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Abstract 

The present numerical work is an attempt towards modelling of freely decaying 

homogeneous isotropic turbulence with its application in experimental modelling of the 

effect of incident turbulence on flow around 2D and 3D bluff-bodies. Both steady, Reynolds 

Averaged Navier Stokes (RANS) and unsteady, Large Eddy simulation (LES), 3-D 

numerical computational fluid dynamics (CFD) techniques have been employed to 

characterise the inviscid decay of large-scale turbulence in terms of the characteristic rms 

turbulent velocity fluctuations (u′) and the local integral length scale (Lu). The large-scale 

turbulent properties extracted from the current numerical simulations are inter-related and are 

shown to behave predominantly as Saffman turbulence, which states u′2̅̅ ̅̅ Lu
3 ≈ constant. The 

other focus from the current study was on modelling inlet conditions for bluff-bodies in a 

freestream flow. A set of three-correlation equations are formulated based on the large-scale 

turbulent properties that are effective in estimating the initial and local freestream turbulence 

conditions. The set of prediction equations can be deemed useful for researchers developing 

wind-tunnel models in the presence of freestream turbulence. Additionally, the set of 

equations is also reliable in determining appropriate near-constant turbulent conditions based 

on the upstream inlet conditions. The current study aims at designing the region of constant 

turbulent properties of a desired magnitude that can be helpful for boundary layer and heat 

transfer studies over a bluff-body. 

Keywords 

Homogeneous, Isotropic, Reynolds Averaged Navier-Stokes (RANS), Large Eddy 

Simulation (LES), Decay, Computational Fluid Dynamics (CFD), Freestream 

turbulence, Bluff-body 
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Chapter 1  

1 Introduction 

1.1 General Introduction 

The performance of thermally integrated solar panel systems e.g. (building integrated 

photo-voltaic thermal system (BIPV/T)) largely depends on the way the atmospheric 

wind interacts with these panels. It is mainly due to the surface roughness of the ground 

and abrupt bluff-body obstructions, that the incident wind profiles on these panels are 

highly intermittent, turbulent and fluctuating in nature. The exterior layer of a (BIPV/T) 

represents a smooth surface according to ASHRAE classification (ASHRAE (American 

Society of Heating Refrigerating and Air-Conditioning Engineers), 2009).  Figure (1.1) is 

a schematic of the BIPV/T system and the heat transfer terms responsible for heat transfer 

over the panels. 

 

Figure 1.1 A schematic of a typical air-based open loop BIPV/T system (adapted 

from Athienitis, 2008). 

Velocity and thermal boundary layers are formed at the immediate vicinity of the smooth 

surface at the onset of any fluid flow having different temperature than the surface 
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temperature. It is well known that boundary layers have a pronounced effect (drag, lift) 

upon any object immersed in a fluid and, in many cases, they govern the dynamics of the 

flow around three-dimensional bluff bodies, such as a cylinder (Geidt, (1951); Kestin & 

Maeder, (1957); Smith, (1964); Bearman & Morel, (1983)) or sphere (Moradian et al., 

2009). The effect of turbulent free stream fluctuations on the boundary layer development 

and its characterization is important in many thermal engineering applications such as 

turbomachinery, reactors and the combustion chamber of engines. There are a number of 

practical industrial situations where the boundary layers evolve differently in the 

presence of an external free stream having high turbulence intensities. A most common 

example is turbo-machinery flow where the wake of stators interacts with the 

downstream rotors whose developing boundary layers experience that oncoming 

turbulence (Fig 1.2). Similar flow patterns are also observed in heat exchanger and 

combustor flows. As far as these different objects are concerned, flat plates have the 

advantage of developing thicker boundary layers than those developing over rotor surface 

or spheres, whose structures can be analyzed, which makes it possible to consider the 

mechanisms responsible for the effect of turbulence on near wall heat transfer from these 

bodies (Kondjoyan et al. (2002)).  

 

Figure 1.2 Pictorial representation of a turbomachine and downstream airfoil 

components (“Rolls Royce Infographic” 2014) 

Figure (1.3) shows a schematic of the fundamental problem examined in this thesis where 

the oncoming flow interacts with the plate and alters the convective heat transfer rate 
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from it. In the figure, the term ReL represents the Reynolds number of the flow based on 

the plate length L given by  

                                                            L
UL

Re


                                                          (1.1)  

where U  is the mean velocity of the flow, TI represents the turbulence intensity in 

percentage given by  

                                              (

'2 2 '21
(u v ' w )

3
TI 100

U

 

                                     (1.2) 

where 'u , 'v , 'w  are the r.m.s of the turbulent velocity fluctuations in each of the x, y 

and z directions), Lu represents the streamwise integral length scale of an eddy, TKE 

represents the turbulent kinetic energy, Tsurr is the temperature of the surroundings , Tpv is 

the temperature of the photovoltaic thermal panel and BIPV/T represents building 

integrated photo-voltaic thermal system. 

 

Figure 1.3 A schematic of the oncoming wind flow over a flat plate 

The investigation of convective modes of heat transfer has been an important aspect in 

the empirical design of different geometrical structures under various external flow 

conditions (Wang & Peng (1994); Ambatipudi & Rahman (2000); Tian et al. (2004)). 

Convection coefficients determined analytically (Eckertf & Carlson, (1961); Foli et al., 

(2006)) and empirically (Kestin et al., (1961); Büyüktür et al., (1964); Simonich & 

Bradshaw (1978)) exist for different geometries assuming simple boundary layer 
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approximations with negligible freestream turbulence levels and invariant properties of 

the fluid with temperature and pressure. The available correlations serve as a benchmark 

for problems of steady, incompressible, low-speed, uniform flows over simple systems 

such as smooth plane and curved surfaces. However, the correlations formulated include 

negligible disturbances of the freestream flow which cannot be extended to problems of a 

surrounding turbulent atmosphere. 

For many years it has been recognized that the disturbances in the mean freestream flow 

can alter the heat transfer rate within the boundary layer. The freestream conditions can 

cause a change in the flow regime of the boundary layer and can also shift the position of 

the transition point upstream. Previous experimental studies have confirmed the 

augmentation in heat transfer from certain wall geometries (both plane and curved 

surfaces) in the presence of freestream turbulence in the mean flow (Fage and Falkner 

(1931); Comings et al. (1948); Edwards and Furber (1956); Reynolds et al. (1958); Van 

Der Hegge Zijnen, (1958); Sugawara et al. (1988)). Most of these studies have also been 

the subject of review articles (e.g. Kondjoyan et al. (2002)). However, due to a large 

scatter in the published results (Reynolds et al. (1958); Simonich and Bradshaw, (1978); 

Sugawara et al., (1988); Maciejewski and Moffat, (1992)) on the effect of freestream 

turbulence on forced convective heat transfer, a fundamental challenge is presented to 

correctly predict the enhanced thermal dynamics in the laminar and turbulent region of a 

developing boundary layer. Earlier studies have reported that the velocity flow field in a 

boundary layer, alters significantly when there is an entrainment of the freestream 

turbulence into the boundary layer (Kline et al. (1960); Charnay et al. (1976)).  Studies 

have also shown that the thermal field is much more sensitive to the freestream 

turbulence than the dynamic field (Reynolds et al. (1958); Kondjoyan et al. (2002); 

Péneau et al. (2004)). A careful inspection of the previous studies leads to the fact that 

there were many discrepancies and contradictions involved in the reported findings, 

mainly due to the variability in the range of Reynolds number (Re), imprecise 

identification of an isotropic and homogeneous field of turbulent flows, different initial 

turbulent conditions and the influence of the different experimental set-ups used in those 

experiments.  
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The first experimental quantification of the effect of the freestream turbulence on a flat 

plate boundary layer was carried out by Fage and Falkner, (1931) who considered the 

laminar regime. Their study concluded that the laminar boundary layer mostly remains 

unperturbed by the freestream turbulence. Similar results were also reported by Edwards 

and Furber, (1956) who showed that that the oncoming turbulent flow had no effect on 

the rate of heat transfer for a laminar boundary layer but significantly relocated the 

transition point further upstream. However, studies by Dyban et al. (1977,1985) showed 

an increase in local skin-friction coefficient (cf) (where cf is the ratio between the local 

shear stress and the characteristic dynamic pressure given by w
f 2

c

0.5* *U




  ) by 56% 

at low Reynolds number flow (ReL<20000) with a freestream turbulence (TI) of 12.5%, 

contradicting the aforementioned previous studies. Subsequently, numerous experimental 

studies (Simonich and Bradshaw, (1978); Sugawara et al., (1988); Maciejewski and 

Moffat, (1992); have been carried out to understand the relationship between the heat 

transfer enhancement (expressed in terms of Stanton number (St) ,where Stanton number 

(St) is a dimensionless number given by the ratio of the heat transferred into the fluid to 

the thermal capacity of the fluid given by 
p

h
St

Uc
 , where h is convective heat transfer 

coefficient, pc  is the specific heat capacity of the fluid) and the freestream turbulent 

fluctuations (TI) within the turbulent boundary layer regime. But there was a 

considerable variation in the magnitude of the heat transfer enhancement in each of those 

cases. The analysis of turbulent boundary layer skin friction (cf) and heat transfer rate (St) 

by  Blair, (1983a;1983b) showed that these effects were, indeed, a function of freestream 

turbulence intensity (TI), integral length scale (Lu) (where Lu gives the average size of an 

energy containing eddy) and Reθ (where Reθ is the momentum thickness Reynolds 

number given by 
U.

Re



 ,  θ is the momentum thickness of the boundary layer . New 

correlations for the effect of freestream turbulence on skin friction, heat transfer and the 

Reynolds analogy factor were also presented by Blair (1983a ;1983b), which will be later 

used in the future work for comparisons. A review by Kondjoyan et al., (2002) concluded 

that despite the apparent contradictions, the heat transfer does increase consistently from 
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a turbulence level of  5% to 10% either in a laminar or turbulent boundary layer. The 

alterations of the velocity log law and the law of the wake may make it possible to 

explain a few of the disparities in the existing experimental results; Fage and Falkner, 

(1931); Charnay et al., (1976); Dyban et al., (1977); Blair, (1983a; 1983b) Dyban et al., 

(1985)). However, Palyvos, (2008) in his study pointed out the lack of generality of the 

existing heat transfer correlations relating Nusselt number (Nu), Reynolds number (Re) 

and Prandtl number (Pr) and concluded that there is an obvious lack of physical 

equivalence, because of the diverse experimental conditions under which they have been 

measured. Test and Lessmann, (1980)  and Loveday and Taki, (1996) anticipated that the 

turbulence intensity (TI) of the approach flow might be one of the primary sources of 

some of the discrepancies between the experimental studies. Thus, the turbulent 

properties of the freestream flow approaching and passing the flat plate need to be 

quantified in order to begin to understand their influence on heat transfer rates from flat 

plates.  

It is however, now well known that in absence of any external turbulent energy 

generating source, the freestream eddy fluctuations exhibit continuous decay of kinetic 

energy due to inertial eddy interactions at high Reynolds number. At low Reynolds 

number the decay occurs mostly due to the molecular viscosity of the eddies. Thus, the 

freestream turbulent kinetic energy (TKE) decay becomes an important factor of 

consideration before invoking any heat transfer study related to it, since its decay will 

have a direct effect on the evolution of the flow around any bluff body. It is hoped that 

quantifying the incidence TKE over the leading edge of a flat plate will help in precise 

estimation of the effect of freestream turbulence on boundary layer heat transfer in a 

comprehensive manner and thereby reconcile some of the differences observed in the 

earlier studies. Therefore, in the current study, attempts have been made to quantify the 

streamwise decay of the freestream turbulent fluctuations in order to identify a region of 

nearly uniform oncoming turbulent properties, so that any bluff body aerodynamics study 

can be suitably carried out under those constant TKE conditions.  
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1.1.1 Grid-generated turbulence decay  

Stationary grids or perforated screens are often used to generate turbulence in typical 

wind-tunnel experiments where the Reynolds number ( d
Ud

Re


  ) based on the grid -

dimension (d) is high enough (order of few hundreds) in magnitude. Grid-generated 

turbulence has served as a benchmark test case for turbulent theories and simulations 

over several decades and continues to do so in the present.  Turbulence generated by 

grids decays downstream with a typical power-law of the form n0x x
TI A*( )

M




(Batchelor and Townsend, (1948), Pope, (2000)) (where x is the streamwise distance, x0 

is the virtual origin, M is the mesh width, exponent n gives the decay rate and A gives the 

decay coefficient for a specific grid and Reynolds number (Red)). For a better 

understanding of the variables related to the power law form of the grid-generated 

turbulence, figures (1.4) and (1.5) have been shown which gives a clear visual 

representation of the grid elements and the importance of the virtual origin (x0).  

 

Figure 1.4 Turbulence generating grid having circular rods of diameter d and mesh 

width M (adapted from Pope (2000)) 
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Figure 1.5 Schematic representation of the turbulence generating grid with wake 

vortices being convected along the streamwise direction. The virtual origin (x0) is 

shown to be point where turbulence roughly re-organizes itself and complete mixing 

between the turbulent structures has taken place 

However, it has been observed that different sets of geometrical grids introduce a 

variation in the magnitude of the exponent (n) of the kinetic energy decay that affects the 

structure of turbulence at small scales (Tan-atichat et al., (1982); Lavoie et al., (2005)). 

In recent years, numerous wind tunnel experiments have been focused on generating 

homogeneous turbulence by different type of grids; passive (Ishida et al., (2006); 

Krogstad and Davidson, (2010)), active (Kang et al., (2003); Mordant, (2008)) and 

multiscale (fractal) (Mazzi and Vassilicos, (2004), Seoud and Vassilicos, (2007), Hurst 

and Vassilicos, (2007), Krogstad and Davidson, (2011)). However, from this literature, 

concerning both numerical simulations and experiments, a marked scatter of the exponent 

(n) in the range (-1.0: -1.4) (Mohamed and Larue, 1990) is discovered which implies 

there may not be a universal state for grid turbulence decay.  

It is very clear from the bluff body heat transfer studies mentioned above, that none of 

those studies commented on the streamwise decay of freestream turbulence prior to the 

bluff-body interaction (e.g. plate) nor do they discuss this issue while reporting the 

experimental setups or heat transfer results. As pointed out by Corrsin and Kistler, 

(1955), Townsend, (1956) and Mobbs, (1968), that turbulence intensity (TI), integral 

length scale (Lu) and Reynolds number, are the three important parameters that should be 
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quantified accurately before making any correct predictions for any interacting turbulent 

mechanisms including convective heat transfer (CHTC) . Karava et al., (2011) in their 

study tried to overcome the previous gaps and propose correlations for exterior 

convective heat transfer coefficient for flat plates and, hence, the present work is an 

implicit continuation of that study quantifying the effect of freestream decay before the 

leading-edge incidence occurs. A conceptual schematic is shown in (fig. 1.6) that 

illustrates the basic problem of the current investigation. The figure gives a perception of 

the decay of TKE in the streamwise direction for the comprehensive understanding of the 

reader.  

 

Figure 1.6 A schematic of the decay of turbulent kinetic energy in the streamwise 

distance x 

1.2 Objective of the Thesis 

The three main objectives of this thesis are: - 

• To strengthen the understanding of the nature of the decay of the freestream 

turbulence in terms of various inlet freestream parameters (Re, Lu, TI) and to 

develop a simple predictive method for establishing leading edge TKE and Lu 

values for bluff-body aerodynamics based on specified upstream inlet conditions. 
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• To identify a region having negligible changes in the turbulent properties (such 

as TKE and the integral length scale) along the streamwise distance. 

•  To highlight the differences and limitations of the different numerical CFD 

formulations that are used as a computational tool to carry out the objectives and, 

finally, to optimise those numerical models (if required) to have the correct 

behaviour of turbulence decay.  

However, it should be noted that this thesis only presents the objectives of the current 

study which in turn attempts to fill the gap prior to addressing a larger objective, which is 

to examine the influence of the freestream turbulence on convective heat transfer from 

heated flat plate. Heat transfer studies are currently in progress and the analysis of the 

results will form a part of future work. 

In this research, three-dimensional (3D) based steady Reynolds Averaged Navier Stokes 

(RANS) and unsteady Large Eddy Simulation (LES) formulations have been employed to 

numerically predict the statistical properties of turbulent flows in order to overcome a 

few of the challenges presented by experimental grid-generated turbulence. The RANS 

study is expected to give quicker time-averaged results in comparison to LES but without 

any instantaneous information of the flow variables, which will be provided by the 

corresponding LES study. The RANS study also covers a wider range of turbulent flow 

Reynolds number (
u0LRe ) (where 

u0LRe = u0UL


, U  is the mean velocity, u0L  is the 

inlet integral length scale and   is the kinematic viscosity of the fluid) flows that cannot 

be covered in LES owing to the limiting constraint of available computational resources. 

This is followed by a parametric analysis of the RANS and LES simulations to develop a 

simple yet powerful predictive correlations of spatial decay of TKE using dimensionless 

parameters. 

1.3 Scope of the Thesis 

The present thesis is aimed at studying and quantifying the streamwise decay of 

homogeneous isotropic turbulence from the point of generation until the leading edge of 
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the plate. Downstream evolution of turbulent kinetic energy (TKE) in the presence of 

different initial turbulence intensities (TI) and inlet integral length scales (Lu) are also 

examined. Henceforth, a quantitative prediction methodology of the turbulence decay 

mechanism is formulated that helps one to estimate both the local and initial values of the 

turbulent parameters (TKE and Lu) in the flow field of the domain. Additionally, the 

study has been extended to identify regions of near constant TKE conditions in order to 

allow bluff body studies in that region.  

To this end, both 3-D steady RANS simulation and unsteady LES simulations have been 

performed to evaluate the turbulent kinetic energy decay rate (TKE) downstream from 

the inlet. The range of velocities covered in the RANS study are 4m/s, 10m/s, 20m/s, 

30m/s, and 40m/s, whereas only one flow velocity (4m/s) has been simulated in the 

current LES study. The corresponding turbulent Reynolds numbers based on the inlet 

integral length scale (
u0LRe ) are 2.55×103, 6.38×103, 1.28×104, 1.91×104 and 2.55×104 

which fall under the category of moderate turbulent Reynolds number flows. The inlet 

turbulence intensities covered in this study were 10%, 20%, 30% and the range of 

integral length scales specified at the inlet were from 0.02m, 0.05m and 0.10m. The 

turbulent parameters were varied at the inlet to quantify their influence on the decay rate 

of TKE over the domain. The range of length scales studied here are of the order of the 

boundary layer thickness that would impinge the leading edge of the plate and so would 

be energetic enough to perturb the dynamic and the thermal boundary layer completely, 

which is part of the heat transfer study. As a part of the future work, related to heat 

transfer models, only the forced convection regime with a temperature difference (ΔT) of 

30K, will be studied, as including all of free and mixed convective heat transfer regimes 

is outside the scope of the study and proposed as future work. 

1.4 Thesis layout 

The numerical study presented herein is in the form of an Integrated Article format that 

includes only statistically converged results for decaying isotropic homogeneous 

turbulent flows. 
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Chapter 2 discusses the characteristic nature of the turbulence decay in an empty 

numerical grid domain and a region of nearly constant incident turbulence intensity is 

identified. The freestream decay of turbulent flow field is validated with the previous 

experimental and numerical studies and a new form of decay law is suggested 

considering the effect of inlet turbulence intensity (TI) and length scales (Lu). Attempts 

have also been made to model the turbulent inlet conditions that govern the decay rate of 

free stream turbulent flows and, henceforth, a set of new correlation equations 

characterizing the spatial decay of isotropic homogeneous turbulence has been 

formulated. A region of nearly constant incident turbulent conditions has been identified 

based on the above predictive correlation model so that the aerodynamic features of any 

bluff body can be suitably studied under near constant TKE conditions. Finally, a 

comprehensive review of its dependence on the initial TKE and length scales is presented 

that extends our understanding of the dependence of turbulence decay on the initial 

conditions. 

Chapter 3 solely focuses on the qualitative and quantitative differences observed between 

three different CFD commercial codes while employing RANS model in the current 

study. The differences are highlighted in terms of the model constants used in these codes 

and the limitations of the models are brought forward. Improvements are also suggested 

for these commercial CFD codes that can be used to unify the results obtained for the 

streamwise decay of isotropic homogeneous turbulence from LES. Finally, results have 

been presented from these improved models to validate its prediction of the flat plate 

boundary layer growth in presence of negligible free stream turbulence intensity. 

The Conclusions from the present work and recommendations for future work are 

presented in Chapter 4.  

1.5  Summary  

In summary, this chapter introduces the general nature of the current problem along with 

the motivation that drives the necessity of the present study to be carried out on the 

freestream decay of homogeneous isotropic turbulence. The present study is expected to 

assist the future work, in quantifying the convective heat transfer rates over a flat plate in 
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presence of freestream turbulent flow. As stated earlier, the current study only analyses 

the freestream decay of isotropic homogeneous turbulence, but the final goal is to 

develop relationships between the upstream incident turbulent parameters (TI, Lu and Re) 

and the dimensionless heat transfer variables (Nusselt number (Nu), Stanton number 

(St)). Currently, investigations are being carried as a part of the future work out to 

identify the fundamental features of turbulent flow over a smooth flat plate, in the 

presence of freestream turbulence and, therefore, that work is not presented in the 

subsequent chapters. The main intent of this current chapter was to introduce the broader 

topic related to the field of convective heat transfer studies with the final aim of 

quantifying the nature of thermal boundary layers in presence of freestream turbulence. It 

is hoped that the present study will contribute to the fields of Environmental Fluid 

Mechanics and Convective Heat Transfer to enhance our understanding of the responses 

of the velocity fields and the heat transfer to incident turbulence in atmospheric boundary 

layer flows.  

The next chapter discusses the freestream decay of turbulence downstream of grids in a 

more detail, including the limitations of the existing literature and with numerical 

simulation results validated with the experiments for better understanding. 
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Chapter 2  

2 Numerical modelling of spatially decaying isotropic 
homogeneous turbulence 

2.1 Background 

Streamwise dissipation of isotropic homogenous freestream turbulence is one of the 

fundamental and widely explored problems in turbulent theories and its effect on various 

bluff-body aerodynamics and thermal physics has been one of the topics of intense 

discussion over the past few decades. Although our understanding of turbulence scales of 

motion has increased over the years, there has been a lot of apparent inconsistencies 

observed on the decay development of turbulent kinetic energy (TKE) in the limit of 

infinite Reynolds number. In absence of any external turbulent kinetic energy generating 

mechanism, the observed kinetic energy carried by the integral length scales of motion 

will decay due to the inviscid dissipation of energy mostly due to inertial eddy 

interaction. Similarly, for Low Reynolds number flows, molecular viscous forces 

dominate which causes the decay of turbulent kinetic energy (TKE) carried by the small 

scale dissipative eddies (Pope, 2000). This decay of turbulence fluctuations has an 

influential impact on the development of laminar and turbulent boundary layers over 

bluff bodies which in turn alters the heat and mass transfer rates from them (Mizushina et 

al. (1972); Simonich and Bradshaw (1978); Blair (1983a; 1983b); Maciejewski and 

Moffat, (1992)). The impact of the decaying freestream turbulence on the separating and 

re-attaching flows over bluff-bodies are also important because of the large aerodynamic 

loads that these freestream flows are known to have caused (Gartshore, (1973); Hillier 

and Cherry, (1981); Saathhoff and Melbourne, (1989); Saathhoff and Melbourne, 

(1997)). Therefore, quantitative prediction of the magnitude of the freestream turbulent 

flow parameters incident on any bluff-body based on upstream inlet conditions becomes 

an important factor to accurately estimate the dynamic properties of fluid and thermal 

responses in laminar, turbulent and transitional boundary layers. 

Quasi-homogeneous isotropic turbulence has been one of the recognized problems in 

classical turbulence, since it provides the centrepiece for the investigation of the large 



21 

 

scale physical properties of turbulence (Dryden, 1943). It is also by far the most 

documented configuration of turbulence used, as an attempt towards numerical modelling 

of turbulent flows. One may argue that isotropic and homogeneous turbulence are not 

encountered in most industrial situations, and yet its idealization helps make the analysis 

of the problem manageable and guide model development. Despite all the efforts made in 

the last few decades, a unifying theory describing the isotropic decay of homogeneous 

turbulence has not been instituted conveniently. However, a great deal of experimental 

data containing the information of turbulent energy spectra have been published, (Comte-

Bellot and Corrsin, 1966); (Uberoi and Wallis, 1969); (Comte-Bellot and Corrsin, 

1971a). Those results establish the foundation of the three-dimensional spectra from 

which the temporal decay of turbulence can be predicted. 

Homogeneous isotropic turbulence is known to have been closely achieved in grid-

generated turbulence, as noted by (Pope, 2000). A very close approximation to the 

decaying isotropic homogenous turbulence can be achieved in wind-tunnel experiments, 

by placing a grid upstream of the test-section and then passing a uniform flow stream 

through the grid. Both stationary and moving grids can be used in the experiments which 

would create passive and active turbulence downstream of the grid. Due to the resultant 

wakes created from the geometrical structure of the grids, turbulence is produced, which 

increases the fluctuations in the freestream. In the absence of a mean velocity gradient or 

external body forces causing turbulence, the freestream fluctuations will dissipate due to 

the inertial frictional forces acting amongst the large-scale turbulent eddies. The 

downstream velocity field generated from the wake interaction of the grids has been 

empirically known to become statistically homogeneous and isotropic at least at 20 mesh 

widths (M) from the grid (known as the virtual origin x0) where the wake vortices from 

the grids coalesces completely (Hinze, 1975). However, a length of 40 mesh widths has 

been considered as a safe limit for turbulence reaching effective homogeneity (Corrsin, 

1963). If a laboratory framework is considered, then the flow is statistically stationary, 

and statistics only vary in the x (streamwise) direction as turbulence decays. 

Figure 1.4 (refer to chapter 1) shows a typical turbulence generating grid with circular 

rods embedded with each other. The mesh width is M and the diameter of the rod is 
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represented by d. Similarly, figure 1.5 (refer to chapter 1) shows a conceptual diagram of 

a grid-generated turbulence along with the eddies generated by the grid, mixing of eddies, 

re-orientation of turbulence, and virtual origin (x0) after which the turbulence becomes 

nearly homogeneous and isotropic in nature. A schematic graph showing the decay of 

turbulent kinetic energy (TKE) in the streamwise direction has been represented 

previously in figure (1.6) (refer to chapter 1) for a better illustration of the current 

problem. 

Numerous theoretical and experimental investigations on the decay of homogenous 

isotropic turbulence followed the influential work by Taylor (1935) and Kolmogorov 

(1941a, b). The earliest work was by Kármán and Howarth (1938) which showed that the 

energy decays as 1t  where ( t x / U ), x is the distance in the streamwise direction, U  is 

the mean velocity and t represents time. But the apparent failure of the von-Kármán-

Howarth similarity analysis to adequately describe the turbulence behind the grid led 

Batchelor (1948) to propose turbulence as a multilength scale phenomenon, described by 

local similarity laws at the energy containing large scales and the dissipative scales. 

Batchelor and Townsend (1947) analyzed the rate of change of mean square vorticity in 

isotropic turbulence during various stages of decay of the turbulence. They show that, 

theoretically, two separate physical processes contribute to the change in vorticity. The 

first process is an average extension of the vortex lines due to the random diffusion 

motion of the large scales, whereas the second process is the dissipation of vorticity due 

to the effect of the viscosity. The agreement in their results made it permissible to apply 

the theory of isotropy to the turbulence generated behind the grids. Batchelor and 

Townsend, (1948a) then reported that in grid-generated turbulence, there exists an initial 

period of decay, during which the energy decays according to the simple law, '2 1u t  

where '2u  is the mean of the square of the velocity fluctuations and t represents time. In 

this period, the energy transfer between the large scales and the small scales, which 

maintains a high rate of dissipation, is chiefly due to the inertial actions, the dynamics of 

which are represented by the inertial terms in the Navier-Stokes equation, whereas the 

smaller eddies are dissipated mainly due to the action of viscosity. They even postulated 

that, after a certain period of time (Batchelor and Townsend, 1948b), there is a 
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transitional period of decay during which the decay law changes. During the transitional 

period the inertia terms continue to play some part in the transfer of energy from the 

larger eddies, but the Reynolds number decreases, and viscosity dominates during the 

final period of the decay. The decay law is modified according to 
5

'2 2u t


  in the final 

period. It was also shown that such a self-preserving velocity correlation function can 

only exist when the inertia forces are negligible and is, necessarily an asymptotic solution 

under such conditions. 

The variation of turbulence intensity in the streamwise direction has been discussed by 

several authors making various assumptions (Simmons and Salter, (1934); Dryden, 

(1943) where they found out that the rate of energy decay is almost equal to the work 

done against the eddying stresses due to viscosity. These early experiments seem to have 

consistency with the von-Kárman-Howarth predictions which states '2 1u t or 
'2

2

u

U
 ~

0(x x )

M


, where U  is the mean velocity in the streamwise direction and 0x  represents the 

virtual origin (refer to figure. (1.5)). Comte-Bellot and Corrsin (1966) showed that the 

isotropy of the turbulent flow was improved by using a contraction downstream of a grid 

and indicated that a better fit to all the earlier experimental data could be obtained 

through a power law of the form 

                                                     
'2

n0

2

x xu
D( )

MU


                                                     (2.1) 

where D is the decay coefficient and n is the decay exponent which depends on the grid-

geometry and Reynolds number of the grid flow. 

The prediction of these decay exponents led to an extensive reanalysis of the previous 

experimental data by Skrbek and Stalp (2000). After scrutinizing the previous theoretical 

predictions of decaying turbulence, it has been found that there is sometimes very little 

agreement between the available data sets, even after years of investigation, on the decay 

of homogeneous, isotropic turbulence. Mohamed and Larue (1990) presented an 
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extensive review of all the relevant studies done on the decay mechanism of grid-

generated turbulence and showed that although the analyses of Kármán and Howarth 

(1938); Kolmogorov (1941a); Saffman (1967) leads to the same form of power law (eq. 

2.1), the predicted value of the decay exponent varies as n = 1, 
10

7
 and 

6

5
, respectively. 

