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Abstract 

As part of the Western Cold and Flu aerosol (WeCoF) studies, the present study provides 

Computational Fluid Dynamics (CFD) modelling of human cough flow. The cough flow is 

characterized in two different aspects, the flow field and the droplets. In the study of the flow 

field of coughing, various dynamic characteristics, including the velocity variation, streamwise 

penetration and power spectral density, are examined. CFD simulations using two different 

approaches, the unsteady Reynolds Averaged Navier-Stokes (URANS) and the large eddy 

simulation (LES), are performed for comparison purposes. The numerical results are validated 

by the experimental data obtained from the measurements by the particle image velocimetry 

(PIV) and hot-wire anemometry (HWA), as well as the published data. Based on the 

comparison with the URANS approach and the experimental data, the LES approach can be 

considered as a good candidate to predict the flow field of coughing. 

In the study of the droplets produced by coughing, the dynamic characteristics, including the 

dispersion and evaporation processes, are analyzed. The Lagrangian discrete phase model is 

adopted to track a total 2084 droplets in the diameter range 3-750 μm. The effects of the relative 

humidity (RH) of the ambient air and the inlet time-dependent cough velocity on the dispersion 

and evaporation of the droplets are investigated. It is found that the larger droplets precipitate 

on the ground as the time progresses, and the precipitating speed depends on the droplet size, 

whereas the smaller droplets with the diameter dp ≤ 10 μm remain suspended for a longer 

period. The dispersion process in terms of the droplet penetration is weakened by both a higher 

ambient RH and a lower inlet cough velocity. The droplet evaporation is significantly affected 

by the ambient RH, i.e. the higher the RH, the slower the evaporation. However, the inlet cough 

velocity doesn’t show a strong influence on the evaporation of the droplets. 

Keywords 

Computational Fluid Dynamics (CFD), Human Cough Flow, Flow Field, Droplet, Unsteady 

Reynolds Averaged Navier-Stokes (URANS), Large Eddy Simulation (LES), Discrete Phase 

Model 
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Chapter 1  

1 Introduction 

1.1 Background 

In recent years, infectious respiratory diseases, including Severe Acute Respiratory 

Syndrome (SARS) and different types of influenza, have received a great deal of attention 

worldwide. In each year, 200-500 thousand people die because of seasonal influenza 

(Aliabadi et al., 2011). In November, 2002, SARS emerged initially in Guangdong 

province, South China, and then spread rapidly around the world and eventually caused 

around 1,000 deaths (World Health Organization, 2003). Figure 1.1 shows the timeline of 

the SARS outbreak in 2003. From March to June, hundreds of new cases appeared 

continuously every month and in total, more than 8,000 cases were found around the world 

(Banos & Lacasa, 2007). 

 

Figure 1.1: The SARS outbreak timeline in 2003 (adapted from Banos & Lacasa 

(2007)). 



2 

 

However, compared to the outbreak of Spanish influenza in 1918, the impact of SARS was 

negligible. It was estimated by the World Health Organization (WHO) that from 1918 to 

1920, there were 20 million people killed worldwide, and approximately one-quarter of the 

global population infected by the pandemic of Spanish influenza (Luk et al., 2001). Besides 

the severe influence on human health, respiratory diseases will also affect the global 

economy devastatingly. As a conservative estimation, it could cost US$800 billion per year 

globally to prevent and treat avian influenza (Gupta et al., 2009). During 2002-2003, the 

outbreak of SARS resulted in a total loss of around US$25.3 billion for the China’s 

economy, of which 70% was the loss in the tourism industry (Hai et al., 2004). 

Due to the catastrophic impact on human health and global economy, it is significantly 

important to study, predict and control the transmission of infectious respiratory diseases. 

Since people spend most of their time in the indoor environment daily, it will be fairly easy 

for them to be infected by influenza or other types of pandemics. Generally, it is identified 

that most of the indoor infections are caused by direct or indirect contact (Beggs, 2003). 

Direct contact, also known as person-to-person contact, means that people may get infected 

through touching other people who are carrying infectious viruses. Infections will occur 

rapidly and spread widely in the route of direct contact, especially in the nosocomial 

environment, if healthcare workers take care of patients without washing their hands 

effectively (Ayliffe et al., 1988). The indirect contact infection, is through the intermediate 

inanimate objects and work surfaces. For instance, the medical apparatuses, such as 

endoscopes and implants, will be polluted by the micro-organisms if they are not 

disinfected, which will result in infection of the patients (Ostrowsky, 2007 & Arbuthnott, 

1992). 

An airborne transmission of viruses has been recognized as the main cause of the infection 

of respiratory diseases in the indoor environment. One of the major sources of airborne 

viruses is human expiratory activity, which includes breathing, coughing, speaking and 

sneezing (Morawska, 2006). Such forced exhalation can produce thousands of droplets 

with various sizes at a high velocity, which are transported by the flow field. Infectious 

micro-organisms, including viruses, pathogens, bacteria, etc., are contained in the droplet 

nuclei (Beggs, 2003). Compared to the breathing and speaking processes, coughing and 
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sneezing can produce higher concentrations of droplets and, therefore, provide higher 

possibilities to infect others. During coughing and sneezing, the diameters of most droplets 

produced from the mouth are around 10 μm and some are even larger than 100 μm (Duguid, 

1944). After leaving the mouth, the larger droplets fall to the ground first, while the smaller 

droplets propagate in the air with the diameter decreasing and eventually becoming droplet 

nuclei, due to evaporation. 

1.2 Literature Review 

A literature review is provided to introduce the previous work done of the airborne 

transmission processes during coughing in terms of both the experimental and numerical 

aspects. 

1.2.1 Experimental studies 

Coughing can be considered as a multiphase buoyant turbulent flow (Bourouiba et al., 

2014). Various factors may affect the spread of the cough flow, such as the cough direction, 

mouth opening area, expired transient velocity, ambient temperature and relative humidity 

(RH) (Gupta et al., 2009). As a common symptom for most infections of respiratory 

diseases, coughing has been investigated more extensively than other forced expiratory 

behaviours in terms of the flow characteristics and droplet dispersion (Xie et al., 2007). 

Such information is helpful for a health care organization to find a way to reduce the 

infection possibility of respiratory diseases. Many previous studies have been conducted 

to investigate the process of airborne transmission during coughing experimentally. Wei 

and Li (2017) conducted an experiment in a cuboid water tank to simulate the 

characteristics of the cough jet. They divided the cough jet into two stages, the starting-jet 

and interrupted-jet stages, and investigated the influence of different inlet boundary 

conditions on the dynamic development for both stages. They also developed a protocol to 

model the droplet transport by using the glass beads which have similar sizes to cough 

droplets. Chao et al (2009) applied the particle image velocimetry (PIV) and 

interferometric Mie imaging (IMI) techniques to measure the velocity of the cough flow 

near the mouth and the droplet size, respectively. Savory et al. (2014) constructed an 

experimental cough chamber, named FLUGIE (Fluids from Undergrads with Influenza 
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Enclosure), in order to study the aerodynamics and droplet dispersion of the cough flow 

far downstream of the mouth, by using the PIV approach. They also recruited the 

participants who were infected by influenza and used bioaerosol sampling cassettes to 

collect the droplets from their coughs to quantify the content of the infectious viruses. 

Similar works were done by Mohamed et al. (2017) and Dudalski et al (2018) who 

experimentally studied the velocity field of the cough flow produced by both influenza-

infected and recuperated human subjects through the PIV and hot-wire anemometry (HWA) 

measurements. They also employed swabs to collect the nasal mucus from the subjects in 

order to identify the species of the pathogen as well as to quantify the viral content. Other 

experimental techniques, such as aerodynamic particle sizer (APS) and high speed camera, 

were also used to investigate the characteristics of the cough flow and droplet propagation 

as well as the droplet size (Yang et al., 2007 & Bourouiba et al., 2014). 

1.2.2 Numerical studies 

Compared with experimental techniques, numerical approaches are relatively more 

efficient, economical and convenient to use (Kannan, 2015). Numerical approaches are 

applied extensively in engineering to simulate physical phenomena and to solve practical 

problems via solving a set of governing equations. One of the numerical methods, which 

is specially used in the field of fluid mechanics, is the computational fluid dynamics (CFD). 

The CFD method is developing rapidly and is used in a wide variety of practical 

applications, such as the production of automobiles, aircraft and ships. By using the CFD 

method, various fluid phenomena, including different types of laminar and turbulent flows, 

radiation, heat transfer, etc., can be simulated within an acceptable range of numerical 

accuracy. Many studies about CFD modelling on the airborne transmission process during 

coughing were conducted. Aliabadi et al (2010) carried out a CFD simulation of the cough 

flow by using the unsteady Reynolds Averaged Navier-Stokes (URANS) approach and 

analyzed the impact of the ambient RH and expired volume on droplet dispersion, heat and 

mass transfer. In their study, the renormalization group (RNG) k-ε model and the 

Lagrangian discrete phase model were used to solve the turbulence of the flow field and to 

track the droplets, respectively. Zhu et al (2006b) also did a CFD simulation to investigate 

the coughing process in a still indoor environment. They simplified the transient cough 
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flow to be steady, and applied the standard k-ε turbulence model and Lagrangian method 

to solve the flow field and droplet dispersion. The experimental data using three different 

experimental techniques were used to validate the numerical results, which are a PIV 

system in a styrene-board chamber to measure the velocity of the flow field, a digital video 

camera in a still thermostatic chamber to record the droplet dispersion process, and a mask 

to quantify the amount of saliva sprayed during the coughing process. Zhang & Li (2012) 

studied the droplet dispersion during the coughing process in a high-speed rail (HSR) 

carriage by using CFD modelling. The carriage was designed to be occupied by 48 

passengers which were simulated by 3-dimensional thermal manikins. Four cases under 

various boundary conditions were studied in order to take into account different 

surrounding situations occurring in a HSR carriage. They also implemented the URANS 

approach with the RNG k-ε model and the Lagrangian discrete phase model to predict the 

aerodynamic behaviour of the flow field and droplet trajectories, respectively. 

In most of the numerical work, the URANS approach has been used to simulate the 

dynamic development of the flow field. This approach considers the ensemble-averaged 

component of the flow problem instead of the instantaneous field and requires less 

computational cost than the direct numerical simulation (DNS) and large eddy simulation 

(LES) approaches. A turbulence model is needed when using the URANS approach. In 

some of the previous studies, the RNG k-ε model has been used successfully to predict the 

development of the flow field of coughing, due to its superiority in modelling the flow with 

different Reynolds numbers (Aliabadi et al., 2010 & Zhang & Li, 2012). Other researchers 

have implemented the standard k-ε model to solve the flow field (Zhu et al., 2006a). 

However, the URANS approach has some limitations. First, the ensemble-averaged field 

of the flow is obtained from the calculations of the turbulence models based on the 

governing equations (Berlemont et al., 1990), of which the coefficients are empirical and 

may influence the accuracy of the simulated results. Furthermore, the fluctuation of the 

droplets can be approximated by the stochastic tracking model which only takes the random 

effects of turbulence on the droplet dispersion into consideration and does not solve the 

coherent structures of the turbulence (Béghein et al., 2005). Besides the URANS approach, 

the DNS and LES methods are available in CFD modelling to solve the time-dependent 



6 

 

fluid problem. The DNS method resolves the turbulence over the whole range of temporal 

and spatial scales and, hence, provides the highest accuracy. However, the computational 

cost is very high, which is not suitable for the present study. The LES method resolves the 

large scales of turbulence with more precision and only models the small scales of 

turbulence directly through the subgrid-scale (SGS) turbulence model and, therefore, 

predicts the fluid phenomena more accurately compared to the URANS method. 

1.3 Motivation 

Currently, no numerical study of the dynamic development of human cough flow has been 

conducted by using the LES approach due to the following challenges: (1) the 

computational cost is much higher than that of the URANS approach; (2) it is difficult to 

specify the turbulent fluctuations at the inlet for the flow field properly; (3) it is necessary 

to define the appropriate conditions for the droplets to obtain statistically valid results 

(Deevy et al., 2008 & Béghein et al., 2005). Furthermore, no comparison of the results 

between different numerical methods is provided. To better understand the dynamic 

characteristics of the flow field of coughing, including the velocity variation and the 

streamwise penetration, and to obtain more accurate numerical results, both the URANS 

and LES approaches are carried out in the present study for comparison purposes. Such a 

CFD investigation will analyze the dynamic characteristics of human cough flow, therefore, 

making significant contributions to our understanding of the dynamic development of 

human cough flow and to the prevention of respiratory disease transmission. 

1.4 Thesis Scope 

The present study is aimed at numerically investigating the dynamic development of 

human cough flow in terms of the flow field and the droplets. In the study of the flow field 

of coughing, two 3-dimensional simulations using the URANS and LES approaches under 

the same boundary and ambient conditions are carried out. The numerical results are 

validated by the experimental data obtained from the measurements by the PIV and HWA 

techniques, as well as the published data (Wei & Li, 2017). The numerical results of the 

velocity magnitude contours, the spatially averaged velocity on the PIV field of view and 

the 2-dimensional velocity magnitude at the midpoint of each cough flow are compared 
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with the relevant PIV measurements. Similarly, the numerical results of the velocity u 

component, the peak velocity Up and the power spectral density at the hot-wire probe 

location are compared with the HWA measurements. Furthermore, the numerical results 

regarding the streamwise penetration of the flow field are compared with the experimental 

work of Wei & Li (2017). 

In the study of the droplets produced by coughing, three 3-dimensional simulations using 

the LES approach and discrete phase model are performed. A total of 2084 droplets in the 

diameter range of 3-750 μm are injected from 0.042-0.136 secs. Two out of the three 

simulations are conducted under different ambient RH, i.e. 50% and 80%, respectively, in 

order to analyze the effect of the ambient RH on the droplet dispersion and evaporation. 

Another two simulations are carried out under different inlet time-dependent cough 

velocities with the peak values of 22.06 and 10.81 m/s, respectively, to examine the 

influence of the inlet cough velocity on the droplet dispersion and evaporation. The 

dispersion process of the droplets is investigated in two aspects, including the contours of 

the droplet diameters and the penetration distance of the droplets from the mouth. The 

evaporation process of the droplets is also analyzed in two aspects, the droplet size 

distribution at different time and the variation of the overall mean droplet diameter with 

time. 

1.5 Objectives 

There are three primary objectives of this thesis: 

(1) To numerically investigate the dynamic characteristics, such as the velocity variation, 

streamwise penetration and power spectral density, of the flow field of coughing in a 

quiescent environment. Two CFD approaches, the URANS and LES, are used. The 

comparison of the results between these two numerical methods is provided, including the 

time history of the velocity magnitude contours. 

(2) To validate the numerical results of the flow field with the experimental data. The 

experimental data are obtained from the research article (Wei & Li, 2017) and the PIV and 

HWA measurements conducted by the author’s colleagues from the Advanced Fluid 
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Mechanics (AFM) research group (Western University) (Mohamed, 2017 & Dudalski et 

al., 2018). In the experiments, both sick, recuperated and healthy participants have been 

recruited. 

(3) To numerically investigate the characteristics of droplet dispersion and evaporation. 

The simulations using different time-dependent cough velocities at the inlet and the 

ambient RH are carried out to study the effects of those conditions on the dispersion and 

evaporation processes of the droplets produced by coughing. 

A secondary objective is to conduct a CFD simulation on a steady-state, turbulent, round 

free jet. The simulations using the Reynolds Averaged Navier-Stokes (RANS) approach 

with various turbulence models are performed with the same boundary conditions in order 

to determine the most appropriate model to be used in the URANS modelling on the flow 

field of coughing. The experimental data (Xu & Antonia, 2002) is used to validate the 

numerical results. More details are shown in Appendix A. 

1.6 Thesis Organization 

The thesis is in the Integrated Article format. 

Chapter 1 presents a general introduction about the serious effects of infectious respiratory 

diseases on human race and how indoor infections occur through human expiratory activity. 

A literature review of the previous studies in terms of the experimental and numerical work 

on human cough flow is included. The motivation, scope, objectives and organization of 

the present study are provided as well in the individual sections. 

Chapter 2 discusses the flow field of coughing. The simulations using two CFD approaches, 

URANS and LES, are performed for comparison purposes. The dynamic characteristics, 

such as the velocity variation with time, the streamwise penetration and the power spectral 

density, are analyzed. The experimental data from the literature and the PIV and HWA 

measurements are used to validate the numerical results. 

Chapter 3 discusses the droplets produced by coughing. The discrete phase model based 

on the Lagrangian equation is used to simulate the performance of the droplet dispersion 
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and evaporation. The simulations using different time-dependent cough velocities at the 

inlet and the ambient RH are conducted to analyze the influence of those conditions on the 

dispersion and evaporation processes of the droplets. 

Chapter 4 presents the conclusions of the present study. The comparison of the two CFD 

methods, the validation of the numerical results, as well as the overall dynamic 

characteristics of human cough flow in terms of both the flow field and the droplets are 

summarized. The recommendations for future work regarding the modifications and 

improvements of the CFD modelling of human cough flow are also provided. 

The next chapter will analyze the dynamic characteristics of the flow field of coughing by 

using both the URANS and LES approaches, and the numerical results will be validated 

by comparing with some experimental data. 
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Chapter 2  

2 CFD Modelling of the Flow Field of Coughing 

2.1 Introduction 

Coughing is one of the common forced expiratory activities which play a key role in 

transmitting airborne viruses of respiratory diseases in the indoor environment. Human 

cough flow is generally considered as a multiphase incompressible turbulent free jet flow 

which consists of a flow field as a continuous phase and the droplets as a discrete phase 

(Bourouiba et al., 2014). Several parameters, such as the mouth opening area, time-

dependent expired flow rate, fluid flow direction, the ambient temperature and relative 

humidity (RH), affect the transport characteristics of human cough flow and are not unique 

due to the physiological variability for different people  (Gupta et al., 2009). The schematic 

description of the flow field of coughing is illustrated in Figure 2.1. 

 

Figure 2.1: Schematic of the flow field of coughing (Mohamed, 2017 (with author's 

permission)). 
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2.1.1 Dynamic characteristics of turbulent free jet flows 

In order to clearly recognize the complicated structures and to easily understand the 

phenomenon of human cough flow, the flow field is sometimes approximated as a turbulent 

round free jet (Xie et al., 2007), which is regarded as the simplest form of turbulent jets. A 

steady turbulent free jet is defined as a jet flow that is issued from a nozzle exit into an 

environment with the same fluid, which can be quiescent or have a velocity, and propagates 

freely without any effect of the solid boundaries (Bisoi et al., 2017). This type of flow is 

of great interest for a variety of practical engineering applications, such as chemical 

processes, combustion and pollutant discharge, as well as mixing, cooling and drying 

processes (Abdel-Rahman, 2010). Figure 2.2 shows the schematic description of a steady 

round free jet, in which there are three different regions depending on the streamwise 

distance to the nozzle exit: the near-field (initial region), the intermediate-field (transition 

region), and the far-field (fully-developed region). The near-field is usually referred to the 

region of 0 ≤ x/d ≤ 6 (x and d indicate the distance in streamwise direction and the diameter 

of the round nozzle exit, respectively), and is also named as the potential core zone. In this 

region, the flow characteristics are almost the same as those at the nozzle exit and are not 

influenced by the growing annular shear layer (Gohil et al., 2014), where most of the 

mixing and interactions between the jet flow and the ambient fluid take place. The 

intermediate-field is located at the region of 6 ≤ x/d ≤ 30, also known as the interaction 

zone. The near- and intermediate-fields together constitute the developing region, which 

normally dominates the dynamic performance in the far-field and the practical applications 

of a turbulent jet due to the significant impact of the upstream conditions on mass, 

momentum and heat transfer (Abdel-Rahman, 2010). The far-field is the region of 

approximately x/d ≥ 30 (Fielder, 1998), and is also known as the self-similar or fully-

developed region. Most interest has been concentrated on the far-field state because 

eventually it will be achieved by all the turbulent jets, for which the dynamic behaviour is 

simpler to characterize. Furthermore, a virtual origin is illustrated in Figure 2.2, which is 

defined as the intersection of two boundary lines of the jet flow (Flora & Goldschmidt, 

1969). It is different from the nozzle exit and might be located inside or outside the nozzle. 

