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Abstract 

Foraging bumblebees (Bombus impatiens) extract nectar and pollen from a wide variety 

of morphologically distinct flower species, referred to as flower handling. Bumblebees learn this 

behaviour and acquisition of multiple flower handling techniques is a demonstration of 

behavioural flexibility. The purpose of this thesis is to understand how bumblebees are able to 

forage flexibly. This research has three specific goals: (1) to identify the cognitive mechanisms 

that support flower handling learning, (2) to understand how bumblebees avoid interference costs 

between multiple handling techniques, and (3) to explore the relation between behavioural 

flexibility and the mushroom bodies of the bumblebee brain. To address the first two goals, I 

developed a laboratory model of flower handling. The model consisted of a tube with a plastic 

door insert that bumblebees moved to access a nectar reward. The door was designed to be 

similar to a flower petal that a bee would lift to access a nectary in a real flower. All bees 

demonstrated the same set of motor behaviours and showed improvement across trials by 

increasing the frequency with which they used the successful behaviour. The apparatus was then 

adapted to measure bees’ ability to switch between two handling tasks, representing two different 

flower morphologies. Two variations of the apparatus were used, each of which required a 

different innate motor pattern for successful removal of the door. Bees switched between the two 

tasks by changing only the frequency that they engaged in each successful motor behaviour. The 

role of the mushroom bodies in behavioural flexibility was examined by training bees on a 

measure of behavioural flexibility, reversal learning, and relating performance to volume of the 

mushroom bodies and their components. Performance on the reversal task did not correlate with 

mushroom body volume. My overall findings are that bumblebees use a combination of innate 

motor patterns and learned associations to forage on a variety of flower species and the 
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flexibility of individual bumblebees is not related to individual variation in volume of the 

mushroom bodies and their components. 
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Chapter 1 
1 Introduction  

In recent decades awareness of the importance of bees and other pollinators to our food 

supply and economy has made them the focus of conservation efforts (Byrne & Fitzpatrick, 

2009). Bees have also been at the forefront of research in animal cognition due to surprising 

findings on bees’ success on complex cognitive tasks (Giurfa, 2015; Perry, Barron, & Chittka, 

2017). For these reasons continued investigation of learning and memory in bees is important. 

This is particularly true of research that links cognition and conservation and aims to understand 

the cognitive processes underlying the natural behaviour of bees in their role as pollinators.  

The research described in this thesis focuses on behavioural flexibility in bumblebees. 

Behavioural flexibility describes how animals adapt to changes in their environment and may be 

informative for predicting both bees’ successes and exposures to risk caused by human-induced 

rapid environmental change  (Sih, Ferrari, and Harris, 2010). Measures of behavioural flexibility 

have historically been useful in examining the mechanisms of learning and memory 

(Mackintosh, 1969; Bitterman, 1969; Davey, 1989; Shettleworth, 1998; 2010). In the subsequent 

chapters I describe a series of experiments on the foraging behaviour of bumblebees, focusing on 

the cognitive and neural mechanisms that support those behaviours.   

In this chapter, I provide background information on behavioural flexibility, foraging, 

learning by bees, the bee brain, and an introduction to my study species Bombus impatiens.  

1.1 Behavioural Flexibility 

The generally accepted definition of behavioural flexibility is an animal’s ability to 

respond to changes in its environment (Ragozzino, 2007; Coppens et al., 2010). The use of such 

a broad definition has resulted in the topic of behavioural flexibility becoming a vast minefield 
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of different definitions, techniques, and applications that spans fields from neuroscience, to 

animal cognition, to field biology and everything in between (Audet & Lefebvre, 2017). Given 

the vastness of the field, I have grouped considerations of behavioural flexibility into proximate 

questions (Tinbergen, 1963), focusing on cognitive mechanisms, and ultimate questions 

(Tinbergen, 1963), focusing on the adaptive value of behavioural flexibility and its implications 

for reproductive success.  

1.1.1 Cognitive mechanisms of flexibility  

Much of the research on the cognitive mechanisms underlying behavioural flexibility has 

revolved around its use as a measure of general animal intelligence (Reader & Laland, 2002; 

Roth & Dicke, 2005; Reader, Hager, & Laland, 2011). The driving force behind of many of these 

studies has been to find a behavioural measure that correlates with brain volume (Reader & 

Laland, 2002; Roth & Dicke, 2005; Overington et al., 2009). The role of behavioural flexibility 

in understanding intelligence has been approached in two similar but slightly different ways. In 

the first, researchers take the consistently high performance by a particular species or taxon on a 

variety of tasks, that is their ability to flexibly apply a general cognitive skill set, as evidence of 

general intelligence (Reader et al., 2011). In this way behavioural flexibility is seen as a 

consequence of g, or general intelligence (Reader et al., 2011). In the second approach, animals 

are tested on a specific task for behaviour that the researchers have decided measures 

behavioural flexibility and better performance is regarded as more intelligent or cognitively 

complex.  In this way, behaviour flexibility becomes the operationalized definition of 

intelligence (Lefebvre, Reader, & Sol, 2004). Frequently used measures of behavioural 

flexibility are puzzle box or other problem solving (Webster & Lefebvre, 2001; Auersperg et al., 

2011; Auersperg, Gajdon, & von Bayern, 2012), foraging innovation (Sol & Lefebvre, 2000; 
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Lefebvre et al., 2004; Overington et al., 2009), and reversal learning (Bond, Kamil, & Balda, 

2007). It is often the case that animals are assessed on more than one of these tasks to create a 

general profile of the species’ behavioural flexibility and that profile is equated with intelligence 

(Tebbich, Sterelny, & Teschke, 2010).  

Although studies of behavioural flexibility undeniably provide interesting data on the 

behaviour of a wide variety of species, the loose definition of behavioural flexibility and 

inconsistencies in measuring behavioural flexibility are problematic (Auersperg et al., 2012; 

Audet & Lefebvre, 2017). The frequently used assessments of behavioural flexibility, problem 

solving, foraging innovations and reversal learning, are often assumed to measure the same 

construct, but that may not be the case. In a reversal task an animal acquires an initial 

discrimination with a rewarded stimulus (S+) and an unrewarded stimulus (S-) and then the 

reward contingencies are reversed so that the original S+ becomes the S- and the original S- 

becomes the S+ (Shettleworth, 1998/2010). The task can then be expanded to include repeated 

reversals, called a serial reversal task. In reversal tasks an animal is successful when it is able to 

inhibit responding to a previously rewarded stimulus and does not perseverate in the absence of 

reward (Shettleworth, 1998/2010). In problem solving, however, task success is often correlated 

with an animal’s continued attempts to solve a task despite not receiving a reward, that is its 

perseveration (Audet, Ducatex, & Lefebvre, 2016). Consequently, continuing to produce a 

behaviour in the absence of reward results in poor flexibility as measured on reversal tasks, but 

can result in high flexibility when measured using problem solving tasks. Using field assessment 

of foraging innovations as a measure of behavioural flexibility also comes with numerous 

potential problems. Innovations can be defined as ‘a qualitative break with species- or 

population-typical behaviour’ (Greenberg, 2003), but that definition can be difficult to 
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operationalize in field observations. Additionally, the use of innovation rate as a measure of 

flexibility usually relies not on firsthand accounts, but on surveys of accounts from multiple field 

reports, making it difficult to assess the consistency with which operationalized definitions have 

been applied (Greenberg, 2003).  

Behavioural flexibility has been a popular topic of study in animal cognition and that 

trend is likely to persist given how fruitful work on the topic has been in characterizing animal 

behaviour and relating behaviour to brain evolution. However, it is essential to move from vague 

definitions of behavioural flexibility to a recognition that numerous cognitive mechanism can 

generate flexible performance on cognitive tasks and that some of those mechanisms may be 

simple (Audet & Lefebvre, 2017). The need for greater care in experimental techniques for 

studying behavioural flexibility has been acknowledged by researchers in the field and has even 

resulted in novel techniques intended to resolve some of the challenges of studying behavioural 

flexibility (Auersperg et al., 2012). Auersberg et al. (2012) developed a puzzle box to be used for 

cross species comparisons of behavioural flexibility (Figure 1-1). The puzzle box takes into 

account the morphological differences that exist between species and allows for multiple 

different solutions which may prevent cross-species comparisons from being biased towards a 

particular species. The puzzle box has been validated in kea and New Caledonian crows, 

demonstrating successful use of the same apparatus with multiple species (Auersberg et al., 

2012). Although the cross-species puzzle box may not develop into the standard apparatus for 

studying behavioural flexibility, given its reliance on object manipulation and absence of clear 

ecological relevance for most species, it acknowledges the challenges of studying behavioural 

flexibility.  
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Figure 1-1 The Multi Access Box (MAB) designed for use in comparative studies of 
behavioural flexibility with multiple species. The box has four different solutions that 
provide access to the food reward: (1) pulling a string accessible from outside of the 
apparatus, (2) opening a window at the back of the apparatus gaining access to the reward, 
(3) inserting a stick into the apparatus to push the food reward out of the apparatus, and 
(4) dropping a ball into the apparatus to knock the food reward off the platform and out of 
the apparatus. (Figure from Auersperg et al., 2012) 

1.1.2 Adaptive value of flexibility  

Research on behavioural flexibility is not limited to considerations of cognition, it has 

also gained importance regarding ultimate questions about adaptation and evolution. In a study 

of the success of avian species following introduction to New Zealand, Sol and Lefebvre (2000) 

found that species which showed more foraging innovations were more successful in their new 

environment. This relationship between foraging innovations and invasion success was 

confirmed by a follow up study examining the success of avian species following introduction to 

different regions world wide, showing that the original finding was not region specific (Sol, 

Timmermans, & Lefebvre, 2002). These studies suggest that behavioural flexibility can be 
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adaptive in situations where a species must exploit a new environment. Behavioural flexibility 

has also been suggested to play a role in adaptive radiation, that is phenotypical divergence of 

species from a single lineage (Schluter, 2000). Tebbich et al. (2010) examined the relationship 

between behavioural flexibility and one of the most famous examples of adaptive radiation, 

Darwin’s finches in the Galapagos. The hypothesis was that the finches possessed a high degree 

of behavioural flexibility upon arriving in the Galapagos, resulting in high rates of innovation 

and consequent phenotypic variation in foraging.  This acquired phenotypic variation in foraging 

changed the selective pressures different finches were exposed to and led eventually to 

speciation. A battery of behavioural flexibility tests administered to three species of Darwin’s 

finches showed a high rate of behavioural flexibility in all species and supported the role of 

behavioural flexibility in the invasion success and adaptive radiation of the Galapagos finches 

(Tebbich et al., 2010). The importance of behavioural flexibility is not limited to invasion 

success but is also applicable to survival under conditions of human-induced rapid environmental 

change (HIREC). Sih et al. (2010) conducted a meta-analysis on the characteristics that predict 

the success of species in response to HIREC and found that behavioural flexibility was a key 

component in their model.   

1.2 Specialist and generalist foraging strategies 

Although individual bumblebees often show flower constancy (a tendency to visit a 

particular flower species), bumblebee species are typically generalist foragers (Heinrich 

1979/2004). This foraging style is in contrast to that of specialist bumblebee species that forage 

exclusively on a single flower type (Laverty & Plowright, 1988). Specialist species are 

repeatedly faced with the same predictable foraging challenges both within the life of individuals 

and across generations, consequently specialist species sometimes possess behavioural or 
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morphological adaptations to those challenges (Drummon, 1983; Thøstesen & Olesen, 1996; 

Yamada & Boulding, 1998; Laverty & Plowright, 1988; Goulson & Darvill 2004). For 

generalists, the overall challenge of obtaining resources is the same, but the particulars of how 

they obtain those resource (which flowers they extract nectar from) can vary among individuals 

and over generations.  

What advantage does a specialist obtain in exchange for reducing the range of resources 

that it can exploit? Comparisons of specialist and generalist foragers in a variety of taxa show 

that specialists are more efficient at their foraging specialization than generalists are 

(Drummond, 1983; Laverty & Plowright, 1988; Thøstesen & Olesen, 1996; Yamada & 

Boulding, 1998). How do specialists become more efficient? There are two possibilities: (1) they 

have evolved morphological features that facilitate exploiting a particular resource, or (2) they 

have evolved behaviour that facilitates exploiting a particular resource (Laverty & Plowright, 

1988). Examples of morphological differences include the increased claw strength of crab 

species that specialize on hard-shelled prey compared to omnivorous generalist crabs (Yamada & 

Boulding, 1998), and the relationship between tongue length and floral specialization in 

bumblebees (Goulson & Darvill 2004). Alternatively, specialization can occur at the behavioural 

level. A comparison of aquatic specialist snakes and aquatic-terrestrial generalists found that 

specialists were behaviourally more efficient at capturing aquatic prey compared to the generalist 

species (Drummond, 1983). Specialist bumblebees, Bombus consobrinus, that have a longer 

proboscis than generalist bumblebees (Thøstesen & Olesen, 1996; Kearns & Thomson, 2004) 

also show behavioural differences (Laverty & Plowright, 1988). Compared to a generalist 

species of bumblebee, the specialists were able to locate and probe the nectary of their speciality 

plant monkshood (Aconitum) more efficiently (Laverty & Plowright, 1988).  
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In the absence of solid empirical evidence, it has often been assumed generalist 

behavioural foraging strategies and behavioural flexibility occur together. Studies directly 

quantifying the relationship between generalist foraging and rates of innovation, however, have 

shown the relationship to be somewhat nuanced (Overington et al., 2011). Overington et al. 

(2011) compared innovation rate to ecological generalism in 193 bird species and found that 

habitat generalism (the ability to survive in different habitat types) correlated with innovation 

rate, but that diet generalism (foraging on a wide variety of resources) did not. A much expanded 

investigation of generalism and innovation, however, that included 765 bird species did find a 

relationship between diet generalism and innovation (Ducatez, Clavel, & Lefebvre, 2015). Diet 

generalism correlated with food type innovation, in which birds exploited novel food types, and 

technical innovations, in which birds generated novel techniques for handling previously 

exploited resources. There does seem to be a positive relationship between foraging generalism 

and behavioural flexibility, but inconsistencies in research findings on the topic demonstrate the 

importance of establishing the type and mechanism of a generalist foraging strategy when using 

it as an indication of behavioural flexibility (Ducatez et al., 2015).      

1.3 Learning in Bees 

Research on learning in bees dates to the Nobel Prize winning work of von Frisch (1967). 

The early studies done by von Frisch (1967) demonstrated that bees can discriminate between 

colours and can pair colours with rewards. This foundational work was the starting point for 

extensive investigations on associative learning in bees (Menzel, 1990). Among the most 

important techniques for research on simple learning processes in bees is the paradigm to study 

proboscis extension reflex (PER; Takeda, 1961; Giurfa & Sandoz, 2012). In this paradigm, 

stimuli - usually olfactory - are presented to harnessed bees and paired with sucrose reward 
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which triggers an unconditioned response (Bitterman et al., 1983). This classical conditioning 

paradigm became a core technique in bee learning studies and its use led to extensive 

understanding of the neural circuit responsible for olfactory conditioning in the bee brain (Giurfa 

& Sandoz, 2012).       

Although research on the basic aspects of learning and memory in bees has a long 

history, research on more complex cognitive processes is a more recent development.  Zhang, 

Bartsch, and Srinivasan (1996) trained honeybees to navigate through a maze using visual cues. 

The initial maze design was then further adapted into a Y-shaped design that consisted of a series 

of connected cylinders (Zhang, Lehrer, & Srinivasan, 1999; Figure 1-2). Despite the differences 

between the maze used for bees and traditional operant testing boxes used for matching tasks 

with laboratory animals such as pigeons (Roberts, Strang, & Macpherson, 2015), the ‘Y-maze’ 

design allowed researchers to conduct delayed matching-to-sample (DMTS) testing in 

honeybees. In the Zhang et al. (1999) maze bees enter an initial chamber in the apparatus and 

view a sample stimulus. They then travel through the maze to a choice chamber where they can 

follow either the matching stimulus or the non-matching stimulus. A choice of the matching 

stimulus results in bees entering a chamber that contains a sucrose reward. DMTS paradigms are 

the foundation for a wide variety of cognitive testing, so use of the paradigm allowed researchers 

to demonstrate honeybees’ ability to discriminate based on numerosity (Gross et al., 2009) and 

learn concepts (Giurfa et al., 2001), and even show some evidence of metacognition through 

adapting the y-maze design to be operationally similar to the Hampton (2001) metamemory 

paradigm (Perry & Barron, 2013).  
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Figure 1-2 The Y-maze apparatus as used for DMTS experiments with honeybees. The bee 
enters the apparatus and is presented with a sample stimulus (S). The bee then continues 
through the apparatus for a distance that generates a delay until it reaches the choice 
chamber. In the choice chamber the bee encounters two choice stimuli (C1 and C2), one of 
which matches the sample stimulus and one that does not. Entering the reward chamber 
indicated by the matching stimulus results in a sucrose reward. The entrances to the choice 
and reward chambers are covered by baffles that prevent the bee from seeing the choice 
stimuli or reward before entering the chamber. (Figure from Zhang et al., 1999) 
 
 Bumblebees also have demonstrated impressive learning abilities. Bumblebees are able to 

navigate a T-maze by using a colour cue (Chittka & Thomson, 1997). They failed, however, to 

learn the Y-maze DMTS task described in Figure 1-2 for honeybees (Sherry & Strang, 2015). 

Bumblebees have successfully learned a different DMTS task, however, in which the apparatus 

was a modified version of the radial arm maze developed for rats by Olton and Samuelson 

(1976). Research on DMTS in bumblebees suggests that they are capable of using matching to 

solve a task, like honeybees do, but are predisposed to use alternative strategies if possible 

(Thompson & Plowright, 2016). More recently bumblebees have been the subject for 

investigation of problem solving and physical cognition (Mirwan & Kevan, 2014; Alem et al., 

2016; Loukola, Perry, & Chittka, 2017). The apparatuses that have been used in this research are 

modelled after those used to study physical cognition in birds and primates (Heinrich & 

Bugnyar, 2005; Schmitt, Pankau, & Fischer, 2011). These tasks have required bumblebees to lift 
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and roll objects (Mirwan & Kevan, 2014; Loukola et al., 2017) and pull strings (Alem et al., 

2016), all of which were successfully completed by the bumblebees. In one of the physical 

cognition experiments with bumblebees, the successful solution spread socially within colonies, 

leading the authors to suggest bees were demonstrating rudimentary culture (Alem et al., 2016).   

It is clear that bees have a rich behavioural repertoire, including impressive learning 

abilities in a variety of domains, and are not the ‘reflex machines’ that they were once believed 

to be (Menzel, 1990).     

1.4 The bee brain 

 
All of the learning described in the previous section was accomplished by bees with a 

brain that contains around 1 million neurons (Chittka & Niven, 2011), in contrast to the 

approximately 200 million neurons in the brain of the more traditional subject of animal learning 

cognition research, the laboratory rat (Rattus norvegicus; Herculano-Houzel & Lent, 2005). In 

addition to their learning abilities, bees have a large repertoire of behaviour. Chittka & Niven 

(2011) identified 59 distinct behaviours of honeybees, which is perhaps small compared to 

laboratory rats, but not smaller by a factor of 200 million as is the case with neuron number. 

How is it that bees are able to generate so many behaviours with so few neurons? If this question 

is rephrased to ask not why bee brains are so small, but why vertebrate brains are so large, then 

the answer lies largely in the relationship between brain and body size (Striedter, 2005; Roth & 

Dicke, 2005). Larger organisms take in more sensory input than smaller organisms and require 

more neural architecture to process that information (Striedter, 2005). Additionally, larger 

organisms require a nervous system that can generate large scale motor output (Striedter, 2005). 

The scaling of brains to body size can account for much of the discrepancy in brain size between 

bees and vertebrates, but even taking this into consideration the bee brain still seems to generate 
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remarkable behavioural output given its size (Chittka & Niven, 2011). Having been dubbed ‘the 

amazing mini-brain’ (Giurfa, 2003), the bee brain is of interest to neuroscientists investigating 

the interplay of brain and behaviour. The simplicity of the bee brain provides an opportunity to 

map behaviour to neural structures and circuits in a way that is not presently possible in larger 

brains (Heisenberg, 1998).  

1.4.1 Structure  

The bee brain has three separate divisions, the protocerebrum, the deutocerebrum, and 

the tritocerebrum (Snodgrass, 1910; Figure 1-3). The deutocerebrum includes the antennal lobes, 

which are the olfactory sensory region of the bee brain. The tritocerebrum controls the 

sympathetic system. The protocerebrum is the division of particular interest here because it 

includes the mushroom bodies (corpora pedunculata), the brain region associated with learning 

in insects. In addition to containing the mushroom bodies the protocerebrum includes the optic 

lobes, which are the visual sensory region, and the central complex, which controls motor output 

(Farhbach, 2006). The structure of the mushroom bodies varies dramatically in size and shape 

across arthropod taxa, but in all instances they consist of Kenyon cells (Fahrbach, 2006), named 

for F. C. Kenyon the researcher who first described them in 1896 (Fahrbach, 2006). Kenyon cells 

appear bilaterally and consist of a neurite with axon-like and dendrite-like branches (Fahrbach, 

2006). Developmentally, the dendritic branch of the Kenyon cells undergoes arborization that 

produces the calyces of the mushroom bodies, and the axon-like branch generates the two 

mushroom body lobes (Fahrbach, 2006).  There are three different types of Kenyons cells in the 

bee brain, varying in size and location, that are the result of neurogenesis patterns during 

development (Fahrbach, 2006). The calyces vary in the insect brain from absence in dragonflies, 
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to doubled calyces, a medial and lateral calyx in each hemisphere, found in Hymenoptera 

(Fahrbach, 2006).  