There have also been contrasting theories regarding the behaviour of large turbulent 

scales in grid generated flows. Batchelor (1953) and Saffman (1967) provide two variants 

of turbulent flows where the energy decay rates varies as, '2u  ~ 
10

7t


 for Batchelor 

turbulence and '2u  ~
6

5t


 for Saffman turbulence. In contrast George (1992) suggested 

that the decay rate of turbulence depends on the initial conditions and that the decay rate 

constants (A and n) cannot be universal, except possibly in the limit of infinite Reynolds 

number. Earlier studies also support George’s theory as Batchelor and Townsend (1947), 

Batchelor and Townsend (1948b), Stewart and Townsend (1951), Portfors and Keffer 

(1969) found that n = 1, whereas Corrsin (1963), Uberoi, (1963), Uberoi and Wallis, 

(1967), Uberoi and Wallis (1969),  and Comte-Bellot and Corrsin (1971a) found that 1.16 

≤ n ≤ 1.37. A higher magnitude of decay exponent (n = 1.43) was also found in the 

studies of Baines and Peterson, (1951). In most cases, the irreconcilable differences in the 

magnitude of the exponent observed is linked to (a) the unknown virtual origin 0x , (b) 

imprecise identification of the isotropic homogenous regime of grid-generated turbulence 

and (c) the decay coefficients and the exponents not being determined in a consistent and 

objective manner. The above discussions expose the fact that a complete theoretical 

understanding of the physical mechanisms of turbulence decay is yet to be achieved, 

despite more than 80 years of research. However, new approaches based on the Langevin 

equation of large structures have already been introduced by Llor (2011) which may offer 

an interesting unifying framework for homogeneous isotropic turbulence. The Langevin 

equations are based on the stochastic evolution of Loitsyankiis integral (Loitsyanskii, 

1945) as the angular momentum variance of an asymptotically large sphere of size D1 

interpreted by Landau as Landau’s large scale angular momentum or Landau’s integral 

(Landau and Lifshitz, 1959). Besides this, a very slow unsteady turbulence decay has 
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been recently observed by (Llor, 2011) which might be able to explain some of the 

estimation errors related to the variability of D and n.  

Decaying turbulence has long-served as an important benchmark test case for numerous 

theories, models and computer simulations. Although various wind tunnel experiments 

have provided worthwhile information on the time-resolved scales of turbulence over the 

years, it becomes essential to examine full three-dimensional structures of turbulence 

numerically to avoid the experimental difficulties and to better understand and visualize 

its underlying physics. Referring to the computational resources presently available, 

Direct Numerical Simulations (DNS) of homogeneous isotropic turbulence have also 

been carried out by Ishihara et al. (2009) where they created a mesh of 40963 resolution 

to achieve the finest spatial resolution of turbulence at very high turbulent Reynolds 

number ( Re ) of 1131, where turbulent Reynolds number (Re ) is based on the Taylor 

microscale ( ) given by URe 



 (where ν is the kinematic viscosity of the fluid). 

However, DNS models are extremely demanding computationally and are often limited 

with the lack of adequate computer power which is why they are not practiced for small 

computational runs. A less computationally expensive study using LES (Large eddy 

simulation) of active grid-generated turbulence was conducted by Kang et al. (2003) 

which showed good agreement between their results and the classical experiment of  

Comte-Bellot and Corrsin (1966). Consequently Detached Eddy Simulation (DES) of 

fractal grid generated turbulence (Medjroubi et al., 2013) and Reynolds Averaged Navier 

Stokes simulations (RANS) (Torrano et al., 2015) of grid-generated turbulence relating to 

passive grids have been done where they have assessed the capability of various 

numerical models to capture the main trends of turbulence decay. However, it should be 

noted that RANS models are only good for capturing the mean turbulent properties 

without providing any information about the various spatial and temporal scales 

embedded in a turbulent flow. 
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It is generally agreed that the large-scale turbulent properties; turbulence intensity (in 

percentage given by 

'2 '2 '21
(u v w )

3
TI 100

U

 

   ) and integral length scales (Lu) are 

the decisive factors in governing the decay laws for a quasi-static homogeneous isotropic 

turbulence, since both the parameters evolve according to power laws (Pope, 2000) and 

play an intrinsic role in dictating the dissipation rate of the turbulent kinetic energy           

(
'3

u

u

L
   ) where 'u , 'v  and 'w  are the r.m.s velocity fluctuations in x, y and z 

directions and Lu is the size of the average energy containing eddy. However, reviewing 

the earlier studies on decaying grid-generated turbulence, the present discussion 

concludes that the contribution of length scales on the decay rate of turbulence kinetic 

energy have been neglected since Taylor’s first proposal (Taylor, 1938a) where it was 

assumed that, Lu (average size of an eddy which represents the scale of the turbulent flow 

system ) is independent of x and proportional to the mesh width M of the grid that gives 

rise to turbulence. However, when the measured values of Lu became available (Hall, 

1938) it was found that Lu increased with streamwise distance x. A further review by 

Dryden (1943) hypothesized that, if dimensional reasoning is taken into account, then 

'du

dt
, the rate of change of turbulent fluctuation and udL

dt
, the rate of change of integral 

length scale are determined solely by the values of Lu and 'u , i.e. viscosity and other 

upstream conditions have no effect on the rate of turbulence decay. However, if one 

considers the complete system of geometrical grids and the turbulent field, dimensional 

considerations suggests that for geometrically similar grids whose scale is fixed by some 

characteristic dimension, such as the mesh width M, the ratios 
'u

U
 and uL

M
 would be a 

function of 
x

M
.  Again, if the grids are not geometrically similar, the intensity and scale 

will then also depend on solidity, mesh shape and the surface roughness (Uberoi and 

Wallis, 1967). The effects of these parameters have not yet been fully investigated and a 

part of the discrepancy (dependency of turbulent parameters on grid-dimensions) between 
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the available results is yet to be described, including the influence of these factors. The 

underlying fact that develops out of the present discussion is that, if turbulence is truly 

isotropic in nature, then its characteristics can be adequately described by the two 

quantities, intensity and scale, and its behaviour of decay can only depend on the local 

values of characteristic intensity and scale at some point in the turbulent flow domain, i.e. 

the decay of free stream turbulence should be accountable in the values of 'u  and Lu at 

any point in the flow system. Previous relevant studies (Batchelor and Townsend, (1947); 

Batchelor and Townsend, (1948a); Batchelor and Townsend, (1948b); Batchelor, (1953); 

Comte-Bellot and Corrsin, (1966); Comte-Bellot and Corrsin, (1971b); Bennett and 

Corrsin, (1978); Sreenivasan et al. (1980)) on the spatial decay of homogeneous isotropic 

turbulence made almost no attempt to include the effects of length scale on the decay 

characteristics of turbulent kinetic energy, thereby only relating the length scale to the 

corresponding characteristic mesh size M, which is again different for different grid 

widths. So, it becomes increasingly necessary to formulate a set of correlation functions 

that would take both the turbulence parameters, viz. turbulence intensity (in %) (TI) and 

length scales (Lu) into account before invoking any predictions for spatial turbulence 

decay. 

Hence, the motivation of the current study is to employ numerical RANS and LES 

simulation models, to develop simple yet powerful correlation equations that would 

systematically quantify the spatial decay of turbulence, based on upstream inlet 

conditions, in a nearly isotropic and homogenous regime of turbulence. The final goal 

from the current study is to use the correlation equation as a prediction tool to estimate 

local and initial values of turbulence intensity and turbulence length scale and predict a 

nearly uniform region of incident turbulent kinetic energy (TKE) where the changes in 

the turbulent properties in the streamwise direction are insignificant. 

2.2 Introduction to numerical modelling 

A detailed explanation of the CFD models used to assess the free stream turbulence decay 

in an empty three-dimensional (3D) grid domain are presented in the following section. A 

schematic representation of the computational domain with dimensional details is 
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presented in Section 2.3. The grid generation techniques are discussed in Section 2.4. 

Section 2.5 presents the methodology used for the CFD modelling of the current problem, 

which includes description of the CFD solver, different types of turbulence models used, 

and various solution parameters that affect the stability and accuracy of the solution. 

Boundary conditions for this problem are discussed in section 2.6. Section 2.7 discusses 

the flow characteristics at the inlet, in terms of directional isotropy and spatial 

homogeneity. A very detailed description of the model convergence along with its 

validation with the previous studies are given in Section 2.8. Section 2.8 also discusses 

the research contribution from the present work in terms of modelling the inlet turbulent 

conditions for bluff body flows. At the end, a comprehensive summary and the important 

conclusions from the present chapter are presented in Sections 2.9 and 2.10, respectively. 

2.3 Computational Domain 

Turbulence is a 3D phenomenon and to accurately capture the details of the turbulent 

motions across a wide range of eddy scales, a 3D computational domain is required to 

establish a realistic simulation set-up. A 3D computational domain (Fig. 2.1) was created 

with sufficient length in the streamwise direction for the decay of turbulence to develop 

fully. The top and the span-wise boundaries were at a distance of 1m from each other 

which is long enough to allow eddies of scale of 0.1m in sufficient number to pass 

through the domain. The particular eddy size was chosen to be quite large and, hence, 

energetic enough to perturb the boundary layer scale of the same order, with relevance to 

the boundary layer heat transfer study that will be carried out in the future. The physical 

dimensions of the computational domain are Lx = 4m, Ly = 1m, Lz =1m. The outflow 

boundary was free from any kind of recirculation zone. It is pointed out here that all the 

data extracted and presented in the current study are taken along the centreline of the 

domain in the streamwise direction. Additionally, turbulence data were also extracted 

along the spanwise and normal directions to check for uniformity. 
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Figure 2.1 Schematic of the 3D computational domain with specific boundary 

conditions 

2.4 Grid generation 

A commercial mesh generating software ANSYS ICEM CFDTM 16.0 was used to 

generate the grid. The whole domain was discretized using a perfect structured 

orthogonal hexahedral mesh (fig. 2.2) in all three directions for accurate interpolation of 

the mean flow quantities and to be consistent with the cut-off scales for the spatial 

filtering. Hexahedral meshes offer an improved order of accuracy for wall bounded 

unidirectional flows since orthogonal grids can be maintained in the wall normal 

direction with regular connectivity. Orthogonal meshes offer minimal skewness which 

provides better numerical and computational efficiency for effective 1st order and 2nd 

order gradient approximation over the cells. 

Polyhedral meshes can be used which would provide less computationally intensive 

calculations but the range of frequency of length scales convected through the domain 

will be inconsistent in nature since the local grid scale (Δ) of each computational cell will 

be different that would capture different frequency of the integral scales circulating 

through the flow. 
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Figure 2.2 A schematic of the hexahedral grid distribution over the entire 

computational domain 

2.5 Methodology 

2.5.1 Solver 

Three different types of commercial CFD software packages ANSYS FLUENT 16.0, 

ANSYS CFX 16.0 and CD-ADAPCO Star-CCM+ 10.02.012 were used in the current 

problem all of which use the finite volume technique to solve the equations with double 

precision which provides increased accuracy due to less round-off error. 

FLUENT acts as cell-based solver computing variables at the cell-centres of any 

discretized control volumes and offers two different types of solvers; pressure-based 

solver and density-based solver. The pressure-based approach was developed for low-

speed incompressible flows and mildly compressible flows, while the density-based 

approach is mainly used for high-speed compressible flows. In the current study, the 

pressure-based solver is used since the flow falls within the category of moderate speed 

incompressible flows. The pressure based solver employs an algorithm which belongs to 

a general class of methods called the projection method (Chorin, 1968). In the projection 

method, the mass conservation (solving the continuity equation) of the velocity field is 

achieved by solving a pressure (or pressure correction) equation. The pressure equation is 
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derived from the continuity and the momentum equations in such a way that the velocity 

field, corrected by the pressure satisfies continuity. Since the governing equations are 

non-linear and are coupled to one another, the solution process involves iterations 

wherein the entire set of governing equations is solved repeatedly until the solution 

converges. 

CFX is a vertex (node)-centred solver and, hence, the flux through each face is based on 

the nodal values of the discretized control volume using finite element shape functions. 

CFX only offers a coupled pressure-based solver where the continuity and the momentum 

equations are solved in a coupled matrix simultaneously in a single step which delivers a 

faster convergence rate with respect to the total number of iterations solved. The built-in 

pressure-based algorithm used in CFX operates in a similar manner as in FLUENT. 

Star-CCM+ is a finite volume cell-based solver computing the variable gradients at the 

cell centre of the control volume. Segregated solvers offer a pressure-based solution 

algorithm and can be used for incompressible and mildly compressible flows whereas the 

coupled flow algorithm is used for compressible flows, natural convection problems and 

flows with large body forces and energy sources. The segregated flow solver controls the 

solution update for the segregated flow model according to the SIMPLE algorithm. 

2.5.2 Turbulence Models 

A turbulent flow itself is irregular, chaotic, randomly diffusive, dissipative and time 

dependent in nature, characterized by velocity and vorticity fluctuations in all directions 

possessing a wide range of length scales (degrees of freedom). Thus, an enormous 

amount of information in the form of complete time histories over all spatial co-ordinates 

for every flow property is required to completely describe a turbulent flow. In such cases 

a complete solution of the Navier-Stokes equations is required with full numerical 

resolution of the flow field to capture the complete time histories of every aspect of a 

turbulent flow which usually requires vast computing resources. Hence, efforts have been 

made over decades ((Prandtl, 1925); Kármán, (1930); Kolmogorov, (1942); Prandtl, 

(1945)) to model a set of realistic mathematical algorithms that greatly simplifies the 

transport equations associated with the physical behaviour of turbulent flows. An ideal 
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turbulence model should have a minimal degree of complexity while capturing the 

essence of the relevant physics. A desirable type of turbulence model would be one that 

can be applied to a given turbulent flow by prescribing the appropriate initial and 

boundary conditions with no pre-defined knowledge of turbulence required. 

2.5.3 Governing equations 

Turbulence consists of time varying random fluctuations of flow properties in all the 

directions. Since this fluctuation can be of small scale magnitude with various 

frequencies, they are computationally too expensive to simulate directly for any practical 

engineering applications. A general statistical approach can be employed where the 

governing transport equations of fluid flow (conservation of mass, momentum and 

energy) can be time-averaged, spatially-averaged or ensembled-averaged to reduce the 

effect of the small scales, resulting in a modified set of equations that are computationally 

less expensive to solve. This is achieved by performing Reynold’s decomposition of a 

scalar field or vector field where any time-varying generic variable (ϕ) (ϕ can be a scalar 

or a vector such as velocity, pressure, energy or species concentration) such can be 

written as the sum of an average and fluctuation, i.e. '(t) (t)    , where the over-bar 

denotes the time-average and the prime denotes the time varying fluctuation of the 

property with time. The following decomposition yields a set of governing equations that 

governs the turbulent mean flow field. The new set of equations will be exact for an 

average flow field and not for the exact details of turbulent flow field. The resulting 

equations derived from the Navier-Stokes equation after the time averaging equations are 

called the Reynolds averaged Navier-Stokes equations (RANS equations). 

The equations for conservation of mass and momentum for incompressible, constant 

property flow are  
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The vectors ui and xi are the instantaneous velocity at position xi, t is time, p is pressure, ρ 

is density and tij is the viscous stress tensor defined by  

                                                              
ij ijt 2 s                                                           (2.4) 

where μ is molecular viscosity and sij is the strain rate tensor, 
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It is to be noted that 
ij jis s  , so that 

ji ijt t  for simple viscous fluids (but not for some 

anisotropic fluids). Substituting expressions of the form '(t) (t)   into the equation 

of mass and momentum conservation equations and taking a time (or ensemble) average 

and dropping the overbar on the mean profile quantity (velocity, pressure and strain) 

yields the ensemble-averaged mass and momentum equations usually referred to as 

Reynolds-averaged Navier-Stokes equations (RANS). They can be written in cartesian 

tensor form as:  
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The time averaged mass and momentum equations are identical to the instantaneous mass 

and momentum conservation equations with the mean velocity replacing the 

instantaneous velocity. Aside from replacement of instantaneous variables by mean 

values, the only difference between the time-averaged and instantaneous momentum 

equations is the appearance of the correlation ' '

i ju u . This is the time-averaged rate of 

momentum transfer due to turbulence also known as Reynolds-stress tensor term denoted 

by ij  where ' '

ij i ju u   . ij  is a symmetric tensor that includes six different 

independent components. Hence, because of Reynolds averaging, six unknown quantities 
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have been produced with no additional equations added to solve them. The RANS 

equations denote an open set of equations that need to be closed to solve for the 

unknowns. The need for additional equations to model the new unknowns is called 

Turbulence Modelling. FLUENT, CFX and Star-CCM+ offers several turbulence models 

to solve the closure problem which are Spalart-Allmaras, k-ε, k-ω, ν2-f, Reynolds stress 

model (RSM), Detached eddy simulation (DES) and Large Eddy simulation models 

(LES) models. Some of these models also have variants. 

 In order to choose a relevant RANS turbulence model, a relative comparison between the 

different models predicting the decay of turbulent kinetic energy (TKE) along the 

streamwise distance is presented in figure (2.3). The comparisons are shown for an inlet 

mean velocity ( U ) of 4m/s, initial turbulence intensity (TI) of 10% with an integral 

length (Lu) of 0.1m specified at the inlet. The x abscissa represents the streamwise 

distance and the y ordinate represents the turbulent kinetic energy (k) normalized with 

initial turbulent kinetic energy (k0). From figure (2.3), it is evident that the predicted rate 

of decay of TKE is very similar (<1% difference) for each of the different RANS models 

and the choice of one model variant over other will really not affect the spatial rate of 

decay of the TKE in the streamwise direction. Since the chosen turbulence model will be 

extended for the flat plate heat transfer study in the future, thus, the shear stress transport 

k-ω model has been selected over other variants of turbulence models for simulating 

isotropic decaying homogeneous turbulence.  It has been found that the SST k-ω closure 

with low Reynolds number (Re) modelling have performed better in predicting both the 

velocity profiles over a windward roof slope and the standard Nusselt number (Nu) 

correlation with Re for uniform flow over an isothermal flat plate (Karava et al. 2011) 

which provides another reason to choose the SST k-ω model for carrying out numerical 

simulations for isotropic decaying turbulence. 
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Figure 2.3 Comparisons between different RANS turbulence models showing the 

decay of TKE in the streamwise direction (FLUENT simulations). 

Henceforth, only the shear stress transport k-ω and LES models will be discussed in the 

subsequent sections, since these turbulence models are being employed in the current 

study. The LES model offers unsteady simulation methods with better grid resolution that 

is expected to give instantaneous information about the flow variables influenced by the 

larger scales of turbulence, whilst the effect of the small scales of turbulence is computed 

through sub-grid models of which many styles are available. More details about the 

chosen turbulence models are presented in the following section. All the transport 

equations in the following section are written for compressible flows. They can be 

modelled for any incompressible flow by treating density as a constant variable. 

2.5.4 Shear Stress Transport k-ω model 

The shear stress transport k-ω model (SST k-ω) is a two-equation eddy viscosity model 

developed by Menter (1994) which more accurately predicts boundary layer flows with 

separation and reattachment, when compared to the k-ε (Launder and Spalding, 1974) and 

standard k-ω model (Wilcox, 1998). The model consists of blending of the equations of 
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the k-ε and standard k-ω model, such that the model retains the robustness and accuracy 

in the inner parts of the boundary layer all the way down to the wall through the viscous 

sub-layer. Hence, the SST k-ω model can be used as a Low-Re turbulence model without 

any damping functions. The SST formulation also switches to a k-ε behaviour in the free 

stream and thereby, avoids the common k-ω problem of high sensitivity to the inlet free 

stream properties. Besides this, the SST k-ω model incorporates a damped cross-

diffusion derivative term in the equation for the specific dissipation rate, ω. The 

definition of the turbulent viscosity is modified to account for the transport of the 

turbulent shear stress and the modelling constants are different in this case. 

Transport equations for k and ω for this model are given as follows 

                        t
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In equation (2.8) and (2.9), kG  represents the generation of turbulence kinetic energy due 

to the mean velocity gradients, G  is the generation of  , kY  and Y represent the 

dissipation of k and ω due to turbulence respectively, D  represents the cross diffusion 

term. kS  and S  are user-defined source terms. k  and   are the turbulent Prandtl 

numbers for k and ω, respectively, and are defined as  
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The turbulent viscosity for this model is computed as follows 
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The coefficient *  damps the turbulent viscosity causing a low-Re correction and is 

defined as  
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1F  and 2F  are the blending functions and are given by 
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and  
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where 
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The model constants have the following values for the SST k-ω model 

k,1 1.176                     
,1 2.0                     

k,2 1.0                         
,2 1.168    

1a 0.31                        
i,1 0.075                   

,2 0.0828i        

All other model constants are similar to those of the k-ω model and are given by 

* 1.0a           0.52a            
0

1

9
a             * 0.09         i 0.072           R 8   

kR 6.0         R 2.95           * 1.5           
,0M 0.25       k 2.0              2.0    

2.5.5 Large Eddy Simulation 

Turbulent flow consists of a continuous spectrum of scales ranging from the largest to the 

smallest. Turbulent eddies of different sizes are often used to describe a turbulent flow 

across those scales. A turbulent eddy can be thought of as a local swirling motion whose 

characteristic dimension is the local turbulence scale. The primary idea behind LES is to 

simulate only the larger scales of turbulence, that are set by geometry or specific flow 

conditions, and to account for the influence of the neglected smaller scales on the mean 

flow by the use of a model. This is due to the fact that mass, momentum and energy and 

any other passive scalars are transported mostly by the large eddies in the motion whilst 

the small scales vary less with the dimensional constraints and are isotropic and more 

universal in nature.   

The large eddy simulation technique is based on a spatial scale separation between the 

large scales and the small scales. In order to define the two categories, a reference cut-off 

length or cut-off frequency has to be determined. The scales that are of characteristic 

length greater than the cut-off length are called large scales or resolved scales and the 
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others are called small or sub-grid scales. The influence of the small scales on the large 

scales of motion is included through sub-grid scale modelling. The separation between 

the different scales is not associated with a statistical averaging operation and therefore 

defining the cut-off length or the scale-separation operator is a very difficult task. The 

difficulty comes from the fact that many parameters contribute to the definition of the 

effective scale-separation operator observed in practical simulations. 

To obtain the governing equations for LES, the Navier-Stokes equations are spatially 

filtered which effectively filters out those eddies whose scales are smaller than the filter 

width or grid spacings used in the computations. Filtering the Navier-Stokes equations 

gives,  
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where the overbar in equations (2.21) and (2.22) represents the filtered or resolved 

components of pressure, velocity and strain.   

The stress tensor due to molecular viscosity, 
ij  is defined by 
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The Sub-grid scale stresses are computed from 

                                                    ij kk ij t ij
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where, ij  is the sub-grid Reynolds stress (analogous to the turbulent stresses that result 

from Reynolds-averaging of the Navier-Stokes equations), t  is the sub-grid scale 

turbulent viscosity, kk  is the isotropic part of the sub-grid scale stresses added to the 



40 

 

filtered static pressure term and ijS  is the rate of strain tensor for the resolved scale, 

defined by 
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It is the purpose of the sub-grid models to resolve the influence of these additional 

unknown sub-grid scale stresses that result from the filtering process through the 

computation of turbulent viscosity. Sub-grid scale models are similar to the turbulence 

model used in RANS calculations, and their primary purpose is to provide the influence 

of the small scales, usually based on some gradient diffusion hypothesis. The role of the 

small eddies is predominantly to accept energy from the larger scales and dissipate it, and 

that this net transfer of energy is considered as a one-way process. This influence acts 

primarily as a sink for the energy of the large scales to ensure that the statistics of the 

large scales are correct in that they continually dissipate their energy. 

Currently three sub-grid scale models are available in Star-CCM+ that model the sub-grid 

scale viscosity t , which are: Smagorinsky-Lilly sub-grid scale model (Smagorinsky, 

1963),(Lilly, 1992), Dynamic Smagorinsky sub-grid scale model (Germano et al., 1991), 

(Lilly, 1992) and the Wall-Adaptive Local Eddy viscosity (WALE) sub-grid model 

(Nicoud and Ducros, 1999). Only the Dynamic Smagorinsky model is discussed here as 

that model is used in the current study and has the correct limiting behaviour in laminar 

flows and wall bounded turbulent flows (Lévêque et al. (2007)). 

2.5.6 Dynamic Smagorinsky-Lilly Model 

The Smagorinsky-Lilly model was proposed by Smagorinsky (1963) and is the basic sub-

grid scale model. The dynamic Smagorinsky model was developed after few 

shortcomings of the simple Smagorinsky-Lilly model which didn’t accurately model 

large-scale fluctuations in the presence of mean shear and transitional flows near solid 

boundaries.  

In this model, the eddy viscosity is modeled by  
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                                                              2

t sL S                                                       (2.26)                                                     

where sL  is the mixing length for the sub-grid scales and 

                                                             ij ijS 2S S                                                    (2.27) 

sL  is computed using s sL min( d,C )    

where   is the von-Kármán constant, d is the distance to the closest wall, sC  is the 

Smagorinsky constant and   is the local grid-scale. If Δx, Δy and Δz are the grid-

spacings of a computational volume in X, Y and Z directions, then, empirically,   is 

computed using the volume of the computational cell V by 

                                                       
1

33 x y z V                                                    (2.28) 

Lilly derived a value of 0.23 for sC in the case of homogeneous isotropic turbulence in 

the inertial range which didn’t accurately model large-scale fluctuations in the presence 

of mean shear and transitional flows near solid boundaries. Henceforth, Germano et al., 

(1991) and subsequently Lilly (1992) tried to overcome the limitations and come up with 

a Smagorinsky-Lilly constant sC  that is dynamically computed based on the information 

provided by the resolved scales of motion. The dynamic procedure, therefore, obviates 

the need for users to specify the model constant sC  in advance. 

The concept of the dynamic procedure is to apply a second filter (called the test filter) to 

the equations of motion. The new filter width 


  is equal to twice the grid filter width  . 

Both filters produce a resolved flow field. The difference between the two resolved flow 

fields is the contribution of the small scales whose size is in between the grid filter and 

the test filter. The information related to these scales is used to compute the model 

constant.  

At the test filtered field level, the SGS tensor can be expressed as: 
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Both 
ijT  and 

ij  are modelled in the same way with the Smagorinsky-Lilly model, 

assuming scale similarity: 
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In equations number (2.30) and (2.31), the coefficient C is assumed to be the same and 

independent of the filtering process. The grid filtered SGS and the test filtered SGS are 

related by the Germano identity (Germano et al., 1991) such that 

                                                               ij ij ijL T                                                      (2.32) 

Substituting the grid-filter Smagorinsky-Lilly model, the following expressions can be 

derived to solve for C with the contraction obtained from the least square analysis of 

Lilly (1992). 
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The SC C  obtained using the Dynamic-Smagorinsky Lilly model varies in time and 

space over wide range. To avoid numerical instability, both the numerator and the 

denominator in the equation are locally-averaged or filtered using the test filter. The 

dynamic variation of the constant allows the model to obtain correct results for wall 

bounded flows without the use of damping functions. 

2.5.7 Solution Parameters 

For the steady RANS modelling (SST k-ω) of the decay of turbulent kinetic energy the 

second order upwind discretization for momentum and first order upwind discretization 
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scheme for turbulence parameters (turbulent kinetic energy and specific dissipation rate) 

was used while the pressure interpolation was second order. As the flow is aligned with 

the grid in the present study, the first order upwind discretization schemes for the 

turbulence parameters will yield results of the same degree of accuracy (less than 1% 

difference) as of the second order with low numerical diffusion and better convergence. 

This is verified from the results shown in figure (2.4) where a relative comparison 

between the first order upwind and second order upwind discretization schemes are 

presented, used for the computation of turbulence parameters using SST k-ω model. As 

expected, the second order scheme in the present case provides no improvement in the 

accuracy of the solution field pertaining to the decay of TKE along the streamwise 

distance. 

 

Figure 2.4 Comparison between the 1st order and 2nd order discretization schemes of 

the SST k-ω model with respect to the spatial decay of TKE (𝐔̅ = 4m/s, TI = 10% 

and Lu = 0.10m) 

However, it should be kept in mind that, for near wall bounded turbulent flows, the 

second order discretization schemes provide higher solution accuracy and numerical 
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stability in the solution than the first order schemes because of less numerical diffusion 

and increased damping in the vicinity of the wall solid-boundary. 

For the pressure velocity coupling, the Semi-Implicit method for Pressure Linked 

Equations (SIMPLE) algorithm (Patankar et al. 1972) was used for the steady RANS as it 

is more suitable for steady state flows. For the evaluation of gradients and derivatives, the 

Least-square cell based gradient method is employed as it is more accurate and less 

expensive than other gradient methods on a structured hexahedral mesh. 

For LES, a bounded central-differencing discretization scheme was used for the 

convective terms in the momentum equations. This scheme provides improved accuracy 

for LES calculations. The segregated flow model according to the SIMPLE algorithm 

was used to solve for the solution updates for the pressure and velocity field along the 

domain. The Hybrid Gauss-Least squares method was used for the gradient computation 

for the pressure terms and the secondary gradients for the diffusion terms with the 

Venkatakrishnan method (Venkatakrishnan, 1993) for limiting the reconstruction 

gradients and therefore more accurate than the Green-Gauss method. The limited 

reconstruction gradients are used to determine the scalar values at the cell faces. These 

scalar values are used in computing the flux integrals. The second-order upwind 

convection schemes were used for all the other transport equation terms and the implicit 

unsteady method for time-step marching was used for better stability with no restrictions 

on the choice of the time-step size. Based on the cut-off frequency and the percentage of 

the turbulent kinetic energy resolved in this study a time step size of 0.002s was used. 

The simulations were run for 40s of flow time that would yield 20000 samples of the 

time-histories of the velocity fields, large enough (in this case) to adequately describe the 

statistical properties of turbulence decay. The statistical average of the last 30s of flow 

time with 15000 samples was performed to evaluate the descriptive properties of the flow 

field throughout the domain. The convergence criteria were kept at 10-4 for all the 

momentum terms in the simulations for this study. A maximum no. of 200 inner loop 

iterations were specified to fully ensure the residual convergence of continuity, X-

momentum, Y- momentum and Z-momentum to 10-4 for each unsteady physical time-

step of the implicit solver and then the solution marched onto the next time-step. 
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2.6 Boundary Conditions 

The proper of choice of boundary conditions for any CFD based problem is very 

important, as the boundary conditions would drive the flow field to be solved inside the 

computational domain. The boundary conditions should also be as close to the physical 

reality that would represent the influence of the surroundings which have been cut-off by 

the boundaries of the computational domain. The inlet boundary condition is of extreme 

importance in this regard as, in many cases, the fluid behaviour within the domain is 

determined in large part by the inlet behaviour. 

2.6.1 Boundary conditions for steady Reynolds Averaged Navier-
Stokes Model (RANS) 

For the steady RANS study, a well-specified velocity boundary condition was defined at 

the inlet to construct the flow velocity along with the turbulent parameters i.e. turbulence 

intensity in percentage (TI) and turbulence length scale (Lu) for turbulent calculations. 

The pressure outlet boundary condition is specified with a gauge pressure of zero Pascals 

which physically relates to the atmospheric pressure to which the flow exits. The slip 

boundary condition was specified at all the other boundaries where the shear stress is 

assumed to be zero so that it had negligible effect on the decay of TKE inside the domain. 