The location of the virtual origin (X0) depends on the conditions of the jet flow at the nozzle 

exit (Mi & Nathan, 2009). Figure 2.2 also shows clearly that as the jet flow spreads 
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downstream, the velocity profile in the radial direction keeps changing, and the most 

significant velocity gradient occurs at the shear layer. As shown in Figure 2.2, the velocity 

along the centreline of the jet flow is known as the centreline velocity uc, and ru is called 

the half-width, which is defined as the distance between the centreline and a radial plane 

where the mean flow velocity U0 is half the corresponding centreline velocity uc (Darisse 

et al., 2013). The half-width ru generally grows in a linear trend with a slope named the 

spreading rate, in the streamwise direction. Throughout the process of the jet propagation, 

the large eddies decompose into smaller and smaller eddies with turbulence structures 

decaying and the molecular viscous force being more dominant, whilst energy transfers 

from the large-scale turbulence structures to smaller structures. The processes of vortex 

formation and energy transfer are vital for the entrainment and mixing of the ambient 

environment, and it is noteworthy that with the shear layer becoming thicker, the vortex 

formation becomes weaker. Shinneeb et al. (2008) and Matsuda and Sakakibara (2005) 

investigated the near-field region of turbulent round free jets in order to study the impacts 

of the entrainment and mixing caused by the vortical structures on the jet flow development, 

and found that the large-scale turbulence structures dominated the dynamic development 

of the jet flow. 
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Figure 2.2: Schematic structures of a steady turbulent round free jet (adapted from 

Abdel-Rahman (2010)). 

Studies on turbulent round free jets focus on two main parts, which include the effects of 

the inlet boundary conditions and the ambient conditions on the flow dynamic 

characteristics in the developing and fully-developed regions. The mean velocity profile, 

turbulence intensity and Reynolds number at the nozzle exit are commonly defined as the 

inlet boundary conditions for a turbulent free jet. The dynamic performance of free jet 

flows is also dependent on the ambient conditions including the absence or presence of 

walls around the flows, the temperature, the RH and backflow turbulence intensity of the 

ambient environment. Quinn (2006) examined an isothermal, incompressible turbulent free 

round jet with two types of nozzle exit, a sharp-edged orifice and a contoured nozzle. From 

his study, it was inferred that, the mean velocity profile had a saddle-backed shape at the 

sharp-edged orifice, and a top-hat shape at the contoured nozzle. It was found the mean 

velocity profile at the near-field region, including the nozzle exit, is affected by the vena 

contracta phenomenon (Ghahremanian & Moshfegh, 2013) which describes a short 
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increase of the streamwise mean velocity and occurs just downstream of the nozzle exit 

(Mi et al., 2001a & Mi et al., 2001b). Xu and Antonia (2002) also conducted experiments 

on free jet flows injected from a pipe and a conventional contraction to investigate the 

influences of different types of nozzle exit on the jet flow development, and demonstrated 

that for the pipe jet, the large-scale turbulence structures formed much farther downstream, 

and the jet flow reached the far-field region much slower, compared to the contraction jet. 

Therefore, it can be concluded that the geometric shape of the nozzle exit affects the 

turbulence structures in both near- and far-field regions, and the impact of the geometric 

shape of the nozzle exit is more significant on the near-field structures. 

In order to examine the effect of the Reynolds number at the nuzzle exit on the dynamic 

characteristics of turbulent free jet flows, several studies were carried out by employing 

different experimental techniques (Dowling & Dimotakis, 1990; Pitts, 1991; Kwon & Seo, 

2005). It was found that in the near-field region, the exit Reynolds number had a strong 

influence on several turbulence characteristic parameters, where it should be emphasized 

that the larger the exit Reynolds number, the more significant the influence. However, the 

flow development was found to be almost independent of the exit Reynolds number. 

Similarly, the effect of the velocity profile at the nozzle exit on the free jet flow behaviour 

was also investigated experimentally (Richards & Pitts, 1993 & Ferdman et al., 2000) 

where it was concluded that compared with the far-field region, the near-field behaviour is 

affected much more severely by the velocity profile at the exit of the nozzle. 

To sum up, compared with the near-field region of turbulent free jet flows, more interest 

was focused on the far-field region (Abdel-Rahman, 2010). However, conflicting results 

regarding the effects of the inlet boundary conditions on far-field characteristics exist. 

Some works supported that the dynamic development in far-field region of all the jet flows 

was identical and independent of the inlet boundary conditions, i.e. universal self-similarity 

(Antonia & Zhao, 2001; Pitts, 1991; Dowling & Dimotakis, 1990; Richards & Pitts, 1993), 

while other works claimed that the far-field development was not universal, and was 

strongly dependent on the inlet boundary conditions (Mi et al., 2001; George, 1989; 

Boersma et al., 1998). 
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2.1.2 Numerical studies on turbulent free jet flows 

When examining human cough flow, it is useful to first analyze the characteristics of 

turbulent free jets, since the flow field of coughing will fall in this general category of 

flows.  Many numerical studies have been carried out to computationally characterize the 

dynamic behaviour of such flows. The Reynolds Averaged Navier-Stokes (RANS) 

approach is one of the most popular methods available in the computational fluid dynamics 

(CFD) simulations because it can be used to model different types of flows, and has a lower 

computation cost than other approaches (Smith et al., 2004). Belonging to the RANS 

approach, various turbulence models are available to account for the effect of turbulent 

random motions of the fluid, including zero-equation model (mixing length model), one-

differential-equation model (Spalart-Almaras model), two-differential-equation models 

(standard, realizable and renormalization group (RNG) k-ε models and standard, baseline 

and shear stress transport (SST) k-ω models) and seven-differential-equation model 

(Reynolds stress model (RSM)). Chang and Lin (1989) developed a numerical 

methodology using the mixing length model (Prandtl, 1925) to simulate a free jet flow, and 

found that the mixing length model over-predicted some of the turbulence parameters, such 

as the spreading rate and mean velocity, compared with the experimental data (Rodi, 1972). 

Kannan (2015) applied the standard k-ε model to numerically investigate the dynamic 

development of a turbulent free jet and validated the results with the experimental work of 

Panchapakesan and Lumley (1993). It was demonstrated that the standard k-ε model also 

over-predicted some turbulence quantities, which was caused by the dissipation (Kannan, 

2015). Other turbulence models such as the realizable k-ε model, the SST k-ω model and 

the RSM were also examined to predict the performance of turbulent free jet flows (Shih 

et al., 1995; Ghahremanian & Moshfegh, 2013; Pérez et al., 2005; Kannan et al., 2009). 

There is a universal problem for most RANS turbulence models in the prediction of the 

far-field behaviour of turbulent free jet flows, which is named the round-jet/plane-jet 

anomaly (Ghahremanian & Moshfegh, 2013). Based on the finding for planar jet flows, the 

prediction of the spreading rate is reasonable, but for axisymmetric jet flows, the spreading 

rate is estimated unsatisfactorily. Furthermore, the process of vortex stretching, which is 

the primary mechanism of energy transfer from large-scale to small-scale eddies, is absent 
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in most RANS turbulence models (Ghahremanian & Moshfegh, 2013). Compared with the 

RANS approach, the large eddy simulation (LES) method gives a more accurate prediction 

by resolving large turbulence scales of free jet flows. However, numerical studies of such 

flows by applying the LES method are very limited due to the huge computational cost. Di 

Venuta et al. (2018) presented a numerical study of a free jet of air with different Reynolds 

numbers by using the LES method and compared their results with the experimental data 

obtained from both the particle image velocimetry (PIV) and hot film anemometry (HFA) 

techniques (Gori et al., 2013 & Gori et al., 2014). The numerical results showed a 

remarkably good agreement to the experimental data in both the instantaneous and mean 

velocity fields, which strongly validated the effectiveness of the LES method in prediction 

of turbulent free jet flows. Cetin et al. (2017) computationally explored the effect of the 

inlet boundary conditions on dynamic characteristics of free jets by applying the LES 

approach, and demonstrated a significant dependence of the near-field behaviour on the 

inlet boundary conditions, which was also inferred in some experimental studies (Antonia 

& Zhao, 2001, Pitts, 1991, Dowling & Dimotakis, 1990 & Richards & Pitts, 1993). Bisoi 

et al. (2017) presented detailed turbulence characteristics, such as the formation of vortical 

and coherent structures and energy transfer, of a 3-dimensional turbulent free jet obtained 

from the LES simulation, as well as compared the velocity filed with that from other 

numerical works using the direct numerical simulation (DNS) method (Stanley et al., 2002 

& Klein et al., 2003). Gohil et al. (2014) performed a LES simulation on a round free jet 

and analyzed the development of flow structures. The dynamic characteristics of the jet 

flow, including the velocity variation and turbulence parameters, in both the near- and far-

field regions were compared with the experimental data in the literature and the comparison 

showed a reasonable agreement. Some other numerical works also investigated the effect 

of the Reynolds number at the nozzle exit as well as other inlet boundary conditions on the 

behaviour of turbulent free jet flows using the LES method (Ranga Dinesh et al., 2010, 

Bogey & Bailly, 2006 & Kim & Choi, 2009). 

The flow field of coughing is often approximated as a turbulent free air jet ejected from the 

mouth opening, which is regarded as a round nozzle exit, into a quiescent environment 

with air. In this case, numerical works of turbulent free jet flows are instructive to 

investigate the dynamic characteristics of the flow field of coughing. Among the available 
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CFD methods, the RANS approach is less time-consuming for the simulation, and there 

are various turbulence models to select. Therefore, it has become the most popular method 

to model jet flows. Compared to the RANS approach, the LES method predicts the 

development of jet flows more accurately since it resolves the large turbulence scales and 

only models the small scales through the subgrid-scale (SGS) turbulence model. However, 

previous numerical works applying the LES method are limited due to the high 

computational cost, and none of the works provides the comparison between the jet flow 

predictions using the RANS and LES approaches. More importantly, human cough is 

actually a transient phenomenon, which means that the dynamic characteristics of the 

cough flow are varying with time (Piirilä & Sovijärvi, 1995 & Bucher, 1958), so a steady-

state turbulent round free jet flow is not able to characterize the transient development of 

the human cough flow. Therefore, a study is carried out in the present work to numerically 

investigate the flow field of coughing by both the unsteady RANS (i.e. URANS) and LES 

methods for comparison purposes. The SST k-ω model is used with the URANS approach, 

and the dynamic Smagorinsky-Lilly model is employed as the SGS model in the LES 

method. The experimental measurements obtained from the PIV and the hot-wire 

anemometry (HWA) techniques (Dudalski et al., 2018 & Mohamed, 2017) and the work 

of Wei & Li (2017) are used to validate the numerical results. 

2.2 Numerical Methodology 

The evolution of the flow field of coughing is time-dependent. So, the dynamic 

characteristics, including the velocity field and turbulence parameters, are varying with 

time. Therefore, the CFD simulations in the present study are conducted under a transient 

condition. Both the URANS and LES simulations employ the same computational domain 

and grid, time step as well as the boundary and ambient conditions, in order to maintain 

consistency for a fair comparison. 

2.2.1 Governing equations 

2.2.1.1 The URANS approach 

The URANS approach is based on the Reynolds-averaged Navier-Stokes equations, of 

which the velocity component is decomposed as: 
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𝑢𝑖 = 𝑢̅𝑖 + 𝑢𝑖
′          (2.1) 

where 𝑢̅𝑖  and 𝑢𝑖
′  (i=1, 2, 3) represent the mean and fluctuating velocity components, 

respectively. The mass and momentum conservation equations are obtained by taking an 

ensemble average for flow variables in the instantaneous equations, and are written as: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢̅𝑖) = 0         (2.2) 

𝜕

𝜕𝑡
(𝜌𝑢̅𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢̅𝑖𝑢̅𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑙

𝜕𝑥𝑙
)] +

𝜕(−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥𝑗
     (2.3) 

where ρ is the density, p is the pressure, and μ is the molecular viscosity of the injected 

fluid, which is the mixture of air and water vapour, and 𝑥𝑖  represents the Cartesian 

coordinates. The term of −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  represents the turbulent Reynolds stress, which describes 

the effect of fluctuations on the flow, and must be modelled to close Eqn. (2.3) (ANSYS, 

2013). The Boussinesq hypothesis (Hinze, 1975) is used, as shown in the following 

equation. 

−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗        (2.4) 

where μt is the turbulent viscosity, which is related to the turbulent kinetic energy (k) and 

its dissipation rate (ɛ) by, 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
          (2.5) 

where Cμ is a constant with the value of 0.09, and k and ɛ are obtained by a turbulence 

model. 

The selection of the turbulence model depends on several factors, including the advantages 

and limitations of the model, the required time and accuracy of the prediction, the physics 

of the specific flow as well as the consideration with regard to previous numerical studies 

of the similar problem (Ghahremanian & Moshfegh, 2013). The SST k-ω model by Menter 

(1994) combines the capabilities of both k-ε and k-ω models, i.e. the freestream 

independence in the far-field region of the k-ε model and robust formulation in the near-

wall region of the k-ω model by transforming the governing equations of the k-ε model into 
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a form of k-ω model (ANSYS, 2013). The SST k-ω model is more reliable in the prediction 

of a wide variety of flows, including free jets, airfoils, adverse pressure gradient flows and 

transonic shock waves, than standard k-ω model (Pérez et al., 2005 & Ghahremanian & 

Moshfegh, 2013). Therefore, the SST k-ω model is employed to predict the flow field of 

coughing in this study. 

The governing equations of the SST k-ω model (Menter, 1994) are shown below, 

∂

∂t
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢̅𝑖) =

𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘            (2.6) 

∂

∂t
(𝜌𝜔) +

𝜕

𝜕𝑥𝑗
(𝜌𝜔𝑢̅𝑗) =

𝜕

𝜕𝑥𝑗
(Γ𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔             (2.7) 

where Gk and Gω are the production terms of turbulent kinetic energy (k) and specific 

dissipation rate (ω), Γk and Γω are the effective diffusivity coefficients of k and ω, and Yk 

and Yω are the dissipation terms of k and ω, respectively. The Dω represents the damped 

cross-diffusion derivative term. The above terms are expressed as the following equations. 

More details about the governing equations of the SST k-ω turbulence model are shown in 

Appendix B. 

Table 2.1: Governing equations of the SST k-ω turbulence model. 

Term Governing equation Equation number 

Gk 
𝐺𝑘 = −𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑢̅𝑗

𝜕𝑥𝑖
 

(2.8) 

Gω 𝐺𝜔 = 𝛼
𝜔

𝑘
𝐺𝑘 (2.9) 

Γk 𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 (2.10) 

Γω 𝛤𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
 (2.11) 

Yk 𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔 (2.12) 

Yω 𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2 (2.13) 

Dω 
𝐷𝜔 = 2(1 − 𝐹1)𝜌

1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

(2.14) 
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2.2.1.2 The LES approach 

In recent CFD studies, the LES and DNS approaches have become more and more popular 

and feasible due to the development of computational processing techniques (Ranga 

Dinesh et al., 2010). Both these two numerical methods are able to resolve turbulence 

scales in a specific type of flow and, therefore, provide more accurate predictions than the 

URANS approach. In the DNS method, the whole range of time and length scales of 

turbulence are resolved directly and turbulence is not modelled. However, the required 

computational expense is highly related to the turbulent Reynolds number Ret (ANSYS, 

2013), where it should be emphasized that the higher the Reynolds number of the flow, the 

higher the computational cost it demands. Hence, this causes the applications of the DNS 

method to be very limited. While the LES approach computes the large turbulence scales 

directly and only models the small scales through the SGS model, therefore, falls between 

the URANS and DNS methods with respect to the fraction of resolved turbulence scales. 

It is assumed that the large eddies transport most of the energy, mass and momentum, and 

their scale dimensions are solely dependent on flow geometry and boundary conditions 

imposed, while the small eddies tend to be more universal and isotropic and, hence, less 

dependent on flow geometry. Compared with the DNS, the LES approach can predict flows 

with higher Reynolds numbers using much less computational time and, therefore, it has 

become more extensively employed. 

The basic principle of the LES method is to separate and resolve the large eddies that 

contain most of the energy through the spatially-filtered mass and momentum equations 

(Navier-Stokes equations), defined as 

∂𝑢𝑖

∂𝑥𝑖
= 0        (2.15) 

∂𝑢𝑖

∂t
+ 𝑢̃𝑗

∂𝑢𝑖

∂𝑥𝑗
= −

1

𝜌

𝜕𝑝̃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
      (2.16) 

where 𝜏𝑖𝑗 represents the SGS stress tensor, describing the impact of small turbulence scales, 

and is expressed as 
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𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̃ − 𝑢̃𝑖𝑢̃𝑗                                                   (2.17) 

It is noteworthy that the filtered Navier-Stokes equations are similar to those of the URANS 

model. However, the integration is in space (spatial-filtering) and not over time (time-

averaging) as in the case of the URANS model (Salim et al., 2011). 

The SGS stress results in the exchange of momentum between the large (resolved) and 

small (subgrid) scales of motion (Bisoi et al., 2017), and needs to be modelled. Belonging 

to the LES approach, various SGS turbulence models are available, including the dynamic 

kinetic energy SGS model (Kim & Menon, 1997), the Smagorinsky-Lilly model 

(Smagorinsky, 1963 & Lilly, 1992), the Wall-Adapting Local Eddy-Viscosity (WALE) 

model (Nicoud & Ducros, 1999) and the dynamic Smagorinsky-Lilly model (Germano et 

al., 1991 & Lilly, 1992). In the present study, the dynamic Smagorinsky-Lilly model is 

adopted to model the SGS stress. This model considers the Smagorinsky model constant, 

𝐶𝑆, as a function of space and time over a fairly wide range in order to avoid the damping 

of turbulent fluctuations in the presence of mean shear and in transitional flows (ANSYS, 

2013). More details about the dynamic Smagorinsky-Lilly model are shown in Appendix 

C. 

2.2.1.3 Energy equation 

In order to solve the heat transfer between the cough flow and the ambient environment, 

the energy equation is required and is in the following form (Nijemeisland & Dixon, 2004), 

𝜕(𝜌𝑒)

𝜕𝑡
+ 𝛻 ∙ (𝑢⃗⃗𝜌𝑒) = 𝛻 ∙ (𝑘𝑒𝑓𝑓𝛻𝑇 − ∑ 𝐽𝑗𝑗 ∫ 𝑐𝑝,𝑗𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓
)        (2.18) 

where e represents the total energy, and is given as the following equation. 

𝑒 = ℎ +
𝑢2

2
                                              (2.19) 

where h, p, ρ and u are the sensible enthalpy, pressure, density and velocity of the injected 

fluid, respectively. 

The details about the energy equation are shown in Appendix D. 
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2.2.2 Computational domain and grid 

In order to compare with the experimental data, a 3-dimensional computational domain 

used for the simulations is generated with the same dimensions as the experimental cough 

chamber, named as FLUGIE (Fluids from Undergrads with Influenza Enclosure), in which 

the PIV and HWA techniques are used to carry out the measurements by the author’s 

colleagues (Dudalski et al., 2018 & Mohamed, 2017). The details about the FLUGIE 

chamber is shown in Appendix E. 

The computational domain is in a cuboid shape and is illustrated as Figure 2.3, in which 

the “x”, “y” and “z” axes represent the axial (streamwise), lateral and vertical directions, 

respectively. The inlet is a circular orifice of diameter d=0.0217 m, representing the 

average human mouth diameter (Gupta et al., 2009). The centre of the inlet is denoted by 

(0, 0, 0), which is also the origin of the coordinate system. 

 

Figure 2.3: Schematic of the computational domain along with its dimensions. 

The computational domain and grid are generated by using ICEM CFD 16.0. Irregular 

unstructured polyhedral grids are implemented to reduce the computational expense 
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without lowering the accuracy and to improve the residual convergence. To characterize 

the dynamic development of the flow field of coughing more effectively, the grids are 

created in non-uniform sizes, as exhibited in Figure 2.4, where it can be clearly seen that 

the grid in the cone region is much finer than that in the global region (outside of the cone 

region). Since the flow field spreads in the cone region with higher velocity gradients, the 

finer grid is used to predict the dynamic characteristics more accurately by capturing more 

details from the smaller computational cells. Both the URANS and LES simulations 

employ the same computational grid resolution, which is 1 mm at the inlet and 5 mm in the 

cone region with the global growing ratio of 1.15. The total number of computational cells 

is approximately 7.3 million. The grid independence tests for both the URANS and LES 

simulations are shown in Appendix H. 

 

Figure 2.4: Grid distribution on the x-z plane (y=0) of the computational domain. 

2.2.3 Boundary and ambient conditions 

The numerical prediction of the dynamic characteristics of the flow field of coughing is 

affected by the boundary conditions, which should closely match the physical reality. In 
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the present study, conditions acting on the inlet, six walls of computational domain, as well 

as the ambient environment need to be specified. 

