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Abstract

The traditional reference evaluation method treats all citations equally. However, a citation can
serve various functions. It may reflect the citing paper author’s motivation as well as his/her
true attitude towards the cited paper. Investigating such information can be achieved through
citation content analysis.

This thesis develops an 8-category classification scheme on citation function and polarity to
help understand what role a citation played in scientific papers. A biomedical citation corpus
is annotated with this scheme and experimented with supervised machine learning methods.
Several types of features that capture the characteristics of citation sentences are extracted by
natural language processing techniques to serve as the inputs of automatic classifiers. The
importance of cue phrases in citation classification is also addressed and discussed.

Keywords: citation classification, citation function categorization, sentiment analysis
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Chapter 1

Introduction

A citation is a reference or link between the current research work and previous studies. In
general, it serves several important purposes: first, it can check an author’s academic honesty,
that is, to avoid plagiarism; second, authors use citations to show research background and the
preparation they made for the current work, or to validate or dispute the previous research;
third, the later researchers or readers can learn about the evolution of a specific research field,
or get inspired for their own works.

The importance of an article is usually evaluated by the number of times it is cited, thus the
early studies of citation analysis focused more on citing frequency and other citing statistics,
and treated all citations equally [42]. However, with the fast development of Internet and
digital technology, more and more academic documents become available in electronic format
and easy for people to access. Retrieving an expected document based on citing frequency and
standard citation indexes seems not as efficient and accurate as before. Moreover, having lots
of retrieved documents will cost readers much time to find the expected information. For these
reasons, it is necessary to filter the documents according to the functions of citations, and link
the related articles that meet a reader’s specific needs by building a citation-based network.

A series of citation classification schemes have been proposed and developed since the last
century. Garfield [19] stated 15 reasons for researchers citing other people’s work. His work
laid the foundations for citation motivation and function studies. Later, Lipetz [27] developed
a scheme of 29 categories to describe the relations between citing and cited documents. To
improve the efficiency of classifying massive data with computer technology, more and more
researchers focus on developing a scheme that can be easily adapted by automatic classifiers.

In recent years, citation polarity classification (or citation sentiment analysis) gradually
became a popular topic in citation classification. Analyzing the sentiment of a citation may
reveal an author’s true attitude towards a cited paper, giving readers a more intuitive judgment
and helping them to filter out the articles they don’t need. In the biomedical domain, citation
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2 Chapter 1. Introduction

sentiment analysis has much potential "to detect non-reproducible studies" [44]. For example,
it can help prevent wasting resources on expensive but unnecessary medical tests.

However, detecting the sentiment of a citation is relatively difficult, compared with sen-
timent analysis on movie or product reviews. The main reason is that citation sentiment is
often hidden due to academic writing style which restricts authors to express obvious personal
opinions in order to prevent bias and stay objective. A comparison of a movie review and a
scientific citation is given below:

Movie review:
The film contains no good jokes, no good scenes, barely a moment when Car-
vey’s Saturday Night Live-honed mimicry rises above the level of embarrassment.
Citation:
Lyapina et al. recently demonstrated that partially purified CSN promotes the
cleavage of Pcu1p-Ned8p conjugates in vitro [10], but it remained unclear whether
the enzymatic activity is contained within one of the CSN subunits or a tightly as-
sociated peptidase.

Both the movie review and the citation demonstrate negative polarity, but the sentiment in
the movie review is more straightforward and stronger, while the citation shows this negativity
in a subtle way. This is because in scientific writing, authors tend to use rhetorical techniques to
cover such negative opinions. The highlighted phrase “remain unclear” in the citation sentence
gives readers a hint about the author’s true attitude towards the cited paper, thus we can treat
such a phrase as a “cue phrase”.

In this thesis, I define the words or phrases that express the polarity of a citation or imply
the relationship between citing and cited works as cues. The term “cue phrase” represents
both a single word and a word phrase in most chapters. The main tasks of this thesis are to
propose and test an automated classification scheme of citation polarity and function, as well
as to investigate the importance of fine-grained cue phrases.

The terms “polarity” and “sentiment” have almost the same meaning, except that “senti-
ment” implies the object of discussion is the author’s opinion and contains more emotional
reactions, while the object of “polarity” is usually the texts. Therefore, I will use “polarity”
when describing the citation content and “sentiment” for mentioning the authors’ opinions.

This thesis is structured as follows: Chapter 2 reviews the background literature in ci-
tation polarity and function classification. Chapter 3 compares several previous classification
schemes and proposes a new categorization scheme. Chapter 4 describes the biomedical corpus
used in this research as well as the automatic extraction method for cue phrases. In Chapter
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5, I will extract features and apply machine learning methods on the annotated corpus. The
experimental results will be presented showing the importance of cue phrases in automatic ci-
tation classification. The final chapter summarizes the research work that has been done for
this thesis as well as providing some conclusions. It also discusses some potential future work.



Chapter 2

Literature Review

In traditional citation analysis studies, researchers tend to focus only on citation statistics and
assign the same weights to all citations. However, with the greatly increased number of aca-
demic publications over the past few years, this method has becs ome quite limited. Investi-
gating what role a citation plays in research output evaluation provides a more comprehensive
scope, and gradually has become main stream in citation analysis.

To begin with, Section 2.1 reviews the foundations of syntactic and semantic citation analy-
sis in early studies, and discusses several general citation classification schemes. Then, Section
2.2 explores different schemes of citation function/motivation classification developed using
computational linguistics approaches, and compares them with the manual approach to identify
the advantages from both. Section 2.3 describes some of the semi-automatic citation polarity
classifiers built with machine learning algorithms and the features extracted from citation con-
tent. Section 2.4 discusses citation polarity classification in the biomedical context together
with other linguistic-related citation analysis.

2.1 Foundations and General Classifications

Through the manual examination of a small set of papers, Voos and Dagaev (1976) [42] found
there were more highly cited papers in the introduction section than other parts of the citing
work. They came to the conclusion that it is possible to evaluate the importance of a citation
to the citing work by using both citing frequency and the location information. This is the first
finding that addressed the problem of treating all citations equally.

Later syntactic research works, such as Maričić et al. (1998) [30], used a larger corpus
to conduct location-based frequency calculation, and found that the introduction section con-
tains less meaningful citations than the methods, results and discussion/conclusion sections.
Similarly, Suppe (1998) [38] claimed that the sections about methods and data are more im-
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2.2. Citation Function and Polarity Classification 5

portant because the explanations inside these sections demonstrate whether a new finding can
be integrated into the knowledge base and promote the evolution of a specific field.

The 1960’s saw the beginning of semantic analysis which gradually became the dominant
methodology in citation content studies. Garfield (1964) [19] was the first to suggest further
investigation in citation motivation. He listed 15 reasons why authors cite previous works,
which can be seen as a generalized classification scheme. These reasons were frequently used
by later researchers to identify semantic citation characteristics, along with Lipetz (1965)’s
[27] 29 categories on relationships between citing and cited articles.

Moravcsik and Murugesan (1975) [33] explores quantitative measurements of the values
of cited works. They proposed a citation motivation scheme that divides citations along four
dimensions: conceptual or operational, organic or perfunctory, evolutionary or juxtapositional,
confirmative or negative. Moreover, during their exploration, Moravcsik and Murugesan found
40% of citations are perfunctory, “which casts further doubt on the citation-counting approach”
[39].

A more recent work, Jochim and Schütze (2012) [24], adopted Moravcsik and Murugesan’s
scheme and developed a four-faceted set composed of CONC_OP, ORG_PERF, EVOL_JUX
and CONF_NEG. It is noted that this set has no undefined facet, in other words, it avoids
a neutral class in classification and makes full use of neutral citations. Combined with fine-
grained features and machine learning algorithms, they conducted an automatic classification
on a large citation corpus and obtained state-of-the-art performance.

Another noticeable classification was from Spiegel-Rösing (1977) [37], which addresses
citation evaluative use and citation content. They used a 13-class scheme to manually classify
2309 citations extracted from science articles. The results indicate 80% of citations substantiate
a statement or point to further information, and only 0.8% contains criticism.

In summary, the early studies of syntactic and semantic citation content analysis mainly
relied on manual examination of a small corpus or conducting surveys, and the classification
schemes proposed during this time are mostly generalized. Although the findings were limited
and the methods were not very efficient, these studies provide theoretical foundations in citation
content analysis and shed light on later more fine-grained classification.

2.2 Citation Function and Polarity Classification

Citation function classification has been extensively explored since the last century, researchers
from various scientific domains have proposed different approaches to investigate and describe
the nuances among citation functions. Some of these nuances differ on subtle emotions that
may represent authors’ true opinions towards the cited works. Therefore, such emotions are
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identified as citation polarity and were also categorized by researchers when classifying citation
functions, although more in an auxiliary way.

According to Ding et al. (2014) [16], there are two major approaches to map the proposed
classification schemes to citation corpora. The first approach, which was used more frequently
by earlier studies, extracts fine-grained cue words or phrases based on linguistic rules and
the classification scheme then makes a decision tree of these cues to classify citations. The
second focuses on applying machine learning methods, such as Support Vector Machine [13]
or Naïve Bayes [32], to build different classifiers and classify citations based on extracted
features. Though the second approach can deal with larger corpora, it also integrates linguistic
knowledge and hand-crafted rules to reduce the generated noise during the feature extraction
process.

Garzone (1997) [20] introduced a cue phrase based citation function classification scheme
in which he broke down citation content into 35 categories. This scheme amalgamated several
other schemes and gave special attention to Finney’s because of its applicability and insights.
However, Garzone also identified two limitations of Finney’s scheme, that some citation func-
tions were not covered at all, while many existing categories of this scheme are too broad
to capture the nuances inside citation functions. In consideration of these shortcomings, he
further divided citation functions into more categories, which resulted in ten top-level types:
negational, affirmational, assumptive, tentative, methodological, interpretational/developmen-
tal, contrastive, future research, use of conceptual material and reader alert. It is noted that this
original proposed scheme contained 34 categories instead of 35, and it was later modified to
match semantic parsing rules for cue phrase extraction.

After the original citation function scheme was developed, Garzone implemented an auto-
matic citation classifier using computational linguistics techniques. The most important com-
ponent of this classifier is a semantic parser, which consists of 195 lexical matching rules and
14 parsing rules and was used to find cue phrases in citations. Other main components are
a tagger and a syntactic parser, working together to find the parts of speech for each citation
sentence. Eight physics articles and six biochemistry articles were randomly chosen from sci-
entific journals which contain a total of 547 citations from 419 citation sentences and served
as the development data set; three physics articles and three biochemistry articles were ran-
domly picked from the same pool, and served as the test data set. Then the classifier was
tested on both development and test data sets, and was tested by locations in the article sepa-
rately. The classification results showed it has good performance on the previously seen data
set but fair performance on the previously unseen biochemistry data set. The physics articles
got poor performance because of their less well-defined structure. Thus, Garzone suggested
several ways to improve automatic classfication, including using appropriate machine learning
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techniques to augment the lexical and grammar rules, and improving the section determination
algorithm. Other similar studies, such as Nanba et al. (2000) [34] also conducted cue phrase
and location-based citation function classification, and the results were not quite satisfactory
as well.

The automatic approach and a scheme for citation function classification were also well-
studied by another researcher, S. Teufel. In her early works, Teufel found the diverse writing
styles of authors from different fields were related to different article sections, and she divided
the sentences where authors’ arguments appeared into 7 categories: background (generally
accepted background knowledge), other (specific other word), own (own work method, results,
future work), aim (specific research goal), textual (textual section structure), contrast (contrast,
comparison, weakness of other solution) and basis (other work provides basis for own work).
This classification scheme was further studied and extended to 12 categories in her later work.

In Teufel et al. (2006a) [39], which is one of her most prominent works in citation con-
tent analysis, she and her colleagues compared several citation function schemes from the last
century, and argued that most of them are too sociologically oriented thus hard to operational-
ize without expert knowledge of sociology and apply in other fields. Then, Teufel adapted
Spiegel-Rösing’s 13-category scheme as it is more flexible and generalized on most articles,
and proposed her own citation function annotation scheme, which is designed for information
retrieval applications and consists of 4 top-level types of 12 categories.

