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Abstract  

 

Phytoremediation of contaminated soils has gained great attention as a low-cost and 

environmentally friendly remediation option. Given the desired advantages of phytoremediation, 

the present research evaluates the potential of established phytoremediation plants (alfalfa, oat, 

ryegrass, Indian mustard, sunflower, tall fescue and switch grass) to remediate mixed metal-PAH-

pesticide contaminated soil in greenhouse pot experiments. Mixed contaminated soil was prepared 

by spiking soil with copper (Cu), lead (Pb), pyrene and DDT as model compounds. Prior to the 

pot experiments, a phytotoxicity test was conducted to determine preliminary toxicity effects of 

combined contaminants on plants. The results eliminated tall fescue and switch grass from further 

consideration. Alfalfa, oat, ryegrass, Indian mustard and sunflower were grown in triplicates for 

72 days in pots containing clean soil and soil contaminated with mixed contaminants. The results 

showed that sunflower and Indian mustard were the most tolerant plants to the studied mixed 

contaminants.  Furthermore, sunflower was able to simultaneously remove metals, PAH and 

pesticide. Oat was identified as unsuitable for phytoremediation of metal-PAH-pesticide 

contaminated soil due to its ability to increase exchangeable Cu compared to unplanted soils. 

Overall the work supports the use of phytoremediation as a potential remedial option for soils 

contaminated with mixed contaminants.  

 

Key words: Phytoremediation, Copper (Cu), Lead (Pb), DDT, Pyrene, Mixed contaminated soil, 

Sunflower, Indian mustard, Oat, Alfalfa, Ryegrass  
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CHAPTER 1 

1.0 Introduction 

1.1 Environmental contamination  

Soil contamination is a major problem in Africa (Donkor, Bonzongo, Nartey, & Adotey, 2005; 

Jonker & Olivier, 2012), Asia (Moore, Dehghan, & Keshavarzi, 2014; Zhao, Ma, Zhu, Tang, & 

McGrath, 2015), Australia (Martley, Gulson, & Pfeifer, 2004; McGrath, Morrison, Sandiford, 

Ball, & Clarke, 2016), Europe (Douay et al. 2008; Lage, Wolterbeek, and Almeida 2016; Global 

Soil Forum 2013), North America (Eagles-Smith et al., 2016; McClintock, 2012) and South 

America (Mochungong & Zhu, 2015). Soil contamination has been attributed largely to rapid 

expansion of human activities in the form of agriculture, mining, industrialization, urbanization 

and globalization, to sustain the increasing world population. These activities have led to 

continuous release into the environment of xenobiotic chemicals whose concentrations and 

behaviors alter the natural state of the environment. Contamination of soil is of key interest because 

contaminants can be easily transferred to other natural resources (surface water, ground water and 

air) via leaching, run-off and evaporation, and to the food chain through uptake by plants, thereby 

compromising human health. Alongside reports of occurrence of these contaminants are findings 

of their adverse effects on the ecosystem, such as loss of aquatic life, loss of soil organisms, 

mutation during reproduction of organisms at various trophic levels of the ecosystem and cancer 

in humans (CCME 1999a). 

In general, contaminants may be classified as being either organic or inorganic. Organic 

contaminants include pesticides, PHC (petroleum hydrocarbons), PCB (polychlorinated 

biphenyls), HCH (hexachlorocyclohexane), PBDE (polybrominated diphenyl ethers), and PPCP 
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(pharmaceuticals and personal care products). Inorganic contaminants include metals, metalloids, 

nanomaterials, radionuclides and nutrients. It is important to note that some of these contaminants 

occur naturally in soil and are only considered as contaminants when they occur in forms and 

concentrations that are detrimental to the ecosystem. The most problematic types of contaminants 

are the volatile organic contaminants (due to their easy transfer from soil or water to air, creating 

inhalation risks), hydrophobic organic compounds (due to their low solubility in water, which 

makes them immobile and persistent in soil) and metals (due to their inability to undergo microbial 

or chemical degradation) (Lee et al. 2002; Saichek and Reddy 2005). 

Increasing occurrence of contaminants in the environment as well as their adverse effects led to 

establishment of soil pollution prevention measures such as banning the use of some contaminants 

and establishing legislation to prevent soil pollution (CCME 1999a; U.S EPA 2016). Over time, it 

was observed that even with adoption of pollution prevention measures, contaminants persisted in 

soil, due to their resistance to natural degradation processes, and have found their way into water 

courses and other constituents of the ecosystem. This created the need for research on possible 

remediation techniques. 

1.2 Soil remediation 

Established soil remediation techniques fall into four categories (Castelo-Grande, Augusto, 

Monteiro, Estevez, & Barbosa, 2010; Cheng-Kim, Bakar, Mahmood, & Abdullah, 2016). 1) 

Biological techniques, which include the use of microorganisms that can degrade the contaminant 

and establishing conditions that encourage increased microbial activities; e.g., bio-poles and land 

farming, bioventing, bio-stimulation, bio-augmentation, composting, natural attenuation and 

phytoremediation (the use of plants to take up contaminants from soil into their biomass).  
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Table 1-1: Some applied remediation techniques. The list includes examples of contaminants targeted by each technique and the effectiveness of remediation. 

Remediation technique Type of remediation Contaminants  Treatment description   Outcome  Reference  

Biological techniques  Biostimulation with hydrogen peroxide, 

oleophilic fertilizer and surfactant 

(Bioversal HC) 

PHC(8.77mg/kg)  Field-scale  Complete degradation of linear 

alkanes and reduction of cyclic 

and branched compounds after 

4 months  

(Menendez-Vega et al., 

2007) 

Bioaugmentation by multiple 

inoculation with indigenous bacteria 

Fuels- diesel oil and aircraft 

fuel(6188mg/kg) 

Field-scale  80-98% removal of TPH (total 

petroleum hydrocarbon) after 

5months  

(Łebkowska et al., 

2011) 

Natural attenuation Co-contaminated soil with heavy metals (Cu, 

Pb and Zn at 87, 100 and 110 mg kg− 1) and 

petroleum hydrocarbons (3800 mg kg− 1) 

Pot experiments 37% reduction in TPH (total 

petroleum hydrocarbon) 

 

Zero reduction in metals  

(Agnello, Bagard, Van 

Hullebusch, Esposito, & 

Huguenot, 2016) 

Phytoremediation with alfalfa 

(Medicago sativa L.) 

47% reduction TPH (total 

petroleum hydrocarbon)  

 

Zero extraction of metals but 

considerable phytostabilization  
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Chemical techniques Soil washing with 2M H3PO4, 2M 

NaOH and 0.1M Dithionite in 0.1M 

EDTA for 24hours  

As (165.5mg/kg) Laboratory study  90% reduction in As content of 

soil 

Soil washing with fish extracts for 

60mins per cycle 

PCDDs (polychlorinated dibenzo-p-

dioxins), PCDFs (Dibenzofurans) (22μg/kg) 

Laboratory study - 

ultrasonification and 

mechanical double-blade 

stirring 

94.12% removal of 

contaminants in moderately 

contaminated soils (5 washing 

cycles) and 94.51% removal of 

contaminants highly 

contaminated soils (10 washing 

cycles 

(Vu et al., 2017) 

Enhanced electrokinetic treatment with 

citric acid and 

ethylenediaminetetraacetic acid 

(EDTA) 

Co, Zn, Cd, Cu, Cr, Pb and Hg(10406mg/kg) Laboratory study  Migration of metals to soil 

section closer to the cathode  

(Figueroa, Cameselle, 

Gouveia, & Hansen, 

2016) 

Unenhanced electrokinetic treatment  Pyrene (261.3mg/kg in sandy soil and 

259.8mg/kg in loam soil) 

Laboratory study  57% and 20% removal of 

pyrene from sandy and loam 

soil 

(Xu, Guo, Wu, Li, & Li, 

2014) 

Physical techniques Thermal treatment by resistive heating   Trichloroethylene(273mg/kg)  Laboratory study-Tank 

reactors 

99.8% reduction in TCE after 

37 days  

(Heron, Van Zutphen, 

Christensen, & Enfield, 

1998) 

Thermal treatment by heated air  PAH(2308mg/kg) and VOC(4105mg/kg) Field trial  71% reduction in PAH and 74% 

reduction in VOC 

(CL:AIRE, 2006) 
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2) Chemical techniques that exploit the chemical properties of contaminants and soil to enhance 

degradation; e.g., soil vapor extraction, airsparging, dechlorination, soil washing/flushing, 

solidification/stabilization, electrokinetics (use of low voltage electric current to immobilize 

contaminants) and solvent extraction. 3) Physical techniques which mainly refer to soil 

replacement (complete removal of contaminated soil or mixing contaminated soil with non-

contaminated soil) and thermal desorption (high temperatures in the presence of oxygen are used 

to breakdown contaminants). 4) Primary action techniques (use of passive and reactive barriers to 

prevent contaminant migration). These remediation techniques mentioned above have been 

applied in a number of laboratory and field studies, some with promising results and others with 

little success as demonstrated by recent studies (Table 1-1). 

Limitations to field application of remediation techniques could include cost of technology, social 

factors, site accessibility, climatic and soil conditions, biological factors, depth and location of 

contaminants, types of contaminants, combination of contaminants, and regulations. To implement 

remediation techniques successfully, these limitations must be addressed. An important limitation 

which has hardly been addressed in remediation studies is the occurrence of a mixture of various 

classes of contaminants. 

Typically,  soil contamination does not only involve one class of contaminants (Arjoon, Olaniran, 

& Pillay, 2013; DCS Limited, 2002; Loper, Breen, Zimmerman, & Clunne, 2009; Treasury Board 

of Canada, 2016). In the USA, approximately 40% of hazardous sites in the National Priority List 

(NPL) of the U.S Environmental Protection Agency are contaminated with a mixture of organic 

and inorganic contaminants (Sandrin, Chech, and Maier 2000). Similarly, in Canada a majority of 

the 23,111 contaminated sites contain mixed contaminants (Treasury Board of Canada, 2016).
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In these sites, metals are the most common inorganic contaminants while petroleum hydrocarbons, 

chlorinated solvents and pesticides are common organic contaminants (Sandrin and Hoffman 

2007). These contaminant mixtures are very common in factories, gas stations, waterfront 

properties (port lands) formerly used for industrial and commercial activities (MOECC, 2016), 

agricultural lands impacted by industrial activities (Vácha et al., 2015) and  recently in  urban 

landfills (XL Group Insurance, 2014). Some organic and inorganic contaminant mixtures are 

PHCs-metals, BTEX-PHCs-metals, PAHs-BTEX-metals, PAHs-PHCs-BTEX-pesticides, PHC-

Pesticides, PAHs-PHCs, PHCs-BTEX, PHCs-PAHs-metals, PHCs-PAHs-metals-PCBs-

PCDD/FS, PAHs-PHCs-metals-BTEX, PAHs-metals, PHCs-Halogenated hydrocarbon-PAHs-

metals-BTEX, PAHs-metals-pesticides (Riely, Zachara, & Wobber, 1992; Treasury Board of 

Canada, 2016).  Certain contaminant mixtures are associated with certain locations or activities  

For example, PAHs, metals and pesticides are commonly found at dump sites (Reddy and 

Chirakkara 2013) and in cattle market soil (Adeyi, Omidiran, & Osibanjo, 2014); PAH and metals 

are found in gas plant sites, sewage sludge dump sites, roadside soils and wood preservation sites; 

TPHs and metals in petrochemical units; DDT and metals (arsenic) in sheep and cattle dip sites; 

PAHs, PCBs and metals in electronic waste processing sites; nitro compounds and arsenic in 

military sites; PAHs, TPHs and metals in railway corridors; PAHs, PCBs and metals in river 

sediments; OCPS, PAH and metals in areas around  coal-fired power plants (Thavamani et al., 

2013); and PBDE, PCB, PAHS and metals in electronic waste sites (Ye et al., 2015). 

1.3 Problem statement and justification 

The occurrence of more than one class of contaminants in soil further complicates and limits field 

application of remediation processes due to the difference in physical and chemical characteristics 

of different classes of contaminants. Interactions among different groups of contaminants in soil 
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can be unpredictable and may result in synergistic or antagonistic effects during remediation. 

Hence there is a need to understand the interaction of contaminants in mixed contaminated soil as 

well as their response to remediation techniques. 

One of the most common ways mixed contaminants in soil are remediated is by excavation and 

disposal in landfills. With the excessive cost of finding new landfill sites and increasing regulatory 

requirements on quality of soil to be disposed in landfills, it is becoming necessary to develop low 

cost, environmentally friendly and socially acceptable techniques of remediating sites with mixed 

contaminants. 

Phytoremediation, a biological remediation technique, has received a lot of attention over the past 

few years mainly because of its low cost, which varies depending on the type of contaminant, 

depth and area of contamination. The energy requirements (dependency of the process on solar 

energy) and the costs of establishing and maintaining plants are lower compared to removal and 

disposal of contaminated soil or remediation by other remediation options (Marques, Rangel, & 

Castro, 2009; Wan, Lei, & Chen, 2016). For example, the cost of phytoremediating mercury-

contaminated soils was estimated by Garbisu and Alkorta (2001)  to be one-tenth to one-hundredth 

the cost of other traditional engineering methods such as landfilling, thermal treatments, and 

chemical extraction. In addition to low cost, the aesthetic appeal of plants compared to chemical 

plants and bulldozers has given  phytoremediation wide acceptance by the public (Ali, Khan, & 

Sajad, 2013; Sharma & Reddy, 2004). 