The transient velocity profile imposed at the inlet is implemented as the inlet boundary 

condition to account for the time-dependent velocity of the flow at the human mouth 

(Gupta et al., 2009). The velocity direction is set as normal to boundary, which satisfies 

that the fluid is issued from the inlet into the domain with the velocity in the streamwise 

direction. The profile of the time-dependent velocity imposed at the inlet is shown as Figure 

2.5. It can be seen that the flow field lasts 0.61 secs with the peak velocity uip (around 22.06 

m/s) occurring at tip=0.066 secs. Based on Zhu et al. (2006), the temperature and turbulence 

intensity at the inlet are defined as 32 ºC (305.15 K) and 10% of the temporal mean inlet 

velocity 𝑢𝑚, respectively, and um is calculated by the following equation (Wei & Li, 2017), 

𝑢𝑚 =
1

𝑡𝑖𝑠𝑠
∫ 𝑢(𝑡)𝑑𝑡

𝑡𝑖𝑠𝑠

0
                                            (2.20) 

where tiss represents the cough duration, which is 0.61 secs. In the present study, 𝑢𝑚 is 

8.808 m/s, and the mean flow Reynolds number is 13,084, which indicates that the onset 

of the injected flow is fully turbulent in nature. The hydraulic diameter is set as 0.0217 m, 

which is equal to the average human mouth diameter (Gupta et al., 2009). For the LES 

approach, the spectral synthesizer algorithm (Kraichnan, 1970 & Smirnov et al., 2001) is 

selected to generate the synthetic turbulence at the inlet, through creating a velocity vector 

field without divergence from the summation of 100 Fourier harmonics (ANSYS, 2013). 
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Figure 2.5: Inlet transient velocity profile (reproduced from Gupta et al. (2009)). 

All the six walls of the computational domain are defined as no-slip adiabatic walls. For 

the ambient conditions, the temperature is set as 21.5ºC (294.65 K) and the mass fraction 

of water vapour is 0.8% based on 50% RH, which is considered to be in the range of thermal 

comfort level (Balaras et al., 2007). The surrounding fluid velocity is set as zero due to the 

quiescent ambient condition. The fluid injected from the inlet is defined as two-species 

alveolar air, which is usually considered as the flow caused by human expiratory activity, 

e.g. coughing, breathing, speaking and sneezing. The two species include air and water 

vapour, with the mole fraction 93.8% and 6.2%, respectively (Saladin, 2003). The 

properties of the injected fluid are shown in Appendix F. 

2.2.4 CFD solver 

The commercial CFD packages, FLUENT 16.0 is used to carry out the simulation and 

CFD-Post 16.0 is used to post-process the results. A finite volume method is employed to 

solve the governing equations with double precision. The pressure-based solver is adopted 

since it is suitable for incompressible flows. The pressure-based solver is conceived based 

on the projection method (Chorin, 1968) which satisfies the mass conservation of the 

velocity field via solving a pressure equation derived from the continuity and momentum 
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equations. The basic principle of the pressure-based solver is to repeatedly solve the entire 

set of governing equations, which are nonlinear and coupled to each other, for each iteration 

in the simulation process until the solution converges. 

In the simulations using both the URANS and LES methods, the algorithm of the Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) by Patankar et al. (1972), is 

employed as the pressure-velocity coupling method. Such an algorithm solves the velocity 

correction explicitly, while solving for the pressure correction and momentum equation 

implicitly, hence providing more accurate velocity corrections. Furthermore, the SIMPLE 

algorithm can obtain a converged solution with less computational time, and allow for 

larger time step sizes, i.e. Courant-Friedrichs-Lewy (CFL) number greater than 1, for an 

unsteady flow problem. For the pressure interpolation, the second-order scheme is used as 

it can acquire acceptable solutions for most cases (ANSYS, 2014), and for the gradient 

evaluation, the least squares cell-based scheme is performed in order to obtain a more 

accurate second-order interpolation on irregular unstructured polyhedral grids which are 

applied in the present study. To solve the temporal discretization, the bounded second order 

implicit formulation is carried out as it can provide a higher accuracy and better stability 

than other types of formulation. A time step size of 0.001 secs is used to reduce the 

computational expense. Both the URANS and LES simulations are run for 4 secs in total 

of the flow time which is sufficient to characterize the dynamic development of the flow 

field of coughing in the computational domain. The residual convergence criterion is set as 

10-6 for the energy equation and 10-3 for the other governing equations, including continuity, 

momentum and species transport equations, etc., and a maximum number of iterations per 

time step, i.e. inner loop iterations, is set as 100. 

For the URANS modelling, the third-order MUSCL (Monotone Upstream-Centred 

Schemes for Conservation Laws) algorithm (Van Leer, 1979) is used to solve the spatial 

discretization of momentum, turbulence parameters, i.e. turbulent kinetic energy and 

specific dissipation rate, water vapour species transport and energy. Such an algorithm can 

provide a higher spatial accuracy through lowering the numerical diffusion for all types of 

grids and is, therefore, the best choice for the URANS approach. For the LES modelling, 

the central differencing discretization scheme is performed for momentum, water vapour 
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species transport and energy since it minimizes the numerical diffusion and provides the 

highest accuracy in resolving the large turbulence scales. Therefore, it is considered as the 

ideal choice for the LES method. 

2.3 Results and Discussion 

In the following section, the numerical results are analyzed in terms of different dynamic 

characteristics of the flow field of coughing, including the velocity field, streamwise 

penetration and power spectral density. The comparison between the URANS and LES 

approaches are provided in different aspects and then the appropriate modelling method is 

taken into consideration for further numerical study. Results of the velocity field and power 

spectral density are validated by the experimental data from the PIV and HWA 

measurements (Dudalski et al., 2018 & Mohamed, 2017), whilst results regarding the 

streamwise penetration are compared with the experimental work of Wei & Li (2017). 

2.3.1 Velocity field 

2.3.1.1 Comparison of the results from the URANS and LES 
approaches 

The contour of the velocity magnitude plays a very important role in numerically analyzing 

the velocity field of cough flow since it provides a clear visualization of the velocity 

variation with time, which makes the dynamic development of the flow field of coughing 

more graphic and easier to understand. The comparisons of the velocity magnitude 

contours at the x-z plane (y=0) between the URANS and LES approaches are shown in 

Figures 2.6-2.9, where the red cross symbol represents the centreline location of (1, 0, 0), 

and the black one denotes the point (1, 0, -0.22) where the hot-wire probe is located. The 

results at four different time steps, including 0.05 secs, 1 sec, 2 secs and 3 secs, are 

presented to illustrate the dynamic development of the flow field with time. From the 

figures, it is found that as time progresses, the contours from the two modelling approaches 

become very different. The velocity magnitude from the URANS approach varies 

symmetrically and regularly, which means that the flow field spreads in a uniform way, 

while the velocity magnitude from the LES approach has an irregular and non-uniform 

variation. 
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(a)                                                           (b) 

Figure 2.6: Contours of the velocity magnitude at t = 0.05 secs for (a) URANS 

method and (b) LES method. + is at (1, 0, 0) and + is at (1, 0, -0.22). The coordinates 

are in the unit of metres. 

(a)                                                          (b) 

Figure 2.7: Contours of the velocity magnitude at t = 1 sec for (a) URANS method 

and (b) LES method. 
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(a)                                                          (b) 

Figure 2.8: Contours of the velocity magnitude at t = 2 secs for (a) URANS method 

and (b) LES method. 

(a)                                                          (b) 

Figure 2.9: Contours of the velocity magnitude at t = 3 secs for (a) URANS method 

and (b) LES method. 

2.3.1.2 Comparison with the experimental data from the PIV 
measurements 

To validate the numerical model, the numerical results obtained from the LES approach 

are compared with the experimental data from the PIV measurements by Mohamed (2017). 
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The PIV system is a type of non-intrusive experimental technique which has been 

employed extensively to measure the 2-dimensional physical quantities in the research field 

of fluid mechanics. A sequence of instantaneous velocity magnitude contours generated 

from the PIV measurement, which is from one cough of a healthy human subject, are shown 

in Figure 2.10. The PIV technique gives a rectangular field of view with the dimension of 

0.141 m in length and 0.340 m in width, and the data are obtained with a sampling 

frequency of 14.5 Hz, i.e. 0.069 secs of time step. The locations of (1, 0, 0) and (1, 0, -0.22) 

are denoted by two red cross symbols in the figure. It can be seen that during the time from 

0.47-1.20 secs, the majority of the flow field of coughing falls in the region between the 

two given points. Although the human subject was required to cough horizontally, there 

was still a small angle between the centreline of the test chamber and the fluid flow 

direction, which is also known as the upward jet angle θ1 and is caused by the unawareness 

of the human subject. The effect of θ1 on the velocity field can be neglected as θ1 is very 

small, which is approximately 6.3º. To compare with the PIV measurement, the velocity 

magnitude contours obtained from the LES modelling are presented in Figure 2.11 with 

the field of view in the same dimension. Since the direction of the inlet velocity is set in 

the horizontal (streamwise) direction, θ1 = 0. In order to account for θ1 in the presence of 

the PIV contour series, the points of (1, 0, 0) and (1, 0, -0.22) are shifted upward with the 

angle of 6.3º. It is found that the variation of the predicted instantaneous velocity magnitude 

is more concentrated in the region between the two given points, which infers that the 

cough flow predicted by the LES approach has a similar spread trend with that measured 

by the PIV technique and, hence, validates the effectiveness of the LES approach in 

predicting the variation of the velocity magnitude with time of the flow field of coughing. 
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Figure 2.10: Time history of instantaneous velocity magnitude contours obtained 

from the PIV measurement (Mohamed, 2017 (with author's permission)). 
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Figure 2.11: Time history of instantaneous velocity magnitude contours obtained 

from the LES modelling. 

The experimental data obtained from the PIV measurements by Dudalski et al. (2018) are 

also used to validate the numerical results. A rectangular field of view with the dimensions 

of 0.09 m in length and 0.48 m in width was generated by the laser sheet, which is provided 

by the YAG double-pulsed laser system (Stamhuis, 2006), and is located 1 m downstream 

in the FLUGIE chamber (see Figure 2.12) in order to measure the 2-dimensional velocity 

vectors at the 1,836 sampling points in total that are evenly distributed on that PIV field of 

view. 
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Figure 2.12: A schematic of the x-z plane (y=0) of the FLUGIE chamber with the 

PIV field of view (shaded part, all dimensions are in metres) (adapted from 

Dudalski et al. (2018)). 

In the winter of 2018, 7 influenza-infected participants in total were recruited for the 

experimental studies and 13 sets of cough data were selected from the PIV measurements 

by Dudalski et al. (2018). The variation of the spatial average of 2-dimensional velocity 

magnitude with time of these 13 coughs is shown in Figure 2.13, where the numerical 

results obtained from the field of view with the same dimension and position are also 

provided for comparison. It is found that for the 13 coughs, the peak value of the spatially 

averaged velocity varies in the range 0.20-0.77 m/s, and for the LES and URANS 

modelling, the peak values are fairly close, which are 0.50 and 0.52 m/s, respectively. 
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Figure 2.13: Comparison of the spatially averaged velocities between the numerical 

and PIV results on the PIV field of view. 

Another comparison of the time history of 2-dimensional velocity magnitude at the 

midpoint, which is located 1 m downstream, of each cough flow is presented in Figure 2.14, 

where the PIV data are also obtained from the 13 coughs measured from the same 

participants as Figure 2.13 (Dudalski et al., 2018). To obtain a more generalized 

comparison for a better result analysis, the time history of the velocity magnitude is 

analyzed by employing a normalization algorithm for all the cough data and numerical 

results. The following equations are used for the normalization purpose, 

𝑈 =
𝑢

𝑢1𝑝
                                                      (2.21) 

𝜏 =
𝑡

𝑡1𝑝
                                                        (2.22) 

where u and t represent the local instantaneous velocity magnitude and the corresponding 

time, whilst u1p and t1p are the initial peak velocity magnitude and the time when the peak 

occurs (Dudalski et al., 2018), respectively. 
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It is found from Figure 2.14 that the PIV profiles give a fluctuated trend of the velocity 

magnitude, which indicates that the flow field of coughing is a highly unsteady turbulent 

phenomenon. For the LES modelling, the profile also contains a lot of fluctuations, which 

is due to the unsteady instantaneous flow field of motion that the LES approach solves for. 

However, since the URANS approach considers the ensemble-averaged component of 

motion, the profile shows a smooth variation trend without any fluctuation. From Figure 

2.14, it can also be seen that the profile obtained from the LES modelling closely resembles 

the PIV profiles, with the LES modelling providing more sampling points between the 

same two time steps, in compare to the PIV data. This is due to the difference in the 

sampling frequency employed for both the techniques; with the LES approach having a 

sampling frequency of 1000 Hz and the PIV technique having a sampling frequency of 

14.5 Hz. Furthermore, from Figure 2.14, a secondary peak of the normalized velocity 

magnitude (U) is observed from the LES profile. This secondary peak has a similar value 

as the initial peak but occurs at a later time, which is not surprising as such secondary peaks 

are also observed from some of the PIV profiles. 

 

Figure 2.14: Comparison of the normalized velocity magnitude at the midpoint of 

each cough flow between the numerical and PIV results. 
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2.3.1.3 Comparison with the experimental data from the HWA 
measurements 

Unlike the PIV technique, the hot-wire anemometry (HWA) needs to locate a measurement 

probe inside of the experimental domain and, hence, can be classified as an intrusive 

technique. This type of technique has been applied extensively in fluid mechanics research 

to measure various physical quantities, including velocity, turbulence and temperature, in 

a wide range of magnitude, fluctuation and direction (Tropea & Yarin, 2007). It can be 

conducted at a high frequency, normally several hundreds of Hz, to form a very small time 

step size. The HWA measurements, which include 11 sets of cough data and were obtained 

in the winter of 2017 (Mohamed, 2017), are used to validate the numerical results from 

both the LES and URANS approaches. These 11 sets of cough data have evident peak 

velocities upk ≥ 0.2 m/s and, therefore, are considered to have good qualities for the 

validation of the numerical results. The axial velocity u is measured by the hot-wire probe, 

which is located at 1 m downstream and 0.22 m lower than the centreline of the FLUGIE 

chamber, within 10% uncertainty. The sampling frequency is 1000 Hz, which gives a time 

step of 0.001 secs. 

To obtain a more generalized comparison for a better result analysis, the time history of 

velocity u is analyzed in a moving average way, and a normalization algorithm is employed 

to make sure the peak value is unity 1 for all the cough data and the numerical results. The 

details about the moving average methodology are shown in Appendix G. The following 

equations are used for the normalization purpose. 

𝑈 =
<𝑢>−𝑢𝑠

𝑢𝑝𝑘−𝑢𝑠
                                                        (2.23) 

𝜏 =
𝑡−𝑡𝑠

𝑡𝑝𝑘−𝑡𝑠
                                                         (2.24) 

where < u > and t represent the local moving average velocity and the corresponding time, 

us and ts are the moving average velocity at the start of cough acceleration and the 

corresponding time, whilst upk and tpk are the peak moving average velocity and the 

corresponding time. 
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Figure 2.15 (a) shows the comparison of the normalized variation of the velocity u 

component with time at the location of the hot-wire probe, i.e. (1, 0, -0.22) in metres, 

between the 11 sets of cough data and numerical results, where 𝜏 = 0  represents the 

normalized time when the velocity u starts to increase with an obvious acceleration. It is 

found from Figure 2.15 (a) that the LES approach gives a good agreement with the HWA 

measurements for the trend of the velocity u variation, however, the URANS approach 

shows a smooth profile without any fluctuation due to the ensemble-averaged flow field of 

motion it solves for. To make a more simplified comparison, the data from 11 coughs are 

represented by a general trend curve, which is generated by the rational fitting model with 

the polynomial degree being 5 (The MathWorks, 2017), as shown in Figure 2.15 (b). It can 

be seen that the LES approach shows a variation trend, which is close and fluctuating 

around the fitting curve, therefore, giving a very good velocity u prediction and validates 

the effectiveness of the LES approach in predicting the velocity field of the flow field of 

coughing. 

(a)                                                                   (b) 

Figure 2.15: Comparison of the normalized velocity u component with (a) the raw 

data from 11 coughs and (b) the fitting model. 

The peak velocity Up of the flow field of coughing measured at the hot-wire probe location 

is plotted in Figure 2.16, where 51 sets of cough data in total obtained from different 
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participants in the winter of 2017 are included (Mohamed 2017). The peak velocity Up and 

corresponding time Tp are calculated by 

𝑈𝑝 = 𝑢𝑝𝑘 − 𝑢𝑠                                                      (2.25) 

𝑇𝑝 = 𝑡𝑝𝑘 − 𝑡𝑠                                                    (2.26) 

A fitting curve Up1, which is generated by the following equation, is used to statistically fit 

all the 51 sets of cough data. It can be seen from the figure that the peak velocity Up varies 

in the range of 0-1.3 m/s among all the HWA measurements, and the peak time Tp even 

extends to appropriately 11 secs for the very weak coughs (𝑈𝑝 ≪ 0.2 m/s). The points 

obtained from both the URANS and LES modelling are located around the fitting curve, 

which give a reasonably good prediction of the peak velocity. The Up and Tp are 0.83 m/s 

and 0.76 secs for the URANS modelling, and are 0.98 m/s and 0.86 secs for the LES 

modelling, respectively. 

𝑈𝑝1 = 𝑎 𝑇𝑝
𝑏⁄ , a = 0.31, b = 1.00, 𝑅2 = 0.541                              (2.27) 

 

Figure 2.16: The general trend of the peak velocity for all the 51 coughs. 
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2.3.2 Streamwise penetration and maximum jet width 

The streamwise penetration describes the variation of the longest flow distance along the 

streamwise direction with time and is very important in studying the dynamic 

characteristics of the flow field of coughing. The streamwise penetration obtained from the 

LES modelling is compared with the experimental work of Wei & Li (2017) who employed 

a cuboid water tank system to simulate the dynamic development of the flow field of 

coughing. A nozzle with a diameter of 0.01 m was used as the inlet to discharge dyed water 

horizontally into the tank. They used a combination of gamma-distribution-probability 

functions given by Gupta et al (2009) to represent the discharged time-dependent cough 

velocity profile, which was controlled by a servo motor system. Another two temporal 

profiles, including a sinusoidal and pulsation profiles, were also employed to investigate 

the effect of different inlet velocity profiles on the dynamic characteristics of the flow. In 

their study, the flow field of coughing was divided into two stages, which include the 

starting-jet and interrupted-jet stages. The starting-jet represents the stage when the cough 

starts and the fluid is being issued with an inlet transient velocity profile. After the fluid 

supply is terminated, the flow field of coughing enters the interrupted-jet stage and spreads 

in the ambient environment with the turbulence scale increasing. Figure 2.17 gives the 

visualizations of the starting-jet and interrupted-jet stages of the flow field of coughing 

obtained from the LES modelling. The transition from the starting-jet stage to the 

interrupted-jet stage takes place at the time of 0.61 secs, which is the end of the cough 

duration, as shown in Figure 2.17 (b). 
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(a)                                    (b)                                        (c) 

Figure 2.17:  Visualizations of the starting-jet and interrupted-jet stages of the flow 

field of coughing obtained at (a) 0.30 secs, (b) 0.61 secs, and (c) 1.20 secs. 

In the experimental work, three different inlet conditions were used for the cough velocity 

profile in order to examine the influence of those conditions on the streamwise penetration, 

as shown in Table 2.2, where 𝑢𝑚 is the temporal mean inlet velocity, calculated by Eqn. 

(2.20), Q represents the cough expired volume, and A and d are the area and diameter of 

the inlet, respectively. The inlet diameters d for the experimental work and LES modelling 

are 0.01 m (i.e. diameter of the nozzle) and 0.0217 m (i.e. the average human mouth 

diameter) (Gupta et al., 2009), respectively. 
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Table 2.2: Inlet conditions used in the experiment and LES modelling. 

Case number 
𝑹𝒆𝒎 =

𝒖𝒎𝒅

𝝂
 

𝑸

𝑨 × 𝒅
 

Exp. 1 5200 100 

Exp. 2 5200 150 

Exp. 3 7900 150 

LES 13084 248 

The streamwise penetration xp from the LES modelling is obtained based on the velocity 

magnitude contours, as shown in Figure 2.18, where the red cross symbol denotes the point 

at which the velocity is within 10% of the local peak velocity magnitude. The distance 

from the inlet to the marked location can be regarded as the longest flow distance along the 

streamwise direction, also known as the streamwise penetration. The comparison of the 

variation of streamwise penetration with time in the starting-jet stage between the LES 

modelling result and three sets of experimental data is provided in Figure 2.19 (a), where 

the streamwise penetration and flow time are presented in a dimensionless way in order to 

keep all these four sets of data in the same comparing status. It can be seen clearly that the 

LES modelling profile gives a fairly good agreement with the three experimental profiles, 

which manifests that the LES approach provides a satisfactory prediction of the near-field 

flow field of coughing. 
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Figure 2.18: Illustration of the jet edge, the streamwise penetration distance xp, the 

lateral maximum jet width yw and the corresponding axial distance xw on the x-y 

plane (z=0). 

