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Abstract 18 

Drosophila suzukii is an emerging global pest of soft fruit; although it likely overwinters as an 19 

adult, larval cold tolerance is important both for determining performance during spring and 20 

autumn, and for the development of temperature-based control methods aimed at larvae.  We 21 

examined the low temperature biology of third instar feeding and wandering larvae in and out of 22 

food.  We induced phenotypic plasticity of thermal biology by rearing under short days and 23 

fluctuating temperatures (5.5-19 °C).  Rearing under fluctuating temperatures led to much slower 24 

development (42.1 days egg-adult) compared to control conditions (constant 21.5 °C; 15.7 d), 25 

and yielded larger adults of both sexes.  D. suzukii larvae were chill-susceptible, being killed by 26 

low temperatures not associated with freezing, and freezing survival was not improved when ice 27 

formation was inoculated externally via food or silver iodide.  Feeding larvae were more cold 28 

tolerant than wandering larvae, especially after rearing under fluctuating temperatures, and 29 

rearing under fluctuating temperatures improved survival of prolonged cold (0 °C) to beyond 72 30 

h in both larval stages.  There was no evidence that acute cold tolerance could be improved by 31 

rapid cold-hardening.  We conclude that D. suzukii has the capacity to develop at low 32 

temperatures under fluctuating temperatures, but that they have limited cold tolerance.  However, 33 

phenotypic plasticity of prolonged cold tolerance must be taken into account when developing 34 

low temperature treatments for sanitation of this species. 35 

 36 

Keywords: spotted wing drosophila; cold tolerance; chill susceptible; overwintering; phenotypic 37 

plasticity; fluctuating thermal regimes 38 

 39 
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Introduction 41 

Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an 42 

emerging global pest of soft fruit (Cini et al., 2014; Lee et al., 2011; Walsh et al., 2010). D. 43 

suzukii lays eggs in unripe fruit.  The entry wound and larval development promote fruit 44 

degradation, resulting in significant losses to blueberry, strawberry and cherry crops (Bolda et 45 

al., 2010). As with most Drosophila except D. lutescens, which may overwinter as a larva or 46 

pupa in Japan (Kimura, 1988), D. suzukii appears to overwinter as an adult, and there is a well-47 

described ‘winter morph’ that is darker than the summer morph (Zerulla et al., 2015).  This 48 

winter morph has some improved tolerances to environmental stress (Plantamp et al., 2016; 49 

Shearer et al., 2016; Toxopeus et al., 2016; Wallingford et al., 2016).  However, larvae appear to 50 

be significantly less cold tolerant than adults, being killed by short exposures to sub-zero 51 

temperatures (Dalton et al., 2011) and longer exposures to temperatures near 0 °C (Kanzawa, 52 

1939). 53 

 54 

Insect cold tolerance strategies are usually divided into freeze tolerance (those that can withstand 55 

internal ice formation) and freeze avoidance, wherein individuals can survive cold as long as 56 

they do not freeze, but are killed when ice formation occurs (the supercooling point, SCP; 57 

Sinclair et al., 2015).  The majority of insects, however, are chill-susceptible, killed by processes 58 

unrelated to ice formation at temperatures above the SCP (Sinclair et al., 2015).  Strachan et al. 59 

(2011) found that larvae of 18 of 27 Drosophila were chill-susceptible, with another eight freeze-60 

avoidant.  Larvae of the closely-related Chymomyza costata and C. amoena are freeze tolerant 61 

when sufficiently cold-acclimated and with external ice inoculation (Koštál et al., 2011; Sinclair 62 

et al., 2009).  However, no Drosophila larvae are currently thought to be freeze tolerant.  Cold 63 

tolerance can also be phenotypically plastic.  D. melanogaster larvae exhibit a rapid cold-64 
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hardening response (Czajka and Lee, 1990), as well as responding to longer-term acclimation 65 

(Rajamohan and Sinclair, 2009). 66 

 67 

We observed that some late-instar D. suzukii larvae in field cages survived a cold snap in 68 

November 2014 that reached -6.9 °C and killed all the adult flies.  This led us to hypothesise that 69 

acclimation or hardening may make larvae more cold-tolerant than previously reported.  70 

