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Abstract
This thesis consists of three contributing manuscripts related to waiting times with possible
applications in health care. The first manuscript is inspired by a practical problem related to
decision making in an emergency department (ED). As short-run predictions of ED censuses
are particularly important for efficient allocation and management of ED resources we model
ED changes and present estimations for short term (hourly) ED censuses at each time point.
We present a Markov-chain based algorithm to make census predictions in near future.

Considering the variation in arrival pattern and service requirements, we apply and compare
three models which best describe our data. We provide hourly predictions up to 24 hours in a
day which will provide suggestions to ED managers on how to prevent over-crowding in their
system. We illustrate our approach using 22 months data obtained from the ED of a hospital in
southwestern Ontario.

The next two manuscripts extend the theory underlying the Accumulating Priority queues
(APQs). We focus on the queues with two classes of customers and Poisson arrivals. The
first work in this topic derives the stationary waiting time distributions for the class of lowest-
priority customers in an Affine Accumulating Priority queues (Affine APQs). APQs were first
studied by Kleinrock (1964) and later revisited by Stanford et. al (2014) where they obtained
explicit solution for the Laplace Stieltjes Transform (LST) of the stationary waiting times for
all classes of customers.

All subsequent publications on APQs, have assumed that all arriving customers accumulate
priority credits over time starting from the same initial value (assumed, without loss of gener-
ality, to be 0). Whereas, our model studies Affine APQs which assume different initial priorities
(without loss of generality in a two-class setting we assume the lowest class starts with 0 credit
and the higher class customers with positive credit a. In this work we determine the waiting
time distributions for the lower class of customers with Poisson arrivals and general service
and present some numerical results for special cases of M/M/1, M/M/c and M/D/1. Inspired
by health care applications, we have also considered a particular optimization problem related
to the Affine APQ model, in order to select the optimum accumulation rate which allows for
the lowest class customers to meet their associated KPIs.

We next focus on the Analysis of the Maximum priority processes in the context of Affine APQ.
Maximum Priority Processes were first introduced in the context of APQs in Stanford et. al
(2014). We derive the LST of the stationary steady state distributions of the Maximum Priority
Processes as recursive functions and derive the explicit solutions for the LSTs in classical
APQ (i.e. a = 0). We employ this argument to present a new approach to determine the
LST of waiting time distribution for an APQ with two-classes of customers under the M/M/1
discipline. Since the Analysis of the Maximum Priority Processes in this work is done for the
general class of Affine APQs, it has provided the grounds for future researches to obtain the
LST of the waiting time distributions in the Affine APQs.

Keywords: Health care, Discrete time Markov chain, ED Census predictions, Regression with
ARIMA errors, (Affine) Accumulating priority queue, Waiting time distributions, Optimiza-
tion.
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Chapter 1

Introduction

The degree to which each individual is able to gain entry to a health care unit and to receive
care and services would define the health care accessibility for each patient. While it is possible
for some patients to wait for treatment, others may have their illness worsen during their wait,
which ironically requires more complex and costly treatment in the future. Also, research
has shown that overcrowding and long wait times in hospitals or emergency departments will
decrease the quality of patients care (see for example [39], [51]). Therefore, it is necessary to
plan strategies in advance or consider some interventions before or at the peak times to control
and manage congestion.

Consequently, the ability to predict the time when an Emergency Department’s (ED) over-
crowding will occur, remains a high priority for many departments. A huge literature is avail-
able on the different methods (i.e time series, regression, statistical (machine) learning algo-
rithms etc.) which have been used by researchers to accurately predict ED census in different
time horizons. While long term ED census predictions are necessary for strategic and tactical
planning purposes, short-term and even hourly predictions of the number of patients will help
the managers or ED administrative to assist in capacity planning, meeting key performance
indicators of the queue and plan ahead to consider possible interventions.

Meanwhile, other research has been conducted to study the effectiveness of some interventions
to improve patient flow in emergency departments. A systematic literature review in this regard
could be found in [58]. Classifying patients (customers) into different priority groups according
to their urgencies for commencement of service has been one important action. Therefore, as
a mathematical tool, a classical priority queue, which selects a customer of a lower priority
class when no customers of higher priority classes are waiting, appear to be the most popular
approach in such a system. However, this approach can cause the customers from lower classes
to experience extremely long waiting times which may result in serious outcomes. As a result,
the Canadian Triage and Acuity Scale (CTAS) [22] is applied to specify a time limit and a
corresponding compliance probability for each class of patients.

As the need for having targets for service commencement of various customer classes in health
care seems crucial, it is also important for queueing disciplines to factor both a patients urgency
and incurred waiting time to choose the next customer to be served. Kleinrock’s [28] “delay
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3

dependent queue” in 1964 was the first method introduced for selecting customers for service
based upon the maximum linearly accumulated amount of priority to that instant. While he
had been able to derive the mean waiting times for each class of customers, actual waiting
time distributions were elusive for 50 years until Stanford et al. [10] derived explicit results
in 2014. They renamed these models as “Accumulating priority queues (APQ)” and obtained
precise priority (for each class of customers) as service commences, after introducing “Maxi-
mum Priority Processes”. The customers waiting time can be trivially recovered by scaling by
the appropriate accumulation credit.

This thesis extends the research on the accumulating priority queues in two directions: The first
direction is the introduction of Affine and Delayed variants of APQ models. In this approach,
higher class customers will enter the system with an initial positive credit, a, therefore the lower
priority classes spend some time before they start to compete with the higher class to enter the
service. While considering the incurred wait times in a queue under APQ discipline reduces
the waiting times on average for lower class patients as compared with the classical priority
queues, “Affine APQ’s” would be a middle ground. We also prove that at least for the two-class
case, a full equivalence exists between the affine APQ and what we call the “Delayed APQ”. In
the delayed APQ approach, both classes start with 0 credit upon arrival but customers from the
lower priority class spend some time before they start to accumulate (positive) priority credit.
Such situations arise (in the health care context) when it is felt that lower-priority patients’
waiting times are only of concern once they reach a threshold, and hence only should earn
priority from that point onward.

In this thesis, we present an algorithm to obtain the waiting time distributions for the lower
priority class customers in the Affine APQ setting under Poisson arrival and General common
service time distributions. We present some numerical examples and illustrate these waiting
time distributions in graphs as comparison with the classical APQ and classical priority queue
disciplines. Furthermore, we have seen the application of this algorithm in the context of an
optimization example to select the optimum accumulation rate for different delay time and
occupancy levels.

Deriving the waiting time distributions for the higher priority class in the Affine APQ setting is
still an open problem. Therefore, the second direction in which we build upon existing theory,
pertains to how to define and analyse the maximum priority processes in an Affine APQ. Since
obtaining the exact priority of customers at the time of entrance into the service is the key ele-
ment in deriving the waiting times both higher and lower priority classes, we aimed at deriving
the LST of the stationary distributions for all possible sets of states in an Affine APQ under
M/M/1 discipline. We were able to write them in a set of recursive equations for the Affine
APQ. We could also demonstrate as an application of this analysis how the LST functions for
the special case when the initial credit is 0 (which reduces an Affine APQ to an APQ) can be
derived. We linked these results to obtain the waiting time distribution for classical APQ. This
introduces a new approach in studying the APQs and performs as an alternative. However, it
can potentially be expanded to account for the general class of Affine APQs.



4 Chapter 1. Introduction

1.1 Outline of this thesis

A detailed review of related literature is presented in Chapter 2, including a short introduction
to time series, Poisson regression and queueing theory, theory and some background informa-
tion on accumulating priority queues, introduction to the Affine APQs, and a discussion of the
Gaver-Stehfest numerical inversion algorithm.

In Chapter 3, we present a Markov-chain based algorithm to make near term census predictions
for an ED. Considering the variation in arrival pattern and service requirements in an ED, we
apply and compare three models which best describe our data. We provide hourly predictions
up to 24 hours in a day which will provide suggestions to ED managers on how to prevent
over-crowding in their system. We illustrate our approach using 22 months data obtained from
the ED of Hamilton hospital.

Chapter 4 presents detailed background on Affine APQs and introduces the concept of delayed
APQ. With an initial discussion on the waiting times for the delayed APQ, the linkage between
the Affine APQs and delayed APQs is shown in a theorem. An algorithm for the derivation
of stationary waiting time distributions in general service (one server) and Poisson arrival is
introduced. This algorithm has also been expanded to include multiple Exponential servers.
At the end, inspired from health care applications, a particular optimization problem related to
the model, namely, the selection of the optimum accumulation rate which allows for the lowest
class customers to meet their KPIs, is considered.

In chapter 5, we study the maximum priority processes in an Affine APQ. We derive a set of
recursive equations for the LST stationary distributions of the states in an Affine APQ. We
obtain an explicit solution for a special case when the initial class one credit a is set to be 0
(i.e. the classical APQ).

The main contributions are summarized in Chapter 6, as well as some future research direc-
tions.



Chapter 2

Preliminaries

In this chapter a review is given on the underlying methods that are required for the devel-
opment of the presented later chapters. Since we develop models related to both statistical
and queueing theory methodologies, this chapter is divided into two main sections: “Statistical
models”, and “Markov chains and queueing theory”. In each section we focus on the main
results and frequently used concepts in later chapters.

2.1 Statistical Models

We start this section with a brief introduction to time series models, specifically Autoregressive
Integrated Moving Average (ARIMA) models, and Poisson regression. Poisson regression is
one of the important models in the class of generalised linear models. These models have been
frequently used in short and long term predictions of stochastic phenomena in stock market,
traffic flow, weather forecasts, health care management, etc. We will follow with a brief review
of the regression models with ARIMA errors which will be used in the next chapter.

2.1.1 Time series models

In this part, we’ll describe some important features that we have considered when describing
and modeling a time series in the following chapters. Time series are the data type which arise
when a process is measured repeatedly and at equal or near equal time intervals. It has many
research applications in health care [16] and other scientific areas. One of the earliest recorded
series is the monthly sunspot numbers studied by Schuster in 1906 [6].

The time series techniques which are commonly used in health care analysis are moving av-
erage models, such as ARIMA, and smoothing techniques. For instance, the Box - Jenkins

5
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ARIMA model (introduced by Box and Jenkins in 1970) which is commonly used in fitting
forecasting models when dealing with a non-stationary time series, has been used extensively
in health forecasting [37]. A time series is called “stationary” if its statistical properties, such as
its mean, variance and autocorrelations, remain constant in time; otherwise it would be called
“non-stationary”. Various important concepts which we will be using frequently in this thesis
are listed as follows:

White noise A particularly useful white noise series, wt, is the Gaussian white noise wherein
the wt are independent normal random variables with mean 0 and variance σ2

w. This can be
denoted by

wt
i.i.d
∼ N(0, σ2

w). (2.1)

The auto covariance function Let xt denote the value of a time series at time t. The auto
covariance function is the second moment product [59]

γx(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)] (2.2)

for all s and t where E(xs) = µs and E(xt) = µt.

The auto correlation function (ACF) The ACF function is a normalized version of the auto
covariance function which gives correlations between xt and xs = xt−h for h = 1, 2, ..., t − 1 and
is defined as

ρ(s, t) =
γx(s, t)√

γx(s, s)γx(t, t)
. (2.3)

The ACF can be used to identify the possible structure of time series data, as it measures the
linear predictability of the series at time t, say xt, from the value of the series at time s. The ACF
of the residuals for a model is also useful to check. The ideal for a sample ACF of residuals is
that there are no significant correlations for any lag.

Partial Autocorrelation Function (PACF) If xt is a Gaussian process, the partial autocorrela-
tion function between xt and xt−h is defined as the correlation between xt and xt−h, conditional
on xt−h+1, ..., xt−1, the set of observations that come between the time points t and t − h.

A (weakly) stationary time series [59] A weakly stationary time series, xt, is a finite variance
process such that
(i) the mean value function, µt, is constant and does not depend on time t, and
(ii) the auto covariance function, γ(s, t), defined in (2.3) depends on s and t only through their
difference |s − t|.

The Autoregressive Model (AR) The fundamental idea in these models is that xt, the current
series value, can be modeled as a function of the p previous lags. When p specifies the order
of the model. It is abbreviated as AR(p) and is written as,

xt = φ1xt−1 + φ2xt−2 + ... + φpxt−p + wt, (2.4)
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where wt is the white noise, and φi are fixed parameters of the model. The back shift operator
is defined as Bhxt = xt−h. If we let φ(B) = 1 − φ1B − φ2B2 − ... − φpBp be the autoregressive
operator, then Equation (2.4) is also written as:

φ(B)xt = wt. (2.5)

The Moving Average model (MA) The qth order moving average model, abbreviated as
MA(q) is written as,

xt = wt + θ1wt−1 + θ2wt−2 + ... + θqwt−q, (2.6)

where wt is the white noise and θi, i = 1, 2, ..., q are parameters of the model. If we define θ(B)
as the moving average operator then Equation (2.6) could be written as:

xt = θ(B)wt. (2.7)

The ARMA model A time series is ARMA of order p and q abbreviated as ARMA(p, q), if it
is stationary and

φ(B)xt = θ(B)wt, (2.8)

where φp , 0, θq , 0.

A non-seasonal ARIMA model, abbreviated as ARIMA(p, q) combines an AR(P) and a MA(q)
processes but only after integrating them to transform the process into a stationary process.

The seasonal ARIMA model The seasonal ARIMA model incorporates both non-seasonal
and seasonal factors in a multiplicative model. In this model another set of autoregressive,
integration and moving average parameters are incorporated to consider the seasonality of pro-
cess. The shorthand notation for the model is ARIMA(p, d, q) × (P,D,Q)S , with p, d and q as
the non-seasonal AR, differencing and MA orders, while P, D and Q are the seasonal orders
respectively. The model could be written more formally as:

Φ(BS )φ(B)(1 − B)d(1 − bS )Dxt = Θ(BS )θ(B)wt, (2.9)

where Φ(BS ) = 1 − Φ1BS − ... − ΦPBPS and Θ(BS ) = 1 + Θ1BS + ... + ΘQBQS are seasonal AR
and MA operators.

2.1.2 Poisson regression model

Generalized linear models (GLM), popularized by McCullagh and Nelder in 1982, are exten-
sions of linear models which can be used not only to model the data coming from normal
distributions, but also non-normally distributed random variables. If the objective of a simple
linear model is to model the expected value of a continuous Normally distributed variable, Y ,
as a linear function of the continuous (fixed) predictor, X, E(Yi) = β0 + β1xi, in GLM models,
the response variable Yi is assumed to follow an exponential family distribution with mean µi,
which is assumed to be some (often nonlinear) function of xT

i β.



8 Chapter 2. Preliminaries

In this manner, GLM models can be used when the response variable, Yi , takes any type of
values (e.g., continuous, binary, count) and the predictors are connected to the response via a
function called the “link function”. The link function specifies how the expected value of the
response relates to the linear predictor of explanatory variables; e.g., η = g(E(Yi)) = E(Yi) for
linear regression, or η = log(E(Yi)) for Poisson regression.

In Poisson regression the response variable is count and assumed to have a Poisson distribution
that is Yi ∼ Poisson(µi) for i = 1, ..., n and E(Yi) = µ. Therefore the model is written as

g(µ) = β0 + β1x1 + β2x2 + ... + βkxk = x>β, (2.10)

where X = (X1, X2, ..., Xk)> are explanatory variables.

2.1.3 Regression with ARIMA errors model

One of the main assumptions in an ordinary linear regression model is the assumption of un-
correlated error terms (residuals). However, it is possible that the errors of a regression model
have a time series structure or have high autocorrelation which requires some modifications to
our model and our way of analysis.

In this procedure the underlying model is called a “Regression model with auto correlated
errors” [59]. That is, consider the model as:

y = Xβ + e, (2.11)

where, y is an n× 1 vector, X is the n× r regression covariate matrix (fixed input), β is an r × 1
vector of regression parameters and n is the number of observations. The n × 1 error vector,
e, is a process with some covariance implying that the error terms are correlated (i.e. are not
white noise, wt).

Now, if we have a pure AR(p) error we can write:

et = Φ−1(B)wt, t = 1, ..., n (2.12)

where Φ(B) is the linear transformation that, when applied to the error process, produces the
white noise wt. Now the original model could be written as :

y∗t = x∗t β + wt (2.13)

where y∗t = Φ(B)yt and x∗t = Φ(B)xt. Once this transformation is done on the original data,
an ordinary least squares regression model could be fitted to that to derive estimations for the
parameters of the model.
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β̂ = (X∗>X∗)−1X∗>y∗, (2.14)

where X∗ = [x∗1, x
∗
2, ..., x

∗
n]> and y∗ = [y∗1, y

∗
2, ..., y

∗
n]>.

2.2 Queueing theory

We start this section with a brief introduction to queueing systems and the mathematical study
of these systems which is called queueing theory. We will focus on the study of a particular
kind of queueing systems, namely, priority queueing systems, where these systems are useful
particularly for the situations when certain kind of customers should be given faster access
times to the server(s). We will follow with a review of the accumulating priority queue (APQ)
as in Stanford et al. [10] which was first introduced as the time-dependent priority queues in
Kleinrock [29]. We will review the single server APQ in Stanford et al., the homogeneous
multi-server APQ in Sharif et al. [8], the Preemptive APQs in Fajardo and Drekic [5] and the
nonlinear APQ in Li et al. [36]. Finally, as the rest of this thesis studies the Affine APQs, we
will give an introduction to Affine APQs.

Furthermore, there will be a brief introduction to the Laplace-Stieltjes transform and a review
of the Gaver-Stehfest numerical inversion algorithm as in [20, 40]. This Algorithm is used
in this thesis many times to numerically invert the Laplace-Stieltjes transform (LST) of the
waiting times’ distribution functions.

2.3 The mathematical study of queueing systems

In order to completely develop a mathematical queueing model, we must identify those two
fundamental processes that describe the arrival as well as the discipline of the service which
fulfills the service requirements of the customers. Queueing theories are mainly concerned
with the study of the systems that are limited in resources, where the probability of congestion
is great.

The arrival process is generally described as the probability distribution of the inter-arrival
times of the customers, which is denoted by A(t). Service times however, are denoted by
B(t) which specify the service requirements of the customers. By using a notation which was
first introduced by Kendall (1951), a queueing system is labelled as A/B/m/c, where letters A
and B specify the arrival and service distributions. Conventionally, M stands for exponential
distribution and G for unspecified “General” distribution. Furthermore, m specifies the number
of servers in the system and c is the capacity of the queueing system, when c is not explicitly
specified, it is presumed there are infinite waiting room capacity.

In this thesis, the inter-arrival times are assumed to be independent, service durations are in-
dependent, and the service durations are independent of the inter-arrival times. Other standard
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assumptions considered in this thesis are as follows:

First and foremost is that all of our models describe Non-Preemptive work-conserving queues.
Under this discipline, the work requirements of the customers are unaltered by the passage of
time and the server never idles as long as there is work to be done. The non-preemptive disci-
pline is such that a customer entering service will not be interrupted until service completion.
Customers don’t balk (i.e. decide not to enter a queue upon arrival if it is too long to suit them)
or renege (i.e. decide to leave the queue after losing patience) which means no work (service
requirement) is created or destroyed within the system. The simplest case to consider is the
first-come-first-served (FCFS) service discipline. Service discipline is another very important
characteristic of a queueing system, which governs the order of service of the customers.

The second assumption is that all models are operating in a stable regime; that is, the long-run
service capacity exceeds the long-run demand. Also, we assume that the queues have operated
sufficiently long to have reached a stationary steady state.

An important note to keep in mind is that due to the nature of queues in health care settings,
systems are operating close to 100% utilization, which may not be a stable regime. Further-
more, balking and reneging of patients or change of their priorities due to health status may
occur. Therefore, some of the results gained under standard assumptions may not apply to all
systems, and it is up to the decision maker to take these into account based on the numerical
results of any analysis.

Finally, before presenting some key distributional results within the M/G/1 framework, I
briefly review Laplace-Stieltjes transforms (LSTs) and Gaver-Stehfest algorithm here. LSTs
are widely used in probability and in the following chapters of this thesis.

Laplace-Stieltjes transforms

The Laplace-Stieltjes transforms (LST), often simply called Laplace transforms, are important
tools when dealing with the distribution function of a nonnegative random variables and are
extensively used in the following chapters. Therefore, given that F(x) is a distribution function
defined by F(x) = P(X ≤ x), the corresponding LST is

f̃ (s) = E(e−sX) =

∫ +∞

0
e−sxdF(x) (2.15)

for all s for which this integral converges. Also there is a one to one correspondence between
a distribution function and its associated Laplace transform, such that it is often possible to
invert a Laplace transform to recover its corresponding distribution functions both analytically
by means of tables of inversion formulas or numerically by means of numerical algorithms
such as the Gaver-Stehfest algorithm which has been used in this thesis and will be introduced
shortly.
From equation (2.15), it can be concluded that if f̃ (s) is n times differentiable at the origin,
then E(Xn) = (−1)n f̃ (n)(s)|s=0.
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LSTs frequently appear in waiting time analysis in queueing systems. One reason according
to Kleinrock [29] is that they arise naturally in the solution and the second reason is that they
greatly simplify the calculations and oftentimes they are the only tools we have available for
proceeding with a solution at all.

Gaver-Stehfest Algorithm of Inverse Laplace Transforms

Numerical inversion of Laplace transforms is crucial for many applications. The Gaver-Stehfest
algorithm which was initially proposed by Gaver [40] and refined by Stehfest [20] is one of the
most powerful algorithms for this purpose [63]. The Gaver-Stehfest method uses the summa-
tion

f (t) ≈
ln(2)

t

L∑
n=1

Kn f̃ (
n ln(2)

t
),

where f̃ (·) is the Laplace transform of f (t); t ≥ 0, a real valued function. The coefficient
Kn depends only on the (necessarily even) number of expansion terms, L ∈ N, and is given
by

Kn = (−1)n+ L
2

min(n, L
2 )∑

k=b n+1
2 c

kL/2(2k)!
(L/2 − k)!k!(k − 1)!(n − k)!(2k − n)!

,

when b·c is the floor function. These coefficients, as derived by Gaver, are combinatorial terms
arising in order statistics, with the interesting by-product that they always sum to zero. In fact
for each L, half of Kn’s are positive and the other half are negative.

Typically L = 8 points provide two significant digits of accuracy, which is quite adequate for
assessing waiting times.

In the context of waiting time distributions where Wn(t) is the distribution function and wn(t) is
the probability mass function and, in light of W̃n(s) =

w̃n(s)
s as a standard property of Laplace

transforms, we have

Wn(t) ≈
ln(2)

t

L∑
n=1

Kn
w̃n( n ln(2)

t )

(n ln(2)
t )

=

L∑
n=1

Kn

n
w̃n(

n ln(2)
t

), (2.16)

If L = 6 the coefficients are, 1, −49, 366, −858, 810 and −270. If L = 8 the coefficients are
−1/3, 145/3, −906, 16394/3, −43130/3, 18730, −35840/3 and 8960/3.
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2.3.1 Some of the fundamental results for M/G/1 queues

The M/G/1 queueing system is characterized by a Poisson arrival process at a mean rate of λ
arrivals per unit of time and a “general” service time, G, distribution, B(x). If qn is the number
of customers left behind by the departure of customer Cn, and vn is the number of customers
who enter during this customer’s service time, xn, the relationship among random variables for
a FCFS M/G/1 system is formulated as

qn+1 =

{
qn − 1 + vn+1 if qn > 0,

vn+1 if qn = 0. (2.17)

The distribution function (c.d.f) of the inter-arrivals is given by

F(t) = 1 − e−λt, t ≥ 0. (2.18)

Furthermore, we let X represent the generally distributed service time random variable, then
the corresponding c.d.f and LST would be denoted by

B(x) = P(X ≤ x) and B̃(s) = E(e−sX)

respectively.

Therefore, if we let pi j = P{qn+1 = j|qn = i} denote the one step transition probabilities
observed only at departure instants, the matrix of transition probabilities takes the following
form:

P =


k0 k1 k2 k3 . . .
k0 k1 k2 k3 . . .
0 k0 k1 k2 . . .
0 0 k0 k1 . . .
...

. . .
. . .

. . .


(2.19)

where ki is the probability of i arrivals during the service time x and is obtained as

ki = P{vn+1 = i} =

∫ ∞

0

(λx)i

i!
e−λxb(x)dx.

Steady state probability vector π = {π0, π1, ...} can be found as (see Equation 5.16 in [14])

πi = π0ki +

i+1∑
j=1

π j ki− j+1; i = 0, 1, 2, ... . (2.20)
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Now, let T denote the duration of a typical busy period (i.e. the unbroken period when the
backlog of work is greater than zero). By considering the idea of an initial queue and pseudo
busy periods as in Conway et al. [61] (Section 8-3), the LST of T , Γ̃(s) = E(e−st), is the solution
to the functional equation

Γ̃(s) = B̃(s + λ(1 − Γ̃(s))). (2.21)

We employed the fact that the distribution of the busy period length does not depend on the
selection discipline unless the discipline entails extra processing, or insert idleness. Hence,
moments of T can be obtained after differentiation of the LST in Equation (2.21):

E(T ) =
E(X)
1 − ρ

and, E(T 2) =
E(X2)

(1 − ρ)3 , (2.22)

where ρ = λE(X) is known as the traffic intensity and for values of ρ < 1, the queue is stable or
stationary and the busy period had finite lengths with probability one (e.g., see Takács (1962,
Theorem 3, p. 58)). For a stationary queueing system, ρ could be interpreted as the long-run
fraction of time that the server is busy.

Although the above results are essential to this thesis, sometimes it will also be useful to con-
sider a more general kind of busy period which is initiated by a processing time other than the
subsequent service times.