 

Figure 1-3 The major structures of the bee brain and their location within the head 
capsule. The mushroom bodies (MB) of the protocerebrum are shown in blue, with the 
calyces (Ca) in dark blue, and the peduncle and lobes shown in light blue. The central body 
(CB) is also part of the protocerebrum as are the optic lobes shown in green, the lobula (Lo), 
the medulla (Me) and the lamina (La). The olfactory regions of the deutocerebrum are the 
antennal lobes (AL).  The suboesophageal ganglion (SOG), shown just below the antennal 
lobes, innervates lower parts of the head, and plays a role in olfactory conditioning. (Figure 
from Chittka and Niven, 2009).  
 

 Aside from gross morphological differences between taxa, the internal structure of the 

calyces also varies across taxa (Strausfeld et al., 1998). In the majority of insects the primary 

input into the calyces is olfactory but in Hymenoptera a considerable amount of input also comes 

from visual regions (Strausfeld et al., 1998). These inputs from olfactory and visual regions are 
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segregated with the calyces. The lip region receives olfactory input, the collar receives visual 

input, and the basal ring receives input from both visual and olfactory sensory regions, though 

the zone of input within the basal ring differs for each modality (Strausfeld et al., 1998; 

Fahrbach, 2006). The presence of projections from both visual and olfactory sensory to the 

mushroom bodies makes the mushroom bodies a multimodal sensory integration centre in the 

bee brain (Strausfeld et al., 1998). 

1.4.2 Mushroom body evolution and function  

The large variation in mushroom body morphology across insect taxa provides an 

exciting opportunity for investigations of the evolutionary history and function of the mushroom 

bodies (Strausfeld et al., 1998). Research on these questions began shortly after Dujardin (1850) 

discovered the mushroom bodies when he conducted experiments on their function by 

decapitating different species on insect that differed in the size of their mushroom bodies. He 

observed that those insects with smaller mushroom bodies displayed greater muscle coordination 

following decapitation and concluded that the size of the mushroom bodies was indicative of free 

will, with small mushroom bodies providing automatic or innate behaviour and large mushroom 

bodies providing greater behavioural control (Dujardin, 1850; Strausfeld et al., 1998). Although 

Dujardin’s conclusions did not refer specifically to learning and memory, he hypothesized that 

the size and complexity of the mushroom bodies was correlated with complexity of behavioural 

output and intelligence (Strausfeld et al., 1998).  Clear evidence for a relationship between 

learning and the mushroom bodies would come considerably after Dujardin’s work in the 

ablation studies of de Belle & Heisenberg (1994).  

The association between mushroom bodies and behavioural complexity and learning, 

suggests that the increase in mushroom body volume, particularly in Hymenoptera, is due to 
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evolutionary pressure for greater learning capacity (Farris & Roberts, 2005). This is further 

supported by two lines of research, the first a between species comparison and the second a 

within species comparison between different castes of bees. Comparisons of generalist foraging 

insect species to specialist foraging species show that gyri-like structure of the calyces, found in 

the Hymenoptera, occurs only in generalist species (Farris & Roberts, 2005). The gyri-like 

calyces have larger surface area and volume, suggesting that expansion of the calyces is required 

to support the increased flexibility and learning demands of generalist foraging (Farris & 

Roberts, 2005). This conclusion from phylogenetic comparisons is supported by research 

showing that the mushroom bodies of foraging honeybees and bumblebees are larger than bees 

that are engaged in tasks within the hive (Farris, Robinson, & Fahrbach, 2001; O’Donnell, 

Donlan, and Jones, 2004). These results support a relationship between the learning demands of 

foraging and expansion of the mushroom bodies. There are competing theories however on the 

driving force behind both developmental and evolutionary expansion of the mushroom bodies. 

Molina and O’Donnell (2007) found that developmental changes in a eusocial wasp occurred not 

coincident with foraging onset, but with social dominance. The relationship between larger 

mushroom bodies and social factors also has evolutionary support given that the mushroom 

bodies in Hymenoptera, an order containing eusocial insects, are large and contain gyri-like 

calyces (Strausfeld et al., 1998). Additionally, comparative work in social wasps found that the 

increased social interaction demands on queens is related to mushroom body volume and not the 

foraging demands on workers (O’Donnell, Clifford, and Molina, 2011). Regardless of whether 

mushroom body expansion in bees is due to increased foraging complexity or increased social 

complexity the relationship between mushroom body volume and behavioural complexity is 

generally supported.  
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1.5 Study species 

All experiments described in the following chapters were conducted with Bombus impatiens 

(Figure 1-4). Bombus impatiens is a bumblebees species in the subgenus Pyrobombus that is 

native to Ontario and a large part of the Eastern United States (Kearns & Thomson, 2001). A 

survey of North American bumblebee species showed Bombus impatiens to be the most 

prevalent in eastern regions (Cameron et al., 2011). Bombus impatiens nests below ground, is a 

short tongued species, and a generalist forager (Kearns & Thomson, 2001). Bombus impatiens 

shows the typical social structure and division of labour of bumblebees, consisting of a queen, 

female workers, and males produced during the reproductive phase of the annual colony cycle 

(Heinrich 1979/2004; Kearns & Thomson,2001). The colony cycle includes the emergence of 

queens from hibernation in the spring, the production of workers throughout the summer, and the 

production of reproductive queens and males at the end of the cycle (Kearns & Thomson, 2001). 

During the first phase of the colony cycle the queen both lays eggs and forages to provision the 

colony.  Following the development of the first batch of workers the queen remains in the colony 

to produce eggs and the female workers take over provisioning the colony (Heinrich 1979/2004; 

Kearns & Thomson, 2001). Worker bumblebees are largely non-reproductive, though they can 

lay unfertilized eggs, and they complete a variety of tasks within the nest as well as foraging to 

collect nectar and pollen for the colony. Bumblebees do not show the age polyethism that is 

typical of honeybees, wherein a worker will complete tasks within the hive for the first couple of 

weeks of life and then transition to foraging (Robinson, 1992). In bumblebees division of labour 

appears to be determined by size, with larger workers engaging in foraging tasks and smaller 

workers remaining in the colony (Goulson et al., 2002).   
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Figure 1-4 Bombus impatiens forager engaged in a colour discrimination. 

Bombus impatiens have been used extensively as both commercial pollinators and research 

subjects. Bombus impatiens pollinate a variety of commercial species (Artz & Nault, 2011), but 

are most important in the production of tomatoes (Velthuis & van Doorn, 2006). Their 

importance to tomato production is due to sonication, in which a bumblebee grasps a flower and 

vibrates its body, triggering the release of pollen. Tomato flowers require this process to release 

pollen, so in the absence of bumblebees tomato flowers must be mechanically vibrated (Velthuis 

& van Doorn, 2006). Along with their commercial availability Bombus impatiens is growing in 

popularity as a research subject due to their behavioural repertoire, success on a variety of 

learning and memory tasks, and their potential for neuroscience research (Riveros and 

Groneberg, 2009).   

As an important wild pollinator, an important commercial pollinator, and a species for which 

there is previous experimental research on learning and cognition, Bombus impatiens is an ideal 

subject to explore the topics of interest in this thesis. 

Behavioural Flexibility in Bumblebees
Caroline Strang
PhD Advisory Committee Meeting - March 2017 
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1.6 Dissertation structure 

The overall objective of this thesis is to increase our understanding of the cognitive and 

neural mechanisms of the flexible behavioural output of bumblebees. This objective was divided 

into three specific goals that correspond to the three data chapters.  

In Chapter 2 I describe the process of developing and validating a model for studying 

flower handling, the process of extracting nectar from flowers. The model is then used to 

generate a detailed characterization of the learning component of flower handling and propose 

cognitive mechanisms for this behaviour.  

Chapter 3 uses the model developed in Chapter 2 to revisit Darwin’s interference 

hypothesis (Darwin, 1876). The hypothesis posits that switching between flower types while 

foraging should result in efficiency costs. The hypothesis has not been supported by empirical 

findings (Woodward & Laverty, 1992) and the goal of this chapter is to determine why the 

predicted efficiency costs seem not to occur.  

The final data chapter, Chapter 4, explores the relationship between behavioural 

flexibility and the mushroom bodies of the bumblebee brain. Previous research has confirmed a 

relationship between mushroom body volume and learning (Gronenberg & Couvillon, 2010), but 

not behavioural flexibility. Chapter 4 describes an experiment in which the correlation between 

bumblebees’ performance on a test of behavioural flexibility and mushroom body volume was 

examined.  

In Chapter 5 I integrate the results and conclusions from the three data chapters with 

previous research findings on behavioural flexibility and the neural underpinnings of flexibility 

in bumblebees. I also discuss the applications of my research, both as a starting point for future 

research, and as information that may aid in bumblebee conservation.    
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Chapter 2 
2 Development and application of a model of flower handling in 
bumblebees (Bombus impatiens) 
2.1 Introduction 

 All foraging bumblebees are tasked with the identical job of provisioning their colonies 

with nectar and pollen extracted from flowers, but which flower species they visit varies 

dramatically across individuals and even across foraging trips (Heinrich, 1976a; 1979a/2004; 

Kearns & Thomson, 2001). This variation in flower visits across bees is indicative of the 

generalist foraging strategy typical of most bumblebee species (Kearns & Thomson, 2001). This 

foraging strategy has the obvious advantages of being flexible and allowing for adaptation to 

changes in flower availability across geographic locations and seasons, but the advantages of 

generalist strategies come at a cost (Dall & Cuthill, 1997; Mery & Berns, 2010). The flower 

types on which bumblebees forage differ greatly in morphology, which in turn creates 

differences in the location and accessibility of nectar and pollen (Figure 2-1) (Laverty, 1980).  

Bees must learn how to extract nectar and pollen from each of the different flower species that 

they visit, referred to as flower handling (Heinrich, 1976a;1976b;1979b; Laverty, 1980). This 

investment in learning, or gathering information about resources, is the cost of generalism (Dale 

& Cuthill, 1997; Mery & Berns, 2010).   

How is it that bumblebees are able to incur the cost of generalism and learn such a wide 

variety of handling techniques? Bees have a relatively simple nervous system (Chittka & Niven, 

2009), which makes their ability to behave flexibly, a trait often associated with intelligence 

(Roth & Dicke, 2005), even more remarkable. Although extensively studied from a variety of 

perspectives, the precise mechanisms of flower handling and the key to bumblebees’ flexibility 

remains undescribed.  
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Figure 2-1 Bumblebees depicted foraging on different flower morphologies. The flower 
species are Aconitum columbianum (1), Mertensia ciliata (2), Oxytropis splendens (3), 
Delphinium barbeyi (4), and Pedicularis groenlandica (5). Figure adapted from Laverty 
(1980). 

Flower handling by bumblebees is certainly not a novel research focus, having been 

identified as a topic of interest by Charles Darwin in his extensive characterizations of the role of 

pollinators in fertilization of plants (Darwin, 1876). Darwin made two key observations, (1) bees 

improve their flower handling abilities with experience, and (2) individual insects tend to visit 

1328 CAN. J. ZOOL. VOL. 58, 1980 

FIG. 2. Normal visiting positions of Bombus spp. foragers on flowers of A .  columbianum (I), M .  ciliata (2), 0. splendens 
(31, D. barbeyi (4), and P. groenlandica (5). 

Ca
n.

 J.
 Z

oo
l. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.c

om
 b

y 
U

ni
ve

rs
ity

 o
f W

es
te

rn
 O

nt
ar

io
 o

n 
08

/1
5/

17
Fo

r p
er

so
na

l u
se

 o
nl

y.
 



 

 

26 

 
 
 

the same flower species while foraging, which is now referred to as flower constancy. Flower 

constancy within individuals, and the causes of constancy, has been a dominant theme in work 

on foraging bumblebees (Free, 1963; Heinrich, 1976b; 1977; Woodward & Laverty, 1992; 

Gegear & Laverty, 2005; Raine & Chittka, 2007a). However, it is the former of the two, 

improvement in flower handling with experience, that is of interest in this chapter. 

2.1.1 Learning on flower handling tasks  

Early investigations of flower handling were done with varying degrees of formality as part 

of general observations of foraging and pollination on flowers in the wild (Darwin, 1876; 

Macior, 1966; Weaver, 1965). Despite the lack of direct experimental study, these early works 

recognized the role of learning in flower handling and consistently advocated for a combined 

innate and learned mechanism for flower handling (Darwin, 1876; Weaver, 1965; Macior, 1966), 

a hypothesis that was subsequently supported by experimental investigations that observed the 

entire course of learning in foraging bumblebees (Heinrich, 1979b; Laverty, 1980). Few of these 

sources fully describe what is meant by innate, but here we will consider behaviours that arise 

without learning and are not modified through learning to be innate (Tierney, 1986). 

Heinrich (1979b) observed that naïve bumblebees (B. vagans) made numerous errors while 

attempting to extract nectar from flowers, but with experience reached asymptotic performance 

at 90% accuracy, with accuracy defined as the absence of behaviours that did not result in nectar 

access. Similar observations were made by Laverty (1980) in three difference bumblebee species 

(Bombus flavifrons, B. kirbyellus, B. sylvicola). Inexperienced bees made errors in the locations 

that they looked for nectar, as well as in the behaviours that they engaged in to access flower 

resources, however, with experience the behaviours of the inexperienced bees converged with 

that of experienced bees observed foraging in the wild (Laverty, 1980). Laverty (1980) 
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quantified foraging efficiency not only with behavioural errors, but also with time taken to 

extract nectar. This additional measure also showed improvement with experience.  

The pattern of improvement in flower handling was not consistent across all flower species. 

Bees made very few errors initially on simple flowers and showed a prolonged period of learning 

on more complex flowers (Heinrich, 1979b; Laverty, 1980). It was subsequently shown that 

flower complexity had a significant influence on acquisition of flower handling (Laverty 1994). 

Flower species can be placed into three broad types of complexity, (1) exposed nectaries, (2) 

nectaries at the base of a long corolla tube, and (3) nectaries that are blocked by overlapping 

petals or unusually placed (Laverty, 1994). Bees take the longest time to acquire competency on 

flowers with closed entrances that required bees to push apart petals to access nectaries (Laverty, 

1994). 

Another noteworthy observation in these early investigations of flower handling was that the 

errors observed in naïve bumblebees were not random (Laverty, 1980; Laverty, 1994). Bees’ 

tended to direct their erroneous behaviours at particular parts of floral inflorescences, such as 

points of petal convergence (Laverty, 1980). This pattern of non-random errors has not been 

consistently observed, with Weaver (1956) observing that bees foraging on novel flowers 

appeared to probe areas at random, however, the implication that there is an innate preference to 

direct behaviours to particular regions of flowers is important in consideration of the 

mechanisms of flower handling. Additionally, analysis of naïve bumblebee flower approach 

behaviours in the presence of a various visual and olfactory cues has shown that some landing 

and probing responses are guided by innate responses to flower properties (Lunau, 1991). These 

findings support the uncontroversial view that innate processes are important in flower handling 

and it is not entirely a trial and error driven learning process wherein a foraging bee would be 



 

 

28 

 
 
 

akin to one of Thorndike’s cats (1911/1970), attempting to get into the puzzle box rather than 

out.  

The numerous demonstrations of improvement in flower handling with experience in 

bumblebees (Heinrich, 1976b; 1979b; Laverty, 1980; 1994) and the clear role of innate processes 

in foraging make it almost irrefutable that flower handling results from a combination of innate 

predispositions and learning. However, there remains considerable ambiguity about the content 

of both the innate or learned component. Are the innate processes limited to the approach 

behaviours identified by Lunau (1991) or do they extend to the actual manipulation of the 

flower? Does the learned component consist of novel behaviours or just a modification of 

existing innate behaviours? Laverty (1994) suggested that the difference in performance on 

simple and complex flowers was a result of programed responses being sufficient to extract 

nectar from simple flowers, but that programed responses were not sufficient to access rewards 

in complex flowers and additional behaviours had to be learned. This is a more fleshed-out 

theory, but it still falls short of a full characterization of flower handling learning. 

2.1.2 Modeling motor learning in the lab 

There are a number of investigations of motor skills in bumblebees that involve observing 

behaviour on artificial foraging tasks that sometimes bear very little resemblance to handling real 

flowers (Chittka & Thomson, 1997; Chittka, 1998; Mirwan & Kevan, 2014; Alem et al., 2016). 

Some of these tasks are explicit attempts to model flower handling and natural foraging 

behaviours (Chittka & Thomson, 1997; Chittka, 1998) and others are specific attempts to test 

bumblebees on tasks dissimilar to any they might naturally encounter (Mirwan & Kevan, 2014; 

Alem et al., 2016). Given bees’ flexibility when initially foraging (Heinrich, 1976a; 

1979a/2004), the large morphological flower variation that they are able to handle (Heinrich, 
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1976a; Laverty,1980), and their ability to forage on non-native flowers that they could not 

possibly have encountered in their previous foraging experience (Heinrich, 1979b), it is likely 

that all of the tasks, regardless of the intent of the researchers, are measuring flexible use of 

natural foraging behaviours. The learning and motor system involvement in all of these 

investigations makes them applicable to understanding flower handling.   

 Chittka & Thomson (1997) developed an apparatus in which bumblebees needed to turn 

either left or right in a t-maze with the correct direction indicated by a colour stimulus at the 

apparatus entrance. The task was akin to bumblebees entering a flower and then reorienting 

within the corolla to access nectar rewards. Similar to observations of bees when foraging on 

natural flowers, error rates of naïve bees in early trials were high and handling times were long. 

With experience bees did improve to asymptotic error rates that were comparably low as those 

observed in more natural foraging conditions, around 5%. Bumblebees completed hundreds of 

trials on the task to reach asymptotic performance, but when looking exclusively at directional 

errors (i.e. instances when bees turned the wrong way) significant improvement on the task 

occurred in the first 10 trials. This rapid improvement observed under controlled laboratory 

conditions is an indication that although previous observations had included large numbers of 

trials it may only be necessary to observe early trials to characterize learning on flower handling 

tasks.  

 In addition to the numerous attempts to study flower handling in the laboratory there has 

recently been a good deal of research on non-natural complex motor learning in bumblebees 

(Mirwan & Kevan, 2014; Alem et al., 2016). This work is largely an attempt to extend the study 

of physical cognition, popular in primates (Povinelli, 2003; Emery & Clayton, 2009) and some 

avian species (Seed et al., 2006; Emery & Clayton, 2009), to bumblebees.  The tasks used to look 
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at physical cognition in bumblebees range from pushing aside a centrifuge tube lid (Mirwan & 

Kevan, 2014) or ball (Mirwan & Kevan, 2014), to pulling on a string (Alem et al., 2016), and 

demonstrate large flexibility in bumblebee motor learning. However, bees in these studies were 

trained in a step-wise fashion to perform the required motor behaviours, which limits the 

applicability of the findings to studies of flower handling. When extracting nectar and pollen 

from flowers foraging bumblebees must successfully manipulate the entire flower, without the 

benefit of rewards for intermediate accomplishments. Despite the limited information about 

bumblebees’ natural foraging behaviours that can be learned from training them on non-natural 

tasks, they do provide information on the range of motor behaviours that bumblebees will exhibit 

in pursuit of rewards and are therefore helpful in the development of any laboratory models of 

motor behaviour in bees.  

2.1.3 Current study 

 Investigations into how bumblebees are able to forage on a wide variety of flower 

morphologies, demonstrating both flexibility and expertise, have been extensive, but nonetheless 

insufficient to fully characterize flower handling learning. The assumption of researchers has 

been that flower handling has both innate and learned components, but understanding of the 

contents of either of these processes is incomplete. The goal of the current study was to develop 

a model of flower handling behaviour in the laboratory and measure the performance of 

bumblebees on the task in a way that allowed for the quantification of both innate and learned 

components of flower handling.   

2.2 Experiment 1 – Model Development 

The first experiment in this chapter develops the flower handling model. The goals of this 

experiment were to confirm that the apparatus could be successfully solved by bumblebees, and 
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to provide an initial characterization of bee behavior on this complex flower handling task. The 

apparatus was intended to model the most complex flower type described by Laverty (1994), 

wherein the bee must move petals to access the nectary. Given that experienced wild bees 

converge on one solution when foraging on these complex flowers (Laverty,1994) the apparatus 

was designed to have a single solution and accurately model natural complex flowers. The 

apparatus was also designed to be solvable by bees without shaping given that bees foraging in 

the wild are not reinforced for incomplete components of handling on complex flowers.   

