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Abstract 

Corona discharge is used in many practical applications. For designing and optimization of 

corona devices, the discharge phenomenon should be numerically simulated. Most often, the 

corona discharge model is simplified by neglecting the process dynamics and assuming a 

limited number of reactions and species. In the extreme case, monopolar corona models with 

just one species and no reactions are studied. However, there is a problem with determining 

boundary conditions for the space charge density. The simplest solution to this problem was 

suggested by Kaptzov, who hypothesized that the electric field on the electrode surface 

remains constant and equal to the value at the onset conditions, which is known from a semi-

empirical Peek’s formula. Experimental data confirm good accuracy of this approach. 

However, it is impossible to experimentally measure the surface electric field at different 

voltage levels and compare it to Peek’s value. Our thesis will discuss different methods for 

simulating corona discharge in 1D wire-cylinder geometry in air at atmospheric pressure. 

The classical model based on Kaptzov’s hypothesis is compared with other approaches. The 

first model is still a single-species one, but it uses direct ionization criterion. Two other 

models consider a higher number of species and some number of reactions, so the ionization 

layer is included. The surface electric field can differ from Peek’s value by almost 43%. In 

addition, the results of numerical investigations of the EHD flow generated by dc corona 

discharge in the point-plane configuration in atmospheric air are presented in this thesis. A 

computational model of the discharge includes the ionization layer and three ionic species. 

The most important ionic reactions (ionization, attachment, recombination and detachment) 

are considered. The results of the corona simulations were used to predict the secondary 

EHD flow. All flow parameters (velocity components, pressure, streamlines) are determined. 

In addition to main flow vortex reported before, a local vortex near the discharge tip has also 

been discovered. COMSOL, a commercial finite element package, was used in simulations. 
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Chapter 1  

1 Introduction 
An introduction to the corona discharge phenomenon, thesis objectives and thesis outline 

are presented in this Chapter. 

1.1 Introduction 
In a non-uniform configuration consisting of two or more electrodes, a stable electric 

discharge, called corona discharge, is produced when a sharp electrode is connected to a 

high voltage source. The other, much flatter, electrode is usually connected to ground.  

Because of the difference in the radii of curvature of both electrodes, a high field region 

is produced near the sharp electrode. If there is an electron in this region, it is accelerated 

and after reaching sufficient energy it can collide with a neutral molecule detaching 

another electron, so gas ionization takes place [1]. Positive ions and electrons are 

produced, and their movement depends on the polarity of the sharp electrode. When 

electrons leave the high field region, they don’t have enough energy to further ionize 

neutral molecules. In some gases, called electronegative ones, electrons attach to neutral 

molecules, forming negative ions. Therefore, two regions can be identified in the air gap 

between both electrodes: a lower field drift region and a high field ionization region [2]. 

Drift of ions and electrons leads to imposing some momentum on the neutral gas 

molecules of the host medium, which causes the ionic wind, also known as 

electrohydrodynamic (EHD) flow. 

There exist several forms of corona discharge, which depend on the spatial electrode 

configuration and the polarity of the applied potential difference, which may be positive 

or negative. Some of the most common electrode geometries are: needle-plane, wire-

cylinder and wire-plane. The discharge for the positive voltage is quite different than the 

discharge for the negative voltage. In the case of positive corona, as the applied voltage 

increases, the discharge changes from burst pulse corona, to streamer corona, glow 

corona and spark discharge. In the case of negative corona, the discharge changes from 

Trichel pulse corona, to pulseless corona and spark discharge [3].   



2 

 

The major published works on corona discharge may be credited to Loeb, Goldman and 

Sigmond [2,4]. Loeb analyzed the mechanism of negative corona pulses in air at 

atmospheric pressure and studied the differences between positive and negative corona 

currents in air [4]. Robinson was the first to report the existence of ionic wind [5], but 

Chattok introduced its first quantitative analysis [6]. The lack of complete understanding 

of the physical processes taking place in corona discharge and important practical 

applications of this phenomenon make the interest in corona discharge still alive today. 

There are many practical applications of corona discharge in industry and research. Some 

of them are: charging thin insulating films, electrophotography, electrostatic 

precipitation, removal of gaseous pollutants (mostly NOx and SOx) and many others. The 

electrostatic precipitator was probably the first commercial application of the corona 

discharge phenomenon and this didn’t happen until 1907 [8]. On the other side, corona 

discharge is harmful in the electrical power systems, where it should be prevented since it 

causes power loss, produces audible noise and leads to radio interferences [9].  

Corona discharge is a complex phenomenon and its experimental investigation is time 

consuming. Therefore, numerical simulation has been used more and more often. 

However, due to process complexity some simplifying assumptions are necessary. 

Despite this, relatively accurate solutions can be still obtained.  

1.2 Thesis Objectives 
The first objective of this thesis is to perform a numerical investigation of the negative 

DC corona discharge in atmospheric air in the wire-cylinder configuration. This 

investigation is done using three different approaches. The first approach includes one 

ionic species, where two numerical models are tested: one is based on Kaptzov’s 

hypothesis and the other on the direct ionization criterion. The second approach includes 

three ionic species: electrons, negative ions and positive ions. The final approach in 

addition to the previous three species includes extra four species: O, O-, O3 and O2(1∇g).  

The studied geometry consists of a thin wire acting as the corona electrode, which is 

positioned at the center of a grounded cylinder. The main goal is the determine the 

electric field on the corona electrode surface, so that a commonly accepted simplifying 
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assumption, called Kaptzov’s hypothesis, can be validated, spatial distribution of electric 

charge and the current-voltage characteristics. 

The second investigated geometry consists of a needle acting as the corona electrode 

which is perpendicular to a grounded plate. In this model, three ionic species are 

considered: electrons, positive ions and negative ions. The objective is to investigate a 

new air flow pattern that has not been reported before in literature on EHD. 

To achieve both objectives, the numerical algorithm based on the Finite Element Method 

was implemented using commercial software COMSOL 5.3. As a result, the distributions 

of both space charge densities and electric potential can be determined.  

Several data sets are reported, including the distribution of electric field on the corona 

electrode, the spatial distribution of the ionic species and the voltage-current 

characteristics. In addition to this, three more parameters of interest are presented for the 

EHD flow. These include the airflow streamlines, the pressure distribution near the 

corona electrode, and the velocity distribution in the air gap between both electrodes. 

1.3 Thesis Outline 
The thesis is divided into 6 Chapters. The summary of each Chapter is as follows: 

 Chapter 2 includes a summary of some of the previous publications related to numerical 

simulation of negative corona discharge in wire-cylinder and needle-plate configuration 

in atmospheric air. Moreover, a review is done on the recent work related to 

electrohydrodynamic flows. The review covers simulations of one-species, three-species 

and seven-species corona models. Moreover, the Kaptzov hypothesis and direct 

ionization criterion are reviewed as well.  

Chapter 3 includes the mathematical model and the numerical algorithm for one-species, 

three-species and seven-species corona discharge models. For the one-species model, two 

approaches are discussed: one is based on Kaptzov’s hypothesis and the other is based on 

the direct ionization criterion. The equations governing this problem: Poisson’s for 
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electric field and drift-diffusion for the charge transport are presented. In addition, the 

boundary conditions for all distributions are specified.  

Chapter 4 includes the numerical investigation of the DC corona discharge in the wire-

cylinder geometry. The electric field and space charge distributions are compared for 

different numerical models. The validity of Kaptzov’s hypothesis is verified. 

Chapter 5 includes the simulation results of electrohydrodynamic flow in the point-plane 

geometry. The three-species model of the corona discharge is investigated first for the 

stationary discharge model. Determined electric field and space charge density are used 

to calculate the flow body force. The obtained results predict a double-vortex pattern 

never reported previously. 

Chapter 6 includes a general summary of the thesis and discusses unsuccessful trials to 

replace some elements of the COMSOL software with specifically written routines. 
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Chapter 2  

2  Literature review 
 In this Chapter, a comprehensive literature review is presented regarding the theory and 

numerical simulation of DC corona discharge and electrohydrodynamic (EHD) flow. 

This review focuses on two configurations of electrodes: wire-cylinder and needle-plate. 

Various numerical approaches, from very simplistic to the most advanced are discussed. 

2.1 Early Discovery of Corona Discharge 
Peek was the first researcher to talk about the appearance of the corona in his book, 

which he published in 1929 [11]. He discovered that when the voltage between two 

smooth conductors increases above a certain critical potential, a hissing noise can be 

heard, a violet light can be observed, if the surrounding medium is dark, and a noticeable 

reading on a wattmeter is recorded. Peek also noticed the formation of ozone in this 

process. Moreover, when the air was electrically overstressed, the air constituents, 

oxygen O2 and nitrogen N2, chemically react, leading to the formation of oxides. As a 

result, the corona discharge is accompanied by the power loss, which has several forms: 

chemical reactions, noise, light and heat. Peek also reported that the power loss recorded 

by a wattmeter increases significantly with the increase of the voltage level and also 

observed the difference between AC and DC corona discharge. The appearance of the AC 

corona for the positive half-cycle of the supplied voltage is the same as that of the 

positive DC corona and the same applies to the negative corona. On the other hand, Peek 

discovered, using a stroboscope, the difference in the discharge pattern in the positive and 

negative corona discharges. In the case of the negative applied voltage, some reddish 

beads are formed on the wire. In the case of positive applied voltage, a smoother bluish-

white glow is visible. 

