
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-12-2018 2:00 PM 

Computational Modelling of Human Transcriptional Regulation by Computational Modelling of Human Transcriptional Regulation by 

an Information Theory-based Approach an Information Theory-based Approach 

Ruipeng Lu 
The University of Western Ontario 

Supervisor 

Rogan, Peter K. 

The University of Western Ontario 

Graduate Program in Computer Science 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Ruipeng Lu 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Bioinformatics Commons, Biostatistics Commons, Computational Biology Commons, 

Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Genomics Commons, 

Microarrays Commons, Other Computer Sciences Commons, and the Statistical Methodology Commons 

Recommended Citation Recommended Citation 
Lu, Ruipeng, "Computational Modelling of Human Transcriptional Regulation by an Information Theory-
based Approach" (2018). Electronic Thesis and Dissertation Repository. 5305. 
https://ir.lib.uwo.ca/etd/5305 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/971?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/823?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5305?utm_source=ir.lib.uwo.ca%2Fetd%2F5305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 

Abstract 

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription 

factor (TF) and determine its sequence specificity. Multiple algorithms were developed to 

derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy 

minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies 

applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with 

the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards 

consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the 

accurate modelling of binding behavior of dimeric TFs.  

This thesis presents a novel motif discovery pipeline by adding the recursive masking and 

thresholding functionalities to Bipad to improve detection of primary binding motifs. 

Analyzing 765 ENCODE ChIP-seq datasets with this pipeline generated contiguous and 

bipartite information theory-based PWMs (iPWMs) for 93 sequence-specific TFs, discovered 

23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The accuracy 

of these iPWMs were determined via four independent validation methods, including 

detection of experimentally proven TFBSs, explanation of effects of characterized SNPs, 

comparison with previously published motifs and statistical analyses. Novel cofactor motifs 

supported previously unreported TF coregulatory interactions. This thesis further presents a 

unified framework to identify variants in hereditary breast and ovarian cancer (HBOC), 

successfully applying these iPWMs to prioritize TFBS variants in 20 complete genes of 

HBOC patients.  

The spatial distribution and information composition of cis-regulatory modules (e.g. TFBS 

clusters) in promoters substantially determine gene expression patterns and TF target genes. 

Multiple algorithms were developed to detect TFBS clusters, including the information 

density-based clustering (IDBC) algorithm that simultaneously considers the spatial and 

information densities of TFBSs. Prior studies predicting tissue-specific gene expression 

levels and differentially expressed (DE) TF targets used log likelihood ratios to quantify 

TFBS strengths and merged adjacent TFBSs into clusters. This thesis presents a machine 

learning framework that uses the Bray-Curtis function to quantify the similarity between 



 

ii 

 

tissue-wide expression profiles of genes, and IDBC-identified clusters from iPWM-detected 

TFBSs to predict gene expression profiles and DE direct TF targets. Multiple clusters enable 

gene expression to be robust against TFBS mutations. 

Keywords 

Transcription factor binding sites, Shannon information theory, position weight matrices, 
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Chapter 1  

1 Background 

In this chapter, we will introduce preliminary knowledge necessary for understanding our 

studies described in this thesis, and review previous relevant studies in the literature. 

1.1 Transcription Factors 

Transcription factors (TFs) are a class of proteins that interact with regulatory elements in 

genes to facilitate or repress transcription (1). There are two types of TFs, DNA-binding 

ones and non-DNA-binding ones (2). DNA-binding TFs recognize specific sequence 

motifs and physically contact these binding sites. Non-DNA-binding TFs form 

complexes with those sequence-specific TFs as interacting cofactors and are indirectly 

recruited to regulatory sequences (Figure 1.1). Approximately 2,000-3,000 sequence-

specific DNA-binding TFs are estimated to be encoded in the human genome (3). 

Sequence-specific TFs can be further divided into two types, depending on whether the 

binding sites recognized are contiguous or bipartite (4) (Figure 1.1). A contiguous (or 

single-block) binding site, within which no gap (or spacer) is present, is bound by an 

individual TF protein (e.g. CAGCTG bound by the TF AP4). A bipartite binding site 

consists of a left half site, a right half site and a variable-length gap between the two half 

sites (e.g. TGANTCA/TGANNTCA bound by the TF AP1, where N stands for any base). 

It is bound by either a homodimer formed by two identical TF subunits, or a heterodimer 

formed by two different subunits. Among all possible gap lengths, the one which the 

largest number of binding sites have is referred to as the dominant length. 

In general, the binding site motifs of a TF within the entire genome highly resemble each 

other. However, significant variability in the bases appearing at most positions is present 

as well. For example, all four sequences (CAGCTG, CACCTG, AACCTG, ATGCTG) 

are true binding sequences of the TF AP4. TFs exhibit different levels of affinities in their 

physical association with these different sequences. For example, among these four 

binding sequences, AP4 has the highest affinity to CAGCTG and the lowest affinity to 
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Figure 1.1: Transcription factors. DNA-binding TFs physically associate with binding 

sites with specific sequence motifs, whereas non-DNA-binding TFs can only be 

indirectly recruited by forming complexes with sequence-specific TFs. A contiguous TF 

binding site (TFBS) is recognized by an individual protein, whereas in a bipartite binding 

site the left and right half sites are respectively recognized by the two subunits of a TF 

dimer. There also exists coordinate cobinding between sequence-specific TFs. The 

association of TFs with their binding sites in the promoter effectively regulates the gene 

transcription rate and expression level. 

AACCTG; thus we say CAGCTG are a stronger binding site than AACCTG for AP4. 

The strongest binding sequence of a TF is referred to as the consensus sequence (e.g. 

CAGCTG is the consensus sequence of AP4).  

Apart from the interplay between the two types of TFs, interactions between sequence-

specific TFs also abound across the whole genome (2, 5), which results in the close 

proximity of their binding sites (Figure 1.1). For instance, NF-Y extensively coassociates 

with FOS over all chromatin states, and CTCF extensively colocalizes with cohesins 

consisting of SMC1/SMC3 heterodimers and two non-SMC subunits RAD21 and SCC3 

(6, 7). 
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Functionally, the three-dimensional structure of a TF protein can be divided into multiple 

domains, including the DNA-binding domain (DBD) and the trans-activating domain 

(TAD) (8). The DBD is responsible for recognizing and physically associating with 

specific sequence motifs. The TAD is responsible for forming complexes with interacting 

cofactors. 

TFs can be grouped into major families, based on their structural similarity and 

behavioral cooperation. For example, the three TFs (FOXA1, FOXA2, FOXA3) belong 

to the FOXA family, since they share the same DBD named the Forkhead box within 

their three-dimensional protein structure. And the JUN, FOS and ATF subfamilies belong 

to the AP1 family, since their members dimerize with each other (e.g. FOS-JUNB and 

JUND-ATF1) to recognize the bipartite AP1 binding sites with the consensus sequence 

TGANTCA. Additionally, many TFs are mainly expressed and thus play a role in 

specific tissues. For example, the FOXA family are predominantly expressed in liver. 

Some TFs only act as activators (e.g. SP1 and GATA1) or repressors (e.g. ETV6 and 

PRDM1); that is, activating TFs can only facilitate the transcription of target genes, and 

repressing TFs can only impede it. However, there are also a number of TFs that can 

exert bidirectional effects, partly depending on the interacting cofactors. For example, 

YY1 induces expression of the NDUSF8 gene encoding the mitochondrial complex I by 

forming a complex with SP1 (9), whereas YY1 acetylation mediated by the P300 cofactor 

leads to its repressor activity (10).  

1.1.1 Determinants of Transcription Factor Binding 

Apart from the core binding sequence physically contacting the TF protein, a number of 

other determinants can also affect the DNA-binding ability and affinity of TFs, including 

the sequences flanking the core binding site, local DNA structure and modifications, 

histone modification patterns surrounding the binding site, chemical modifications within 

the TF protein itself, interacting cofactors and ligand signals, and the spacer sequences 

within bipartite binding sites (Table 1.1).  
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Table 1.1: Determinants affecting TF binding besides the core binding sequence 

Determinant Evidence Reference 

Flanking 

sequences 

The base pairs flanking an EGR1 binding site in the 

LHB promoter modulates the affinity and structure of 

the protein-DNA complex. 

(11) 

The nucleotides flanking GR binding sites change the 

3D structure of the binding site, the DNA-binding 

domain of GR and the quaternary structure of the 

dimeric complex. 

(12) 

Zinc finger TFs of C2H2 type prefer GC-rich over the 

AT-rich flanking sequences. 
(13) 

DNA shape  

The A-DNA structure is only present in DNA bound 

to TFs and avoided in DNA bound to nucleosomes, 

whereas the BII-DNA structure periodically occurs 

every 10.3 dinucleotide steps in DNA bound to 

nucleosomes. 

(14) 

Both global DNA shape (e.g. an overall bend) and 

local shape (e.g. a kinked base pair or a narrow minor 

groove) determine the TF binding specificity.  

(15) 

The inherent deformability of the TATA sequence 

assists in TBP to distinguish bound from unbound 

sites. 

(16) 

DNA 

modifications 

Promoter methylation levels of the MGMT gene in 

the glioma cell line correlates with chromatin 

accessibility and SP1-DNA interaction levels. 

(17) 

Histone 

modifications 

HM patterns surrounding binding sites differ 

considerably from those surrounding non-sites in a 

TF family-specific manner. 

(18) 
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TF protein 

modifications 

Phorbol ester-induced dephosphorylation of JUN 

strongly increases its DNA-binding potential.  
(19) 

Cofactors 

NR3C1 (GR) activated by glucocorticoid complex 

with NFKB, AP1, T-bet and GATA3 to inhibit their 

DNA-binding ability. 

(20–23) 

Ligand 

signals 

Association with glucocorticoid hormone activates 

NR3C1, enabling it to directly bind the response 

element or complex with other TFs. 

(24) 

Spacer 

sequences (for 

dimer TFs) 

A single pyrimidine nucleotide at the third position of 

the spacer in the TR/RXR bipartite site enhanced its 

binding and transactivation. 

(25) 

The 3-5 nucleotide (nt) sequences flanking the core binding site can profoundly affect TF 

binding by altering the DNA shape, TF DBDs, the quaternary structure of dimeric TFs, 

and possibly TF search dynamics (34, 48, 49). The effects of the flanking sequences can 

even be asymmetric. For example, a binding site of EGR1 harboring three zinc fingers 

(ZF1, ZF2, ZF3) is present in the LHB gene promoter (11). Base substitutions in the 

sequence flanking ZF3 resulted in a more significant change in the binding site strength 

(11). In addition, the similarity of the flanking sequence composition positively correlates 

with the core binding site strength. For instance, the C2H2-type zinc finger DBD 

recognize GC-rich sequence motifs, consistent with the finding that the TFs with this 

DBD prefer GC-rich over the AT-rich flanking sequences (13). 

Individual TF proteins combine two readout mechanisms, recognition of a unique DNA 

base sequence (base readout) and of a sequence-dependent DNA shape (shape readout) to 

achieve DNA-binding specificity (15). The specificities of different TF families differ in 

the base readout in the major groove, whereas shape readout distinguishes between 

members within a family (15). Promoter methylation levels of the MGMT gene was also 

found to be related to TF binding levels by altering chromatin accessibility (17). Within 

open chromatin, different TF families also exhibited different preferences for HM 
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patterns surrounding binding sites, with high consistency across cell lines (18). Phorbol 

esters, a tumor-promoting agent, induced the dephosphorylation of JUN proteins which 

dimerize with other members of the AP1 TF family. This subsequently increased the 

DNA-binding activity of the TF to AP1 bipartite sites (19). Association with other 

cofactors can also alter TF binding, e.g. NFKB, AP1, T-bet and GATA3 are inhibited by 

complexing with activated NR3C1 (20–23). Hormone receptors (e.g. NR3C1) can only 

be activated by binding to the corresponding hormone ligands (24). 

As described above, for dimeric TFs, the spacer length between the two half sites affects 

the TF affinity to the bipartite binding site, with the dominant spacer length being the 

most favored (4). In addition, the spacer sequence also modulates the binding site 

strength and further the activation potency that the TF exerts on gene transcription. For 

example, between the directly repeated half sites with a 4-nucleotide (4nt) spacer 

recognized by the heterodimer of TR (thyroid hormone receptor) and RXR (retinoid-X 

receptor), some spacer sequences allowed little or no transactivation, whereas other 

sequences supported strong transactivation (25). Specifically, a single pyrimidine 

nucleotide at the third position of the spacer enhanced TR/RXR binding and 

transactivation (25). Heterodimers between RXR and other receptors exhibited a similar 

but distinct specificity for the spacer sequence (25). 

Most TFs are unable to bind DNA within closed chromatin; however, there is one 

category, pioneer TFs (e.g. FOXA1, POU2F2, PAX7 and SPI1), that can be the first to 

target closed chromatin and engage binding sites (26). Such initial binding enhances 

transcription by reducing the number of additional factors that are needed to bind the 

DNA, and actively opening up the local chromatin to enable other factors to bind (26–

28). On the other hand, pioneer factor binding can also lead to repressed chromatin, 

through binding adjacent to repressors or corepressors and reduced local nuclease 

sensitivity (29–31). 

1.1.2 Impacts of Transcription Factor Binding 

As described above, TF binding to target sites can eventually result in the effective 

regulation of the gene transcription rate and expression level; this is achieved first via 
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direct physical impacts that TF binding causes on DNA conformation and chromatin 

structure, including DNA bending, over-twisting and/or untwisting, and nucleosome 

displacement (Table 1.2). 

Table 1.2: Physical impacts of TF binding on DNA and chromatin 

Impact Evidence Reference 

DNA bending 

Within MADS-box proteins, SRF induces considerable 

DNA bending into its binding sites, whereas MEF2A 

induces minimal DNA bending. 

(32) 

TBP induces linear, stepwise DNA bending with an 

intermediate state distinguished by a distinct bending 

angle. 

(33, 34) 

U-turn: The human TRAM TF forces mitochondrial 

promoter DNA to undergo a U-turn, reversing the 

direction of the DNA helix both in vivo and in solution. 

(35, 36) 

Looping: Ribosomal promoter DNA is looped into a 

single 180-base pair turn around the xenopus UBF 

dimer, probably by in-phase bending. 

(37) 

Supercoiling: Topological stresses caused by TF-

induced pronounced bending on circular DNA are 

compensated by DNA supercoiling.   

(38) 

DNA over-

twisting and 

untwisting 

The 434 repressor overtwists its binding site upon DNA 

binding. 
(39) 

The zinc finger DBDs of SP1, GLI and ZIF268 unwind 

DNA upon binding. 
(40–42) 

Nucleosome 

displacement 

TFs compete with nucleosomes for binding DNA to 

produce nucleosome free regions in promoters. 
(43) 
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DNA bending induced by TFs is thought to be an important facet of their function, and 

plays a role in the DNA recognition process and determining the correct architecture of 

nucleoprotein complexes at promoters and enhancers (32). For example, within the TF 

family sharing the MADS-box DBD, SRF induces considerable DNA bending into its 

binding sites (44); by contrast, MEF2A induces minimal DNA bending (45). The local 

DNA architecture surrounding the promoter-bound SRF and MEF2A will therefore differ 

significantly, and may contribute to their different biological functions (32). The TFIID 

complex that includes the DNA-binding TBP as the core subunit induces a linear, 

stepwise bending process with an intermediate state hallmarked by a distinct bending 

angle around the TATA motif (33, 34).  

An extreme case of DNA bending is a U-turn shape where the direction of the DNA helix 

is completely reversed, such as the one induced by the TF TRAM on the mitochondrial 

promoters (35, 36). If the two ends of a U-turn bending intersect, then a loop, maybe 

around TF proteins themselves (37), will form. On a circular DNA molecule, topological 

strain caused by sufficiently strong bending will be balanced by supercoiling, which can 

be seen as another higher-level double helix besides the inherent double helix formed by 

the two DNA strands (38). 

DNA untwisting resulting from binding of TFs with DBDs of zinc finger type (e.g. SP1, 

ZIF268, GLI) may affect binding site affinities and TF-cofactor interactions (40–42); by 

contrast, TF binding can also overtwist binding sites, such as the bacteriophage 434 

repressor (39). In addition, TFs also compete with nucleosomes for binding DNA (43). 

Larger nucleosome free regions in promoters, which likely are open chromatin and have a 

much more significant impact on gene expression, are determined mainly by TF binding 

(43). 

1.2 Information Theory-based Position Weight Matrices  

Since the bases appearing at most positions of the binding site of a TF are highly 

variable, the single consensus sequence is not able to accurately represent the binding 

specificity of the TF by only indicating the most frequent base at each position. In 

contrast, a position weight matrix (PWM) can more accurately describe the base 
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preference of the TF by accounting for the conservation level of each base at each 

position. It is a commonly used representation of motifs in biological sequences (46). It 

has one column for each position in the motif, and one row for each symbol of the 

alphabet: 4 rows for nucleotides in DNA sequences or 20 rows for amino acids in protein 

sequences. 

1.2.1 Derivation of Information Theory-based Position Weight 
Matrices 

Contiguous and bipartite information theory-based position weight matrices (iPWMs) 

respectively can quantitatively describe the base preferences of TFs recognizing 

contiguous and bipartite binding sites.  

A contiguous iPWM is derived from a set of aligned binding sites based on Shannon 

information theory (4, 47) (Figure 1.2). From a multiple alignment of 𝑛 binding sites in 

the reference genome (48), the iPWM is computed from 

𝑅𝑖𝑤(𝑏, 𝑙) = 2 − (− log2 𝑓(𝑏, 𝑙) + 𝑒(𝑛(𝑙))) (𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑎𝑠𝑒)     [1.1] 

where 𝑓(𝑏, 𝑙) is the frequency of base 𝑏 at position 𝑙 in the alignment (i.e. the count of 𝑏 

at 𝑙 divided by 𝑛), and 𝑒(𝑛(𝑙)) is a sampling error correction factor (49) at position 𝑙 for 

the 𝑛 sequences used to create 𝑓(𝑏, 𝑙) (50, 51). 𝑒(𝑛(𝑙)) exists, since this set of binding 

sites does not include all possible binding sites in the genome and using sampling 

frequencies in place of population probabilities leads to a bias in the uncertainty 

measurement (49, 52). It is approximately computed from 

𝑒(𝑛(𝑙)) =
𝑠 − 1

2 ln(2)𝑛
     [1.2] 

where 𝑠, the number of symbols, is 4 for nucleotides (49, 52). It is inaccurate for small 𝑛  

values but accurate for large 𝑛 values (49). The exact method is given in Appendix A.2. 

In the two-dimensional matrix 𝑅𝑖𝑤(𝑏, 𝑙), row 𝑏 corresponds to one of the four nucleotides 

in DNA and column 𝑙 is the position along the aligned binding sites (50). Following 
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Shannon’s convention, 𝑅𝑖𝑤 stands for “Rate of information transmission, Individual 

Weight” (51). Bits per base is a rate like bits per second, especially if we consider the 

average binding rate in bases per second (49). This individual information matrix 

represents the sequence conservation of each nucleotide, measured in bits of information 

(50). A bipartite iPWM consists of two contiguous iPWMs, each of which corresponds to 

a half site, separated by a range of sequence gaps with penalties (4). 

 

Figure 1.2: Derivation of a contiguous iPWM from a multiple alignment of binding 

sites. An aligned set of 22,794 binding sites of the TF AP4 is shown. A count matrix is 

obtained from the alignment by counting the occurrence of each base at each position. 

The information theory-based Equation 1.1 converts the count matrix to an iPWM using a 

pseudocount 0.375 for each base (4). Equation 1.3 uses the iPWM to compute the 𝑹𝒊 

values of all binding sites in the alignment from which the 𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 value is computed. 

1.2.2 Computation of the Information Content of an Individual 
Binding Site 

The individual information content of a contiguous binding site sequence 𝑗, which 

represents its strength, can be determined using a contiguous iPWM. It is the dot product 

between the sequence and the iPWM: 
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𝑅𝑖(𝑗) =∑∑𝑠(𝑏, 𝑙, 𝑗)𝑅𝑖𝑤(𝑏, 𝑙) 

𝑇

𝑏=𝐴𝑙

(𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒)     [1.3] 

where 𝑠(𝑏, 𝑙, 𝑗) is a binary matrix for the sequence 𝑗, in which cells have a value of 1 for 

base 𝑏 at position 𝑙 and a value of 0 elsewhere (50, 51) (Tables 1.3 and 1.4).   

Table 1.3: The binary matrix of the binding site sequence “CATCTGGG” of AP4 

Base 𝑏 Position 𝑙* 

 
C 
1 

A 
2 

T 
3 

C 
4 

T 
5 

G 
6 

G 
7 

G 
8 

A 0 1 0 0 0 0 0 0 
C 1 0 0 1 0 0 0 0 
G 0 0 0 0 0 1 1 1 
T 0 0 1 0 1 0 0 0 

*There is only one “1” in each column, indicating the base appearing at that position. 

Table 1.4: Calculation of the Ri value of the binding site sequence “CATCTGGG” 

Base 𝑏 Position 𝑙* 

 
C 
1 

A 
2 

T 
3 

C 
4 

T 
5 

G 
6 

G 
7 

G 
8 

A -3.60812 1.61077 -7.60004 -10.3473 -13.8916 -13.8916 -0.396613 -2.48876 
C 1.80923 -5.21564 -0.730304 1.99958 -13.8916 -13.8916 -6.88037 -0.129385 
G -1.27543 -2.50879 1.69645 -13.8916 -13.8916 1.99983 1.09808 1.23945 
T -13.8916 -0.428623 -2.72941 -13.8916 1.99983 1.99983 0.125534 -0.872293 

*In this iPWM, the individual weights selected by the binary matrix of the binding site are 

bolded. In Equation 1.3 the 𝑅𝑖 value is the sum of the selected weights. 

The 𝑅𝑖 value of a bipartite binding site sequence 𝑘 is the sum of the 𝑅𝑖 values of the two 

half sites, each of which is computed from Equation 1.3, subtracting the gap penalty (4): 

𝑅𝑖(𝑘) = 𝑅𝑖(𝑘𝑙) + 𝑅𝑖(𝑘𝑟) − 𝑔(𝑑)     [1.4] 

where 𝑘𝑙  and 𝑘𝑟 are the two half sites of 𝑘, 𝑑 is the gap length between 𝑘𝑙  and 𝑘𝑟, and 

𝑔(𝑑) is the function used to compute gap penalties: 

𝑔(𝑑) = 1 − log2(1 + cos(2𝜋(𝑑 − 𝑐) 𝐵⁄ ))     [1.5] 
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where 𝑐 is the dominant gap length (i.e. the number of binding sites with the gap length 𝑐 

in the alignment from which the bipartite iPWM is computed is the largest), and 𝐵 is a 

DNA helical turn (10.4 bases/turn) (4, 53). Equation 1.5 incorporates the geometry of the 

TF recognition to binding sites, that is, the preference of dimeric TFs for binding across 

adjacent major grooves in DNA helices (53). 

1.2.3 Relationship between 𝑅𝑖 Values and Thermodynamics 

According to the Second Law of Thermodynamics, the relationship between information 

(i.e. 𝑅𝑖 values) and the heat 𝑞: 

𝑘𝐵𝑇 ln(2) ≤
−𝑞

𝑅𝑖
     [1.6] 

where 𝑘𝐵 is Boltzmann’s constant (1.38 × 1023 joules/K), 𝑇 is the absolute temperature 

in Kelvin. 

Equation 1.6 implies that the association process of a TF protein with a binding site (𝑅𝑖 >

0) dissipates heat energy (𝑞 < 0), and the association process of a TF protein with a non-

site (𝑅𝑖 < 0) absorbs heat energy (𝑞 > 0). This suggests that TFs have a natural tendency 

to complex with its binding sites, and the association of TFs with non-sites does not 

naturally occur. Furthermore, Equation 1.6 implies that if a SNP results in a 1-bit increase 

in the 𝑅𝑖 value of a binding site, the amount of heat energy dissipated by the association 

of a TF protein with this site will at least increase by 𝑘𝐵𝑇 ln(2). The derivation starting 

from the Second Law of Thermodynamics to obtain Equation 1.6 is in Appendix A.1. 

Thus based on the 𝑅𝑖 value, a nucleotide sequence can be predicted to be a binding site or 

not; if 𝑅𝑖 > 0 it is a binding site, and if 𝑅𝑖 < 0 it is a non-site. The 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 value of an 

iPWM is the mean of the 𝑅𝑖 values of all binding sites used to compute the iPWM, 

representing the average binding strength of the TF (50, 51). The distribution of 𝑅𝑖 values 

is approximately Gaussian, with the mean being 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒; however, the lower and upper 

bounds are zero bits and the 𝑅𝑖 value of the consensus sequence (50, 51).  
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The change in the binding site strength caused by a SNP can be quantitatively computed 

from the change (∆𝑅𝑖) in the 𝑅𝑖 value of the binding site (50, 51) (Appendix A.3). If the 

𝑅𝑖 values of the normal and variant binding sites are respectively 𝑅𝑖,𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑅𝑖,𝑣𝑎𝑟𝑖𝑎𝑛𝑡, 

then ∆𝑅𝑖 = 𝑅𝑖,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 − 𝑅𝑖,𝑛𝑜𝑟𝑚𝑎𝑙. Then the minimum fold change between the binding 

affinity of the two sites is 2∆𝑅𝑖 (50, 51). 𝑅𝑖 and ∆𝑅𝑖 will be used to detect experimentally 

confirmed binding sites and interpret experimentally measured effects of SNPs in 

Chapter 3, to detect and prioritize TFBS variants in Chapters 4 and 5, and to perform 

mutation analyses on promoters of TF target genes in Chapter 6. 

1.2.4 Sequence Logos 

An iPWM can quantitatively describe the binding specificity of a TF, but it is not very 

intuitive. Sequence logos provide a means to intuitively visualize iPWMs in Chapter 3 

(Figure 1.3) (54). In a sequence logo, the abscissa is the position along the aligned 

binding sites; the ordinate is the individual weight in the iPWM, so that the height of a 

base letter indicates the conservation level of the base at the position among binding sites. 

 

Figure 1.3: Sequence logos. The height of each base letter is its individual weight at the 

position in the iPWM. The 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 value of the iPWM is indicated at the bottom of its 

logo. (A) This logo visualizes the contiguous iPWM of AP4 derived in Figure 1.5. (B) 

This logo visualizes a bipartite iPWM of the TF BATF. From this logo, we can see that 

the length of both half sites is 3bps and the dominant gap length is 1bp. 

1.3 Derivation of Transcription Factor Binding Site Motifs 

As described above, binding site sequences recognized by a TF are highly variable; thus 

one question is how we can identify all these true binding site sequences. Previous 

studies, using either in vitro experimental techniques or computational approaches based 
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on in vivo generated ChIP-seq datasets, have derived TF binding site sequence motifs and 

characterized TF binding specificities. Compared to experimental techniques, the 

computational approaches are less labor intensive and more cost effective. 

1.3.1 Using Experimental Techniques 

In Weirauch et al. (55), binding site motifs of more than 1,000 TFs belonging to 54 

different DBD classes from 131 eukaryotes were derived using PBMs (protein binding 

microarrays) to determine their sequence preferences. In each PBM, each possible 8-mer 

is present 32 times, allowing for a robust and unbiased assessment of TF binding affinity. 

Since closely related DBDs have similar sequence preferences, they were further able to 

infer motifs for 34% of the approximately 170,000 known or predicted eukaryotic TFs 

(55). These binding site motifs were validated by the fact that they are enriched in ChIP-

seq peaks and upstream of TSSs (55). Their results, in the form of frequency matrices, 

were stored in the CIS-BP database (55). 

In Jolma et al. (56), HT-SELEX (high-throughput systematic evolution of ligands by 

exponential enrichment) experiments were performed to identify binding site motifs for 

151 human full-length TFs and 303 human DBDs, and PWMs were further generated 

using a multinomial model. Pairwise comparison between the results of full-length TFs 

and their DBDs revealed that the sequence preference of a TF is primarily determined by 

its DBD (56). The vast majority of physical interactions between a TF and individual 

DNA bases were found to be independent of each other (56). Bipartite binding site motifs 

of TF homodimers with strong orientation and spacing preferences were also observed 

based on the presence of two similar sites in a single oligonucleotide (56). 

However, these oligonucleotide-based approaches have a number of limitations: 

1) Weirauch et al. did not derive bipartite binding sites of dimeric TFs from their PBM 

experiments; Jolma et al. only generated contiguous PWMs with dominant gap lengths to 

describe bipartite motifs of homodimers, which are unable to account for the variability 

of gap lengths.  
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2) Since these techniques use oligonucleotides whose lengths are fixed and limited, they 

are unable to completely derive motifs of TFs whose binding site lengths exceed the 

oligonucleotide lengths.  

3) There is no way to discover potential binding sites of interacting cofactors, since only 

the primary TF proteins of interest are added to each experiment. 

1.3.2 Using Computational Approaches 

1.3.2.1 Chromatin Immunoprecipitation-Sequencing Assays 

ChIP-seq, which combines chromatin immunoprecipitation with massively parallel DNA 

sequencing, is an in vivo experimental method to identify the genome-wide repertoire of 

binding sites of chromatin-associated proteins (e.g. TFs) and the distribution of histone 

modifications (57) (Figure 1.4).  

After cross-linking proteins to DNA in living cells, DNA molecules are sheared into short 

fragments by sonicating. Using an antibody against the protein of interest, chromatin 

immunoprecipitation (ChIP) isolates the DNA-protein complexes, resulting in a library of 

DNA fragments directly bound to the protein (Figure 1.4). Then these fragments are 

sequenced and mapped to the reference genome, ultimately producing a dataset file 

containing genome coordinate intervals (Figure 1.4). In this dataset, each interval, 

typically several hundred nucleotides long, has a signal value that indicates the 

enrichment level of mapped DNA fragments within this interval; thus in general, the 

signal value is positively correlated with the strength of the binding site contained in the 

interval. Each interval is referred to as a peak. The process of mapping DNA fragments to 

the genome, merging DNA fragments into peaks based on their local enrichment levels, 

and determining the signal values of these peaks is referred to as peak calling. In the case 

of TFs, the DNA fragments in the library also contain binding sites of cofactors, due to 

either the proximity between their binding sites resulting from the TF-cofactor 

coordination or the recruitment of non-DNA-binding TFs by sequence-specific cofactors. 

The ENCODE (Encyclopedia of DNA Elements) Consortium conducted ChIP-seq assays 

for human TFs and histone modifications, and generated an initial peak dataset for each 
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replicate of each assay using a uniform peak calling pipeline (57, 58). To improve the 

consistency between the initial peaks from multiple replicates of the same assay, for some 

assays it also produced optimal and conservative IDR (irreproducible discovery rate)-

thresholded peaks after applying the IDR framework to the initial datasets (59). In 

addition, members of the ENCODE Consortium also individually generated refined 

datasets using the SPP peak calling software (60). 

 

Figure 1.4: ChIP-seq assays. The protein binding to DNA fragments in vivo is 

immunoprecipitated by an antibody. These fragments that frequently contain binding 

sites of cofactors and form a library containing a genome-wide set of binding sites of the 

protein, are sequenced. The peak calling algorithm identifies all intervals (or peaks) with 

high enrichment of the DNA fragments and computes associated signal values. The 

genome intervals and signal values are stored in a peak dataset file. 

1.3.2.2 Motif Discovery Algorithms 

A peak in a ChIP-seq dataset contains a binding site sequence of the TF; however, it also 

contains long unnecessary sequences flanking the binding site at the same time. Previous 

studies have developed multiple algorithms and corresponding software programs to 

identify the accurate binding site motifs from ChIP-seq datasets (Table 1.5). These motif  

discovery algorithms fall into six categories, depending on the mathematical principle 
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Table 1.5: Motif discovery algorithms 

Algorithm† Mathematical principle 
Ability to derive 

bipartite motifs 
Reference 

Bipad Entropy minimization √ (4) 

MEME 

/MEME-ChIP 
Expectation maximization × (61–63) 

SeqGL Group lasso regularization × (64) 

MotifCut Maximum density subgraph × (65) 

AlignACE 

Gibbs sampling 

× (66, 67) 

ANN-Spec × (68) 

GLAM × (69) 

GLAM2 √ (70) 

MotifSampler × (71) 

SeSiMCMC √ (72) 

MDscan 

String matching 

× (73) 

Trawler × (74) 

Weeder × (75) 

MITRA × (76) 

DREME × (77) 

HOMER × (78) 

YMF × (79) 

† The rows of the motif discovery algorithms using the same mathematical principle have 

the same background shade. 

used, including entropy minimization (used by Bipad), expectation maximization (used 

by MEME), group lasso regularization (used by SeqGL), maximum density subgraphs 

(used by MotifCut), Gibbs sampling (used by AlignACE, ANN-Spec, GLAM/GLAM2, 
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MotifSampler, SeSiMCMC), string matching-based enumeration (used by MDscan, 

Trawler, Weeder, MITRA, DREME, HOMER, YMF). 

These algorithms were benchmarked on 52 datasets, finding that Weeder outperformed 

others on most datasets (80); however, Bipad was excluded from the comparison. Among 

these algorithms, only three (i.e. Bipad, GLAM2 and SeSiMCMC) are capable of 

deriving bipartite motifs. Both MEME and SeqGL are discriminative methods that 

distinguish motif from background DNA in a mathematically optimal way using 

background nucleotide frequencies computed from all input sequences (60, 61, 63). 

1.3.2.2.1 The Bipartite Pattern Discovery Algorithm 

The Bipartite Pattern Discovery (Bipad) algorithm, that uses an entropy minimization-

based Monte Carlo framework, can derive both contiguous and bipartite iPWMs from the 

multiple alignment of binding sites identified from a ChIP-seq dataset (4). Chapter 3 will 

improve its ability to discover known TFBS motifs and use it to analyze ENCODE ChIP-

seq datasets. 

The Bipad algorithm assumes that the sequence associated with each peak in a ChIP-seq 

dataset contains one binding site. Given the length 𝐽 of the contiguous binding sites of 

the TF and the peak count 𝑛 in the dataset, all peaks form a multiple alignment search 

space Θ. In Θ each multiple alignment is derived by extracting a sequence fragment of 

length 𝐽 from each peak and aligning them; thus it is of width 𝐽 and size 𝑛. Given a 

multiple alignment 𝑀𝐴 in Θ, the entropy of the position 𝑙 is computed from: 

𝐻𝑙 =∑𝑓(𝑏, 𝑙) log2
1

𝑓(𝑏, 𝑙)
 

𝑏∈𝐵

, 𝐵 = {𝐴, 𝐶, 𝐺, 𝑇}     [1.7] 

where 𝑓(𝑏, 𝑙) is the frequency of base 𝑏 at position 𝑙. The entropy of the alignment 𝑀𝐴 is 

computed from: 

   𝐻𝑀𝐴 =∑𝐻𝑙

𝐽

𝑙=1

     [1.8] 

Similarly, in the instance of bipartite binding sites of a dimeric TF, the entropy of the 
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bipartite alignment 𝑀𝐴 is computed from: 

   𝐻𝑀𝐴 = ∑ (∑𝐻𝑙

𝐽𝑠

𝑙=1

)

𝑠∈{𝐿,𝑅}

     [1.9] 

where 𝐽𝐿 and 𝐽𝑅 are respectively the lengths of the left and right half sites. 

The Bipad algorithm uses multiple Monte Carlo cycles to search Θ for the optimal 

alignment with the minimum entropy (Figures 1.5 and Appendix A.4). Its objective 

function is: 

𝑜𝑀𝐴 = 𝑎𝑟𝑔 min
𝑀𝐴∈𝜃

(𝐻𝑀𝐴)     [1.10] 

where 𝑜𝑀𝐴 is the optimal alignment with the minimum entropy, and 𝑀𝐴 is a contiguous 

or bipartite alignment in Θ. Its time complexity and space complexity are respectively 

𝑂(𝐽𝐿𝑛𝑐) and 𝑂(𝐿𝑛), where 𝐿 is the length of a ChIP-seq peak and 𝑐 is the Monte Carlo 

cycle count. 

At the beginning of each cycle, the initial position of the binding site in each peak, and 

thus the initial alignment, are randomly generated. Each cycle performs multiple 

iterations; in each iteration, the binding site in each peak moves to every possible position 

(including every possible gap length at every position in the instance of bipartite binding 

sites) to generate a new alignment. The end of each cycle converges to a locally optimal 

alignment in a subspace of 𝜃. 

1.3.2.3 Application of the Motif Discovery Algorithms to ChIP-seq 
Datasets 

These motif discovery algorithms have been applied by prior studies to ChIP-seq 

datasets. For example, Wang et al. performed de novo motif discovery from top 500 

peaks with the highest signal values of 457 ChIP-seq datasets of 119 human TFs using 

the MEME-ChIP software (2, 63). Apart from known and new motifs of primary TFs, 

they also derived cofactor motifs adjacent to them, indicating tethered binding and 

cobinding between multiple TFs (2). Specifically, they observed cell line-specific 
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Figure 1.5: An execution of the Bipad algorithm on a ChIP-seq dataset. Using 

multiple entropy minimization-based Monte Carlo cycles, the Bipad algorithm searches 

the multiple alignment search space formed by all peaks, in an attempt to find the optimal 

alignment with the minimum entropy. 

cofactor motifs that mediate the binding of the histone deacetylase HDAC2 and the 

enhancer-binding protein EP300 (2). They created the Factorbook database to make the 

derived binding site motifs publicly available (2). Kheradpour et al. also confirmed 

known binding motifs and revealed potential cofactors from top 250 peaks of 427 ChIP-

seq datasets of 123 TFs using five motif discovery tools (AlignACE, MDscan, MEME, 

Trawler, Weeder) (81).  

Setty et al. applied SeqGL to top 2,000 peaks of 105 ChIP-seq datasets from the 

GM12878 and H1-hESC cell lines, and found that it outperformed three other widely 

used motif discovery algorithms (HOMER, DREME and MEME-ChIP) in terms of both 

locating motifs of primary TFs and revealing new cell type-specific cofactors (64). In 

addition, SeqGL also successfully detected binding site motifs from DNase-seq and 

ATAC-seq datasets (64).  

These previous studies mined a wealth of valuable information in terms of TF binding 

specificities and TF-cofactor interactions. However, they also have a number of 

limitations: 

1) They only derived contiguous binding site motifs, and did not generate bipartite motifs 

with variable-length gaps for dimeric TFs. Thus the contiguous PWMs they provided are 

unable to accurately reflect the binding behavior of dimeric TFs or further detect their 

binding sites.  
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2) They only respectively analyzed top 500, 250 or 2,000 peaks. Because the signal value 

of a peak is generally positively correlated with the strength of the binding site contained 

in the peak, this implies that they only obtained strong binding sites, resulting in the fact 

that the PWMs only represent strong sites and cannot accurately detect weak sites.  

3) The PWMs that they generated to describe the binding site motifs were not Shannon 

information theory-based. The log likelihood ratios computed from these PWMs to detect 

TFBSs indicate the probabilities that DNA sequences are binding sites, which are not 

quantitatively related to the amount of dissipated binding energy by Equation 1.6. Thus 

these PWMs are unable to quantify binding site strengths as accurately as iPWMs by 

computing 𝑅𝑖 values. 

4) Both the MEME and SeqGL algorithms compute background nucleotide frequencies 

from all input sequences, then use them to discriminate binding site motifs from 

background sequences. Thus they may fail to discover motifs with compositions similar 

to the background.  

1.3.3 Transcription Factor Binding Site Motif Databases 

Multiple databases have been created to store PWMs and sequence logos describing 

TFBS motifs experimentally or computationally derived by these prior studies (Table 

1.6). The PWMs in these databases have been widely used to detect binding sites in 

previous studies. 