Though this scheme is detailed and intuitive, Teufel mentioned several potential problems
for annotating citations. Firstly, it may be difficult for annotators to interpret authors’ intentions
on citations. To deal with this, Teufel encouraged annotators to understand citation texts at
a general level instead of using further knowledge of a specific field or of the authors, and
assigning a particular function only when there is textual evidence found. Secondly, in general
authors do not state their purpose clearly and express their opinions, especially negative ones,
with hedges. Moreover, it is also particularly hard to distinguish the usage of a method in the
citations that state a similarity between a method and the author’s own method, and hard to
distinguish between the continuation of a previous research and simply referring to it, as well.
These difficulties were given special attention later when I annotated my own citation corpus.

This annotation scheme was preliminarily tested using inter-annotator agreement, that is,
three annotators manually annotated a corpus of 26 articles with 548 citations extracted from
computational linguistics journals. The results showed good performance on overall distinc-
tion, which implies this scheme is well-defined and reliable, although some semantic cate-
gories, especially PSup (cited work supports or is supported by citing work) and PBas (citing
work is basis for citing work), were less well-understood by annotators due to different subjec-
tive judgments on citations. For the machine learning test, a larger corpus of 360 articles from
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the same domain was prepared. Similar to Garzone’s research, Teufel also used cue phrases
in citation classification, but as sentence features. Other features are verb tense and voice,
modality of main verbs, locations of citation sentences and self-citations. A k-nearest neighbor
classifier with 10-fold cross-validation was employed and tested on extracted citation features.
The classification results scored at 79% overall accuracy for four top-level citation function
classes and 83% for three sentiment classes (weakness, positive, neutral), demonstrating a
strong relationship between citation function and sentiment classification.

Compared with previous citation function and polarity studies that focused on finding a
well-defined classification scheme, Abu-Jbara et al. (2013) [1] is concerned more about clas-
sification approaches. In this research, Abu-Jbara and his colleagues developed a six-category
citation function classification scheme, which was mainly chosen from Spiegel-Rösing’s 13
categories, Teufel’s 12 categories and Nanba’s 3 categories (Basis, Comparison, Other), in or-
der to better serve bibliometric measures and applications. The six categories are criticism,
comparison, use, substantiation, basis and neutral. The data sets used for experiments are
composed of 3271 citations extracted from the ACL Anthology Network corpus, and were
annotated with respect to polarity and purpose. To prepare the data, they firstly used regular
expressions to find references and replaced them with placeholders, then identified grouped
references, and applied a rule-based algorithm to remove non-syntactic references.

In addition, Abu-Jbara and his colleagues took citation context into consideration to im-
prove classification accuracy. Before classifying citations, they employed a Conditional Ran-
dom Fields (CRFs) model, which was trained on structural and lexical features of citation
sentences, to sequence-label a window of four sentences as citation context. Then several
classifiers including SVM, Logistic Regression (LR) and Naïve Bayes were built to classify
citation polarity and functions separately. It is noted that the authors used a binary classifi-
cation scheme for citation polarity, that is, citations were classified as Polarized (Subjective)
or Neutral (Objective) at first, then subjective citations were classified as positive or negative.
According to the classification results, lexical features that characterize the words surround-
ing the citation are more important, and identifying citation context enhances the detection of
polarized citations as well as classification accuracy.

Similarly, Hernández-Alvarez et al. (2017) [22] also applied citation context to citation
classification. They defined the citation context for a citation as the sentence that contains the
reference together with its adjacent sentences. Unlike Abu-Jbara’s automatic detection method
using CRF, Hernández-Alvarez and her colleagues instructed several annotators to manually
detect the citation context. Through several experiments, they determined the suitable window
size of context is one, two or three sentences, with one-sentence contexts being the majority
window size in their corpus. Therefore, I have set the window size of citation context as one
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sentence in this thesis, that is, the sentence that contains the reference.

A novel aspect of the research in Hernández-Alvarez et al. (2017) is their incorporation
of INFLUENCE as a third dimension to their citation classification scheme in addition to ci-
tation function and polarity. They proposed three categories for INFLUENCE: perfunctory,
significant positive, and significant negative. Their citation function and polarity classification
scheme consists of 4 top-levels with 8 categories, which are USE (based on, supply, useful),
COMPARISON (contrast — comparison results are positive, negative and neutral), CRITIQUE
(weakness, hedges) and BACKGROUND (acknowledge, corroboration).

To improve the consistency and accuracy of annotating with this scheme, they arranged a
pre-annotation of cue words and phrases to help annotators assign a particular function and
polarity category to a citation. This pre-annotation step is useful to some extent for solving the
annotation problems previously mentioned in Teufel et al. (2006a). After obtaining the manual
function and polarity classification, Hernández-Alvarez and her colleagues also processed the
corpus with other citation information, such as frequency of citations found in each location
and an influence classification measure obtained from a survey conducted on some authors. In
this way, the whole corpus was deeply annotated in three dimensions and well-prepared for
later automatic influence classification.

With more and more fine-grained citation polarity and function classification schemes be-
ing further examined and well studied, there has been growing interests in citation polarity
(originally referred to as “sentiment”) classification and it gradually became an independent
topic in citation analysis research. In the next section, I will describe several prominent studies
on citation sentiment analysis conducted with machine learning methods, and compare their
approaches on detecting and extracting sentiment features from citation texts.

2.3 Citation Sentiment Analysis

In contrast with the prevailing opinion that all citations should be evaluated with the same
weights, Bonzi (1982) [8] argued that if a cited article was criticized by an author in his/her own
work, as a result, there should be allowed lower or negative weights for the criticized article
during bibliometric measurement. This modified evaluation could be achieved by detecting
citation sentiment manually, or better, with automatic methods.

Furthermore, citation sentiment detection provides researchers a particular approach to de-
tect the potential problems inside academic papers. It could also be used as a reference in
scientific summarization, recognizing the hidden issues and gaps of current works, thus help-
ing people get better research directions. However, as previously mentioned, detecting the
sentiment of a citation is a challenging task since the sentiment is often hidden. Citation sen-
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tences are often objective and neutral, and authors are especially cautious about criticism and
hedge negative sentiment within contrastive terms.

The traditional and common approach for classifying sentiment is to score the sentences
with a labeled lexicon. However, this approach was considered highly topic-related and cannot
provide a generalized sentiment classifier that is applicable in different domains. To deal with
this narrow scope problem, researchers who work on movie review sentiment analysis built
several machine learning classifiers that take sentence structure-based features as inputs, and
achieved good performance on automatic sentiment classification.

Athar (2011) [3] focuses on identifying citation sentiments with automatic methods. In
this research, the author claims that although the good classification results of classic senti-
ment analysis based on movie or product reviews seem promising, a well-defined automatic
sentiment detection system developed from this genre might not perform well in the scien-
tific domain. This is because sentiments in scientific articles are often hidden deeper, and the
science-specific terms and technical terms, which play a major role in scientific writing, carry
sentiments as well. Moreover, citations have a wider range of influence that may vary from a
single sentence to several paragraphs, thus it’s more difficult to capture all of the sentiments for
a specific citation.

Considering these potential problems, Athar conducted experiments on various sentence
features. He firstly extracted 8736 citations from 310 research papers in the natural language
processing domain to create a new sentence-based corpus, and processed it with regular ex-
pressions to replace the citation text that contains authors’ proper names with a special token,
in order to remove any lexical bias. After labeling the corpus as positive, negative or objective,
he found it is heavily skewed as subjective citations only occupied 14% of the corpus. This un-
balanced sentiment ratio problem was later alleviated by sentiment context detection methods
proposed in Athar and Teufel (2012) [5]. In the next step, he represented each citation with a
feature set as input for a Support Vector Machine (SVM) system. This feature set consists of
word level features, contextual polarity features and sentence structure features.

His classification results showed that only n-grams and dependency features have an ob-
vious effect on citation text, and the negation window improved the performance but not in a
significant way, which is possibly due to the skewed sentiment class distribution. Later, this
classification system was tested on a subset of the data from the citation function corpus used
in Teufel et al. (2006a, 2006b). The not satisfying results indicated that citation sentiment
classification is different from citation function classification.

Not long after Athar’s original research, Athar and Teufel (2012) [5] claimed that sentiment
analysis should take citation context into consideration. They employed a four-class scheme
for annotating the corpus, in which every sentence that is in a 4-sentence window of the citation
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and does not mention the citation directly or indirectly was labeled as x, and the rest of the sen-
tences in that window were labeled as positive p, negative n or objective/neutral o, respectively.
Moreover, if a sentence contains multiple sentiments, then it will be labeled with the class of
the last mentioned sentiment. With this scheme, the number of subjective sentiment instances,
especially negative sentiment, in the corpus, which is a subset of the data in Athar (2011), is
greatly increased. However, their annotated dataset is still inevitably skewed as there are many
more objective sentences than subjective ones in general.

In the next stage, Athar and Teufel took ten different context-related binary features as a
feature set for each citation. These binary features were later summarized in Athar’s PhD the-
sis [4] as formal citation, author’s name, acronyms, work nouns, pronouns, connector, section
markers, citation lists, lexical hooks and n-grams. Then they input these features to a SVM
classifier and compared it with an n-gram only baseline system. They also built another base-
line system using n-gram and dependency features, which are proved to be the most useful
features in Athar (2011), to explore the effect of this context detection scheme. The results
showed their SVM classifier outperformed the baseline systems in all evaluation aspects of
citation sentiment classification. Therefore, we may infer that ignoring the citation context
would lead to a loss of sentiment in the citation corpus, especially for the negative ones.

Most automatic citation sentiment analyses in the literature were conducted on a corpus
extracted from the natural language processing domain. Since this thesis uses a biomedical
corpus for citation analysis, it is necessary to address some biomedical specific approaches.
However, there are very few studies about citation sentiment analysis in the biomedical do-
main, and most of them used a manual and exhaustive approach to analyze sentiment in the
biomedical citations, such as Yu (2013) [45], which I will mention in the next section.

One of the first studies that applied automatic sentiment classification on biomedical ci-
tations is Xu et al. (2015) [44], in which the authors created and annotated a citation corpus
composed of clinical trial papers. The authors state that analyzing biomedical citation senti-
ment may provide a potential application to detect non-reproducible studies thus avoid wasting
resources. They constructed a biomedical corpus containing 4182 citations extracted from the
discussion section in 285 randomly selected clinical trial articles, since the citations that con-
tain author’s opinions or sentiment were mainly found in the discussion section, according to
their examination. For corpus annotation, they proposed a decision tree strategy of a series of
binary questions for annotators to answer, in which will result a sentiment label assigned for a
single citation.

To improve the classification accuracy, the authors employed citation context detection
both in corpus annotation and sentence feature extraction phases with a rule-based method and
a set of cue phrases. There were three categories of features extracted from citation contexts:
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word n-gram features, sentiment lexicons and sentence structural features. These features were
merged into a feature vector for each citation context, as the input for an optimized SVM
classifier. During the experiment, different combinations of features were tested, and the clas-
sification results showed the combination of all features reached the best overall performance
and scored the highest F-value for each sentiment class. This may indicate that using automatic
methods to analyze citation sentiment in biomedical domain is plausible and promising. How-
ever, the skewed corpus and fair inter-annotator agreement imply that this task still remains
challenging, even for domain experts.

2.4 Other Related Studies

Besides the previously described studies on citation polarity and function classification, there
are some other research works that are worth mentioning.

In Mercer and Di Marco (2003) [31], the authors extended the ideas in Garzone (1997)
by claiming that the fine-grained cue phrases within citation sentences play a crucial role in
citation function categorization. They reviewed Garzone and Mercer’s “pragmatic grammar”,
which aims to represent the characteristic structural patterns in each citation function category,
by using cue phrase-based lexical rules and grammar-like rules that can handle more compli-
cated patterns. As a direct contrast to Garzone and Mercer, according to the authors’ view,
Teufel casted doubts on the existence of fine-grained cue phrases in citation contexts, and fur-
ther questioned the applicability of automatic methods for detecting these cue phrases if they
do exist.

Though Teufel held an opposite opinion, Mercer and Di Marco thought her claims may im-
ply the importance of cue phrases and the possibility of detecting them by automated means.
Taking her claims as a starting point, the authors first reviewed previous studies of discourse
analysis and rhetorical relations, to get theoretical support for cue phrase identification. Then
they created a corpus consisting of 24 scientific articles for analyzing the frequency of cue
phrases in three components, which are full text body, citation sentences and citation win-
dow. The results showed cue phrases do exist in citation contexts and the distributions vary
among locations. Moreover, the automatic detection of these cue phrases have been previously
documented in some studies, which supports the authors’ assumption that cue phrases can be
extracted by computational methods. This discourse analysis confirms the significance of cue
phrases and their applicability in citation function classification.