Phytoremediation of soils contaminated with a single contaminant has been successfully 

established for contaminants such as zinc, chromium, lead (Barbosa et al., 2015; Romeh, Khamis, 

& Metwally, 2016), aroclor (PCB)(Zeeb et al., 2006), crude oil (Couto, Pinto, Basto, & 
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Vasconcelos, 2012), azoxystrobin (Romeh, 2015), atrazine (Balsamo et al., 2015; Murphy & 

Coats, 2011), and DDT (Paul, Rutter, & Zeeb, 2015). Phytoremediation performance in soil co-

contaminated with members of the same class of contaminants has also been evaluated; zinc and 

arsenic (An et al., 2005); zinc, copper, lead and manganese (Padmavathiamma & Li, 2009); 

cadmium, chromium, copper, nickel, lead and zinc (Chang, Ko, Tsai, Wang, & Chung, 2014); 16 

PAHs prioritized by the US EPA (Sun et al., 2011); and 4 organophosphorous pesticides (Ji. Gao, 

Garrison, Hoehamer, Mazur, & Wolfe, 2000). 

A few studies have gone a step further to examine the effectiveness of phytoremediation on co-

contamination and the possibility of concurrent uptake of contaminants during phytoremediation 

of two classes of contaminants. These studies used one exemplary contaminant for each class of 

contaminant and one plant species and they reported plant tolerance in co-contaminated soil 

alongside reduced biomass due to co-contamination. In the case of metal and PAH co-

contamination, significant reduction in PAH toxicity was observed while metal and PAH 

accumulation in plants were minimal (Zhang et al. 2009; Chigbo 2013). Similar observations were 

made in the case of metals and PCP and metals (Hemchi et al. 2013). In the case of metals and 

PHC, significant uptake of metals was observed alongside degradation of PHC (Ramamurthy and 

Memarian 2012). 

Chirakkara and Reddy (2015) pushed further by considering 2 to 3 exemplary contaminants (metal 

and PAH) mixed in contaminated soil at concentrations like those in industrial areas and using 8 

plant species. They observed low survival rates in all plants, significant uptake of metals and 

enhanced degradation of PAH by some plants.    
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No studies have investigated phytoremediation of a mixture of the most commonly found 

contaminants in soil, which according to the Ashraf, Maah, & Yusoff (2014), Rathoure (2016) and 

US EPA (2004), are metals, pesticides, and petroleum-based hydrocarbons. Furthermore, no 

studies have considered a mixture with more than one class of organic contaminant in soils. 

Hence, this research is focused on identifying plant species with the potential of phytoremediating 

soil contaminated with a mixture of metals, PAH and a pesticide through laboratory experiment. 

1.4 Objectives of the research 

This research seeks to achieve the following objectives  

a. Review relevant literature on phytoremediation of contaminated soil to select plants that 

have been successful in remediating mixed contaminated soils. 

b. Determine the performance of the selected plant species for phytoremediation of metals - 

PAH - pesticides contaminated soils (Cu and Pb, pyrene, DDT, respectively as model 

contaminants) by measuring  

- Germination and growth rate of plant species in contaminated soil compared to 

uncontaminated soil. 

- Residual contaminant concentration in soil after phytoremediation. 

- Uptake and accumulation of contaminants by plants after phytoremediation. 

- Mobility of contaminants in soil after phytoremediation  
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1.5 Thesis Format 

This thesis contains four chapters (including the current chapter). Chapter 2 is a detailed literature 

review in the area of contaminants fate and phytoremediation. Chapter 3 contains the experimental 

setup and methods adopted to achieve research objectives (section 1.4) and the outcomes of the 

study. Chapter four cover concluding thoughts on this study and recommendation for future 

studies. 
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CHAPTER 2 

2.0 Literature Review 

2.1 Fate of contaminants in soil 

Organic contaminants are retained in soil either by adsorption to the surface of the natural material or 

dissolution into the molecular network of the matrix (Chiou, 2002). Dissipation of organic contaminants in 

a soil profile depends on their mobility and degradation, which in turn depend on properties of the organic 

contaminants, soil properties and  weather conditions (Nicholls, 1986). The physical and chemical 

properties of organic contaminants contribute largely to sorption interaction, which is a significant factor 

responsible for movement of organic contaminants in soil. Mechanisms of sorption for organic compounds 

in soil can include one or a combination of hydrophobic interaction, water solubility, ligand exchange, ion 

exchange, charge transfer or  hydrogen bonding (Nicholls, 1986). Hydrophobic interaction occurs with 

lipophilic organic contaminants, which are not water soluble but soluble in oil, fats, lipids, and non-polar 

solvents. Sorption of such organic contaminants increases with organic matter content and lipophilicity and 

is measured by the octanol-water partition coefficient (Kow) and the sorption per unit weight of soil organic 

matter (Koc). For soluble organic contaminants, the sorption mechanism is related to soil pore water 

solubility; they tend to partition into soil pore water at the limit of their water solubility value, the 

undissolved quantity remains in the soil and is degraded slowly(Nicholls, 1986). Ligand exchange only 

occurs when ligands formed between organic compounds and soil are as strong as the bond between water 

and soil. This sorption mechanism occurs for organic contaminants such as pesticides that contain atoms of 

nitrogen, oxygen or phosphorus which are potentially capable of forming coordinate bonds with ions of 

metals such as iron, aluminum, manganese and copper present in soil(Nicholls, 1986). Charge transfer is 

only a significant sorption mechanism in field soil for aromatic molecules that are highly activated towards 
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electrophilic substitution. Ion exchange occurs for cationic organic compounds, as these can be exchanged 

at cation exchange sites in soil (clay minerals and humic surfaces). 

The fate and transport of inorganic contaminants is dependent on the chemical form and speciation of the 

contaminant. In soil, they are adsorbed by initial fast reactions (minutes, hours), followed by slow 

adsorption reactions (days, years) and are then redistributed into different chemical forms with varying 

bioavailability, mobility, and toxicity. This distribution is believed to be controlled by reactions in soils 

such as mineral precipitation and dissolution, ion exchange, adsorption and desorption, aqueous 

complexation, redox reactions, biological immobilization and mobilization, and plant uptake (Wuana and 

Okieimen 2011). 

In mixed contaminated soils, there is an interaction between dissipation processes of organic contaminants 

and those of inorganic contaminants. These interactions may be additive ,synergistic or 

antagonistic(Onyema, 2013; Wuana, Okieimen, & Vesuwe, 2014). For metal-metal mixtures, mobility, 

adsorption and accumulation of metals in soil is strongly influenced by competitive interactions. Metals 

with like atomic radii and valencies can easily be interchanged on the surfaces of soil particles and those 

with higher valency can displace those with lower valency. Similarly, in organic-organic contaminant 

mixtures competitive displacement is largely responsible for the partitioning of organic contaminants 

between liquid and solid phases of the soil. According to Xing et al. (1996), mixtures of organic 

contaminants in soils may reverse their adsorption in soil;  a competing organic contaminant can displace 

an already adsorbed organic contaminant, which was formerly unavailable to the environment, into soil 

solution. In soil manifesting non-linear sorption behavior, this phenomenon makes prediction of organic 

contaminant transport and soil remediation efforts difficult (McGinley et al.,1993). Reactions between 

metals and organic compounds can result to chemical bonding between carbon atom of the organic 
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compound and metals leading to the formation of  organometallic compounds  and ligands which are ions, 

molecules or molecule fragments  bound to a central atom usually metal atom (usually metal is sandwiched 

between the organic compounds)(Spessard & Miessler, 2010). The compounds formed from metal-organic 

compound interactions may be soluble in soil pore water leading to simultaneous increase in the mobility 

of metals and inhibition of biodegradation of organic contaminants. Such an effect was reported by Chen 

et al. (2004) who observed an increase in Zn and Cu mobility due to co-contamination with an organic 

contaminant, 2,4-dichlorophenol (DCP), and attributed this to an increase in DOC (dissolved organic 

carbon) due to the addition of DCP. The increased mobility of metals due to the presence of organic 

contaminants has also been attributed to the formation of metal organic and inorganic complexes that do 

not adsorb to surfaces of solid soil particles, competition with other contaminants for sorption sites and 

increased metal association with mobile colloidal-sized particles (McGinley et al., 1993). This is not always 

the case, Dubé, Galvez-Cloutier, and Winiarski (2002) found that an increase in mobility of Cd, Cu and Pb 

in the presence of LNAPL(Light Non-Aqueous Phase Liquid) in carbonaceous soil was due to changes in 

soil hydrodynamics induced by LNAPL rather than chemical interaction between metals and LNAPLs. 

Interference of biodegradation of organic contaminants by metals is largely due to metal toxicity to 

microorganisms responsible for biodegradation of organic contaminants (Thavamani et al., 

2011).Alternatively, compounds formed from metal-organic compounds interaction may also be insoluble 

in water and hence adsorb to soil solid phase making metals unavailable for plant uptake and persistent in 

soil.  

Overall, the interactions between organic and inorganic contaminants are unpredictable and dependent on 

physicochemical properties of contaminant and soil. 
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2.2 Phytoremediation of contaminated soils 

Phytoremediation is a bioremediation system that uses plants for in-situ removal of contaminants from 

soils, sludge, sediments and ground water (Ramamurthy & Memarian, 2012). This is not a new concept, it 

has been applied to wetlands, reed beds and floating-plant systems for treatment of wastewater for many 

years (Cunningham et al., 1995). Over the last few decades, studies on phytoremediation for the removal 

of different contaminants from soil has shown promising prospects. 

Some of its major advantages are that it is usually carried out in-situ, allowing for reduced risk of exposure 

to contaminated soil for humans and other parts of the environment(Marques et al., 2009), and contaminants 

are removed from soil without affecting soil properties (Ali et al., 2013; Zihms et al., 2013), allowing for 

reuse of soil. On the other hand, phytoremediation is not without limitations, this technology is largely 

dependent on plants and bioavailability of contaminants, thus properties such as contaminant concentration, 

pH, salinity and the presence of other toxins in soil must be within the limits of plant tolerance(Cunningham 

et al., 1995; Hellström, 2004). This limitation makes this technology mainly suitable for shallow 

contamination (within the rooting zone) at non-excessive concentrations(Ramamurthy & Memarian, 2012). 

Despite this, phytoremediation has been recommended for very large soil contamination sites which 

otherwise would involve high remediation cost with other technologies(Ali et al., 2013; Cunningham et al., 

1995). In addition, phytoremediation is slower than physio-chemical remediation processes and is usually 

considered to be a long-term remediation strategy(Wong, 2004).One major risk posed by phytoremediation 

is the introduction of remediated contaminants into the food chain by consumption of plants used for  

phytoremediation. 
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2.3 Phytoremediation Techniques   

The diverse ways in which plants interact with contaminants for eventual removal or degradation can be 

referred to as phytoremediation techniques. Phytoremediation can occur by phytoextraction, 

phytofilteration, phytostabilization, phytovolatilization, phytodegradation, rhizodegradation or 

phytodesalination(Hussain et al. 2009; Pilon-Smits 2005; Hellström 2004; Ali, Khan, and Sajad 2013; 

Ghosh and Singh 2005). These techniques are not mutually exclusive. 

Phytoextraction has also been called phytoaccumulation, phytoabsorption and phytosequestration. It results 

in the uptake of contaminants from soil or water by plant roots, translocation to and accumulation in 

aboveground biomass. 

Phytofilteration is the removal of contaminants from water or wastewater by plants. This may be 

rhizofilteration (using plant roots), blastofilteration (using plant seedlings) or caulofilteration (using excised 

plant shoots). This is the dominant mechanism of remediation in wetlands. 

Phytostabilization (also known as phyto immobilization), as the name suggests, is the use of plants to 

stabilize contaminants in soil, thus reducing mobility and bioavailability in the environment. This prevents 

migration of contaminants to groundwater and the food chain. Phytostabilization can either prevent erosion, 

leaching, and runoff or convert contaminants to less bioavailable forms (Pilon-Smits, 2005). It is more a 

containment technique than a decontamination technique. 

Phytovolatilization is the uptake of pollutants from soil by plants, followed by their conversion to a volatile 

form and subsequent release into the atmosphere. The limitation faced by this technique is that the 

contaminants are transferred from one environmental medium (soil) to another (air). 
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Phytodegradation is the breakdown of contaminants by plants with the help of plant enzymes (e.g 

dehalogenase and oxygenase) and other molecules in root exudates. This technique is limited to organic 

contaminants as inorganic contaminants are not readily biodegradable. 

Rhizodegradation (also called phytostimulation) is the breakdown of organic pollutants in soil by 

microorganisms in the rhizosphere of plants. In the rhizosphere, soil microbial activity is stimulated to 

about 10-100 times by secretion of plant root exudates containing carbohydrates, amino acids, and 

flavonoids(Ali et al., 2013).These exudates provide additional carbon and nitrogen sources for soil 

microorganism, thus facilitating microbial growth.  

Phytodesalination refers to the use of halophytic plants for removal of salts from salt-affected soils to enable 

them to support normal plant growth 

Phytodegradation and rhizodegradation  are removal mechanisms specific to organic contaminants while 

phytoextraction is  specific to inorganic contaminant (Ghosh and Singh 2005),although some organic 

contaminants such as DDT and PCB can also be phytoextracted. Phytovolatilization, rhizofiltration and 

phytostabilization apply to both organic and inorganic contaminants(Sharma & Reddy, 2004). 

2.4 Phytoremediation of organic compounds 

As summarized above, phytoremediation of organic contaminants occurs either by direct phytoremediation 

and/or by phytoremediation explanta. The former involves direct uptake and accumulation of xenobiotics 

from soil (phytoextraction) and the latter is based on secretion of root exudates and enzymes  by plants 

(rhizodegradation and phytodegradation)(Chirakkara and Reddy 2015; Cunningham et al.,1995). 