The JASPAR database initially only contained 111 pan-species count matrices derived 

from a limited number of experimentally validated binding sites (82), but the core 

collection of its latest 2018 version has been significantly expanded to 1404 pan-species 

non-redundant position frequency matrices (PFMs) by incorporating TFBS motifs 

computationally derived from ChIP-seq datasets (83). The Factorbook database (84), 

containing binding site motifs derived from top 500 peaks of ChIP-seq datasets using the 

MEME-ChIP software (2), was also increased from the initial 119 TFs to 167 TFs. The 

CIS-BP database contains the frequency matrices derived from the octanucleotide-based 

PBMs by Weirauch et al. (55). The TRANSFAC database (85) currently contains 7,371 
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Table 1.6: TFBS motif databases 

Database 

Human 

TF/PWM count† 
PWM source Reference 

JASPAR (Core 

collection) 
537 PWMs 

Experimental (PBM, HT-SELEX, 

etc) and computational (ChIP-seq) 
(83) 

Factorbook 167 TFs Computational (ChIP-seq) (84) 

CIS-BP 
972 PWMs,  

1734 TFs 
PBM experiments (55) 

TRANSFAC Unavailable 
Computational (phylogenetic 

analysis) and possibly experimental 
(85) 

† We were not able to obtain accurate both human TF and PWM counts for JASPAR and 

Factorbook. Neither human TF nor PWM counts could be obtained for TRANSFAC. 

pan-species PWMs, a small fraction of which are freely available due to its commercial 

orientation. 

1.4 Transcription Factor Binding Site Variants 

One source that can result in misregulation of gene expression is variation. A genetic 

variation in the human genome is defined as a difference in the DNA sequence between 

two individuals or paired chromosomes in an individual (86). Multiple types of variants 

(e.g. nucleotide substitutions, insertions and deletions) can occur within both the non-

coding and coding regions of genes, affecting the binding sites of TFs, splicing regulatory 

proteins and RNA-binding proteins, and protein structure (50, 87, 88). Specifically, 

genetic variants within exons of the coding region of a gene can alter individual residues 

in the amino acid chain of the protein or result in a prematurely truncated chain, and 

variants within splicing sites can also change the polypeptide by altering the strengths of 

splice sites and potentially the boundaries between introns and exons (50, 87). Thus 

variants are often associated with the increased risks of a variety of diseases (89, 90). For 

example, nine splice site variants in the promoter of the ABCR gene are found to be 
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associated with the onset of the STGD (autosomal recessive Stargardt disease) and AMD 

(cone-rod dystrophy) (91).  

Among variants within TFBSs, a single nucleotide polymorphism (SNP) is the simplest 

case, which is a naturally occurring substitution of one single nucleotide with a 

prevalence rate exceeding 1% in a population (92). It can significantly alter the strength 

of the binding site, and further the gene expression level (Figure 1.6). The expression 

level of the gene will increase after a SNP strengthens a binding site of an activating TF 

or weakens a site of a repressing TF; by contrast, it will decrease after a binding site of an 

activating TF is weakened or a site of a repressing TF is strengthened (Figure 1.6). 

 

Figure 1.6: The impacts of a SNP on the TFBS and gene expression level. The 

strengthening or weakening of the binding site of an activating TF caused by a SNP 

respectively leads to an increase or decrease in the gene expression level. The 

strengthening or weakening of the binding site of a repressing TF caused by a SNP 

respectively leads to a decrease or increase in the gene expression level. 

PWMs have been used to detect variants within TFBSs and splice sites and predict their 

effects, either as online web-based services or stand-alone software programs (Table 1.7). 

The majority of these platforms use the PFMs from the JASPAR database to compute log 

likelihood ratio scores, except for Shannon pipeline using iPWMs. These scores are not 

Shannon information theory-based, so that they are unable to quantify binding site 

strengths as accurately as 𝑅𝑖 values. 

1.5 Clustering of Transcription Factor Binding Sites 

The distinctive organization and combination of transcription factor binding sites 

(TFBSs) and regulatory modules in the promoters of human genes substantially dictate 

specific expression patterns within a set of genes (93). Clustering of multiple adjacent  
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Table 1.7: Platforms applying PWMs to detect TFBS and splice site variants 

Platform 
PWM 

Type  
PWM source 

Service 

Type 
Reference 

Shannon pipeline iPWM 
Manually curated  

splice sites 

Web-based 

(94) 

rSNP-MAPPER 

PFM 

JASPAR, TRANSFAC (95) 

SNP2TFBS 

JASPAR 

(96) 

OncoCis (97) 

RAVEN (98) 

atSNP JASPAR, Kheradpour et al. 

Stand-alone 

(99) 

TRAP JASPAR, TRANSFAC (100) 

motifbreakR JASPAR, Factorbook (101) 

binding sites for the same TF (homotypic clusters) and for different TFs (heterotypic 

clusters) defines regulatory modules, and are prevalent in both promoters and more distal 

enhancers (102). Evolutionarily conserved homotypic clusters occupy nearly 2% of the 

human genome. The promoters of more than half of human genes contain homotypic 

clusters, with a concentrated distribution around the TSS (103). For example, highly 

degenerate binding sites of NRSF, MYC, p53, HNF1 and CREB were found to have a 

tendency of non-randomly clustering around the cognate binding sites (104). 

1.5.1.1 Impacts of Transcription Factor Binding Sites Clusters 

There are two scenarios under which a homotypic TFBS cluster can influence gene 

expression, depending on whether individual binding sites within the cluster interact with 

one another (102). 

1.5.1.1.1 Absence of Interaction Between Individual Sites 

If there is no interaction between individual sites at all, all binding sites in a cluster are 

equally likely to be bound, and the likelihood may be associated with an external variable 



25 

 

to the system, such as TF concentration (102). This scenario can be further divided into 

the following four different cases (here we assume an activating TF increasing the gene 

expression level; a repressing TF is similar in the sense that the expression level is 

decreased) (Table 1.8). 

The first case is that only after all binding sites are bound, the cluster is able to alter the 

gene expression level. The cluster can only produce two different expression levels: zero 

or maximum (105, 106) (Table 1.8). Thus it prevents spurious transcription until the TF 

concentration is high enough such that all binding sites are occupied, and consequently 

reduces leaky gene expression and noise in mRNA levels (102, 107). In addition, it slows 

the initiation of gene transcription by requiring a longer time for all sites to become 

bound (102, 107).  

The second case is that as long as one binding site is bound, the cluster is able to increase 

gene expression to the maximum level (Table 1.8). Thus it makes a promoter more 

sensitive to low concentrations of TFs and less sensitive to higher concentrations of TFs 

(102). In addition, it expedites gene expression by only requiring one site to become 

bound (102, 108).  

The third case is that each binding site in a cluster independently and equally contributes 

to gene transcription, so that the gene expression level is proportional to the number of 

bound sites (102) (Table 1.8). In vivo this case does not always happen; different sites 

have different amounts of contribution, which is the fourth case (Table 1.8). For example, 

certain TFs have optimal distances from the TSS that maximize their interaction with the 

transcriptional machinery (109, 110). There may also be a periodic relation between the 

distance of a TFBS from the TSS and the level of transcription, possibly because the 

influence of TFs on gene expression is dependent on the nucleosome context (111).   

1.5.1.1.2 Presence of Interaction Between Individual Sites 

If direct or indirect interactions are present between individual binding site within a 

cluster, the gene expression level after all sites are bound exceeds the sum of the 

expression levels when each single site is bound (Table 1.8); that is, the clusters can  
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Table 1.8: Impacts of a homotypic TFBS cluster on the gene expression level 

Cluster† Interaction absent‡ Interaction 

present‡ 1st site 2nd site  1st case  2nd case  3rd case  4th case 

× × 0% 0% 0% 0% 0% 

× √ 0% 100% 50% 25% 25% 

√ × 0% 100% 50% 75% 25% 

√ √ 100% 100% 100% 100% 100% 

† The cluster consists of two binding sites of the TF. × indicates that the site is not bound, 

and √ indicates that the site is bound. 

‡ The percentage in each cell is the ratio of the expression level induced by the current 

binding situation of the cluster to the maximum expression level. 

amplify the influence of individual binding sites on gene expression, through increased 

binding stability, funnel effects and facilitated diffusion mechanisms (102). 

Highly degenerate TFBSs whose sequences differ much from the consensus sequence 

tend to occur in homotypic clusters (104). These adjacent weak binding sites, which 

individually may not be strong enough to bind TFs and activate transcription, can 

stabilize each other’s binding by direct TF-TF dimerization and indirect nucleosome 

displacement (112, 113) (Figure 1.7). In addition, the weaker sites flanking a strong 

binding site in a cluster can direct the TF molecule to the strong site and extend the 

period of the molecule physically associating with the strong site, which is known as the 

funnel effect (114–116) (Figure 1.7).  

TFs search for binding sites by a combination of three-dimensional diffusion in the 

nucleoplasm and one-dimensional random walk on the DNA, which is known as the 

facilitated diffusion mechanism (117–119) (Figure 1.7). The speedup in the search 

process results from the reduction of the dimensionality of the search process from three 

dimensions to one-dimension (102) (Figure 1.7). In vitro TFs associate with longer 

synthesized DNA fragments more rapidly compared to shorter DNA fragments that  
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Figure 1.7: Cooperation between adjacent binding sites in a cluster. The size of a 

block arc positively correlates with the strength of the binding site. (A) If a TF molecule 

associates with DNA within the sliding window, it can perform a 1D random walk to find 

the binding site faster and with higher probability than the 3D diffusion. (B) Multiple 

adjacent weak binding sites within a cluster are able to stabilize each other’s binding, and 

extend the sliding window to reduce TF search time. (C) TF molecules are directed to the 

central stronger site by the flanking weaker sites, which is known as the funnel effect. 

contain the same binding site in the middle (120), which indirectly proves the existence 

of facilitated diffusion (102). This mechanism is called the antenna effect, which assumes 

that a longer DNA fragment increases the contribution of the one-dimensional random 

walk component to the TF search process (121). 

1.5.1.2 Computational Algorithms Detecting Transcription Factor 
Binding Site Clusters 

Previous studies have developed multiple algorithms to computationally detect TFBS 

clusters. These algorithms fall into two main categories, window-based and model-based 

(Table 1.9). 
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Table 1.9: Algorithms detecting TFBS clusters 

Algorithm Category Method to detect TFBSs Reference 

SCORE 

Window-based 

Consensus sequences (122) 

CIS-ANALYST 
PWMs 

(123) 

MSCAN (124) 

IDBC iPWMs (125) 

Cister 

Model-based 

PWMs 

(126) 

Comet (127) 

MCAST (128) 

Cluster-Buster Count matrices (129) 

Poisson distribution-based Consensus sequences (130) 

The window-based algorithms, such as SCORE (122), CIS-ANALYST (123), MSCAN 

(124) and IDBC (125), rely on intuitive merging operations on initial windows created 

based on distances between binding sites. CIS-ANALYST and MSCAN applied PWMs 

to detect TFBSs, which allowed the binding site strengths to vary; whereas SCORE only 

used the predicted sites that exactly match the consensus sequences. 

The model-based algorithms, including Cister (126), Comet (127), MCAST (128) and 

Cluster-Buster (129), apply probabilistic models (e.g. log likelihood ratios) to 

discriminate motif clusters from background DNA in a mathematically optimal way 

(129). All four methods are based on the Hidden Markov Model (HMM), which views 

locating regulatory regions in genomic DNA as a change-point problem, with the 

beginning of regulatory and non-regulatory regions corresponding to the change points 

(131). A statistical E-value is computed for each detected cluster to indicate its 

significance. 
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1.5.1.2.1 The Information Density-based Clustering Algorithm 

The Information Density-Based Clustering (IDBC) algorithm will be used in Chapter 6 to 

effectively detect TFBS clusters by taking into account both the spatial organization (i.e. 

intersite distances) and information density (i.e. 𝑅𝑖 values) of TFBSs (125). Its detailed 

steps include (Figure 1.8): 

①  For each binding site 𝑠, calculate the neighborhood information content (𝑛𝑖𝑐) as 

being the total of pairwise sums of the information content for 𝑠 and each site lying 

within a radius 𝑑 (number of bases) of 𝑠. 

②  For each site 𝑠 with 𝑛𝑖𝑐 exceeding a threshold 𝐼, create an initial cluster in which 𝑠 is 

the center and all binding sites within the radius 𝑑 are included. 

③  In the first phase of merging clusters, consider each pair of clusters with centers 𝑐𝑖 

and 𝑐𝑗.  

• If either cluster contains the center of the other cluster, then merge the two 

clusters. The center of the new cluster is the stronger one between 𝑐𝑖 and 𝑐𝑗. If 

they have the same 𝑅𝑖 value, the center of the cluster containing more TFBSs 

is made the center of the new cluster, whereas the other center is relegated to 

being just a site.  

• If 𝑐𝑖 is included in the cluster with 𝑐𝑗 as its center, but 𝑐𝑗 is not included in the 

cluster with 𝑐𝑖 as its center, compare the strengths of 𝑐𝑖 and 𝑐𝑗.  

o If 𝑐𝑖 is stronger than 𝑐𝑗, the overlapping TFBSs are put into the cluster 

with 𝑐𝑖 as its center and removed from the cluster with 𝑐𝑗 as its center.  

o If 𝑐𝑖 is weaker than 𝑐𝑗, the overlapping sites are put into the cluster with 𝑐𝑗 

as its center and removed from the cluster with 𝑐𝑖 as its center. The 

remaining sites in the cluster with 𝑐𝑗 as its center form a cluster in which 

the strongest site 𝑐𝑘 is selected as the new center. 

This step is iterated until no 𝑐𝑖 occurs in more than one cluster. 
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Figure 1.8: The IDBC algorithm. (A) Vertical bars indicate the locations of putative 

binding sites upstream of the TSS, and their heights are positively correlated with the 

strengths of the binding sites. (B) The initial four clusters are created from the first two 

steps of the algorithm. Clusters 1 and 2 share one binding site, and Clusters 3 and 4 

contain each other’s center. (C) Step 3 solves the overlap of Clusters 3 and 4 by putting 

the center of Cluster 4 into Cluster 3, since the center of Cluster 3 is of the same strength 

as that of Cluster 4 and Cluster 3 contains more sites. (D) Step 4 solves the overlapping 

site of Clusters 1 and 2 by putting it into Cluster 1. (E) In Step 5, since the single site in 

Cluster 4 is not strong enough to be a cluster, finally only three clusters remain. 
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④  In the second phase of merging, all binding sites that belong to more than one cluster 

are exclusively allocated to the cluster with the stronger center. 

⑤  In the re-evaluation phase, a final check is performed to ensure that the information 

content of each cluster reaches the threshold I (as in Step 2) after the possible reallocation 

of sites in the preceding step. Clusters failing the check are dissolved into individual sites. 

1.6 Prediction of Gene Expression Levels 

As described above, the gene expression pattern is largely determined by the distribution 

and composition of TFBS clusters in the promoter, implying that TFBSs can be used to 

explain the variance in the expression level between genes. In fact, previous studies, 

based on either TF binding or chromatin structure data, predicted gene expression levels 

using a variety of machine learning classifiers and regression models. The TF binding 

profiles used to predict tissue-specific absolute gene expression levels were derived from 

either in vivo ChIP-seq peaks (132–134) or computationally detected binding sites and 

clusters (135). Both achieved similar accuracy (136). 

Ouyang et al. (132) applied a principle component regression model based on features 

extracted from ChIP-seq peaks of 12 TFs in mouse embryonic stem cells, and found that 

these features explained 63.9% of the variance in the gene expression levels. The feature 

of each gene for each TF, termed as the TF association strength, was a weighted sum of 

signal values of all ChIP-seq peaks, where the weights are the distances of the peaks from 

the gene (132). Similarly, Cheng et al. (133) related the binding strengths of 40 TFs to the 

expression levels of 57 genes in the K562 cell line, and achieved a 67% predictive 

performance. The binding strength of each TF on each gene was computed by averaging 

the signal values of ChIP-seq peaks within a 100bp interval centered on the TSS (133).  

Smith et al. (135) used the PWMs from the TRANSFAC database (85) to detect TFBSs 

and clusters, and applied the MARS algorithm (137) to construct a classification model 

for each of 56 human and mouse tissues to distinguish expressed from silent genes. The 

classifiers succeeded in 80% of the tissues with a smallest prediction error of 35%. The 
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TFBS clusters were formed by combining immediately adjacent two or three binding 

sites (135). 

Chromatin structure data, including histone modifications (HMs) (e.g. H3K4me3, 

H3K9me3 and H3K27me3) and DNase I hypersensitivity, were also used to predict 

tissue-specific absolute gene expression levels (133, 134, 136, 138, 139). Similarly, the 

feature of a gene for a histone marker was defined as the sum of signal values of ChIP-

seq peaks of the marker within a fixed-length interval around the TSS.  

These studies found that chromatin structure is statistically redundant with TF binding in 

explaining tissue-specific mRNA transcript abundance at a genome-wide level, which 

was attributed to the heterogeneous distribution of HMs across chromatin domains (134). 

Combining these two types of data explained the largest fraction of variance in gene 

expression levels in multiple cell lines (133, 134), suggesting that either contributes 

unique information to gene expression that cannot be compensated for by the other. 

These previous studies successfully related TF binding profiles and chromatin structure 

data to gene expression levels. However, they have several limitations: 

1) Because signal values of ChIP-seq peaks are not strictly proportional to TFBS 

strengths contained in the peaks (2), representing TF binding strengths by ChIP-seq 

signals may not be appropriate.  

2) The clustering algorithm used in (135) arbitrarily limits the number of binding sites 

contained in a module, which is inflexible. It does not consider the information densities 

of binding sites and clusters either. 

3) When detecting TFBSs the PWMs in (135) are used to compute log likelihood ratio 

scores which are not Shannon information theory-based. These scores are not 

quantitatively related to the amount of dissipated heat energy by Equation 1.6, so that 

they are unable to quantify binding site strengths as accurately as 𝑅𝑖 values. 

4) The machine learning models in (135) are tissue-specific; each of the 56 tissues has a 

different classifier trained from genes expressed in the specific tissue. Thus each 
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classifier can only be applied to one single tissue, resulting in an excess of 

ungeneralizable models. 

1.7 Prediction of Transcription Factor Target Genes 

As described above, TF binding to target sites in the promoter results in the effective 

regulation of the gene expression level; however, not every binding event can alter the 

expression level. Cusanovich et al. (140) found that the number of genes directly bound 

by a TF significantly exceeds the number of genes whose expression levels significantly 

change upon knockdown of the TF. They performed siRNA-based knockdown 

experiments of 59 TFs in the GM19238 cell line, and measured the changes in the 

expression levels of 8,872 genes. They also indicated whether the promoters of these 

genes display evidence of binding to TFs by intersecting with ChIP-seq peaks in the 

GM12838 cell line, and observed that only a small subset of genes whose promoters 

overlap ChIP-seq peaks were differentially expressed (DE) after TF knockdown (140). 

Similarly, by perturbing expression of 10 TF genes with the CRISPR technique in K562 

cells and performing single cell RNA sequencing, the regulatory effects of each TF on 

22,046 genes were dissected with a regularized linear computational model (141), which 

accurately revealed DE targets and new functions of individual TFs. 

Using the siRNA-generated knockdown data as the gold standard, correlation between 

TFBS counts and gene expression levels across 10 different cell lines were found to be 

more predictive of DE targets than setting a minimum threshold on TFBS counts (142). 

Machine learning classifiers have also been applied in a small number of gene instances 

to predict targets of a single TF using features extracted from n-grams derived from 

consensus binding sequences (143), or from TFBSs and homotypic binding site clusters 

(125). 

These previous studies successfully used TF binding data to predict TF target genes. 

However, they also have a number of limitations.  
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1) In the correlation-based approach (142), TFBS counts were defined as the number of 

ChIP-seq peaks overlapping the promoter, though it was unknown how many binding 

sites were present in these peaks. 

2) In the correlation-based approach (142), positives might not be direct targets in the TF 

regulatory cascade, as the promoters of these targets were not intersected with ChIP-seq 

peaks.  

3) The machine learning approaches (125, 143) were applied on a small scale, rather than 

on the genome-wide set of target genes of multiple TFs identified from knockdown 

experiments. 
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Chapter 2  

2 Thesis Overview 

In this chapter, we will describe the objectives of this thesis, our methods to achieve these 

objectives, and the motivations for our methods. 

2.1 Thesis Objectives 

The objective of this thesis is to improve the current computational modelling of the 

transcriptional regulation of human genes. The ultimate goal of the transcriptional 

regulation is to mediate the accurate regulation of expression levels of TF target genes 

through the underlying physical interactions between TFs and their binding sites. Thus 

we dissected the transcriptional regulation into three levels; the lowest level is the 

individual binding site and its association with the TF protein, the intermediate level is 

the TFBS cluster and the cooperation between individual sites within it, and the highest 

level is the promoter and the cooperation between individual clusters within it. 

Accordingly, we dissected the objective into five sub-objectives on these three levels. 

The two sub-objectives on the lowest level are to improve the derivation of TFBS motifs 

from ChIP-seq datasets, and to improve the detection of TFBS variants related to 

hereditary breast and ovarian cancer (HBOC) and the prediction of their effects using the 

iPWMs derived from these binding site motifs. The sub-objective on the intermediate 

level is to improve the modelling of the relationship between individual binding sites and 

the cluster in terms of composition and variation. The two sub-objectives on the highest 

level are to improve the modelling of the relationship between individual clusters and the 

promoter in terms of composition and variation, and to improve the prediction of gene 

expression patterns and TF target genes. 

2.2 Our Methods  

We proposed to conduct the following Study 1 to achieve the first sub-objective on the 

lowest level, Study 2 to achieve the second sub-objective on the lowest level, and Study 3 

to achieve the remaining three sub-objectives. 
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1) In Chapter 3, when initially analyzing ChIP-seq datasets with Bipad, we noticed that it 

may return cofactor or noise motifs instead of primary motifs. This is attributable to the 

fact that Bipad was originally designed to analyze bacterial genomes, which contain few 

low-complexity sequences in contrast with human genomes. Thus we first aimed to 

improve the ability of Bipad to reveal primary motifs from human ChIP-seq datasets by 

recursively masking motifs found in previous iterations to discover additional conserved 

motifs from the same dataset, resulting in the Maskminent software. In the Maskminent 

motif discovery pipeline, we further sought to improve the detection of primary motifs 

and obtain the most accurate iPWMs by using the half-interval search to find the 

minimum threshold peak strength for inclusion of the maximum number of top peaks that 

can produce the primary motif. By applying the pipeline to ENCODE ChIP-seq peak 

datasets, we expected to obtain the iPWMs for sequence-specific TFs that enable 

prediction of TFBSs and mutation analyses on TFBS variants, and proposed to evaluate 

the accuracy of these iPWMs by detecting experimentally confirmed binding sites and 

explaining effects of experimentally characterized SNPs. We also expected to discover 

cofactor motifs, which support new TF-TF interactions and complexes. 

2) In Chapters 4 and 5, we aimed to apply the iPWMs from Study 1 to detect TFBS 

variants in genes harboring known mutations that increase the risk of HBOC. We sought 

to prioritize these variants based on the extent of changes in the 𝑅𝑖 values of binding sites 

caused by them. 

3) In Chapter 6, we sought to apply the Bray-Curtis similarity metric to measure the 

similarity between genes in the tissue-wide expression profile. We further sought to 

develop a general machine learning framework that predicts genes with similar tissue-

wide expression profiles to a given gene and predicts DE direct TF targets by combining 

information theory-based TF binding profiles with DNase I hypersensitive regions. We 

sought to derive TF binding features from clusters detected by the IDBC algorithm from 

iPWM-detected TFBSs that can effectively capture the spatial organization and 

informational composition of these clusters in the promoter. We also proposed to perform 

mutation analyses on promoters of target genes to investigate the downstream effects of 
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TFBS variants on information-dense clusters, the regulatory state and expression level of 

the gene. 

2.3 Motivations for Our Methods  

The methods proposed above aimed to overcome the limitations of the previous studies 

experimentally and computationally deriving TFBS motifs that were respectively 

described in Sections 1.3.1 and 1.3.2.3 of Chapter 1. Specifically, we sought to overcome 

Limitation 1 of both experimental and computational approaches by the fact that Bipad is 

capable of deriving bipartite binding site motifs from ChIP-seq datasets and generating 

bipartite iPWMs to accurately describe the binding behavior of dimeric TFs. We sought 

to avoid Limitations 2 and 3 of experimental approaches by the use of ChIP-seq datasets. 

We also sought to overcome Limitation 2 of computational approaches by analyzing the 

maximum number of top peaks that can produce the primary motif above the minimum 

threshold peak strength found by the half-interval search, Limitation 3 by the fact that 

Bipad is able to generate iPWMs, and Limitation 4 by the fact that Bipad does not rely on 

the background nucleotide composition and will always return the lowest-entropy motif. 

The methods proposed above also aimed to overcome the limitations of the previous 

studies predicting gene expression levels and TF target genes that were respectively 

described in Sections 1.6 and 1.7 of Chapter 1. Specifically, we sought to overcome 

Limitation 1 of the prior studies predicting gene expression levels by the direct use of 𝑅𝑖 

values of binding sites, Limitation 2 by the use of the IDBC algorithm, Limitation 3 by 

the use of iPWMs, and Limitation 4 by the definition of the tissue-wide gene expression 

profile and application of the Bray-Curtis similarity measure. We also sought to 

overcome Limitation 1 of the prior studies predicting TF target genes by the direct use of 

iPWM-detected TFBSs, Limitation 2 by the fact that positives are direct targets whose 

promoters overlap tissue-specific ChIP-seq peaks, and Limitation 3 by the use of 

CRISPR- and siRNA-generated knockdown data. 
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Chapter 3  

3 Discovery and Validation of Information Theory-based 
Transcription Factor and Cofactor Binding Site Motifs 

The work presented in this chapter is reproduced from: 

Lu,R., Mucaki,E.J., Rogan,P.K. (2017) Discovery and validation of information theory-

based transcription factor and cofactor binding site motifs. Nucleic Acids Research, 

45(5): e27 

3.1 Introduction 

Transcription factors (TFs) interact with regulatory elements in genes to mediate positive 

or negative regulation of tissue- and stage-specific expression (1, 2). TFs either directly 

bind to DNA by recognizing specific sequence motifs, or indirectly interact as partners 

(or cofactors) of sequence-specific TFs (3). Interactions between these two types of TFs, 

as well as between sequence-specific TFs, abound across the whole genome (3, 4). For 

instance, NF-Y extensively coassociates with FOS over all chromatin states, and CTCF 

extensively colocalizes with cohesins consisting of SMC1/SMC3 heterodimers and two 

non-SMC subunits RAD21 and SCC3 (5, 6). The genome-wide distributions of both 

types of bound TFs have been analyzed by sequence analysis of immunoprecipitated 

chromatin (ChIP-seq) (7). ChIP-seq can identify the repertoire of binding site sequences 

in a genome, and often pull down binding sites of coregulatory cofactors. 

Sequence-specific TFs either recognize contiguous sequence motifs, or form 

homodimeric or heterodimeric structures that contact half sites separated by gaps that 

together comprise bipartite binding sites (8). Although generally the binding sequences of 

TFs are well conserved, significant variability at most positions of their binding motifs 

characterizes most TFs. Information theory-based position weight matrices (iPWMs) can 

quantitatively and accurately describe these base preferences. A contiguous iPWM is 

derived from a set of aligned binding sites using Shannon information theory and a 

uniform background nucleotide composition (9, 10). This approach may be more 
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appropriate for defining binding sites than Relative Entropy because the contacts between 

the TF and the nucleotides do not depend on the background genomic composition (10, 

11). A bipartite iPWM consists of two contiguous, adjacent iPWMs, each corresponding 

to a half site, separated by a range of sequence gaps. The individual information content 

(𝑅𝑖) of a TF-bound sequence, which represents the affinity of the TF-DNA interaction, is 

the dot product between the binary matrix of the sequence and an iPWM of the TF (10). 

The 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 value of an iPWM is the mean of the 𝑅𝑖 values of all the binding site 

sequences used to compute the iPWM, and represents the average binding affinity (12). 

Our laboratory previously developed the Bipad software to generate bipartite (and 

contiguous) iPWMs from ChIP-seq data (8). 

TF binding motifs have been derived from both experimental evidence and computational 

approaches. Weirauch et al. (13) measured TF binding by octanucleotide microarrays to 

infer sequence specificity from overlapping bound sequences for >1,000 TFs 

encompassing 54 different DNA binding domain (DBD) classes. Jolma et al. (14) 

obtained 830 binding profiles representing 411 human and mouse TFs using high-

throughput SELEX and ChIP sequencing. The oligonucleotide-based approach does not 

account for variable-length spacers in bipartite binding sites, and it may reconstruct 

potentially incorrect motifs that cannot be discriminated from correct binding site 

sequences. In addition, the set of octamers used in the DNA microarrays may not cover 

all possible binding site sequences (>8 nucleotides [nt]) recovered in the genome from 

ChIP-seq, and there is no way to discover potential binding sites from TF cofactors. 

Wang et al. (3) carried out de novo motif discovery for 119 human TFs from 457 ChIP-

seq datasets using the MEME-ChIP software suite, and Kheradpour et al. (15) provided a 

systematic motif analysis for 427 ChIP-seq datasets of 123 human TFs using five motif 

discovery tools. However, these studies did not generate bipartite motifs with half sites 

separated by gaps varying in length; more importantly, the derived motifs were only 

based upon strongest ChIP-seq signal peaks (top 500 or 250 peaks), effectively 

eliminating thousands of intermediate or weak binding events and biasing the resulting 

iPWMs toward high-affinity, consensus-like binding sites. This is necessary, as the 

sequences contained in the weakest ChIP-seq peaks may contribute low-complexity, 
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likely non-functional sequences (i.e. noise) that can obfuscate the detection of true 

binding motifs. Extreme peak selection bias in the population of sites distorts the binding 

strengths estimated for individual sites (16).  

We developed a motif discovery pipeline, Maskminent, by integrating recursive masking 

and thresholding the maximum number of ChIP-seq peaks into an entropy minimization 

framework. Bipad was modified to incorporate these features, and TF binding motifs 

were derived and validated for 765 ENCODE ChIP-seq datasets (1275 replicates) 

consisting of 207 human TFs. 93 primary and 23 cofactor binding motifs were 

successfully recovered and refined for 127 TFs. Reanalysis of the same data using the 

masking and thresholding techniques revealed many known and previously unreported 

TF cofactors; however, frequently our approach revealed cofactor motifs directly. These 

primary motifs were validated by comparing predicted with experimentally-detected true 

binding sites, explaining effects of characterized SNPs on binding site strengths, and 

through comparisons to an independent motif database. 

3.2 Materials and Methods 

3.2.1 ENCODE ChIP-seq datasets 

The ENCODE Consortium conducted ChIP-seq assays for human TFs and generated 

initial peak datasets for each replicate of each assay using a uniform peak calling pipeline 

(7, 17). For some assays, these analyses produced optimal and conservative IDR-

thresholded peaks after applying the IDR (Irreproducible Discovery Rate) framework to 

the initial datasets to improve consistency of motifs obtained from multiple biological 

replicates. In addition, Factorbook (3, 18) also reports motifs from refined datasets 

(limited to the top 500 peaks) generated by the SPP peak calling software (19). 

We started with the IDR-thresholded peak datasets, because we found that these data are 

more likely to produce primary or cofactor motifs than the initial (i.e. unprocessed) 

datasets; they contain greater numbers of ChIP-seq peaks (and thus more binding sites) 

than the truncated SPP datasets. The initial, unfiltered datasets were examined if neither 

IDR-thresholded nor SPP datasets were available. 
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3.2.2 The Maskminent motif discovery pipeline 

Initially, iPWMs from ChIP-seq reads were derived by entropy minimization with Bipad 

(Appendix B.1). However, we noted that these iPWMs sometimes exhibited cofactor or 

noise motifs, rather than the expected primary motifs. In order to improve detection of 

primary motifs, the Maskminent software, which implements a generalization of the 

objective function used in Bipad, enables new motif discovery by recursively masking 

sequences detected by previous analyses of a ChIP-seq dataset while defining thresholds 

for inclusion of the maximum number of top peaks to eliminate peaks with lower signal 

intensities whose inclusion can result in emergence of noise over primary or cofactor 

motifs (Appendix B.1). Multiple ChIP-seq datasets from distinct cell lines for the same 

TF, if available, were examined for enriched sequence motifs to assess whether this 

approach was reproducible, and discover tissue-specific sequence preferences between 

these sources. 

This masking technique, which contrasts with the likelihood approach used by MEME 

(20), provides a means of discovering additional conserved motifs adjacent to primary TF 

binding sites within the same datasets. The sequences detected by motifs found in 

previous iterations are masked and the next lowest entropy motif is derived. The 

coordinates of all the predicted binding sites in a dataset scanned with prior iPWMs are 

recorded and skipped in the subsequent reanalysis. The specified parameters include the 

length of the motif, number of Monte Carlo cycles used in entropy minimization, a motif 

masking file for recursion, and for bipartite binding sites, the lengths of the left and right 

motifs and the gap length range between the half sites (Appendix B.1). Once a motif is 

generated, another program, Scan, is used to detect binding sites in a DNA sequence and 

determine their respective information contents, or binding strengths.  

To eliminate noisy patterns that suppress the expected TF binding motifs due to ChIP-seq 

peaks with low signal strengths (i.e. read counts), the dataset is truncated based on signal 

strengths as follows (Figure 3.1). First, all the peaks are ranked in the descending order of 

strengths, and the top 200 peaks are selected. If the iPWM derived from the top 200 

peaks exhibits the primary/cofactor motif, then the minimum threshold peak strength is 

contained within the range from the strength of the 200th peak (i.e. the initial value of G)  
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Figure 3.1: One iteration of the half-interval search used to refine the threshold 

peak strength. All peaks in the dataset are sorted in the descending order of signal 

strengths. 𝑺 is the smaller bound of the current range containing the minimum threshold 

that can generate the primary/cofactor motif, and 𝑮 is the greater bound (i.e. the current 

threshold). 𝑮 and 𝑺 are respectively initialized to the strength of the 200th peak and the 

strength of the last peak. 𝑴 is the strength of the peak at the mean (rounding to the 

nearest multiple of 500) of the number of top peaks above 𝑮 and the number of top peaks 

above 𝑺. 𝒊𝑷𝑾𝑴𝑮, 𝒊𝑷𝑾𝑴𝑺, 𝒊𝑷𝑾𝑴𝑴 are respectively the iPWMs derived from the top 

peaks above 𝑮, 𝑺, 𝑴. 𝒅(𝒊𝑷𝑾𝑴𝑮, 𝒊𝑷𝑾𝑴𝑴) is the Euclidean distance between 𝒊𝑷𝑾𝑴𝑮 

and 𝒊𝑷𝑾𝑴𝑴, and 𝒅(𝒊𝑷𝑾𝑴𝑺, 𝒊𝑷𝑾𝑴𝑴) is the Euclidean distance between 𝒊𝑷𝑾𝑴𝑺 and 

𝒊𝑷𝑾𝑴𝑴. If 𝒅(𝒊𝑷𝑾𝑴𝑮, 𝒊𝑷𝑾𝑴𝑴) is greater than 𝒅(𝒊𝑷𝑾𝑴𝑺, 𝒊𝑷𝑾𝑴𝑴), 𝒊𝑷𝑾𝑴𝑴 

exhibits the noise motif and the minimum threshold is contained in the subrange from 𝑮 

to 𝑴; if 𝒅(𝒊𝑷𝑾𝑴𝑮, 𝒊𝑷𝑾𝑴𝑴) is smaller than 𝒅(𝒊𝑷𝑾𝑴𝑺, 𝒊𝑷𝑾𝑴𝑴), 𝒊𝑷𝑾𝑴𝑴 exhibits 

the primary/cofactor motif and the minimum threshold is contained in the subrange from 

𝑴 to 𝑺. When the number of peaks contained in the range does not exceed 500, this half-

interval search is stopped. The approximately minimum threshold that is returned is 𝑮 of 

the final range. 
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to the peak with the weakest signal (i.e. the initial value of S). A half-interval search 

iterated over sets of progressively weaker peaks narrows this range until the number of 

peaks contained in the range is ≤500. The value of G is the threshold peak signal strength 

above which the top peaks can still produce the primary/cofactor motif. The minimum 

threshold obtained for G (i.e. the final value of G) defines the approximate peak set 

containing the maximum number of top peaks that can produce the primary/cofactor 

motif. 

3.2.3 Binding site motif validation 

The methods used to evaluate the accuracy of our iPWMs include: 

1) To detect experimentally proven binding sites in known target genes, derived iPWMs 

were used to evaluate the 𝑅𝑖 value of each site; 

2) To predict changes in binding site strength, characterized variants were evaluated with 

the corresponding iPWMs. The predicted changes were compared with experimentally 

supported effects on TF binding or gene expression; 

3) The iPWMs were compared with the corresponding annotated motifs in the CIS-BP 

database (13) based on their normalized Euclidean distances; 

4) To distinguish true binding motifs from noise motifs, we delineated the relationship 

between 𝑅𝑖 values of binding sites discovered by the iPWM and their corresponding 

binding energy (i.e. higher 𝑅𝑖 values have lower binding energies) (Appendix B.1). 

Primary/cofactor motifs are expected to demonstrate this relationship, whereas noise 

motifs are not; that is, for primary/cofactor motifs, the linear regression fit between 𝑅𝑖 

values and binding energy are expected to have slopes well below 0 which is the 

expected slope for noise motifs. After applying F-tests to evaluate this relationship, F 

values for the two categories of motifs were compared using a Mann-Whitney U test. 

3.3 Results 

The derived iPWMs displayed primary motifs for 93 TFs (Appendix B.2), as well as 23 

cofactor motifs for 127 primary TFs (Appendix B.3). We also describe 6 high-confidence 
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novel motifs that have not been previously annotated in these ChIP-seq data (Appendix 

B.4). 

The initial iPWMs directly exhibited primary motifs for 76 TFs and 18 cofactor motifs 

for 107 primary TFs. Thresholding the datasets revealed 31 primary motifs and 14 

cofactors for 38 primary TFs. We used the masking technique to discover an additional 4 

primary motifs; 7 cofactor motifs were also found in 21 datasets (Appendix B.2&B.3).  

For each TF ChIP-seq dataset with a derived primary motif (n=367), we determined the 

false positive detection rate from the null 𝑅𝑖 distribution, which is approximately 

Gaussian (12). The iPWM was used to scan for binding sites in a random 10,000 

nucleotide sequence that conserved the mono- and dinucleotide composition as the 

dataset (Appendix B.2). The means of all null distributions range from -97.5 to -12.3 bits 

with standard deviations from 6.9 to 22.5 bits. The probabilities of observing a potentially 

functional binding site, i.e. with 𝑅𝑖>0, in these sequences range from 1.2E-7 to 0.06. 

Similarly, the independence of contributions of each position in a binding site to the 

overall information content was analyzed for one iPWM of each primary motif. The total 

mutual information, which measures the interdependence between individual positions in 

the same binding site, was determined by summing the pairwise mutual information at 

each position (Appendix B.2). Then, the percentage of the total mutual information 

relative to the average information, 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, was determined. For 83 TFs (~89.2%), 

<10% of the information present in the iPWM is dependent, and for 62 TFs (~66.7%), 

<5% is dependent. Neglecting the interactions between positions introduces a minimal 

error into the calculation of 𝑅𝑖 values of binding sites, and would be expected to have 

little impact on assessment of the mutations in these sequences. 

3.3.1 Primary binding motifs 

3.3.1.1 Contiguous iPWMs 

Correct iPWMs were successfully derived for 65 TFs with contiguous binding motifs, 

which are concordant with published descriptions of these motifs (3). All of these motifs 

can be characterized as degenerate and do not correspond to published consensus 
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sequences. Consensus sequences miss TF binding sites of weak or intermediate strength 

(16). We determined the frequencies of such sequences appearing on a genome scale for 

10 TFs by counting the peaks containing these sequences in their respective datasets 

(Figure 3.2 - panel A). Surprisingly, only 0.015%-7.3% of all peaks contain binding sites 

with these sequences, demonstrating that these sites are extremely rare in ChIP-seq 

datasets. Thus, intermediate and low-affinity TF-DNA interactions are the most prevalent 

in vivo and are able to regulate gene expression (21). 

3.3.1.2 Bipartite iPWMs 

For 19 TFs, bipartite iPWMs were successfully derived, and were in agreement with 

previously reported motifs. The following examples illustrate key insights that can be 

taken from bipartite modeling: 

1) El Marzouk et al. (22) demonstrated that ESR1 is able to recognize binding sites with 

half sites separated by nucleotide spacer lengths from 0 - 4nt, in which sites containing a 

3nt spacer are most common and have the highest binding affinities. We allowed the 

spacer length to vary from 0 to 5nt in bipartite iPWMs derived from the T47D cell line 

data. The resultant iPWMs show the documented predominant sequences and are 

palindromic. The bipartite iPWM exceeds the average information content of the 

corresponding contiguous iPWM prepared from the same dataset, and the dominant gap 

between half sites is 3nt (Figure 3.2 - panel B). Nevertheless, 333 binding sites (~9%) in 

this iPWM exhibit a 5nt spacer, implying that ESR1 may be capable of binding to sites 

that were not previously detected. The symmetry between the half sites exhibited by the 

bipartite iPWMs suggests that dimeric ESR1 may bind a narrow range of sequences with 

similar half site affinities. 