A more-recent study Bertin et al. (2016) [7] investigates the linguistic patterns and rhetori-
cal structure of citation contexts by applying n-grams. Their n-gram extraction results provide
evidence for Mercer and Di Marco (2003)’s statement that cue phrases exist in citation context
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and can be extracted automatically. However, the authors also identified several limitations
of automatic classification, such as difficulties in distinguishing citation functions and estab-
lishing a one-to-one relationship between trigram-patterns and common-word classes, which
might be solved by detecting more significant surface patterns.

Although the automatic classification of citation function and polarity is dominant in cur-
rent citation analysis studies, some researchers argue that the present automatic approach may
not reflect the true behavioral patterns of authors in citing articles, thus not meeting users’
unique needs in assessing citations. To amend this gap, Yu (2013) [45] reviewed several publi-
cations on manual approaches to detect citation bias in the biomedical domain, and compared
the methodological differences between automatic analysis and biomedical researchers’ meth-
ods. He mentioned that current automatic classification mainly focuses on creating a typology
of citation functions, while no one investigated whether these schemes are really needed to
assist researchers in literature review. After examining all citations in six papers, Yu found
there were linguistic cues existing that are helpful for classifying citations and could be identi-
fied by computer. However, some citations do not contain any explicit cues or require domain
knowledge to make decisions, which makes it a challenging task for computers in the automatic
reasoning process. Yu concluded that citation sentiment strength and validity should be given
more attention during analysis. This may indicate that the future works on citation function
and polarity should integrate more human efforts and domain knowledge to help improve the
accuracy of automatic citation classification and fulfill researchers’ specific needs in obtaining
comprehensive information from prior literature.

2.5 Summary

This chapter firstly describes the theoretical foundations of syntactic and semantic citation con-
tent analysis, and introduces several general citation classification schemes from early research.
Then the studies on citation function and polarity classification are highlighted, in which both
rule-based and automatic approaches for mapping the schemes to corpora are compared and
discussed. Spiegel-Rösing’s, Teufel’s and Garzone’s classification schemes are given special
attention since they inspired the scheme proposed in this thesis. The citation sentiment anal-
ysis section mainly investigates Athar’s automatic classification on citation sentiment, which
involves sentence-structure feature extraction and supervised machine learning methods. The
disadvantages in Athar’s experiment were later amended by his co-works with Teufel, which
improves the classification accuracy with citation context detection. A citation sentiment study
in the biomedical domain was examined closely to meet the specific needs for this thesis.
Lastly, another two studies provide evidence for the importance of fine-grained cue phrases
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in citation classification, and demonstrate possible automatic methods for cue phrase extrac-
tion. A comparison between manual and automatic citation sentiment analysis points out the
shortage in current research and suggests what researchers should emphasize in future works.



Chapter 3

Design of A Citation Function and
Polarity Scheme

This chapter briefly discusses several citation function and polarity classification schemes from
previous studies, and proposes a new 3-dimensional scheme that combines advantages of other
schemes. Garzone’s [20] and Teufel’s [39]schemes are given special attention since Gar-
zone’s is the most comprehensive and fine-grained, and Teufel’s is well-adapted from Spiegel-
Rösing’s [37] scheme and augmented for automatic classification.

3.1 Previous Schemes and Their Limitations

Spiegel-Rösing’s 13-category scheme is widely adopted by many later researchers due to its
reasonable categorization and easy operationalization. It addresses citation evaluative use and
citation content, thus several categories are defined together for concepts, methods and data
from the cited source that are applied in the citing article. However, these categories, such as
“cited source contains the data which are used sporadically in the article” and “cited source con-
tains data and material which is used sporadically in the citing text, in tables or statistics” have
a large overlapped portion and could be grouped into one summarized category. In addition,
a citation may be assigned more than one category according to the categories’ descriptions.
For example, “cited source is positively evaluated” and “cited source is negatively evaluated”
examine citations’ polarity which could be on top of other citation function categories.

Teufel modified Spiegel-Rösing’s scheme and proposed 4 top-level groups composed of 12
categories in total. She inherited the two polarity categories, changing the negative label to
weakness, and also added two more classes: contrast and neutral. The contrast top level di-
vides the comparative part from Spiegel-Rösing’s scheme into four categories, which not only
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capture the distribution of comparison/contrast in different article sections, but also distinguish
compare/contrast explicitly or implicitly. The categories in Spiegel-Rösing’s scheme that clas-
sify the usage of data, methods, concepts of the cited article are merged and redesigned as six
categories in Teufel’s scheme. However, some of them caused much confusion during the an-
notation process since understanding an authors’ interpretation of source content is subjective
thus different annotators may have a variety of judgments. For instance, it is hard to distinguish
whether the author just simply uses data or methods from previous research, which is defined
as the PUse category, or takes cited content as starting point, which is defined as PBas. These
categories are merged into one category in my own scheme.

Garzone’s 35 categories provide a comprehensive scope of citation classification. This
fine-grained scheme covers almost all possible citation functions and gives a clear description
for each category. Some categories also define the degrees of an author’s sentiment towards
the cited source, such as “citing work totally confirms cited work” and “citing work partially

confirms cited work”. However, this is also a disadvantage for corpus annotation since the
sentiment degrees mainly depend on the annotators’ subjective judgments thus are difficult to
be measured quantitatively. Another novel design of this scheme is it implies citing directions
between citing and cited works, such as “citing work is totally supported by cited work”, in
which the direction points from the cited work to the citing work. Such direction information
is particularly useful for identifying criticism from the citing work’s author, as a cited article
is not able to criticize an unfinished or unpublished paper (the citing work) due to the logic of
time. In this thesis, the citing directions are adopted as one dimension of my own classification
scheme.

Although Garzone’s scheme elaborately describes the relations between citing and cited
work, it is not flexible for automatic classification. Many of the categories have small differ-
ences that are difficult even for human annotators to identify, such as “general background”
and “specific background”, thus such nuances are extremely hard to be recognized by current
computational linguistics techniques. Furthermore, some categories are unnecessary for inves-
tigating citation relations and could be merged into one class. A proof for this statement is cue
phrases are missing in many categories during Garzone’s extraction process on test dataset.

To meet the specific needs of automatic citation classification, Abu-Jabara summarized the
characteristics of previous schemes and reduced the number of citation function categories to
six [1]. These categories are selected for improving bibliometric measures and generalized for
a computer program to recognize sentence features. The citation polarity annotation scheme
is a two-step method, in which it firstly distinguishes neutral or subjective citations and then
classifies subjective citations as positive or negative. Though this method helps improve senti-
ment annotation accuracy, citation function and polarity are not cross-classified thus correlation
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information is lost.

3.2 The Proposed Citation Classification Scheme

As mentioned in previous section, the scheme proposed in this thesis is adapted from former
empirical works in content-based citation analysis. This scheme is designed in three dimen-
sions: citation function, citation polarity and citing directions. In line with most of the previous
schemes, the three polarity classes are on top of 8 citation function categories, as listed below:

• Positive: author of the citing paper agrees with or makes use of opinions/theories/data in
the cited paper (2 categories)

• Negative: author of the citing paper disputes opinions/theories/data or pointed out a
weakness the in cited paper (2 categories)

• Neutral: author of the citing paper shows neither positive nor negative sentiment towards
the cited paper, or the cited content functions differently from the two classes stated
above (4 categories)

The citing direction dimension is inspired by Garzone’s scheme and is designed to be inter-
twined with the other two dimensions in this thesis. It provides directional information about
the relationship between the citing and cited paper as well as a particular method to recognize
the criticism hidden in the citing paper author’s rhetorical hedges. Similar to citation polarity,
the citing direction dimension also has three classes, which are shown as followings:

• citing-to-cited: the citing work refers to/confirms/disputes cited work (4 categories)

• cited-to-citing: Data/results from cited work supports/proves the citing work (1 category)

• no direction: the cited work states facts/problems, or compares with other cited works,
thus has no interaction with the citing work (3 categories)

The function dimension is mainly governed by polarity and direction dimensions, although
citing directions do not exist in every function category. Each category is presented below with
an example citation sentence serving as a further clarification for category description.

Neutral Type Categories
1. Perfunctory/Background
This category is merged from the categories that introduce background knowledge in Teufel’s

and Garzone’s schemes. It describes the situation in which the citing article refers to method-
s/data/theories/statements of the cited article as general introduction, and the cited content is
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not analyzed or compared with other studies or the citing article. The citing direction for this
category is citing-to-cited. Example:

As previously reported [11], the H. pylori arginase in the E. coli model (pBS-
rocF) displayed optimal catalysis with cobalt at pH 6.0.

2. Statement
This category is newly designed in this scheme. It describes the situation in which the cited

work states results/phenomena/data and has no interaction with the citing work. There is no
citing direction in this category. Example:

Snyder et al. [29] concluded from electron density profiles of LPS R60 that its
charges are located mainly in two distinct planes which are separated by a distance
of 1.1 nm.

3. Comparison
This category is a merger of the comparison categories in Teufel’s and Garzone’s schemes.

It describes the situation in which the citing work compares methods/experimental results from
its own research with those from cited work. It it noted that this comparison does not contain
any affirmative or negative sentiment towards the results. The citing direction for this category
is citing-to-cited. Example:

The Km glyoxylate (70 µM ), Km acetyl CoA (12 µM ) and Vmax (16.5 µmol/mg
MSG) of the P. aeruginosa PAO1 MSG are comparable to those of other malate
synthases available from literature (Table 1, [16-21]).

4. Multi-comparison
This category is newly designed in this scheme. It describes the situation in which the citing

work demonstrates a comparison of results/data among several cited works, in which results
from its own research is not involved. There is no citing direction in this category. Example:

This is a departure from several earlier studies relating to HSF1 phosphorylation,
including one from our own group [28], in which studies exogenous HSF1 forms
were substantially overexpressed.

Positive Type Categories
5. Confirmation
This category is adapted from the positive type in Teufel’s scheme. It describes the situation

in which the citing work confirms or extends statements/results/theories from the cited work.
The citing direction for this category is citing-to-cited. Example:
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The overall affinity determined in the present study for Cry1Aa to BtR175 (2.6
nM) agrees well with the findings of Ihara et al. [16] by a different assay (0.8
nM).

6. Being-confirmed
This category combines the strongly and weakly affirmative categories in Garzone’s scheme.

It describes the situation in which the citing work is confirmed/supported/boosted by data/the-
ories/statements from the cited work. The citing direction for this category is cited-to-citing.
Example:

In support of our interpretation, Rilling et al. [57] reported that protein preny-
lation in Chinese hamster ovary cells can vary as a function of the extracellular
mevalonate concentration.

Negative Type Categories
7. Contrast/Conflict
This category is adapted from the contrastive type in Teufel’s scheme. It describes the

situation in which the citing work has different results/opinions or disputes the cited work. The
citing direction for this category is citing-to-cited. Example:

This finding contradicts a previous study showing direct binding of SET/TAF-Iβ
to the H3 N-terminal tail, which is disrupted when the tail is modified [34].

8. Unsolved
This category is newly designed in this scheme. It describes the situation in which the cited

work has unclear results or statements that remained controversial even after the citing work is
finished or published. This category has no citing direction. Example:

Lyapina et al. recently demonstrated that partially purified CSN promotes the
cleavage of Pcu1p-Ned8p conjugates in vitro [10], but it remained unclear whether
the enzymatic activity is contained within one of the CSN subunits or a tightly as-
sociated peptidase.

3.3 Summary

In this chapter, I compare and discuss several citation classification schemes of Spiegel-Rösing,
Teufel, Garzone and Abu-Jabara. Both advantages and disadvantages of their schemes are iden-
tified, which have inspired my own classification scheme. Some of the categories from previous



20 Chapter 3. Design of A Citation Function and Polarity Scheme

schemes, such as those dealing with data and concepts, are amalgamated and redesigned to fit
the automatic classification approach. Besides citation function and polarity dimensions, my
scheme takes citing direction as an extra dimension to give a finer granularity on relationships
between cited object and citing subject. As a result, my proposed scheme is defined by 3 di-
mensions, with 3 top-level polarity classes of 8 function categories. The application of this
scheme on corpus annotation will be discussed in the next chapter.



Chapter 4

Corpus Construction and Annotation

This chapter describes the corpus I constructed for training and testing the classifiers of cita-
tion function and polarity. Since the machine learning methods applied in this experiment are
supervised, I need to annotate each citation sentence according to its function and polarity as
the gold standard for calculating classification accuracy.