2.6.2 Inflow and Boundary conditions for Large Eddy Simulation 
(LES)  

For LES calculations, generating the inlet conditions is considerably more difficult than 

for RANS modelling. Ideally, the proper inlet boundary condition should represent 

physical turbulent motions of stochastically varying nature that would have the structure 

of turbulence, of coherent eddies across a range of spatial scales starting from integral 

length scale to the Kolmogorov length scale. For free stream turbulence, it is important to 

recreate the overall energy contained in the turbulent fluctuations and the distribution of 

energy along the length scales having proper coherent energy spectra. The importance of 

defining proper inflow boundary conditions while using LES was extensively discussed 

by various researchers (Sagaut et al., (2003); Tutar and Celik, (2007) ; Xie and Castro, 

(2008) ; Dagnew and Bitsuamlak, (2013)). According to Keating et al. (2004) inlet 



46 

 

boundary conditions can be generated by using three methods: precursor database, 

recycling method, and synthesizing the turbulence. A review of two different methods to 

define inlet conditions for LES is done by Tabor and Baba-Ahmadi (2010). They 

classified the inlet conditions into two different categories namely synthesis inlets and 

precursor simulation methods and discussed the advantages of one method over the other. 

Their study revealed that, although synthesis methods are easy for specifying parameters 

of the turbulence, such as length scales or turbulent energy levels; they can be inaccurate 

and may require provision of an inlet development section before turbulence can develop 

fully. On the other hand, precursor simulation methods have the advantage of generating 

true turbulence with required characteristics but are cumbersome to modify the required 

state of turbulence. Recently, Aboshosha et al. (2015) have developed an efficient inflow 

generator technique for LES modelling based on synthesizing random divergent-free-

turbulent velocities, which is named the Consistent Discrete Random Flow Generation 

technique (CDRFG). This method is able to model properly the statistical properties of 

the inflow turbulence represented in the turbulent spectra that generates consistent 

coherency in the velocity field matched with the available atmospheric boundary layer 

flow statistics (Aboshosha et al., 2015). The technique is based on discretizing the power 

spectrum of velocities into a number of segments using the original random flow 

generation (RFG) technique (Kraichnan, (1970); Smirnov et al., (2001)), but with some 

modifications to allow modelling of a spectrum with an arbitrary distribution. This 

technique has been used in the present study to generate isotropic and spatially 

homogeneous velocity fields at the inlet based on the von-Kármán turbulent spectra 

which was later used in defining the inlet boundary conditions for all the simulations. 

Details of the technique including a matlab source code, are also provided in Aboshosha 

et al. (2015). A pressure outlet boundary condition was specified at the outlet where the 

flow issues into a zero-gauge pressure surroundings with all the other boundaries treated 

as slip walls. 

2.7 Flow Characteristics at the Inlet 

In the present section the flow behaviour at the inlet is assessed in terms of isotropy and 

homogeneity of the turbulent velocity fields. One might argue that no real turbulent flow 
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is isotropic or even homogeneous at large scales and questionable at small scales. But it is 

emphasized here that the assumptions of isotropy and homogeneity only allow one to 

analyze turbulence in a more simplified manner in terms of the varying dynamics of the 

3D scales of turbulence. 

2.7.1 Isotropy 

The turbulent flow characteristics at the inlet are gauged in terms of isotropy of the 

velocity fields. For an isotropic flow, skewness of the streamwise velocity fluctuation 

component 

3

'3 '2 2S(u) u / u , must be zero and this needs to be true for all directions of 

isotropy (Mohamed and Larue, 1990). Figure (2.5) shows an example of the statistics of 

skewness coefficient of the velocity fluctuations at the inlet (0,0,0), over 20,000 samples, 

with an initial transience until 3000 samples (fig. 2.5) which corresponds to 6s of flow 

time that is ignored for the computation of the averaged statistics from the data. The 

convergence criteria for the statistical sampling was chosen based on the statistics of the 

mean flow velocity ( U ) and the mean of the turbulent velocity fluctuations ( ' 2u ) which 

are the first and the second-order statistics. From the figure it is clearly seen that the 

values of isotropy fluctuate around 0 with a statistical averaged magnitude of 0.0092 

averaged over 17000 samples obtained from the LES simulations. The statistics for the 

other two skewness coefficients of the spanwise velocity component (v) and the normal 

velocity component (w) are also plotted in the same figure (2.5) to confirm the isotropy 

of the flow at the inlet in all directions. All the data show near converged statistics after 

initial transience of 3000 samples. 
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Figure 2.5 Skewness coefficient of the different velocity components obtained from 

LES simulations with an initial condition of 𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m 

2.7.1.1 Spatial Homogeneity 

The transverse and normal variation of the root-mean squares of the u, v and w velocity 

fields (denoted by 'u , 'v  and 'w ) at thirteen different points at the inlet are presented in 

table (2.1) and they all vary within 2% of the mean value (Table 2.2) which confirms the 

homogeneity of the flow field at the inlet plane. Figure (2.6) and figure (2.7) shows the 

transverse and the normal distribution of the turbulence intensity (TI in %) along the inlet 

plane which gives another measure of the spatial homogeneity. The peak to peak 

variation of the turbulence intensity in the transverse direction is about 1.39% and in the 

normal direction is about 2.6%. 
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Table 2.1 Spanwise and normal variation of the root-mean square of the velocity 

fields at the Inlet with initial condition of 𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m 

x(m) y(m) z(m)  (𝐮′) (m/s)   (𝐯′) (m/s)  (𝐰′) (m/s) TI (%) 

0 0 -0.4 0.38 0.38 0.40 9.66 

0 0 -0.2 0.39 0.39 0.39 9.70 

0 0 -0.1 0.39 0.39 0.39 9.76 

0 0 0 0.39 0.39 0.40 9.75 

0 0 0.1 0.38 0.38 0.39 9.67 

0 0 0.2 0.37 0.38 0.38 9.52 

0 0 0.4 0.38 0.38 0.40 9.75 

0 -0.4 0 0.38 0.40 0.38 9.62 

0 -0.2 0 0.38 0.39 0.38 9.58 

0 -0.1 0 0.38 0.39 0.39 9.64 

0 0.1 0 0.37 0.39 0.40 9.58 

0 0.2 0 0.39 0.40 0.38 9.61 

0 0.4 0 0.38 0.39 0.39 9.71 
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Table 2.2 Percentage variation of root-mean square velocities at the inlet plane 

 

Standard deviation of 'u , 'v , 

'w and turbulence intensity 

as a percentage of its mean 

value 

Components Percentage 

 (𝐮′) 1.68% 

 (𝐯′) 1.30% 

(𝐰′) 1.81% 

TI= 
√

𝟏

𝟑
(𝐮′𝟐̅̅ ̅̅ ̅)+(𝐯′𝟐̅̅ ̅̅̅)+(𝐰′𝟐̅̅ ̅̅ ̅)

𝐔̅
×100 

0.80% 

 

 

Figure 2.6 Transverse distribution of turbulence intensity laterally across the inlet 

plane obtained from LES simulations with an initial condition of 𝐔̅ = 4m/s, TI = 

10% and Lu = 0.10m 
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Figure 2.7 Normal distribution of turbulence intensity vertically across the inlet 

plane obtained from LES simulations with an initial condition of 𝐔̅ = 4m/s, TI = 

10% and Lu = 0.10m 

2.7.2 Probability Density Function 

The probability density function (PDF) gives a measure of the distribution of the random 

data about the mean. The equation of the probability density function is given by  

xN
B(u)

N u



 where, xN  is the number of data samples per bin, N is the total number of 

data points (17000 in the present case); and u  is the interval size which is taken as 

0.05m/s. The PDF is compared to the Gaussian distribution calculated using the 

following equation. 

                                              

2
i

2

(u U)

2
Gaussian

1
B(u) e

2



 




                                         (2.34) 

where  is the standard deviation of the velocity fluctuations, ui is the instantaneous 

velocity component and U is the statistical mean of the instantaneous velocity values. 

Table (2.3) shows a simple comparison between the PDF and the Gaussian distribution. 
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The comparison shows that there is a slight deviation from the normal distribution which 

is given by a slight positive value of the skewness measurement and a slightly lower 

value of the kurtosis function. The kurtosis function is given by 
2

'4 '2K(u) u / u where 'u  

is the streamwise velocity fluctuation value. The statistical sampling of the kurtosis 

magnitudes is shown in figure (2.8) with an initial transient period extending up to 3000 

samples, corresponding to 6s of flow time. Figure (2.8) also reveals that the turbulent 

velocity flow fields are consistent with the normal distribution of the data. Figure (2.9) 

shows the plot for both the probability density function along with the normal distribution 

normalized by the mean velocity. The difference in skewness is shown by small shift of 

data from the normal distribution and slight increase in the tails is attributed to the small 

difference in the kurtosis values. 

Table 2.3 Comparison between Probability Density Function and Normal 

Distribution 

Quantity B(u) Normal Distribution Deviation 

Skewness 0.01 0 0.01 

Kurtosis 2.92 3 -0.08 
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Figure 2.8 Kurtosis function of the streamwise velocity component obtained from 

LES simulations with an initial condition of 𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m 

 

Figure 2.9 Probability density function plotted against the normal Gaussian 

distribution normalized by mean velocity (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

__ 
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2.7.3 Inertial sub-range of Spectral Energy Transfer 

The inertial sub-range in a wavenumber space is the region where turbulent kinetic 

energy from the larger eddies is being transferred per unit time to the small scale 

dissipative range of the eddies. The existence of this region requires that the Reynolds 

number is high enough so that the flow is fully turbulent in nature. The transport of 

energy in the wavenumber space is called spectral energy transfer and is given by the 

assumption of the cascade process, i.e. the energy transfer per unit time from eddy-size-

to-eddy size is the same for all the eddy sizes and is given by . The turbulent kinetic 

energy, k, of an eddy of size (length scale), 
1


 (where   is the wave-number 

proportional to the inverse of the length scale of an turbulent eddy), represents the kinetic 

energy of all the eddies of this size. The eddies in this region are independent of both the 

large, energy containing eddies and the eddies in the dissipation range and, hence, one 

can argue that the eddies in this region should be characterised by the spectral transfer of 

energy per unit time ( ) and the size of the eddies, 
1


. (Versteeg and Malalasekera, 

(2007), Davidson, (2015). Dimensional analysis gives  

                                                               
2 5

3 3E( ) C  


                                              (2.35) 

This is the important Kolmogorov spectrum law (Kolmogorov, 1941a, 1941b) or the -5/3 

decay law which states that, if the flow is fully turbulent in nature, the energy spectra 

should exhibit a -5/3 decay in the inertial region of the flow. Figure (2.10) shows the 

spectral energy density measured at the centre of the inlet plane at point (0,0,0) that has a 

universal slope of -1.66 i.e. -5/3 which indicates that the rate of energy transfer is evenly 

distributed between the larger eddies and the smaller scales of turbulence and that the 

CDRFG technique succeeds well in accurately developing the random fluctuations of 

turbulence. 
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Figure 2.10 Turbulent kinetic energy spectra at the inlet plane plotted with a 

reference line of slope (-5/3) representing Kolmogorov decay (𝐔̅ = 4m/s, TI = 10% 

and Lu = 0.10m) 

2.8 Model Convergence 

2.8.1 Grid-Independence Test 

A grid-convergence study was carried out to reduce the discretization errors from the 

computation of the flow variables within the domain. The grid independence study was 

carried out for both RANS and LES simulations to ensure an acceptable magnitude of 

convergence error within the results. The evolution of length scales (Lu) along the 

streamwise direction and the decay of TKE in the streamwise direction were used as an 

indicative parameter to assess the relative magnitude of variability of those variables 

going from one grid-resolution to the other. According to the COST guidelines (Franke et 

al., 2007), at least three systematically and substantially refined grids should be used for 

a grid-independence study so that the ratio of the cells for two consecutive grids should 

be at least 1.5 in each dimension. Three different grid resolutions M1, M2 and M3 were 

created and used for the present grid-independence tests. The mesh refinement ratio 
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between M1 and M2 and between M2 and M3 was 2 times in the streamwise direction. 

The inlet mesh nodes were fixed in each of the three grids as the inlet velocity fields 

generated at those node points were intended to keep constant for all the three meshes 

used here. The properties of the three grids are summarized in table (2.4). The grid-

independence study for both RANS and LES was carried out for a mean inlet velocity

(U) of 4m/s, inlet turbulence intensity (TI) of 10% (TKE = 0.24 m2/s2) and inlet integral 

length scale (Lu) of 0.1m. 

Table 2.4 Properties of the different grids used in the current study 

Grid Element size 

(Δx) 

Element size 

(Δy) 

Element size 

(Δz) 

No. of cells 

M1 (Coarse) 40mm 20mm 20mm 250,000 

M2 (Medium) 20mm 20mm 20mm 500,000 

M3 (Fine) 10mm 20mm 20mm 1,000,000 

For steady RANS simulation, the turbulent properties for free stream flow i.e. the integral 

length scales and non-dimensional TKE i.e. '

2
k(k )

U
  along the streamwise direction 

were compared for the three meshes. For LES, the integral length scale values and non-

dimensional TKE '(k ) values, statistically averaged over 17000 samples were compared 

in relative to each other to check the grid-independence. The variability of non-

dimensional TKE and the integral length scales for all the three different grid results are 

presented here in the graphical form. Figure (2.11) and figure (2.12) shows the 

streamwise variation of the non-dimensional turbulent kinetic energy '(k ) and the length 

scales (Lu) for three different grids for the steady RANS simulation whereas, figure 

(2.13) and figure (2.14) shows the streamwise evolution of non-dimensional turbulent 

kinetic energy '(k ) and the length scales (Lu) for three different grids obtained from the 

LES simulations. 
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Figure 2.11 Comparison of streamwise decay of non-dimensional TKE for coarse, 

medium and finer mesh (Steady RANS) (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

 

Figure 2.12 Comparison of streamwise evolution of length scales for coarse, medium 

and finer grids (Steady RANS) (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 
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For RANS simulations, the variability in non-dimensional TKE going from the M1 grid 

to M2 in proportion to its average value over the constant region where the TKE is fairly 

uniform (i.e. x = 2m to x = 4m) is 0.97% whereas the variability of the same variable 

going from the M2 grid to the M3 is 0.64%. Also, the variation of the magnitude of the 

Lu in proportion to its average value over the constant region from the M1 grid to M2 is 

0.25 % and from the M2 grid to M3 grid is 0.15%. Hence, the medium grid M2 is chosen 

for the present RANS study and for further simulations as the variability of non-

dimensional TKE and Lu values for M2 grid relative to M1 grid is below 1% which is 

accepted as a very good grid convergence (Franke et al., 2004). The results of the grid-

independence studies are also presented in tabular form in table (2.5) and table (2.6) for 

completeness. 

Table 2.5 Grid independence study on three different grids for steady RANS 

predicting the turbulent kinetic energy decay along the streamwise distance 

Grid 
RMS difference of 

dimensionless TKE 

Average value of 

dimensionless TKE 
% Difference 

Coarse (M1) - - - 

Medium (M2) 3×10-5 0.00312 0.97 

Fine (M3) 2×10-5 0.00311 0.64 
 

Table 2.6 Grid independence study on three different grids for steady RANS 

predicting the growth of integral length scales along the streamwise centreline 

Grid 
RMS difference of the 

integral length scales 

Average value of 

integral length scale 
% Difference 

Coarse (M1) - - - 

Medium (M2) 4.94×10-4 0.1946 0.25 

Fine (M3) 2.94×10-4 0.1948 0.15 
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2.8.1.1 Grid-Resolution for LES 

For steady state RANS simulations, insensitivity of the solution field towards further grid 

refinement is an essential criterion to establish the accuracy of the solution in terms of 

discretization error. However, such grid convergence is not possible in LES. As a finer 

grid is utilized, a greater fraction of the turbulence spectrum is directly computed as 

opposed to directly modeled by an explicit or implicit sub-grid model. It was pointed out 

by both Speziale, (1998) and Celik et al., (2005) that ‘a good LES is almost a Direct 

Numerical Simulation (DNS)’ where the flow field is solved for the smallest Kolmogorov 

scales. As a consequence, a grid-independence study cannot really exist in LES, since 

systematic grid-independent LES is actually a DNS, which offers no great benefit while 

considering economical computational solutions. It is generally agreed that an important 

requirement for constructing an appropriate grid is to ensure that the cut-off wavenumber 

or the cut-off frequency is in the inertial sub-range, especially in the primary regions of 

interest in the simulations.  

 

Figure 2.13 Comparison of streamwise decay of non-dimensional TKE for coarse, 

medium and fine grids (LES) (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 
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Figure 2.14 Comparison of streamwise evolution of length scales for coarse, medium 

and finer grids (LES) (𝐔̅ = 4m/s, TI =10% and Lu =0.10m) 

For LES, the variability in non-dimensional TKE going from the M1 grid to M2 in 

proportion to its average value over the constant region where the TKE is fairly uniform 

(i.e. x=2m to x=4m) is 13.15% whereas the variability of the same variable going from 

the M2 grid to M3 is 4.81%. Again, the variation of the magnitude of the Lu in proportion 

to its average value over the constant region from the M1 grid to M2 grid is 5.93% and 

from M2 grid to M3 grid is 2.29%. Hence the fine grid M3 is chosen for the present study 

and for further simulations as the variability of non-dimensional TKE and Lu for grid M3 

relative to grid M2 is below 5% which is within an acceptable value of convergence 

(Georgiadis et al. 2009). The present grid M3 with 1,000,000 cells also corresponds to 

the least relative discretization error and resolves the most energy containing eddies 

(resolving 80% of TKE in the present case) (Gerasimov, 2016) that regulate the essential 

flow properties along the domain. The results of the grid-independence study for the LES 

simulations are presented in tabular form in table (2.7) and table (2.8) for completeness in 

discussion. 



61 

 

Table 2.7 Grid independence study on three different grids for LES simulations 

predicting the turbulence kinetic energy decay at 11 points along the streamwise 

centreline 

Grid 
RMS difference of 

dimensionless TKE 

Average value of 

dimensionless TKE 
% Difference 

Coarse (M1) - - - 

Medium (M2) 0.00074 0.0057 13.15 

Fine (M3) 0.00029 0.0060 4.81 
 

Table 2.8 Grid independence study on three different grids for LES predicting the 

growth of integral length scales at 11 points along the streamwise centreline 

Grid 
RMS difference of 

integral length scale 

Average value of 

integral length scale 
% Difference 

Coarse (M1) - - - 

Medium (M2) 0.0138 0.233 5.93 

Fine (M3) 0.0052 0.236 2.29 

 

2.8.2 Homogeneity and Isotropy of the velocity fields (LES) 

In this section, the spatial homogeneity of the velocity fields, both in the spanwise and 

normal direction at x = 2m location is first assessed and discussed. Then the isotropy of 

the flow in the mean flow direction are discussed. 

In the following section, the streamwise variation of the mean velocity ( U ), along with 

the turbulence Reynolds number (Reλ) based on the Taylor microscale (λ), is examined 

and discussed. All the data were extracted and plotted after the flow statistics converged 

with respect to the number of samples. Figure (2.15) shows the streamwise variation of 



62 

 

the time-averaged centreline mean velocity U , normalized with the velocity magnitude 

specified at the inlet i.e. 0U , as a function of x. The time-averaged streamwise mean 

velocity U at different x locations downstream was found to be constant within                     

-0.46%/+0.24% of the spatial mean velocity 0U  specified at the inlet. The velocity 

profiles also certify that there is no mean shear present in the flow throughout the domain 

except a very weak acceleration/ deceleration observed in the region 0<x<1m.  

 

Figure 2.15 Streamwise distribution of 𝐔̅ along the centreline normalized by the 

mean velocity at the inlet i.e. 𝐔̅𝟎 (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

This is illustrated by the development of turbulent Reynolds number, 'Re u /    

(where λ is longitudinal Taylor microscale; ν is the kinematic viscosity) along the 

centreline in the streamwise direction (fig. 2.16), which shows a weak transient behaviour 

in the region (0m < x < 1m), followed by a much more gradual slope of the decay of 

turbulent Reynolds number ( Re ) downstream where U  ≈ constant. The Taylor 

longitudinal micro length scale (λ), is computed based on the effect of molecular 

viscosity and is given by the expression 
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'2

2 u
15 


                                                        (2.36) 

where is taken as 1.57×10-5 m2/s and   is the turbulent kinetic energy dissipation rate 

expressed as:  

                                                             
dk

dt
                                                                (2.37) 

Invoking Taylor’s hypothesis of frozen turbulence (Taylor, 1938b), and replacing the 

turbulent kinetic energy k = '2 '2 '21
(u v w )

2
   in equation (2.37) one obtains ( ) in the 

form of 

                                                          
21 dq

U
2 dx

                                                           (2.38) 

where 2 '2 '2 '2q (u v w )   .  Substituting ( ) from equation (2.38) into equation (2.36) 

gives the expression of the Taylor micro length scale (  ) in the form of  

                                                          
'2

2

2

30 u

dq
(U )

dx


                                                       (2.39) 

The turbulent Reynolds number ( Re ) is then computed from λ which is computed from 

corresponding values of  , ' 2u , U and 
2dq

dx
at each x location downstream from the inlet. 

The decay of the turbulent Reynolds number ( Re ) shown in the figure (2.16) is an 

indicative of the fact that, as the small-scale turbulence decays with time, the size of the 

smallest scales becomes larger, which would manifest itself in the size of the average 

eddy (Lu) increasing. 
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Figure 2.16 Streamwise distribution of turbulent Reynolds number (Reλ) based on 

Taylor microscale along the centreline (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

The streamwise variation of turbulent Reynolds number ( Re ) could also cause a slow 

evolution of the dimensionless decay coefficient (D), as will be seen in the upcoming 

discussion. 

2.8.2.1 Test for Homogeneity  

The variation of the root-mean-square of the streamwise velocity fluctuations in both the 

spanwise and normal directions along 13 points at the mid-section plane (x=2m), of the 

computational domain is shown in the table (2.9). All the data presented here are 

statistically averaged over 17000 samples which represents 34 seconds of flow time. It is 

clearly seen that the variation in the standard deviation of the observed velocity 

fluctuations, in both span-wise and normal directions, is less than 3% (2.98%) of its 

average value, which affirms the spatial homogeneity of the turbulent flow field at mid-

section downstream from the inlet. This is an indication of the fact that the flow 

associated with the free stream turbulence is almost homogenous throughout the 

computational domain. 
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Table 2.9 Spanwise and normal variation of the root-mean square of the streamwise 

velocity fields at the centre plane (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

x(m) y(m) z(m) 'u   

2 0 -0.4 0.30 

2 0 -0.2 0.30 

2 0 -0.1 0.28 

2 0 0 0.28 

2 0 0.1 0.30 

2 0 0.2 0.30 

2 0 0.4 0.31 

2 -0.4 0 0.31 

2 -0.2 0 0.30 

2 -0.1 0 0.29 

2 0.1 0 0.29 

2 0.2 0 0.30 

2 0.4 0 0.30 
 
 

 

 
                                                                                                                                                                           

2.8.2.2 Test for Isotropy  

For an isotropic flow field, the skewness of the streamwise velocity fluctuations, i.e.

3

'3 '2 2S(u) u / u  should be of zero magnitude. The isotropy of the flow S(u), as a function 

of streamwise distance at 11 distinct points is shown in figure (2.17), which provides one 

means of assessing whether the flow reaches isotropy in the domain. Along the centreline 
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of the domain, where the boundary effects and the mean shear levels are negligible, the 

flow remains nearly isotropic and the skewness values approach an asymptotic magnitude 

of zero since there is no source of anisotropy introduced into the flow. 

The isotropy ratio 
3u′2̅̅ ̅̅ ̅

q2̅̅̅̅  was also checked along the centreline in the streamwise direction 

and it ranges between 1.02 to 1.15. Similarly, 
3v′2̅̅ ̅̅̅

q2̅̅̅̅   was found to be in the range of 0.84 

and 1.01 and 
3w′2̅̅ ̅̅ ̅

q2̅̅̅̅   lies between 0.86 and 1.01, where q2̅̅ ̅ = u′2̅̅ ̅̅ + v′2̅̅ ̅̅ + w′2̅̅ ̅̅ ̅. 

 

Figure 2.17 Downstream variation of velocity skewness S(u) along the centreline of 

the domain (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

Figure (2.18) shows the downstream variation of the Kurtosis coefficient,
2

'4 '2K(u) u / u  

at 11 points along the centreline through the domain. The kurtosis for a standard normal 

distribution is 3. The maxima and minima profiles of the kurtosis values at any 

downstream location varies within 2% of its average value of 3 which confirms that the 

distribution of data is consistent about its mean. 



67 

 

 

Figure 2.18 Downstream variation of Kurtosis coefficient, K(u) along the centreline 

of the domain (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

2.8.3 Batchelor Turbulence or Saffman Turbulence? 

It has been debated over the years among researchers, as to whether the large scales of 

turbulence, responsible for convecting heat and mass transfer, should be classified as 

Batchelor Turbulence (Batchelor, 1953) or Saffman Turbulence (Saffman, 1967). In the 

former, the large scale statistical properties of turbulence 'u and uL , satisfy '2 5

uu L ≈  

constant, whereas in the latter '2 3

uu L ≈ constant. This contrasting behaviour of the large-

scale properties is manifested through different rates of temporal decay of the turbulent 

kinetic energy. For turbulence of Batchelor type the temporal energy decay rate is given 

by '2u ~ 10/7t whereas, for Saffman type the temporal decay rate formulates according to 

'2u ~ 6/5t . Both types of turbulence may be generated, at least approximately, in 

computer simulations as shown in Ishida et al. (2006). This section examines the nature 

of turbulence generated downstream by well-defined, specified inlet conditions in a 

commercial CFD code and classifies it according to the nature of its self-preserving state. 

Figure (2.19) represents '2 5

uu L  plotted along the centreline in the streamwise direction, 
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downstream of an inlet, for an initial specified turbulence intensity of 10% and integral 

length scale (Lu) of 0.1m. It is evident from figure (2.19) that '2 5

uu L  increases 

exponentially along x which gives a notion that turbulence generated from the computer 

simulations (in the present case) is certainly not of Batchelor type. Figure (2.20) shows 

'2 3

uu L  along the centreline versus streamwise distance x with same specified initial 

conditions. It is clear from figure (2.20) that, apart from an initial transient in the region 

of (0m<x<0.7m), '2 3

uu L  is indeed more or less constant throughout the domain, which 

suggests that the predicted homogeneous and isotropic turbulence generated using the 

commercial CFD simulations is predominantly of Saffman type. The slight scatter of the 

data observed in the upstream region at x<1m (fig. 2.20) might be mostly due to the 

consequence of the difficulty associated with the estimation of Lu which is computed 

using the auto-correlation function represented as:  

                                         

N r
' '
n n r

'2
n 1

1 1
R( ) R(r t) u u

N ru







   
                                   (2.40) 

where, R( )  is the auto-correlation function that relates the velocity at a certain location 

at time t to the same velocity at a later time t t  ,   = r t  is the lag-time in seconds, N is 

the number of the velocity samples, r = 0,1,2,3…….m; and m is the maximum lag 

number given by 
t




. The lag number is suitably adjusted to demonstrate the behaviour 

of the auto-correlation at different lag times The integral time scale TE is computed by 

integrating the area under the auto-correlation curve bounded by time ( ) equals zero and 

the time at which the first zero crossing of the auto-correlation R( )  takes place which 

introduces a small systematic error, since the evaluation of 

N r
' '
n n r

n 1

u u







  (recall eq. 

(2.40)) depends on where the integral is terminated. The integral length Lu is then 

computed from the integral time scale invoking Taylor’s hypothesis (Taylor, 1938b) by 

u EL UT , which introduces some uncertainty in the computed values of Lu since it is not 

extremely accurate in nature (Moin, 2009). 
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Figure 2.19 Downstream variation of '2 5

u
u L along the centreline of the domain (𝐔̅ = 

4m/s, TI = 10% and Lu = 0.10m) 

 

Figure 2.20 Downstream variation of '2 3

u
u L along the centreline of the domain (𝐔̅ = 

4m/s, TI = 10% and Lu = 0.10m) 
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2.8.4 Influence of the Time-Step Size 

The (Courant-Friedrichs-Lewy) or CFL condition is a necessary condition to ensure 

stability of the numerical methods used to solve certain partial differential equations. In 

CFD, the CFL condition states that any information convected through the time-step 

length within the mesh must be lower than the distance between the mesh elements. In 

other words, the CFL condition must always satisfy 
u t

1
x





 to ensure stability i.e. the 

flow Courant number should be always less than 1. The use of an implicit time 

discretization scheme in the present formulation allows the use of time step sizes with 

corresponding CFL (Courant-Friedrichs-Lewy) greater than 1. However, in the present 

study x  and t  have been chosen in such a way that they always satisfy a maximum 

CFL number of 1.  

To gain information on whether the choice of time-step size affects the results of the 

simulations, computations with two different time-step sizes corresponding to the 

maximum CFL numbers of 0.4 and 0.8 were carried out. Statistical averaging was 

performed over 17000 samples for both cases which gives flow times of 34 seconds and 

17 seconds, respectively, to restrict the effect of the initial transience of the flow field 

into the data sets. Table (2.10) gives an overview of the performed simulations on the 

time-step independence. 

Table 2.10 Overview of performed simulations on the time-step independence 

t  0.002s 0.001s 

Courant number 0.8 0.4 

 

Figure (2.21) shows the profiles of the normalized mean streamwise velocity component 

along the centreline, for two different time-step sizes corresponding to CFL numbers of 

approximately 0.4 and 0.8 with a convergence criterion of 0.001. At all considered 

locations the profiles are in very good agreement with reference to the specified velocity 

at the inlet. It is noticeable that there are no significant differences between the results for 
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averaged mean velocities for different time step sizes and variation of the time-step size 

shows a very small effect (less than 1%) on the computational results. 

 

Figure 2.21 Influence of the time-step size on the profiles of normalized mean 

velocity component at different locations along the centreline (𝐔̅ = 4m/s, TI = 10% 

and Lu = 0.10m) 

Figure (2.22) shows the comparisons of the turbulent kinetic energy spectra taken at the 

point located at the centre of the inlet plane i.e. at (0,0,0). The spectra show the same 

behaviour for both time-step sizes within the cut-off frequency of 100 Hz (frequency 

until which the spectra are modeled). The higher frequencies are not plotted since they 

correspond to the small amount of energy (less than 15%) contained by the small scales. 