2) The palindromic predominant sequence of the AP2 family is 5’-GCCN3GGC-3’, and 

other binding sequences confirmed in an in vitro binding-site selection assay include 5’-

GCCN4GGC-3’ and 5’-GCCN3/4GGG-3’. Another binding site 5’-CCCCAGGC-3’ was 

also found in the SV40 enhancer (23). The spacer lengths in the bipartite iPWMs for 

AP2A and AP2C range from 2 – 4nt, which is representative of the genome-wide pool of 

true binding sites (Figure 3.2 – panel B). We also noted that the two outermost positions 
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are the most variable, and that adenine (instead of the consensus guanine) can also appear 

at the first position of the right half site. These bipartite iPWMs exhibit similar 

conservation levels across all the individual positions, suggesting that these binding sites 

of the two AP2 members may exhibit similar degrees of binding affinity, though iPWMs 

can recognize different sequences. 

3) The predominant spacer length separating half sites recognized by STAT1 is 3nt; 

however, previous reports describe sites with a 2nt gap, but not those separated by 4nt 

(24). However, the STAT1 bipartite iPWM is based on 1709 binding sites (~18%) with a 

4nt spacer, with most half sites separated by 2 or 3 nt (Figure 3.2 – panel B). The left- 

and rightmost nucleotides are nearly invariant, whereas the inner 2 nucleotide contacts in 

each half site are variable. 

4) NFE2 and BACH1 heterodimerize with the MAF family (MAFF, MAFG and MAFK), 

and recognize two types of bipartite palindromic motifs, defined by the predominant 

binding sites TGCTGA(C)TCAGCA and TGCTGA(CG)TCAGCA (25). The previously 

reported binding motifs (3) are contiguous, and do not account for the dimeric interaction 

that gives rise to this bipartite binding pattern. The bipartite iPWMs indicate that the 

inner 6 positions surrounding the dominant 1nt spacer exhibit higher information contents 

than the outer 6 positions (Figure 3.2 – panel B). 

3.3.1.3 Comparing iPWMs for the same TF in distinct cell lines 

Cell-type-specific differences between iPWMs of the same TF were evident for certain 

contiguous and bipartite motifs. For instance, among the three contiguous iPWMs of 

ESR1 derived from the ECC1 steroid-responsive endometrial cell line, conservation 

levels in the respective half sites are asymmetric, whereas the average information of  

these half sites are much more symmetric in iPWMs derived from T47D, a breast tumor 

cell line (Figure 3.3 – panel A). For the TFs MAFF and MAFK, the discrepancy between 

the bipartite iPWMs from K562 and HepG2 cells is evident: the outer 6 positions show a 

greater degree of conservation than the internal 6 positions in HepG2, but in K562 the 

opposite trend is illustrated (Figure 3.3 – panel A). The MAFK iPWM derived from 

ChIP-seq data of IMR90 cells resembles the HepG2 iPWMs, whereas the iPWMs from 
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Figure 3.2: Sequence logos of contiguous (A) and bipartite (B) iPWMs. The TF name, and the cell line from which the iPWM was 

derived, and the number of binding sites that the iPWM is based upon are displayed. In (B), each of the first four rows includes a 

contiguous (left) iPWM and a bipartite (right) iPWM of one TF from the same dataset. The last row includes the bipartite iPWMs of 

NFE2 and BACH1. The bipartite search patterns, which are denoted by l<a,b>r (l and r are the lengths of the left and right half sites 

respectively, a and b are the minimum and maximum spacer lengths respectively), are 6<0,5>6, 3<2,4>3, 3<2,4>3, 3<2,4>3, 6<1,2>6 

and 6<1,2>6 from top to bottom, respectively. 
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Figure 3.3: Comparison between iPWMs from different cell lines and novel motifs. (A) Each row includes sequence logos of two 

iPWMs of the same TF from two different cell lines. The bipartite iPWMs for MAFF and MAFK used the search pattern 6<1,2>6. (B) 

The high-confidence novel motifs (“NM1” – “NM6”). The logos of the NM1, NM2 and NM3 motifs come from the datasets of 

BAF155, NANOG and ESRRA, respectively.  
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HeLa-S3 and H1-hESC datasets resemble the K562 iPWMs. The compositions of binding 

sites (i.e. different target genes for the same TF in different tissues) account for these 

differences because TFs can display distinct cell-type-specific DNA sequence 

preferences (26). Consistent iPWMs between replicate datasets makes it unlikely that the 

skewed base conservation between ChIP-seq datasets for the same TF in different cell 

lines arises from sampling differences; however, this possibility cannot be excluded. 

3.3.2 Cofactor binding motifs 

Discovery of the binding motif of a cofactor in the same ChIP-seq dataset for a primary 

TF implies that the two TFs transcriptionally co-regulate this set of common target genes. 

This could be accomplished either by formation of a physical complex on the promoter, 

or by synergistic or antagonistic cis-regulatory effects. De novo motif discovery from 

ChIP-seq datasets provides an effective approach for confirming or predicting statistically 

significant TF interactions on a genome-wide scale; by contrast, the abundant, existing 

literature overwhelmingly documents gene-by-gene evidence about such interactions 

which constrains arguments supporting their generalizability. Figure 3.4 illustrates TF-

cofactor interactions revealed by the Maskminent pipeline. 

3.3.2.1 Confirmation of known cofactors 

The derived iPWMs confirmed genome-wide interactions between 22 cofactors and 102 

primary TFs (Table 3.1), which were supported by the previous studies (3, 5, 6, 15, 27-

93) . For example, the interaction between SP1 and multiple members of the ETS and 

AP1 families has been well characterized (94–99). ELK1 and SRF can recruit each other 

to form a ternary complex on CArG-ETS elements (100). TEAD-AP1 cooperation with 

SRC coactivators drives downstream gene transcription to regulate cancer cell migration 

and invasion (101), and STAT1, STAT2 and IRF9 form a heterotrimer that regulates 

transcription of genes containing IFN-stimulated response elements (ISREs) (102). 

Consistent with previous reports (15), the existence of a YY1-THAP1 complex is 

predicted from co-segregation of their binding motifs in the K562 dataset of THAP1. 

Similarly, we predict that the SOX2-OCT4 complex colocalizes with BCL11A, similar to 

Wang et al (3). A DNA-binding complex consisting of GATA1, TAL1, E2A, LMO2 and
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Figure 3.4: Network graph of TF-cofactor interactions revealed by the Maskminent pipeline. A yellow ellipse denotes a cofactor 

and a white ellipse denotes a primary TF. A hexagon denotes a TF family with dash lines connecting its members. For a TF family 

only members for which ENCODE provides peak datasets are shown. A red rectangle denotes a known or predicted TF complex with 

black or blue dotted lines indicating its components, respectively. An undirected line denotes the interaction between a primary TF 

and a cofactor which may be a complex or a TF family. A directed line links two cofactors, denoting that in a dataset of the starting 

TF, the ending TF was discovered as a cofactor. Black lines denote known interactions and blue lines denote the newly discovered 

interactions. 
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Table 3.1: Cofactors revealed by iPWMs and their corresponding primary TFs 

Cofactors 
Primary TFs* 

Sequence-specific Non-sequence-specific 

AP1 GATA2, MYC, SRF, STAT3, TEAD4 BAF155, BAF170, BCL3, BRG1, P300 

CEBPB  P300 

CTCF ZNF143 RAD21, SMC3 

ETS family MAX, SRF1, TR4 DIDO12 

GATA family RUNX12 BRG12, SIRT62 

GATA1-TAL1 NR2F22, STAT5A2, TAL12, TEAD42 P3002, PML2, RCOR12, TBL1XR12 

FOXA family ARID3A3, GATA3, GATA43, NFIC3, TCF123, TEAD43 HDAC23, MBD43, P300 

HNF4 family SP13  

HSF family  PGC1A3 

IRF family ATF12, BCL11A1, CEBPB1, CREM1, ETV61, FOXM11, FOXP2, IKZF11, 

MEF2A1, MEF2C1, NFE21, NFKB1, OCT21, RUNX31, STAT12, STAT22, 

STAT31, STAT5A1, TCF71, ZBED11 

EED1, EZH21, MTA31, P3001, 

TBL1XR11 

NFKB  KDM5A4 

NFY FOS, IRF3  

NRSF SP23, TEAD4 SIN3A4 
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RUNX family BCL11A1, CEBPB1, IRF41, MEF2A1, MEF2C1 EED1, P3001 

SP family ATF24, ATF3, CEBPD3, CREB1, CREM1, DEAF12, E2F1, E2F4, E2F6, 

ELF1, ELK1, ETS1, FOS, FOSL14, FOXP2, GABPA, GATA43, IRF12, 

IRF3, JUND, KLF132, MAX, MITF2, MXI1, MYC, NFE21, NFKB1, 

NFYA, NRF1, NRSF3, OCT21, PAX51, PBX3, RFX5, SMAD5, SREBF13, 

SREBF23, SRF, STAT11, SUZ12, TBP, TCF4, TCF72, THAP12, TR4, 

UBTF2, YY1, ZBED12, ZBTB33, ZBTB7A2, ZHX23 

BCLAF1, BRCA1, CBX13, CCNT22, 

CHD1, CHD2, DIDO12, EZH2, 

GTF2B2, HDAC12, HMGN32, INI1, 

KAT2A, KDM5B2, P3004, PHF82, 

PML, RBBP5, RCOR13, RPB1, 

SAP302, SIN3A, TAF1, TAF7 

SOX2 NANOG4  

SOX2-OCT4 BCL11A4, OCT44  

TEAD family GATA2, MYC, STAT3  

TFIIIC HSF13, TBP, TCF12 BDP1, BRF1, RPC155, RPC32 

YY family CREB32, IRF92, PTTG12, TEAD22, THAP12 DDX202, ID32, ILK2, KDM5A4, 

PTRF2, PYGO22, TAF72 

USF ATF3, NFE21  

ZBTB33 ETS11 BRCA1 

ZNF143 ETS1, DEAF12 SIX5 

* The underlined or normal font denotes known or newly discovered interactions between cofactors and primary TFs, respectively.  

1,2,3,4 The cofactor was revealed in the GM12878-related, K562, HepG2 or H1-HESC cell lines, respectively. Otherwise the cofactor 

appeared in other or multiple cell lines. 
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LDB1 is present in the erythroid cell lineage (103). Based on the proximity and 

coprecipitation of these binding sequences, we and others (3, 104) find that this complex, 

in which GATA1 and TAL1 contact DNA, coordinately binds with TEAD4 and other 

non-DNA binding proteins (P300, PML, RCOR1 and TBL1XR1). The GATA1-TAL1 

and SOX2-OCT4 complexes emerged from the datasets of TAL1 and OCT4 as primary 

motifs, respectively, which implies the formation of the two complexes being necessary 

for binding of TAL1 and OCT4. 

3.3.2.2 Discovery of novel cofactors 

Maskminent revealed a number of previously unrecognized cofactor motifs (n=10) for 46 

primary TFs (Table 3.1), which supports novel TF cobinding and interactions. This 

includes possible associations between the IRF and RUNX families, and their further 

cooperation with BCL11A, MEF2A, MEF2C, CEBPB, EED and P300 in GM12878 cells 

(Table 3.1; Figure 3.4). Similarly, the TEAD-AP1 complex is predicted to recruit MYC, 

STAT3 and GATA2 in multiple cell lines. The finding that NR2F2 and STAT5A motifs 

are in close proximity to sequences recognized by the GATA1-TAL1 complex suggests 

these factors may coordinately regulate target genes. Many cofactors were also 

discovered among datasets of non-sequence-specific primary TFs, which is consistent 

with the possibility that these primary TFs are recruited to gene promoters through their 

association with DNA-binding cofactors (Table 3.1). 

3.3.2.3 Cofactor binding sites 

To validate the predicted cobinding between cofactors and primary TFs, we determined 

the intersite distance distributions by scanning the individual ChIP-seq intervals with the 

derived iPWMs for each (Figure 3.5; Appendix B.5). A minimum information threshold 

was applied to the 𝑅𝑖 values of predicted binding sites in order to remove the relatively 

large number of weak binding sites that are likely to be low-complexity sequences (e.g. 

𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [or 0.5 * 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, if too many cofactor binding sites were eliminated at the 

higher threshold]). The SOX2-OCT4 complex was used as a primary negative control, as 

it is primarily expressed in the H1-hESC cell line and is unlikely to be a cofactor for 

primary TFs in other cell lines. A large percentage of peaks have short intersite distances  
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Figure 3.5: Distributions of intersite distances between primary TFs and discovered 

cofactors versus negative controls. The minimum threshold on information contents of 

predicted binding sites is 𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆. Each graph illustrates a much higher frequency of 

short (< 20nt) intersite distances between primary TFs and cofactors (blue) compared to 

the negative control (SOX2-OCT4; red). 

between the primary TF and the corresponding cofactor binding sites (e.g. <20nt), 

whereas there is no such a trend for the negative control sequences and the primary TF. 

The same difference is observed between the distribution for the documented TEAD4-

AP1 pair and for the negative control. Consistent with previous reports (4), the binding 

sites of cofactors and primary TFs in peak datasets were physically overlapped between 

the IRF and RUNX motifs, between the TEAD4 and AP1 motifs, and between USF and 

ATF3 (AP1) recognition motifs. 

3.3.2.4 Tissue-specific preferences of predicted cofactors relative 
to primary TFs 

Several cofactors were recurrently associated with different primary TF partners, notably 

in specific cell lines. One possible explanation is that these cofactors are coordinately 

regulated with different primary TFs preferentially in specific cell types. For example, the 

datasets of 25 primary TFs in which the IRF family was discovered as a cofactor were all 

derived from lymphoblastoid (e.g. GM12878) cell lines, with 4 exceptions (Table 3.1). 

Regulation by the IRF family is central to B-lymphocyte expression programs (105). All 

the datasets of 11 primary TFs from which the GATA and GATA1-TAL1 motifs 

emerged as cofactors were derived from K562 erythrocytic leukemia cells (Table 3.1), 
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which is consistent with the activation role that the GATA family exhibits in 

hematopoietic lineage gene expression (106, 107). Similarly, FOXA family members 

bind to the same sequences as 7 primary TFs in the HepG2 cell line derived from 

hepatocellular carcinoma cells (Table 3.1), which is consistent with the fact that FOXA 

proteins regulate the initiation of liver development (108). Datasets of GATA3 and P300 

from the T47D breast cancer cell line are also linked to FOXA. Another TF family 

known to be a key factor regulating hepatocyte differentiation and liver-specific functions 

is HNF4 (109), which was discovered as a cofactor of SP1 in a HepG2 dataset. SOX2 and 

the SOX2-OCT4 complex were unveiled as cofactors only in datasets of 3 primary TFs 

from the H1-hESC cell line representing embryonic stem cells (Table 3.1), which is 

supported by the requirement for SOX2, OCT4 and NANOG to maintain pluripotency 

(110). Interestingly, all the datasets (n=12) in which YY was revealed as a cofactor were 

from K562 cells, with one exception (Table 3.1). Unlike the GATA TFs, the YY family 

is ubiquitously distributed and not known to play an especially central role in erythroid 

lineage development, although YY1 is known to act as a developmental repressor of the 

ε-globin gene along with GATA1 (111). 

Not surprisingly, the SP family was found to be capable of interacting with the maximum 

number of TFs, which is consonant with its role in constitutive transcriptional activation. 

Similarly, the ubiquitously expressed AP1 interacts with 10 TFs in multiple cell lines, 

and these interactions do not show any preference in cell type. 

A number of primary TFs exhibit an extensive capability of interacting with multiple 

cofactors in different tissues. The unique distribution of these cofactors across multiple 

cell lines suggests the tissue-specific functions of the primary TFs. For instance, TEAD4 

was found to coimmunoprecipitate with GATA1-TAL1 in K562 cells, NRSF in A549 

cells, FOXA in HepG2 cells, and AP1 in multiple cell types. Cofactors of P300 include 

IRF-RUNX in GM12878 cells, SP in H1-hESC cells, AP1 and CEBPB in HeLa-S3 cells, 

FOXA in HepG2 and T47D cells and GATA1-TAL1 in K562 cells. Cosegregation 

analysis revealed interactions between BCL11A and IRF-RUNX in GM12878 cells, and 

SOX2-OCT4 in H1-hESC cells. STAT5A and TBL1XR1 cosegregated with members of 

the IRF family in GM12878 cells and with GATA1-TAL1 in K562 cells. 
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3.3.2.5 Discordance between iPWMs derived from the same ChIP-
seq assay 

We noticed some discrepancies between IDR-thresholded datasets and SPP datasets from 

the same ChIP-seq assay. For example, for the primary TF BRG1, iPWMs exclusively 

from SPP datasets exhibit motifs of GATA1 and AP1; IDR-thresholded BRG1 data 

produced only noisy low information content motifs. We also noticed that the motifs 

derived from different biological replicates of the same ChIP-seq assay were sometimes 

inconsistent. One replicate of the TEAD4 ChIP-seq assay from the A549 cell line 

revealed only the NRSF binding motif, whereas both the cofactor AP1 and the primary 

motif were derived from the other replicate. 

3.3.3 Novel binding motifs 

We uncovered 6 high-confidence novel motifs that have not been previously annotated 

(Figure 3.3 – panel B). The “NM1” motif was considerably enriched in the datasets of 

BAF155 and BRG1 (which do not bind DNA directly) from HeLa-S3 cells and the 

“NM2” motif was highly conserved in the datasets of BCL11A and NANOG from H1-

hESC cells. The “NM3” motif was revealed in the ESRRA and SREBF2 datasets from 

GM12878 cells, in the MAX dataset from HCT116, in the CREB1 and GTF3C2 datasets 

from K562, and in the non-DNA-binding RCOR1 dataset from IMR90 cells. The 

Euclidean distances between these novel motifs and primary motifs are dissimilar, 

ranging from 3.1 to 3.4 bits/nt. The “NM4”, “NM5” and “NM6” motifs were discovered 

in the datasets of GATA3, MXI1 and FOSL1 from MCF-7, SK-N-SH, and H1-hESC 

cells, respectively, with distances ranging from 2.9 to 3.4 bits/nt.  

We investigated whether these novel motifs were enriched in hallmarks of open 

chromatin, based on the co-occurrence with DNase I hypersensitive sites and near 

H3K4me and H3K27ac histone modifications (112). After scanning the complete genome 

with these iPWMs, the proportions of sites detected within these corresponding 

ENCODE chromatin tracks were determined for the respective cell lines (Table 3.2). 

These proportions (5%-35%) are consistent with previously reports of binding sites for 

other TFs (113). The frequencies of sites detected with the NM2 and NM6 motifs within  
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Table 3.2: Percentages of binding sites from novel motifs (NM) that overlap DNase I 

hypersensitive intervals and/or regions of specific histone modifications 

Novel motif 

ENCODE Genome Browser Track 

DNase I HS H3K4me1 H3K4me2 H3K4me3 H3K27ac 

NM1✝ 4.50% 17.63% 15.52% 16.23% 11.44% 

NM2✝ 7.06% 33.63% 14.39% 9.61% 34.05% 

NM3✝ 4.21% 21.19% 16.89% 13.75% 12.25% 

NM4 3.18% N/A* N/A* 1.04% 2.22% 

NM5 2.31% N/A* N/A* 1.21% N/A* 

NM6 6.16% 32.37% 13.58% 9.36% 34.10% 

✝ The iPWMs of the NM1, NM2 and NM3 motifs used to scan the hg19 genome 

assembly come from the datasets of BAF155, NANOG and ESRRA, respectively. 

* The histone modification data for the specific cell line used to derive the iPWM is 

unavailable. 

the H3K4me1 and H3K27ac peaks are significantly higher than those found after 

intersection of each NM binding site with the H3K4me2 and H3K4me3 tracks, 

respectively. The co-occurence of NM2 and NM6 with the H3K4me1 and H3K27ac 

epigenetic marks supports the assignment of these motifs as components of 

transcriptional enhancer elements, because these histone modifications are present in 

nucleosomes flanking enhancer elements (114). Additionally, the co-occurence of these 

two motifs within DNase I hypersensitive intervals exhibit the highest among all the 6 

motifs. The remaining motifs could represent binding motifs of currently unknown TFs 

or other non-annotated functional elements. 

3.3.4 Binding site motif validation 

3.3.4.1 Detection of true binding sites with iPWMs 

803 experimentally-confirmed, previously published binding sites were verified for the 

93 TFs whose primary binding motifs had been identified (Appendix B.6). We detected 

these sites with the derived iPWMs by scanning promoters of known TF target genes for 
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binding elements with positive 𝑅𝑖 values. There was complete concordance between 

these true binding sites and those detected with the iPWMs, both in terms of their 

locations and relative strengths. For example, an EMSA analysis of the SERPINA3 

promoter proved that the nucleotide sequence starting at GRCh38 (chr14:94612260) 

contains a stronger binding site of STAT1 than the one starting at GRCh38 

(chr14:94612291) (Appendix B.6) (115); the binding site (5'-TTCTGGTAA-3' with 𝑅𝑖 = 

9.02 bits; Row 781) detected by the bipartite iPWM is indeed 22.13 (or 4.38) fold 

stronger than the other site (5'-TTCTCGGA-3' with 𝑅𝑖 = 6.89 bits; Row 782) detected in 

this promoter. 

3.3.4.2 Correspondence between functionally characterized SNPs 
and changes in information content 

Based on the change in the 𝑅𝑖 value of a binding site, the effect of a SNP on the binding 

site strength can be predicted with iPWMs (10,12). For 153 SNPs within the binding sites 

of 29 TFs, we determined 𝑅𝑖 values of the variant sequence for the corresponding iPWM 

and compared the predicted consequence to observed TF binding, and if available, 

published changes in expression (Appendix B.7). For 130 SNPs (~85.0%) affecting 

binding sites of 27 TFs, the predictions of the iPWMs and the experimental observations 

are completely concordant. For 16 SNPs (~10.5%) affecting binding sites of 10 TFs, the 

predicted and observed experimental findings are concordant, but the extents of these 

changes differ (e.g. TF binding is predicted to only be weakened, but binding or 

expression was completely abolished). For 7 SNPs (~4.6%) altering binding sites of 3 

TFs, the predicted and observed experimental changes were discordant. iPWMs for 2 

(CEBPB and SP1) of these 3 TFs were validated for other SNPs. 

3.3.4.3 Comparison between iPWMs and other binding motifs 

Binding motifs of eukaryotic TFs in the CIS-BP database were previously reconstructed 

from oligonucleotide binding selection assays (13); these motifs represent another type of 

ground truth reflecting the genuine sequence preferences of these TFs. For 133 TFs, we 

quantitatively compared the iPWMs with these motifs by determining the normalized 

Euclidean distances between them, and classified the distances into three categories. We 
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observed that the iPWMs derived in this study and the reconstructed motifs are nearly 

identical (<1 bit/nt) for 75 TFs, or only differ at 1 or 2 positions (1-2 bits/nt) for 18 TFs. 

The discovery of cofactors was the predominant explanation for large distances (>2 

bits/nt) for 39 of these TFs. 

3.3.4.4 Statistical analyses on iPWMs 

To distinguish true binding motifs from noise motifs, the relationship between 𝑅𝑖 values 

and binding energy was evaluated by performing F tests on all binding sites in all of the 

contiguous iPWMs that we derived (674 primary/cofactor, 312 noise). The F values are 

plotted as a histogram to illustrate probability density distributions (Figure 3.6; data 

available in Appendix B.2&B.3). The histogram shows that most F values between 0 and 

100 were significantly enriched for noise motifs. In general, the F values of 

primary/cofactor motifs significantly exceed those derived from noise. The 

primary/cofactor motif and noise motif distributions are different (Mann-Whitney U test; 

p = 3.1E-57 at 1% significance level). We note that only primary and cofactor motifs 

exhibit F values >1000, which comprise 37.2% (251 of 674) of all iPWMs. The iPWMs 

with F values <1000 remain valid based on the other criteria described above. 

3.4 Discussion 

In this study, we derived and validated TF binding motifs from ChIP-seq datasets using 

an information theory-based approach, also revealing TF cofactor binding sites and other 

novel motifs. The primary TF motifs were validated by comparison with motifs derived 

independently from binding studies, by analysis of gene variants known to alter TF 

binding affinities, and by comparing the locations of binding sites predicted by iPWMs 

with those of true sites previously determined in published binding and expression 

studies. In addition to contiguous iPWMs, bipartite iPWMs with variable-length spacers 

were also derived. These iPWMs more precisely reflect the binding behavior of dimeric 

TFs, as they incorporate intermediate and often weak binding sites that are often excluded 

from consensus sequence-based (strong) binding site sets (3). This enables these iPWMs 

to accurately quantify binding site strengths across a broad range of affinities (Appendix 

B.6). To test this, the iPWMs were applied to mutation analyses of regulatory SNPs  
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Figure 3.6: F-test results evaluating the relationship between Ri values and binding 

energy. The proportion of F values within the first bin for primary/cofactor motifs is 

much higher than that for noise motifs. A minimum threshold of 1,000 correctly classifies 

all the noise motifs and 37.2% (251/674) of primary/cofactor motifs. 

(Appendix B.7). We have recently used this approach to identify and prioritize variants 

affecting TF binding in 20 risk genes of 287 hereditary breast and ovarian cancer patients 

(116) and 7 genes from 102 such patients (117). In present study, the iPWMs were also 

used to delineate known and novel TF-cofactor interactions. 

TF binding sites across the genome have been predicted from promoter accessibility 

analyses with high-throughput DNase-seq assays. For each of 20 TFs, Yardımcı et al. 

(118) obtained a set of true binding sites by intersecting ChIP-seq peaks with the 50,000 

strongest binding sites predicted by JASPAR and TRANSFAC PWMs in the genome. 

The FLR (Footprint Log-likelihood Ratio), which is defined as the logarithm of the ratio 

between probabilities that a DNase I footprint is produced by either a true binding site or 

a background sequence, was determined at these sites. We attempted to detect these true 

sites using the derived iPWMs. For these 20 TFs, all of these sites (ranging from n=31 to 

21550, depending on the TF) were successfully detected by the iPWMs (𝑅𝑖 > 0). By 
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contrast, the FLR identified 35%-85% of the verified binding sites (Appendix B.8). As 

weak binding sites tend not to generate footprints and thus not to be discovered by 

DNase-seq, the expectation is that the sites detected by DNase-seq would be stronger 

than those that evade detection. In fact, this trend was observed for only 10 TFs and the 

average strengths of these classes of these binding sites were not significantly different. 

In the Maskminent pipeline, the weak peaks below the threshold signal intensity do not 

necessarily contain weak or are missing binding sites; in fact, the distribution of 𝑅𝑖 values 

of binding sites in these bottom peaks is similar to that in the top peaks used to derive the 

iPWM (Appendix B.1). Thresholding the dataset is required in order to ensure that the 

iPWM for the primary motif consists of binding sites from as many peaks as possible, 

while preventing alternative motifs from dominating the objective function used in 

Maskminent. 

We also compared results produced by the Maskminent pipeline with other motif 

discovery tools from two perspectives of revealing primary and cofactor binding motifs 

(Appendix B.9). MEME-ChIP was previously used to derive motifs for 457 ChIP-seq 

datasets (119) and SeqGL (120) was used to analyze 105 datasets. Among the sequence-

specific TFs (n=98) investigated by both tools, Maskminent and MEME-ChIP discovered 

primary motifs for 80 (~81.6%) and 92 (~93.9%) TFs, respectively. Among the 59 TF 

datasets analyzed by Maskminent, MEME-ChIP, SeqGL and HOMER (121), primary 

motifs were revealed for 45 (~76.3%), 51 (~86.4%), 49 (~83.1%) and 47 (~79.7%) 

datasets, respectively. The cofactor motifs that Maskminent found (which MEME-ChIP 

and SeqGL failed to detect) primarily comprise the SP family. Since MEME and SeqGL 

discriminate binding sites from background sequences using nucleotide frequencies 

computed from all input sequences, binding motifs with compositions similar to the 

background may fail to be discovered, such as the SP motif; in contrast, Maskminent 

does not rely on background compositions and will always return the lowest entropy 

motif. While MEME-ChIP and SeqGL revealed a greater number of cofactor motifs, 

selecting only the top 500 or 2000 peaks increases the likelihood that those cofactors 

appeared by chance. This is because MEME-ChIP and SeqGL were configured to report 

multiple motifs, whereas the main objective of Maskminent was to discover primary 
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motifs (i.e. if the initial iPWM derived from a dataset exhibits the primary motif, the 

masking and thresholding techniques will no longer be used, unless it is explicitly 

masked). Finally, the ability of Maskminent, MEME-ChIP, SeqGL to reveal binding 

motifs was compared on the 105 datasets (120). Each tool discovers cofactor motifs that 

others do not recognize.  

Arvey et al. (26) trained support vector machines (SVMs) that use flexible k-mer patterns 

to capture DNA sequence signals more accurately from 286 ChIP-seq experiments than 

traditional motif approaches, and these SVMs can also integrate histone modifications 

and DNase accessibility to significantly more accurately predict TF occupancy than 

simpler approaches. However, the SVM approach does not provide any insight into 

binding strength. Even though accessible constrains increase the accuracy of binding site 

detection, it is not possible to compare binding site strengths once the designated sites are 

combined with DNase I hypersensitivity profiles and other chromatin accessibility marks.  

In fact, the number of TFs for which cofactor motifs were revealed exceeds the number 

of TFs whose primary binding motifs were discovered, partially because only cofactor 

motifs can be found in the datasets of TFs which exhibit little or no sequence specificity 

(e.g. CCNT2, INI1 and P300). For 11 primary TFs, the binding site sequences were 

extremely variable; that is, the overall conservation levels of their binding motifs contain 

less information than noisy, low complexity sequences or cofactor motifs. For 18 primary 

TFs associated with cofactors, which themselves physically contact DNA, the primary TF 

motif was not enriched. The inability of the software to discover such primary motifs is a 

limitation of this approach. Interactions between the primary TFs and a subset of the 

cofactors which are known to cooperate with them were detected, since the association 

has to occur with a prevalence sufficient to produce a recognizable motif (usually >0.5 

bit/nt over the entire site). Nevertheless, the algorithm may not find cofactors with 

weakly conserved motifs or those that overlap with other conserved motifs.  

While unable to discover cofactors nor identify bipartite motifs of variable spacing, the 

oligonucleotide microarray technique adopted by Weirauch et al. (13) and Jolma et al. 

(14) theoretically is able to determine binding specificities for all the sequence-specific 



78 

 

TFs, because contiguous binding sites of TFs are reconstructed from overlapping 

oligonucleotide sequences by directly detecting complexes with the TF. This eliminates 

interference of noisy sequences or cofactors which may emerge as false minimum 

entropies using our method.  

The Maskminent pipeline can be applied to other ChIP-seq data not included in 

ENCODE. The quality control criteria we described are capable of ensuring that the user-

built iPWMs are accurate and can be used for binding site detection. The first and second 

criteria are particularly important, because they provide a straightforward assessment of 

iPWM performance. The recursively thresholded feature is crucial for guaranteeing that 

the discovered cofactors do not appear by chance, because the greater the number of 

peaks from which a cofactor is derived, the higher the confidence that the cofactor indeed 

interacts with the primary factor.  

In summary, we comprehensively investigated and implemented a new approach to 

define TF binding specificities based on the ChIP-seq TF data that ENCODE has 

released. This allowed us to mine and quantify both known and previously unrecognized 

TF binding motifs and cofactor interactions on a genome scale. This information expands 

the granularity of the current knowledge on TF interaction with DNA and points out 

potential directions for future experimental study on interaction between TFs. 
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Chapter 4  

4 A Unified Analytic Framework for Prioritization of Non-
coding Variants of Uncertain Significance in Heritable 
Breast and Ovarian Cancer 

The work presented in this chapter is reproduced from: 

Mucaki,E.J., Caminsky,N.G., Perri,A.M., Lu,R., Laederach,A., Halvorsen,M., 

Knoll,J.H.M., Rogan,P.K. (2016) A unified analytic framework for prioritization of non-

coding variants of uncertain significance in heritable breast and ovarian cancer. BMC 

Med. Genomics, 9, 19 

4.1 Background 

Advances in next-generation sequencing (NGS) have enabled panels of genes, whole 

exomes, and even whole genomes to be sequenced for multiple individuals in parallel. 

These platforms have become so cost-effective and accurate that they are beginning to be 

adopted in clinical settings, as evidenced by recent FDA approvals [1, 2]. However, the 

overwhelming number of gene variants revealed in each individual has challenged 

interpretation of clinically significant genetic variation [3–5]. 

After common variants, which are rarely pathogenic, are eliminated, the number of 

variants of uncertain significance (VUS) in the residual set remains substantial. 

Assessment of pathogenicity is not trivial, considering that nearly half of the unique 

variants are novel, and cannot be resolved using published literature and variant 

databases [6]. Furthermore, loss-of-function variants (those resulting in protein truncation 

are most likely to be deleterious) represent a very small proportion of identified variants. 

The remaining variants are missense and synonymous variants in the exon, single 

nucleotide changes, or in frame insertions or deletions in intervening and intergenic 

regions. Functional analysis of large numbers of these variants often cannot be 

performed, due to lack of relevant tissues, and the cost, time, and labor required for each 

variant. Another problem is that in silico protein coding prediction tools exhibit 

inconsistent accuracy and are thus problematic for clinical risk evaluation [7–9]. 



94 

 

Consequently, many HBOC patients undergoing genetic susceptibility testing will receive 

either an inconclusive (no BRCA variant identified) or an uncertain (BRCA VUS) result. 

The former has been reported in up to 80% of cases and depends on the number of genes 

tested [10]. The occurrence of uncertain BRCA mutations varies greatly (as high as 46% 

in African American populations and as low as 2.1%) among tested individuals 

depending on the laboratory and the patient’s ethnicity [11–13]. The inconsistency in 

diagnostic yield is significant, considering that HBOC accounts for 5-10% of all 

breast/ovarian cancer [14, 15]. 

One strategy to improve variant interpretation in patients is to reduce the full set of 

variants to a manageable list of potentially pathogenic variants. Evidence for 

pathogenicity of VUS in genetic disease is often limited to amino acid coding changes 

[16, 17], and mutations affecting splicing, transcriptional activation, and mRNA stability 

tend to be underreported [18–24]. Splicing errors are estimated to represent 15% of 

disease-causing mutations [25], but may be much higher [26, 27]. The impact of a single 

nucleotide change in a recognition sequence can range from insignificant to complete 

abolition of a protein binding site. Aberrant splicing events causing frameshifts often 

disrupt of protein function; in-frame changes are dependent on gene context. The 

complexity of interpretation of non-coding sequence variants benefits from 

computational approaches [28] and direct functional analyses [29–33] that may each 

support evidence of pathogenicity. 

Ex vivo transfection assays developed to determine the pathogenicity of VUS predicted to 

lead to splicing aberrations (using in silico tools) have been successful in identifying 

pathogenic sequence variants [34, 35]. Information technology (IT)-based analysis of 

splicing variants has proven to be robust and accurate (as determined by functional assays 

for mRNA expression or binding assays) at analyzing splice site (SS) variants, including 

splicing regulatory factor binding sites (SRFBSs), and in distinguishing them from 

polymorphisms in both rare and common diseases [36–39]. However, IT can be applied 

to any sequence recognized and bound by another factor [40], such as with transcription 

factor binding sites (TFBSs) and RNA-binding protein binding sites (RBBSs). IT is used 

as a measure of sequence conservation and is more accurate than consensus sequences 
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[41]. The individual information (𝑅𝑖) of a base is related to thermodynamic entropy, and 

therefore free energy of binding, and is measured on a logarithmic scale (in bits). By 

comparing the change in information (∆𝑅𝑖) for a nucleotide variation of a bound 

sequence, the resulting change in binding affinity is ≥ 2∆𝑅𝑖, such that a 1 bit change in 

information will result in at least a 2-fold change in binding affinity [42]. 

IT measures nucleotide sequence conservation and does not provide information on 

effects of variants on mRNA secondary (2°) structure, nor can it accurately predict effects 

of amino acid sequence changes. Associations of structural changes in untranslated 

regions of mRNA (UTR) with disease justifies including predicted effects of these 

changes on 2° structure in the comprehensive analysis of sequence variants [43]. Other in 

silico methods have attempted to address these deficiencies. For example, Halvorsen et 

al. (2010) introduced an algorithm called SNPfold, which computes the potential effect of 

a single nucleotide variant (SNV) on mRNA 2° structure [20]. Predictions made by 

SNPfold can be tested by the SHAPE assay (Selective 2’-Hydroxyl Acylation analyzed 

by Primer Extension) [44], which provides evidence for sequence variants that lead to 

structural changes in mRNA by detection of covalent adducts in mRNA. 

The implications of improved VUS interpretation are particularly relevant for HBOC due 

to its incidence and the adoption of panel testing for these individuals [45, 46]. It has 

been suggested that patients with a high risk profile receiving uninformative results 

would imply that deleterious variants lie in untested regions of BRCA1/2, untested genes, 

or are unrecognized [47, 48]. This is also supported by studies where families with 

linkage to BRCA1/2 had no detectable pathogenic mutation (however it is noteworthy that 

detection rates of BRCA mutations in families with documented linkage to these loci 

appears to vary by ascertainment, inclusion criteria, and technology used to identify the 

mutations) [49, 50]. The concept of non-BRCA gene association has been demonstrated 

by the identification of low-to-moderate risk HBOC genes, and variants within coding 

and non-coding regions affecting splicing and regulatory factor binding [51, 52]. 

Consequently, VUS, which include rare missense changes, other coding and non-coding 

changes in all of these genes, greatly outnumber the catalog of known deleterious 

mutations [53]. 



96 

 

Here, we develop and evaluate IT-based models to predict potential non-coding sequence 

mutations in SSs, TFBSs, and RBBSs in 7 genes sequenced in their entirety. These 

models were used to analyze 102 anonymous HBOC patients who did not exhibit known 

BRCA1/2 coding mutations at the time of initial testing, despite meeting the criteria for 

BRCA genetic testing. The genes are: ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, 

and TP53, and have been reported to harbor mutations that increase HBOC risk [54–76]. 

We apply these IT-based methods to analyze variants in the complete sequences of 

coding, non-coding, and up- and downstream regions of the 7 genes. In this study, we 

established and applied a unified IT-based framework, first filtering out common 

variants, then to “flag” potentially deleterious ones. Then, using context-specific criteria 

and information from the published literature, we prioritized likely candidates. 

4.2 Methods 

4.2.1 Design of Tiled Capture Array for HBOC Gene Panel 

Nucleic acid hybridization capture reagents designed from genomic sequences generally 

avoid repetitive sequence content to avoid cross hybridization [77]. Complete gene 

sequences harbor numerous repetitive sequences, and an excess of denatured C0t-1 DNA 

is usually added to hybridization to prevent inclusion of these sequences [78]. 

RepeatMasker software completely masks all repetitive and low-complexity sequences 

[79]. We increased sequence coverage in complete genes with capture probes by 

enriching for both single-copy and divergent repeat (> 30% divergence) regions, such 

that, under the correct hybridization and wash conditions, all probes hybridize only to 

their correct genomic locations [77]. This step was incorporated into a modified version 

of Gnirke and colleagues’ (2009) in-solution hybridization enrichment protocol, in which 

the majority of library preparation, pull-down, and wash steps were automated using a 

BioMek® FXP Automation Workstation (Beckman Coulter, Mississauga, Canada) [80]. 