At present, there does not exist any publicly available biomedical corpora with the expected
annotation. Most of the citation classification research with semi-automatic approaches were
conducted in the natural language processing domain, thus the corpora used in previous studies
mainly consists of papers extracted from the ACL (Association for Computational Linguistics)
Anthology, which have different characteristics from biomedical papers. However, with the
help from my supervisor Dr. Robert Mercer, I was able to obtain the necessary biomedical data
for developing my own annotated corpus, which I’ll introduce in Section 4.1. The cue phrases
proved to be useful for citation classification, and they do exist in citation context and could
be extracted automatically (Mercer and Di Marco, 2003) [31]. Therefore, in Section 4.2, I will
discuss the importance of cue phrases and how I used them in annotating this corpus. Section
4.3 describes a linguistic rule-based method of extracting cue phrases from citation sentences
by trimming sentence parse trees. Section 4.4 explains how to assign a particular function
category from classification scheme to each citation sentence, and decide a citation’s polarity
by ranking its possible labels. Both annotations are mainly based on cue phrases. Lastly,
Section 4.5 shows some statistics of this annotated corpus, including the distribution of each
classification category and the number of cue phrases in different article sections.

4.1 Corpus Construction

I chose citations from biomedical research papers to build my own corpus for the following
reasons. As previously mentioned, Garzone’s citation function classification scheme was pro-
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posed and used to annotate some biomedical papers, and his semantic rule-based parser for
cue phrase extraction was also developed from this small corpus. Therefore, building a larger
biomedical corpus could further investigate the use of cue phrases as well as compare with his
research results. Secondly, as far as I am concerned, there is no publicly available annotated
citation corpus in the biomedical domain at the moment, so creating and annotating such a
corpus may contribute to later biomedical citation studies.

The original biomedical papers in full body texts were firstly downloaded with the help of
PubMed. PubMed is a free resource of over 22 million citations and abstracts for biomedical lit-
erature with the National Center for Biotechnology Information (NCBI)’s search and retrieval
system integrated. It does not include the full text for the biomedical publications. However,
a small portion of full length articles are available and can be obtained from PubMed. Each
downloaded paper is originally one huge line comprised of all of the sentences in all article
sections as well as the section titles, and written in XML format. Following the citing customs,
each citation in a sentence was given an index number which points to the cited article listed
in the References section at the very end of the current paper. To make the whole article more
readable, the huge line was split by sentence scope and section scope using some programming
tools, thus resulting in one sentence or one section title per line in the newly saved file. This
task was mainly done by my supervisor Dr. Robert Mercer.

As I am only interested in citations and its related location information, I wrote a Python
script to extract citation contexts from the IMRaD (Introduction, Method, Results and Discus-
sion/Conclusion) sections, and saved them in a new file for each biomedical paper. The citation
context window size in this thesis was set to 1, that is, the sentence that contains the citation.
This decision was based on the findings from Hernández-Alvarez et al. (2017) [22], in which
they show one-sentence contexts take a large majority of the citation corpus. The citation
sentence was identified by regular expressions according to its citation index, which can be a
single number representing one cited article such as “[9]”, or multiple numbers representing
grouped articles such as “[3-5]” or “[4, 6-9]”.

As shown in Figure 4.1, citations from the same IMRaD section were grouped together, and
each section was divided by a long dash line followed by section title. This group method was
adapted from Garzone’s data cleaning process, since it is convenient for computer programs to
recognize and deal with each paper section independently. The leftmost column of numbers
stands for the line numbers of citations in the current file, and the number at the beginning of
each citation sentence represents its line number in the original article file. When a citation
sentence cannot provide enough evidence for assigning a particular function or polarity cate-
gory to the citation inside, this location reference will be helpful for tracing back to the original
paper and identifying adjacent texts of the current citation sentence, where may exist hidden
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information that is in need of category assignment.

Figure 4.1: Sample data for the extracted citations in a section

4.2 Use of Linguistic Cues

As previously mentioned in the literature review, Mercer and Di Marco (2003) [31] claims
exploring the fine-grained rhetorical structure of a scientific article may greatly assist in citation
classification. This statement implies two things: on the one hand, the rhetorical relations that
address discourse structure in scientific articles could match with citations; on the other hand,
rhetorical relations usually indicate the author’s purpose and attitude on using citations referred
to a certain article, which may in turn provide much help in classifying a citation.

Several discourse analysis studies have demonstrated that fine-grained linguistic cues play a
crucial role in scientific rhetorical structure. According to Knott’s definition [25], a cue phrase
is a linguistic conjunction or connective for maintaining the cohesion and coherence in general
texts, and indicates the semantic relationship between two sentences or clauses. Through the
precise test on cue phrases, Knott proposed a five-category classification scheme of linguistic
cues, which was later adopted in Mercer and Di Marco’s work. More significantly, Knott
combined two methods for dealing with cue phrases in discourse analysis, thus providing a
solid foundation and evidence for associating rhetorical relations with cue phrases in citations.

Furthermore, as discussed by Mercer and Di Marco, another discourse analysis researcher,
Daniel Marcu, extended the Rhetorical Structure Theory (RST) to a rhetorical parsing algo-
rithm, and implemented this algorithm in a rhetorical parser which uses cue phrases to cap-
ture the “hypothesized rhetorical relations”, showing the possibilities of obtaining rhetorical
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structure information through automatic means [29]. Similarly, Garzone applied a semantic
grammar in his proposed automatic citation classifier, which is able to capture the rhetorical
features and extract cue phrases from citations automatically [20]. These cue phrases and their
related citations were later classified according to Garzone’s 35-category scheme and obtained
good classification performance on previously seen data.

Through the analysis conducted on full text body, citation sentences, and citation windows
of several articles, Mercer and Di Marco argued that cue phrases do exist in citation contexts,
and the distribution of their frequency in citations is analogous to that in full article texts.
This conclusion was accepted by more and more researchers in later citation analysis studies.
Teufel, who questioned the existence of fine-grained linguistic cues in citations and casted
doubt on the applicability of automatically extracting cues in her early studies, took cue phrases
as one of the features in her more-recent citation function classification work. In Teufel et al.
(2006a) [39], she and her colleagues implemented two POS-based mechanisms for modeling
cue phrases, one used a finite grammar to extract string-based cue phrases, the other integrated
recognizers for agents and actions to identify the similar cue phrases that were clustered around
main verbs. In addition, they encouraged annotators to record cue phrases that helped assign a
category to a citation, and included 12 features of these citation function-related cue phrases in
their classifier. The classification results demonstrated good overall performance, from which
we may infer cue phrases do assist in automatically classifying citation function and polarity.

Besides improving classification accuracy, cue phrases also greatly contribute to corpus an-
notation. As described in Hernández-Alvarez et al. (2017) [22], the annotators’ categorization
opinions on the same citation text varied quite differently at the beginning of the annotation pro-
cess. To improve the inter-annotator agreement (IAA), the authors employed a pre-annotation
step that requires annotators to mark the cue phrases, which are basically keywords and tags,
in order to clarify the meanings of citation contexts. One possible explanation for the signifi-
cant improvement on IAA is this pre-annotation of cue phrases set up matching mental models
among different annotators. Moreover, the identified cue phrases contain rhetorical information
of citations, and could serve as input features of a classifier.

In summary, the rhetorical nature of cue phrases decides their important role in examin-
ing relationships between citing and cited works within a citation. In this thesis, I will use
cue phrases as an intermediate agent to map the classification scheme to my corpus. Since
the biomedical citation texts have a more complicated structure than those from the natural
language processing domain, I developed a mechanism to help identify the cue phrases from
surface structure, which I will give details in the next section. It is noted that the characteristics
of cue phrases in biomedical contexts are slightly different from both the general interpretation
and those in other science domains. Therefore, it requires more human effort to decide the real
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cue phrases that correctly reflect relationships between citing object and cited content.

4.3 A Method for Cue Phrase Extraction

To extract the cue phrases from citations, I firstly used a toolkit named the BLLIP parser to
process each citation sentence and got its syntactic structure, which can be represented in a tree
form. The BLLIP parser[10], also known as the Charniak-Johnson parser or Brown Reranking
Parser, is a statistical natural language parser consisting of a generative constituent parser and
a discriminative maximum entropy reranker. The coarse-to-fine generative parser constructs
50-best sentence parses that are of substantially high quality based on a dynamic programming
n-best parsing algorithm. Then the MaxEnt discriminative reranker takes this set of 50-best
parses as input and selects the best parse by examining a wide variety of features. This system
outperforms most of the present publicly available parsers. I use this reranking parser mainly
because it chooses the best sentence parse from a high quality parse pool, which may give
better performance on parsing more complicated sentence structure in biomedical texts.

The parsed sentences are arranged in a flat form by phrase markers, which are basically
round brackets, and phrasal category labels (S, VP, NP, etc.). Although they can be transformed
to syntactic parse tree form for a more intuitive and hierarchical look, this graphical tree-
representation does not help in data processing and programming. Therefore, I employed a
bracket counting algorithm to catch different syntactic levels in shallow form. A code snippet
of this algorithm is given in Listing 4.1.

Listing 4.1: Code snippet for bracket counting algorithm
def label_bracket(parsed_sentence):

parsed_sentence[2] = ‘‘#’’ # replace S1 with S# to avoid confusion

with bracket label

counter = 0

for index, item in enumerate(parsed_sentence):

if item == ‘‘(’’:

counter += 1

parsed_sentence[i] = str(counter)

elif item == ‘‘)’’:

parsed_sentence[i] = str(counter)

counter -= 1

labeled_sentence = ‘‘’’.join(parsed_sentence) # combine every item

to a sentence

return labeled_sentence

As shown in Listing 4.1, this algorithm reads a parsed sentence in left-to-right order and



26 Chapter 4. Corpus Construction and Annotation

checks each character in the sentence including punctuation. A counter is set to zero at the
beginning of the checking process. It increases by 1 when a left round bracket appears, and
decreases by 1 when meeting a right round bracket. A number that represents the current
value of counter replaces the round bracket as soon as the counter value gets updated, thus the
phrases or clauses that are in the same syntactic level will be surrounded by the same pair of
numbers. The number “1” in the tree root “S1” is substituted by “#” to avoid confusion with
the bracket label. Although the sentence still remains in a flat form, the numbers on round
brackets’ positions could pass the hierarchical information of syntactic structure to a computer
program. For example, the parsed citation sentence

This is in disagreement with [17, 12] and [14].

(S1 (S (S (NP (DT This)) (VP (VBZ is) (PP (IN in) (NP (NN disagreement))) (PP
(IN with) (S (PRN (-LRB- -LSB-) (NP (NP (CD 17)) (, ,) (NP (CD 12))) (-RRB-
-RSB-)) (CC and) (LST (-LRB- -LSB-) (CD 14) (-RRB- -RSB-)))))) (. .)))

will change to: (the underscore “_” highlights the bracket number)

1S# 2S 3S 4NP 5DT This5 4 4VP 5VBZ is5 5PP 6IN in6 6NP 7NN disagreement7
6 5 5PP 6IN with6 6S 7PRN 8-LRB- -LSB-8 8NP 9NP 10CD 1710 9 9, ,9 9NP
10CD 1210 9 8 8-RRB- -RSB-8 7 7CC and7 7LST 8-LRB- -LSB-8 8CD 148
8-RRB- -RSB-8 7 6 5 4 3 3. .3 2 1

In the next step, I developed a sentence splitting (or parse tree trimming) mechanism based
on linguistic rules to extract cue phrases that are in different locations of a syntactic structure.
This method is mainly inspired by Athar (2011) [3], where the author tried to remove irrelevant
polarity phrases around a citation to improve the classification results. He parsed each citation
sentence into a tree form, then kept only the deepest clause inside the subtree which contains
the citation phrase, and discarded all other clauses of the citation sentence. In this thesis, I
applied similar trimming rules but kept all possible cue phrases that are close to a citation.
This is because biomedical texts have longer and messier clauses, which causes the related cue
phrases to possibly be distant from citations. Moreover, the “meaningless” cue phrases that
exist in citation sentences from ACL articles may have different meanings and sentiments in
biomedical contexts. Therefore, keeping only the cue phrases that are instantly followed by
citations might lose rhetorical information about citing and cited articles.

During the development of this cue phrase extraction mechanism, I always tried to find a
balance between generalized and specific syntactic rules. If the rules catch too many details
about sentence structure, they may not be flexible and applicable on new data. However, if they
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are too generalized and broad, many irrelevant words will be included and give much noise.
Through the close examination on citation data, I came up with four top levels to capture
characteristics of different parts of sentences that may contain cue phrases.