(a)                                                                     (b) 

Figure 2.19: Comparison of the streamwise penetration as a function of time (a) at 

the starting-jet stage and (b) at the interrupted-jet stage. 



46 

 

Figure 2.19 (b) illustrates the comparison of the variation of streamwise penetration with 

time in the interrupted-jet stage, where two constants x0 and t0 are introduced to keep the 

comparison starting from (0, 0). The x0 represents the penetration origin in the interrupted-

jet stage, and x0/d is constant for a given case, being in the range of 30.9-46.7 for the three 

experimental cases and 49.8 for the LES modelling. Similarly, the t0 is the temporal origin, 

whilst the value of umt0/d changes in 101.9-221.4 for the three experimental cases and 

equals 263.8 for the LES modelling. It is found that the LES modelling profile also gives 

a good agreement with the experimental data, even though the inlet conditions for these 

four cases are different, which infers that the far-field development will not be significantly 

affected by the inlet conditions, and validates the effectiveness of the LES approach in 

predicting the streamwise penetration of the flow field of coughing. 

The maximum jet width is defined as the approximate maximum distance between the two 

jet edges on the velocity magnitude contour. In the present study, the jet edge is considered 

as the region where the velocity is within 10% of the local peak velocity magnitude, as 

illustrated in Figure 2.18. The vertical width zw is obtained by using the same mechanism 

on the velocity magnitude contour on the x-z plane (y=0). In the interrupted-jet stage (i.e. 

no momentum supply), the maximum jet width maintains its growth as time progresses, 

due to the entrainment of the ambient air. The variation of the maximum jet width versus 

time (t) in both the vertical (zw) and lateral (yw) directions, as well as the corresponding 

axial (streamwise) distance xw obtained from the LES modelling are presented in a 

normalized form in Figure 2.20. The zwn and ywn are the dimensionless maximum jet width 

in vertical and lateral directions, respectively, with the expressions of 

𝑧𝑤𝑛 =
𝑧𝑤−𝑧0

𝑑
                                                      (2.28) 

𝑦𝑤𝑛 =
𝑦𝑤−𝑦0

𝑑
                                                     (2.29) 

where z0 and y0 are the vertical and lateral width origins in the interrupted-jet stage, whilst 

the constant values of z0/d and y0/d are 11.3 and 15.0, respectively. The dimensionless time 

τ is calculated by 
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𝜏 =
𝑢𝑖𝑝(𝑡−𝑡0)

𝑑
                                                    (2.30) 

where uip and d represent the inlet peak velocity (i.e. 22.06 m/s) and the inlet diameter (i.e. 

0.0217 m), respectively. The t0 is the temporal origin, and the constant value of t0/d is 660.8. 

It is found that the lateral width is approximately 22% higher than the vertical width, which 

is due to the non-homogeneity of the velocity field. Both zwn and ywn grow with time in a 

roughly linear trend as seen from Figure 2.20 (a), and the equations to those trendlines are 

expressed as 

𝑧1 = 𝑎1𝜏 + 𝑏1, 𝑎1 = 0.0047, 𝑏1 = 0.0728, 𝑅2 = 0.971                    (2.31) 

𝑦1 = 𝑎2𝜏 + 𝑏2, 𝑎2 = 0.0056, 𝑏2 = 0.0928, 𝑅2 = 0.983                (2.32) 

Figure 2.20 (b) exhibits the variation of the axial distance (xw) corresponding to the 

maximum jet width with time. xw is normalized by the inlet diameter, as shown in the 

following equation. 

𝑥𝑤𝑛 =
𝑥𝑤−𝑥0

𝑑
                                                    (2.33) 

where x0 is the axial distance origin in the interrupted-jet stage, and the constant value of 

x0/d is 39.5. It can be seen that xwn increases with time in a roughly second-order polynomial 

manner, with the equation representing the trendline as 

𝑥1 = 𝑎3𝜏2 + 𝑏3𝜏 + 𝑐3,𝑎3 = −2 × 10−6,𝑏3 = 0.0173,𝑐3 = 2.0089,𝑅2 = 0.992    (2.34) 
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(a)                                                                    (b) 

Figure 2.20: (a) Maximum jet width and (b) corresponding axial distance as a 

function of time in the interrupted-jet stage. 

2.3.3 Power spectral density 

The power spectral density is a measure of the energy spectrum which describes the 

distribution of the turbulent kinetic energy among eddies in different sizes (Pope, 2000). 

Three regions are distinguished by the energy spectrum through the size of eddy (Davidson, 

2017). In the first region, eddies are in the large size and contain most of the energy which 

is extracted from the mean flow. The second region, also known as the inertial subrange, 

is where the turbulent kinetic energy being transferred per unit time from the large-scale to 

small-scale eddies. The process of the energy transfer, also called the cascade process, 

requires the Reynolds number to be high enough to ensure that the flow is fully turbulent 

in nature, and can be characterized by the Kolmogorov spectrum law (i.e. the -5/3 law), as 

expressed in the following equation, 

𝐸(𝜅) = 𝐶𝛫𝜀2 3⁄ 𝜅−5 3⁄                                           (2.35) 

where the size of the eddy, i.e. the length scale, is expressed as 
1

𝜅
, and 𝜀 and 𝐸(𝜅) represent 

the unit time and transferred energy as a function of 𝜅, respectively. The Kolmogorov 
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constant 𝐶𝛫 has a value around 1.5. In the third region, eddies are isotropic and in the small 

size, and the dissipation occurs. 

Figure 2.21 shows the comparison of the normalized spectral density at the location of the 

hot-wire probe, i.e. (1, 0, -0.22) in metres, between the LES modelling and the data from 

11 coughs measured in the winter of 2017 by the HWA technique (Mohamed, 2017). Each 

pectrum (ϕ) is normalized by its respective variance value, and the frequency (f) is also 

scaled by the following equation in order to take into account the different mean velocities 

of all the cough flows. 

𝜙𝑛 =
𝜙

𝑢′2                                                        (2.36) 

𝑓𝑛 = 𝑓
𝑑

𝑢𝑝𝑘
                                                          (2.37) 

where u’ represents the RMS of the fluctuating velocity component, d is the inlet diameter 

(i.e. 0.0217 m) and upk is the peak of the moving average velocity u component at the 

location of the hot-wire probe. 

It is found from Figure 2.21 that all the energy spectra exhibit a decay form with the slope 

of -5/3, which indicates that the rate of energy transfer from the large-scale to small-scale 

eddies for all the 11 cough flows follows the hypothesis of Kolmogorov decay law, and the 

LES modelling gives a good prediction of the energy transfer process in the inertial 

subrange. However, it is pointed out here that these spectral plots are of the residual 

turbulence of the cough flows and do not represent the whole time history of the cough 

velocity. 
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Figure 2.21: Comparison of the normalized spectral density. 

Furthermore, it is noted that any signal of power spectral density below the value of 10-8 

m2/s2/Hz can be regarded as an electrical noise and is needed to be filtered for a more 

accurate analysis (Mohamed, 2017). A low-pass filter, which allows the signal frequencies 

lower than a certain frequency, also known as the cutoff frequency, to pass without 

attenuation, while attenuates the signal frequencies higher than the cutoff frequency, is 

used to filter the pure noise for the 11 sets of cough data. Figure 2.22 shows the comparison 

of power spectral density with the application of the low-pass filter. For the LES modelling, 

the cutoff frequency is defined as the frequency below which the turbulent kinetic energy 

is resolved, and is also distinguished as the frequency at which the power spectral density 

has an apparent decrease. It can be seen from Figure 2.22 that the power spectral density 

obtained from the LES modelling has a good agreement to that from the HWA 

measurements with a cutoff frequency of approximately 50 Hz, beyond which the turbulent 

kinetic energy is entirely modelled. 
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Figure 2.22: Comparison of the power spectral density with the low-pass filter in 

use. 

2.4 Conclusions 

The present study provides CFD modelling to numerically investigate the dynamic 

characteristics of the flow field of coughing, including the velocity field, streamwise 

penetration and power spectral density. Two modelling approaches, URANS and LES, are 

compared. The numerical results are validated by the experimental data from the PIV and 

HWA measurements, as well as the published data. 

In the analysis of the velocity field, the contours of velocity magnitudes at different time 

obtained from the two numerical modelling approaches are compared. It is found that the 

URANS modelling gives a velocity distribution in a symmetric and regular way, which 

indicates that the flow field spreads uniformly. However, the LES modelling shows an 

irregular and non-uniform velocity distribution, which is similar to that from the PIV 

measurement, and hence, gives a more realistic and accurate prediction of the variation of 

the velocity magnitude with time of the flow field of coughing. The numerical results are 

also compared with the PIV measurements in terms of the spatially averaged velocity on 

the rectangular field of view and 2-dimensional velocity magnitude at the midpoint of each 
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cough flow. It is found that the LES modelling and the PIV measurements have a similar 

variation of the velocity with time and the peak values are close, while the URANS 

modelling exhibits a smooth variation trend without any fluctuation due to the ensemble-

averaged flow field of motion it solves for. In the comparison with the HWA measurements, 

the variation of the velocity u component with time at the location of the hot-wire probe is 

analyzed in a normalized way in order to obtain a more generalized comparison. The LES 

modelling gives a very good agreement for the velocity u variation with the eleven sets of 

cough data obtained by the HWA technique, while the URANS modelling still shows a 

smooth trend. In summary, based on the investigation of the velocity field, the URANS 

approach may not be appropriate, compared with the LES approach, to predict the dynamic 

development of the flow field of coughing. Furthermore, the LES modelling is compared 

with the work of Wei & Li (2017) regarding the streamwise penetration. Relevant 

numerical results from the LES modelling are compared with three sets of experimental 

data under different inlet conditions. The agreement is very good for the normalized profile 

of streamwise penetration distance in both the starting-jet and interrupted-jet stages, which 

validates the effectiveness of the LES approach in predicting the streamwise penetration of 

the flow field of coughing. In the interrupted-jet stage, the maximum jet width is found to 

grow with time in a roughly linear trend, and the corresponding axial distance increases 

with time in a roughly second-order polynomial manner. The power spectral density 

obtained from the LES modelling and HWA measurements is also compared to investigate 

the the energy transfer from the large-scale to small-scale eddies at the location of hot-wire 

probe. It is found that all the energy spectra have a universal decay with the slope of -5/3, 

which indicates that the energy transfer process in the inertial subrange follows the 

Kolmogorov hypothesis. Moreover, in the comparison of the power spectral density with 

a low-pass filter being introduced, the LES modelling gives a good agreement with the 

eleven sets of experimental cough data with a cutoff frequency of around 50 Hz. In 

conclusion, based on the comparison with the URANS approach and the experimental data, 

the LES approach can predict the dynamic development of the flow field of coughing 

reasonably well. 

For future work, different conditions, including the transient cough velocity profile at the 

inlet, the ambient RH, etc., should be investigated for the influences on the dynamic 
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characteristics of the flow field of coughing. Furthermore, more voluntary participants are 

needed for the cough data collection and, therefore, more experimental data can be used to 

validate the numerical results. 

The next chapter will discuss the droplets produced by coughing in terms of the droplet 

dispersion and evaporation. The LES approach and the Lagrangian discrete phase model 

will be used for the CFD modelling to predict the flow field and the droplets, respectively. 

Different inlet and ambient conditions, including the time-dependent cough velocity at the 

inlet and the ambient RH, will be analyzed in terms of the effects of those conditions on 

the dispersion and evaporation processes of the droplets. 
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Chapter 3  

3 CFD Modelling of the Droplets Produced by Coughing 

3.1 Introduction 

Violent expiratory activity, which includes coughing, sneezing and speaking, has been 

regarded as one of the major sources of respiratory disease transmission (Bourouiba et al., 

2014). Such forced exhalation can release thousands of droplets in various sizes, which 

carry different infectious agents, including viruses, pathogens, fungi and bacteria, various 

physiological electrolytes as well as a variety of cells (Atkinson et al., 2009). During the 

airborne transmission, the pure water portion of the droplets will evaporate and the droplet 

nuclei, which consist of various microorganisms and were first reported by Wells (1934), 

will remain, as shown in Figure 3.1. It is found that as the liquid evaporates, the non-

evaporative content of a droplet concentrates gradually and forms a droplet nucleus. Other 

than the ambient relative humidity (RH) and temperature, which affect the evaporation rate 

(Wells, 1955), the droplet size also has a significant influence on the evaporation process. 

Wells (1934, 1955) observed the evaporation time for droplets in a wide range of diameters 

from 1 to 1000 μm, and found that the large droplets with diameter dp > 100 μm remained 

airborne for less than 1 sec without complete evaporation, while most of the droplets with 

dp < 100 μm, especially the small droplets with dp < 10 μm, evaporated very quickly and 

finally evolved into droplet nuclei, which were suspended in the ambient environment and 

might result in the airborne transmission of respiratory diseases. Figure 3.2 exhibits a 

falling and evaporation curve (Wells, 1934), which indicates the relationship between the 

droplet size, falling and evaporation rates. From the curve, it is clear that under the 

condition with the RH and temperature of the ambient air of 0 and 18 ºC, respectively, the 

droplets with dp < 100 μm would evaporate completely before precipitating on the ground 

2 m away from the source. Lange and Keschischian (1925) also investigated the impact of 

droplet size on evaporation experimentally by using an artificially atomized eosin solution. 

It was found that the droplets with dp > 200 μm fell to the ground in a few seconds, while 

the droplets with dp < 20 μm remained suspended in the ambient environment for a few 

hours with complete evaporation. 
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Figure 3.1: Evaporation process of a droplet released by human expiratory activity 

(adapted from Verreault et al. (2008)). 

 

Figure 3.2: Falling and evaporation curve of droplets expelled by human expiratory 

activity (adapted from Wells (1934)). 

3.1.1 Studies of droplet size distribution 

A lot of previous studies have focused on the size distribution of respiratory droplets. Some 

researchers used a glass slide to capture the droplets in front of the human mouth and 

estimated the size by measuring the circular stain-marks caused by the droplets (Duguid, 

1946). By employing this approach, Jennison (1942) found that the droplets released by 

coughing and speaking were in the diameter range 20-2000 μm with the majority being 

100-500 μm. However, Strausz (1926) stated that the size measured by the stain-marks was 
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three times larger than the actual droplet size and, taking this into consideration, he reported 

a new diameter range 10-500 μm with most of the droplets being 70-85 μm. To obtain a 

more accurate measurement, Duguid (1946) conducted a comprehensive experiment by 

applying a direct micrometry through filtering the droplet nuclei onto the oiled slides to 

measure the droplets in smaller sizes, and measuring the stain-marks on the glass slides for 

larger droplets. He found the diameter range was 1-2000 μm with the majority of droplets 

being 4-8 μm for sneezing and 8-16 μm for coughing. Another technique, named an Optical 

Particle Counter (OPC), was used by Fairchild and Stampfer (1987), and a much smaller 

diameter range 0.09-3 μm was detected with a peak distribution smaller than 0.3 μm. 

Papineni and Rosenthal (1997) also utilized the OPC system, together with an Analytical 

Transmission Electron Microscope (AEM) to investigate the size of droplets from 

coughing, breathing and speaking. The OPC measurements demonstrated that most of the 

droplets had a diameter smaller than 1 μm with an average mode of 0.3 μm, and larger 

droplets with approximately 8 μm diameter were detected by the AEM technique. It was 

also found that compared with breathing and speaking, coughing could generally release 

droplets with larger sizes. However, since the OPC technique could only detect the droplets 

with very small diameters, it was limited in use. Recently, various techniques were used in 

experimental studies on the size distribution of respiratory droplets. Chao et al (2009) used 

an Interferometric Mie Imaging (IMI) method to measure the droplet size, and found that 

947-2085 droplets with an average mode diameter of 13.5 μm were generated by coughing, 

while speaking produced 112-6720 droplets with an average mode diameter of 16.0 μm. 

All the released droplets were distributed in the diameter range of 2-2000 μm. By applying 

the Aerodynamic Particle Sizer (APS) and Scanning Mobility Particle Sizer (SMPS) 

systems, Yang et al (2007) found that the droplets generated by coughing fell in the 

diameter range of 0.62-15.9 μm with an average mode of 8.35 μm. They also obtained a 

size distribution of droplet nuclei, which was 0.58-5.42 μm, and most of them were in 0.74-

2.12 μm. Lindsley et al (2012) studied the size distribution and quantity of the droplets 

expelled by coughing from both the influenza-infected and recuperated human subjects 

through the technique of a Laser Aerosol Particle Spectrometer (LAPS). It was indicated 

that the average number of droplets each cough was quite similar for the infected subjects 

(i.e. 900-302,200) and the subjects after recovery (i.e. 1100-308,600). The droplet diameter 
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was found to range between 0.35 and 10 μm, with the average modes of 0.57-0.71 μm for 

the infected subjects and 0.57-0.89 μm for the recuperated subjects. To summarize, the size 

distribution of respiratory droplets obtained from previous studies is listed in Table 3.1. 

3.1.2 Studies of droplet dispersion and evaporation 

In order to investigate the dynamic characteristics of the droplets produced by coughing, 

many studies have been carried out by using experimental, numerical and theoretical 

methods. Zhu et al (2006) employed three different experimental techniques to study the 

coughing process in a still indoor environment, which include a particle image velocimetry 

(PIV) system to measure the velocity of the flow field in a styrene-board chamber, a mask 

to quantify the amount of saliva produced by coughing, and a digital video camera to record 

the droplet dispersion. It was found that during the coughing process, more than 6.7 mg of 

the saliva droplets could be released and travel farther than 2 m. The velocity of the droplets 

was high over a distance of approximately 0.03 m from the inlet, and gradually decreased 

as the droplets dispersed and moved farther. They also conducted a Computational Fluid 

Dynamics (CFD) simulation by using the Lagrangian model, and found a significant effect 

of the droplet size on the dispersion process. The numerical results indicated that for the 

small droplets with dp ≤ 30 μm, the dispersion was more affected by the ambient flow field 

than by the gravity or inertia, while as the droplet size increased, the impact of the gravity 

and inertia became more and more significant. Xie et al (2007) theoretically studied the 

dynamic characteristics of the droplets expelled by coughing, sneezing and breathing 

through creating a physical model based on the Wells evaporation-falling curve (Wells, 

1934). It was found that the droplet size had a dominant effect on the evaporation and 

dispersion processes of the droplets, i.e. large droplets (dp > 100 μm) would fall to the 

ground rapidly without complete evaporation while small droplets (dp < 100 μm) would 

evaporate completely and penetrate a long distance, which was more than 2 m for coughing, 

more than 6 m for sneezing and less than 1 m for breathing. 

Wei and Li (2017) experimentally studied the transport characteristics of cough droplets 

by employing a Sediment Feeding System (SFS) (Li, 2006) to inject glass beads, which 

had similar sizes to cough droplets, into a cuboid water tank. A digital video camera was 

used to record the transport process of the glass beads. They also developed a protocol 
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based on the Stokes’ law, in order to scale the results between the experiment in the water, 

and the prototype in the air. It was found that, unlike the previous studies, the droplets in 

different sizes showed a similar maximum penetration distance due to the effect of the 

leading vortex (Tang et al., 2009 & Bourouiba et al., 2014), which provided a positive 

velocity component in the vertical direction and carried the droplets farther downstream. 

Furthermore, the cough duration also had a significant effect on the droplet dispersion, i.e. 

the longer the cough lasted, the farther the droplets would travel. However, the protocol 

might introduce error when scaling the data between the glass beads in the water and the 

actual liquid droplets in the air for large droplets, which were defined as the droplets being 

96-114 μm in diameter. 

Moreover, the influence of the ambient RH was also investigated. As a result, more droplets 

and droplet nuclei would remain suspended in the ambient environment at a low RH, which 

was less than 40%. Aliabadi et al (2010) numerically investigated the impacts of the droplet 

size and the ambient RH on the droplet evaporation and dispersion by a CFD simulation of 

human cough flow. In their study, the Lagrangian discrete phase model was used to track 

a total of 5000 expired droplets in the diameter range 1-500 μm. The numerical results 

indicated that compared with large droplets, small droplets evaporated more rapidly and 

were less influenced by the gravity, therefore, having a longer penetration distance. 