The following figure also reveals that the time-step size (at least in the considered range) 

has a negligible effect on the modeled part of the energy spectrum, so it can be concluded 

that both the time scale sizes are small enough to resolve the relevant scales in the 

spectrum (in the present case). Figure (2.22) also shows that, irrespective of the choice of 

the time-step size, the spectrum satisfies the classical Kolmogorov prediction for the 

energy cascade in the inertial sub-range of the spectrum which is plotted as a reference 

line with (-5/3) slope.  
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Figure 2.22 Influence of the time step size on the streamwise turbulent kinetic 

energy spectrum at the inlet (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

Figure (2.23) displays the evolution of the integral length scales (Lu) monitored at 11 

different locations along the centreline of the domain for the two-different time-step 

sizes. It can be clearly seen that at the considered locations, the choice of time-step size 

has least effect (less than 1%) on the growth of the average eddy size which are then 

comparable to each other.  
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Figure 2.23 Influence of the time-step size on the profiles of integral length scales at 

different locations along the centreline (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

Figure (2.24) presents the streamwise decay of dimensionless normalized turbulent 

kinetic energy (TKE) in the longitudinal direction. For the considered test cases the 

differences of the turbulent kinetic energy are negligible (less than 2%) for the chosen 

different time-step sizes. 

So, it can be stated that the simulations with CFL ≈ 0.8 with time-step size equals to 

0.002s is more efficient, since it captures enough statistical information carried by large 

scales of turbulence, whilst having a larger flow time but a slower rate of convergence 

per time step. The turbulent flow traverses 40 times through the domain in the flow time 

which ensures that the domain is entirely populated with a sufficient number of eddies to 

allow extraction of relevant statistics from the flow. 
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Figure 2.24 Influence of the time-step size on the TKE decay along the centreline in 

the streamwise direction (𝐔̅ = 4m/s, TI =10% and Lu =0.10m) 

Having documented the first and second-order statistics along with the test for 

homogeneity and isotropy for the computer-generated turbulence, in the next section 

statistical LES results are compared with the earlier relevant experiments performed in 

the field of decaying isotropic homogeneous turbulence.   

2.9 Comparison with previous studies (Validation of the CFD 
model) 

In the following section, the spatial TKE profiles obtained from the numerical 

simulations employing both steady RANS and LES models, using commercial CFD 

codes are compared and validated with earlier relevant experimental and numerical 

studies. Both qualitative and quantitative comparisons are drawn to examine the 

differences observed with the previous studies. Additionally, a predictive methodology 

has been formulated using the numerical results to provide a unifying framework to the 

existing experimental decay laws that can estimate both local and the initial TKE and 

integral length scale values which will help one achieve distinct magnitudes of turbulence 
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scales at a location of choice, whilst relating it to a particular type of grid, which can then 

generate similar scales of turbulence. The latter can be then used to generate known 

turbulence in a typical wind-tunnel experiment.  

Since, the true isotropy condition is very difficult to generate, both experimentally and 

numerically, one may argue that instead of studying the decay of the stream-wise velocity 

fluctuations '2u  along the domain, it would make more sense to study the decay of the 

turbulent kinetic energy (TKE) which includes the influence of the decay rates of '2u , 

'2v  and '2w  embedded into the expression of TKE, since '2 '2 '21
TKE (u v w )

2
   . The 

isotropy levels in the streamwise direction given by
' 2

2

3u

q
range between 1.02 to 1.15 

respectively. Similarly, 
' 2

2

3v

q
lies between 0.84 and 1.01, whilst

' 2

2

3w

q
lies between 0.86 to 

1.01, where 2 '2 '2 '2q (u v w )   . Hence, in the following sub-sections the spatial decay 

of TKE is discussed in relation to its decay mechanism. 

The time-averaged, non-dimensional TKE profiles along the centreline of the domain in 

the streamwise direction obtained using the Dynamic-Smagorinsky LES model are 

compared with the previous existing experimental and numerical data of Kang et al. 

(2003), which is an update to the classical Comte-Bellot and Corrsin (1971) experiments 

as high turbulent Reynolds number flows (Reλ = 720) (fig 2.25). The results from Kang 

et. al. (2003) have been scanned and reproduced in the figure (2.25) for comparisons. The 

experimental grid used in Kang et al. (2003) comprised of horizontal and vertical rotating 

shafts having eight and six winglets, respectively, with the grid size, M = 0.152m. These 

types of grids are termed as active grids as it is an active method of turbulence 

generation. A pseudo-spectral code had been used in their study to perform the LES 

simulations. It is clear from figure (2.25) that the quantitative agreement between LES 

and different sets of data presented from that study (Kang et al. 2003) is remarkably good 

with a proper choice of the virtual origin 0(x ) value (which refers to the distance 
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downstream of an experimental grid origin, where the wake vortices from the grid 

(active) have coalesced sufficiently and the turbulence has started to become well-

developed and be nearly isotropic and homogeneous in nature). Crucially, their 

experiments were carried out in a large working section of 10m to allow sufficient 

streamwise distance for re-organization of turbulence. It should be noted that the decay 

rate of TKE is sensitive to the choice of the virtual origin (x0) and, in this comparison, the 

virtual origin of the experiments was typically taken at 20 mesh widths i.e. x0 =20M, 

downstream from the experimental test-section origin where the flow has effectively 

become homogeneous and isotropic. As x0 is an important parameter to this fitting, a 

summary of its magnitude, obtained with respect to the origin of the physical grid 

location is presented in table (2.11) which also includes the virtual origin for the present 

numerical simulations.  

Table 2.11 Summary of the virtual origin location (x0) with respect to the physical 

grid location for both experimental results of Kang et al. (2003) and LES 

Comparison between the 

study by Kang et al. (2003) 

and the present numerical 

study  

 

Virtual Origin (x0) 

Physical location of the 

virtual origin (x0) with 

respect to the origin of 

active grid location 

(experiments)/inlet (CFD) 

Kang et al. (2003) 20M 3.04m 

LES study 0 0m 

The agreement between these two studies shows that, in absence of mean shear and 

boundary layer wall effects, well-developed turbulent flow decays at a similar rate and 

there exists a universal decay mechanism of turbulence that would fit the same non-

dimensional curve. However, the similar rate of decay curves observed between the study 

by Kang et al. (2003) and the present study (fig. 2.25) is not surprising, yet it calls for a 

deeper analysis, since the prescribed initial turbulent characteristics of the flow (turbulent 

kinetic energy and length scales) are different in magnitude for both the cases. The initial 
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non-dimensional TKE magnitude and the integral length scales values at the location     

x-x0 = 0m, for both the studies are summarized in table (2.12) for completeness.  

Table 2.12 Initial TKE and length scale magnitudes for experimental data of Kang 

et al. (2003) and the present LES study 

Comparison between the 

study by Kang et al. (2003) 

and the present numerical 

study 

Non-dimensional initial 

TKE value 
Integral length scale (Lu) 

Kang et al. (2003) 0.035 0.25 

LES study 0.015 0.10 

Starting from the inviscid estimation of the kinetic energy dissipation rate (ε) given by 

                                                             
'3

u

dk u

dt L
                                                       (2.41) 

and invoking Taylor’s hypothesis, it is possible to deduce the decay of energy dissipation 

in the form of 

                                                            
'3

u

dk u
U

dx L
                                                   (2.42) 

Re-arranging and simplifying the equation (2.42) with a constant of proportionality D, a 

simpler empirical relation between the spatial gradient of non-dimensional TKE '(k )  and 

the global turbulence parameters (turbulent velocity fluctuation and length scale) is 

obtained which takes the form of    

                                                              

' 3

' 3

u

(u )

dk UD
dx L

                                                  (2.43) 
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A more detailed description about the constant of proportionality D and its deduction is 

presented in the upcoming section which is discussed purely based on dimensional 

considerations.  Thus ,the magnitude of the 
'dk

dx
 computed from the values of D, 'u , U  

and Lu at x-x0 = 0m gives an approximate value of 0.014 for Kang et al. (2003) and a 

value of 0.010 for present LES study which are in close proximity to each other. Since 

the initial spatial TKE gradient rate controls the downstream decay of the turbulent 

kinetic energy there is a similar tendency in the nearly isotropic and homogeneous region 

of turbulence.  Moreover, the corresponding local TKE gradient rates in the streamwise 

direction (i.e.

'

'
0

dk
( )
dk

dx
) are very close to each other (within ±2%) at each considered 

measurement locations (including x-x0 = 0m) which explains the identical nature of the 

loss of kinetic energy observed in both the studies. 

 

Figure 2.25 Comparison of decay of TKE in the streamwise direction between the 

studies of Kang et al. (2003) and the present LES results. 
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2.9.1 Predictive methods for spatial decay of turbulent kinetic energy 
(TKE) 

A new predictive algorithm based on the current methodology has been formulated in the 

present study which is used to identify a region of nearly constant turbulence (TKE and 

Lu) scale and to provide an estimate of the local and the initial turbulence levels of the 

fluid flow approaching the leading edge of a bluff body. The predictive algorithm is 

based on the simple inviscid estimation of the turbulence dissipation rate   at a given 

length scale, represented by 
dk

dt
   . 

The prediction method in the current study has been cast into a single correlation 

equation derived in the current section assuming that the turbulence is strictly isotropic in 

nature, the length scales (Lu) do not vary with the streamwise distance x, the 

dimensionless constant D is of the order of magnitude 1 (Sreenivasan, 1998), the 

temporal rate of decay is approximated by Taylor’s hypothesis of frozen turbulence 

Udt dx , and the kinetic energy dissipation rate
dk

dt
   is computed through the inviscid 

estimate given by
'3

u

u

L
  . 

The mean turbulent kinetic energy k is directly related to the fluctuating velocity 

components in the three directions 'u  , 'v  and 'w  is represented as follows 

                                                          '2 '2 '21
k (u v w )

2
                                            (2.44)    

If the perfect isotropic condition is satisfied, then '2 '2 '2u v w   and then the turbulent 

kinetic energy k is 

                                                                '23
k u

2
                                                        (2.45) 

Normalizing both the sides of the equation (2.45) with 
2

U gives 
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'2

' 2

2 2

k 3 u 3
k ( ) (Tu)

2 2U U
                                              (2.46)        

where 'k  is the dimensionless TKE and Tu is the turbulence intensity in fraction given by 

'

rmsu u
Tu

U U
   and '2

rmsu u   

Restating equation (2.43) given by 

' 3

' 3

u

(u )

dk UD
dx L

   and substituting 
'3

3

u
( )

U

 with 

appropriate form of 'k  we get 

                                                      
' ' 1.5

1.5

u

dk 2 (k )
( ) D

dx 3 L
                                               (2.47) 

where D is the dimensionless dissipation constant taken as unity for simplicity. A more 

rigorous discussion on the dimensionless dissipation constant D is carried out later in the 

present section. Integrating both sides with respect to x, gives the spatial variation of non-

dimensional TKE with the streamwise distance presented in the form of a power decay 

law as 

                                                 
' 0.5'

n0

'

0 0 u

A(k ) xk k
( 1)

k k L

                                         (2.48)    

where k and 0k  are the local and initial TKE (at x = 0) , 'k and '

0k are the dimensionless 

local and initial TKE (at x = 0), A is a dimensionless constant having a magnitude of 

0.272 (where A =0.272×D; D=1) , n is the decay exponent of magnitude 2, x (m) is the 

streamwise distance starting from the origin of the physical grid and uL is the integral 

length scale (m) which is taken as a constant in this derivation for simplicity. However, in 

reality, the integral length scale (Lu) grows in the streamwise direction as turbulence 

decays (Dryden, 1943) and cannot be treated as a constant which then alters the 

magnitude of the power law exponent n obtained in the correlation presented in equation 
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(2.48). Hence, to incorporate the effects of the spatial evolution of the length scale (Lu), 

the correlation equation (2.48) is rewritten in a general form as  

                                           1

' 0.5'
n1 0 0

'

0 0 u

A (k ) (x x )k k
( 1)

k k L


                                  (2.49) 

where 0x  is the virtual origin, and 1A , 1n  gives general decay coefficient and decay 

exponent for the above correlation (eq. 2.49) 

Replacing Lu with Lu0 in the equation (2.49) yields  

                                            2

' 0.5'
n2 0 0

'

0 0 u0

A (k ) (x x )k k
( 1)

k k L


                                 (2.50) 

where Lu0 is the initial value of the integral length scale (at x = 0), 2A  and 2n are the new 

decay coefficient and the decay exponent for the above correlation equation (2.50). 

The correlations presented in equations (2.49, 2.50) clearly depicts a power law form 

analogous to the grid-generated turbulence decay given by Pope (2000) in the form of  

                                                    n0

2

x xk
D( )

MU


                                                  (2.51) 

                                                      
'' nu 0L x x

D ( )
M M


                                                  (2.52) 

where M is the mesh spacing of the grid. A schematic representation of the typical 

turbulence generating grid was shown previously in figure (1.1), where the grid is 

typically made of cylindrical bars of diameter d. 

The correlation equation obtained in equation (2.49) is tailored specifically to include the 

effects of  the turbulent velocity fluctuation (in the form of TKE) and integral length 

scale (Lu) into a single correlation equation, since the evolution of length scales have an 

influential effect on the decay rate of the turbulent velocity fluctuations (Dryden,(1943), 

Krogstad & Davidson, (2010), irrespective of whether the large turbulent scales belongs 
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to Batchelor (Batchelor, 1953) or Saffman type (Saffman, 1967). Characterizing the 

decay of turbulence by equations (2.49, 2.50) allows extraction of the relevant global 

characteristics of the turbulent flow at any downstream location from the turbulent flow 

inlet. There has been a longstanding debate by previous researchers on the range of decay 

exponent (n) obtained for different types of grids and numerical simulations since its 

magnitude is said to depend on the initial conditions of the flow, the physical 

characteristics of the experimental grids (shape, size, width and porosity) and the choice 

of the virtual origin 0(x ) (Mohamed and Larue (1990), Lavoie et al. (2005)). A faster or 

slower rate of decay of turbulent kinetic energy (TKE) is also possible depending upon 

the solidity of the grids which depends on the porosity (  ), which itself is a function of 

the rod or wire dimeter used and the mesh width (M), as reported by Tan-atichat et al. 

(1982).  

Hence, the present work does not aim to address the question of determining definitive 

and precise values of the decay exponent (n) exhibited in eq. (2.49), but, rather, to come 

up with a global decay exponent (n) and dimensionless constant (A), that best fits the 

correlation function when using all the relevant previous experimental studies and the 

present numerical simulations, within an acceptable degree of accuracy, in the well-

developed region of homogeneous and isotropic turbulence.  

The final goal is to use steady RANS or LES simulations as a predictive tool to identify a 

region of fairly-constant TKE conditions and the maximum achievable value for such 

conditions. The correlations (equations 2.49 and 2.50) can also be used to estimate the 

local statistical turbulence parameters (k and Lu) at any location downstream of a grid 

based on the specified initial turbulence levels (k0 and Lu0) at the inlet. Similarly, the 

same set of prediction equations (2.49 and 2.50) also helps one to recover the initial 

freestream turbulence levels relevant to any bluff-body aerodynamics problem knowing 

the local magnitudes of turbulence scales, thus making this prediction method a complete 

closure solution to the choice of experimental turbulence generating grids required to 

achieve a particular level of turbulence.  
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While comparing with earlier experimental studies, it must be acknowledged that, for any 

experiment, that there is no a priori origin for x, where the turbulence is generated by a 

grid. The origin is not at the centre of the physical location of the grid elements and 

probably is the point where 
dk

( )
dx

is a local maxima. Hence, while comparing the present 

numerical results to the experimental studies, the experimental data are shifted 

downstream, where the turbulence is well developed and nearly isotropic, homogeneous 

in nature, so that the origin for x for the experimental studies lines up with the CFD 

origin on a consistent metric. In the CFD it is at x = 0 but in the experiments, it is going 

to be at some location x downstream from the centre of the grid elements which would 

then become the effective origin for x which is 0(x x ) . Table (2.13) summarizes the 

shift of all the different experimental data (considered in the present study) downstream 

to the location of the virtual origin x0 which is consistently related to the grid geometry. 

From table (2.13) it is clear that the prediction of actual (x0) location downstream 

depends on the ratio between the physical grid-element size (M) and the diameter of the 

physical grid element (d) given as M/d. From the same table it is also noticed that, as the 

ratio M/d increases, the physical location of the virtual origin (x0) with respect to the 

actual grid location decreases. Figure (2.26) shows a plot of M/d versus the physical 

location of the virtual origin (x0), with the best fit curve. The variables show a direct 

linear dependency with each other having R2 = 0.999, intercept on y axis equals 6.10 and 

the magnitude of the slope being 1.02. It follows that the actual location of the virtual 

origin (x0) can be predicted in a typical wind-tunnel set up, to a certain degree, based on 

the physical grid element sizes. The corresponding equation of the prediction comes out 

to be as M/d = -1.02 × x0 + 6.10. However, it is being pointed out here that the analysis of 

(x0) is incomplete here because of the fact that M/d is dimensionless parameter and x0 has 

dimensions of length so the constant -1.02 is not a just constant number with dimension 

of (1/length). The equation is dimensionally inconsistent and therefore must be used with 

care. The choice of the mesh width M also dictates the magnitude of the turbulent 

Reynolds number (Reλ) that is generated downstream in the well-developed region of 

turbulence. Higher turbulent Reynolds number (Reλ) requires the grid-element sizes (M) 

to be large enough and, therefore, (Reλ) can be said to be directly proportional to the 
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mesh width (M). Nevertheless, the accurate prediction of the virtual origin (x0) requires 

measurements carried out in a larger test-section over much longer range of downstream 

distances to limit the influence of the virtual origin (x0) on the decay exponent (n) as 

shown by Krogstad & Davidson, (2010). 

Table 2.13 Summary of the virtual origin location (x0) with respect to the physical 

grid location obtained from earlier relevant experimental data 

Source 

Type of 

Grid 

Geometry 

Mesh 

Width 

(M) 

Bar-

width of 

the grid 

element 

M/d 

Virtual 

origin 

(x0) 

Physical 

location 

of the 

virtual 

origin 

(x0) 

w.r.t. 

physical 

grid 

location 

Turbulence 

Reynolds 

number 

(Re𝜆)  

Kang et. 

al (2003) 

Active 

Square grid 

(Aluminum 

Plates) 

0.15m 0.05m 3.04 20M 3m 750 

Krogstad 

& 

Davidson 

(2011) 

Passive 

Square grid 

(Sheet 

metal) 

0.04m 0.01m 4 50M 2m 90 

Torrano 

et al. 

(2015) 

Passive 

Square grid 

(Sheet 

metal) 

0.05m 0.01m 5 20M 1m 100 
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Figure 2.26 Physical distances of the virtual origin(x0) with respect to the physical 

grid location plotted against the ratio of physical grid element size (M/d), for all the 

experimental studies (Kang et al. (2003); Krogstad & Davidson (2011); Torrano et 

al. (2015))  

2.9.1.1 Prediction equation based on the local value of the integral 
length scale (Lu) 

Figure (2.27) shows the direct comparisons of the normalized TKE profiles between the 

earlier experimental studies of Kang et al. (2003), Krogstad and Davidson (2011), 

Torrano et al. (2015) and the present numerical study (RANS and LES) where the 

dimensionless TKE profiles
0

k
( )
k

 are plotted against a non-dimensional parameter 

' 0.5

0 0 u(x x )*(k ) / L where 0(x x )  is the effective origin, '

0(k )  is the non-dimensional 

initial TKE value and u(L )  is the local value of the integral length scale. The magnitude 

of the initial normalized TKE and integral length scale values are digitized, extracted and 

reproduced from the previous experimental studies to achieve a direct comparison 

between the variables used in the plots by using the above scaling, even though the initial 

M
m*(x ) c0

d
    

 

  

m = 1.02; c = 6.10; R2 = 0.999 



86 

 

conditions of the different experiments and the CFD are different. Figure (2.27) also 

reveals that the numerical results (except the RANS results) are fairly consistent (±3%) 

with the overall experimental data (except few data from Torrano et al. (2015) which 

display larger deviation) and both the studies reproduce a similar tendency of the 

predicted turbulent kinetic energy decay. The deviation of the results obtained from the 

RANS modelling is due to the fact that the flow field is entirely modelled in a steady 

RANS simulation which entirely depends on the way the model constants are treated in 

the commercial CFD formulation. A more meticulous discussion on the standard RANS 

models and their shortcomings and possible improvements are discussed in the next 

chapter. The LES model computes most of the stochastic flow field directly and, 

therefore, has a better match with the experiments.  

 

Figure 2.27 Quantitative comparisons of the spatial decay of TKE profiles between 

earlier experimental studies and the present LES study 

Figure (2.28) shows the best-fit for the correlation function to all of the experimental and 

numerical data (TKE profiles), given by equation (2.49). The fitted coefficient values of 

A1 and n1 estimated from the best-fitted plots are ( 1A = 0.27 and 1n = 2.38) with a 95% 

confidence interval that indicates the uncertainty of the above estimate. The robust Bi-
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square method has been used for the current regression fit because the curve-fitting 

procedure fits the bulk of the data using the method of least squares. The goodness of the 

fit is excellent at R2 = 0.992. 

Here, the CFD data have well-specified initial conditions and the experimental data have 

a (consistent) virtual origin for x (i.e. x0 = x/M = 20). In practice, this re-organization 

length will probably be a bit different for different grid types and so the data could all be 

shifted along the x axis by a small amount. In addition, there is the influence of Lu in 

shifting the data along the x-axis. This is probably not measured accurately in any of the 

experiments (since spatial correlations are needed for this and all the data that have been 

used are obtained from temporal correlations where Taylor’s hypothesis has been 

invoked which is not as accurate). This contributes to the slight variation between the 

data sets obtained from different experiments. 

 

Figure 2.28 Spatial decay of TKE profiles of earlier experimental studies and 

present LES study, scaled with local integral length scale (Lu) plotted with a solid 

line that shows the best fit power law 
 

1

' 0.5
n1 0 0

0 u

A (k ) (x x )k
( 1)

k L


    

A1 = 0.27; n1 = 2.38; R2 =0.992 
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2.9.1.2 Prediction equation based on the initial value of the integral 
length scale (Lu0) 

Figure (2.29) shows the comparison of the spatial decay of the TKE profiles for the 

different experiments stated earlier and the LES study, with the x axis variable 

' 0.5

0 0 u0(x x )*(k ) / L  now scaled with the initial constant value of Lu i.e. (Lu0) instead of 

local values of Lu. The scaling parameter has been changed to see its effect on the 

quantitative agreement between the LES and the experimental studies. Here R2 = 0.971, 

which is not as good as the previous scaling, whilst the values of 2A and 2n are 0.44 and 

1.16, respectively. A confidence level of 95% is used for the above estimate. It turns out 

that the 2A and 2n values obtained from the regression fit (eq. 2.50) have values of 

different magnitudes compared to the A and n values obtained while deriving equation 

(2.48), even though both the correlation equation assumes a constant Lu in its scaling. The 

values of the decay coefficient (A) and the decay exponent (n) obtained from equation 

(2.48) are 0.27 and 2 respectively. 

 

Figure 2.29 Spatial decay of TKE profiles for different experiments and the present 

LES study scaled with initial integral length scale (Lu0) plotted with a solid line that 

shows the best fit power law 

2

' 0.5
n2 0 0

0 u0

A (k ) (x x )k
( 1)

k L


    

A2 = 0.44; n2 = 1.11; R2 =0.971 
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There are reasons for this observed variation, between the decay coefficients (A) and 

decay exponents (n), obtained in the derivation using the simple inviscid estimation of   

(eq. 2.48), and that obtained from the best fit curve over all the experimental data and 

LES results (eq. 2.50). 

Firstly, strictly isotropic turbulence has been assumed while deriving the correlation (eq. 

2.48), which in reality is difficult to achieve in turbulence generated in computer 

simulations (Ishida et al. 2006). In the present study, the isotropy ratio '2 '2u / v  varies 

from 1.02 to 1.18 while '2 '2u / w varies between 1.01 to 1.15 at 11 different considered 

measurement locations, which confirms that there is, at least, some amount of bias 

involved with the velocity fluctuations in each of the three directions. It is evident from 

the isotropy ratio’s that '2v  and '2w decreases more rapidly than '2u which might be the 

consequence of the mean flow being in the streamwise direction. However, this 

phenomenon is not surprising as such anisotropy of the flow has already been observed in 

the earlier experiments of Bennett and Corrsin (1978) and Lavoie et al. (2007). Secondly, 

while deriving the correlations presented in equations (2.47), (2.49) and (2.50) , it was 

assumed that D is a non-dimensional constant of magnitude unity, having no temporal or 

spatial dependency in the streamwise direction, since in developed isotropic and 

homogeneous turbulence, dissipation   relates to the kinetic energy transferred per unit 

time from the large scales to small scales which is same for all scales, and is a function of 

only large-scale quantities '3u and Lu only. But D is seen to have spatial dependency in 

the studies reported by Krogstad & Davidson, (2010). Hence, it is possible that the 

estimate of 2A and 2n  obtained from the best fit curve shown in the figure (2.29) 

inherently incorporates the variability of D, if any, present in the current simulations. 

However, a closer look at the dimensional identity of the inviscid estimate of (  ) 

demands 

3
( )

'2 2
uL / u D    constant. But, in both experiments and computer simulations, 

the ideal homogeneous condition is not achieved which is manifest through the 

streamwise decay of 
'2d(u )

dx
. Hence,   may now be a function of  ' 2u , Lu and 

'2d(u )

dx
. 



90 

 

Thus, there is a strong probability of D having a weak dependency on streamwise 

distance x, or t in both grid generated turbulence and turbulence generated through 

numerical simulations (Krogstad and Davidson, 2010). Besides this, Sreenivasan in his 

study (Sreenivasan, 1998) highlighted the fact that the variation of D is not only a 

function of the large scale turbulent properties (turbulence intensity and integral length 

scale), but also depends on the turbulence generation methods (active or passive) by the 

grid itself which, again, depends on the geometrical configuration of the grid. Hence, to 

explore the dependency of D with the streamwise distance x, it is imperative to accurately 

determine the rate of dissipation (ε) which is an independent estimate based on the 

turbulent kinetic energy equation.  

2.9.1.2.1 Estimate of the turbulent kinetic energy dissipation rate (ε) 

The present data (time-history of the measured velocity values) obtained from the LES 

solution offers two different methodologies to compute the turbulent kinetic energy 

dissipation rate (ε). First, (ε) maybe directly computed from the dissipation of the 

turbulence kinetic energy equation given by 
dk

dt
  . Substituting k as  

'2 '2 '21
k (u v w )

2
   and invoking Taylor hypothesis (i.e. Udt dx ) and representing ε as 

q  one obtains 

                                                          
2

q
1 dq

U
2 dx

                                                         (2.52) 

where, 2 '2 '2 '2q (u v w )   . The value of 
2dq

dx
 can be computed directly from the data 

for 2q vs x. A second and independent estimate of the viscous dissipation rate , (referred 

to as iso ), is obtained using the measured spatial derivative of the downstream velocity 

using Taylor’s hypothesis (Taylor, 1938b) and the assumption of local isotropy of the 

small scales. The corresponding expression of ( iso  ) is as follows 
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'

2
iso

du
15 ( )

dx
                                           (2.53)  

where,   is the kinematic viscosity of the fluid. Defining the Taylor microscale λ in the 

form of 
'2

2

'
2

u

du
( )

dx

  , for isotropic turbulence and substituting 
'

2du
( )

dx
 with 

' 2

2

u


in the 

equation (2.53) , iso  may be then written as  

                                                         
'2

iso 2

u
15 ( ) 


                                                      (2.54)                                     

The expression q in eq. (2.52) is based on the gradient of turbulent kinetic energy 

distribution, whereas the expression in the eq. (2.54) is based on the assumption of the 

local isotropy. Ideally, in a perfect isotropic and homogeneous turbulent flow, q

iso




 

should yield a magnitude close to unity. The results shown in figure (2.30) gives a 

comparison of the turbulent kinetic energy dissipation rate (ε) plotted against the 

streamwise distance x, computed based on the assumptions of homogeneity and isotropy 

q( ) , and on the assumption of local isotropy iso( ) . These results show that, at 

downstream locations further from inlet (i.e. at x >1m) the dissipation rate ( )  decays 

slowly compared to the region adjacent to the inlet which establish that, after a rapid 

decay in the initial regime, the turbulent kinetic energy (TKE) may nearly approach an 

asymptotic constant magnitude.  
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Figure 2.30 Comparison of the dissipation rate of turbulent kinetic energy computed 

as: εq=
𝟏

𝟐
𝐔̅(

𝐝𝐮′𝟐̅̅ ̅̅ ̅̅ ̅

𝐝𝐗
) ; εiso=𝟏𝟓𝛎(

𝐮′𝟐̅̅ ̅̅ ̅

𝛌𝟐 ) (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

Figure (2.31) shows the ratio, 
q

iso




 obtained for the present results. The deviation of the 

ratio, 
q

iso




 from unity in the initial regime highlights the fact that, even though a perfect 

isotropic condition can be achieved at the inlet based on the prescribed boundary 

conditions, a certain degree of inhomogeneity and anisotropy still exists until x ≈ 1m, 

after which the turbulence begins to achieve near isotropy levels. This phenomenon is 

verified by the similar trend of results observed in the study by Ishida et al. (2006) where 

the turbulence was generated using computer simulations by using an in-house spectral 

code. 
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Figure 2.31 Ratio of the dissipation rate of turbulent kinetic energy, 
𝛆𝐢𝐬𝐨

𝛆𝐪
  (𝐔̅ = 4m/s, 

TI = 10% and Lu = 0.10m) 

2.9.1.2.2 Estimation of the dimensionless dissipation coefficient D 

It has already been mentioned in the previous section that, in order to report the spatial 

variability of the dimensionless dissipation constant D, an accurate estimation of the 

dissipation rate ( ) is required. Two different estimates of ( ) presented in the previous 

section, gives two choices to measure the variation of D spatially in the streamwise 

direction along the domain. The value of D computed using ( q ) shall be denoted by qD  

and that computed using ( iso ) is denoted by isoD . The expected form of the two 

variants of D may then written as 

                                                          
q

q ' 3

u

D
(u )

L




                                                          (2.55)       
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                                                       iso
iso ' 3

u

D
(u )

L




                                                           (2.56) 

Both qD  and isoD  are computed using the local measurements of q , iso , '3u  and uL   

at each x location along the domain. The corresponding values of qD  and isoD  are 

plotted in figure (2.32) as a function of the streamwise distance x. The figure reveals a 

slow but steady decline of D along the centreline in the streamwise direction, consistent 

across both the variants of D plotted, a trend which was previously observed by 

Batchelor, (1953), Krogstad and Davidson (2010) and (Krogstad and Davidson, 2011). 

The scatter observed in the magnitudes of D in figure (2.32) is mostly due to the 

difficulty associated with the estimate of Lu, as discussed previously in section (2.8.3). 