In particular, we refer to delay busy periods, where the initiating task is called a delay and the
time spent processing jobs is a delay busy period. Therefore, let Td represent the duration of a
delay busy period. Furthermore, let X0, the initial delay, have density function B0(x) and LST
function B̃0(s). Then, the LST of Td would be

Γ̃0(s) = B̃0(s + λ(1 − Γ̃(s))), (2.23)

where Γ̃(s) is the solution to Eq (2.21). If ρ < 1 the limiting distributions of certain random
variables such as the waiting time distribution of the n-th arriving customer, Wn, are known to
exist (see Takács, 1962, Theorem 10, p. 69).

The associated LST is given by the Pollaczek-Khinchin formula for the M/G/1 system as:

lim
n→∞

W̃n(s) = W̃(s) =
s(1 − ρ)

s − λ + λB̃(s)
. (2.24)

Also if W̃BP(s) is the waiting time LST for the customers arriving during the busy period, then
an alternative for the above representation could be

W̃(s) = (1 − ρ) + ρW̃BP(s), (2.25)

where it immediately follows that
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W̃BP(s) =
(1 − ρ)(1 − B̃(s))

E(X)(s − λ(1 − B̃(s)))
.

2.3.2 An introduction to priority queueing systems

A queueing discipline which chooses the order of service based on some function of group
membership is usually referred as a priority queueing discipline. In such setting, we assume
that the arriving customers belong to one of distinct priority classes indexed by i, (1, 2, ...,N),
where the larger value of the index is associated with the higher priority class.

The aim of imposing a priority structure on the customer arriving is to provide treatment to
the higher priority class at the expense of the lower classes. In the health care setting, the less
tolerant patients (i.e., with more severe conditions) are assigned to higher priority class and
should be treated sooner.

Throughout this thesis, we use the symbol Ci which is to be read as “class i customer” and we
say Ck’s are prioritized over C j’s whenever k < j.

A static priority queue (classical priority queue) is a priority queueing system where the pri-
ority function is fixed for a specific class and is static in time. Whereas, in a linear time-
dependent priority system the priority function, in its general form (as in Hsu 1970 [25]), is
defined as

qi(t) = ai + bi(t − τi), t ≥ τi, i = 1, 2, ...,N, (2.26)

where the argument t represents time, and τi is the arrival time of a Ci. The set of class-
dependent constants {ai}

N
i=1 are arranged so that a1 > a2 > ... > aN . These types of priority

queues which are dependent on t have frequently been termed in the literature as dynamic
priority discipline.

The first static priority queue was studied by Cobham in 1954 [3] and was later rigorously
analyzed by many other queueing theorists. For a detailed analysis of this type of queues we
refer the interested reader to the texts by Conway et al. [61] and Kleinrock [29]. In addition,
another important feature of priority queues is based on the decision of whether or not to
interrupt the customer in service for another higher priority customer arriving to the system.
This kind of queueing systems are called Preemptive queues which have been studied in detail
along with a thorough literature review in [4].

The first implementation of a dynamic priority queue was done by Jackson [53], [54], [55].
In his articles, Jackson considered a discrete-time queueing system and derived bounds for the
mean waiting time of a class k customer. Later in 1962, he obtained an approximation for the
waiting time distributions.

Kleinrock (1964) was the first who studied a dynamic priority discipline under a continuous-
time frame-work. He studied linearly time-dependent queues with a set of positive variable
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parameters (slope), bi such that b1 ≥ b2 ≥ ... ≥ bN ≥ 0, which are at the disposal of the queue
administrative and allow them to adjust the relative waiting times of each priority group.

Hsu in 1970 [25] continues Kleinrock’s work by deriving a result for a case when a unit’s
priority is decreased from zero linearly with time in proportion to a negative rate assigned to
the unit’s class (i.e 0 ≥ b1 ≥ b2 ≥ ... ≥ bN).

In 1967 Kleinrock and Finkelstein [30] extended their initial work by considering non-linear
power-law functions of the form

qr
i (t) = bi (t − τi)r, t ≥ τi

when r ≥ 0. They were able to obtain the expected value of the waiting time in this r-th order
non-linear time dependent setting.

In the modern literature, Kleinrock’s time-dependent priority queue has been rephrased as “Ac-
cumulating priority queues” initially by Stanford et al. (2015) when they revisited this problem
after about three decades and studied this problem under more general assumptions.

2.4 Accumulating Priority Queue (APQ)

According to Stanford et al. [10], the specification of the APQ, key assumptions and results
under a M/G/c discipline are described as follows.

Assume there are N ≥ 2 classes of customers and one or c ≥ 2 servers in the system. Customers
of class i arrive independently at the queue as a Poisson process with rate λi, i = 1, 2, ...,N. The
accumulation function is

qi(t) = bi (t − τi), t ≥ τi (2.27)

which means upon arrival at τi, a customer of class i starts accumulating priority at rate bi,
(b1 > b2 > ... > bN > 0). Their accumulated priority, therefore, would be according to qi(t)
and, when a server is available, the next customer to be served is the one with the highest
priority at that instant. This is a non-preemptive system.

This problem was addressed and solved after defining the Maximum Priority Process (see
[10], Definition 3.1). If we let c = 2, the bi-variate Maximum Priority Process M(t) =

(M1(t),M2(t)), t ≥ 0 in a two class setting is defined as an upper bound for the priorities of
the queued customers from each class, given only the knowledge of arrival times and their
accumulated priorities at those times.

The key undergoing idea to initiate the analysis is to find out the connection between the Pois-
son arrival processes and the accumulated priorities of the customers still waiting for service
from either classes. Since the arrival process is Poisson, the accumulated priorities will be
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distributed as independent Poisson processes with rate λi/bi for class i; i = 1, 2 on the intervals
[0,Mi(t)] where Mi(t);i = 1, 2 is the Maximum Priority Process.

As a result a waiting customer with a priority on interval [0,M2(t)] will be of class one
with probability λ1(b2/b1)

(λ1(b2/b1)+λ2) independently of the class of all other customers present in the
queue.

This important point leads to the next interesting result which is the rate at which a class one
customer overtakes all waiting class two customers in the queue. This is also called the accred-
itation rate and that class one customer is called an accredited class-1 customer. Furthermore,
the accreditation interval consists of the service time of a non-accredited customer (could be
either class one or two customer) followed by a sequence of service times of accredited class-1
customers. During an accreditation interval, the time points at which customers become ac-
credited occur according to a Poisson process with rate λ1(1 − b2/b1) (see [10], Lemma 4.2).
Thus, the busy period of the queue can be divided into a sequence of accreditation intervals,
which act as the effective service times from the prospective of class-2 customers.

Adopting the same idea as in the derivation of a busy period for M/G/1 queues, the LST of
the distribution of the duration of an accreditation interval would satisfy the functional equa-
tion

Γ̃(s) = B̃(s + λ1(1 − b2/b1)(1 − Γ̃(s))), (2.28)

which finally led to the derivation of the LST of waiting time distributions for the M/G/c linear
(non-preemptive) APQ.

2.4.1 Some fundamental results in APQ framework

In the following chapters we will extensively refer to the LST of the waiting time distributions
in a 2-class priority APQ for c server cases. Hereby, we briefly present the necessary deriva-
tions required in future chapters in this regard.

It is also important to mention that in this thesis wherever we talk about APQs we mean non-
preemptive APQs unless we state otherwise.

Lemma 1 In a linear APQ under M/M/c discipline, let b1 = 1 and b2 = b and let Φ(s) be
the LST of the service distribution. The LST of the stationary waiting time distribution for the
class-2 customers is given by:

w̃2(s) = w̃(s + λ1(1 − b)(1 − η̃c(s))), (2.29)

where η̃1(s) is the LST of the duration of the busy period for accredited customers and w̃(s)
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represents the LST of the waiting time in an M/M/c queue, which could be obtained by:

η̃c(s) = Φ(s + λ1(1 − b)(1 − η̃c(s)))
= cµ/(cµ + [s + λ1(1 − b)(1 − η̃c(s))])

=
(s + µc + λ1(1 − b)) −

√
(s + µc + λ1(1 − b))2 − 4λ1(1 − b)µc
2λ1(1 − b)

(2.30)

and,
w̃(s) = [1 −C(A, c)] + C(A, c)[(cµ − λ)/(cµ − λ + s)] (2.31)

where C(A, c) = Ac

c!(1−ρ)/(
∑c−1

i=0
Ai

i! + Ac

c!(1−ρ) ) is the probability that an arriving customer finds all
of the c servers busy in an M/M/c queue with A = λ/µ.

Proof For a detailed proof see [12].

Therefore, if c = 1 and thus C(A, c) = 1 − ρ, we have:

w̃2(s) = w̃(s + λ1(1 − b)(1 − η̃c(s)))

=
(1 − ρ)(s + λ1(1 − b)(1 − η̃1(s)))

s − (1 − η̃1(s))(λ1b + λ2)
(2.32)

And, if c = 2 we will obtain:

w̃2(s) = (1 −C(A, 2)) + C(A, 2)
2µ(1 − ρ)

2µ(1 − ρ) + s + λ1(1 − b)(1 − η̃2(s))
= (1 −C(A, 2)) + C(A, 2)w̃(+)

2 (s) (2.33)

where C(A, 2) =
2ρ2

1+ρ
and the superscript (+) refers to the positive waiting times when the

arriving customer finds the server(s) busy.

Theorem 1.1 In a linear APQ with 2 servers, c = 2 , if b1 = 1 and b2 = b = 0, the waiting
time distribution for class-2 customers will be similar to a classical priority queue.

Proof In Kella & Yechiali (1985) [60], the LST of the waiting time of a class-k customer in a
priority M/M/c queue has been derived. Letting k = 2 we obtain:

w̃p
2(s) = (1 −C(A, c)) + C(A, c)

2µ(1 − ρ)(1 − η̃2(s))
s − (1 − η̃2(s))λ2

= (1 −C(A, c)) + C(A, c)w̃p(+)
2 (s)

where the superscript p in our notation simply refers to a priority queue.

From (2.30), we have

η̃2(s) =
2µ

2µ + s + λ1(1 − η̃2(s))

for c = 2. By substituting it in (2.33) and simplifying the expression, we will have w̃p
2(s) as it

it defined and this completes the proof.
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2.4.2 Affine Accumulating Priority Queue (Affine APQ)

In all of the previous (classical APQ) studies, the initial priority of patients at the time of
entrance is zero while the higher the priority of a patient, the greater the rate at which that
patient accumulates priority.

However, in this study, we are interested to look at a situation when patients arrive with an
initial class-dependent priority and earn credits as they wait. We intend to focus on the two
class case in which, without loss of generality, we assume that only the higher priority class
has an initial positive credit a.

Assume a single-server queue with Poisson arrivals and general service time distributions.
Customers of class i; i = 1, 2 arrive at the queue as a Poisson process with rate λi. Upon arrival,
a customer of class i, Ci, starts accumulating priority at rate bi, where b1 > b2. Therefore,
accumulated priorities of class 1 and 2 customers at time t2 would be (t2 − τ1)b1 + a and
(t2 − τ2)b2 according to the priority function

qi(t) = ai + bi(t − τi) (2.34)

respectively, when we assume that the customer Ci has entered the system at time τi, and a is
the initial credit for class one customers (i.e. a1 = a and a2 = 0).

Figure (2.1) plots the accumulated priorities of customers against time as a sample path of such
processes. In this figure, we assume that b1 = 1 and b2 = 0.5 for illustrative purposes.

Priority

0 time

a

2 4 6 8 10 12 14 16 18
class 1, b1 = 1
class 2, b2 = b = 0.5

Figure 2.1: Accumulated priorities in a two class Affine APQ

In Figure (2.1) the arrival instants for class one customers are at points (0, 4, 8, 14) when the
priority functions for this class are initiated, and departures occur at points (6, 9, 17, 18). Each
heavy line is an indicator that the corresponding customer is in the service at that instant. In
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this specific illustrated example, two lower class customers join the queue at times 1 and 9
when the latter is being overtaken by a class 1 customer at time 15.

Figure (2.2) however, demonstrates the Maximum Priority Process for the sample path of figure
(2.1), superimposed on the priority functions.

Maximum Priority Processes in an Affine APQ are slightly different from the classical APQ,
specifically as a result of the initial positive credit which class one customers gain upon ar-
rival.

Priority

0 time

a

2 4 6 8 10 12 14 16 18
class 1, b1 = 1
class 2, b2 = b = 0.5

M1(t)
M2(t)

Figure 2.2: Maximum priorities in a two class Affine APQ

Definition 2.4.1 Let n(k) denote the arrival position of the kth customer to be serviced. The
maximum priority process for the Affine APQ in the two-class case is a two-dimensional
stochastic process M(t) = (M1(t),M2(t)), t ≥ 0 which is defined as follows:

1. M(t)=(a,0) for all t corresponding to the idle periods.
2. For all t not corresponding to service commencements/completion instants, we have

M1(t)
dt

= b1 and,
M2(t)

dt
= b2, (2.35)

where 0 ≤ b2 ≤ b1.
3. At the sequence of service completion times {δk}

∞
k=1,

M1(δk) = max{a, q∨(δ−k )} (2.36)
M2(δk) = min{M1(δk),M2(δ−k )} (2.37)

where
q∨(δ−k ) = max

m∈{n(k)+1,n(k)+2,...}
{qm(δ−k )} (2.38)

and I{A} is the indicator function of the event A. Also, qm(·) is the function defined in
Equation (2.34).
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Consequently, the 2-class affine APQ impacts the duration of the “accreditation cycles” which
act as the APQs effective service times. The initial credit also changes the probabilistic nature
of the delay cycles that a customer of a given class could encounter. Therefore, adjustments
to the structure of accreditation intervals will be required, thus reformulating the busy pe-
riod.

A special variant of APQ is called the “Delayed APQ”. In this queue the lower priority class
of customers spends some time, d = a/b, before they start to accumulate (positive) priority
credit (a1 = 0 and a2 = −a). Such situations arise when it is felt that lower-priority customers
waiting times are only of concern or interest once they reach a threshold, and hence only starts
priority accrual from that point onward. In fact, all arrivals of high-priority would immediately
overtake a class-2 customer until the latter had reached time d, subsequent to which the regular
accreditation rate of λ1(1 − b) as in the “classical APQ” would apply. In chapter 5 we show
that at least for the two-class case, a full equivalence exists between the affine APQ and the
“Delayed APQ”.

As equivalent to the “Classical APQ”, in Affine APQ, the accumulated priority credits of the
customers still waiting are also distributed as Poisson processes according to the following
theorem.

Theorem 2.4.1 Let t ∈ [0,∞) andM(t) ≡ σ{(M1(u),M2(u)), u ∈ [0, t]} be the filtration gener-
ated by the maximum priority process up to time t in an Affine APQ, conditional onM(t):

1) The accumulated priorities {qi
k(t), k = 1, 2, ...} of the customers still waiting from class i; i =

1, 2 are distributed as independent Poisson processes with rate λ1/b1 on the interval [a,M1(t)]
and with rate λ2/b2 on [0,M2(t)].

2) Let Ma+
2 (t) = max{M2(t), a} and Ma−

2 (t) = min{M2(t), a}.
The accumulated priorities {qk(t), k = 1, 2, ...} of all customers still present in the queue are
distributed as a Poisson process with rate zero on the intervals [M1(t),∞), λ1/b1 on the interval
[Ma+

2 (t),M1(t)), I{M2(t) > a} · (λ1/b1 +λ2/b2) on the interval [Ma−
2 (t),Ma+

2 (t)) and λ2/b2 on the
interval [0,Ma−

2 (t)).

Proof 1) Let a1 = a and a2 = 0 as the class-dependant initial credits. If there is no customer in
service at time t, the statement of the theorem is trivially true. Otherwise, let τ < t be the time
at which the current service commenced. The maximal priority of any class i customer queued
at time τ was Mt(τ), which implies that a class i customer must have arrived at time τ− M1(τ)−ai

bi
.

These customers who either were present in the queue with priority less than Mi(τ) or arrived
in the queue in the interval (τ, t) have arrival instants which occurred according to Poisson pro-
cesses with rate λi on interval (τ − Mi(τ)−ai

bi
, t]. The priorities of these customers at time t can be

calculated as qi
k(t) = ai + bi(t − τi) which occur according to a Poisson process with parameter

λi/bi on interval [ai,Mi(τ) + bi(t − τ)) = [ai,Mi(t)).

2) Proof is similar to Theorem 3.2 (2) in [10].

In other words, Theorem (2.4.1) states that there could be two possible scenarios regarding
the positioning of M1(t), a and M2(t) in relation to each other. Figure 2.3 illustrates these two
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situations. Figure 2.3 (A) presents one example case in which M2(t) is larger than a. In this
scenario, as stated in the above theorem, the accumulated priorities {qk(t), k = 1, 2, ...} of all
present customers in the queue is distributed according to a Poisson process with rate λ2/b2 on
[0, a), λ2/b2 + λ1/b1 on [a,M2(t)), λ1/b1 on [M2(t),M1(t)) .

In Figure 2.3 (B), we see an example where M2(t) < a. In this scenario, the accumulated
priorities {qk(t), k = 1, 2, ...} of all present customers in the queue is distributed according to a
Poisson process with rate λ2/b2 on [0,M2(t)), 0 on [M2(t), a), λ1/b1 on [a,M1(t)).

Priority

0 time

a

t

M1(t)

M2(t)

d

class 1
class 2

(A : M2(t) > a)

Priority

0 time

Priority

0 time

a

t

M1(t)

M2(t)

class 1
class 2

(B : M2(t) < a)

Figure 2.3: Accumulated priorities in an Affine APQ and Delayed APQ

2.5 Some elementary concepts

1. Many important and significant problems in engineering, the physical sciences, and the
social sciences, when formulated in mathematical terms, require the determination of a function
satisfying an equation containing derivatives of the unknown functions. Such equations are
called differential equations [15].

There are different ways to classify differential equations. In ordinary differential equations
only ordinary derivatives appear in the equations; whereas, in partial differential equations the
partial derivatives will form the equation. The highest order of derivatives that appear in an
equation will determines the order of the equation. The equation

F(x, u(x), u
′

(x), ..., u(n)(x)) = 0 (2.39)

is an ordinary equation of the nth order. Another main classification for differential equations
are the class of linear and nonlinear equations. A differential equation is called linear if it is
a linear function of the variables, otherwise it is called nonlinear. Therefore the general linear
ordinary differential equation of order n is in the form of:
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b0(x)y(n) + b1(x)y(n−1) + ... + bn(x)y = g(x). (2.40)

A solution for the ordinary linear equation of order 1 in the form of y
′

+ p(x)y = g(x) is
[15]

y =
1
µ(x)

[
∫ x

a
µ(s)g(s)ds + C], (2.41)

where

µ(x) = exp
∫ x

a
p(t)dt. (2.42)

If we let x = a, then y(a) = C. Therefore, we can re-write the Equation (2.41) as y =
1
µ(x) [

∫ x

a
µ(s)g(s)ds + y(a)].

2. A collection of random variables, X = {X(t), t ∈ T }, is called a stochastic process when
for each t in the index set T , X(t) is a random variable. If T is a continuous set of values,
the stochastic process is said to be a continuous-time process and if a countable or finite set,
then we have a discrete-time process which would be referred to as Xn. Any realization of X is
called a sample path.

The state space of a stochastic process is defined as the set of all possible values (or states)
that the random variables X(t) can take. If the state space is finite or countable, then we have
a discrete-state process, often referred to as a chain. On the other hand, if the state space is a
continuous interval (or a set of such intervals), we have a continuous state process [29].

The Markov property which is expressed analytically as

P{X(tn+1) = xn+1|X(tn) = xn, X(tn−1) = xn−1, ..., X(t1) = x1} = P{X(tn+1) = xn+1|X(tn) = xn},
(2.43)

states that the past history can be completely summarised in the current realisation. In other
words, given the current state, future is independent of the past.

A stochastic process with Markov property is a Markov Process; and, a Markov process with
with a discrete state space is often referred to as a Markov chain.

For more details about Markov chains see [29],[32] or Appendix A4 in [14].

Let S be the state space in a Markov process (on S), for all x ∈ S, the transition kernel P(x, A)
is defined as the probability of reaching the measurable set A from state x.

For all x ∈ S, p(x, y) is defined as a non-negative function such that P(x, A) =
∫

y∈A
p(x, y)dy. in

this case for every x, p(x, .) is a pdf, and

P(x,S) =

∫
y∈S

p(x, y)dy = 1.
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3.1 Abstract

Short-run predictions of ED censuses are particularly important for efficient allocation and
management of ED resources. In our study, we model ED changes and present estimations for
short term (hourly) ED censuses at each time point. Considering the variation in arrival pattern
and service requirements, we apply and compare three models which best describe our data.
We provide hourly predictions up to 24 hours in a day and construct a numerical example to
explain the effects of different possible interventions on preventing over-crowding in a system.
We illustrate our approach using 22 months of data obtained from the ED of a large academic
medical center in Ontario. Our three models will be validated and compared in accuracy and
functionality based on MSE and correlation, R.

23
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3.2 Introduction

Long wait times for health care services is an important health policy issue, as its consequences
may well include adverse effects on patient health. Long wait times for just four procedures
(joint replacement surgery, sight restoration, coronary artery bypass graft surgery and MRI
scans) cost the Canadian economy an estimated $14.8 billion in 2007 according to the Report
Card on Wait times in Canada [11]. Many factors contribute to long wait times in Emergency
departments (EDs), such as a shortage of acute care bed capacity or limited community care
resources.

As a result, clinically specified maximum wait-time benchmarks have been established to pri-
oritize patients and implement appropriate treatment. For instance, the Canadian Triage and
Acuity Scale (CTAS) [22] was introduced to provide benchmarks for Emergency care. Fur-
thermore, several studies have tried to assist health care management by providing short or
long term forecasts of the demand fluctuations on the system and its individual zones in the
emergency department using statistical models.

Often overcrowding in an ED is described as a mismatch between patient demand for services
and provider supply of resources [52]. Therefore, it is an obstacle to the timely delivery of
health care to patients. It has also been linked to lower profitability, poor patient outcomes
and higher operational costs [1]. One approach to alleviate problems associated with ED over-
crowding is to forecast levels of demand for ED in advance in order to give health-care man-
agers an opportunity to prepare for surges in demand and plan appropriate strategies.

The goal of this study is to accurately predict the hourly number of patients in the system,
i.e., census, considering the dependency and seasonality aspects of census by using forecasting
methods. In order to derive predictions for the near future, we introduce a Backward Algorithm
in the proceeding section. Furthermore, we develop a regression model and Markov-chain
based models to provide 24-hour forecasts for the near-future census at the ED of Hamilton
University hospital. Finally, we validate our models on historical data using the “Sliding win-
dow” approach and compare their respective effectiveness based on Mean Square Error (MSE)
and the coefficient of correlation (R). Time efficiency and interpretability of models are crucial
factors considered in our study in order to make our model more applicable for ED administra-
tors.

The remainder of this paper is organized as follows: the overview of the related literature and
study setting is presented in the next section. The fourth section presents a brief description
of our data set together with some preliminary data analysis and descriptive measures. In the
fifth section we present our main developed algorithm in details. This algorithm serves as a
building block for two of the forecasting models presented in section six. In section seven
we explain how our developed model can potentially assist decision makers in an ED. The
numerical data analysis and validation of the models by using real data are presented in the
eighth section. Finally, the last section reviews the main contributions in this work and offers
some final remarks including possible extensions to the study.
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3.3 Overview of related literature

The formal presentation of an ED census model begins with arrivals. In 2013 Cote et al.
[23] provided a tutorial and introduced ED medical directors to a range of straightforward
regression-based forecasting models. Their work helped to predict the number of arrivals to
an ED in support of strategic, tactical, and operational planning and activities. However, there
are a variety of other models including various regression models in [23], time series [45, 57],
simulations [52] or queueing analyses in the literature which model the arrival process.

According to Sharif [12], who provided a detailed literature on ED arrivals, a great deal of
research has been performed towards long-term predictions of arrivals (i.e. daily, weekly,
monthly or yearly) while less has been devoted to shorter time horizons. Early attempts at
using time series models to predict arrivals in ED were made by Milner in 1988 [41], who used
ARIMA models most widely. Among the various aspects considered in such studies are the
addition of independent variables such as daily ambient temperature, humidity, air quality or
holiday effects in [62], considering different acuity levels or exponential smoothing techniques.
In their paper, Jones et al. [57] considered temporal relationships between ED demands and IP
hospitals to develop a multi-variate time series models and apply them to their hourly data set.
Finally Sharif in [12] used Generalized Linear Autoregressive Moving Average, GLARMA,
models to forecast arrivals in ED using two years of data from an ED in southwestern Ontario.
He has also provided a detailed review of a variety of linear models applied in the literature for
different time horizons.

Considering the Input-throughput-output framework, modeling the discharge process will also
be studied in this chapter. Available literature shows statistical tools have been applied in this
regard as well [52]. However, there has been many studies which emphasize on the effect of
workload, patient census and congestion on productivity and service rates [12].

In spite of this, less work has been devoted to census predictions and overcrowding warnings.
The first attempt to develop an early warning system for ED overcrowding was done by Hoot et
al. in 2006 [50] which used logistic regression and neural networks to predict ED ambulance di-
version status one hour into the future. They later deployed a Discrete Event Simulation model
to forecast ED crowding in [52]. Multivariate time series approach (vector Autoregressive)
for hourly data [57], seasonal ARIMA, exponential smoothing and artificial neural network
models for daily forecasts [56] [33], are the most frequent models used. Another study [24]
demonstrated that workload and patient flow are linked via a simple input-output relationship
and define two efficiency and congestion functions to model ED throughput.