Genes ATM (RefSeq: NM_000051.3, NP_000042.3), BRCA1 (RefSeq: NM_007294.3, 

NP_009225.1), BRCA2 (RefSeq: NM_000059.3, NP_000050.2), CDH1 (RefSeq: 

NM_004360.3, NP_004351.1), CHEK2 (RefSeq: NM_145862.2, NP_665861.1), PALB2 

(RefSeq: NM_024675.3, NP_078951.2), and TP53 (RefSeq: NM_000546.5, 
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NP_000537.3) were selected for capture probe design by targeting single copy or highly 

divergent repeat regions (spanning 10 kb up- and downstream of each gene relative to the 

most upstream first exon and most downstream final exon in RefSeq) using an ab initio 

approach [77]. If a region was excluded by ab initio but lacked a conserved repeat 

element (i.e. divergence > 30%) [79], the region was added back into the probe-design 

sequence file. Probe sequences were selected using PICKY 2.2 software [81]. These 

probes were used in solution hybridization to capture our target sequences, followed by 

NGS on an Illumina Genome Analyzer IIx (Appendix C.1). 

Genomic sequences from both strands were captured using overlapping oligonucleotide 

sequence designs covering 342,075 nt among the 7 genes (Figure 4.1). In total, 11,841 

oligonucleotides were synthesized from the transcribed strand consisting of the complete, 

single copy coding, and flanking regions of ATM (3,513), BRCA1 (1,587), BRCA2 

(2,386), CDH1 (1,867), CHEK2 (889), PALB2 (811), and TP53 (788). Additionally, 

11,828 antisense strand oligos were synthesized (3,497 ATM, 1,591 BRCA1, 2,395 

BRCA2, 1,860 CDH1, 883 CHEK2, 826 PALB2, and 776 TP53). Any intronic or 

intergenic regions without probe coverage are most likely due to the presence of 

conserved repetitive elements or other paralogous sequences. 

For regions lacking probe coverage (of ≥ 10 nt, N = 141; 8 in ATM, 26 in BRCA1, 10 in 

BRCA2, 29 in CDH1, 36 in CHEK2, 15 in PALB2, and 17 in TP53), probes were selected 

based on predicted Tms similar to other probes, limited alignment to other sequences in 

the transcriptome (< 10 times), and avoidance of stable, base-paired 2° structures (with 

unaFOLD) [82, 83]. The average coverage of these sequenced regions was 14.1-24.9% 

lower than other probe sets, indicating that capture was less efficient, though still 

successful. 

4.2.2 HBOC Samples for Oligo Capture and High-Throughput 
Sequencing 

Genomic DNA from 102 patients previously tested for inherited breast/ovarian cancer 

without evidence of a predisposing genetic mutation, was obtained from the Molecular 

Genetics Laboratory (MGL) at the London Health Sciences Centre in London, Ontario,  
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Figure 4.1: Capture probe coverage over sequenced genes. The genomic structure of 

the 7 genes chosen are displayed with the UCSC Genome Browser. Top row for each 

gene is a custom track with the “dense” visualization modality selected with black 

regions indicating the intervals covered by oligonucleotide capture reagent. Regions 

without probe coverage contain conserved repetitive sequences or correspond to 

paralogous sequences that are unsuitable for probe design.    
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Canada. Patients qualified for genetic susceptibility testing as determined by the Ontario 

Ministry of Health and Long-Term Care BRCA1 and BRCA2 genetic testing criteria [84] 

(see Appendix C.2). The University of Western Ontario research ethics board (REB) 

approved this anonymized study of these individuals to evaluate the analytical methods 

presented here. BRCA1 and BRCA2 were previously analyzed by Protein Truncation Test 

(PTT) and Multiplex Ligation-dependent Probe Amplification (MLPA). The exons of 

several patients (N = 14) had also been Sanger sequenced. No pathogenic sequence 

change was found in any of these individuals. In addition, one patient with a known 

pathogenic BRCA variant was re-sequenced by NGS as a positive control. 

4.2.3 Sequence Alignment and Variant Calling 

Variant analysis involved the steps of detection, filtering, IT-based and coding sequence 

analysis, and prioritization (Figure 4.2). Sequencing data were demultiplexed and aligned 

to the specific chromosomes of our sequenced genes (hg19) using both CASAVA 

(Consensus Assessment of Sequencing and Variation; v1.8.2) [85] and CRAC (Complex 

Reads Analysis and Classification; v1.3.0) [86] software. Alignments were prepared for 

variant calling using Picard [87] and variant calling was performed on both versions of 

the aligned sequences using the UnifiedGenotyper tool in the Genome Analysis Toolkit 

(GATK) [88]. We used the recommended minimum phred base quality score of 30, and 

results were exported in variant call format (VCF; v4.1). A software program was 

developed to exclude variants called outside of targeted capture regions and those with 

quality scores < 50. Variants flagged by bioinformatic analysis (described below) were 

also assessed by manually inspecting the reads in the region using the Integrative 

Genomics Viewer (IGV; version 2.3) [89, 90] to note and eliminate obvious false 

positives (i.e. variant called due to polyhomonucleotide run dephasing, or PCR duplicates 

that were not eliminated by Picard). Finally, common variants (≥ 1% allele frequency 

based on dbSNP 142 or > 5 individuals in our study cohort) were not prioritized. 

4.2.4 IT-Based Variant Analysis 

All variants were analyzed using the Shannon Human Splicing Mutation Pipeline, a 

genome-scale variant analysis program that predicts the effects of variants on mRNA 
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Figure 4.2: Framework for the identification of potentially pathogenic variants. Integrated laboratory processing and 

bioinformatic analysis procedures for comprehensive complete gene variant determination and analysis. Intermediate datasets 
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resulting from filtering are represented in yellow and final datasets in green. Non-bioinformatic steps, such as sample preparation are 

represented in blue and prediction programs in purple. Sequencing analysis yields base calls for all samples. CASAVA [85] and 

CRAC [86] were used to align these sequencing results to hg19. GATK [88] was used to call variants from this data against GRCh37 

release of the reference human genome. Variants with a quality score < 50 and/or call confidence score < 30 were eliminated along 

with variants falling outside of our target regions. SNPnexus [112–114] was used to identify the genomic location of the variants. 

Nonsense and indels were noted and prediction tools were used to assess the potential pathogenicity of missense variants. The 

Shannon Pipeline [91] evaluated the effect of a variant on natural and cryptic SSs, as well as SRFBSs. ASSEDA [38] was used to 

predict the potential isoforms as a result of these variants. PWMs for 83 TFs were built using an information weight matrix generator 

based on Bipad [106]. Mutation Analyzer evaluated the effect of variants found 10 kb upstream up to the first intron on protein 

binding. Bit thresholds (𝑹𝒊 values) for filtering variants on software program outputs are indicated. Variants falling within the UTR 

sequences were assessed using SNPfold [20], and the most probable variants that alter mRNA structure (p < 0.1) were then processed 

using mFold to predict the effect on stability [83]. All UTR variants were scanned with a modified version of the Shannon Pipeline, 

which uses PWMs computed from nucleotide frequencies for 28 RBPs in RBPDB [109] and 76 RBPs in CISBP-RNA [110]. All 

variants meeting these filtering criteria were verified with IGV [89, 90]. * Sanger sequencing was only performed for protein 

truncating, splicing, and selected missense variants    
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splicing [91, 92]. Variants were flagged based on criteria reported in Shirley et al. (2013): 

weakened natural site ≥ 1.0 bits, or strengthened cryptic site (within 300 nt of the nearest 

exon) where cryptic site strength is equivalent or greater than the nearest natural site of 

the same phase [91]. The effects of flagged variants were further analyzed in detail using 

the Automated Splice Site and Exon Definition Analysis (ASSEDA) server [38]. 

Exonic variants and those found within 500 nt of an exon were assessed for their effects, 

if any, on SRFBSs [38]. Sequence logos for splicing regulatory factors (SRFs) (SRSF1, 

SRSF2, SRSF5, SRSF6, hnRNPH, hnRNPA1, ELAVL1, TIA1, and PTB) and their 

𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 values (the mean information content [93]) are provided in Caminsky et al. 

(2015) [36]. Because these motifs occur frequently in unspliced transcripts, only variants 

with large information changes were flagged, notably those with a) ≥ 4.0 bit decrease, i.e. 

at least a 16-fold reduction in binding site affinity, with 𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≥ 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 for the 

particular factor analyzed, or b) ≥ 4.0 bit increase in a site where 𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 ≥ 0 bits. 

ASSEDA was used to calculate 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙, with the option selected to include the given SRF 

in the calculation. Variants decreasing 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 by < 3.0 bits (i.e. 8-fold) were predicted to 

potentially have benign effects on expression, and were not considered further. 

Activation of pseudoexons through creating/strengthening of an intronic cryptic splice 

site was also assessed [94]. Changes in intronic cryptic sites, where ∆𝑅𝑖 > 1 bit and 

𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 ≥ (𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 – 1 standard deviation [S.D.] of 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒), were identified. A 

pseudoexon was predicted if a pre-existing cryptic site of opposite polarity (with 𝑅𝑖 > 

[𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 - 1 S.D.]) and in the proper orientation for formation of exons between 10-250 

nt in length was present. In addition, the minimum intronic distance between the 

pseudoexon and either adjacent natural exon was 100 nt. The acceptor site of the 

pseudoexon was also required to have a strong hnRNPA1 site located within 10 nt (𝑅𝑖 ≥ 

𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) [38] to ensure accurate proofreading of the exon [37]. 

Next, variants affecting the strength of SRFs were analyzed by a contextual exon 

definition analysis of ∆𝑅𝑖,𝑡𝑜𝑡𝑎𝑙. The context refers to the documented splicing activity of 

an SRF. For example, TIA1 has been shown to be an intronic enhancer of exon 

definition, so only intronic sites were considered. Similarly, hnRNPA1 proofreads the 3' 
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SS (acceptor) and inhibits exon recognition elsewhere [95]. Variants that lead to 

redundant SRFBS changes (i.e. one site is abolished and another proximate site [≤ 2 nt] 

of equivalent strength is activated) were assumed to have a neutral effect on splicing. If 

the strength of a site bound by PTB (polypyrimidine tract binding protein) was affected, 

its impact on binding by other factors was analyzed, as PTB impedes binding of other 

factors with overlapping recognition sites, but does not directly enhance or inhibit 

splicing itself [96]. 

To determine effects of variants on transcription factor (TF) binding, we first established 

which TFs bound to the sequenced regions of the gene promoters (and first exons) in this 

study by using ChIP-seq data from 125 cell types (Appendix C.1) [97]. We identified 141 

TFs with evidence for binding to the promoters of the genes we sequenced, including c-

Myc, C/EBPβ, and Sp1, shown to transcriptionally regulate BRCA1, TP53, and ATM, 

respectively [98–100]. Furthermore, polymorphisms in TCF7L2, known to bind enhancer 

regions of a wide variety of genes in a tissue-specific manner [101], have been shown to 

increase risk of sporadic [102] and hereditary breast [103], as well as other types of 

cancer [104, 105]. 

IT-based models of the 141 TFs of interest were derived by entropy minimization of the 

DNase accessible ChIP-seq subsets [106]. Details are provided in Lu R, Mucaki E, and 

Rogan PK (BioRxiv; http://dx.doi.org/10.1101/042853). While some data sets would 

only yield noise or co-factor motifs (i.e. co-factors that bind via tethering, or histone 

modifying proteins [107]), techniques such as motif masking and increasing the number 

of Monte Carlo cycles yielded models for 83 TFs resembling each factor’s published 

motif. Appendix C.3 contains the final list of TFs and the models we built (described 

below) [108]. 

These TFBS models (N = 83) were used to scan all variants called in the promoter 

regions (10 kb upstream of transcriptional start site to the end of IVS1) of HBOC genes 

for changes in 𝑅𝑖. Binding site changes that weaken interactions with the corresponding 

TF (to 𝑅𝑖 ≤ 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) are likely to affect regulation of the adjacent target gene. Stringent 

criteria were used to prioritize the most likely variants and thus only changes to strong 
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TFBSs (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≥ 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒), where reduction in strength was significant (∆𝑅𝑖 ≥ 4.0 

bits), were considered. Alternatively, novel or strengthened TFBSs were also considered 

sources of dysregulated transcription. These sites were defined as having𝑅𝑖,𝑓𝑖𝑛𝑎𝑙  ≥ 

𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and as being the strongest predicted site in the corresponding genomic interval 

(i.e. exceeding the 𝑅𝑖 values of adjacent sites unaltered by the variant). Variants were not 

prioritized if the TF was known to a) enhance transcription and IT analysis predicted 

stronger binding, or b) repress transcription and IT analysis predicted weaker binding. 

Two complementary strategies were used to assess the possible impact of variants within 

UTRs. First, SNPfold software was used to assess the effect of a variant on 2° structure 

of the UTR (Appendix C.1) [20]. Variants flagged by SNPfold with the highest 

probability of altering stable 2° structures in mRNA (where p-value < 0.1) were 

prioritized. To evaluate these predictions, oligonucleotides containing complete wild-type 

and variant UTR sequences (Appendix C.4) were transcribed in vitro and followed by 

SHAPE analysis, a method that can confirm structural changes in mRNA [44]. 

Second, the effects of variants on the strength of RBBSs were predicted. Frequency-

based, position weight matrices (PWMs) for 156 RNA-binding proteins (RBPs) were 

obtained from the RNA-Binding Protein DataBase (RBPDB) [109] and the Catalog of 

Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) [110, 

111]. These were used to compute information weight matrices (based on the method 

described by Schneider et al. 1984; N = 147) (see Appendix C.1) [40]. All UTR variants 

were assessed using a modified version of the Shannon Pipeline [91] containing the 

RBPDB and CISBP-RNA models. Results were filtered to include a) variants with |∆𝑅𝑖| 

≥ 4.0 bits, b) variants creating or strengthening sites (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 ≥ 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and the 𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

< 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒), and c) RBBSs not overlapping or occurring within 10 nt of a stronger, pre-

existing site of another RBP. 

4.2.5 Exonic Protein-Altering Variant Analysis 

The predicted effects of all coding variants were assessed with SNPnexus [112–114], an 

annotation tool that can be applied to known and novel variants using up-to-date dbSNP 

and UCSC human genome annotations. Variants predicted to cause premature protein 
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truncation were given higher priority than those resulting in missense (or synonymous) 

coding changes. Missense variants were first cross referenced with dbSNP 142 [115]. 

Population frequencies from the Exome Variant Server [116] and 1000Genomes [117] 

are also provided. The predicted effects on protein conservation and function of the 

remaining variants were evaluated by in silico tools: PolyPhen-2 [118], Mutation 

Assessor (release 2) [119, 120], and PROVEAN (v1.1.3) [121, 122]. Default settings 

were applied and in the case of PROVEAN, the “PROVEAN Human Genome Variants 

Tool” was used, which includes SIFT predictions as a part of its output. Variants 

predicted by all four programs to be benign were less likely to have a deleterious impact 

on protein activity; however this did not exclude them from mRNA splicing analysis 

(described above in IT-Based Variant Analysis). All rare and novel variants were cross-

referenced with general mutation databases (ClinVar [123, 124], Human Gene Mutation 

Database [HGMD] [125, 126], Leiden Open Variant Database [LOVD] [127–134], 

Domain Mapping of Disease Mutations [DM2] [135], Expert Protein Analysis System 

[ExPASy] [136] and UniProt [137, 138]), and gene-specific databases (BRCA1/2: the 

Breast Cancer Information Core database [BIC] [139] and Evidence-based Network for 

the Interpretation of Germline Mutant Alleles [ENIGMA] [140]; TP53: International 

Agency for Research on Cancer [IARC] [141]), as well as published reports to prioritize 

them for further workup. 

4.2.6 Variant Classification 

Flagged variants were prioritized if they were likely to encode a dysfunctional protein 

(indels, nonsense codon > 50 amino acids from the C-terminus, or abolition of a natural 

SS resulting in out-of-frame exon skipping) or if they exceeded established thresholds for 

fold changes in binding affinity based on IT (see Methods above). In several instances, 

our classification was superseded by previous functional or pedigree analyses (reported in 

published literature or databases) that categorized these variants as pathogenic or benign. 

4.2.7 Positive control 

We identified the BRCA1 exon 17 nonsense variant c.5136G>A (chr17:41215907C>T; 

rs80357418; 2-5A) [142] in the sample that was provided as a positive control. This was 
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the same mutation identified by the MGL as pathogenic for this patient. We also 

prioritized another variant in this patient (Table 4.1) [143]. 

4.2.8 Variant Validation 

Protein-truncating, prioritized splicing, and selected prioritized missense variants were 

verified by Sanger sequencing. Primers of PCR amplicons are indicated in Appendix C.5. 

4.2.9 Deletion Analysis 

4.2.9.1 Junctional Read Detection 

Potential large rearrangements were detected with BreakDancer software [144], which 

identifies novel genomic rearrangements based on the respective orientation and distance 

between ends of the same read (and exceeding the lengths of NGS library inserts. This 

approach can, in theory, approximately localize deletions, duplications, or other types of 

breakpoints within exons, introns, and regulatory regions (eg. promoters) that could affect 

gene expression and function. We required at least 4 reads per suspected rearrangement 

in a sample separated by >700 nt, with each end mapping to proximate genomic reference 

coordinates to infer a potential deletion. Synthetic and cost limitations in the maximum 

genomic real estate covered by the capture reagent led to a tradeoff between extending 

the span of captured genomic intervals and higher tiling densities over shorter sequences, 

ie. exons, to achieve the level of coverage to reliably detect deletions based on read 

counts alone. 

4.2.9.2 Prioritization based on Potential Hemizygosity 

Our complete gene enrichment strategy with independent capture of both genomic 

strands enabled and facilitated development of a new algorithm to identify potential 

hemizygous genomic intervals in these individuals. In each subject, we first searched for 

contiguous long stretches (usually >> 1 kb) of non-polymorphic segments with 

diminished repetitive element content (<10%), which is consistent with the possibility of 

these regions harboring a deletion. Then, we determined the likelihood of homo- or 

hemizygosity by comparing the degree of heterozygosity of variants in each of these 

intervals in for an individual with all of the other individuals sequenced with this protocol  
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Table 4.1: Prioritized variants in the positive control  

Gene 
mRNA 

Protein 

rsID (dbSNP 142) 

Allele Frequency (%)† 
Category Consequence Ref 

BRCA1 
c.5136G>A 

p.Trp1712Ter 
rs80357418 Nonsense 151 AA short [142] 

BRCA2 
c.3218A>G 

p.Gln1073Arg 
rs80358566 

SRFBS 

Repressor action of hnRNPA1 at this site abolished 

(5.2 to 0.4 bits). Blocking action of PTB removed as 

site is abolished (5.5 to -7.5 bits) and may uncover 

binding sites of other SRFs. 

 

Missense 

Listed in ClinVar as conflicting interpretations (likely 

benign, unknown) and in BIC as unknown clinical 

importance. 2 in silico programs called deleterious. 

The variant occurs between repeat motifs BRC1 and 

BRC2 of BRCA2, a region in which pathogenic 

missense mutations have not yet been identified. 
[143] 

SRFBS 

Repressor action of hnRNPA1 at this site abolished 

(5.2 to 0.4 bits). Blocking action of PTB removed as 

site is abolished (5.5 to -7.5 bits) and may uncover 

binding sites of other SRFs. 
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in this population. Regions containing haplotype blocks in strong linkage disequilibrium 

(LD; from HapMap [145]) were then excluded as candidate deletion intervals. Some 

individuals without a deletion are expected to be non-polymorphic, because detection of 

heterozygosity depends on genomic length of the region, marker informativeness, and the 

level of LD for those markers. We required that > 80% of the control individuals be 

heterozygous for at least two well-distributed loci within these intervals. Highly 

informative SNPs with a random genomic distribution in the controls (and other public 

databases) and which were non-polymorphic in the individual with the suspected deletion 

were weighted more heavily in inferring potential hemizygosity. This analysis was 

implemented using a Perl script that identified the most likely intervals of hemizygosity, 

which were then crossreferenced with the corresponding genomic intervals in HapMap. 

4.3 Results 

4.3.1 Capture, Sequencing, and Alignment 

The average coverage of capture region per individual was 90.8x (range of 53.8 to 118.2x 

between 32 samples) with 98.8% of the probe-covered nucleotides having ≥ 10 reads. 

Samples with fewer than 10 reads per nucleotide were re-sequenced and the results of 

both runs were combined. The combined coverage of these samples was, on average, 

48.2x (± 36.2). 

The consistency of both library preparation and capture protocols was improved from 

initial runs, which significantly impacted sequence coverage (Appendix C.1). Of the 102 

patients tested, 14 had been previously Sanger sequenced for BRCA1 and BRCA2 exons. 

Confirmation of previously discovered SNVs served to assess the methodological 

improvements introduced during NGS and ultimately, to increase confidence in variant 

calling. Initially, only 15 of 49 SNVs in 3 samples were detected. The detection rate of 

SNVs was improved to 100% as the protocol progressed. All known SNVs (N = 157) 

were called in subsequent sequencing runs where purification steps were replaced with 

solid phase reversible immobilization beads and where RNA bait was transcribed the 

same day as capture. To minimize false positive variant calls, sequence read data were 
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aligned with CASAVA and CRAC, variants were called for each alignment with GATK, 

and discrepancies were then resolved by manual review. 

GATK called 14,164 unique SNVs and 1,147 indels. Only 3777 (15.3%) SNVs were 

present in both CASAVA and CRAC-alignments for at least one patient, and even fewer 

indel calls were concordant between both methods (N = 110; 6.2%). For all other SNVs 

and indels, CASAVA called 6871 and 1566, respectively, whereas CRAC called 13,958 

and 110, respectively. Some variants were counted more than once if they were called by 

different alignment programs in two or more patients. Intronic and intergenic variants 

proximate to low complexity sequences tend to generate false positive variants due to 

ambiguous alignment, a well known technical issue in short read sequence analysis [146, 

147], contributing to this discrepancy. For example, CRAC correctly called a 19 nt 

deletion of BRCA1 (rs80359876; also confirmed by Sanger sequencing) but CASAVA 

flagged the deleted segment as a series of false-positives (Appendix C.6). For these 

reasons, all variants were manually reviewed. 

4.3.2 IT-Based Variant Identification and Prioritization 

4.3.2.1 Natural SS Variants 

The Shannon Pipeline reported 99 unique variants in natural donor or acceptor SSs. After 

technical and frequency filtering criteria were applied, 12 variants remained (Appendix 

C.7). IT analysis allowed for the prioritization of 3 variants, summarized in Table 4.2. 

First, the novel ATM variant c.3747-1G>A (chr11:108,154,953G>A; sample number 7-

4F) abolishes the natural acceptor of exon 26 (11.0 to 0.1 bits). ASSEDA reports the 

presence of a 5.3 bit cryptic acceptor site 13 nt downstream of the natural site, but the 

effect of the variant on a pre-existing cryptic site is negligible (~0.1 bits). The cryptic 

exon would lead to exon deletion and frameshift (Figure 4.3A). ASSEDA also predicts 

skipping of the 246 nt exon, as the 𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 of the natural acceptor is now below 

𝑅𝑖,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (1.6 bits), altering the reading frame. Second, the novel ATM c.6347+1G>T 

(chr11:108188249G>T; 4-1F) abolishes the 10.4 bit natural donor site of exon 44 (∆𝑅𝑖= -

18.6 bits), and is predicted to cause exon skipping. Finally, the previously reported 

CHEK2 variant, c.320-5A>T (chr22:29121360T>A; rs121908700; 4-2B) [148] weakens 
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Table 4.2: Variants prioritized by IT analysis  

Patient ID Gene mRNA 
rsID (dbSNP 142) 

Allele Frequency (%)d 

Information Change 

Consequencef or Binding 

Factor Affected 
Ri,initial Ri,initial ΔRi or Ri

e  

(bits) (bits) (bits) 

Abolished Natural SS 

7-4F ATM c.3747-1G>Aa Novel 11.0 0.1 -10.9 
Exon skipping and use of 

alternative splice forms 

4-1F ATM c.6347+1G>Tb Novel 10.4 -8.3 -18.6 Exon skipping 

Leaky Natural SS 

4-2B CHEK2 c.320-5T>Aa 
rs121908700 

0.08 
6.8 4.1 -2.7 

Leaky splicing with intron 

inclusion 

Activated Cryptic SS 

7-3E BRCA1 c.548-293G>A 
rs117281398 

0.74 
-12.1 2.6 14.7 

Cryptic site not expected to 

be used. Total information 

for natural exon is stronger 

than cryptic exon. 

7-4A BRCA2 c.7618-269_7618- Novel 3.9 9.4 5.5 Cryptic site not expected to 
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260del10 be used. Total information 

for natural exon is stronger 

than cryptic exon. 

Pseudoexon formation due to activated acceptor SS 

7-3F BRCA2 c.8332-805G>A Novel -9.3 5.4 5.6e 6,065/211/592f 

7-3D CDH1 c.164-2023A>G 
rs184740925 

0.3 
-6.6 4.3 6.5 e 61,236/224/1,798f 

5-3H CDH1 c.2296-174T>A 
rs565488866 

0.02 
7.3 8.5 5.0e 1,175/50/124f 

Pseudoexon formation due to activated donor SS 

3-6A BRCA1 c.212+253G>A 
rs189352191 

0.08 
4.1 6.7 5.2e 186/63/1,250f 

5-2G BRCA2 c.7007+2691G>A 
rs367890577 

0.02 
4.7 7.2 7.7e 2,589/103/5,272f 

Affected TFBSs 

7-4B BRCA1 c.-8895G>A Novel 10.9 -0.2 -11.1 GATA-3 (GATA3) 
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5-3E 

7-4E 
CDH1 c.-54G>C 

rs5030874 

0.16 
1.7 12.0 10.4 E2F-4 (E2F4) 

5-2B PALB2 c.-291C>G 
rs552824227 

0.1 
12.1 -1.3 -13.4 GABPα (GABPA) 

7-2F TP53 c.-28-3132T>C 
rs17882863 

0.3 
-6.3 10.9 17.2 RUNX3 (RUNX3) 

4-1A TP53 c.-28-1102T>C 
rs113451673 

0.4 

5.1 12.3 7.2 E2F-4 (E2F4) 

8.0 12.9 4.8 Sp1 (SP1) 

Affected RBBSs 

7-4G ATM 

c.-244T>A 

c.-744T>A 

c.-1929T>A 

c.-3515T>A 

rs539948218 

0.04 
9.8 -19.9 -29.7 RBFOX 

5-3C CDH1 c.*424T>A Novel 
-20.3 9.6 29.9 SF3B4 

8.2 1.8 -6.4 CELF4 

7-2E CHEK2 c.-588G>A rs141568342 10.9 3.7 -7.2 BX511012.1 
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4-3C.5-4G CHEK2 c.-345C>Tc rs137853007 3.3 11.4 8.2 SF3B4 

3-1A 

4-1H 
TP53 

c.-107T>C 

c.-188T>C 

rs113530090 

0.72 
10.5 4.5 -6.0 ELAVL1 

4-2H 

7-2F 
TP53 

c.*1175A>C 

c.*1376A>C 

c.*1464A>C 

rs78378222 

0.26 
10.7 4.1 -6.6 KHDRBS1 

a Confirmed by Sanger sequencing  

b Ambiguous Sanger sequencing results 

c Prioritized under missense and was therefore verified with Sanger sequencing. Variant was confirmed 

d If available 

e 𝑅𝑖 of site of opposite polarity in the pseudoexon 

f Consequences for pseudoexon formation describe how the intron is divided: “new intron A length/pseudoexon length/new exon B” 

length. 

None of the variants have been previously reported by other groups with the exception of CHEK2 c.320-5T>A [148].  
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Figure 4.3: Predicted isoforms and relative abundances as a consequence of ATM 

splice variant c.3747-1G>A. Intronic ATM variant c.3747-1G>A abolishes (11.0 to 0.1 

bits) the natural acceptor of exon 26 (total of 63 exons). A) ASSEDA predicts skipping of 

the natural exon (𝑹𝒊,𝒊𝒏𝒊𝒕𝒊𝒂𝒍 from 14.5 to 3.6 bits [an 1910 fold decrease in exon strength]; 

isoform 7) and/or activation of a preexisting cryptic acceptor site 13 nt downstream 

(𝑹𝒊,𝒕𝒐𝒕𝒂𝒍 for cryptic exon = 9.0 bits; isoform 1) of the natural site leading to exon 

truncation. The reading frame is altered in both mutant isoforms. The other isoforms use 

weak, alternate acceptor/donor sites leading to cryptic exons with much lower total 

information. B) Before the mutation, isoform 7 is expected to be the most abundant splice 

form. C) After the mutation, isoform 1 is predicted to become the most abundant splice 

form and the wild-type isoform is not expected to be expressed. 
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the natural acceptor of exon 3 (6.8 to 4.1 bits), and may active a cryptic acceptor (7.4 

bits) 92 nt upstream of the natural acceptor site which would shift the reading frame 

(Figure 4.4). A constitutive, frameshifted alternative isoform of CHEK2 lacking exons 3 

and 4 has been reported, but skipping of exon 3 alone is not normally observed. 

Variants either strengthening (N = 4) or slightly weakening (∆𝑅𝑖 < 1.0 bits; N = 4) a 

natural site were not prioritized. In addition, we rejected the ATM variant (c.1066-6T>G; 

chr11:108119654T>G; 4-1E and 7-2B), which slightly weakens the natural acceptor of 

exon 9 (11.0 to 8.1 bits). Although other studies have shown leaky expression as a result 

of this variant [149], a more recent meta-analysis concluded that this variant is not 

associated with increased breast cancer risk [150]. 

4.3.3 Cryptic SS Activation 

Two variants produced information changes that could potentially impact cryptic 

splicing, but were not prioritized for the following reasons (Table 4.2). The first variant, 

novel BRCA2 deletion c.7618-269_7618-260del10 (chr13:32931610_32931619del10; 7-

4A) strengthens a cryptic acceptor site 245 nt upstream from the natural acceptor of exon 

16 (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 9.4 bits, ∆𝑅𝑖 = 5.5 bits). Being 5.7-fold stronger than the natural site (6.9 

bits), two potential cryptic isoforms were predicted, however the exon strengths of both 

are weaker than the unaffected natural exon (𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = 6.6 bits) and thus neither were 

prioritized. The larger gap surprisal penalties explain the differences in exon strength. 

The natural donor SS may still be used in conjunction with the abovementioned cryptic 

SS, resulting in an exon with 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = 3.5 bits. Alternatively, the cryptic site and a weak 

donor site 180 nt upstream of the natural donor (𝑅𝑖 = 0.7 vs 1.4, cryptic and natural 

donors, respectively) result in an exon with 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = 6.5 bits. The second variant, 

BRCA1 c.548-293G>A (chr17:41249599C>T; 7-3E), creates a weak cryptic acceptor 

(𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 2.6 bits, ∆𝑅𝑖 = 6.2 bits) 291 nt upstream of the natural acceptor for exon 8 

(∆𝑅𝑖 = 0.5). Although the cryptic exon is strengthened (final 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = 6.9 bits, ∆𝑅𝑖 = 

14.7 bits), ASSEDA predicts the level of expression of this exon to be negligible, as it is 

weaker than the natural exon 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = 8.4 bits) due to the increased length of the 

predicted exon (+291 nt) [38]. 
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Figure 4.4: Predicted isoforms and relative abundances as a consequence of CHEK2 

splice variant c.320-5T>A. Intronic CHEK2 variant c.320-5T>A weakens (6.8 to 4.1 

bits) the natural acceptor of exon 3 (total of 15 exons). A) ASSEDA reports the 

weakening of the natural exon strength (𝑹𝒊,𝒕𝒐𝒕𝒂𝒍 reduced from 13.2 to 10.5 bits), which 

would result in reduced splicing of the exon otherwise known as leaky splicing. A pre-

existing cryptic acceptor exists 92 nt upstream of the natural site, leading to a cryptic 

exon with similar strength to the mutated exon (𝑹𝒊,𝒕𝒐𝒕𝒂𝒍 = 10.0 bits). This cryptic exon 

would contain 92 nt of the intron. B) Before the mutation, isoform 1 is expected to be the 

only isoform expressed. C) After the mutation, isoform 1 (wild-type) is predicted to 

become relatively less abundant and isoform 2 is expected to be expressed, although less 

abundant in relation to isoform 1.  
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4.3.4 Pseudoexon Formation 

The Shannon Pipeline initially reported 1583 unique variants creating or strengthening 

intronic cryptic sites. We prioritized 5 variants, 1 of which is novel (BRCA2 c.8332-

805G>A; 7-3F), that were within 250 nt of a pre-existing complementary cryptic site and 

have an hnRNPA1 site within 5 nt of the acceptor (Table 4.2). If used, 3 of these 

pseudoexons would lead to a frameshifted transcript. 

4.3.5 SRF Binding 

Variants within 500 nt of an exon junction and all exonic variants (N = 4015) were 

investigated for their potential effects on affinity of sites to corresponding SRFs [38]. IT 

analysis flagged 54 variants significantly altering the strength of at least one binding site 

(Appendix C.8). A careful review of the variants, the factor affected, and the position of 

the binding site relative to the natural SS, prioritized 36 variants (21 novel), of which 4 

are in exons and 32 are in introns. As an example, a novel CHEK2 exon 2 variant 

c.69C>A (p.Gly23=) is predicted to increase the strength of an hnRNP A1 site (0.7 to 5.3 

bits) and decrease total exon strength (∆𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 = -5.7 bits). A similar type of exonic 

variant in FANCM, which was predicted to create exonic hnRNP A1 site by IT, has been 

shown to bind this exonic repressor and induce exon skipping [37]. 

4.3.6 TF Binding 

We assessed SNVs with models of 83 TFs experimentally shown to bind (Appendix C.3) 

upstream or within the first exon and intron of our sequenced genes (N = 2177). Thirteen 

variants expected to significantly affect TF binding were flagged (Appendix C.9). The 

final filtering step considered the known function of the TF in transcription, resulting in 5 

prioritized variants (Table 4.2) in 6 patients (one variant was identified in two patients). 

Four of these variants have been previously reported (rs5030874, rs552824227, 

rs17882863, rs113451673) and one is novel (c.-8895G>A; 7-4B). 

4.3.7 UTR Structure and Protein Binding 

There were 364 unique UTR variants found by sequencing. These variants were 

evaluated for their effects on mRNA 2° structure (including that of splice forms with 
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alternate UTRs in the cases of BRCA1 and TP53) through SNPfold, resulting in 5 flagged 

variants (Table 4.3), all of which have been previously reported. 

Analysis of three variants using mFOLD [83] revealed likely changes to the UTR 

structure (Figure 4.5). Two variants with possible 2° structure effects were common 

(BRCA2 c.-52A>G [N = 26 samples] and c.*532A>G [N = 40]) and not prioritized. The 

5’UTR CDH1 variant c.-71C>G (chr16:68771248C>G; rs34033771; 7-4C) disrupts a 

double-stranded hairpin region to create a larger loop structure, thus increasing binding 

accessibility (Figure 4.5A and B). Analysis using RBPDB and CISBP-RNA-derived IT 

models suggests this variant affects binding by NCL (Nucleolin, a transcription 

coactivator) by decreasing binding affinity 14-fold (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙= 6.6 bits, ∆𝑅𝑖 = -3.8 bits) 

(Appendix C.10). This RBP has been shown to bind to the 5’ and 3’ UTR of p53 mRNA 

and plays a role in repressing its translation [151]. 

In addition, the TP53 variant c.*485G>A (NM_000546.5: chr17:7572442C>T; 

rs4968187) is found at the 3’UTR and was identified in two patients (4-2E and 5-4A). In 

silico mRNA folding analysis demonstrated this variant disrupts a G/C bond of a loop in 

the highest ranked potential mRNA structure (Figure 4.5C and D). Also, SHAPE analysis 

showed a difference in 2° structure between the wild-type and mutant (data not shown). 

IT analysis with RBBS models indicated that this variant significantly increases the 

binding affinity of SF3B4 by > 48-fold (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 11.0 bits, ∆𝑅𝑖 = 5.6 bits) (Appendix 

C.10). This RBP is one of four subunits comprising the splice factor 3B, which binds 

upstream of the branch-point sequence in pre-mRNA [152]. 

The third flagged variant also occurs in the 3’UTR of TP53 (c.*826G>A; 

chr17:7,572,101C>T; rs17884306), and was identified in 6 patients (2-1A, 7-1B, 5-2A.7-

1D, 7-2B, 7-2F, and 7-4C). It disrupts a potential loop structure, stabilizing a double-

stranded hairpin, and possibly making it less accessible (Figure 4.5E and F). Analysis 

using RBPDB-derived models suggests this variant could affect the binding of both 

RBFOX2 and SF3B4 (Appendix C.10). A binding site for RBFOX2, which acts as a 

promoter of alternative splicing by favoring the inclusion of alternative exons [153], is 

created (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 9.8 bits; ∆𝑅𝑖 = -6.5 bits). This variant is also expected to 
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Table 4.3: Variants predicted by SNPfold to affect UTR structure 

Classa Patient ID Gene mRNA 
UTR 

position 

rsID (dbSNP 142) 

Allele Frequency (%)d 
Ranke p-value 

F In 26 patients BRCA2b c.-52A>G 5’ UTR 
rs206118 

14.86 
2/900 0.002 

F In 40 patients BRCA2b c.*532A>G 3’ UTR 
rs11571836 

19.75 
239/2700 0.089 

P 7-4C CDH1c c.-71C>G 5’ UTR 
rs34033771 

0.56 
69/600 0.115 

F 
4-2E 

5-4A 
TP53b c.*485G>A 3’ UTR 

rs4968187 

5.11 
169/4500 0.038 

F 
2-1A, 7-1B, 5-2A, 7-

1D, 7-2B, 7-2F, 7-4C 
TP53b c.*826G>A 3’ UTR 

rs17884306 

5.71 
371/4500 0.082 

a F:Flagged; P:Prioritized 

b Long Range UTR SNPfold Analysis 

c Local Range SNPfold Analysis 

d If available 

e Rank of the SNP, in terms of how much it changes the mRNA structure compared to all other possible mutations.  
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Figure 4.5: Predicted alteration in UTR structure using mFOLD for variants 

flagged by SNPfold. Wild-type and variant structures are displayed, with the variant 

indicated by a red arrow. A) Predicted wild-type structure of CDH1 5’UTR surrounding 

c.-71. B) Predicted CDH1 5’UTR structure due to c.-71C>G variant. C) Predicted wild-

type TP53 3’UTR structure surrounding c.*485. D) Predicted TP53 5’UTR structure due 

to c.*485G>A variant. E) Predicted wild-type TP53 3’UTR structure surrounding c.*826. 

F) Predicted TP53 5’UTR structure due to c.*826G>A variant. §SHAPE analysis revealed 

differences in reactivity between mutant and variant mRNAs, confirming alterations to 2° 

structure. 
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simultaneously abolish a SF3B4 binding site (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = -20.3 bits; ∆𝑅𝑖 = -29.9 bits). 

RBPDB- and CISBP-RNA-derived information model analysis of all UTR variants 

resulted in the prioritization of 1 novel, and 5 previously-reported variants (Table 4.2). 

No patient within the cohort exhibited more than one prioritized RBBS variant. 

To evaluate the background rate of prioritizing variants flagged by this method, all 5' and 

3' UTR SNVs in dbSNP144 for the 7 genes sequenced (excluding those already flagged 

in Table 4.3) were evaluated by SNPfold and our RBP information models. Of 1207 

SNVs, only 10 were prioritized with both methods, which results in a background rate of 

0.83%. 

4.3.8 Exonic Variants Altering Protein Sequence 

Exonic variants called by GATK (N = 245) included insertions, deletions, nonsense, 

missense, and synonymous changes. 

4.3.8.1 Protein-Truncating Variants 

We identified 3 patients with different indels (Table 4.4). One was a PALB2 insertion 

c.1617_1618insTT (chr16:23646249_23646250insAA; 5-3A) in exon 4, previously 

reported in ClinVar as pathogenic. This mutation results in a frameshift and premature 

translation termination by 626 residues, abolishing domain interactions with RAD51, 

BRCA2, and POLH [137]. We also identified two known frameshift mutations in 

BRCA1: c.4964_4982del19 in exon 15 (chr17:41222949_41222967del19; rs80359876; 5-

1B) and c.5266_5267insC in exon 19 (chr17:41209079_41209080insG; rs397507247; 5-

3C) [148, 154]. Both are indicated as pathogenic and common in the BIC Database due to 

the loss of one or both C-terminal BRCT repeat domains [137]. Truncation of these 

domains produces instability and impairs nuclear transcript localization [155], and this 

bipartite domain is responsible for binding phosphoproteins that are phosphorylated in 

response to DNA damage [156, 157]. 