2.2.1 Methods 

2.2.1.1 Subjects and housing 

Subjects were bumblebee foragers (Bombus impatiens) from 3 colonies acquired from 

Biobest Canada Ltd. (Leamington, ON). Bees were housed in a 3.0 X 8.5 m room within 24h of 

arrival at Western University (Figure 2-2). Biobest colony boxes consisted of a plastic box 

within a cardboard box (24(w) X 30.5(l) X 20(h) cm) and were placed on a table (0.9 X 1.8 m) in 

the housing room and the built-in entrance/exit door in the colony box was opened to allow bees 

to exit the colony and forage without restriction in the room. The bees were provided with ad 

libitum pollen directly in the colony, and ad libitum 20% sucrose solution available from five 

foraging patches within the room. Each foraging patch consisted of a white 30.5 X 30.5 cm 

SmoothfoamTM polystyrene sheet and five artificial flowers. The artificial flowers were made 

from clear 7ml plastic microtubes (Axygenâ,Union City, CA) with a clear plastic corolla 

approximately 5 cm wide.  
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Figure 2-2 Bumblebee housing room. The bumblebee colony box (C) was placed on a table 
within the housing room and bumblebees were given unrestricted access to the room. Each 
artificial foraging patch (F) contained five artificial flowers supplied with 20% sucrose. 
The two testing apparatuses are shown in their positions in the room. The apparatuses 
remained in the housing room throughout the entire experiment. 
 

Individually bees were tagged for identification with either plastic number tags 

(Betterbee Inc., Greenwich, NY) or with Posca paint markers (Mitsubishi Pencil Co.). The 

tagging procedure involved collecting bees in a specially designed tagging apparatus that 

immobilized bees between a sponge and plastic mesh allowing the tag to be applied to the bee. 

All bees were tagged while engaging in foraging trips.  

2.2.1.2 Apparatus  

There were two testing apparatuses available to bees in the housing room. Each apparatus 

was on a separate 0.9 X 1.8 m table with a foraging patch in front that encouraged bees to visit 
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the area of apparatus. The two apparatuses were identical and differed only in location in the 

room.  

The apparatus (Figure 2-3) consisted of a 2 cm diameter PerspexÒ tube with two slots in 

it in which ‘doors’ fit smoothly. The tube was elevated between a stack of LEGOÒ blocks and a 

circular 13.2 litre white tub (28 cm diameter) manufactured by M & M Industries Inc. The tub 

had a hole through one side in which the tube fit tightly, which served to immobilize the tube 

during testing. The end of the tube that was elevated by LEGOÒ blocks was not immobilized, 

but did not move during testing due to its attachment to the tub at the other end. There were 

artificial flowers at both the entrance to the tube and the exit into the white tub which could be 

baited with sucrose solution. The doors that were used consisted of white construction paper 

pieces cut in a rectangular shape with a semi-circle end that fit the interior shape of the tube. The 

doors fit through the slots in the tube, and made contact with the bottom of the tube, but did not 

conform perfectly to the bottom of the tube. This imperfect fit was essential to the task as it 

allowed bees to sit their legs in between the door and the tube. 

2.2.1.3 Pre-training  

The colony was placed in the housing room and given 1-2 weeks to transition to foraging 

on the sucrose available in the testing room. Once the colony was sustaining itself through 

foraging on the sucrose provided, tagging and testing began.   

Individual bees were habituated to the testing chamber by foraging freely through the 

apparatus when the apparatus was not in use. The apparatus was baited in two locations, at the 

entrance to the tube and at the exit, where the reward would be provided during testing. Only 

bees that had been observed making habituation flights through the apparatus were tested.   
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Figure 2-3 Apparatus used in Experiments 1 and 2. The apparatus consisted of a 2 cm 
diameter PerspexÒ tube with two slots in which ‘doors’ fit smoothly. Artificial flowers at 
the entrance and exit were baited as needed. In Experiment 1 both of the doors were white 
construction paper. In Experiment 2 the reward door was white construction paper and the 
exit door was a metal door that could not be opened by the bees. 

2.2.1.4 Testing Procedure 

At the start of testing sessions free foraging bees were observed and bees that were 

making trips to the apparatus were identified as candidates for testing and tagged. Once a bee 

was identified for testing the apparatus was cleared of all other bees by both removing the lid on 

the reward bucket and placing metal un-openable doors in the tube so that bees could not enter. 

The reward location was then baited with sucrose, and the sucrose was removed from the 

entrance.  
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When a tagged bee approached the apparatus experimenters removed the metal doors 

from the tube to allow the bee to enter. Once the bee was in the tube two construction paper 

doors were inserted into the tube, one that could be opened to access food reward and one that 

could be opened to exit. Trials ended either when the bee successfully opened one of the doors, 

or when 300 seconds had passed. A video was taken of each trial using a HERO3 video camera 

(GoPro Inc., USA). Following opening a door the bee was allowed to either leave the apparatus, 

if the exit door was opened, or to fill to repletion on the reward flower if the reward door was 

opened. Once the bee had completed a trial and left the apparatus the apparatus was reset for the 

next visit by a tagged bee.  

Bee identification, time of day, and trial duration were all recorded by hand during testing 

and all other measures were collected during video analysis.  

2.2.1.5 Video scoring 

Videos were scored using Observer XT, which allowed the total duration of each motor 

behaviour within a trial to be quantified. Latency to success was measured from the video 

recordings in order to get a more accurate measure than those taken during testing sessions. 

Latencies for each trial began when bees entered the apparatus and the door was inserted to close 

them into the apparatus. It was found that bees could open the apparatus door by either lifting the 

door and sliding upside down underneath, or by lifting the door entirely out of the apparatus. In 

order to obtain a latency score that was accurate across these solution types, latency was stopped 

when bees had 50% of their bodies under the door, a position which always resulted in 

successfully opening the door. On trials where bees failed to successfully open a door their 

latency was recorded as the max trial time (300s). Four distinct behaviours, which will be 

identified and described in the results section, were observed on the video recordings. The 
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durations of two of the four behaviours on each trial were quantified. The two behaviours were 

scored as mutually exclusive. The measurements taken during video scoring were used to 

calculate the proportion of time spent inverted and the proportion of time spent pushing for each 

trial for each bee.  

2.2.1.6 Data Analysis 

In order to account for large individual differences in performance, difference scores 

were calculated for each bee for every trial, where their performance on the first trial was 

subtracted from their performance on each subsequent trial. Individual differences were large 

across all three measures of performance (i.e. latency, time inverted, and time pushing), so 

difference scores were calculated for each. The difference scores were used for both figures and 

analyses.  

All data were analyzed using IBMÒ SPSSÒ. When ANOVA was used Greenhouse-

Geisser corrected values were used if sphericity assumptions were violated.  

2.2.2 Results 

A total of 42 bees completed trials in the apparatus and of those, 33 completed at least 

one successful trial in which they lifted a door to either leave the apparatus or obtain a reward. 

Statistical analysis is restricted to 12 bees that each completed multiple trials. The first 9 trials 

completed by each bee were used in the analysis, because too few bees completed more than 9 

trials to analyze. Of the trials included in the analyses, there were 13 trials in which the bee failed 

to open one of the doors. The inter-trial-intervals were highly variable across and within bees 

ranging from 4min to 24h.   

2.2.2.1 First trial performance 
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Videos of the first trial by all 12 bees were viewed to establish a behavioural repertoire 

for Bombus impatiens on the task. Four behaviours were identified as part of the bumblebees’ 

behavioural repertoire; (1) inverting, defined as the bee having greater than 50% of its underside 

exposed, (2) pushing, defined as appearing to apply pressure when one or more legs are touching 

the door while right side up, (3) proboscis extension, defined as clear extension of the proboscis, 

and (4) biting, defined as biting the door with the mandibles. Bees were initially biased towards 

either inverting, pushing, or both as bees were more likely to engage in these behaviours in the 

first 30s of the trial than either proboscis extension or biting (X2(3) = 9, p = .029) (Figure 2-4). It 

was confirmed that inverting was the only behaviour that would result in successfully opening 

the door. This strategy was used in all successful trials.   

 

Figure 2-4 Percentage of bees showing each behaviour in the first 30s of the first trial. 
Significantly more bees spent time flipped and pushing in the tube when compared to 
biting or proboscis extension (PE). Bars with different letters differ significantly. 

2.2.2.2 Performance across trials  
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Based on the behavioural repertoire established in analysis of the first trial performance it 

was decided that latency to success, time inverted, and time pushing would be scored for all trials 

as a measure of learning and change in behaviour across trials. The scale of movement involved 

in proboscis extension and biting meant that it was not possible to accurately score these 

behaviours with more detail than presence or absence.  

2.2.2.2.1 Latency  

Repeated measures ANOVA was used to analyze change in latency across trials. There 

was no change in performance across trials (F(8,88) =  .93, p=.49)(Figure 2-5).  

 

Figure 2-5 Latency, time inverted, and time pushing for Experiment 1. Mean difference 
scores are indicated by lines and standard error of the mean is shown with shading. 
Changes in latency, proportion of time inverted (Inverting), and proportion of time 
pushing (Pushing) were all non-significant. 

2.2.2.2.2 Time inverted  

A repeated measures ANOVA showed no change in performance across trials (F(8,88) = 

0.148, p = .99)(Figure 2-5).  
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2.2.2.2.3 Time pushing  

A repeated measures ANOVA showed that time pushing did not change across trials 

(F(8,88) = 1.691, p = .11)(Figure 2-5).  

2.2.2.2.4 Individual differences  

Analysis at the level of individual bees revealed that three bees showed reductions in 

latency across trials that were significant in logarithmic regression analysis (Bee 1: R2 = .807, 

F(1,7) = 29.2, p < .001; Bee 2: R2 = .711, F(1,7)=17.2, p = .004; Bee 3: R2 = .664, F(1,7) = 13.8, 

p = .007) (Figure 2-6).  

 

Figure 2-6 Individual latency difference scores for three bees from Experiment 1. Latencies 
from each of the three bees depicted show significant logarithmic regressions across trials. 

2.2.2.3 Bee size and latency  

In order to test for an influence of body size on performance head cap width was used as 

a measure of body size (Mares, Ash, & Gronenberg, 2005) and compared to performance on trial 

1. Linear regression revealed no relation between head size and first trial performance (R2 = .065, 

F(1,11)= 0.696, p = .42).  
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2.2.3 Discussion 

The primary goal of this experiment was to develop a model of flower handling in the lab 

that could be used for subsequent exploration of flower handling. Multiple bees were able to 

successfully open the door in the apparatus, willing to complete multiple trials, and converged on 

the same solution. Additionally, a subset of bees showed learning trends, as measured by reduced 

latency, across trials. These findings show that development of the model was successful. 

The same four behaviours (inverting, pushing, proboscis extension, and biting) were 

generated by all bees when the door was encountered in the apparatus. The universal nature of 

these behaviours strongly suggests that they are part of an innate repertoire of behaviours. The 

presence of an innate component to flower handling has been widely proposed (Darwin, 1876; 

Weaver, 1965; Macior, 1966; Heinrich, 1979b; Laverty, 1980), but there has been little 

consideration of exactly what that innate component might be. These data are consistent with the 

innate component being a set of motor patterns initiated when encountering a flower petal while 

trying to access nectar.  

Improvement with experience has been a very consistent finding of flower handling 

research (Heinrich, 1976b; 1979b; Laverty, 1980, 1994), however there was no overall effect of 

experience found here. In previous observations of flower handling, bees made multiple flower 

visits in a single foraging trip and multiple foraging trips in quick succession (Heinrich, 1976b; 

1979b; Laverty, 1980, 1994). In this experiment bees were tested opportunistically, making only 

one flower visit in each foraging trip and experiencing variable delays of up to multiple days. 

Therefore, it is possible that the highly variable testing schedule had an influence on 

performance and interfered with bees’ ability to improve across trials.  
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Although there was no overall effect of experience on performance, there were three 

individual bees that did show significant improvement across trials. This finding makes it likely 

that learning, as measured by improvement in performance, is possible on the task and that 

variation in testing conditions across bees may have affected the results.  

Preliminary use of the model in this experiment was successful, in that bees were 

successful in opening the apparatus. However, the opportunistic self-initiated testing schedule for 

bees and consequently highly variable inter-trial intervals (ITIs) interfered with my ability to 

draw clear conclusions about the involvement of learning in bees’ performance.  

2.3 Experiment 2 – Flower Handling Learning & Forgetting 

Experiment 2 was designed to resolve the problems with highly variable ITIs that 

occurred in Experiment 1. The efforts to increase control over ITIs included a change in housing 

that reduced physical distance between the colony and the apparatus as well as changing testing 

procedures to eliminate the disruption of testing multiple bees at the same time. In this 

experiment bees were tested one at a time for a specific number of trials over the course of 

multiple days. The goal of this experiment was to test bees in a standardized way that allowed for 

complete characterization of the acquisition and forgetting of a motor behaviour similar to 

complex flower handling.  Although trials were still self-initiated and variable ITIs could not be 

controlled entirely, the change in testing procedure dramatically increased the consistency in 

testing schedules. 

2.3.1 Method 

2.3.1.1 Subjects & housing 

Subjects were 15 Bombus impatiens foragers from four Biobest colonies.  
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Colony boxes were attached to 122 X 101.5 X 66 cm foraging chambers within 24h of 

arrival at Western University. The foraging chambers consisted of a wooden frame with wire 

mesh sides and a wooden floor on which foraging patches were located. Bees had 24h access to 

the foraging chamber through a Perspex tube that joined the colony box to the foraging chamber. 

The bees were provided with ad libitum pollen directly in the colony, and ad libitum 20% 

sucrose solution available from four foraging patches within the foraging chamber. The foraging 

patches were identical to those used in Experiment 1.  

As in Experiment 1, bees were tagged using coloured number tags (Betterbee Inc., 

Greenwich, NY) and Posca paint markers (Mitsubishi Pencil Co.). Only bees that entered the 

testing apparatus were tagged.   

2.3.1.2 Apparatus 

There were two testing apparatuses available to bees. The apparatuses were on an 

adjoining table to the foraging chamber and attached directly to the foraging chamber. The two 

apparatuses were identical and differed only in location.  

The Perspex tube component of the apparatuses were identical to those used in 

Experiment 1 (Figure 2-3). The tubes were attached to the foraging chamber at their entrance and 

to a small plastic reward box at their exit. The boxes measured approximately 5 cm3 and were 

constructed from beige corrugated plastic with a clear plastic lid. The boxes contained two lids 

removed from clear 7ml plastic microtubes (Axygenâ,Union City, CA) that were upturned to 

hold a sucrose reward. The lids were used instead of the full microtubes that acted as artificial 

flowers in Experiment 1 because of the limited space in the reward boxes. Bees were able to 

enter the reward box, collect sucrose, and then exit the apparatus through the Perspex tube.  
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Doors used in this experiment were constructed from white plastic coffee cup lids 

(SOLOÒ) or metal and shaped identically to those used in Experiment 1.  

2.3.1.3 Pre-training 

During a pre-training phase all foraging bees were given access to the apparatuses. The 

apparatuses were baited at the entrance and the exit with high valued sucrose (40%). The pre-

training phase lasted a minimum of 1 week and continued throughout testing when a testing 

session was not in progress.  

2.3.1.4 Testing procedure 

At the start of a testing session the apparatuses were baited with high valued sucrose 

(40%) and the bees were observed foraging. The experimenter then identified a tagged bee 

making regular foraging trips and began the testing session. During testing sessions only the bee 

that was currently being tested was given access to the apparatus. Other bees were prevented 

from entering by inserting metal doors.  

At the start of each trial the plastic reward door was inserted into the tube and the metal 

exit door was removed to allow the bee access to the apparatus. Once the bee entered the 

apparatus the metal exit door was inserted into the tube to prevent the bee from exiting the 

apparatus. Only the plastic door could be opened by the bee, which meant that bees had to 

encounter the reward box, and a sucrose reward, before the experimenter removed the metal door 

and allowed them to exit. This change in procedure was made to ensure that each successful 

opening of a door resulted in access to sucrose reward. Trials had a maximum time of 300s, after 

which the plastic door would be removed by the experimenter providing access to the sucrose 

reward. The plastic door was never removed when the bee was in contact with the door to avoid 

reinforcing unsuccessful behaviours. Once bees had filled to repletion on sucrose in the reward 
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box, either following a successful or unsuccessful trial, the metal door was removed and they 

were allowed to exit the apparatus.  

Testing sessions consisted of 10 trials. Bees that continued to forage on the days 

following their initial testing session were tested for three sessions over three days. Each session 

consisted of 10 trials.  

As in Experiment 1, video recordings were taken for all trials, with bee identity, time of 

day, colony, and preliminary latencies recorded by hand during testing.  

2.3.1.5 Video Scoring 

As in Experiment 1, videos were scored using Observer XT. Scoring was adjusted to 

reflect the change in testing procedure wherein only one door was now openable. Videos were 

scored for latency to success, time inverted, time pushing, and time spent attempting to exit. 

Latency was scored identically to Experiment 1. Time inverted was defined as time with more 

than 50% of the bee’s underside exposed while in contact with the plastic door. Time pushing 

was defined as applying pressure when one or more legs are touching the plastic door while right 

side up. Attempting to exit was defined as any time spent in contact with the metal exit door.  

2.3.1.6 Data Analysis 

Repeated measures ANOVA was conducted in IBMÒ SPSSÒ to individually analyze 

latency, proportion of time inverted, proportion of time pushing, and time interacting with the 

exit, for both the first session and the data across all three sessions. Analysis of the relation 

between the different dependent measures was done using repeated measures correlation analysis 

in RStudioÒ.    
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2.3.2 Results 

Fifteen bees completed a session of 10 trials, and of those bees 10 completed additional 

testing sessions of 10 trials on each of the two subsequent days. Analysis of the first 10 trial 

session and analysis of trends over the course of the three testing sessions were done separately.  

Similar to Experiment 1, large individual differences occurred in this experiment. 

Consequently, scores were analyzed as difference scores calculated in relation to each bee’s 

initial performance.  

The ITIs within sessions ranged from approximately 2min to 20min.  

2.3.2.1 Performance in the first session 

2.3.2.1.1 Latency 

There was a significant reduction in latency across trials (F(3.59, 50.2) =  13.7, p < 

.001)(Figure 2-7). 

 

Figure 2-7 Latency difference scores for trials 1-10 in Experiment 2. Mean latency 
difference scores for bees are represented by the line and the shading indicates standard 
error of the mean. There is a significant decrease in latency across trials. 
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2.3.2.1.2 Time inverted 

Time inverted significant increased across trials (F(9, 68.1) = 3.58, p = .007)(Figure 2-8). 

2.3.2.1.3 Time pushing 

Analysis showed that time pushing did not change across trials (F(9,126) = 1.27, p = 

.259)(Figure 2-8). 

2.3.2.1.4 Exit 

Time interacting with the exit did not change across trials (F(4,55.9) = 2.2, p = 

.08)(Figure 2-8).  

 

Figure 2-8 Time inverted, time pushing, and time interacting with the exit for trials 1-10 in 
Experiment 2. The mean difference scores for each behaviour are an average of the 
difference scores calculated using the proportion of time spent engaging in each behavior 
by individual bees. Bees significantly increased the proportion of time inverted across trials 
1-10, but did not significantly change the proportion of time pushing or attempting to exit. 
Standard error of the mean is shown with shading. 

2.3.2.2 Performance across three days.  

2.3.2.2.1 Latency 

Latency data was analyzed using repeated measures ANOVA with two within-subjects 

factors, day and trial. There was a significant main effect of trial (F(2.82, 22.6) = 3.86, p = .025) 
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and a significant main effect of day (F(1.23, 9.8) = 6.78, p = .023) (Figure 2-9). The trial X day 

interaction did not reach significance (F(4.12,33) = 2.63, p = .051).  

 

Figure 2-9 Latency difference scores for trials 1-30 in Experiment 2. Vertical dashed lines 
indicate overnight intersession intervals. There was a significant decrease in latency across 
trials within each day, and a significant decrease across days. The interaction between trial 
and day was non-significant. Standard error of the mean is shown with shading. 

2.3.2.2.2 Time inverted 

Change in time inverted across trials was analyzed using repeated measures ANOVA 

with day and trial included as within subjects factors (Figure 2-10). There was a significant 

increase in time inverted across trials (F(9,72) = 2.57, p = .013) and a significant increase across 

days (F(2, 16) = 5.89, p = .012). The trial X day interaction was not significant (F(18,144) = 

.568, p = .918). 
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Figure 2-10 Time inverted, time pushing, and time interacting with the exit for trials 1-30 
in Experiment 2. Vertical dashed lines indicate overnight intersession intervals. Horizontal 
dotted lines in the Pushing and Exit panels indicate performance on trial 1, the comparison 
point for the difference scores. In the Inverting panel initial performance is represented by 
the horizontal axis. Bees showed a significant increase in proportion of time inverted both 
across trials and across days. The interaction between trial and day was not significant. 
There was a significant effect of day on time spent pushing, but no significant effect of trial 
or the trial X day interaction. There was a significant effect of day for time spent at the 
exit, but significant effects were not found for trial or the trial X day interaction. The mean 
difference scores for each behaviour are an average of the difference scores calculated 
using the proportion of time spent engaging in each behavior by individual bees. Standard 
error of the mean is shown with shading. 

2.3.2.2.3 Time pushing 

Time pushing was analyzed using repeated measures ANOVA with day and trial included 

as within subjects factors (Figure 2-10). There was a significant main effect of day (F(2,16) = 

4.88, p = .022), but neither the main effect of trial (F(9, 72) = .687, p = .719), nor the trial X day 

interaction were significant (F(18,144) = .748, p = .756). 
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2.3.2.2.4 Exit 

Change in time spent interacting with the exit across trials was analyzed using repeated 

measures ANOVA with day and trial included as within subjects factors (Figure 2-10). There 

was a significant main effect of day (F(1.2,9.56) = 6.5, p = .026), but neither the main effect of 

trial (F(3.47, 27.8) = 1.87, p = .150), or the trial X day interaction were significant (F(3.59, 28.7) 

= 1.644, p = .195). 