Furthermore, a low RH accelerated the evaporation process, which was consistent with the 

conclusion given by Xie et al (2007). 
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Table 3.1: Summary of size distribution of respiratory droplets. 

Study field Experimental 

technique 

Diameter 

range, μm 

Average mode, μm Literature 

Coughing & 

speaking 

Glass slide 20-2000 100-500 (Jennison, 1942) 

Coughing & 

speaking 

Glass slide 10-500 70-85 (Strausz, 1926) 

Coughing, sneezing 

& speaking 

Oiled slide & 

glass slide 

1-2000 8-16 for coughing & 4-8 for 

sneezing 

(Duguid, 1946) 

Exhaled breathing OPC 0.09-3 < 0.3 (Fairchild & 

Stampfer, 1987) 

Coughing, breathing 

& speaking 

OPC & AEM ≤ 8 0.3 (Papineni & 

Rosenthal, 1997) 

Coughing & 

speaking 

IMI 2-2000 13.5 for coughing & 16.0 for 

speaking 

(Chao et al., 

2009) 

Coughing APS & SMPS 0.62-15.9 8.35 (Yang et al., 

2007) 

Coughing LAPS 0.35-10 0.57-0.71 for influenza-

infected subjects & 0.57-0.89 

for recuperated subjects 

(Lindsley et al., 

2012) 

3.1.3 Studies of respiratory pathogen transmission 

A respiratory pathogen is defined as a micro-organism, including a bacterium, virus, prion, 

protozoa, fungus, etc., that can cause infectious respiratory diseases. In order to prevent the 

spread of the respiratory disease infection, it is necessary to understand the pathways of 

respiratory pathogen transmission (Gralton et al., 2011). The size of the droplets, which 
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are produced by human expiratory activity, plays a key role in the transmission of the 

respiratory pathogen. Based on the size distribution of the expelled droplets, the respiratory 

pathogen transmission is classified into two ways, airborne and droplet transmission. 

Airborne transmission is defined as being caused by small droplets that can remain 

suspended in the ambient air for a prolonged period and which, therefore, can affect a great 

number of subjects and persist for a long distance from the infection source (Garner, 1996 

& Duguid, 1946). Droplet transmission is due to the larger droplets (of diameter dp > 100 

μm), which have a propensity to precipitate quickly on the ground (Wells, 1934). Such 

kind of transmission can only exist for a short distance from the source, usually within 1 

m, which is determined by the size of the larger droplets (Garner, 1996), and hence, can 

only cause infection to those subjects who are in close proximity to the source. 

In the physiological field, the transmission of a respiratory pathogen results from the 

deposition of the pathogen-laden droplets of different sizes. After the droplets are released 

by the infection source and inhaled by a susceptible subject, the droplets with dp > 10 μm 

are more likely to deposit on the surface of the upper airway and are less likely to transmit 

to the deeper pulmonary region. Conversely, the droplets with dp ≤ 10 μm are more likely 

to travel with the inhaled airflow and transmit deeper into the respiratory tract (Austin et 

al., 1979 & Yu & Taulbee, 1975). Compared to upper airway infections, infections 

occurring at the deeper respiratory tract can cause higher morbidity and mortality 

(MacFarlane et al., 1993 & Tupasi et al., 1988), which is due to the damage of the lung 

function and the potential induction of other chronic diseases (Barker et al., 1991). In this 

case, the value of 10 μm is considered as a cutoff size, below which the droplets have a 

greater possibility of transmitting acute respiratory diseases (Weber & Stilianakis, 2008). 

Human expiratory activity, including breathing, coughing, speaking and sneezing, can also 

determine the transmission of the respiratory pathogen through different factors, such as 

the number of droplets expelled by different expiratory activities, as well as the frequency 

of occurrence of the activity (Gralton et al., 2011). It was found that the intermittent 

expiratory activities (which include speaking, coughing and sneezing and can cause 

vibration of the vocal cords) are more likely to produce a great number of pathogen-laden 

droplets (Wainwright et al., 2009), while the continuous expiratory activity, i.e. breathing, 
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can only produce a small number of droplets carrying pathogen with low concentration 

(Stelzer-Braid et al., 2009 & Fabian et al., 2008). Furthermore, as one of the most common 

clinical symptoms of respiratory diseases, coughing occurs more frequently compared to 

sneezing and, therefore, it is considered as a more efficient way to transmit a respiratory 

pathogen (Couch et al., 1966). 

The viability of different types of pathogen during transmission plays a very important role 

in the infection capability of respiratory diseases. Although many pathogen-laden droplets 

can be released by human expiratory activity, the pathogen may be inactivated due to 

various environmental factors, which can reduce the possibility of infection (Li et al., 2009). 

Bean et al (1982) found that influenza viruses might survive for different periods on various 

environmental surfaces, i.e. influenza A and B remained viable for 24-48 hours on 

nonporous surfaces or on a human hand, but survived less than 8-12 hours on tissues, cloth 

or paper. Hemmes et al (1960) investigated the viability of influenza and poliomyelitis 

viruses under different environmental conditions, and noted that the mortality of influenza 

virus was high at an ambient RH of 50-90% and comparatively low at the 15-40% RH. 

Conversely, the poliomyelitis virus showed a high survival-rate at the higher RH range and 

a very low survival-rate at the lower RH range. Moreover, in winter, the temperature and 

RH of the indoor environment provided the optimal survival conditions for influenza virus. 

However, the morbidity of poliomyelitis grew during summer due to the best indoor 

condition for survival of that virus. In addition, other factors, such as the type of pathogen, 

the concentration of pathogen in the expelled droplets, as well as different indoor places 

(i.e. hospital, rail cabin, etc.) may also affect the infection due to the respiratory pathogen 

transmission (Fennelly et al., 2004, Gralton et al., 2011, Ostrowsky, 2007 & Zhang & Li, 

2012). 

In the present study, a CFD simulation is carried out to investigate the dynamic 

characteristics, which includes the dispersion and evaporation processes of the droplets 

produced by coughing. The large eddy simulation (LES) approach is used to predict the 

flow field of coughing. The Lagrangian discrete phase model using the discrete random 

walk (DRW) model is employed to track a total 2084 droplets in the diameter range of 3-

750 μm (Duguid, 1946). Studies with three different inlet and ambient conditions, 
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including the time-dependent cough velocity at the inlet and the ambient RH, are conducted 

to analyze the influence of those conditions on the droplet dispersion and evaporation. 

3.2 Numerical Methodology 

3.2.1 Governing equations 

3.2.1.1 The LES approach 

The LES approach is used to predict the turbulence of the flow field of coughing. The basic 

principle of such approach is to separate and resolve the large eddies that contain most of 

the energy through the spatially-filtered mass and momentum equations (Navier-Stokes 

equations), defined as 

∂𝑢𝑖

∂𝑥𝑖
= 0          (3.1) 

∂𝑢𝑖
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+ 𝑢̃𝑗
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= −
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2 −
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𝜕𝑥𝑗
        (3.2) 

where 𝜏𝑖𝑗 represents the subgrid-scale (SGS) stress tensor, describing the impact of small 

turbulence scales, and is expressed as 

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̃ − 𝑢̃𝑖𝑢̃𝑗                                                     (3.3) 

The SGS stress results in the exchange of momentum between the large (resolved) and 

small (subgrid) scales of motion (Bisoi et al., 2017), and needs to be modelled. In the 

present study, the dynamic Smagorinsky-Lilly model is adopted to model the SGS stress. 

This model considers the Smagorinsky model constant, 𝐶𝑆, as a function of space and time 

over a fairly wide range in order to avoid the damping of turbulent fluctuations in the 

presence of mean shear and in transitional flows (ANSYS, 2013). More details about the 

dynamic Smagorinsky-Lilly model are shown in Appendix C. 

3.2.1.2 Energy equation 

In order to solve the heat transfer between the cough flow and the ambient environment, 

the energy equation is required and is in the following form (Nijemeisland & Dixon, 2004), 
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𝜕(𝜌𝑒)

𝜕𝑡
+ 𝛻 ∙ (𝑢⃗⃗𝜌𝑒) = 𝛻 ∙ (𝑘𝑒𝑓𝑓𝛻𝑇 − ∑ 𝐽𝑗𝑗 ∫ 𝑐𝑝,𝑗𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓
)            (3.4) 

where e represents the total energy, is given as the following equation. 

𝑒 = ℎ +
𝑢2

2
                                                 (3.5) 

where h, p, ρ and u are the sensible enthalpy, pressure, density and velocity of the injected 

fluid, respectively. 

The details about the energy equation are shown in Appendix D. 

3.2.1.3 Discrete phase model 

Since the droplet volume fraction is very low in the cough flow, the Eulerian-Lagrangian 

method is used in this study, where the continuous phase (the flow field) is modelled by 

the Eulerian method, i.e. by solving the Navier-Stokes equations, while the discrete phase 

(the droples) is modelled by the Lagrangian method, i.e. by tracking the motion of the 

droplets. The discrete phase can exchange mass, momentum and energy with the 

continuous phase. 

The trajectory of a discrete droplet is predicted by stepwise integrating the force balance 

equation with an implicit integration scheme (see Appendix J for details). The force 

balance equation equates the forces acting on that droplet with the droplet inertia and is 

based on Newton’s second law of motion, with respect to the discrete time steps, as shown 

below (ANSYS, 2013), 

𝑑𝑢⃗⃗⃗𝑝

𝑑𝑡
= 𝐹𝐷(𝑢⃗⃗ − 𝑢⃗⃗𝑝) +

𝑔⃗⃗(𝜌𝑝−𝜌)

𝜌𝑝
                                   (3.6) 

where 𝑢⃗⃗ and 𝑢⃗⃗𝑝 represent the velocity of the continuous and discrete phase, respectively, 

and  𝜌 and 𝜌𝑝 are the density of the fluid and droplet, respectively. On the right-hand side, 

the term of 𝐹𝐷(𝑢⃗⃗ − 𝑢⃗⃗𝑝) is the drag force per unit droplet mass, and 

𝐹𝐷 =
18𝜇

𝜌𝑝𝑑𝑝
2

𝐶𝐷𝑅𝑒𝑟

24
                                             (3.7) 

where dp is the diameter of the droplet, 𝜇 is the molecular viscosity of the fluid, and Rer 

represents the relative Reynolds number, defined as 
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𝑅𝑒𝑟 ≡
𝜌𝑑𝑝|𝑢⃗⃗⃗𝑝−𝑢⃗⃗⃗|

𝜇
                                                   (3.8) 

Based on the Stokes-Cunningham drag law (Ounis et al., 1991), FD acting on the droplets 

can be expressed as 

𝐹𝐷 =
18𝜇

𝜌𝑝𝑑𝑝
2𝐶𝑐

                                                    (3.9) 

A Cunningham correction is made by the factor, CC, which is obtained from 

𝐶𝐶 = 1 +
2𝜆

𝑑𝑝
(1.257 + 0.4𝑒−(1.1𝑑𝑝/2𝜆))                       (3.10) 

where λ represents the molecular mean free path. It is noted that, when the Stokes-

Cunningham drag law is adopted, CC will satisfy 𝐶𝐶 =
24

𝐶𝐷𝑅𝑒𝑟
, according to Eqns. (3.7) and 

(3.9). 

The effect of the turbulence in the continuous phase on the droplet dispersion is accounted 

for by the use of the stochastic tracking model, which considers the random effects of the 

instantaneous velocity fluctuations on the droplet trajectory through the stochastic method, 

The DRW model is used in this study. For the strongly nonhomogeneous flows which are 

dominated by diffusion, the small droplets should distribute in a uniform way, and the 

DRW model will predict a tendency for such droplets to concentrate in the regions with 

low turbulence (ANSYS, 2013). The details about the DRW model are shown in Appendix 

I. Moreover, during the airborne transmission, two or even more droplets may collide and 

coalesce together into a new droplet, slightly larger in size. Therefore, the processes of 

collision and coalescence may also affect the size distribution of droplets and are taken into 

consideration in the discrete phase model. The present study employs the stochastic 

collision model to predict the collisions occurring to the droplets produced by coughing. 

The details about the stochastic collision and coalescence are shown in Appendix K. 

3.2.2 Computational domain and grid 

The computational domain is in a cuboid shape and is illustrated as Figure 3.3, in which 

the “x”, “y” and “z” axes represent the axial (streamwise), lateral and vertical directions, 

respectively. The inlet is a circular orifice of diameter d=0.0217 m, representing the 
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average human mouth diameter (Gupta et al., 2009). The centre of the inlet is denoted by 

(0, 0, 0), which is also the origin of the coordinate system. 

 

Figure 3.3: Schematic of the computational domain along with its dimensions. 

The computational domain and grid are generated by using ICEM CFD 16.0. Irregular 

unstructured polyhedral grids are implemented to reduce the computational expense 

without lowering the accuracy and to improve the residual convergence. The grid 

resolution is 1 mm at the inlet and 5 mm in the cone region with the global growing ratio 

of 1.15, as exhibited in Figure 3.4, where it can be clearly seen that the grid in the cone 

region is much finer than that in the global region (outside of the cone region). The total 

number of computational cells is approximately 7.3 million. The grid independence test for 

the LES modelling is shown in Appendix H. 
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Figure 3.4: Grid distribution on the x-z plane (y=0) of the computational domain. 

3.2.3 Droplet conditions 

The size distribution of the droplets expelled by coughing is not unique, due to the 

physiological variability of different human subjects (Aliabadi et al., 2010). It is necessary 

for the CFD modelling to obtain a representative distribution which can cover a wide range 

of droplet sizes. The present study uses the work of Duguid (1946), from which 2084 

droplets in the diameter range of 3-750 μm are considered to be released during one cough. 

These 2084 droplets are grouped into 15 sizes, and the majority concentrates in the range 

6-12 μm, as shown in Table 3.2, where the mass flow rate of each size of droplets are 

calculated from the following equation, 

𝑚̇𝑝 =
𝑁𝜌𝑝𝜋𝑑𝑝

3

6Δ𝑡
                                        (3.11) 

where N represents the number of droplets per diameter class, and 𝛥𝑡 is the time step size, 

which is 0.001 secs. 

This ensemble of droplets is injected in the range 0.042-0.136 secs which covers the time 

corresponding to the peak of the cough velocity, as illustrated in Figure 3.5. The injection 
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speed is zero, which implies that all the droplets are driven initially by the flow field from 

the mouth. Less than 30 droplets are set to be injected per time step in order to reduce the 

occurrence of collision. The droplets are staggered at 0.01 m downstream from the inlet to 

reduce the possibility of the backflow (Aliabadi et al., 2010). Moreover, each droplet 

consists of multi-components, i.e. 94% volume fraction of the pure water, which is 

evaporative, and the remaining 6% is of the same physical properties of the pure water but 

non-evaporative (Aliabadi et al., 2010). The non-evaporative portion represents the mucus 

and physiological electrolytes which carry different infectious agents, including viruses, 

pathogens, fungi and bacteria. During the airborne transmission of the droplets, the pure 

water will evaporate, and the non-evaporative portion will remain to form a droplet nucleus 

and suspend in the ambient environment for a longer period. The temperature of the 

droplets is set as 32 ºC (305.15 K) (Zhu et al., 2006). 

Table 3.2: Droplet size distribution (reproduced from Duguid (1946)). 

Diameter class, μm Number of droplets (N) Mass flow rate, kg/sec 

3 76 1.07442e-9 

6 1041 1.17621e-7 

12 386 3.43816e-7 

20 127 5.27788e-7 

28 47 5.28726e-7 

36 45 1.07488e-6 

45 38 1.81309e-6 

62.5 38 4.85761e-6 

87.5 27 9.12003e-6 

112.5 32 2.38565e-5 

137.5 30 4.08346e-5 

175 83 2.35718e-4 

225 47 2.74349e-4 

375 40 1.10447e-3 

750 27 5.74322e-3 

Total 2084 7.44083e-3 
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Figure 3.5: Duration of the droplet injection (shaded part) (reproduced from Gupta 

et al. (2009)). 

3.2.4 Boundary and ambient conditions 

Three simulations under different inlet and ambient conditions, including the time-

dependent cough velocity at the inlet and the ambient RH, are conducted to investigate the 

impacts of those conditions on the droplet evaporation and dispersion, and are summarized 

in Table 3.3. Two cough velocity profiles obtained from the work of Gupta et al (2009), as 

shown in Figure 3.6, are analyzed by Cases #1 and #2. The peak values uip of the two 

velocity profiles are 22.06 and 10.81 m/s, corresponding to the time tip of 0.066 and 0.073 

secs, respectively. According to the following equation (Wei & Li, 2017), the temporal 

mean velocities um for the two profiles are 8.81 and 4.79 m/s, respectively. 

𝑢𝑚 =
1

𝑡𝑖𝑠𝑠
∫ 𝑢(𝑡)𝑑𝑡

𝑡𝑖𝑠𝑠

0
                                            (3.12) 

where tiss represents the cough duration, which is 0.61 and 0.40 secs for Cases #1 and #2, 

respectively. It can be seen that both the peak velocity uip and the temporal mean velocity 

um for Case #2 are around half of the values for Case #1. Moreover, the influence of the 

ambient RH is examined by Cases #1 and #3. The mass fractions of water vapour in the 
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ambient environment are 0.80% and 1.27% corresponding to the RH of 50% and 80%, 

respectively. For all the three cases, the direction of the inlet cough velocity is set as normal 

to boundary, which satisfies that the fluid is issued from the inlet into the domain with the 

velocity in the streamwise direction. Based on Zhu et al. (2006), the temperature of the 

fluid at the inlet is defined as 32 ºC (305.15 K), which is the same as that of the droplets, 

and the inlet turbulence intensity of the flow field of coughing is 10% of 𝑢𝑚. The hydraulic 

diameter is set as 0.0217 m, which is equal to the average human mouth diameter (Gupta 

et al., 2009). The spectral synthesizer algorithm (Kraichnan, 1970 & Smirnov et al., 2001) 

is selected to generate the synthetic turbulence at the inlet, through creating a velocity 

vector field without divergence from the summation of 100 Fourier harmonics (ANSYS, 

2013). The ambient temperature is defined as 21.5 ºC (294.65 K), and the surrounding fluid 

velocity is set as zero due to the quiescent ambient condition. 

For all the three cases, the fluid injected from the inlet is defined as two-species alveolar 

air, which is usually considered as the flow caused by human expiratory activity, e.g. 

coughing, breathing, speaking and sneezing. The two species include air and water vapour, 

with the mole fraction 93.8% and 6.2%, respectively (Saladin, 2003). The properties of the 

injected fluid are shown in Appendix F. 

Table 3.3: Three cases in different inlet and ambient conditions. 

Case 

number 

uip, m/s um, m/s Ambient 

temperature, K 

Mass fraction of 

water vapour 

Ambient RH 

Case #1 22.06 8.81 294.65 0.8% 50% 

Case #2 10.81 4.79 294.65 0.8% 50% 

Case #3 22.06 8.81 294.65 1.27% 80% 
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Figure 3.6: Inlet cough velocity profiles employed for Cases #1, #2 and #3 

(reproduced from Gupta et al. (2009)). 

For all the three cases, all the six walls of the computational domain are defined as no-slip 

adiabatic walls. The boundary conditions for the discrete phase on the inlet and six walls 

of the computational domain need to be specified. For the inlet, the “reflect” boundary 

condition is used, which means the droplet will rebound after colliding with the boundary 

and, therefore, the backflow of the droplet can be effectively prevented. A restitution 

coefficient e with the value varying between 0 and 1 determines the amount of momentum 

that the droplet will retain after the collision, and is defined as (Wakeman & Tabakoff, 

1982) 

𝑒 =
𝑣⃗⃗𝑝2

𝑣⃗⃗𝑝1
                                                    (3.13) 

where 𝑣⃗𝑝1  and 𝑣⃗𝑝2  represent the velocity of the droplet before and after the collision, 

respectively. A restitution coefficient equal to 1 infers that the droplet retains all of its 

momentum when rebounding off the boundary, which can be regarded as an elastic 

collision. While a restitution coefficient equal to 0 indicates that none of the momentum 
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will be retained by the droplet after the collision, i.e. an inelastic collision. The value of the 

restitution coefficient is dependent on the impact angle formed by the collision. 

The “trap” boundary condition is employed for all six walls to match the physical reality, 

which means the droplet will stay at the wall when it collides with the wall. The remaining 

evaporative portion of the droplet keeps evaporating and passes into the vapour phase, and 

enters the computational cell which is adjacent to the wall (ANSYS, 2013). 