Early work on Markov chain based prediction was done by Gabriel and Neumann in 1962
[49] in the area of statistical weather forecasting to predict daily rainfall for a single station.
Fraedrich and Muller in 1983 [26] extended this model type to predict sunshine periods and
probability of precipitation. In 1987 Fraedrich et al. [27] presented the theory for the lin-
ear combination of two independent predictive techniques useful for both short time weather
prediction and long-term forecasting which lead to other studies such as [13] where Markov
chain was combined with other predictive models. In these studies the transition probabilities
of the Markov chain were mainly obtained empirically from relative frequencies in the histor-
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ical data and final predictions were a weighted average of Markov chain predictions and other
models.

A series of other studies are conducted in this area as well. Shamshad et al. [7] believe that
due to their simplicity and because many natural processes are considered as Markov pro-
cesses, Markov chains have become a popular tool for developing wind power prediction mod-
els based on time series analysis. In 2010 and 2015, [2] developed a wind power forecasting
method based on discrete Markov chain models. In 2003, [18] proposed a short-term traffic
flow forecasting method based on high order Markov chain theory.

In probability and queueing theory, Stanford et al. in 1983 [9] used the embedded stationary
Markov chains to predict queue lengths in a G/M/1 queue. However in health care, Broyel et
al. in 2010 [46] presented a Markov chain probability model that uses maximum likelihood
regression to predict the expectations and discrete distributions of transient inpatient invento-
ries. They expanded their work in 2011 [47] by employing a Markov decision process (MDP)
to dynamically match hospital inpatient staffing to demand.

The analytical method which we develop here is based on Markov chains and will be applied
to the short term census predictions in an emergency department. Our model accounts for the
effect of calendar variables, seasonality of arrival and discharge processes and recent workload
which has not been considered in previous studies. It also dynamically updates the predic-
tions.

ED management can benefit from the resulting information by planning ED capacity, estimat-
ing required resources or efficient staffing schedules. One study has described management
approaches that could be facilitated by statistical or other operational management techniques
to reduce crowding [48]. Techniques such as the 1-bed-ahead strategy or more flexible staffing
have been described as an effort to reduce over-crowding.

3.4 Data collection and study setting

For this study, two years of hourly data of 88000 adult ED visits were collected from a hospital
in South Western Ontario. Patients who were registered and triaged between January 1, 2012
to December 31, 2013, were included in the study. Ethics approval for this study was obtained
from the hospital. It is worth mentioning that the data set we worked on was a processed data
received from a previous study as in [12].

From our data set hourly arrival and service counts was obtained. Descriptive analysis and
model fitting were carried out using regression, time series and probabilistic methods. These
models were compared to each other in terms of their ability to provide out-of-sample forecasts
of ED census. All information about triage level, time of arrival, time of being seen by a
physician and time of being discharged is available in our data set. Our data set consisted
of individual time stamps for every single patient. Naturally, as often happens with clinical
data collection, some missing data or badly reported data points were available. To achieve
the complete information on missing value imputation methods and cleaning techniques which
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had been applied to replace the missing data refer to [12].

Meanwhile, individual time stamps were aggregated to obtain arrival and discharge counts for
each time interval. Arrivals in an emergency department are either in the form of walk-ins or by
some kind of emergency transportation. The latter would be considered critical and by CTAS
indicators classified as Resuscitation or Emergent, whereas walk-ins will be assigned an acuity
level after being assessed by a triage-nurse. The most acute patients are treated immediately,
while others need to wait until being called. Thus, patient received time has been considered as
arrival time to the ED, and they are considered discharged from an ED when they are released
home or admitted to other facilities of the hospital.

We had no direct access to actual ED census values in this study, though they play a crucial role
for the modeling purposes. Therefore, we worked with the initial minimum queue length on
January 1st 2012, so that no negative censuses are predicted. Then, by addition and subtraction
of arrivals and discharged patients we calculated the census for the rest of data points.

Hourly data will be aggregated later to form 3-hour time blocks for the benefit of algorithm
runtime. This strategy also helps to avoid zero counts which are dominant in the reported
hourly ED arrival data. As a result, there will be 8 blocks during each 24 hour period starting
from midnight on each day. More information about the clinical setting and available resources
is available in [12]. Furthermore, according to the same study, the number of patients who had
left the ED without being seen by a physician was very small; therefore the information of
those patients was removed from the data set.

3.4.1 Preliminary analysis and descriptive graphs

The Patient flow through an ED can be divided into the following three parts: input, throughput
and output. For a given discrete time point, n, the ED census can be represented by:

Qn+1 = Qn + An − S n, n = 1, 2, ..., 24, (3.1)

where a discrete random variable, Qn, is the census at time n, An and S n are numbers of arrivals
and discharges during the nth interval respectively.

We define the nth interval to be an interval between the two time points n and n + 1 (see Figure
(3.1)). Also, for more convenience, we define Un = An − S n as the census increment at time n
in this study.

Figure (3.2) provides a first view of our data regarding the daily volume of arrivals in year
2012. It can be concluded from the graph that there is no readily evident trend available around
the mean arrivals line over such a long period of time.

It would be however interesting if we examine the overall trends of arrival and discharge vol-
umes. Figure (3.3) displays average volume by hour over the weekly cycle.
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Figure 3.1: Variable description.

Figure 3.2: Daily arrival volume in year 2012.

Figure 3.3: Mean number of arrival and discharge in 168 hours of a week.
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This graph clearly suggests a daily seasonality over 24 hours of a day. The Highest arrival
levels happen between 11 am and 4 pm. Then the volume of arrivals gradually decreases and
reaches the minimum level between 3 and 7 in the mornings. This fact can be seen in more
detail in figure (3.4). Furthermore, one can observe that Mondays have the highest arrival and
service volume while Saturdays and especially Sundays have the lowest ones.

Figure 3.4: Number of hourly arrivals in 2012.

Another informative graph is the monthly graph as in figure (3.5). Fluctuations of both pro-
cesses have been illustrated in this graph, where March, July and August have the highest
number of arrivals and discharge volume in our ED.

Figure 3.5: Number of arrival and discharge in months of 2012.

Fluctuations of the total census versus blocks of the day is another important graph in this
study. In figure (3.6) we can see how the number of patients in ED gradually decreases until
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8 am, and as it gets closer to noon there are more patients waiting; until finally from around 6
pm it declines with a smooth slope.

Figure 3.6: Box plot of number of patients in days of 2012.

Figure (3.7) illustrates the empirical distribution of the census increments in the nth interval,
Un, based on the available data for four selected time points. These graphs suggest that the
distributions have different means and variances.

Figure 3.7: Histogram of U’s at times 1, 9, 16 and 22.

Having gained an appreciation for the empirical nature of arrivals and discharges of the avail-
able data set here, in the next section we present models for making short term forecasts, which
will be gained by examining the general trend of these processes.
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3.5 Backward Discrete Time Markov Chain (DTMC) Algo-
rithm

In this section we develop a Discrete Time Markov Chain (DTMC) probability formulation in
the form of a recursive (backward) algorithm that captures the short term fluctuations of an ED.
For that, let’s recall from the previous section the general relation which describes dynamics
of the census level where we had

Qn+1 = Qn + An − S n = Qn + Un, (3.2)

where Un = An − S n and andS n ≤ Qn + An. This equation can even be applied recursively
to state that the current census is simply the initial census level plus the difference between all
arrival and discharges during the elapsed time.

Qn+1 = Qk +

n∑
i=k

Ui. (3.3)

Let Cn(u) be the probability that the nth increment, Un, equals u. Thus, the distribution of Un

(under the assumption that Arrival and service processes are independent of the census level)
for u ≥ 0, is derived as

Cn(u) = p[Un = An − S n = u]

=

∞∑
s=0

p(An − S n = u|S n = s)p(S n = s)

=

∞∑
s=0

p(An = u + s)p(S n = s).

Since An and S n, unlike Un, are non-negative random variables, we need to re-write the fore-
going derivations for Cn(u) as

Cn(u) =


∑∞

s=0 p(An = u + s) p(S n = s) if u ≥ 0,∑∞
a=0 p(An = a) p(S n = a − u) if u < 0.

(3.4)

Thus, the probability distribution of the nth increment can be viewed as the convolution of the
number of arrivals and the negative of the number of discharges.

Let p(k,n)
i j = p(Qn = j | Qk = i) be the probability of transition from state i in the census

at time k to state j at time n in a non-homogeneous process. Viewing the census process
as a Markov chain, by means of the Chapman-Kolmogorov equation, this probability can be
expanded as
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p(k,n)
i j =

∞∑
l=0

p(k,k+1)
il p(k+1,n)

l j . (3.5)

From (3.5) we get

E{Qn|Qk = i} =

∞∑
j=0

jp(k,n)
i j

=

∞∑
j=0

j
∞∑

l=0

p(k,k+1)
il p(k+1,n)

l j

=

∞∑
l=0

p(k,k+1)
il

∞∑
j=0

jp(k+1,n)
l j

=

∞∑
l=0

p(Uk = l − i)E{Qn|Qk+1 = l}. (3.6)

This algorithm works backward in time, starting from k = n − 1 where E{Qn|Qn = i} = i,
recursively obtaining the predicted censuses for earlier time points.

In fact, the conditional census distributions for lag (n − k) can be written as mixtures of the
conditional census distributions for lag (n − k − 1), so that we immediately find

P{Qn ≤ h|Qk = i} =

∞∑
l=0

p(Uk = l − i)P{Qn ≤ h|Qk+1 = l} (3.7)

and,

E{Q2
n|Qk = i} =

∞∑
l=0

p(Uk = l − i)E{Q2
n|Qk+1 = l}. (3.8)

Therefore, we readily find the variance which is,

Var{Qn|Qk = i} = E{Q2
n|Qk = i} − E2{Qn|Qk = i}. (3.9)

Since this algorithm enables us to obtain the probability distribution of the census, Qn, along
with the point estimations, we are able to use the percentiles of this distribution to find the
required confidence intervals.

We illustrate the operation of this recursive scheme below, for the case of predictions for the
midnight census.
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I. Example: One to three-step prediction for midnight census

Letting p(23,24)
i j = p(Q24 = j | Q23 = i) denote the probability for the number of patients in

the system at midnight (12:00 am) given i patients in the ED at 11:00 p.m., we immediately
obtain

E{Q24|Q23 = i} =

∞∑
j=0

jp(23,24)
i j =

∞∑
l=0

p(23,24)
il E{Q24|Q24 = l} =

∞∑
l=0

p(U23 = l − i)l. (3.10)

Similarly, a prediction for midnight given i patients present at the ED at 10:00 is

E{Q24|Q22 = i} =

∞∑
r=0

p(22,23)
ir E{Q24|Q23 = r} =

∞∑
r=0

p(U22 = r − i)E{Q24|Q23 = r}. (3.11)

This specifies a two-step prediction. However, a one-step prediction E{Q23|Q22 = i} can also
be made similar to our first example. Likewise,

E{Q24|Q21 = i} =

∞∑
k=0

p(21,22)
ik E{Q24|Q22 = k} =

∞∑
k=0

p(U21 = k − i)E{Q24|Q22 = k}. (3.12)

To produce estimates for the ED census using (3.4)-(3.6), we consider three methods for esti-
mating the Uns:

(1) A purely probabilistic model using Markov chains; in this approach which will be referred
to as “the empirical approach”, the empirical distribution of each Un will be substituted in
Equation (3.6),

(2) Directly modeling and forecasting the Uns with time series models and applying (3.2) to
obtain census predictions based upon a purely statistical approach, and

(3) Modeling the arrival and service processes via parametric regression models. Then deriving
the Un distributions,Cn(u), using Equation (3.4) which we refer to as a hybrid model.

We discuss each of these three methods below in turn.

3.6 Models for making forecasts

The importance of short time predictions for an Emergency department was discussed in the
previous section. In this chapter, we introduce three models that fit our data best. We explain
some theoretical background wherever required, study their related assumptions and provide
some numerical applications. Two of these models will use the backward algorithm developed
in the previous section, and one other is a completely statistical model.
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3.6.1 The Empirical Approach

We assume that the nth increment’s ,Un, distribution can be approximated empirically from the
historical data, and that the increments are independent of the current workload and calender
variables. In this approach the empirical distribution is written as:

P(Un = i) =
count number of Un in data set equal to i

count number of all Un
for all n ∈ {1, . . . , 24}

This provides us with an estimate for the probability values at each time point to substitute for
the p(Uk = l − i) in Equation (3.6). As a result, we are able to predict the census any step
forward from a given time point.

Confidence Interval

Since our algorithm enable us to have a prediction for the whole distribution of the census in
the near future, in order to identify the lower and upper bounds within which 95 percent of our
data lies, we just need to identify the 2.5 and 97.5 percentiles of that distribution. Hence, the
lower and upper bounds would be L = inf{h : P(Qn ≤ h | Qk = i) ≥ 0.025} and U = sup{h :
P(Qn ≤ h | Qk = i) ≤ 0.975} respectively.

Note that we employ Equation (3.7) to obtain the c.d.f and required percentiles for each distri-
bution.

Figure 3.8: Empirical c.d.f function.

Figure (3.8) compares four empirical c.d. f ’s one hour transition given 10 or 5 patients present
at 7:00 am or 11:00 pm. The blue and green lines demonstrate the difference between morn-
ing hours with higher arrivals and night hours with higher service rates respectively. On the
other hand, the difference between blue and red lines shows the effect of different initial queue
length.



3.6. Models for making forecasts 35

Once the c.d.f has been obtained, we are able to find the confidence interval for estimated
values as shown in Figure (3.9) as an example.

Figure 3.9: Confidence Intervals for census predictions.

In Figure (3.9), we have assumed that 10 patients were at an ED at time 6:00 am. The hourly
predictions are displayed as round circles and the green lines represent the corresponding 95%
confidence intervals.

3.6.2 Numerical implementations of the first model

Since our algorithm for census prediction works backward at each step, initially a recursive
function was used in R which calls E{Qn|Qk+1 = l} to get E{Qn|Qk = i} and so on. However,
the recursive function turned out to be very time consuming, so an alternate algorithm was
implemented. This function starts from E{Qn|Qn = i}; for the next step it finds E{Qn|Qn−1 =

i}; i = 0, 1, ...,max where (n − 1 > k) and saves it in a vector whose length is, max = i +∑n−1
j=k (max u j)+. Whenever each of these values is required in the next steps, the algorithm uses

the vector it has saved from the previous step, which reduces the needed computation time a
great deal.

Table 3.1: An example to demonstrate steps of the algorithm in R function

0 1 2 ... max
E{Q7 | Q7 = 0} E{Q7 | Q7 = 1} E{Q7 | Q7 = 2} ... E{Q7 | Q7 = max}
E{Q7 | Q6 = 0} E{Q7 | Q6 = 1} E{Q7 | Q6 = 2} ... E{Q7 | Q6 = max}
E{Q7 | Q5 = 0} E{Q7 | Q5 = 1} E{Q7 | Q5 = 2} ... E{Q7 | Q5 = max}
E{Q7 | Q4 = 0} E{Q7 | Q4 = 1} E{Q7 | Q4 = 2} ... E{Q7 | Q4 = max}
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Table (3.1) presents the steps of our algorithm which finds E{Q7 | Q4 = 1}. More details can
be found in the algorithm description in table (3.2).

Table 3.2: Backward Algorithm for census predictions

Algorithm description
1 : Derive the empirical U distribution as a function from data set
2 : Define a function to derive the maximum value of Un values for each n where n ∈ {1, . . . 24}
2 : and call it maxU()
3 : Define a function to take last.time, first.time, count as inputs
4 : if last.time − f irst.time = 0 then

5 : return count ← count
6 : else
7 : if (last.time − f irst.time > 0) then
8 : loopm← last.time − f irst.time
9 : else
10 : loopm← (last.time − f irst.time) + 8
11 : max.engaged.us← max(sapply(1 : 8,maxU)) ∗ loopm
12 : rmax← max.engaged.us + count
13 : m← vector(0, ..., rmax)
14 : for t = 1 to loopm do
15 : if last.time − t > 0 then
16 : timet ← last.time − t
17 : else
18 : timet ← 8 + last.time − t
19 : for k = 0 to rmax do
20 : S ← 0
21 : for r = 1 to rmax do
22 : S ← P(Ur−n = timet) ∗ m[r] + S
23 : S ← P(U0−n = timet) ∗ m[1] + S
24 : new − m[k]← S
25 : m← new − m
26 : return count ← m[count + 1]

The necessary steps of an algorithm to find the census prediction appear in Table (3.2). Lines
7 to 10 find the number of steps ahead we seek to predict. In case the future time point is in
the next day, we need to add 8 steps to the subtraction of future time from current time to avoid
negative lags. Line 12 finds the upper limit of summation to avoid infinite loops in Equation
(3.6), while later loops are to calculate all the one, two up to required step predictions into the
future and to save them in a vector.

Table (3.3) displays numerical examples for some typical initial and predicted census values (4
and 8 hours into the future) where k is the initial time epoch, i represents initial census level and
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n is the time we are interested to make predictions for. For example, the algorithm’s predicted
value for 4:00 pm, given 10 patients present at 8:00 am is 26.

Table 3.3: An Example of prediction for different i, k and n

E{Qn | Qk = i}
k i = 0 i=10 i=40

1
n=4

1
n=8

2
n=4

5
n=8

4
n=4
34

n=8
31

4
n=8

2
n=12

10
n=8

7
n=12

14
n=8
37

n=12
43

8
n=12

9
n=16

18
n=12

16
n=16

26
n=12

46
n=16

55

16
n=20

3
n=24

4
n=20

10
n=24

8
n=20

39
n=24

36

3.6.3 Regression with autoregressive moving averages (ARMA) errors

The second approach is to model the fluctuations of Un’s over time. We developed a model
based on ordinary regression and time series Autoregressive Moving Average (ARMA) mod-
els.

There is extensive research that supports the application of time series analysis to improve
forecasting in health care. ARIMA models have been used to predict ED patient volume across
short- and long-term time horizons [1520]. Several studies such as Marcilio et al. (2013), have
compared different regression models to ARIMA models and have made conclusions about
which model is a better fit based on their available data.

We fitted an ordinary regression to the increments, Un to find significant calender variables,
and tested the residuals for any possible trend. The methodological framework used in this
study is presented as follows:

• Plot Un data over time as a time series,
• Fit an ordinary regression model and save the residuals,
• Fit several models to the obtained residuals and estimate model parameters using de-

pendency measured, e.g., Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF)

• Identify best models using fit criteria, e.g., Akaikes Information Criterion (AIC), Bias
Corrected AIC (AICc), and Bayesian Information Criterion (BIC)

• Apply diagnostic tools to determine how well the models fit census data, e.g., Plot of
standardized residuals and their normal Q-Q plot, and

• Forecast n days during specified periods using an independent dataset. Evaluate the
accuracy of the forecasts provided by the models by using error statistics, e.g., Mean
Absolute Percentage
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It is possible (as in our case) that the errors (residuals) of a regression model have a time series
structure or have high autocorrelation which violates the initial assumptions of the ordinary
linear regression model, where residuals have to be independent. Thus, in order to avoid biased
and inflated coefficient estimations, we can adjust the regression coefficient estimations and
standard errors.

In this procedure the underlying model is called a regression with auto correlated errors [59].
That is, consider the model to be given by:

y = Xβ + e, (3.13)

where y is an n× 1 vector, X is the n× r Regression covariate matrix (fixed input), β is an r × 1
vector of regression parameters and n is the number of observations. The n × 1 error vector,
e, is a process with come covariance implying that the error terms are correlated (i.e. are not
white noise, wt).

Now, if we were working with a pure AR(p) error we could write:

et = Φ−1(B)wt, (3.14)

where Φ(B) is the linear transformation that, when applied to the error process, produces the
white noise wt. Notice that the model has two error terms here; the error from the regression
model which we denote by e and the error from the ARIMA model which we denote by w.
Only the ARIMA model errors are assumed to be white noise.

Initial investigations

Figure (3.10) provides a first view of increments. It shows values of Un versus time of the day
for 40 days, and suggests Un is a stationary process. However, the pattern across lags in Figure
(3.11) are multiples of 8 (as we have 8 blocks in a day), which indicates daily seasonality. This
figure illustrates the Auto correlation function (ACF) and Partial auto correlation functions for
Un.

We divided the data set to two separate sections: Training data and Test data, where the latter
consists of 20 percent of whole data set.

Fitting a linear regression model to the training data set revealed no significant monthly effect
and the only important variables were blocks of day which are defined as Iblockn , n = 1, 2, ..., 8
and Monday effect (IMonday). Figure (3.12) illustrates the autocorrelation of the residuals of the
regression model.

Therefore, in the next step the ARMA (7, 0, 2) was fitted to the residuals of linear regression
model. The residual diagnostic of the fitted ARMA model could be viewed in in figure (3.13)
which shows no significant deviation from assumptions.
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Figure 3.10: The hourly values of Un in 40 days.

Figure 3.11: The ACF and PACF of Un

Finally, the resulting model which could be written as

Ut = − 6.19 + 3.04 × Iblock2 + 4.78 × Iblock3 + 16.46 × Iblock4 + 11.80 × Iblock5 + 6.22 × Iblock6+

3.92 × Iblock7 + 2.38 × Iblock8 + 0.85 × IMonday + 1.35 × et−1 − 0.51 × et−2 + 0.02 × et−3+

0.05 × et−4 − 0.06 × et−5 + 0.03 × et−6 + 0.02 × et−7 + wt − 1.62 × wt−1 + 0.62 × wt−2

(3.15)

is being validated on our test data set. Figure (3.14) demonstrates the forecast values and
confidence intervals related to each forecast value.
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Figure 3.12: ACF and PACF of the residuals of the linear regression model.

Figure 3.13: Residual diagnostic for the fitted ARMA model.

Having forecasts for Un values, we can now derive forecasts for ED census directly using
equation (3.2).

Figure (3.15) shows one, three, five and seven step forecasts of ED census (in blue) versus
the real census volumes (in green). Real values have been available from our test data while
forecasted values are derived from the regression with ARMA errors model.



3.6. Models for making forecasts 41

Figure 3.14: Residual diagnostic analysis of Un time series.

Figure 3.15: One to seven steps forecasts of ED census.

3.6.4 Hybrid Model: Parametric discrete Markov chain approach

This section presents a DTMC probability formulation that captures the short term effects of
census fluctuations in an Emergency Department. Because service (discharge) and arrival rates
are considered unknown by hour of the day, the probability model will be combined with a sta-
tistical approach to predict arrival and discharge rates based on historical data. Output results
to measure the adequacy of models have been presented subsequently.
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Formulation of the model

Our third approach represents a hybrid of the previous two. As with the first method, we
worked with a Markov-chain based recursion exploiting the relevant increment distributions.
Here, however, the increment distributions are obtained as the difference between parametric
arrival and discharge distributions. Each of the two parametric distributions have parameters
that are regressed upon quantities from the preceding time interval.

For that purpose, we need to obtain the arrival and discharge probabilities at each time point.
Specifically, we first fit a Poisson regression model to our arrival and discharge data. A previous
study [12] on the same data set has studied and proved the effects of workload and calendar
variables on both Arrival and Discharge processes. In the light of that, we derive a prediction
for the distribution of increments and use a modification of equation (3.6) to derive the required
forecasts for future census.

Since our arrival and service volume depend on workload in the system, we need to modify
our recursion equation, Equation (3.6), to account for that too.

To begin with, we assume our census is a Markov process which depends only on one previous
state:

P(Qn = j | Qk = i) =

∞∑
l=0

P(Qn = j | Qk+1 = l)P(Qk+1 = l | Qk = i). (3.16)

Furthermore, assuming the arrival and departure numbers follow Poisson distributions, λk and
µk are the arrival and discharge rate for each time interval respectively. Therefore, the equiva-
lent recursion prediction formula in this setting is written as:

E{Qn|Qk = i, λk, µk}

=

∞∑
j=0

j
∞∑

l=0

P(Qk+1 = l | Qk = i, λk, µk)P(Qn = j | Qk+1 = l, λk+1, µk+1)

=

∞∑
l=0

P(Qk+1 = l | Qk = i, λk, µk)
∞∑
j=0

jP(Qn = j | Qk+1 = l, λk+1, µk+1)

=

∞∑
l=0

P(Uk = l − i|Qk = i, λk, µk)E{Qn|Qk+1 = l, λk+1, µk+1}. (3.17)

The probabilities in the last line of equation (3.17) will be obtained from the equation below,
which calculates the probability distribution of the relevant increments.
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Ck(u) = p[Uk = Ak − S k = u|Qk = i, λk, µk]

=

∞∑
s=0

p(Ak − S k = u|S k = s,Qk = i, λk, µk)p(S k = s|Qk = i, λk, µk)

=

∞∑
s=0

p(Ak = u + s|Qk = i, λk, µk)p(S k = s|Qk = i, λk, µk) (3.18)

3.6.5 Numerical results

The initial result of fitting a Poisson regression to discharge data reveals that discharge volume
at each time epoch, S n (i.e. the number of discharged patients during time interval [n, n + 1),
depends upon workload (census) at that time n. Also, there has been significant evidence for
the effect of months on the volume of discharge. Therefore, months have been divided into
two different categories: 1) “fall and winter months” starting from September up to the end of
February and, 2) “Spring and summer months” from March to August.
Moreover, we have blocks of the day which are statistically significant to be included in our
models. Hence, our model is written as,

log[E(Dischargedn)] =β0 + β1Census + β2IBlock2 + β3IBlock3

+ . . . + β8IBlock8 + β9I f allandWinterMonth, (3.19)

which indicates that the discharge number at each time point would come from a Poisson
distribution with mean parameter E(Dischargedn). The parameter estimates are given in Table
(3.4).