Moreover, because the host fruit are often exported, cold tolerance of the larvae is relevant for 71 

determining the capacity of larvae to survive chilling during processing and transport.  Thus, our 72 

objective was to better characterise the cold tolerance of D. suzukii larvae.  We measured growth 73 

and development, SCP, cold tolerance strategy and acute and chronic lethal temperatures of 74 

third-instar feeding and wandering larvae with and without an acclimation under fluctuating 75 

temperatures.  For feeding larvae, we conducted experiments both within food (replicating likely 76 

field conditions) and without food (which allows us to better control the conditions and get a 77 

more precise measure of lethal limits).    78 

 79 

Methods 80 

Animal rearing and treatment groups 81 

We established a Drosophila suzukii population from approximately 200 individuals collected in 82 

the Halton Hills region, Ontario, Canada (43°34’N 79°57’W).  We reared flies on a banana-83 

cornmeal-agar medium  (Markow and O'Grady, 2005), at 21.5 ± 1 °C and 60 ± 5 % relative 84 

humidity under 13:11 L:D, as described elsewhere (Jakobs et al., 2015; Nyamukondiwa et al., 85 

2011; Toxopeus et al., 2016). We used 3.7 L population cages containing approximately 300 86 

adult flies that were two to six days post-eclosion (to reduce any parental age effect).  Flies laid 87 

eggs on Petri dishes of banana food that had been dyed green with food colouring, which allowed 88 
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us to separate feeding and non-feeding larvae.  We removed the plates from the population cages 89 

every 24 h, and reared larvae on the Petri dishes.   90 

 91 

To induce phenotypic plasticity in D. suzukii larvae, we placed the food plates with the eggs into 92 

two different rearing conditions (treatment).  Eggs were placed under either control conditions 93 

(21.5 °C, 13:11 L:D) or exposed to a fluctuating thermal regime (FTR; 5.5 °C/19 °C, 11.5:12.5 94 

L:D), simulating the average photoperiod and daily minimum and maximum temperatures from 95 

late September in London, Ontario.   96 

 97 

We used third instar feeding and wandering larvae for experiments. We checked the food plates 98 

for larvae on a daily basis and removed larvae with a soft paintbrush. Banana food medium was 99 

carefully removed from larvae with tap water and larvae were blotted dry with a tissue. The life 100 

stage of a subset of larvae on each collection day was identified using the morphology of the 101 

mouth hooks (Figure 1A-C) and anterior spiracles (Figure 1D), based upon Demerec’s (1965) 102 

descriptions for D. melanogaster. In addition, feeding third instar individuals appeared green as 103 

they still carried green food in their gut, while wandering-stage instars were transparent and 104 

lacked food in the gut (Figure 1E).  105 

 106 

To determine the effect of the treatments on developmental time, eggs were reared into 107 

adults under control conditions, FTR or a constant low temperature (11 °C, 10:14 LD). We 108 

removed pieces of the banana medium carrying approximately ten eggs, and transferred them 109 

into 35 mL vials containing banana medium (n=6 vials/treatment). We collected the adults that 110 

developed from these eggs daily and stored them at -20 °C. When emergence had ended, we 111 
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dried the flies over silica gel for approximately 48 h. Flies were sexed and weighed (MX5 112 

microbalance, Mettler Toledo, Columbus, OH, USA) as a measure of offspring dry mass.  113 

 114 

Cold tolerance 115 

We determined cold tolerance parameters using the approach described by Sinclair et al. (2015).  116 

To determine the supercooling point (SCP), we placed larvae individually into 1.7 mL 117 

microcentrifuge tubes in contact with a 36-AWG type-T copper-constantan thermocouple 118 

(Omega, Laval, Quebec, Canada) connected to a computer via a TC-08 interface and Picolog 119 

v5.20.1 software (Pico Technology, Cambridge, UK), which recorded the temperature at 0.5 s 120 

intervals. The tubes were placed into holes in an aluminium block cooled by methanol (diluted c. 121 

50 % in water) circulated from a refrigerated bath (Lauda Proline 3530, Würzburg, Germany). 122 

Larvae were equilibrated at 0 °C and cooled to -30 °C at 0.1 °C/min.  The SCP was defined as 123 

the lowest temperature before the exotherm caused by the latent heat of crystallisation.  124 