3.2.5 CFD solver 

The commercial CFD packages, FLUENT 16.0 is used to carry out the simulation and 

CFD-Post 16.0 is used to post-process the results. A finite volume method is employed to 

solve the governing equations with double precision. The pressure-based solver is adopted 

since it is suitable for incompressible flows. The algorithm of the Semi-Implicit Method 

for Pressure-Linked Equations (SIMPLE) by Patankar et al. (1972), is employed as the 

pressure-velocity coupling method. For the pressure interpolation, the second-order 

scheme is used as it can acquire acceptable solutions for most cases (ANSYS, 2014), and 

for the gradient evaluation, the least squares cell-based scheme is performed in order to 

obtain a more accurate second-order interpolation on irregular unstructured polyhedral 

grids which are applied in the present study. To solve the temporal discretization, the 

bounded second order implicit formulation is carried out as it can provide a higher accuracy 

and better stability than other types of formulation. A time step size of 0.001 secs is used 

to reduce the computational expense. The simulation is run for 4 secs in total of the flow 

time which is sufficient to characterize the dynamic development of the droplets produced 

by coughing in the computational domain. The residual convergence criterion is set as 10-

6 for the energy equation and 10-3 for the other governing equations, including continuity, 

momentum and species transport equations, etc., and a maximum number of iterations per 

time step, i.e. inner loop iterations, is set as 100. The central differencing discretization 

scheme is performed for momentum, water vapour species transport and energy since it 

minimizes the numerical diffusion and provides the highest accuracy in resolving the large 

turbulence scales. Therefore, it is considered as the ideal choice for the LES approach. 
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3.3 Results and Discussion 

An understanding of the dispersion and evaporation of the exhaled droplets plays an 

important role not only in investigating the airborne transmission mechanism of the 

infectious respiratory diseases, but also in developing the effective control methods (Xie 

et al., 2007). In the present study, the numerical results in terms of the dispersion and 

evaporation of the droplets produced by coughing under different inlet and ambient 

conditions are presented. The effect of the time-dependent cough velocity at the inlet is 

explored in Cases #1 and #2, whilst the influence of the ambient RH is examined in Cases 

#1 and #3. 

3.3.1 Droplet dispersion 

The dispersion of droplets produced by coughing is analyzed in two different aspects, 

including the contours of droplet diameters and the penetration distance of the droplets 

from the mouth. 

3.3.1.1 Contours of droplet diameters 

The contours of droplet diameters give a clear visualization of the transient nature of the 

location of droplets in various sizes, which, in turn, provides a more graphic and easier 

understanding of the droplet dispersion process. Figure 3.7, obtained from Case #1, shows 

the contours of droplet diameters at six different time on the x-z plane (y=0), which 

visualizes a droplet dispersion trend in the streamwise and vertical directions. It should be 

noticed that at each time, all the droplets within the computational domain are integrated 

on the x-z plane. It can be seen clearly that at the time 0.15 secs (Figure 3.7 (a)), the total 

2084 droplets have been injected into the domain. As expected, the larger the diameter, the 

faster the droplets fall to the ground due to the effect of the gravity. The smaller droplets 

with the diameter dp ≤ 10 μm remain suspended for a longer period. 
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(a)                                                         (b) 

(c)                                                         (d) 
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(e)                                                         (f) 

Figure 3.7: Contours of the droplet diameters at (a) 0.15 secs, (b) 0.5 secs, (c) 1 sec, 

(d) 2 secs, (e) 3 secs and (f) 4 secs on the x-z plane. 

Figure 3.8 exhibits the contours of the droplet diameters on the y-z plane (x=0) to visualize 

a droplet dispersion trend in the lateral and vertical directions. At each time, all the droplets 

within the computational domain are integrated on the y-z plane. It is found that, the smaller 

droplets display a higher rate of dispersion, which reveals that the drag force becomes more 

dominant on the droplet than the gravity as the droplet size decreases. 

(a)                                                       (b) 
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(c)                                                       (d) 

(e)                                                       (f) 

Figure 3.8: Contours of the droplet diameters at (a) 0.15 secs, (b) 0.5 secs, (c) 1 sec, 

(d) 2 secs, (e) 3 secs and (f) 4 secs on the y-z plane. 

3.3.1.2 Effect of the ambient RH 

The droplet penetration distance from the mouth can be described by the mean (< l >) and 

maximum (lm) penetrations of the droplets. The mean penetration distance < l > is 

calculated by 
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< 𝑙 >=
∑ 𝑙𝑖

𝑁
𝑖=1

𝑁
                                              (3.14) 

where N represents the total number of droplets suspended within the computational 

domain, and li is the absolute value of the distance between the current position of the ith 

droplet and the mouth. Figure 3.9 shows the mean and maximum penetrations of the 

droplets under two different values of the ambient RH. It can be seen that the mean and 

maximum penetrations increase with time for both cases, and the increase becomes more 

and more gradual due to the gradual decrease in the droplet velocity, which is caused by 

the decrease in the velocity of the flow field. At 4 secs, the values of < l > and lm for the 

case with a lower RH (Case #1) are around 1.20 and 1.80 m, respectively, which are slightly 

higher than those for the case with a higher RH (Case #3) (1.14 and 1.65 m, respectively). 

During the entire 4-second flow time, the case with a lower RH (Case #1) shows higher 

values of < l > and lm by 3.29% and 9.52% compared to the case with a higher RH (Case 

#3), respectively. Therefore, a higher RH of the ambient air slightly weakens the droplet 

penetration. 

 

Figure 3.9: Comparison of the maximum penetration distance lm and mean 

penetration distance < l > of the droplets under different ambient RH. 
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3.3.1.3 Effect of the inlet cough velocity 

The effect of the inlet time-dependent cough velocity on the droplet penetration distance 

from the mouth is investigated, and the mean and maximum penetrations of the droplets 

under two different inlet cough velocities are presented in Figure 3.10. From the figure it 

is found that for both cases, the mean and maximum penetration distances increase more 

and more gradually with time. At the time of 4 secs, the maximum values of < l > and lm 

for the case with a lower peak velocity (Case #2) are approximately 0.69 and 1.44 m, 

respectively, which are less than those for the case with a higher peak velocity (Case #1) 

(1.20 and 1.80 m, respectively). During the entire 4-second flow time, the case with a 

higher peak velocity (Case #1) gives higher values of < l > and lm by 39.74% and 27.06% 

in compare to the case with a lower peak velocity (Case #2), respectively. This infers that 

the inlet cough velocity has a much more significant influence on the penetration of the 

droplets, in compare to the ambient RH (see Figure 3.9), and as expected the higher the 

cough velocity, the longer distance the droplets could travel. 

 

Figure 3.10: Comparison of the maximum penetration distance lm and mean 

penetration distance < l > of the droplets under different inlet cough velocities. 
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3.3.2 Droplet evaporation 

The evaporation of the droplets produced by coughing is also analyzed in two different 

aspects, the droplet size distribution at different time and the variation of the overall mean 

droplet diameter with time. 

3.3.2.1 Effect of the ambient RH 

Figure 3.11 shows the comparison of the droplet size distribution at different time between 

Case #1 (50% RH) and #3 (80% RH). The figure shows the variation of droplet numbers 

in different diameter ranges with time. At 0.15 secs (Figure 3.11 (a)), it can be seen clearly 

that there are big differences in the droplet numbers between Cases #1 and #3 in the 

diameter range of 0.5-5 μm and 5-10 μm, compared to other ranges. In the range of 0.5-5 

μm, the numbers of droplets for Cases #1 and #3 are 1103 and 129, whereas in the range 

of 5-10 μm, there are 10 and 987 droplets for Cases #1 and #3, respectively. The droplets 

are injected into the computational domain from the smallest size (3 μm) to the largest size 

(750 μm) successively, and the evaporation takes place immediately once the droplets are 

injected, which results in a decrease of the droplet diameter and an increase of the droplet 

number in the smaller diameter range. At 0.5 secs (Figure 3.11 (b)), the numbers of droplets 

in the range 0.5-5 μm and 5-10 μm reduces dramatically for both Cases #1 and #3, 

compared to the previous time, which is due to the coalescence and precipitation of the 

droplets. Moreover, as time progresses further, the large droplets, which are in the diameter 

range dp ≥ 100 μm, keep evaporating and precipitating on the ground and, as a result, the 

numbers of droplets decrease gradually to zero. 
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(a)                                                                    (b) 

(c)                                                                   (d) 
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(e)                                                                    (f) 

Figure 3.11: Droplet size distributions under different ambient RH at (a) 0.15 secs, 

(b) 0.5 secs, (c) 1 sec, (d) 2 secs, (e) 3 secs and (f) 4 secs. 

The variation of the total number of suspended droplets with time is illustrated in Figure 

3.12. All the 2084 droplets are injected into the computational domain by 0.136 secs for 

both Cases #1 and #3. After 0.136 secs, the total number of droplets suspended within the 

computational domain keeps reducing as time progresses due to the precipitation of the 

large droplets. When coalescence occurs to the droplet nuclei, which consist of 6% volume 

fraction of the non-evaporative water and evolve from the complete evaporation of the 

droplets (Aliabadi et al., 2010 & Wells, 1934), the new-formed droplet nuclei in larger 

sizes also fall to the ground without evaporation, which results in a reduction of the number 

of suspended droplets as well. It can be seen that after approximately 1.1 secs, the variation 

of the number of suspended droplets with time slows down, but with a steady decline trend, 

which is due to the dispersion of the droplets. As time progresses, the dispersion rate of the 

suspended droplets becomes higher (see Figure 3.8), which results in a reduction of the 

occurrence of droplet coalescence and precipitation.  Furthermore, it is found from Figure 

3.12 that during the entire flow time, the case with a higher RH (Case #3) shows a 22.74% 

higher number of droplets than the case with a lower RH (Case #1), which indicates that a 

higher ambient RH slows down the coalescence and precipitation of the droplets. 
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Figure 3.12: Comparison of the time history of total number of droplets suspended 

within the computational domain under different ambient RH. 

Figure 3.13 shows the time history of the overall mean diameter of the droplets for Cases 

#1 and #3, where < dp >, also known as the arithmetic average of the droplet diameter, is 

calculated by 

< 𝑑𝑝 >=
∑ 𝑑𝑝𝑖

𝑁
𝑖=1

𝑁
                                                (3.15) 

where N represents the total number of the droplets suspended within the computational 

domain, and dpi is the diameter of the ith droplet. From the figure it can be seen that for both 

Cases #1 and #3, < dp > increases drastically until 0.5 secs, followed by a sharp fall until 

approximately 1 sec, and then decreases gradually with time. Due to the higher collision 

rate before 0.5 secs, the number of suspended droplets reduces dramatically, and the 

diameters of the droplets increase due to the coalescence, which results in a sudden growth 

of the mean diameter. The subsequent decrease of < dp > is caused by the precipitation and 

evaporation of the droplets. Furthermore, before approximately 2.3 secs, < dp > is smaller 

for the case with a higher RH (Case #3) compared to the case with a lower RH (Case #1), 

which implies that a higher ambient RH results in a lower coalescence rate of the droplets. 

Then, after 2.3 secs, < dp > for Case #3 exceeds that for Case #1, but still decreases 
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gradually, which infers that the evaporation of droplets is weakened by a higher RH of the 

ambient environment. 

 

Figure 3.13: Comparison of time history of overall mean diameter of the droplets 

under different ambient RH. 

3.3.2.2 Effect of the inlet cough velocity 

In order to investigate the influence of the time-dependent cough velocity at the inlet on 

the evaporation of the droplets, the droplet size distributions under two different inlet cough 

velocities at different time are presented in Figure 3.14. It is found that at 0.15 secs (Figure 

3.14 (a)), the differences in the droplet numbers between the two cases are larger in the 

diameter ranges of 0.5-5 μm and 5-10 μm, compared to other diameter ranges. In the range 

of 0.5-5 μm, the number of the droplets is higher for the case with a higher inlet cough 

velocity (Case #1) than that for the case with a lower inlet cough velocity (Case #2). But, 

it is just opposite for the diameter range of 5-10 μm between the two cases. Compared to 

Figure 3.11 (a), it can be seen clearly that at 0.15 secs, the difference in number of droplets 

between Cases #1 and #2 is much smaller than that between Cases #1 and #3, which means 

that the inlet cough velocity has a much weaker effect on the droplet size distribution than 

the ambient RH. Furthermore, as time progresses, the differences in droplet size 
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distribution and total number of suspended droplets between Case #1 and #2 decrease 

gradually, as shown in Figure 3.14, which infers that the impact of the inlet cough velocity 

on the dynamic development of the droplets produced by coughing gradually reduces with 

time. 

(a)                                                                    (b) 

(c)                                                                    (d) 
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(e)                                                                    (f) 

Figure 3.14: Droplet size distributions under different inlet cough velocities at (a) 

0.15 secs, (b) 0.5 secs, (c) 1 sec, (d) 2 secs, (e) 3 secs and (f) 4 secs. 

The comparison of the time history of total number of droplets suspended within the 

computational domain between Case #1 and #2 is illustrated in Figure 3.15. It can be seen 

clearly that the time history profiles for these two cases are almost the same, i.e. a sharp 

decline from approximately 0.136-1.1 secs and a slow but steady decline from 1.1-4 secs. 

During the entire 4-second flow time, the case with a lower inlet cough velocity (Case #2) 

shows a 3.01% higher number of droplets than the case with a higher inlet cough velocity 

(Case #1), which indicates that the inlet cough velocity has a much less impact on the 

coalescence and precipitation of the suspended droplets, compared to the ambient RH (see 

Figure 3.12). 
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Figure 3.15: Comparison of time history of total number of droplets suspended 

under different inlet cough velocities. 

Figure 3.16 presents the time history of the overall mean diameter of the droplets (< dp >) 

under two different inlet cough velocities. The difference in the variation of < dp > with 

time between the two cases is very small, except for the peak values, which indicates that 

the inlet cough velocity does not significantly affect the evaporation of droplets. However, 

since Case #2 has a lower inlet cough velocity, compared to Case #1, the droplets disperse 

with a lower velocity in the near-field region, which results in a lower coalescence rate of 

the droplets. So, the peak value of < dp >, which is at 0.5 secs, for Case #2 is lower than 

that for Case #1. 
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Figure 3.16: Comparison of time history of overall mean diameter of droplets under 

different inlet cough velocities. 

3.4 Conclusions 

A numerical study has been carried out to examine the dispersion and evaporation 

processes of the droplets produced by coughing. The Lagrangian discrete phase model is 

used to track a total 2084 droplets with the diameter range of 3-750 μm. The effects of the 

RH of the ambient environment and the inlet time-dependent cough velocity on the droplet 

dispersion and evaporation are investigated by conducting three simulations under different 

ambient RH and inlet cough velocities. 

The droplet dispersion is investigated based on the contours of the droplet diameters and 

the penetration distance. It is found that the larger droplets precipitate on the ground as 

time progresses, which could cause the droplet transmission of the respiratory pathogen, 

and the precipitating speed depends on the droplet size. Whereas the smaller droplets with 

the diameter dp ≤ 10 μm remain suspended in the ambient air, which could result in the 

airborne transmission of the respiratory pathogen. The penetration distance of the droplets 

grows in a more gradual trend with time, whilst both a higher ambient RH and a lower inlet 
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cough velocity will weaken the droplet penetration and, therefore, could weaken the 

respiratory pathogen transmission during coughing in different degrees. Moreover, the inlet 

cough velocity has a much more significant influence on the droplet penetration, in 

compare to the ambient RH. The droplet evaporation is examined in terms of the droplet 

size distribution at different time as well as the variation of the overall mean droplet 

diameter with time. It is found that the evaporation occurs immediately after the droplets 

are injected, which results in a gradual decrease of the droplet diameter. A higher ambient 

RH would slow down the droplet evaporation, which is consistent with the findings of 

Aliabadi et al (2010) and Xie et al (2007). However, the difference in the change of the 

droplet diameter with time under different inlet cough velocities is small. So, the inlet 

cough velocity dose not significantly affect the droplet evaporation. Furthermore, the 

collision and coalescence of the droplets have a great influence on the droplet size 

distribution. It is found that the droplets would collide and coalesce together into larger 

droplets, which results in an increase in the overall mean droplet diameter initially, and 

then the larger droplets fall to the ground due to the gravity, which makes the number of 

suspended droplets decrease. Both a higher ambient RH and a lower inlet cough velocity 

give a lower coalescence rate for the droplets, and the inlet cough velocity shows a much 

less impact on the coalescence and precipitation of the suspended droplets, compared to 

the ambient RH. 

For future work, additional simulations should be performed under different RH of the 

ambient air and inlet cough velocities to examine the effects of those conditions on the 

droplet dispersion and evaporation further. Other cough conditions, such as the cough 

duration and direction, are also important and need to be investigated. Moreover, the 

experimental data are required in order to validate the effectiveness of the Lagrangian 

discrete phase model in predicting the dynamic development of the droplets produced by 

coughing. The impacts of other drag laws, such as the dynamic drag model, on the 

modelling performance of the discrete phase model should be analyzed as well. 

The next chapter will give an overall summary of the present study, including the work that 

has been done and the corresponding conclusions. The recommendations for future work 
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in terms of the modifications and improvements of the CFD modeling of human cough 

flow will also be provided. 
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Chapter 4  

4 Conclusions and Recommendations 

4.1 Conclusions 

As part of the Western Cold and Flu aerosol (WeCoF) studies, the present study provides 

Computational Fluid Dynamics (CFD) modelling of human cough flow. The cough flow 

is characterized in two different aspects, the flow field and the droplets. In the study of the 

flow field of coughing, various dynamic characteristics, including the velocity variation, 

streamwise penetration and power spectral density, are numerically examined. CFD 

simulations using two different approaches, the unsteady Reynolds Averaged Navier-

Stokes (URANS) and the large eddy simulation (LES), are performed for comparison 

purposes. The numerical results are validated by the experimental data obtained from 

measurements by particle image velocimetry (PIV) and hot-wire anemometry (HWA), as 

well as the published data. In the study of the droplets produced by coughing, the dynamic 

characteristics, including the dispersion and evaporation processes, are investigated. The 

Lagrangian discrete phase model is employed to track a total 2084 droplets in the diameter 

range 3-750 μm. The effects of different inlet and ambient conditions, including the relative 

humidity (RH) of the ambient air and the inlet time-dependent cough velocity, on the 

droplet dispersion and evaporation are analyzed. 

In the study of the flow field of coughing, the contours of velocity magnitude at different 

time are analyzed. Compared to the URANS modelling, which gives a velocity distribution 

in a symmetric and regular way, the LES modelling shows an irregular and non-uniform 

velocity distribution, which gives a good agreement with the PIV measurement and, hence, 

provides a more realistic and accurate prediction of the velocity magnitude variation with 

time of the flow field of coughing. The numerical results are also compared with the PIV 

measurements in terms of the spatially averaged velocity on the PIV field of view and the 

2-dimensional velocity magnitude at the midpoint of each cough flow. It is found that the 

LES modelling and the PIV measurements have a similar variation of the velocity with 

time and the peak values are close, while the URANS modelling shows a smooth variation 

trend without any fluctuation. In the comparison with the HWA measurements, the LES 
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modelling gives a good agreement for the normalized u component velocity at the location 

of the hot-wire probe, while the URANS modelling still shows a smooth trend due to the 

ensemble-averaged flow field of motion it solves for. In the investigation of the streamwise 

penetration, the LES modelling is compared with the published experimental data, and 

shows a very good agreement for the normalized streamwise penetration distance in both 

the starting-jet and interrupted-jet stages. The maximum jet width in the interrupted-jet 

stage grows with time in a roughly linear trend, and the corresponding axial distance 

increases with time in a roughly second-order polynomial manner. In the analysis of the 

power spectral density, all the energy spectra obtained from the LES modelling and HWA 

measurements have a universal decay with the slope of -5/3, which indicates that the energy 

transfer process in the inertial subrange follows the Kolmogorov hypothesis. In summary, 

based on the comparison with the URANS approach and the experimental data, the LES 

approach can predict the dynamic development of the flow field of coughing reasonably 

well. 