We also identified 4 nonsense mutations, one of which was novel in exon 4 of PALB2 

(c.1042C>T; chr16:23646825G>A; 4-4D). Another in PALB2 has been previously 

reported (c.1240C>T; chr16:23646627G>A; rs180177100; 7-3A) [58]. As a 
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Table 4.4: Variants resulting in premature protein truncation 

Patient 

ID 
Gene Exon 

mRNA 

Protein 

rsID (dbSNP 142) 

Allele Frequency (%)c 
ClinVard,e,f Details Ref 

Insertions/Deletions 

5-1B BRCA1 15 of 23 
c.4964_4982del19a 

p.Ser1655Tyrfs 
rs80359876 

6d; Pathogenic/likely 

pathogenice; Familial 

breast and breast-ovarian 

cancer, Hereditary cancer-

predisposing syndromef. 

STOP at 

p.1670 

193 AA short 

- 

5-3C BRCA1 19 of 23 
c.5266_5267insCa 

p.Gln1756Profs 
rs397507247 

13d; Pathogenic, risk 

factore; Familial breast, 

breast-ovarian, and 

pancreatic cancer, 

Hereditary cancer-

predisposing syndromef. 

STOP at 

p.1788  

75 AA short 

[148, 

154] 

5-3A PALB2 4 of 13 
c.1617_1618insTTa 

p.Asn540Leufs 
- 

1d; Pathogenice; Hereditary 

cancer-predisposing 

syndromef. 

STOP at 

p.561  

626 AA short 

- 

Stop Codons 
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7-1G BRCA2 15 of 27 
c.7558C>Tb 

p.Arg2520Ter 
rs80358981 

5d; Pathogenice; Familial 

breast, and breast-ovarian 

cancer, Hereditary cancer-

predisposing syndromef. 

899 AA short [158] 

4-4A BRCA2 25 of 27 
c.9294C>Ga 

p.Tyr3098Ter 
rs80359200 

3d; Pathogenice; Familial 

breast and breast-ovarian 

cancerf. 

321 AA short [159] 

7-3A PALB2 4 of 13 
c.1240C>Ta 

p.Arg414Ter 
rs180177100 

3d; Pathogenice; Familial 

breast cancer, Hereditary 

cancer-predisposing 

syndromef. 

773 AA short [58] 

4-4D PALB2 4 of 13 
c.1042C>Ta 

p.Gln348Ter 
Novel - 839 AA short - 

a Confirmed by Sanger sequencing 

b Not confirmed by Sanger sequencing 

c If available 

d Number of submissions 

e Clinical significance 

f Condition(s)  
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consequence, functional domains of PALB2 that interact with BRCA1, RAD51, BRCA2, 

and POLH are lost [137]. Two known nonsense mutations were found in BRCA2, 

c.7558C>T in exon 15 [158] and c.9294C>G in exon 25 [159]. The first 

(chr13:32930687C>T; rs80358981; 7-1G) causes the loss of the BRCA2 region that 

binds FANCD2, responsible for loading BRCA2 onto damaged chromatin [160]. The 

second (chr13:32968863C>G, rs80359200; 4-4A) does not occur within a known 

functional domain, however the transcript is likely to be degraded by nonsense mediated 

decay [161]. 

4.3.8.2 Missense 

GATK called 61 missense variants, of which 18 were identified in 6 patients or more and 

19 had allele frequencies > 1.0% (Appendix C.11). The 40 remaining variants (15 ATM, 8 

BRCA1, 9 BRCA2, 2 CDH1, 2 CHEK2, 3 PALB2, and 1 TP53) were assessed using a 

combination of gene specific databases, published classifications, and 4 in silico tools 

(Appendix C.12). We prioritized 27 variants, 2 of which were novel. None of the non-

prioritized variants were predicted to be damaging by more than 2 of 4 conservation-

based software programs. 

4.3.9 Variant Classification  

Initially, 15,311 unique variants were identified by complete gene sequencing of 7 HBOC 

genes. Of these, 132 were flagged after filtering, and further reduced by IT-based variant 

analysis and consultation of the published literature to 87 prioritized variants. Figure 4.6 

illustrates the decrease in the number of unique variants per patient at each step of our 

identification and prioritization process. The distribution of prioritized variants by gene is 

34 in ATM, 13 in BRCA1, 11 in BRCA2, 8 in CDH1, 6 in CHEK2, 10 in PALB2, and 5 in 

TP53 (Appendix C.13), which are categorized by type in Table 4.5. 

Three prioritized variants have multiple predicted roles: ATM c.1538A>G in missense 

and SRFBS, CHEK2 c.190G>A in missense and UTR binding, and CHEK2 c.433C>T in 

missense and UTR binding. Of the 102 patients that we sequenced, 72 (70.6%) exhibited 

at least one prioritized variant, and some patients harbored more than one prioritized  
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Figure 4.6: Ladder plot representing variant identification and prioritization. Each line is representative of a different sample in 

each sequencing run (A-E), illustrating the number of unique variants at important steps throughout the variant prioritization process. 

The left-most point indicates the total number of unique variants. The second point represents the number of unique variants 

remaining after common (> 5 patients within cohort and/or ≥ 1.0% allele frequency) and false-positive variants were removed. The 

right-most point represents the final number of unique. No variants were prioritized in the following patients: 2-1A, 2-5A, 2-6A, 3-2A, 

3-3A, 3-4A, 3-5A, 3-8A, 4-1B, 4-2C, 4-2F, 4-3B, 4-3D, 4-4B, 4-4E, 5-1G, 5-1H, 5-3D, 5-4C, 5-4D, 5-4F, 5-4G, 5-4H, 7-1B, 7-1C, 7-

1D, 7-1H, 7-2B, 7-2C, 7-2H, 7-3H, 7-4A, 7-4D, 7-4H. The average number of variants per patient at each step is indicated in a table 

below each plot, along with the percent reduction in variants from one step to another. 
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Table 4.5. Summary of prioritized variants by gene 

 
Indel Nonsense Missense 

Natural 

Splicing 

Cryptic 

Splicing 
Pseudoexon 

SR 

Factor 
TF 

UTR 

Structure 

UTR 

Binding 
Total 

ATM 0 0 14 2 0 0 18 0 0 1 34a 

BRCA1 2 0 2 0 0 1 7 1 0 0 13 

BRCA2 0 2 3 0 0 2 4 0 0 0 11 

CDH1 0 0 2 0 0 2 1 1 1 1 8 

CHEK2 0 0 2 1 0 0 3 0 0 2 6a 

PALB2 1 2 3 0 0 0 3 1 0 0 10 

TP53 0 0 1 0 0 0 0 2 0 2 5 

Total 3 4 27 3 0 5 36 5 1 6 
 

Three variants were prioritized under multiple categories: ATM chr11:108121730A>G (missense and SRFBS), CHEK2 

chr22:29121242G>A (missense, UTR binding), and CHEK2 chr22:29130520C>T (missense, UTR binding). 

a Counts represent the number of unique variants identified (i.e. a variant is not counted twice if it appeared in multiple individuals).  
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variant (N = 33; 32%). Appendix C.14 presents a summary of all flagged and prioritized 

variants for patients with at least one prioritized variant. 

4.3.10 Prioritization of Potential Deletions 

Using BreakDancer, none of the individuals analyzed exhibited large rearrangements that 

met the level of stringency required, but a small intragenic rearrangement in BRCA1 was 

identified and confirmed by Sanger sequencing. Attempts to detect deletions with 

BreakDancer only flagged single, non-contiguous paired-end reads, rather than a series of 

reads clustered within the same region within the same individual, which would be 

necessary to indicate the presence of a true deletion or structural rearrangement. 

After prioritizing individuals for potential hemizygosity in the sequenced regions, 

potential deletions were detected in BRCA2 and CDH1. Patient UWO5-4D exhibited a 

non-polymorphic 32.1 kb interval in BRCA2 spanning introns 1 to 13 that was absent 

from all of the other individuals (chr13:32890227-32922331). Haploview (hapmap.org) 

showed very low levels of linkage disequilibrium in this region. The potential deletion 

may extend further downstream, however the presence of a haploblock covering the 

entire sequenced interval beyond exon 11 with significant LD precludes delineation of 

the telomeric breakpoint. We also flagged a non-polymorphic 2.6 kb interval near the 3’ 

end of CDH1 in 6 individuals (UWO3-5, UWO4-2C, UWO4-4E, UWO4-4F, UWO4-2G, 

UWO5-2H). This is a low LD region spanning chr16:68861286-68863887 that includes 

exons 14 and 15, and is polymorphic in all of the other individuals sequenced. CDH1 

mutations are characteristically present in families with predisposition to gastric cancer, 

however breast cancer frequently co-occurs [69]. A study of CDH1 deletions in inherited 

gastric cancer identified two families with deletions that overlap the intervals prioritized 

in the present study [162].  

4.3.11 Comparison to Combined Annotation Dependent Depletion  

The analysis and prioritization of non-coding variants can also be accomplished using 

Combined Annotation Dependent Depletion (CADD; [163]), which uses known and 

simulated variants to compute a C-score, an ad hoc measure of how deleterious is likely 

to be. The suggested C-score cutoff is between 10-20, though it is stated that any selected 
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cutoff value would be arbitrary (http://cadd.gs.washington.edu/info). This contrasts with 

information-based methods, which are based on thermodynamically-defined thresholds. 

To directly compare methods, CADD scores were obtained for all prioritized or flagged 

SNVs. Half of prioritized variants met this cutoff (C>10), while only 28.6% of flagged 

variants did the same. All prioritized nonsense variants (4/4) and 26/27 missense variants 

had strong C-scores. Prioritized non-coding variant categories that correlated well with 

CADD include natural splicing variants (4/4), UTR structure variants (1/1), and RBPs 

(4/6).Weakly correlated variants included those affecting SRFBPs (5/36), TFBS (2/5), 

and pseudoexon activating variants (0/5). Missense mutations comprised 75% of the 

flagged variants with C>10. The aforementioned flagged splicing variant ATM c.1066-

6T>G also exceeded the threshold C value (C = 11.9). Meanwhile, the flagged TP53 

variant, shown by SHAPE analysis to alter UTR structure, did not (C = 5.3).  Despite 

consistency between some variant categories, the underlying assumptions of each 

approach probably explain why these results differ for non-coding variants. The limited 

numbers validated, deleterious non-coding variants also contributes to the accuracy of 

these predictions [163]. 

4.3.12 Variant Verification  

We verified prioritized protein-truncating (N = 7) and splicing (N = 4) variants by Sanger 

sequencing (Table 4.2 and Table 4.4, respectively). In addition, two missense variants 

(BRCA2 c.7958T>C and CHEK2 c.433C>T) were re-sequenced, since they are indicated 

as likely pathogenic/pathogenic in ClinVar (Appendix C.12). All protein-truncating 

variants were confirmed, with one exception (BRCA2 c.7558C>T, no evidence for the 

variant was present for either strand). Two of the mRNA splicing mutations were 

confirmed on both strands, while the other two were confirmed on a single strand (ATM 

c.6347+1G>T and ATM c.1066-6T>G). Both documented pathogenic missense variants 

were also confirmed. 

4.4 Discussion  

NGS technology offers advantages in throughput and variant detection [126], but the task 

of interpreting the sheer volume of variants in complete gene or genome data can be 
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daunting. The whole genome of a Yoruban male contained approximately 4.2 million 

SNVs and 0.4 million structural variants [164]. The variant density in the present study 

(average 948 variants per patient) was 5.3-fold lower than the same regions in HapMap 

sample NA12878 in Illumina Platinum Genomes Project (5029 variants) [165]. The 

difference can be attributed primarily to the exclusion of polymorphisms in highly 

repetitive regions in our study. 

Conventional coding sequence analysis, combined with an IT-based approach for 

regulatory and splicing-related variants, reduced the set to a manageable number of 

prioritized variants. Unification of non-coding analysis of diverse protein-nucleic acid 

interactions using the IT framework accomplishes this by applying thermodynamic-based 

thresholds to binding affinity changes and by selecting the most significant binding site 

information changes, regardless of whether the motifs of different factors overlap. 

Previously, rule-based systems have been proposed for variant severity classification 

[166, 167]. Functional validation and risk analyses of these variants are a prerequisite for 

classification, but this would not be practical to accomplish without first limiting the 

subset of variants analyzed. With the exception of some (but not all [37]) protein 

truncating variants, classification is generally not achievable by sequence analysis alone. 

Only a minority of variants with extreme likelihoods of pathogenic or benign phenotypes 

are clearly delineated because only these types of variants are considered actionable [166, 

167]. The proposed classification systems preferably require functional, co-segregation, 

and risk analyses to stratify patients. Nevertheless, the majority of variants are VUS, 

especially in the case of variants occurring beyond exon boundaries. Of the 5713 variants 

in the BIC database, the clinical significance of 4102 BRCA1 and BRCA2 variants are 

either unknown (1904) or pending (2198), and only 1535 have been classified as 

pathogenic (Class 5) [168]. Our results cannot be considered equivalent to validation, 

which usually include expression assays [36] or the use of RNA-seq data [169] (splicing), 

qRT-PCR [170] (transcription), SHAPE analysis (mRNA 2° structure) [44], or binding 

assays to determine functional effects of variants. Classification of VUS in BRCA1 and 

BRCA2 by the ENIGMA Consortium addresses mRNA splicing and missense variants. 

Criteria define risk based on whether the variant occurs within a protein structural 
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domain, the impact on protein function, and the segregation pattern of variant with 

disease in pedigrees [171]. These guidelines cannot be fully implemented here for several 

reasons: a) patients were anonymized in this study, precluding segregation analysis, b) 

the splicing mutation guideline does not take into account predicted leaky or cryptic 

splice site mutations, nor other non-canonical changes that have been demonstrated to 

alter the expression of these and numerous other genes, c) conserved domains have not 

been identified in regions of the proteins encoded by these genes, especially BRCA2, 

where many missense mutations reside, and d) the guidelines are currently silent as to the 

potential impact of regulatory variants affecting splicing, RNA stability, and 

transcriptional regulation. 

While miRNA variant prediction program mrSNP [172] was used to evaluate all of the 3’ 

UTR variants, 41.4% of the variants were predicted to alter the stability of the miRNA-

target mRNA duplex for at least one miRNA expressed in breast tissue. However, only 2 

of these interactions could be confirmed using TarBase [173], and these variants could 

not be prioritized for disruption of miRNA regulation. Other post-transcriptional 

processes, including miRNA regulation, that were not addressed in this study, may also 

be amenable to IT-based modeling. With the proposed approach, functional prediction of 

variants could precede or at least inform the classification of VUS. 

It is unrealistic to expect all variants to be functionally analyzed, just as it may not be 

feasible to assess family members for a suspected pathogenic variant detected in a 

proband. The prioritization procedure reduces the chance that significant variants have 

been overlooked. Capturing coding and non-coding regions of HBOC-related genes, 

combined with the framework for assessing variants, balances the need to 

comprehensively detect all variation in a gene panel with the goal of identifying variants 

likely to be phenotypically relevant. 

The location of variants in relation to known protein domains was documented in this 

study, but was not directly incorporated into our prioritization method. The locations and 

impact of splicing mutations in BRCA1 and BRCA2 were mapped to the known 

functional domains of the encoded proteins [174]. A high concentration of variants 
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predicted to result in splicing changes occurred in the BRCT, RING finger, and NLS 

domains of BRCA1. However, BRCA2 variants were generally concentrated outside of 

known functional domains (aside from the C-terminal domain). Because of these 

inconsistencies, domain-mapping was not integrated with IT based prioritization. 

However, where adequate information on structure-function relationships is available (eg. 

TP53), we suggest that such analysis be carried out subsequent to IT-based variant 

prioritization. 

4.4.1 Non-coding Variants 

Although coding variants are typically the sole focus of a molecular diagnostic laboratory 

(with the exception of the canonical dinucleotide positions within splice sites), non-

coding mutations have long been known to be disease causing [19, 36, 175–183]. In this 

study, variant density in non-coding regions significantly exceeded exonic variants by > 

60-fold, which, in absolute terms, constituted 1.6% of the 15,311 variants. This is 

comparable to whole genome sequencing studies, which typically result in 3-4 million 

variants per individual, with < 2% occurring in protein coding regions [184]. IT analysis 

prioritized 3 natural SS, 36 SRFBS, 5 TFBS, and 6 RBBS variants and 5 predicted to 

create pseudoexons. Two SS variants in ATM (c.3747-1G>A and c.6347+1G>T) were 

predicted to completely abolish the natural site and cause exon skipping. A CHEK2 

variant (c.320-5A>T) was predicted to result in leaky splicing. 

The IT-based framework evaluates all variants on a common scale, based on bit values, 

the universal unit that predicts changes in binding affinity [185]. A variant can alter the 

strength of one or a “set” of binding sites; the magnitude and direction of these changes is 

used to rank their significance. The models used to derive information weight matrices 

take into account the frequency of all observed bases at a given position of a binding 

motif, making them more accurate than consensus sequence and conservation-based 

approaches [36]. 

IT has been widely used to analyze natural and cryptic SSs [36], but its use in SRFBS 

analysis was only introduced recently [38]. For this reason, we assigned conservative, 

minimum thresholds for reporting information changes. Although there are examples of 
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disease-causing variants resulting in small changes in 𝑅𝑖 [174, 186–192], the majority of 

deleterious splicing mutations that have been verified functionally, produce large 

information changes. Among 698 experimentally deleterious variants in 117 studies, only 

1.96% resulted in < 1.0 bit change [36]. For SRFBS variants, the absolute information 

changes for deleterious variants ranged from 0.2 - 17.1 bits (mean 4.7 ± 3.8). This first 

application of IT in TFBS and RBBS analysis, however, lacks a large reference set of 

validated mutations for the distribution of information changes associated with 

deleterious variants. The release of new ChIP-seq datasets will enable IT models to be 

derived for TFs currently unmodeled and will improve existing models [193]. 

Pseudoexon activation results in disease-causing mutations [194], however such 

consequences are not customarily screened for in mRNA splicing analysis. IT analysis 

was used to detect variants that predict pseudoexon formation and 5 variants were 

prioritized. Previously, we have predicted experimentally proven pseudoexons with IT 

(Ref 42: Table 4.2, No #2; and Ref 195: Table 4.2, No #7) [42, 195]. Although it was not 

possible to confirm prioritized variants in the current study predicted to activate 

pseudoexons because of their low allele frequencies, common intronic variants that were 

predicted to form pseudoexons were analyzed. We then searched for evidence of 

pseudoexon activation in mapped human EST and mRNA tracks [196] and RNA-seq data 

of breast normal and tumour tissue from the Cancer Genome Atlas project [15]. One of 

these variants (rs6005843) appeared to splice the human EST HY160109 [197] at the 

predicted cryptic splice site and is expressed within the pseudoexon boundaries. 

Variants that were common within our population sample (i.e. occurring in > 5 

individuals) and/or common in the general population (> 1.0% allele frequency) reduced 

the list of flagged variants substantially. This is now a commonly accepted approach for 

reducing candidate disease variants [166], based on the principle that the disease-causing 

variants occur at lower population frequencies. Variants occurring in > 5 patients all 

either had allele frequencies above 1.0% or, as shown previously, resulted in very small 

∆𝑅𝑖 values [198]. 
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The genomic context of sequence changes can influence the interpretation of a particular 

variant [36]. For example, variants causing significant information changes may be 

interpreted as inconsequential if they are functionally redundant or enhancing existing 

binding site function (see IT-Based Variant Analysis for details). Our understanding of 

the roles and context of these cognate protein factors is incomplete, which affects 

confidence in interpretation of variants that alter binding. Also, certain factors with 

important roles in the regulation of these genes, but that do not bind DNA directly or in a 

sequence-specific manner (eg. CtBP2 [199]), could not be included. Therefore, some 

variants may have been incorrectly excluded. 

4.4.2 Prioritization of Potential Deletions  

Although individuals can be prioritized based on potential hemizygosity, this does not 

definitively identify deletions. Nevertheless, it should be possible to prioritize those 

individuals worthy of further detailed diagnostic workup. It has not escaped our attention 

that the weighted probabilities obtained from this analysis could be represented and 

formalized using the same units of Shannon information (in bits) as the other sequence 

changes we have described, analogous to single or multinucleotide gene variants 

predicted to affect nucleic acid binding sites. Full development and validation of this 

method is in progress. 

4.4.3 Coding Sequence Changes  

We also identified 4 nonsense and 3 indels in this cohort. In one individual, a 19 nt 

BRCA1 deletion in exon 15 causes a frameshift leading to a stop codon within 14 codons 

downstream. This variant, rs80359876, is considered clinically relevant. Interestingly, 

this deletion overlaps two other published deletions in this exon (rs397509209 and 

rs80359884). This raises the question as to whether this region of the BRCA1 gene is a 

hotspot for replication errors. DNA folding analysis indicates a possible 15 nt long stem-

loop spanning this interval as the most stable predicted structure (data not shown). This 

15 nt structure occurs entirely within the rs80359876 and rs397509209 deletions and 

partially overlaps rs80359884 (13 of 15 nt of the stem loop). It is plausible that the 2° 



134 

 

structure of this sequence predisposes to a replication error that leads to the observed 

deletion. 

Missense coding variants were also assessed using multiple in silico tools and evaluated 

based on allele frequency, literature references, and gene-specific databases. Of the 27 

prioritized missense variants, the previously reported CHEK2 variant c.433G>A 

(chr22:29121242G>A; rs137853007) stood out, as it was identified in one patient (4-

3C.5-4G) and is predicted by all 4 in silico tools to have a damaging effect on protein 

function. Accordingly, Wu et al. (2001) demonstrated reduced in vitro kinase activity and 

phosphorylation by ATM kinase compared to the wild-type CHEK2 protein [200], 

presumably due to the variant’s occurrence within the forkhead homology-associated 

domain, involved in protein-phosphoprotein interactions [201]. Implicated in Li-

Fraumeni syndrome, known to increase the risk of developing several types of cancer 

including breast [202, 203], the CHEK2: c.433G>A variant is expected to result in a 

misfolded protein that would be targeted for degradation via the ubiquitin-proteosome 

pathway [204]. Another important missense variant is c.7958T>C 

(chr13:32,936,812T>C; rs80359022; 4-4C) in exon 17 of BRCA2. Although classified as 

being of unknown clinical importance in both BIC and ClinVar, it has been classified as 

pathogenic based on posterior probability calculations [205]. 

It is unlikely that all prioritized variants are pathogenic in patients carrying more than one 

prioritized variant. Nevertheless, a polygenic model for breast cancer susceptibility, 

whereby multiple moderate and low-risk alleles contribute to increased risk of HBOC 

may also account for multiple prioritized variants [206, 207]. There was a significant 

fraction of patients (29.4%) in whom no variants were prioritized. This could be due to a) 

the inability of the analysis to predict a variant affecting the binding sites analyzed, b) a 

pathogenic variant affecting a function that was not analyzed or in a gene that was not 

sequenced, c) a large rearrangement/deletion where both breakpoints occur beyond the 

captured genomic intervals (which is unlikely, as this would have been observed as an 

extended non-polymorphic sequence), or d) the significant family history was not due to 

heritable, but instead to shared environmental influences. 
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BRCA coding variants were found in individuals who were previously screened for 

lesions in these genes, suggesting this NGS protocol is a more sensitive approach for 

detecting coding changes. However, previous testing of a number of these patients had 

been predominantly based on PTT and MLPA, which have lower sensitivity for detecting 

mutations than sequence analysis. Nevertheless, we identified 2 BRCA1 and 2 BRCA2 

variants predicted to encode prematurely truncated proteins. Fewer non-coding BRCA 

variants were prioritized (15.7%) than expected by linkage analysis [49], however this 

presumes at least 4 affected breast cancer diagnoses per pedigree, and, in the present 

study, the number of affected individuals per family was not known. 

Prioritization of a variant does not equate with pathogenicity. Some prioritized variants 

may not increase risk, but may simply modify a primary unrecognized pathogenic 

mutation. A patient with a known BRCA1 nonsense variant, used as a positive control, 

was also found to possess an additional prioritized variant in BRCA2 (missense variant 

chr13:32911710A>G), which was flagged by PROVEAN and SIFT as damaging, as well 

as flagged for changing an SRFBS for abolishing a PTB site (while simultaneously 

abolishing an exonic hnRNPA1 site). This variant has been identified in cases of early 

onset prostate cancer and is considered a VUS in ClinVar [143]. Similarly, variants 

prioritized in multiple patients may act as risk modifiers rather than pathogenic 

mutations. A larger cohort of patients with known pathogenic mutations would be 

necessary to calculate a background/basal rate of falsely flagged variants. 

Other groups have attempted to develop comprehensive approaches for variant analysis, 

analogous to the one proposed here [208–210]. While most employ high-throughput 

sequencing and classify variants, either the sequences analyzed or the types of variants 

assessed tend to be limited. In particular, non-coding sequences have not been sequenced 

or studied to the same extent, and none of these analytical approaches have adopted a 

common framework for mutation analysis. 

Our published oligonucleotide design method [77] produced an average sequence 

coverage of 98.8%. The capture reagent did not overlap conserved highly repetitive 

regions, but included divergent repetitive sequences. Nevertheless, neighboring probes 



136 

 

generated reads with partial overlap of repetitive intervals. As previously reported [147], 

we noted that false positive variant calls within intronic and intergenic regions were the 

most common consequence of dephasing in low complexity, pyrimidine-enriched 

intervals. This was not alleviated by processing data with software programs based on 

different alignment or calling algorithms. Manual review of all intronic or intergenic 

variants became imperative. As these sequences can still affect functional binding 

elements detectable by IT analysis (i.e. 3’ SSs and SRFBSs), it may prove essential to 

adopt or develop alignment software that explicitly and correctly identifies variants in 

these regions [147]. Most variants were confirmed with Sanger sequencing (10/13), and 

those that could not be confirmed are not necessarily false positives. A recent study 

demonstrated that NGS can identify variants that Sanger sequencing cannot, and 

reproducing sequencing results by NGS may be worthwhile before eliminating such 

variants [211]. 

4.5 Conclusions  

Through a comprehensive protocol based on high-throughput, IT-based and 

complementary coding sequence analyses, the numbers of VUS can be reduced to a 

manageable quantity of variants, prioritized by predicted function. While exonic variants 

corresponded to a small fraction of prioritized variants, there is considerably more 

evidence for their pathogenicity because clinical sequencing has concentrated in these 

regions. Our sequencing approach illustrates the importance of sequencing non-coding 

regions of genes to establish pathogenic mutations not already evident from changes in 

the amino acid based genetic code [212]. We suggest our approach for variant flagging 

and prioritization bridges the phase between high-throughput sequencing, variant 

detection with the time-consuming process of variant classification, including pedigree 

analysis and functional validation. Subsequent to completion of the present study, ethics 

approval was obtained for a similar analysis of consented patients with clinical 

information. This work will be described elsewhere [212]. 
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Chapter 5  

5 Prioritizing Variants in Complete Hereditary Breast and 
Ovarian Cancer Genes in Patients Lacking Known 
BRCA Mutations 

The work presented in this chapter is reproduced (with permission, Appendix D.1) from: 

Caminsky,N.G., Eliseos,J.M., Perri,A.M., Lu,R., Knoll,J.H.M., Rogan,P.K. (2016) 

Prioritizing variants in complete Hereditary Breast and Ovarian Cancer genes in patients 

lacking known BRCA mutations. Hum. Mutat., 37, 640–652 

5.1 Introduction 

Currently, the lifetime risk for a woman to develop breast cancer (BC) is 12.3% and 1.3% 

in the case of ovarian cancer (OC [Howlander et al., 2014]). Approximately 5-10% of all 

BC cases are hereditary in nature, versus 25% for OC, where relative risk (RR) of BC or 

OC with one affected 1st degree family member is estimated at 2.1 and 3.1, respectively 

[Stratton et al., 1998; Walsh et al., 2011]. Two highly penetrant genes, BRCA1 and 

BRCA2, are associated with a large proportion of HBOC cases. However, the estimated 

rate of linkage to these genes is significantly higher than the proportion of pathogenic 

mutations identified in HBOC families [Ford et al., 1998], suggesting unrecognized or 

unidentified variants in BRCA1/2. 

Clinical BRCA1/2 testing is restricted primarily to coding regions. Limitations on how 

variants can be interpreted, lack of functional validation, and mutations in other genes 

contribute to uninformative results. The heritability that is not associated with BRCA 

genes is likely due to other genetic factors rather than environmental causes, specifically 

moderate- and low-risk susceptibility genes [Antoniou and Easton, 2006]. Hollestelle et 

al. (2010) point out the challenges in estimating increased risks associated with mutations 

in these genes, as the disease patterns are often incompletely penetrant, and require large 

pedigree studies to confidently assess pathogenicity. 
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Next-generation sequencing (NGS) of gene panels for large cohorts of affected and 

unaffected individuals has become an increasingly popular approach to confront these 

challenges. Numerous HBOC gene variants have been catalogued, including cases in 

which RR has been determined; however the literature is also flooded with variants 

lacking a clinical interpretation [Cassa et al., 2012]. It is not feasible to functionally 

evaluate the effects all of the VUS identified by NGS and in silico assessment of variants 

is often limited to structural changes or concerns evolutionary conservation among 

species. Several approaches have been developed to better assess variants from exome 

and genome-wide NGS data [Duzkale et al., 2013; Kircher et al., 2014]. Nevertheless, 

there is an unmet need for other methods that quickly and accurately bridge variant 

identification and classification. 

To begin to address this problem, we sought to provide potentially novel interpretations 

of noncoding sequence changes, based on disruption or acquisition of interactions with 

proteins that recognize nucleic acid binding sites. Information theory (IT) based analysis 

predicts changes in sequence binding affinity, and it has been applied and validated for 

use in the analysis of splice sites (SSs), SRBSs [Rogan et al., 1998, 2003; Mucaki et al., 

2013; Caminsky et al., 2015] and TFBSs [Gadiraju et al., 2003]. A unified framework 

based on IT requires binding genome-scale site data devoid of consensus sequence bias 

[Schneider, 1997], for example, photoactivatable-ribonucleotide-enhanced cross-linking 

and immunoprecipitation (PAR-CLIP), ChIP-Seq, and a comprehensive, validated set of 

SSs. Although these data sources are heterogeneous, the IT models and binding site 

affinities derived from them are uniformly scaled (in units of bits). Thus, binding 

interactions involving disparate proteins or other recognition molecules can be measured 

and directly compared.  

We have described a unified IT framework for the identification and prioritization of 

variants in coding and noncoding region s of BRCA1, BRCA2, and five other HBOC 

genes (ATM, CDH1, CHEK2, PALB2, and TP53 [Mucaki et al., 2016]. This approach 

was applied to a cohort of 102 individuals lacking BRCA mutations with a history of 

HBOC. This distinguished prioritized variants from flagged alleles conferring small 
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changes to regulatory protein binding site sequences in 70.6% of cases [Mucaki et al., 

2016]. 

In the present study, we have sequenced 13 additional genes that have been deemed 

HBOC susceptibility  loci (BARD1, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, 

NBN, PMS2, PTEN, RAD51B, STK11, and XRCC2 [Minion et al., 2015]). These genes 

encode proteins with roles in DNA repair, surveillance, and cell cycle regulation (Figure 

5.1; for further evidence supporting this gene set see Appendix D.2 [Apostolou and 

Fostira 2013; Al Bakir and Gabra 2014]), and are associated with specific disease 

syndromes that confer an increased risk of BC and OC, as well as many other types of 

cancer (Appendix D.3). High-risk genes confer > 4-times increased risk of BC compared 

to the general population. BRCA1 and BRCA2 are estimated to increase risk 20-fold 

[Antoniou et al., 2003]. Pathogenic variants in other high-risk genes, CDH1, PTEN, 

STK11, and TP53, are rarely seen outside of their associated syndromes, and account for 

< 1% of hereditary BC cases [Maxwell and Domchek, 2013]. EPCAM, MLH1, MSH2, 

MSH6, and PMS2 have also been proposed to harbor high-risk BC alleles, but the RR is 

still controversial [Maxwell and Domchek, 2013]. Genes with moderate-risk alleles, 

ATM, CHEK2, and PALB2, cause between a 2- and 4-fold increased risk of BC 

[Apostolou and Fostira, 2013; Maxwell and Domchek, 2013]. The remaining genes 

(BARD1, MRE11A, MUTYH, NBN, RAD51B, and XRCC2) are newly identified and 

currently associated with unknown risks for HBOC (Figure 5.1). 

We report NGS of hybridization-enriched, complete genic and surrounding regions of 

these genes, followed by variant analysis in 287 consented patients from Southwestern 

Ontario, Canada with previously uninformative HBOC test results. (Except for 6 

individuals, these patients were different from our submitted study). We then reduced the 

set of potentially pathogenic gene variants in each individual by prioritizing the results of 

coding and IT-analyses. After applying a frequency-based filter, the IT-based framework 

prioritizes variants based on their predicted effect on the recognition of sequence 

elements involved in mRNA splicing, transcription, and untranslated region (UTR) 

binding, combined with UTR secondary structure and coding variant analysis. Our 

approach integrates disparate sources of information, including bioinformatic analyses, 
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Figure 5.1: Common genomic pathways among 20 HBOC genes, including risk and 

relevant literature. The left, top, and right circles indicate sequenced genes that play 

important roles in the mismatch repair (MMR), Fanconi anemia, and DNA double-strand 

break repair pathways, respectively. The bottom circle contains genes involved in cell 

cycle control. Genes considered to present a high risk of breast and/or ovarian cancer 

when mutated are bolded, moderate-risk genes are underlined, and low-risk genes are in 

normal font. The estimated number of articles listing a gene’s association with breast or 

ovarian cancer (based on a systematic search in PubMed [performed June 2015]) is 

indicated in superscript. ∗∗ MUTYH is only high risk in the case of bi-allelic mutations. ∗ 

EPCAM is not involved in any pathways, but is associated with hereditary nonpolyposis 

colorectal cancer (HNPCC) by virtue of the fact that 3’ deletions of EPCAM can cause 

epigenetic silencing of MSH2, causing Lynch syndrome protein. See Appendix D.1 for 

citations and further evidence supporting this gene set. 

likelihood ratios based on familial segregation, allele frequencies, and published findings 

to prioritize disease-associated mutation candidates. 
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5.2 Methods 

5.2.1 Ethics and Patient Recruitment  

Recruitment and consent of human participants was approved by the University of 

Western Ontario Research Ethics Board (Protocol 103746). Patients were enrolled from 

January, 2014 through March, 2015 at London Health Sciences Centre (LHSC). Patients 

met the following criteria: male or female, aged between 25 and 75 years, > 10% risk of 

having an inherited mutation in a breast/ovarian cancer gene, diagnosed with BC and/or 

OC, and previously receiving uninformative results for a known, pathogenic BRCA1 or 

BRCA2 variant in either the patient or other relatives (by Protein Truncation Test [PTT] 

and/or Multiplex Ligation-dependent Probe Amplification [MLPA]). 

The median age of onset for patients (N = 287; Appendix D.5-Supp. Fig. S1) with BC 

was 48 (N = 277), and 46 for OC (N = 17), and 7 were diagnosed with both BC and OC. 

Furthermore, 31 patients had bilateral BC (98 patients at diagnosis; 23 developed tumors 

on the opposite side after the initial occurrence), 1 had bilateral OC, and 13 have had 

recurrent BC in the same breast. There was a single case of male BC (Appendix D.4). 

5.2.2 Probe Design, Sample Preparation, and Sequencing  

Probes for sequence capture were designed by ab initio single copy analysis, as described 

in Mucaki et al. [2016] and Dorman et al. [2013]. The probes covered1,103,029 nt across 

the 21 sequenced genes, including the negative control gene ATP8B1 (see Appendix D.5 

for gene names, GenBank accession numbers, and OMIM reference numbers). This set of 

genes was proposed for evaluation at the evidence-based network for the Interpretation of 

Germline Mutant Alleles (ENIGMA) Consortium Meeting (2013). Other genes that have 

been found to be mutated in HBOC could not be included (e.g. BRIP1, RAD50, RAD51C, 

RAD51D [Heikkinen et al. 2003; Seal et al. 2006; Janatova et al. 2015]). 

Patient DNA extracted from peripheral blood was either obtained from the initial genetic 

testing at LHSC Molecular Genetics Laboratory or isolated from recent samples. NGS 

libraries were prepared using modifications to a published protocol (Gnirke et al., 2009) 

described in Mucaki et al. [2016], and all post-capture pull-down steps were automated 
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(Appendix D.5). An Illumina Genome Analyzer IIx instrument in our laboratory was 

used for sequencing. 

Library preparation and re-sequencing were repeated for samples with initial average 

coverage below our minimum threshold (< 30x). To ensure that the proper sample was 

re-sequenced, the variant call format (VCF) files from each run were compared to all 

others in the run using VCF-compare (http://vcftools.sourceforge.net/). VCF files from 

separate runs for the re-sequenced patient were concordant, except for minor differences 

in variant call rates due to differences in coverage. The aligned reads from both runs were 

then merged (with BAMtools; http://sourceforge.net/projects/bamtools/). 

Samples were demultiplexed and aligned using CASAVA (Consensus Assessment of 

Sequencing and Variation; v1.8.2 [DePristo et al. 2011]) and CRAC (Complex Reads 

Analysis & Classification; v1.3.0; http://crac.gforge.inria.fr/). Aligned BAM files were 

then pre-processed for variant calling with Picard [v.1.109; 

http://broadinstitute.github.io/picard/] (MarkDuplicates, AddorReplaceReadGroups, 

FixMateInformation). The Genome Analysis Toolkit (GATK v3.1; 

http://www.broadinstitute.org/gatk/) was then used for variant calling using the modules 

‘Indel realigner’ and the ‘Unified Genotyper’. Variants flagged by bioinformatic analysis 

[see Variant Analysis below] were also assessed by manual inspection with the 

Integrative Genome Viewer v2.3 (IGV; http://www.broadinstitute.org/igv/). Variants in 

this study are written in HGVS notation, are based on cDNA sequence, and comply with 

journal guidelines. 

5.2.3 Information Models 

Models for natural splice sites (SSs) and splicing regulatory factors (SRFs) are described 

in Mucaki et al. [2013]. These models were used to predict deleterious effects on natural 

splicing, the activation of cryptic SSs, and changes to binding of splicing enhancers and 

silencers. In addition, using a combination of cryptic site activation and hnRNPA1 site 

prediction, pseudoexon formation was also assessed. 

http://sourceforge.net/projects/bamtools/
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We previously built models for TFBSs (N = 83) using ENCODE ChIP-seq data 

[ENCODE Project Consortium, 2012; Mucaki et al., 2016]. Due to the inclusion of the 

additional genes, eight additional transcription factors (TFs) were identified from the 

literature and ENCODE ChIP-seq data from BC cell lines with evidence of binding and 

potentially regulating these genes. However, models for three of these TFs passed our 

quality control criteria (TFIIIB150 [BDP1], PBX3 and ZNF274; described in Lu et al. 

[2017]. Appendix D.6 contains the full list of TFs (N = 86) and indicates which genes 

exhibit evidence of promoter or other binding events. Noise models (N = 5), reflecting 

motifs of interacting cofactors or sequence-specific histone modifying events, were 

excluded (Appendix D.5).  

Information weight matrices, 𝑅𝑖(𝑏, 𝑙), for sequences bound by RNA-binding proteins 

(RBPs) were derived from frequency matrices published in the Catalog of Inferred 

Sequence Binding Preferences of RNA binding protein (CISBP-RNA; http://cisbp-

rna.ccbr.utoronto.ca/) and RNA-Binding Protein Database (BPDB; 

http://rbpdb.ccbr.utoronto.ca/). These 𝑅𝑖(𝑏, 𝑙)s were used to compute changes in binding 

affinity due to SNVs, using conservative minimum information thresholds described in 

Mucaki et al. [2016]. Finally, predicted changes in UTR structure resulting from variants 

were determined using SNPfold 

[http://ribosnitch.bio.unc.edu/snpfold/;Halvorsenetal.,2010]. Significant changes in UTR 

structure and stability were represented using mfold (http://unafold.rna.albany.edu/?q = 

mfold).  

5.2.4 Variant Analysis  

Information analysis has been used in the interpretation of variant effects on binding sites 

containing these changes, whether this involves the creation or strengthening, or the 

abolition or weakening of a site [Rogan et al., 1998]. This analysis was applied to all 

variants identified by NGS. Changes in information are directly related to changes in 

thermodynamic entropy and thus binding affinity [Rogan et al., 1998]. For example, a 1.0 

bit change in information corresponds to at least a twofold change in binding affinity. 