NP-VP Type

This is the most common and prevalent structure in sentences. In general, NP (noun phrase)
and VP (verb phrase) are directly under the root node “S”, and the related cue phrase is inside
the VP. Since cue phrases are usually word phrases that contain main verbs, the extraction
begins from the current highest VP level and stops at the next-level NP.

All sequences and positions were referenced with the wild-type HLA-G sequence
of Geragthy et al. [16]

Figure 4.2: A cue phrase inside NP-VP structure

As shown in Figure 4.2, the circled part is where the cue phrase rests, and its extraction starts
from the highest VP level, also known as the main VP, and ends before the one-level lower NP
(the wild-type HLA-G sequence of . . . ). The citation Geragthy et al. represents the only cited
paper in this sentence and is located in the deepest NP level of the main VP.

SBAR Type

According to the Penn TreeBank’s definition of part-of-speech tags, the label SBAR is for
a clause introduced by a subordinating conjunction (also known as a complementizer), such
as “that”, “whether”, or “if”, which has a prepositional tag IN and can possibly be absent
from the sentence. The cue word is usually the verb located before this complementizer. A
citation sentence may have an SBAR clause at the beginning to serve as a context or general
acknowledgment, thus this clause is parallel to the main NP and VP. More frequently, the
SBAR appears in the middle of a sentence to explain the author’s claim or findings.
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[15], however, found that D-dimer was included in the final logistic model to-
gether with the variables heart rate and chloride.

Figure 4.3: A cue phrase before SBAR clause

As shown by Pasquale et al [31], the planes of shear can be calculated from mea-
sured ζ-potentials and calculated surface potentials.

Figure 4.4: A sentence begins with SBAR clause

In Figure 4.3, the word “that” is the complementizer and a child of the SBAR clause. It is
preceded by the cue word “found”, which is one-level higher than the IN tag but the same level
as the SBAR tag. The cue word in this structure usually has a VBD or VBN tag. In Figure
4.4, SBAR occurs at the beginning of the citation sentence as context or a general introduction,
and it has the same level as the main NP and VP. Therefore, the extraction process starts from
the SBAR level until the next-level NP inside the child node S, during which the words are all
extracted, resulting in the cue phrase “as shown by”.
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ADVP/ADJP/PP Type

In most cases, ADVP/ADJP/PP is located under an S node and precedent to the same level NP
and VP. It could be a single word implying a polarity, transition or further investigation, such
as “however”, “furthermore”, etc., or it may serve as general acknowledgment in a phrasal or
clausal form to provide context for the later cited content, such as “Based on Xxx method/data
in Yyy et al., . . . ”.

Recently, a nuclear export signal (NES) was identified in the N-terminus of an-
nexin II [40].

Figure 4.5: A sentence begins with ADVP

As shown in Figure 4.5, the word “recently” implies there will appear a citation in a later part
of the sentence, thus words in this position are usually cue words and will be extracted. If there
is a clause or word phrase appearing under the ADVP label, then the phrase that has this main
adverb is a cue phrase and will be extracted instead. In general, the NP that is parallel to the
ADVP contains an object from or related to the cited content, which shows a fact or makes
a statement. Therefore, the main verb from the VP that is parallel to the ADVP and the NP
is also a cue word, and will be extracted using its VBN label. These rules are applicable to
ADJP/PP conditions as well.

Negational Type

The negational cues may imply criticism or disputation towards the cited content, or indicate
the author of the citing paper has obtained different experimental results compared with the
cited paper, which is more commonly seen in citation sentences. There are two types of nega-
tions: one is the word “no” followed by a noun, such as “no results” and “no association”, as
shown in Figure 4.6; the other is the word “not” followed by a verb, such as “not find” and
“not observe”, as shown in Figure 4.7.
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We identified 1 unpublished and unreported study [21], from which however no
results could be obtained.

Figure 4.6: The “no” type of negation

Surprisingly, we did not observe any previously described polymorphisms by
Ober [22] and Matte [23].

Figure 4.7: The “not” type of negation

The label for the word “no” is always DT, and the following noun is labeled as NNS in most
cases and has the same level as “no”. Similarly, the word “not” is always labeled as RB and
is followed by a verb in its original form. The extraction of the “not” type starts from the RB
level and ends before the next-level NP, during which all words are extracted to make up a cue
phrase.

As previously described, each round bracket in the sentence parse is replaced with a num-
ber. This mechanism was programmed to extract cue words or phrases by recognizing different
syntactic levels through these bracket labels. As a result, hundreds of potential cue phrases
were extracted for each paper section. However, there are also many irrelevant word phrases
that exist in the extracted data set since this mechanism is not fine-grained enough and does
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not have as many parsing rules as those from previous studies. In addition, Figure 4.7 shows
an overlap between two extraction types, that is, “did not observe” extracted by the NP-VP
type and “not observe” extracted by the negation type have the overlapped phrase “not ob-
serve”, which may indicate it is a real cue phrase for the current citation. The auxiliary verbs
like “did” from the previous example and other meaningless words need to be pruned to keep
a succinct format of cue phrases. In summary, this mechanism does help in extracting cue
phrases from citation sentences, but identifying the real cue phrases that reflect relationships as
well as pruning unnecessary words are still needed to be done manually, which are limitations
of this mechanism.

4.4 Corpus Annotation

Citation content is difficult to annotate, as mentioned in Teufel et al. (2006b) [40], because
it requires annotators to interpret authors’ intentions and sentiments. Moreover, authors of
citing articles do not state their purposes and do not show their attitudes towards cited content
explicitly in most cases. This phenomenon is especially common in the biomedical context
since authors are not willing to express their true opinions when the experiments and data
from previous research are non-reproducible. To improve the accuracy and consistency of
annotation, I took the pre-annotation step from Hernández-Alvarez et al. (2017) [22], in which
the keywords and cue phrases are firstly identified and highlighted in citation sentences, as
shown in the following example:

In the present study there was no association between age and gender and outcome
while some studies have reported that older horses have a higher risk of non-
survival [9, 13].

The cue phrases are recognized by the extraction method described previously, and col-
lected as a rich feature set for the automatic classifiers that will be introduced in the next
chapter. Similar to Garzone (1997) [20] and Agarwal et al. (2010) [2], each function category
is assessed based on the cue phrases and can be assigned to a citation sentence directly, except
for the categories from the neutral class. This is because the citation sentences that belong
to positive or negative classes always have the same function and polarity as the cue phrases
inside.

Moreover, I employ a labeling system for dealing with sentences that have multiple cue
phrases, and to make the annotation machine-readable. It is shown below:

• Neutral: Perfunctory/Background 1, Statement 2, Comparison 3, Multi-comparison 4
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• Positive: Confirmation 5, Being-confirmed 6

• Negative: Contrast/Conflict 7, Unsolved 8

Each cue phrase is labeled with a number that represents the related category. The larger the
number is, the more priority the category has. The cue phrases that belong to the neutral class
especially the Perfunctory category take the majority of the corpus but are less meaningful,
thus they are given less weight and represented by smaller numbers. The positive class demon-
strates sentimental information about cited content, so the categories in this class are given
larger numbers than those of the neutral class. The cue phrases related to the citing paper au-
thor’s criticism or disputation are the least found in the corpus yet they are the most important.
Therefore, the categories from the negative class are given much weight and are represented by
the largest numbers. Take the following sentence as an example:

One polymorphism is reported by Hviid [8] at 714insG in the portion of the stud-
ied sequence of the untranslated regulatory and full length of exon 1 regions of the
HLA-G gene, however, we did not observe any previously described polymor-
phisms by Ober [22] and Matte [23].

Four cue phrases are identified, and their labels are 1, 7, 7, 1 respectively. The larger the number
is, the more importance the cue phrase has. As a result, this citation sentence is assigned as
Contrast/Conflict category. In addition, the label 7 will be written to the corpus and put at the
very beginning of this citation sentence.

In some cases, assigning a category from the neutral class needs more examination of other
aspects of the citation content. Accordingly, I developed a strategy that contains several criteria,
which are adapted from the binary questions of the annotation decision tree in Xu et al. (2015)
[44], to help identify the characteristics of a citation sentence. The criteria are given below:

• The citation sentence refers to both the citing and the cited work or only the cited work
is mentioned. This determines the citing direction of the citation sentence and helps
distinguish between the statement category and the (background, comparison, multi-

comparison) categories.

• The citation sentence mentions the cited work only as a general reference or compares it
with own work. This helps distinguish between the background category and the (com-

parison, multi-comparison) categories.

• The comparison is only for the citing and cited works or among several cited works. This
helps distinguish between the comparison and the multi-comparison category.
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With the guidelines described above, I annotated all of the citation sentences extracted from
different article sections. The distribution of categories and other properties of the annotated
corpus are given in the following section.

4.5 Corpus Statistics

The biomedical corpus developed for this thesis is composed of 4950 citation sentences from
640 articles. Since this thesis focuses on the importance of cue phrases in citation classifi-
cation, the citation sentences that do not contain cue phrases or do not indicate any relation
information between citing and cited works are discarded, thus the final number of selected
citation sentences is 1823. After annotation, the corpus is heavily skewed with about 69.9%
of the citations being neutral (34.1% being Perfunctory) and only 30.1% carrying positive or
negative sentiment. This result is in line with those from Spiegel-Rösing (1977), Teufel et al.
(2006a) and Athar (2011), in which neutral and perfunctory citations take a large portion of the
datasets. Table 4.1 shows the distribution of each citation function category within its related
polarity class.

Neutral

Perfunctory/Background 34.1%

69.9%
Statement 30.5%
Comparison 4.9%
Multi-comparison 0.4%

Positive
Confirmation 21.5%

22.9%
Being-confirmed 1.4%

Negative
Contrast/Conflict 6.7%

7.2%
Unsolved 0.5%

Table 4.1: Distribution of citation function categories in polarity classes

The total number of cue phrases extracted from IMRaD is 598 (see Appendix A). Table 4.2
shows the distribution of these cue phrases in each article section. The Results section occupies
the majority of the cue phrases and has overlapped parts with those from other sections.

section Introduction Method Results Discussion/Conclusion
num. of cue phrases 141 53 291 113
% 23.6 8.9 48.7 18.8

Table 4.2: Distribution of cue phrases in article sections

Assigning a citation function and polarity category to a citation sentences is a subjective
task and needs to be consistent. Therefore, many previous studies applied Cohen’s Kappa



34 Chapter 4. Corpus Construction and Annotation

coefficient (Kappa) [12] to measure the inter-annotator agreement, which is defined as follows:

Kappa =
P (A) − P (E)

1 − P (E)
(4.1)

where P (A) is the relative observed agreement among annotators and P (E) is the hypothetical
probability of chance agreement, using observed data to calculate the probabilities of each
annotator randomly seeing each category. Since I am the only annotator for this biomedical
corpus, I applied the intra-annotator agreement method from Athar’s research [4], which uses
the same formula of Cohen’s Kappa but is for a single annotator. Following Athar’s description,
I firstly annotated the whole corpus, and after one month I re-annotated 800 citation sentences
randomly picked from the same corpus without remembering the original annotations. The
agreement between the two annotation results on citation function and polarity is Kappa =

0.71, which falls in the substantial agreement range and indicates the annotated corpus is
reliable, according to the interpretation of Kappa values given by Landis and Koch (1977)
[26].

4.6 Summary

In this chapter, I firstly describe the corpus construction and the processing procedures per-
formed on the raw data. PubMed was chosen as the data source since it is one of the biggest
digital biomedical publication databases that provide complete texts and link referenced papers
together to provide a more related source. The corpus I constructed contains 1823 meaningful
citation sentences selected from 640 biomedical research papers.

The importance of cue phrases in citation classification is discussed and highlighted with
the evidence from previous citation content analysis studies. In addition, I present a cue phrase
extraction mechanism that integrates linguistic rules to capture the rhetorical relationships be-
tween citing and cited works.

In the following step, I manually annotated my biomedical corpus with the classification
scheme described in the previous chapter. To improve the accuracy and consistency of this
corpus annotation, I implemented a pre-annotation step which identifies the keywords and cue
phrases in sentences by using the cue phrase extraction mechanism mentioned earlier which
was used to help decide a particular function for a citation. Furthermore, a strategy of binary
questions and a labeling system are proposed to distinguish categories of the neutral class and to
generate machine-readable category labels, respectively. The annotated corpus is skewed with
69.9% of the citations being objective and only 30.1% carrying positive or negative sentiment.
The distribution of each classification category and the existence of cue phrases in IMRaD are
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presented.
The measured Kappa value for intra-annotation agreement on citation function and polarity

category assignment is Kappa = 0.71, which is found to be substantial according to Landis and
Koch’s (1977) interpretation of Kappa values. This measurement proves the annotated corpus
is stable and reliable, moreover, it is ready for use in the automatic classification experiments
that I will describe in the next chapter.