In direct phytoremediation, movement of organic contaminants into and within plants is primarily driven 

by diffusion in the liquid phase (Alkorta & Garbisu, 2001; Pilon-Smits, 2005). Direct uptake of organic 
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compounds by plant is limited by low bioavailability of organic contaminants and evapotranspiration rate 

in plants(Alkorta & Garbisu, 2001). Bioavailability is strongly related to the octanol-water partition 

coefficient (Kow) and volatility (expressed by Henry’s law constant, Hi) of the organic contaminant. Organic 

contaminants with moderate hydrophobicity (log Kow = 0.5-3) such as BTEX, chlorinated solvents, and 

short-chain PAH can be directly taken up by plants and stored in plant structures via lignification, or 

mineralized to water and carbon dioxide by plants(Schnoor, Light, McCutucheon, Wolfe, & Carriera, 

1995). They are hydrophobic enough to move through lipid bi-layers of membranes and water soluble 

enough to travel through cell fluids(Pilon-Smits, 2005); although they are generally considered to be 

phloem immobile(unless modified by plants before uptake) and xylem mobile (Cunningham & Berti, 1993; 

Hellström, 2004). Compounds that are very soluble in water (log Kow < 0.5) are not sufficiently sorbed to 

roots or actively transported; accumulation of such organic contaminants by plants is inversely related to 

passive influx of the transportation and  transpiration  system in the soil(Cunningham & Berti, 1993; 

Schnoor et al., 1995). Hydrophobic compounds (log Kow > 3) are very strongly bound to plant roots and are 

not easily translocated within the plants(Schnoor et al., 1995). For such organic contaminants, plant root 

exudates and enzymes help to enhance their degradation and immobilization(Alkorta & Garbisu, 2001). 

Organic contaminants with Hi >10-4 will tend to move in soil air spaces and those with Hi< 10-6 will tend to 

move in soil pore water. Organic contaminants between these two Hi values will move in both soil air and 

soil pore water.(Hellström, 2004).Evapotranspiration rates vary greatly across plant species and are 

reported to have significant effects on the uptake of organic contaminants (Burken & Schnoor, 1996). Plants 

with higher evapotranspiration rates will take up more water, thus take up more contaminants that move 

with the bulk flow of water. 

In phytoremediation explanta, the root exudates secreted by plants support the growth of diverse microbial 

activities in the rhizosphere by serving as a carbon and nitrogen source for microorganisms. Carbon and 
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nitrogen sources in root exudates are from organic compounds, such as phenolics, organic acids, alcohols, 

and proteins and the chemical composition of root exudates and rates of exudation differ significantly 

among plant species(Alkorta & Garbisu, 2001). In addition to root exudates, plants also secret enzymes that 

degrade organic compounds. Plant-derived enzymes that have been proven to be responsible for 

degradation of organic contaminants include laccases, dahalogenases, nitroreductases, nitrilases and 

peroxidases(Alkorta & Garbisu, 2001). 

2.5 Phytoremediation of inorganic contaminants 

Inorganic contaminants such as metals are either transformed to harmless forms, such as metal oxides or 

metal phosphates (phytostablization) or accumulated in the plant tissue (phytoaccumulation)(Chirakkara & 

Reddy, 2015b). The transport process in plants utilized for uptake and distribution of soil nutrients are also 

used for uptake and translocation of metals because they are chemically similar to plant nutrients, in fact 

some metals are essential plant nutrients. The uptake of inorganics in plants is facilitated through chelating 

agents  produced by plant roots and are capable of inducing pH and oxidation-reduction potential (Eh) 

changes in soils surrounding the rhizosphere, resulting in solubilisation of soil bound inorganic 

contaminants (Tangahu et al., 2011). After uptake by roots, transport within plants is achieved through an 

active transport process involving generation of electrochemical potential gradients, co- and anti- 

membrane  transporter proteins  and  transport channels (Tangahu et al., 2011; Thakur et al., 2016).  

Just like organic contaminants, bioavailability of inorganic contaminant is of key importance to plant uptake 

from soil. The majority of metals occur naturally in soil and at varying bio-availabilities. According to 

Prasad (2003), metals can be categorized as readily bioavailable(Cd, Ni, Zn, As, Se, Cu), moderately 

bioavailable (Co, Mn, Fe) and least bioavailable(Pb, Cr, U). In general, inorganic contaminants occur as 

cations or anions and are considered hydrophilic. Bioavailability of cations is controlled by soil’s cation 
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exchange capacity (CEC), which is a measure of the availability of binding sites for ions, thus cations will 

be less bioavailable in soils with higher CEC. But at lower pH the bioavailability of cations increases due 

to replacement of cations on soil CEC sites by H+(Hellström, 2004). In general, bioavailability of metals 

has been known to increase with decrease in soil pH. Another factor that controls the bioavailability of 

inorganic contaminants is the oxidation-reduction potential of soils. Depending on the oxidation-reduction 

(Eh) state of soil, heavy metals can occur in a variable oxidation state which may or may not be readily 

taken up by plants. For example, inorganic As and Cr forms available in soil for plant uptake are arsenite 

AsO3
-3 /As(III),arsenate AsO4

-3/ As(V),Cr(III) and Cr(VI). As (V) and Cr (III) are considered relatively 

immobile because they are  more stable and strongly retained in soil while Cr(VI) and As(III) are  unstable 

and easily mobilized irrespective of pH(Kabata-Pendias, 2000; Rinklebe, Knox, & Paller, 2017). In a 

reducing soil environment (more negative Eh), As(III) and Cr(III) are prevalent, whereas in an oxidizing 

soil environment (more positive Eh), As(V) and Cr(VI) are prevalent (Delaune & Reddy, 2005). Thus, under 

reducing soil conditions bioavailability of As is expected to increase because of the dominance of As (III), 

whereas Cr bioavailability is reduced due to dominance of Cr (III). In reality, controlled bioavailability of 

metals in soils by interaction between CEC, pH and Eh is expected as opposed to influence by a single 

factor   

Metal availability can be modified by root exudates and microbial soil activities. For example exudation of 

siderophores will increase iron solubility and exudation of low molecular weight organic acids (such as 

citrate and malate) will increase the solubility of aluminum, cadmium, copper, nickel and zinc ( Li, Ye, & 

Wong, 2010; Nascimento, Amarasiriwardena, & Xing, 2006; Sessitsch et al., 2013).The activities of 

microorganisms in the rhizosphere can also increase solubility of metals by impacting soil pH, increase the 

transfer of soluble metals from the rhizosphere to the plant or increase the root surface area and hair 

production(Alford et al., 2010; Ali et al., 2013). 
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Plants can be categorized as either metal excluders, indicators or accumulators (Ghosh and Singh 2005; 

Ali, Khan, and Sajad 2013). Metal accumulators absorb metals from soil and concentrate them in their 

roots, shoots and/or leaves, possibly at levels exceeding soil concentration. Metal excluders prevent metals 

from entering their aerial parts or maintaining low and constant concentrations of soluble/exchangeable 

metal fraction in soil, they typically accumulate metals in their roots. Metal indicators accumulate metals 

in their tissues at levels that reflect soil concentration.  

2.6 Phytoremediation of organic-inorganic mixed contaminated soils 

Like many other remediation methods, a large number of phytoremediation studies is focused on one class 

of contaminants despite the abundance of evidence of mixed contamination in soils. The complexity of 

inorganic-organic contaminant interactions supports the need to investigate effectiveness of 

phytoremediation for mixed contaminated soils as well as interactions among organic contaminants, 

inorganic contaminants and plants. These interactions control mobility, uptake, bioavailability and 

degradation of contaminants. Outcomes of these interactions are different from phytoremediation of a single 

class of contaminants.  There is a paucity of studies on phytoremediation of mixed contaminated soil. 

Available studies have shown highly variable outcomes relating to plant growth, contaminant transport 

within plants, contaminant accumulations by plants and degradation of contaminants. Some studies have 

discovered that plant response during phytoremediation of mixed contaminated soils will differ from plant 

to plant. This was demonstrated by Batty and Anslow (2008) who examined the effect of PAH(pyrene, 

1000 mg/kg) on phytoremediation of a metal (Zn, 8000mg/kg) contaminated soil using Brassia juncea 

(Indian mustard) and Festuca arundinacea (tall fescue) after 12 weeks of plant growth. The two plant 

species responded differently under the same soil conditions. Growth (growth rate and wet biomass) of tall 

fescue was unaffected by the addition of pyrene while the growth of Indian mustard was significantly 

reduced by approximately 50%. The plants also accumulated Zn differently in mixed Zn-pyrene 
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contaminated soil, compared to single Zn contamination. Zn concentration in Indian mustard (concentrated 

mostly in shoot) was increased by ~79% in mixed contaminated soil but that of tall fescue (concentrated 

mostly in root) remained the same compared to control. At the end of the study Zn removal efficiency of 

tall fescue was improved by pyrene but residual Zn in co-contaminated soil was not different between pots 

planted with either plants. Even though Zn removal efficiency was the same in both plants, the tolerance of 

tall fescue and its ability to concentrate Zn in its roots makes it a better candidate than Indian mustard, as 

the risk of contaminant transfer to the food chain is reduced. Similar synergistic effects on plant growth 

were observed by Zhang et al. (2009) and Sun et al. (2011). Zhang et al. (2009) studied the remediation of 

soil co-contaminated with pyrene (10, 50, or 100 mg/kg) and cadmium (2, or 4.5 mg/kg) using Zea mays L. 

(maize).  After 8.6 weeks, the growth of maize was reduced by 0-8.90% in co-contamination with increasing 

pyrene concentration as well as in single Cd contaminated soil. Although plant growth was reduced by co-

contamination, concurrent dissipation of pyrene and removal of Cd was achieved by maize. But the 

degradation of pyrene was greatly limited by Cd concentration, as demonstrated by an increase in residual 

pyrene with increased Cd concentration until similar values to unplanted soil was observed in combined Cd 

(4.5 mg/kg) and pyrene (100 mg/kg). A similar trend was observed for Cd concentration and accumulation 

in maize, which was reduced with increased pyrene concentration. A similar concurrent removal and growth 

pattern was observed by Sun et al. (2011)  in a comparative study of phytoremediation of single 

contamination of B[a]P(benzo[a]pyrene) 2,5,10,50 mg/kg and that of B[a]P 5mg/kg co-contaminated with 

Cd 20,50mg/kg, Cu 100,500mg/kg or Pb 1000mg/kg,3000mg/kg using Tagetes patula (marigold). At the 

end of the 13-week growth period, translocation of organic and inorganic contaminants by marigold was 

observed in B[a] P and Cd mixed contaminated soil only, Pb and Cu were concentrated largely in roots. 

These studies show that synergistic effects were not only observed for plant growth but also for contaminant 

removal. 
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Although mixed contamination can lead to synergistic effects, antagonistic effects have also been observed. 

Jeelani et al. (2017) exposed Acorus calamus (sweet flag) to Cd (0, 10, 20mg/kg) and two PAH 

(phenanthrene and pyrene 0, 50+25,100+50mg PAH/kg) for 8.6 weeks. They showed that plant biomass 

production and plant height increased by 0 – 140% and 0 - 42.86 % (p<0.05 and p<0.01, respectively) with 

co-contamination compared to uncontaminated soil, and a single 20mg/kg Cd contaminated soil (in which 

plant growth was similar to that in clean soil). Highest Cd accumulation was observed in soil co-

contaminated with low Cd-PAH soil contamination (10mg Cd/kg-50+25mg PAH/kg) and high Cd-PAH 

soil contamination (20mg Cd/kg-100+50mg PAH/kg). Cd translocation was generally poor irrespective of 

the treatment and Cd was largely concentrated in roots. These results imply that antagonistic effects such 

as improved plant growth and phytoremediation efficiency of contaminants depend on concentrations of 

contaminants in mixed contaminated soil. Irrespective of improvements in tolerance and Cd accumulation 

of sweet flag in mixed contaminated soil, this plant unfortunately was unable to improve the degradation 

of PAH in mixed contaminated soil. Chen et al. (2013)   observed similar interaction in phytoremediation 

of hexachlorocyclohexane (HCH) -Cd contaminated soil using Allium sativum L. (garlic). They explained 

that the antagonistic effects of mixed contamination are partly due to formation of metal-organic complexes 

between metals and organic contaminants.  

Depending on the physiological function of metals, uptake and translocation of metals in mixed 

contaminated soil might be improved. Chigbo, Batty, and Bartlett (2013), studied phytoremediation of Cu 

(0, 50 and 100 mg/kg) and pyrene (0, 250 and 500 mg/kg) using indian mustard and found phyto-toxic 

effects on the plant (in terms of reduced biomass) after 9.2 weeks of growth, the study showed 

improvements in metal translocation within Indian mustard. At low Cu concentration (50mg/kg), increasing 

pyrene concentration led to a 36% (p<0.05) increase in Cu-concentration in the plant compared to single 

Cu-contamination of 50mg/kg. At high Cu (100mg/kg) and incremental addition of pyrene, a19%-70% 
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increase in Cu concentration in the shoot was also observed compared to single Cu-contamination of 

100mg/kg. In other words, with incremental concentration of pyrene and Cu in soil, the ability of Indian 

mustard to transport Cu from root to shoot seemed to improve. This demonstrates that biological functions 

of the metal in question (in this case Cu is a micronutrient) might  contribute to improved translocation (as 

opposed to findings from Batty and Anslow (2008)) during phytoremediation of mixed contaminated soils.  