 125 

To determine the cold tolerance strategy, larvae were placed into microcentrifuge tubes and 126 

cooled, as described for the SCPs. After half the larvae had frozen (indicated by the exotherm), 127 

all individuals were removed quickly to room temperature and placed individually into the wells 128 

of 6-well cell culture plates with a ca. 1 cm3 piece of banana food. Survival was assessed as the 129 

ability to develop into adults. Flies were considered chill susceptible if both unfrozen and frozen 130 

flies died, freeze-avoidant if all unfrozen flies survived (but those that froze died), and freeze 131 

tolerant if individuals that froze survived. 132 

 133 

Because some insects are freeze tolerant only with external ice inoculation, (e.g.  Shimada and 134 

Riihimaa, 1988) we applied an external ice nucleator (silver iodide) to initiate freezing (Strachan 135 
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et al., 2011). We dipped larvae into a silver iodide/water slurry and determined the SCP and cold 136 

tolerance strategy as described above. 137 

 138 

We estimated the acute lethal temperature (LT) of third feeding and wandering larvae of the 139 

control and FTR group by exposing these larvae to a range of low temperatures for 1 h. Groups 140 

of ten larvae were placed into a 0.65 mL microcentrifuge tube (n=3 groups/ temperature/ stage/ 141 

treatment combination). These tubes were placed into a pre-cooled aluminium block (described 142 

above) and held for 1 h at temperatures ranging from -15 °C to 0 ° C (encompassing 0-100 % 143 

mortality). Temperature during exposure was recorded in two blank tubes that were directly 144 

placed next to the tubes with larvae in the cooling block using thermocouples as above. 145 

Following the low temperature exposure we placed each opened tube into a 35 mL vial 146 

containing banana medium and reared the larvae to eclosion under control conditions. Survival 147 

was determined as the ability to eclose as adult. 148 

 149 

Because larvae might be exposed to low temperatures inside their food, we also determined acute 150 

low-temperature survival of larvae in 35 mL vials containing banana food. Groups of 20 larvae 151 

were placed into each vial, which was exposed to low temperatures for 1 h as described above. 152 

Temperature was determined by placing the thermocouples inside the food medium (2 cm below 153 

the food surface). After cold exposure, food vials containing the larvae were placed under control 154 

conditions and the number of adults that eclosed counted as a measure of survival. The 155 

temperature measured inside and outside the food differs during a 1 h exposure. Thus, 156 

temperature was recorded inside and outside the food during an exposure to -9 °C (n=10). SCP of 157 

the banana food was determined during this exposure and used in analyses. 158 

 159 
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To determine survival of prolonged exposure to milder cold temperatures (see Sømme (1996) for 160 

rationale), we placed groups of ten larvae into food vials (n=3 groups/ stage/ treatment/ time), 161 

and assessed survival after exposure for 6, 12, 18, 24, 36, 48, 60, 72 and 120 h to 0 °C/ 60% RH 162 

in a Tenney ETCU16 chamber (Thermal Product Solutions, White Deer, PA, USA).  Survival 163 

was assessed as successful eclosion after the vial was returned to 21.5 °C. 164 

 165 

To test for a rapid cold-hardening response, larvae were pre-exposed to 0 °C or 4 °C for one hour 166 

with one hour recovery at 21.5 °C (cf. Ransberry et al., 2011) and survival was determined at 167 

temperatures close to the previously estimated LT80-1h (temperature at which 80 % of the 168 

individuals die after 1 h exposure; control feeding -4.6 °C; FTR feeding: -8.7 °C; control 169 

wandering: -6.6 °C; FTR wandering -8.8 °C). Ten larvae were placed into 0.65 mL 170 

microcentrifuge tubes, each tube was placed into a 50 mL vial, which was immersed in a cooling 171 

bath set to the LT80-1h for 1 h  (n=5 groups/ stage/ treatment combination). After cold exposure, 172 

the tubes were placed into food vials kept under rearing conditions; survival was assessed as 173 

successful eclosion. 174 

 175 

Data analysis 176 

All analyses were conducted in in R version 3.0.1 (R Core Team, 2012). SCPs and dry mass 177 

were compared among treatments and stages or sex using a two-way ANOVA, for which model 178 

assumptions were checked. Survival after exposure to the LT80-1h was compared among 179 

