C. 
 

301 trifurcata activity has been examined during and postdiapause (Boiteau et al., 1979; 
 

302 Schumm et al., 1983), little is known about what triggers natural diapause termination, 
 

303 which information would be helpful in predicting C. trifurcata responses to changing climate. 
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304 A second hypothesis for decreased survival at warmer winter temperatures is that 
 

305 exposure to warmer temperatures could result in the loss of cold tolerance, increasing 
 

306 susceptibility to subsequent cold snaps (Williams et al., 2015). Increasing temperature is a 
 

307 primary cue for diapause termination in other temperate chrysomelid species (Lefevere & 
 

308 de Kort, 1989; Watanabe & Tanaka, 1998; Nahrung & Allen, 2004). There is likely a complex 
 

309 relationship between survival and temperature such that low temperatures contribute to 
 

310 energy savings for the beetle but cause chilling injuries to accumulate when temperatures 
 

311 fall below a threshold (Sinclair, 2015). Experiments using fluctuating thermal regimes would 
 

312 be required to address this hypothesis. 
 

313 Third, increased variability in winter climate could cause greater variation in soil 
 

314 moisture content due to snowmelt, drying, and refreezing (Williams et al., 2015), leading to 
 

315 unpredictable physiological responses and survival outcomes for insects. In the Colorado 
 

316 potato beetle (Leptinotarsa decemlineata), a temperate, freeze-intolerant chrysomelid in 
 

317 which adults overwinter in soil and experience high overwinter mortality, beetles have 
 

318 higher freezing points and mortality in moist than in dry substrate (Costanzo et al., 1997). 
 

319 Monitoring changes in soil moisture and C. trifurcata water content among winter warming 
 

320 treatments would allow further examination of this hypothesis. 

 
321  

 

322 Increased temperatures and earlier spring emergence 
 

323 Supplemental winter warming resulted in consistently earlier spring emergence of C. 
 

324 trifurcata across all years of study, ranging approximately 12–22 d earlier than in the control 
 

325 and snow removal groups but with similar degree-day accumulation. This advance in 
 

326 phenology of C. trifurcata could be beneficial or detrimental to survival, depending on 
 

327 climate variability in any given year. In years when late winter and early spring 
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328 temperatures are highly variable, earlier emergence could increase the risk of mortality due 
 

329 to early reductions in the beetle’s cold tolerance (Hayward et al., 2005; Sobek-Swant et al., 
 

330 2012), increasing its vulnerability to subsequent cold spells (Bale & Hayward, 2010; Williams 
 

331 et al., 2015). For example, in our field experiment, some C. trifurcata in the heated 
 

332 treatment group emerged in mid-March 2012 when air temperatures surpassed 20°C; these 
 

333 beetles were collected as soon as they emerged, but if they had remained outdoors, it is 
 

334 possible that the subsequent decrease in temperature to a low of 6°C for three weeks could 
 

335 have caused potentially fatal accumulation of chilling injuries. 
 

336 Successful earlier emergence and survival of C. trifurcata would effectively increase 
 

337 the length of its growing season and allow greater accumulation of developmental degree- 
 

338 days (Ziter et al., 2012; Berzitis et al., 2014), which could allow the development of a second 
 

339 reproductive generation of C. trifurcata. The comparable dates of emergence of beetles 
 

340 from the heated group in this study (27 April on average) and beetles in Iowa at present (23 
 

341 April and 4 May; Smelser & Pedigo, 1991), where there are two generations, support this 
 

342 possibility. However, phenological synchrony of C. trifurcata and its food resources will be 
 

343 important for subsequent population growth and pest status. Although C. trifurcata is native 
 

344 to North America and, prior to soybean emergence, feeds on wild native legumes, several 
 

345 herbaceous plant species, and leguminous crops such as alfalfa and sweet clover 
 

346 (Waldbauer & Kogan, 1976; Helm et al., 1983; Hammack et al., 2010), it is possible that 
 

347 those resources are not abundant enough to support development of large populations. For 
 

348 example, Jeffords et al. (1983) noted large C. trifurcata populations and subsequent pest 
 

349 problems in Illinois, USA in a year when its emergence was well synchronized with soybean 
 

350 emergence, but small early season C. trifurcata populations and few subsequent pest 
 

351 problems in a year when soybean planting was delayed because of wet spring weather. 
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352 There have been suggestions that later soybean planting dates might be useful for 
 