Irrespective of increased metal transport within plant in co-contaminated soil, overall accumulation of metal 

reduced drastically by 90% and 94% at low co-contamination (Cu 50mg/kg and pyrene 250mg/kg) and 

86.5% and 83.5% at high co-contamination (Cu 100mg/kg and pyrene 500mg/kg) due to reduction in plant 

biomass. Furthermore, this study showed that degradation of pyrene was better in planted soil compared to 

unplanted soil. In planted soil, pyrene degradation was significantly reduced by incremental co-

contamination with Cu compared to planted single pyrene contaminated soil. Residual pyrene in soil 

increased from 37.05mg/kg (at single 500mg/kg of pyrene) to 98.48mg/kg when 50mg/kg Cu was added 

and to 111.9mg/kg (greater than value in unplanted soil) when 100mg/kg Cu was added. The results of this 

study indicate that the presence of metal can inhibit biodegradation of organic contaminants and, most 

importantly, concurrent removal of contaminants is possible by phytoremediation. Lin et al. (2006) obtained 

similar outcomes in their study of effects of inorganic contaminant (represented by Cu 0,150,300mg/kg) on 

degradation/dissipation of pentachlorophenol (PCP) (0, 50,100mg/kg) in the presence of Lolim prenne (rye 

grass) and Raphanus sativa (Radish) after growth of 12weeks. Growth of plants and dissipation of PCP 

increased with incremental addition of Cu but was limited to low Cu(100mg/kg), which is about the same 

range of Cu as that used by Chigbo et al.(2013), and incresed concentration of Cu reduced percent PCP 

removal. 

A much more undesirable outcome of co-contamination is the inreased mobility of contaminants in mixed 

contaminated soil. This was observed by Chen et al. (2004), who examined the effect of 2,4-
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dichlorophenol(DCP), 100 mg/kg (organic contaminants), on uptake of Zn, 2978 mg/kg, and Cu, 1086 

mg/kg, (inorganic contaminant) during 4 weeks of phytoremediation  with Lolium prenne (rye grass). They 

found that the presence of 2, 4-dichlorophenol (DCP) increased the mobility of Zn and Cu by (as indicated 

by an increase in soluble and exchangeable soil metal fractions) in planted soil alongside reduced Zn 

accumulation and no significant effect on Cu accumulation in plant tissue when compared to unplanted 

soil. Increased mobility of metal was attributed to reduced uptake of metal by plants and an increase in 

dissolved organic carbon (DOC) due to the presence of DCP and a further increase in DOC due to the 

growth of rye grass in the co-contaminated soil. In addition, they found that the presence of DCP did not 

affect the growth (in terms of biomass production) of ryegrass.  

Outcomes of phytoremediation of mixed contaminated soils may vary due to age-related changes in the 

physicochemical properties of soil. Chigbo and Batty (2013) demonstrated this by comparing performance 

of Indian mustard in freshly spiked and aged Cu-pyrene contaminated soil after 8.6 weeks. Biomass of 

Indian mustard decreased (>50%) in freshly spiked soil compared to aged soil. Probably because the 

bioavailability of contaminants decreases with time. As expected, the accumulation of Cu in shoot was 

reduced by 60-88% in aged soil. But there was no significant effect of planting on degradation of pyrene in 

aged soil.  

Others have tried to screen plants based on their tolerance and contaminant removal. Chirakkara and Reddy 

(2015), conducted a study to select plants suitable for concurrent uptake of phenanthrene(100mg/kg), 

naphthalene(50mg/kg), Pb(500mg/kg), Cd (50mg/kg) and Cr (200mg/kg) by examining the 

phytoremediation efficiency of sunflower, indian mustard, field mustard, marigold, oat, rye grass, tall 

fescue, alfalfa, green onion, white clover, black nightshade and green gram (growth duration of 9 weeks). 

The concentrations they used were similar to those found in U.S superfund sites that have mixed 

contamination in soil. Sunflower, oat plant, rye grass, tall fescue and green gram were the only plants that 
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survived in the experimental conditions, although percentage survival and plant biomass were significantly 

reduced compared to that in clean soil. Removal efficiency of metals was in the order of Cr>Pb>Cd with 

uptake of Cr by all surviving plant species. Pb reduction was achieved only by sunflower (29%) and Cd 

reduction achieved by sunflower (18%) and Green gram (7%). Also, significant reductions in phenanthrene 

and naphthalene were observed for all surviving plant species. Similarly, Huang et al. (2011) screened 23 

genotypes of Ricinus communis (castor) for remediation of Cd-DDT contaminated soil after 8.6 weeks and 

found concurrent accumulation of  Cd and DDT by some genotypes, even higher concentrations than 

previously reported for any other plant. Lee et al. (2007) examined phytoremediation of Cd-Pb-2,4,6-

trinitrotoluene(TNT) contaminated soil using Echinochloa crusgalli (barnyard), Abutilon avicennae (Indian 

mallow), Aeschynomene indica (Indian joint vetch) and Helianthus annuus (sunflower) for 26.7 weeks. All 

plants simultaneously removed Cd and TNT completely but Pb was not removed due to low exchangeable 

and soluble Pb in soil. 

2.7 Conclusion  

Based on the studies reviewed above, it may be concluded that typical rules that apply to single 

contaminated soils may not hold true for mixed contaminated soil and it is difficult to predict the outcomes 

of phytoremediation of mixed contaminated soil because of the many variables that affect the process. 

These variables include individual plant tolerance to contamination, type and concentration of contaminants 

in the mixture, and physiochemical properties of soil. Identifying plants with the potential to phyto-

remediate specific mixtures of contaminants in soils is a foundational step to providing insights in the area 

of phytoremediation of mixed contaminated soils.  
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CHAPTER 3 

3.0 Phytoremediation of Metal-PAH-Pesticide Contaminated Soil 

3.1 Materials and Methods 

3.1.1 Contaminant selection  

Two metals were selected to represent inorganic contaminants and two compounds were selected to 

represent organic contaminants. The Canadian Federal Contaminated Site inventory lists several active sites 

with soils contaminated by metals, pesticides and PAH. Pb and Cu were selected to represent two classes 

of metals, non-essential and essential metals, based on their roles in biological systems and they are the 

most commonly found metals at contaminated sites(He et al., 2015). Pyrene and DDT were selected to 

represent two classes of organic contaminants. DDT was selected because of its environmental significance 

as a pesticide that is persistent in the environment long after its production and use has been banned. Pyrene 

was selected because it is typically the most abundant PAH(World Health Organization, 2003). All 

contaminants selected for this study are on the US EPA’s priority pollutants list.  

The concentrations of the contaminants were selected such that they were within the range of concentrations 

used in studies reviewed in Chapter 2. They were above maximum concentrations prescribed for soils in 

industrial areas by the Ontario Environmental Protection Act (MOECC, 2011) and protection of ecological 

receptors in the environment and human health in industrial areas(CCME 1999b,1999c, 1999d,2010), since 

cases of mixed contamination are associated with areas with history of industrial activities (Table 3-1).  
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Table 3-1: Concentration limits for selected contaminants in industrial soil and the concentrations 

used as the experimental treatment. 

Contaminants Concentration 
(mg/kg) 

 

Concentration 
(mg/kg) 

 

 

 

Concentrations 

(mg/kg)  

 

Concentrations 
used (mg/kg) 

 

Lead 600 (CCME 1999b) 120 (MOECC, 
2011) 

 

500- 3000 (Chirakkara 

& Reddy, 2015b; Sun et 

al., 2011) 

650 

Copper 500 (CCME 1999c) 230 (MOECC, 
2011) 

 

50- 1086 ( Chen et al., 

2004; Chigbo et al., 

2013) 

550 

DDT 12 (CCME 1999d) 1.4 (MOECC, 
2011) 

 

0.61- 30 (Mo et al., 

2008; Wang, 2008) 

20 

Pyrene 100 (CCME 2010) 96 (MOECC, 
2011) 

 

10-1000 (Batty & 

Anslow, 2008; Zhang et 

al., 2009) 

200 
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Table 3-2: Physical and chemical properties tested for the study soil 

Property Method Analyzing laboratory  

Grain size 

distribution  

ASTM C136/C136M (2014) for sieve analysis and ASTM 

D7928 (2017) for hydrometer test. Soil classification was 

done using soil texture triangle. 

Western Geotechnical Lab 

Specific gravity  Water Pycnometer according to ASTM D854 (2014b). Western Geotechnical Lab 

Hydraulic 

conductivity 

 

ASTM D5856  (2015)  Western Geotechnical Lab 

Moisture content  

 

ASTM D2216  (2010)  Western Geotechnical Lab 

Organic matter 

content  

Loss on ignition at 360°C A&L Laboratories Canada 

pH Electrometric measurement of 1:1 soil: water extract  A&L Laboratories Canada 

Nitrate content  0.01M K2SO4 extract, cadmium reduction to NO2, 

colorimetric measurement 

A&L Laboratories Canada 

P, K, Mg, Ca, S, Zn, 

Mn, Fe, Cu, B, Al, Na  

Mehlich 3 extraction (plant available micro- and macro 

nutrients in soil) and ICP-OES 

A&L Laboratories Canada 

Nitrogen content Combustion and thermal conductivity   A&L Laboratories Canada 

Available potassium 

and phosphorous 

Ammonium citrate buffer extraction and ICP-OES A&L Laboratories Canada 

Metal content EPA Methods 6010,6020,7196A and 7471A Caduceon Environmental 

Laboratories 
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3.1.2 Plant selection  

Based on a review of the literature on phytoremediation (Chapter 2) the following plants were selected 

because of their tolerance and contaminant removal abilities (Chirakkara and Reddy 2015; Lunney et al. 

2004; Paul et al. 2015): Panicum virgatum (switch grass), Lolium perenne (rye grass), Avena sativa (oat), 

Medicago sativa (alfalfa), Brassica juncea (Indian mustard), Helianthus annuus (sunflower) and Festuca 

arundinacea (tall fescue). Seeds of switch grass, oat and sunflower were purchased from Hawthorn Farm 

organic seed, ON Canada; alfalfa, ryegrass and tall fescue from ProRich Seeds ON, Canada; and Indian 

mustard from Eagleridge Seeds BC, Canada. 

3.1.3 Physical and chemical properties of soil  

Four physical and seven chemical properties of soil were determined according to methods listed in Table 

3-2. Most of the chemical properties of the soil were determined by A&L Laboratories Canada and 

Caduceon Environmental Laboratories Canada. Physical properties were conducted in the Geotechnical 

Engineering Laboratory at Western University. All tests were performed in triplicates. 

3.1.4 Soil spiking procedure  

Soil was collected from pits operated by AAROC Aggregates, London, Ontario, and air dried for 7 days 

after which the soil was pulverized, passed through a 2-mm sieve, mixed and divided into portions of 1000 

g each. Subsamples (250 g each) of these soil portions were first contaminated with the acetone-soluble 

DDT and pyrene prior to adding the water-soluble metals (Pb and Cu) and generating the mixed 

contaminant test soil.   

For the acetone-soluble compounds, 25 mg of two forms of DDT (68.51% 4, 4’- DDT and 31.49% 2, 4’-

DDT) and 210 mg pyrene were dissolved in 100 mL of acetone and added to 250 g of soil. The soil was 

allowed to dry in a fume hood for 4 days and turned daily to ensure complete evaporation of acetone. 
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Appropriate amounts of Pb (NO2)3 and CuSO4.5H2O (depending on what the initial concentration of lead 

and copper was in a given batch) were dissolved in 75g of distilled water and added to the organic-

contaminated soil to achieve a moisture content of 30%. The remaining portion (750 g) of clean soil was 

mixed with 225 g of water to achieve a similar moisture content. The clean soil (750 g) and contaminated 

soil (250 g) were then mixed together for 3 hours using a soil mixer to achieve a final concentration of 20 

mg/kg, 200 mg/kg, 650 mg/kg and 550 mg/kg of DDT, pyrene, Pb and Cu, respectively. Contaminated soils 

were stored in moisture tight containers for 1 month before planting of seeds in order to achieve equilibrium 

between the solid phase and liquid phase of the soil. Although adsorption, fractioning and speciation of 

contaminants in soil phases involves a combination of fast and slow reaction which may take as little as a 

few hours or as much as a few years, the time constraint of this study permits 1 month to allow for 

stabilization of these reactions.  

Cu salt was purchased from Caledon Laboratories Canada, all other spiking compounds were purchased 

from Sigma-Aldrich Canada. 

3.1.5 Toxicity test  

Seed germination or root and stem elongation tests are the simplest type of toxicity test, typically used to 

determine preliminary effects of toxicity of contaminants on plants and can give a fair idea of plant tolerance 

to a specific level of contamination. The procedure for seed germination and the root and stem elongation 

test was adopted from ASTM (2009) and Greene et al. (1996).  

Spiked (contaminated) soil and clean soil (control) were placed in a Petri dish. Prior to planting, seeds were 

aerated in water until the first sign of germination to ensure uniform germination among seeds. Each Petri 

dish was sown with 10 seeds each for every plant species. The Petri dishes were then covered and sealed 

with Para film and placed in a growth chamber. The chamber was set to 22°C and 16:8 hours of light: dark, 

with a relative humidity of 60%. It is difficult to provide optimum growth conditions (photoperiod, day- 
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night temperature and relative humidity) for each plant species.  Most plant species have been found to 

grow actively between a minimum of 12-hour photoperiod, an average relative humidity of 50%. 

(Blankendal et al., 1972), and an  average daily temperatures of 5-35°C, with the general assumption being 

that to achieve optimal growth that temperatures at night should be less than day temperatures by 3-10°C 

(Poorter et al., 2012) but positive effects of lower night temperature has been found to be negligible or 

detrimental to plant growth (Rajan & Blackman , 1975), Thus, the selected growth chember conditions for 

this study is satisfactory for plant growth.  