Moreover, Peek derived an analytical formula, which can be used to calculate the electric 

field strength E on the active corona electrode at the point of corona onset. Peek took into 

consideration the air density and the corona electrode radius. 



6 

 

 Any geometry that possesses a non-uniform gap can be used for generation of the corona 

discharge phenomenon. However, in practical situations geometries which have 

electrodes with significantly different sharpness are more practical. The most commonly 

studied systems have been the point-to-plane, where the point can be a tip of sharp 

needle, and the coaxial wire-cylinder systems. In 1965, Loeb explained the difference in 

the corona pattern between these two systems [12]. While the point-plane geometry has a 

confined discharge region, in the coaxial geometry the discharge can be initiated at 

different points on the corona wire.  

2.2 Numerical Simulation of Corona Discharge 
Numerous electrical, mechanical and chemical processes are associated with the electric 

corona discharge. To study this phenomenon, major simplifications should be 

implemented. Even with such simplifications, analytical solutions can’t be obtained 

unless the geometry of the targeted physical problem is one-dimensional. As a result, 

since the 1960s numerical simulation of corona discharge has been of wide interest to 

researchers to enhance understanding of industrial and research processes [13]. The two 

major parameters involved in the simulation of corona discharge are the electric field and 

the space charge density. These quantities enable the calculation of the electric current, 

which is in turn the main factor needed for calculation of the power and energy loss. The 

electric field depends on the space charge magnitude and distribution and the space 

charge is affected by the electric-field distribution. As a result, both quantities are 

mutually coupled.  

Relevant partial differential equations associated with the electric field and the space 

charge densities are Poisson’s equation for the scalar electric potential and the drift-

diffusion equations for all ionic-species. An iterative numerical procedure has been 

implemented in literature to find the solution of this set of differential equations [14]. The 

stability and convergence of these methods are highly influenced by the suitable choice 

of a proper solution algorithm.  
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2.2.1 Numerical Techniques to Calculate the Electrical Field 

The Poisson equation, which governs the electric potential distribution, is a linear partial 

differential equation of the second order. The techniques for solving this equation can be 

divided into two groups: differential and integral. The integral methods require the 

discretization of the active parts of the domain only, which are the electrode surfaces and 

areas with electric charge. The first integral technique is the Charge Simulation Method 

(CSM). In this technique, all electrodes are substituted with some number of lumped 

charges placed inside of the conducting objects. The magnitude of these charges is 

determined from the condition that the electrode surface should be equipotential. After 

that, the electric field is calculated by the superposition of the individual electric fields 

resulting from each point charge. This technique can’t be used for nonlinear problems, or 

for systems having complex geometries, or for infinite electrodes [15].  

The second technique uses a similar philosophy and is called the Boundary Element 

Method (BEM). The unknown in this technique is the surface charge density on the 

electrode surface, which is determined from the condition of electrode equipotential. 

These charges physically exist, so the method doesn’t rely on artificial charges used in 

CSM. Mathematically, the method is based on solving integral equations with weakly 

singular kernels, which makes the approach more complicated. While solution of the 

Laplace equation (problems without space charge) is relatively fast, problems with space 

charge are much more time consuming [16].  

On the other hand, the differential methods require the discretization of the whole 

computational domain, which causes problems for open physical problems. The 

unlimited domains have to be truncated and some artificial boundary conditions need to 

be imposed, which may be a source of an error. The oldest differential method is the 

Finite Difference Method (FDM), which is considered the most classical one [17]. As its 

name implies, the derivatives in the governing partial differential equations are replaced 

with the finite differences. Although this technique is easy for implementing, it can be 

complicated for problems having irregular domains. The second differential technique is 

the Finite Element Method (FEM). Four basic steps summarize FEM: discretizing the 

computational domain into a specific number of sub-regions called elements, deriving 
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matrix equations for each element, assembling the element equations and, finally, solving 

the obtained system of equations where the solution over each element is interpolated 

using a simple function, most often polynomials. A fine discretization of the domain may 

lead to large algebraic systems. This technique is easily used to solve problems with 

complex geometries [18]. 

2.2.2 Numerical Techniques to Calculate the Space Charge 
Density 

The knowledge of the electric field distribution in a given domain is needed to evaluate 

the space charge density. One of the most efficient techniques for this purpose is the 

Method of Characteristic (MOC), where the partial differential equations along the lines, 

along which the ions move, are reduced to the ordinary differential equations [18]. These 

lines are called characteristic lines. For single species models these equations have simple 

analytical solutions. Since it is more difficult to solve a set of ordinary differential 

equations, application of this technique to the multiple species problems is more 

problematic.  

Another technique, which can be used for the charge transport equations, is the Finite 

Volume Method (FVM); one of its versions is called the Donor-Cell Method (DCM) 

[19]. In this method, the domain is tessellated by closed polygonal paths and each 

polygon has a node enclosed in it. DCM is based on the integral form of the conservation 

of charges, where each polygon bounds points that are nearer to the node inside the 

polygon than any other node. This technique can handle problems with multiple species; 

however, it is time consuming [20].  

The third method is FEM which predicts the distribution of space charge in the targeted 

simulated domain, if the space charge is restricted to the area between the associated 

electrodes. As discussed before, corona discharge occurs in areas with steep field 

gradients, which are called ionization regions. Conventional FEM algorithms are often 

divergent in this case, and to reach a convergent solution, stabilizing techniques should 

be implemented. One of the stabilizing techniques requires adding the artificial diffusion, 
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where the physical diffusion coefficient used in the drift-diffusion equations is modified 

according to the following equation: 

D#$%&'(')*+ = D-./#'0%( + 	δh|v| ( 2-1) 

where 𝛿 is a stabilizing parameter between 0 and 0.5, h is the longest mesh side element 

and v is the charged species drift velocity. The drawback of such technique is that it adds 

artificial diffusion in all directions; thus, making it an inconsistent method. The other two 

consistent methods are the streamline diffusion and crosswind stabilization. Streamline 

diffusion adds the artificial terms in the direction of the electric field only [7]. This 

technique is considered consistent because the stabilizing term tends to zero when the 

solution converges. In the crosswind stabilization an artificial diffusion perpendicular to 

the electric field lines is added [37]. This technique is used for simulating models which 

have high electric fields.  

Other methods are the Flux Corrected Transport (FCT) and the Total Variation 

Diminishing technique (TVD). FCT identifies the steep density gradient without 

introducing any artificial diffusion [63]. It adds an anti-diffusive term to the low-order 

solution making sure that no new maxima or minima associated with the new added 

terms are introduced. TVD on the other hand makes sure to eliminate any numerical 

oscillations which can result from the increase in the flow variables with time. As a 

result, although the solution can be of the second or third order in the smooth part, it 

changes to a first order at points where the artificial minima or maxima are generated.   

2.2.3 Numerical Investigation of Corona Discharge 

Each of the methods mentioned in the previous two sections has some advantages and 

disadvantages, where each is better for specific applications depending on the problem 

requirements. In order to handle simulations most efficiently, a combination of numerical 

methods should be considered, which leads to the idea of hybrid techniques.  

In 1985, Morrow was the first to report his work on simulating corona discharge in 

oxygen and other gases, taking into account a small number of chemical reactions [21]. 

He used a hybrid technique combining the Flux-Corrected Transport method to solve the 
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three drift-diffusion equations for ionic species and the FDM method for solving 

Poisson’s equation to determine electric field. A one-dimensional model was considered 

in this study.  

The first published work, which reported using FEM only to simulate corona discharge 

was authored by Janischewskyj and Gela [18]. They simulated corona in a wire-cylinder 

configuration assuming a one-dimensional unipolar corona model. Deutsch assumption 

was satisfied in this simulation since the electrical field is always radial in this 

configuration [22]. This assumption states that the intensity of the Laplacian field lines 

changes in the presence of space charge, but the geometry of the lines is preserved.  

Abdel-Salam et al. used a hybrid FEM-CSM technique, for simulating corona discharge 

in wire-to-ground configuration [23, 24]. A monopolar corona model was used where the 

ionization layer was neglected. They assumed that the electrical field intensity on the 

corona wire is constant; thus, implementing Kaptzov’s hypothesis. Kaptzov’s hypothesis 

states that the electric field on the corona electrode is constant when the applied voltage 

is above a threshold value, called onset voltage. Chen and Davidson simulated positive 

and negative corona discharges in a wire-cylinder configuration [25]. A one- dimensional 

stationary model was adopted, where three ionic species (electrons, negative ions and 

positive ions) were taken into consideration. FDM was implemented to solve the charge 

continuity equations and Kaptzov’s hypothesis was adopted in this simulation.  