Chapter 5

The Automatic Classification of Citation
Function and Polarity

This chapter describes an automatic approach that combines machine learning techniques to
classify citation sentences into different citation function and polarity categories. In general,
this automatic approach consists of the following procedures: firstly, an annotated corpus is
split into training and testing sets along with their related category labels (also known as the
gold standard); then different types of features that describe semantic or syntactic characteris-
tics of sentences are collected as inputs; a statistical model will be trained on the features from
the training dataset, and return new observations for the testing dataset based on its sentence
features; finally the predicted labels are compared with the gold standard to evaluate classifi-
cation performance of this trained statistical model. This is known as the supervised learning
method in the machine learning field, and was implemented in my experiments serving for the
automatic classification task on biomedical texts.

This chapter is structured similarly to the supervised learning process mentioned above. A
biomedical corpus has been annotated in a previous chapter, thus section 5.1 describes other
preparations made on this corpus before the feature extraction procedure, such as stop-word
removal and citation index replacement. Section 5.2 demonstrates a series of features extracted
from citation sentences with Natural Language Toolkit (NLTK) [28], including lexical features
and sentence structure features. Two different machine learning algorithms, which are Support
Vector Machine (SVM) [13] and Maximum Entropy [6], are applied to build statistical models
for comparison. Section 5.3 gives a brief introduction of these two algorithms and Section 5.4
describes the experimental setup. The automatic classification results and evaluation of the two
classifiers are presented and discussed in Section 5.5.

36
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5.1 Data Preprocessing

The goal of data preprocessing is to split the corpus, clean the noise in citation texts and prepare
the data for feature extraction. Therefore, as the first step, the annotated biomedical corpus that
contains 1823 citation sentences is divided 80/20 using the prevailing rule in machine learning,
that is, 80% of sentences compose the training dataset for detecting features and tuning the
statistical models, and the remaining 20% of the corpus make up the test dataset used for
evaluating the feature-based classification. The citation sentences were randomly allocated to
the two sets according to the index of each sentence in the corpus.

Citation texts are different from other normal texts not only in content but also in structure.
Generally, there is at least one reference mentioned in citation text, and sentences are composed
of more clauses in citation text than in normal text. The references are usually written in two
formats: one is the reference indices that point to the related cited articles in the Bibliography
surrounded by square brackets; the other is author names followed by publication year written
in parentheses. These special formats of references are useless for sentence structure analysis
and may even cause errors during part-of-speech tagging. Moreover, the references that con-
tain author names are also a component of citation texts. When a word vector transformer is
applied on the tokenized text, the occurrence of author names will also be counted and merged
into word vectors. The more the paper is cited by others, the more frequently the related au-
thor name will appear in citation texts, which results in more weights in word vectors. As a
consequence, such author names bring lexical bias to the classifier and may lead to a wrong
prediction for a new citation sentence.

To prevent potential tagging errors and reduce lexical bias, I use two types of placehold-
ers to deal with different reference markers. For citation indices in square brackets, such as
“[4]”, “[8, 9]” and “[3-5]”, the reference markers are replaced with the tokens “[SC]” and
“[GC]”, which represent single reference and group references respectively. This replacement
is inspired by Xu et al. (2015) [44]. For example, the citation sentence shown below

To detect F-ATPase activity we used its specific inhibitors, azide or oligomycin
[19], and ouabain or vanadate were used as specific inhibitors of the Na+/K+-
ATPase [20, 21].

will change to

To detect F-ATPase activity we used its specific inhibitors, azide or oligomycin
[SC], and ouabain or vanadate were used as specific inhibitors of the Na+/K+-
ATPase [GC].
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Similarly, the references represented in a single author name or a combination of author name
and parenthesized publication year, such as “Xxx et al.” or “Yyy (2006)”, are identified by
regular expressions then replaced with a single token “[CIT]”. This representation is inspired
by Athar (2011) [3]. The citation sentence in the following example

This value appeared lower than that reported by Skabkin et al. [22] (about 4nm
for monomeric YB-1 in solution of high ionic strength) and probably resulted from
YB-1 flattening on the mica surface.

will change to

This value appeared lower than that reported by [CIT] [SC] (about 4nm for monomeric
YB-1 in solution of high ionic strength) and probably resulted from YB-1 flatten-
ing on the mica surface.

Some words in texts occur very frequently but have no contribution to sentence context or
content, so they are referred to as “stop-words”. Removing such stop-words can reduce the size
of datasets and word vector dimensions, thus improving the classifier’s performance. To fit the
biomedical content in this corpus, I merged two biomedical-specific stop-word lists, which are
obtained from a GitHub page [21] and a PubMed help web page [36], into a machine-readable
dictionary for the stop-word removal program.

However, not all stop-words from the two lists are included in my dictionary. The verbs
such as “show”, “use”, “obtain” and the adverbs such as “significantly”, “therefore”, “espe-
cially” are excluded since they indicate citation functions and are cue words or components of
cue phrases in my extracted cue lexicon. Therefore, only the tensed auxiliary verbs and some
abbreviations are reserved for my stop-word dictionary. In addition, a binary option consisting
of “true” or “false” choices is employed on top of the dictionary, thus the stop-word removal
process exists only in some types of feature extraction while not in others.

5.2 Features

Considering the characteristics of an automatic framework for citation classification, I extract
several types of features from citation sentences at both the lexical and the sentence structural
level, including part-of-speech tags, word n-grams, dependency information and other content
specific features. The collected feature sets are later converted into feature vectors, and serve as
numerical inputs for training and testing statistical classifiers integrated with machine learning
algorithms, for which I will give details in the next section.
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5.2.1 Part-of-Speech Tags

Part-of-Speech (POS) tagging is widely applied not only in citation function classification but
also in sentiment analysis, and has proved to be particularly useful for associating discrete
terms. The POS tag reflects a related token’s functional role inside a sentence since it encodes
a semantic relationship information between the target token and other tokens. For example, a
word usually has various meanings and may serve as different roles under different contexts,
as shown below:

1. Most of the gallery’s contents were damaged in the fire.
2. The boss is content with his employee’s work.

The word “content” in the first sentence is a noun and has a “NNS” POS tag, while it functions
as an adjective and will be tagged as “JJ” in the second sentence. Moreover, the adjective
“content” has higher probability to be associated with the verb “be” and the preposition “with”
in most cases. With POS tags as features, a statistical classifier will be able to learn such fixed
linguistic patterns, and recognize similar patterns in previously unseen data.

The POS tag features have been extensively applied and examined in many state-of-the-
art citation classification frameworks. Teufel et al. (2006b) [40] implemented a POS-based
recognizer of agents to help a classifier detect the grammatical subject of a citation sentence
according to POS patterns. Athar (2011) [3] manually attached the POS tag to its related
word by a delimiter, and applied this method to each single word in the sentence in order to
distinguish homonyms and signal the presence of adjectives. Jochim and Schütze (2012) [24]
used POS tags to identify 1st and 3rd person pronouns as well as comparatives and superlatives
in their feature extraction process. Xu et al. (2015) [44] built their own POS tagging system,
which is rule-based and fits the characteristics of citation sentences, to construct structural
feature sets.

Most present POS taggers are designed for natural language processing publications and
trained on the Wall Street Journal (WSJ) Corpus or the Brown Corpus, which consist of gen-
eral literature that have a very different structure from scientific citation texts. Therefore, I
have used the GENIA tagger [41], which is specially tuned for biomedical documents, as my
processing tool. The tagged outputs not only contain POS tags, but also have word base forms,
chunk tags and named entity tags, as shown in Figure 5.1. To make the tagged sentences
more readable, I extract only original words and their POS tags from the output, and connect
each word with its related POS tag with an underscore. For example, the following citation
sentence
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Figure 5.1: The output format of the GENIA tagger

Detailed information on changes in leukocyte counts in milk, lymph and blood is
reported by [CIT] [SC].

will be tagged as

Detailed_JJ information_NN on_IN changes_NNS in_IN leukocyte_NN counts_NNS
in_IN milk_NN ,_, lymph_NN and_CC blood_NN is_VBZ reported_VBN by_IN
[_( SC_NN ]_) [_( CIT_NN ]_) ._.

In this way, each word-tag pair becomes a new token in the citation sentence while the length
of the sentence does not change and the syntactic structure remains as before.

5.2.2 N-grams

N-gram features have been applied extensively in previous text classification studies and were
proved to be useful for classifiers especially SVM [18]. Abu-Jbara et al. (2013) [1] imple-
mented the first bigram and trigram, such as “This approach” and “One problem with”, ex-
tracted from the beginning of sentences as features. Different length n-grams were also used
by Athar (2011), and the classification results indicate the combined features of unigram, bi-
gram and trigram have better performance than only unigrams and unigrams plus bigrams.

An n-gram is a contiguous sequence of n items from a given text. When n, which refers to
the size of sequence, is equal to 1, this sequence is called “unigram”; size 2 and 3 are “bigram”
and “trigram”, respectively. Larger sizes of sequences also exist and their names are referred to
by the value of n, such as “4-gram” and “5-gram”. Take the following sentence as an example:

The dog jumps over the fence.

The n-grams of this sentences are:

unigrams The, dog, jumps, over, the, fence, .

bigrams The dog, dog jumps, jumps over, over the, the fence, fence .

trigrams The dog jumps, dog jumps over, jumps over the, over the fence, the
fence .
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4-grams The dog jumps over, dog jumps over the, jumps over the fence, over the
fence .

5-gram The dog jumps over the, dog jumps over the fence, jumps over the fence
.

Suppose X is number of tokens in a given sentence S , then the number of n-grams with size
N for sentence S will be:

n-gramsS = X − (N − 1) (5.1)

Although n-grams provide abundant information about texts, taking a large n results in a huge
data size as calculated by the formula 5.1, and causes data sparsity since a large portion of
n-grams appear only once. Therefore, various experiments have been conducted in previous
works to find a proper n. Athar (2011) [3] and Bertin et al. (2016) [7] claim that n = 3 gives the
best classification results, Fürnkranz (1998) [18] also demonstrated n > 3 is not useful and may
even decrease the performance. In addition, many scientific terms exist in citation sentences,
and most of them are 3-words long. Based on these findings, I limit n to 3, that is, I construct
unigrams, bigrams and trigrams for each citation sentence. Moreover, I take only the top 300
n-grams as features according to Cavnar and Trenkle (1994)’s [9] observation on frequency of
n-grams in Zipf’s law distribution.

I also combine POS tags and n-grams to generate POS n-gram features. This may provide
classifiers with more information about lexical patterns within sentences. For example, the POS
trigrams of the above sentence would be <DT NN VBZ>, <NN VBZ IN>, <VBZ IN DT>,
<IN DT NN> and <DT NN .>. The <VBZ IN DT> and <IN DT NN> appear more frequently
in the corpus than other POS trigrams due to linguistic rules, which could be learned by the
classifier through training.

5.2.3 Dependency Relations

The cue phrase extraction method described previously in Chapter 4 is based on phrase struc-
ture constituency relations. The tree forms shown in the examples indicate constituency is a
one-to-one-or-more correspondence, which means each element in the sentence is mapped to
one or more nodes in the structure.

As opposed to constituency, dependency is a one-to-one correspondence, that is, for each
item in a sentence, there is only one node in the sentence structure corresponding to that item.
For this reason, the dependency relation is a binary asymmetrical relation between the words
of a sentence and it helps identify the semantically related concepts. The two words that form a
dependency relation are called governor (the head word) and dependent, respectively. Similar
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to the constituency structure tree form, the dependency structure of a sentence can also be
represented as a syntactic tree or a graph consisting of edges and nodes. For instance, the
sentence from the previous section

The dog jumps over the fence.

can be represented as the dependency graph shown in Figure 5.2:

Figure 5.2: The dependency graph for an example sentence

There is a single designated root node “jumps” with the relation root that has no incoming
arcs. With the exception of the root node, each dependency relation is an arc pointed from the
governer to the dependent, in which the arc label indicates the relation name. The dependency
relations of the above sentence could be summarized as follows:

1. det (dog, The)

2. nsubj (jumps, dog)

3. nmod (jumps, fence)

4. case (fence, over)

5. det (fence, the)

6. punct (jumps, .)