treatments using Kruskal-Wallis test.  We used accelerated failure time models (AFT) from the 180 

survival package in R to determine time at which 80 % of the individuals developed from eggs 181 

into adults (Dt80). The best-fit models used a log-logistic error distribution and treatment and 182 

stage as factors. Developmental time was compared among treatments using a Kuskal-Wallis test 183 
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and between sex using a Wilcoxon rank sum test. The effect of the interaction of the treatments 184 

and sex was analysed with a Kruskal-Wallis test followed by a Wilcoxon pairwise comparison 185 

with Bonferroni-Holm correction. 186 

 The LT80-1h (temperature at which 80 % of flies will die after a 1 h exposure) and Lt80 (lethal 187 

time at which 80 % of the individuals die during chronic low-temperature exposure) were 188 

calculated for both third instar feeding and wandering larvae from the control and FTR groups 189 

via a generalized linear model (Venables and Ripley, 2002) with a binomial error distribution 190 

and logit link function (fit was tested with Wald’s χ2) using the package MASS in R . Differences 191 

between groups were compared using a generalized linear model. We used the ghlt() function of 192 

the package multcomp in R (Bretz et al., 2011) to run a Tukey’s post-hoc comparison using the 193 

treatment × stage interaction.  194 

 195 

Results 196 

The rearing conditions altered the developmental time from egg to adult (Wald χ2 = 1246.41, df= 197 

2, p < 0.001). The DT80 (time taken for 80 % of the individuals to eclose as adults) was shortest 198 

in control flies (15.7 ± 0.1 days), followed by FTR flies (42.1 ± 0.5 days). Flies reared under 199 

constant low temperatures had the longest development time (62.4 ± 0.6 days, Figure 2). Females 200 

were consistently heavier than males, and flies reared under FTR and constant low temperatures 201 

were larger than controls (Figure 3).  202 

 203 

Supercooling points ranged from -23.3 °C in a wandering larva reared under FTR to -7.3 °C in a 204 

feeding control larva (Table 1). Feeding third-instar larvae had higher SCPs than wandering 205 

third-instar larvae (F1,176=76.612, p<0.001), and while FTR treatment led to a slight increase in 206 

SCP of feeding larvae, it did not change the SCP of the wandering stage (treatment × stage: 207 
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F1,176= 2.968, p=0.087; Table 1). No larvae survived internal ice formation, indicating that they 208 

are not freeze-tolerant. Further, larvae did not survive temperatures slightly above the SCP, 209 

indicating that the flies are chill-susceptible (Table 1). Application of an external ice nucleator 210 

(AgI) significantly increased the SCP (F1,176= 127.098, p<0.001), but did not lead to freeze 211 

tolerance (Table 1). There was no significant interaction between external ice nucleation and 212 

rearing conditions on SCP (treatment × AgI: F1,176= 0.114, p=0.736).   213 

 214 

We determined acute low temperature tolerance of control and FTR feeding and wandering 215 

larvae by exposing them to a range of temperatures between -15 and 0 °C with food (in food 216 

vials) and without food (in tubes). The temperature inside the food decreased more slowly than 217 

outside the food, and the food froze at -8.2 ± 0.4 °C (n=10, example shown in Figure 3 froze at at 218 

-8 °C after 32 min). Overall survival decreased with the temperature. Acute low-temperature 219 

survival of larvae without food was affected by the treatment (Table 2). Feeding larvae of the 220 

FTR group survived lower temperatures than feeding larvae of the control group with no overlap 221 

of the survival curves (Figure 5A); whereas the survival curves of all the groups overlapped in 222 

wandering larvae (Figure 5B). In addition, survival was affected by the life stage (Table 2). The 223 

LT80-1h (temperature at which 80 % of the individuals die after 1 h exposure) was the lowest in 224 

FTR feeding larvae (-8.9 ± 0.3 °C) and FTR wandering larvae (-8.4 ± 0.4 °C), followed by the 225 

control wandering larvae (-6.6 ± 0.1 °C, Table 3). Control feeding larvae had the highest LT80-1h 226 

(-4.8 ± 0.3 °C). Acute low-temperature survival determined with food was affected by the life 227 

stage (Table 2). FTR feeding larvae and FTR wandering larvae had a lower LT80-1h (feeding: -9.6 228 