Table 3.4: GLM fit (Poisson) to arrival and discharge data

Arrival Discharge

Parameters Estimate St.error P-value Parameters Estimate St.error P-value
Intercept 2.15 0.020 < 2e-16 *** Intercept 2.09 0.018 < 2e-16 ***
census -0.001 0.0004 0.00324 ** census 0.02 0.0004 < 2e-16 ***
BoD-2 -0.38 0.019 < 2e-16 *** BoD-2 -0.37 0.016 < 2e-16 ***
BoD-3 0.13 0.017 1.65e-13 *** BoD-3 -0.11 0.015 7.63e-13 ***
BoD-4 0.91 0.015 < 2e-16 *** BoD-4 -0.06 0.015 2.77e-05 ***
BoD-5 0.92 0.015 < 2e-16 *** BoD-5 0.10 0.013 1.15e-14 ***
BoD-6 0.79 0.015 < 2e-16 *** BoD-6 0.14 0.013 < 2e-16 ***
BoD-7 0.69 0.016 < 2e-16 *** BoD-7 0.16 0.013 < 2e-16 ***
BoD-8 0.53 0.016 < 2e-16 *** BoD-8 0.16 0.012 < 2e-16 ***
Weekday 0.09 0.007 < 2e-16 *** fallwinter Month -0.09 0.007 < 2e-16 ***

The same procedure with a slight change in variable selection was applied to the arrival pro-
cess as well. In modeling arrivals, monthly effects were no longer significant; instead we had
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a weekend or weekday effect which was important to be considered and was entered to model
as an indicator variable.

log[E(Arrivaln)] =β0 + β1Census + β2IBlock2 + β3IBlock3

+ . . . + β8IBlock8 + β9IWeekendOrWeekday. (3.20)

We fit these 2 models and determined the corresponding coefficients for each model. At this
point the conditional probabilities for any system state with its specific first lag could be auto-
mated using equation (3.18) and substituting for it in (3.17).
This model not only enables us to make 24 hour forecasts into the future, but also by having ar-
rival and discharge distributions we can make confidence intervals for our forecasts too.

Figure 3.16: Arrival and Discharge distributions.

Graph (3.16) is an illustration of sample arrival, discharge and increment distributions for the
8th block of a week day in a cold month. The first figure in this graph is a prediction for dis-
tribution of arrivals; thus, this algorithm not only enables us to have point estimations but also
provides us with the the prediction of whole distribution shape. The second figure is a predic-
tion for the discharge distribution while the last one illustrates the increment distribution.
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3.7 Application for ED Admins

Knowledge of the future alone cannot solve the overcrowding problem; action based on this
knowledge is required too. If any decision for near future interventions is to be made, mea-
suring the efficiency of that decision in terms of how successful it will be in decreasing the
backlog, is important too.

Calling in a physician for the entire day or just for a couple of hours when a surge in the census
is forecasted, could be among the possible decisions. We present an example of such decisions
in each scenario and their effect on the census level.

With our DTMC algorithm, it is possible for ED managers to make short-term predictions of
the census at any time during the day. If we assume that at 6:00 am there are 10 patients in
the waiting room of an ED, the manager might be interested to know how this number would
change in the ED, 1 to 14 hours into the future. Figure (3.17) presents the dynamics of this
system.

Figure 3.17: ED census predictions.

Meanwhile, if this manager were to decide to add one more physician at time 1:00 pm to
avoid the predicted peak in the ED, the red line in the graph shows the effect of her decision.
Alternatively, knowing that there will be a shift change at 3:00 pm, she might ask the next
shift’s physician to arrive 2 hours earlier at time 1:00 to help with the busy ED. The effect of
this decision can be seen in the graph with the green line in Figure (3.17).
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3.8 Model Validation

At this stage, we wish to see how each of these models performs as compared to other models.
In order to validate and compare our models, we have divided our data set into training and
test data sets to perform a five-fold cross validation. Since our prediction algorithms depend
on previous step(s) to predict the next census, a “sliding-window” approach has been used at
each fold.

We use the sliding-window validation technique where a sliding window of training data is
used to fit required model and derive parameter estimations [52]. The basis for this approach is
to divide the forecast horizon into multiple periods and then to update and extend an existing
plan in each period (e.g., Sethi et al. [43]). The number of future periods for which the forecast
is made is the horizon and these are the periods which roll over once a forecast for that period
is made (Sethi & Sorger [42]).

This technique ensures that parameters remain up to date throughout the entire forecasting and
that there is no single division between the data used for parameter estimation and validation.
Once parameters are available, the model will be used to make from 1 up to 8 step forecasts
into the future on the entire test data points.

We predict the model parameters from training data and test them on our test data. Commonly
used forecast-accuracy metrics which are the Mean Square Error (MSE), and correlation at var-
ious forecast lags have been measured and compared for our three models in table (3.5).

Table 3.5: Model Validation

Measures First Model Second Model Third Model

One Step
MSE=32.180 MSE=26.865 MSE=27.234

R=0.835 R=0.848 R=0.848

Two step
MSE=57.436 MSE=39.375 MSE=39.60

R=0.703 R=0.768 R=0.77

Three step
MSE=70.847 MSE=46.130 MSE=47.079

R=0.623 R=0.722 R=0.722

Four step
MSE=75.896 MSE=48.930 MSE=48.03

R=0.571 R=0.702 R= 0.70

Five step
MSE=80.106 MSE=50.753 MSE=51.161

R=0.538 R=0.690 R=0.685

This table explores the reliability of the forecasting methods in term of the correlation coeffi-
cient and mean square error measures. The first model (DTMC) performs poorly as compared
to other two models as it appears to have the highest MSE and least correlation at each fore-
casting level. Performance measures decrease as the length of forecasting window increases.
For example, the forecasts of the census have correlation coefficients of 0.83, 0.70, 0.62, 0.57
and 0.52 respectively with the actual census count at 1, 2 up to 5 steps (i.e. 3, 6, up to 15 hours)
into the future. While both second and third models have the same behaviour in this regard,
they perform considerably better than the first model.
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Figure 3.18: Models prediction performance comparison.

It is also important to mention that although the second and third model show almost equal out-
come measures in the model validation table, since the third model provides more information
on the distribution of forecasted census values, we deem it to be preferable. Having the distri-
bution of census values rather than just a point estimation will help us to find the cumulative
distribution functions or the probability of extreme census value occurrences such as sudden
surges at any time point into the future.

Figure 3.18 presents a graphical view of the performance of our models. The red, green and
blue lines represent the Empirical DTMC model, the regression with ARMA errors and the
hybrid model respectively.

3.9 Conclusions

Understanding the dynamics of patient census and accurately predicting future census are es-
sential to the management of staff and resource planning. We presented an approach that not
only provides hourly estimations for future census but it also estimates the distribution of the
census.

Our Parametric DTMC model could be used in non-stationary systems where there is no exact
knowledge of the transient arrival and service rates and they depend on other variables (e.g.
calender variables, workload, etc.)

Our findings showed that a parametric discrete time Markov chain algorithm that accounts for
recent census levels, arrival and discharge distributions and seasonality, provides higher accu-
racy of hourly census prediction compared with the empirical model and provides opportunities
to reduce biased estimations of patient census. Our results also indicated that the regression
model with ARMA errors makes good estimations for the census however, it doesn’t provide
information about the shape of the distribution.
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Our proposed algorithm can also assist decision makers in an emergency department to carry
out their own analysis on the impact of their staffing decisions.

Finally, with more data at hand on the number of beds or nursing staff and more information
about shifts and physicians, this algorithm could be used to explore various scenarios to address
either an impending surge, or an existing backlog, in order to provide timely access to care for
the patients.



Chapter 4

The Lowest Priority Waiting Time
Distribution in the Affine and the Delayed
Accumulating Priority Queues

Maryam Mojalal1, David A. Stanford1, Richard J. Caron2

1: Department of Statistical & Actuarial Sciences, The University of Western Ontario, London,
Canada

2: Department of Mathematics and Statistics, The University of Windsor, Windsor, Canada

4.1 Abstract

The accumulating priority queue (APQ) was first introduced under another name by Kleinrock
[28] as a “time-dependent priority queue”, where patients accumulate priority as a linear func-
tion of the time they spend in the queue. When a server becomes free, the customer with the
highest accumulated priority will enter service. The waiting time distribution for each class in
the APQ was obtained in Stanford, Taylor, and Ziedins (2014)[10]. Since then, such models
have been referred to in the literature as Accumulating Priority Queues (APQ).

All subsequent publications addressing the APQ since then have assumed that all arriving cus-
tomers accumulate priority credits over time starting from the same initial value (assumed,
without loss of generality, to be 0). The model we present herein introduces a new element in
terms of an initial class-dependent credit level, from which the accumulated priorities of the
various classes grow linearly over time. We consider the case of a two-class APQ, for which
class-1 customers receive a positive initial credit upon arrival. The present work is concerned
with determining the waiting time distribution for the lower class of customers in such an APQ,
and in assessing the impact of the initial priority credit upon that distribution.

As in the health care setting we are concerned about the long waiting times of the lowest acuity
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patients, we have addressed that in relation to the initial class-1 credit value, accumulation
rate and system occupancy level. Therefore, this work also considers a particular optimization
problem related to the model, namely, the selection of the optimum accumulation rate which
allows for the lowest class customers to meet their KPIs.

4.2 Introduction

Waiting time distributions for queues operating under a wide variety of service disciplines have
been well known for more than 50 years: from the first-come, first-served (FCFS) discipline
to the “classical” priority queuing discipline (Kesten and Runnenberg [19]), in which a cus-
tomer belonging to a given priority class is selected for service only when there are no waiting
customers from higher priority classes. Customers from low priority classes in such a situa-
tion can be repeatedly overtaken by customers from higher priority classes whenever any are
present in the queue. None of these disciplines factor the incurred waiting time in determining
a customer’s priority. Kleninrock (1964) was the first to introduce a service discipline in which
customers earn priority credit as a linear function of their waiting time.

Kleinrock, in his paper, derived a set of recursive formulae to calculate the average waiting time
before service for the different classes of patients. However, Stanford et al. [10] derived the
Laplace-Stieltjes Transform (LST) of the stationary waiting time distributions for each class of
patients in the Poisson arrival, general service and single server case.

Later, Sharif et al. [8] extended the applications of APQ in health, and considered the multi
server case with a common exponential service time distribution, and calculated the probabil-
ities of waiting times exceeding specified time limits, which corresponded to “Excess waiting
times”. The multi service APQ with heterogeneous servers was later studied by Li et al. in
2016 [35], as they believed a model which is capable of modeling heterogeneity in server
speed would reflect the reality of health care systems better.

A few years after Kleinrock’s initial work, Kleinrock & Finkelstein in 1967 [30] considered
power-law functions for priority accumulation. This sort of nonlinear behaviour was revisited
by Li et al. (2017)[36] and extended to a larger class of non linear functions. Other APQ papers
which have recently appeared include Haviv & Ravner [31], Kella & Ravner [38] and finally
Fajardo & Drekic [5] where they investigated different types of preemptive linear APQs.

In all of these studies, the initial priority of patients at the time of entrance is zero while the
higher the priority of a patient, the greater the rate at which that patient accumulates priority.
However, in this study, we are interested to look at the affine problem where the higher class
patient starts initially from a positive credit while the lower class stars with zero credit.

Our reasons for studying the affine variant of the APQ are two-fold. From a theoretical view-
point, Li et al. [36] recently established the conditions under which a family of non-linear
priority accumulation functions are, in fact, completely equivalent to a family of linear priority
accumulation functions, in terms of the range of waiting time behaviours that can be obtained.
It therefore is of interest to us to explore what the simplest non-linear APQ is which can pro-
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duce different behaviours, and that corresponds to the affine APQ model which we will describe
fully in the next section.

From a practical viewpoint, our interactions with certain health care professionals have re-
vealed that it does arise in certain settings that low-acuity patients are deemed to be of no
particular urgency for treatment until their waiting time reaches a particular time threshold.
In an APQ setting, this means that the low-acuity patients are deemed to not accumulate any
priority over time until that time threshold has been reached. Even though the theoretical and
practical motivations for these two-class models appear to describe differing priority accumu-
lation mechanisms, we establish in the next section that they are, in fact, equivalent.

It follows as a result of the foregoing equivalence that the waiting time distribution of the lower-
priority class of customers is identical to those of the lower class in a classical priority queue,
up to the time threshold. Beyond that time point, the waiting time behaviour resembles that of
a non-affine APQ. We are able to exploit this fact to come up with an algorithm for the deter-
mination of the waiting time distribution for those customers who experience waits in excess
of the time threshold. Numerical examples will be presented to illustrate the trends we observe.

4.2.1 Description of the Affine & the Delayed Variants of the APQ model

We consider a single-server queue with Poisson arrivals and a common general service time
distribution. Customers of class i; i = 1, 2 arrive at the queue according to a Poisson process
with rate λi; i = 1, 2 respectively. Upon arrival, a customer of class i starts accumulating prior-
ity at rate bi; i = 1, 2, where b1 > b2.

We call this an Affine APQ due to the fact that the higher priority class customers receive an
initial priority credit a > 0 upon arrival, and therefore accure priority as a function of time t
according to the priority function defined by

q1(t) = a + b1(t − τ1), (4.1)

where τ1 denotes the arrival instant of the customer. In contrast,

q2(t) = b2(t − τ2), (4.2)

where τ2 denotes the arrival instant of the class-2 customer. At every service completion in-
stant, the next patient with the highest earned priority at that instant will enter service.

We define d = a/b2 to be the time that it takes for a class-2 customer to accumulate credits
equal to a class-1 customers initial credit, a. This provides us with the means to link the affine
variant to the delayed variant of the APQ, whose description follows.
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Priority

0 time

a
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class 1, b1 = 1
class 2, b2 = b = 0.5

Figure 4.1: Accumulated priorities in an Affine APQ

In the delayed variant of the APQ, class-1 customers receive no priority credit upon arrival, but
start accumulating priority immediately at rate b1, so that q1(t) = b1(t−τ1) where τ1 once again
refers to the arrival instant of the class-1 customer. It is the class-2 customers who are delayed
for a period of time d before they start to accumulate priority. Thus, q2(t) = 0; τ2 ≤ t ≤ τ2 + d
while q2(t) = b2(t − d − τ2); t ≥ τ2 + d.

Figure (4.1) plots the accumulated priorities of customers as a sample path of such processes.
Without loss of generality, throughout this study we assume that b1 = 1 and b2 = b for some
0 ≤ b ≤ 1. In Figure (4.1), b = 0.5.

We observe that if b = 0 a classical priority queue is obtained, while a = 0 results in a classical
APQ. Also, a classical priority queue would be the result in the limit, if a→ ∞.

Similar to the definition 3.1 in Stanford et al. (2014), the Maximum Priority Processes for
the Affine APQ are defined as the least upper bounds, respectively, for the accumulated prior-
ities of queued customers from each class at each time t, given only knowledge of the times
at which previous customers entered service, and their accumulated priority at these times.
Equivalently, a class-1 customer who has accumulated priority more than all class-2 customers
currently waiting in the queue is called an accredited customer. An accredited class-1 customer
is guaranteed service before any waiting class-2 customer.

An accreditation interval consists of the service time of a non-accredited customer followed
by a sequence of service times of accredited class-1 customers. Thus, the busy period of the
queue can be broken into a sequence of accreditation intervals.

In Figure (4.1), the red point indicates the time when a higher class customer overtakes a
lower class, who had entered the system earlier but will yet go to service after that higher class
customer. Stanford et al. (2014) Lemma 4.2 established that during an accreditation interval,
the time points at which customers become accredited occur according to a Poisson process
with rate λ1(1 − b2/b1). By analogy to similar constructs in the classical M/G/1 queue, they



4.3. Lower-classWaiting timeDistributions in theAffine& DelayedVariants of theAPQ underM/G/1 53

were able to obtain the expression of the Laplace-Stieltjes transform (LST) of the duration of
an accreditation interval and its mean duration.

In the next section we turn to the determination of the waiting time distribution for the lower
class customers in an Affine APQ discipline in the setting as defined above.

4.3 Lower-class Waiting time Distributions in the Affine &
Delayed Variants of the APQ under M/G/1

The first task we address in this section is to establish the equivalence of the waiting time
distributions for the lower priority class in the affine and the delayed variants of the APQ
which possess the same priority accrual rates bi; i = 1, 2 and where the affine element a > 0 is
related to the delay element d > 0 by d = a/b2. Having done so, we turn to the determination
of this common waiting time distribution for both models, using the affine APQ as the setting
for that derivation.

Theorem 4.3.1 Consider both an affine APQ with parameters a > 0, b1 > 0 and b2 > 0
and a delayed APQ with the same b1 and b2 as the affine APQ, along with a delay period
d = a/b2 for class-2 customers. Then the stationary waiting time distributions for class-1 and
class-2 customers would be the same in both variants, when subjected to the same traffic load
ρ = (λ1 + λ2)/µ < 1.

Proof Figure 4.2 (A) illustrates the priority accumulation functions that would apply to class-1
and class-2 customers, respectively, both arriving at time 0 in the affine APQ model as stip-
ulated above. Figure 4.2 (B) illustrates the corresponding priority accumulation functions for
the delayed variant of the APQ. The dashed line added to 4.2 (B) represents the continuation of
the linear portion of the delayed priority function for class-2 customers, back to its y-intercept.

Priority

0 time

a

td

class 1, b1 = 1
class 2, b2 = b = 0.5

(A : A f f ineAPQ)

Priority

0 timetd

−a

class 1, b1 = 1
class 2, b2 = b = 0.5

(B : DelayedAPQ)

Figure 4.2: Accumulated priorities in an Affine APQ and Delayed APQ
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Under the delayed APQ protocol, a class-2 customer would only be served during the first d
time units in the event that no class-1 customers were present at such an instant. The same
customer selections between class-1 and class-2 customers would be arrived at using the linear
function q2(t) = −a + b2t, represented by the linear portion and its dashed-line continuation in
FIG B.

Now comparing 4.2 (A) and (B), we recognize that the former priority accumulation functions
are merely displaced vertically from those in the latter figure, where q2(t) = −a + b2t. Thus,
the same decisions as to who would be selected for service under either arrangement for any
sample path comprising the same arrival instants and sequence of service time durations. It
necessarily follows that the waiting time distributions for both classes of customers would be
the same in both the affine and delayed APQ variants.

Having established the equivalence of the affine and delayed APQ variants, we turn at this point
to the task of determining the waiting time distribution before service commences for class-2
customers. We do so under the framework of the Affine APQ discipline, in terms of its LST.
From these results, we will obtain the corresponding distributions under the Classical APQ and
classical priority disciplines by appropriate choices of the accumulation rates. In subsequent
sections we present some numerical examples which will be obtained via numerical inversion
of the corresponding LSTs using the Gaver-Stehfest Algorithm.

From a class-2 customer’s perspective, from their arrival moment until time d = a/b2 when
this customer earns enough credit to start competing with higher class customers, all higher
class customers enter service prior to this customer and this customer experiences a discipline
similar to the classical priority queue.

Therefore, the waiting time for a class-2 customer can be viewed as consisting of two cases.
The first corresponds to the case where the waiting time is less than time d which will be
derived in Lemma 4.3.2. The second addresses the additional waiting time after d which is
derived in the sbsequent theorem.

Lemma 4.3.2 Let W2 denote the stationary waiting time random variable for class-2 cus-
tomers in the affine case, and W2 its counterpart in the standard single-server non-preemptive
priority queue with the same arrival rates. Then

P(W2 ≤ t) = P(W2 ≤ t),∀t ≤ d. (4.3)

Proof The key to the proof is to couple the waiting time in the affine APQ with that in the
corresponding non-preemptive priority queue over the interval of time 0 ≤ t ≤ d.
As argued in the proof of Theorem 9.1 of Stanford et al. (2014), an arriving class-2 customer
in the APQ system will only be served once all work found in the system upon arrival has
been served as well as the later-arriving accrediting customers. The same is true for a class-
2 customer in a standard non-preemptive priority queue, all of whose later class-1 arrivals
accredit immediately relative to any class-2 customer present in the system. We therefore
exploit the same rearrangement of service times used in the proof of Theorem 9.1 of Stanford
et al. (2014) to determine the waiting time distribution in the non-preemptive priority queue:
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we first attend to the work present in the system upon the arrival of a tagged class-2 customer,
and then turn to the later-arriving class-1 customers.

Since the tagged customer is from a Poisson process at rate λ2, the workload it perceives upon
arrival (which corresponds to time instant t = 0) is equal in distribution to the unfinished
workload of the server in an M/G/1 queue attending to the two customer classes on a FCFS
basis. The waiting time for class-2 customers in the standard non-preemptive priority queue
is readily obtained by treating this unfinished workload as the initial “delay” as per Conway,
Maxwell, and Miller pp 149-151. It then follows that the corresponding waiting time is the
duration of the delay cycle comprising the initial “delay” followed by a delay busy period
comprising service to the later-arriving class-1 customers, until none are left.

Under the customer-selection rule for the affine APQ, during an interval of time of duration
d, all class-1 arrivals subsequent to the arrival of a tagged class-2 customer accredit relative to
that customer immediately. Thus, for given realizations of the unfinished workload found upon
arrival and sequence of class-1 arrivals during this period of duration d, there is no distinction
between who would be served ahead of the tagged customer under the affine APQ discipline
and the standard non-preemptive priority discipline.

In other words, for any given pair of realizations such that the unfinished workload and sub-
sequent delay busy period of later-arriving class-1 customers has been completed under the
non-preemptive priority discipline at a given point in time 0 ≤ t ≤ d, it would likewise end at
the same instant 0 ≤ t ≤ d under the affine APQ, and vice versa. This establishes the Lemma
above.

The foregoing lemma enables us to invoke the waiting time distribution for class-2 customers
when their waiting time is less than d. However, one further concept is needed in order to state
the relevant results for when their waiting time exceeds d. Class-2 customers who wait more
than d time accumulate priority in excess of a. From this point onward, further accreditations
by class-1 customers will be according to a Poisson process at rate λ1(1− b2/b1), as in the case
with the non-affine APQ. The LST of the wait time for class-2 customers in this case is derived
according to the following theorem.

Theorem 4.3.3 (M/M/1) Let Wq2 denote the stationary waiting time random variable for a
class-2 customer operating under the affine APQ discipline under the foregoing stated assump-
tions and Exponential service time distribution. Let φ(s) be the LST of the common exponential
service time distribution, and let Nt be the number of customers ahead of the tagged class-2
customer at time t. I{A} denotes the indicator function of the event A.
Without loss of generality, we assume the tagged class-2 customer arrives at time 0. The
Laplace transform associated with the stationary distribution ofWq2 I{Wq2 > d} is given by

E{e−sWq2 I{Wq2 > d}} =
∞∑

i=1

P{N0 = i}
∞∑
j=1

P{Nd = j,Nt > 0; 0 ≤ t ≤ d|N0 = i}e−sd(ηA
1 (s)) j, (4.4)
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where ηA
1 (s) is the LST of the distribution of the busy period length and would be derived as

ηA
1 (s) = φ(s + λ1(1 − b)(1 − ηA

1 (s))). (4.5)

Proof The result is obtained by deriving the conditional LST first. Upon arrival, in order to
be delayed in excess of d time, the tagged class-2 customer must find some number i ≥ 1 of
customers in the system ahead of them, N0 = i. Furthermore, at no point during the period of
time 0 ≤ t ≤ d can Nt drop to zero, or the waiting time of the tagged customer would end at such
an instant. After d time elapses, this customer must find some number j ≥ 1 customers ahead
of them, who are either those of i initial customers or any higher class customer who has arrived
later and overtaken this customer, since they have higher priority. Hence, the conditional LST
is given by

E{e−sWq2 (I{Wq2 > d})|N0 = i,Nt > 0; 0 ≤ t ≤ d,Nd = j}

= e−sd(ηA
1 (s)) j, (4.6)

where ηA
1 (s) represents the LST of the distribution of the length of busy periods initiated by

each of those j customers and continued by arriving class-1 customers who overtake the tagged
customer with rate λ1(1 − b). Summing over the possible values of i and j the final result is
obtained.

Theorem 4.3.3 above addresses the APQ discipline in the case of a common exponential service
time distribution for both classes (i.e. under M/M/1 queue).
A similar result can be obtained for more general service times, but to do so, one needs to
be aware of Theorem 3.1 in Adan & Haviv (2009) [21], which establishes the nature of the
dependence between the number present in queue at the end of a service time and the duration
of that service time. (The exponential service case is shown to be an exception in Adan &
Haviv (2009) so that the derivation above is correct).

The context is as follows. According to a well known property, in any non-preemptive, work-
conserving M/G/1 queue under stationary conditions the residual life time, R, and elapsed
lifetime (age), A, of the service length of the customer in service have the same distribution.
Furthermore, the residual of the service length of the customer in service, has a density function
according to

fR(r) =
1 − FX(r)

E(X)
, (4.7)

where X is the service time distribution. This property has been called the “random modifica-
tion” in [61]. More details in this regard could be found in [29] (chapter 5.2 page 172).
However, Adan & Haviv, in their paper, show that this property (4.7) is no longer true if fur-
ther information such as the number of waiting customers in the queue is available. They then
obtain the density function and the LST of the conditional age of service, given the number of
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customers present in the system (including the one in the service), Q+ = n; n ≥ 1, under an
M/G/1 discipline as

fA|Q+=n(a) =
ρ

πn
fA(a)[(1 − ρ)

(λa)n−1

(n − 1)!
+

n∑
i=1

πi
(λa)n−i

(n − i)!
]e−λa, a ≥ 0, (4.8)

where πi; i = 0, 1, 2, ... is the stationary distribution of number in system in an M/G/1 queue
(see Theorem 3.1 in [21]).