BEM and MOC have also been combined to evaluate the electric potential and the charge 

distribution in 2D models of corona discharge. Adamiak used these two techniques 

iteratively in order to simulate corona discharge in a wire-duct electrostatic precipitator 

[26]. Kaptzov’s hypothesis was adopted again in this simulation. The numerical results 

agreed well with the experimental results; however, this hybrid technique was ineffective 

in terms of computational time. Adamiak and Atten then applied BEM to evaluate the 

Laplacian electric field, FEM to evaluate the Poisson electric field and MOC to evaluate 

the space charge [27]. An injection law was applied in this simulation, where the density 

of the charge carriers on the corona electrode was evaluated from the local electric field 

value. This technique again satisfied Kaptzov’s hypothesis, but in an indirect way. 
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Accurate results were attained when very fine discretization was used near the corona 

electrode, since the electric field has a very steep gradient in this area. 

Some researchers studied the electric corona discharge using time-dependent and multi-

polar models [28].  Liang et al. used a one-dimensional single species model in order to 

simulate a wire-cylinder electrostatic precipitator under the pulse energization [29]. 

Rajanikanth and Prabhakar used a two-dimensional single species model to simulate the 

same problem using a time-dependent model [30]. Salasoo and Nelson used a time-

dependent two-dimensional multi-species model in order to simulate a pipe-type 

precipitator [31].  

Many authors investigated negative and positive corona discharge in oxygen, air, SF6 and 

other gases taking into consideration more detailed chemistry of ionic reactions. 

Georghiou et al. simulated corona discharge in a point-plane geometry at radio frequency 

in air [28]. Detailed models were investigated considering multi-species and taking 

several ionic processes into account: the ionization of neutral molecules, attachment of 

electrons, the recombination between negative ions and positive ions and the 

recombination between electrons and positive ions. Zhang and Adamiak used a similar 

approach to simulate corona discharge in oxygen in a point-plane geometry, where a DC 

stationary model was assumed [32].  

Yanallah and Pontiga proposed a semi-analytical stationary discharge model in a point-

plane configuration for both positive and negative corona discharge in oxygen. The 

approximate analytical expressions for the electric field and the ionic densities were 

found by solving the Gauss and the continuity equations. Secondary ionization criterion 

and photoionization were implemented in the boundary conditions of the problem by 

using the experimental corona current and applied voltage as inputs [33].  

For the cylinder-wire-plate configuration, Dumitran et al. introduced a more realistic non-

uniform charge injection that accounts for the field variation on the surface of the 

ionizing wire of a dual corona electrode [34]. These changes were reported to have a 

great impact on the ionic current and the space charge distributions.  
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In 2005, Adamiak et al. came up with a novel approach based on the direct ionization 

criterion instead of Kaptzov’s hypothesis and applied it for a two-dimensional hyperbolic 

needle-ground configuration. The new approach was compared with two others: one 

based on Kaptzov’s hypothesis and the other one based on the analytical Peek formula 

with an equivalent electrode radius [60]. BEM, FEM and MOC were combined to solve 

for the Laplacian electric field, the Poisson component of the electric field and the charge 

transport equation, respectively. The discharge current was practically the same for the 

three approaches However, the electric field distributions on the corona electrode surface 

were slightly different.  

2.3 Electrohydrodynamic Flow 
Electrohydrodynamic flow (EHD) is the result of the collisions between charged 

particles, accelerated in the electric field, and neutral gas molecules. This leads to the rise 

of induced air flow, which has been called the “ion wind”.  

EHD flow was first observed in 1629 by Cabeo, but the first official acknowledgement 

was reported in 1709 by Hauksbee [36,37]. Hauksbee discovered that a weak blowing 

wind is initiated near an electrified body [38]. Cavalo, in turn, provided the first 

qualitative explanation of the ionic wind [39]. Faraday identified the mechanism 

responsible for the movement of the air particles between two electrodes, when high 

voltage is applied to the emitter. He confirmed that ionic wind is driven by the 

momentum transfer between charged and uncharged particles [40]. In 1873, Maxwell 

published the most comprehensive work at that time, which is still valid nowadays [41]. 

Ionic wind generated by the corona discharge has been investigated both experimentally 

and theoretically, and different models have been investigated. Unipolar ions play the 

main role in formation of EHD flows; thus, a basic unipolar corona model coupled with 

Navier-Stokes equation has been adopted by many researches [50,51,52].  Moreover, 

some researchers have used complex chemical kinetic models of gas discharges to 

investigate the gas flow [53], but very advanced computational resources were required. 

Therefore, a fluid model based on three ionic species is considered satisfactory for 

simulating of ionic wind since it saves computational time [54].  
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The effect of many factors, including the electrodes geometry, the EHD force and the 

current-voltage characteristics on the velocity of the ionic wind has been studied. Zhao 

and Adamiak presented numerical investigation of the EHD flow produced by corona 

discharge [70]. Three different system configurations were considered with variable 

applied pressure. The development of the EHD flow to its full pattern has been 

investigated including the time it takes and the factors that affect it. Improved models 

were simulated including a set of continuity equations for the charged particles coupled 

with Poisson’s equation [75], where the corona model predicts the distribution of the 

EHD force and the flow velocity can be then obtained.  A fully coupled model including 

both the continuity equations and the Navier-Stokes equations was proposed by Bérard et 

al [45]. The numerical investigation involved a steady state simulation of a 2D numerical 

model.  

Some researchers tried to increase the gas flow velocity in a wire-plate configuration 

without reaching breakdown [56]. In 2014, an empirical model has been proposed linking 

the ionic wind velocity to the applied voltage and the geometry of the collecting electrode 

[57]. The measurements of the ions velocity and the discharge current were carried out 

for different electrode geometries, having a variable air gap length and applied voltage.  

Chen et al. have reported the numerical and experimental study of a DC negative corona 

discharge in a needle-cylinder configuration [54]. They found that the gas near the needle 

tip flows towards the discharge electrode, while the gas velocity is oriented towards the 

ground electrode outside the ionization region. Moreover, the EHD force is 

approximately two orders of magnitude higher in the ionization region than in the drift 

region.  

There exist many applications where ionic wind can be used. The first one is the ionic 

wind-driven bulk air blowers or EHD pumps. These pumps have several forms where two 

different flow patterns can be observed: un-ducted flow with an unconstrained manner 

and ducted flow with a confined manner [47]. The most popular configuration of EHD 

pump is a sliding discharge-type, where the discharge electrode is a discrete saw-toothed-

plate. This configuration allows the generation of high gas velocity compared to a 



14 

 

classical plate discharge electrode [48]. Another configuration is a needle-ring-metal 

pump. In this configuration, the voltage is applied to both the needle and the ring. As a 

result, a higher flow velocity is observed [42]. A way to increase the flow velocity is to 

increase the active area of the pump. This is done by using a serial-staged configuration 

where a needle array is used [43]. 

The second application of EHD flow is the boundary layer control. The gas flow 

produced by the corona discharge is used to change the laminar-turbulent transition 

regime around obstacles [55]. This is done by changing the velocity in the layer that is 

very close to the surface of the object. Colver et al. performed a couple of numerical 

studies on the boundary layer control [73]. One significant aspect is the ion removal and 

deposition on the plate surface which have a small conductivity. The studies were 

performed using the Finite Difference Method and a coarse discretization was 

implemented. Ghazanchaei proposed a model to numerically investigate the electrical and 

mechanical properties of a unipolar positive corona system around a flat plate by using 

FEM. He found that the efficiency of the system decreases at higher voltages and that the 

drag reduction occurs at higher velocities [55].  

The third application of EHD flow is EHD drying. EHD drying is the most economical 

option since the process requires a small pressure difference and a relatively low thermal 

energy.  EHD flow will lead to the dramatic increase of the water mass transfer from the 

surface of a wet material [74]. Different studies showed that configurations involving 

multi-pin electrodes have less evaporation rate than single-pin electrodes. Moreover, the 

spacing between associated electrodes in a multi-wire discharge electrode must be 

maximized in order to have an optimal drying rate. Shi et al simulated a multiple pin-to-

plate configuration and found that the air mass flux is proportional to the voltage and 

square root of the total current [74].  
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Chapter 3  

3 Mathematical Model and Numerical Algorithm for 
Simulating Corona Discharge  

The corona systems investigated in this thesis consist of two electrodes, one having a 

much smaller radius of curvature then the other. The system investigated in Chapter 4 is a 

wire-cylinder configuration and in Chapter 5 it is a needle-plane configuration. In this 

Chapter, different discharge models are compared and they vary from a single-species to 

multi-species ones. In the most advanced approach, seven ionic species are considered 

with electron attachment, avalanche ionization and ionic recombination included. All 

these models will be used for 1D simulation, while the 2D discharge model is based on 

the three-species approach only. COMSOL, a commercial finite element package, is used 

for solving Poisson’s equation, governing the electric field distribution, in addition to 

convection-diffusion equations for all ionic species. 