7. root (ROOT, jumps)

Compared to the part-of-speech tags and n-grams features, the dependency relation concept
is a relatively new feature type in citation classification studies but has proved to be quite effec-
tive for classifiers making a prediction on new observations. Athar (2011) [3] used dependency
structures to capture the long distance relationships between words, and the classification re-
sults showed an outstanding improvement over the baseline classifier. Instead of extracting
the whole dependency relation, Jochim and Schütze (2012) [24] included only the dependency
root node as a component of the word-level feature set.
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As mentioned previously, the biomedical citation sentences prefer using clauses and long
phrases to demonstrate a finding or concept. Such complicated structures are difficult for clas-
sifiers to recognize the semantically related but remote entities, which are the cited content, the
linguistic cues and the cited paper. An example is given below:

Regulation of the proteasome complex by phosphorylation of the α7-subunit in
COS-7 cells has been demonstrated by [CIT] [SC].

With dependency parsing, such distant semantic relations could be represented by the de-
pendency relations (see Figure 5.3). This method is in line with those from Athar (2011) and his
technical report [4]. To fit the page width, I replaced the long noun phrase of the word “Reg-
ulation” with a token “PHRASE” in order to display the dependency structure of the whole
sentence here.

Figure 5.3: The dependency graph for a citation sentence

As shown in the above graph, a dependency relation nsubjpass is established between the
cited content “regulation” and the cue phrase “demonstrated” even if there is a long distance
separating them. I implemented the dependency parsing for all of the citation sentences with
spaCy [23], which is a Python library that includes a dependency parser. I chose this toolkit
since there is no biomedical-specific trained dependency parser available at the moment, and it
proved to be faster and more accurate than the Standford dependency parser [11] if combined
with an appropriate POS tagger. Similar to the concatenation of POS tags and tokens, I convert
each dependency relation to the format relation_governor_dependent. In this way, the
above “regulation” example can be represented as the nsubjpass_demonstrated_regulation
feature.

5.2.4 Lexicon of Linguistic Cues

In previous sentiment detection tasks, using a labeled lexicon to score sentences is a common
approach. Athar (2011) includes a science-specific sentiment lexicon that consists of 83 po-
larity phrases extracted from a development dataset, and combines the information from this
lexicon with other features by applying the binary labeling approach from Wilson et al. (2009)
[43]. Jochim and Schütze (2012) extracted the citation context words that appear in a polarity
lexicon as features, which are later represented as a bag of words and divided into two polarity
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categories. Xu et al. (2015) tagged sentiment tokens and generated n-grams from them as a
category of structure features. Though the authors from Athar and Teufel (2012) argue that
such an approach is highly topic-related thus not useful to build a generalized classifier, this
argument implies a detailed lexicon for a specialized domain might provide rich information
in classification tasks.

Therefore, I took the cue phrase set extracted during the corpus pre-annotation step that
is described in Chapter 3 as my lexicon (see Appendix A). Since each cue phrase has already
been manually assigned a citation function and polarity category, this lexicon not only contains
sentiment information but also indicates citation relationships. Then I developed a set of tags
based on my proposed classification scheme to encode this lexicon with other features. The
tags in this set are PERF (Perfunctory), STMT (Statement), COMP (Comparison), MULCOMP
(Multi-comparison), CONF (Confirmation), BECONF (Being-confirmed), CTRST (Contrast)
and NSLVD (Unsolved). Once a cue phrase that exists in my lexicon is identified within a
sentence, each word inside the cue phrase will be prefixed by the tag representing the category
to which that cue phrase belongs. In addition, I pruned long cue phrases and limited the length
of each cue phrase to 3 words in order to match n-gram features on cue phrase detection. For
instance, the example sentence discussed in the corpus annotation chapter will be converted
to:

One polymorphism is PERF_reported PERF_by [CIT] [SC] at 714insG in the
portion of the studied sequence of the untranslated regulatory and full length
of exon 1 regions of the HLA-G gene, CTRST_however, we did CTRST_not
CTRST_observe any PERF_previously PERF_described polymorphisms by
[CIT] [SC] and [CIT] [SC].

Furthermore, I calculate polarity score as one feature for each citation sentence. The cue
phrase that belongs to the positive categories has 1 point, the neutral phrase has 0 points, and
the negative phrase has -1 point. In the above sentence, two identified cue phrases are from the
neural categories while the other two belong to the negative class, thus the total polarity score
is 0 + (-1) + (-1) + 0 = -2 which is later added to the feature vector.

5.2.5 Other Features

Besides the general features described previously, there are some other types of features that
capture the characteristics of certain parts of citation sentences, or designed specifically for
biomedical texts. These are now described.
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Location information

This feature describes the location information of a citation sentence from two aspects. In
Teufel et al. (2006b) and Dong and Schäfer (2011) [17], the authors identified the section of
the paper where the citation sentence is located. I follow this method and create a denotation
section_LABEL, in which the label could be INTRO, MTHD, RSLT, or DISS referring to the
IMRaD article structure. In addition, I include the estimated position of a citation found in
a sentence, which is in line with Jochim and Schütze (2012), and encode this information as
sentence_pos where pos could be BEG (beginning), MID (middle) or END (end). Suppose
a citation sentence extracted from the Introduction section has two citations, which are located
in the beginning and middle of the sentence, respectively. The location feature of this citation
sentence would be (section_INTRO, sentence_BEG, sentence_MID).

Word negation

This feature is partially overlapped with my negational cue phrases. However, there were only
two negation types, which are “no” and “not”, applied during the extraction process in order
to fit the syntactic structure of sentences. As a lexical feature, I use a negation scope and more
negational words to capture the surface characteristics of citation sentences.

The implementation of negation features was initially proposed by Das and Chen (2001)
[14] and later extended by Pang et al. (2002) [35]. I follow the window-based approach de-
scribed in the latter paper and set the window size to 2. The tokens that come after a negational
word and fall in the 2-word negation scope within a citation sentence would be prefixed with a
label NOT_. In this way, the negation feature is integrated into the sentence without changing
the sentence length, as shown below:

We have already demonstrated that these regions are not NOT_essential NOT_for
the catalytic activity [SC], which retain their catalytic activity upon modification.

The word phrase “essential for” is a positive expression, however, the negation “not” causes the
meaning of a citation sentence to be the opposite of that word phrase. Other negational words
used for this feature are no, nothing, without, none, neither, never, n‘t, which are partially taken
from the negation list in Athar’s technical report.

Citation count

This feature describes the number of citations that appear in a sentence, thus it is numerical. It
may highlight a comparison or contrast category since the citation sentences that belong to such
categories usually have two or more cited papers compared together. The count of citations are
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simply calculated by the occurrence of placeholders [CIT], [SC] and [GC]. It is noted that if
a [CIT] is closely followed by a [SC], then they are counted together as one. This is because
the [SC] generally refers to the same cited paper as [CIT], which is originally written as Xxx

et al. with or without published year.

1st/3rd-person pronouns

This feature describes whether a citation sentence contains 1st and 3rd person pronouns by
using the Boolean values True and False. Since the opinion target is the cited paper instead
of a scientific claim, the person pronouns help distinguish between a general statement and a
confirmation. For instance, the following citation sentence

They confirm similar results obtained by [CIT] using the affinity cleavage method
for a different TFO sequence [SC].

belongs to the background category rather than the confirmation category. Though the cue
words “confirm” and “similar” express strong positive polarity, the 3rd-person pronoun “they”
indicates the subject of confirmation is actually from another cited article, not own work.
Therefore, it was the citing work stating a fact that the results from a cited work was confirmed
by the authors of another cited article, which could be seen as background acknowledgment.

I use I, we, our, ours, we, us for 1st-person pronouns and she, he, it, his, hers, him, her,

they, them, their for 3rd-person pronouns. The denotation for this feature is a tuple of values
written as (BOOL, BOOL), where the two BOOL represent whether 1st and 3rd person pronouns
are detected in a citation sentence. Thus, the above sentence would have the feature (F, T).

5.3 Classifiers

Since there are 8 categories in my citation function and polarity scheme, I chose Maximum
Entropy and Support Vector Machine (SVM) algorithms to deal with this multi-class classifi-
cation task. Although the philosophies behind these two mechanisms are quite different, each
has proved to be effective in previous text categorization studies.

5.3.1 Maximum Entropy

Maximum entropy is a probability distribution estimation technique (Berger et al., 1996 [6])
widely applied in various natural language processing tasks. It could be seen as a generalization
of logistic regression for multi-class problems.
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Suppose fi is a feature from the feature vector { f1, f2, f3, . . . , fk} that contains k features
extracted from document d. The estimation of P (c | d), which represents the probability that
class c appears in document d, takes the following exponential expression:

P(c | d) =
1

Z (d)
exp

∑
i

λi fi (d, c)

 (5.2)

where λi is a weight to be estimated. The larger that λ is, the more information the feature
contains. Z (d) is a normalization function to ensure a proper probability distribution, and has
the following form:

Z (d) =
∑

c

exp

∑
i

λi fi (d, c)

 (5.3)

For text classification with maximum entropy, the scaled word counts are used as features.
Thus, each word-class combination is instantiated by a feature defined as:

fw,c′ (d, c) =

0, if c , c′

n(d,w)
n(d) , otherwise

(5.4)

where n (d,w) is the occurrence of word w in document d, and n (d) is the number of words in
the document. In most maximum entropy classification tasks, the features are naturally binary
features representing real-valued functions of document d and class c, so fi (d, c) from Equation
5.2 is a binary feature that could be defined as follows:

fi
(
d, c′

)
=

1, if c′ = c and ni (d) > 0

0, otherwise
(5.5)

An advantage of maximum entropy is that it does not make independence assumptions
about the features. For instance, the two words in phrase “Monte Carlo” rarely appear by
themselves, thus the maximum entropy algorithm would reduce the weights λ of theses two
terms by half during classification, while the algorithms that contain a prior, such as Naïve
Bayes, might double the count of this phrase. Moreover, maximum entropy could achieve bet-
ter classification performance than Naïve Bayes when conditional independence assumptions
are not met.

I used the maximum entropy package from NLTK for my implementation. Since the typical
iterative scaling techniques are exhaustive and caused the training process to be very slow, I
integrated my maximum entropy classifier with an optimization package named Megam [15],
which greatly boosted the training and testing speed.
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5.3.2 Support Vector Machine

Support Vector Machines (SVMs) has been shown to achieve good performance in a variety of
state-of-the-art citation classification studies. This is because the SVM is able to select useful
features effectively from a huge number of features, which could potentially be an issue in
many NLP tasks, for a specific classification problem by assigning different weights.

In general, an NLP problem can be treated as a multi-class classification problem, which
is later transformed into multiple binary classification cases. As a binary classier, the intuition
behind an SVM is to find a proper decision boundary that maximizes the distance to the near-
est sample from either the positive or negative class. Such kinds of decision boundaries are
represented by the SVM discriminant function that has the following form (in 2 dimensions):

f (~x) = ~wT~x + b (5.6)

where w is the weight vector and b is the bias. The learning function is sign
(
f
(
~x
))

, and the
linear decision boundary is specified by f (~x) = 0. The correct class c j of document d j, is
defined as yi in this binary case, and yi ∈ {−1, 1}.

Given a training dataset {
(
~xi, yi

)
1≤i≤n}, we need to find a decision boundary ~wT , b that maxi-

mizes the Euclidean distance of the closest points, expressed as below:

max
~w,b

n
min
i=1

yi

(
~wT~xi + b

)
‖~w‖

(5.7)

Since it is difficult to optimize the above object directly, this problem is converted to:

minimize
~w,b

1
2
‖~w‖2

subject to yi

(
~wT~xi + b

)
≥ 1 ∀i

(5.8)

Now the problem 5.8 has become a quadratic problem, where the object is a quadratic
function subject to linear constraints. By applying Lagrange multipliers α, this quadratic prob-
lem could be transformed to its dual formulation, which is to be maximized with the following
constraints:

maximize: L (α) = −
1
2

n∑
i=1

n∑
j=1

αiα jyiy j~xT
i ~x j +

n∑
i=1

αi

subject to αi ≥ 0, ∀i
n∑

i=1

αiyi = 0

(5.9)
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of which the solution is :

~w =

n∑
i=1

αiyi~xi

b = yk − ~wT~xk ∀~xk;αk , 0

(5.10)

where most of the αi are zeros, and each non-zero αi indicates that the related ~xi is a support

vector. Therefore, the learning function could be re-written as:

f
(
~x; ~w, b

)
= sign

(
~wT~x + b

)
= sign

 n∑
i=1

αiyi~xT
i ~x + b

 (5.11)

I used the SVM package from the scikit-learn library for testing and training, with
linear kernels and all parameters set to default values. Moreover, I integrated a one-versus-
all (OVA) framework with the SVM classifier for dealing with the multi-class problem. This
strategy builds k classifiers Fi (k is the number of classes and 1 ≤ i ≤ k), where class i is
positive and all other classes are negative for Fi. The maximum value i of Fi (x) at a data point
x would be chosen for the class after comparing all classifiers.