2.3.2.3 Correlations between dependent variables 

 Relations between latency and proportion of time inverted, as well as latency and 

proportion of time inverted, were quantified by calculating repeated measures correlations using 

the R package rmcorr: Repeated Measures Correlation (Bakdash & Marusich, 2017). This 

analysis was done using the raw data for both latency and proportion of time inverted or pushing 

rather than the difference scores that were used in previous analysis.  

 A significant negative correlation was found between latency and proportion of time 

inverted for both the first session (r(134) = -.357, p < .001) and across the three sessions (r(260) 

= -.48, p < .001) (Figure 2-11). A significant negative correlation was found between latency and 

proportion of time pushing for the first session (r(1341) = -.202, p = .019), and a positive 

correlation was found between latency and proportion of time pushing across the three sessions 

(r(260) = .329, p < .001) (Figure 2-11).  
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Figure 2-11 Correlations between dependent variables. The relation between latency and 
proportion of time inverted on the first 10 trial session is shown in panel A. Latency and 
proportion of time inverted across three 10 trial sessions is shown in panel B. Latency and 
proportion of time pushing for the first session is represented in panel C, and across the 
three sessions in panel D. The data from each bee in the analysis is represented by a 
different colour. All four relations are significant. Latency and proportion of time inverted 
had a negative correlation in both the first session and across all three sessions. Latency 
and proportion of time pushing were negatively correlated in the first sessions, but had a 
positive correlation across all three sessions. Each colour in a panel represents the data 
from one bee. 

2.3.3 Discussion 

The goal of Experiment 2 was to expand on the findings in Experiment 1 by testing bees on 

the model of flower handling under more controlled and consistent conditions, to provide 

complete characterization of learning trends on the task. Bees completed three sessions across 

three days, which provided a measure of change over days, in addition to acquisition information 

across trials.  
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Bees showed significant learning across trials, as measured by latency to success, in the first 

session and across the three days. This supports the hypothesis that the failure to find overall 

significant learning on this task in Experiment 1 was due to inconsistencies across bees in testing 

schedules. Learning across trials is a highly consistent finding in flower handling research 

(Heinrich, 1976b; 1979b; Laverty, 1980, 1994), making its observation in this experiment 

essential for the apparatus to be considered a model for flower handling.  

Bees retained learning from the first session overnight and had lower latencies on days 

two and three. However, the rate at which they learned on the second two days did not differ 

from the rate in the first session on day one, as shown by the absence of an interaction. Chittka 

(1998) showed perfect overnight retention in bees on a foraging task that modelled flower 

handling, so retaining information overnight is consistent with previous observations of motor 

tasks. The proportion of time inverted also showed a significant retention across days, which 

supports the proposed relation between increased use of the inverting behavior and decreases in 

latency.  

The hypothesis generated as a result of findings in Experiment 1, that learning on flower 

handling tasks is driven largely by selecting and engaging in a successful motor pattern, is 

supported by the correlation between use of the successful strategy and improvement on the task. 

This relation held for both improvement in the first session and across all three sessions. It was 

expected that bees would undergo extinction for unsuccessful strategies, however, the relation 

between the unsuccessful strategy (pushing) and latency was ambiguous, with significant 

negative and positive correlations depending on the dataset.   

The bees showed a reduction in time pushing and trying to exit across days, but not a 

significant decline either in trials within a session. These results show that bees did reduce their 



 

 

52 

 
 
 

time spent on unsuccessful behaviours, but the decline in use of unsuccessful strategies was not 

as clear as the increase in use of the successful strategy. Given that bumblebees are generalists, 

there could be a benefit to maintaining a low level of use of unsuccessful strategies in case 

foraging circumstances (e.g. flower availability) change and they become successful strategies. 

Maintenance of unsuccessful flower handling strategies could be similar to the observations that 

bumblebees occasionally visit other flower species while being largely constant to a single 

species (Heinrich, 1979b), in that it is a safeguard against changes in foraging conditions.  

2.4 General Discussion 

In Experiment 1 a novel apparatus was designed to measure flower handling. The apparatus 

was designed to generate a pattern of learning comparable to real flowers, that is an improvement 

with experience and eventual convergence on a single successful strategy/motor pattern. 

Experiment 2 continued assessment of the apparatus as a model for flower handling and involved 

extensive quantification of bee behaviour on the task, which was then used to characterize 

learning of flower handling. Bumblebees all demonstrated the same repertoire of behavior when 

interacting with the apparatus, improved with experience, converged on a single successful 

strategy/motor pattern, and analysis showed that learning was related to selection of the 

successful strategy/motor pattern. These findings support the hypothesis that flower handling 

improvement is due to changes in the selection of innate motor patterns through associative 

learning. 

2.4.1 Innate and learned processes 

It has been long assumed that flower handling involves both innate and learned processes 

(Darwin, 1876; Weaver, 1965; Macior, 1966; Heinrich, 1979b; Laverty, 1980), but the contents 

and contributions of those two processes were unclear. Here I have shown that the innate 
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component is the complex motor pattern required to extract nectar and pollen and the learning 

component is the relatively simple process of associative learning, wherein a particular motor 

pattern is reinforced to extract nectar and pollen from a particular flower species is reinforced. 

The combination of innate motor patterns and learned preferences is consistent with the selection 

pressure on bumblebees to maintain flexibility in foraging (Heinrich, 1976b) and the additional 

selection pressure to minimize costly learning investment (Burns, Foucaud, & Mery, 2010). 

The ability of the contributions of innate and learned processes described here to account for 

both the flexibility and constancy found in foraging bumblebees can be shown by applying it to 

differences in specialist and generalist bumblebee species. Specialist bumblebees are more 

efficient at foraging on their preferred species than are generalist bumblebees (Laverty & 

Plowright, 1988). The difference in cognition between the two could be an innate preference in 

the specialist species of bumblebee for a particular successful motor pattern, which would 

eliminate the need to learn a preference and increase efficiency. Generalist bees would have to 

acquire the preference for the successful motor pattern, which would account for the difference 

in handling acquisition between the two species. This would also be a parsimonious explanation 

for the difference between the species given that differences in cognition would be quantitative 

and not qualitative.  

2.4.2 Nectar vs. pollen 

The model developed here involved exclusively nectar rewards, but foraging bumblebees are 

required to collect both nectar and pollen rewards. Similarly to nectar, collecting pollen from 

flowers involves complex motor output and varies depending on flower morphology (Thorpe, 

2000), so it is worth considering the applicability of the findings here to pollen foraging.  
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Pollen foraging seems to be largely similar to nectar foraging in that bees can learn 

associatively based on pollen rewards (Muth, Papaj, & Leonard, 2016), and bees improve their 

ability to extract pollen rewards with experience (Raine & Chittka, 2007b). These commonalities 

between nectar and pollen foraging might have resulted in similarly innate and learned processes. 

However, bees take longer to reach asymptote performance when foraging for pollen than nectar 

(Raine & Chittka, 2007b). Additionally, pollen foraging can require highly specialized 

behaviours such as floral sonication (Thorpe, 2000). It is possible that the increased complexity 

of motor behaviours required for pollen foraging might increase the selective pressure for 

learning in generalist species rather than investing in innate motor behaviours that may not be as 

widely applicable as nectar foraging behaviours. An investigation of pollen foraging of the kind 

described here for nectar foraging would be useful in determining the similarities and differences 

between these two often conflated types of foraging.    

2.4.3 Motor learning 

 One consistency within the literature on flower handling is the reference to motor 

learning or motor skills, without a clear definition of either of these terms. Although a perfect 

definition of motor skills is elusive, the field of motor learning in humans developed from the 

early definition provided by Pear (1926) describing motor skill as “an integration of well-

adjusted performances, rather than a tying together of habits” (p.480) (Pear, 1926; Adams, 1987). 

Under this definition learning a novel motor pattern would be motor learning, but preferential 

use of an innate motor pattern as a result of associative learning would not be motor learning. 

The results described here are consistent with flower handling not involving motor learning, but 

rather associative learning with a motor component; the actual motor patterns being innate and 

the preference for successful patterns being learned associatively.  
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Does this mean that bumblebees are incapable of true motor learning? Given that the 

motor system of bees is largely analogous to mammals (Chittka & Niven, 2009) it seems 

unlikely for such a qualitative difference to exist between the two systems. The motor system in 

bees is simpler than in vertebrates, with fewer pre-synaptic neurons activating motor neurons and 

fewer motor neurons innervating individual muscles (Chittka & Niven, 2009), and it is possible 

that this places limits on the motor learning abilities of bees. However, examinations of the 

number of neurons required to generate complex motor output and to generate novel complex 

motor output suggest that motor skill learning would not be impossible for bees (Chittka & 

Niven, 2009). Bees and other invertebrates might learn novel motor patterns for tasks in which 

flexible complex motor behaviour is under higher selective pressure than the extraction of nectar 

from flowers, such as changing yaw torque or thrust during flight in response to feedback (Wolf 

et al., 1992), or when extracting pollen from flowers (Raine & Chittka, 2007).   

2.4.4 Conclusion 

 The goal of this chapter was to develop a model of flower handling for use with 

bumblebees in the laboratory, and to use that model to further characterize flower handling 

learning in bumblebees. A model was successfully developed that shared two key features of real 

flowers, (1) having a single solution and (2) improvement with experience. The model was then 

used to examine flower handling learning with greater specificity than had previously been done. 

The resulting characterization involved an innate motor component and a learned bias in the 

selection of that innate motor component.  

The impressive behavioural flexibility demonstrated by bumblebees during acquisition of 

flower handling can thus be explained with reference only to simple learning mechanisms and 

highly efficient use of innate mechanisms. This finding not only extends our understanding of 
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bumblebee learning and behavior, but serves as an example of simple mechanisms generating 

seemingly complex behavior.   
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Chapter 3 
3 Revisiting Darwin’s Interference Hypothesis 
3.1 Introduction 

 Pollinators are often observed to show consistencies in their flower selection while 

foraging, referred to as flower constancy (Waser, 1986; Lewis, 1993). Bumblebees are known to 

display flower constancy while foraging and preferentially visiting a single or small number of 

flower species (Heinrich, 1979). The benefits of flower constancy for plants requiring pollination 

are clear (Waser, 1986), but the benefits to bees and other pollinators of restricting their foraging 

to few flower species is less clear (Chittka, Thomson, & Waser, 1999). A candidate theory, 

originally put forward by Darwin (1876), is that bees learn how to efficiently extract nectar and 

pollen from particular flower morphologies and switching between multiple flower morphologies 

would reduce efficiency.  Darwin’s hypothesis is now referred to as the interference hypothesis 

(Goulson, Stout, & Hawson, 1997; Chittka, Thomson, & Waser, 1999) and it persisted as the 

most likely candidate for flower constancy for many years (Waser, 1986; Lewis, 1993). 

However, investigations of flower handling interference have failed to show ecologically 

significant effects of interference (Laverty, 1994b; Raine & Chittka, 2007). Consequently, 

considerations of flower constancy have largely moved from interference explanations to 

alternative hypotheses that place less emphasis on flower handling (Chittka, Thomson, & Waser, 

1999). Unfortunately, however, we still do not fully understand why flower handling behaviour, 

which involves learning and is vital to foraging success, is resistant to Darwin’s hypothesized 

interference effects. In this chapter, I revisit Darwin’s interference hypothesis to examine why 

flower handling interference does not play a significant role in flower selection.   
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3.1.1 Bumblebee foraging behaviour 

Darwin described the behaviour of bumblebees, that he referred to charmingly as humble 

bees, in his extensive writings on pollination (1876). He observed that bumblebees would visit 

the same species of flower consistently and pass over other flower species (Darwin, 1876).  The 

flower selection of foraging bumblebees has since been characterized more extensively (Free, 

1970; Heinrich, 1976; Heinrich, 1979; Chittka, Gumbert, & Kunze, 1997). Aside from Bombus 

consobrinus, which is a specialist species (Laverty & Plowright, 1988), bumblebees forage on a 

wide variety of flowers (Heinrich, 1976). Bumblebees will engage in a sampling phase at the 

outset of their foraging career, and then narrow their foraging to a few species (Free, 1970; 

Heinrich, 1976; Heinrich, 1979). In contrast to honeybees (Free, 1963), bumblebees do not 

appear to limit their foraging to a single species (Free, 1970; Heinrich, 1976; Heinrich, 1979; 

Chittka, Gumbert, & Kunze, 1997). Analysis of pollen loads (Free, 1970), and direct 

observations (Heinrich, 1976), suggest that bumblebees preferentially forage on the same set of 

flowers even if they are not exclusively foraging on a single species. This behaviour has been 

referred to as majoring and minoring, with one flower species being the most preferred species 

for an individual bee and one or more other species visited regularly, but less frequently than the 

major (Heinrich, 1979). Bumblebees have been observed foraging successfully on six flower 

species simultaneously in a foraging trip (Chittka, Gumbert, & Kunze, 1997), which seems to 

suggest an absence of constancy. However, even in circumstances where bees appear to show 

considerable flexibility in their flower selection, analysis shows that the likelihood of selecting 

the same species to visit next when leaving a flower is high (Heinrich, 1979). 
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Taken as a whole, bumblebee foraging involves a period of flexibility during initial 

flower sampling and then a subsequent period of inflexibility when bumblebees display flower 

species preferences and flower constancy.  

3.1.2 Interference hypothesis 

The interference hypothesis was first proposed by Darwin (1876), but it was initially 

vaguely characterized without any explicit discussion of mechanisms. He compared the 

performance of a bumblebee to that of a mechanic making multiple engines who makes all parts 

of one type for all the engines at the same time (Darwin, 1876). This explanation of constancy 

can be interpreted as describing interference in learning to handle multiple flowers or in being 

able to switch between different handling techniques that have already been learned (Waser, 

1986). Research on the interference hypothesis has been largely on the latter, examining costs of 

switching between already learned handling techniques (Lewis, 1986; Woodward & Laverty, 

1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998; Goulson, Stout, & Hawson, 1997, 

Raine & Chittka, 2007.  

An established paradigm for exploring the interference hypothesis (Lewis, 1986; 

Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998) is to train a 

flower constant insect to asymptotic handling efficiency on one flower species, then train the 

insect to handle a second flower species. The final step is to once again allow the bee to forage 

on the original species and compare their handling efficiency to their asymptotic performance 

after the first phase of training. The difference in handling efficiency following the return to the 

original flower species is the interference cost, or cost of switching. This paradigm has been used 

to examine the interference hypothesis in cabbage butterflies (Lewis, 1986), and bumblebees 

(Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998). 
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Initial explorations of the interference hypothesis in cabbage butterflies provided support 

for Darwin’s theory (Lewis, 1986), and served to initiate further investigations in bumblebees. 

Cabbage butterflies were tested in the paradigm described above, with groups subjected to the 

interference of learning how to handle a second flower species compared to individuals that were 

not given interfering experience. The butterflies that experienced interference did show a cost of 

switching when they were tested again on the flower species they initially learned. This cost was 

not observed in individuals that had a retention interval between foraging attempts on the initial 

flower species that was matched for duration with time taken to learn the second flower species, 

but did not learn to handle a second flower species. The results supported Darwin’s interference 

hypothesis as a mechanism for flower constancy in cabbage butterflies (Lewis, 1986).  The cost 

here was measured as ‘discovery time’ or the duration from landing on a flower until extracting 

the reward (Lewis, 1986), but additional investigations of costs of switching in butterflies 

expanded on this measure to include the cost of flight duration (Goulson, Stout, & Hawson, 

1997). If improvements in handling efficiency are responsible for constancy then the benefit of 

handling only a single species must outweigh the cost of flying longer distances to access 

preferred flowers compared to selecting flowers based on proximity (Goulson, Stout, & Hawson, 

1997). It was found that there was a cost in handling time when butterflies switching between 

flower species, and that no relation existed between switching and travel time between flowers, 

suggesting a role for handling efficiency in flower constancy, but not travel duration between 

flowers (Goulson, Stout, & Hawson, 1997). The foundational work on constancy in cabbage 

butterflies (Lewis, 1986) and follow up work (Goulson, Stout, & Hawson, 1997) both show 

support for Darwin’s interference hypothesis. 
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Although the work in cabbage butterflies has been interpreted to support the interference 

hypothesis, the research has been interpreted differently in bumblebees. Woodward and Laverty 

(1992) used the same paradigm as Lewis (1986) to test Darwin’s hypothesis in Bombus 

bimaculatus. Bees showed costs of switching when returning to an initial learned species and 

showed a preference for visiting flowers that they had just foraged on. A cost of switching paired 

with a preference for recently visited flower species supports the interference hypothesis, but the 

size of the switching costs was considered too small to be ecologically significant (Woodward & 

Laverty, 1992). Woodward & Laverty (1992) used the efficiency costs that occurred in their 

experiment to calculate the cost of switching after every flower while foraging on 1000 flowers 

over 40 minutes. Switching after every flower would result in a considerable 19 minute increase 

in foraging trip duration. However, if the switching rates are made more moderate and field 

realistic then the cost is considerably reduced. For example, switching every 20 flowers would 

result in a 1 minute increase in foraging trip duration and a highly constant forager, switching 

only after 100 flowers, would experience efficiency costs of around 10 seconds. Consequently, 

the handling cost of switching flower species at field realistic rates was not large enough to 

explain constancy (Woodward & Laverty, 1992).    

Despite the weak explanatory power of switching costs to account for flower constancy, 

continued investigations of switching costs were conducted to learn more about factors that 

influence those costs. The morphological complexity of flowers has a significant effect on the 

time it takes to acquire handling efficiency (Laverty, 1994a), so it makes sense that it would also 

influence the interference effects on handling. Laverty (1994b) observed bumblebees (Bombus 

fervidus) foraging in patches that consisted of either morphologically simple or morphologically 

complex flower species. Bee that were foraging in patches with simple flowers switched between 
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species without any costs in efficiency of handling error rates. However, bees foraging in patches 

of complex flowers did show costs of switching, indicating that flower complexity is important 

for interference costs (Laverty, 1994b). The influence of flower complexity was also found when 

interference effects were measured with the previously used paradigm for testing interference 

(Gegear & Laverty, 1995). Bumblebees only showed interference effects when both the initially 

learned flower species and the interfering species were complex flowers (Gegear & Laverty, 

1995).    

In addition to observations that bumblebees forage on a major and minor flower species 

(Heinrich, 1979), it has also been shown that they will simultaneously forage on more than two 

species (Chittka,Thomson, & Waser, 1999 ). Gegear and Laverty (1998) expanded the 

interference effects testing paradigm to include more than just a single interference species to 

address situations in which bumblebees might be foraging on more than just two flower species. 

Bumblebees showed an accumulation of interference costs with increasing numbers of 

interfering flower species, and the effect was amplified when the interfering flowers were 

complex (Gegear & Laverty, 1998). Although handling costs do not seem to be high enough to 

explain high rates of constancy, it is possible that they are enough to limit the number of species 

on which bumblebees simultaneously forage (Gegear & Laverty, 1998). Having said that, 

observations in the field have shown an absence of handling costs even when bees are foraging 

on more than two species (Raine & Chittka, 2007).  

Although an interference effect has been consistently observed under particular testing 

conditions (Lewis, 1986; Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & 

Laverty, 1998; Goulson, Stout, & Hawson, 1997), but when modeled under field realistic levels 

of switching those costs do not seem large enough to explain flower constancy (Woodward & 
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Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998). Consequently, Darwin’s 

interference hypothesis remains open for consideration when explaining bumblebee foraging 

behaviour, but it has thus far shown limited explanatory power.    

3.1.3 Task switching in bumblebees  

 In addition to studying the flexibility or inflexibility of bumblebee foraging behaviour in 

the context of constancy and ecologically relevant flower handling tasks, there has also been 

work done on the topic using standard animal cognition paradigms (Strang & Sherry, 2014; 

Chittka & Thomson, 1997). Reversal learning and serial reversal learning tasks, in which animals 

are trained on a discrimination between two stimuli and then required to reverse their pattern of 

behaviour when the reward contingencies are reversed either once (reversal) or multiple times 

(serial reversal), are frequently used to explore flexibility in animals (Shettleworth, 1998; 

Shettleworth, 2009). Bumblebees have been shown to be capable of completing serial reversal 

tasks with both spatial (Chittka & Thomson, 1997) and visual (Strang & Sherry, 2014) 

discriminations. 

 Strang and Sherry (2014) tested bumblebees on a standard visual serial reversal paradigm 

and found that bees were able to reverse their initial associations and with repeated reversals 

increased the efficiency at which they reversed in response to changes in reward contingencies. 

This pattern is typical of many species on serial reversal tasks and indicates behavioural 

flexibility in learning (Shettleworth, 1998; Shettleworth, 2009). There are a number of 

mechanisms that can account for flexibility in repeated reversal, but the one that fit most with 

bumblebees’ performance was memory interference. Bumblebees showed a reduction in 

perseverative errors and an overall increased error rate across reversals. Their reduced fidelity to 

the rewarded stimulus and more frequent responses to the unrewarded stimulus allowed bees to 
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reverse associations more quickly when reward contingencies were reversed. This pattern of 

behaviour fit most closely with memory interference as the likely mechanisms behind bees’ 

flexibility (Strang & Sherry, 2014). Bumblebees’ performance on this serial reversal task 

demonstrates that memory interference can play a role in behavioural flexibility during foraging, 

though a visual discrimination is considerably removed from the fine motor task of extracting 

nectar and pollen from real flowers.  