Corollary 4.3.4 (M/G/1) Consider the assumptions in Theorem 4.3.3. Let R denote the resid-
ual of the service length of the customer in service at time d and φg(·) be the LST of the general
service distribution. The Laplace transform associated with the distribution ofWq2(I{Wq2 >
d}) under the affine APQ M/G/1 discipline is

E{e−sWq2 (I{Wq2 > d})} =
∞∑

i=1

P{N0 = i}
∞∑
j=1

P{Nd = j,Nt > 0; 0 ≤ t ≤ d|N0 = i}e−sd(ηA
r (s))(ηA

g (s))( j−1), (4.9)

where
ηA

g (s) = φg(s + λ1(1 − b)(1 − ηA
g (s))) (4.10)

is the LST of the distribution of the busy period generated by each customer waiting in the
queue ahead of the tagged customer; and, ηA

r (s) is the conditional LST obtained as

ηA
r (s) = φr(s + λ1(1 − b)(1 − ηA

g (s))). (4.11)

φr(s) is the conditional distribution of R given j ≥ 1 customers in the system. The conditional
distribution, φr(s) can be derived according to the Equation (4.8).

Finally, the following steps should be carried out in order to obtain the waiting time distribution
according to Equation (4.4): (1) finding the P{N0 = i} for the desired queue. (2) obtaining the
transition matrix to obtain the relevant transition probabilities between states, P{Nd = j,Nt >
0; 0 ≤ t ≤ d|N0 = i} . (3) finding ηA

r (s) and ηA
g (s) under the mentioned assumptions of the

model.

4.4 Specific details for the algorithm

In this section, we study special cases in the presented algorithm for the Affine APQ. The first
numerical example will be related to an Affine APQ under M/M/1 discipline, where class-i
customers i = 1, 2 enter the system according to Poisson processes with rates λi. We establish
the algorithm (4.4) in the Theorem 4.3.3 to obtain the waiting time distribution for lower class
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customers and present the results in a graph. The second numerical example will study the
application of the introduced algorithm in the Affine M/D/1 case where the common service
distribution for customers is a deterministic distribution.

4.4.1 M/M/1

We initially seek to substitute three components in (4.4) with their relative values.

As for the first component P{N0 = i}, in a single-server M/M/1 queueing system under a
non-preemptive and work-conserving service, the steady state distribution is Geometric. The
distribution of N0, being what an arrival from a Poisson process sees, is therefore also Geomet-
ric so that P{N0 = i} = (1 − ρ)ρi; i = 0, 1, 2, ..., where ρ = (λ1 + λ2)/µ.

To derive the second component, the taboo conditional transition probability P{Nd = j,Nt >
0; 0 ≤ t ≤ d|N0 = i}, we construct a Continuous Time Markov Chain (CTMC) with the
transition rate matrix (infinitesimal generator), Q, for the number of customers ahead of the
tagged class-2 customer, Nt, on the interval 0 ≤ t ≤ d. This CTMC’s transition rate matrix is
given by

Q =


0 0 0 0 . . .
µ −(µ + λ1) λ1 0 . . .
0 µ −(µ + λ1) λ1 . . .
0 0 µ −(µ + λ1) . . .
...

. . .
. . .

. . .


. (4.12)

In this matrix, state 0 is an absorbing state and should be avoided since it would indicate the
case whereWq2 < d, which has been dealt with in Lemma 4.3.2.

Hence, the conditional transition probability, P{Nd = j,Nt > 0; 0 ≤ t ≤ d|N0 = i}, is as the
(i, j)th element in the transition matrix P. The transition matrix P is obtained after we apply
the well known technique of “Uniformization” which approximates a CTMC by assigning a
uniformized discrete-time Markov chain to it.

In this approach, the mean time spent in each state in a CTMC, νi, is assumed to be the same
for all states as νi = ν, i = 1, 2, ..., n where n is the number of states. Therefore, the number
of state transitions, M(d), during time d would be according to a Poisson process with rate ν.
Therefore,

Pi j(d) = P{Nd = j,Nt > 0; 0 ≤ t ≤ d|N0 = i} =

∞∑
k=0

Pk
i jP(M(d) = k) =

∞∑
k=0

Pk
i j

e−νt(νd)k

k!
(4.13)

where, the equal transitioning rate at each state could be achieved by introducing the 1 − νi/ν
fictitious one step transition from states to themselves. Therefore, for i = j, Pi j = 1−

∑n
i, j qi j/ν
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and for i , j, we have qi j/ν; which could be written in matrix form as: P = I + Q/ν where I is
the Identity matrix.

Consequently, the following matrix P would be the corresponding transition matrix for the Q
matrix in Equation (4.12).

P =


1 0 0 0 . . .
q 0 p 0 . . .
0 q 0 p . . .
0 0 q 0 . . .
...

. . .
. . .

. . .


(4.14)

where q =
µ

µ+λ1
and p = λ1

µ+λ1
.

The third component would be the length of the sub-busy period ηA
1 (s). Since we have assumed

that service times have common exponential distribution, the LST of this distribution, φ(s), is
equal to µ

µ+s . Consequently, according to (4.5) we have:

ηA
1 (s) =

[µ + s + λ1(1 − b2/b1)] −
√

(µ + s + λ1(1 − b2/b1))2 − 4λ1(1 − b2/b1)µ
2(λ1(1 − b2/b1))

. (4.15)

Having all components defined, we were able to plot the cumulative distribution function for
the class-2 customers as in Figures 4.3 when accumulation rate b = 0.5 and in Figures 4.4
when b = 0.8.

Our graphs illustrate the results for the waiting time distributions of a class-2 customer in an
Affine APQ model while comparing 4 types of policies (classical APQ, d = 6, d = 10, classical
priority) for 2 different values of accumulation rate b = 0.5 and b = 0.8, based on the arrival
rates λ1 = 0.5 and λ2 = 0.3 for class-1 and class-2 patients respectively. The service times are
exponentially distributed with µ = 1 (resulting in ρ = 0.8).

The initial assumptions for d = 6, 10 results in the a values to be 3, 5 when b = 0.5 and 4.8, 8
when b = 0.8. In both figures we notice that the affine curves are bounded by the classical
priority queue and classical affine queue, indicating that compared to the classical APQ, the
positive delay interval, d, is slightly to the benefit of class-1 customers. Also, we notice the
cumulative distribution function (c.d. f .) of the waiting time for class-2 is stochastically smaller
when d → ∞ (i.e., classical priority) and stochastically largest when d = 0 (i.e., APQ).

In summary, the graphs illustrate that by introducing the affine element a, we are able to fine-
tune the nature of the priority accumulation to give more urgency to higher class-1 patients if
required while still valuing lower class patients incurred wait times.
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Figure 4.3: GS evaluation of class-2 wait time distribution in affine APQ M/M/1 with b = 0.5

Figure 4.4: GS evaluation of class-2 wait time distribution in affine APQ M/M/1 with b = 0.8
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4.4.2 M/D/1

In the following illustration, we consider an Affine APQ with Poisson arrivals with rates λi,
i = 1, 2 and a Deterministic service time of duration 1/µ for both classes and c.d. f as:

F(x) =

0 if x < 1/µ,
1 if x ≥ 1/µ.

We recall Equation 2.20 from Chapter 2. Since M/D/1 is a special case of the M/G/1 queue
when all service times are exactly 1/µ, the stationary distributions, transition matrix and other
relations can be obtained accordingly.

The algorithm represented by Corollary 4.3.4 requires the following four elements to be deter-
mined:

1) The initial probability vector: the M/D/1 stationary probabilities πi are given by π0 =

(1 − ρ), π1 = (1 − ρ)(eρ − 1) and for i ≥ 2 [14],

πi = (1 − ρ) × {eiρ +

i−1∑
k=1

(−1)i−kekρ[
(kρ)i−k

(i − k)!
+

(kρ)i−k−1

(i − k − 1)!
]}. (4.16)

2) The conditional transition probability: Substituting the corresponding ki in the transition
matrix for M/G/1 queues, we have:

P =


1 0 0 0 . . .
k0 k1 k2 k3 . . .
0 k0 k1 k2 . . .
0 0 k0 k1 . . .
...

. . .
. . .

. . .


where,

ki =
(λ1/µ)i

i!
e−λ1/µ =

e−ρρi

i!
.

3) The length of the sub-busy period generated from the service residual φr(s): Since the service
distribution is not exponential and thus not memoryless, the remainder of the service time of
a customer who is in the service when the tagged class-2 spends d time in the queue, is no
longer exponential. We use the Theorem 3.1 in Adan & Haviv (2009) to derive the distribution
as,

fR|Q+=n(r) =
λ

πn

[
(1 − ρ)

(λ(1/µ − r))n−1

(n − 1)!
+

n∑
i=1

πi
(λ(1/µ − r))n−i

(n − i)!
]
e−λ(1/µ−r). (4.17)

Hence, the LST of this distribution is given by
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φr(s) =

∫ 1
µ

r=0
e−sr fR|Q+=n(r)dr

=
λ

πn
e−λ/µ

[ (1 − ρ)
(n − 1)!

λn−1
∫ 1

µ

r=0
(1/µ − r)n−1e−r(s−λ)dr +

n∑
i=1

πi

(n − i)!
λn−i

×

∫ 1
µ

r=0
(1/µ − r)n−ie−r(s−λ)dr

]
=
λ

πn
e−λ/µe−

s−λ
µ
[ (1 − ρ)
(λ − s)nλ

n−1Gn, 1
λ−s

(1/µ) +

n∑
i=1

πi

(λ − s)n−i+1λ
n−i

×Gn−i+1, 1
λ−s

(1/µ)
]
, (4.18)

where, Ga,b(.) is the CDF for a Gamma distribution with parameters a and b. Therefore, we
obtain ηA

r (s) according to Equation (4.11).

4) The lengths of the sub-busy periods generated by each of the other customers in the queue
ηA

g (s): Here we seek to derive the lengths of the sub-busy periods generated during the deter-
ministic service time of the j − 1 customers waiting in the queue ahead of the tagged class-2
customer after time d. Let φg(s) be the LST of the deterministic service time duration, given
by

φg(s) = e−s( 1
µ )

therefore,

ηA
g (s) = e−(s+λ1(1−b2)(1−ηA

g (s))) 1
µ ,

which should be solved numerically.

4.4.3 M/M/c

We turn now to the elements needed to obtain the waiting time distribution for class-2 cus-
tomers under Affine APQ discipline in a multi-server setting. Class-i; i = 1, 2 customers arrive
according to Poisson processes with rates λi; i = 1, 2 respectively. The common service distri-
bution is Exponential with rate µ.

We begin by observing that the waiting time in the queue is strictly positive only if an arrival
finds all c servers busy, and otherwise it is 0. This probability could be derived from a classical
M/M/c queue. Similarly, the number of customers that the tagged class-2 customer finds in
the system at the instant of arrival, i, could be identified from the stationary distribution, πi in
an M/M/c queue.
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Following the same logic as in the multi-server classical APQ in Lemma 3.1 in [8], we observe
that the waiting time LST for customers waiting beyond d period of time, in the Affine APQ
with multi-server, can be obtained after some adjustments to the service rate in the single-server
according to Corollary 4.4.1. In fact, when all servers are busy, the times between service com-
pletions are exponentially distributed with parameter cµ since there are c exponential servers
and each of them are serving at rate µ.

Also during the first d period of time upon arrival, as mentioned in Lemma 4.3.2, class-2
customers see the system similar to a classical priority queue and their waiting time distribu-
tions are derived according to the waiting time distributions in a classical priority queue under
M/M/c discipline. The following Corollary provides the algorithm to derive the LST of the
stationary waiting time distribution under the afore mentioned assumptions.

Corollary 4.4.1 Consider the affine accumulating priority queue where all classes have com-
mon exponentially distributed service times, with common mean 1/µ. The LST associated to
this distribution is φc(s) =

cµ
(cµ+s) ; then,

E{e−sWq2 (I{Wq2 > d})} =

∞∑
i=c

P{N0 = i}
∞∑
j=c

P{Nd = j,Nt ≥ c; 0 ≤ t ≤ d|N0 = i}

× e−sd(ηA
c (s)) j−(c−1), (4.19)

where, ηA
c (s) is the LST of the distribution of the busy period length and the solution to the

equation,

ηA
c (s) = φc(s + λ1(1 − b)(1 − ηA

c (s))). (4.20)

We note the similarity to (4.5). The difference here is that we are dealing with c servers in
parallel at rate µ each, which is indistinguishable when all servers are busy from a single
exponential server working at rate cµ. (In the complementary case where there are fewer than
c in system at any point during the first d units of time, the waiting time would terminate at
that instant and its distribution would be derived from a classical priority queue result specified
in Lemma 4.3.2 above. The probability of being delayed would be obtained using the M/M/c
model, but the service times would be exponential at rate cµ.)

Figure 4.5 and 4.6 illustrate the GS evaluation at 8 points for the waiting time distribution of
class-2 customers under Affine M/M/2 when λ1 = 0.7 and λ2 = 0.9 are arrival rates and µ = 1
is the common service rate. In this figure we notice the same general pattern as of Figures
4.3 and 4.4. Also, we note that the occupancy level is ρ = 0.8 in both cases; however, the
cumulative probability values for similar time points are larger when the number of servers has
increased.
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Figure 4.5: The GS evaluation of class-2 waiting time distribution in affine APQ M/M/2

Figure 4.6: The GS evaluation of class-2 waiting time distribution in affine APQ M/M/2
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4.5 Numerical investigations to solve for the optimum prior-
ity accumulation rate

One potential application of this study could be in health care management after customers are
triaged and a decision should be made on which patient to be treated next. A ready example
arises in the field of emergency medicine, which serves the needs of patients whose lives are
in imminent danger, those of moderate urgency, and others who have comparatively minor
complaints.

The Canadian Triage and Acuity Scale, CTAS (2005)[22], classifies patients, based on a pri-
mary symptom assessment, to five distinct populations, and sets a service standard for com-
mencement of service for each category (see Table 4.1). These standards specify a delay target
and a corresponding compliance probability p for each class, in a way that the probability a
patient from the specific class will be seen by a physician before the corresponding delay target
is at least p.

Category Level of acuity Conditions Response time Targets (%)
1 Resuscitation Threats to life Immediate 98
2 Emergent Potential threat to life 15 mins 95
3 Urgent Progress to a serious problem 30 mins 90
4 Less urgent Potential for deterioration 60 mins 85
5 Non urgent May be acute but non-urgent 120 mins 80

Table 4.1: CTAS key performance indicators.

These delay targets are typically set by medical professionals prior to any consideration of the
traffic characteristics of the patient classes or the queue. Therefore, the selection of a service
discipline such that the delay target needs for each class are accommodated, is within the
responsibilities of the health care professionals.

Among the main objectives of studying the waiting times of customers in the APQ’s in Stanford
et al. [10] which was inspired from health care, was building a system which factors both the
time that customers have spent in the system as well as their acuity level (priority class) so
as to better adhere to the stated delay targets. In fact, the advantage of an APQ approach for
systems operating under KPIs is that the lower priority class customers can still be overtaken
by others of greater urgency or acuity, but they will not be overtaken indefinitely, due to the
growing accumulated priority the longer a customer waits.

Consequently, Sharif [12] studied an optimisation problem to minimize a weighted average of
the total expected excess over all classes of customers. In [8], Sharif et al. aimed to determine
a “feasible region” comprising a combination of overall utilisation and specified accumulation
rate, for which all classes of customer meet their KPI targets. The authors were able to choose
the priority accumulation rates for the various classes, to provide an extra margin of flexibility
over the standard priority queueing discipline to ensure the best accumulation rates for different
occupancy levels so that both KPIs could be met simultaneously over the widest possible range
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of occupancies. In so doing, the best provision is made for possible future growth in demand
(and hence a higher occupancy level).

Li (2015) [34] (in Chapter 5) defined the “integrated weighted average excess waiting” (IWAE)
function and optimized the IWAE objective in terms of the optimal ratio of the two priority
accumulation rates when they focussed on the two-class APQ case .

Having established the waiting time distribution for the lowest priority class in the Affine APQ,
here we address the impact of the delay period, d, (equivalently the effect of the initial class-1
credit value, a > 0), and the accumulating slope, b, on the chosen delay target KPI for the
class-2 waiting time. We will compare systems under different assumptions in terms of the
optimum accumulation rate b.

In order to answer this question, we present a series of graphs in different system occupancy
levels (ρ), on the x-axis and the values of optimum b on the y-axis, under the assumption of
λ1 = λ2 and µ = 1. Our goal is to identify a selection scheme and obtain the minimum value of
b for which the system would comply with the designated KPI for class-2 customers.

In this study we set the KPI to be such that at least 80 percent of customers should not wait
more than 60 minutes in the queue (every unit of time is considered to be 15 minutes; see [17]
where Dreyer et al. estimated the mean treatment time for CTAS four patients as 15.0 minutes
(95% CI 14.615.4)). Therefore, we formulate this problem as

b∗ = min{b|b ∈ [0, 1]; P(Wq2 ≤ 4) ≥ 80%}, (4.21)

where Wq2 is the waiting time distribution for the lower priority class and 4 units of time
represent 60 minutes.

We would study this for both one server and two server affine APQ with exponential arrivals
and common exponential service in 3 different scenarios: d = 0, 1, 2, where d = 0 actually
represents a classical APQ.

Note that 0 ≤ b ≤ 1, as b increases, λ1(1−b) decreased; therefore, class-1 patients will overtake
less class-2 patients ahead of them. As a result, the waiting time for lower priority patients will
decrease (for fixed values of ρ and d) and the increase in the cumulative probability function at 4
follows naturally. Consequently, in order to find the minimum b we followed these steps:

1. Let k = 0, n = 0 and m = 1 and let f (b) = P(Wq2 ≤ 4)
2. If f (0) ≥ 0.8 then b∗ = 0 else
2.1. k ← (n + m)/2
2.2. b∗ ← k
2.3. If f (k) ≥ 0.8 then m← k, else if f (k) < 0.8 then n← k
2.4. If b∗ − k < 2−20 break; else go to 2.1
3. Report b∗.

Figure 4.7 presents a one-server case. We have included Figure 4.8 with the same assumptions
except for the number of servers is now c = 2, in order to address the effect of number of
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Figure 4.7: Optimum b for different occupancy level, ρ, and d values in Affine APQ under
M/M/1

servers. Several facts can be observed from these figures.

1) As the the system’s occupancy level (ρ) increases, the value of the optimum b increases so
that class-2 customers need to accumulate priority faster in order to meet their target KPI.

2) Class-2 customers can meet their KPI with smaller b values when d is smallest. This result
was according to our expectations since when d = 0 (the classical APQ), class-2 customers
wait less than when under the corresponding affine case.

3) When ρ ≤ 0.552 even with b = 0 (which is equal to the classical priority setting) class-2
customers will be able to meet their KPIs.

4) If we add one more server to the system as in Figure 4.8, for larger occupancy levels class-2
customers can comply with their KPIs with b = 0 as compared with the one server case.

In summary, depending upon the traffic patterns at play, it is sometimes possible to find com-
binations of a and b2 so that the class-2 KPI is met, without impacting significantly upon the
class-1 KPI adherence.
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Figure 4.8: Optimum b for different occupancy level, ρ, and d values in Affine APQ under
M/M/2

4.6 Conclusion and future research

We initially introduced the Affine APQ and delayed APQ and addressed the importance of the
latter disciplines in health care setting. Then, we presented an algorithm to derive the waiting
time distribution for the lowest class customers in a one-server, two-class Affine APQ model
for which all service times are selected from a common general distribution. This model could
easily be extended to include an arbitrary number of classes. We also derived the waiting time
distribution for the lowest class customer in an M/M/c Affine APQ discipline.

We obtained the waiting time distributions for some special cases (i.e. M/M/1, M/D/1 and
M/M/2) under the Affine APQ discipline and compared their distribution probabilities with the
classical APQ and Classical static priority queues.

The present affine APQ models, both single-server and multi-server, enable one to ascertain if
a given accumulation rate for lowest class customers will enable compliance with a given KPI
for a given traffic pattern of patient arrival and service rate. Therefore, under a pre-assumed
delay target KPI for lowest priority class inspired by CTAS KPI’s we studied an optimisation
problem. Specifically, our objective was to answer the question of what values of class-2
accumulation rate, b, and utilization factor, ρ, enable class-2 customers to meet their assigned
KPIs.

Note that this algorithm cannot be used to obtain the waiting time distributions for the higher
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acuity patients (class-1 customers in this study). This question could be approached from the
following perspective: while a class-2 perceives its situation for the first d period of time (upon
its arrival) as comprising a priority queue, a class-1 does not perceive it the same way.

In contrast, upon the arrival instant of a class-1 customer, all of the the class-1 customers
present will have to complete service, plus some number (between none and all) of the class-2
customers present who possess more than ”a” credits at the arrival instant. By the time that
all of the class-1 customers present have been served, it may well be the case that the new
class-1 customer will have overtaken some of the class-2s who were present with in excess of
a credits at that arrival instant. In this way, the affine variant of the APQ serves to regulate
class-1 waiting times better, in that the longer it waits, the less the work there is likely to be
ahead of it.

As a result, waiting time distributions for class-1 customers have a more complicated structure
and require more information about the maximum credit of class-2 customers. This inspires
our next research in the following chapter, where we study the stationary bi-variate distribution
of the maximum priority processes of class-1 and and class-2 at the instant of service com-
mencement. Having the exact value of the earned credit by a customer who commences a
service will give the waiting time of that customer after a simple re-scale.
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5.1 Abstract

We study the Analysis of the Maximum Priority Processes in the context of Affine APQ. We
derive the LST of the stationary steady state distributions of the Maximum Priority Processes
as recursive functions in the Affine APQ setting and obtain the explicit solutions for the LSTs
in the classical APQ. We employ this argument to present a new approach to determine the
LST of waiting time distribution for an APQ with two-classes of customers under the M/M/1
discipline. Since the Analysis of the Maximum priority processes in this work is done for the
general class of Affine APQs, it provides the grounds for future research to obtain the LST of
the waiting time distributions in Affine APQs.

5.2 Introduction

In 1964, Kleinrock [28] proposed a time-dependent priority queueing model where the rate of
accumulating priority reflects customers’ urgency (classification). In this model, waiting cus-
tomers accumulate priority as a linear function of the time they spend in the queue. He derived
a set of expressions for the expected waiting times for different classes, under the assumptions
of Poisson arrivals and a single server working at an exponential service rate.

70
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Stanford et al. [10] obtained the stationary waiting time distribution for each class of customers
using the idea of Maximum Priority Processes. The bivariate Maximum Priority Process is a
stochastic process which provides the least upper bound for the priorities of customers from
each class. After introducing the concept of the accreditation intervals they were able to express
the busy period into the sum of accreditation intervals and derive expressions for the actual
credit of the customers in each class when they enter into service. Finally, they presented
expressions for the Laplace transform of the waiting time distributions in each class. Since
then, such models have been referred to in the literature as Accumulating Priority Queues
(APQ).

Another method to study the waiting times in an APQ was presented by Fajardo et al. [4],
where they introduced the “q-policy” control queues and applied it to get the same results as in
Stanford et al. (2015).

In the previous chapter (see Chapter 4), we presented an algorithm to obtain the waiting time
distribution for the lower class customers in an Affine Accumulating Priority Process (APQ)
setting under M/G/1 and M/M/c disciplines. While this algorithm was applied to derive class-2
customers’ waiting times in some special examples with two classes of customers (see Sec-
tion 4.4), it couldn’t be used to obtain corresponding distributions for class-1 customers. The
underlying reason is that upon arrival, a class-1 customer may see a group of class one and
two customers in front of them. Within classes the First Come First Served (FCFS) discipline
applies; therefore, all class-1 customers ahead of this tagged customer will be served first.
Whereas, the situation is unclear about those class-2 customers who had waited long enough
and gained credit more than a prior to the arrival of this tagged customer. The hidden benefit
for class-1 customers is that since their accumulating rate is higher, the longer they wait for
service they overtake more class-2 customers. So, the longer they wait, the fewer people they
have to wait for.

Stanford et al. (2014) [10] established the nature of the equivalence between the accumulated
priority at the time of service commencement for each customer and their waiting time in a non-
affine APQ. Consequently, the LST for the stationary accumulated priorities at the time points
that customers enter service also can be used to obtain the LST for the stationary waiting times
by a re-scaling of the arguments. This important fact motivated us to analyse the bivariate
Maximum Priority Processes in an Affine APQ. For some preliminary details about Affine
APQs see Subsection 2.4.2.

As the value of the Maximum Priority Process at the instant a new service commences reveals
the exact credit value of the customer entering into the service, we aim to derive the Laplace
transforms for the steady state joint distributions of M1(t) and M2(t), in an Affine APQ, at
the mentioned instants. We present a set of recursive equations, and give explicit solution
for the LSTs when a = 0. We discuss how we can employ these results in order to derive
the Laplace transform for the waiting time distributions and present the required theory and
expressions.

The outline of this chapter is as follows: We introduce the possible states of the bivariate
Maximum Priority Process at service commencement instants in an Affine APQ in section 5.3.
We obtain the transition densities (kernels) from and to each set of states in subsection 5.3.2.
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Section 5.4 presents the LST of of the joint stationary distribution of M1(t) and M2(t). In the
last section we present the required relations to derive the LST of the waiting time distributions
for both priority classes in an APQ.

Since the transition probability densities of the bivariate Maximum Priority Processes are ob-
tained for the Affine APQs, it can open the grounds for future research to obtain the LST of the
waiting time distributions in the Affine APQs as well.

5.3 Limiting distributions in an Affine APQ

We are interested in deriving the limiting distributions for the bivariate Maximum Priority
Process (defined in Definition 2.4.1 in Chapter 2) in the Affine Accumulating Priority Queues
(Affine APQ) under M/M/1. This bivariate process at immediately after a service completion
instant (or the moment a new service commences) forms a Markov process with a continuous
state space.