3.1 Single-Species Approach 

3.1.1 Idealizing Assumptions 

The essential processes in corona discharge are impact ionization of neutral molecules by 

electrons, attachment of electrons to neutral molecules, recombination of positive and 

negative ions, and others. The collision of accelerated electrons with gas molecules in the 

region with strong electric field leads to gas ionization and this takes place near the 

corona electrode. On the other hand, the presence of electrons in the region where the 

electric field is low leads to the attachment of these electrons to the neutral gas 

molecules. As a result, two zones can be identified in the air gap between the electrodes: 

the ionization zone, where the electron-positive ion pairs are created, and the drift 

diffusion zone, where negative ions are created. In most engineering applications of the 

corona discharge the processes in the ionization layer are ignored due to a small thickness 

of this layer, which is usually in the order of the corona electrode radius of curvature 

[59].  The most common approaches used in the design and optimization in engineering 

applications consider only one species of ionic charges moving in electric field with a 

constant mobility. This single species is injected from the area very near the discharge 



16 

 

electrode and its distribution is predicted by solving the coupled equations of the electric 

field and the charge transport. 

3.1.2 Governing Equations 

The first model considers the presence of just one ionic species. This is computationally 

less expensive than for other models, which consider the presence of three or more ionic 

species. The Poisson equation for the electric scalar potential is: 

∇8V		 = 	−
ρ
ε ( 3-1) 

where ε is the permittivity of gas and ρ is the space charge density. The value of the space 

charge density ρ is calculated by solving the charge transport equation.  

In general case, the movement and generation of the ionic species are governed by the 

following drift-diffusion equation: 

∇	(	−	µ	E@@⃗ n	 − 	D∇n) 	= 	R ( 3-2) 

where n is the species density (1/m3), D is the diffusion coefficient (m2/s), µ is the ion 

mobility (m2/V·s ),  R is the source term( 1/m3·s), and E is the electric field (V/m).  

Since only one ionic species is considered in this model and no ion dissociation and 

recombination are considered, the source term is equal to zero. The relation between the 

space charge density ρ and density n is: 

ρ = e · n ( 3-3) 

where e is the electron charge equal to 1.602·10-19 C.  

To solve the above equations, appropriate boundary conditions must be formulated. The 

corona and ground electrodes satisfy Dirichlet boundary conditions for the electric 

potential: 

V= 0 on the ground, and 
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V= Vc on the corona electrode. 

Two boundary conditions are also needed for the charge continuity equation. The first 

condition is a Neumann condition, where the normal derivative of the space charge 

density on the collecting electrode is zero.  In addition to that, one boundary condition is 

needed for the space charge density on the corona electrode. Since ionization processes 

are ignored, the precise value of the space charge density can’t be determined. Two 

criterions were adopted for the boundary condition regarding the space charge density on 

the corona electrode: Kaptzov hypothesis and direct ionization criterion. 

Moreover, in the 2D models, the computational domain is unlimited. In numerical 

algorithms this domain should be truncated by adding some artificial boundaries. The 

boundary conditions imposed on these artificial boundaries are: zero charge for the 

electrostatic potential and zero flux for the charge transport [2].  It is also important that 

the artificial boundaries should be far enough from the needle tip, so that they wouldn’t 

affect the results. 

3.1.2.1 Kaptzov’s Hypothesis 

According to this hypothesis, at voltages above the onset level, the electric field on the 

corona electrode remains constant regardless of the voltage level [2]. The electric field 

for the wire-cylinder configuration in atmospheric air can be calculated from Peek’s 

formula: 

E- 	= 	3.1 · 10K 		L1 +
0.308
√r	

P ( 3-4) 

where r is the radius of the corona electrode in centimeters, and Ep is the Peek’s value in 

V/m.  

For the point-sphere configuration, a different version of Peek’s formula should be used: 

E- 	= 	3.1 · 10K 		L1 +
0.308
√0.5	r	

P ( 3-5) 
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The same formula is commonly used for 2D cases, where the electrode radius is replaced 

with the sum of principal radii of curvature. 

When the electric field is larger than Peek’s value, the space charge density should be 

increased until the electric field is close to this value. On the other hand, when the electric 

field is smaller than this value, a zero space charge density is assumed on the corona 

electrode [63]. 

3.1.2.2 Direct Ionization Criterion 

When a free electron, having a sufficiently high energy, hits a neutral gas molecule, a 

new electron and a positive ion are produced according to the following equation: 

e	 + 	A	à	e	 + 	AS 	+ 	e ( 3-6) 

where A is the atom, A+ is the positive ion and e is the electron. 

This process is called ionization by collision or electron avalanche. If an electric field is 

applied between two parallel electrodes, electrons are accelerated while traveling from 

the cathode to the anode due to an action of the electric force. Ionization takes place, if 

the electron energy is higher than the ionization potential, which is energy needed to 

dislodge an electron from its atomic shell [58]. If one electron collides with neutral 

molecules α times per one of centimeter travel and if the initial number of electrons at the 

cathode is n0, then the number of the electrons reaching the anode is equal to: 

N	 = 	nU	exp	(α	d) ( 3-7) 

where d is the distance between the cathode and the anode and α is called the Townsend’s 

first ionization coefficient.  

This process of avalanche ionization would die after some time, because all electrons 

would be removed from the air gap. A sustained discharge requires new seed electrons 

generated by other mechanisms. Two the most important are photoionization and 

secondary emission.  Photoionization takes place when UV radiation, generated by some 

ionic reactions, absorbed by a molecule is larger than the ionization potential. UV 
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radiation is propagated in all direction and is not affected by the electric field, so 

photoionization can generate ions at points of higher electric potential (in some sense it 

travels against electric field) and this can lead to sustained discharge. 

On the other hand, secondary ionization is a process of ejecting electrons from the 

discharge electrode. The positive ions produced by the avalanche ionization are attracted 

towards the cathode electrode. If the energy of the positive ion is greater than double the 

cathodic metal work function, one electron is released to gas and a second electron 

neutralizes the positive ion. The released electrons are called secondary electrons and 

they are the source electrons for the next avalanches. The probability of this process is 

associated with Townsend’s secondary ionization coefficient γ. Like α, γ is the net 

number of secondary electrons produced by one positive ion and its value depends on the 

gas pressure, ion velocity and the material of the electrode.  

3.2 Three-Species Approach 

3.2.1 Governing Equations 

This model takes into consideration four chemical reactions including the electron 

avalanche ionization, the ionic recombination of the electrons and the positive ions, 

recombination of the positive and negative ions, and the electron attachment to neutral 

molecules [8]: 

e + O8	à	2e	 +	𝑂8S ( 3-8) 

e +	𝑂8S(	𝑁8S)		à	O8(N8) ( 3-9) 

𝑂8^ + 𝑁8S +	O8(N8)			à	N8 + O8 + O8(N8) ( 3-10) 

e + O8	à	𝑂8^ ( 3-11) 

As a result, the model consists of four partial differential equations and boundary 

conditions for all equations. The first three equations are the drift-diffusion equations in 

which the generation, dissipation and movement of the ionic species are considered. The 
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fourth equation is Poisson’s equation, which is used to calculate the electric potential 

distribution: 

∇	(	−	µ_	E@@⃗ n_	–	D_∇n_) 	= 	R_ ( 3-12) 

∇	(	µa	E@@⃗ na	– 	Da∇na) 	= 	Ra ( 3-13) 

∇	(	−	µb	E@@⃗ nb	–	Db∇nb) 	= 	Rb ( 3-14) 

∇8V = 	−
e(na − n_ − nb)

ε  
( 3-15) 

where ne , np , nn are the densities (1/m3) of electrons, positive ions and negative ions, 

respectively, De, Dp, Dn are the diffusion coefficients (m2/s), µe , µp , µn  are the mobilities 

(m2/V·s),  Re , Rp , Rn are the source terms( 1/m3·s), and E is the electric field (V/m). The 

values of these parameters have been determined experimentally and are given in Table 

3-1 [66].  

Table 3-1: Swarm parameters for the ionic reactions in oxygen 

Parameter  Value Unit 

Electron mobility (μe) 1.9163·E-0.25 [m2/V·s] 

Positive ion mobility (μp) 2.43·10-4 [m2/V·s] 

Negative ion mobility (μn) 2.7·10-4 [m2/V·s] 

Electron diffusivity (De) 0.18 [m2/s] 

Positive ion diffusivity (Dp) 0.028·10-4 [m2/s] 

Negative ion diffusivity (Dn) 0.043·10-4 [m2/s] 

Recombination coefficient of 

positive and negative ions (βnp)  

2·10-13 [m3/s] 
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Recombination coefficient of 

electrons and positive ions (βep) 

2·10-13 [m3/s] 

Ionization coefficient (α) 3.5·105·exp(-1.65·107/E) [1/m] 

Attachment coefficient (η) 1.5·103·exp(-2.5·106/E) [1/m] 

As seen in Table 3-1, the ionization reaction rate coefficients are expressed by using the 

local electrical field approximation. The following terms represent the reaction rates in 

equations for electrons, positive ions and negative ions: 

R_ 	= 	α	n_	µ_	E@@⃗ 	– 	η	n_	µ_	E@@⃗ 	–	β_a	n_	na ( 3-16) 

Ra 	= 	α	n_	µ_	E@@⃗ 	–	β_a	n_	na ( 3-17) 

Rb 	= 	η	n_	µ_	E@@⃗ 	–	βba	nb	na ( 3-18) 

In order to have a self-sustained corona discharge model, some mechanism for generating 

seed electrons must be implemented.  The most important source of these electrons is the 

secondary emission from the discharge electrode. When the positive ions collide with the 

negative corona electrode, the secondary electrons are ejected. The concentration of the 

secondary electrons is given by the following equation [72]: 

n_ = γ	 · na · 	
µa
µ_

 ( 3-19) 

where	𝑛* is the concentration of the electrons on the corona wire (1/m3). The secondary 

emission coefficient γ is taken to be 0.001.  