Each plant species had 3 replicates for spiked soil as well as for clean soil. The Petri dishes were monitored 

for 7 days and the number of germinated seeds recorded. After 7 days the root and shoot lengths of plants 

were measured and the final germination percentage calculated.  

3.1.6 Plant growth and harvesting 

Based on the results of the germination test, alfalfa, ryegrass, sunflower, oat and Indian mustard were 

selected for the phytoremediation studies. Pots (8 cm diameter) were filled with clean soil (control) or 

contaminated soil, as described in Section 3.4. For each plant species, 3 pots of clean soil and 3 pots of 

spiked soil were prepared. Seeds (10 for alfalfa, ryegrass, oat and Indian mustard and 7 seeds of sunflower, 

to avoid overcrowding of plants in pots over the duration of this study) were placed at a depth of 

approximately 1 cm below the soil surface. 

Plants were grown in a growth chamber (same conditions as in Section 3.5). The height of plants was 

measured every 7 days and the number of germinated seeds and surviving plants recorded. The plants were 

watered once every 2 days to maintain a moisture content of 40% across pots. Exactly 3.3 g of slow 

releasing fertilizer (N: P: K =12:4:8) was added two weeks after planting to all pots. All plants were grown 

until constant height was observed in some plants (harvesting only plants that showed constant heights at 
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72days will make comparisim of performance difficult as there is no known method of correcting for 

variation in plant growth duration for phytoremediation studies) 

At the end of 72 days, the plants were harvested, shoots were separated from the roots and roots were 

washed with distilled water to remove soil particles. Plant tissue and soil were oven-dried at a temperature 

≤ 400C until constant weight was achieved. Plant root and shoot weight were measured and reported as root 

and shoot biomass. 

3.1.7 Soil pore water extraction  

Pore water was extracted from soil using a pneumatic pore water squeezer. The squeezer cylinder was 

washed with distilled water and dried, and approximately 140 g of wet soil was loaded into the clean 

cylinder and a hydraulic press was set to a maximum pressure of 125 MPa. Filter paper was placed at the 

base of the cylinder to prevent soil particles from being collected along with the pore water. After 24 hours, 

pore water was collected and stored at 40C prior to testing. The cylinder was washed thoroughly with soap 

and rinsed a few times with distilled water and acetone between samples to avoid cross contamination. 

3.1.8 Metal analysis in soil and plant  

Pb and Cu were extracted from the soil matrix by microwave-assisted acid digestion using Method 3051A 

by U.S. EPA (2007a) and Tighe et al. (2004). The oven-dried soil was pulverised and 0.5g of soil weighed 

into the microwave express vessel. Ten millilitres (10 mL) of concentrated nitric acid (Sigma Aldrich 

Canada Omni Trace) was added to the vessel and then transferred into the microwave with temperature set 

to ramp to 1750C over 6.5 minutes and held for another 15 minutes. The vessels were allowed to cool at 

room temperature. The samples were filtered and diluted to 50 mL.  

Metal content of plant tissues was determined using a U.S EPA acid digestion method modified by  Ahkter 

& Macfie (2012). The dried plant tissues were hand chopped into fine pieces and 0.1g was placed in a 15ml 

test tube and covered using glass marbles to prevent evaporation and allow pressure to be released during 
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heating. All the test tubes were placed in a rack and 1 mL pure nitric acid (OmniTrace®, EM Science,USA) 

was added to each test tube to digest the organic matter. The samples were left overnight at room 

temperature. The following day, the test tube rack was placed in a shallow tray filled with sand and heated 

to 90-100ºC on a hot plate until the vapors became transparent. Samples were allowed to cool to room 

temperature before being filtered into 50 ml sterile disposable centrifuge tubes and diluted to 25 mL using 

reverse osmosis water.  

Metal fractions in soil (exchangeable fraction, carbonates-bound fraction (or acid-extractable fraction), Fe-

Mn oxide bound fraction (or reducible fraction), organic-bound fraction ( or oxidizable fraction) and 

residual fraction) were determined using the sequential extraction procedure outlined in Table 3-3  using 

1g of soil.  The procedure for extracting the various fractions of metals was originally developed by Tessier 

et al. (1979) but the  modification by Reddy et al. (2017)  was adopted for this project. The extractant 

solution was recovered for each fraction by centrifugation (5000 rev/min for 20 minutes) and the 

supernantant carefully withdrawn with a pippette.The residue was then rinsed with milli Q water, 

centrifuged, and the resulting supernantant discarded. Shaking was done with an orbital shaker (Thermo 

Scentific MaxQ 2000) at 300 rpm. 

All samples were stored at -40C until analyzed by ICP- OES (Inductively Coupled Plasma-Optical Emission 

Spectroscopy).  

3.1.9 Pyrene and DDT analysis in soil and plants  

Microwave Assisted Extraction (MAE) base method for the extraction of organic compounds from soil is  

described in Method 3546 by U.S. EPA (2007b). A modification of this method by Wang et al. (2007) for 

simultaneous extraction of PAH and organochlorine pesticides was adopted for extracting pyrene, DDT 

and its metabolites . 
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5 g of oven dried soil was weighed into the microwave vessel and 25ml mixture of acetone and n-hexane 

(1:1) was added to the vessel. Vessel was sealed and put into the microwave. The extraction was performed 

at a microwave power of 100% (1200W), with temperature at 1100C and programmed to ramp to 1100C for 

10 minutes and held at 1100C for another 10 minutes. Vessels were allowed to cool at room temperature 

for a minimum of 5 minutes, contents centrifuged at 4000 rpm for 20 minutes to separate soil particles from 

extract solution. 

The supernatant was collected in a clean centrifuge tube and taken to an evaporator and evaporated to 

dryness. The residue left behind after evaporation was dissolved in 1900 µL of acetonitrile (Sigma Aldrich 

Canada HPLC grade) and 100 µL of dichloromethane (Caldeon Laboratories Canada) for DDT and 2000 

µL of acetonitrile for pyrene. Pre-concentrated extract was stored in HPLC vails at 4 oC prior to testing (for 

a maximum of 4 days). Samples were analysed using an Agilent 2000 series HPLC with UV-diode-array 

detector (DAD) and Eclipse C18 reverse phase column (25 cm × 4.6 mm, 5 µm) made by Agilent.  

Table 3-3: Steps for sequential extraction of metals from soil 

Fraction  Procedure 

Exchangeable fraction  8 mL of 1M sodium acetate solution (pH 8.2) was added to soil 

sample and mixed continuously  

Carbonates-bound fraction  Residue from above plus 8 ml of 1M sodium acetate (pH=5, 

adjusted with acetic acid) and mixed continuously for 5 hours. 

Fe-Mn oxides-bound  Residue from above plus 20mL of 0.04 M hydroxylamine 

hydrochloride (NH2OH.HCl) in 25 % ( v/v) of acetic acid and 

heated to 96 0C with occasional stirring for 6 hours. 
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Organic-bound Residue from above plus 3 mL of 0.02 M nitric acid and 5 mL 

of 30% hydrogen peroxide (pH=2, adjusted with nitric acid) and 

mixed continuously for 3 hours and allowed to cool, 5mL of   

3.2 M ammonium acetate in 20% nitric acid is added and diluted 

to 20 mL with distilled water and mixed continuously for 30 

minutes.  

Residual fraction  EPA 3050B 

 

The Method 8310 by U.S EPA (1986) was used; it gives the fundamental procedure and conditions for the 

use of HPLC in the detection of organic compounds. HPLC was calibrated using a stock solution of 300 

mg/L prepared by dissolving pyrene in acetonitrile and a stock solution of 80 mg/L prepared by dissolving 

DDT (68.51% 4, 4’- DDT and 31.49% 2, 4’-DDT) in acetonitrile and was diluted accordingly with 

acetonitrile. 

Sample HPLC chromatographs and calibration curves for pyrene and DDT are shown in Appendix A and 

B, respectively. All retention times were below relative standard deviation of 5% (relative standard 

deviation is the ratio of standard deviation and mean expressed as a percentage). 

Plant samples were sent to Agriculture and Food Laboratory University of Guelph for total DDT analysis 

using gas chromatography.  

3.1.10 Statistical analysis and quality control  

All parametric and non-parametric statistical tests were performed using Sigma plot 11.0 with α 

(significance level) at 0.05. Significant difference is shown using uppercase letters or asterisk (* 

), where bars and numbers with same letter indicate no significant difference, numbers and bars with 
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different letter or * indicate significant difference). Blanks and samples spiked with known concentrations 

were analysed alongside all samples during acid digestion, sequential extraction and extraction of organic 

compound. Recoveries from spiked samples were between 80- 120% and blanks did not indicate any signs 

of cross-contamination. 

3.2  Results  

3.2.1 Soil properties 

The physical and chemical properties of the study soil are presented in Table 3-4. The soil is predominantly 

sandy with low organic matter content and circumneutral pH. The soil can be classified as loamy sand. 

Also, the contaminants of interest are below the specified concentrations  in natural soils in 

Ontario(MOECC 2011). Typically the most productive agricultural soils are those with high clay content 

because they have a higher water holding capacity.(Hillard & Reedyk, 2014).Unfortunately, this type of 

soil is not the characteristic soil of the London, Ontario area where this study was conducted.  

The pH of soil before contamination, after contamination and after phytoremediation is given in Table 3-5. 

Soil pH was maintained within the neutral range after phytoremediation. 
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Table 3-4: Physical and chemical properties of the natural 

study soil (mean ± SE, n=3).  

Properties  Values  

Physical properties 

%clay 4.22% ± 0.84 

%silt 10.26% ± 1.90 

%Sand  85.52% ± 1.07 

Specific gravity  2.92 ± 0.05 

Hydraulic conductivity (cm/s) 7.59 x 10-4 ± 1.79 x 10-6 

Chemical Properties 

CEC(meq/100g) 23.9 ± 2.40 

pHwater 7.6 ± 0.12 

Organic matter (%)  2.2 ± 0.23 

Nutrient content 

P (mg/kg) 20 ± 2.60 

K(mg/kg)  70 ± 10.97 

NO3-N(mg/kg) 15 ± 1.73 

S(mg/kg) 144 ± 23.21 

Mg (mg/kg) 350 ± 30.88 

Ca(mg/kg) 4130 ±529.66 

Fe(mg/kg) 77 ± 15.86 

Bo(mg/kg) 0.9 ± 0.20 

Mn(mg/kg) 41 ± 5.92 

Zn(mg/kg) 3.8 ± 0.66 

Cu(mg/kg) 1.7 ± 0.52 

Mo(mg/kg) <1 

Contaminants of interest 

Copper(mg/kg) 14 ± 4.44 (92) 

Lead (mg/kg) 28 ± 9.37(120) 

Total DDT <D.L (1.5) 

Pyrene <D.L (1) 

() values in bracket are background concentrations for soils in 

Ontario 
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Table 3-5: pHcacl2 (mean ± SE, n=3) of planted and unplanted mixed contaminated soil. Different 

letters indicate a significant difference between planted and unplanted soil (p ≤ 0.05). 

Soil  Pre-contamination  Post-contamination  Post-Remediation  

Unplanted  7.4 ± 0.00C 7.3 ±0.00D 7.4 ± 0.06C 

alfalfa 7.6 ±0.00A 7.6 ±0.00A 7.5 ± 0.03BC 

Oat 7.3 ±0.00D 7.3 ±0.00D 7.4 ± 0.03C 

Ryegrass  7.5 ±0.00B 7.4 ±0.00C 7.2 ± 0.03E 

Indian mustard 7.5 ±0.00B 7.4 ±0.00C 7.3 ± 0.00D 

Sunflower 7.4 ±0.00C 7.3 ±0.00D 7.3 ± 0.06D 

 

3.2.2 Preliminary toxicity test of mixed contaminated soil on plants: Effect of contamination on 

percentage germination 

Seed germination for this study was defined as having a 1 mm radical emergence. Figure 3-1 shows percent 

germination for various plants. At the end of 7 days, no significant (p≤0.05) effect of soil treatment was 

observed. Irrespective of the lack of a significant effect of contamination on seed germination, differential 

plant response in both clean and contaminated soil was observed. Specifically, switch grass did not 
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germinate in both soils and tall fescue had the lowest percentage germination (27.5% in clean soil and 25% 

in contaminated soil) compared to the other viable plant species in both clean and contaminated soil.  

3.2.3 Preliminary toxicity test of mixed contaminated soil on plants: Effects of contamination on 

root and shoot length  

As with percent germination, the responses of plant roots (Figure 3-2) and shoots (Figure 3-3) varied from 

species to species. A significant effect (p≤0.05) of contamination on plant root length was observed for all 

plants except for sunflower. The percentage reduction in root length was as follows: 63% for tall fescue, 

72% for rye grass, 45% for Indian mustard and 32% for oat; while a percentage increase of 41% was 

observed for alfalfa. The effect of contamination on shoot length was significant (p≤0.05) only in oat with 

an increase of 135% compared to shoot length in clean soil. Slight non-significant effects were observed 

for ryegrass, alfalfa, Indian mustard and tall fescue, each of which showed an increase of shoot length, 

while sunflower shoot length decreased in contaminant soils. 

 

Figure 3-1: Germination percent (mean ± SE, n=3) of plants in clean soil and contaminated soil. 

Different letters indicate a significant difference between clean and contaminated soil and between 

plants (p ≤ 0.05). 
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Figure 3-2: Root length (mean ± SE, n=3) of plant species in clean soil and contaminated soil. 

Different letters indicate a significant difference between clean and contaminated soil and between 

plants (p ≤ 0.05). 

 

Figure 3-3: Shoot length (mean ± SE, n=3) of plant species in clean soil and contaminated soil. 