5.4 Experimental Setup

In previous citation classification studies, regardless of how well the scheme is defined, one can
always observe that the class-imbalance issue existed in the dataset due to the large amount of
perfunctory/neutral citations. Different from most works that usually ignored this fact, Athar
and Teufel (2012) [5] applied the 4-sentence long context detection during corpus annotation.
Though this approach greatly improved the number of subjective citations, detecting context is
a non-trivial task and requires much human effort, which is beyond the scope of this thesis.

Dong and Schäfer (2011) [17] claims that decreasing the number of instances in big classes
and slightly reducing the intensity of the class imbalance might avoid misclassifying too much
data from small classes. I followed their method and condensed my neutral class, especially
the Background and Statement categories. For each of these two categories, I took 30% of
the sentences and combined them with the rest of the sentences from same class, that is, two
sentences that have the same label are merged into one line. In this way, the class-imbalance
problem was alleviated to some degree.

All of the citation sentences integrated with text features in the training and testing datasets
were converted into numerical feature vectors with a blackbox transformer from the scikit-learn
library. The experiments were all conducted with 10-fold cross validation and built as a
pipeline. A bag-of-words model, which transforms raw text data into numerical feature vectors
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in terms of the occurrence or frequency of each token, was built with unigrams as a baseline
system to compare with maximum entropy and SVM classifiers.

Both micro-F and macro-F were applied to evaluate the classification performance. The dif-
ference between these two evaluation metrics is that micro-F uses different weights for classes
of various sizes to calculate the final F score, while macro-F has a stricter standard that averages
F scores over all classes with the same weight. Since my corpus has a skewed class distribu-
tion, the averaged macro-F for all classes might be lower than micro-F, but more reflects the
real-world problem.

5.5 Results

I combined different types of features described in Section 5.2, and tested them with the max-
imum entropy and SVM classifiers, respectively. As shown in Table 5.1, the combinations
that use POS tags have higher F scores than those without POS tags. With the cue phrase
lexicon, both the unigram and unigram + POS tags combinations have an obvious increase on
F scores, which proves the previous statement that cue phrases are crucial in citation classi-
fication. It should be noted that the cue lexicon could not be added to feature combinations
that include bigram and trigram features because the results were negatively affected by a data
sparseness problem in the small corpus. The metadata features, which are citation counts, lo-
cation information and pronouns, do not have a significant impact on classification. Through
this comparison of all feature types, we may infer that both structural and lexical features are
important for capturing sentence characteristics.

Features
SVM Maximum Entropy

micro-F macro-F micro-F macro-F

unigram (baseline) 0.484 0.42 0.46 0.409
unigram + bigram 0.506 0.47 0.499 0.452
unigram + bigram + trigram 0.66 0.618 0.647 0.593
POS tags + unigram 0.614 0.593 0.601 0.576
POS tags + 1-3 grams 0.713 0.681 0.671 0.62
POS tags + 1-3 grams + dependencies 0.731 0.68 0.7 0.64
unigram + cue lexicon 0.573 0.516 0.552 0.501
POS tags + unigram + cue lexicon 0.694 0.613 0.671 0.6
POS tags + unigram + cue lexicon + dependencies 0.723 0.652 0.691 0.63
POS tags + unigram + cue lexicon + other features 0.70 0.62 0.672 0.602

Table 5.1: Results for Different Feature Combinations on Citation Function Classification

Since the SVM classifier with POS tags + 1-3 grams + dependencies features achieved the
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best performance, which is 0.731 as micro-F, I take this combination and compute the detailed
evaluation for each citation function category.

Category Precision Recall F1
Perfunctory/Background 0.687 0.792 0.736

Statement 0.802 0.581 0.674
Comparison 0.557 0.788 0.653

Multi-comparison 0.552 0.431 0.484
Confirmation 0.822 0.638 0.719

Being-confirmed 0.77 0.42 0.54
Contrast/Conflict 0.77 0.52 0.62

Unsolved 0.554 0.463 0.504

Table 5.2: Citation Function Classification with the SVM Classifier

The results given in Table 5.2 are not quite satisfying. This is because my corpus is
still heavily skewed even after I condensed the neutral class. The low F1 scores of Multi-

comparison and Unsolved are mainly caused by the very small number of samples in these two
categories. Furthermore, the sharp contrast between the F1 scores of Confirmation and Being-

confirmed also questions whether it is applicable and reasonable to take citing direction as an
extra dimension in the classification scheme, as most citations have the same citing direction,
which might be a potential factor that gives rise to the imbalance problem.

Class Precision Recall F1
Neutral 0.806 0.931 0.838
Positive 0.825 0.630 0.714
Negative 0.959 0.66 0.782

Table 5.3: Citation Polarity Classification with the SVM Classifier

The overall results for the citation polarity classification in Table 5.3 are better than those of
the citation function categorization. This performance is in line with Xu et at. (2015), but not
as high as Athar (2011) and Hernández-Alvarez et al. (2017). One possible reason might be the
citation sentiment detection in biomedical domain is more difficult because of the complicated
sentence structures and prevalent hedges applied in biomedical writing.

5.6 Summary

This chapter illustrates the implementation of automatic classification on citation function and
polarity. In data preparation, I replace citation indices and references with two placeholders to
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avoid part-of-speech tagging errors and lexical bias, respectively. In addition, some stop-words
are removed from the corpus to reduce feature vector dimensions.

I extract part-of-speech tags and n-grams as lexical features, and dependency relations as
structural features. A lexicon of cue phrases, which are identified during corpus annotation, is
included to capture contextual characteristics of sentences. Some metadata features, such as
citation location and citation count are also extracted as supplements.

To alleviate the imbalanced corpus issue, I condensed the neutral class. Different types of
features are combined and experimented separately with the two classifiers, which are maxi-
mum entropy and SVM. The best classification performance was obtained with POS tags + 1-3
grams + dependencies features using the SVM classifier. This combination was later applied
for computing the precision, recall and F1 scores of each citation function category and senti-
ment class. The results indicate it is difficult to classify citation function and detect sentence
sentiment in the biomedical domain.



Chapter 6

Conclusions and Future Work

This chapter concludes the research work that has been done for this thesis, as well as discusses
the possible future improvements in biomedical citation classification.

6.1 Conclusions

In this thesis, I firstly reviewed the literature in citation classification. Various categorization
schemes have been closely examined, and their automatic classification experiments combined
with machine learning algorithms are also well studied. The research that addressed the im-
portant role of cue phrases in citation classification were given special attention.

In terms of the classification problems in previous studies and limited works in biomedical
citation research, the following results have been obtained in this work:

• A new citation classification scheme, which investigates citation function and polarity, is
proposed for the purpose of automation. This new scheme consists of 3 top-levels of 8
categories, and is defined by 3 dimensions to fit the biomedical citation content.

• A biomedical citation corpus is constructed and annotated. To improve the annotation
accuracy, I developed a cue phrase extraction mechanism to identify the linguistic cues
that are crucial in deciding a particular category for a citation. The extracted cue phrases
compose a biomedical-specific lexicon, which may contribute to the future citation re-
search in the biomedical domain.

• A series of automatic classification experiments are conducted with lexical, structural
and metadata features as inputs for two statistical models: maximum entropy and SVM.
Good performance was obtained in citation polarity classification, while fair performance
was achieved on citation function categorization due to the imbalanced corpus. The fact

53
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that linguistic cue features significantly improved the classification results indicates that
cue phrases do play an important role in citation content analysis.

6.2 Future Work

A common problem in present citation classification research is the imbalanced corpus. One
possible solution is to take the context sentences into consideration. However, the context
length of a biomedical citation varies widely, from an adjacent sentence to the whole paragraph.
This is because biomedical authors tend to use more comparative terms and cite much data to
hedge their own true opinions. Defining a proper context scope could be one meaningful aspect
of future citation classification studies.

In recent years, neural networks have been employed in more and more natural language
processing tasks. A multi-layer neural network is a combination of various statistical clas-
sifiers, and is able to learn sentence characteristics by itself instead of through hand-crafted
features. Such implementations have proved to be effective in some latest citation function and
polarity classification studies. Therefore, in my future research works, I plan to apply a neural
network system to detect more useful information in perfunctory or neutral citations.
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Appendix A

Cue Phrase Lexicon

A regular cue phrase pattern in BACKGROUND

position 1 (optional) position 2 (optional) position 3 position 4 (optional)
as previously calculated by

been recently described in
also already demonstrated previously

developed before
discussed earlier

done extensively
found in

identified for
measured recently

noted to
observed

performed
postulated
proposed
presented
published

recommended
reported
shown
studied

suggested
used

The words on position 1, 2, 3 and 4 can make various combinations thus take majority of
cue phrase lexicon. For example, both “as previously described” and “as previously described
by” exist in lexicon. The rest of cue phrases of BACKGROUND category are shown in the
following table.
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BACKGROUND

according to analyzed articulated in
as with aware of because of

commonly employed in considered data from defined by
demonstrate determined by depicted in
developed by documented e.g.

employed (with) encountered by follow(s/ed/ing)
for example for review from a previous study

refer to has/have been shown given by
generally considered (also) known as less likely

introduced known (from/to/about) it is known
investigated by may explain in a previous report

in the earlier study of no...has yet been reported reflect
see note(d) (previously) prepared previously by

reflected by reproduce well-founded
well-known widely known widely used

such as shown to (be) since
(previously) thought to using utilize(d/s)

referenced with

STATEMENT

assert claimed calculate (using)
calculated (as/from) concluded from demonstrated (to/in)

detected established evaluated (as)
examined explain found in/to

followed by identified (from) illustrates
implicated indicate(d/ing/s) included (in)
including mapped previously

previously pointed out proposed (as) replicated
reported revealed show(ed/n/s)

speculated suggest(ed/ing/s) underline

COMPASIRON

also a result of analogous to as follows
comparable to/with compare deviate normally from

equivalent to fits...to some degree for comparison
found highly homologous to high similarity with

in response to in addition obtain
obtained (from/by/using) resemble(s/d) (highly) similar result(s)

similarly subjected to the same level as
very close to
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MULTI-COMPASIRON

a departure from besides furthermore
in addition moreover needs to be pointed out
reviewed in takes a different approach to in previous studies

state of the art state-of-art state-of-the-art

COMFIRMATION

acceptance accurately adequately
appealing bestperforming better

agree(s) (well) with as expected based on/upon
close to confirm(ed/ing/s) consistent with
closely competitive considerable

correspond(ing) to correspond well with corroborate
correlates high-quality important

does match except extend(ed)
dominant dramatically easier

faster favorably high
further investigate good in accord(ance) with

improve improve the performance improvements
influential intensively interesting

in (close) agreement with in congruence/line with matched with
may hypothesize met not affect

no discrepancies between...and not surprising particular useful
not statistically significantly different from remarkably similar (to)

offer an explanation for similarly to similarity
outperforms overcome pioneered

predominantly preferable preferred
sought to confirm support supported by
used successfully significantly enhance substantially

success successful successfully

BEING-COMFIRMAED

aided as suggested by effective
efficient efficiently excellent

effectiveness supported by confirmed by
enhanced by evidenced by fortunately
in support of it is conceivable on the basis of
same finding was achieved using quite accurate
reasonable reduces overfitting robust
satisfactory significant increases simple
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CONTRAST/CONFLICT

appears different with burden but/indicate
complicated contradictory daunting
contradicts contrary to contrasting with

difficult differ(s) (significantly) from difference
different from discrepancies between striking difference between

lack higher poor
distinct from however not discover
it is unlikely argues strongly in disagreement with

in (sharp/striking) contrast (to/with) not appear
in contrast shown...not no association

no...were observed not addressed not demonstrate
not be relevant to not find not have

not described before not match not observe
not possible not show no results

on the contrary rule out surprisingly
unlike very different while

yet restrict worse

UNSOLVED

deficiencies degrade inability
far from clear not shown not clear

remained (unclear) presently unknown so far...limited to
still unknown limitations no solutions were given
unexplored
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