Information theoretical analysis of SSs and SRF binding sites has been extensively used 
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and proven to be reliable and robust (85.2% accuracy when compared to variants 

validated by expression studies) [Caminsky et al., 2015].  

Information analysis was automated and thresholds for changes were applied 

programmatically based on our previously validated criteria [Rogan et al., 1998, 2003; 

von Kodolitschetal., 2006; Dorman et al., 2014]. This reduced manual review of 

prioritized variants, databases, and the literature. A minimum 1.0 bit threshold was set for 

variants predicted to affect natural SSs or that activate a cryptic SS by exceeding the 

strength of cognate natural sites. Variants affecting splicing regulatory, transcription, and 

RBP binding sites were assessed more stringently and had a minimum threshold of 4.0 

bits, i.e. ≥ 16-fold, in order to be flagged for further assessment. A population frequency 

filter was also applied to variants with allele frequencies >1% (in the NCBI Short Genetic 

Variations database (dbSNP)) or >5% of our patient cohort. Such variants were 

eliminated from further consideration.  

To assess coding changes affecting predicted protein chain length or amino acid(s) 

composition, we used SNPnexus (http://hsnpnexus.org/). Insertion/deletions (indels) and 

nonsense mutations were noted, and missense variants were further assessed with in 

silico tools (Mutation Assessor, http://mutationassessor.org/; PolyPhen2, 

http://genetics.bwh.arvard.edu/pph2/; PROVEAN/SIFT, http://provean.jcvi.org/) by 

referencing the published literature and consulting mutation databases (listed in Appendix 

D.7; see Mucaki et al. [2016] for more details on variant analysis). Variants remained 

prioritized unless there was clear evidence (co-segregation analysis or functional assays) 

supporting the nonpathogenicity of the variant.  

EPCAM mutations in familial cancer are limited to 3’ deletions causing epigenetic 

silencing of MSH2, and there is currently no evidence of other types of variants that alter 

its mRNA transcript or protein product [Ligtenberg et al., 2009]. Therefore, with the 

exception of indels, none of the variants flagged in EPCAM were prioritized. We chose to 

prioritize variants in MUTYH using the same framework as all other genes, despite 

MUTYH pathogenicity resulting from biallelic variants [Jones et al., 2002], because it is 

possible that a second MUTYH mutation remains unrecognized. 
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All protein truncating (nonsense and indels) as well as potentially pathogenic splicing and 

missense mutations were Sanger sequenced for confirmation (details in Appendix D.8). 

5.2.5 Negative Control  

Variants present in the ATP8B1 gene were used as negative controls for our variant 

analysis framework. Initially, it was included in the list of prioritized HBOC genes 

provided by ENIGMA, but evidence for its association with HBOC is lacking in the 

published literature. Furthermore, it is not a known susceptibility gene for any type of 

cancer (mutations in ATP8B1 cause progressive familial intrahepatic cholestasis 

[Gonzales et al., 2014]) and is infrequently mutated in breast tumors in several studies 

(e.g., see Cancer Genome Atlas Network [2012]).  

5.2.6 Likelihood Ratios  

Patients with prioritized coding and/or splicing variants, which we consider the most 

likely to be pathogenic, were selected for co-segregation analysis (N = 24) using an 

online tool that calculates the likelihood of a variant being deleterious based on pedigree 

information (https://www.msbi.nl/cosegregation/; Mohammadi et al. [2009]). Genotypes 

were assigned based on phenotype such that family members with breast or OC at any 

age were assigned the same genotype as the patient in our study (“carrier”) and family 

members affected by other cancers, other diseases, or who are disease free were assigned 

the “noncarrier” genotype. Because the penetrance parameters cannot be altered from the 

settings given for BRCA1 or BRCA2, the BRCA2 option was selected for patients with 

prioritized variants in non-BRCA genes. Penetrance in BRCA2 is known to be lower than 

BRCA1 values [Mohammadi et al., 2009]. Current evidence suggests that mutations in 

non-BRCA genes may be less penetrant than those in the BRCA genes [Apostolou and 

Fostira, 2013]; however, the penetrance of many of these variants remains unknown 

(Appendix D.5).  
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5.3 Results 

5.3.1 Variant Analysis  

We identified 38,372 unique variants among 287 patients (26,636 intronic, 7,287 

intergenic, and 714 coding), on average 1,975 variants per patient, before any filtering 

criteria were applied. The extensive span of sequences captured in this study, that is, 

complete genes and flanking regions, constrained the genomic density and sequence 

coverage that could be achieved; this precluded accurate copy number estimation based 

solely on read counts. 

5.3.1.1 Natural Site Variants 

The Shannon Human Splicing Mutation Pipeline (http://www.mutationforecaster.com; 

Shirley et al. [2013]) was used to predict the effect of the 14,458 variants that could 

potentially affect splicing, of which 244 reduced natural SS strength. Further stringent 

filtering of the natural SS based on information content changes and allele frequency 

resulted in seven flagged variants (Appendix D.9). Henceforth, allele frequency of known 

variants can be found in their associated supplemental table (where available).  

Four of these variants were prioritized (Table 5.1). A novel synonymous variant in exon 2 

of RAD51B, c.84G>A (p.Gln28 = ), is predicted to increase exon skipping by weakening 

the natural splice donor (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 5.2 bits, ∆𝑅𝑖 = –3.0 bits). A known ATM variant, 

c.6198+1G>A (8-1D.9-1B [Stankovic et al., 1998]), abolishes the natural donor SS of 

constitutively spliced exon 42 (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = –13.7 bits, ∆𝑅𝑖 = –18.6 bits). There is no 

evidence in public databases for appreciable alternative splicing of this exon in normal 

breast tissues. The variant will either lead to exon skipping or activation of a preexisting 

cryptic site (Figure 5.2). An ataxia-telangiectasia patient with this variant exhibited low 

expression, protein truncation, and abolished kinase activity of ATM [Reiman et al., 

2011]. MLH1 c.306+4A>G causes increased exon skipping (and a decrease in wild-type 

exon relative expression) due to the weakening (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 6.0 bits, ∆𝑅𝑖 = –2.6 bits) of the 

exon 3 natural donor. Tournier et al. [2008] assessed this variant using an ex vivo splicing 

assay and observed cryptic site activation and exon 3 skipping. MRE11A c.2070+2A>T is 

indicated in ClinVar as likely pathogenic and abolishes the natural donor site of exon 19



173 

 

Table 5.1: Prioritized Variants Predicted by IT to Affect Natural and Cryptic Splicing 

Gene Variant 
rsID (dbSNP142) 

Allele Frequency (%)c 

Information Change Consequence 

Ri,initial 

(bits) 

Ri,final 

(bits) 

ΔRi 

(bits)  

ATM 

NM_000051.3:c.6198+1G>A 

[Stankovic et al., 1998;  

Reiman et al., 2011] 

- 4.9 -13.7 -18.6 Abolished naturald,g 

MRE11A NM_005591.3:c.2070+2A>Ta - 7.6 -11 -18.6 Abolished naturald,g 

MLH1 
NM_000249.2:c.306+4A>Ga 

[Tournier et al., 2008] 
rs267607733 8.6 6 -2.6 Weakened naturale 

RAD51B 
NM_002877.4:c.84G>Aa 

p.Gln28= 
Novel 8.2 5.2 -3 Weakened naturald 

BARD1 
NM_000465.2:c.1454C>Ta 

p.Ala485Val 
Novel -2.7 4.4 7.1 Created cryptice 

BRCA1 NM_007294.2:c.5074+107C>T rs373676607 -1.3 5.7 7 Created crypticf,h 

CDH1 

NM_004360.3:c.1223C>Ga 

p.Ala408Gly 

[Schrader et al. 2011] 

Novel -0.6 4.3 4.9 Created cryptice 
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RAD51B NM_002877.4:c.958-29A>Tb 
rs34436700 

0.78 
2.2 4.4 2.2 Strengthened crypticf 

STK11 NM_000455.4:c.375-194GT>AC 
rs35113943 17.61 

rs117211142 0.80 
7.5 8.8 1.3 Strengthened crypticf 

XRCC2 NM_005431.1:c.122-154G>T Novel 8.1 10 1.9 Strengthened crypticf 

a Confirmed by Sanger sequencing 

b Ambiguous Sanger sequencing results 

c If available 

d Exon skipping 

e Exon truncation 

f Intron retention 

g Use of alternate isoform 

h Reduced expression of natural isoform  
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Figure 5.2: Predicted isoforms and relative abundance as a consequence of ATM 

natural splice variant c.6198+1G>A. (A) Intronic ATM variant c.6198+1G>A abolishes 

the natural donor of exon 42 (𝑹𝒊,𝒊𝒏𝒊𝒕𝒊𝒂𝒍 = 4.9 bits, ∆𝑹𝒊 = –18.6 bits), and would either 

result in exon skipping (causing a frame-shift; isoform 15 after mutation), or possibly 

activate a downstream cryptic site (isoform 1 maintains reading frame, isoform 2 would 

not). (B) The peaks in plot display the predicted abundance (Y-axis) of a splice isoform 

(X-axis) relative to another predicted isoform (Z-axis). In the wild-type mRNA, the 

natural exon (isoform 15) has the highest predicted relative abundance. Before mutation, 

it is predicted to be approximately fivefold stronger than isoform 1 and 2. (C) After 

mutation, isoform 1 and 2 is now > 100,000-fold stronger than isoform 15 (abolished 

wild-type exon). Isoform 2 to be slightly less abundant than 1. 
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(𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = –11.0 bits, ∆𝑅𝑖 = –18.6 bits), while strengthening a cryptic site 5 nt upstream 

of the splice junction (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 8.1 bits, ∆𝑅𝑖 = 0.6 bits). Either cryptic SS activation or 

complete exon skipping are predicted.  

The BRCA2 variant c.68-7T>A was not prioritized, as its pathogenicity has not been 

proven. While there is evidence that this variant induces (in-frame) exon skipping [Théry 

et al., 2011], it did not segregate with disease in HBOC pedigrees, where abnormal 

splicing was not seen [Santos et al., 2014]. The ATM variant c.1066-6T>G, previously 

reported in Mucaki et al. [2016], was also not prioritized as the variant does not correlate 

with BC risk [Ding et al., 2011]. 

5.3.1.2 Activation of Cryptic Splicing 

The Shannon Pipeline identified 9,480 variants that increased the strength of at least one 

cryptic site, of which nine met or exceeded the defined thresholds for information 

change. Six of these were prioritized (Table 5.1). A novel BARD1 variant in exon 6 

(c.1454C>T; p.Ala485Val) creates a donor SS (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 4.4 bits, ∆𝑅𝑖 = 7.1 bits), which 

would produce a 58 nt frame shifted exon if activated. The natural donor SS of exon 6, 

116 nt downstream of the variant, is stronger (5.5 bits), but the Automated Splice Site and 

Exon Definition Analysis (ASSEDA, http://mutationforecaster.com) server predicts equal 

levels of expression of both natural and cryptic exons. A BRCA1 mutation 5074+107C>T 

downstream of exon 16 is predicted to extend the exon by 105 nt and be slightly more 

abundant than the natural exon (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 of 8.6 and 8.1 bits, respectively). CDH1 

c.1223C>G (p.Ala408Gly), previously reported in a BRCA-negative lobular BC patient 

with no family history of gastric cancer [Schrader et al., 2011], creates a cryptic donor 

site (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 4.3 bits, ∆𝑅𝑖 = 4.9 bits) in exon 9, 97 nt downstream of the natural 

acceptor. While residual splicing of the normal exon is still expected, the cryptic is 

predicted to become the predominant splice form (~twice as abundant). 

STK11 c.375-194GT>AC (rs35113943 and rs117211142) and the novel XRCC2 c.122-

154G>T both strengthen strong preexisting cryptic sites exceeding the 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 values of 

their respective natural exons. Finally, a known RAD51B variant 29 nt upstream of exon 
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10: c.958-29A>T strengthens a cryptic acceptor site (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 4.4 bits, ∆𝑅𝑖 = 2.2 bits) 

that, if activated, would produce a transcript retaining 21 intronic nucleotides. 

The remaining cryptic site variants (Appendix D.9) were not prioritized. The novel 

BRCA2 c.7618-269_7618-260del10 variant is predicted to create a cryptic site with an 

exon having a lower 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 value (5.2 bits) than the natural exon (6.6 bits). PMS2 

c.1688G>T (p.Arg563Leu; rs63750668; three patients) does not segregate with disease. 

Drost et al. [2013] demonstrated that this variant does not impair DNA repair activity. 

Finally, RAD51B c.728A>G (p.Lys243Arg; rs34594234; 7 patients) predicts an increase 

in the abundance of the cryptic exon; however, the natural exon remains the predominant 

isoform. 

5.3.1.3 Pseudoexon Activation 

Pseudoexons arise from creation or strengthening of an intronic cryptic SS in close 

proximity to another intron site of opposite polarity. Our analysis detected 623 variants 

with such intronic cryptic sites, of which 17 were prioritized (among nine genes), 

occurring within 250 nt of a preexisting site of opposite polarity, with an hnRNPA1 site 

within 5 nt of the acceptor of the predicted pseudoexon (Appendix D.10). Three are novel 

(BRCA2 c.7007+824C>T, BRCA2 c.8332-1130G>T, and PTEN c.802-796C>A) and the 

remainder were present in dbSNP. Seven of these variants (BARD1 c.1315-168C>T, 

BRCA2 c.631+271A>G, MLH1 c.1559-1732A>T, MRE11A c.1783+2259A>G, MSH6 

c.260+1758G>A, PTEN c.79+4780C>T, and RAD51B c.1037-1012C>A), although rare, 

occur in multiple patients, and one patient had predicted pseudoexons in both BARD1 and 

RAD51B. 

5.3.1.4 SRF Binding 

Variants within exons or within 500 nt of a natural SS (N = 9,998) were assessed for their 

potential effect on SRF binding sites (SRFBSs). Initially 216 unique variants were 

flagged (Appendix D.11), but after considering each in the context of the SRF function 

and location within the gene [Caminsky et al., 2015], we prioritized 148, of which 57 are 

novel. Some prioritized variants affect distant SRFs that may activate cryptic sites, but 

were not predicted to affect natural splicing. Of the 88 suitable prioritized variants for 
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which exon definition analysis was performed (where initial 𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 of the exon > SRF 

gap surprisal value), 55 were predicted to induce or contribute to increased exon 

skipping. For example, an uncommon ATM missense variant within exon 41, c.6067G>A 

(p.Gly2023Arg; rs11212587), strengthens an hnRNPA1 site (𝑅𝑖,𝑓𝑖𝑛𝑎𝑙 = 5.2 bits, ∆𝑅𝑖 = 4.7 

bits) 30 nt from the natural donor, and is predicted to induce exon 41 skipping (∆𝑅𝑖,𝑡𝑜𝑡𝑎𝑙 

= –9.5 bits). 

5.3.1.5 TF Binding 

To assess potential changes to TFBSs, variants occurring from 10 kb upstream of the start 

of transcription through the end of the first intron were analyzed by IT, flagging 88 (of 

4,530 identified; Appendix D.12). Considering the gene context of each TFBS and extent 

of information change, we prioritized 36 variants. The following example illustrates the 

rationale for highlighting these variants: BRCA1 c.-19-433A>G abolishes a binding site 

for HSF 1 (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 5.5 bits, ∆𝑅𝑖 = –7.8 bits). While HSF 1 is known to be a 

transcriptional activator associated with poor BC prognosis [Santagata et al., 2011], the 

specific effect of reduced HSF 1 binding to BRCA1 has not been established. Similarly, 

MLH1 c.-4285T>C (rs115211110; five patients) significantly weakens a C/EBPβ site 

(𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10.1 bits, ∆𝑅𝑖 = –6.3 bits), a TF that has been shown to play a role in BC 

development and progression [Zahnow, 2009]. Another MLH1 variant, c.-6585T>C 

(novel), greatly decreases the binding strength (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 12.5 bits, ∆𝑅𝑖 = –10.8 bits) of 

the NF-κB p65 subunit, which is activated in ER-negative breast tumors [Biswas et al., 

2004]. Two prioritized variants (PMS2 c.-9059G>C and XRCC2 c.-163C>A) weaken 

PAX5 binding sites, a TF which when overexpressed can result in mammary carcinoma 

cells regaining epithelial cell characteristics [Vidal et al., 2010]. 

5.3.1.6 Alterations to mRNA Structure 

A total of 1,355 variants were identified in the 5’ and 3’ UTRs of the patients. Analysis 

of these variants with SNPfold flagged three unique variants (P < 0.05) in BRCA1, 

BARD1, and XRCC2 (Table 5.2). The predicted mRNA 2° structures of the reference and 

variant sequences are shown in Figure 5.3 (generated with mfold). The BRCA1 variant 

occurs in the 3’ UTR of all known transcript isoforms (NM_007294.3:c.∗1332T>C;  
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Table 5.2: Variants Predicted by SNPfold to Significantly Affect UTR Structure 

Gene Variant 
UTR  

Position 

rsID (dbSNP142) 

Allele Frequency (%)a 
Rank 

p-

value 

BARD1 

XM_005246728.1: 

c.-53G>T 

(c.33G>T p.Gln11His) 

5'UTR 
rs143914387 

0.04 
6/600 0.01 

BRCA1 

NM_007294.3:c.*133

2T>C 

NM_007299.3:c.*143

8T>C 

3'UTR 
rs8176320 

0.42 
13/450 0.03 

XRCC2 
NM_005431.1:c.-

76C>T 
5'UTR 

rs547538731 

0.08 
3/300 0.01 

a If known. 

rs8176320; 3 patients). The most likely inferred structure consisting of a short arm and a 

larger stem loop is destabilized when the variant nucleotide is present (Figure 5.3A and 

B). The BARD1 variant falls within the 5’ UTR of a rare isoform (XM_005246728.1:c.-

53G>T; rs143914387; five patients) and is within the coding region of a more common 

transcript (NM_000465.2:c.33G>T; p.Gln11His). While the top ranked isoform 

following mutation is similar to the wild-type structure, the second-ranked isoform (∆𝐺 = 

+1.88kcal/mol) is distinctly different, creating a loop in a long double-stranded structure 

(Figure 5.3C and D). The XRCC2 variant is within its common 5’ UTR 

(NM_005431.1:c.-76C>T) and is located 11 nt downstream from the 5’ end of the 

mRNA. The variant nucleotide disrupts a potential GC base pair, leading to a large stem-

loop that could allow access for binding of several RBPs (Figure 5.3E and F). The variant 

simultaneously strengthens PUM2 (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 2.8 bits, ∆𝑅𝑖 = 4.4 bits, positions 11–17) 

and RBM28 sites (𝑅𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 4.0, ∆𝑅𝑖 = 3.6bits, positions10–13); however, there is a 

stronger NCL site (8.3 bits, positions 20–31) in the area that is not affected and may 

compete for binding. 
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Figure 5.3: Predicted RNA structure change due to variants flagged by SNPfold 

using mfold. Wild-type (A, C, and E) and variant (B, D, and F) structures are displayed. 

The variant nucleotide is marked with an arrow. (A) Predicted wild-type structure of 

BRCA1 3’ UTR surrounding c.∗1332G>A. (B) BRCA1 3’ UTR structure due to c.∗1332A 

variant, extending arm length while reducing hairpin size. (C) BARD1 5’ UTR structure 

of rare isoform (XM_005246728.1:c.-53G>T). Two overlapping preexisting RBP sites 

(SRSF7 [outer box] and SRSF2 [inner box]) are predicted and either could occupy this 

location if accessible. (D) 2° BARD1 5’ UTR structure of the region predicted only with 

sequence containing the c.-53T mutation. The primary predicted c.-53T structure is 

identical to wild type (with one disrupted C-G bond leading to a 4.1 kcal/mol lower ∆𝑮). 

The variant both weakens and abolishes the preexisting SRSF7 and SRSF2 sites, 

respectively. (E) XRCC2 structure within common 5’ UTR surrounding c.-76C>T 

variant. (F) XRCC2 5’ UTR structure predicted from c.-76T sequence, containing a 

hairpin not found in wild type. This hairpin may allow for the binding of previously 

inaccessible nucleotides including the altered nucleotide. 
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5.3.1.7 RBP Binding 

Using IT models of 76 RBBSs, 33 UTR variants were prioritized (Appendix D.13) from 

the initial list of 1,367 UTR variants. Interestingly, one of the three variants that 

destabilized the mRNA was also flagged using our RBP scan. The BARD1 c.-53A>C 

variant weakens a predicted 8.3 bit SRSF7 site (∆𝑅𝑖 = –3.0 bits) while simultaneously 

abolishing a predicted 9.7 bit SRSF2 site (∆𝑅𝑖 = –29.7 bits) (Figure 5.3C and D). 

5.3.2 Exonic Protein-Altering Variants 

5.3.2.1 Protein Truncating 

Of the 714 identified coding variants, six were indels, each of which were found in a 

single patient, and two preserved the reading frame. Two indels were novel 

(BRCA1:c.3550_3551insA [p.Gly1184Glufs] and CDH1:c.30_32delGCT [p.Leu11del]). 

Previously reported indels were detected in CHEK2 and PALB2. In addition, five 

nonsense mutations, which have been previously reported by others, were found in six 

different patients (Table 5.3; details in Appendix D.14). 

5.3.2.2 Missense Variants 

Of the 155 unique missense variants (Appendix D.15), 119 were prioritized by consulting 

published literature, disease- and gene-specific databases. All are of unknown clinical 

significance and 21 have not been previously reported. 

Missense variants that have been previously described as detrimental include the ATM 

variant c.7271T>G (p.Val2424Gly; rs28904921; two patients), which replaces a 

hydrophobic residue by glycine in the conserved FAT domain and confers a ninefold 

increase (95% CI) in BC risk [Goldgar et al., 2011]. Functional studies, assessing ATM 

kinase activity in vitro with TP53 as a substrate, showed that cell lines heterozygous for 

the mutation had less than 10% of wild-type kinase activity, such that this variant is 

expected to act in a dominant-negative manner [Chenevix-Trench et al., 2002]. The 

CHEK2 variant c.433C>T (p.Arg145Trp; rs137853007; one patient) results in rapid 

degradation of the mutant protein [Lee et al., 2001]. Finally, the PMS2 variant c.2T>C 

(p.Met1Thr) is listed in ClinVar as pathogenic and would be expected to abrogate correct 
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Table 5.3: Variants Resulting in Premature Protein Truncation 

Gene Exon Variant 
rsID (dbSNP142) 

Allele Frequency (%)a 
Details 

Frameshift Insertions/Deletions 

BRCA1 10 of 23 
NM_007294.2:c.3550_3551insAb 

p.Gly1184Glufs 
Novel 

STOP at p.1187 

676 AA short 

PALB2 4 of 13 
NM_024675.3:c.757_758delCTc 

p.Leu253Ilefs 
rs180177092 

STOP at p.255 

932 AA short 

PALB2 9 of 13 
NM_024675.3:c.2920_2921delAAc 

p.Lys974Glufs 
rs180177126 

STOP at p.979 

208AA short 

Insertions/Deletions with Conserved Reading Frame 

CDH1 1 of 16 
NM_004360.3:c.30_32delGCTd 

p.Leu11del 
Novel 

Loss of one AA 

Frame and AA 

sequence conserved 

CHEK2 4 of 14 
NM_007194.3:c.483_485delAGAc 

p.Glu161del 
- 

Loss of one AA 

Frame and AA 

sequence conserved 

Stop Codons 
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ATM 13 of 63 
NM_000051.3:c.1924G>Tc 

p.Glu642Ter 
- 2415 AA short 

ATM 62 of 63 
NM_000051.3:c.8977C>Tc 

p.Arg2993Ter 
- 64 AA short 

BRCA1 23 of 23 
NM_007294.2:c.5503C>Tb 

p.Arg1835Ter 
rs41293465 28 AA short 

PALB2 13 of 13 
NM_024675.3: c.3549C>Gc 

p.Tyr1183Ter 
rs118203998 4 AA short 

a If known. 

b Not confirmed through Sanger sequencing. 

c Confirmed by Sanger sequencing. 

d Ambiguous Sanger sequencing results. 

AA: amino acid.  
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initiation of translation. This variant has not been reported in BC families, but is 

associated with colorectal cancer (CRC) [Senter et al., 2008]. 

5.3.3 Variant Prioritization 

We prioritized an average of 18.2 variants in each gene, ranging from seven (XRCC2) to 

61 (ATM), an average of 0.41 variants/kb, and an average of 0.65 variants/patient (Table 

5.4). ATM had the second greatest gene probe coverage (103,511 nt captured), the highest 

number of unique prioritized variants, and was among the top genes for number of 

prioritized variants per kilobase (0.59). 

In total, our framework allowed for the prioritization of 346 unique variants in 246 

patients, such that 85.7% of tested patients (N = 287) had at least one prioritized variant. 

Most patients (84.7%) harbored fewer than four prioritized variants. The distribution of 

patients with prioritized variants was similar across eligibility groups (Table 5.5). 

Although Class 5 (91.1% of patients with prioritized variants) and Class 8 (100% with 

prioritized variants, with a single patient in this category) deviated to a greater extent 

from the mean variants/category, these differences were not significant, 𝜒2 (4, N = 246) = 

0.98, p > 0.90. The distribution of prioritized variants among mutation types is nine 

protein truncating, 28 mRNA splicing, 34 affecting RBBS and/or UTR structure, 36 

affecting TFBS, 119 missense, and 149 affecting SRFBS, of which 29 were prioritized 

into multiple categories (Appendix D.16 and D.17 show this information by gene and 

patient, respectively). 

All prioritized protein-truncating (N = 10), and selected splicing (N = 7) and missense (N 

= 5) variants were verified by bidirectional Sanger sequencing as they were more likely 

to be pathogenic (taking into account available published studies). Of the protein-

truncating variants, four nonsense, one indel with a conserved reading frame, and two 

frameshifts were confirmed (Table 5.3). Six splicing variants and all missense were 

confirmed (Table 5.1 and Appendix D.15). An additional 145 prioritized variants, 

including 88 noncoding variants, were confirmed upon resequencing of patient gDNA.  

Of the 57 resequenced coding variants, 13 were prioritized for their noncoding effects (12 

SRFBS, two cryptic site strengthening; one variant prioritized for both). These variants
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Table 5.4: Comparing Counts of Prioritized Variants 

Gene 

Unique 

prioritized 

variants 

Unique 

patients 

Gene probe 

coverage (nt) 

Prioritized 

variants/patient 

Prioritized 

variants/kb 

ATM 61 102 103511 0.60 0.59 

ATP8B1 21 37 94793 0.57 0.22 

BARD1 17 46 73735 0.37 0.23 

BRCA1 19 24 52075 0.79 0.36 

BRCA2 24 28 73332 0.86 0.33 

CDH1 21 32 61312 0.66 0.34 

CHEK2 12 13 28372 0.92 0.42 

MLH1 18 25 50553 0.72 0.36 

MRE11A 17 31 64713 0.55 0.26 

MSH2 18 17 112437 1.06 0.16 

MSH6 19 23 25216 0.83 0.75 

MUTYH 8 16 21439 0.50 0.37 

NBN 11 21 57067 0.52 0.19 
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PALB2 26 46 25319 0.57 1.03 

PMS2a 8 15 11726 0.53 0.68 

PTENb 15 23 86059 0.65 0.17 

RAD51Bc 22 47 62465 0.47 0.35 

STK11 12 20 28373 0.60 0.42 

TP53 11 30 23544 0.37 0.47 

XRCC2 7 10 19942 0.70 0.35 

a Homologous to other genomic regions, thus fewer probes designed within gene. 

b PTENhas pseudogene PTENP1, thus fewer probes covering exonic regions. 

c Probes limited to 1,000 nt surrounding all exons, and 10,000 nt up- and downstream of gene.  
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Table 5.5: Distribution of Recruited Patients among Eligibility Groups 

Eligibility Groupa 

Number of 

Patients within 

Eligibility Group 

Number of Patients 

with Prioritized 

Variants 

Breast cancer <60 year, and a first or 

second-degree relative with ovarian 

cancer or male breast cancer (5). 

68 62 

Breast and ovarian cancer in the same 

individual, or bilateral breast cancer 

with the first case <50 years (6). 

37 32 

Two cases of ovarian cancer, both 

<50 years, in first or second-degree 

relatives (7). 

72 59 

Two cases of ovarian cancer, any age, 

in first or second-degree relatives (8). 
1 1 

Three or more cases of breast or 

ovarian cancer at any age (10). 

109 92 

287 246 

The risk categories for individuals eligible for screening for a genetic susceptibility to 

breast or ovarian cancers are determined by the Ontario Ministry of Health and Long 

Term-Care Referral Criteria for Genetic Counseling. 

a Numbers in parentheses correspond to eligibility group designation. 

can be found in Appendix D.17 (where “coverage” column contains two or more 

coverage values). 

5.3.3.1 Negative Control 

ATP8B1 was sequenced and analyzed in all patients as a negative control (Appendix 

D.18). We prioritized 21 ATP8B1 variants with an average of 0.22 variants/kb and 0.57 

variants/patient. This is lower than the prioritization rate for many of the documented 
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HBOC genes. This result illustrates that the proposed method represents a screening 

rather than a diagnostic approach, as some variants may be incorrectly prioritized. 

5.3.4 Pedigree Analysis 

Pathogenic BRCA2 variants within a region of exon 11 have been associated with a high 

incidence of OC. We therefore verified whether there were a high number of OC cases in 

the families of patients prioritized with exon 11 BRCA2 variants (N = 3). The family of 

the patient with BRCA2 variant c.4828G>A (p.Val1610Met; diagnosed with BC at 65) 

has three reported cases of BC/OC, one of which is OC (diagnosed at 74), two degrees of 

separation from the proband. The patient with BRCA2:c.6317T>C (p.Leu2106Pro; 

diagnosed with BC at 52) has three other affected family members, two with OC and one 

with BC. Finally, four patients found to have the BRCA2 variant c.5199C>T (p.Ser1733 = 

) do not have any family members with reported cases of OC. 

We also selected patients with prioritized mismatch repair variants (N = 8 in 10 patients) 

to assess the incidence of reported CRC cases in these families. Notably, the patient with 

mutation MSH2:c.1748A>G (p.Asn583Ser) had five relatives with CRC. A similar 

analysis of prioritized CDH1 variants did not reveal any patients with a family history of 

gastric cancer. 

5.3.5 LR Analyses 

We carried out co-segregation analysis of 25 patients with prioritized pathogenic variants 

(four nonsense, four frameshift, two in-frame deletions, six missense, four natural 

splicing, and six cryptic splicing; including a patient who exhibited prioritized natural 

and cryptic SS variants). We compared these findings with those from patients (N = 25) 

harboring moderate-priority variants (variants prioritized through IT analysis only) and 

those in whom no variants were flagged or prioritized (N = 14). In instances where 

disease alleles could be transmitted through either founder parent, the lineage with the 

highest likelihood ratio (LR) was reported. For patients with likely pathogenic variants, 

the LRs ranged from 0.00 to 70.96 (Table 5.6 and Appendix D.19). Disease co- 

segregation was supported (LR > 1.0) in 18 patients, and the remainder were either 

neutral (LR < 1.0 [Mohammadi et al., 2009]) or could not be analyzed either due to 
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Table 5.6: LR Values for Patients with Prioritized Truncating, Splicing, and Selected Missense Variants 

Genesa 
Variant 

Category UWO ID LR 
mRNA Protein 

ATM 

c.1924G>T p.Glu642Ter Nonsense 10-2F 7.46MGM,9.61MGF 

c.6198+1G>A - Natural splicing 8-1D.9-1B 1.00 

c.7271T>G p.Val2424Gly Missense 
10-1F 1.44 

12-1D 1.96P 

c.8977C>T p.Arg2993Ter Nonsense 12-4G.13-5D 5.30P 

BARD1 c.1454C>T p.Ala485Val Cryptic splicing 8-1D.9-1B 1.00 

BRCA1 
c.3550_3551insA p.Gly1184Glufs Frameshift indel 11-6H 3.36P 

c.5503C>T p.Arg1835Ter Nonsense 8-5D.9-5D 41.99 

BRCA2 c.10095delCins11 p.Ser3366Asnfs Frameshift indel 15-4E 3.71 

CDH1 
c.30_32delGCT p.Leu11del Inframe deletion 10-4A 1.00 

c.1223C>G p.Ala408Gly Cryptic splicing 15-3G 2.14 

CHEK2 c.470T>C p.Ile157Thr Missense 
12-2G 2.86 

15-5G 19.44P 
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c.433C>T p.Arg145Trp Missense 4-3C.5-4G.14-4A 3.48 

PALB2 

c.3549C>G p.Tyr1183Ter Nonsense 15-1E 1.78 

c.757_758delCT p.Leu253Ilefs Frameshift indel 10-6F 70.96 

c.2920_2921delAA p.Lys974Glufs Frameshift indel 8-3A.9-3A 5.03 

PMS2 c.2T>C p.Met1Thr Missense 11-4H 16.53P 

RAD51B 
c.84G>A p.Gln28= Leaky splicing 8-1H.9-1E 3.51P 

c.958-29A>T - Cryptic splicing 10-4B 7.44P 

STK11 c.375-194GT>AC - Cryptic splicing 10-5A 2.67M 

LR values in favor of neutrality are not shown. 

aRefSeq accessions: ATM (NM_000051.3), BARD1 (NM_000465.2), BRCA1 (NM_007294.2), BRCA2 (NM_000059.3), CDH1 

(NM_004360.3), CHEK2 (NM_007194.3), PALB2 (NM_024675.3), PMS2 (NM_000535.5), RAD51B (NM_002877.4), STK11 

(NM_000455.4). 

P, paternal; M, maternal; MGF, maternal grandfather; MGM, maternal grandmother.  
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missing pedigree information or limited numbers of affected individuals in a family. 

Patient 10–6F (PALB2: c.757 758delCT) exhibited the highest likelihood (LR = 70.96). 

Prioritized variants with neutral evidence include a variant that abolishes a natural SS in 

MRE11A, c.2070+2T>A (LR = 0.03), and an in-frame deletion c.483 485delAGA in 

CHEK2 (LR = 0.00). 

5.4 Discussion 

Rare noncoding and/or non-truncating mutations can confer an increased risk of disease 

in BC [Tavtigian et al., 2009]. This study determined both coding and noncoding 

sequences of 20 HBOC-related genes, with the goal of discovering and prioritizing rare 

variants with potential effects on gene expression. This work emphasizes results from the 

analysis of noncoding variants, which are abundant in these genes, yet have been 

underrepresented in previous HBOC mutation analyses. Nevertheless, alterations to 

mRNA binding sites in BRCA, and lower risk or rare HBOC genes, have been shown to 

contribute to HBOC (exonic splicing enhancers (ESEs) in ATM [Heikkinen et al., 2005], 

BARD1 [Ratajska et al., 2011], and BRCA genes [Gochhait et al., 2007; Sanz et al., 

2010]). We prioritized 346 unique variants that were predicted to result in four nonsense, 

three frameshift, two indels with preserved reading frame, 119 missense, four natural 

splicing, six cryptic splicing, 17 pseudoexon activating, 148 SRFBS, 36 TFBS, three 

UTR structure, and 31 RBBS mutations (Appendix D.16). Among these variants, 101 

were novel (see Appendix D.20 for references to previously identified variants). 

Compared to our initial seven-gene panel [Mucaki et al., 2016], the inclusion of the 

additional genes in this study prioritized at least one variant in 15% additional patients 

(increased from 70.6 to 85.7%). 

The BRCA genes harbor the majority of known germline pathogenic variants for HBOC 

families [Chong et al., 2014]. However, a large proportion of the potentially pathogenic 

variants identified in our study were detected in ATM, PALB2, and CHEK2, which, 

although of lower penetrance, were enriched because the eligibility criteria excluded 

known BRCA1 and BRCA2 carriers. BRCA1 and BRCA2 variants were nevertheless 

prioritized in some individuals. We also had expected intragenic clustering of some 

BRCA coding variants [Mucaki et al., 2011]. For example, pathogenic variants occurring 
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within exon 11 of BRCA2 are known to be associated with higher rates of OC in their 

families [Lubinski et al., 2004]. We identified three variants in exon 11; however, there 

was no evidence of OC in these families. Overall, ATM and PALB2 had the highest 

number of prioritized variants (61 and 26, respectively). However, only 12 variants were 

prioritized in CHEK2; potentially pathogenic variants may have been underrepresented 

during sequence alignment as a consequence of the known paralogy with CHEK2P2. 

Fewer TP53, STK11, and PTEN variants were prioritized, as pathogenic variants in these 

genes tend to be infrequent in patients who do not fulfill the clinical criteria for their 

associated syndromes (Li-Fraumeni syndrome, Peutz-Jeghers syndrome, and Cowden 

syndrome, respectively [Hollestelle et al., 2010]), although they have been indicated as 

near moderate to high-risk genes in BC [Easton et al., 2015]. This underrepresentation of 

prioritized variants may be supported by the negative Residual Variation Intolerance 

Scores (RVIS) for these genes [Petrovski et al., 2013], which are likely indicative of 

purifying selection. Although the density of prioritized variants in these genes is below 

average (18.2 per gene), the total number was nonetheless important (TP53 = 11, STK11 

= 12, PTEN = 15). 

The fundamental difference between IT and other approaches such as combined 

annotation-dependent depletion [CADD; Kircher et al., 2014] is that IT depends only on 

positive experimental data from the same or closely related species. CADD does not 

appear to account for unobserved reversions or other hidden mutations [e.g. perform a 

Jukes–Cantor correction; Jukes and Cantor, 1969], nor are the effects of these simulated. 

Furthermore, the CADD scoring system is ad hoc, which contrasts with strong theoretical 

basis on the IT approach [Rogan and Schneider, 1995] in which information changes in 

bits represent a formally proven relationship to thermodynamic stability, and therefore 

can be used to measure binding affinity. This makes it different from other unitless 

methods with unknown distributions, in which differences in binding affinity cannot be 

accurately extrapolated from derived scores. 

We compared the frequency of all prioritized variants in our patient cohort to the 

population allele frequencies [1000 Genomes Project, Phase 3; 
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http://www.1000genomes.org; 1000 Genomes Project Consortium, 2012] to determine if 

variants more common in our cohort might be suggestive of HBOC association. Three 

variants in at least five HBOC patients are present at a much lower frequency in the 

general population than in our HBOC population. NBN c.∗2129G>T, present in 4.18% of 

study cohort, is considerably rarer globally (0.38% in 1000 Genomes; <0.1% in other 

populations). Similarly, the RAD51B c.-3077G>T variant (2.09%) is rare in the general 

population (0.08%). Interestingly, BARD1 c.33G>T (1.74% of study cohort) has only 

been reported in the American and European populations in 1000 Genomes (0.29% and 

0.20%, respectively) and only Europeans in the Exome Variant Server (0.24%; 

http://evs.gs.washington.edu/EVS/). In Southwestern Ontario, individuals are often of 

American or European ancestry. The variant was found to be more common in the 

Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org/) in 1.17% tested 

Finnish population (0.41% in their non-Finnish European cohort), though no alleles were 

found in the Finnish populations in 1000 Genomes (N = 99). Therefore, the allele 

frequency of this BARD1 variant in our HBOC population may simply be enriched in a 

founder subset of general populations. While we cannot rule out skewing of these allele 

frequencies due to population stratification, our findings suggest that gene expression 

levels could be impacted by these variants. 

We applied subpopulation allele frequency analysis for all of our prioritized variants. 

Appendix D.21 lists the 49 variants that have allele frequencies >1% in various 

subpopulations (based on dbSNP). Allele frequencies were as high as 4.2% for the 

BRCA2 c.-40+192C>T (8-1G.9-1C), predicted to affect TF binding, in the East Asian 

subpopulation. Without additional information on patient ethnicities, it is not possible to 

eliminate prioritized variants that are common in specific subpopulations. 

Co-segregation analysis is recommended by the American College of Medical Genetics 

and Genomics for variant classification [Richards et al., 2015]. Among patients with 

likely pathogenic, highly penetrant mutations in our cohort (N = 24), some variants had 

LR values consistent with causality, whereas others provided little evidence to support 

co-segregation among family members (Table 5.6 and Appendix D.19). An important 
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caveat, however, was that the use of BRCA2 penetrance values in non-BRCA genes may 

have resulted in underestimates of LR values. 