Different letters indicate a significant difference between clean and contaminated soil and between 

plants (p ≤ 0.05).  
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3.2.4 Metal uptake by plants  

The concentration of metals in plants grown in contaminated soils were significantly higher than those 

grown in clean soils (Table A-1). The Cu and Pb concentrations in plant tissues are shown in Figure 3-4 (a) 

and (b), respectively. For all plants, 89-94% of Cu and 87-97% of Pb taken up from soil were concentrated 

in plant roots. No statistically significant difference was observed between Pb and Cu concentrations in 

plant tissues, except for ryegrass whose Cu concentration was 65% higher than its Pb concentration. Even 

though a statistically significant difference between Pb and Cu concentrations in plant tissues was absent 

for the remaining plants, they tended to accumulate more Cu than Pb; oat, alfalfa, Indian mustard and 

sunflower accumulated 15, 19, 12 and 7% more Cu than Pb, respectively. The translocation factor (TF is 

an indication of contaminant movement from roots to shoot or leaves and it is calculated as a ratio of metal 

concentration in stem or leaves and metal concentration in roots) of metals were generally low (less than 

15%) in all plants (Table 3-6). The TF of Cu was higher than TF of Pb for alfalfa, oat, Indian mustard and 

sunflower, but the opposite was observed for ryegrass. Variation in metal TF was significant (p≤0.05) only 

for Indian mustard whose TF for Cu was 4.3 times higher than that of Pb.   

𝑇𝑇𝑇𝑇 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

A much clearer indicator of performance of plants for the purposes of phytoremediation is total metal 

accumulation (Figure 3-5), which is a function of metal concentration in plant tissue and plant biomass (dry 

weight of harvested plants). Like plant metal concentration, plants accumulated similar amounts of Cu and 

Pb (no statistical difference between amount of accumulated Cu and Pb was observed). However, amounts 

of Pb and Cu accumulated was significantly different across plants except for Indian mustard and sunflower, 

which accumulated similar amounts of both metals. 
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Figure 3-4: Metal concentration (mean ± SE) in plant tissues after growth in contaminated soil (a) 

Cu (b) Pb. Different letters indicate a significant difference between Cu and Pb uptake by plants (p 

≤ 0.05). 

Table 3-6: Translocation Factor (mean ± SE) of Cu and Pb in plants grown on contaminated soil. 

Different letters indicate a significant difference between TF of plants for Cu and Pb (p ≤ 0.05). 

Plants Translocation factor(TF) % 

Cu Pb 

Alfalfa 2.19 ± 0.30E 1.66 ± 0.33E 

Oat 4.07 ± 0.94D 3.30 ± 0.11D 

Ryegrass 9.61 ± 2.98C 14.23± 2.92C 

Indian mustard 11.92 ± 0.03A 4.07 ± 0.22B 

Sunflower 7.07 ± 0.58A 4.07 ± 0.20AB 
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Figure 3-5: Metal accumulation (mean ± SE) in plants after growth in contaminated soil. Metal 

speciation in soil. Different letters indicate a significant difference between total Cu and Pb 

accumulation by plants (p ≤ 0.05). 

3.2.5 Fate of metals in Soil pore water  

Metal concentration in soil pore water is given in Table 3-7. All planted soil significantly (P≤ 0.05) 

mobilized more metals into soil pore water compared to unplanted soil except for soil planted with alfalfa. 

From the results of metal concentration in pore water, plants mobilized 1.3 -8.5 times more Cu than Pb   

with the concentration of Cu in pore water observed to be consistent with the Cu concentration in plant 

tissues whereas Pb concentration in plant tissues did not reflect its concentration in pore water.  

 

Table 3-7: Metal concentration (mean ± SE) in soil pore water after phytoremediation 

 Average metal concentration (mg/l) 

Soil  Cu Pb 

Unplanted 0.079 ± 0.017B 0.008 ± 0.006D 

Alfalfa 0.043 ± 0.003B 0.051 ± 0.005BD 

Oat  0.292 ± 0.035A 0.04 ± 0.019D 

Ryegrass 0.254 ± 0.034A 0.03 ± 0.010D 

Indian mustard 0.204 ± 0.061A 0.152 ± 0.018C 

Sunflower 0.283 ± 0.083A 0.178 ± 0.033AC 
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3.2.6  Fate of metals in soil 

After 72 days of plant growth, no significant (p<0.05) reduction in total metal content of contaminated soil 

was observed (Figure 3-6). But plant growth affected metal speciation in soils in diverse ways.  

Figure 3-7 shows the effect of plant growth on Cu speciation in soil sown with the five plant species 

compared to unplanted soil. For soil planted with alfalfa, there was no statistical difference (p≤0.05) in Cu 

speciation when compared to unplanted soil. The growth of Indian mustard and sunflower in contaminated 

soil significantly reduced exchangeable metal by 17% and 39%, respectively. In soil planted with ryegrass, 

100% of exchangeable Cu was redistributed to the organic fraction, causing a 35% increase in organic 

bound fraction of Cu. Oat increased exchangeable Cu by 70% by redistributing the carbonate bound Cu 

fraction to exchangeable Cu. Residual and Fe-Mn oxide-bound fraction of Cu in all planted soils was similar 

to that of unplanted soil. 

The exchangeable Pb fraction was significantly reduced by 37%, 14%, 16%, 24%, and 31% in soils planted 

with oat, alfalfa, ryegrass, indian mustard and sunflower, respectively, when compared to unplanted soil 

(Figure 3-8). Carbonates, Fe-Mn oxides, organic and residual fractions in planted soil were the same as in 

unplanted soil. 

Regardless of plant growth, Cu was associated mainly with the Fe-Mn oxide-bound fractions (33-40%) 

followed by residual (26-29%), carbonate bound (18-21%), organic-bound (11-20%) and exchangeable (0-

0.9%) fractions, while most of the Pb was associated with the carbonates-bound fraction (38-45%) followed 

by Fe-Mn oxides-bound (29-35%), residual (14-23%), organic (4-8%) and exchangeable fraction (0.4-

0.8%). The percent of total soil Cu in the organic-bound fraction was 86-120% higher (p ≤ 0.05) than Pb 

for the same fraction. 
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(a) 

 

(b) 

 

Figure 3-6: Metal concentration (mean ± SE) in planted and unplanted soil. (a) Cu and (b) Pb. 

Different letters indicate a significant difference between Cu and Pb content in planted and unplanted 

soils (p ≤ 0.05). 
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Figure 3-7: Comparison of effect of plant growth on Cu speciation in mixed contaminated soil.F1: 

exchangeable fraction, F2: carbonates-bound fraction, F3: Fe-Mn oxides-bound fraction, F4: 

organic fraction, F5: residual fraction
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Figure 3-8: Comparison of effect of plant growth on Pb speciation in mixed contaminated soil.F1: 

exchangeable fraction,F2:carbonates-bound fraction, F3: Fe-Mn oxides-bound fraction, F4: organic 

fraction, F5: residual fraction.   
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3.2.7 Fate of Organic Contaminants in Soil 

 Residual organic contaminant in soil after phytoremediation is shown in Figure 3-9 for pyrene and Figure 

3-10 for DDT. Significant reduction (~65%) in soil pyrene levels was achieved without the aid of plant. 

Additional pyrene was removed in the presence of alfalfa (17%) and sunflower (25%). Oat and Indian 

mustard seemed to slow down natural degradation of pyrene while ryegrass did not interfere with pyrene 

degradation.  

  

Figure 3-9: Comparison of pyrene concentration in planted and unplanted soil before and after 

phytoremediation treatment. Different letters indicate a significant difference between pyrene 

degradation in planted and unplanted soil (p ≤ 0.05). 

Degradation of DDT to its metabolites DDD (1, 1-dichloro-2, 2-bis (p-chlorophenyl) ethane) produced from 

biotic degradation and DDE (1, 1-dichloro-2, 2-bis (p-chlorophenyl) ethylene) produced from abiotic 

degradation was not observed. There was also no significant (p<0.05) reduction in 4, 4- and 2, 4- DDT of 

unplanted soil compared to the initial DDT value. Plant growth did not generate any significant reduction 
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of 4, 4-DDT in soil but 2, 4 DDT was reduced (p<0.05) in soils planted with alfalfa, Indian mustard and 

sunflower by 40%, 38% and 30%, respectively.   

 

Figure 3-10: Comparison of 4, 4’- and 2, 4’-DDT concentration in planted and unplanted soil before 

and after phytoremediation treatment. Different letters indicate a significant difference between 

DDT isomers and their degradation in planted and unplanted soil (p ≤ 0.05). 

 

3.2.8 Organic contaminants uptake by plants  

Plant uptake of organic contaminants is well established (Paul et al., 2015; White, 2000; Zeeb et al., 2006). 

For the most part, plant uptake of PAH from contaminated soil accounts for a small portion (usually less 

than 0.1%) of total PAH decrease during phytoremediation (Hechmi, Aissa, Abdennaceur, & Jedidi, 2013; 
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can accumulate a considerable amount of DDT and its metabolites ranging bfrom 0 -77% of total DDT lost 

from soil (Huang et al., 2011; Lunney et al., 2004; Mo et al., 2008; Paul et al., 2015; Wang, 2008). 

The concentration of DDT in plant tissue is shown in Figure 3-11. Although DDD and DDE were absent 

in planted soils after phytoremediation, both isomers of DDD and DDE were observed in all plant tissue. 

DDD and DDE accounted for 56 – 73% and 1-7% of total DDT concentration (sum of DDT, DDD and 

DDE) in plant respectively. Sunflower had the highest concentration of DDT (4.81mg/kg) and DDD 

(8.96mg/kg) while oat had the highest DDE concentration (0.49 mg/kg). DDT distribution in plant tissues 

were similar to the pattern observed for Cu and Pb distribution in plant tissue in that DDT was concentrated 

mostly in plant root. DDT, DDD and DDE concentration in plant shoot ranged from 0 mg/kg in Indian 

mustard to 0.57 mg/kg in ryegrass, 0.14 mg/kg in Indian mustard to 0.32 mg/kg in sunflower and 0 mg/kg 

in all plants respectively. Root concentration values ranged from 1.93 mg/kg of DDT in Indian mustard to 

4.5 mg/kg of DDT in sunflower, 5 mg/kg of DDD in alfalfa to 8.6mg/kg in sunflower and 0.12mg/kg of 

DDE in ryegrass to 0.49 mg/kg in oat. DDE concentration across plants was not significantly (p<0.05) 

different, but significant differences in DDD and DDT concentration was observed.  
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Figure 3-12: Total DDT concentration (mean ± SE) in plant tissues after growth in 

contaminated soil (a) Shoot (b) Root. * indicate a significant difference between DDT, 

DDD and DDE concentration within plants (p ≤ 0.05). 
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3.2.9 Plant growth response to mixed contamination  

Percent germination in contaminated soil compared to clean soil is shown in Figure 3-12 and is seen to be 

similar to that obtained during the toxicity test (Figure 3-1) where no significant (p<0.05) effect of 

contamination on plant percent germination was observed. By the end of 72 days growth, percent survival 

of all plants in clean soil and that of oat, ryegrass and sunflower in contaminated soil remained the same 

but that of alfalfa and indian mustard in contaminated soil was significantly reduced (Figure 3-13) by 32% 

and 33% of their percent germination value at the beginning in contaminated soil. All plants developed 

extensive root systems that filled the entire soil volume, except for ryegrass whose roots were sparsely 

distributed in the soil. 

A significant reduction (p<0.05) in growth rate in response to soil contamination was also observed for all 

plants except for sunflower (Figure 3-14). For Indian mustard, reduction of plant growth in contaminated 

soil was first observed on day 14 but by day 28 the plant went back to the same growth rate as in clean 

soil. Final height of plants in contaminated soil were significantly (p<0.05) lower than the plant height in 

clean soil by 36% for alfalfa, 22% for oat, 28% for rye grass and 5% for sunflower.  

In addition to growth rate, biomasses produced in contaminated soil were significantly (p<0.05) lower than 

those produced in clean soil for all plants except Indian mustard (Figure 3-15). Contamination induced 

reductions in biomass of 92, 34, 69 and 61% for ryegrass, sunflower, alfalfa and oat, respectively. No effect 

on Indian mustard biomass was observed.  
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Figure 3-12: Germination percent (mean ± SE) of plants in clean and contaminated soil. Different 

letters indicate a significant difference between DDT isomers and their degradation in planted and 

unplanted soil (p ≤ 0.05).  
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Figure 3-13: Plant survival (mean ± SE) as a ratio of final germination to initial germination of 

plants in contaminated soil. Different letters indicate a significant difference between DDT isomers 

and their degradation in planted and unplanted soil (p ≤ 0.05). 
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Figure 3-14: Increase in plant height with time (mean ± SE) in clean and contaminated soil. * indicate a significant difference between plant growth 

in clean and contaminated soil (Time p ≤ 0.05). 
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Figure 3-15 (Continued): Increase in plant height with time (mean ± SE) in clean and 

contaminated soil. * indicate a significant difference between plant growth in clean and 

contaminated soil (Time p ≤ 0.05). 
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Figure 3-16: Root and shoot biomass (mean ± SE) of plants in clean (CS) and contaminated 

soil (TS). Different letters indicate a significant difference between clean and contaminated 

soil and between plants (Total biomass p ≤ 0.05). 
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3.3 Discussion 

3.3.1 Preliminary toxicity test  

Seed germination can typically represent the first step to effective phytoremediation because plant 

performance at the early stages sets the pace for root and shoot development as well as to determine 

the extent to which the soil environment may negatively or positively impact plant growth. The 

lack of significant effect of the contaminants on seed germination can be understood to mean that 

the seeds of these plants are resistant to penetrative phytotoxic stress of the contaminant 

combination and at the tested concentrations. Even though, at early growth stage, the nutritional 

needs of embryonic plants are not provided from the soil environment but internally from seed 

stored materials(Kapustka 1997), prevention of interference by contaminants with nutritional 

materials stored in plant seed is preferred. The ability of plants to prevent penetration of 

contaminants into the seed is  attributed to the nature of the selective permeability of the seed 

coat(Klokk, 1984; Wierzbicka & Obidzińska, 1998). Plant seed coats acts as a barrier between a 

plant embryo and the toxic environment, protecting the embryos from contamination until the 

embryonic roots start to develop (Kapustka 1997). The differential germination response of plants 

in contaminated soil is accounted for by the fact that the seed coat composition, as well as the 

permeability of seed coats, varies from plant to plant. 