± 0.3 °C, wandering: -8.7 ± 0.3 °C) than control feeding and wandering larvae (feeding -8.0 ± 0.3 229 

°C, wandering: -7.2 ± 0.2 °C) (Table 3). Survival curves of feeding larvae from different 230 

treatments did not overlap (Figure 5C), whereas they did among groups of wandering larvae 231 
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overlapped (Figure 5D).  Feeding larvae show a lower LT80 when exposed to low temperatures 232 

with food than without food, whereas there is no difference for wandering larvae (Figure 5).   233 

 234 

We checked larval survival after exposing them to 0 ºC for up to 120 h. Mortality began after 235 

6 h at 0 °C in both control and FTR wandering larvae and FTR feeding larvae, but after 12 h at 0 236 

°C for control feeding larvae (Figure 6). However, mortality accumulated more slowly in FTR 237 

larvae: all the control wandering larvae died after 72 h, whereas there was still some survival of 238 

FTR larvae at the 72 h timepoint (Figure 6; Table 2). Survival was affected by the interactions of 239 

time, treatment and life stage (except treatment × stage, Table 3). 240 

 241 

To test for a rapid cold-hardening response, we exposed both FTR and control larvae to 242 

different pre-treatments followed by a 1 h exposure to a discriminating temperature.  We did not 243 

observe any increase in acute cold tolerance by either larval stage under any rearing or pre-244 

treatment condition (Figure 7). 245 

 246 

Discussion 247 

Understanding low temperature survival by D. suzukii larvae could facilitate the development of 248 

temperature-based treatment of fruit or packaging for export, and reveals the potential for D. 249 

suzukii to overwinter in the larval stage, perhaps in waste fruit in orchards and vineyards.  Here 250 

we show that third instar D. suzukii larvae are chill-susceptible, have limited plasticity of cold 251 

tolerance, and develop more slowly, but into larger adults, if reared under cool conditions.   252 

 253 

Most insects follow a ‘temperature-size rule’ such that the rate of development increases, but 254 

body size decreases, with increasing temperature (Kingsolver and Huey, 2008).  This appears to 255 
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be true for D. melanogaster (Partridge et al., 1994), and our data show it is also the case for D. 256 

suzukii. Fluctuating temperatures are most consistent with the conditions experienced in nature, 257 

and development rate increases under FTR conditions, likely because of the effects of Jensen’s 258 

inequality on development (Colinet et al., 2015). The outcomes of larval growth of Manduca 259 

sexta depend on both mean and fluctuations of temperature (Kingsolver et al., 2015), but our 260 

single fluctuating regime does not allow us to dissect these more subtle effects for D. suzukii.  261 

We did not determine whether this increased adult mass is due to increased energy reserves, as 262 

observed in adults from the D. auraria complex reared under fall conditions accumulated more 263 

triacylglycerol than summer morph flies (Ohtsu et al., 1993). If they do have increased energy 264 

stores, then this is likely due to acquisition during the larval period, since D. suzukii adults from 265 

this population that were transferred to fall-like conditions as wandering larvae did not have 266 

increased body size or triacylglycerol and carbohydrate content compared to those that developed 267 

under summer conditions (Toxopeus et al., 2016). Thus, the thermal sensitivity of larvae 268 

determines not only their cold tolerance, but also their potential performance as adults, and we 269 

speculate that in nature, the body size differences of the winter morphs likely results from larval 270 

responses, not the temperature/photoperiod effect. 271 

 272 

Similar to adults of this species (Jakobs et al., 2015), both feeding and wandering D. suzukii 273 

larvae were chill susceptible, regardless of acclimation treatment or ice nucleation environment. 274 

Chill-susceptibility appears to be the ancestral state of cold tolerance for Drosophila, and is the 275 

only strategy reported in the melanogaster subgroup, to which D. suzukii belongs (Kimura, 2004; 276 

Strachan et al., 2011). Chill susceptible insects are killed by both cold and freezing, so deliberate 277 

inoculation of ice formation is one possible way to enhance low temperature control of insects 278 

using this strategy (Strong-Gunderson et al., 1992). Because they are chill-susceptible, the SCP 279 

has limited ecological relevance (Sinclair et al., 2015), although changes in SCP can indicate 280 

modifications to gut contents (in this case perhaps explaining the shift in SCP with acclimation in 281 
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feeding, but not wandering larvae), or to other physiological parameters (Coleman et al., 2014).  282 