If our bivariate process were a Markov chain defined on a discrete state space, then we could
employ Theorem 4.3.3 (page 175) in [32] to obtain the limiting distribution, π = [π0, π1, ...]. For
any irreducible ergodic discrete-time Markov chain limn→∞ Pn

i j = πi exists and is independent
of i. Furthermore, πi is the unique nonnegative solution of π = πP where P is the transition
matrix. In this case π is called the stationary distribution.

However, the bivariate MP process is a Markov process. For a Markov process (on a continuous
state space), the probability distribution π is called the stationary distribution if

π(y) =

∫
p(x, y)π(x)dx, y ∈ S; (5.1)

or equivalently,

π(A) =

∫
p(x, A)π(x)dx, (5.2)

for all measurable sets A ⊂ S, where S denotes the state space in a Markov process. p(x, y) is
called the transition density (or the transition kernel).

The Markov process is governed by a transition kernel p(x, A) for x ∈ S and A ⊂ S. The main
requirement for this Markov process to reach its stationary distribution is that it is irreducible
and aperiodic. The irreducibility is defined as, for any x, y ∈ S, there always exists a posi-
tive integer n such that pn(x, y) > 0. In other words, the Markov process can jump into any
state from any other state in a finite number of steps. The aperiodicity means that there exist
no subsets of the state space S that can only be periodically visited by the Markov process
[44].
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Having established all required background, now as the first step to obtain the stationary distri-
butions we identify all possible state sets. Later on, for this embedded Markov process at the
beginning of service instant, we develop equations to obtain the stationary distributions.

5.3.1 Identification of possible states

If we plot the states of the system at the end of service events, there are five types of states for
the bivariate Maximum Priority Process as shown in Figures 5.1, 5.2 and 5.3 (where the two
graphs in the Figure 5.2 are grouped as one in the analysis throughout this chapter).

Suppose that at time t0 a customer arrives to an empty system, and this customer’s service time
ends at time t > t0. Then the five possible types of states for the bivariate Maximum Priority
Process at time t can be identified as follows:

1) an empty system, for which both MP processes reach their lower limits (a, 0), as in Figure
5.1 (A).
2) a system with no class-1 customers present at an end of service, but a class-2 customer with
some amount y < a units of credit present, as in Figure 5.1 (B).
3) The two maximum priority processes are equal, with level (x, x) where x > a; as in Figure
5.2 (both situations).
4) Both processes are above their respective minima such that M2(t) = y < M1(t) = x. The
situation where M2(t) > a at the service completion instant is depicted in Figure 5.3 (A), while
M2(t) < a in Figure 5.3 (B).

In the first state Figure 5.1 (A), immediately after a service completion M1(t) = a and M2(t) =

0. This situation implies that there is no customer in the system and the idle period will start
until a customer enters in the system. The second state (Figure 5.1 (B)) refers to all situations
where immediately after a service completion (or at the instant a new service commences), a
class-2 customer with accumulated credit less than a is the one who starts the service. therefore,
this scenario refers to M2(t) < a while M1(t) = a.

Priority

0 time

a

t0

(a, 0)

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(A): Empty system

Priority

0 time

a

t0

(a, y); y ≤ a

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(B): Un-accredited customer

Figure 5.1: (a, 0) and (a, y) states in an Affine APQ

The next set of possible states (5.2) occur when at the absence of any accredited customer, a
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non-accredited customer enters the service immediately after a service completion. This non
accredited customer could be a class-1 customer whose accumulated priority is less than M2(t),
where obviously M2(t) > a, or a class two customer who has been in the queue long enough to
gain credit more than a.

Priority

0 time

a

t0

(x, x); x ≥ a

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(A): Unaccredited class-2 customer

Priority

0 time

a

t0

(x, x); x ≥ a

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(B): Unaccredited class-1 customer

Figure 5.2: An unaccredited customer enters service (state (x, x))

This state by itself, as illustrated in Figure 5.2, could happen in two different scenarios. The
first case, which occurs when M2(t) is less than a, indicates at least one accredited class-1
customer is ready to go into service where as a need to know basis we are only aware of the
M2(t) < a. The second case also refers to an at least one accredited customer in the queue
while M2(t) > a.

Priority

0 time
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t0

(x, y); x > y ≥ a

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(A): M2(t) > a

Priority

0 time
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t0

(x, y); x > a > y

t

class-1, b1 = 1
class-2, b2 = b = 0.5

(B): M2(t) < a

Figure 5.3: An accredited class-1 customer enters service (state (x, y))

For illustration purpose only, in all of the figures above b1 = 1 and b2 = b = 0.5. In the
following section we will be deriving transition densities from and to each set of states.

5.3.2 Derivation of transition densities

In this subsection, we specify the transition kernel densities of transitioning from one state
set at the start of service event instant t0, to the other state set at the start of the next service
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event.

When the process is transitioning to an empty system (so that M1(t) = a and M2(t) = 0 until
the next arrival instant), the transition occurs with a discrete probability, denoted by Px→y. For
example P(a,0)→(a,0), corresponds to the case where both service completions leave the system
empty. In contrast, all other transitions have corresponding probability density function values
denoted by expressions of the form fA→B.

Now, let λ = λ1 + λ2 refer to the total arrival rate of the Poisson arrival process, and let the
exponentially-distributed service times be at rate µ. Class-2’s accumulation rate is b2 = b and
for class-1 it is b1 = 1.

1. Transition from state (a, 0)

We start with the probability of transitioning from (a, 0) to the next such occurrence. This
corresponds to the situation where no arrivals occur during the service time, u, of the customer
who started the service; thus,

P(a,0)→(a,0) =

∫ ∞

0
µe−µue−(λ1+λ2)udu

=
µ

µ + λ

=
1

1 + ρ
. (5.3)

To briefly describe the particulars of Equation (5.3), a service begins after an idle period and
lasts for u units of time, the conditional probability of no arrival during that service is e−(λ1+λ2)u,
while µe−µu is the relative likelihood of a service time of length u.

In like manner, the bivariate Maximum Priority Process can reach (a, y); y ≤ a from an empty
system in case of no class-1 arrivals during the service time u, but at least one class-2 arrival
such that the M2(t) drops to y at the end of service time. Note that starting from 0, at the end of
service time of duration u, M2(t) = bu. Thus there must be a drop in M2(t) from bu to y. The
likelihood of this event is written as

f{(a,0)→(a,y),y≤a} =

∫ ∞

y
b

µe−µue−λ1uλ2

b
e−

λ2
b (bu−y)du

=
µ

µ + λ

λ2

b
e−

µ+λ1
b y. (5.4)

In this expression and the following ones, the term µe−µu refers to the length of service U
which is exponentially distributed at rate µ. M2(t)’s drop over an interval is also exponentially
distributed with rate λ2

b and an M1(t) drop is likewise exponentially distributed with rate λ1
b1

= λ1

as b1 = 1 by initial assumption.
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The event of transitioning from an empty system to state (x, x); x ≥ a happens when there is
no accredited class-1 customer by the end of service (i.e. there is no customer in the interval
(M2(t),M1(t))). On the other hand, there is at least one customer present of some type, whose
credit lies between a and M2(t). Refer to Figure 5.2 in this regard. Therefore the likelihood of
this transition is written as

f{(a,0)→(x,x),x≥a} =

∫ ∞

x
b

µe−µue−λ1(u+a−bu)(λ1 +
λ2

b
)e−(λ1+

λ2
b )(bu−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−

µ+λA
1

b x−λ1a, (5.5)

where the notation λA
1 = λ1(1−b) is used to denote the rate at which class-1 customers accredit

relative to class-2 when M2(t) > a. Starting from a, M1(t) grows to a + u at the end of service
time of duration u. There should be no class-1 arrival in an interval of length a + u − bu
(which explains the part e−λ1(u+a−bu) in the above expression) and a drop of both M1(t) and
M2(t) processes from bu to x which happens according to an exponential distribution with rate
λ1 + λ2

b .

Finally, for both cases in Figure 5.3 we write;

f{(a,0)→(x,y)} =
µ

b
e−µ

y
bλ1e−λ1( y

b +a−x)

=
µ

b
λ1e−(µ+λ1) y

b eλ1(x−a); x > a, x > y. (5.6)

In this case the length of service is fixed at u = y/b, where Y ∼ Exp(µ/b). Also, at least one
class-1 accredited customer should be such that M1(t) drops from y/b+a to x. This drop occurs
according to an exponential distribution with rate λ1.

Since the transition kernel (density) is a probability function, it has been verified that all prob-
abilities add up to one. (see (A.1) in Appendix A.2.1)

Figure 5.4 demonstrates the admissible region over which M1(t) and M2(t) could take values
with positive likelihoods. The heavy black lines are the boundaries of the region. There is a
point mass probability at (a, 0), the vertical line connecting (a, 0) to (a, a) represents (a, y), y ≤
a and the points along the line y = x are corresponding to the (x, x) situation. The line y =

b(x − a) indicates the fact that during a service of length u, M1(t) is bounded by u + a or y
b + a

from above.

2. Transition from state set (a, y); y ≤ a

In this part, we derive transition densities from a point in state set (a, y); y ≤ a to other state sets.
Applying the same analogy as with the previous case, we derive these transition probabilities
accordingly. We start by transitioning to an empty system in one step:
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M2(t)

0 M1(t)

a

a(1+b)
b

a

(a, y)

(x, x)

(x, y)

y = x

y = b(x − a)

Figure 5.4: Admissible priority regions in an Affine APQ.

f{(a,w)→(a,0);w≤a} =

∫ ∞

0
µe−µue−λ1ue−λ2(u+ w

b )du

=
µ

µ + λ
e−

λ2
b w. (5.7)

This situation requires that there be no class-1 arrival during the service time of duration u so
that M1(t) will drop to a. Likewise, there can be no class-2 arrival during the service time of
duration u plus the wait time of the class-2 customer who started the service, w

b . Under these
specifications the busy period will end and system will go idle.

The following equation concerns the density of moving from (a,w) to (a, y). Depending upon
the final position of M2(t) at the end of each service termination, we face two different scenar-
ios: w ≤ y or w > y. If w > y we write:

f{(a,w)→(a,y),w≤y≤a} =

∫ ∞

y−w
b

µe−µue−λ1uλ2

b
e−

λ2
b (w+bu−y)du

=
µ

µ + λ

λ2

b
e−

µ+λ1
b (y−w). (5.8)

Figure 5.5 elaborates on this matter. In fact, in the event w ≤ y, the service time must be
sufficiently long to enable M2(t) to grow from w to y; which is why we have y−w

b for the lower
bound of the integral.

f{(a,w)→(a,y),y≤w≤a} =

∫ ∞

0
µe−µue−λ1uλ2

b
e−

λ2
b (w+bu−y)du

=
µ

µ + λ

λ2

b
e−

λ2
b (w−y). (5.9)
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Priority

0 time

a

t0

w + bu

t

(a,w) (a, y)

Figure 5.5: Transition (a,w)→ (a, y) when the duration of service time is u and w ≤ y ≤ a

In moving from (a,w) to (x, x), there should be no customers present at time t accumulated
credit between (M2(t),M1(t)), while the maximum credit between a and M2(t) is x; thus, there
would be a drop with rate λ1 + λ2

b over bu + w − x.

f{(a,w)→(x,x),x≥a} =

∫ ∞

x−w
b

µe−µue−λ1(u+a−(bu+w)(λ1 +
λ2

b
)e−(λ1+

λ2
b )(bu+w−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−λ1a−(µ+λ1) w

b +(µ+λA
1 ) x

b . (5.10)

In like fashion we can write,

f{(a,w)→(x,y)} =
µ

b
e−

µ
b (y−w)λ1e−λ1(a+

y−w
b −x). (5.11)

The fact that (M1(t),M2(t) = (a,w) at the starting time point, affects the possible values they
can take at the next time point. Therefore the admissible region in this case is more limited
compared to Figure 5.6.

M2(t)

0 M1(t)

a
w

a−w
b + aa

(a, y)

(x, x)

(x, y)

y = x

y = b(x − a) + w

Figure 5.6: Accumulated priorities in an Affine APQ; (a, y)

See Appendix A.2.1 Equation (A.2) for verifications of the pdf assumption.

3. Transition from state set (ν, ν)
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Following the same assumptions as before, we seek to obtain one-step transition probabilities
from (ν, ν) to other state sets.

P{(ν,ν)→(a,0);ν>a} =

∫ ∞

0
µe−µue−λ1(u+ν−a)e−λ2(u+ ν

b )du

=
µ

µ + λ
e−[(λ1+

λ2
b )ν−λ1a]. (5.12)

The scenario above requires that there be no class-1 arrival during the service time u plus no
waiting class-1 customers with credit less than ν, and no class-2 arrival during the service time
u plus the waiting time of the previous class-2 customer ν

b .

f{(ν,ν)→(a,y);y≤a≤ν} =

∫ ∞

0
µe−µue−λ1(u+ν−a)λ2

b
e−

λ2
b (ν+bu−y)du

=
µ

µ + λ

λ2

b
e−[λ1(ν−a)+ λ2

b (ν−y)]. (5.13)

In the transition from (ν, ν) → (x, x) we must distinguish whether ν is less or larger than x. If
x > ν then the service time should neseccariy be larger than x−ν

b to provide enough time for
extra credit accumulation.

f{(ν,ν)→(x,x);a≤ν≤x} =

∫ ∞

x−ν
b

µe−µue−λ1(u+ν−(bu+ν))(λ1 +
λ2

b
)e−(λ1+

λ2
b )(ν+bu−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−(µ+λA

1 ) x−ν
b , (5.14)

f{(ν,ν)→(x,x);a<x<ν} =

∫ ∞

0
µe−µue−λ1(u+ν−(bu+ν))(λ1 +

λ2

b
)e−(λ1+

λ2
b )(ν+bu−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−(λ1+

λ2
b )(ν−x). (5.15)

In the next case, both x and y should be larger than ν which is larger than a. Also since x is
bounded by u + ν we can write x < u + ν where u =

y−ν
b . Figure 5.7 illustrates this.

f{(ν,ν)→(x,y);a<ν<y<x} =
µ

b
e−µ

y−ν
b λ1e−λ1( y−ν

b +ν−x) (5.16)

.

See Appendix A.2.1 Equation (A.3) for verifications of the pdf assumption.
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M2(t)

0 M1(t)

a
ν

νa

(a, y)

(x, x)

(x, y)

y = x

y = b(x − ν) + ν

Figure 5.7: Accumulated priorities in an Affine APQ; (x, x)

4. Transition from state set (ν,w)

The last series of transitions are from state set (ν,w). As indicated earlier, the position of w with
respect to a makes a difference in the analysis. The first expression pertains to the probability
of moving to an idle system. This expression is valid for all values of w (i.e. w ≥ a and
w < a).

P{(ν,w)→(a,0) =

∫ ∞

0
µe−µue−λ1(u+ν−a)e−λ2(u+ w

b )du

=
µ

µ + λ
e−λ1(ν−a)− λ2

b w. (5.17)

In both cases there should be no arrivals during the service time and no waiting customer at the
instant that the service began.

To derive f{(ν,w)→(a,y);y<a} when a < w we obtain,

f{(ν,w)→(a,y);y<a<w} =

∫ ∞

0
µe−µue−λ1(u+ν−a)λ2

b
e−

λ2
b (w+bu−y)du

=
µ

µ + λ

λ2

b
e−λ1(ν−a)− λ2

b (w−y). (5.18)

However, when w < a; there can be two possibilities, w < y < a or y < w < a. Thus, we
have:

f{(ν,w)→(a,y);w<y<a} =

∫ ∞

y−w
b

µe−µue−λ1(u+ν−a)λ2

b
e−

λ2
b (w+bu−y)du

=
µ

µ + λ

λ2

b
e−λ1(ν−a)−(µ+λ1) y−w

b . (5.19)

Recall that in such a situation, enough time is required so that w increases to reach y, u (or the
length of service) starts at y−w

b .
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f{(ν,w)→(a,y);y<w<a} = f{(ν,w)→(a,y);y<a<w} (5.20)

Now we are interested in f{(ν,w)→(x,x);a<w≤x}; If w > a we have the following two scenarios:

f{(ν,w)→(x,x);a<w≤x} =

∫ ∞

x−w
b

µe−µue−λ1(u+ν−(bu+w))(λ1 +
λ2

b
)e−(λ1+

λ2
b )(w+bu−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−λ1(ν−w)−(µ+λA

1 ) x−w
b , (5.21)

f{(ν,w)→(x,x);a<x<w} =

∫ ∞

0
µe−µue−λ1(u+ν−(bu+w))(λ1 +

λ2

b
)e−(λ1+

λ2
b )(w+bu−x)du

=
µ

µ + λ
(λ1 +

λ2

b
)e−λ1(ν−w)−(λ1+

λ2
b )(w−x). (5.22)

However, if w < a then we have

f{(ν,w)→(x,x);w<a≤x} = f{(ν,w)→(x,x);a<w≤x}. (5.23)

Finally, we have the following derivation which applies to all ranges of w < y.

f{(ν,w)→(x,y);w<y<x} =
µ

b
e−µ

y−w
b λ1e−λ1( y−w

b +ν−x). (5.24)

The admissible regions in these cases would be according to Figures 5.8 and 5.9.

M2(t)

0 M1(t)

a

ν
w

νwa

(a, y)

(x, x)

(x, y)

y = x

y = b(x − ν) + w

Figure 5.8: Accumulated priorities in an Affine APQ; (ν,w; w > a)

Having derived all transition densities, in the next section we obtain the stationary distributions
related to each state set according to equation (5.2).
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M2(t)

0 M1(t)

a

ν

w

νa

(a, y)

(x, x)

(x, y)

y = x

y = b(x − ν) + w

Figure 5.9: Accumulated priorities in an Affine APQ; (ν,w; w < a)

5.4 Derivation of the LSTs of the limiting distributions

In this section, we first establish recursive equations to derive the stationary distributions of the
bi-variate Markov process (M1(t),M2(t)). In order to explicitly derive these distributions we
will proceed to obtain their Laplace transforms.

We should recall Equation (5.2) in light of which the stationary distribution for each state set
is obtained. Note that in the following derivations the integrals depend upon the permissible
ranges of M1(t) and M2(t).

π(a, 0) = π(a, 0)P(a,0)→(a,0) +

∫ a

0
π(a,w)P{(a,w)→(a,0);w≤a}dw +

∫ ∞

a
π(ν, ν)P{(ν,ν)→(a,0);ν>a}dν

+

∫ a

0

∫ w
b +a

a
π(ν,w)P(ν,w)→(a,0)dνdw +

∫ ∞

a

∫ w
b +a

w
π(ν,w)P(ν,w)→(a,0)dνdw. (5.25)

Next, we obtain the stationary distribution for π(a, y). Recall Equations (5.19) and (5.20) where
two different density functions are applied in moving from (ν,w); w < a to (a, y); y < a depend-
ing upon the final level y with respect to w. Also, note that the lowest M1(t) possible is a,
therefore the lowest level it can drop to is a.

π(a, y) = π(a, 0) f{(a,0)→(a,y);y≤a} +

∫ y

0
π(a,w) f{(a,w)→(a,y);w≤y≤a}dw +

∫ a

y
π(a,w)

× f{(a,w)→(a,y);y≤w≤a}dw +

∫ ∞

a
π(ν, ν) f{(ν,ν)→(a,y)}dν +

∫ ∞

a

∫ w
b +a

w
π(ν,w)

× f(ν,w)→(a,y);y<a<wdνdw +

∫ y

0

∫ w
b +a

a
π(ν,w) f{(ν,w)→(a,y);w<y<a}dνdw

+

∫ a

y

∫ w
b +a

a
π(ν,w) f{(ν,w)→(a,y);y<w<a}dνdw. (5.26)

For the same reason as above turning to π(x, x) we obtain,
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π(x, x) = π(a, 0) f{(a,0)→(x,x);a≤x} +

∫ a

0
π(a,w) f{(a,w)→(x,x);a≤x}dw +

∫ x

a
π(ν, ν)

× f{(ν,ν)→(x,x);a≤ν≤x}dv +

∫ ∞

x
π(ν, ν) f{(ν,ν)→(x,x);a<x<ν}dw +

∫ x

a

∫ w
b +a

w

× π(ν,w) f{(ν,w)→(x,x);a<w≤x}dνdw +

∫ ∞

x

∫ w
b +a

w
π(ν,w) f(ν,w)→(x,x);a<x<wdνdw

+

∫ a

0

∫ w
b +a

a
π(ν,w) f{(ν,w)→(x,x);w<a≤x}dνdw. (5.27)

Finally, depending whether M2(t) = y is larger or smaller than a, there are two different sets of
states. Therefore, distinguishing the cases y < a or y ≥ a we obtain:

π(x, y; y < a) = π(a, 0) f{(a,0)→(x,y)} +

∫ a

0
π(a,w) f{(a,w)→(x,y)}dw +

∫ y

0

∫ w
b +a

a
π(ν,w)

× f{(ν,w)→(x,y);w<y<a}dνdw. (5.28)

Note that less terms are involved in Equation (5.28) since fewer transitions are possible which
end in state set π(x, y; y < a). In face, this event relates to situations in which an accredited
customer is entering service. Since M1(t) = x > M2(t) = y at such instance no drop has
occurred in M2(t) and as such M2(t) has continued to grow since the last start of the service.
Therefore if y is less than a it follows that w must have been less than a as well. Furthermore,
in a situation when a customer with M1(t) = M2(t) = ν > a starts service, for the same reason
just discussed, the process can never move to a point where M2(t) < a.

Finally, the limiting distribution for the only remaining state set is obtained as follows,

π(x, y; y ≥ a) = π(a, 0) f{(a,0)→(x,y)} +

∫ a

0
π(a,w) f{(a,w)→(x,y)}dw

+

∫ ∞

a
π(ν, ν) f{(ν,ν)→(x,y)}dν +

∫ a

0

∫ w
b +a

a
π(ν,w) f{(ν,w)→(x,y);w<a<y}dνdw

+

∫ y

a

∫ w
b +a

w
π(ν,w) f{(ν,w)→(x,y);a<w<y}dνdw. (5.29)

At this stage, we define Laplace transforms of stationary distributions for each state set as
follows,

1. π̃Y(s) = LY{π(a, y)} =
∫ a

0
e−syπ(a, y)dy

2. π̃X(s) = LX{π(x, x)} =
∫ ∞

a
e−sxπ(x, x)dx

3. π̃X,Y;Y≤a(s1, s2) =
∫ a

0
e−s2y

∫ y
b +a

a
e−s1 xπ(x, y)dxdy

4. π̃X,Y;Y>a(s1, s2) =
∫ ∞

a
e−s2y

∫ y
b +a

y
e−s1 xπ(x, y)dxdy
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5. π̃X,Y(s1, s2) = π̃X,Y;Y≤a(s1, s2) + π̃X,Y;Y>a(s1, s2)

The above definitions help us simplify the limiting distributions. The more detailed steps have
been skipped from this section and transferred into the Appendix. See Equations (A.8) to
(A.24) whenever required for more information.

We have a reference point in the following Lemma, which will be useful in all cases.

Lemma 5.4.1 In an Affine APQ setting under M/G/1, with the Affine parameter a (i.e. the
initial class-1 credit at the time of entrance into the system), the limiting distribution at the
point (a, 0), (idle system), is π(a, 0) = 1 − ρ.

Proof The arrivals from both classes occur according to Poisson processes. From the PASTA
property we know that such arrivals see time averages upon arrival. Therefore the stationary
probability that a customer arrives to an idle queue is 1− ρ when ρ = (λ1 + λ+ 2)/µ. Likewise,
π(a, 0) represents the proportion of time the system is idle.

After evaluating the integrals in Equation (5.25), we obtain the following equation linking
the probability of a completely empty system and several of the transforms defined above,
evaluated at the specified values:

ρπ(a, 0) = π̃Y(
λ2

b
) + eλ1aπ̃X(λ1 +

λ2

b
) + eλ1aπ̃X,Y(λ1,

λ2

b
). (5.30)

In a series of following lemmas, we obtain the LST for the remaining state sets.

Lemma 5.4.2 The LST of the stationary distribution for state set (a, y); y < a is according to:

π̃Y (s) = B(s)−1
[1 − e−(s+ µ+λ1

b )a

s +
µ+λ1

b

(1 − ρ) +
1 − e−(s− λ2

b )a

s − λ2
b

[ρ(1 − ρ)] +
eλ1a

s − λ2
b

×

(
e−(s− λ2

b )aπ̃X,Y;Y≤a(λ1,
λ2

b
) −

µ + λ

b(s +
µ+λ1

b )
π̃X,Y;Y≤a(λ1, s)

)
−

e−(s+ µ+λ1
b )a

s +
µ+λ1

b

eλ1aπ̃X,Y;Y≤a(λ1,−
µ + λ1

b
)
]
, (5.31)

when B(s) =
b(1+ρ)
λ2
− 1−e−(s+

µ+λ1
b )a

s+ µ+λ1
b

+ 1−e−(s−
λ2
b )a

s− λ2
b

.

Proof See Appendix A.2.1, Section A.2.

Lemma 5.4.3 The LST of the stationary distribution for state set (x, x); x ≥ a is according to:
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π̃X(s) = C−1
[e−(s+

µ+λA
1

b )a

s +
µ+λA

1
b

(
e−λ1a(π(a, 0) + π̃Y (−

µ + λ1

b
)) + π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)
)

+

( 1

s +
µ+λA

1
b

−
1

s − (λ1 +
λ2
b )

)
π̃X,Y;Y>a(λ1, s − λ1)

+
e−(s−(λ1+

λ2
b ))a

s − (λ1 +
λ2
b )

(
π̃X(λ1 +

λ2

b
) + π̃X,Y;Y>a(λ1,

λ2

b
)
)]
, (5.32)

where C(s) =
b(1+ρ)
λ1b+λ2

− 1

s+
µ+λA

1
b

+ 1
s−(λ1+

λ2
b )

.