3.3 Seven-Species Approach 

3.3.1 Governing Equations 

The complexity of the investigated model can be increased from a simple three chemical 

species model into a more complicated one, containing seven chemical species and 

twelve chemical reactions. In the previous model, only electrons, positive and negative 
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ions were included, which is usually acceptable in a typical electrical model. A new 

model has been extended to include not only the attachment of electrons to the neutral 

oxygen molecules, but also the dissociative attachment reaction as follows: 

e + O8	à	O +	O^ ( 3-20) 

As a result, the fourth and fifth chemical species are introduced, which are the atomic 

oxygen O and the corresponding atomic oxygen negative ion O- . Two more reactions 

including the source and sink of the atomic oxygen should be introduced correspondingly  

e + O8	à	O + 	O	 + 	e ( 3-21) 

O+ O	à	O8 ( 3-22) 

For a more realistic model, ozone should also be added as the sixth chemical species. The 

reason behind this is that the atomic oxygen is very active according to the following 

equation: 

O +	O8	à	Og ( 3-23) 

The sink source of the ozone is presented in the following chemical reaction: 

e	 + Og	à	O8 + 	O	 + 	e ( 3-24) 

The last chemical species included in the model is the excited oxygen O2(1∇ g). This 

species is an important component in the production of ozone. The second sink source of 

the ozone is represented in the following equation: 

O8	( ∇	gi ) 	+ 	Og	à	O8 	+	O8 	+ 	O ( 3-25) 

On the other hand, the source term of the excited oxygen is presented in the following 

equation: 

e	 + O8		à	O8	( ∇	gi )	+ 	e		 ( 3-26) 
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The rate coefficients of all the reactions included in this section are specified according to 

the experimental data compiled by Kogelschatz [68]. These coefficients are presented in 

tables as a function of the reduced electric field expressed in Td. Td is the physical unit of 

the ratio E/N, where E is the electric field expressed in V/m and N is the concentration of 

neutral molecules expressed in 1/m3. As before, the local field approximation is used.   

In the previous model, the number density of oxygen molecule O2 was assumed to be 

constant. This assumption can’t be preserved in this model. The reason is that the atomic 

oxygen and ozone are being taken into consideration and their concentration is relatively 

high. Thus, the number of oxygen molecules decreases in accordance to the production of 

the atomic oxygen and the ozone.  

Because the atomic oxygen, ozone and the excited oxygen species are not moved by the 

electric field, the diffusion equation for these species, in which the generation and 

diffusion are considered, is as follows: 

∇	(–	Dj∇nj) 	= 	Rj	 ( 3-27) 

3.4 Numerical Algorithm 

3.4.1 Numerical Algorithm for Single-Species Models 

Simultaneous computation of both the space charge and potential distribution is needed to 

simulate the corona discharge. The numerical algorithm for simulating the corona 

discharge in the wire-cylinder configuration is based on the Finite Element numerical 

technique implemented in the COMSOL commercial software. The value of the charge 

density on the corona wire is a parameter which should be determined using two criteria: 

one based on Kaptzov’s hypothesis and another using the direct ionization condition. 

In the model using Kaptzov’s hypothesis, a MATLAB function is used to update the 

surface charge density until the electric field on the corona electrode surface is 

approximately equal to that resulting from the Peek’s formula. This is achieved by 

implementing an iterative process in which the charge density is modified using the 

following formula [62]:    
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ρjSi 	= 	 ρj 	+ 	K · (Ej	–	Elbm_n)	 ( 3-28) 

where ρi and Ei are the surface charge density and the surface electric field, respectively, 

Eonset is the onset value and K is an experimental constant, which represents the step 

increase inside the MATLAB routine. If K is too small, more iterations are needed to 

reach convergence. On the other hand, divergence takes place, if K is too big. 

The second approach is based on the direct ionization criterion, in which the condition for 

a self-sustained corona discharge links both γ and αeff by the following formula [60]: 

oα_pp(	q)	dr = ln(1 +
1
γ)	 

( 3-29) 

where αeff is the effective ionization coefficient, which is equal to the difference between 

the attachment and the ionization coefficients.  

If the gas involved in the simulation is air, the effective ionization coefficient αeff can be 

expressed as [64]: 

α*ss(E) = 𝐴	𝑝	[	(
𝐸
𝐸U
)8 − 1] ( 3-30) 

where A= 48.5 1/(cm·atm) and E0/p = 3.1·104 V/(cm·atm). 

A MATLAB function is used to evaluate the integral and compare it to the right-hand 

side of ( 3-29). If the integral is larger or smaller than the right-hand side, space charge is 

increased or decreased, respectively.  

3.4.2 Numerical Algorithm for Multispecies Models 

FEM is used to solve Poisson’s equation and the three drift-diffusion equations via the 

commercial software COMSOL. The modules: “Electrostatics” and “Transport of diluted 

species” are used to solve for the electric field and the space charge densities of the three-

ionic species, respectively. According to [67], the most challenging part of simulating 

corona discharge is the equation of the charge transport. To have a stable numerical 



25 

 

algorithm, under-relaxation of the ionic species densities needs to be incorporated in the 

iterative algorithm. This is done by modifying the species concentrations numerically 

using the following equation: 

nb_y 	= 	n	lz{ + 	α	(n|}qq_bn	–	nlz{) ( 3-31) 

 α falls in the range between 0.1 and 0.8. The value of α affects the number of iterations 

needed for convergence. For low voltage levels, a faster convergence is reached when α 

has an initial value of 0.8 for the first couple iterations. α is reduced sequentially to 0.6, 

0.4 and 0.2 until convergence is obtained for α=0.1. For high voltage levels, high values 

of α lead to a divergent solution. Accordingly, α is set to 0.1. 

In the case of seven-species model, additional four transport of diluted species modules 

are added in COMSOL to represent the four-chemical species: O, O-, O3 and O2(1∇g). 

These additional modules don’t require under-relaxation technique.  

3.5 Governing Equation for the EHD Flow 
EHD flow is generated when ions, drifting in electric field, collide with neutral 

molecules. There is a momentum transfer, which causes gas motion. When this EHD 

flow is simulated, in addition to solving the Poisson’s equation for electric field and the 

drift-diffusion equations for transport of ionic species, an additional equation is needed 

for the airflow. The Navier-Stokes equation is as follows: 

𝜌s(u. ∇)u	 = 	−	∇P	 + 	η	∇8u	 + F@⃗ 	 ( 3-32) 

where 𝜌s  is the fluid density (kg/m3), P is the pressure (P), η is the fluid viscosity (kg/ms) 

and �⃗� is the Coulomb force. The electric Coulomb force is the main factor leading the 

EHD flow:  

F@⃗ = 	qE@@⃗  ( 3-33) 

For the boundary conditions, the needle body and the ground plate are defined as the 

stationary walls, where the velocity vector is equal to zero. 
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3.6 Conclusions 
In this Chapter, different models for simulating electric corona discharge have been 

discussed and they varied from one-species to three-species and finally seven-species 

ones. In the single species models, the ionization zone is neglected, and two kinds of 

boundary conditions were implemented for the space charge density: one based on 

Kaptzov’s hypothesis and the other based on the direct-ionization criterion. In the three-

species model, four chemical reactions are taken into account. In the seven-species 

model, an additional seven chemical reactions are considered. For each model, proper 

boundary conditions have been imposed. The numerical algorithms have been reviewed. 

The three-species model needed the under-relaxation technique to have a stable 

simulation. The numerical investigation was performed with the aid of the COMSOL 

commercial software. 
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Chapter 4  

4 Validation of Kaptzov’s Hypothesis for Wire-Cylinder 
Configuration in Air 

The results of numerical investigations of the dc corona discharge in a wire-cylinder 

configuration in air at atmospheric pressure are presented in this Chapter. Four different 

discharge models are compared, including single-species, three-species and seven-species 

ones. For the single-species models, two approaches are tested: one based on Kaptzov’s 

hypothesis and the other one based on the direct ionization criterion. The simulation 

results for the total corona current and the electric field on the corona electrode surface 

for different discharge models are compared with that of the single-species corona 

discharge model based on Kaptzov’s hypothesis. 