 

Figure 2.32 Streamwise distribution of D along the centreline of the domain 

obtained from 
q

q ' 3

u

D
(u )

L


 and iso

iso ' 3

u

D
(u )

L


  
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There can be numerous reasons for this variability, of which the most important is the 

dependency of the quantity u
'3

L
D

u
   on the microscale turbulent Reynolds number 

(Re ) in the domain. The origin of this sensitivity of the dissipation constant D on the 

microscale Reynolds number (Re ) is a subject of extensive analysis and will be not be 

discussed here. The significance of this premise has been emphasized at various times in 

the past ((Saffman, (1968); Lumley, (1992); Frisch, (1995)). Attempts have also been 

made to test its credibility for different class of grid-generated flows (Jimenez et al., 

(1993); Wang et al., (1996); Wang et al., (1999); Yeung and Zhou, (1997); Cao et al., 

(1999)). Sreenivasan (1984), (1998) presented a critical discussion and a suitable 

tabulation of all the relevant experimental and numerical studies, on the mutual 

dependence of D on ( Re ) and showed that, irrespective of the grid configurations, an 

asymptotic constant magnitude of D is never achieved in both high and low turbulence 

Reynolds number flows. To support this fact in the current study, a figure (2.33) showing 

the variation of the quantity ( u
'3

L
D

u
  ) with respect to the Taylor microscale Reynolds 

number ( Re ) is presented, which clearly shows that both variants of D ( qD  and isoD ) 

vary with Re  downstream from the inlet. The dimensionless dissipation constant D 

decreases when Re  becomes smaller and vice versa. These results are also supported 

with the similar trend of D observed with respect to the turbulent Reynolds number (Reλ) 

reported in Krogstad and Davidson (2010) and Krogstad and Davidon (2011). The 

underlying premise from the present discussion acknowledge that the variation in the 

microscale turbulent Reynolds number ( Re ) in the streamwise direction could have 

possibly manifested itself in the slow evolution of D seen in figure (2.33). 
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Figure 2.33 Variation of the dimensionless dissipation constant D along the 

streamwise distance of the domain plotted to compare with the variation of the 

turbulent Reynolds number (Rλ) along the same direction 

2.9.1.3 Prediction equation based on the local magnitude of TKE (k) 
and the local magnitude of the integral length scale (Lu) 

Figure (2.34) shows another form of spatial decay of the TKE profiles from both the 

experiments and LES data, but with the x ordinate scaled with local non-dimensional 

turbulent kinetic energy value 'k  and local magnitude of the integral length scale (Lu). 

The figure (2.34) reveals an approximate linear relationship between the variables 

0(k / k )  and ' 0.5

0 u(x x )*(k ) / L which implies that  

                                              
0

' 0.5

0 u

d
(k / k )

dx
d

(x x )*(k ) / L
dx





constant                                (2.57)                                

This holds true and is manifest through the power law dependencies of k and Lu in the 

streamwise direction which are given by the following two equations: 
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'

p

1'

0 0

k k
(a x 1)

k k

                                                      (2.58) 

                                                qu
2

u0

L
(a x 1)

L
                                                              (2.59) 

In order to arrive at linearity; a1 ≈ a2 and a slight deviation from the numbers (a1 and a2) 

can affect the linearity of the experimental data sets and the LES results seen in figure 

(2.34), which is simply a consequence of the curve fitting performed for the best fit for 

equations (2.58) and (2.59). Similarly, p and q are closely related to each other in the 

form of 
q

p 1
2
   for the LES results, which is verified by the exponents derived in 

Krogstad and Davidson (2010). The left-hand side of equation (2.57) can be solved to 

arrive at a constant value and the solution method is shown in the Appendix A. The best 

linear fit line is drawn in the figure (2.37) which gives R2 = 0.953 with the slope m = -

0.51 and the intercept C=1 having 95% confidence bounds in the intervals. Hence, the 

final equation of the spatial decay of TKE is 

                                            
' 0.5'

0

'

0 0 u

(x x )*(k )k k
( ) ( ) m( ) C
k k L


                                (2.60) 
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Figure 2.34 Spatial decay of TKE profiles for different experiments and the present 

LES data with the x abscissa scaled with local k and Lu plotted with a sold line that 

shows the best fit linear curve 

Equation (2.50) along with equation (2.60) also helps one predict the initial TKE
0(k )  and 

length scale values (Lu0), provided one knows the local values of TKE (k) and length 

scale (Lu) which gives another method of estimating the statistical turbulence parameters 

in the domain. 

However, it is worth mentioning that, within computational accuracy, the turbulent 

kinetic energy (TKE) decay curves obtained from the experiments and the LES plotted in 

figures (2.28, 2.29 and 2.34) all collapse onto a universal decay curve, as expected from 

the model equations (2.49, 2.50 and 2.60). 

2.9.2 Set of prediction correlation equations 

There are, altogether, 3 sets of data, which have been used here for the predictive 

methodology, in accordance with the previous experimental studies, to estimate the 

magnitude of the local and initial TKE and Lu values. The values of the fitted coefficients 

for all sets of data are summarized in table (2.14) and (2.15). 

' 0.5
0

0 u

(x x )*(k )k
m( ) C

k L


    

m = -0.51; C = 1; R2 =0.953 
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Table 2.14 Constants obtained from best regression curve fitting procedure to 

equations 2.49 and 2.50 using the method of Non-linear least squares 

Normalization 

parameter of the x 

ordinate 

Decay exponent (n) 
Decay coefficient 

(A) 
R2 

'

0k and uL  2.38 0.27 0.992 

'

0k and u0L  1.16 0.44 0.971 

Table 2.15 Constants obtained from best regression curve fitting procedure to 

equation 2.60 using the method of Non-linear least squares 

Normalization 

parameter of the x 

ordinate 

m (slope) 
C (intercept on the y 

ordinate) 
R2 

'k and uL  -0.51 1 0.953 

Since, the primary objective from the current study was to formulate a simple predictive 

method for establishing particular leading edge TKE and Lu values for bluff body studies 

based on specifying upstream inlet conditions, equations (2.49), (2.50) are re-written in 

logarithmic form to arrive at a system of linear equations consistent with the form of 

equation (2.60). The new system of equations is presented below: 

                                
' 0.5

' ' 1 0 0
0 1

u

A (k ) (x x )
log(k ) log(k ) n log( 1)

L


                            (2.61) 

where n1 = 2.38 A1 = 0.27, 0x  = 20M (for bi-planar square grids) 

                                
' 0.5

' ' 2 0 0
0 2

u0

A (k ) (x x )
log(k ) log(k ) n log( 1)

L


                            (2.62) 
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where n2 = 1.16, A2 = 0.44, 0x  = 20M (for bi-planar square grids) 

                                            
' 0.5'

0

'

0 0 u

(x x )*(k )k k
m( ) C

k k L


                                     (2.63) 

where m = -0.51, C = 1, 0x  = 20M (for bi-planar square grids) 

All the equations presented here show several variants of the same phenomenological 

model obtained using the relation between the inviscid estimate of ε and the decay of 

turbulent kinetic energy (TKE), that in turn quantifies the spatial decay of turbulent 

kinetic energy downstream from the point of inlet turbulence generation. 

Sample calculations are shown in Appendix B, where both initial and local values of the 

turbulent parameters (TKE and Lu) have been estimated to make the use of the equations 

clearer to the reader. 

2.9.3 Sensitivity of the virtual origin (x0) 

The sensitivity to the choice of virtual origin x0 on the goodness of the fit for the 

experimental data sets with each other and to the LES data, based on the different 

correlations (eq. 2.49, 2.50, 2.60) are explored in the current section. The sensitivity 

check was performed to see whether a change in the choice of the virtual origin (x0) 

value, yields a better fit of the LES results to the experimental data or not. The virtual 

origin was shifted further downstream for all the experimental data (x0 = 30M for Kang et 

al. (2003), x0 = 60M for Krogstad and Davidson (2011), x0 =30M for Torrano et al. 

(2015)) on a consistent metric (shifting 10M for each), while comparing both sets of data, 

in the homogeneous region of turbulence. Three sets of figures (fig. 2.35, fig. 2.36 and 

fig.2.37) are presented in the following section where the x abscissa have been scaled 

differently in each of the figures.  

2.9.3.1 Scaling with the local magnitudes of integral length scale (Lu) 

Figure (2.35) represents the spatial decay of non-dimensional TKE profiles scaled with 

the non-dimensional parameter ' 0.5

0 0 u(x x )*(k ) / L  with local Lu as a variable, plotted 
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for all the relevant experimental studies and the current LES study. The A1 and n1 values 

obtained from the best fit curve shown are 0.27 and 2.35 with R2 = 0.996 respectively 

with 95% confidence bounds of the estimate. As expected, the values of the decay 

coefficient (A1) and the decay exponent (n1) obtained from the best fit curve in the figure 

(2.35) are in close proximity (less than 2%) to those obtained from the earlier plot (fig. 

2.28) with the same scaling parameter. This concludes that after turbulence becomes fully 

developed to isotropic and homogeneous condition, a shift in the virtual origin (x0) of the 

experimental data has negligible effect on the goodness of the fit between the LES and 

the experimental results when scaled with the local values of the integral length scale 

(Lu).  

 

Figure 2.35 Spatial decay of TKE profiles for different experiments and the present 

LES study scaled with local integral length scale (Lu) with a different choice of 

virtual origin (x0) plotted with a solid line that shows the best fit power law 

2.9.3.2 Scaling with the initial magnitude of integral length scale (Lu0) 

Figure (2.36) shows the non-dimensional TKE profiles now plotted with the different 

scaling parameter, ' 0.5

0 0 u0(x x )*(k ) / L , scaled with an initial value of integral length 

1

' 0.5
n1 0 0

0 u

A (k ) (x x )k
( 1)

k L


    

A1 = 0.27; n1 = 2.35; R2 =0.996 
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scale (Lu0). The values of 2A and
2n obtained from the best fit performed, after shifting the 

virtual origin (x0), further downstream for the experimental data are, are 0.91, 0.64 

respectively with the fitted R2 = 0.967. However, from figure (2.36), it is revealed that, 

although the experimental data lie up much closely with each other, the current fit 

between the experimental data and the LES results does not improve as compared to the 

previous fit presented in figure (2.29). This is evident from the R2 value of 0.971 obtained 

for the figure (2.29) which shows less than 0.5% difference when compared to the R2 = 

0.967 obtained with a shift in the virtual origin in the current plot. (fig 2.36). This verifies 

the earlier observation made in the previous section that a shift in the virtual origin (x0) 

has negligible influence on the goodness of the fit between the earlier experimental 

studies and the current LES data. 

 

Figure 2.36 Spatial decay of TKE profiles for different experiments and the present 

LES study scaled with initial integral length scale (Lu0) with a different choice of 

virtual origin(x0) plotted with a solid line that shows the best fit power law 

2

' 0.5
n2 0 0

0 u0

A (k ) (x x )k
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k L


    

A2 = 0.64; n2 = 0.91; R2 =0.967 
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2.9.3.3 Scaling with the local magnitude of TKE (k) and local 
magnitude of the integral length scale (Lu) 

The spatial decay of TKE profiles is shown in figure (2.37) as a function of 

dimensionless parameter ' 0.5

0 u(x x )*(k ) / L , scaled with the local values of TKE (k) 

and the integral length scale (Lu). The best fit linear curve in the figure (2.37) yields a 

slope m = -0.53 and C = 1, having R2 = 0.978. As expected, the slope of the function 

obtained from the current fit (fig. 2.37) is close to that obtained previously from the fit in 

figure. (2.34). However, an improvement in the magnitude of R2 coefficient is observed 

in the current fit (R2 = 0.978) in compare to the previous fit (R2 = 0.953), which is mostly 

due to less scatter in the data sets obtained from the data of Torrano et al. (2015), at 

further downstream positions. This hints at the possibility that, if the virtual origin (x0) is 

shifted downstream for the experiments, a better match between the different experiments 

and the LES results may be obtained provided the shift in the virtual origin is performed 

in an objective and consistent manner. 

 

Figure 2.37 Spatial decay of TKE profiles for different experiments and the present 

LES study scaled with local TKE (k) and local integral length scale (Lu), with a different 

choice of virtual origin(x0) plotted with a solid line that shows the best fit power law 
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0 u
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
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m = -0.53; C = 1; R2 =0.978 
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All the fitted coefficient and exponent values obtained from the above best fitting curve 

procedure, with and without the shift in the virtual origin (x0) are summarized in table 

(2.16) and table (2.17) for relative comparisons with each other.  

Table 2.16 Constants obtained from best regression fit curve procedure using the 

method of Non-linear Least Squares (with a shift in virtual origin) 

 Without a shift in the virtual 

origin (x0) 

With a shift in the virtual origin 

(x0) 

Normalization 

parameter of 

the x ordinate 

Decay 

exponent 

(n) 

Decay 

coefficient 

(A) 

R2 

Decay 

exponent 

(n) 

Decay 

coefficient 

(A) 

R2 

'

0k and uL  2.38 0.27 0.99 2.35 0.27 0.996 

'

0k and u0L  1.16 0.44 0.97 0.91 0.64 0.967 

 

Table 2.17 Constants obtained from best regression fit curve procedure using the 

method of Non-linear Least Squares (with a shift in virtual origin) 

 Without a shift in the virtual origin 

(x0) 

With a shift in the virtual origin 

(x0) 

Normalization 

parameter of 

the x ordinate 

m (slope) 

C 

(intercept 

on the y 

ordinate) 

R2 m (slope) 

C 

(intercept 

on the y 

ordinate) 

R2 

'k and uL  -0.51 1 0.95 -0.53 1 0.978 
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2.9.4 Identification of nearly constant TKE conditions 

It is worth mentioning that the correlations presented in equations (2.61, 2.62, 2.63) each 

represent a simplistic linear equation involving one unknown variable which can be used 

to estimate either the local turbulence parameters (TKE and Lu) at any downstream 

location or predict the initial turbulent parameters for decaying freestream turbulent flow. 

Thus, the equations (2.61), (2.62) and (2.63) completes the prediction tool for designing 

turbulence generating grids.  

In order to support the previous statement, a few sample calculations have been done, 

where the known inlet turbulent parameters have been used to predict the unknown 

turbulent parameters at any location x downstream in the computational domain (for e.g. 

the values of TKE (k) and integral length scale (Lu), at x = 2m, 3m and 4m have been 

estimated using the inlet values of TKE and Lu). Similarly, additional calculations have 

been shown to estimate the unknown turbulent variables at the inlet for all the relevant 

experimental data sets available, with known local turbulent levels, in order to verify the 

applicability of the prediction tool to the experiments on decaying turbulence. All the 

computed values of TKE and Lu using the above prediction tool lie approximately within 

±5% in accordance with the actual known values of those parameters. All the sample 

calculations are presented in the Appendix B for completeness in the discussion.  

The other main objective from the present study was to identify a region of nearly 

constant incident TKE, where the spatial decay rates of TKE would be substantially 

smaller than in the other regions. This region of uniform TKE holds primary importance 

in experimental investigations carried out in wind tunnels for turbulent flow 

measurement, since in such case, the effect of free stream turbulence can be quantified 

accurately (as it will not vary monotonically over that regime), with relevance to the 

dynamics of boundary layer heat and mass transfer from a bluff body placed in a 

turbulent free stream. Determining the near constant TKE conditions in experimental 

surroundings is an arduous task and, hence, the CFD model prediction is aimed at 

specifying a grid to achieve acceptable levels of target TKE over a constant region.  

Figure (2.38) shows the variation of the TKE profiles as a function of the streamwise 

distance x. It is clearly identified from figure (2.38) that, in the region that extends from 
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x=2m to x=4m, the rate of decay of non-dimensional TKE is small with reference to the 

rates of change of TKE in the upstream section. The percentage variation of non-

dimensional TKE in proportion to its specified initial TKE value over that near constant 

region (i.e. from x = 2m to x = 4m) is 14.41% which is relatively very small compared to 

the percentage variation of TKE over x= 0m to x=2m, which is 41.33%.  The observation 

is more pronounced in the next figure (2.39), where the spatial gradient of TKE 0

k
d( )

k

dx
 

has been plotted against the distance x in the streamwise direction. As can be seen from 

the plot in figure (2.39) the rate of change of non-dimensional TKE is of the order of 

magnitude -2 over the region extending from x = 2m to x = 4m. This establishes the 

premise that the turbulent kinetic energy (TKE) asymptotically decays spatially in the 

streamwise direction to achieve a fairly constant magnitude over a region  located 

downstream starting at x = 2m. Figure (2.40) shows the variation of spatial rate of decay 

of TKE in the form of 0
' 0.5

0 0 u

k
d( )

k

d((x x )*(k ) / L
plotted against the non-dimensional 

variable ' 0.5
0 0 u(x x )*(k ) / L  for all the experimental data and the LES results. The 

comparisons between the experimental results and the LES data display very good 

quantitative agreement over the entire range of data and suggests very little change in the 

decay rate of TKE over the x-ordinate dimension ranging from 1 to 3.5. Therefore, the 

quantitative agreement presented in figure (2.40) can act as a validation case towards 

specifying a grid to achieve similar levels of turbulence as generated in numerical 

simulations. The grid that has the closest match to the aforementioned CFD prediction 

model and can be used as the turbulence generator in wind-tunnel experiments is 

“Conventional Bi-Planar square grid” which can be made up of any thin sheet metal 

(e.g. aluminum). The grid must have square holes of uniform cross-sectional area with 

the mesh spacings (M) chosen in accordance to the range of turbulent Reynolds number 

(low, medium or high) one wishes to generate downstream from the grid-section.  
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Figure 2.38 Spatial decay of TKE profile (LES) plotted against the streamwise 

distance x (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

 

Figure 2.39 Rate of spatial decay of TKE profile (LES) along the streamwise 

distance x (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 
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Figure 2.40 Rate of spatial decay of TKE profile in the form of

' 0.5
0 0 0 ud(k / k ) / d((x x )*(k ) / L plotted against ' 0.5

0 0 u(x x )*(k ) / L  for all the 

experimental data and the LES results (𝐔̅ = 4m/s, TI = 10% and Lu = 0.10m) 

2.9.5 Influence of the different Reynolds number, integral length 
scales and turbulence intensities on the spatial decay rate of 
TKE 

In this section the effect of initial turbulent flow parameters on the spatial decay rate of 

TKE has been examined, to find out whether the decay downstream has a universal self-

similar behaviour. This effect is determined in terms of data obtained as a part of the 

present numerical study performed for both RANS and LES simulations. The studies 

cover a range of flow Reynolds number corresponding to velocities ranging from 4m/s to 

40m/s, initial turbulence intensity (TI) varying from 10% to 30%, and the initial integral 

length scales (Lu) varying from 0.02m to 0.1m.  
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2.9.5.1 Effect of initial conditions on the decay power law exponent   
and coefficient based on RANS studies 

In this section, the influence of the initial conditions such as Reynolds number (Re), 

turbulence intensity (TI) and integral length scales (Lu) on the spatial decay rate of TKE 

is assessed and its consequence on the values of decay coefficient and decay exponent are 

explored. This assessment is done for the 3D steady RANS simulations carried out in the 

present work. For all the numerical simulations, the virtual origin (x0) is taken to be zero 

and the decay exponent (n) and coefficient (A) are found using the method of best fit 

curve to the equations; presented in (eq. 2.49 and 2.50), as discussed previously. 

The spatial decay of the TKE profiles as a function of turbulent Reynolds number (ReLu) 

at the inlet is shown on figure (2.41) for steady RANS simulations. The turbulent 

Reynolds Number (ReLu) is based on the integral length scale value at the inlet (Lu0) and 

the streamwise r.m.s velocity fluctuation 'u , given by 
'

u0
Lu0

u L
Re


 , where   is the 

kinematic viscosity of the fluid (1.57×10-5 m2/s2) and it varies from 2.55×103 to 2.55×104. 

The turbulence intensity (TI) and the integral length scales were maintained at 10% and 

0.1m respectively at the inlet, to make the parameters consistent across all cases. It is 

obvious from the plot that the global turbulent Reynolds number (Re) based on the inlet 

integral length scale (Lu0) (i.e. Lu0Re ) has no effect on the decay rate of TKE 

downstream of an inlet. This can be attributed to the fact that the turbulent kinetic energy 

dissipation rate ε does not depend on the mean streamwise flow velocity U , rather it 

depends on the local velocity fluctuations and the length scales at a prescribed location, 

since 
'3

u

u

L
  . Hence, all the turbulent Reynolds numbers studied in the following range 

present the same decay curve. A best fit curve is plotted according to equation (2.49), 

yielding R2 = 0.999. The corresponding values of decay coefficient (A1) and the decay 

exponent (n1) are 0.25 and 4.09, respectively. Here, the exact values of the decay 

coefficient (A1) and the decay exponent (n1) are not important, rather the aim is to 

observe whether the difference in the flow velocity at the inlet has an effect on the spatial 

decay of TKE.  
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Figure 2.41 Spatial decay of TKE profiles for different Reynolds number (Re) 

prescribed at the inlet (RANS)  

A parametric study is carried out in the following section, where figure (2.42) and (2.43) 

shows the influence of different magnitudes of turbulence intensities (TI) and integral 

length scales (Lu) prescribed at the inlet, on the streamwise decay of TKE. The specified 

inlet length scale value has been varied from 0.02m to 0.10m, at a fixed turbulence 

intensity (TI) of 10% at the inlet, which then corresponds to the turbulent Reynolds 

number (ReLu0) varying from 509.5 to 2.55×103. Similarly, the inlet turbulence intensity 

(TI) has been varied from 10% to 30% keeping the inlet length scale (Lu0) fixed at 0.1m, 

that corresponds to a turbulent Reynolds number (ReLu0) varying from 2.55×103 to 

7.69×103. It is clear from figure (2.42) that, for a fixed turbulence intensity, a smaller 

length scales facilitates a higher rate of decay of the velocity fluctuations. This is already 

predicted from the inviscid estimation of ε where, ε  
1

Lu
, for fixed 'u  value. Similarly, 

'3u   for a fixed length scale value, which is why a higher velocity fluctuation 'u  aids 

higher rate of decay of the TKE, since the dissipation rate is higher. This is also verified 

from the plot shown in figure (2.43) where the highest turbulence intensity curve has the 

steepest slope. 

1

' 0.5
n1 0 0

0 u

A (k ) (x x )k
( 1)

k L


    

A1 = 0.25; n1 = 4.09; R2 =0.999 
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Figure 2.42 Spatial decay of TKE profiles (RANS) for different integral length 

scales (Lu) prescribed at the Inlet  

 

Figure 2.43 Spatial Decay of TKE profiles (RANS) for different Turbulence 

Intensities prescribed at the Inlet  
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However, as discussed before, the decay of turbulence is universally self-similar in nature 

and, as expected, is not a function of the initial conditions. Hence, when the TKE 

equations are suitably normalized according to equation (2.49), a single best fit decay 

curve is obtained, for all values of turbulence intensity (TI) and length scale (Lu) 

prescribed at the inlet. Figure (2.44) shows the best fit curve plotted against the spatial 

variation of TKE for different turbulence intensities and integral length scales, where R2 

= 0.999. The corresponding values of the fitted decay coefficient (A1) and the decay 

exponent (n1) values are equal to 0.31 and 3.40, respectively.  

 

Figure 2.44 Spatial decay of TKE profiles (RANS) for different turbulence 

intensities and Integral length scales plotted with a solid line that shows the best fit 

power law  

2.9.5.2 Effect of initial conditions on the decay power law exponent 
and coefficient based on LES studies 

In the present section, a parametric analysis obtained from the LES simulations are 

presented. The integral length scales have been varied from 0.02m to 0.10m, at a fixed 

turbulence intensity (TI) of 10%, which corresponds to the flow turbulent Reynolds 

number (ReLu0) varying from 509.5 to 2.55×103. Similarly, the turbulence intensities (TI) 

1

' 0.5
n1 0 0

0 u

A (k ) (x x )k
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k L


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A1 = 0.31; n1 = 3.40; R2 =0.999 
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have been varied between 10% and 30%, at a fixed length scale value of 0.1m. The 

turbulent Reynolds number of the flow varies from 2.55×103 to 7.64×103. The 

simulations with different mean flow velocities at the inlet was not carried out for LES, 

since the RANS simulations already predicted that the rate of turbulence decay is 

insensitive to the variation of flow velocities at the inlet. A similar behaviour of the 

spatial decay of the TKE profiles was observed when the integral length scales and 

turbulence intensities were varied at the inlet, the reasons for which have been already 

discussed in the previous section. 

As expected, when the length scale becomes smaller the decay rate is higher and, 

similarly, higher turbulence intensity gives a higher decay rate, as evident from figures 

(2.45) and (2.46), which shows the spatial decay of TKE profiles for different turbulence 

intensities and length scales, the reasons for which has been discussed previously. Figure 

(2.47) is another indicative measure of the nature of turbulence encountered in numerical 

simulations, which is mostly of Saffman type where the streamwise velocity fluctuations 

and the length scale satisfies the relation '2 3

uu L ≈ constant.  

 

Figure 2.45 Spatial decay of TKE profiles for different integral length scales (Lu) 

prescribed at the inlet (LES) 
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Figure 2.46 Spatial decay of TKE profiles for different turbulence intensities at the 

inlet (LES) 

 

Figure 2.47 Downstream variation of 
'2 3 2 3

0/u uu L U L  along the centreline of the 

domain (LES) 

  



115 

 

Figure (2.48) shows the spatial decay of TKE profiles for all values of turbulence 

intensity and length scales considered in the study, put into a single regression equation 

fit (eq. 2.49) to find a single value of the estimated coefficients from the curve fit. As 

anticipated, the decay characteristics of the turbulent flow shows similar behaviour for all 

length scales and turbulence intensity values, which depicts a unifying nature of the 

turbulence decay in the nearly isotropic and the homogeneous region. R2 = 0.977, which 

is convincing for a good fit. The decay coefficient (A1) and the decay exponent (n1) 

obtained from the fit are 0.30 and 2.43, respectively. These values are very close and are 

comparable to those obtained from the experimental validation of the LES results with 

the curve fit (eq. 2.49) shown in figure (2.28). The difference in the fitted coefficients is 

due to the fact that, in the former case the aim was to bring the LES results and 

experimental data together, whereas in the latter, only the LES results are compiled 

together and plotted for different length scale and turbulence intensity values. 

 

Figure 2.48 Spatial decay of TKE profiles for different Turbulence Intensities and 

Integral length scales plotted with a solid line that shows the best fit power law 

On a similar note, all the LES results obtained for different values of inlet turbulence 

intensities (10%, 20% and 30%) and integral length scale values are plotted with all the 
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experimental data together with its fit in figure (2.49). The best fit curve obtained with 

95% confidence bounds estimates the decay coefficient (A1) and the decay exponent (n1) 

values as 0.29 and 2.32 which have less than 2% variation compared to those obtained 

while plotting the best fit curve in figure (2.28). An R2 = 0.973 is obtained which reflects 

the goodness of the curve fit in the following figure for all the data. This concludes the 

fact that that, irrespective of the different magnitudes of the turbulent parameters 

specified at the inlet, a reasonable fit with a single power law can be obtained that best 

represents all the data. However, a slight deviation of the data observed for the 20% and 

30% turbulence intensity cases (refer to fig. 2.48), reflects that, an increase in the 

turbulence levels at the inlet increases the anisotropy of the turbulent fluctuations to some 

extent in the computational domain, the levels of which are not very excessive (isotropy 

ratio around 1.3-1.5) and are comparable to, if not better, than in most experiments where 

10%-30% difference in the streamwise and the span wise velocity variance have been 

reported (Skrbek and Stalp, 2000). The other possible reason for the deviation observed 

could be the uncertainty error associated with the estimate of the local integral length 

scale (Lu) used in the scaling factor for the x abscissa variable. The well-known Taylor 

hypothesis (Taylor, 1935) has been used while determining the integral length scale 

values from the integral time-scale estimation using the auto-correlation function 

discussed in section (2.8.3). However, according to (Batchelor, 1967), this hypothesis is 

only valid for turbulence intensity up to 15%, whereas in the current study simulations 

were carried out for turbulence intensities of 20% and 30% and, thus, the integral length 

scale estimation for these turbulent intensity cases may not be very accurate in nature. 
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Figure 2.49 Spatial decay of TKE profiles for different turbulence intensities and 

integral length scales compared with the relevant experimental results plotted with 

a solid line that shows the best fit power law 

2.9.5.3 Identification of near constant turbulent conditions for 
different inlet turbulence conditions 

In this section, re-assessment of the CFD predictive model with different inlet turbulence 

intensities and integral length scales have been carried out to identify the near constant 

turbulent conditions downstream from the inlet.  Figure (2.50) illustrates the results of the 

investigation where the spatial decay of non-dimensional TKE profiles for different 

prescribed turbulence intensities and length scales are plotted against the streamwise 

distance. The figure clearly reflects that, between x=2m and x=4m, the variation in the 

magnitude of TKE is relatively smaller than in the upstream section ranging from x=0m 

to x=2m. The present results are consistent with the results already shown (fig. 2.38) and 

discussed in section (2.8.6), which demonstrates that, irrespective of the different 

magnitudes of turbulence intensities and integral length scales specified at the inlet, a 

near uniform region extending between the x=2m to x=4m can be achieved, over which 
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the TKE does not change more than 15% in proportion to the specified turbulence 

intensity at the inlet.  

 

Figure 2.50 Spatial decay of TKE profiles for different inlet turbulence intensities 

(TI) and integral length scales (Lu) along the streamwise distance x 

These results are also justified from the plot shown in the figure (2.51) where the 

streamwise spatial gradient of the dimensionless TKE is plotted against the streamwise 

distance x to identify regions where the rate of change of TKE is small. The slope of the 

gradient is of the order of magnitude -2 in the region from the mid-section until the end 

which re-asserts the validity of the current prediction method in determining the nearly 

constant region of uniform TKE that roughly extends from x=2m to x=4m consistent with 

figure (2.39).  

Having thoroughly examined the different aspects of spatially decaying freestream 

turbulence in the previous discussions, the next section summarizes the key findings from 

the research.  
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Figure 2.51 Rate of spatial decay of TKE profiles for different inlet turbulence 

intensities (TI) and integral length scales (Lu) along the streamwise distance x 

2.10 Summary 

This section discusses key points and summarizes the results obtained from the current 

numerical simulations carried out in this study. 

• With proper choice of inlet turbulence generator algorithm, an approximate 

isotropic and homogeneous condition can be achieved in turbulence generated by 

computer simulations. The skewness of the velocity fluctuations exhibits near isotropic 

conditions with the isotropy ratio varying between 1.01 to 1.15, which is well in 

accordance with the nature of the turbulence generated in most wind tunnel experiments. 

• Turbulence generated in numerical simulations highly suggests its nature to be of 

Saffman type (Saffman, 1967), ( '2 3
uu L  ≈ constant), irrespective of the integral length 

scale (Lu) value specified at the inlet. 
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• The laws of similarity suggested by Saffman (Saffman, 1967) point out that a 

decrease in the velocity fluctuations in the streamwise direction would manifest itself in 

growth of the integral length scale (Lu) along the domain, a trend that is verified in the 

current study. Therefore, both turbulent velocity fluctuations and integral length scale are 

inter-linked with each other and both contribute to the decay of TKE downstream from 

the inlet. Therefore, one should consider both the factors before invoking any prediction 

on the decay rate of the TKE. 