Proof See Appendix A.2.1, Section A.2.

Lemma 5.4.4 The LST of the stationary distribution for state set (x, y); y < a is according to:

π̃X,Y;Y≤a(s1, s2) =
µ

b
λ1

λ1 − s1
e−as1

[1 − e−a(s2+
µ+s1

b )

(s2 +
µ+s1

b )
−

1 − e−a(s2+
µ+λ1

b )

(s2 +
µ+λ1

b )

]
× ((1 − ρ) + π̃Y (−

µ + λ1

b
)) +

µ

b
λ1

λ1 − s1
e−a(s1−λ1)

[ e−a(s2+
µ+s1

b )

−(s2 +
µ+s1

b )
π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)

+
1

(s2 +
µ+s1

b )
π̃X,Y;Y≤a(λ1, s2 +

s1 − λ1

b
) +

e−a(s2+
µ+λ1

b )

(s2 +
µ+λ1

b )
π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)

−
1

(s2 +
µ+λ1

b )
π̃X,Y;Y≤a(λ1, s2)

]
. (5.33)

Similarly for the state set (x, y); y ≥ a we will have:

π̃X,Y;Y>a(s1, s2) =
µ

b
λ1

λ1 − s1

[
e−a(s1−λ1)(

e−a(s2+
µ+s1

b )

(s2 +
µ+s1

b )
) − (

e−a(s1+s2+
µ+λA

1
b )

(s1 + s2 +
µ+λA

1
b )

)
]

×

(
e−λ1a(π(a, 0) + π̃Y (−

µ + λ1

b
)) + π̃X(−

µ + λA
1

b
) + π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)
)

+
µ

b
λ1

λ1 − s1

[ e−a(s1−λ1)

(s2 +
µ+s1

b )
π̃X,Y;Y>a(λ1,

s1 − λ1

b
+ s2) −

1

(s1 + s2 +
µ+λA

1
b )

× π̃X,Y;Y>a(λ1, s1 + s2 − λ1)
]
. (5.34)

Proof See Appendix A.2.1, Section A.2.

Equations in (5.31) to (5.34) present a series of recursive functions in terms of Laplace transfor-
mations of the stationary distributions for the Maximum Priority Processes in an Affine APQ
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(under Poisson arrivals and service times). The explicit solutions to these equations would nat-
urally lead to the LST’s of the waiting time distributions for high and low classes of customers
under the assumptions of the model.

However, due to the complexity of the equations, we have decided to start with the determi-
nation of a complete algorithm for the computation of the bivariate process in the classical,
non-affine case where a = 0. In this situation, several terms disappear, such as the π(a, y)
density function; on the other hand, there is more that can be said for the probability masses
associated with the integrals over the applicable ranges for the π(x, x) and π(x, y) terms. In the
following section we study the system under this new assumption and find the explicit relations
for the LST of the stationary distributions.

5.5 Waiting time distributions when a = 0: Classical APQ

Letting a = 0, we identify three possible state sets for the Maximum priority processes: state
(0, 0) which refers to the instant when our system is idle; state set (x, x) when there is no
accredited customer to enter the service at the instant of service completion such that the next
customer entering the service is a non-accredited one; and, finally, state set (x, y) when there is
at least one accredited class-1 customer in the system to start the next service.

Similar to Figure 5.4 in the previous section, the admissible region for a classical APQ is as
indicated in Figure 5.10.

M2(t)

0 M1(t)

(x, x)

(x, y)

y = x

y = bx

Figure 5.10: Admissible priority region in a classical APQ; (a = 0).

Consequently, letting a = 0 in the general Equations from (5.31) to (5.34), we observe that
π̃Y(s) disappears, as does π̃X,Y;Y<a(s1, s2). The three remaining quantities are evaluated in what
follows. First, when a = 0 is substituted into Equation (5.30) one obtains:

ρπ(0, 0) = π̃X(λ1 +
λ2

b
) + π̃X,Y(λ1,

λ2

b
). (5.35)

For the next state set (x, x), after letting a = 0 and some simplifications as shown in Appendix
A.2.1 (see Equation (A.25)) the Laplace transform is written as follows.
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π̃X(s) =
(1 − ρ)(s − (λ1 +

λ2
b )) − (λ+µ

b )π̃X,Y (λ1, s − λ1) + ρ(1 − ρ)(s +
µ+λA

1
b )

(s+
µ+λA

1
b )(s−(λ1+

λ2
b ))(1+ρ)

λ1+
λ2
b

− (s − (λ1 +
λ2
b )) + (s +

µ+λA
1

b )

. (5.36)

Substitution of (5.36) in (5.35) results in

π̃X(−
µ + λA

1

b
) = −(1 − ρ) − (π̃X,Y(λ1,−

µ + λ1

b
)). (5.37)

Finally, for the the state set (x, y), after letting a = 0 in equation (5.34) and substituting it in
equation (5.37), we obtain the following result:

π̃X,Y (s1, s2) =
µ

b
λ1

λ1 − s1

[
(

1
(s2 +

µ+s1
b )

) − (
1

(s1 + s2 +
µ+λA

1
b )

)
](
− (π̃X,Y (λ1,−

µ + λ1

b
))
)

+
µ

b
λ1

λ1 − s1

[ 1
(s2 +

µ+s1
b )

π̃X,Y (λ1,
s1 − λ1

b
+ s2) −

1

(s1 + s2 +
µ+λA

1
b )

× π̃X,Y (λ1, s1 + s2 − λ1)
]
. (5.38)

In order to obtain the explicit solutions, we notice that extra information is required. The
following theorem specifies several boundary values to provide that information.

Theorem 5.5.1 Let π(0, 0), π(x, x) and π(x, y) denote the limiting distributions of the states
of an APQ under M/M/1 discipline. Further, let λi, i = 1, 2 be the Poisson arrival rates of
class-i customers and µ be their common Exponential service rate. Without loss of generality,
we assume the accumulating priority rates for class-1 and class-2 customers are set to 1 and
b.
The subsequent three rules will apply.

1. π(0, 0) = 1 − ρ
2. π̃X(0) = ρ2 + ρ1b
3. π̃X,Y(0, 0) = ρ1(1 − b)

Proof Lemma 4.2 in [10] states that a class-1 customer becomes accredited at rate λ1(1 − b)
when the queue is not empty. Class-1 customers arrive at rate λ1, therefore the probability
that they become accredited is (1 − b), while they arrive during a busy period. As a result the
probability that they enter service as an un-accredited customer is b.

We also know that both classes of customers are arriving according to a Poisson process and
therefore see time averages upon arrival. Therefore the stationary probability that a class-
1 customer arrives to a busy queue and and begins service as an unaccredited customer is
ρ1b. The probability that this customer starts service as an accredited customer is ρ1(1 − b).
Therefore the probability that a customer arrives to a busy queue and starts the service as an
unaccredited customer is ρ2 + ρ1b, since all class-2 customers start service as unaccredited.
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We start by calculating π̃X(0):

π̃X(0) = −(1 − ρ) +
(µ+λ

b )π̃X,Y(λ1,−λ1)

ρ
µ+λA

1
b − (λ1 + λ2

b )
.

Consequently,

π̃X,Y(λ1,−λ1) =
(λ1b − λ1 + µ)(λ1(1 − b)(1 + ρ))

µ(λ + µ)
= ρ1(1 − b)(1 − ρ1(1 − b)). (5.39)

If we calculate π̃X,Y(0, 0) we will have:

π̃X,Y (0, 0) = (1 −
µ

µ + λA
1

)(−π̃X,Y (λ1,−
µ + λ1

b
)) + π̃X,Y (λ1,−

λ1

b
)

−
µ

µ + λA
1

π̃X,Y (λ1,−λ1).

As a result,

π̃X,Y(λ1,−
λ1

b
) =

λA
1

µ + λA
1

(π̃X,Y(λ1,−
µ + λ1

b
) + 2). (5.40)

If we assume that π̃X,Y(s1, .) is a smooth function in λ1, i.e. it is differentiable and both right
and left limits converge to the actual value of function at λ1, we will be able to find the limits
and the value of function at critical points. Now let

π̃X,Y(λ1, s2) = lim
s1→λ1

π̃X,Y(s1, s2)

=
−µλ1(1 − b)

b2(s2 +
µ+λ1

b )2
π̃X,Y(λ1,−

µ + λ1

b
) +

µλ1

b

×

[ d
ds1

π̃X,Y(λ1,
s1−λ1

b + s2)

s2 +
µ+s1

b

−
d

ds1

π̃X,Y(λ1, s1 + s2 − λ1)

s1 + s2 +
µ+λA

1
b

]
s1=λ1

=
−µλ1(1 − b)

b2(s2 +
µ+λ1

b )2
π̃X,Y(λ1,−

µ + λ1

b
) +

µλ1

b

×

[ d
ds2
π̃X,Y(λ1, s2)(s2 +

µ+λ1
b )(1/b − 1) − π̃X,Y(λ1, s2)(1/b − 1)

(s2 +
µ+λ1

b )2

]
.

(5.41)



5.5. Waiting time distributions when a = 0: Classical APQ 89

The foregoing equation can be rearranged as

((bs2 + µ + λ1)2 − (b − 1)µλ1)π̃X,Y(λ1, s2) = µλ1(b − 1)(π̃X,Y(λ1,−
µ + λ1

b
)

−
d

ds2
π̃X,Y(λ1, s2)(s2 +

µ + λ1

b
)). (5.42)

The foregoing equation is a linear first order differential equation in the form of y′ + p(s2)y =

g(s2), where y = π̃X,Y(λ1, s2) and,

p(s2) =
b((bs2 + µ + λ1)2 − (b − 1)µλ1)

((b − 1)µλ1)(bs2 + µ + λ1)
,

g(s2) = b
π̃X,Y(λ1,−

µ+λ1
b )

bs2 + µ + λ1
.

By solving this equation, we can have a solution for π̃X,Y(λ1,−
µ+λ1

b ), π̃X,Y(λ1, s1 + s2 − λ1)
and π̃X,Y(λ1,

s1−λ1
b + s2); which, finally give solutions for the Laplace transforms of the limiting

distributions. In order to solve the differential equation, we define µ(x) = exp[
∫ x

p(y)dy];

µ(x) = exp[
∫ x b((bx + µ + λ1)2 − (b − 1)µλ1)

((b − 1)µλ1)(by + µ + λ1)
dy]

= exp[
b

(b − 1)µλ1

∫ x

by + µ + λ1dy −
∫ x b

by + µ + λ1
dy]

= exp[
b

(b − 1)µλ1
(
bx2

2
+ (µ + λ1)x) − ln(bx + µ + λ1)]

=
e

b
(b−1)µλ1

( bx2
2 +(µ+λ1)x)

bx + µ + λ1
. (5.43)

Therefore,

π̃X,Y(λ1, x) = y(x)

=
1
µ(x)

[
∫ x

µ(y)b
π̃X,Y(λ1,−

µ+λ1
b )

by + µ + λ1
dy + C]. (5.44)

Let D =
∫ x
µ(y)b π̃X,Y (λ1,−

µ+λ1
b )

by+µ+λ1
dy, then we have:
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D = bπ̃X,Y(λ1,−
µ + λ1

b
)
∫ x e

b
(b−1)µλ1

( by2
2 +(µ+λ1)y)

(by + µ + λ1)2 dy

= bπ̃X,Y(λ1,−
µ + λ1

b
)
∫ x e

(by+(µ+λ1))2−(µ+λ1)2

2(b−1)µλ1

(by + µ + λ1)2 dy

= bπ̃X,Y(λ1,−
µ + λ1

b
)e−

(µ+λ1)2

2(b−1)µλ1

∫ x e
(by+(µ+λ1))2

2(b−1)µλ1

(by + µ + λ1)2 dy. (5.45)

The last integral in (5.45) is 1
b

∫ x e
u2
c

u2 du if we let u = by+(µ+λ1) and c = 2(b−1)µλ1. Therefore,
we can continue (5.44) as,

π̃X,Y(λ1, x) =
1
µ(x)

[π̃X,Y(λ1,−
µ + λ1

b
)e−

(µ+λ1)2

2(b−1)µλ1

∫ x e
u2
c

u2 du + C]. (5.46)

Hence, by employing the two equations (5.39) and (5.40) we will be able to solve for the
unknown values of C and π̃X,Y(λ1,−

µ+λ1
b ) in (5.46).

If we let K(x) =
∫ x e

u2
c

u2 du, then from (5.39) we have

ρ1(1 − b)(1 − ρ1(1 − b)) = π̃X,Y(λ1,−λ1)

=
1

µ(−λ1)
[π̃X,Y(λ1,−

µ + λ1

b
)e−

(µ+λ1)2

2(b−1)µλ1 K(−λ1) + C]. (5.47)

From (5.40) we get,

λA
1

µ + λA
1

(π̃X,Y(λ1,−
µ + λ1

b
) + 2) = π̃X,Y(λ1,−

λ1

b
)

=
1

µ(−λ1
b )

[π̃X,Y(λ1,−
µ + λ1

b
)e−

(µ+λ1)2

2(b−1)µλ1 K(−
λ1

b
) + C]. (5.48)

After solving these equations we will have:

C = [
ρA

1 (1 − (ρA
1 )2)Bµ(−λ1) + 2ρA

1

(1 + ρA
1 )Bµ(−λ1) + 1

]µ(−
λ1

b
), (5.49)
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where B =
ρA

1 e
(µ+λ1)2

2(b−1)µλ1

(1+ρA
1 )K(− λ1

b )
− [µ(−λ1

b )]−1 and, finally

π̃X,Y(λ1,−
µ + λ1

b
) =

C(1 + ρA
1 ) − 2ρA

1µ(−λ1
b )

ρA
1µ(−λ1

b ) − (1 + ρA
1 )e−

(µ+λ1)2

2(b−1)µλ1 K(−λ1
b )
. (5.50)

At this point, we are able to define π̃X,Y(λ1, x) as in (5.46). This will give rise to explicit so-
lutions for Equation (5.36) and Equation (5.38). Thus we have the explicit form for our LST
functions π̃X,Y(s1, s2) and π̃X(s).

At this stage, we have determined the LST of the stationary accumulated priorities at the time
points that customers move into service. The numerical Gaver-Stehfest Algorithm can be used
to numerically invert the Laplace transforms and obtain the actual steady state distribution
functions in a classical APQ setting when required.

In the following section we will discuss the connection between LST of the stationary accu-
mulated priorities and the stationary waiting time distributions.

5.6 Waiting time distributions

We return now to the discussion of the waiting time distributions. In this section, we establish
the necessary relations to link the results we acheived in the previous section to the LST of the
waiting time distributions in a classical APQ. Once we have the LST for the stationary accumu-
lated priorities at the time points that customers move into the service, we are also immediately
able to derive the LST for the stationary waiting times by a re-scaling of the arguments. The
underlying reason is that when a customer of class-i with ν accumulated priority enters into
service, the waiting time required for this person to gain ν credit had been ν/bi as also dis-
cussed in Stanford et al. (2014).

Stanford et al. (2014) (Equation [30], page 315) have derived the LST of the stationary accu-
mulated priority of the non-accredited customers at the time that they enter service, conditional
on its being positive, as Ṽ (2)(s). They have employed that result to obtain the stationary waiting
time distribution for class-2 customers as the weighted sum of the LSTs of zero and Ṽ (2)( s

b2
)

(Equation [31], page 315). Applying the same argument, in the following theorem, we derive
the LST for the waiting time distribution of class-2 customers.

W̃ (2)(s) = (1 − ρ) + ρṼ (2)(s/b2). (5.51)

Theorem 5.6.1 Let Ṽ (2)(s) be the LST of the stationary accumulated priority of the non-accredited
customers at the time that they enter service, conditional on its being positive, in a two class
APQ under M/M/1 discipline with parameters b1 = 1, b2 = b and λ1. Also let π̃X(s) be the LST



92 Chapter 5. The bivariateMaximum Priority Process in an Affine APQ

of the stationary accumulated priority of the non-accredited customers at the time of entrance
int service. We will have the two following relations:

1.
Ṽ (2)(s) =

π̃X(s)
ρ2 + ρ1b

(5.52)

2.
W̃ (2)(s) = (1 − ρ) + ρ

π̃X(s/b2)
ρ2 + ρ1b

, (5.53)

where ρ1 = λ1/µ and ρ2 = λ2/µ.

Proof The difference between Ṽ (2)(s) and π̃X(s) is that the former is the conditional LST of
the stationary accumulated priorities of the non-accredited customers and the latter is the un-
conditional (joint) distribution of the non-accredited class-1 and class-2 customers.
A class-1 customer becomes accredited at rate λ1(1− b) (Lemma 4.2 in Stanford et al. (2014)).
Therefore, the probability that an individual class-1 customer, arriving during a busy period,
enters service while unaccredited is b. As a result, the probability that a non-accredited cus-
tomer enters service with positive credit (i.e. after waiting for positive units of time)is ρ2 +ρ1b.
Thus, based on the conditional probability rule we can write Ṽ (2)(s) =

π̃X(s)
ρ2+ρ1b .

Since a class-2 customer either finds the server empty at the arrival moment or waits in the
system for time ν/b2, the LST of the stationary waiting time for class-2 customers can be
obtained by the weighted sum of the LSTs of zero and π̃X(s/b). Therefore by substituting
Equation (5.52) in (5.51) we will obtain (5.53).

Applying similar argument we are ale to derive the waiting time distributions for class-1 cus-
tomers according to the following theorem,

Theorem 5.6.2 Let the LST of the distribution of the priority of a class-1 customer when it en-
ters service, conditional on this being positive, be Ṽ (2)(s) (Equation 36 on page 316 in Stanford
et al. (2014)). Also, let π̃X,Y(s1, s2) be the LST of the joint distribution of the M1(t) and M2(t)
when the customer enters service (derived in the previous section). The LST of the stationary
waiting time for class-1 customer is as follows:

1.
Ṽ (1)(s) = b

π̃X(s)
ρ2 + ρ1b

+ (1 − b)
π̃X,Y(s, 0)
ρ1(1 − b)

(5.54)

2.

W̃ (1)(s) = (1 − ρ) + ρ[b
π̃X(s/b1)
ρ2 + ρ1b

+ (1 − b)
π̃X,Y(s/b1, 0)
ρ1(1 − b)

]. (5.55)

Proof A class-1 customer arrives to an empty queue with probability (1 − ρ). If it arrives to
a non-empty queue, it enters service non-accredited with probability b2/b1 = b; and, the LST
of its stationary accumulated priority on entering service is according to (5.52). On the other
hand, if a class-1 customer arrives to a non-empty queue, it enters service as an accredited
customer with probability 1−b and its stationary accumulated priority LST on entering service
would be π̃(X,Y)(s,0)

ρ1(1−b) .
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Therefore, the LST of the distribution of the priority of this customer when it enters service,
conditional on being positive is according to (5.54).

The LST of the waiting time is obtained by substituting (5.54) in W̃ (1)(s) = (1−ρ)+ρṼ (1)(s/b1)
(Equation[37] on page 316 Stanford et al. (2015)).

At this stage we are able to find the LST of the waiting time for class-1 and class-2 customers
in an APQ under M/M/1 setting with one server.

5.7 Conclusions and future work

In the third chapter of this thesis we presented an algorithm to derive the waiting time distri-
bution for the lowest priority class in an Affine APQ under some specific assumptions. Unlike
APQs, in an affine APQ a positive credit is assigned to each class of customers upon their
arrivals. Without loss of generality in a two-class setting, we assume the initial credit for the
lower priority class is 0 and for the higher priority class is the positive value a. Aiming to
derive the wait time distributions for both classes of customers in an Affine APQ setting un-
der M/M1 discipline we analysed the corresponding bi-variate Maximum Priority Process in
this setting, as having the exact values of this process at the specific instant of a new service
commencements leads to the derivation of the waiting times for each customer.

Therefore, we derived the explicit solution to the LST of the stationary accumulated priority
at the time of entrance when a = 0 (Classical APQ setting). Finally, we were able to employ
these results to derive the LST of the waiting time distributions in an APQ with 2 classes of
customers under M/M/1 discipline. This new approach could be used as a tool to solve more
general cases.

Since in the present work, the analysis of the maximum priority process is done for the Affine
APQs, it could be used for studying the LST of the waiting times in an Affine APQ as future
research. We have derived the explicit solution for the LST of the steady states when a = 0; an
extension to this work when a > 0 could be a nice problem to solve as a future research.

Finally this work presents a new approach to determine the LST of the waiting time distribution
for higher and lower class customers in an APQ with 2-classes of customers under the M/M/1
discipline.
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Conclusion and future work

6.1 Main contributions

1. The third chapter “Discrete time Markov chain algorithm for short time predictions in an
Emergency Department” pertains to the near future predictions in an Emergency Department
(ED) to assist the decision makers with planning the best interventions for their system. Short-
run predictions of ED censuses are particularly important for efficient allocation and manage-
ment of ED resources. Initially, we investigated both regression and time-series based forecast-
ing methods to identify an appropriate forecasting model to accurately predict ED arrivals and
discharges in short term. Considering the variation in arrival pattern and service requirements,
we applied and compared three models which best described our data.

In our study, we modeled ED changes based on a Discrete Time Markov Chain (DTMC) al-
gorithm we introduced. We presented estimations for short term (hourly) ED censuses at each
time point and provided hourly predictions up to 24 hours in a day which can potentially
provide suggestions to ED managers by constructing numerical analysis on how to prevent
over-crowding in their system.

We illustrated our approach using 22 months of data obtained from the ED of a large academic
medical center in Ontario. Our three models were validated and compared in accuracy and
functionality based on MSE and correlation.

2. The fourth chapter “The Lowest Priority Waiting Time Distribution in the Affine and the
Delayed Accumulating Priority Queues” introduced Affine and Delayed variants of the APQ
inspired by health care applications. In the Affine APQ setting the high-acuity patients receive
positive a credits upon arrival and accumulate credits so long as they wait in the queue with a
higher accumulation rate as compared to the lower-acuity patients. In the delayed APQ setting,
the low-acuity patients do not accumulate priority over time until the period of delay has been
reached. Even though the motivations for the affine and the delayed variants appear to describe
differing priority accumulation mechanisms, we established that they are, in fact, equivalent.
It was established that the waiting time distribution of the lower-priority class of customers in
both variants is identical to those of the lower class in a classical priority queue, up to the time
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threshold. Beyond that time point, the waiting time behaviour resembles that of a non-affine
APQ. We were able to exploit these facts to come up with an algorithm for the determination
of the waiting time distribution for those customers who experience waits in excess of the time
threshold. Numerical examples were presented to illustrate the trends we observed.

The second contribution of this work is related to the trend for health care systems to respond
to so-called “Key Performance Indicators (KPIs)”. The KPI approach specifies, for each class
of customers both a time target for customers to commence service, and a compliance prob-
ability indicating the proportion of customers that meet the target. The main problem with
working solely on the basis of KPIs is that no consequence is specified for customers who miss
their target, when in fact a customer who misses their KPI target maybe is of greater if not
lesser importance. Therefore, we investigated the question of how to determine the optimal
accumulation rate for lower-acuity patients as a function of queue’s occupancy level at differ-
ent delay time period in the delayed variant of APQ (equivalently, at different a levels for the
Affine APQ). We addressed this question by solving for the optimum accumulation rate, b, so
that a decision maker can select any priority accumulation rate they like, so long as low-acuity
patients can meet their corresponding KPIs. We illustrated the results through some numerical
examples.

3. The fifth chapter “The bivariate Maximum Priority Process in an Affine APQ” introduced the
bivariate Maximum Priority process in an Affine APQ setting in a two-class queue. We noticed
that this process, at the times at which customers move into service represents the exact credit
value of the customer who starts the service. This property can ultimately be related to the
waiting time distributions for both acuity classes. We observed that this process at the instant
that a new service commences is a Markov process for which we identified five possible state
sets and derived the LST of stationary distributions.

Due to difficulties in solving the general recursive LST functions in the Affine APQ setting, we
we let the affine parameter a = 0, and derived the explicit solutions for the LSTs. Then, we
managed to link the results with the LST of the stationary accumulated priorities at the time
points that customers move into service. Therefore, we also obtained the LST for the stationary
waiting times by investigating the appropriate re-scaling of the arguments. Therefore, this study
introduces a new approach to study classical APQ’s with a strong potential to be expanded to
the Affine APQ.

6.2 Future work

Some extensions to our work are possible. We highlight below some of them which can be
considered as future research.

1. In chapter three we proposed an algorithm to predict hourly census in an ED. One obvious
extension with the available data could be investigating the hourly fluctuations of the system
under different initial-work-load scenarios to identify a rule to the optimum intervention mo-
ment and best action plan to avoid overcrowding.
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2. In case of having access to a data set with more detailed information on the number of staff,
bed availability or other resources at each time point, a Markov decision process can be used
to dynamically make the optimum decision (chose the best action/intervention) to ultimately
reduce the congestion in the system. Actions could include managing the number of nurse
staffing, doctor staffing or temporarily allocation of other available resources.

3. In chapter five, we analysed the Maximum priority process in the Affine APQ but solved
for the waiting time LSTs in a specific case of a = 0 (i.e. classical APQ). As mentioned in the
discussion, the long run probability of M2(t) < a would be the main key to solve this problem
for the general Affine case. Identifying this key probability will be useful for the ultimate
resolution of the bivariate process when a > 0. In order to obtain the waiting time distribution
for the higher priority class, one needs to distinguish between periods when M2(t) ≤ a from
M2(t) > a, as this affects who a tagged arrival from the higher class would wait for.



Bibliography

[1] Boyle A., Beniuk K., Higginson I., and Atkinson P. Emergency department crowding:
Time for interventions and policy evaluations. Emerg. Med. Int., 2012.

[2] Carpinone A., Giorgio M., Langella R., and Testa A. Markov chain modeling for very-
short-term wind power forecasting. Electric Power Systems Research, 122:152–158,
2015.