 A reversal task done with bumblebees that has more overlap with flower handling 

involved running bumblebees through a spatial matching task in a T-maze (Chittka & Thomson, 

1997). The design required bees to acquire a spatial association and then reverse that association 

by using the colour cue provided at the entrance of the T-maze.  Bees were required to switch 

between the two tasks repeatedly, making this a colour cued serial spatial reversal task. Bees 

were trained on the task on a variety of schedules that including learning exclusively one colour 

direction pairing (blue à turn right, yellow à turn left), learning two opposite tasks (blue à 

left, yellow à right) in blocked trials with the two tasks learned one after the other, and a final 

group that switched tasks after each trial during training. Bumblebees were able to learn the 

switching tasks and reverse their direction choice in the T-maze using the colour cue (Chittka & 

Thomson, 1997). Bees that were trained on blocked trials showed an interference effect, 

measured in errors, when they were required to switch between the two tasks following training 

(Chittka & Thomson, 1997), which is akin to the interference effects found in previous switching 

experiments (Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998). 

Interestingly, the authors attributed the interference entirely to acquisition of the colour 

association and not to an aspect of the motor component of navigating through the T-maze 

because errors that bees made following a switch were entirely due to not entering the arm 
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indicated by the colour cue and not to a failure to successfully navigate the maze (Chittka & 

Thomson, 1997). Thus, the interference observed in the T-maze was associative not motor, 

which could have implications when considering the interference effects in fine motor tasks such 

as flower handling.  

3.1.4 Goal of this chapter 

 Chapter 1 established the hypothesis that learning in flower handling involves forming 

associations between innate motor patterns and flowers. In this chapter, I apply the hypothesis 

developed in Chapter 1, as well as the flower handling model, to explore costs of switching. 

Darwin’s interference hypothesis is insufficient to explaining flower constancy shown by 

bumblebees (Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998; 

Chittka, Thomson, & Waser, 1999), but how bumblebees avoid significant handling interference 

costs is still unclear. There are handling costs when bumblebees engage in switching between 

flowers or model flowers, but those handling costs are surprisingly small (Woodward & Laverty, 

1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998), or in some instances motor costs are 

entirely absent (Chittka & Thomson, 1997; Raine & Chittka, 2007). Resolving the mystery of 

how bumblebees avoid interference costs for the learned behaviour of flower handling in the goal 

of this chapter. There are two points at which a foraging bumblebee could incur a cost of 

switching. The first is at the point of learning where acquisition of a handle technique might be 

slower if the bee had previously learned a different handling technique. Experiment 1 explores 

interference during acquisition by requiring bees to learn two handling techniques and fully 

characterizing the acquisition of each. The second point of interference occurs when bees 

repeatedly switch between two different flower types. Experiment 2 addresses the interference 

that occurs during repeated switching by requiring bees to alternate repeatedly between two 
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different handling techniques.  It is hypothesized that the mechanism for flower handling 

described in Chapter 1 that allows bees to be flexible in their initial foraging, a combination of 

innate and learned processes, is the same mechanism that allows bumblebees to avoid 

interference costs in of switching in their handling techniques. 

3.2 Experiment 1 – Task Switching on a Flower Handling Task 

Experiment 1 was intended to measure behaviour of bumblebees on a task that captured 

their natural foraging behaviour of visiting multiple flower species with distinct morphologies. 

Previous work on bumblebees’ switching between two flower types has focused largely on costs 

in foraging efficiency and flower visit time, both of which are exclusively measures of latency. 

The goals of this experiment were to analyze switching costs at the level of behavioural change 

in addition to latency. The apparatus, previously used in Chapter 2 for the initial characterization 

of flower handling behaviour, was modified to provide two variations of a foraging task. The two 

tasks were designed to represent two different flower morphologies. They required different 

motor behaviours for success, but shared general properties of an object that must be 

manipulated to access nectar. The first variation of the task required the bee to flip upside down 

(invert) to remove a door (representing a flower petal) to access a nectar reward. The second 

variation of the task required bees to depress a door down to access a nectar reward.  

3.2.1 Method 

3.2.1.1 Subjects and housing 

Subjects were 20 bumblebees (Bombus impatiens) from 1 colony provided by Biobest 

Canada Ltd. (Leamington, ON). Bee colony boxes were attached to a 122 X 101.5 X 66 cm 

foraging chamber. Ad libitum pollen was provided directly to the colony box and foragers had 

24/7 access to ad libitum 20% sucrose solution available from four foraging patches in the 
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foraging chamber. The foraging patches were white 30.5 X 30.5 cm SmoothfoamTM polystyrene 

sheets and each contained five artificial flowers made from clear 7ml plastic microtubes 

(Axygenâ,Union City, CA). Each artificial flower had a 5cm wide clear plastic corolla.  

Bees were tagged for identification with Posca paint markers (Mitsubishi Pencil Co.). 

Tagging was done while bees were pre-training. Bees were allowed to enter the apparatus and 

reach the baited reward chamber. While bees were collecting sucrose solution they were tagged 

on their thorax with a unique combination of colours.  

3.2.1.2 Apparatus 

Two identical apparatuses were attached to the foraging chamber for pre-training, but 

only the apparatus farthest from the colony entrance was used during testing. The apparatus was 

a modified version of the flower handling task developed in Chapter 2 (Figure 3-1) and consisted 

of a 2 cm diameter PerspexÒ tube with three slots in it in which ‘doors’ fit. Two of the slots 

were on the top of the tube 5cm apart. The third was placed between the two top slots 1cm from 

the slot closest to the reward. An artificial flower was placed at the entrance to the apparatus 

from the foraging chamber to encourage bees to enter the apparatus during pretraining and there 

was a reward chamber at the exit of the tube. The reward chamber consisted of a 5 x 5 x 5cm 

PerspexÒ box with a hinged lid. Two caps from 7ml plastic microtubes (Axygenâ,Union City, 

CA) were placed in the reward chamber that could be filled with sucrose solution throughout 

testing.  

The doors used during testing consisted of a metal door that could not be opened that was 

used to prevent bees from exiting the tube during testing, and a door to the reward chamber that 

was constructed from white plastic coffee cup lids (SOLOÒ). Doors were sized so that they 
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would fit smoothly into the slots in the tube, but did not form a perfect fit with the surface of the 

tube.  

 

Figure 3-1 Apparatus. The apparatus consisted of a tube attached on one end to a foraging 
chamber and on the other to a reward chamber. The reward chamber contained a sucrose 
reward. In each trial two doors were inserted into the tube, a metal door that the bee could 
not open, and a plastic door that the bee could open. Up task trials required bees to lift the 
plastic door out of the tube to access the sucrose reward. Down task trials required bees to 
depress the door to access the sucrose rewards. 

3.2.1.2.1 Up task  

For up task trials the doors were inserted into the two slots at the top of the tube. The 

metal door that was placed in the slot nearest to the foraging chamber to prevent the bees from 

leaving the apparatus, and the plastic door was inserted into the slot nearest to the reward 

chamber.  

3.2.1.2.2 Down task 

In the down task, the metal door was inserted into the slot preventing exit from the 

apparatus. The plastic door was inserted into the slot on the bottom of the tube and held in place 

with a resistance mechanism. The resistance mechanism consisted of the plastic door affixed to 
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two clear plastic pieces outside the tube that extended 4cm in either direction down the length on 

the tube. The clear plastic extensions were inserted into two loops of clear plastic attached to the 

underside of the tube. This design resulted in the door being held in place in the tube with 

resistance. The resistance was calibrated through trial and error such that the door would not 

move unless bees put pressure on it and pushed it down, but that the pressure needed was such 

that bees could successfully move the door.  

3.2.1.3 Pre-training 

During pre-training all bees in the colony had 24/7 access to the apparatuses. The 

artificial flowers at the entrances to the apparatuses and the reward chambers were baited 

throughout pre-training with 40% sucrose solution. The colony was given one week of pre-

training before testing began. Following the initial week of pre-training the testing sessions 

began. The apparatuses remained accessible and baited with 40% sucrose when testing was not 

in progress to allow new foragers to complete the pre-training throughout the course of the 

experiment.  

3.2.1.4 Testing procedure 

Immediately prior to each testing session bees were observed pre-training and bees 

regularly making trips to the apparatus were selected for testing and tagged. The bees were then 

given time to deplete the sucrose reward at the entrance to the apparatus which then required 

bees to travel fully through the apparatus to the reward chamber to receive a 40% sucrose 

reward. During testing sessions only the bee that was currently being tested was given access to 

the apparatus, other bees were prevented from entering by inserting the metal door when they 

attempted to enter apparatus.  
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At the start of a testing session the plastic door was inserted into the tube and the metal 

door was inserted after the bee being testing entered the apparatus. Trials started when the bee 

was in the tube and the metal door was in place. Trials ended either when the bee opened the 

plastic door or 300s had passed. If the bee opened the plastic door it was allowed to enter the 

reward chamber and fill to repletion on 40% sucrose. If the bee failed to open the plastic door 

then the plastic door was opened by the experimenter and the bee was then allowed to collect 

sucrose reward. In trials where it was necessary for the experimenter to open the plastic door the 

experimenter waited until the bee was oriented away from the plastic door before opening it to 

avoid interfering with the bee’s learning on the task. After bees filled to repletion on the sucrose 

reward the metal door was removed from the apparatus and the bees were allowed to return to 

the colony to deposit nectar.  

Each testing session consisted of 10 trials of both the up task and the down task. The 

trials were structured in a block design with 10 trials of one trial type completed consecutively 

followed by 10 trials of the second trial type. The order in which the trial types were completed 

was counterbalanced across bees. All trials were completed in a single session, with bees self-

initiating trials for 20 consecutive trials.  

All trials were video recorded for subsequent analysis using a HERO3 video camera 

(GoPro Inc., USA).  

3.2.1.5 Video scoring 

All videos were scored using Observer XT software. The videos were scored for latency 

to success, time spent pushing on the plastic door, time spent inverted while in contact with the 

plastic door, time spent pushing on the exit, and time spent inverted while in contact with the 

metal door. Latency was measured from the time the doors were inserted until the bee had 50% 
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of its body underneath the door. If bees were unsuccessful at opening the door then they were 

given the max trial time (300s). Pushing, whether in relation to the plastic or metal door, was 

operationally defined as making contact with the door with either legs or head cap while upright. 

Inverting, for both the plastic and metal door, was defined as a bee having more than 50% of its 

underside exposed while in contact with the door.  All behaviours were scored as mutually 

exclusive and behaviours engaged in while not in contact with a door were not scored.  

3.2.1.6 Data analysis 

Latency scores for each trial were used to calculate proportion scores from total inverting 

and pushing times for each trial.  

All data was analyzed by conducting repeated measures ANOVA in IBMÒ SPSSÒ. 

Additional analysis of the relations between dependent variables was conducted in RStudioÒ 

using rmcorr: Repeated Measures Correlation (Bakdash & Marusich, 2017).   

3.2.2 Results 

 All 20 bees successfully completed 10 trials of each trial type.  

3.2.2.1 Latency 

Latency to success for trials on the up task and down task were analyzed with a mixed 

ANOVA, trial was a within-subjects factor and start order was entered as a between-subjects 

factor. Start order was the label given to the order in which bees completed the two tasks. On the 

up task (Figure 3-2), bees significantly reduced their latency to success across trials, 

F(3.38,60.85) =  16.34, p<.001. There was also a significant effect of start order with bees that 

completed the up task first taking significantly longer to solve that task than those who 

completed it second, F(1,18) =  23.59, p<.001. There was also an trial X start order interaction, 

F(3.38,60.85) =  3.03, p=.02  
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 Analysis of latency on the down task showed a significant effect of trial with latency 

reducing across trials, F(2.47, 43.68) =  5.72, p=.004 (Figure 3-2). There was a significant effect 

of start order, F(1, 18) =  5.69, p=.03, with those bees that completed the down trials second 

having shorter latencies than those completing down trials first. The trial X start order interaction 

was not significant, F(2.47, 43.68) =  1.87, p = .158.  

 

Figure 3-2 Experiment 1 latency.  Trials on the up task are shown in the top panel. Bees 
reduced latency across trials on the up task, with bees that completed the up task second 
completing trials faster than bees that completed the task second. The bottom panel shows 
down task trials. Latency decreased across trials, and bees that completed the task second 
were faster than those that completed it first. 

3.2.2.2 Time inverted 
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Proportion of time spent inverted for both the up task and the down task was analysed 

using a mixed-ANOVA with trial as a within-subjects factor and start order as a between-

subjects factor.  

There was a significant increase in proportion of time spent inverting across trials in the 

up task, F(9, 162) =  5.65, p < .001 (Figure 3-3). There was no significant effect of start order, 

F(1, 18) =  3.34, p = .08, nor was the trial X start order interaction significant, F(9, 162) =  .36, p 

= .951.  

Analysis of proportion of time inverted on the down task found no significant effect of 

trial, F(3.096, 55.733) =  2.194, p = .097, start order, F(1, 18) =  .689, p = .417, or the interaction 

of trial X start order, F(3.096, 55.733) =  1.497, p = .224 (Figure 3.3).  

 

Figure 3-3 Experiment 1 time inverted. The top panel represents the time spent inverted on 
the up task. Bees increased the amount of time spent inverted across trials with no 
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difference between those bees that completed the task first and those that completed the 
task second. Time spent inverted on the down task is represented in the bottom panel. Bees 
did not change the amount of time that they spent inverted across down task trials and 
there was no effect of order. 

3.2.2.3 Pushing 

A mixed-ANOVA analysis of proportion of time pushing on the up task showed a 

significant effect of trial, F(9, 162) =  3.54, p < .001, but no significant effect of start order, F(1, 

18) =  .819, p = .378. There was a significant interaction between trial X start order, F(9, 162) =  

2.058, p = .036.  Bees increased time spent pushing in early trials and then reduced time spent 

pushing in later trials, but this pattern occurs more rapidly in bees that completed the up task 

second (Figure 3-4).  

 

Figure 3-4 Experiment 1 time pushing. Time pushing on the up task is shown in the top 
panel. Bees significantly changed their time pushing across trials by increasing and then 
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decreasing time pushing Bees that completed the up task second showed more of an 
increase in time pushing in early trials than bees that completed the up task first. The 
bottom panel shows pushing on down task trials. Bees increased the time spent pushing 
across trials with the increase in early trials being larger in bees that completed the task 
second. 

On the down task, bees increased their proportion of time spent pushing regardless of 

start order, but those bees that completed the down task first showed a greater change across 

trials than bees that completed the down task second. Analysis of proportion of time spent 

pushing on the down task found that trial, F(9, 162) =  7.465, p < .001, start order, F(1, 18) =  

4.473.54, p = .049, and the trial X start order, F(9, 162) =  2.574, p = .009, were all significant.  

3.2.2.4 Interaction with the Exit Door 

The proportion of time pushing on the exit and time spent inverted at the exit were 

analyzed separately using mixed-ANOVA.  

 Proportion of time spent interacting with the exit while inverted declined across up task 

trials (F(1.940, 34.915) =  5.352, p = .01) (Figure 3-5). There was no significant effect of either 

start order (F(1, 18) =  .012, p = .914), or the start X trial interaction (F(1.940, 34.915) = 1.165, p 

=.323). On the down task, the proportion of time spent inverted while interacting with the exit 

changed across trials (F(9, 162) = 3.543, p < .001). There was a significant effect of the trial X 

start order (F(9, 162) = 2.058, p = .036), but no significant effect of start order (F(1, 18) = .819, 

p = .378). 
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Figure 3-5 Experiment 1 time inverted at exit. The top panel shows a reduction in time 
spent inverted at the exit on the up task. There were no differences between bees that 
completed the up task first and those that completed it second. The bottom panel shows the 
change in time inverted at the exit in the down task. Bees increased their time spent 
inverted at the exit in early trials and then reduced time inverted at the exit in latter trials. 
This change across trials is more pronounced in bees that completed the down task second. 

Proportion of time spent pushing on the exit door in the up task showed a significant 

change across trials (F(2.922, 52.604) = 6.616, p = .001), as well as a significant effect of start 

order (F(1, 18) =  20.493, p < .001) and a significant effect of the trial X start order interaction 

(F(2.922, 52.604) =  2.855, p = .047) (Figure 3-6). On the down task, proportion of time pushing 

on the exit reduced significantly across trials (F(9, 162) = 3.543, p = .003). There was also a 
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significant trial X start order interaction (F(9, 162) = 2.058, p = .036). Start order on its own was 

not significant (F(1, 18) = .819, p = .378).  

 

Figure 3-6 Experiment 1 time pushing at exit. Time spent pushing on the exit is shown in 
the top panel. There was a significant decline in pushing on the exit across trials. Bees that 
completed the up task first pushed on the exit more in early trials than bees that completed 
the up task second, but both groups pushed on the exit comparably in later trials. 
Proportion of time pushing on the exit during down trials is shown in the bottom panel. 
Bees reduced time pushing on the exit across trials, with bees that did the down task first 
pushing more in early trials than those that completed the task second.  

3.2.2.2 Relations between dependent measures 

 Correlations between trial latency and two other dependent measures, proportion of time 

inverted and proportion of time pushing, were determined using repeated measures correlations 
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with the R package rmcorr: Repeated Measures Correlation (Bakdash & Marusich, 2017). 

Correlations for variables in the up task and down task were analyzed separately.  

3.2.2.2.1 Up task 

For the bees that completed up task first there was a significant correlation between 

latency and time inverted (r(89) = -.323, p = .002)(Figure 3-7) as well as between latency and 

time spent pushing (r(89) = -.222, p = .034)(Figure 3-8). For bees that completed up task second 

there was a significant relation between latency and time spent inverted (r(89) = -.382, p 

<.001)(Figure 3-7), but no significant relation between latency and time spent pushing (r(89) = 

.063, p = .554)(Figure 3-8).  

 

Figure 3-7 Experiment 1 relation between latency and time inverted.  Panel A shows the 
significant correlation between latency and time inverted on the up task for bees that 
completed the up task first. Panel B shows the significant relation between latency and time 
inverted on the up task for bees that completed the up task second. Panel C shows the 
relation between latency and time inverted on the down task for bees that completed the 
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down task first, which was not significant. Panel D shows the relation between latency and 
time inverted on the down task for bees that completed the down task second, which was not 
significant. In each panel the colours represent data from individual bees. 

3.2.2.2.2 Down task 

Bees that completed the down task first showed a significant relation between latency and 

time spent pushing (r(89) = -.536, p < .001)(Figure 3-8), but not a significant relation between 

latency and time spent inverted (r(89) = .189, p = .072)(Figure 3-7). Bees that completed the 

down task second showed the same trend as those that completed the task first, a significant 

relation between latency and time pushing(r(89) = -.382, p < .001)(Figure 3-8), but no relation 

between latency and time inverted (r(89) = .097, p = .362)(Figure 3.7)   

 

Figure 3-8 Experiment 1 latency and time pushing relation. There was a significant 
negative correlation between latency and time spent pushing on the up task for bees that 
completed the up task first (Panel A), but that relation was not found in bees completing the 
up task second (Panel B). Panel C shows the significant correlation between latency and 
time spent pushing on the down task for bees that completed the down task first, and panel 
D shows the significant relation between latency and time pushing on the down task for bees 
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completing the down task second. The colours present in each panel represent each 
individual bee.  

3.2.3 Discussion 

Bees improved performance across trials, as measured by reduced latency, on both the up task 

and the down task. This is consistent with findings in Chapter 1 for the up task and provides 

justification for use of the down task as a model for flower handling. A surprising finding was 

that bees learned a task faster when it was the second task learned compared to when it was the 

first task learned and this was the case for both the up and down tasks. This shows not only an 

absence of interference, but also facilitation. The two tasks used here were distinct in the motor 

behaviour required for the solution, but similar in that there was a door that had to be moved and 

the reward was in the same location within the apparatus. It is possible that rather than 

experiencing interference the bumblebees were able to extract information about the general task 

demands while completing the first handling task and apply that to the second handling task. 

Using general information about task demands and applying it to comparable problems is a 

frequent occurrence in animal cognition research and referred to as ‘learning-to-

learn’(Shettleworth, 1998).  

 The behaviour of bees at the exit door during testing can provide some information on 

what general task demands the bees may have learned. The proportion of time spent pushing on 

the exit door declined across trials on both the up task and the down task. Pushing on the exit 

door was an unsuccessful behaviour for both tasks, so extinction of exit door behaviours that 

occurred when bees were learning the first task could transfer to the second task. This does 

appear to have occurred, with bees in the pushing on the exit door significantly less often when 

they completed a task second. Therefore, the facilitation that occurred could be due to a transfer 
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of extinction training on unsuccessful behaviours in the first task that bees learned to the second 

task.  

  In light of the facilitation that occurred it is necessary to consider if the absence of 

interference effects could be due to the behaviour required to be successful on one task 

overlapping with the behaviour required to be successful on the second task. It has been 

suggested that an important factor in interference costs is the morphological similarities between 

flower species (Gegear & Laverty, 1995). Analysis of the behavioural data strongly suggests that 

this is not what occurred. On the up task bumblebees increased their proportion of time spent 

inverted, which is the successful strategy. This pattern in proportion of time spent inverted was 

not observed on down task trials, indicating that changes in inverting behaviour was specific to 

the up task. With regard to pushing behaviour, the successful strategy for the down task, bees 

increased their time across trials for the down task, but did not show an increase across trials on 

the up task. This again demonstrates that reinforcement of pushing behaviour was specific to the 

down task. The correlation between increased use of the successful behaviours for each task and 

reductions in latency for task adds even more support to distinct behaviours being reinforced for 

each task. The data then clearly shows that overlap in the specific required motor pattern for each 

task is not responsible for the absence of interference.  