In addition to plant tolerance in a contaminated environment, a plant’s above-ground mass and 

root structure are crucial for effective phytoremediation. Extensive roots and high above ground 

biomass are desirable qualities for phytoremediation. Longer roots increase the rhizosphere area 

thereby enhancing the ability to support soil microorganisms, improve contaminant uptake and 

reach contaminants at a deeper soil horizon  (Harvey et al., 2002; Masarovičová & Kráľová, 2012). 

Larger shoot mass provides a larger area for transpiration, which improves metal transport from 
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root to shoot (Gleba et al., 1999). In the present toxicity test, root lengths of oat, rye grass, tall 

fescue and Indian mustard were adversely affected by contamination with tall fescue having the 

shortest root length in contaminated soil. Shoot lengths of most of the plants were larger for plants 

grown in contaminated soil, except for ryegrass; however, the shoot length of tall fescue in 

contaminated soil was one of the lowest. Over all, the sensitivity of plants to mixed contamination 

was in the order of roots>shoots> percentage germination.  

By considering the importance of the plant roots and shoots as well as the relative tolerance in the 

contaminated soil alongside the results, switch grass, which didn’t grow in either soil (probably 

because the batch of seeds were bad) , and tall fescue, which had the lowest germination percent 

and shortest roots and shoots, were eliminated from further consideration for phytoremediation.                                                          

3.3.2 Metal uptake by plants  

The first step in phytoextraction of metals from soil is mobilization of metals from contaminated 

soil solid phase to the bulk pore water after application of additives( Wang et al., 2007) such as 

surfactants and chelating agents. Plant root exudates are well known chelating agents which 

explains the observed mobilization of metals in planted soils compared to unplanted soil. A similar 

observation was made by(Lombi, Zhao, Dunham, & McGrath (2000) using two species of Thlaspi 

caerulescens (alpine pennygrass), J. Presl  and C. Presl, to phytoextract Zn and Cd from metal 

contaminated soil.  

In the present study, the mobilization of more Cu compared to Pb in soil pore water maybe due to 

Cu being more soluble in water than Pb. This further supports the seemingly preferential uptake 

and transport of Cu over Pb, indicated by higher Cu concentration in plants (Figure 3-4). In 

addition, Cu being an essential element affords it plant specific membrane transporters in the root 
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cells that help bring in Cu compared to Pb which is not essential and does not have specific 

membrane transporters in plants (Mendoza-Cózatl, Jobe, Hauser, & Schroeder, 2011). This implies 

that for Pb to be taken up by plants, it has to slip through membrane proteins that are large enough 

to handle the 2+ charge on Pb2+ making Cu uptake by plants more likely than Pb. The order of Cu 

mobilization in soil was observed to be consistent with Cu plant concentration, surprisingly Pb 

uptake by plants was not related to Pb mobilization in pore water. This may point to the possibility 

of Pb ions competing with other ions in soil solution for plant uptake, since Pb will be travelling 

through non-specific transporters, Pb ions may compete with other ions in soil solution for access 

to these uptake channels, implying that the availability of Pb in soil solution may not translate into 

its uptake by plants.  

The translocation factors (< 16%) for metals indicate that plants did not transfer metals from root 

to shoot. This sort of response is a tolerance mechanism in plants to reduce metal toxicity(Baker, 

1981). Plant roots often act as a barrier to the uptake and transport of metals by binding 

contaminants outside the root surface which results in localization of metals in the root sometimes  

at metal concentrations higher than that of growth medium(Dalvi & Bhalerao, 2013; Inouhe, 

Hunag, Chaudhary, & Gupta, 2012; Kabata-Pendias, 2000). 

Low total metal accumulation observed in this study can be attributed to the low concentration of 

bioavailable metals in the soil. Potentially most bioavailable forms of metal in soil are in the 

exchangeable fraction because they  are weakly absorbed to soil and are easily converted to soluble 

forms (Narwal & Singh, 1998; Olaniran, Balgobind, & Pillay, 2013; Tessier et al., 1979).These 

soluble forms are readily taken up by plants from soil solution in the form of free ions or complexed 

forms (Kabata-Pendias, 2004). In the present study, the exchangeable fraction of metal in the 
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unplanted soil was 2.3mg/kg out of 550mg/kg of added Cu and 4.0mg/kg out of 650mg/kg of 

added lead. Both fractions are less than 1% of the total metal content leading to low amount of 

metals in soil solution and a considerable amount of metal in factions that are not readily available 

for plant uptake. A similar observation was made by Chirakkara and Reddy (2015) after 

phytoremediation of a mixed contaminated soil(Pb, Cd, Cr, phenanthrene and anthracene ) in 

which  the lowest  metal removal by plants corresponded to the metals with the lowest percent of 

exchangeable fraction. In their study, exchangeable forms of Pb, Cd and Cr were 4 mg/kg out of 

500mg/kg added (<1%), 2.8mg/kg out of 50mg/kg (5.6%) and 30mg/kg out of 200mg/kg (15 %,), 

respectively and the highest metal removal by plants was observed for Cr. In the face of low plant 

accumulation and preferential uptake of Cu over Pb, the highest amount of metals in the current 

study were accumulated by sunflower (2.5mg Cu and 2.4mg Pb) and Indian mustard (2.1 Cu and 

1.7mg Pb).  

3.3.3 Soil metal fractions 

Metal speciation refers to the various chemical forms in which metals can exist in the environment. 

Tessier et al.(1979), identified exchangeable, carbonate, Fe-Mn oxide, organic and residual 

fractions as the metal species in soil that are likely to be affected by various environmental 

conditions. The exchangeable fraction of metals is generally considered to be mobile and  

bioavailable to plants for uptake and adsorption, whereas the carbonate, Fe-Mn oxide, organic and 

residual fractions are considered immobile and not readily available to plants (Shuman, 1985; U.S 

EPA, 2009). A principle controlling factor of metal speciation and bioavailability in soil is pH 

(Brown, Pickford, & Davison, 1984; Rieuwerts, Thornton, Farago, & Ashmore, 1998; T. Sandrin 

& Hoffman, 2007; U.S EPA, 2009). 
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In the present study, the low (<1%) exchangeable fraction of Cu and Pb can be related to the pH 

of soil. The pH of planted and unplanted soils ranged from 7.3 to 7.6 (Table 3-5). In general, the 

mobility of metals tends to increase at acidic pH and reduce at basic pH. This has been established 

to be true for cationic metals such Cu, Pb, Zn, Ni, etc.  which  at  pH > 7are adsorbed  strongly to 

soil (McLean & Bledsoe, 1992) and are thus less likely to be mobilized. More specifically, 

Spurgeon et al. (2006), observed reductions in the extractable fractions of metals As, Cd, Cu, Hg, 

Pb and Zn at  soil pH 7-8 compared to the extractable concentrations at soil pH 4 -6.Thus at the 

pH observed in this study, Cu and Pb are expected to associated more with  immobile fractions 

than mobile fraction.  

Irrespective of soil pH, plants are capable of changing metal speciation in soil(Chirakkara & 

Reddy, 2015b; Padmavathi & Li, 2009). In the present study oat was able to redistribute a relatively 

immobile fraction of Cu to a mobile fraction and ryegrass redistributed a mobile fraction of Cu to 

an immobile fraction. An increase of metals in the mobile fraction can be undiserable because of 

increased risk of contaminant transfer to other parts of the environment .The ability of oat to 

increase exchangeable Cu can be attributed to the root exudates of oat. According to Adamczyk-

Szabela et al. (2015), Chirakkara & Reddy (2015a) and Kabata-Pendias (2000), organic substances 

produced by plant roots and released to the soil as exudates can shift the equilibrum between 

different metal factions and form soluble complexes with metals. This may explain why oat was 

able to increase exchangeable Cu in soil. 

The reduction in exchangeable Pb by all plants and exchangeable Cu by Indian mustard and 

sunflower can be attributed to plant uptake. The difference in outcomes of Cu and Pb speciation 

in soil after growth of plants can be attributed to differences in the plants’ response to contaminant 
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toxicity, differential binding mechanisms of Cu and Pb in soil, and the subsequent  reactions with 

soil components .For example, Cu has a greater affinity to organic matter than Pb and hence forms 

stable complexes with organic matter unlike Pb (Kabata-Pendias, 2000; Q. Li et al., 2007). This is 

consistent with the present study, in which organic-bound Cu accounted for an average of 14% of 

total Cu in soil and organic-bound Pb accounted for an average of 6% of total Pb in soil.  

3.3.4 Fate of organic contaminants  

Organic contaminants can be removed from soil in one or more of the following ways: 1) Plant 

uptake, 2) Degradation by enzymes from plant roots or microorganisms in the rhizosphere, 3) 

Volatilization and 4) Incorporation into soil organic material (Lin, et al , 2006; Zhang et al, 2009). 

The reduction in the amount of residual pyrene in unplanted soil compared to initial concentration 

at the end of the experiment implies degradation by soil micro-organisms and/or volatilization. 

Further reductions in pyrene concentration were observed in soils planted with alfalfa, ryegrass 

and sunflower, indicating plant-promoted biodegradation of pyrene. Plants are able to improve the 

degradation of organic contaminants by enzymes secreted by roots, which improves microbial 

activities in the rhizosphere. The same  reason may explain higher pyrene concentrations in soils 

planted with oat and indian mustard, except that the root enzymes secreted by these plants may 

have reduced soil microorganism degradation activities by changing the metabolic capacity of 

micro-organisms(Phillips, Greer, Farrell, & Germida, 2012).  An alternative explanation for 

increased pyrene content in some planted soils is that the movement of pyrene by mass flow or 

diffusion in the bulk flow of water towards the rhizosphere caused an increase in  pyrene 

accumulation in the soils surrounding roots, which is expected to dissipate with time (Liste & 

Alexander, 2000).  
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The DDT concentrations measured in unplanted soil compared with the initial value indicates that 

loss of  DDT via voilitilization was negligable.In planted soils, the absence of  main DDT 

metabolites(DDD and DDE) in soil was observed and  can be considered desirable as DDE and 

DDD have similar toxic effects in the environment as DDT. Their absence can be attributed to 

toxicity to soil microrganisims by DDT itself or co-contamination with metals and pyrene.Toxicity 

of metals and DDT to soil microrganisms is well estabilished.More specifically, metals have been 

reported to prevent degradation of DDT to DDE and DDD. Studies have shown that metals such 

as As can also inhibits breakdown of DDT to DDE and DDD, and Cu can  prevented degradation 

to DDD (Gaw, Palmer, Kim, & Wilkins, 2003; Van Zwieten, Ayres, & Morris, 2003).Both studies 

observed that increase in metal and DDT concentration in soil was accompained by reduction in 

microbial activities. Co-contamination may have resulted in pyrene, as opposed to DDT, being the 

prefered carbon source for soil microrganisims. 

The outcome of not obtaining DDT metabolites is the persistance of DDT in the  soil as no 

significant reduction in 4,4’-DDT in planted soil compared to unplanted soil and the initial value 

was observed. Soils planted with alfalfa,indian mustard and sunflower on the other hand showed 

significant reductions in 2,4’-DDT,implying that these plants have a mechanisim for assisting 

prefrential degradation  of 2,4’DDT.Similar observation were made in bioremediation studies by 

Zhu et al., 2012 and  Fang et al. 2010. In the former, Sedum alfredi  accumulated 11.5 times more 

2,4-DDT than 4,4 DDT.Similarly in the latter study, 78 % removal of  2,4-DDT by pumpkin was 

observed compared to 13% recorded for 4,4-DDT. However, the mechanisms and processes in 

plants responsible for this prefered uptake and degradation  is yet to be elucidated. 
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Comparing the amounts of DDT lost in soil to the amounts observed in plant tissue it is not clear  

what the dominant process of DDT removal was because of the observed transformation of DDT 

to DDD and DDE by plants and inability of the study set up to account for further breakdown of 

DDT to water and carbon(IV) oxide or other undetectable transformation products. Regardless, it 

is clear that the loss  of DDT from soil can be attributed to more than one process, a possible  

combination of plant uptake (phytoextraction) , plant enzyme assisted degradation 

(rhizodegradation) and phytodegradation/phytotranformation. The procsses involved in 

transformation of DDT in plants is not well known but some studies have reported similar 

transformation in plant tissue. Gao, Garrison, Hoehamer, Mazur, & Wolfe (2000) observed DDT 

tranformation by axenically cultuvated aquatic plants parrot feather (Mariophyllum aquaticum), 

duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis) to majorly DDD. This suggests 

that the transformation of DDT involves an enzymes mediated reaction(s) in plant cells. This is 

supported by results from an enzyme study by  Chu, Wong, & Zhang (2006) showing the  

degradation of DDT in enzyme extract soultion from the root,leaf and stem of common reed 

(Phragmites australis) and rice(Oryza sativa L.) to DDD and DDE with DDD being the main 

metabolite. The prescence of DDD as the main metabolites in the present study as well as the 

previously mentioned studies further supports that the tranformation is mediated by a biotic 

process as DDD is the major by product of biological breakdown of DDT (Chu et al., 2006). 