Larvae of some drosophilids survive internal ice formation only when it is inoculated externally 283 

(e.g. by ice in the food; Shimada and Riihimaa, 1988), however we show that externally 284 

inoculated freezing is lethal in D. suzukii, and freeze tolerance is therefore unlikely under natural 285 

conditions, as well as in the lab.   286 

 287 

Wandering larvae were more tolerant of acute cold exposure than feeding larvae, whereas the 288 

opposite was true during long-term exposure.  Acute cold exposure likely causes direct injury to 289 

cells, while chronic cold exposure appears to be more related to long-term loss of homeostasis 290 

(MacMillan and Sinclair, 2011; Rajamohan and Sinclair, 2008; Sinclair and Roberts, 2005; Teets 291 

and Denlinger, 2013).  The presence of food substantially increased acute low temperature 292 

survival in feeding larvae, possibly because the food may have substantially buffered the 293 

temperature exposure (Figure 4), effectively reducing the time for which feeding larvae were 294 

exposed to each temperature (Nedvěd et al., 1998). Wandering larvae have left the food, so even 295 

when food is present, they likely do not benefit from this buffering, which means that the 296 

presence of food cannot modify their tolerance.  Feeding larvae tolerated 0 °C for approximately 297 

40 % longer than wandering larvae, which is surprising, since we would expect wandering larvae 298 

to be more resistant to environmental conditions – including temperature – since they have left 299 

the buffered environment of the food.  Nevertheless, our results suggest that wandering larvae 300 

could be particularly susceptible to prolonged cold exposure, perhaps in the context of cold-301 

storage of fruit. 302 

 303 

Insects can increase their tolerance of low temperatures through plasticity via acclimation over 304 

long periods (including during development), or rapidly through hardening responses (Teets and 305 

Denlinger, 2013).  Acclimation responses are usually especially robust under fluctuating 306 

temperature conditions (Colinet et al., 2015), including in adult D. suzukii (Jakobs et al., 2015).  307 
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However, FTR acclimation had only a limited impact on acute cold tolerance, improving acute 308 

cold tolerance by less than 2 °C in feeding larvae when they were exposed to cold without food, 309 

but not modifying acute cold tolerance in other groups.  Similarly, we did not detect a rapid cold-310 

hardening response in acute cold tolerance; however, we did not try a range of induction 311 

conditions, and it is possible that the RCH response is only elicited at lower temperatures 312 

(Sinclair and Chown, 2006).  By contrast, FTR acclimation more than doubled survival time at 0 313 

°C in both wandering and feeding larvae.  Thus, although D. suzukii larvae appear to have 314 

limited plasticity for tolerance of absolute temperature, the limits for survival of long exposures 315 

are very plastic and need to be considered carefully when developing temperature-based 316 

treatments using mildly cold temperatures. 317 

 318 

In conclusion, we show that D. suzukii larvae are not substantially cold tolerant, and that 319 

although there is plasticity in their tolerance to prolonged low temperatures, they have only 320 

limited ability to modify their acute cold tolerance.  Thus, it could be possible to develop low 321 

temperature treatments that could control late-instar D. suzukii larvae without damaging fruit. 322 

 323 
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Figure Captions 435 

Figure 1. Identification of larval stages of Drosophila suzukii. Mouthparts of first (A), second 436 

(B), and third (C) larval instars vary in size and shape (scale bar: 50 μm). Third-instar wandering 437 

larvae (D) have well-developed anterior spiracles (scale bar 500 μm), while third-instar feeding 438 

larvae do not (not shown). Dyed food (green in colour, appears dark in figure) is apparent in the 439 

gut of larvae that are feeding, whereas third-instar wandering larvae have cleared their gut and 440 

are transluscent (E). 441 

 442 

Figure 2. Distribution of developmental time of Drosophila suzukii during different 443 

treatments. Histograms of developmental time of females (A) and males (B) reared under 444 

control conditions (white; 21.5 °C, 13:11 L:D), fluctuating thermal regime (= FTR; light grey; 445 