 Although inverting was successful exclusively for the up task and pushing was successful 

exclusively for the down task, both behaviours occurred in both conditions. This supports the 

hypothesis developed in Chapter 2 that motor patterns used by bees during flower handling are 

innate. That is the motor patterns are not learned, but rather are instinctively initiated in a 

foraging context when the bees encounter an impasse, such as a petal, while trying to extract 

nectar. In this particular experiment bees engaged in a series of innate motor behaviours when 



 

 

84 

 
 
 

they encountered the door in the apparatus, which included both inverting and pushing on the 

door. On the up task inverting was successful, reinforced, and increased in frequency. On the 

down task pushing was successful, reinforced, and increased in frequency. Therefore, the 

learning that occurred on these tasks consisted of changes in the frequency of innate behaviours, 

not the establishment of novel behaviours.  

3.3 Experiment 2 – Repeated Task Switching on a Flower Handling Task 

In Experiment 1 bees were required to complete a single task switch. They acquired an 

initial flower handling task and then had to learn a second handling task. This design allowed for 

observation of interference on the acquisition of flower handling techniques, however it did not 

capture interference that occurs if a bee switches repeatedly while foraging. Experiment 2 was 

designed to measure the behaviour of bumblebees on a task requiring repeated switching, which 

would be representative of a foraging strategy without any constancy. In the experiment bees 

were required to repeatedly switch back and forth between two flower handling techniques. The 

goal of the experiment was to characterize any costs of the increased rate of switching as well as 

behavioural changes associated with those costs. 

3.3.1 Method 

3.3.1.1 Subjects and housing 

Subjects were 20 bumblebees (Bombus impatiens) from the same  colony provided by 

Biobest Canada Ltd. (Leamington, ON) that was used in Experiment 1. Housing conditions were 

identical to those used in Experiment 1. Tagging procedures were identical to those used in 

Experiment 1.  

3.3.1.2 Apparatus 

The apparatus was identical to that used in Experiment 1 (Figure 3-1).  
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3.3.1.3 Pre-training 

The pre-training procedures established in Experiment 1 continued throughout 

Experiment 2.  

3.3.1.4 Testing procedure 

Individual trials, both for the up task and down task, were run identically to those in 

Experiment 1.   

Bees completed 5 trials of each trial type (i.e. up task and down task) for a total of 10 

trials. Trial type was switched after each successful trial. If bees were unsuccessful on a trial they 

continued to complete trials of that type until a successful trial before switching tasks. Where 

bees completed more than one trial before switching tasks, the first trial on the task was used for 

data analysis. The order in which bees completed the trials was counterbalanced across bees with 

five bees starting on the up task and five bees starting on the down task. All trials were 

completed in a single session. 

All trials were video recorded for subsequent analysis using a HERO3 video camera 

(GoPro Inc., USA).  

3.3.1.5 Video scoring 

All videos were scored using Observer XT software. The videos were scored for latency 

to success, time spent pushing on the plastic door, time spent inverted while in contact with the 

plastic door, time spent pushing on the exit, and time spent inverted while in contact with the 

metal door. Behaviours were operationalized identically to Experiment 1. 

3.3.1.6 Data analysis 

As in Experiment 1, proportion scores were calculated from inverting and pushing times.  



 

 

86 

 
 
 

In instances where bees were unsuccessful on a trial and completed additional trials on 

the same task the data were analyzed for only the first trial.  

All data was analyzed with repeated measure in IBMÒ SPSSÒ. 

3.3.2 Results 

 All 20 bees completed 10 trials, 5 trials on each task. Video recording errors occurred for 

two bees which resulted in their exclusion from analyses. There were three instances in which 

bees were unsuccessful on the up task. In these three instances it was the bees’ first up task trial, 

one of those bees having completed a down task trial prior to the up task trial, and they were 

successful on their second trial.  

 The trials were initially analyzed as an entire session, with both up task and down task 

trials included, and then subsequently analyzed by comparing performance on up task trials and 

down task trials across the two different start orders. 

3.3.2.1 Session analysis. 

3.3.2.1.1 Latency 

A mixed-ANOVA, with start order as a between-subjects factor and trial as a within-

subject factor, showed a significant drop in latency across trials (F(3.562, 64.117) = 6.838, p < 

.001) (Figure 3-9). There was also a significant trial X start order interaction (F(3.562, 64.117) = 

3.526, p = .001), but no significant main effect of start order (F(1, 18) = 1.390, p = .254). 

3.3.2.1.2 Inverting 

Mixed-ANOVA results for proportion of time inverted showed a significant effect of 

trial, (F(4.407, 70.506) = 2.927, p = .023), and of the trial X start order interaction, (F(4.407, 

70.506) = 15.481, p < .001) (Figure 3-10). There was no main effect of start order, (F(1, 16) = 

.658, p = .429). 
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Figure 3-9 Experiment 2 latency. Bees significantly reduced latency across trials. There was 
a significant interaction between which task the bees completed on their first trial (as 
indicated by the arrows) and the change in latency across trials. 

3.3.2.1.3 Pushing  

Proportion of time spent pushing showed a significant effect of trial, (F(9, 144) = 7.88, p 

< .001), and a significant trial X start order interaction, (F(9, 144) = 15.538, p < .001), but no 

main effect of start order, (F(1, 16) < .000, p = .998) (Figure 3-11). 

3.3.2.1.4 Exit  

There was a significant effect of trial for proportion of time spent interacting with the exit 

while inverted, (F(3.236, 51.771) = 2.792, p = .046), but neither the start order X trial 

interaction, (F(3.236, 51.771) = 1.958, p = .128), nor the main effect of start order, (F(1, 16) = 

.002, p = .968), were significant (Figure 3-12). Analysis of the proportion of time spent pushing 

showed a significant effect of trial, (F(4.038, 64.609) = 6.150, p < .001), a significant trial X start 

order interaction, (F(4.038, 64.609) = 5.204, p = .001), and a significant effect of start order, 

(F(1, 16) = 8.537, p = .01) (Figure 3-12). 
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Figure 3-10 Experiment 2 time inverted. The proportion of time inverted changed across 
trials and there was a significant interaction between time inverted and the task on which 
bees started their testing session. Bees spent more time inverted on up task trials than on 
down task trials. This relation between trial type and time inverted results in bees that 
started on opposite tasks showing opposite patterns of time inverted across trials.  
 

3.3.2.2 Task analysis. 

3.3.2.2.1 Up task 

There was a reduction in latency across up task trials (F(2.334, 42.006) = 8.62, p < .001), but no 

effect of start order (F(1, 18) = 1.980, p = .176) or interaction(F(2.334, 42.006) = .908, p = .425) 

(Figure 3-13). There was a significant increase in time spent inverted across trials (F(2.608, 

41.732) = 3.682, p = .024), but, again, no effect of start order (F(1,16) = 4.021, p = .062) or the 

trial X start order interaction (F(2.608, 41.732) = .321, p = .783) (Figure 3-14). Time spent 

pushing increased significantly across trials (F(4, 64) = 6.591, p < .001) and there was a 

significant interaction between trial and start order (F(4, 64) = 5.247, p = .001). However start 

order was not significant on its own (F(1,16) = 1.767, p = .202) (Figure 3-15). There was a 
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significant reduction in interaction with the exit across trials when measured as time inverted 

interacting with the exit (F(2.1, 33.66) = 4.532, p = .017) and time pushing on the exit (F(2.375, 

38.01) = 8.619, p < .001) (Figure 3.16). There were no significant trial X start order interactions 

for either inverted at the exit (F(2.1, 33.66) = .271, p = .775) or pushing on the exit (F(2.375, 

38.006) = .711, p = .521). Start order was significant for pushing on the exit (F(1, 16) = 5.708, p 

= .03), but not for time inverted at the exit (F(1,16) = .162, p = .693).  

 

Figure 3-11 Experiment 2 time pushing. Bees increased the proportion of time pushing 
across trials. Bees spent more time pushing on down trials than on up trials, which resulted 
in opposite patterns of time pushed across trials for bees that started on different tasks and 
a start order by trial interaction.  

3.3.2.2.2 Down task 

Bees improved performance across down trials as demonstrated by a reduction in latency 

(F(1.390, 25, 028) = 8.341, p = .004), however there was no effect of start order (F(1, 18) = .128, 

p = .725) or the interaction between start order and trial (F(1.390, 25.028) = .516, p = .538) 

(Figure 3-13). Bees showed no significant change in proportion of time inverted across trials 

(F(2.069, 33.108) = 2.908, p = .067) and there was no effect of start order (F(1, 16) = 2.663, p = 
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.122) (Figure 3-14). However, there was a significant start order X time inverted interaction 

(F(2.069, 33.108) = 3.586, p = .038). Bees did change the amount of time they spent pushing 

across down task trials (F(3.118, 49.88) = 10.098, p < .001), but there was no effect of start order 

(F(1,16) = 1.324, p = .267) or a start order X trial interaction (F(3.118, 49.888) = 1.205, p = 

.318) (Figure 3-15). Bees’ time spent inverted interacting with the exit did not change across 

trials (F(1.160, 18,563) = 3.113, p = .089), nor was there an effect of start order (F(1, 16) = .975, 

p = .338) or a start order X trial interaction (F(1.160, 18.563) = .307, p = .620) (Figure 3-16). 

Bees did reduce the amount of time they spent pushing on the exit (F(2.328, 37.255) = 5.788, p = 

.005), but there was no effect of start order (F(1, 16) = 3.985, p = .063) or the interaction 

between start order X trial (F(2.328, 37.255) = 1.125, p = .342) (Figure 3-16).  

 

Figure 3-12 Experiment 2 interactions with the exit door. The top panel shows that bees 
reduced time spent inverted at the exit across trials, and did so equivalently for both start 
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orders. The bottom panel shows the change in time pushing at the exit across trials. 
Although bees in both start orders reduced time pushing on the exit across trials the 
pattern was different in bees that started on the down task first such that they spent more 
time pushing on the exit during up task trials than bees that experienced the up task first.  

3.3.3 Discussion 

 Experiment 2 measured the interference that occurred when bumblebees were required to 

switch repeatedly between two different flower handling tasks. Bees were successful on both of 

the flower handling tasks and improved efficiency across trials on both tasks. When the data was 

analyzed as a session, with both the up task and down task trials included, there was a significant 

difference between those bees that started on the up task and bees that started on the down task.  

 

Figure 3-13 Experiment 2 latency separated by task. The top panel shows a significant 
reduction in latency across only the up task trials. The order in which bees completed trials 
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throughout the session did not affect the latency trend. The bottom panel shows a 
significant reduction in latency across only the down task trials. The order in which bees 
completed the trials did not significantly affect the trend. 

However, this difference does not appear when trials of each particular type are isolated and 

analyzed. This suggests that the difference in latency across trials due to start order is a 

consequence of generally longer latencies for the up task than the down task, and therefore 

opposite alternating patterns in latencies for each start order.  

 

Figure 3-14 Experiment 2 time inverted separated by task. The top panel shows time spent 
inverted on only the up task trials. There is a significant increase in time inverted across 
trials, but that increase did not differ between the two start orders. The bottom panel 
shows time inverted on the down task trials. There was no change in time spent inverted on 
down trials for either start order. 

As in Experiment 1, improvement on each of the flower handling tasks can be attributed 

to increased use of the successful strategy for that particular task (i.e. inverting for the up task, 
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pushing for the down task). The saw-toothed patterns that appears in the figures for time inverted 

(Figure 3.10) and time pushing (Figure 3-11), make clear that bees learned to specifically use the 

appropriate strategy when engaging in the task for which it was successful.  This data shows no 

clear evidence for significant interference, in that bees were able to switch between the two 

handling techniques successfully.   

 

Figure 3-15 Experiment 2 time pushing separated by task. The top panel shows the 
significant increase in time pushing across the up task trials. There was an interaction 
between start order; bees that completed the down task first showed a spike in time spent 
pushing on up task trial 2 not seen in those bees that started with the up task. The bottom 
panel shows the increase in time spent pushing on the down task trials. There was no 
difference in the trend in pushing between the two start orders. 
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Bumblebees showed decreased interactions with the exit door across trials, despite 

switching repeatedly between the two tasks. This supports the observation in Experiment 1 that 

bees are able to extract information about general task demands and apply that information to 

both of the flower handling tasks tested here. It is possible that bees experienced interference in 

switching between the two flower handling techniques but that interference was obscured by 

facilitation from their learning general task demands.  

 

Figure 3-16 Experiment 2 exit behaviours separated by task. The top two panels show 
inverting and pushing behaviours at the exit door during up task trials. Both time inverted 
and time pushing decreased across trials. The elevated amount of time spent pushing by 
bees that experienced a down task trial first relative to those that experienced up task trials 
first was significant. The bottom panels show time inverted and time pushing on down task 
trials. There was no change in time spent inverted while interacting with the exit, but there 
was a reduction in time spent pushing on the exit across trials.   
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3.4 General Discussion 

A long standing question in bumblebee foraging behaviour is why bumblebees limit their 

foraging to relatively few flower species, rather than foraging more flexibly on a wider variety of 

species (Waser, 1986; Chittka, Thomson, & Waser, 1999). Darwin (1876), introduced the 

hypothesis that learning more than one handling technique resulted in interference between the 

multiple techniques and a loss of foraging efficiency. It has since been shown that interference at 

the level of flower handling is not a likely explanation for flower constancy (Woodward & 

Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998; Chittka, Thomson, & Waser, 

1999), but a complete characterization of the mechanisms of switching behaviour of bees at the 

level of flower handling had not previously been undertaken. The results here support my 

hypothesis that when bees are switching between two handling techniques they are switching 

between two innate motor patterns, so bees are engaging in associative learning, rather than 

learning multiple novel motor patterns. This makes their switching on flower handling tasks 

similar to associative switching tasks (reversal and serial reversal learning) at which they are 

successful (Strang & Sherry, 2014). This hypothesis is consistent with previous observations on 

spatial reversal tasks in which bees incur switching costs at the level of associative learning, but 

not motor behaviour (Chittka & Thomson, 1997). Reliance on innate motor patterns for flower 

handling may be the mechanism responsible for the flexibility that allows bumblebees to 

function as generalist foragers as discussed in Chapter 2, and the same mechanism may serve to 

eliminate motor learning interference when switching between flower types.  

3.4.1 Costs of Switching 

 Previous investigations of the interference hypothesis consistently found costs of 

switching, even though those costs were too low to be of ecological significance (Woodward & 
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Laverty, 1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998). Here there was no evidence 

of interference costs as bumblebees were capable of acquiring two motor tasks and switching 

successfully between the two. One possible explanation for the discrepancy is the different types 

of interference being measured. In previous work, interference costs were measured in memory, 

asking if bees could remember an initially learned flower handling technique after having 

learned a second technique (Woodward & Laverty, 1992; Gegear & Laverty, 1995; Gegear & 

Laverty, 1998). Instead of focusing on already heavily studied memory interference costs of 

switching, Experiment 1 explored costs of switching during acquisition. It is possible that 

bumblebees do not incur any interference costs at all during the acquisition of multiple handling 

techniques, and do experience small memory interference effects. This would be consistent with 

the model of flower handling described in Chapter 2 that relies on associative learning and not on 

acquisition of different motor patterns. Bumblebees are capable of learning multiple associations 

at the same time (Schencking, 1969), but they experience interference when required to switch 

repeatedly between them (Strang & Sherry, 2014). Thus, bumblebees here were successfully able 

to acquire multiple handling techniques without interference.   

 Repeated switching was required for Experiment 2, but again no evidence of interference 

costs was found. Bumblebees successfully improved on each of the tasks while acquiring them 

simultaneously and showed fluency and specificity in their use of the two required motor 

behaviours. The lack of interference on this task is consistent with findings from Chittka and 

Thomson (1997), where bumblebees that were required to switch frequently during training 

acquired both tasks more quickly than bees that were trained on a block design. The frequently 

used paradigm for testing interference is a block design (Lewis, 1986; Woodward & Laverty, 

1992; Gegear & Laverty, 1995; Gegear & Laverty, 1998), with bees learning one task to 
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asymptotic performance and then being switched to the second task. This difference in design 

could be responsible for the complete absence of switching costs found here.   

3.4.2 Flower Complexity 

Previous investigations of costs of switching in bumblebees have found that the costs are 

more significant for complex flowers (Gegear & Laverty, 1995), and can even disappear when 

foraging on simple flowers (Gegear & Laverty, 1995). Consequently, it is necessary to consider 

the possible effect of complexity of flower morphology on the results here. Is it possible that the 

absence of interference costs is due to morphological simplicity of the model flowers? It is 

unlikely that this was the case. Simple flowers are defined as having nectaries that are exposed 

and both tasks described here required a component of the apparatus to be moved in order to 

access the sucrose reward. The flower used for the up task was intentionally designed to involve 

greater complexity than previously designed models, and the lengthy acquisition curves 

generated for that model and described in Chapter 2 support its morphological complexity. The 

down task did not undergo the same extensive development process as the up task. However it 

did require an entirely distinct motor pattern for success. It has been suggested that in some cases 

it is not the complexity of flower morphology that is important for interference costs, but rather 

the difference in morphology between two different flowers (Gegear & Laverty, 1995). The tasks 

here shared general properties, but the key morphological features related to successfully 

accessing the rewards were distinct.   

3.4.3 Learning-to-learn 

 A surprising finding here was the ability of bees to learn general properties of the task 

and apply them to both variations, producing positive transfer of learning rather than 

interference. The general learning that occurred here was largely due to learning the location of 
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the reward. During initial trials bees spent significant time interacting with the exit door that 

could not be opened, but in later trials they focused their efforts exclusively on the door that 

could be opened and provided access to the sucrose reward. Learning-to-learn or positive transfer 

between tasks is widely known to occur in animals (Shettleworth, 1998; Shettleworth, 2009) and 

has been a particular topic of interest in research with object manipulation and tool use tasks 

(Povinelli, 2000; Martin-Ordas, Call, & Colmenares, 2008; Shettleworth, 2009). It has also been 

observed in flower handling work in the past (Laverty, 1994a). Even in light of previous research 

on learning-to-learn the extent to which positive transfer facilitates bees’ performance on the 

tasks used here was still surprising. One factor that may have exaggerated bees’ extraction of 

general information about flowers was the absence of any natural floral cues that would aid bees 

in locating nectar in real flowers. It widely known that flowers provide cues to the locations of 

their rewards through nectar guides and other cues (Leonard & Papaj, 2011). In the artificial 

flowers used here such cues were not present, so bees needed to learn the location of the rewards. 

This learning requirement, that may not present when foraging in the wild, could be responsible 

for the large learning-to-learn effect observed here.    

3.4.4 Alternative mechanisms of flower constancy 

 With the interference hypothesis no longer considered to be a sufficient explanation for 

flower constancy, a perspective supported by the findings here, there needs to be an alternative 

explanation. As with most topics, when a dominant hypothesis is challenged multiple other 

hypotheses take its place. In the case of flower constancy these alternative hypotheses range 

from appeals to memory limitations (Raine & Chittka, 2007) to use of a search image while 

foraging that is susceptible to interference (Goulson, 2000; Gegear & Laverty, 2005), to 
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consideration of interacting effects all contributing to constancy (Chittka, Thomson, Waser, 

1999).   

Hypotheses regarding memory dynamics and limitations are consistent with the data here. 

My data suggest that although bees are not engaging in motor learning during flower handling, 

they are forming associations with each flower and those associations must be stored and 

accessed for bees to forage successfully.  Raine and Chittka (2007) hypothesized that only 

information for one, or very few, flowers could be maintained in short-term memory while a bee 

was foraging. If the bees were to switch to foraging on a different species they would then have 

to retrieve information, and all previous associations, for that flower from long-term memory 

prior to making the switch. The intervals between flower visits were compared to switch 

likelihood for foraging bumblebees and the hypothesis was supported, in that bees were more 

likely to switch species following long intervals than following short intervals between flowers 

(Raine & Chittka, 2007). This supports the role of memory in flower constancy, just a different 

type of memory than originally suggested by Darwin.   

3.4.5 Conclusions 

 Darwin’s suggestion that bees are constant in the same way that an artificer executes one 

task at a time has all of the elegance and appeal of most of his ideas, but unfortunately does not 

seem to be the explanation for bumblebee constancy. The goal of this chapter was to determine 

why such a logically sound hypothesis was unsupported. It is clear from the data that when bees 

are required to switch between different flower morphologies they switch between two innate 

motor patterns and then associate the successful motor pattern with the particular flower. The 

bees here were able to switch between different handling techniques with little cost at the level of 

the motor behaviour. Bees do not suffer high costs of switching at the level of motor behaviours 
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required for flower handling because those behaviours are innate and not susceptible to 

interference. Interference effects observed are due to interference with associations of innate 

motor patterns and particular flowers, and not due to interference in motor patterns themselves.  
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Chapter 4 
4 Mushroom Body Volume and Reversal Learning 
4.1 Introduction 

Bumblebees show impressive flexibility in their generalist foraging strategy 

(Heinrich,1976; Heinrich, 1979/2004) and their ability to switch between flower handling 

techniques with only small efficiency costs (Woodward & Laverty, 1992; Raine & Chittka, 

2007). How bees are able to generate such a large and flexible behavioural repertoire from a 

simple nervous system has received extensive consideration (Menzel & Giurfa, 1999). In the 

previous two chapters I addressed this problem indirectly by demonstrating that complex 

behavioural output such as flower handling can be generated through simple cognitive 

mechanisms.  One strategy bumblebees have evolved to deal with limited neural capacity is to 

rely on simple cognitive solutions to ecological problems. However, the proposed mechanisms in 

Chapters 2 and 3 still require well-developed associative learning and neural structures that 

support those learning abilities. The mushroom bodies are considered to be the locus of learning 

in the bee brain (Strausfeld et al., 1998; Farris, 2005; Fahrbach, 2006), but their direct relation to 

measures of behavioural flexibility has not been thoroughly investigated. In this chapter, I 

explore the relation between the bumblebee mushroom bodies and behavioural flexibility, as 

measured by reversal learning.   