353 management of C. trifurcata by causing mortality of newly emerged overwintering beetle 
 

354 populations prior to soybean emergence due to a lack of food resources (Hammack et al., 
 

355 2010). However, in field studies in central Iowa and eastern Nebraska, USA that compare 
 

356 effects of early and late planting (usually early vs. late May) on C. trifurcata abundance and 
 

357 feeding damage as well as prevalence of Bean pod mottle virus in soybean, results differ 
 

358 among studies and are highly dependent on early spring and early fall weather conditions 
 

359 (Pedigo & Zeiss, 1996; Witkowski & Echtenkamp, 1996; Krell et al., 2005). In Ontario, where 
 

360 appropriate soybean maturity groups range from group III in a small area of southwestern 
 

361 Ontario to group 00 elsewhere in southern Ontario (OSACC 2015), early soybean planting 
 

362 (early May) is a strategy used to maximize grain yield (Andrews 2011). In addition, hay 
 

363 (including alfalfa and other legumes) comprises the third largest crop area in Ontario after 
 

364 corn and soybean (OMAFRA 2015), which would present an abundant early spring food 
 

365 resource for C. trifurcata. Field observations also suggest that C. trifurcata migrates from 
 

366 senescing soybean fields late in the growing season to soybean fields that are not yet 
 

367 mature (Pedigo & Zeiss, 1996; Bradshaw et al., 2008), indicating that late planted soybean 
 

368 fields could be at risk for C. trifurcata colonization if growers do not synchronize their 
 

369 planting efforts. Therefore, field studies in Ontario are required to determine how 
 

370 overwinter survival affects population development, and how management practices might 
 

371 be best adjusted to address C. trifurcata in combination with other weed and pest issues. 

 
372  

 

373 Supporting Information 
 

374 Appendix S1. Further details of microclimate conditions under the leaf litter in experimental 
 

375 pots in the winter warming experiment, 2011-2013. 
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553 Table 1. ANCOVA results for effects of warming treatment, sampling date, and beetle sex on 
 

554 Box-Cox transformed beetle lipid (triacylglycerol) content. 

 
555  

 Source dfa F ratio P value 

 Protein 1 0.79 0.40 

 
Treatment 1 0.34 0.56 

 
Date 2 897.6 < 0.001 

 
Sex 1 0.19 0.67 

 
Treatment × Date 2 1.07 0.35 

 
Treatment × Sex 1 0.57 0.45 

 
Date × Sex 2 0.12 0.89 

 
Treatment × Date × Sex 2 2.55 0.09 

556 
a
Error df = 38.    

557 
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558 Figure captions 
 

559 Figure 1. Mean and range of daily minimum and maximum temperatures (°C) recorded 
 

560 under the leaf litter in the heated, control, and snow removal treatment groups over the 
 

561 first four months of the year for 2011 (a), 2012 (b), and 2013 (c), and (d) mean daily vapour 
 

562 pressure (Pa) recorded under the leaf litter in one set of replicates from the heated and 
 

563 control treatment groups in 2013. Dates <365 indicate early winter in the previous year. 
 

564 Solid lines indicate means; thicker, semi-transparent shading indicates the difference 
 

565 between minimum and maximum temperatures in (a–c). 

 
566  

 

567 Figure 2. Proportion of Cerotoma trifurcata surviving the winter in heated, control, and 
 

568 snow removal treatment groups in 2011, 2012, and 2013 (mean ± SE). Means and SEs are 
 

569 back-transformed from generalized linear mixed models using the inverse link function and 
 

570 the delta method. Different lowercase letters indicate significant differences within years 
 

571 (Tukey-Kramer, α = 0.05). 

 
572  

 

573 Figure 3. Triacylglycerol content (mg/mg soluble protein content) of Cerotoma trifurcata in 
 

574 November 2012 (prior to overwintering) and from heated and control groups in January, 
 

575 March, and at spring emergence in April or May 2013 (mean ± SE). Different lowercase 
 

576 letters indicate significant differences (Tukey’s HSD, α = 0.05); numbers indicate sample 
 

577 sizes. 

 
578  

 

579 Figure 4. Date of first emergence of Cerotoma trifurcata from heated, control, and snow 
 

580 removal treatment groups in 2011, 2012, and 2013 (mean ± SE). Different lowercase letters 
 

581 indicate significant differences within years (Tukey’s HSD, α = 0.05). 
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