Overall, it is difficult to compare plants performance in terms of accumulation of DDT in the 

current study to other studies that used similar plants to phytoextract DDT from DDT contaminated 

soils (Lunney et al., 2004; Mitton, Miglioranza, Gonzalez, Shimabukuro, & Monserrat, 2014). In 

additon to co-contamination of DDT with Cu,Pb and pyrene, the initial soil concentration of total 

DDT is 5-40 folds higher than those used in these studies. 
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3.3.5  Plant growth performance  

Results of plants percent germination in potted seeds were similar to those obtained in petri dishes 

(toxicity test). Irrespective of the lack of any effect on germination by the contaminants, at the end 

of a 72 day growth period, reduced growth rate, biomass and survival in contaminated soil was 

observed in some plants as well as signs of phyto-toxicity such as yellowing and/or drying up of 

the leaves(Appendix F). Effects such as these can be attributed to the lack of soil nutrients or the 

presence of contaminants in soil. The possibility of nutrient deficiency was ruled out by the 

addition of slow-releasing fertilizer during plant establishment making the presence of mixed 

contaminants in soil most likely responsible for observed effects on plant growth.  

Adverse effects of mixed contaminated soil on plants can be attributed to the presence of metals, 

organic contaminants or an interaction between both classes of contaminant. Metals such as Cu, 

Ni, Co, Zn and Pb are known to impact negatively on  plant growth by reducing translocation and 

causing deficiency of essential nutrients within plants (Siedlecka, 1995).Also, organic 

contaminants such  PAH  and DDT have also been reported to adversely affect plant growth 

(Mitton et al., 2014; Smith, Flowers, Duncan, & Alder, 2006). Overall, growth performance and 

behavior varied significantly from species to species of plant. 

3.4 Conclusion 

At the end of phytoremediation, the biomass of Indian mustard was least affected by mixed 

contaminated soil while sunflower generated the highest biomass in mixed contaminated soil. Also 

compared to other plants used in this study, the growth rate of both plants was least affected by 

soil contamination. This implies the high tolerance of these plants in the presence of studied 
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contaminant mixture. Rye grass was most affected by mixed contamination and produced the least 

biomass. 

In terms of contaminant removal and uptake, Indian mustard and sunflower also accumulated the 

highest amount of Cu and Pb in its tissues. Although Indian mustard slowed down the degradation 

of pyrene, it did improve the removal of 2, 4-DDT from soil and sunflower improved the removal 

of both pyrene and DDT from soil. Irrespective of ryegrass and alfalfa accumulating the least 

amounts of metals, ryegrass was able to redistribute exchangeable fraction of Cu to organic-bound 

fraction and alfalfa improved the removal of pyrene and 2, 4’-DDT from soil. All plants 

accumulated DDE and DDD in addition to DDT, even though metabolites of DDT were absent in 

soil. 

All plants achieved reduction of exchangeable Pb thereby reducing the potential of increased 

mobility of Pb. But, exchangeable Cu was significantly increased by oat and completely 

redistributed to organic faction in soils planted with ryegrass. The observed increase in 

exchangeable copper in soils planted with oat indicates a potential increase in mobility of Cu and 

the possibility of further contamination of groundwater during phytoremediation.  

Overall considering plant growth in soil and contaminant removal from soil, sunflower 

demonstrated the greatest potential as a phytoremediation candidate in metal-PAH-pesticide 

contaminated soils. 

3.5 Limitation of study 

One of the limitations of this study is the duration of plant growth. The growth duration in this 

study is 72 days because ryegrass and oat attained constant height at 72days. The performance of 

the plants in this study is specific to maturity level attained by individual plants in 72days. The 



70 
 
 

outcomes may be different if plants were grown for a longer period of time or if plants maturity 

differs from those observed after 72 days. For example, maturity date of Indian mustard is 120-

150 days, Hence growth and phytoremediation performance may have been different if Indian 

mustard was allowed to grow to maturity. 

The sorption and desorption behavior of contaminants will vary depending of the physical and 

chemical characteristics of soil. Sorption and desorption characteristics of soils and contaminants 

can be affected by age related changes in soil. Freshly spiked soil aged for 1 month was used in 

the current study, the resulting removal efficiencies observed may be different if applied to metal-

PAH-pesticide contaminated soils collected from sites that have been contaminated for a number 

of years. Furthermore site specific characteristics of contaminated soils such as photoperiod, 

contaminant concentrations, soil water holding capacity, day-night temperature, soil texture and 

relative humidity. 

 Finally, in this study Cu, Pb, pyrene and DDT were used as model contaminants for metals, PAH 

and pesticide. These model compounds and concentrations used in the current study cannot be 

used to generalize the behavior of all other metals, PAHs and pesticide in mixed contaminated 

soils. These compounds were chosen because of their environmental significant, frequency of 

occurrence and use in remediation study. 
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CHAPTER 4 

4.0 Conclusion and Recommendation 

4.1 Significance of Study  

Relative tolerance (in terms of germination and survival) of plants examined in this study to the 

mixture of contaminants in soil highlights their potential as phytoremediation candidates for mixed 

contaminated soils. However, co-contamination did significantly affect plant growth in terms of 

reducing plant biomass and growth rate. 

Sunflower stands out in this study because of its ability to improve the degradation of pyrene and 

2, 4’DDT in soil alongside metal accumulation. This demonstrates the potential of sunflower for 

simultaneous remediation of metals, PAH and organochlorine pesticides in mixed contaminated 

soil.  

The ability of ryegrass to redistribute exchangeable Cu to the relatively immobile organic fraction, 

reduce exchangeable Pb and improve phyto-degradation of pyrene (even though it was unable to 

achieve degradation of DDT), does qualify it as an excellent candidate for phyto-stabilization of 

metals in metal-pyrene-DDT contaminated soil. Soil amendments are recommended to improve 

growth and biomass production.  

Oat accumulated more metals than ryegrass, but the accompanying undesirable outcome of 

increased Cu mobility (increase in exchangeable Cu) and failure to improve the degradation of 

pyrene and DDT makes oat unsuitable for phytoremediation of soils co-contaminated with metals, 

pyrene and DDT. 
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Alfalfa can be considered an excellent candidate for phyto-degradation subsequent to metal 

removal in combined remediation systems given its low potential for metal accumulation in the 

given mixed contaminated soil and its ability to enhance the removal of pyrene and 2, 4’-DDT. 

Indian mustard has a similar potential as sunflower except that it slowed down removal of pyrene 

in planted soil and thus may require augmentation with pyrene degrading microorganisms or 

require further remediation technology for pyrene removal after phytoremediation with Indian 

mustard.  

4.2 Recommendations 

The current work focused solely on identifying plants with the potential to remediate metal-PAH-

pesticide contaminated soils. Sunflower and Indian mustard were identified as the most tolerant of 

all the plants studied. In addition, sunflower was able to facilitate simultaneous removal of Pb and 

Cu, pyrene and DDT used as model compounds for metal, PAH and pesticide. A point of concern 

is the undesirable increase in exchangeable Cu observed in soils planted with oat. However, the 

characterization of plant enzymes and transport proteins involved in contaminant uptake, transport, 

degradation and metal speciation can provide a clearer understanding of the various adverse and 

favorable outcomes in phytoremediation. The examination of the physiology of these plants under 

the stress of mixed contamination is required to further elucidate the reasons for differential plant 

growth, given that metals, PAH and pesticides are common contaminant groups found in mixed 

contaminated soils as well as the interaction between these classes of contaminants.  

Contaminant interactions in spiked soils is not always representative of field conditions, thus field 

application or green house studies with soil collected from contaminated sites is recommended to 
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further verify potential application of phytoremediation in mixed contaminated soils both in a short 

and long term. 

In general, exchangeable/soluble metal fraction is soil is referred to as the most bioavailable forms 

of metal in soil, but some studies have identified plants like Andropogon scoparius (little blue 

stem) as being able to take up other forms of metals (in this case Fe-Mn oxides-bound fraction) 

from soil( Reddy et al.. 2017). Therefore, analyzing metal speciation in plant tissue in addition to 

metal speciation in soils can provide a better understanding of how plants affect metal speciation 

in soil.  
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Appendix A: HPLC details for pyrene 

 

 

 

 

 

 

 

 



103 
 
 

Table A-1: HPLC setup for pyrene 

Ref Titato and Lancas 2006 

Mobile phase  Acetonitrile: water  

Elution programme Isocratic elution 70% acetonitrile:  

30% water  

Flow rate  0.8ml/min 

Column temperature  ~30oC. 

Detection wavelength  254nm 

Retention time  11.62 ± 0.01 (n=5,±SD) 

 

 

Figure A-1: Chromatograph for pyrene 100mg/l 
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Figure A-2: Calibration curve for pyrene 
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Appendix B: HPLC details for DDT 
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Table B1: HPLC setup for DDT 

Ref (Wang, 2008) 

Mobile phase  Acetonitrile: water  

Elution programme Gradient elution 

At t=0 mins,70% acetonitrile:  

30% water 

At t=11 mins, 85% acetonitrile:  

15% water 

At t=21 mins, 100% acetonitrile 

At t=31mins, 70% acetonitrile:  

30% water 

AT t=41mins, 70% acetonitrile:  

30% water 

Flow rate  1ml/min 

Column temperature  ~30oC. 

Detection wavelength  235nm 

Retention time  10.83 ± 0.009 mins for 4,4’-DDT 

11.81 ±0.01 mins for 2,4’ DDT 

(n=4, ±SD) 
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Figure B-1: Chromatograph for DDT 10mg/l 

 

 

Figure B-2: Calibration curve for DDT 
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Appendix C: Metal concentrations of plant tissues in clean soil 
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Table C-1: Metal concentration (mean ± SE, n=3) of plants grown in clean soil 

Plant Shoot Concentration (mg/kg) Root Concentration (mg/kg) 

 Cu Pb Cu Pb 

Oat 5.89 ± 0.36 0.17 ± 0.17 43.77 ± 2.90 22.49 ± 1.31 

Alfalfa 8.91 ± 1.05 0.0 ± 0.0 28.77 ± 6.03 14.18 ± 2.19 

Ryegrass 15.90 ± 4.0 1.72 ± 0.35 31.15 ± 7.73 17.01 ± 1.41 

Indian mustard 7.29 ± 1.77 1.16 ± 0.83 27.66 ± 1.31 16.52 ± 1.63 

Sunflower 11.86 ± 3.51 2.01 ± 0.76 30.74 ± 0.78 13.05 ± 0.02 
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Appendix D: Analysis of variance for metal fractioning in soil 
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Table D-1: Two way analysis of variance for Cu fractions in soil. DF=Degree of freedom, 

SS= Sum of squares, MS=Mean square. 

Source of 

variation  

DF SS MS F P 

Plant 5 0.522 0.096 12.648 <0.001  

Metal fractions 4 50.94 15.947 1796.584 <0.001  

Plant x Metal 

fraction  

20 1.099 0.0297 12.924 <0.001  

Residual  60 0.347 0.00891   

Total  89 68.497    

Table D-1: Two-way analysis of variance for Pb fractions in soil. DF=Degree of freedom, 

SS= Sum of squares, MS=Mean square. 

Source of 

variation  

DF SS MS F P 

Plant 5 0.322 0.0644 8.647 <0.001  

Soil metal 

fractions 

4 46.718 11.680 1569.329 <0.001  

Plant x Soil 

metal fractions  

20 1.299 0.0649 8.724 <0.001  

Residual  60 0.447 0.00744   

Total  89 48.785 0.548   
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Appendix E: List of parametric and non-parametric statistical tests used for data analysis   
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Table E-1: List of statistical analysis of all data sets 

Data Text reference  Variance analysis  Pair wise comparisim 
pHcacl2 Table 3-5 Two way repeated 

ANOVA 
Holm-Sidak 

Preliminary toxicity 
test: 
Percent germination 
Root length 
Shoot length 

 
Figure 3-1 
Figure 3-2 
Figure 3-3 

 
Two way repeated 
ANOVA 

 
Holm-Sidak 

Metal concentration in 
plants  

Figure 3-4 Two way ANOVA Turkey (root) 
Holm-Sidak (shoot) 

Total metal 
accumulation in plants 

Figure 3-5 Two way ANOVA Holm-Sidak 

Pore water metal 
concentration  

Table 3-7 Two way ANOVA Holm-Sidak 

Metal concentration in 
soil 

Figure 3-6 Two way ANOVA Holm-Sidak 

Cu speciation in soil Figure 3-7 Two way ANOVA Turkey  
Pb speciation in soil Figure 3-8 Two way ANOVA Turkey  
Pyrene concentration in 
soil 

Figure 3-9 Two way ANOVA Holm-Sidak 

DDT concentration in 
soil  

Figure 3-10 Two way ANOVA Holm-Sidak 

Percent germination of 
plants in clean and 
contaminated soil  

Figure 3-11 Mann-Whitney rank 
sum test and Kruskal-
Wallis one way 
ANOVA on ranks   

NA 

Percent survival of 
plants in contaminated 
soil 

Figure 3-12 Two way ANOVA Holm-Sidak 

Plant growth rate in 
clean and contaminated 
soils 

Figure 3-13 Two way repeated 
ANOVA 

Turkey  

Plant biomass in clean 
and contaminated soil 

Figure 3-14 Two way ANOVA Holm-Sidak 
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Appendix F: Photographs of effects of contamination on plant growth 
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Figure F- 18: Yellowing and drying up of leaves observed in sunflower and Indian mustard plants grown in 

contaminated soils 
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