In order to evaluate the application of co-segregation analysis in the context of this study, 

we chose to perform this analysis on patients with moderate priority variants (i.e., 

variants affecting binding sites) and patients with no flagged or prioritized variants (N = 

25 and 14, respectively). LRs ranged from 0.0034 to 78.0 for moderate-priority variants 

and from 0.0005 to 57.0 for patients with no flagged or prioritized variants (Appendix 

D.5-Supp. Fig. S2). The proportion of LR values supporting neutrality and those 

supporting causation was comparable between patients with prioritized, moderately 

prioritized, and flagged variants (Appendix D.5-Supp. Fig. S2). This suggests that co-

segregation analysis is only useful in the context of other supporting results for assessing 

pathogenicity (e.g., likelihood of being pathogenic or benign). Furthermore, the lack of 

genotype information and at times smaller pedigrees likely also contributed to the lack of 

concordance between LRs and variant priority. 

A small number of patients with a known pathogenic variant carried other prioritized 

variants. These were likely benign or possibly phenotypic modifiers. One patient 

possessed five prioritized variants (one missense, one SRFBS, one TFBS, and two 

RBBSs) in addition to a BRCA1 nonsense mutation (c.5503C>T). While these variants 

may not directly contribute to causing HBOC, they may act as a risk modifier and alter 

expression levels [Antoniou and Easton, 2006]. 

Similarly, genes lacking association with HBOC can be used as a metric for determining 

a false-positive rate of variant prioritization. In this study, we prioritized 21 ATP8B1 

variants among 37 of our HBOC patients (Appendix D.18) despite it having not been 

previously associated with any type of cancer. A variant with a deleterious effect on 

ATP8B1 may lead to ATP8B1-related diseases, such as progressive familial intrahepatic 

cholestasis [Gonzales et al., 2014], but should not increase the chances of developing BC. 

Thus, while our framework may be effective at prioritizing variants, only genes with 

previous association to a disease should be included in analyses similar to the present 

study to minimize falsely prioritized variants. 
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Additional workup of prioritized noncoding and non-BRCA variants is particularly 

important, because with few exceptions [Easton et al., 2015], the pathogenicity of many 

of the genes and variants has not been firmly established. Furthermore, mutations in 

several of these genes confer risk to other types of cancer, which alters the management 

of these patients [Knappskog and Lønning, 2012]. The next step toward understanding 

the role these prioritized variants play in HBOC is to test family members of the proband 

and to carry out functional analysis. If this is not possible, then their effects on gene 

expression could be evaluated using assays for RNA stability and RNA localization. 

Protein function could be evaluated by binding site assays, protein activity, and 

quantitative PCR. 

A significant challenge associated with VUS analysis, particularly in the case of many of 

these recent HBOC gene candidates, is the underreporting of variants and thus positive 

findings tend to be overrepresented in the literature [Kraft, 2008]. Hollestelle et al. [2010] 

argue that a more stringent statistical standard must be applied (i.e., P-values of 0.01 

should be used as opposed to 0.05) to underreported variants (namely in moderate-risk 

alleles), because of failure to replicate pathogenic variants, which we have also found 

[Viner et al., 2014]. In the same way that we use IT-based analysis to justify prioritizing 

variants for further investigation, variants that are disregarded as lower priority (and that 

are likely not disease causing) have been subjected to the same thresholds and criteria. 

Integrating this set of labeled prioritized and flagged, often rare variants from this cohort 

of BRCA-negative HBOC patients, to findings from exome or gene panel studies of 

HBOC families should accelerate the classification of some VUS. 

Different variant interpretation and reporting guidelines consider the reporting of VUS to 

be either optional or essential [Wallis et al., 2013; Richards et al., 2015]. In all cases, a 

reported VUS cannot be the basis for a clinical decision and should be followed up and 

further investigated. In any case, the number of reported VUS in an individual is 

frequently too extensive for detailed characterization. Reducing the full set of variants 

obtained by complete gene sequencing to a prioritized list will be an essential prerequisite 

for targeting potentially clinically relevant information. Informing patients of prioritized 

VUS may increase patient accrual and participation [Murphy et al., 2008]. However, it 
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will be critical to explain both the implications and significance of prioritization and the 

limitations, namely counselling patients to avoid clinical decisions, based on this 

information [Vos et al., 2012]. 
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Chapter 6  

6 Clustered, Information-dense Transcription Factor 
Binding Sites Identify Genes with Similar Tissue-wide 
Expression Profiles 

The work presented in this chapter is reproduced from: 

Lu,R., Rogan,P.K. (2018) Clustered, information-dense transcription factor binding sites 

identify genes with similar tissue-wide expression profiles. bioRxiv. doi: 

https://doi.org/10.1101/283267 

6.1 Background 

The distinctive organization and combination of transcription factor binding sites 

(TFBSs) and regulatory modules in promoters dictates specific expression patterns within 

a set of genes [1]. Clustering of multiple adjacent binding sites for the same TF 

(homotypic clusters) and for different TFs (heterotypic clusters) defines cis-regulatory 

modules (CRMs) in human gene promoters and can amplify the influence of individual 

TFBSs on gene expression through increasing binding affinities, facilitated diffusion 

mechanisms and funnel effects [2]. Because tissue-specific TF-TF interactions in TFBS 

clusters are prevalent, these features can assist in identifying correct target genes by 

altering binding specificities of individual TFs [3]. Previously, we derived information -

theory-based position weight matrices (iPWMs) from ChIP-seq data that can accurately 

detect TFBSs and quantify their strengths by computing associated 𝑅𝑖 values (Rate of 

Shannon information transmission for an individual sequence [4]), with 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 being 

the average of 𝑅𝑖 values of all binding site sequences and representing the average 

binding strength of the TF [3]. Furthermore, information density-based clustering (IDBC) 

can effectively identify functional TF clusters by taking into account both the spatial 

organization (i.e. intersite distances) and information density (i.e. 𝑅𝑖 values) of TFBSs 

[5]. 
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TF binding profiles, either derived from in vivo ChIP-seq peaks [6–8] or computationally 

detected binding sites and CRMs [9], have been shown to be predictive of absolute gene 

expression levels using a variety of tissue-specific machine learning classifiers and 

regression models. Because signal strengths of ChIP-seq peaks are not strictly 

proportional to TFBS strengths [3], representing TF binding strengths by ChIP-seq 

signals may not be appropriate; nevertheless, both achieved similar accuracy [10]. CRMs 

have been formed by combining two or three adjacent TFBSs [9], which is inflexible, as 

it arbitrarily limits the number of binding sites contained in a module, and does not 

consider differences between information densities of different CRMs. Chromatin 

structure (e.g. histone modification (HM) and DNase I hypersensitivity) were also found 

to be statistically redundant with TF binding in explaining tissue-specific mRNA 

transcript abundance at a genome-wide level [7,8,11,12], which was attributed to the 

heterogeneous distribution of HMs across chromatin domains [8]. Combining these two 

types of data explained the largest fraction of variance in gene expression levels in 

multiple cell lines [7,8], suggesting that either contributes unique information to gene 

expression that cannot be compensated for by the other.  

The number of genes directly bound by a TF significantly exceeds the number of 

differentially expressed (DE) genes whose expression levels significantly change upon 

knockdown of the TF. Only a small subset of direct target genes whose promoters 

overlap ChIP-seq peaks were DE after individually knocking 59 TFs down using small 

interfering RNAs (siRNAs) in the GM19238 cell line [13]. Using these knockdown data 

on 8,872 genes as the gold standard, correlation between TFBS counts and gene 

expression levels across 10 different cell lines was more predictive of DE targets than 

setting a minimum threshold on TFBS counts [14]. Their TFBS counts were defined as 

the number of ChIP-seq peaks overlapping the promoter, though it was unknown how 

many binding sites were present in these peaks; true positives might not be direct targets 

in the TF regulatory cascade, as the promoters of these targets were not intersected with 

ChIP-seq peaks. By perturbing gene expression with CAS9-directed clustered regularly 

interspaced short palindromic repeats (CRISPR) of 10 different TF genes in K562 cells, 

the regulatory effects of each TF on 22,046 genes were dissected by single cell RNA 

sequencing with a regularized linear computational model [15]; this accurately revealed 
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DE targets and new functions of individual TFs, some of which were likely regulated 

through direct interactions at TFBS in their corresponding promoters. Machine learning 

classifiers have also been applied in a small number of gene instances to predict targets of 

a single TF using features extracted from n-grams derived from consensus binding 

sequences [16], or from TFBSs and homotypic binding site clusters [5]. 

To investigate whether the distribution and composition of CRMs in promoters 

substantially determines gene expression profiles of direct TF targets, we developed a 

general machine learning framework that predicts which genes have similar expression 

profiles to a given gene and predicts DE direct TF targets by combining information 

theory-based TF binding profiles with DHSs. Upon filtering for accessible promoter 

intervals with DHSs, features designed to capture the spatial distribution and information 

composition of CRMs were extracted from clusters identified by the IDBC algorithm 

from iPWM-detected TFBSs. Though not all direct targets regulated by multiple TFs 

share a common tissue-wide expression profile, this framework provides insight into the 

transcriptional program of genes with similar profiles by dissecting their cis-regulatory 

element organization and strengths. We identify genes with comparable tissue-wide 

expression profiles by application of Bray-Curtis similarity [17]. Using transcriptome 

data generated by CRISPR- [15] and siRNA-based [13] TF knockdowns, we predicted 

DE TF target genes that are simultaneously direct targets whose promoters overlap tissue-

specific ChIP-seq peaks, in contrast with the correlation-based approach [14]. 

6.2 Methods 

To identify genes with similar tissue-wide expression patterns, we formally define gene 

expression profiles and pairwise similarity measures between profiles of different genes. 

A general machine learning framework relates features extracted from the organization of 

TFBSs in these genes to their tissue-wide expression patterns. Positives and negatives for 

predicting DE direct protein-coding (PC) TF target genes (TF targets for short below) 

were obtained from CRISPR- and siRNA-generated knockdown data (see below). (The 

results on the siRNA-generated knockdown data are in progress.) 
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6.2.1 Similarity between Gene Expression Profiles 

For each of 56,238 genes, the Genotype-Tissue Expression (GTEx) project measured its 

expression levels in 53 tissues in a number of individuals (N=5-564), and provides the 

median expression value (in RPKM (Reads Per Kilobase of transcript per Million 

mapped reads) in the GTEx Analysis v6p release) of each gene in each tissue [18]. To 

capture the tissue-wide overall expression pattern of a gene instead of within a single 

tissue, the expression profile of a gene was defined as its median RPKM across the 53 

tissues (Equation 6.1), which forms a vector of size 53 and does not distinguish between 

different isoforms whose expression patterns may significantly differ from each other.  

𝐸𝑃𝐴 = [𝑀𝐸𝑉1
𝐴, 𝑀𝐸𝑉2

𝐴, … ,𝑀𝐸𝑉53
𝐴 ]  (𝑖𝑛 𝑅𝑃𝐾𝑀)    [6.1] 

where 𝐸𝑃𝐴 is the expression profile of Gene 𝐴, 𝑀𝐸𝑉1
𝐴 is the median expression value of 

Gene 𝐴 in Tissue 1, 𝑀𝐸𝑉2
𝐴 is the median expression value of Gene 𝐴 in Tissue 2, etc. 

To obtain ground-truth genes that have similar expression profiles to a given gene, the 

Bray-Curtis Similarity (Equation 6.2) was used to compute the similarity value between 

the expression profiles of two genes. Compared to other similarity metrics (Table 6.1, 

Example 6.1), its application is justified by three desired properties, including 1) 

maintaining bounds of 0 and 1, 2) achieving the maximal similarity 1 if and only if two 

vectors are identical, and 3) larger values having a larger impact on the resultant 

similarity value.  

𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝐸𝑃
𝐴, 𝐸𝑃𝐵) =

{
 
 

 
 
1,                   𝑖𝑓 ∑𝑀𝐸𝑉𝑖

𝐴 =∑𝑀𝐸𝑉𝑖
𝐵 = 0

53

𝑖=1

53

𝑖=1

1 −
∑ |𝑀𝐸𝑉𝑖

𝐴 −𝑀𝐸𝑉𝑖
𝐵|53

𝑖=1

∑ (𝑀𝐸𝑉𝑖
𝐴 +𝑀𝐸𝑉𝑖

𝐵)53
𝑖=1

,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     [6.2] 

Example 6.1. Assume that Genes A,B,C,D,E,F respectively have the following 

expression profiles across two tissues: 𝐸𝑃𝐴 = [1,1], 𝐸𝑃𝐵 = [2,2], 𝐸𝑃𝐶 = [3,3], 𝐸𝑃𝐷 =

[1,2], 𝐸𝑃𝐸 = [1,99], 𝐸𝑃𝐹 = [1,100]. The ground-truth similarity relationships that we 

can intuitively infer include 𝑠𝑖𝑚(𝐸𝑃𝐶 , 𝐸𝑃𝐴) < 𝑠𝑖𝑚(𝐸𝑃𝐶 , 𝐸𝑃𝐵) < 1,  and 
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𝑠𝑖𝑚(𝐸𝑃𝐴, 𝐸𝑃𝐷) < 𝑠𝑖𝑚(𝐸𝑃𝐸 , 𝐸𝑃𝐹) < 1. Only the results computed by the Bray-Curtis 

Similarity are completely concordant with these ground-truth relationships (Table 6.2). 

Table 6.1: Comparison between metrics in measurement of similarity between gene 

expression profiles 

Similarity metric 
Property 

1†, ‡ 
Property 2† Property 3† 

Bray-Curtis √; [0,1] √ √ 

Euclidean √; (0,1] √ × 

Cosine √; [0,1] × √ 

Pearson correlation [40] ×; [-1,1] × × 

Spearman correlation [41] ×; [-1,1] × × 

† √ and × respectively indicate that the similarity metric satisfies and does not satisfy the 

property. 

‡ The interval in each cell indicates the range in which the result computed by the 

similarity metric lies. 

Table 6.2: Similarity values computed by different metrics 

Similarity 

metric 
𝒔𝒊𝒎(𝑬𝑷𝑪, 𝑬𝑷𝑩) 𝒔𝒊𝒎(𝑬𝑷𝑪, 𝑬𝑷𝑨) 𝒔𝒊𝒎(𝑬𝑷𝑬, 𝑬𝑷𝑭) 𝒔𝒊𝒎(𝑬𝑷𝑨, 𝑬𝑷𝑫) 

Bray-Curtis 0.8 0.5 ≈ 0.995 0.8 

Euclidean ≈ 0.41 ≈ 0.26 0.5 0.5 

Cosine 1 1 ≈ 0.999999995 ≈ 0.949 

Pearson 

correlation 
Undefined Undefined 1 1 

Spearman 

correlation 
1 1 1 1 
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6.2.2 Prediction of Genes with Similar Expression Profiles 

The framework for identifying genes that have similar expression profiles to a specific 

gene is shown in Figure 6.1A and 6.1B. All DHSs in 95 cell types generated by the 

ENCODE project [19; hg38 assembly] were intersected with known promoters [20], then 

94 iPWMs exhibiting primary binding motifs for 82 TFs [3] were used to detect TFBSs 

in overlapping intervals. When detecting heterotypic TFBS clusters with the IDBC 

algorithm, a minimum threshold 0.1 ∗ 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 was set for 𝑅𝑖 values of TFBSs, in order 

to remove weak binding sites that were likely to be false positive TFBSs.  

The information density-related features derived from each TFBS cluster include: 1) The 

distance between this cluster and the transcription start site (TSS); 2) The length of this 

cluster; 3) The information content of this cluster (i.e. the sum of 𝑅𝑖 values of all TFBSs 

in this cluster); 4) The number of binding sites of each TF within this cluster; 5) The 

number of strong binding sites (𝑅𝑖 >𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) of each TF within this cluster; 6) The sum 

of 𝑅𝑖 values of binding sites of each TF within this cluster; 7) The sum of 𝑅𝑖 values of 

strong binding sites (𝑅𝑖 > 𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) of each TF within this cluster. 

For a gene instance, each of Features 1-3 is defined as a vector whose size equals the 

number of clusters in the promoter; thus, the entire vector could be input into a classifier. 

If two instances contained different numbers of clusters, the maximum number of clusters 

among all instances was determined, and null clusters were added at the 5’ end of 

promoters with fewer clusters, enabling all instances to have the same cluster count. 

Machine learning classifiers with default parameters in MATLAB were used to generate 

ROC (Receiver Operating Characteristic) curves. 

6.2.3 Prediction of Differentially Expressed Direct TF Targets 

6.2.3.1 Using Gene Expression in the CRISPR-based 
Perturbations 

Dixit et al. performed CRISPR-based perturbation experiments using multiple guide 

RNAs for each of ten TFs in K562 cells, resulting in a regulatory matrix of coefficients 

that indicate the effect of each guide RNA on each of 22,046 genes [15]. The coefficient 
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Figure 6.1: The general framework for predicting genes with similar tissue-wide expression profiles and TF targets. A) An 

overview of the machine learning framework. The steps enclosed in the dashed rectangle and for forming training and test sets vary 

across prediction of genes with similar expression profiles and DE direct TF targets. The step with a dash-dotted border that intersects 

promoters with DHSs is a variant of the primary approach that provided more accurate results. In the IDBC algorithm (Appendix E.1), 

the parameter I is the minimum threshold on the total information contents of TFBS clusters. In prediction of genes with similar 
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expression profiles, the minimum value was 939, which was the sum of mean information contents (𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 values) of all 94 

iPWMs; in prediction of direct targets, this value was the 𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 value of the single iPWM used to detect TFBSs in each promoter. 

The parameter d is the radius of initial clusters in base pairs, whose value, 25, was determined empirically. Eight types of three 

different classifiers were evaluated with statistics (accuracy, sensitivity and specificity) to measure the classifier performance 

(Appendix E.1). B) Obtaining of the positives and negatives for identifying genes with similar expression profiles to a given gene 

(Appendix E.2). C) Obtaining of the positives and negatives for predicting target genes of seven TFs using the CRISPR-generated 

perturbation data in K562 cells (Appendix E.3). D) Formation of the positives and negatives for predicting target genes of 11 TFs 

using the siRNA-generated knockdown data in GM19238 cells (Appendix E.4).
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of a guide RNA on a gene is defined as the log10(fold change in gene expression level) 

[15]. Among these ten TFs, we have previously derived iPWMs exhibiting primary 

binding motifs for seven (EGR1, ELF1, ELK1, ETS1, GABPA, IRF1, YY1) [3]. 

Therefore, the framework for predicting TF targets in the K562 cell line (Figure 6.1A and 

6.1C) was applied to these TFs. The criteria for defining a positive (i.e. a target gene), of 

a TF was:  

1) The fold change in the expression level of this PC gene for each guide RNA of the 

TF was > (or <) 1, consistent with the possibility that the gene was regulated by the 

TF, and  

2) The average fold change in the expression level of this PC gene for all guide RNAs 

of the TF was > threshold 𝜀 (or < 1 𝜀⁄ ), and  

3) The promoter interval (10 kb) upstream of a TSS of this PC gene overlaps a ChIP-

seq peak of the TF in the K562 cell line.  

If the coefficients of all guide RNAs of the TF for a PC gene are zero, the gene was 

defined as a negative. As the threshold ε increases, the number of positives strictly 

decreases; as ε decreases, we have increasingly lower confidence in the fact that the 

positives were indeed differentially expressed because of the TF perturbation. To achieve 

a balance between sensitivity and specificity, we evaluated three different values (i.e. 

1.01, 1.05 and 1.1) for ε. For each TF, all ENCODE ChIP-seq peak datasets from the 

K562 cell line were merged to determine positives. To make the numbers of negatives 

and positives equal to avoid imbalanced datasets that significantly compromise the 

classifier performance [21], the Bray-Curtis function was applied to compute the 

similarity values in the expression profile between all negatives and the positive with the 

largest average coefficient, then the negatives with the smallest values were selected 

(Figure 6.1C).  

The DHSs in the K562 cell line were intersected with known promoters. Because TFs 

may exhibit tissue-specific sequence preferences due to different sets of target genes and 

binding sites in different tissues [3], the iPWMs of EGR1, ELK1, ELF1, GABPA, IRF1, 
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YY1 from the K562 cell line were used to most accurately detect binding sites; for ETS1, 

we used the only available iPWM from the GM12878 cell line [3]. Six features were 

derived from each homotypic cluster (i.e. Features 3 and 6 converged to the same value, 

because only binding sites from a single TF were used). 

6.2.3.2 Using Gene Expression in the siRNA-based Knockdown 

In the GM19238 cell line, 59 TFs were individually knocked down using siRNAs, and 

significant changes in the expression levels of 8,872 genes were indicated according to 

their corresponding P-values [13]. In these cases, the P-value of a gene for a TF is the 

probability of observing the change in the expression level of this gene under the null 

hypothesis of no differential expression after TF knockdown; thus the larger the change 

in the expression level, the smaller the P-value and the more likely this gene is 

differentially expressed. They also indicated whether the promoters of these genes 

display evidence of binding to TFs by intersecting with ChIP-seq peaks in the GM12838 

cell line. Among these 59 TFs, we have previously derived accurate iPWMs exhibiting 

primary binding motifs for 11 (BATF, JUND, NFE2L1, PAX5, POU2F2, RELA, RXRA, 

SP1, TCF12, USF1, YY1) [3]. Therefore, the framework for predicting TF targets in the 

GM19238 cell line (Figure 6.1A and 6.1D) was applied to these 11 TFs. 

We defined a positive (i.e. a target gene) for a TF, if the P-value of this gene for the TF 

was ≤ 0.01, and the promoter interval (10kb) upstream of a TSS of this gene overlapped a 

ChIP-seq peak of the TF in the GM12878 cell line. A negative for a TF exhibited the 

following property: a P-value > 0.01 for the TF (Figure 6.1D). 

The DHSs in the GM19238 cell line mapped from the hg19 genome assembly were first 

remapped to the hg38 assembly using liftOver (available at genome.ucsc.edu) prior to 

intersecting with known promoters [22]. Aside from RELA and NFE2L1, the iPWMs of 

TFs from the GM12878 cell line were used to detect binding sites. For RELA, the iPWM 

from the GM19099 cell line was used; for NFE2L1, the only available iPWM was 

derived from K562 cells and was applied. Although the knockdown was performed in 

GM19238, GM12878 and GM19099 are also lymphoblastic cell lines, with GM19099 

and GM19238 both being derived from Yorubans. For this analysis, the iPWMs derived 
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in GM12878 and GM19099 were more appropriate than the iPWM from K562, since 

GM12878 and GM19099 are of the same tissue type and are thus more likely comparable 

to GM19238 than to K562. 

6.2.4 Mutation Analyses on Promoters of Differentially Expressed 
Direct Targets 

To better understand the significance of individual binding sites for information-dense 

clusters and the regulatory state of direct targets, we evaluated the effects of sequence 

changes that altered the 𝑅𝑖 values of these sites on cluster formation and whether a gene 

was predicted to be a TF target. Mutations were sequentially introduced into the strongest 

binding sites in TFBS clusters of the EGR1 target gene, MCM7, to determine the 

threshold for cluster formation after disappearing clusters disabled induction of MCM7 

expression. For one target gene of each TF from the CRISPR-generated perturbation data, 

effects of naturally occurring TFBS variants present in dbSNP 

(https://www.ncbi.nlm.nih.gov/projects/SNP/) [23] were also evaluated to explore aspects 

of TFBS organization that enabled both clusters and promoter activity to be resilient to 

binding site mutations. This was done by analyzing whether the occurrence of individual 

or multiple single nucleotide polymorphisms (SNPs) lead to the loss of binding sites and 

the clusters that contain them, and result in changes in the predictions of these targets. 

6.3 Results 

6.3.1 Similarity between Gene Expression Profiles 

To confirm that the Bray-Curtis Similarity can indeed effectively measure how akin the 

expression profiles of two genes are to each other, it was applied to compute the 

similarity values between the expression profiles of the glucocorticoid receptor (GR or 

NR3C1) gene and all other 56,237 genes. NR3C1 is an extensively characterized TF with 

many known direct target genes [24]. As a constitutively expressed TF activated by 

glucocorticoid ligands, it can mediate the up-regulation of anti-inflammatory genes by 

binding of homodimers to glucocorticoid response elements and down-regulation of 

proinflammatory genes by complexing with other activating TFs (e.g. NFKB and AP1) 

and eliminating their ability to bind targets [24]. NR3C1 can bind its own promoter 
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forming an auto-regulatory loop, which also contains functional binding sites of 11 other 

TFs (e.g. SP1, YY1, IRF1, NFKB) whose iPWMs have been developed and/or mutual 

interactions have been described in Lu et al. [3,24]. However, the expression profile of 

NR3C1 integrates all different splicing and translational isoforms (e.g. GRα-A to GRα-D, 

GRβ, GRγ, GRδ), whereas these isoforms have tissue-specific expression patterns (e.g. 

levels of the GRα-C isoforms are significantly higher in the pancreas and colon, whereas 

levels of GRα-D are highest in spleen and lungs) [24]. SLC25A32 and TANK have the 

greatest similarity values to NR3C1 (0.880 and 0.877 respectively), which is evident 

intuitively based on their overall similar expression patterns across the 53 tissues (Figure 

6.2). 

6.3.2 Prediction of Genes with Similar Expression Profiles 

In prediction of genes with similar expression profiles to NR3C1, we generated ROC 

curves to compare the performance of different classifiers (Naïve Bayes, Decision Tree, 

Random Forest and Support vector machines (SVM) with four different kernels), under 

two scenarios depending on whether promoter sequences were first intersected with 

DHSs (Figure 6.3). Decision Tree (DT) exhibited the largest AUC under both scenarios, 

and was one of two most stable classifiers (i.e. ΔAUC < 0.01), with the other being the 

SVM with RBF kernel. Inclusion of DHS information significantly improved other 

classifiers’ AUC except for Naïve Bayes, and generally all TFBSs in a DHS formed a 

binding site cluster. 

6.3.3 Prediction of Differentially Expressed Direct TF Targets 

The best-performing DT classifier in distinguishing genes with NR3C1-like expression 

profiles from others was used to predict TF targets respectively based on the CRISPR- 

[15] and siRNA-generated [13] perturbation data. 

After eliminating TFBSs in inaccessible promoter intervals, i.e. those excluded from 

tissue-specific DHSs, the DT classifier predicted TF targets with greater sensitivity and 

specificity (Tables 6.3 and 6.4). Specifically, predictions based on CRISPR-generated 

knockdown data for TFs: EGR1, ELK1, ELF1, ETS1, GABPA, and IRF1 were more 

accurate than for YY1, which itself represses or activates a wide range of promoters 
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Figure 6.2: Expression profiles of NR3C1, SLC25A32 and TANK. Visualization of 

the expression values (in RPKM) of these genes across 53 tissues from GTEx. For each 

gene, the colored rectangle belonging to each tissue indicates the valid RPKM of all 

samples in the tissue, the black horizontal bar in the rectangle indicates the median 
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RPKM, the hollow circles indicate the RPKM of the samples considered as outliers, and 

the grey vertical bar indicates the sampling error. By comparing the pictures, the overall 

expression patterns of the three genes across the 53 tissues resemble each other (e.g. all 

three genes exhibit the highest expression levels in lymphocytes and the lowest levels in 

brain tissues).  

 

Figure 6.3: Comparison between the performance of different classifiers in 

prediction of genes with similar expression profiles to NR3C1. (A) ROC curves and 

AUC of seven classifiers without intersecting promoters with DHSs. (B) ROC curves and 

AUC of seven classifiers after intersecting promoters with DHSs. The Decision tree 

classifier exhibited the largest AUC under both scenarios, and inclusion of DHS 

information significantly improved other classifiers’ AUC except for Naïve Bayes. 
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Table 6.3: The Decision tree classifier performance for predicting TF targets using 

the CRISPR-generated knockdown data 

TF† 
Excluding DHS information† Including DHS information† 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

EGR1 0.58 0.62 0.60 0.78 0.81 0.80 

ELF1 0.59 0.65 0.62 0.83 0.87 0.85 

ELK1 0.59 0.59 0.59 0.8 0.81 0.81 

ETS1 0.59 0.6 0.59 0.81 0.81 0.81 

GABPA 0.55 0.57 0.56 0.72 0.75 0.74 

IRF1 0.54 0.55 0.54 0.76 0.64 0.70 

YY1 0.5 0.51 0.51 0.45 0.69 0.57 

† The average performance of 10 rounds of 10-fold cross validation when setting 𝜀 to 1.05 

is indicated. The CRISPR-generated knockdown data were obtained from Dixit et al [15]. 

by binding to sites overlapping the TSS (Table 6.3). Accordingly, the perturbation data 

indicated that YY1 has ~4-22 times more PC targets in the K562 cell line than the other 

TFs (ε = 1.05), and its binding has a more significant impact on the expression levels of 

target genes (for YY1, the ratio of the target counts at ε = 1.1 vs ε = 1.01 was 0.334, 

which significantly exceeded those of the other TFs (0.017-0.082); Appendix E.3). This 

is concordant with our previous finding that YY1 extensively interacts with 11 cofactors 

(e.g. DNA-binding IRF9 and TEAD2; non-DNA-binding DDX20 and PYGO2) in K562 

cells, consistent with a central role in specifying erythroid-specific lineage development 

[3].   

Despite a high accuracy of target recognition, sensitivity did not exceed specificity except 

for IRF1 (Table 6.3), due to a relatively large number of false negative genes. Promoters 

of most TF targets contain accessible, functional binding sites that significantly change 

gene expression levels upon binding. By contrast, promoters of non-targets contain either 

no accessible binding sites at all, or accessible, but non-functional sites. The fact that  
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Table 6.4: The Decision tree classifier performance for predicting TF targets using 

the siRNA-generated knockdown data 

TF† 
Excluding DHS information† Including DHS information† 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

BATF 0.625 0.646 0.604 0.706 0.649 0.763 

JUND 0.625 0.646 0.604 0.682 0.682 0.682 

NFE2L1 0.633 0.533 0.733 0.75 0.667 0.833 

PAX5 0.575 0.614 0.537 0.627 0.563 0.691 

POU2F2 0.725 0.818 0.633 0.651 0.796 0.505 

RELA 0.591 0.619 0.563 0.690 0.611 0.770 

RXRA 0.731 0.813 0.648 0.663 0.793 0.533 

SP1 0.561 0.571 0.551 0.579 0.539 0.620 

TCF12 0.564 0.638 0.491 0.684 0.597 0.770 

USF1 0.737 0.753 0.721 0.723 0.71 0.735 

YY1 0.611 0.456 0.765 0.601 0.396 0.807 

† The average performance of 10 rounds of 10-fold cross validation is indicated. The 

siRNA-generated knockdown data were obtained from Cusanovich et al [13]. 

these false negatives were erroneously predicted to non-targets was attributable to the 

indistinguishability between functional binding sites in their promoters and non-

functional ones in non-targets in the classifier. In vivo co-regulation mediated by 

interacting cofactors, which was excluded by the classifier, assisted in distinguishing 

these non-functional sites that do not significantly affect gene expression [3,13].   

As the threshold 𝜀 increased, the accuracy of the classifier for all the TFs monotonically 

increased as expected (Figure 6.4). For a gene to be defined as a DE target of a TF, the 

average fold change in its expression level for all guide RNAs that downregulated the TF 

were required to reach the minimum threshold 𝜀. Upon TF knockdown, 𝜀 is inversely 
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Figure 6.4: Accuracy of the Decision tree classifier when using three different values 

for ε. Each accuracy value was averaged from 10 rounds of 10-fold cross validation, 

when the minimum threshold  on the average fold change in gene expression levels 

under all guide RNAs of the TF took three different values 1.01, 1.05 and 1.1. As 𝜺 

increased, accuracy for all seven TFs monotonically increased. 

correlated with the number of target genes, but positively correlated with fold changes in 

their corresponding expression levels. In general, more significantly DE genes have been 

associated with a higher number of TFBSs in their promoters [13]. Thus, at greater 𝜀, 

there are larger differences in the values of machine learning features derived from TFBS 

clusters between targets and non-targets.  

With the siRNA-generated knockdown data, the performance of the DT classifier was 

compared to the approach inferring DE targets by correlating TF binding with gene 

expression levels across ten cell types [14]. In this correlation-based approach, three 

measures (i.e. the absolute Pearson correlation coefficient (PC), the absolute Spearman 

correlation coefficient (SC), and the absolute combined angle ratio statistic (CARS)), 

whose performance was evaluated with precision-recall curves, were alternatively used to 
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compute a correlation score between the number of ChIP-seq peaks overlapping the 

promoter and gene expression values. Genes predicted to be DE targets had scores above 

the threshold resulting in a 1.5-fold increase compared to the background precision. For 

example, in the case of YY1, which was the only TF analyzed by both approaches, the 

performance of the DT classifier was 0.66 (precision) and 0.456 (recall) (Table 6.4). This 

classifier outperformed all three correlation measures (PC: 0.467 and 0.003; SC: 0.467 

and 0.006; CARS: 0.467 and 0.003), even though the correlation approach used a less 

stringent P-value threshold (0.05) for defining differential expression of likely non-direct 

targets, and intersected ChIP-seq peaks over shorter 5kb promoter intervals upstream of 

the TSS. 

6.3.4 Intersection of Genes with Similar Expression Profiles and 
Direct Targets 

To determine how many TF targets have similar tissue-wide expression profiles, we 

intersected the set of targets with the set of 500 PC genes with the most similar 

expression profiles for each TF (Table 6.5, Appendix E.5). The TFs PAX5 and POU2F2 

are primarily expressed in B cells, and their respective targets IL21R and CD86 are also B 

cell-specific, which accounts for the high similarity in the expression profile between 

them. There are respectively 21 and 7 nuclear mitochondrial genes (e.g. MRPL9 

and MRPS10, which are subunits of mitochondrial ribosomes) in the intersections for 

YY1 in the K562 and GM19238 cell lines [25]. Previous studies reported that YY1 

upregulates a large number of mitochondrial genes by complexing with PGC-1α in 

C2C12 cells [26], and genes involved in the mitochondrial respiratory chain in K562 cells 

[15], which is consistent with the idea that YY1 may broadly regulate mitochondrial 

function (within all 53 tissues in addition to the erythrocyte, lymphocyte and skeletal 

muscle cell lines). 

Between 0.4%-25% of genes with similar expression profiles to the TFs are actually their 

targets (Table 6.5); the majority are non-targets whose promoters contain non-functional 

binding sites that are distinguished from targets by their lack of coregulation by 

corresponding cofactors. For YY1 and EGR1, we validated this hypothesis by contrasting 

the flanking cofactor binding site distributions and strengths in the promoters of the most 
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similarly expressed target genes (YY1: MRPL9, BAZ1B; EGR1: CANX, NPM1) and non-

target genes (YY1: ADNP, RNF25; EGR1: AC142293.3, AP000705.7). Strong and 

intermediate recognition sites for TFs: SP1, KLF1, CEBPB formed heterotypic clusters 

with adjacent YY1 sites; as well TFBSs of SP1, KLF1, and NFY were frequently present 

adjacent to EGR1 binding sites. These patterns contrasted with the enrichment of CTCF 

and ETS binding sites in gene promoters of YY1 and EGR1 non-targets (Appendix E.6). 

Previous studies have reported that KLF1 is essential for terminal erythroid 

differentiation and maturation [27], direct physical interactions between YY1 and the 

constitutive activator SP1 synergistically induce transcription [28], the activating CEBPB 

promotes differentiation and suppresses proliferation of K562 cells by binding the 

promoter of the G-CSFR gene encoding a hematopoietin receptor [29], EGR1 and SP1 

synergistically cooperate at adjacent non-overlapping sites on EGR1 promoter but 

compete binding at overlapping sites [30]; whereas CTCF functions as an insulator 

blocking the effects of cis-acting elements and preventing gene activation [31,32], and 

ETV6, a member of the ETS family, is a transcriptional repressor required for bone 

marrow hematopoiesis and associated with leukemia development [33]. 

6.3.5 Mutation Analyses on Promoters of Direct Targets 

Because the promoters of most direct targets contain multiple binding site clusters, we 

anticipate that this enables these genes’ expression to be naturally robust against binding 

site mutations; in other words, the other clusters can compensate for the loss of a cluster 

destroyed by mutations in binding sites, so that the mutated promoters are still capable of 

effectively inducing gene transcription upon TF binding. First, we validated this 

hypothesis by examining whether introducing artificial variants into binding sites in the 

promoter of the target gene MCM7 in the test set of EGR1 changes the classifier output 

(Figure 6.5). Specifically, in the K562 cell line, MCM7 is upregulated by EGR1. 

Knockdown of MCM7 has an anti-proliferative and pro-apoptotic effect on K562 cells 

[34] and the loss of EGR1 increases leukemia initiating cells [35], which suggests that 

EGR1 may act as a tumor suppressor in K562 cells through the MCM7 pathway. 

First, the strongest binding site (at position chr7:100103347 [hg38], - strand, 𝑅𝑖  = 12.0 

bits) in the promoter was eliminated by a G->A mutation, resulting in the disappearance
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Table 6.5: Intersection of TF targets and 500 protein-coding genes with the most similar expression profiles 

TF Cell line Number of targets Size of intersection Targets among the most similar 10 genes§ 

EGR1 

K562 

169 12 None 

ELF1 78 5 None 

ELK1 112 4 GNL1(8th) 

ETS1 267 15 None 

GABPA 513 25 TAF1(1st) 

IRF1 457 10 None 

YY1 
1752 127 

MRPL9(2nd), BAZ1B(6th), ENY2(7th), 

NUB1(8th), USP1(9th), HNRNPR(10th) 

GM19238 

1066 61 MED4(1st), SURF6(3rd), BAZ1B(6th) 

BATF 193 4 MB21D1(4th), C16orf87(9th) 

JUND 44 2 None 

NFE2L1 60 3 None 

RELA 252 22 HMG20B(9th) 

RXRA 183 7 None 

SP1 1630 96 ACLY(1st), SEC22B(7th), GPX1P1(10th) 
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TCF12 669 19 None 

USF1 309 20 None 

PAX5 938 76 IL21R(9th) 

POU2F2 550 21 CD86(3rd) 

§ The rank of each target in the list of similar genes in the descending order of Bray-Curtis similarity values is shown in the brackets 

immediately following the target.  
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of Cluster 1, which consists of two sites (the other site at chr7:100103339, -, 4.3 bits). 

EGR1 was still predicted to compensate for this mutation, due to the presence of the other 

two clusters comprising weaker binding sites of intermediate strength (chr7:100102252, 

+, 7.0 bits; chr7:100102244, +, 1.3 bits; chr7:100101980, +, 8.9 bits; chr7:100101977, +, 

2.2 bits; chr7:100101984, +, 1.9 bits), enabling the promoter to maintain capability of 

inducing MCM7 expression (Figure 6.5). These adjacent clustered sites, which may not 

be strong enough to bind TFs and individually activate transcription, can stabilize each 

other’s binding [2]. The weaker sites flanking a strong binding site in a cluster can direct 

the TF molecule to the strong site and extend the period of the molecule physically 

associating with the strong site, which is termed, the funnel effect [2]. Further, Clusters 2 

and Cluster 3 were respectively removed by G->T and C->G mutations abolishing the 

strongest site in either cluster, which altered the prediction, that is, EGR1 lost the 

capability to induce MCM7 transcription (Figure 6.5). The remaining four sparse weak 

sites do not form a cluster and cannot completely supplant the disrupted strong sites. 

Further, we examined the impacts of known natural SNPs on binding site strengths, 

clusters and the regulatory state of the promoter for a direct target of each of the seven 

TFs from the CRISPR-generated perturbation data (Table 6.6). Often a single SNP (e.g. 

rs996639427 of EGR1) can affect the strengths of multiple binding sites (Table 6.6). 