[3] Cobham A. Priority assignment in waiting line problems. Journal of the Operations
Research Society of America, 2:70–76, 1954.

[4] Fajardo V. A. A Generalization of M/G/1 priority models via accumulating priority. PhD
thesis, The University of Waterloo, 2015.

[5] Fajardo V. A. and Drekic S. Waiting time distributions in the preemptive accumulating
priority queue. Methodology and Computing in Applied Probability, 2017.

[6] Schuster A. II. On the periodicities of sunspots. Philosophical Transactions of the Royal
Society, 1906.

[7] Shamshad A., Bawadi M. A., Hussin W., Majid T. A., and Sanusi S. A. M. First and
second order Markov chain models for synthetic generation of wind speed time series.
Energy, 30, 2005.

[8] Sharif B. A., Stanford A. D., Taylor P., and Ziedins I. A multi-class multi-server accu-
mulating priority queue with application to healthcare. Operations research for Health
Care, 2014.

[9] Stanford D. A., Pagurek B., and Woodside C. M. Optimal prediction of times and queue
length in the GI/M/1 queue. INFORMS, 31:322–337, 1983.

[10] Stanford D. A., Taylor P., and Ziedins I. Waiting time distributions in the accumulating
priority queue. Queueing Systems, 2014.

[11] Wait Time Alliance. Report card on wait times in Canada. From the website.
http://www.waittimealliance.ca/wta-reports/2014.

[12] Sharif A. B. Probability models for healthcare operations with application to emergency
medicine. PhD thesis, Western University, 2016.

97



98 BIBLIOGRAPHY

[13] Raible C. C., Bischof G., Fraedrich K., and Kirk E. Statistical single-station short-term
forecasting of temperature and probability of precipitation: Area interpolation and NWP
combination. Weather and Forecasting, 1999.

[14] Gross D. and Harris C. M. Fundamentals of queueing theory. John Wiley & Sons, 1974.

[15] Boyce W. E. and DiPrima R. C. Elementary differential equations and boundary value
problems. Wiley, New York, 1965.

[16] Crabtree B. F., Ray S. C., Schmidt P. M., O’Connor P. J., and Schmidt D. D. The in-
dividual over time: time series applications in health care research. Journal of Clinical
Epidemiology, 43 3:241–60, 1990.

[17] Dreyer J. F, McLeod S. L., Anderson C. K., Carter M. W., and Zaric G. S. Physician work-
load and the Canadian Emergency Department Triage and Acuity Scale: the Predictors
of Workload in the Emergency Room (POWER) Study. Canadian Journal of Emergency
Medicine, 11:321–329, 2009.

[18] Yu G., Hu J., Zhang C., Zhuang L., and Song J. Short-term traffic flow forecasting based
on Markov chain model. Proc. IEEE Intell. Vehicles Symp., pages 208–212, 2003.

[19] Kesten H. and Runnenberg J. Th. Priority in waiting line problems. Nederlandse
Akademie van Wetenschappen. Proceedings. Series A. Indagationes Mathematicae.,
1957.

[20] Stehfest H. Algorithm 368: Numerical Inversion of Laplace Transforms. Communica-
tions of the ACM, 1970.

[21] Adan I. and Haviv M. Conditional ages and residual service times in the M/G/1 queue.
Stochastic Models, 2009.

[22] Bullard M. J., Unger B., Spence J., Grafstein E., and CTAS National Working Group.
Revisions to the Canadian Emergency Department Triage and Acuity Scale (CTAS) adult
guidelines. CJEM, 10:136–151, 2008.
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Appendix A

Additional materials in Chapter 5

The process of deriving the LST for all of the limiting distributions in Chapter 5, is very te-
dious. In this process after identifying possible state sets, we derived the corresponding kernel
densities. A lot of mathematical details were involved in the solution of the integral equations.
However, for the sake of readability, I provide further details of derivations not in the main
text but in this part. Some necessary derivations which have appeared in final results, will be
presented in more detail as follows.

A.1 Checking for the pdf assumption in kernel densities in
Section 5.3.2

In order to verify whether the transition probabilities from state (sets) form a density function,
we compute the total probability value on the whole admissible region. Therefore, we show
that the total probability adds up to one.

I. state (a, 0):

P(a,0)→(a,0) +

∫ a

y=0
f{(a,0)→(a,y),y≤a}dy +

∫ ∞

x=0
f{(a,0)→(x,x),x≥a}dx +

∫ ∞

x=a

∫ x

y=b(x−a)

f{(a,0)→(x,y)}dydx

=
µ

µ + λ

(
1 +

λ2

µ + λ1
(1 − e−

a
b (µ+λ1)) +

λ1b + λ2

µ + λA
1

e−
a
b (µ+λ1)) +

λ1µ

µ + λ1

(1
µ
−

b
(µ + λA

1 )
e−

a
b (µ+λ1))

=
µ

µ + λ

(
1 +

λ2

µ + λ1

)
+

λ1

µ + λ1
+

( µ

µ + λ
(
λ1b + λ2

µ + λA
1

−
λ2

µ + λ1
) −

µλ1b
(µ + λ1)(µ + λA

1 )
)
e−

a
b (µ+λ1)

= 1. (A.1)

II. state (a, y); y < a:

102



A.1. Checking for the pdf assumption in kernel densities in Section 5.3.2 103

P(a,w)→(a,0) +

∫ w

y=0
f{(a,w)→(a,y),y≤w}dy +

∫ a

y=w
f{(a,w)→(a,y),w≤y}dy +

∫ ∞

x=a
f{(a,w)→(x,x),x≥a}dx

+

∫ ∞

x=a

∫ x

y=b(x−a)+w
f{(a,0)→(x,y)}dydx

=
µ

µ + λ

(
1 +

λ2

µ + λ1
(1 − e−

a−w
b (µ+λ1)) +

λ1b + λ2

µ + λA
1

e−
a−w

b (µ+λ1)) +
λ1µ

µ + λ1

(1
µ
−

b
(µ + λA

1 )
e−

a−w
b (µ+λ1))

=
µ

µ + λ

(
1 +

λ2

µ + λ1

)
+

λ1

µ + λ1
+

( µ

µ + λ
(
λ1b + λ2

µ + λA
1

−
λ2

µ + λ1
) −

µλ1b
(µ + λ1)(µ + λA

1 )
)
e−

a−w
b (µ+λ1)

= 1. (A.2)

III. state (x, x):

P(ν,ν)→(a,0) +

∫ a

y=0
f{(ν,ν)→(a,y),y≤a}dy +

∫ ν

y=a
f{(ν,ν)→(x,x),a≤x<ν}dy

+

∫ ∞

x=ν

f{(ν,ν)→(x,x),x≥ν}dx +

∫ ∞

x=ν

∫ x

y=b(x−ν)+ν
f{(ν,ν)→(x,ν)}dydx

=
µ

µ + λ

(
1 +

λ1b + λ2

µ + λA
1

) + µe−λ1ν(
eλ1ν

µ
−

eλ1ν

µ + λA
1

)

= 1. (A.3)

IV. state (x, y):

In order to verify if the probabilities add up to one, we consider both cases a < w (i.e. when
the maximum priority for class 2 customers, M2(t), at the service initiation moment, is more
than a) and w < a (i.e. when M2(t) is less than a when an accredited customer starts service)
separately as follows:

a) When a < w:

P(ν,w)→(a,0) +

∫ a

y=0
f{(ν,w)→(a,y),y<a<w}dy +

∫ w

y=a
f{(ν,w)→(x,x),a≤x<w}dy

+

∫ ∞

x=w
f{(ν,w)→(x,x),x≥w}dx +

∫ ∞

y=w

∫ y−w
b +ν

x=y
f{(ν,w)→(x,y)}dxdy

=
µ

µ + λ

(
1 +

λ1b + λ2

µ + λA
1

)
e−λ1(ν−w) + 1 −

µ

µ + λA
1

e−λ1(ν−w)

= 1. (A.4)

b) Similarly, when w < a:
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P(ν,w)→(a,0) +

∫ a

y=w
f{(ν,w)→(a,y),w<y<a}dy +

∫ w

y=0
f{(ν,w)→(a,y),y<w<a}dy

+

∫ ∞

x=a
f{(ν,w)→(x,x),w<a<x}dx +

∫ a

y=w

∫ y−w
b +ν

x=a
f{(ν,w)→(x,y)}dxdy

+

∫ ∞

y=a

∫ y−w
b +ν

x=y
f{(ν,w)→(x,y)}dxdy

=
µ

µ + λ
e−λ1(ν−a)[ λ2

µ + λ1
−

λ2

µ + λ1
e
µ+λ1

b (w−a) + 1 +
b

µ + λA
1

e(w−a)( µ+λ1
b )(λ1 +

λ2

b
)
]

+ 1 +
µ

µ + λ1
e−λ1(ν−a)[e

µ+λ1
b (w−a) − 1] −

µ

µ + λA
1

eλ1(a−ν).e( µ+λ1
b )(w−a)

= 1. (A.5)

A.2 More details on Equations in Section 5.4

In this part, we shed more light on the details of the derivations and Lemmas presented in
section 5.4.

1. Proof for Lemma 5.4.2: The LST of the stationary distribution for state set (a, y); y < a is
according to:

π̃Y (s) = B(s)−1
[1 − e−(s+ µ+λ1

b )a

s +
µ+λ1

b

(1 − ρ) +
1 − e−(s− λ2

b )a

s − λ2
b

[ρ(1 − ρ)] +
eλ1a

s − λ2
b

×

(
e−(s− λ2

b )aπ̃X,Y;Y≤a(λ1,
λ2

b
) −

µ + λ

b(s +
µ+λ1

b )
π̃X,Y;Y≤a(λ1, s)

)
−

e−(s+ µ+λ1
b )a

s +
µ+λ1

b

eλ1aπ̃X,Y;Y≤a(λ1,−
µ + λ1

b
)
]
, (A.6)

when B(s) =
b(1+ρ)
λ2
− 1−e−(s+

µ+λ1
b )a

s+ µ+λ1
b

+ 1−e−(s−
λ2
b )a

s− λ2
b

.

Proof We evaluate the integrals in Equation (5.26) according to the corresponding transition
densities we have developed in Subsection 5.3.2. Doing so we will have the following
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µ + λ

µ
.

b
λ2
π(a, y) = π(a, 0)e−

µ+λ1
b y +

∫ y

0
π(a,w)e−

µ+λ1
b (y−w)dw +

∫ a

y
π(a,w)

× e−
λ2
b (w−y)dw +

∫ ∞

a
π(ν, ν)e−λ1(ν−a)− λ2

b (ν−y)dν +

∫ ∞

a

∫ w
b +a

w
π(ν,w)

× e−λ1(ν−a)− λ2
b (w−y)dνdw +

∫ y

0

∫ w
b +a

a
π(ν,w)e−λ1(ν−a)− µ+λ1

b (y−w)dνdw

+

∫ a

y

∫ w
b +a

a
π(ν,w)e−λ1(ν−a)− λ2

b (w−y)dνdw. (A.7)

After taking Laplace transform of both sides of the above equation, we simplify the integrations
according to the following relations:

∫ a

0
π(a, 0)e−sye−

µ+λ1
b ydy =

1 − e−(s+ µ+λ1
b )a

s +
µ+λ1

b

π(a, 0), (A.8)

∫ a

0
e−sy

∫ y

0
π(a,w)e−

µ+λ1
b (y−w)dwdy =

1 − e−(s+ µ+λ1
b )a

s +
µ+λ1

b

π̃y(s) (A.9)

∫ a

0
e−sy

∫ a

y
π(a,w)e−

λ2
b (w−y)dwdy =

1 − e−(s− λ2
b )a

s − λ2
b

(π̃y(
λ2

b
) − π̃y(s)), (A.10)

∫ a

0
e−sy

∫ ∞

a
π(ν, ν)e−λ1(ν−a)− λ2

b (ν−y)dνdy =

∫ a

0
e−syeλ1a+

λ2
b yπ̃x(λ1 +

λ2

b
)dy

= eλ1a(
1 − e−(s− λ2

b )a

s − λ2
b

)π̃x(λ1 +
λ2

b
), (A.11)

∫ a

0
e−sy

∫ y

0

∫ w
b +a

a
π(ν,w)e−λ1(ν−a)− µ+λ1

b (y−w)dνdwdy

= eλ1a
∫ a

0
ew( µ+λ1

b )
∫ w

b +a

a
e−λ1νπ(ν,w)

∫ a

w
e−y( µ+λ1

b )dydνdw

=
eλ1a

s +
µ+λ1

b

∫ a

0
(e−ws − e

µ+λ1
b (w−a)−as)

∫ w
b +a

a
π(ν,w)e−λ1νdνdw

=
eλ1a

s +
µ+λ1

b

(
π̃X,Y;Y≤a(λ1, s) − e−(s+ µ+λ1

b )aπ̃X,Y;Y≤a(λ1,−
µ + λ1

b
)
)
, (A.12)
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∫ a

0
e−sy

∫ a

y

∫ w
b +a

a
π(ν,w)e−λ1(ν−a)− λ2

b (w−y)dνdwdy

= eλ1a
∫ a

0
e−w( λ2

b )
∫ w

b +a

a
e−λ1νπ(ν,w)

∫ w

0
ey( λ2

b −s)dydνdw

=
eλ1a

λ2
b − s

∫ a

0
(e−ws − e−

λ2
b w)

∫ w
b +a

a
π(ν,w)e−λ1νdνdw

= +
eλ1a

λ2
b − s

(π̃X,Y;Y≤a(λ1, s) − π̃X,Y;Y≤a(λ1,
λ2

b
)). (A.13)

Therefore, we obtain:

b(1 + ρ)
λ2

π̃Y (s) =
1 − e−(s+ µ+λ1

b )a

s +
µ+λ1

b

(
π(a, 0) + π̃Y (s)

)
+

1 − e−(s− λ2
b )a

s − λ2
b

(
π̃Y (

λ2

b
)

− π̃Y (s) + eλ1a(π̃X(λ1 +
λ2

b
) + π̃X,Y;Y>a(λ1,

λ2

b
))
)

+
eλ1a

s +
µ+λ1

b

×

(
π̃X,Y;Y≤a(λ1, s) − e−(s+ µ+λ1

b )aπ̃X,Y;Y≤a(λ1,−
µ + λ1

b
)
)

+
eλ1a

λ2
b − s

(π̃X,Y;Y≤a(λ1, s) − π̃X,Y;Y≤a(λ1,
λ2

b
)). (A.14)

And this completes the proof.

2. Proof for Lemma 5.4.3: The LST of the stationary distribution for state set (x, x); x ≥ a is
according to:

π̃X(s) = C−1
[e−(s+

µ+λA
1

b )a

s +
µ+λA

1
b

(
e−λ1a(π(a, 0) + π̃Y (−

µ + λ1

b
)) + π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)
)

+

( 1

s +
µ+λA

1
b

−
1

s − (λ1 +
λ2
b )

)
π̃X,Y;Y>a(λ1, s − λ1)

+
e−(s−(λ1+

λ2
b ))a

s − (λ1 +
λ2
b )

(
π̃X(λ1 +

λ2

b
) + π̃X,Y;Y>a(λ1,

λ2

b
)
)]
, (A.15)

where C(s) =
b(1+ρ)
λ1b+λ2

− 1

s+
µ+λA

1
b

+ 1
s−(λ1+

λ2
b )

.

Proof We re-write the equation (5.27); doing so we obtain,
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b(1 + ρ)
λ1b + λ2

π(x, x) = π(a, 0)e−
µ+λA

1
b x−λ1a + e−

µ+λA
1

b x−λ1aπ̃Y (−
µ + λ1

b
) +

∫ x

a
π(ν, ν)

× e−
µ+λA

1
b (x−ν)dv +

∫ ∞

x
π(ν, ν)e−(λ1+

λ2
b )(ν−x)dν +

∫ x

a

∫ w
b +a

w

× π(ν,w)e−λ1(ν−w)−
µ+λA

1
b (x−w)dνdw +

∫ ∞

x

∫ w
b +a

w
π(ν,w)

× e−λ1(ν−w)−(λ1+
λ2
b )(w−x)dνdw +

∫ a

0

∫ w
b +a

a
π(ν,w)

× e−λ1(ν−w)−
µ+λA

1
b (x−w)dνdw. (A.16)

Next, we take a Laplace transform of the right and left hand side, and simplify the integrations
according to the following derivations;

∫ ∞

a
e−sx

∫ x

a
π(ν, ν)e−

µ+λA
1

b (x−ν)dνdx =
1

s +
µ+λA

1
b

π̃X(s), (A.17)

∫ ∞

a
e−sx

∫ ∞

x
π(ν, ν)e−(λ1+

λ2
b )(ν−x)dνdx =

1
s − (λ1 + λ2

b )
(e−(s−(λ1+

λ2
b ))aπ̃X(λ1 +

λ2

b
) − π̃X(s)).

(A.18)

Therefore, we will have:

b(1 + ρ)
λ1b + λ2

π̃X(s) =
e−(s+

µ+λA
1

b )a

s +
µ+λA

1
b

(
e−λ1a(π(a, 0) + π̃Y (−

µ + λ1

b
)) + π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)
)

+
1

s +
µ+λA

1
b

(
π̃X(s) + π̃X,Y;Y>a(λ1, s − λ1)

)
−

1

s − (λ1 +
λ2
b )

(
π̃X(s) + π̃X,Y;Y>a(λ1, s − λ1)

)
+

e−(s−(λ1+
λ2
b ))a

s − (λ1 +
λ2
b )

(
π̃X(λ1 +

λ2

b
) + π̃X,Y;Y>a(λ1,

λ2

b
)
)
.

And this completes the proof.

3. Proof for Lemma 5.4.4: The LST of the stationary distribution for state set (x, y); y < a is
according to:



108 Chapter A. Additional materials in Chapter 5

π̃X,Y;Y≤a(s1, s2) =
µ

b
λ1

λ1 − s1
e−as1

[1 − e−a(s2+
µ+s1

b )

(s2 +
µ+s1

b )
−

1 − e−a(s2+
µ+λ1

b )

(s2 +
µ+λ1

b )

]
× ((1 − ρ) + π̃Y (−

µ + λ1

b
)) +

µ

b
λ1

λ1 − s1
e−a(s1−λ1)

[ e−a(s2+
µ+s1

b )

−(s2 +
µ+s1

b )
π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)

+
1

(s2 +
µ+s1

b )
π̃X,Y;Y≤a(λ1, s2 +

s1 − λ1

b
) +

e−a(s2+
µ+λ1

b )

(s2 +
µ+λ1

b )
π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)

−
1

(s2 +
µ+λ1

b )
π̃X,Y;Y≤a(λ1, s2)

]
. (A.19)

Similarly for the state set (x, y); y ≥ a we will have:

π̃X,Y;Y>a(s1, s2) =
µ

b
λ1

λ1 − s1

[
e−a(s1−λ1)(

e−a(s2+
µ+s1

b )

(s2 +
µ+s1

b )
) − (

e−a(s1+s2+
µ+λA

1
b )

(s1 + s2 +
µ+λA

1
b )

)
]

×

(
e−λ1a(π(a, 0) + π̃Y (−

µ + λ1

b
)) + π̃X(−

µ + λA
1

b
) + π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)
)

+
µ

b
λ1

λ1 − s1

[ e−a(s1−λ1)

(s2 +
µ+s1

b )
π̃X,Y;Y>a(λ1,

s1 − λ1

b
+ s2) −

1

(s1 + s2 +
µ+λA

1
b )

× π̃X,Y;Y>a(λ1, s1 + s2 − λ1)
]
. (A.20)

Proof We re-write the equation (5.28) and take the Laplace transform of both sides of the
equation to obtain,

π(x, y; y < a) = π(a, 0)
µ

b
λ1e−(µ+λ1) y

b eλ1(x−a) +

∫ a

0
π(a,w)

µ

b
λ1e−(µ+λ1) y−w

b eλ1(x−a)dw

+

∫ y

0

∫ w
b +a

a
π(ν,w)

µ

b
e−µ

y−w
b λ1e−λ1( y−w

b +ν−x)dνdw. (A.21)

Next, we take the Laplace transform of the right and left hand side, and simplify the integrations
according to the following derivations;

∫ ∞

a
e−sx

∫ a

0

∫ w
b +a

a
π(ν,w)e−(λ1)(ν−w)−

µ+λA
1

b (x−w)dνdwdx =
e−(s+

µ+λA
1

b )

s + (µ+λA
1

b )
π̃X,Y;Y≤a(λ1,−

µ + λ1

b
),

(A.22)

∫ ∞

a
e−sx

∫ x

a

∫ w
b +a

w
π(ν,w)e−(λ1)(ν−w)−

µ+λA
1

b (x−w)dνdwdx =
1

s + (µ+λA
1

b )
π̃X,Y;Y>a(λ1, s − λ1), (A.23)
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∫ ∞

a
e−sx

∫ ∞

x

∫ w
b +a

w
π(ν,w)e−(λ1)(ν−w)−(λ1+

λ2
b )(w−x)dνdwdx

=
1

s − (λ1 + λ2
b )

(e−(s−(λ1+
λ2
b ))aπ̃X,Y;Y>a(λ1,

λ2

b
) − π̃X,Y;Y>a(λ1, s − λ1)), (A.24)

Therefore, we will have:

π̃X,Y;Y≤a(s1, s2) = π(a, 0)
µ

b
λ1

λ1 − s1
e−as1

[
h(s1) − g(s1) − h(λ1) + g(λ1)

]
+
µ

b
λ1

λ1 − s1
e−as1

[
h(s1) − g(s1) − h(λ1) + g(λ1)

]
π̃Y (−

µ + λ1

b
)

+
µ

b
λ1

λ1 − s1
ea(λ1−s1)

[
h(s1)π̃X,Y;Y≤a(λ1, s2 +

s1 − λ1

b
) − g(s1)

× π̃X,Y;Y≤a(λ1,−
µ + λ1

b
) + g(λ1)π̃X,Y;Y≤a(λ1,−

µ + λ1

b
)

− h(λ1)π̃X,Y;Y≤a(λ1, s2),

when g(s1) = e−a(s2+
µ+s1

b )

(s2+
µ+s1

b )
and h(s1) = 1

(s2+
µ+s1

b )
.

Finally, applying the same procedure to equation (5.29) will give us (5.34).

A.2.1 More details related to Section 5.5

π̃X(s) = C(s)−1
[ 1

s +
µ+λA

1
b

π(0, 0) +

( 1

s +
µ+λA

1
b

−
1

s − (λ1 +
λ2
b )

)
π̃X,Y (λ1, s − λ1)

+
1

s − (λ1 +
λ2
b )

(
π̃X(λ1 +

λ2

b
) + π̃X,Y (λ1,

λ2

b
)
)]

(A.25)

where C(s) =
b(1+ρ)
λ1b+λ2

− 1

s+
µ+λA

1
b

+ 1
s−(λ1+

λ2
b )

.



Curriculum Vitae

Name: Maryam Mojalal

Post-Secondary Allameh Tabataba’i University
Education and Tehran, Iran
Degrees: 2008 - 2010 M.Sc. (Mathematical statistics)

University of Western Ontario
London, ON
2014 - 2018 Ph.D. (Statistics)

Related Work Graduate Teaching Assistant
Experience: The University of Western Ontario

2014 - 2018

Statistical Cunsultant
The University of Western Ontario
2015 - 2018

Data (sales) Analyst
MTN-Irancell Telecom Co.
2011 - 2012

Publications:

The Lowest Priority Waiting Time Distribution in the Affine and the Delayed Accumulating
Priority Queues (submitted)

Discrete time Markov chain algorithm for short time predictions in an Emergency Department
(to be submitted)

110


	Statistical Applications in Healthcare Systems
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Outline of this thesis

	Preliminaries
	Statistical Models
	Time series models
	Poisson regression model
	Regression with ARIMA errors model

	Queueing theory
	The mathematical study of queueing systems
	Some of the fundamental results for M/G/1 queues
	An introduction to priority queueing systems

	Accumulating Priority Queue (APQ)
	Some fundamental results in APQ framework
	Affine Accumulating Priority Queue (Affine APQ)

	Some elementary concepts

	Discrete time Markov chain algorithm for short time predictions in an Emergency Department
	Abstract
	Introduction
	Overview of related literature
	Data collection and study setting
	Preliminary analysis and descriptive graphs

	Backward Discrete Time Markov Chain (DTMC) Algorithm
	Models for making forecasts
	The Empirical Approach
	Numerical implementations of the first model
	Regression with autoregressive moving averages (ARMA) errors
	Initial investigations

	Hybrid Model: Parametric discrete Markov chain approach
	Numerical results

	Application for ED Admins
	Model Validation
	Conclusions

	The Lowest Priority Waiting Time Distribution in the Affine and the Delayed Accumulating Priority Queues
	Abstract
	Introduction
	Description of the Affine & the Delayed Variants of the APQ model

	Lower-class Waiting time Distributions in the Affine & Delayed Variants of the APQ under M / G / 1
	Specific details for the algorithm
	M / M / 1
	M / D / 1
	M / M / c 

	Numerical investigations to solve for the optimum priority accumulation rate
	Conclusion and future research

	The bivariate Maximum Priority Process in an Affine APQ
	Abstract
	Introduction
	Limiting distributions in an Affine APQ
	Identification of possible states
	Derivation of transition densities

	Derivation of the LSTs of the limiting distributions
	Waiting time distributions when a=0: Classical APQ
	Waiting time distributions
	Conclusions and future work

	Conclusion and future work
	Main contributions
	Future work

	Bibliography
	Additional materials in Chapter 5
	Checking for the pdf assumption in kernel densities in Section 5.3.2
	More details on Equations in Section 5.4
	More details related to Section 5.5


	Curriculum Vitae