4.1.1 Behavioural flexibility in bees 

Behavioural flexibility can be broadly defined as an animal’s ability to respond 

appropriately to changes in its environment (Coppens et al., 2010). This definition includes no 

information on how to operationalize behavioural flexibility, which has resulted in dramatically 

different ways of testing of flexibility in animals (Audet & Lefebvre, 2017). The many existing 

flexibility assays include quantifying foraging innovations (Sol et al., 2002), and performance on 
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problem solving (Auersperg et al., 2011; Benson-Amram & Holekamp, 2012) and switching 

tasks such as reversal learning (Bond et al., 2007; Strang & Sherry, 2014). In the frequently used 

reversal task an animal is trained on a discrimination, with one rewarding stimulus and one 

unrewarding stimulus, then the contingencies are reversed (Mackintosh, 1969; Bitterman, 1969; 

Davey, 1989; Shettleworth, 1998; 2010). The ability of an animal to recognize the change in 

reward contingencies and change their behaviour is considered a demonstration of flexibility. 

This measure can be used with any species that can learn to discriminate between stimuli, 

making it versatile, convenient, and popular for comparative and neuroscience studies. 

 There has been a good deal of research on reversal tasks in both honeybees (Menzel, 

1969; Couvillon and Bitterman, 1986; Mota and Giurfa, 2010; Ben-Shahar et al., 2000) and 

bumblebees (Chittka, 1998; Strang & Sherry, 2014). The ability of bees to successfully perform 

a reversal has been found consistently but success on repeated reversals is more mixed 

(Couvillon and Bitterman, 1986; Mota and Giurfa, 2010; Chittka, 1998; Strang & Sherry, 2014). 

Bees appear to be successful at repeated reversals when given large numbers of trials and the 

opportunity to reach asymptotic performance or a similar criterion on both the initial and the 

reversed discrimination (Chittka, 1998; Strang & Sherry, 2014).  Bees tend to respond randomly 

when neither of these two conditions is met (Couvillon and Bitterman, 1986; Mota and Giurfa, 

2010). Despite the differences in these studies of repeated reversal learning, the pattern of 

learning and errors by bees in initial discrimination acquisition and a single reversal is largely 

consistent. Bees generate learning curves for the initial discrimination, make repeated choices to 

the no longer rewarded stimulus following the reversal (perseverative errors), and then acquire 

the reversed discrimination. This pattern is typical of animals that use associative learning to 

solve reversal tasks (Mackintosh, 1969; Bitterman, 1969; Davey, 1989; Shettleworth, 1998; 
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2010), suggesting that bees are employing associative learning to behave flexibly in reversal 

tasks. Additional evidence for an associative mechanism for bees’ flexibility comes from 

detailed examination of the pattern of errors and correct choices on the serial reversal task 

(Strang & Sherry, 2014). When bumblebees are required to make repeated reversals, the 

efficiency with which they switch improves, though the pattern of errors that they make suggests 

that this improvement is actually due to proactive interference rather than more complex rule 

learning (Strang & Sherry, 2014). 

 Studies of reversal learning show that behavioural flexibility by bees on these tasks might 

be due to a memory limitation and consequent failure of associative learning (Strang & Sherry, 

2014). It follows from this that there should be an inverse relation between performance on 

discrimination learning tasks and reversal tasks. Bees that are exceptional learners should 

perform poorly on reversal tasks, and those that have difficultly acquiring associations should be 

more susceptible to interference effects and more easily reverse the associations that they have 

formed.   Raine & Chittka (2012) found no such learning vs. flexibility trade-off, however, when 

they measured discrimination acquisition and reversal learning in bumblebees. Bumblebees 

(Bombus terrestris) learned to associate yellow artificial flowers with sucrose reward, and then 

were exposed to a reversal where blue flowers provided high value sucrose reward. Bees that 

acquired the initial discrimination quickly also reversed the discrimination quickly (Raine & 

Chittka, 2012). This finding argues against the hypothesis that behavioural flexibility in bees is 

due in part to limitations in associative learning. Additionally, this result is relevant to questions 

about the neural correlates of reversal learning. A study of the development of mushroom bodies 

in foraging honeybees found that increases in volume of the calyces was due to increases in 

dendritic branching (Farris, Robinson, and Fahrbach, 2001). The increased volume and 
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branching is proposed to support the increased need to form associations and learn during 

foraging (Farris et al., 2001), suggesting that bees with larger mushroom bodies have a greater 

capacity to form and maintain associations compared to bees with smaller mushroom bodies.  If 

flexibility is due to a failure of memory then reversal should have a negative correlation with 

brain regions that support strong associative learning, such as the mushroom bodies. In contrast, 

if reversal learning is supported by similar cognitive processes as associative learning, as 

proposed by Raine & Chittka (2012), then one would expect both discrimination learning and 

reversal learning to have a positive correlation with brain regions that support learning and 

memory.   

 Reversal learning is an ideal candidate to investigate the relation between the bumblebee 

brain and behavioural flexibility because of the extensive investigation of reversal learning in 

bees and the thorough characterization of bee behaviour on the task.  

4.1.2 Learning and the mushroom bodies 

From their initial discovery by Dujardin (1850) the mushroom bodies of the insect brain 

have been linked to learning and memory because of their size and prominence in the insect 

brain. Since Dujardin first proposed a relation between the mushroom bodies and learning that 

relation has been experimentally demonstrated (De Belle & Heisenberg, 1994; Komischke et al., 

2005; Gronenberg & Couvillon, 2010). De Belle and Heisenberg (1994) removed the mushroom 

bodies of Drosophila through chemical ablation and observed severe impairments in associative 

learning in experimental flies, despite otherwise normal activity levels and mating success. 

Komischke et al. (2005) used chemical ablation to study mushroom bodies and learning in 

honeybees and performed unilateral rather than bilateral ablations. This technique allowed 

comparison of learning with and without intact mushroom bodies in the same individual by 
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conducting olfactory learning trials using stimuli applied to either the ablated side or the intact 

side of the bee. Honeybees showed intact olfactory conditioning when the intact hemisphere was 

employed, but showed impairment when they were trained on their ablated side (Komischke et 

al., 2005).  

There is considerable diversity in mushroom body size and morphology in insects 

(Strausfeld et al., 1998), and it has been suggested that the volume of the mushroom bodies is 

related to learning and memory capacity (Strausfeld et al., 1998; Farris, 2005; Fahrbach, 2006). 

Hymenoptera (bees, ants, and wasps) have larger mushroom bodies than other insects (Fahrbach, 

2006). This investment in larger mushroom bodies by Hymenoptera could be due to increased 

social interaction (O’Donnell et al., 2011) or increased foraging demands (Mares et al., 2005). 

Additionally, mushroom body size increases at the onset of foraging in bumblebees (Riveros & 

Gronenberg, 2010), honeybees (Withers et al., 1993; Withers et al., 1995) and other 

Hymenoptera (O’Donnell et al., 2004; Withers et al., 2007), a transition during which enhanced 

associative learning abilities may be advantageous. 

Aside from ablation studies, much of the evidence for a relation between mushroom body 

volume and learning relies on the assumption that increased social or foraging demands are 

paired with increased cognitive demands. Gronenberg and Couvillon (2010) directly explored the 

relation between mushroom body volume and learning in bees. Gronenberg and Couvillon 

(2010) trained honeybees on an olfactory discrimination task and compared performance to 

mushroom body volume. A positive correlation was found between total brain volume and 

learning, and between mushroom body volume and learning (Gronenberg & Couvillon, 2010).  

Given the previously observed relation between mushroom body volume and associative 

learning (Gronenberg & Couvillon, 2010), and the associative mechanisms involved in 
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behavioural flexibility as measured by reversal learning (Shettleworth, 1998/ 2010), mushroom 

body volume is a suitable brain measure for exploring the neural correlates of flexibility in 

bumblebees.   

4.1.3 Goal of this chapter 

The purpose of this chapter is to explore the neural structures that support behavioural 

flexibility in bumblebees measured by reversal learning. Bees were trained on a colour 

discrimination reversal and their performance was compared to the volume of the mushroom 

bodies and subdivisions within the mushroom bodies. Previous work supports the hypothesis that 

a positive relation exists between mushroom body volume and initial discrimination learning, but 

the relation between mushroom body volume and reversal learning is less clearly predicted. If 

successful reversal learning is due to interference with a previously formed association then a 

negative correlation between mushroom body volume and reversal performance would be 

predicted. If successful reversal learning is the product of the same learning mechanism that is 

responsible for initial discrimination learning as proposed by Raine & Chittka (2012), then a 

positive correlation between mushroom body volume and both discrimination and reversal 

learning would be predicted.  

4.2 Methods 

4.2.1 Subjects and housing  

Subjects were 16 bumblebee workers (Bombus impatiens) from 2 colonies obtained from 

Biobest Canada Ltd. (Leamington, ON). Bee colony boxes, provided by Biobest Canada Ltd, 

were placed in a 3.0 X 8.5 m room (Figure 4-1) with a 12h light/dark cycle, light onset 7am.  

Bees had access to the housing room through a 2cm wide exit in the colony box that was open 

24h/day. Bees had access to sucrose solution in six foraging patches consisting of white 30.5 X 
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30.5 cm SmoothfoamTM polystyrene sheets that were placed on four tables in the housing room. 

Each foraging patch contained five artificial flowers that consisted of 7ml plastic microtubes 

(Axygenâ,Union City, CA) with the caps removed and a 5cm wide clear plastic corolla around 

the microtube. Each of the artificial flowers was provisioned with 15-17% sucrose solution that 

was replenished as needed, providing ad libitum sucrose for the bee colony.  Pollen was given 

daily to the colony through a small opening in the lid of the colony container. Colonies were 

given at least five days after arrival to begin foraging and habituate to their housing conditions 

before bees were tested. 

 

Figure 4-1 Housing room. The bee colonies were contained in colony boxes (C) and given 
unrestricted access to the housing room. The bees collected sucrose solution from six 
foraging patches (F) placed on tables in the room. All testing occurred at the table farthest 
from the colony where the apparatus was placed for the entire duration of the experiment. 

Prior to testing, bees were collected while foraging, restrained in a marking tube, and 

tagged for individual identification with either plastic number tags (Betterbee Inc., Greenwich, 

NY) affixed with cyanoacrylate glue or Posca paint markers (Mitsubishi Pencil Co.). Bees were 

identified during testing by their colour and number. 
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4.2.2 Apparatus 

The apparatus (Figure 4-2) consisted of two 20.3 X 20.3 X 12.7cm boxes constructed 

from Elmer’sÒ 1/2" foam board with a clear plastic lid that covered the entire width and 12.7cm 

of the depth of the top of each box. On the entrance side of each box the top front panel was 

partially removed, lowering the height of the box to 7.6cm, to allow bees to enter the apparatus. 

Each box had additional pieces of foam board attached to the left and right sides of the box to 

support the test stimuli. The stimuli consisted of 20.3 X 20.3 cm blue and yellow CreatologyTM 

foam sheets (Michaels Stores Inc.) which were inserted into the box to create a platform on 

which the bee could land. Underneath the stimuli there were two artificial flowers, one that 

contained a reward and one that did not. The flowers were attached to a sliding piece of 

polystyrene that could be manipulated from outside the apparatus to make either the empty or 

full artificial flower accessible through a hole in the stimuli. This setup allowed bees to make 

their choice between the stimuli in the absence of reward, but to be immediately rewarded upon 

making a correct choice.  Following each testing session, the colour stimuli were removed from 

the apparatus, white sheets of Creatology™ foam were inserted into the apparatus, and the 

artificial flowers were arranged such that the rewarding flowers were available. The colour 

stimuli were wiped with 70% isopropyl alcohol after all testing sessions to remove any odours 

left by bees during testing.     



 

 

111 

 
 
 

 

Figure 4-2 Apparatus. The apparatus consisted of two boxes with clear lids that partially 
covered the top of the boxes. Coloured stimuli (blue and yellow) were placed in the boxes 
during testing and formed the floor of each box. The ‘X’s indicate the location in which a 
sucrose reward was accessible on correct trials and an empty artificial flower was 
encountered on incorrect trials.  

4.2.3 Habituation 

The testing apparatus was available to bees in the housing room for at least 24h prior to testing 

and then continued to be available throughout the experiment when testing was not occurring. 

During habituation the apparatus was baited with 40% sucrose solution.  

4.2.4 Testing Procedure 

In each session bees completed 30 trials. The first 10 trials consisted of a discrimination 

between blue and yellow. The initially rewarded colour (S+) was counterbalanced across bees. 

The final 20 trials were a reversal of the initial discrimination. In each trial the apparatus 

contained both colour stimuli, blue and yellow, with one stimulus in each box. The left/right 

position of the colours was pseudorandomized across trials. Each colour appeared an equal 

number of times in the left and right positions within a ten trial block, and no colour remained in 

the same position for more than three trials in a row.  
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Entrance into the apparatus past the point at which it was lidded was considered a choice. 

Bees were allowed to make multiple choices in a single trial, but only the first choice was used in 

analysis. When a bee made a correct choice the filled rewarding artificial flower filled with 40% 

sucrose solution was positioned under the opening in the floor of the apparatus. When a bee 

made an incorrect choice they encountered an empty artificial flower. A trial was completed 

when the bee left the area of the apparatus. When the bee returned to the area of the apparatus 

choices were recorded as a new trial.  

4.2.5 Histology 

Bees were collected immediately following testing, cold anesthetized, and decapitated. 

Brains were removed from the head capsule in bee saline, a mixture of salts (NaCl, KCl, CaCl2, 

MgCl2), sugars (dextrose, fructose, sucrose), and distilled water mixed to match the osmolarity 

of bee hemolymph (Gronenberg, personal communication, 2010). Brains were then immediately 

placed in alcoholic Bouin’s fixative and stored overnight. Brains were dehydrated in ethanols, 

cleared in xylene, and embedded in ParaplastÒ. 

Brains were sliced on a microtome in 5µm coronal sections. Brain sections were 

deparaffinized and stained with Cason’s trichrome stain (Cason, 1950). Area measurements were 

taken from every fifth section resulting in a section interval of 20µm. Area measurements were 

obtained from digital images captured using a Leica DM5500 B microscope by tracing structure 

outlines using ImageJ (Schneider, Rasband, & Eliceiri, 2012). Images used for quantifying total 

mushroom body volume, peduncle volume, and lobe volume were taken using a 5X objective. 

Images used to quantify the mushroom body subcompartments (lip, collar, basal ring) were taken 

using a 10X objective. Volume was calculated from the area measurement using the formula for 

the volume of a truncated cone.  
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Tissue loss during processing resulted in exclusion of four brains from analyses. Tissue 

loss that was restricted to one hemisphere occurred in four additional brains. In these brains the 

values from the intact hemisphere were used for both hemispheres.   

4.2.6 Data Analysis 

Analyses were done on the behavioural data, the relations between the behavioural data 

and the histology data, and the histology data alone, the latter to determine the relations among 

structures within the mushroom bodies. All analyses were done in RStudioÒ.  

4.3 Results 

All 16 bees completed the behavioural trials and are included in analysis of the 

behavioural data, but four bees are excluded from the histology.  

4.3.1 Behavioural results 

Bee choices for the behavioural task were separated into three different trial blocks, each 

with ten trials. The first trial block consisted of the discrimination trials, and blocks two and 

three consisted of the 20 reversal trials separated into two trial blocks.  

Choice data were analyzed with a repeated measures ANOVA. Choices changed across 

trial blocks (F(26, 2) = 42.39, p < .001) (Figure 4-4). Tukey HSD pairwise comparisons showed 

that each trial block differed from each other trial block. The number of correct choices was 

higher in the discrimination than in the reversal trial block 1 (p < .001) or the reversal trial block 

2 (p = .01). Performance on the two reversal blocks also differed from each other (p < .001), with 

bees making more correct choices in the second trial block than in the first.    

4.3.2 Histology and behaviour correlations 

Six volume measurements were calculated (total mushroom body volume, peduncle and 

lobes, calyx, collar, lip, and basal ring). The mean values for each of the volume measurements 
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are given in Table 4-1. Pearson’s product moment correlation was used to relate volume 

measurements to discrimination learning, the 20 trials of reversal learning, and reversal learning 

separated into trial block 1 and trial block 2.  

 

Figure 4-3 Coronal section of the bee brain. Panel A shows a coronal section stained with 
Cason’s trichrome stain taken using 5x lens. The images shows both hemispheres of the bee 
brain including the left and right mushroom bodies, each of which consists of medial and 
lateral calyces, shaded in light blue, and the peduncle and lobes, shaded in dark blue. Panel 
B shows a mushroom body calyx at 10x objective lens. Staining with Cason’s trichrome 
stain results in the subcompartments of the calyx (collar, lip, basal ring) being visible and 
with easily discernable boundaries. 

There were no significant correlations between volume measurements and any of the 

behaviour measures.  

 Total mushroom body volume did not significantly correlate with performance on the 

discrimination trial block (r(10) = .48, p = .11), overall reversal performance (r(10) = .1, p = 

.75), reversal trial block 1 (r(10) = -.003, p = .99), or reversal trial block 2 (r(10) = .23, p = .5) 

(Figure 4-4).  
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Table 4- 1 Mean mushroom body volume measurements 

 

There were no significant correlations between combined peduncle and lobe volume and 

discrimination learning (r(10) = .4, p = .19), overall reversal performance (r(10) = -.07, p = .82), 

reversal trial block 1 (r(10) = -.122, p = .7), or reversal trial block 2 (r(10) = .02, p = .95) (Figure 

4-5). 

 

Figure 4-4 Discrimination and reversal learning. Discrimination learning data is shown as 
number correct out of ten trials on the left side of the dashed line. Reversal learning data is 
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shown or the right side of the dashed line in two separate trial blocks, each consisting of ten 
trials. Bees showed a typical reversal learning pattern of easy acquisition of the initial 
discrimination, significant perseverative errors after the reversal (Block 1), and then 
acquisition of the reversed discrimination (block 2). The horizontal distribution of points 
for each block of trials was created artificially to make the individual data points in each 
category visible.  

 
Figure 4-5 Total mushroom body volume and learning. Panel A shows the non-significant 
correlation between total mushroom body volume and the number of correct choices on the 
discrimination. Panel B shows the non-significant correlation between total mushroom 
body volume and the number of correct choices on the reversal. Panels C and D show non-
significant correlations between total mushroom body volume and number correct on the 
first and second block of reversal trials respectively. The gray shading in each panel shows 
the 95% confidence interval for the correlations. 

Calyx volume did not significantly correlate with discrimination learning (r(10) = .43, p = 

.16), reversal learning (r(10) = .28, p = .38), reversal block 1 (r(10) = .14, p = .66), or reversal 
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block 2 (r(10) = .39, p = .21) (Figure 4-6). The collar subcompartment did not significantly 

correlate with the discrimination (r(10) = .4, p = .19), overall reversal (r(10) = .29, p = .36), 

reversal block 1 (r(10) = .13, p = .69), or reversal block 2 (r(10) = .42, p = .18) (Figure 4-7). Lip 

volume did not significantly correlate with the discrimination (r(10) = .5, p = .86), overall 

reversal (r(10) = .05, p = .86), reversal block 1 (r(10) = -.04, p = .9), or reversal block 2 (r(10) = 

.18, p = .59) (Figure 4-8). Finally, the basal ring did not significantly correlate with 

discrimination learning (r(10) = .09, p = .78), overall reversal (r(10) = .44, p = .15), reversal 

block 1 (r(10) = .45, p = .14), or reversal block 2 (r(10) = .28, p = .37) (Figure 4-9).  

 

Figure 4-6 Combined peduncle & lobe volume and learning. The four panels show non-
significant correlations between combined peduncle and lobe volume and discrimination 
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learning (Panel A), overall reversal learning (Panel B), block 1 of reversal learning (Panel 
C) and block 2 of reversal learning (Panel D). 

 
Figure 4-7 Calyx volume and learning. All four panels depict non-significant correlations 
between calyx volume and discrimination learning (Panel A), overall reversal learning 
(Panel B), reversal block 1 (Panel C), and reversal block 2 (Panel D). 

4.3.3 Mushroom body volume correlations 

The contributions of the internal mushroom body structures to the total mushroom body 

volume are shown in Figure 4-10. The combined peduncle and lobes accounted for 36.84% of 

the total mushroom body volume. The calyces accounted for the remaining 63.16%. The collar 

region of the calyces was the largest calyx subcompartment and the largest contributor to total 
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mushroom body volume at 45.62%. The lip subcompartment was the second largest part of the 

calyces at 10.6%, and the basal ring was the smallest subcompartment at 6.94% to total 

mushroom body volume.   