• The current LES results (though not the RANS model) show very good qualitative 

and quantitative agreement with the earlier relevant experimental studies of Kang et al., 

(2003), Krogstad and Davidson (2011) and Torrano et al. (2015) and, thus, the CFD 

model prediction results are expected to be reliable.    

• Irrespective of the magnitude of the turbulence scales specified at the inlet (initial 

TKE (k0) and inlet integral length scale (Lu0)), it was found that the decay of turbulence 

exhibits a near universal behaviour throughout the domain and, therefore, all the decay 

curves collapse onto a single power law curve, when scaled appropriately with the TKE 

and the integral length scale values. Thus, the decay of turbulent kinetic energy (TKE) is 

universally self-similar in nature. 

• A predictive methodology has been proposed in the current study with estimates 

of the decay coefficient (A) and the decay exponent (n) based on all the LES and the 

earlier experimental results, that can be used to estimate unknown values of turbulent 

parameters (TKE or length scales) at different locations in the domain (at the inlet or any 

downstream position from the inlet). These predictions can be then extended to the type 

of turbulence generated in typical wind-tunnel experiment using a bi-planar square grid. 

The predictive tool is shown to replicate values within a difference of ±5% from the 

actual known values of those parameters.  

• The sensitivity of the choice of virtual origin (x0) on the goodness of the fit was 

examined and it was found that the shift in the virtual origin downstream of the grid in 

near isotropic and homogeneous regime had least effect on the goodness of the fit 
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provided that the shift in the virtual origin is performed in a consistent and objective 

manner. 

• A near constant region of uniform incident TKE has been identified in the 

computational domain using the aforesaid predictive method and it ranges roughly 

between x=2m to x=4m. The region is same for all different values of prescribed inlet 

TKE and length scales and is insensitive to the choice of the inlet parameters.  

2.11 Conclusion 

The present work attempted to simulate freely decaying isotropic homogenous turbulence 

using numerical LES and RANS methodologies. The simulation results are compared 

qualitatively and quantitively to the earlier experimental data to justify the choice of the 

present numerical technique. The present LES results (but not the RANS model) 

demonstrate very good agreement with the earlier experimental studies and presents 

fairly accurate statistically averaged statistics (spectra, skewness, kurtosis) of quasi-

homogeneous freestream turbulence. The Dynamic-Smagorinsky LES sub-grid model 

can be used to evaluate the correct rate of turbulence decay when compared with the 

decay characteristics of the earlier experimental results. Three different correlation 

equations, based on different scaling parameters, were presented in a simple linear form, 

which can be useful for estimating the local and initial values of turbulent parameters (i.e. 

TKE and Lu) which can then be extended to assist in the design of experiments carried 

out in wind tunnels for heat transfer and aerodynamic applications. However, such 

experimental techniques demand a uniform region of incident turbulent conditions for 

accurate quantification of relevant variables (Stanton number, Prandtl number, force-

coefficients) on any bluff body (such as a sphere or cylinder) based on the oncoming 

turbulence intensities and turbulent length scales. The current CFD model helps in 

identifying those region, that can be deemed useful for studies of uniform freestream 

turbulence on bluff-body boundary layer phenomena. 

The next chapter investigates the ineffectiveness of the standard RANS models from 

three different commercial codes (FLUENT, STAR-CCM+, CFX) in the accurate 

prediction of the decay rate of TKE. Inter-comparison of the RANS models from these 
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three softwares have been made with the LES model to show the discrepancy and, finally, 

improvement to the standard SST-k-ω turbulence models, based on the model constant 

values have been recommended to produce realistic turbulent decay behaviour for those 

turbulence models.  
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Chapter 3  

3 Comparison of RANS modelling against LES and 
experimental measurements of spatially decaying 
isotropic homogenous grid-generated turbulence 

3.1 Introduction 

The choice of any computational fluid dynamics (CFD) model is always based on a trade-

off between the computational time required and the desired solution accuracy of a 

problem. Although, Large Eddy simulation (LES) and Direct numerical simulation 

(DNS) offer unsteady simulation methods to resolve length scales sufficiently, they are 

not practiced for small clock time runs because of the large memory requirements and 

high computational power that these numerical techniques (LES and DNS) are said to 

have required (Torrano et al., 2015). On the other hand, in Reynolds Averaged Navier-

Stokes based models (RANS), all the scales of turbulence are modelled using different 

turbulence models and therefore the cost of computation decreases exponentially 

compared to DNS and LES, but with the loss of instantaneous time related information 

associated with the turbulent scales of motion. Although, RANS simulations do not offer 

any relevant multi-scale information, they can handle complex geometries and, therefore, 

can be well-suited for initial investigations of a typical turbulent flow problem.  

As previously discussed in Chapter 2, time averaging general Navier-Stokes (NS) 

equations yields Reynolds-averaged equations of motion that gives rise to an additional 

unknown stress tensor known as Reynolds stress tensor given by 
' '
i ju u . However, no 

additional equations are obtained to close the system of equations as a result of Reynolds-

averaging. Therefore, the additional unknown terms must be modeled in order to close 

the system of equations. This is the well-known closure problem in RANS methodology 

and, hence a sufficient number of equations should be devised to solve the closure 

problem. Different turbulence models have been evolved over the years to solve this 

classical closure problem of Reynolds-averaging.  
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There are two different kinds of turbulence models that have been discussed widely 

among scientists, researchers and engineers in the CFD field. The simplest can be 

described as algebraic models, where the turbulent eddy viscosity is related algebraically 

to the length scales of the mean flow using the Boussinesq eddy-viscosity assumption. 

These models can also be termed zero equation models as they do not require the solution 

of any additional differential equations and can be computed directly from the mean flow 

variables. As a consequence, these models might not be helpful in estimating the 

convection, diffusion terms of TKE transport equation and cannot be extended to flows 

beyond the established data for which the models are calibrated (Wilcox (1998). 

On the other hand, there are additional partial differential equation-based RANS models 

where the transport equations of turbulent kinetic energy and its dissipation are solved for 

the estimation of turbulent eddy-viscosity.  These equations are complete in nature since 

the eddy viscosity automatically provides information about the turbulent length scale 

and not related to some typical flow dimension (Wilcox 1998). 

All of the three commercial CFD codes used in the present work (FLUENT, STAR-

CCM, CFX) offer several turbulence models; one-equation model, two-equation model, 

non-linear eddy viscosity model and Reynolds stress model. The choice of these models 

entirely depends on the user and is based on the type of turbulent flow problem and its 

application one wishes to study. For example, the Spalart-Allmaras model was designed 

specifically for aerospace applications involving wall-bounded flows and gives reliable 

results for boundary layer flows with adverse pressure gradients. However, the model 

performs poorly for industrial flows such as the free shear flow encountered in a round 

jet. Additionally, it cannot be relied upon completely to predict the decay of isotropic 

homogeneous turbulence in an accurate manner (Spalart and Allmaras, 1992) (ANSYS, 

2013b). 

As discussed earlier (in chapter 2), the Shear Stress Transport-k-ω model (SST-k-ω), a 

two-equation eddy viscosity model, is chosen over other model variants of RANS 

formulation to simulate and capture the global behaviour of the turbulence decay. Since, 

the current RANS model will be extended for flat plate heat transfer study in the future, 
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the choice of this model was rational in nature. Besides this, the SST k-ω model has also 

shown very good predictions of the velocity boundary layers, for  a uniform boundary 

layer flow over an isothermal flat plate in the earlier studies by Karava et al. (2011). 

Comparison between the other RANS models in predicting the decay of turbulence have 

also been shown in figure (2.6) (refer to chapter 2), illustrating that the predicted rate of 

decay is similar (<1% difference) for all the other standard two equation models. The 

corresponding transport equations of the SST k-ω model were previously detailed in 

section (2.5.4) (refer Chapter 2). 

In the subsequent sections, an investigation has been made to assess the capability of the 

SST-k-ω model from three different commercial software codes (FLUENT, STAR-CCM, 

CFX) to characterize the turbulent decay process and, thereby, provide an efficient 

numerical way to capture the main trends of grid generated turbulence. The results from 

the present numerical model (RANS) have been validated with the earlier relevant 

experimental studies and LES data to quantify the differences and point out limitations (if 

any) present in the SST-k-ω formulation. 

The computational domain, boundary conditions, solver method, solution parameters and 

the grid-independence study of the current steady RANS problem have already been 

reported in the earlier chapter and so are not discussed here again. 

3.2 Comparison between different commercial CFD codes 
against the spatial decay of isotropic homogeneous 
turbulence 

In this section, relative comparisons between the results from three-available commercial 

CFD codes (FLUENT, STAR-CCM+, CFX) are drawn, to see whether the standard SST-

k-ω model implemented in these three different codes is suitable for predicting the spatial 

decay of turbulence along the streamwise distance in a correct manner. The motivation 

for this comparative study has been inherited from the earlier discussion in chapter 2 

(refer to figure 2.30), where the results from the SST-k-ω model simulated in FLUENT 

demonstrated a higher rate of turbulence decay in comparison to the experimental/LES 

results. Hence, it becomes necessary to investigate whether the commercial CFD codes 
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other than FLUENT, fare better or perform worse in reproducing turbulence decay 

comparable to the results of experimental grid-generated turbulence. Figure (3.1) shows 

the results of the spatial decay of TKE profiles obtained from FLUENT, STAR-CCM+ 

and CFX, in comparison to the LES study and the earlier experimental data. The x 

abscissa is scaled with the local magnitudes of integral length scale (Lu) whilst the y 

ordinate is represented by the non-dimensional TKE. From the figure, it is clearly 

observed that, although both FLUENT and CFX produce similar results, with a higher 

rate of decay, STAR-CCM+ on the other hand, displays a much slower rate of decay in 

comparison with the experimental and LES studies. The similar rates of decay observed 

in FLUENT and CFX may be explained by the fact that both the solvers belong to 

ANSYS and employ same formulation of the model, but the slower rate of turbulence 

decay observed from the results of STAR-CCM+ induces further investigation to 

quantify the differences between the FLUENT, CFX and STAR-CCM+ solvers. Also, the 

deviation in these results from the experimental/LES data needs to be addressed carefully 

to better understand the implementation of the SST-k-ω model in each of these solvers. 

 

Figure 3.1 Spatial decay of TKE profiles obtained from three different commercial 

codes (FLUENT, STAR-CCM+ and CFX) compared with the LES and the previous 

experimental studies 
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Similar kinds of variation were also observed, even with the x axis scaled with the initial 

integral length scale (Lu0), while comparing the results from these three commercial 

codes and the previous LES, experimental results. The non-dimensional TKE profiles 

when plotted against the streamwise distance x also display a similar behaviour of decay 

from the commercial CFD codes against LES results. Those figures are not shown here in 

the current section but are presented in the appendix C (figures C.1 & C.2) for 

completeness. 

The observed deviation in the RANS results obtained from three commercial CFD codes 

in comparison to the LES and experimental studies calls for a deeper analysis of the 

methodology of the turbulence models implemented in each of those CFD codes.  

The next section briefly discusses the SST-k-ω model and its related model constants 

implemented in three different solvers viz. FLUENT, STAR-CCM+ and CFX, to answer 

the question whether or not there are any note-worthy differences between the ANSYS 

solvers FLUENT, CFX and the SIEMENS solver STAR-CCM+. If yes, how significant 

are the influence of those numerical differences on the solver results. 

3.3 Investigation of the differences between the solver 
(FLUENT, STAR-CCM+ and CFX) results  

In order to investigate the differences between the results obtained from three different 

CFD solvers, it is necessary to examine the ways in which the SST-k-ω model and its 

constants are implemented in those codes. The reader is suggested to examine the 

transport model equations of the SST-k-ω model very carefully, as already presented in 

section (2.5.4). While going through the model equations, one can easily realize the 

importance of the model constant (  ) which essentially controls the production of the 

turbulence specific dissipation rate (ω) and the dissipation of the turbulent kinetic energy 

(TKE). The implementation of the model constant (  ) is very important in this premise, 

as will be seen in the upcoming discussion. The default value of the model constant (  ) 

implemented in each of these three codes is 0.09. 
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It is very clear from the figures (3.1, C.1 & C.2 in Appendix C) that the results from three 

different solvers show a large deviation in the computed values of the turbulence decay 

rate with each other (at least between FLUENT & STAR-CCM+). Looking at those 

results, one can anticipate that the observed deviation might be largely due to the 

difference in the implementation of the inlet boundary conditions in those codes for same 

specified turbulent inlet parameters. The following hypothesis was verified by initializing 

the simulations (without actually running them) in these three solvers and it was found 

that for a same specified inlet turbulence intensity (TI) of 10%, and inlet integral length 

scale (Lu) of 0.1m, the specific turbulence dissipation rate (ω) obtained from ANSYS 

solvers FLUENT, CFX is 54.53 s-1 and from STAR-CCM+ it is 8.94 s-1. A closer look 

into these two values reveal that, for FLUENT/ CFX the specific dissipation rate is 

computed according to (ANSYS, 2013b) 
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                                                        (3.1) 

whereas, for STAR-CCM+ it is computed as (CD-Adapco, 2015) 
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Hence, it is very clear from these two expressions that the specific turbulence dissipation 

rate (ω) computed in FLUENT, CFX and STAR-CCM+ are different since the model 

constant (  ) is raised to a different power in FLUENT and STAR-CCM+. In FLUENT 

it is raised to a power of 1 whereas for STAR-CCM+ it is raised to a power of 0.25. The 

specific turbulence dissipation rate (ω) controls the rate at which the turbulent kinetic 

energy (TKE) is dissipated into thermal energy per unit volume and time and, therefore, 

two distinct values of (ω) gives two different decay rates of TKE as observed for 

FLUENT and STAR-CCM+. As the initial specific dissipation rate is higher in FLUENT 

and CFX than STAR-CCM+, the FLUENT solver shows the turbulent kinetic energy 

being dissipated at a higher rate than STAR-CCM+. 
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One important thing to note here is that, even if the constant (  ) is tuned with similar 

values, different magnitudes of (ω) are obtained at the inlet (based on the above two 

equations), which ultimately affects the decay rate of TKE along the domain. So, for 

different inlet (ω), different rates of decay of TKE are obtained. In order to keep 

consistency across all the numerical simulations in different solvers, it is essential to have 

the same inlet specific dissipation rate (ω), that must be specified (instead of being 

computed) along with the TKE magnitudes at the inlet while tuning different value of the 

constant (  ). In this way, the variability of (ω) with (  ) can be eliminated and the 

performance of the model in these different CFD codes can be highlighted specifically in 

analysing the effect of the model constant (  ) on the decay rate of TKE. In such a 

scenario, the same specified inlet conditions (TKE, Lu and ω) can also be obtained for 

each and every case that are being investigated. 

The abovementioned discussion tries to unify few of the primary differences observed 

while implementing the SST-k-ω model in three commercial CFD codes. If (ω) is 

specified to be the same at the inlet (i.e. 54.43s-1) for both the FLUENT and STAR-

CCM+ solvers, it is no longer computed at the inlet (since it is being specified) and, 

hence, similar results for the decay of TKE for FLUENT and STAR-CCM+ can be 

achieved. Also, similar results in CFX, specifying the (ω) and TKE at the inlet can be 

obtained since (ω) is computed in the same way in both FLUENT and STAR-CCM+. 

However, at the end one should not use the model constant (  ) to control the 

magnitudes of the specific dissipation rate (ω) and Lu at the inlet, but rather use it to 

model the dissipation of turbulent kinetic energy (TKE) and production of the specific 

dissipation rate (ω), which it does anyway, as evident from the governing turbulence 

model equations given in ANSYS, (2013b).   

3.3.1 Limitations of the RANS based CFD solvers 

In this section, one of the fundamental limitation of the RANS based CFD model has 

been presented, that appeared while trying to examine the specified initial turbulent 

parameters (TKE, Lu and ω) from the SST-k-ω model, while comparing it to the initial 
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values of those parameters in the LES/experiments. Re-stating the inviscid estimate of the 

turbulent kinetic energy dissipation rate (ε), given by (refer to equation 2.41 in chapter 2) 

                                                              
'3

u

u
~ D

L
                                                       (3.3) 

and considering turbulence to be nearly isotropic and homogenous in nature, 'u  in the 

equation (3.3) can be substituted with turbulent kinetic energy (k) as  

                                                              
' 2

u k
3

                                                          (3.4) 

which gives equation (3.3) in the form of 

                                                          
1.5

u

k
0.544D( )

L
                                                  (3.5) 

This is the widely accepted form of the inviscid turbulent kinetic energy dissipation rate 

in free-shear and wall-bounded flows (Pope, 2000). 

However, going through the RANS formulation stated in three-different CFD code 

manuals viz. (ANSYS, 2013b), (CD-Adapco, 2015), (ANSYS, 2013a), it has been found 

that the specific dissipation rates ( ) in those codes are defined as (Gerasimov, 2016) 

                                                            
1.5

u

k

L
                                                              (3.6) 

One can clearly notice the differences in the estimation of the turbulent kinetic energy 

dissipation rate ( ) from the theoretical inviscid approximation (refer to equation (3.5)) 

and that from the CFD based RANS model (refer to equation (3.6)).  In CFD RANS two-

equation models, the constant in the formulation of ( ) which is typically (0.544D) has 

been overlooked for the sake of simplicity in modeling the closure problem of the 

Reynolds stress tensor. However, this difference in formulation of (  ) can affect the 

solution of the CFD problem and one must take care while comparing the values of the 
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initial turbulent parameters from the RANS based CFD model with the LES/experimental 

results. As ( ) is already pre-defined in all the commercial CFD codes and cannot be 

changed, one therefore needs to acknowledge this limitation while performing CFD 

simulations of turbulence decay. 

3.4 Generic optimized SST-k-ω model for FLUENT, STAR-
CCM+ and CFX 

In this section, a new generic optimised SST-k-ω model is proposed for the three solvers 

with a modified value of the model constant coefficient (  ), that is seen to predict the 

decay of turbulence quite well. 

3.4.1 New optimized SST-k-ω models for FLUENT  

After pointing out the differences and the limitations of the three-different commercial 

CFD codes in the previous section, attempts have been made in the current section to 

fine-tune the model constant (  ) in FLUENT, with different magnitudes of the 

constant, in order to achieve results with better agreement in comparison to the present 

LES and the earlier experimental data.  The choice of the new optimised values of the 

model constant is purely based on an empirical trial and error approach rather than any 

phenomenological (i.e. physics-based) approach and can be changed according to the 

need of the user. Fig. (3.2) shows the TKE profiles from the improved models for 

different values of (  ), ranging from (0.044-0.048), along with the results from the 

standard SST-k-ω model. The corresponding results from the LES simulations and the 

experimental data sets are also plotted in the same figure to examine the agreement of the 

improved models with those LES/experiments. From the figure it is seen that, any value 

between the range 0.044 to 0.048, can be selected as an optimised value for proper 

numerical modeling of the decay of freestream turbulence since decay from the new 

model prediction also achieves good qualitative agreement with the results of 

LES/experiments. Therefore, an intermediate value of 0.046 has been chosen being 

suitable for carrying out further numerical investigations on the flat plate boundary layer, 

as will be seen in the forthcoming section. The choice was made to emphasize more on 
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matching the LES results rather than the experimental results, because at the end the 

RANS models will suffice those studies that cannot be carried out through LES because 

of the available computational constraint. 

 

Figure 3.2 Spatial decay of TKE profiles obtained from the different optimized SST-

k-ω RANS model compared with the LES and the earlier experimental studies, 

(FLUENT simulations) 

Similar acceptable agreements between the TKE profiles obtained from the optimised 

model and LES/experiments are also observed in figure (3.3) and figure (3.4), where the 

scaling parameter has been changed from Lu to Lu0 in fig (3.3) and to x only in fig. (3.4)) 

to see whether model constants in the range (0.044-0.048) still work for different non-

dimensional scaling parameters of the prediction correlations derived in equations (2.49 

& 2.50) (refer to chapter 2). Both the figures illustrate good agreement with the 

LES/experiments presented in figure (3.3) and figure (3.4). 



143 

 

 

Figure 3.3 Spatial decay of TKE profiles obtained from the different optimized SST-

k-ω RANS model compared with the LES and the earlier experimental studies, 

(FLUENT simulations) 
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Figure 3.4 Spatial decay of TKE profiles obtained from the different optimized SST-

k-ω RANS model compared with the present LES study along the streamwise 

distance x (FLUENT simulations) 

3.4.2 New optimized SST-k-ω models for STAR-CCM+ 

As discussed in the previous section, the rationale for the choice of the new model 

constant ( * ) is entirely based on an empirical approach and the range (0.044-0.048) has 

been found to work fairly well for modelling the decay of isotropic freestream turbulence 

in FLUENT. Hence, the following range of the improved model constant ( * ) is 

retained and numerical simulations have been performed with the same range of 

constants in another commercial CFD package STAR-CCM+. The following approach 

was employed to examine whether a different commercial CFD code (STAR-CCM+ in 

this case) having the same range of given constants can reproduce similar results to 

FLUENT or not and, thereby, demonstrate a closer resemblance to the LES/experimental 

data. The plots of spatially decaying TKE profiles obtained from the standard SST-k-ω 

model employed in STAR-CCM+, for different optimised model constants are shown in 

figure (3.5). The experimental data sets along with the LES solutions are also plotted in 
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the same figure with the same non-dimensionless parameters for relative comparisons. 

The results from the improved model prediction exhibit very good agreement with the 

previous LES/experimental results. It is being re-emphasized here again that the any 

value of (  ) between the range (0.044-0.048) holds good in predicting the freestream 

decay of turbulence in STAR-CCM+. 

 

Figure 3.5 Spatial decay of TKE profiles obtained from the different optimized SST-

k-ω RANS model compared with the present LES and the earlier experimental 

studies (STAR-CCM+ simulations) 

The TKE profiles plotted against a different scaling parameter (i.e. x-axis variable scaled 

with initial integral length scale Lu0) also display analogous behaviour to the TKE plots 

already shown in figure (3.3) and, therefore, is not shown here. Also, the results for the 

TKE profiles plotted against the streamwise distance x are similar to those in figure (3.4). 

Those plots are presented in Appendix C (figure C.3 & figure C.4) for completeness. 

3.4.3 New optimized SST-k-ω models for CFX 

In this section the numerical results on the decay of TKE from the model simulations 

performed in a different commercial CFD software, CFX, are presented. The simulations 
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are performed to examine whether there are any differences in the numerical results 

between the ANSYS solver CFX with the previous results from FLUENT and the STAR-

CCM+ solver.  The investigation is also carried out to assess the applicability of the 

improved model constant ( * ) range (0.044-0.048) in predicting the decay of turbulent 

kinetic energy (TKE) while running in ANSYS CFX. The outcome from the present 

simulations is presented in figure (3.6) where the non-dimensional TKE profiles for 

different magnitudes of (  ) in the range (0.044-0.046) are plotted against the non-

dimensional parameter ' 0.5
0 0 u(x x )*(k ) / L . The results illustrate good agreement with 

the LES studies and the earlier experimental data sets. The present discussion concludes 

that CFX achieves identical results relative to the earlier numerical results obtained from 

FLUENT and STAR-CCM+. 

 

Figure 3.6 Spatial decay of TKE profiles obtained from the different optimized SST-

k-ω RANS model compared with the LES and the earlier experimental studies, 

(CFX simulations) 

The non-dimensional TKE profiles plotted against ' 0.5
0 0 u0(x x )*(k ) / L  show similar 
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characteristics of turbulence decay already shown in figure (3.3) and, hence, they are not 

shown here but presented in Appendix C. The plots of the TKE profiles versus 

streamwise distance x, obtained from CFX exhibit similar attributes and are presented in 

Appendix C. 

3.5 Applicability of the proposed generic SST-k-ω model for 
varying initial conditions 

This section explores the effect of the varying initial turbulent conditions (TKE and Lu) 

on the improved SST-k-ω model and examines whether the new proposed model 

constants are accurate enough to predict the behaviour of turbulence decay in compare to 

the experiments/LES results. All the simulations shown in this section are performed in 

ANSYS software FLUENT with an inlet mean velocity (U̅) = 4m/s. Similar results can be 

expected while modelling these cases in STAR-CCM+ and CFX with same initial and 

boundary conditions. 

3.5.1 Applicability of the improved SST-k-ω model in predicting the 
turbulence decay for varying turbulence intensities at the inlet 

In the following section, simulations with the improved model have been carried out by 

varying the turbulence intensity (TI) from 10% to 30%, whilst keeping the integral length 

scale (Lu) constant at 0.1m at the inlet. The simulations have been performed to check 

whether the optimised model constant in the range (0.044-0.048) generates results closer 

to the experimental/LES solutions, for predicting the decay of TKE in the case of varying 

turbulence intensities. Figures (3.7), (3.8) and (3.9) show the decay of non-dimensional 

TKE profiles (k/k0) plotted against the non-dimensional parameter ' 0.5
0 0 u(x x )*(k ) / L  

for inlet turbulence intensities (TI) of 10%, 20% and 30%. From the figures, it is clear 

that the given range of model constant shows results in close agreement with the LES 

data, having a little deviation from the experimental results. This deviation might be due 

to the inaccurate formulations of dissipation rate (ε) implemented in each of those 

softwares as presented in earlier section (3.3.1). Profiles of non-dimensional TKE for 

varying TI plotted against a different scaling parameter are shown in Appendix C (C.7-

C.12). 
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Figure 3.7 Spatial decay of TKE profiles from different optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI = 20%, Lu0 = 0.1m) 

 

Figure 3.8 Spatial decay of TKE profiles from different optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI = 20%, Lu0 = 0.1m) 
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Figure 3.9 Spatial decay of TKE profiles from different optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI = 30%; Lu0 = 0.1m) 

3.5.2 Applicability of the improved SST-k-ω in predicting the 
turbulence decay model for varying integral length scales at the 
inlet 

Similar to the previous section, this section present results from the improved SST-k-ω 

model simulated for different integral length scales at the inlet (i.e. 0.02m, 0.05m and 

0.10m) with a fixed turbulence intensity (TI) of 10% at the inlet. The model tests with 

varying integral length scales at the inlet are done to evaluate the applicability of the 

optimised model constant range in appropriately predicting the decay of TKE for 

different length scale values. Figures (3.10), (3.11) and (3.12) shows the dimensionless 

TKE profiles obtained for different initial integral length scale values with the optimised 

model constant range of (0.044-0.048). As expected, the modified constants display 

reasonable quantitative agreements with the previous LES study and the experimental 

results. Similar plots of TKE are shown in Appendix C (C.13- C.18) where the TKE 

profiles are plotted against different scaling parameters in the x-abscissa. 
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Figure 3.10 Spatial decay of TKE profiles obtained from optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI = 10%; Lu0 = 0.1m)  

 

Figure 3.11 Spatial decay of TKE profiles obtained from optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI = 10%; Lu0 = 0.05m) 
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Figure 3.12 Spatial decay of TKE profiles obtained from the optimized SST-k-ω model 

compared with the LES and the earlier experimental studies (TI= 10%; Lu0 = 0.02m) 

3.6 Boundary layer validation for new optimized SST-k-ω 
model 

3.6.1 Introduction 

The present section examines the new optimized SST-k-ω model and investigates 

whether the revised model performs reliably for boundary layer flows. Details of the 

computational domain are presented in the section 3.6.2. Section 3.6.3 discusses the grid-

generation technique along with near wall treatment of the boundary layers. Section 3.6.4 

discusses the methodology used for the CFD modelling, which includes the turbulence 

models and the solution parameters. The boundary conditions are discussed in section 

3.6.5. The grid-independence study is described in section 3.6.6. At the end, the boundary 

layer validation of the current optimized SST-k-ω model for flow over a horizontal flat 

plate is presented in section 3.6.7. The motivation behind the current study was to 

establish the improved RANS model as a generic model towards accurate prediction of 

boundary layer flow field over a flat plate. 
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3.6.2 Computational domain  

The computational grid on which the steady RANS simulations were performed was 

designed to simulate a developing laminar and turbulent boundary layer incident on a 

smooth flat plane surface. A 3-D computational domain was generated according to the 

AIJ (Tominaga et al., 2008) and Franke et al., (2007) guidelines. The lateral and the top 

boundaries were situated at 0.5m from each other. A uniform smooth flat plane section of 

infinitesimally small unit node thickness was created at the mid-section of the 

computational domain which represents a flat plate immersed in a uniform free-stream 

turbulent flow. The plate with zero thickness was created to avoid any kinds of separation 

recirculation zone at the leading edge which might alter the turbulence intensities and the 

integral length scales in incident turbulent boundary layers over a three-dimensional bluff 

body. The top and bottom boundaries are at located at 0.25m from the plate surface that 

will allow enough eddies relevant to the boundary layer scales to convect past the plate 

and through the domain for a turbulent boundary layer flow. The outlet boundary is 

situated at 2.5m from the inlet boundary section which is in accordance with the spatial 

decay of turbulence kinetic energy profiles discussed in the previous chapter. The 

physical dimensions of the computational domain in the current study are Lx = 2.5m, Ly = 

0.5m and Lz = 0.5m and the outlet boundary was free from any kind of recirculation zone. 

 

Figure 3.13 Schematic of the computational domain with the plate along with the 

boundary conditions   

Lz 

Lx 

Ly 

No-slip 
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3.6.3 Grid-generation 

In any CFD based numerical solution, an appropriate mesh is necessary for accurate 

solution, faster convergence and reduction of numerical diffusion. A commercial mesh 

generator, ICEM CFDTM 16.0 was used to generate the grid. A perfectly structured 

hexahedral mesh pattern was generated throughout the domain, where a regular 

arrangement of the node elements was defined automatically using the software. The 

structured mesh elements offer a high degree of control of the node locations, better 

alignment with the flow directions, as well as require less computational memory with a 

significant reduction of computational cost when compared to an unstructured mesh.   

Hexahedral meshes are preferred over polyhedral meshes because of their improved 

spatial discretization techniques for bounded unidirectional flows, since one can maintain 

the mesh faces that follow the flow direction. This is a consequence of the better accuracy 

of the hex-elements since the angle between the faces can be kept close to 90 degrees. 

For high Reynolds number turbulent flows, a very fine mesh spacing is required near to 

the wall of interest (the plate in this case case) and hexahedral grid units allow very fine 

wall-normal spacing without larger face skewness.  

Creating the grid-nodes near the wall boundary (the plate in this case) is an important 

aspect to model the flow parameters in the near-wall region. More details about the near-

wall treatment employed in the grid-generation technique are discussed in Appendix D. 