In the study of the droplets produced by coughing, the contours of the droplet diameters 

and the penetration distance are analyzed for the investigation of the droplet dispersion. It 

is found that as time progresses, the larger droplets fall to the ground, which could cause 

the droplet transmission of the respiratory pathogen, and the falling speed depends on the 

droplet size. While the smaller droplets with the diameter dp ≤ 10 μm remain suspended 

for a longer period, which could result in the airborne transmission of the respiratory 

pathogen. Both the mean and maximum penetration distances from the mouth of the 

droplets grow in a more gradual trend with time, and will be weakened by both a higher 

RH of the ambient air and a lower inlet cough velocity, which implies that a higher ambient 

RH and a lower inlet cough velocity will weaken the respiratory pathogen transmission. In 

the analysis of the droplet evaporation, the droplet size distribution at different time and 

the variation of the overall mean droplet diameter with time are examined. It is found that 

the evaporation causes a gradual decrease in the droplet diameter, and is significantly 

affected by the ambient RH, i.e. the higher the RH, the slower the evaporation. However, 

the inlet cough velocity does not show a strong influence on the evaporation of the droplets. 

Moreover, the droplet collision and coalescence also affect the droplet size distribution, 
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and both a higher ambient RH and a lower inlet cough velocity give a lower coalescence 

rate of the droplets. 

4.2 Recommendations 

The present study numerically investigates the dynamic characteristics of human cough 

flow in terms of the flow field and the droplets by the CFD modelling, and some aspects 

are recommended for future work, as listed below: 

 The effects of different conditions, including the RH of the ambient air, the inlet time-

dependent cough velocity, etc., on the dynamic characteristics of the flow field of 

coughing, should be investigated. 

 The recruitment of more participants is necessary for a statistically significant cohort 

of the experimental data, which will contribute to the validation of the numerical 

results. 

 Additional simulations should be performed under different RH of the ambient air and 

inlet cough velocities to examine the effects on the dispersion and evaporation of the 

droplets produced by coughing further. 

 In order to examine the validity of the Lagrangian discrete phase model, which is 

employed to track the droplets produced by coughing, related experiment data are 

required. 



105 

 

Appendices 

Appendix A: Computational Fluid Dynamic (CFD) Modelling of a Steady Round 

Free Jet Flow 

A Computational Fluid Dynamics (CFD) study is carried out to numerically investigate the 

performance of various turbulence models under the Reynolds Averaged Navier-Stokes 

(RANS) approach in predicting a steady-state, turbulent, round free jet. The commercial 

CFD package, ANSYS FLUENT 16.0, is used for the numerical simulation. The 

experimental data  obtained from the work of Xu and Antonia (2002) are used to validate 

the numerical results. The most appropriate turbulence model is employed for the unsteady 

RANS (URANS) modelling of the flow field of coughing, which is introduced in detail in 

Chapter 2. 

 

Figure A-1: Schematic of the computational domain along with its dimensions. 

The turbulent round free jet studied in the experimental work is axisymmetric, isothermal, 

and has the exit bulk Reynolds number Re = 86000. A computational domain in the 



106 

 

dimensions of 4.4 m in length, 3.3 m in width and 3.3 m in height, is developed to remain 

consistent with the experimental work, as shown in Figure A-1, where the “x”, “y” and “z” 

axes represent the axial (streamwise), lateral and vertical directions, respectively. The inlet 

is a circular orifice of diameter d = 0.055 m with the centre denoted by (0, 0, 0), which is 

also the origin of the coordinate system. The computation domain and grid are generated 

by using the commercial CFD package, ICEM CFD 16.0. An irregular unstructured 

tetrahedral grid is created in non-uniform sizes to characterize the dynamic development 

of the jet flow more effectively. The grid sizes in the inlet, cone and global regions are 0.8, 

8 and 67 mm, respectively, as shown in Figure A-2. The number of the computational cells 

is approximately 19.3 million in total. 

 

Figure A-2: Grid distribution on the x-z plane (y=0) of the computational domain. 

Three different two-differential-equation turbulence models, including the realizable k-ε, 

standard k-ω and shear stress transport (SST) k-ω models, are examined in the present 

study. A pressure-based solver with double precision is selected to gain a higher accuracy 

of the residual convergence. The coupled algorithm is employed as the pressure-velocity 

coupling method. For the pressure interpolation, the second-order scheme is used, and for 

the gradient evaluation, the Green-Gauss node-based scheme is performed. The second-

order upwind discretization scheme is employed to solve the momentum, turbulent kinetic 

energy and turbulent dissipation rate. In order to prevent the residual convergence from 
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stalling under the second-order spatial discretization being used, the high order term 

relaxation is enabled. 

The boundary condition of the inlet is defined to be a velocity-inlet, and the velocity 

direction is set as normal to boundary, which satisfies that the airflow is issued into the 

computational domain with the velocity in the streamwise direction. The velocity imposed 

at the inlet is a function of the vertical distance from the origin (see Appendix L) with an 

area-averaged value of 23.3 m/s (i.e. exit bulk velocity uj), which is defined to keep 

consistent with the top-hat velocity profile used in the experimental work. Other boundaries 

are set as pressure-outlet, in order to eliminate the effect on the dynamic development of 

the free jet flow. The turbulence intensity at the inlet is defined to be 0.5% of the exit bulk 

velocity uj, and the hydraulic diameter is set as 0.055 m, equal to the inlet diameter. The 

surrounding fluid velocity is set as zero to satisfy the quiescent ambient environment. The 

airflow issued from the inlet is defined to be incompressible air with the density and 

viscosity of 1.225 kg/m3 and 1.7894 × 10−5 kg/m-s, respectively. 

In the comparison with the experimental data, the spatial variation of different quantities is 

examined in a normalized way, including the centreline velocity (uc), the velocity (u) at 

different downstream cross-sections, as well as the half-width (ru), as shown in Figure A-

3. It is deducible from Figure A-3 (a) that the centreline velocity uc decays with an increase 

in streamwise distance (x), and the SST k-ω model gives the best agreement to the 

experimental data. Figure A-3 (b) shows the velocity profiles imposed at the inlet for both 

the experimental and numerical works, and it is clear that all the profiles are in a top-hat 

shape. Figure A-3 (c) and (d) exhibit the velocity u varying with the vertical distance (z) 

from the centreline at two different downstream cross-sections. It is found that the velocity 

profile across the free jet flow shows a nearly Gaussian shape, which infers that the change 

of the velocity u obeys a self-similarity. This is because when a jet enters a stagnant fluid, 

the absence of the external forces makes the sole momentum source be the jet flow itself, 

and the momentum flux in the cross-sections keeps constant downstream. It is also clear 

that all the turbulence models show similar profiles of u, and the SST k-ω model gives the 

best prediction. Figure A-3 (e) shows the streamwise variation of the half-width ru, which 

is defined as the distance between the centreline and a radial plane where the mean flow 
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velocity u is half the corresponding centreline velocity uc. The half-width ru describes an 

approximate radial location of the shear layer, which is generated between the jet flow and 

the ambient fluid, and has the maximum shear stress. It is found from Figure A-3 (e) that 

ru increases linearly with a slope, also known as the spreading rate, in the streamwise 

direction, and the SST k-ω model gives the best agreement to the experimental data. 

 

(a)                                                                 (b) 

 

(c)                                                                 (d) 
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(e) 

Figure A-3: Comparison of the spatial variation of (a) uj/uc along the streamwise 

direction, (b) u/uc along the vertical direction at x = 0, (c) u/uc along the vertical 

direction at x = 3d, (d) u/uc along the vertical direction at x = 20d, and (e) ru/d along 

the streamwise direction with the experimental data. 

In conclusion, among all the RANS turbulence models selected in the present study, the 

SST k-ω model gives the best prediction performance of a steady-state, turbulent, round 

free jet and, hence, is adopted for the URANS modelling of the flow field of coughing in 

Chapter 2. 
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Appendix B: Details about the Governing Equations of the SST Turbulence k-ω 

Model 

The form of the SST k-ω turbulence model is similar to that of standard k-ω model, but 

improves in the following terms: 

(1) A blending function is used in order to combine the standard k-ω and transformed k-ε 

models. It equals 1 in the near-wall region to multiply by the standard k-ω model, and 

equals 0 in the far-field region to multiply by the transformed k-ε model. 

(2) A damped cross-diffusion derivative term is involved in the specific dissipation rate (ω) 

equation. 

(3) It modifies the formulation of turbulent viscosity to determine the transport of shear 

stress. 

The details about the governing equations of the SST k-ω model are shown as below. 

In Eqn. (2.9), the coefficient 𝛼 is calculated from 

α =
𝛼∞

𝛼∗ (
𝛼0+𝑅𝑒𝑡 𝑅𝜔⁄

1+𝑅𝑒𝑡 𝑅𝜔⁄
), 𝛼∞ = 𝐹1𝛼∞,1 + (1 − 𝐹1)𝛼∞,2      (A-1) 

where 𝑅𝜔 is equal to 2.95, and 𝛼∗ is defined as a low-Reynolds number correction. 𝛼∗ and 

𝑅𝑒𝑡 are expressed as 

α∗ = 𝛼∞
∗ (

𝛼0
∗ +𝑅𝑒𝑡 𝑅𝑘⁄

1+𝑅𝑒𝑡 𝑅𝑘⁄
), 𝑅𝑒𝑡 =

𝜌𝑘

𝜇𝜔
, 𝑅𝑘 = 6, 𝛼0

∗ =
𝛽𝑖

3
, 𝛽𝑖 = 0.072      (A-2) 

In Eqn. (A-1), 𝛼∞,1 and 𝛼∞,2 are defined as 

𝛼∞,1 =
𝛽𝑖,1

𝛽∞
∗ −

𝜅2

𝜎𝑤,1√𝛽∞
∗ , 𝛼∞,2 =

𝛽𝑖,2

𝛽∞
∗ −

𝜅2

𝜎𝑤,2√𝛽∞
∗        (A-3) 

where 𝜅 is equal to 0.41. It is noteworthy that α=α∞=1 for a high-Reynolds number flow, 

i.e. a fully-developed turbulent flow, which is normally defined as Re ≳ 1-2×104 for a free 

jet flow (Dimotakis, 2000). 
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In Eqns. (2.10) and (2.11), the turbulent viscosity 𝜇𝑡 is expressed as 

𝜇𝑡 =
𝜌𝑘

𝜔

1

max [
1

𝛼∗,
𝑆𝐹2
𝑎1𝜔

]
         (A-4) 

where α* is calculated from Eqn. (A-2), and 𝑆 is the magnitude of the strain rate, defined 

as 

𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗, 𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
)        (A-5) 

In Eqns. (2.10) and (2.11), σk and σω represent the turbulent Prandtl numbers for k and ω, 

respectively, and are calculated from 

𝜎𝑘 =
1

𝐹1 𝜎𝑘,1⁄ +(1−𝐹1) 𝜎𝑘,2⁄
, 𝜎𝜔 =

1

𝐹1 𝜎𝜔,1⁄ +(1−𝐹1) 𝜎𝜔,2⁄
       (A-6) 

In Eqns. (A-1), (A-4) and (A-6), F1 and F2 are the blending functions, expressed as 

𝐹1 = tanh (𝛷1
4), 𝛷1 = min [max (

√𝑘

0.09𝜔𝑦
,

500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2]      (A-7) 

𝐹2 = tanh (𝛷2
2), 𝛷2 = max[2

√𝑘

0.09𝜔𝑦
,

500𝜇

𝜌𝑦2𝜔
]       (A-8) 

where y represents the distance from the closest no-slip wall (Jubayer, 2010), and Dω
+ is 

defined as the positive part of the damped cross-diffusion derivative term (Dω), given as 

𝐷𝜔
+ = max [2𝜌

1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10]       (A-9) 

In Eqns. (2.12) and (2.13), 

𝑓𝛽∗ = 1, 𝛽∗ = 𝛽𝑖
∗[1 + 𝜁∗𝐹(𝑀𝑡)], 𝛽𝑖

∗ = 𝛽∞
∗ (

4 15⁄ +(𝑅𝑒𝑡 𝑅𝛽⁄ )4

1+(𝑅𝑒𝑡 𝑅𝛽⁄ )4 ), 𝜁∗ = 1.5, 𝑅𝛽 = 8, 𝛽∞
∗ = 0.09 

             (A-10) 

𝑓𝛽 = 1, 𝛽 = 𝛽𝑖[1 −
𝛽𝑖

∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)], 𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2    (A-11) 

where Ret and F1 are calculated from Eqns. (A-2) and (A-7), respectively, and F(Mt) 

represents the compressibility function, given as 
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𝐹(𝑀𝑡) = {
   0        𝑀𝑡 ≤ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2     𝑀𝑡 > 𝑀𝑡0
, 𝑀𝑡

2 ≡
2𝑘

𝑎2, 𝑀𝑡0 = 0.25, 𝑎 = √𝛾𝑅𝑇   (A-12) 

It is noteworthy that βi
*=β∞

* for a high-Reynolds number flow, and β*=βi
* for an 

incompressible flow. 

In order to combine the standard k-ω and k-ε models, the SST k-ω model converts the 

standard k-ε model into the formulations based on k and ω. To achieve the conversion 

process, a damped cross-diffusion derivative term, Dω, is introduced and expressed as Eqn. 

(2.14). 

The model constants are listed as follows (Menter, 1994): 

𝜎𝑘,1 = 1.176 , 𝜎𝜔,1 = 2.0 , 𝜎𝑘,2 = 1.0 , 𝜎𝜔,2 = 1.168 , 𝑎1 = 0.31 , 𝛽𝑖,1 = 0.075 , 𝛽𝑖,2 =

0.0828, 𝛼∞
∗ = 1, 𝛼0 =

1

9
, 𝛽∞

∗ = 0.09, 𝑅𝛽 = 8, 𝑅𝑘 = 6, 𝑅𝜔 = 2.95, 𝜁∗ = 1.5, 𝑀𝑡0 = 0.25 

The evaluation of different turbulence models in predicting a steady-state, turbulent, round 

free jet is given in Appendix A, from which the SST k-ω turbulence model gives the best 

prediction. 
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Appendix C: The Dynamic Smagorinsky-Lilly Model 

The dynamic Smagorinsky-Lilly model is conceived based on the Smagorinsky-Lilly 

model, in which the SGS stress tensor, defined in Eqns. (2.17) and (3.3), is parameterized 

by an eddy-viscosity model using the Boussinesq hypothesis (Hinze, 1975), and is given 

as 

𝜏𝑖𝑗 −
𝛿𝑖𝑗

3
𝜏𝑘𝑘 = −2𝜈𝑡𝑆̃𝑖𝑗                                           (A-13) 

The SGS eddy-viscosity, 𝜈𝑡, is computed from 

𝜈𝑡 = 𝐿𝑆
2|𝑆̃|                                                 (A-14) 

where 𝐿𝑆 represents the mixing length for subgrid scales, and is given as 

𝐿𝑆 = min (𝜅𝑑𝑤, 𝐶𝑆Δ)      (A-15) 

where 𝜅 and 𝑑𝑤 are the von Kármán constant and distance to the nearest wall, respectively, 

and 𝛥 represents the local grid scale, defined empirically as the cube root of the volume, 

𝑉, of one computational grid cell: 

Δ = √𝑉
3

                                                          (A-16) 

In Eqn. (A-13), 𝜏𝑘𝑘 represents the isotropic part of the SGS stress tensor, which is not 

modelled but added to the term of filtered static pressure (ANSYS, 2013). In Eqn. (A-14), 

|𝑆̃| is calculated from 

|𝑆̃| ≡ √2𝑆̃𝑖𝑗𝑆̃𝑖𝑗                                            (A-17) 

where 𝑆̃𝑖𝑗 represents the strain rate tensor of resolved turbulence scales, and is expressed 

as 

𝑆̃𝑖𝑗 ≡
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                      (A-18) 

In the dynamic Smagorinsky-Lilly model, a test filter is applied on the governing equations 

of motion, i.e. Eqns. (2.15), (2.16), (3.1) and (3.2), by introducing a new filter scale, 𝛥̂, 
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which equals twice the local grid scale 𝛥. Then a new SGS stress tensor, called the subtest-

scale stress tensor (Bisoi et al., 2017), is generated as 

𝛵𝑖𝑗 = 𝑢𝑖𝑢𝑗̃̂ − 𝑢̂̃𝑖 𝑢̂̃𝑗                                                  (A-19) 

and can also be parameterized into the form of the Boussinesq hypothesis, 

𝛵𝑖𝑗 −
𝛿𝑖𝑗

3
𝛵𝑘𝑘 = −2𝐶𝛥̂2 |𝑆̂̃| 𝑆̂̃𝑖𝑗                                (A-20) 

where the coefficient 𝐶  is defined as 𝐶 = 𝐶𝑆
2 , and the test-filtered strain rate tensor of 

resolved large scales, 𝑆̂̃𝑖𝑗, is computed from 

𝑆̂̃𝑖𝑗 ≡
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                (A-21) 

The relation between the test-filtered SGS (employed in the dynamic Smagorinsky-Lilly 

model) and grid-filtered SGS (employed in the Smagorinsky-Lilly model) is presented by 

Germano et al. (1991), as shown in the following equation 

𝐿𝑖𝑗 = 𝛵𝑖𝑗 − 𝜏𝑖𝑗̂ = 𝑢̃𝑖𝑢̃𝑗
̂ − 𝑢̂̃𝑖 𝑢̂̃𝑗                            (A-22) 

where 𝐿𝑖𝑗  is computable for the resolved turbulence scales, and 𝜏𝑖𝑗̂ is introduced as the 

average SGS stress tensor. Based on the work of Lilly (1992), the coefficient 𝐶 can be 

derived from the following equation, 

𝐶 =
(𝐿𝑖𝑗−𝐿𝑘𝑘𝛿𝑖𝑗 3⁄ )

𝑀𝑖𝑗𝑀𝑖𝑗
                                        (A-23) 

where 𝑀𝑖𝑗 is expressed as 

𝑀𝑖𝑗 = −2(𝛥̂2 |𝑆̂̃| 𝑆̂̃𝑖𝑗 − 𝛥2|𝑆̃|𝑆̃𝑖𝑗
̂ )                               (A-24) 

In Eqn. (A-23), both the denominator and numerator are filtered locally by applying the 

test filter in order to avoid the numerical instability. 
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Appendix D: Details about the Energy Equation 

Since the flow field of coughing is considered to be incompressible, the sensible enthalpy 

h of the injected fluid, i.e. the mixture of the air and water vapour, is expressed as 

ℎ = ∑ 𝑌𝑗 ∫ 𝑐𝑝,𝑗𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓
𝑗                               (A-25) 

where 𝑌𝑗 and 𝑐𝑝,𝑗 represent the mass fraction and specific heat capacity of species j. The 

value of the reference temperature, 𝑇𝑟𝑒𝑓, used in Eqns. (2.18), (3.4) and (A-25) is set as 

288.16 K. 

On the right-hand side of Eqns. (2.18) and (3.4), the first and second terms represent the 

energy transfer caused by the conduction and species diffusion, respectively, and the 

viscous dissipation of heat is neglected. The effective conductivity, 𝑘𝑒𝑓𝑓, is defined as 

𝑘𝑒𝑓𝑓 = 𝑘𝑚 + 𝑘𝑡                                    (A-26) 

where km and kt are the molecular and turbulent thermal conductivity of the flow field, 

respectively. The turbulent thermal conductivity kt is calculated from (Jubayer, 2010) 

𝑘𝑡 =
𝑐𝑝𝜇𝑡

𝑃𝑟𝑡
                                              (A-27) 

where 𝑐𝑝 and 𝜇𝑡 are the specific heat capacity and turbulent viscosity of the flow field, 

respectively. 𝑃𝑟𝑡 represents the wall Prandtl number, and is set as 0.85. The calculation of 

the turbulent viscosity 𝜇𝑡 is obtained based on the turbulence model being performed in 

the CFD simulation, for example, for the URANS approach using the SST k-ω model, it is 

computed from Eqn. (A-4), while for the LES method using the dynamic Smagorinsky-

Lilly model, it is derived from Eqn. (A-14) and is shown as follows, 

𝜇𝑡 = 𝜌̅𝜈𝑡 = 𝜌̅𝐶𝛥̂2 |𝑆̂̃|                                         (A-28) 

In Eqns. (2.18) and (3.4), 𝐽𝑗 represents the mass diffusion of species j, which results from 

the gradient of temperature and concentration (ANSYS, 2013), and is given as 
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𝐽𝑗 = −(𝜌𝐷𝑗,𝑚 +
𝜇𝑡

𝑆𝑐𝑡
)

𝜕𝑌𝑗

𝜕𝑥𝑗
−

𝐷𝑇,𝑗

𝑇

𝜕𝑇

𝜕𝑥𝑗
                       (A-29) 

where 𝐷𝑗,𝑚 and 𝐷𝑇,𝑗 are the coefficients of mass diffusion of species j in the mixture and 

thermal diffusion, respectively, and Sct represents the turbulent Schmidt number expressed 

as 𝑆𝑐𝑡 =
𝜇𝑡

𝜌𝐷𝑡
 where 𝐷𝑡 is the turbulent diffusivity. 
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Appendix E: The FLUGIE Cough Chamber 

Figure A-4 shows the diagrammatic description and photograph of the FLUGIE chamber. 