5.5 °C/19 °C, 11.5:12.5 L:D) and constant low temperatures (dark grey; 11 °C, 10:14 L:D). The 446 

DT80 (time at which 80% of the flies eclosed, see text for details) for the control group is 447 

represented by the dotted line, for the FTR group by the dashed line and for the constant low 448 

temperatures by the solid line.  Lines with different letters denote significantly different 449 

developmental times across both A and B (treatment: χ2= 265.48, p < 0.001, sex: W= 14510, p = 450 

0.07, treatment × sex: χ2= 268.37, p < 0.001). 451 

 452 

Figure 3.  Weight of adult Drosophila suzukii reared under different treatments. Dry mass ± 453 

SE (mg) was affected by sex and treatment of the flies (Treatment F2,314 = 4.437, p < 0.05, Sex: 454 

F1,314= 119.551, p < 0.001, Treatment × Sex: F1,314= 0.65, p = 0.523). Tukey’s HSD was run 455 

without the interaction, because it was non-significant. 456 

  457 
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Figure 3. Differences in temperatures exposure inside and outside the food. The temperature 458 

exposure during 1 hour at -9 °C in a food vial inside the food (dashed line) and outside the food 459 

(solid line). 460 

 461 

Figure 5. Survival during acute low-temperature exposure of D. suzukii larvae. Larvae 462 

reared under control (21.5 °C, 13:11 L:D) conditions or a fluctuating thermal regime (=FTR; 5.5 463 

°C/19 °C, 11.5:12.5 L:D) were exposed to a range of temperatures without food (A: feeding; B: 464 

wandering) or with food (C: feeding; D: wandering). The size of the symbols reflects the number 465 

of measurements of each group at this temperature (tubes: group of 10 larvae, food vial: group of 466 

20 larvae, control = open symbols, FTR = crossed symbols). The dashed (control) and the solid 467 

(FTR) lines are the survival curve calculated with a generalized linear model (see Table 3 for 468 

statistics). The dotted line shows 80 % mortality (LT80-1h). The grey box in C and D represent the 469 

mean SCP of the food ± SE.  470 

 471 

Figure 6. Survival during chronic cold exposure of D. suzukii third instar larvae. Larvae 472 

reared under control conditions (21.5 °C, 13:11 L:D) or a fluctuating thermal regime (FTR; 5.5 473 

°C/19 °C, 11.5:12.5 L:D) were exposed to 0 °C  for up to 120 h (A: feeding; B: wandering). The 474 

size of the symbols reflects the number of measurements of each group at this time point (n=3 475 

groups of 10, control = open symbols, FTR = crossed symbols). The dashed (control) and the 476 

solid (FTR) lines are the survival curve calculated with a generalized linear model (see Table 4 477 

for statistics). The dotted line shows 80 % mortality (Lt80).  478 

 479 

 480 

Figure 7. Survival following different short-term-hardening pre-treatments of D. suzukii 481 

larvae. Third feeding and wandering larvae that were reared under control conditions (21.5 °C, 482 

13:11 L:D; A: feeding, C: wandering) or a fluctuating thermal regime (= FTR; 5.5 °C/19 °C, 483 



20 
 

11.5:12.5 L:D; B: feeding, D: wandering) were pre-exposed to 0°C or 4 °C with one hour 484 

recovery at 21.5 °C and then exposed to temperatures close to the LT80-1h (control feeding to -4.6 485 

°C, FTR feeding to -8.7 °C, control wandering to -6.6 °C and FTR wandering to -8.8 °C). There 486 

was no difference in survival among any of the treatment groups.487 
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Tables 488 

Table 1. Supercooling points and cold tolerance strategy of third instar larvae of Drosophila suzukii. Mean ± SEM (sample size in 489 

parentheses).  Control larvae were reared under 21.5 °C, 13:11 L:D, FTR (fluctuating thermal regime) under 5.5 °C/19 °C, 11.5:12.5 L:D.   Silver 490 

iodide (AgI) was used to externally inoculate ice formation.  Groups with the same letter are not significantly different (p>0.05; Tukey’s post-hoc 491 

test); see text for statistics.  See text for rationale for determining cold tolerance strategies. 492 