4.1 Description of the Model 
Negative DC corona discharge has been investigated in a 1D axisymmetric wire-cylinder 

geometry considering only a single species of ionic charges, which can be treated as a 

negative ion. The investigation is carried out in air at atmospheric pressure and room 

temperature. The wire, which has a radius of R1=100 µm, is placed coaxially with a 

grounded cylinder of radius R2 =3 cm. In the simulated configuration, the Peek’s value is 

Ep =12.4 MV/m and the corona onset voltage is equal -7.2 kV. The domain has been non-

uniformly discretized into 4000 elements with an element length increase of 1% when 

getting away from the corona electrode. Simulations were carried out for negative DC 

voltages supplied to the wire in the range of -7.2 kV to -12 kV with a 500V step. The 

only parameter, which characterizes ion drift is the ion mobility, which is assumed to be 

equal to 2.4·10-4 m2/(V·s). The air permittivity was equal to ε = ε0. 

4.2 Single-Species Model 
Figure 4-1 shows the electric field in logarithmic scale along the air gap between the two 

electrodes for three voltage levels: -8.7 kV, -9.7 kV and -10.7 kV, calculated from the 

model based on Kaptzov’s hypothesis and the direct ionization criterion. It can be seen 

that the electric field calculated from the model applying direct ionization criterion is 
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larger than that based on Kaptzov’s hypothesis. The reason behind this is the restriction 

imposed on the model applying Kaptzov’s hypothesis, where the electric field must be 

equal to Peek’s value. The model based on the direct ionization criterion doesn’t have 

this restriction and the electric field on the corona wire surface at different voltage levels 

slightly varies. 

 

a) Electric field calculated from the model applying Kaptzov’s hypothesis 

 

b) Electric field calculated from the model applying direct ionization criterion 
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Figure 4-1: Electric field in the air gap between electrodes at three different voltage 

levels for the single species models 

Figure 4-2 shows the space charge density distribution along the radial direction at three 

different voltages: -8.7 kV, -9.7kV and -10.7kV for both investigated models. For all 

voltage levels, most of the space charge density concentrates near the corona electrode. 

The concentration decreases until it reaches a very low value near the collecting 

electrode. The space charge concentrated near the corona electrode is larger in the model 

based on Kaptzov’s hypothesis. The difference in the space charge density calculated 

from the model applying Kaptzov’s hypothesis and the direct ionization criterion 

increases as the voltage level increases. 

  

a) Space charge density for the model applying Kaptzov’s hypothesis 
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b) Space charge density for the model applying direct ionization criterion 

Figure 4-2: Space charge density distribution at three different voltage levels for the 

single species models 

Figure 4-3 shows the total number of the ionic species for different voltages calculated 

from the models based on the direct ionization criterion and Kaptzov’s hypothesis. The 

total number of the ionic species for the model using direct ionization approach is smaller 

than the number obtained from the model using Kaptzov’s hypothesis. As the corona wire 

voltage increases, the difference between the total number of negative ions resulting from 

the two models increases until it reaches 53% at -15 kV. Since the electric field resulting 

from Kaptzov’s hypothesis is lower than that resulting from direct-ionization criterion, 

more negative-ions are accumulated in the airgap in this model. Charges accumulated 

closer to the ground electrode have smaller effect on the surface electric field, so a very 

large difference in the overall number of ions has relatively small effect on the electric 

field.   

 

Figure 4-3: Total number of negative ions for different voltage levels from the model 

using Kaptzov’s hypothesis and the direct ionization criterion. 
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4.3 Three-Species Model 
The single species corona discharge simulation has been extended to a three-species 

model, which includes electrons, negative ions and positive ions. A stationary model has 

been investigated. The voltage-current curve, the electron and ionic species number 

densities and the electric field distribution for different voltages are presented. 

Table 4-1 shows the maximum concentration for the three-ionic species present in this 

model for different voltage levels. As the voltage increases, the densities of different ions 

increase.  

Table 4-1: Maximum number densities of different species for different voltage 

levels 

 

Voltage (kV) 

Maximum electron 

concentration 

(1/m3) 

 Maximum 

positive ion 

concentration 

(1/m3) 

Maximum negative 

ion concentration 

(1/m3) 

7.3 5.94·1012 1.46·1015 4.62·1014 

8 1.06·1013 2.59·1015 8.14·1014 

8.7 1.61·1013 3.93·1015 1.22·1015 

9.7 2.53·1013 6.19·1015 1.90·1015 

10.7 3.56·1013 8.81·1015 2.67·1015 

12 5.19·1013 1.28·1016 3.78·1015 

15 9.27·1013 2.26·1016 6.54·1015 

Furthermore, the spatial distributions of all ionic species for two voltage levels: -8.7 kV 

and -15 kV, are presented in Figure 4-4. As it can be seen from this Figure, electrons and 

negative ions migrate towards the ground electrode while the positive ions are 
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concentrated near the corona electrode. It is also obvious that the number density of all 

ions increases as the voltage increases. The exponential increase in the concentration of 

the electrons near the discharge electrode is caused by the avalanche ionization. This is 

represented by a linear curve in the log scaled plots. The maximum electron 

concentration is reached at approximately the edge of the ionization layer. Starting from 

that point, the electron concentration starts to decrease, as electrons are attached to 

neutral molecules.  

Positive ions should not exist outside of the ionization layer. However, the numerical 

model predicts a smooth continuous distribution, so some concentration is predicted 

there. However, this concentration is a few orders of magnitude smaller and negligible 

from the practical point of view.   

The concentration of negative ions is equal to zero on the discharge electrode. Near the 

discharge electrode it increases because of the attachment of electrons to neutral 

molecules. Starting from some point in the domain, this concentration starts to decrease 

as no new ions are generated and the total number of ions is distributed over an 

increasing area. 
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a) Electron distribution  

  

b) Positive ions distribution  
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c) Negative ions distribution  

Figure 4-4: Ionic species distribution for voltage levels of -8.7 kV and -15 kV 

4.4 Seven-Species Model 
The distribution of the chemical species has been investigated for different voltage levels 

and it shows the same trend regardless on voltage. These distributions were in close 

agreement with the results published by Castellanos et al. [69]. Figure 4-5 shows the 

distribution of the different species for voltage levels of -8.7 kV and -15 kV. 
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a) Distribution of O-  

 

b) Distribution of O  
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c) Distribution of O3  

 

d) Distribution of 01(∇g)  
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e) Distribution of 02+  

 

f) Distribution of electrons  
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g) Distribution of 𝑂8^  

Figure 4-5: Ionic species distribution of seven-species model for voltages -8.7 kV and 

-15 kV 

Distribution of electrons, and positive and negative O2 ions for this model is not much 

different than for the three-species model. One new charge species, O-, shows a 

distribution similar to O2-. There are also three neutral species (O, O3 , 01(∇g)) and their 

motion is affected by diffusion only. In this situation a uniform distribution would be 

expected. A slightly non-uniform distribution in one case is caused by numerical errors.  

The thickness of the ionization layer can also be evaluated from the ionic species 

distributions of the multipolar models: the loss of electrons due to attachment reactions 

balances the production of electrons due to ionization. Considering the concentration of 

the positive ions indicates that the thickness of the ionization zone is about 200 µm. 
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4.5 Electric Field at the Corona Wire 
At the onset level, the electric field is high enough for the corona discharge to take place 

near the corona electrode and all discussed models should predict a very similar value. 

Figure 4-6 shows the electric field on the corona electrode surface for different voltage 

levels calculated from different numerical methods. In the case of Kaptzov’s hypothesis, 

the electric field at the corona electrode should be theoretically the same for any wire 

voltage. Practically, the values diverge from Peek’s value by about 1.6% due to 

numerical errors. In the case of the model applying the direct ionization criterion, the 

electric field at the onset voltage is higher by 2% than Peek’s value. As the voltage 

increases, the electric field at the corona wire increases until it diverges from Peek’s 

value by 43.56% for the voltage of -15 kV.  For the multi-species models, the difference 

between the electric field intensity predicted from the seven- and the three-species 

models are negligible so the two graph lines overlap. At lower voltages, the electric field 

calculated from multi-species model is about 2% higher than Peek’s value; it satisfies 

Peek’s formula for voltages higher than -8.3 kV. 

 

Figure 4-6: Electric field on the corona wire for the four investigated models 
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4.6 V-I Characteristic Curves 
Sato proposed a method to calculate the corona discharge current [61]. This formula is 

derived from the motion of charged particle between electrodes, and it depends on the 

energy balance equation.    

I =
1
V
o2πr	µb	ρ	E@@⃗ . E�@@@@⃗ 	dr 

( 4-1) 

where 𝜇� is the ion mobility (m2/V·s), ρ is the space charge (C/m3) ,V is the applied 

voltage on the corona wire, 	𝐸�@@@@⃗  is the Laplacian electric field (V/m),	𝐸@⃗  is the actual 

electric field (V/m) , I is the current (A/m) and the integration is done over the radial line 

connecting both electrodes.  