It is located in Thompson Engineering Building (TEB) Room 308, at Western University. 

The chamber has the internal dimensions of 1.81 m in length, 1.78 m in width and 1.81 m 

in height, as shown in Figure A-4 (a), and creates a sufficiently large space to satisfy that 

the flow field of coughing spreads as a free jet flow without any influence of the solid 

boundaries. On the front wall, there is a small opening used for the participant to cough 

and it is placed 72 cm above the chamber floor. It is in a pear-shape so that the participant’s 

nose and mouth are unobstructed. A head-rest fixes the participant’s forehead in place to 

ensure the cough enters horizontally for each trial. 

 

Figure A-4 (a): Schematic layout of the FLUGIE chamber (Mohamed, 2017 (with 

author's permission)). All dimensions are shown in the unit of metres. 
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Figure A-4 (b): The FLUGIE chamber located in Western University. 
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Appendix F: Properties of the Injected Fluid 

The correlations to determine the properties of the mixture of the air and water vapour used 

in the simulation are listed in Table A-1 (ANSYS, 2013). 

Table A-1: Properties of the injected fluid. 

Property Computational method Governing 

equation 

Equation 

number 

Density, ρ (kg/m3) Incompressible ideal gas 

law 
𝜌 =

𝑝𝑜𝑝

𝑅𝑇 ∑
𝑌𝑖

𝑀𝑤,𝑖
𝑖

 
(A-30) 

Specific heat capacity, 

cp (J/kg-K) 

Mixing law 𝑐𝑝 = ∑ 𝑌𝑖𝑐𝑝,𝑖

𝑖

 
(A-31) 

Thermal conductivity, 

k (W/m-K) 

Ideal gas mixing law 
𝑘 = ∑

𝑋𝑖𝑘𝑖

∑ 𝑋𝑗𝜙𝑖𝑗𝑗
𝑖

 
(A-32) 

Dynamic viscosity, μ 

(kg/m-s) 

Ideal gas mixing law 
𝜇 = ∑

𝑋𝑖𝜇𝑖

∑ 𝑋𝑗𝜙𝑖𝑗𝑗
𝑖

 
(A-33) 

In Table A-1, the density ρ depends on the operating pressure, which is defined as the 

standard atmospheric pressure, i.e. 101,325 Pa, and the temperature T. In Eqn. (A-30), R is 

the universal gas constant with the value of 8.3145 J/mol-K. 𝜙𝑖𝑗 in Eqns. (A-32) and (A-

33) is given as 

𝜙𝑖𝑗 =
[1+(

𝜇𝑖
𝜇𝑗

)

1 2⁄

(
𝑀𝑤,𝑗

𝑀𝑤,𝑖
)

1 4⁄

]

2

[8(1+
𝑀𝑤,𝑖
𝑀𝑤,𝑗

)]

1 2⁄                                              (A-34) 

The properties of the two species, air and water vapour, are shown in Table A-2, 

Table A-2: Properties of the two species of the injected fluid. 

Property 𝑴𝒘,𝒊 (g/mol) 𝒄𝒑,𝒊 (J/kg-K) 𝑿𝒊 𝒌𝒊 (W/m-K) 𝝁𝒊 (kg/m-s) 

Air 28.966 1006.43 0.938 0.0242 1.7894×10-5 

Water 

vapour 

18.01534 Piecewise-

polynomial 

0.062 0.0261 1.34×10-5 



121 

 

where, 

                              𝑀𝑤,𝑖 = molecular weight of species i; 

                              𝑐𝑝,𝑖 = specific heat capacity of species i; 

                              𝑋𝑖 = mole fraction of species i; 

                              𝑘𝑖 = molecular thermal conductivity of species i; 

                              𝜇𝑖 = dynamic viscosity of species i. 

The mass fraction of species i (Yi), is determined by the species conservation equation, as 

shown in the following form: 

𝜕

𝜕𝑡
(𝜌𝑌𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑌𝑖) = −

𝜕𝐽𝑖

𝜕𝑥𝑖
         (A-35) 
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Appendix G: Moving Average Methodology 

The actual cough flow is an unsteady turbulent phenomenon, therefore, a moving average 

can be employed to describe the underlying trend of such a flow by lowering the impact of 

the random variation (Mohamed, 2017). In statistics, a moving average is a technique to 

analyze the data through creating an array of averages of different subsets of the whole 

data (Booth et al., 2006). The window size k, i.e. the number of data in each subset, is a 

type of low-pass filter which is used to remove some of the short-term random variation, 

therefore, affects the fluctuation of the moving average. The LES approach solves for the 

unsteady instantaneous flow field of motion and, hence, the moving average can be used 

as a suitable methodology to tackle the dynamic characteristics of an unsteady flow. Figure 

A-5 (a) shows an example of instantaneous and moving average velocity profiles obtained 

from the LES modelling. It can be seen that the moving average provides a “smoother” 

trend of the transient velocity variation by filtering most of the random fluctuations. Figure 

A-5 (b) shows the variation of the RMS of the fluctuating velocity component u’ with the 

averaging time < t > (the symbol “<>” means the average of the variable), where < t > is 

calculated by < 𝑡 >= (𝑘 − 1)𝛥𝑡 . The time step size 𝛥𝑡  is 0.001 secs, as discussed 

previously. It is found that u’ exhibits a more gradual growth with < t >, which infers that 

as the averaging time increases, more fluctuations are filtered and the moving average 

profile becomes smoother. It is pointed out here that when < t > increases and gets equal 

to the total flow time, the moving average value will become equal to the arithmetic average 

value, whereas when < t > decreases to zero, the moving average value will be the same as 

the instantaneous value. 
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Figure A-5 (a): Comparison of instantaneous and moving average velocity profiles 

from the LES modelling. 

 

Figure A-5 (b): u’ at (1, 0, 0) versus the averaging time < t >. 
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Appendix H: Grid Independence Tests 

In the present study, irregular unstructured polyhedral grids are implemented for both the 

URANS and LES modelling. The main merit of such a grid is that each polyhedral cell has 

more neighbours compared with tetrahedral or hexahedral grids, which is beneficial for 

calculating gradients and interpolations more accurately (Peric & Ferguson, 2004). In order 

to generate polyhedral grids, the tetrahedral grids are created first and then a conversion 

algorithm in FLUENT 16.0 is used, which merges the tetrahedral cells into polyhedral ones 

with a subsequent decrease in the total number of computational cells (80% on average) 

(ANSYS, 2014). 

Normally, it is considered that the smaller the grid size, the more precise the numerical 

prediction. However, computational time should also be taken into consideration as it will 

be extremely long when a meritoriously fine mesh is being used. The grid independence, 

also known as grid convergence or sensitivity, is examined in order to balance the 

prediction accuracy and computational expense by comparing the numerical results 

obtained from grids with different sizes. If the grid independence is accomplished, the 

results from the two finest grids should be almost identical and would not be improved by 

an even finer grid (Cox-Stouffer, 1997). 

To test the grid independence for the URANS modelling, a series of steady-state RANS 

simulations are carried out using different grid sizes (Spiegel et al., 2011). The detailed 

grid information is given in Table A-3, where it should be emphasized that the grid size in 

the global region increases with the growing ratio. Different dynamic characteristics, 

including the centreline mean velocity uc, turbulent kinetic energy (TKE) k and half-width 

ru, are compared to check the grid independence. Figure A-6 shows the streamwise 

variation of the inverse centreline mean velocity decay (uj/uc), normalized centreline TKE 

(k/uc
2) and normalized half-width (ru/d) for all the four grids, where uj represents the inlet 

bulk velocity, which is 23.3 m/s (see Appendix A). The results of the grid independence 

test are summarized in Table A-4, where the difference percentages are calculated by using 

the root-mean-square (RMS) method. Based on Table A-4, the variabilities of uj/uc, k/uc
2 
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and ru/d between Grids #3 to #4 are around 1%, which is small enough to be accepted as a 

grid convergence. Therefore, Grid #3 is used for the URANS modelling. 

Table A-3: Information on different grids used for the URANS modelling. 

Grid 

number 

Inlet size 

(mm) 

Cone region 

size (mm) 

Number of 

computational cells 

(million) 

Global 

growing ratio 

Maximum 

aspect ratio 

Grid #1 1 6.4 2.65 1.15 8.524 

Grid #2 1 5.5 3.87 1.15 8.631 

Grid #3 1 5.0 4.67 1.15 10.938 

Grid #4 1 4.2 8.00 1.15 9.463 

Table A-4: Grid independence tests for the URANS modelling. 

Grid number % Difference of 

uj/uc 

% Difference of centreline 

k/uc
2 

% Difference of 

ru/d 

Grid #1 - - - 

Grid #2 0.89 2.76 2.47 

Grid #3 1.03 2.69 0.95 

Grid #4 0.57 1.84 0.93 
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                                     (a)                                                                     (b) 

 

(c) 

Figure A-6: Streamwise variation of (a) inverse centreline mean velocity decay, (b) 

normalized centreline TKE and (c) normalized half-width. 

For the LES modelling, three grids in different size levels are created, as summarized in 

Table A-5. The moving average of the velocity u component (i.e. < u >) along the centreline 

of the domain is selected to test the grid independence. The details about the moving 
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average methodology are shown in Appendix G. Figure A-7 (a) shows the streamwise 

variation of the peak value of < u > along the centreline, whilst Figure A-7 (b) shows the 

variation of the time corresponding to the peak value of < u >. It is illustrated that the 

difference of the variation between Grids #5 and #6 is more apparent than that between 

Grids #6 and #7, which can also be found numerically from Table A-6 where the four 

centreline locations are in the unit of metres. The time history of < u > at various locations 

along the centreline for all the three grids is shown in Figure A-8. It is found that as the 

flow moves downstream, the variation of the moving average velocity < u > with time 

becomes more unstable, i.e., more fluctuations are observed, which reveals that the effect 

of turbulence becomes more significant due to the vortex formation process downstream. 

The results of the grid independence test are given in Table A-6, based on which the 

variabilities between Grid #6 and #7 are less but very close to those between Grid #5 and 

#6, hence in the present study, Grid #7 is chosen considering the simulation accuracy. 

Table A-5: Information on different grids used for the LES modelling. 

Grid 

number 

Inlet size 

(mm) 

Cone region 

size (mm) 

Number of 

computational cells 

(million) 

Global 

growing ratio 

Maximum 

aspect 

ratio 

Grid #5 1 6.4 3.7 1.15 8.891 

Grid #6 1 5.5 5.6 1.15 11.411 

Grid #7 1 5.0 7.3 1.15 10.877 
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Table A-6: Grid independence tests for the LES modelling. 

Grid 

number 

% Difference 

of peak < u > 

% Difference of 

time corresponding 

to peak < u > 

% Difference 

of < u > at 

(0.1, 0, 0) 

% Difference 

of < u > at 

(0.2, 0, 0) 

% Difference 

of < u > at 

(0.3, 0, 0) 

% Difference 

of < u > at 

(0.4, 0, 0) 

Grid #5 - - - - - - 

Grid #6 3.71% 4.80% 2.25% 4.81% 4.71% 7.75% 

Grid #7 3.22% 3.12% 1.15% 4.26% 4.46% 7.14% 

 

                                      (a)                                                                   (b) 

Figure A-7: Streamwise variation of (a) the peak value of < u > along the centreline 

and (b) the time when peak < u > occurs. 
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(a)                                                                   (b) 

 

(c)                                                                  (d) 

Figure A-8: Time history of < u > at centreline locations of (a) (0.1, 0, 0), (b) (0.2, 0, 

0), (c) (0.3, 0, 0) and (d) (0.4, 0, 0). The coordinates are in the unit of metres. 
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Appendix I: The DRW Model 

For the prediction of the droplet dispersion, the integral time scale T is introduced and 

expressed as 

𝑇 = ∫
𝑢′

𝑝(𝑡)𝑢′
𝑝(𝑡−𝜏)

𝑢′𝑝
2̅̅ ̅̅ ̅

∞

0
𝑑𝜏                                           (A-36) 

which is proportional to the droplet dispersion rate, i.e. the larger the value of T, the more 

turbulent motion the droplets will get. The droplet diffusivity is defined as 𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅𝑇. 

For the small droplets which have the diameter smaller than a few microns and move with 

the continuous phase, T becomes the fluid Lagrangian integral time scale TL, which is 

calculated from 

𝑇𝐿 = 𝐶𝐿
𝑘

𝜀
                                            (A-37) 

where the value of the time scale constant 𝐶𝐿 is different for different turbulence models 

that are used to model the continuous phase. 

By using the DRW model, the interaction between a droplet and a succession of turbulent 

eddies in the continuous phase is modelled (Gosman & Ioannides, 1983). Each eddy is 

characterized by the random fluctuating velocity components (i.e. u’, v’ and w’) and a time 

scale τe, named the characteristic lifetime. The values of u’, v’ and w’ of a turbulent eddy 

are assumed to obey the Gaussian probability distribution for sampling, and are defined as 

𝑢′ = 𝜁√𝑢′2̅̅ ̅̅                                              (A-38) 

where 𝜁 represents a normally distributed random number for the Gaussian distribution, 

and √𝑢′2̅̅ ̅̅  is the root-mean-square (RMS) value of the fluctuating velocity component. The 

eddy lifetime τe is expressed as 

𝜏𝑒 = 2𝑇𝐿                                                (A-39) 

Another time scale tcross, named the particle-eddy crossing time, is defined as 
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𝑡𝑐𝑟𝑜𝑠𝑠 = −𝜏𝑝𝑙𝑛 [1 − (
𝐿𝑒

𝜏𝑝|𝑢−𝑢𝑝|
)]                          (A-40) 

where 𝐿𝑒  represents the eddy length scale, |𝑢 − 𝑢𝑝| is the relative velocity magnitude 

between the droplet and the flow field, and 𝜏𝑝 is the droplet relaxation time, computed from 

𝜏𝑝 =
𝜌𝑝𝑑𝑝

2

18𝜇
                                             (A-41) 

The droplet is assumed to interact with a turbulent eddy over the smaller of τe and tcross. 

When this time is reached, the instantaneous flow velocity with a new value will be 

obtained through employing a new random number 𝜁 in Eqn. (A-38). 
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Appendix J: Droplet Trajectory 

The droplet velocity up at each point along the trajectory is yielded by stepwise integration 

of the force balance equation, i.e. Eqn. (3.6), with respect to the discrete time steps, and 

the trajectory itself is calculated by integrating the following equation, 

𝑑𝑥𝑝

𝑑𝑡
= 𝑢𝑝                                                  (A-42) 

It is noteworthy that Eqns. (3.6) and (A-42) are a set of coupled ordinary differential 

equations, and Eqn. (3.6) can also be expressed in a general form, 

𝑑𝑢𝑝

𝑑𝑡
=

1

𝜏𝑝
(𝑢 − 𝑢𝑝) + 𝑔                                 (A-43) 

where g represents the gravitational acceleration of the droplet. 

In order to obtain the droplet velocity at a new position, i.e. 𝑢𝑝
𝑛+1, different integration 

schemes are available, including implicit, analytic, trapezoidal and Runge-Kutta schemes. 

When applying the implicit scheme to Eqns. (A-43) and (A-42), 𝑢𝑝
𝑛+1  and the 

corresponding position 𝑥𝑝
𝑛+1 are given respectively by 

𝑢𝑝
𝑛+1 =

𝑢𝑝
𝑛+𝛥𝑡(𝑎+

𝑢𝑛

𝜏𝑝
)

1+
𝛥𝑡

𝜏𝑝

                                              (A-44) 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 +
1

2
𝛥𝑡(𝑢𝑝

𝑛 + 𝑢𝑝
𝑛+1)                                (A-45) 

The implicit integration scheme takes most of the variations in the forces, which act on the 

droplets, into consideration, and gives a higher accuracy in predicting the situations when 

a large time step size is used or the droplets are not in hydrodynamic equilibrium with the 

continuous phase (ANSYS, 2013), and therefore, it is chosen in the present study. 

Moreover, for the small droplets moving with the continuous phase, the velocity of the 

droplets is the same as that of the continuous phase, i.e. up = u, and the new trajectory 

position is obtained from Eqn. (A-45). 
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Appendix K: Stochastic Collision and Coalescence 

For N droplets, each droplet has N – 1 possible collision partners, and hence there will be 

1

2
𝑁2 possible collision pairs. Normally a spray may contain thousands of droplets, which 

makes the computational expense of the collision calculation prohibitive. In this case, the 

concept of a parcel is introduced, which is defined as a statistical representation of a number 

of individual droplets in the same size range (ANSYS, 2013). Moreover, a second-order 

scheme of O’Rourke (1981) is used to estimate the stochastic collision between the droplets 

produced by coughing to lower the computational cost. Such algorithm assumes that two 

parcels of droplets may collide only if they are located within the same computational cell, 

and prevents the droplets, which are not distributed in the same cell but quite close to each 

other, from colliding. 

The probability of a collision between two droplets is computed from 

𝑃 =
𝜋(𝑟1+𝑟2)2𝑣𝑟𝑒𝑙𝛥𝑡

𝑉
                                      (A-46) 

where r1 and r2 are the radius of the larger and smaller droplet, respectively, 𝑣𝑟𝑒𝑙 is the 

relative velocity between these two droplets, and 𝑉  represents the volume of the 

computational cell. For two parcels, of which one contains n1 larger droplets and the other 

contains n2 smaller droplets, the mean number of collisions is calculated from 

𝑛̅ =
𝑛2𝜋(𝑟1+𝑟2)2𝑣𝑟𝑒𝑙𝛥𝑡

𝑉
                                        (A-47) 

The actual number of collisions (n) is not the same as the mean number of collisions (𝑛̅). 

According to O’Rourke (1981), the probability of the actual number of collisions follows 

a Poisson distribution, as shown in the following equation, 

𝑃(𝑛) = 𝑒−𝑛̅ 𝑛̅𝑛

𝑛!
                                        (A-48) 

As a result of collision, the coalescence is also considered in the discrete phase model. The 

probability of a coalescence is dependent on a critical offset, which is a function of the 

radii of the larger and smaller droplets and is expressed as 
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𝑏𝑐𝑟𝑖𝑡 = (𝑟1 + 𝑟2)√𝑚𝑖𝑛 (1.0,
2.4𝑓

𝑊𝑒
)                            (A-49) 

where f is defined as 

𝑓 = (
𝑟1

𝑟2
)

3

− 2.4 (
𝑟1

𝑟2
)

2

+ 2.7 (
𝑟1

𝑟2
)                        (A-50) 

and 𝑊𝑒 is the collisional Weber number, given as 

𝑊𝑒 =
𝜌𝑈𝑟𝑒𝑙

2 𝐷̅𝑝

𝜎
                                      (A-51) 

where 𝐷̅𝑝 represents the mean diameter of two parcels of droplets, 𝜌 is the density of the 

continuous phase, 𝜎 is the droplet surface tension, and Urel is the relative velocity between 

the two parcels. 

Another parameter, named the actual collision parameter (b), is defined as 

𝑏 = (𝑟1 + 𝑟2)√𝑌                              (A-52) 

where Y represents a random number with the value between 0 and 1, and is compared with 

the critical offset 𝑏𝑐𝑟𝑖𝑡. If b < bcrit, the coalescence will occur as an outcome of the collision 

between the two parcels. 

 

Reference 
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Appendix L: User-Defined Function of the Inlet Velocity Profile for the CFD 

Modelling of the Steady Round Free Jet Flow 

#include "udf.h" 
DEFINE_PROFILE(inlet_x_velocity_modifi, thread, index) 
{ 
 real x[ND_ND]; /* this will hold the position vector */ 
 real y; 
 real z; 
 real a; 
 face_t f; 
 begin_f_loop(f, thread) /*loops over all faces in the thread 
passed in the DEFINE macro argument*/ 
 { 
  F_CENTROID(x,f,thread); 
  y =x[1]; 
  z =x[2]; 
  a = pow((pow(y,2)+pow(z,2)),0.5); 
  if (a>0.398012267*0.055) 
   F_PROFILE(f, thread, index)=(-
60.699/pow(0.055,2)*pow(a,2)+44.704/0.055*a-7.177)*23.3; 
  else 
   F_PROFILE(f, thread, index)=23.3; 
 } 
 end_f_loop(f, thread) 
} 
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