Group  
Feeding  Wandering 

SCP (°C) 
Number of flies dead Cold tolerance 

strategy  SCP (°C) 
Number of flies dead Cold tolerance 

strategy unfrozen frozen unfrozen frozen 

Control  -17.6 ± 0.6b,c 

(n=35)  
5/5  5/5  chill-susceptible  -19.6 ± 0.4c 

(n=27)  
5/5  5/5  chill-susceptible 

FTR  -15.1 ± 0.7b 
(n=23) 5/5  5/5  chill-susceptible  -20.6 ± 0.5c 

(n=22) 5/5  5/5  chill-susceptible 

Control + AgI  -9.4 ± 0.9a 

(n=21) 5/5  5/5  chill-susceptible  -16.4 ± 0.9b 
(n=21) 5/5  5/5  chill-susceptible 

FTR + AgI  -8.5 ±  0.7a 
(n=18) 5/5  5/5  chill-susceptible  -14.8 ± 1.4b 

(n=17) 5/5  5/5  chill-susceptible 

 493 

 494 

  495 



22 
 

Table 2. Mortality after acute and prolonged low-temperature exposure for third feeding and wandering larvae of D. suzukii. LT80 (° C, 496 

temperature at which 80 % of the individuals die) was determined for larvae reared under control conditions (21.5 °C, 13:11 L:D) and under 497 

fluctuating thermal regime (FTR;  5.5 °C/19 °C, 11.5:12.5 L:D) that were exposed to a range of temperatures with and without food. Groups with 498 

the same letters are not significantly different from each other (see Table 4 for statistics, Tukey’s HSD). 499 

 Group Treatment  

Feeding larvae 
 

Wandering larvae 

LT80/ 

Lt80 

curve fit 
LT80/ 

Lt80 

curve fit 

Wald χ2 P  
Wald 

χ2 
p 

LT80-1h (°C) 

without food 
Control  -4.8 ± 0.3a 6.63 <0.001  -6.6 ± 0.1b 5.52 <0.001 

FTR  -8.9 ± 0.3c 6.65 <0.001  -8.4 ± 0.4c 5.75 <0.001 

with food 
Control  -8.0 ± 0.3A 10.29 <0.001  -7.2 ± 0.2B 8.67 <0.001 

FTR  -9.6 ± 0.3C 9.86 <0.001  -8.7 ± 0.3C 11.73 <0.001 

Lt80 (h) at 0°C with food 
Control  43.4 ± 2.9a 8.62 <0.001  30.7 ± 1.94 a -7.72 <0.001 

FTR  92.2 ± 7.2 b 7.83 <0.001  73 ± 5.2 b -8.28 <0.001 
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Table 3. Statistics for the generalized linear model for chronic low temperature survival 500 

of third feeding and wandering larvae of D. suzukii reared under different conditions. 501 

The generalized linear model was calculated with a binomial error distribution and logit link 502 

function (fit was tested with Wald’s χ2). Bold P-values indicate a significant effect of the 503 

model term on survival.  Treatments are rearing under control conditions (21.5 °C, 13:11 L:D) 504 

or a fluctuating thermal regime (FTR; 5.5 °C/19 °C, 11.5:12.5 L:D), and we used two life 505 

stages, feeding and wandering 3rd instar larvae.  506 

 507 

  508 

Term Group 
without food  with food 

Acute cold model Wald χ2 P  Wald χ2 P 
 Temperature 6.63 < 0.001  11.586 < 0.001 
 Treatment 2.77 < 0.01  5.075 0.222 
 Life stage 4.23 < 0.001  6.231 < 0.01 
 Temperature × Treatment 0.47 0.636  3.003 0.578 
 Temperature × Life stage 3.26 < 0.01  5.852 < 0.01 
 Treatment × Life stage 3.75 < 0.001  5.962 < 0.01 
 Temperature × Treatment × Life stage 2.9 < 0.01  5.344 < 0.01 
Chronic cold model      
 Time    8.62 <0.001 
 Treatment    0.37 0.713 
 Life stage    1.99 <0.05 
 Time × Treatment    3.88 <0.001 
 Time × Life stage    3.12 <0.01 
 Treatment × Life stage    1.73 0.084 
 Time × Treatment × Life stage    2.52 <0.05 
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Figures 509 

Figure 1 510 

 511 
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