The current in the stationary single-species case can be also calculated by integrating the 

current density (A/m2), equal to  ρµbE, on the electrode surface. However, in the 1D case, 

no integration is needed. As a result, the total current is is equal to: 

I = 	2π	R	i	µb	ρ	E   ( 4-2) 

The currents resulting from applying equations (4-1) and (4-2) are the same. 

To calculate the discharge current for the three-species model, some modifications need 

to be done to Sato’s equation to account for the added electrons and positive ions species. 

𝐼 =
1
𝑉
o2𝜋𝑟(𝜇*𝑛* + 𝜇-𝑛- + 𝜇�𝑛�	)	𝐸@⃗ . 𝐸�@@@@⃗ 	𝑑𝑟 

( 4-3) 

The formula for calculating the discharge current should be further expanded to include 

the ionic species O- in the case of the seven-species model. As a result, Sato’s formula is 

as follows: 

𝐼 =
1
𝑉
o2𝜋𝑟(𝜇*𝑛* + 𝜇-𝑛- + 𝜇�𝑛�	 + 𝜇��𝑛��)	𝐸@⃗ . 𝐸�@@@@⃗ 	𝑑𝑟 

( 4-4) 

At the onset level, the current is zero. As the applied voltage on the corona electrode 

increases, the discharge current starts building up in a parabolic manner. More 
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specifically, the corona current is proportional to V· (V-Vonset). Figure 4-7 shows the 

currents resulting from the four investigated models. The difference in the current 

resulting from Kaptzov’s hypothesis and the current obtained from a model using the 

direct ionization criterion is negligible. Until the voltage -8.3 kV, both currents are the 

same. Above this voltage, the current resulting from applying Kaptzov hypothesis 

increases at a higher rate than the current resulting from applying the direct ionization 

criterion and the difference reaches 1.25 mA/m at the voltage level -15 kV.  

The currents resulting from the three-species and seven-species models are very close and 

the difference is below 0.1%. As a result, both curves overlap on the graph.  

On the other hand, the values of the discharge current for different voltage levels 

obtained from the multipolar models are much higher than the values obtained from the 

monopolar models. The difference between the currents resulting from the multipolar and 

monopolar models increases as the applied voltage increases until it reaches a maximum 

difference of 2 mA/m. 

 

Figure 4-7: V-I curve for the four investigated models 
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4.7 Conclusions 
The negative corona discharge in a wire-cylinder configuration in air has been 

numerically investigated in this Chapter. The equations of interest were the drift-diffusion 

equations for the ionic species and the Poisson equation for the electric field. The 

investigated models included single ionic species, three ionic species and seven ionic 

species. Monopolar model neglected the ionization layer. Kaptzov hypothesis based on 

Peek’s value and the direct ionization criterion were investigated in this case. The three-

species model included the electrons, negative ions 𝑂8^and positive ions 𝑂8S. In this case, 

an iterative algorithm was used and it was necessary to apply an under-relaxation 

technique in order to have a stable algorithm. The seven-species model included four 

more ionic species: atomic oxygen O, negative ion of atomic oxygen O-, ozone O3 and 

the excited species O2(1∇g). The voltage-current characteristic curve was plotted for each 

investigated model. In addition, Kaptzov’s hypothesis was validated in each case. The 

spatial distributions of the different ionic species were shown for different voltage levels. 

The corona current resulting from the three-species model closely agreed with that 

resulting from the seven-species model. On the other side, a significant difference of the 

current was reported between the monopolar and multipolar models. 

The electric field at the corona electrode surface for all models had practically the same 

value as Peek’s one at the onset voltage. The electric field increased significantly for 

higher voltages for the model based on the direct-ionization criterion, where the 

maximum difference was about 43.56%.  
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Chapter 5  

5 Electrohydrodynamic Flow 
The electrohydrodynamic flow produced by the electric corona discharge in atmospheric 

air has been numerically investigated in a needle to plane configuration. Commercial 

software, COMSOL, has been used to find the solution of the Poisson’s equation, the 

three-ionic drift- diffusion equations and Navier-Stokes equation. These equations predict 

the distributions of electric potential, space charge density and airflow after calculating 

the volume force. The volume force is the electric Coulomb force, which is the main 

factor leading to the EHD flow. 

5.1 Model Description  

5.1.1 Geometry 

The investigated model consists of two electrodes. The first electrode is a grounded large 

metal plate and the second electrode is a sharp needle, perpendicular to the ground 

electrode and supplied with a high DC negative potential. The needle has a shape of a 

cylinder ended with a hemisphere. The needle tip radius is 500 µm, the needle body is 5 

cm long and the distance between the ground electrode and the tip of the needle is 2 cm. 

A two-dimensional axisymmetric model is assumed. 

5.1.2 Discretization 

A non-uniform distribution of the electric field in the area close to the corona wire is a 

critical problem for modeling the corona discharge phenomenon. COMSOL, the software 

used for simulating the problem, is based on the Finite Element Method. A very fine 

discretization needs to be used in the area of high field gradient in order to achieve an 

accurate solution. The mesh should also have a non-uniform distribution; very fine 

triangular elements are formed near the electrode tip and the size of the elements 

increases gradually going away from the needle tip, where the electric field changes less 

dramatically. An illustration of the implemented mesh is shown in Figure 5-1. 
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a) Discretization of the whole domain  

 
b) Discretization of the domain near the corona tip  

Figure 5-1: Discretization of the computational domain 

The computational domain is of 0.1 meters long and 0.0705 meters high. The total 

number of elements is 25,666.  A quadratic interpolation is used to approximate the 

electric field and a linear interpolation for the ionic species concentration. As a result, the 

model has 89831 degrees of freedom. 
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5.1.3 Corona and Flow Model 

The simulation algorithm for the corona discharge was discussed in Chapters 3 and 4. 

Three ionic species have been considered in this model: electrons, positive ions and 

negative ions. The calculation of the space charge density and the electric field is 

essential before simulating the EHD flow, because the Coulomb force is generated by the 

action of the electric field on the space charge. For the flow model, a laminar flow has 

been assumed. 

5.2 Simulation Results  
For the investigated model Peek’s value is 7.9 MV/m, which corresponds the onset 

voltage of -6 kV. Because a stationary case was investigated, the voltage-current 

characteristics was calculated for the voltages ranging from -6kV to -12 kV. Moreover, 

the electron and ionic species concentrations, electric field distributions, maximum and 

minimum velocities for different voltages have been determined.  

The voltage-current characteristics is shown in Figure 5-2. The corona current is initiated 

when the voltage is above the onset voltage, and it changes as a square function of the 

applied voltage.  

 

Figure 5-2: V-I characteristic curve 
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Kaptzov’s hypothesis has also been validated in this case. Figure 5-3 shows the value of 

the electric field on the electrode tip. The electric field is very close to Peek’s value at the 

onset voltage. However, when the supplied voltage increases, the difference between the 

actual electric field and Peek’s value increases.   

 

Figure 5-3: Validation of Peek's formula in point-plane configuration 

Moreover, comparing the distribution of the electric field along the needle surface with 

the Peek’s value can give some information about the extent of the ionization area. Figure 

5-4 shows the electric field in the area near the needle surface at two voltage levels -8 kV 

and -12 kV. A close in look to the plots implies that the thickness of the ionization area is 

about 0.2 mm.  
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a) Electric field near the needle surface at -8 kV 

 

b) Electric field near the needle surface at -12 kV 

Figure 5-4: Electric field distribution near the needle surface 

The distribution of the three-ionic species has been investigated in the area near the 

corona electrode. The results for two voltage levels -8kV and -12kV are presented in 

Figure 5-5. 
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a) electron distribution for -8 kV 

 

b) electron distribution for -12 kV 

 

c) positive ions distribution for -8 kV 
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d) positive ions distribution for -12 kV 

 

e) negative ions distribution for -8kV 
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f) negative ions distribution for -12 kV 

Figure 5-5: Distribution of all ionic species in the air gap for voltages -8 kV and         

-12kV 

Since the voltage applied to the corona electrode is negative, it is logical to observe the 

migration of negative ions away from the corona electrode, and the attraction of positive 

ions towards the corona electrode. For the electron distribution, this density near the 

discharge electrode is small because the electrons are produced by secondary emission. 

However, the electron concentration increases due to the avalanche ionization, and the 

maximum number of electrons can be observed near the edge of the ionization layer.  

Moreover, the total number of electrons and positive ions increases as a approximately 

square function of voltage, what is shown in Figure 5-6. On the other hand, the total 

number of negative ions increases approximately linearly with voltage for voltages 

smaller than 9 kV; this changes to approximately square dependence for higher voltages. 
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a) Total number of electrons 

 
b) Total number of positive ions 

 

c) Total number of negative ions 

Figure 5-6: Variation of number of different ionic species with voltage 
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5.3 Simulation Results of EHD Flow 
Figure 5-7 shows the distribution of the magnitude of the EHD force near the needle tip 

for the voltage levels of -8 kV and -12 kV. The force has a maximum value at the needle 

tip. It starts decreasing going away from the tip in both r-direction and z-direction. 