3.6.4 Methodology 

3.6.4.1 Solver 

The commercial CFD software package, ANSYS FLUENT 16.0 was used in the current 

study, which uses the finite volume technique to solve the mass-conservation, 

momentum-conservation and energy-conservation equations. All the equations were 

solved using the double precision model, since double precision is more accurate than the 

single precision solvers for boundary layer heat transfer flows where there is a large 

difference between the extent of the biggest and the smallest cell in the domain (ANSYS, 

2013b). A pressure-based algorithm was used since the present flow falls under the 
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category of low speed incompressible flow, whereas the density-based solvers are mainly 

developed for high speed compressible flows. More details on the pressure-based 

algorithm is already discussed in Chapter 2 (refer to section 2.5.1).  

ANSYS FLUENT 16.0 uses a control volume cell-centred numeric for its conservation 

equations solution strategy with statistical iterative methods and are sometimes less 

accurate for certain complex flow problems such as turbomachinery compressor flows. 

However, it is mentioned once again that the FLUENT was used to carry out only the 

steady RANS simulations in the current study. 

3.6.4.2 Turbulence models 

In the present study, the SST k-ω model has been chosen to carry out the laminar 

boundary layer studies since the SST k-ω model with the Low Reynolds number 

modelling (LRNM) performed very well in terms of matching both the model scale wind 

tunnel velocity profiles over the windward roof of a low-rise building and the standard 

Nusselt number (Nu) correlation with Re for uniform flow over an isothermal flat plate 

(Karava et al., 2011). Similarly, k-kl-ω transitional model was chosen as a suitable 

turbulence model to simulate the turbulent boundary layer phenomenon since this model 

can precisely predict the onset of transition in high Reynolds number boundary layer 

flows (Walters and Cokljat, 2008). 

3.6.4.2.1 Shear-stress Transport k-ω model 

The SST-k-ω model has already been discussed in detail in the previous chapter (Chapter 

2; Section 2.5.4) with all the model equations and its variants. Hence further details about 

the SST k-ω model will not be discussed here. However, the Low Reynolds number 

modelling approach (LRNM) embedded in the SST k-ω model employed in the current 

study are explained in detail with the model equations in Appendix E. 

3.6.4.2.2 k-kl-ω model Transitional model 

This section describes the theory behind the k-kl-ω transitional model which is used to 

predict the boundary layer development and location of the transitional onset for medium 

to high Reynolds number flows. The k-kl-ω transitional model was developed by Walters 
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and Cokljat (Walters and Cokljat, 2008) and is based on the traditional k-ω model 

framework that represents a substantial refinement to a previous transition-sensitive 

model (Walters and Leylek, 2002). An additional third transport equation is included in 

two equation eddy-viscosity model which is used to represent pre-transitional velocity 

fluctuations that are identified as the precursors to the transition phenomenon. The kinetic 

energy of these pre-transitional velocity fluctuations is represented by kl, which is known 

as the laminar kinetic energy. Although the dynamics of the kl production is not very well 

understood, few researchers (Mayle and Schulz (1997); Walters and Leylek (2002)) have 

tried to shed light on the subject based on two contrasting theories. Whilst Mayle and 

Schulz (1997) proposed that the growth of laminar kinetic energy was due to the transport 

of energy from the freestream into the boundary layer due to the pressure diffusion term, 

Walters and Leylek (2002) stated that the production of the laminar kinetic energy is due 

to the interaction of the Reynolds stresses of the non-turbulent velocity fluctuations with 

the mean shear. This phenomenon is also verified from the LES simulations performed 

by Lardeau et al. (2007). The premise from the above discussion convey the fact that an 

additional model transport equation is required to solve kl, along with the transport 

equations of k and ω, to fully describe the transition process of the boundary layer. The 

model transport equations for k, kl and ω along with the model variants are described in 

Appendix F. 

3.6.4.3 Solution parameters 

For the steady RANS modelling (optimized SST-k-ω) of the boundary layer flow, the 

second order upwind discretization schemes were used for the pressure, momentum and 

turbulence parameters (turbulent kinetic energy and specific dissipation rate). The 

second-order schemes fare better than the first order discretization schemes near a solid-

wall boundary due to their diffusive nature (low numerical discretization error) and 

increased damping, which allows one to model such flows correctly.  

For the pressure velocity coupling the Semi-Implicit method for Pressure Linked 

Equations (SIMPLE) algorithm (Patankar et al. 1972) was used for the steady RANS as it 

is more suitable for steady state flows. For the evaluation of gradients and derivatives, the 
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Least square cell based gradient method is employed as it is more accurate and less 

expensive than other gradient methods on a structured hexahedral mesh. 

3.6.5 Boundary conditions 

For the steady RANS SST-k-ω and the transitional k-kl-ω model, a well-specified 

velocity boundary condition was defined at the inlet along with the turbulent parameters 

i.e. turbulent kinetic energy (TKE) and the specific dissipation rate (ω) for turbulent 

calculations. The pressure outlet boundary condition is specified with a gauge pressure of 

zero Pascals which physically relates to the atmospheric pressure to which the flow exits. 

The slip boundary condition was specified at all the other boundaries where the shear 

stress is assumed to be zero so that it had negligible effect on the boundary layer growth 

over the flat plate. A pure-no slip boundary condition was specified on the flat plate 

boundary which assumes that the tangential fluid-velocity adhering to the wall is zero 

(because of the existence of the viscosity of the fluid). 

3.6.6  Grid-Independence study 

Grid-independency is an important factor to check in any CFD simulation since the 

numerical results should not suffer from the discretization error arising from the spacing 

of the computational cells. A grid-independence study was carried out for two different 

boundary layer cases; 1) with a flow velocity of 4m/s developing a spatially evolving 

laminar boundary layer and 2) with a flow velocity of 40m/s thereby generating a 

spatially developing turbulent boundary layer. The grid-refinement strategy employed 

here was according to the COST guidelines (Franke et al., 2007), which states that at 

least three systematically and substantially refined grids should be used and that the ratio 

of cells should be at least 1.5 in each dimension.  

Three-grid resolutions L1, L2 and L3 of 462,500, 649,350 and 784,400 grid-cells, 

respectively, are used for the laminar boundary layer case to ensure a grid-independent 

solution. However, as the turbulence model with the (LRNM) approach is used for the 

laminar flow problem, a y+<1 is employed which is a desired requirement for such a 

modelling approach for accurate prediction of laminar boundary layer near the wall. The 
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first cell height (Δy) from the wall chosen for the laminar boundary layer case is 1×10-4m 

which is well under the desired requirements of the y+ value of the wall-function grid. 

Similarly, three independent grid resolutions T1, T2 and T3 with grid resolutions of 

587,500, 824,850 and 996,400 cells are used for the developing turbulent boundary layer 

case. A y+<1 is employed while constructing the grid-cells which is aimed at resolving 

the inner turbulent boundary layer until the viscous sub-layer of the flow. The first cell 

height (Δy) chosen for this case was at 1.6×10-5m from the plate wall which falls under 

the desired y+ for a LRNM model. It should be noted that the inlet mesh-nodes were fixed 

for all the six meshes used in the current study in order to keep consistent inlet velocity 

fields across all the cases. 

The simulations for the laminar boundary layer case (4m/s) were run for an inlet mean 

velocity U = 4m/s, TI = 0.1% and Lu = 0.1m which corresponds to TKE magnitude of 

2.4×10-5 J/kg and specific dissipation rate (ω) = 0.54s-1. The corresponding Reynolds 

number (ReL) based on the plate length (L=2m) is 5.09×105 which comes under the 

category of the laminar flow. Similarly, the simulations for the spatially developing 

turbulent boundary layer case was run for an inlet mean velocity ( U ) = 40m/s, TI = 0.1% 

and Lu = 0.1m. The corresponding values of the inlet TKE and specific dissipation rate 

(ω) are 2.4×10-3J/kg and 5.44s-1 respectively. The corresponding Reynolds number of the 

flow based on the plate length (2m) is 5.09×106 which comes under the turbulent flow 

regime. The kinematic viscosity (ν) is taken as 1.57×10-5 based on the standard state 

temperature of 298.15k (25o C). 

3.6.6.1 Grid-independency of the laminar boundary layer over the flat 
plate case 

The grid-independency of three different grids (L1, L2 and L3) for spatially developing 

laminar boundary over the flat plate is assessed in terms of the local skin-friction 

coefficient (cf) (skin-friction is the ratio of the local shear stress to the dynamic 

characteristic pressure) and the corresponding velocity distributions along the normal 

direction to the boundary layer. Figure (3.14) shows the local skin-friction profiles for 

three different grids, along the centreline of the plate plotted against the local Reynolds 
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number (ReX) where, X denotes the distance from the leading edge of the plate. A 

comparison between the local skin friction profiles for three different grids and the 

theoretical skin-friction profile is made to examine the accuracy of the applied CFD 

model. From the figure it is clear that, the local skin friction profiles are not very 

sensitive to the streamwise mesh density and that the increase in streamwise nodes for 

three different grids have very little effect on the modeled skin friction profiles. The (cf) 

profiles obtained for three different grid-resolutions (L1, L2 and L3) almost overlap with 

each other on the top and demonstrate very good agreement with the theoretical laminar 

skin-friction profile. 

 

Figure 3.14 Local skin-friction profiles plotted for three different grids measured 

along the centreline of the plate 

To characterize the velocity profiles inside the boundary layer, mean velocity magnitudes 

have been extracted at four different locations along the centreline of the plate. The 

location of those measurement points is shown in fig (3.15) for clarity in visualization 

and understanding. 
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Figure 3.15 Schematic of the flat plate showing the location of four different 

measurement points along the centreline of the plate 

The non-dimensional distances of these four different locations based on the streamwise 

distance from the leading edge of the plate (X) and the plate length (L) is shown in table 

(3.1).  

Table 3.1 Non-dimensional distances of the four different locations along the 

centreline of the plate 

Streamwise 

location No. 
1 2 3 4 

x 1m 1.5m 2m 2.5m 

X/L 0.25 0.5 0.75 1 

Figure (3.16) and figure (3.17) shows the normalized velocity ( iu

U
) profiles plotted for 

three different grids measured at four different locations (x= 1m, x= 1.5m, x= 2m and x= 

2.5m) along the centreline of the plate against a non-dimensional parameter (
y


). Fig 

(3.16) represents the velocity profile at X/L = 1 and X/L = 0.75 and figure (3.17) 

represents the velocity profile at X/L = 0.50 and X/L = 0.25, respectively (where X 

represents the distance from the leading edge of the plate).  The thickness of the boundary 

layer, δ, is defined as the vertical distance from the surface of the plate to the location 
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where the local velocity reaches 99% of the freestream value and y represents the 

distance in the direction normal to the plate surface. The variability of the non-

dimensional velocity profiles between the coarse and the medium grid and between the 

medium and the fine grid is negligible (less than 1%) which is clearly noticeable from the 

figures (3.16) and (3.17). Based on the above discussion, the medium grid L2 with 

649,350 cells is chosen for all the CFD simulations in the current study which requires 

less computational time (than the fine grid) to simulate the boundary layer flow. 

 

Figure 3.16 Normalized velocity profile plotted for three different grids along the 

centreline of the plate at x=2.0m (right) and x=2.5m (left) 

X

L
 = 1 X

L
 = 0.75 

_ _ 
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Figure 3.17 Normalized velocity profile plotted for three different grids along the 

centreline of the plate at x=1.0m (right) and x=1.5m (left)  

3.6.6.2 Grid-independency of the spatially developing turbulent 
boundary layer over the flat plate 

A grid independence study was also carried out on three different grids (T1, T2 and T3) 

for a spatially evolving turbulent boundary layer to check whether the boundary layer 

development is independent of the number of grid-cells in the domain. Figure (3.18) 

show the development of local skin-friction profiles for three different grids plotted 

against the local Reynolds number (ReX) along the centreline of the plate. The results 

obtained from coarse, medium and fine grids show negligible differences, and for each 

grid the onset of natural transition is predicted roughly at local Reynolds number (ReX) of 

1.97×106. As the Reynolds number of the flow based on the plate length (2m) is 

5.09×106, which is higher than the critical Re value for flow over a flat plate (White, 

2016), it undergoes transition and subsequently changes to a more chaotic (than laminar) 

three-dimensional turbulent boundary layer. The sudden increase in skin-friction 

coefficient observed is due to this transition process occurring in the flow at high enough 

Reynolds number. The theoretical laminar and turbulent skin-friction profiles are also 

_ _ 

X

L
 = 0.5 

X

L
 = 0.25 
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plotted in the same figure (3.18) with the grid-resolution results to show that the skin-

friction values predicted from grid-independent results match closely with theoretical 

skin-friction profiles. 

 

Figure 3.18 Local skin-friction profiles plotted for three different grids measured 

along the centreline of the plate 

The velocity distributions for each of the three grids (T1, T2 and T3) along the centreline 

of the plate are plotted in figure (3.19) where the x-abscissa represents the non-

dimensional velocity variable  ( iu

U
) and the y ordinate represents the dimensionless 

normal distance expressed as (
y


). The plots are shown only for two streamwise locations 

i.e. at x=2m and x=1.5m, since the turbulent boundary layer has already developed only 

over these regions. The flow prior to these locations are in a mixed transitional state and, 

therefore, are not shown here for grid-independent comparisons.  

The three grids (T1, T2 and T3) employed in this study shows negligible variation (less 

than 1%) in both the local skin-friction profiles along the centreline and the velocity 
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distribution inside the boundary layer at the considered locations (x=1.5m and x=2m) 

and, therefore, the medium grid T2 with 824,850 grid cells is chosen to carry out the 

turbulent boundary layer analysis. 

 

Figure 3.19 Normalized velocity profile plotted for three different grids along the 

centreline of the plate at x=2.5m (left) and x=2m (right) 

3.6.7 Boundary layer validation 

In this section, the flat plate boundary layer model results obtained from CFD simulations 

have been validated against the boundary layer solutions obtained from the theoretical 

boundary layer equations for steady incompressible laminar and turbulent flows. The 

comparisons between the newly devised improved RANS SST-k-ω model with a 

modified constant and the theoretical boundary layer solutions are shown to test the 

capability of these improved RANS model in reproducing the features of boundary layers 

in an accurate manner. In addition, the k-kl-ω model implemented with the optimised 

model constant is also tested against the flat plate theoretical turbulent boundary layer 

models. 

X

L
 = 1 X

L
 = 0.75 

_ _ 
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3.6.7.1 Laminar boundary layer flow characteristics 

The laminar boundary layer simulations have been carried out for the mean freestream 

velocity ( U ) = 4m/s, negligible freestream turbulence intensity at the inlet (TI) = 0.1% 

and the inlet integral length scale (Lu) of 0.1m. At first, the local skin-friction profile 

obtained from the optimized SST-k-ω model is compared with the theoretical laminar 

skin-friction profile, which is determined according to the formula given by 

                                                           f
X

0.664
c

Re
                                                          (3.7) 

where ReX is the Reynolds number based on the distance from the leading edge of the 

plate X. The relative comparisons are shown in figure (3.20). Post-comparison it is 

revealed that the improved SST-k-ω model can reliably predict the near wall shear stress 

behaviour close to the solid boundary. Next, the velocity profiles obtained from the 

improved RANS model have been analyzed for further investigation. 

 

Figure 3.20 Comparison of the local skin-friction profiles obtained from the 

standard and the improved SST-k-ω model plotted against the theoretical laminar 

skin-friction profiles, measured along the centreline of the plate  
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The streamwise velocity magnitudes are extracted at four different points along the 

centreline of the plate. The location of these points on the plate section have already been 

shown in figure (3.15) along with the non-dimensional distances that are previously 

stated in table (3.1). The velocity profiles from the these four streamwise locations are 

presented in the current section since they all come under the laminar boundary layer 

flow regime. Figure (3.21) shows the plot of the normalized streamwise velocity 

component ( iu

U
) versus the non-dimensional normal distance (

y


) along the centreline 

locations of the plate at x=2.5m and x=2.0m. Similar plots for two other different 

streamwise locations (x= 1.5m and x=1.0m) are shown in figure (3.22). In order to 

examine the correctness of the obtained velocity distribution from the CFD models, it is 

necessary to discuss briefly about the widely accepted theoretical laminar boundary layer 

models. The laminar boundary layer velocity profile for an steady incompressible viscous 

flow over a flat plate was first predicted from the exact solution of the non-linear 

boundary layer equations given by Blasius (Blasius, 1908). Later, Von-Kármán (Kármán, 

1921) in his theory proposed that the velocity profiles inside the laminar boundary layer 

may have an approximate parabolic shape that can be approximated by  

                                            
2

i 2

2y y
u (x, y) U( ) 

 
      0≤ y ≤ δ (x)                            (3.8) 

A much better agreement with the exact solution of Blasius (Blasius, 1908) can also be 

achieved by more plausible assumptions of the velocity distribution satisfying the higher 

order polynomials (Duncan et al. 1970) such as cubic and quadratic velocity 

distributions, which are given by 

                                            3
i

3 y 1 y
u (x, y) U( ( ) )

2 2
 

 
                                               (3.9) 

                                            3 4
i

y y y
u (x, y) U(2 2( ) ( ) )  

  
                                     (3.10) 

However, it should be noted that the cubic and the quadratic velocity distributions stated 

in equations (3.9) and (3.10) are plausible assumptions to the boundary layer solution by 
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Blasius and, hence, the reader is advised to examine the correctness of these assumptions 

by comparing the numerically obtained velocity profiles with the exact boundary layer 

solution of Blasius  (1908). In this section, the velocity distributions obtained from the 

standard and the improved SST-k-ω model are compared with the Blasius, von-Kármán, 

cubic, quadratic velocity profiles (fig. (3.21) & fig. (3.22) to examine the accuracy of the 

improved RANS model in predicting the laminar boundary layer development. It is clear 

from these figures (figure 3.21 & 3.22), that the velocity profiles at those streamwise 

locations display a close match with all the theoretical profiles, with the closest being 

with the Blasius boundary layer velocity profile (numerical results lie within ±2% Blasius 

profile). Therefore, the results from the optimized SST-k-ω model confirm that the model 

is extremely reliable in reproducing the laminar boundary layer behaviour in the presence 

of zero pressure gradient. 

  

Figure 3.21 Normalized velocity profile obtained from the standard and the 

improved SST-k-ω model plotted against the theoretical laminar velocity profiles, 

measured along the centreline of the plate at x= 2.0m (right) and x= 2.5m (left) 

X

L
 = 1 

X

L
 = 0.75 

_ _ 
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Figure 3.22 Normalized velocity profile obtained from the standard and the 

improved SST-k-ω model plotted against the theoretical laminar velocity profiles, 

measured along the centreline of the plate at x= 1.0m (right) and x= 1.5m (left) 

In addition to the plots of the laminar velocity profiles and the skin-friction profiles 

shown, comparisons have been made in terms of displacement thickness (δ∗), momentum 

thickness (θ) and the shape-factor (H) obtained from the improved SST-k-ω model and 

that from the Blasius, cubic and quadratic profile. The displacement thickness (δ∗) is 

defined as the distance by which the external freestream flow is displaced outward due to 

the decrease in velocity in the boundary layer. Similarly, momentum thickness (θ) is 

defined as the distance by which the boundary layer has to be displaced in order to 

compensate for the reduction in momentum inside the boundary layer.  The ratio of 

displacement thickness to the momentum thickness is called the dimensionless-profile 

shape factor (H). The comparisons of the non-dimensional displacement thickness, 

momentum thickness and shape factor are listed in table (3.2). 

 

_ _ 
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Table 3.2 Comparison between the dimensionless momentum thickness, 

displacement thickness and the shape factor obtained from the improved SST-k-ω 

model and the theoretical laminar velocity profiles 

Variables XRe
x


 

XRe
x

 
 H (shape-factor) 

Blasius velocity 

profile 
0.66 1.72 2.59 

Cubic velocity 

profile 
0.65 1.74 2.70 

Quadratic velocity 

profile 
0.69 1.75 2.55 

X/L = 1 0.72 1.84 2.56 

X/L = 0.75 0.73 1.86 2.57 

X/L = 0.5 0.73 1.87 2.57 

X/L = 0.25 0.68 1.74 2.59 

From the abovementioned table (3.2), it is evident that the non-dimensional form of 

momentum thickness, displacement thickness and velocity profile shape factor obtained 

from the numerical results demonstrate good quantitative agreement with the 

dimensionless form of these boundary layer variables derived from the theoretical 

boundary layer equations. The magnitudes of the momentum thickness and the 

displacement thickness are within 10% of the theoretical boundary layer values, whereas 

the shape factor lie within ±2% of the Blasius boundary layer solutions. Hence, it can be 

inferred that the SST-k-ω model can successfully predict the boundary layer growth over 

a smooth flat plate. 
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3.6.7.2 Turbulent boundary layer flow characteristics 

The turbulent boundary layer flow characteristics obtained from the optimised k-kl-ω 

transitional model is investigated in the following section. The velocity profiles along the 

centreline of the plate at two locations (x=2.5m & x=2.0m) are plotted in figure (3.23). 

Only the velocity profiles at these two streamwise locations are presented, because the 

flow undergoes transition from a laminar to a turbulent regime prior to those locations. 

Therefore, the comparison of the numerically obtained velocity profiles, with the 

turbulent power-law velocity profile will be much more definite at those two streamwise 

positions. However, it is pointed out here that, the power-law velocity profile is an 

empirical velocity profile which is the simplest and widely accepted velocity profile for 

many engineering applications (pipe flows) that has a reasonably good fit to the velocity 

distributions inside the turbulent boundary layer (Nikuradse, 1950). The power law 

velocity profile can be expressed as  

                                            
1

n
i

y
u (x, y) U( )


     for y ≤ δ                                         (3.11) 

where the exponent n is a constant whose value depends on the Reynolds number (ReX) 

of the plate flow, U denotes the mean-streamwise velocity, y represents the distance in the 

normal direction and δ is the boundary layer thickness. Note that in the approximation of 

equation (3.11), δ is “not” the 99% of the boundary layer thickness, but rather the actual 

edge of the boundary layer. The value of n generally increases with increasing Reynolds 

number (ReX). The value of n = 7 approximates many flows in practice, and was 

suggested by Prandtl (Prandtl, 1904), as it forms an excellent fit to the low-Reynolds 

number turbulent data. The turbulent velocity profile is much fuller than the laminar one, 

and it becomes flatter as n increases. Figure (3.23) shows the non-dimensional turbulent 

velocity profile obtained from the numerical simulations plotted together with various 

power-law velocity profiles having n= 6, 7 and 8 for relative comparisons. The obtained 

velocity profiles illustrate good quantitative agreement with the empirical power law 

velocity profiles. In order to determine the precise exponent (n) of the velocity profiles 

obtained from the revised k-kl-ω model, a log-log plot of normalized velocity profiles is 

made which are represented in figures (3.24) and (3.25). In figure (3.24), the exponent n 
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is computed from the linear best-fit plot to the log-log profiles, and its magnitude is 7.60, 

for the velocity profile at x = 2.5m. Similarly, the exponent n obtained from the linear 

best-fit to the logarithmic velocity profiles measured at x = 2.0m is 7.42 (fig. (3.25)). 

Both the magnitude of exponents is remarkably close to the value of the exponent for the 

one-seventh power-law profiles (n = 7) which infers that the improved k-kl-ω model with 

an optimised ( * ) succeeds remarkably well in predicting the development of the 

turbulent boundary layer over a flat plate.  

It is emphasized over here that the turbulent power velocity profile represented in 

equation (3.11) is physically meaningless very close to the wall i.e. at y→0, since the 

normal velocity gradient, given by (
u

y




) will be infinite at y≈ 0, which is not close to the 

reality. Hence the equation (3.20) cannot be used to deduce the near wall shear stress       

( w ) along the length of the plate as it will yield a value of infinity (since, w
u

( )
y

 


 


) 

close to the wall. Although, the slope of the tangent at any point close to the plate 

boundary will be very high in magnitude, it is nevertheless infinite. However, the large 

slope at the plate boundary will give rise to a very high wall shear stress and, 

correspondingly high local skin-friction coefficient (cf). This phenomenon is quite 

evident from the plots shown in figure (3.26), where it is clearly noticed that after the 

onset of natural transition occurring approximately at Reynolds number (ReX) of 

1.98×106, the local-skin friction coefficient (cf) undergoes a sudden jump to a relatively 

higher magnitude of coefficient values. It is important to mention that the skin-friction 

coefficient computed here is directly extracted from the numerical simulation results. A 

comparison between the numerical results and the theoretical skin-friction profiles is also 

demonstrated in the same figure which shows that the transitional k-kl-ω model with the 

improved model coefficient (  ) = 0.046 can effectively predict the turbulent boundary 

layer development and can address the transition of the boundary layer from a laminar to 

turbulent regime in a reliable manner. The turbulent boundary layer skin-friction profiles 

are determined empirically according to 
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                                                          f 1
7

X

0.027
c

(Re )

                                                 (3.12) 

  

Figure 3.23 Normalized velocity profile obtained from the standard and the 

improved k-kl-ω model plotted against the theoretical turbulent velocity profiles, 

measured along the centreline of the plate at x=2.0m (right) and x=2.5m (left) 
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Figure 3.24 Plot of normalized velocity profile in the logarithmic form obtained 

from the standard and the improved k-kl-ω model measured at x=2.5m 

 

Figure 3.25 Plot of normalized velocity profile in the logarithmic form obtained 

from the standard and the improved k-kl-ω model measured at x=2.0m 
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X
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The magnitudes of the dimensionless-profile shape factor (H) obtained from the revised 

k-kl-ω transitional model and those obtained from the different power law velocity 

profiles are summarized in table (3.3). 

Table 3.3 Comparisons between the dimensionless velocity shape factor obtained 

from the improved SST-k-ω model and the theoretical turbulent velocity profiles 

Turbulent velocity profiles Velocity profile shape factor (H) 

1/6th Power law velocity profile 1.33 

1/7th Power law velocity profile 1.29 

1/8th Power law velocity profile 1.25 

X/L = 1 1.26 

X/L = 0.75 1.27 

The shape factor obtained from the velocity profiles at x = 2.5m and x =2.0m is relatively 

close and lie within the values of the shape-factor obtained from the semi-empirical 1/7th 

and 1/8th power-law velocity profile. The agreements are within ±2% from the theoretical 

turbulent profiles. Therefore, the optimised k-kl-ω transitional model demonstrates the 

ability to reproduce transitional and turbulent boundary layer behaviour in a correct 

manner. 
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Figure 3.26 Comparison of the local skin-friction profiles obtained from the 

standard and the improved k-kl-ω model plotted against the theoretical turbulent 

skin-friction profiles, measured along the centreline of the plate 

3.7 Summary 

This section summarizes the overall results obtained from the optimized SST-k-ω and the 

k-kl-ω model simulations that are carried out in the preceding sections.  

• The default standard SST-k-ω models employed in three commercial software 

codes (viz. FLUENT, STAR-CCM+ and CFX) are not accurate in predicting the 

decay of homogeneous isotropic turbulence downstream of an inlet. The 

discrepancy observed is due to the magnitude of the default model constants used 

in those software codes to solve the closure problem of two equation SST-k-ω 

model. Though the default values of these closure coefficients are derived 

empirically and have found to work quite well for wall-bounded and wall shear 

flows, it doesn’t work accurately for grid-generated decaying isotropic turbulence. 
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• By tuning in the default values of the standard model constant ( 
 ) of the SST-

k-ω model in an appropriate manner (i.e. substituting 
 ≈ 0.046) , a closer 

match of the FLUENT SST-k-ω results with the experiments and the LES results 

can be obtained for freely decaying isotropic homogeneous turbulence. 

• Similar agreement for the two-other commercial CFD codes i.e. STAR-CCM+ 

and CFX can also be obtained by fine tuning the model constant in a similar 

manner, that can be applied to the studies of grid and computer generated 

isotropic homogeneous turbulence. 

• The new optimized model constant when used with SST-k-ω low Reynolds 

number correction (LRNM) predicts the development of the laminar boundary 

layer in a correct manner and demonstrates good quantitative agreement with the 

Blasius boundary layer solution. Therefore, it can be concluded that modifying 

the constant to better predict freestream decay does not affect the laminar 

boundary layer development (e.g. local skin-friction profiles and the velocity 

boundary layer profiles). 

• The transitional k-kl-ω model when used with the new optimized constant 

predicts the onset of natural transition quite well and the numerical results 

obtained for turbulent boundary layer velocity profiles show close resemblance to 

the empirical power law velocity profiles. 

3.8 Conclusion 

In this chapter, the capability of the standard SST-k-ω RANS based model in predicting 

the decay of isotropic and homogenous turbulence has been investigated in detail. Post-

evaluation it is found that the standard SST-k-ω model doesn’t predict the correct 

behaviour of the turbulence decay downstream in any of the three-available commercial 

CFD codes (FLUENT, STAR-CCM+ and CFX) because of the way the empirical closure 

coefficients are implemented as a precursor to the modelling simulation results. The 

differences and the limitations of these softwares in terms of different modelling 
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constants are highlighted for thorough understanding of the reader. In order to improve 

the pre-existing RANS modelling results, the standard SST-k-ω model in FLUENT has 

been used with a newly tuned model constant that successfully generates better results 

with a reasonable degree of accuracy, when compared quantitatively with the different 

experimental data sets and the present LES results. The new optimized model constant 

was then coupled with the SST-k-ω, a LRNM model and tested for a simple zero-

pressure gradient flat plate, in order to assess the response of the new model constant in 

terms of laminar boundary layer predictions. Then the results are succinctly compared to 

the theoretical laminar boundary layer correlations. Similarly, the new model constant is 

also integrated with the transitional k-kl-ω model in the same way to address the 

transitional flow behaviour and match the turbulent boundary layer profiles with already 

established experimental and empirical flat plate turbulent boundary layer correlations. 

The simulation results disclose the fact that the improved model constant does not affect 

the laminar or turbulent boundary layer developments over a flat plate whilst working 

fairly well for freestream turbulence decay. Hence, the improved RANS SST-k-ω and k-

kl-ω transitional models can be suitably extended to carry out studies on boundary layers 

over a flat plate in presence of oncoming freestream turbulence. 

The next chapter present the conclusions from the present work, together with 

recommendations for future work. 
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Chapter 4   

4 Conclusions and Recommendations 

This chapter presents a number of concluding remarks from the present Computational 

Fluid Dynamics (CFD) work on the decay of homogeneous isotropic turbulence as well 

as several recommendations for the future research work. 