 

Figure 4-8 Collar volume and learning. Non-significant correlations are shown between 
collar volume and discrimination learning (Panel A), overall reversal learning (Panel B), 
reversal block 1 (Panel C), and reversal block 2 (Panel D). 

The correlations for total mushroom body volume with all internal mushroom body structures 

are shown in Figure 4-11. Total mushroom body volume significantly correlated with volumes of 
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the peduncle and lobes (r(10) = .89, p < .001), calyx (r(10) = .83, p < .001), collar (r(10) = .8, p 

= .002), lip (r(10) = .64, p = .03), and the basal ring (r(10) = .71, p = .01).  

 

Figure 4-9 Lip volume and learning. Non-significant correlations between lip volume and 
discrimination learning (Panel A), overall reversal learning (Panel B), reversal learning 
block 1 (Panel C), and reversal learning block 2 (Panel D) are shown. 

The correlations for calyx volume are shown in Figure 4-12. Total calyx volume was 

significantly correlated with all of the subcompartments, the collar (r(10) = .98, p < .001), the lip 

(r(10) = .71, p = .01), and the basal ring (r(10) = .82, p = .001). Total calyx volume did not 

significantly correlate with combined peduncle and lobe volumes (r(10) = .49, p = .11). Within 
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the calyces, the collar was not significantly correlated with the lip (r(10) = .56, p = .06), but the 

collar was significantly correlated with the basal ring (r(10) = .8, p = .002) (Figure 4-13). The lip 

and the basal ring were not significantly correlated (r(10) = .41, p = .19) (Figure 4-13).  

 

Figure 4-10 Basal ring volume and learning. Correlations between basal ring volume and 
discrimination learning (Panel A), overall reversal learning (Panel B), reversal block 1 
(Panel C), and reversal block 2 (Panel D) were all non-significant. 

Combined peduncle and lobes volume did not significantly correlate with any of the 

mushroom body subcompartments; the collar (r(10) = .45, p = .15), the lip (r(10) = .41, p = .18), 

or the basal ring (r(10) = .44, p = .15) (Figure 4-14).   
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Figure 4-11 Mushroom body composition.  The mushroom bodies can be divided into the 
calyces, peduncle, and lobes. Here the volume of the peduncle and lobes are combined and 
volume of the calyces is separated into the subcompartments (collar, lip and basal ring). 
The collar subcompartment of the calyces was the largest contributor to mushroom body 
volume. 

4.4 Discussion 

 Previous investigations of learning in the bee brain have found a relation between 

mushroom body volume and learning abilities (Gronenberg & Couvillon, 2010) but that relation 

was not found here. Additionally, no relation was found between behavioural flexibility, 

measured by reversal learning, and mushroom body volume. The importance of the mushroom 

bodies to learning in insects is supported by previous research (De Belle & Heisenberg, 1994; 

Komischke et al., 2005; Gronenberg & Couvillon, 2010), making it unlikely that the results here 
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indicate the absence of any relation between learning and the mushroom bodies or reversal 

learning and the mushroom bodies. It is more likely that the relation between the mushroom 

bodies and learning was not observable at the level of analysis of mushroom body volume in this 

study, despite observations of a relation at this level of analysis previously (Gronenberg & 

Couvillon, 2010).  

 

Figure 4-12 Total mushroom body correlations with internal mushroom body structures. 
The panels show total mushroom body correlations with calyx volume (Panel A), peduncle 
and lobes volume (Panel B), collar volume (Panel C), lip volume (Panel D), and basal ring 
volume (Panel C). All correlations were significant. 
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Figure 4-13 Calyx volume correlations. The nonsignificant correlation between total calyx 
volume and combined peduncle and lobe volume is shown in Panel A. The significant 
correlations between calyx volume and the calyx subcompartments are shown in bottom 
three panels (Panel B = collar volume, Panel C = lip volume, Panel D = basal ring volume). 

4.4.1 Learning and the mushroom bodies 

 Bumblebees here showed the expected pattern of performance in the reversal learning 

task. They readily acquired the initial colour discrimination, made repeated errors when the 

reward contingencies were reversed, and then acquired the reversed discrimination. Bees did not 

acquire the reversed discrimination within twenty trials to the near error free degree that they 

acquired the initial discrimination, though improvement from the first block of reversal trials to 
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the second block suggests that they would have reached near perfect performance if given more 

trials. In successfully completing the discrimination and reversal, bees demonstrated learning and 

behavioural flexibility as expected, and provided a behavioural measure to relate to the 

mushroom body anatomical data.  

 

Figure 4-14 Mushroom body subcompartments correlations. Within the calyces, collar 
volume was significantly correlated with basal ring volume (Panel B), but not with lip 
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volume (Panel A). Lip volume and basal ring volume were not significantly correlated 
(Panel C). 

 
Figure 4-15 Combined peduncle and lobe correlations. Combined peduncle and lobe 
volume did not significantly correlate with the collar subcompartment of the calyces (Panel 
A), the lip (Panel B), or the basal ring (Panel C). 
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 Correlations between bumblebee mushroom bodies and behaviour showed no significant 

relation between mushroom body volume as a whole or volumes of any of the component parts 

and behavioural learning and flexibility. This was surprising given the previous observation in 

honeybees of a relation between mushroom body volume and learning on a discrimination task 

(Gronenberg & Couvillon, 2010). There are a couple of possible explanations for the absence of 

a relation in this study. In Gronenberg and Couvillon’s (2010) experiment honeybees were 

trained on an olfactory discrimination using the proboscis extension reflex procedure (PER), in 

which a bee is harnessed and extension of the proboscis is conditioned through application of an 

odour to the antennae paired with a sucrose reward (Bitterman et al., 1983). This procedure 

differs considerably from the procedure here in which bees were free-flying and completing a 

colour discrimination. One would expect considerable consistency in the neural structures 

responsible for associative learning regardless of the sensory domain. Projections from sensory 

structures are segregated, however, in the mushroom body clayces into the subcompartments 

collar, lip, and basal ring (Strausfeld et al., 1998). It is possible that the relation between learning 

and the olfactory region of the calyces, the lip, is observable at the level of volume analysis, but 

not observable for the visual region, the collar.  

 Another possible explanation for the absence of a relation between mushroom body 

volume and learning or reversal learning is that there was insufficient variation in the sample of 

bumblebees used here. In bumblebees, larger bees are more likely to become foragers while 

smaller bees remain in the colony and engage in other tasks (Goulson, 2003). Consequently 

foraging bumblebees represent only a limited range of the body sizes present within the colony. 

All of the bees used here were foragers resulting in a restricted range on bumblebee body sizes in 

the sample. Brain volume and mushroom body volume correlate with body size in bumblebees 
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(Mares et al., 2005), so using a sampling technique that restricted the body size of bumblebees 

likely resulted in a restricted the range of bumblebee mushroom body volumes.  There was, 

however, considerable variation in mushroom body volume among the bees in the present study 

and strong relations between mushroom body components and total mushroom body volume 

(Figure 4-11) and between calyx volume and calyx subcompartments (Figure 4-12).  Similarly, 

there was considerable variation in bees’ ability to learn the initial discrimination and perform 

reversal learning (Figure 4-4).  It is therefore unlikely that the absence of correlations between 

mushroom body volume and learning were due to lack of sensitivity in the behavioural and 

anatomical measures used. 

All bees observed were experienced foragers. It has been demonstrated repeatedly in 

honeybees (Withers et al., 1993; Withers et al., 1995) and also in bumblebees (Riveros & 

Gronenberg, 2010) that the mushroom bodies undergo experience-related volume changes with 

the onset of foraging and acquisition of foraging experience. By using only foraging bees, my 

sample may have been restricted to bees that have already undergone foraging-related brain 

changes. For this study the inclusion criterion of foraging experience was necessary because 

smaller or inexperienced bees would not have been able to complete the behavioural task.  It may 

be possible, however, to examine learning and reversal in a broader range of bumblebees with a 

different behavioural technique. 

 A consequence of the absence of any relations between brain measurements and of the 

behavioural measures is that the data provide no information regarding the two competing 

hypotheses surrounding behavioural flexibility in bumblebees. The first hypothesis is that 

flexibility in reversal learning is the consequence of a breakdown in associative learning, 

implying a negative correlation between mushroom body function and flexibility. The second 
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hypothesis, proposed by Raine and Chittka (2012), is that a common mechanism underlies both 

learning and flexibility, predicting that positive correlations would exist between both 

discrimination learning and mushroom body function and between reversal learning and 

mushroom body function. Investigations of these hypotheses will require more detailed 

characterization of the mushroom bodies such as synaptic organization (Hourcade et al., 2010; Li 

et al., 2017).   

4.4.2 Bumblebee mushroom bodies 

The honeybee brain has been studied more extensively than the bumblebee brain, producing 

a number of volume estimates of mushroom body subcompartments (Durst et al., 1994; Withers 

et al., 1993; Withers et al., 1995). Extensive investigations into the developmental changes that 

occur in the mushroom bodies of honeybees has produced volume measurements for all 

component parts of the mushroom bodies in honeybees, including the subcompartments of the 

calyces (Durst et al., 1994; Withers et al., 1993; Withers et al., 1995). Although measurements of 

bumblebee mushroom body volume have been published (Mare et al., 2005; Riveros & 

Gronenberg, 2010), analysis of the mushroom body subcompartments has not. In addition to 

consideration of the relation between behavioural flexibility and the mushroom bodies, this study 

provides the first volume measurements of the subcompartments of the bumblebee mushroom 

body calyces.  

 All structures within the mushroom bodies of the bumblebee varied allometrically with 

overall mushroom body volume, that is, each of the internal structures of the mushroom bodies 

was larger in mushroom bodies that had a larger total volume. Of the correlations between 

subdivisions in the mushroom bodies two are of particular interest. First, volume of the peduncle 

and lobes did not correlate with calyx volume, and second, the largest structure within the 
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mushroom bodies was the collar subcompartment within the calyces. The latter is particularly 

interesting because this contrasts with results for foraging honeybees, in which the peduncle and 

lobes are the largest contributor to total mushroom body volume (Durst et al., 1994).  The 

percentage of total mushroom body volume attributable to the lip and basal ring 

subcompartments within the calyces was comparable to foraging honeybees (Durst et al., 1994), 

suggesting that the bumblebees have greater relative investment specifically in the collar, the 

visual processing region of the calyces. Once again, it is important to consider these findings in 

light of the bumblebee sample used here. The lobes of larger bumblebees tend to have a smaller 

relative volume than they do in smaller bumblebees, but this is not found in the calyces, which 

maintain the same relative size in larger bumblebees as in smaller bumblebees (Mares et al., 

2005). The sampling of exclusively larger bumblebees in this study may have resulted in data 

representing the most extreme investment in calyx volume relative to the lobes, and the relative 

contribution of the subdivisions may not hold across the full range of bumblebee body sizes. 

Despite the limits of the sample here, these data do suggest a difference in investment in the 

visual subcompartments of the calyces between honeybees and bumblebees. 

4.4.3 Conclusions 

The primary goal of this chapter was to explore the relation between behavioural 

flexibility and the mushroom bodies of the bumblebee brain. Correlations between reversal 

learning and volume of the mushroom bodies, and specific structures within the mushroom 

bodies, showed none of the predicted relations. Prior research indicating a relation between the 

mushroom bodies and learning suggests that the absence of significant correlations in the present 

study does not necessarily indicate the absence of a relation between the mushroom bodies and 

reversal learning, but rather that learning and mushroom body volume are not directly correlated. 
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A second goal of this chapter was to fully describe the volume of subdivisions within the 

bumblebee mushroom bodies. This was done successfully and the resulting measurements 

produced a more complete characterization of the bumblebee mushroom bodies.  
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Chapter 5 
5 General Discussion 

The research described in this thesis was designed to explore behavioural flexibility in 

bumblebees (Bombus impatiens). This was done through a series of experiments on flower 

handling and an experiment on how variation in flexibility is related to variation in mushroom 

body volume.  

Chapter 2 described the development of a model of flower handling behaviour that could 

be used under controlled laboratory conditions and made it possible to quantify flower handling 

learning with greater specificity than has been previously accomplished. The model was 

successful and provided data showing two components to the acquisition of flower handling 

techniques: (1) innate motor patterns, and (2) the increase in use of the successful motor pattern 

by reinforcement and operant learning. These findings demonstrate that bumblebees generate 

species level flexibility through the efficient use of both innate processes and simple learning 

mechanisms. Outlining the mechanisms of flower handling learning with this degree of 

specificity compliments the extensive descriptions of flower handling in the wild provided by 

Heinrich (1976a; 1976b) and Laverty (1980), and contributes to our understanding of how the 

simple nervous systems of bees can generate complex flexible output (Giurfa, 2003). 

The model developed in Chapter 2 was adapted to address outstanding questions about 

Darwin’s interference hypothesis (Darwin, 1876).  Darwin suggested there should be efficiency 

costs when bumblebees switch between flower species while foraging and consequent 

inflexibility in foraging behaviour at the level of the individual. It has previously been 

demonstrated that bumblebees do not show the expected efficiency costs at an ecologically 

relevant level (Woodward & Laverty, 1992), but the mechanism by which they avoided these 
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costs was not fully explored. My experiments show that when bees switch between two flower 

types they switch between two innate motor patterns rather than investing in learning two novel 

motor patterns. The absence of learning at the motor pattern level eliminates the possibility of 

memory interference in motor patterns and minimizes the occurrence of interference in flower 

handling overall. This probably explains the presence of minor interference costs, due to changes 

in the use of motor patterns, and why these interference costs are ecologically inconsequential.   

 Previous research has shown a relation between mushroom body volume and 

discrimination learning in honeybees (Gronenberg & Couvillon, 2010). The relation between 

mushroom body volume, learning, and behavioural flexibility in bumblebees was explored in 

Chapter 4. The experiment involved measuring bumblebee behavioural performance on a 

reversal task, a common measure of behavioural flexibility (Audet & Lefebvre, 2017), and 

relating that performance to detailed volume analysis of bumblebee mushroom bodies. There 

was no relationship between behavioural measures of learning and flexibility and mushroom 

body volume in foraging bumblebees. Despite finding no significant relations between 

mushroom body volume and learning, the extensive characterization of mushroom body volume 

provided in this chapter provides original new information on the structure of the bumblebee 

mushroom bodies. 

5.1 Behavioural flexibility 

Aside from the specific goal of characterizing behavioural flexibility in bumblebees, the 

experiments in this thesis had the broader goal of exploring the cognitive mechanisms that 

generate complex behaviour. The field of animal cognition routinely experiences cycles which 

begin with the description of an exciting ‘human like’ cognitive process in an animal and then 

following more rigorous experimentation the revelation of simpler learning mechanisms that are 
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actually involved (Shettleworth, 2010). Studies of “insight” have shown this cycle multiple times 

in the history of animal cognition. The first was Köhler’s (1959) studies with chimpanzees which 

showed them generating the completely novel solution of stacking boxes to access a banana that 

was out of reach.  The chimpanzees’ behaviour was proposed to be akin to the ‘aha’ moment that 

humans experience during problem solving by insight. The subsequent demonstration of a 

pigeon accomplishing the same feat as the chimpanzees and generating a novel solution after 

reinforcement and punishment of a few key behaviours directed to the boxes, provided a simpler 

explanation for the behaviour (Epstein et al., 1984). The chimpanzees probably had very similar 

reinforcement experience with their boxes prior to their “insightful” solution. More recently, 

problem solving by insight was described in corvids by Bird & Emery (2009), but further 

experiments showed that previous experience, not “insight” was the critical factor in the birds’ 

problem solving (von Bayern et al., 2009).  

Studies of behavioural flexibility, particularly those with bees, are likely at a turning point in 

which exciting and unexpected behaviour has been described and now steps will be taken to 

understand the cognitive mechanisms responsible. The recent publication of papers critical of the 

methods used to study behavioural flexibility (Audet & Lefebvre, 2017; Mikhalevich, Powell, & 

Logan, 2017) suggest this is the case.   There is research to support a relation between 

behavioural flexibility and complex cognition (Lefebvre, Reader, & Sol, 2004; Reader, Hager, & 

Laland, 2011), but foundational principles of the field such as Lloyd Morgan’s Canon (1903) 

remain important.  Seemingly complex behaviour can be the outcome of simpler cognitive 

processes.  

The experiments described in Chapters 2 and 3 demonstrate a broadly applicable approach to 

studying behavioural flexibility. This included the development of an apparatus with ecological 
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relevance to the study species, rather than a puzzle box (Auersperg, Gajdon, & von Bayern, 

2012) or an intentionally novel task (Mirwan & Kevan, 2014; Loukola et al., 2017), and 

quantification of behaviour in greater detail than success or failure. Some recent studies of 

bumblebee problem solving and behavioural flexibility have provided interesting examples of 

the capabilities of bees but their application to understanding bee behaviour has been limited by 

the at times intentional absence of ecological relevance. In some tasks bees undergo extensive 

operant training before they can successfully manipulate the apparatus used (Mirwan & Kevan, 

2014; Alem et al., 2016; Loukola et al., 2017). Research of this kind excludes one of the most 

intriguing aspects of object manipulation or flower handling by bees in the wild which is their 

ability to acquire behaviour in the absence of reward (Muth, Keasar, & Dornhaus, 2015). 

In this thesis I explored behavioural flexibility using behaviour that naturally occurs in 

flower handling.  Bumblebees have a large repertoire, however, of other behaviours that 

researchers can use to continue asking questions about problem solving and flexibility. A perfect 

example is nectar robbing, or as Darwin described it “the felonious practice of biting holes 

through the corolla”(Darwin, 1976, p.420). The behavior of chewing a hole in the corolla of 

difficult to handle flowers in order to reach the floral nectary seems very similar to the ‘opening 

a window’ solution of the Multi Access Box developed by Auersperg et al. (2012), making it a 

further naturally occurring behaviour with which to study problem solving in bees.  

5.2 Contributions to bumblebee neuroscience 

There is a great deal of previous research on mushroom body volume in honeybees because 

they were the bee species of choice during a boom in honeybee neuroscience in the late 1990s 

and early 2000s that focussed largely on the volume of brain structures (Withers, Fahrbach, & 

Robinson, 1993; Durst, Eichmüller, & Mezel, 1994; Withers, Fahrbach, & Robinson, 1995). 
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Bumblebees are increasingly being used in neuroscience work (Riveros & Gronenberg, 2009), 

but without analysis of the size of brain structures. Instead bumblebee brains are investigated at 

the level of synaptic organization (Li et al., 2017). Progress in bee neuroscience has left us 

without much basic knowledge of the bumblebee brain. In Chapter 4, I provided new data on the 

mushroom bodies of the bumblebee brain and their component parts.  Future comparative work 

on the mushroom bodies of the honeybee and bumblebee brain would be particularly interesting 

in light of differences in cognition and behaviour between these two important pollinators 

(Sherry & Strang, 2015) 

The failure to find a relation between mushroom body volume and learning or behavioural 

flexibility is an interesting observation given previous findings in honeybees (Gronenberg 

Couvillon, 2010). It supports the point that there are potential differences between honeybees 

and bumblebees in mushroom body volume that are underexplored. The absence of correlations 

between mushroom body volume and performance suggests, however, that further investigation 

of the relationship between the brain and behaviour in bumblebees at a finer level of analysis, 

such as synaptic organization (Li et al., 2017) is likely to be more productive.          

5.3 Implications for conservation 

Given the current declines in some bumblebee populations (Cameron et al., 2011) the 

application of basic research to conservation is an important consideration in the study of 

bumblebees and was certainly a consideration in this thesis. One of the main threats to 

pollinators are pesticides, which even when not applied at lethal levels can have sublethal effects 

on colony and population survival (Whitehorn et al., 2012; Phelps et al., 2018). The 

pervasiveness of pesticide exposure in the wild (Bonmatin et al., 2015) makes it challenging to 

find unexposed bee populations in the wild, making it challenging to conduct controlled studies 
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on the effects of pesticides. The flower handling task I developed can be used to assess the 

sublethal effects of pesticides on foraging behaviour in a controlled laboratory setting while 

maintaining ecological relevance. Both motor and learning deficits can be observed on this task 

given that both innate motor patterns and learning are required to solve it.  My flower handling 

model can be used in conjunction with pesticide treatment, or the application of other stressors, 

to examine the effects of human-induced rapid environmental change on bee populations. 

5.4 Conclusions 

 Bumblebees are important in the study of animal cognition because of their contributions 

to our food supply and economy (Potts et al.,2010), and their accessibility as a model for 

cognitive and neural processes (Riveros & Gronenberg, 2009). In this thesis, I explored one of 

the most remarkable features of bumblebees, their ability to generate complexity out of 

simplicity. This feature has made them useful for exploring cognition in general, and an ideal 

model for exploring behavioural flexibility. My findings on behavioural flexibility in bees show 

that general conclusions about the relationship between behavioural flexibility and intelligence 

or complex cognition need to be made with caution and consideration of mechanisms. When 

discussing the evolution of “endless forms” from “so simple a beginning” in the concluding lines 

of On the Origin of Species, Darwin wrote “there is grandeur to be found in this view of life” 

(Darwin, 1859). Darwin’s sentiment is directly applicable studies of cognition in bumblebees. 

There is grandeur to be found in understanding how a seemingly simple organism can produce 

complex behaviour in the form of flower handling and pollination that has an outcome of global 

importance.  
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