Regarding the direction of the EHD force, the concentration of positive ions is higher 

than that of the negative ions inside the ionization region. As such, the total charge is 

positive which implies that the force is directed towards the needle electrode. In the drift 

zone the net charge is negative, so the Coulomb force is directed towards the ground 

electrode. 

 

a) Spatial distribution of body force at -8 kV 
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b) Spatial distribution of body force at -12 kV 

Figure 5-7: Spatial distribution of body force near the needle tip 

Figure 5-8 shows the distribution of the EHD force in the z direction along the axis of 

symmetry for the two voltage levels: -8 kV and -12 kV. It is interesting to see the change 

in the direction of the EHD force near the corona needle tip. The behavior of the curve 

implies that the flow pattern is more complicated than it was previously reported in 

literature.  
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a) Axial component of the EHD body force for -8 kV 

 
b) Axial component of the EHD body force for -12 kV 

Figure 5-8: Axial component of the EHD body force along the axis of symmetry 

 Figure 5-9 shows flow streamlines in the whole airgap between both electrodes for the 

applied voltage of -8kV and -12 kV. In addition to a dominant vortex occupying most of 

the airgap, an additional vortex, much smaller than the first one, appears in the area close 

to the corona electrode tip. This small vortex has a small size of approximately 

0.5x0.5mm; perhaps this is why it has not been observed experimentally.  
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a) Streamlines at -8 kV  

 

b) Streamlines at -8 kV near the needle tip 



56 

 

 

c) Streamlines at -12 kV 

 
d) Streamlines at -12 kV near the discharge tip 

Figure 5-9: Velocity streamlines for airflow  
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Figure 5-10 shows the airflow velocity magnitude when the applied voltage is -8 kV and 

-12 kV. Two local velocity maxima can be observed in an area between both electrodes. 

Near the corona electrode, the velocity is directed towards the discharge electrode and the 

point of the maximum velocity is about 0.14 mm away from the electrode tip. The second 

point of maximum is about 1.6 mm from the electrode tip and at that point the velocity is 

directed towards the ground electrode. The velocity magnitude strongly increases with 

the increasing voltage. 

 

a) Velocity magnitude at -8 kV  

 

b) Velocity magnitude near the corona electrode at -8 kV 
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c) Velocity magnitude in the whole domain at -12 kV 

 

d) Velocity magnitude near the corona electrode at -12 kV 

Figure 5-10: Velocity magnitude of the airflow at -8 kV and -12 kV (m/s) 
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On the other hand, the radial and axial flow velocity for voltage level -12 kV in the whole 

airgap and near the needle tip is shown in Figure 5-11.  

 

a) Radial velocity at – 12 kV 

 

b) Radial velocity near the needle tip at -12 kV 
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c) Axial velocity at -12 kV  

 

d) Axial velocity near the needle tip at -12 kV 

Figure 5-11: Axial flow velocity (m/s) 
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The axial flow velocities on the symmetry axis for different supply voltages are shown in 

Figure 5-12. It is obvious that higher voltages cause higher maximum and lower 

minimum axial velocities. This can be attributed to the higher Coulomb force resulting 

from the higher electric field and space charge density. It can also be noticed that the 

maximum and minimum velocities take place at the same two points for all voltage 

levels. At the corona electrode, the velocity is equal to zero due to non-slip boundary 

conditions, and then it increases dramatically to a positive value at some point near the 

corona electrode. After this point, the axial velocity changes from positive to negative 

values which is associated with the change of the Coulomb force direction. The axial 

velocity starts increasing again until it reaches zero at the collecting electrode. 

 

Figure 5-12: Axial velocity along axis of symmetry for different voltage levels 

Figure 5-13 shows that the minimum and maximum velocity curves behave differently 

with the increasing voltage. The maximum velocity increases very slightly until -8 kV 

from which it starts increasing until it reaches 5.8 m/s at the voltage equal to -12 kV. The 
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minimum velocity decreases uniformly starting from the onset voltage until it reaches -

6.17 m/s at the voltage level -12 kV.   

 

Figure 5-13: Maximum and minimum axial velocities for different voltage levels 

Figure 5-14 presents the distribution of pressure in the air gap for two voltage levels: -8 

kV and -12 kV in the area near the corona electrode. The maximum pressure increases 

dramatically as the applied voltage to the corona electrode increases. The pressure is high 

near the corona tip. 

 

a) Pressure distribution near corona electrode at -8 kV  
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b) Pressure near the corona electrode at -12 kV 

Figure 5-14: Pressure near the corona tip (Pa) 

5.4 Conclusions  
The previous studies of EHD flow never considered a very thin ionization layer near the 

discharge electrode. In this Chapter, EHD flow in air produced by negative corona 

discharge in a needle- plate configuration has been investigated, with a special attention 

to this region.  

As the EHD flow is caused by the Coulomb force, the electrical parameters of the 

problem must be determined first. This was done assuming a stationary discharge model, 

which included three ionic species (electrons, positive and negative ions) and five ionic 

reactions. The voltage-current characteristics and distribution of all ionic species have 

been determined. 

The simulation results predict a small flow vortex near the corona electrode, where flow 

is directed towards the discharge electrode. The velocity preserves the same pattern for 

different applied voltage levels, but the velocity magnitude increases with the voltage 

level. Spatial distributions of the velocity magnitude, pressure and streamlines have also 

been presented.  
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Chapter 6  

6 Conclusions  
The first section in this Chapter summarizes all results of the numerical simulations 

presented in this thesis. The second section describes the unsuccessful attempts to add 

sub-routines to replace some built-in functions in COMSOL and to investigate other 

discharge models. 

6.1 Summary of the Thesis 
Simplified numerical models to simulate negative corona discharge and EHD flow are 

presented in this thesis. The studied models included single-species, three-species and 

seven-species in 1D axisymmetric wire-cylinder and 2D point-plane configurations.  The 

following conclusions summarizing the obtained results can be formulated: 

• For the unipolar corona discharge model, Kaptzov's hypothesis is compared with 

the model using the direct ionization criterion. The current-voltage characteristics 

obtained from both models are practically the same. The three-species and seven-species 

models also yield the same discharge characteristics. However, the difference in the 

discharge current between the monopolar and multipolar models is quite noticeable and it 

increases as the voltage level increases. 

• The unipolar models based on Kaptzov’s hypothesis and direct ionization 

criterion predict a very similar value of the electric field on the corona wire surface at the 

discharge onset. In the model based on Kaptzov’s hypothesis the electric field remains 

practically constant, if a small numerical error is neglected, for all voltage levels. In the 

case of direct ionization criterion, the electric field increases as the voltage increases and 

the maximum difference is about 44% when compared to Peek’s value. The electric field 

magnitude at the corona wire obtained from the seven-species model is practically the 

same as that resulting from the three-species model. Both multipolar models predict that 

the electric field agrees quite closely with Peek’s value. 
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• A 2D axisymmetric needle-plate configuration has been studied in this thesis 

using three ionic species to predict the EHD flow pattern. The results predict a double 

vortex pattern: major one occupying the majority of the air gap and another, much 

smaller, localized near the discharge point. This pattern corresponds to the direction of 

the body force, which is directed towards the discharge point in the ionization layer, 

where the net electric charge is positive, and towards the ground plate in the drift zone. 

This pattern has never been reported before. 

6.2 Unsuccessful Attempts with Corona Simulation 
The most important limitation of COMSOL software is its inability to properly handle 

drift-diffusion equations governing the ionic charge transport. This parabolic equation is 

dominated by the first derivative of the unknown space charge density distribution. The 

conventional techniques are not very accurate in this case and are often divergent, or 

produce unphysical oscillations. One way to handle this problem is to use very fine 

domain discretization, but this leads to very time-consuming calculations, or to introduce 

an artificial diffusion, which obviously distorts the results. A better way to handle this 

problem is to use some special techniques, for example Flux Corrected Transport [21] or 

Total Variation Diminishing [72]. The idea attempted in this thesis was to run COMSOL 

from MATLAB and replace the software solver with separately written computer code. 

Specifically, the plan was to substitute the stiffness matrix created in COMSOL by a 

user-built matrix, written as a MATLAB function, determined using the Total Variation 

Diminishing technique.  After spending some time on this project and contacting 

COMSOL support team, it became clear that this idea would require a detailed 

knowledge of the COMSOL data structures. Unfortunately, this information is 

confidential and COMSOL staff refused to cooperate on this. 

Another project that was initiated, but without successful completion, was the numerical 

simulation of Trichel pulses in a 1D wire-cylinder configuration using three, and possible 

a higher number, ionic species. The goal was to check how the electric field on the 

corona electrode surface compares with Peek’s value. Unfortunately, the pulse train 

couldn’t be reproduced. One pulse was observed, but everything seemed to fade away 

with time. This may be a more general problem, as corona discharge is never truly 1D 
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phenomenon. Even for infinitely long wire the discharge has a form of concentrated tufts, 

which makes the problem 3D. Actually, nobody so far was able to reproduce Trichel 

pulses in 1D case. 
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