4.1 Conclusions 

The general objective of the thesis was to better understand the decay of turbulence 

upstream, prior to its interaction with any bluff body. The study was carried out as a part 

of the larger objective which is to accurately determine the heat transfer rates from a flat 

plate in presence of uniform freestream turbulence. Computational Fluid Dynamics 

(CFD) models have been developed using steady Reynolds averaged Navier-Stokes 

(RANS) and Large eddy simulation (LES) methods to characterize the spatial decay of 

freestream turbulence. The motivation behind the present study was to identify near 

constant TKE conditions in the computational domain to examine the effect of freestream 

turbulence on laminar and turbulent boundary layers. The main conclusions from the 

present study are as follows: 

• A near homogenous and isotropic flow condition for LES simulations can be 

generated using a proper inlet turbulence generator i.e. (Consistent Discrete 

Random Flow Generation Technique) (Aboshosha et al., 2015). The homogenous 

and isotropic flow conditions generated using this technique in the current study 

replicate similar inlet flow conditions obtained in grid-generated turbulence. 

• The effect of the local turbulent root-mean square (r.m.s) velocity fluctuations ( 'u

) and the integral length scale (Lu) on the decay of turbulent kinetic energy is re-

emphasized and it is found that the rate of decay of turbulent kinetic energy 

(TKE) solely depends on the local magnitudes of 'u  and Lu and viscosity,  and no 

other upstream conditions have an effect on the spatial decay of turbulence. The 

findings are consistent with the earlier reports of Dryden (1943). 
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• The results from the Dynamic Smagorinsky LES model show very good 

qualitative and quantitative agreement with the previous experimental data, unlike 

those results obtained from the steady SST-k-ω RANS turbulence model which 

shows a much greater deviation with the experimental data sets. The anomaly of 

the results obtained from the current steady state RANS solution is due to the 

different formulation of the turbulence model constants implemented in 

commercial CFD codes (FLUENT, STAR-CCM+ and CFX) that are calibrated in 

different environments to work fairly well for wide range of flows, that may or 

may not include flows of decaying isotropic homogeneous turbulence. 

• A new-correlation equation based on the local turbulent parameters ( 'u and Lu) 

have been developed to quantify the spatial decay turbulence for a uniform 

approach flow at the inlet. The results from the current study have been validated 

with the earlier relevant experimental studies based on the new formulated 

correlation equation, that highlights the applicability of the correlation equation to 

turbulent flows generated downstream from a conventional square grid. 

• Based on the same numerical LES model, a set of three-correlation equations 

have been devised that can be used as a prediction tool for decay, to guide one to 

estimate the local values of turbulent kinetic energy (k) and length scale (Lu) from 

the initial values and, similarly, the estimation of the initial values from the local 

values of those turbulent parameters. 

• A near-constant TKE condition is identified, which approximately extends from x 

= 2m to x = 4m in the numerical computational domain. This near constant region 

can be related and extended to actual physical locations in typical wind-tunnel 

experiment examining flow over three-dimensional bluff-bodies (such as 

cylinders or prisms) to quantify wind and thermal effects. 

• The steady RANS models are revisited once again, in order to figure out its 

limitations in modelling the decay of homogenous isotropic turbulence. 

Thereafter, the steady RANS model has been implemented in three-different 

commercial codes (FLUENT, STAR-CCM+ and CFX) to highlight the 

differences in modelling of the specific dissipation rate (ω) in each of those 

softwares. Post-evaluation, it was found that the source of discrepancy between 
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the results from the experiments and the RANS model from the different software 

codes is due to the default value of the model constant (  ) raised to different 

power, that inherently controls the dissipation of turbulent kinetic energy (TKE) 

and the production of the specific dissipation rate (ω). Thereafter, fine-tuning of 

the model constant (  ) in each of three softwares was done with an optimized 

value of 0.046 that makes the results from three commercial CFD codes match 

with each other and also with the experimental/LES results on the spatial decay of 

turbulent kinetic energy. 

• The new improved model constant when coupled with the SST-k-ω low Reynolds 

number correction model predicts the development of the laminar boundary layer 

over a flat plate in a correct manner. Similarly, the same model constant when 

integrated with the transitional k-kl-ω model demonstrates its ability to predict the 

laminar to turbulent boundary layer transition precisely along with the turbulent 

boundary layer development. In short, the improved version of the model constant 

reproduces results with reasonable degree of accuracy for spatially developing 

laminar and turbulent boundary layer flows. 

4.2 Contributions 

The original contributions of the present study to the scientific knowledge is provided 

below: 

• A simple yet powerful prediction tool has been devised in the current study that 

can be used to estimate the local or initial turbulent parameters (i.e. TKE and Lu), 

downstream or at the inlet, in a typical wind-tunnel experimental facility, that 

would help one to estimate values of Lu which would be relevant for any bluff-

body study. In addition, using the same prediction tool, one can also compute the 

values of TKE that would be generated by a conventional square-grid which will 

decay sufficiently at bluff-body leading edge, so that the freestream TKE would 

then be fairly-constant along the bluff-body surface. The maximum value that can 

be achieved for such a constant value can also be determined from the same 

prediction equations. 
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• An improved RANS SST-k-ω model with an optimized model constant value has 

been proposed, that can guide an appropriate numerical RANS approach to 

simulate freely decaying isotropic homogeneous freestream turbulence. 

4.3 Recommendations 

Based on the analysis of results and understanding from the present study, the following 

recommendations for future work can be made: 

• In this study, the focus was entirely based on performing numerical simulations in 

order to investigate the freestream decay of turbulence in the streamwise 

direction. A lot of data on the earlier experimental grid-generated turbulence is 

available, but none of the earlier studies provides a universal single correlation 

equation having TKE and integral length scale embedded into that equation in 

near perfect isotropic homogeneous conditions. Most studies also don’t comment 

on the spatial growth of integral length scales along the streamwise distance. So, 

it would be useful to carry out some experiments on grid-generated turbulence. 

Both passive and active grids of different dimensions should be used to generate 

turbulence and then characterize its spatial decay, each with different initial 

conditions (i.e. different mean free-stream velocities, initial integral length scales 

and turbulence intensities), since the effect of these parameters have not yet fully 

investigated in the past. This work could potentially bridge the gap on the 

discrepancies observed in the earlier results on the decay rate of multi-scale grid 

generated turbulent flows. 

• Direct numerical simulations (DNS) can be carried out using the available 

commercial CFD codes (FLUENT, Star-CCM+, CFX) to assess their capability in 

reproducing grid-generated turbulence. In addition, the DNS computations can 

also provide detail data of turbulence statistics that will be free from any 

experimental uncertainties and, thereby, help one understand the basics of 

turbulent dynamics governed by the inviscid large scales and viscous small scales.  
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Appendix A 

Solution method of the linear dependency of (k/k0) with                          

(x-x0)*(𝐤′
0)0.5/Lu 

The linear dependency of (k/k0) with the non-dimensional variable (x-x0)*(k′)0.5/Lu  is 

represented by the equation (2.57) (refer to chapter 2) and re-written once again to 

remind the reader 

                                               
0

0.5
0 u

d
(k / k )

dx
d

(x x ) (k ') / L
dx

 

 ≈ constant                             (A.1) 

where k and k0 are the local and initial value of the turbulent kinetic energy, k′ is the 

local dimensionless turbulent kinetic energy, x (m) is the streamwise distance, x0 is the 

virtual origin, and Lu represents the integral length scale (m).  

In the upcoming section, the left-hand hand side of the equation (A.1) will be solved to 

prove the linearity of the relation observed in figure (2.34) (refer to chapter 2) and that 

there exits a linear functional relationship between the variables (k/k0) and (x-

x0)*(k′)0.5/Lu. The expression (x-x0) will be denoted by x from now on for simplicity. 

It has already been established in section (2.9.1) that (k/k0) and (Lu/Lu0) evolves 

according to the power-laws in the streamwise direction hence their dependency can be 

written as equations in the form of  

                                                    
'

p
1'

00

k k
(a x 1)

kk
                                                   (A.2) 

where a1 is the power-law coefficient and p is the power-law exponent of the given 

equation (A.2). The values of a1 and p obtained from the power-law best-fitting of the 
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data are a1 = 1.15 and p = -1.06 (having 95% confidence bounds with an R2 = 0.999), 

respectively. 

Taking the spatial derivative of equation (A.2) yields,  

                                                      0d(k / k )

dx
 = p 1

1 1pa (a x 1)                                      (A.3) 

Similarly, (Lu/Lu0) varies with the streamwise distance x(m) in the form of  

                                                        qu
2

u0

L
(a x 1)

L
                                                     (A.4) 

Where a2 is the power-law coefficient and q is the power-law exponent of the given 

equation (A.4). The magnitudes of a2 and q obtained from the power-law best-fitting 

curve are given by a2 = 1.14 and q = 0.46 (having 95% confidence bounds with an R2 = 

0.999), respectively. 

Now, substituting ' ' p
0 1k k (a x 1)   and q

u u0 2L L (a x 1)   into the expression of the 

variable, ' 0.5
0 u(x x ) (k ) / L  , gives 

                                                       

p
' 0.5 2
0 1

q
u0 2

x.(k ) .(a x 1)

L (a x 1)




                                               (A.5) 

Taking the spatial derivative of the equation (A.5) yields 

                                

p
' 0.5 2
0 1

q
u0 2

x.(k ) .(a x 1)d
( )

dx L (a x 1)




 = 

p
' 0.5 2
0 1

q
u0 2

(k ) x.(a x 1)d
{ ( )}

L dx (a x 1)




             (A.6) 

Approximating, 1 2a a , since, 1a = 1.15 and 2a 1.14 , both obtained from the best-fit 

curve of the power law, the right-hand side of the equation (A.6) can be written as  
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p' 0.5 q
0 2

1
u0

(k ) d
{x.(a x 1) }

L dx


                                              (A.7) 

or,          

p' 0.5 q 1
p 1 10 2

1 1 1 1
u0

(k ) p
(a x 1) .(a x 1) .{1 a .( q).x.(a x 1) }

L 2

  
                       (A.8) 

Now, substituting 0d(k / k )

dx
 = p 1

1 1pa (a x 1)   and, 

' 0.5
0 0 u

d
(x x )*(k ) / L

dx
 =

p' 0.5 q 1
p 1 10 2

1 1 1 1
u0

(k ) p
(a x 1) .(a x 1) .{1 a .( q).x.(a x 1) }

L 2

  
        

in equation (A.1) and thereby simplifying (A.1) gives 

     
0

0.5
0 u

d
(k / k )

dx
d

(x x ) (k ') / L
dx

 

= 1 u0
p

q 1
' 0.5 12
0 1 1 1

p.a .L

p
(k ) .(a x 1) .{1 a .( q).x.(a x 1) }

2

  
   

   (A.9) 

Approximating, p ≈ -1 and q ≈ 0.5, since p = -1.06 and q = 0.46 are both obtained from 

the best-fit curve power law, the right-side of the equation (A.9) can be written after 

simplification as 

                                     
0

0.5
0 u

d
(k / k )

dx
d

(x x ) (k ') / L
dx

 

= 1 u0
' 0.5
0

pa L

(k )
 = constant                    (A.10) 

since, p, 1a  denotes the coefficient and exponent of the power-law equation given in 

(A.2) (which are constants), u0L  is the initial value of the integral length scale specified 

at the inlet (is a constant), and '
0(k )  is the initial non-dimensional value of the turbulent 

kinetic energy specified (and also is a constant).  
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Hence, it is proved that the variable 
0

k
( )
k

 holds a linear relationship with 

' 0.5
0 u(x x )*(k ) / L  and curve represented in figure (3.4) is linear in nature. 
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Appendix B 

 

Sample calculations to estimate the initial turbulent scales (𝐤′
0) 

and Lu0) based on the local TKE (k) and the integral length 

scale (Lu) 

The set of three correlation-equations (equations 2.49, 2.50 and 2.60) presented in 

Chapter 2 are re-written here once again to remind the reader 

                                  
' 0.5

' ' 1 0 0
0 1

u

A (k ) (x x )
log(k ) log(k ) n log( 1)

L


                           (B.1) 

                                 
' 0.5

' ' 2 0 0
0 2

u0

A (k ) (x x )
log(k ) log(k ) n log( 1)

L


                           (B.2) 

                                      
' 0.5'

0

'

0 0 u

(x x )*(k )k k
m( ) C

k k L


                                            (B.3) 

The value of the decay coefficients (A1 and A2), decay exponents (n1 and n2) and the 

corresponding R2 coefficients of the best-fit curve for the equations (B.1), (B.2) and (B.3) 

are summarized in table (B.1) and (B.2) for completeness 

Table B.1 Constants obtained from best regression curve fitting procedure to 

equations B.1 and B.2 using the method of Non-linear least squares 

Normalization 

parameter of the x 

ordinate 

Decay exponent (n) 
Decay coefficient 

(A) 
R2 

'

0k and uL  2.38 0.27 0.992 

'

0k and u0L  1.16 0.44 0.971 
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Table B.2 Constants obtained from best regression curve fitting procedure to 

equation B.3 using the method of Non-linear least squares 

Normalization 

parameter of the x 

ordinate 

m (slope) 
C (intercept on the y 

ordinate) 
R2 

'k and uL  -0.51 1 0.953 

 

Krogstad & Davidson (2010) 

The applicability of the prediction correlation equations have been extended to previous 

experimental study of (Krogstad and Davidon, 2011) to estimate the initial values of the 

turbulent parameters at the grid inlet section with known local magnitudes of TKE and Lu 

at x = 2.02m (local values are extracted from (Krogstad and Davidon, 2011)).  

The experimental data gives  

                                            'k  = 0.00025 (approximately at x-x0 = 2.02m) 

                                            uL = 0.03m (approximately at x-x0 = 2.02m) 

Substituting these values in the equation (B.1) gives an equation with one unknown 

variable '
0(k )  which is 

                   
' 0.5

' 0
0

0.27 (k ) 2.02
log(0.00025) log(k ) 2.38log( 1)

0.03

 
                         (B.4) 

Solving the equation (B.4) we get '
0(k ) =0.000594 or k = 0.108 (since U̅ = 13.5m/s) 

Now substituting the value of '
0(k ) = 0.000594 in equation (B.2) gives a similar equation 

with one unknown variable (Lu0) which is 
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0.5

u0

0.44 (0.000594) 2.02
log(0.00025) log(0.000594) 1.16log( 1)

L

 
           (B.5) 

Solving the equation (B.5) gives u0L  = 0.020m 

Table (B.3) summarizes the predicted values and the actual known values of those 

parameters with the percentage difference between the actual and the known predicted 

values. 

Table B.3 Comparison of the predicted and actual values of the inlet turbulent 

parameters (TKE and length scale) from the study of Krogstad & Davidson (2011) 

Krogstad and 

Davidson (2011) 
Predicted Actual 

% difference in 

proportion to the 

predicted values 

Initial TKE (k′
0) 0.000594 0.000585 1.53 

Initial integral 

length scale (Lu0) 

(m) 

0.020 0.023 -15 

As evident from table (B.4), the predicted value of TKE at the inlet (x-x0 = 0m) is 

overestimated by 1.52% (< 2%), whereas the predicted value of integral length scale (Lu) 

is underestimated by 15%. Although, the predicted value of TKE show close proximity to 

the actual TKE value, the length scale (Lu) is underestimated by 15% which might be due 

to the deviation of the data from the actual fitted regression line given by R2 = 0.971. As 

emphasized before, the integral length scale magnitudes are not off by several orders of 

magnitude and can be reliable to use it for boundary-layer wind tunnel experiments. 
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Sample calculations to estimate the local turbulent scales (𝐤′) 

and Lu) based on the initial (inlet) TKE (𝐤′
0) and the integral 

length scale (Lu0) 

In this section, sample calculations have been shown to predict the local magnitudes of 

turbulent variables (k′ and Lu) from the initial inlet turbulent scales (k′
0) and Lu0, in order 

to examine the validity of the of the correlation equations presented in equations (B.1), 

(B.2) and (B.3). 

Krogstad & Davidson (2010) 

The applicability of the prediction correlation equations have been extended to previous 

experimental study of (Krogstad and Davidon, 2011) to estimate the local values of the 

turbulent parameters TKE and Lu at x = 2.02m downstream from the inlet grid-section. 

The magnitudes of TKE and integral length scales at x-x0 = 0m are  

                                                 '
0k  = 0.000585 (at x-x0 = 0m) 

                                                 Lu0 = 0.023m (at x-x0 = 0m) 

Substituting these values in equation (B.2), gives an equation with one-unknown variable 

(k′) as  

                        
0.5

' 0.44 (0.000585) 2.02
log(k ) log(0.000585) 1.16log( 1)

0.023

 
         (B.6) 

Solving, equation (B.6) gives (k′) = 0.00027 

Now substituting the value of (k′) in equation (B.1) gives one equation with only one 

unknown variable (Lu) as  

               
0.5

u

0.27 (0.000585) 2.02
log(0.00027) log(0.000585) 2.38log( 1)

L

 
        (B.7) 
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Solving equation (B.7) gives Lu = 0.034m 

Table (B.4) summarizes the predicted values and the actual known values of those 

parameters with the percentage difference between the actual and the known predicted 

values. 

Table B.4 Comparison of the predicted and actual values of the inlet turbulent 

parameters (TKE and length scale) from the LES study 

Krogstad & 

Davidson (2010) 
Predicted Actual 

% difference in 

proportion to the 

predicted values 

Local TKE (k′) 0.00027 0.00025 7.40 

Local integral 

length scale (Lu) (m) 
0.034 0.030 11.76 

The deviation of the predicted levels of turbulence is not very high in magnitude (< 15%) 

and be used successfully used to estimate the local TKE and Lu from the initial 

magnitudes of TKE and Lu. 

Identification of near constant TKE conditions (LES study) 

Sample calculations have been shown to estimate the turbulent parameters downstream at 

x-x0 = 2m, x-x0 = 3m and x-x0 = 4m, to identify the near constant TKE conditions. 

In order to know the unknown local turbulent variables (TKE and Lu) at x-x0 = 2m, one 

needs to know the initial magnitudes of TKE and integral length scales at x-x0 = 0m. The 

values obtained from the present LES study is 

                                              '
0k  = 0.0134 (at x-x0 = 0m) 

                                              Lu0 = 0.107m (at x-x0 = 0m) 
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Substituting these values in equation (B.2), gives an equation with one-unknown variable 

(k′) as  

                        
0.5

' 0.44 (0.0134) 2
log(k ) log(0.0134) 1.16log( 1)

0.107

 
                      (B.8) 

Solving, equation (B.8) gives (k′) = 0.0062; k = 0.0992 (m2/s2) (since U̅ = 4m/s) 

Now substituting the value of (k′) in equation (B.1) gives one equation with only one 

unknown variable (Lu) as  

                        
0.5

u

0.27 (0.0134) 2
log(0.0062) log(0.0134) 2.38log( 1)

L

 
              (B.9) 

Solving equation (B.9) gives Lu = 0.17m 

Similarly, using the above methodology, the values of TKE and Lu obtained at x-x0 = 3m 

are 

                            k′ = 0.0048; k = 0.0768 (m2/s2) (since U̅ = 4m/s) 

                                                     Lu = 0.18m 

Similarly, the values of TKE and Lu obtained, at x-x0 = 4m are 

                            k′ = 0.0040; k = 0.064 (m2/s2) (since U̅ = 4m/s) 

                                                     Lu = 0.19m 

It is clearly noticed from the values estimated at x-x0 = 2m, x-x0 = 3m and x-x0 = 4m 

that the turbulence levels reach near constant TKE conditions over this region extending 

from x = 2m to x = 4m, and the prediction correlation equations can be successfully 

applied to identify those regions in actual wind-tunnel bluff-body experiments. 

Table B.5 summarizes the values of the TKE and length scales obtained at x-x0 = 2m, x-

x0 = 3m and x-x0 = 4m 
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Table B.5 Summary of the local TKE and integral length scale magnitudes 

estimated from the prediction correlation equation (LES study) 

Streamwise locations (m) Local TKE (k) (m2/s2) 
Local integral length scale 

(Lu) (m) 

x-x0 =2 0.099 0.17 

x-x0 =3 0.077 0.18 

x-x0 =4 0.064 0.19 
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Appendix C 

Comparisons between three different commercial codes against 

the spatial decay of isotropic homogeneous turbulence 

 

Figure C.1 Spatial decay of TKE profiles obtained from three different commercial codes 

(FLUENT, STAR-CCM+ and CFX) compared with the present LES study and previous 

experimental results, scaled with initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 

0.10m) 
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Figure C.2 Spatial decay of TKE profiles obtained from three different commercial codes 

(FLUENT, STAR-CCM+ and CFX) compared with the present LES study along the streamwise 

distance x (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) 

New optimised SST-k-ω models for STAR-CCM+ 

 

Figure C.3 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (STAR-CCM+ simulations) 
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Figure C.4 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study along the streamwise distance x (𝐔̅ =4m/s, TI =10%, Lu0 = 

0.10m) (STAR-CCM+ simulations) 

New optimised SST-k-ω models for CFX 

 

Figure C.5 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (CFX simulations) 
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Figure C.6 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study along the streamwise distance x (𝐔̅ =4m/s, TI =10%, Lu0 = 

0.10m) (CFX simulations) 
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Applicability of the improved SST-k-ω model in predicting the 

turbulence decay for varying turbulence intensities at the inlet 

 

Figure C.7 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (FLUENT simulations) 
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Figure C.8 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, plotted against the 

streamwise distance x (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (FLUENT simulations) 

 

Figure C.9 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =20%, Lu0 = 0.10m) (FLUENT simulations) 
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Figure C.10 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, plotted against the 

streamwise distance x (𝐔̅ =4m/s, TI =20%, Lu0 = 0.10m) (FLUENT simulations) 

 

Figure C.11 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =30%, Lu0 = 0.1m) (FLUENT simulations) 
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Figure C.12 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, plotted against the 

streamwise distance x (𝐔̅ =4m/s, TI =30%, Lu0 = 0.10m) (FLUENT simulations) 
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Applicability of the improved SST-k-ω model in predicting the 

turbulence decay for varying integral length scales at the inlet  

 

Figure C.13 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (FLUENT simulations) 
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Figure C.14 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, plotted against the 

streamwise distance x (𝐔̅ =4m/s, TI =10%, Lu0 = 0.10m) (FLUENT simulations) 

 

Figure C.15 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.05m) (FLUENT simulations) 
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Figure C.16 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.05m) (FLUENT simulations) 

 

Figure C.17 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.02m) (FLUENT simulations) 
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Figure C.18 Spatial decay of TKE profiles of the different optimized SST-k-ω RANS model 

compared with the present LES study and the earlier experimental studies, scaled with the 

initial integral length scale (Lu0) (𝐔̅ =4m/s, TI =10%, Lu0 = 0.02m) (FLUENT simulations) 

 

 

 

 

 

 

 

 

 

 



207 

 

Appendix D 

Near-wall treatment of boundary layers 

The structure of wall bounded turbulent flows depends on how well the flow parameters 

on the layers near to the wall are resolved where the shearing of the eddies plays an 

important role in organizing the dissipation and momentum transfer. The free-stream 

parameters are no longer dominant, and the viscous effects are in action. Hence, in the 

immediate vicinity of the wall there is an extremely thin viscous sub-layer followed by 

the buffer layer and the logarithmic sub-layer. The number of mesh points required to 

resolve the details in a turbulent boundary layer is tremendously high and so wall 

functions are employed instead. There are two approaches available for modelling the 

near wall region. In the first approach a semi-empirical “wall function” (WF) is used 

where the viscosity-affected inner region is not resolved. In the other approach, known as 

the Low Reynolds Number modeling approach (LRNM), the viscosity-affected region is 

resolved through to the wall including the viscous sub-layer. LRNM requires high density 

grid resolutions near to the wall and is computationally expensive. A schematic 

representation of the two approaches is shown in fig (D.1). More details can be found out 

in (Versteeg and Malalasekera, 2007) 

A non-dimensional wall distance y+ for wall-bounded flow was used to characterize the 

grid resolution near the wall, where  

                                                     *u y
y





                                                                 (D.1) 

where, ρ is the density of the fluid (air), *u  is the friction velocity, y is the distance of the 

nearest node in the normal direction from the wall and μ is the dynamic viscosity of the 

fluid (air). y+ is often referred to as yplus and is commonly used in boundary layer theory 

in defining the law of the wall. 

The main drawback of the wall functions (except the scalable wall function) is that the 

numerical results deteriorate considerably near to the wall when refined substantially in 
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the normal direction. y+ values of less than 15 will gradually result in unbounded errors in 

wall shear stress and wall heat transfer. High quality numerical results will be obtained 

only if the overall resolution of the boundary layer is sufficient. The minimum number of 

cells required to cover the boundary layer accurately is 10 but a slightly higher value of 

20 is mostly desirable (ANSYS, 2013). However, it is to be noted that an improvement in 

the boundary layer resolution of the flow variables can be obtained with a limited 

increase in the computational cost. 

LRNM was used in the present work, which resolves the boundary layers through the 

viscous boundary layer, as suggested by (Blocken et al., 2009). An appropriate LRNM 

grid should have a y+ value of less than 5. The y+ value also depends on the type of 

turbulence models used in any numerical solution. For models which can resolve the flow 

up to the wall, a mesh having y+ ≤ 1 is more accurate in thermal predictions occurring 

inside the viscous sub-layer. Hence, in all the simulations performed in the current study, 

a y+ ≤ 1 has been maintained which satisfies the requirements of the Low Reynolds 

number modelling. A growth factor of 1.2 was used to generate the viscous sub-layer, 

this being the maximum value recommended by COST (Franke et al., 2007) guidelines. 

The generated grid covers more than 20 cells inside the boundary layer for better 

resolution of the flow field. 

 

Figure D.1 A schematic representation of the wall approach method vs the LRNM 

grid approach 
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Appendix E 

Low Reynolds Number modelling approach 

In wall bounded turbulent flows, the presence of solid walls is experimentally observed to 

have strong damping effect on the transport of turbulence characteristics. In numerical 

calculation of any turbulent flow, the velocity components and the turbulence energy will 

be set to zero to satisfy the No-Slip condition at the solid walls. The SST k-ω model may 

generate ambiguous results near the solid walls, achieving singular values of the 

turbulence dissipation parameters such as ε or ω which is not realistic in nature. Across a 

turbulent boundary layer, the flow undergoes a transition from fully turbulent to 

completely laminar within the thin viscosity dominated sub-layer adjacent to the solid 

surface. In this laminar and transitional layer, the molecular viscosity has a direct 

damping effect on the turbulence. This phenomenon is known as Low Reynolds Number 

Turbulence and is determined by the local turbulence Reynolds number Ret which is 

given by 
2k


 where k is the turbulence kinetic energy and ε is the turbulence dissipation 

rate. Two significant effects of the presence of the wall are: 

a) Molecular viscosity dominates in the regions near to the solid wall which diffuses 

vorticity and damps turbulence. This is clearly manifest in the Reynolds stress 

transport equations near to the walls, where the viscous diffusion terms which are 

usually negligible compared to the other terms in the equation becomes one of the 

largest to be balanced by the other terms (Biswas, 2003). 

b) There is a significant reduction of the velocity fluctuations normal to the solid 

wall by the Pressure Reflection Mechanism which is controlled by the non-

viscous effects of the flow. Although this mechanism is not fully understood and 

is mostly found in acoustic wave damping phenomenon, the standard eddy 

viscosity models (k-ε or k-ω) cannot separate the second phenomenon from the 

usual eddy viscosity effect (Biswas, 2003). 
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In general, Low Reynolds number turbulence modelling can resolve the turbulence flow 

down to the wall (y+ <1). The damping of turbulence near to the solid surface due to 

molecular viscosity is simulated through some damping functions attached to the various 

terms of the transport equations which allows the flow model to have smooth change of 

the flow variable from small laminar sub-layer values to the fully turbulent values away 

from the wall. In CFD modelling, the coefficient *  damps the turbulent viscosity 

causing the Low Reynolds number correction implemented in the SST k-ω model 

(ANSYS, 2013). It is given by 

                                                 

* t
0

* * k

t

k

Re

R
( )

Re
1

R



 







                                           (F.1) 

where, 

                                                    t

k
Re




                                                       (F.2) 

                                                        Rk = 6                                                         (F.3) 

                                                      * i
0

3


                                                          (F.4) 

                                                     i  = 0.072                                                     (F.5) 

In the high-Reynolds number form of the k-ω model, * = * = 1 
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Appendix F 

Governing equations of the k-kl-ω transitional model 

The k-kl-ω model transitional model is considered to be a three-equation eddy viscosity 

type model which includes transport equation for turbulent kinetic energy (k), laminar 

kinetic energy (kl) and the inverse turbulent time-scale (ω). The model transport 

equations for k, kl and ω are given below 

                              T
k BP NAT T

j k j

Dk k
P R R k D [( ) ]

Dt x x


 



 
      

 
                (F.1) 

                               kl BP NAT L
j j

D(kl) (kl)
P R R D [ ]

Dt x x


 
    

 
                           (F.2) 
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3 T w 3

j j
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C P ( 1) (R R ) C

Dt k f k
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
 



 


  


 
 



    

 
  

 

              (F.3) 

The various terms in the model equations represent production, destruction, and transport 

mechanisms. In the transport equation of ω, the fully turbulent production, destruction, 

and gradient transport terms (first, third, and fifth terms on the right-hand side of equation 

(F.3) are analogous to the similar terms in the k and kl transport equations and similar to 

the terms that appear in the k-ω model forms discussed in chapter 2 (refer to section 

2.5.4). The transition production terms (second term on the right-hand side) is intended to 

produce a reduction in turbulence length during the transition breakdown process. The 

fourth term on the right-hand side is included in order to decrease the length-scale in the 

outer region of the turbulent boundary layer, which is necessary to ensure correct 

prediction of the boundary layer wake region Walters and Cokljat (2008). All the other 

terms presented in the equations (F.1), (F.2) and (F.3) are not discussed here. Detailed 

information about all the model terms and its variants can be found in (Walters and 

Cokljat, 2008). Besides that, there are 27 model constants involved in this model, which 
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are more important to the overall model capability. The model constants are listed below 

for completeness 

However, it should be noted that to capture the transitional and turbulent boundary layers 

correctly, the computational mesh must have a y+ ≤1 in order to predict the onset of 

transition location correctly. If the y+ value is too large ( ≥ 5) the transition location 

moves upstream from the actual onset location. In the present numerical simulations, care 

has been taken to ensure that the y+ is always a little less than 1 which accommodates 

more than 20 cells inside the boundary layer for accurate estimation of the turbulent flow 

field near to the solid plate surface. 

Summary of the model constants of the three-equation Eddy-

viscosity k-kl-ω model 

0A 4.04                                         INTC 0.75                                           1C 0.44    

sA 2.12                                         TS,critC 1000                                       2C 0.92    

A 6.75                                          R,NATC 0.02                                       3C 0.3    

BPA 0.6                                         6
11C 3.4 10                                       RC 1.5    

NATA 200                                     10
12C 1.0 10                                      C   2.495 

TSA 200                                        RC 0.12                                               ,stdC 0.09    

BP,critC 1.2                                     ,C 0.035                                            Pr 0.85    

NCC 0.1                                          SSC 1.5                                                k 1    

NAT,critC 1250                                ,1C 4360                                             1.17    
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