Apart from SNPs that are predicted to abolish binding (Figure 6.5), leaky variants that 

merely weaken TF binding are common (Table 6.6). Binding stabilization between 

adjacent sites and the funnel effect enable the CRMs comprised of information-dense 

clusters to be robust to mutations in individual binding sites. In this way, neither 

mutations that abolish TFBSs nor leaky SNPs in flanking weak sites can destroy 

functional clusters (e.g. rs1030185383 and rs5874306 of IRF1), whereas SNPs with large 

reductions in 𝑅𝑖  values of central strong sites are more likely to abolish clusters (e.g. 

rs865922947, rs946037930, rs917218063 and rs928017336 of YY1) (Table 6.5). More 

generally, the presence of multiple clusters enables promoters to be effectively resilient to 

the effects binding site mutations; only the complete abolishment of all clusters resulting 

from the simultaneous occurrence of multiple SNPs can transform the promoter to be 

unresponsive to TF binding to residual weak sites (e.g. rs997328042, rs1020720126 and 

rs185306857 of GABPA) (Table 6.6). Furthermore, a relatively small number of SNPs 
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Figure 6.5: Mutation analyses on the target MCM7 in the test set of EGR1. This 

figure depicts the effect of a mutation in each EGR1 binding site cluster of the MCM7 

promoter on the expression level of MCM7, which is a target of the TF EGR1. The 

strongest binding site in each cluster were abolished by a single nucleotide variant. Upon 

loss of all three clusters, only weak binding sites remained and EGR1 was predicted to no 

longer be able to effectively regulate MCM7 expression. Multiple clusters in the 

promoters of TF targets confers robustness against mutations within individual binding 

sites that define these clusters. 

that strengthen TF binding and eventually amplify the regulatory effect of the TF on the 

gene expression level are also present (e.g. rs887888062 of EGR1 and rs751263172 of 

ELF1) (Table 6.6), suggesting that, in addition to deleterious mutations, benign variants 

may also be found in promoters, consistent with the expectations of neutral theory [36]. 

6.4 Discussion 

In this study, the Bray-Curtis Similarity function was initially shown (for the NR3C1 

gene) to measure the relatedness of overall expression patterns between genes across a 

diverse set of tissues. The resulting machine learning framework distinguished Bray-

Curtis function-defined similar from dissimilar genes based on the distribution, strengths 

and compositions of TFBS clusters in accessible promoters, which can 

substantiallyaccount for the corresponding gene expression patterns. Using knockdown  
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Table 6.6: Mutation analyses on promoters of direct targets 

TF Target 
Normal 

cluster 
Normal allele§ SNP ID§ Variant allele§ 

Variant 

cluster‡ 

Classifier output 

Variant† 
Wild-

type 

EGR1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

12.2899 bits) 

EID2B 

Cluster 1 

of 2 

GAGGGGGCATC 

(chr19:39540286, -, 

7.22 bits) 

rs538610162 

(chr19:39540296

C>G) 

CAGGGGGCATC 

(chr19:39540286, -, 

4.84 bits) 

Abolished √ 

× √ 

rs759233998 

(chr19:39540294

C>T) 

GAAGGGGCATC 

(chr19:39540286, -, 

0.06 bit) 

Abolished √ 

rs974735901 

(chr19:39540288

T>A) 

GAGGGGGCTTC 

(chr19:39540286, -, 

6.90 bits) 

Cluster 1 

of 2 
√ 

rs978230260 

(chr19:39540287

A>T) 

GAGGGGGCAAC 

(chr19:39540286, -, 

5.31 bits) 

Abolished √ 

Cluster 2 

of 2 

GCGTGCGTGGG 

(chr19:39540162, 

+, 1.59 bits) 

rs764734511 

(chr19:39540162

G>A) 

(chr19:39540162

ACGTGCGTGGG 

(chr19:39540162, +, 

-0.72 bit) 

Cluster 2 

of 2 
√ 

CCGTGCGTGGG Cluster 2 √ 
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G>C) (chr19:39540162, +, 

-0.79 bit) 

of 2 

rs996639427 

(chr19:39540170

G>C) 

GCGTGCGTCGG 

(chr19:39540162, +, 

-5.21 bits) 
Abolished √ 

GCGTGGGCGCT 

(chr19:39540166, 

+, 9.72 bits) 

GCGTCGGCGCT 

(chr19:39540165, +, 

-0.85 bit) 

rs1027751538 

(chr19:39540174

G>A) 

GCGTGGGCACT 

(chr19:39540166, +, 

5.16 bits) 

Abolished √ 

rs887888062 

(chr19:39540176

T>A) 

GCGTGGGCGCA 

(chr19:39540166, +, 

10.94 bits) 

Cluster 2 

of 2 
√  

ELF1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

11.2057 bits) 

HIST1H

4H 

Cluster 1 of 

2 

GCGGAAGCGTG 

(chr6:26286540, 

+, 9.92 bits) 

rs760968937 

(chr6:26286547

C>T) 

(chr6:26286547

C>A) 

GCGGAAGTGTG 

(chr6:26286540, 

+, 10.71 bits) 

Cluster 1 of 

2 
√ √ 

√ 
GCGGAAGAGTG 

(chr6:26286540, 

+, 8.84 bits) 

Cluster 1 of 

2 
√ × 
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rs1000196206 

(chr6:26286542

G>C) 

GCCGAAGCGTG 

(chr6:26286540, 

+, -6.26 bits) 

Abolished √ 

rs144759258 

(chr6:26286543

G>A) 

GCGAAAGCGTG 

(chr6:26286540, 

+, -3.60 bits) 

Abolished √ 

rs966435996 

(chr6:26286544

A>G) 

GCGGGAGCGTG 

(chr6:26286540, 

+, 5.28 bits) 

Abolished √ 

rs950986427 

(chr6:26286548

G>A) 

GCGGAAGCATG 

(chr6:26286540, 

+, 8.28 bits) 

Cluster 1 of 

2 
√ 

Cluster 2 of 

2 

CAGGAGATGCG 

(chr6:26286473, 

-, 6.98 bits) 

rs373649904 

(chr6:26286483

G>A) 

TAGGAGATGCG 

(chr6:26286473, 

-, 0.61 bit) 

Abolished √ 

rs926919149 

(chr6:26286480

C>T) 

CAGAAGATGCG 

(chr6:26286473, 

-, -6.53 bits) 

Abolished √ 

rs751263172 

(chr6:26286479

CAGGCGATGCG 

(chr6:26286473, 
Abolished √ 
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T>G) -, 1.24 bits) 

rs369076253 

(chr6:26286473

C>G) 

CAGGAGATGCC 

(chr6:26286473, 

-, 6.92 bits) 

Cluster 2 of 

2 
√ 

rs751263172 

(chr6:104447431

4C>T) 

CAGGAAATGCG 

(chr6:26286473, 

-, 11.43 bits) 

Cluster 2 of 

2 
√ √ 

ELK1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

11.9041 bits) 

G0S2 

Cluster 1 of 

2 

CAGGGAAGACC 

(chr1:209667959, -, 

1.92 bits) 

rs146048477 

(chr1:209667961

T>A) 

CAGGGAAGTCC 

(chr1:209667959, -, 

2.24 bits) 

Cluster 1 of 

2 
√ √ 

√ 

rs887606802 

(chr1:209667968

T>C) 

CGGGGAAGACC 

(chr1:209667959, -, 

-3.35 bits) 

Cluster 1 of 

2 
√ 

× 

rs1021034916 

(chr1:209667967

C>T) 

CAAGGAAGACC 

(chr1:209667959, -, 

-3.57 bits) 

Cluster 1 of 

2 
√ 

GAGGAAATGAG 

(chr1:209667969, 

+, 8.14 bits) 

rs941962117 

(chr1:209667974

A>G) 

GAGGAGATGAG 

(chr1:209667969, 

+, 4.11 bits) 

Abolished √ 

Cluster 2 of CTGGAAGAGCA rs896117033 CTGGAAGAGTA Cluster 2 of √ 
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2 (chr1:209673544, 

-, 5.91 bits) 

(chr1:209673545

G>A) 

(chr1:209673544, 

-, 3.95 bits) 

2 

rs971962577 

(chr1:209673546

C>T) 

CTGGAAGAACA 

(chr1:209673544, 

-, 3.49 bits) 

Cluster 2 of 

2 
√ 

rs1011969709 

(chr1:209673554

G>C) 

GTGGAAGAGCA 

(chr1:209673544, 

-, 3.92 bits) 
Abolished √ 

CCAGAAGTCAA 

(chr1:209673551, 

+, 7.44 bits) 

CCACAAGTCAA 

(chr1:209673551, 

+, -5.50 bits) 

rs1023312090 

(chr1:209673561

A>G) 

CCAGAAGTCAG 

(chr1:209673551, 

+, 8.40 bits) 

Cluster 2 of 

2 
√ √ 

ETS1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

10.0788 bits) 

TTC19 
Cluster 1 of 

1 

GCAGGGAAAGG 

(chr17:16022293, 

+, 7.92 bits) 

rs1022234223 

(chr17:16022296

G>C) 

GCACGGAAAGG 

(chr17:16022293, 

+, -4.98 bits) 

Abolished × × 

√ 
rs968299415 

(chr17:16022301

A>T) 

GCAGGGAATGG 

(chr17:16022293, 

+, 10.01 bits) 

Cluster 1 of 

1 
√ √ 
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GABPA 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

10.8567 bits) 

PLEKH

B2 

Cluster 1 of 

1 

ACAGGAAAGGG 

(chr2:131112770, 

+, 10.36 bits) 

rs997328042 

(chr2:131112771

C>T) 

ATAGGAAAGGG 

(chr2:131112770, 

+, -3.68 bits) 

Abolished × 

× 

√ 

rs1020720126 

(chr2:131112773

G>C) 

ACACGAAAGGG 

(chr2:131112770, 

+, -4.16 bits) 

Abolished × 

TCTGGAAACTA 

(chr2:131112760, 

+, 1.53 bits) 

rs185306857 

(chr2:131112761

C>A) 

TATGGAAACTA 

(chr2:131112760, +, 

-2.86 bits) 

Cluster 1 of 

1 
√ 

rs772728699 

(chr2:131112762

T>A) 

TCAGGAAACTA 

(chr2:131112760, +, 

5.23 bits) 

Cluster 1 of 

1 
√  

rs965753671 

(chr2:131112769

T>C) 

TCTGGAAACCA 

(chr2:131112760, +, 

2.13 bits) 

Cluster 1 of 

1 
√  

IRF1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

13.5544 bits) 

SMIM13 
Cluster 1 of 

1 

GAGAATGAAAG

CA 

(chr6:11093663, 

+, 12.56 bits) 

rs950528541 

(chr6:11093663

G>C) 

CAGAATGAAAG

CA 

(chr6:11093663, 

+, 8.97 bits) 

Cluster 1 of 

1 
√ × √ 
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rs886259573 

(chr6:11093664

A>G) 

GGGAATGAAAG

CA 

(chr6:11093663, 

+, 9.65 bits) 

Cluster 1 of 

1 
√ 

rs982931728 

(chr6:11093666

A>G) 

GAGGATGAAAG

CA 

(chr6:11093663, 

+, 8.09 bits) 

Cluster 1 of 

1 
√ 

rs1020218811 

(chr6:11093668

T>G) 

GAGAAGGAAAG

CA 

(chr6:11093663, 

+, 9.36 bits) 

Cluster 1 of 

1 
√ 

rs570723026 

(chr6:11093672

A>G) 

GAGAATGAAGG

CA 

(chr6:11093663, 

+, 8.01 bits) 

Cluster 1 of 

1 
√ 

rs1004825794 

(chr6:11093675

A>C) 

(chr6:11093675

GAGAATGAAAG

CC 

(chr6:11093663, 

+, 10.47 bits) 

Cluster 1 of 

1 
√ 
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A>T) GAGAATGAAAG

CA 

(chr6:11093663, 

+, 10.42 bits) 

Cluster 1 of 

1 
√ 

AAGACCAAAGG

CA 

(chr6:11093641, 

+, 2.43 bits) 

rs1030185383 

(chr6:11093649

A>C) 

AAGACCAACGG

CA 

(chr6:11093641, 

+, -3.39 bits) 

Cluster 1 of 

1 
√ 

rs5874306 

(chr6:11093650d

elG) 

AAGACCAAAGC

AG 

(chr6:11093641, 

+, 0.90 bit) 

Cluster 1 of 

1 
√ 

rs558896490 

(chr6:11093643

G>A) 

AAAACCAAAGG

CA 

(chr6:11093641, 

+, 7.06 bits) 

Cluster 1 of 

1 
√ √ 

YY1 

(𝑹𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 = 

12.8554 bits) 

CKLF 
Cluster 1 of 

1 

GCGGCCATCGG

C 

(chr16:66549785, 

-, 10.06 bits) 

rs865922947 

(chr16:66549791

G>A) 

CCGGCCATCGGC 

(chr16:66549785, 

-, 6.80 bits) 

Cluster 1 √ 
× √ 

rs946037930 GCTGCCATCGGC Cluster 1 √ 
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(chr16:66549794

C>A) 

(chr16:66549785, 

-, 8.02 bits) 

rs917218063 

(chr16:66549793

C>T) 

GCGACCATCGGC 

(chr16:66549785, 

-, 5.41 bits) 

Abolished × 

rs928017336 

(chr16:66549791

G>A) 

GCGGCTATCGGC 

(chr16:66549785, 

-, -3.62 bits) 

Abolished × 

GCCGCCCCCGTC (chr16:66549792, +, 1.34 bits)     

§ All coordinates are based on the hg38 genome assembly. A bold italic letter in a binding site sequence indicates the base where a 

SNP occurs. The SNPs strengthening binding sites and corresponding variant binding site sequences are underlined. 

‡ The impact on whether the occurrence of a single SNP resulted in the disappearance of the cluster containing it is shown.  

† After a single SNP occurred or multiple SNPs simultaneously occurred, the classifier produced a new prediction on whether the TF 

is still capable of significantly affecting gene expression via the variant promoter.  
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data as the gold standard, the combinatorial use of TF binding profiles and chromatin 

accessibility was also demonstrated to be predictive of TF targets. A binding site 

comparison confirmed that coregulatory cofactors are responsible for distinguishing 

between functional sites in targets and non-functional ones in non-targets. Furthermore, 

mutation analyses on binding sites of targets demonstrated that the existence of both 

multiple TFBSs in a cluster and multiple information-dense clusters in a promoter 

enables both the cluster and the promoter to be resilient to binding site mutations. 

The DT classifier improved after intersecting promoters with DHSs in both prediction of 

genes with similar expression profiles to NR3C1 and prediction of TF targets (Figure 6.3, 

Tables 6.3 and 6.4). This intersection eliminated noisy binding sites that are inaccessible 

to TF proteins in promoters; specifically, it widened discrepancies in feature vectors 

between positives and negatives. If the 10kb promoter of a gene instance does not overlap 

DHSs, its feature vector will only consist of 0; the percentages of negatives whose 

promoters do not overlap DHSs considerably exceeded those of positives (Appendix 

E.7), which led to an excess of negatives with feature vectors containing only 0 after 

intersection. This explains why these negatives are not DE targets of the TFs in the K562 

and GM19238 cell lines, because their entire promoters are not open to TF molecules; 

other regulatory regions besides the proximal promoters (e.g. intronic enhancers [37]) 

still enable the TFs to effectively control the expression of the positives with inaccessible 

promoters. 

The relatively poor performance of the classifier on YY1 (Table 6.3) is attributable to its 

smaller percentage of negatives with inaccessible promoters and the larger number of 

functional binding sites in the K562 cell line (Appendix E.7). Additionally, the DT 

classifier was more predictive of functional TF binding on the CRISPR-generated 

knockdown data than the siRNA-generated ones (Tables 6.3 and 6.4). This larger 

discrepancy in feature vectors between positives and negatives from CRISPR-based 

perturbations is also attributable to the greater differences in the percentages between 

positives and negatives with inaccessible promoters (Appendix E.7). Among the 22,046 

genes whose expression levels were measured in the CRISPR-based perturbations, most 

of the TNs with inaccessible promoters merely have one transcript and specific functions 
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(e.g. VENTXP1 for the TF, EGR1), whereas many such negatives were excluded from the 

8,872 genes whose knockdown data were generated by siRNA inactivation. 

Our in-silico mutation analyses revealed that some deleterious TFBS mutations could be 

compensated for by other information-dense clusters in a promoter; thus predicting the 

effects of mutations in individual binding sites would not be sufficient to interpretation of 

downstream effects. Though compensatory clusters may maintain gene expression, the 

promoter will provide lower levels of activity than the wild-type promoter could, which is 

a recipe for achieving natural phenotypic diversity. Few published studies in molecular 

diagnostics have specifically examined the effects of naturally occurring variants within 

clustered TFBSs; thus IDBC-based machine learning provided an alternative 

computational approach to predict deleterious mutations that actually impact (i.e. repress 

or abolish) transcription of target genes and result in abnormal phenotypes, and to 

simultaneously minimize false positive calls of TFBS mutations that individually have 

little or no impact.   

Apart from these TFs, the Bray-Curtis Similarity can be directly applied to identify the 

ground-truth genes with overall similar tissue-wide expression patterns to any other gene 

whose expression profile is known. Further studies could investigate the biological 

significance underlying the phenomenon that all these genes share a common expression 

pattern, including the similarity between other regulatory regions besides proximal 

promoters in terms of TFBSs and epigenetic markers. This machine learning framework 

can also be applied to predict direct DE targets for other TFs and in other cell lines, 

depending on the availability of corresponding knockdown data.  

There are a number of limitations of our approach. The Bray-Curtis function seems 

unable to accurately measure the similarity between the expression profiles of a gene 

(e.g. MIR23A) without any detectable mRNA in any of the 53 tissues analyzed and genes 

(e.g. the ubiquitously expressed NR3C1 and stomach-specific PGA3) that are expressed 

in at least one tissue. Intuitively, in terms of expression patterns PGA3 is more similar to 

MIR23A than NR3C1; however, the Bray-Curtis similarity values indicate that both PGA3 

and NR3C1 bear no similarity to MIR23A (i.e. 𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝑁𝑅3𝐶1,𝑀𝐼𝑅23𝐴) =
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𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝑃𝐺𝐴3,𝑀𝐼𝑅23𝐴) = 0). Another possible limitation in classifier 

performance in the prediction of genes with similar tissue-wide expression profiles is that 

only binding sites of 82 TFs were analyzed due to a lack of available iPWMs for other 

TFs, given that 2000-3000 sequence-specific DNA-binding TFs are estimated to be 

encoded in the human genome [38]. For example, four TFs (CREB, MYB, NF1, GRF1) 

were previously reported to bind the promoter of the NR3C1 gene to activate or repress 

its expression, however their iPWMs exhibiting known primary motifs could not be 

successfully derived from ChIP-seq data [3,24]. Regarding the CRISPR-generated 

knockdown data used here, TPs were inferred to be direct targets by intersecting 

promoters with their corresponding ChIP-seq peaks, which may not be completely 

accurate, due to the presence of noise peaks that do not contain true TFBSs [3,39]. In 

instances where small fold changes in the expression levels of DE targets were evident, 

these peaks could arise from compromised efficiency of knockdowns as a result of 

suboptimal guide RNAs or the limitations of perturbing only a single allele of the TF. 

Finally, the framework developed here only takes into account the 10kb interval proximal 

to the TSS, and would not therefore capture long range enhancer effects beyond this 

distance; by contrast, correlation based approaches have successfully incorporated 

multiple definitions of promoter length [14]. 

6.5 Conclusions 

The Bray-Curtis function is able to effectively quantify the similarity between tissue-

wide gene expression profiles. By analysis of promoter information theory-based TF 

binding profiles that captured the spatial distribution and information contents of TFBS 

clusters, ChIP-seq and chromatin accessibility data, we described a machine learning 

framework that distinguished tissue-wide expression profiles of similar vs dissimilar 

genes and identified direct DE targets of TFs. Functional binding sites in target genes that 

significantly alter expression levels upon direct binding are at least partially distinguished 

by TF-cofactor coregulation from non-functional sites in non-targets. Finally, in-silico 

mutation analyses demonstrated that the presence of multiple information-dense clusters 

in the promoter reduces deleterious mutations that can significantly alter the regulatory 

state and expression level of the gene as a protective mechanism. 
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Chapter 7  

7 Discussion 

In this chapter, we will discuss the advances and generalization of our methods developed 

in Chapters 3, 4, 5 and 6, the implications of our results, and the potential limitations and 

future studies to overcome them. 

7.1 Advances and Generalization of the Methods 
Developed in this Thesis 

7.1.1 The Maskminent Motif Discovery Pipeline and iPWM 
Validation 

The Maskminent motif discovery pipeline we developed in Chapter 3 provides a 

complete software suite to mine elusive TFBS motifs from ChIP-seq datasets, generate 

contiguous and bipartite iPWMs, and scan DNA sequences for binding sites using 

iPWMs.  

Compared to Bipad, one advance of the Maskminent pipeline is the ability to recursively 

mask motifs found in previous iterations to discover additional conserved motifs from the 

same dataset. These previous motifs are masked by skipping the binding sites with 𝑅𝑖 >

0 predicted by iPWMs. Bipad can only perform one execution on a ChIP-seq dataset and 

return the lowest-entropy motif, regardless of whether this motif is recognized by a TF or 

noise. By contrast, MEME  uses a likelihood-based approach to mask the motifs that have 

been found by the algorithm (1). For each position, MEME computes the probability that 

it is not contained in an occurrence of any motif found to date, which further affects the 

next estimates for base frequencies in the motif component in the maximization step (1). 

The ability to identify the maximum number of top peaks that can produce the primary or 

cofactor motif is another advance of the Maskminent pipeline. First, it also enhances the 

ability of Bipad to reveal primary and cofactor motifs. If Bipad returns a noise motif from 

all peaks in a dataset, this implies the alignment formed by all binding sites in the dataset 

has a larger entropy than the noise motif. Since peaks with higher signal values generally 
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contain stronger binding sites, sites in a subset of top peaks have higher sequence 

conservation (i.e. more similar to the strongest consensus sequence) and form a lower-

entropy alignment. Thus this alignment is more likely to suppress the noise motif and be 

returned by Maskminent. Second, compared to prior motif discovery pipelines applied 

only to a small number of top peaks (2–4), the maximum number of top peaks enable the 

derived iPWM to incorporate as many intermediate and weak binding sites as possible. 

Thus the iPWM can also accurately quantify the strengths of intermediate and weak 

binding sites apart from strong sites. 

Compared to the previous studies (2–6) deriving contiguous count matrices or PFMs 

from ChIP-seq datasets, the generation of bipartite iPWMs is an advance. From Equation 

1.6, the 𝑅𝑖 value of a binding site or a non-site computed from an iPWM is quantitatively 

related to the amount of heat energy dissipated or absorbed by the association of the TF 

protein with the site or non-site, enabling the accurate quantification of the binding site 

strength, in contrast with the log likelihood ratio score computed from a PFM that is not 

based on Shannon information theory. In addition, bipartite iPWMs are capable of 

accurately modelling the binding behavior of dimeric TFs by allowing the spacer length 

to vary and computing a geometry-based spacer penalty. 

Using iPWMs to detect experimentally confirmed binding sites and interpret the 

experimentally determined effects of SNPs on binding site strengths is an advance to the 

methods in the literature to validate the TFBS motifs derived from ChIP-seq datasets, and 

ought to be the gold standard. Another method widely used by previous studies (4, 7) is 

to generate the ROC (receiver operating characteristics) curve and measure the AUC 

(area under the curve), which is not as convincing. For example, when generating the 

ROC curve, the negative sequences that supposedly do not contain binding sites were 

randomly chosen from the genome (7). In fact, these randomly chosen sequences may 

still contain true binding sites, as demonstrated by the false positive detection rate (1.2E-

7 to 0.06) from the null 𝑅𝑖 distribution in Chapter 3, which results in an inaccuracy. 

In Chapter 3 the Maskminent pipeline was applied to analyze almost all ChIP-seq 

datasets of human TFs that ENCODE had generated before April 2016. ENCODE has 
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been conducting more ChIP-seq experiments, resulting in a total of ~2,400 peak datasets 

to date. The Maskminent pipeline can be directly applied to these newly generated data to 

derive binding site motifs and iPWMs for more TFs. Furthermore, 2000-3000 sequence-

specific DNA-binding TFs are estimated to be encoded in the human genome (8); 

specifically, the combination of multiple paper and database sources indicated that 2,765 

proteins are likely to act as TFs (9). ChIP-seq experiments have not been performed for 

numerous TFs with known or unknown binding specificities, and even unknown TFs, 

possibly due to a lack of efficient protein antibodies; for example, 1,211 out of the known 

or likely 1,639 TFs with high confidence have known binding motifs, with 1,107 

determined experimentally and 104 inferred from a closely-related homolog (9). The 

Maskminent pipeline can also be applied to these future ChIP-seq datasets, with the 

ultimate objective to determine the sequence preferences for all human TFs. 

As the number of available ChIP-seq datasets generated by ENCODE rapidly increases, 

the scalability and running efficiency of the Maskminent software become particularly 

important. Maskminent, being a C++ software program, is time efficient despite its 

output is not transiently generated; for example, on an Intel Xeon processor with a 2.27 

GHz clock frequency, it took three hours to find the 22nt-wide optimal multiple 

alignment from the top 1,000 ~330nt-long peaks of the TF RFX5. As high-performance 

computing facilities with numerous processors like SHARCNET become increasingly 

ubiquitous, Maskminent can handle in parallel a large number of ChIP-seq datasets by 

running independent instances on multiple processors, further reducing the time required 

to analyze all data; for example, it took approximately seven months to obtain the results 

from all 765 datasets in Chapter 3 using the Maskminent pipeline on approximately eight 

processors of SHARCNET, amounting to about five years of CPU time (i.e. a single CPU 

keeps working for five years without any break). Thus we are able to estimate that it will 

take ~15 months to finish analyzing these newly generated ~1,635 datasets on the same 

processors, amounting to ~10 years of CPU time. 
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7.1.2 The Unified Analytic Framework for Prioritization of Non-
coding Variants of Uncertain Significance in Heritable Breast 
and Ovarian Cancer 

One advance of this unified framework is that besides coding variants, it also integrates 

information theory-based analyses of multiple types of non-coding variants, including 

TFBS, SRBS, RBBS, and splice site variants. Shannon information theory confers this 

unifying capability; as long as an iPWM quantifying its base preferences is derived for a 

regulatory protein of any type (e.g. TFs, splicing regulatory or RNA-binding proteins), 

we will be able to detect its binding sites and predict the effects of variants within these 

sites based on changes in the 𝑅𝑖 values. 

Another advance of this framework is that its predictions on the effects of non-coding 

variants are robust and accurate, due to the quantitative relationship between Shannon 

information and the Second Law of Thermodynamics (Equation 1.6). This hypothesis has 

been proved by the successful detection of true TFBSs in Chapter 3, explanation of 

experimentally observed effects of SNPs on TFBS strengths in Chapter 3, and 

interpretation of experimentally determined effects of splice site variants on mRNA 

splicing (10–13). 

In Chapter 4, this unified framework was applied to identify 15,311 unique variants in 7 

complete HBOC genes of 102 patients; on a larger scale, Chapter 5 further identified 

38,372 variants in 20 HBOC genes of 287 patients. These genes are known to be 

associated with increased risks of HBOC through four pathways; however, variants in 

many other genes can also contribute to the onset of HBOC. Furthermore, non-coding 

genetic mutations are also responsible for the susceptibility to other types of cancer, such 

as lung cancer (14) and colon cancer (15); however, most of these mutations do not lie 

within TF-encoding genes based on data from recent CRISPR screens, perhaps because 

the human TFs mainly serve developmental or tissue-specific functions (9, 16). By 

contrast, 19.1% of TF-encoding genes were found to harbor mutations associated with at 

least one disease phenotype, a higher percentage than that observed for all genes (16.2%) 

(9). This information theory-based framework can incorporate iPWMs of more TFs that 
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will be derived from the newly generated ChIP-seq datasets and be directly applied to 

other HBOC genes, cancer types and diseases. 

As the cost and time required by whole genome sequencing that sequences the complete 

genome of an individual rapidly decrease due to the progressive adoption of next-

generation sequencing (NGS) technologies, identifying all coding and non-coding 

variants in a complete genome instead of specific genes becomes feasible, and the 

scalability of this unified framework becomes important in terms of both hardware 

consumption and running time. Considering only TFBS variants for simplicity, one can 

reasonably estimate that ~3 million binding site variants of ~3,000 TFs will be identified 

in the complete genome of a patient. The hardware resources required for applying the 

framework to analyze these variants will include a large-capacity disk drive storing the 

input data (i.e. the ~3 billion bp-long genome, 3 million variants and ~3,000 TF iPWMs) 

and the analysis results, RAM and processors. Based on the current electronics industry, 

the amount of available RAM, being several dozen GB in a typical computer system, is 

more of a bottleneck compared to the disk drive and processors, due to the low hard drive 

cost and high-performance computing facilities. Such an amount is not sufficient for 

simultaneously accommodating all the input data and output results, leading to the 

common space-time trade-off (17) between hardware consumption and running time 

faced by many computational algorithms (e.g. dynamic programming (18)). One batch-

based strategy to approach this issue is to maximize space usage and minimize running 

time by dividing the input data into as few batches as possible. Each batch contains as 

much data (TFBS variants in the case of the unified framework) as possible that can be 

processed by the limited RAM at one time. 

7.1.3 The General Machine Learning Framework for Prediction of 
Gene Expression Profiles and TF Target Genes 

Compared to prior studies (19–22) predicting tissue-specific gene expression levels, the 

definition of the gene expression profile being the expression values across 53 tissues is 

an advance of our machine learning model. Focusing on one single tissue at one time 

limits the tissue-wide expandability of the models developed in the prior studies; either a 

different model needed to be constructed for each tissue (22) or the same model needed 
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to be rerun for each tissue (19–21). By contrast, this definition of the gene expression 

profile enabled our machine learning framework to simultaneously take all 53 tissues into 

account. 

Applying the Bray-Curtis similarity measure to quantify the similarity in the expression 

profile between two genes is another advance of our machine learning framework. An 

intuitive comparison in the visualized overall expression pattern across the 53 tissues 

between NR3C1 and the two genes (i.e. SLC25A32 and TANK) with the highest 

similarity values computationally identified by the Bray-Curtis metric proved its efficacy. 

The Bray-Curtis similarity measure has three desired mathematical properties described 

in Chapter 1 that potently justify its application in this situation. The first is the strict 

bounds of 0 and 1 that it maintains, which form a natural similarity range that is easy to 

interpret. The second is the similarity between the expression profiles of the two genes 

can achieve the maximum value 1, if and only two genes exhibit the same expression 

value in each of the 53 tissues. This is attributable to the simultaneous consideration of 

both the directions and lengths of vectors by the Bray-Curtis function, compared to the 

Cosine similarity. In measurement of similarity between tissue-wide expression profiles, 

not only do the relative magnitudes of expression values of the gene across multiple 

tissues (i.e. the direction of the vector) matter, but the absolute expression value of the 

gene in every single tissue (i.e. the length of the vector) also matters. The third is the 

domination of the resulting similarity value by higher expression values. Intuitively, the 

proximity between larger expression values is more important in determining the 

similarity between the expression profiles of two genes than that between smaller 

expression values. 

Another advance of the machine learning framework is its unifying capability to predict 

both gene expression profiles and TF target genes using the same set of features derived 

from heterotypic or homotypic TFBS clusters. These features captured the spatial 

distribution (e.g. the distances between clusters and the TSS) and information 

composition (e.g. the 𝑅𝑖 values of binding sites) of clusters in the promoter. The rationale 

that the organization and composition of cis-regulatory modules in the promoter dictate 

gene expression patterns and identify correct TF targets confers this unifying capability. 



252 

 

The most direct generalization of the Bray-Curtis similarity measure is that it can be 

applied on any gene whose expression profile is available from GTEx to identify genes 

with overall similar expression patterns across 53 tissues to it. Furthermore, the definition 

of the gene expression profile is flexible; if another project other than GTEx also 

generated the expression data of genes across multiple tissues, the gene expression profile 

can be similarly redefined and the Bray-Curtis similarity measure is still usable. Another 

generalization of the Bray-Curtis similarity metric is to measure the similarity in the 

expression profile between different transcripts of the same gene. 

In Chapter 6, the machine learning framework was applied to the TF knockdown data 

respectively in the forms of P-values and regulatory coefficients in the GM19238 and 

K562 cell lines generated by Cusanovich et al. (23) and Dixit et al (24). To date 

ENCODE has conducted 127 CRISPR- and 54 siRNA-based knockdown experiments for 

more TFs in the K562 cell line. Apart from raw RNA-seq reads data, ENCODE also 

directly provides the absolute gene expression values before and after TF knockdown, 

instead of indirect P-values and regulatory coefficients generated by the computational 

models. Thus for the machine learning framework to be applied to these newly generated 

ENCODE data, two preconditions need to be met. The first is that we need to derive 

iPWMs exhibiting primary binding motifs from ChIP-seq data for the sequence-specific 

TFs, enabling us to detect their binding sites. The second is that more flexibility needs to 

be added to the initial interface of the framework responsible for identifying DE TF 

targets from knockdown data, by adapting it to the different form of knockdown data (i.e. 

absolute gene expression values). 

7.2 Implications of the Results Obtained in this Thesis 

7.2.1 Transcription Factor Binding Site Motifs 

The iPWMs exhibiting primary binding motifs of sequence-specific TFs can be used to 

detect binding sites and predict the effects of naturally occurring or artificially introduced 

variants on binding site strengths, as proved by the accurate detection of true binding 

sites and interpretation of effects of experimentally characterized SNPs in Chapter 3, 

prioritization of TFBS variants in HBOC genes in Chapters 4 and 5, and analysis on the 
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artificial mutations introduced into EGR1 binding sites in the MCM7 promoter and SNPs 

in the target genes of seven TFs in Chapter 6.  

They can also be used to perform mutation analyses on all known SNPs present in the 

dbSNP database by first detecting whether they lie within TFBSs. In fact, these iPWMs 

have been integrated into MutationForecaster, a commercial web-based software suite 

that provides a single easy-to-navigate interface, interprets mutations that affect 

transcription, mRNA splicing and protein coding, and stores the results in a database that 

can be compared to other sources of genome variation. Another higher-level use of these 

iPWMs is to predict TF target genes, as demonstrated by the successful identification of 

DE direct targets of 7 and 11 TFs respectively in the GM19238 and K562 cell lines based 

on iPWM-detected binding sites and IDBC-detected clusters in Chapter 6. 

Cofactor motifs are a systemic component of ChIP-seq datasets (25); for example, the 

CTCF motif frequently is significantly enriched in ChIP-seq peaks of other primary TFs, 

consistent with our finding that CTCF is revealed as a cofactor of SMC3, RAD21 and 

ZNF143. Peaks only containing CTCF motifs and lacking primary TFs’ motifs compose 

up to 45% of a ChIP-seq dataset (25). These novel cofactor motifs enabled us to predict 

new TF-TF interactions and complexes. Future experimental studies can confirm the 

presence of these predicted complexes, ascertain the underlying physical mechanisms of 

these interactions, and investigate functional significance of these complexes (e.g. the 

biological pathways that they participate in). They can also confirm that the novel motifs 

are indeed functional, independent and can be recognized by TFs, rather than being 

general noise. 

The list of experimentally confirmed TFBSs and the list of experimentally characterized 

SNPs that we compiled from the literature in Chapter 3 can serve as standard datasets to 

benchmark the accuracy of TFBS motifs and PWMs that future studies will derive from 

ChIP-seq datasets. As experimental studies identify more binding sites and the effects of 

more TFBS variants, the two lists will be maintained and expanded by incorporating 

these new findings, in terms of the numbers of binding sites, SNPs and different TFs. 



254 

 

7.2.2 Transcription Factor Binding Site and Other Variants in the 
Hereditary Breast and Ovarian Cancer Genes 

Future experimental studies can confirm the predicted effects of the TFBS and other 

types of non-coding and coding variants that were prioritized in 20 complete genes of 

HBOC patients in Chapters 4 and 5 on binding site strengths, mRNA splicing, mRNA 

secondary structure and amino acid chains of the final proteins. For TFBS variants, they 

can also investigate whether and how the expression levels of these genes are altered, and 

whether the expression alterations of these genes are associated with HBOC, establishing 

the association of these variants with the increased risks of HBOC. On a higher level, 

they can further ascertain the specific functional pathways through which changes in the 

concentration and structure of the protein molecules encoded by these genes result in the 

onset of HBOC, after statistical studies prove that these variants are associated with the 

increased risks of HBOC. 

7.2.3 Genes with Similar Tissue-wide Expression Profiles to, and 
Differentially Expressed, Direct Target Genes of the 
Transcription Factors 

In Chapter 6, the genome-wide genes with overall similar expression patterns across 53 

tissues to 17 TFs were identified by the Bray-Curtis similarity measure, and the general 

machine learning framework partly answered the question of why these genes exhibit 

similar tissue-wide expression profiles to the TFs by finding that the similarity in the 

distribution and composition of TFBS clusters in the proximal promoters partly explained 

the similarity in the expression profiles. Since the expression pattern of a gene is 

determined by both TF binding and epigenetic markers within all regulatory sequences 

including proximal promoters and distal enhancers/silencers, future studies can explore 

the similarity between these genes and the TFs in histone modification patterns within 

proximal promoters, and in other regulatory regions both in terms of TFBSs and histone 

modifications. In addition, the high similarity in the overall expression pattern across 53 

tissues suggests the potential functional relatedness of the TFs to these genes, especially 

the subset of genes that are also DE direct targets of the TFs at the same time; for 

example, they may serve as key components within the same genomic pathway. 
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In Chapter 6, TF-cofactor co-regulation was found to be responsible for distinguishing 

functional binding sites in DE targets from non-functional binding sites in non-targets, 

which was proved by different flanking cofactor binding sites present in the promoters of 

targets and non-targets of YY1 and EGR1. Similar to the discovery of novel cofactor 

motifs in Chapter 3, future experimental studies can focus on the interactions between 

these cofactors (i.e. SP1, KLF1, CEBPB, NFY determining functional sites and CTCF, 

ETV6 determining non-functional sites) and the primary TFs (i.e. YY1 and EGR1), and 

how they affect the functional status of the binding sites. 

The protection of multiple information-dense clusters in the promoter against TFBS 

mutations suggests that it is not sufficient for subsequent studies to predict only the effect 

of a mutation on the binding site strength; further, they also need to interpret the more 

downstream effects on the cluster and potentially gene expression. TFBS mutations that 

can be compensated for by other clusters may lower the promoter activity despite being 

still able to induce gene expression, leading to natural phenotypic diversity. The majority 

of previous studies focus on truly deleterious mutations leading to the onset of disease 

phenotypes; future studies can attempt to relate more mutations that can be compensated 

for to diverse non-disease phenotypes.  

7.3 Potential Limitations and Future Studies 

7.3.1 ChIP-seq datasets from which Maskminent Only Returned 
Noise Motifs 

Among all ChIP-seq datasets analyzed in Chapter 3, there were ~20 datasets from which 

the Maskminent motif discovery pipeline was not able to discover the primary TF or any 

cofactor motif, and only returned noise motifs. There are two primary reasons explaining 

why these datasets are present, depending on whether the peaks contained in these 

datasets were pulled down due to binding by protein molecules (i.e. primary TFs, 

cofactors and histones) or by antibodies. 

The majority of these datasets belong to non-sequence-specific TFs that primarily serve 

as catalyzing enzymes of histone modifications apart from acting as transcriptional 

cofactors interacting with DNA-binding TFs. For example, HDAC2 is responsible for the 
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deacetylation of lysine residues on the N-terminal region of the core histones (26) while 

being capable of forming transcription-repressing complexes with many DNA-binding 

TFs (e.g. YY1 (27) and SP1 (28)). And EZH2, as a subunit of PRC2 (Polycomb 

repressive complex 2), catalyzes trimethylation of H3K27 (H3K27me3) resulting in silent 

chromatin and eventually transcriptional repression (29), whereas it also can activate 

transcription via physical association with NFKB (30).  

The functional versatility of these TFs explains why Maskminent did not detect any 

known TFBS motif from these datasets. Peaks contained in such a dataset can be 

classified into two categories, depending on the function that the primary TF was serving 

when they were pulled down. A larger number of peaks were bound by histone proteins 

that were bound by the primary TF that was catalyzing histone modifications, whereas 

histones bind to DNA sequences in a non-sequence-specific way; thus these peaks do not 

contain specific sequence motifs directly recognized by TFs. By contrast, the remaining 

smaller number of peaks were bound by sequence-specific cofactors with which the 

primary TF was associating, so that the binding sites recognized by the cofactor were 

enriched in these peaks. For example, in Chapter 3 Maskminent returned a low-

complexity noise motif from the HepG2 dataset of HDAC2 consisting of 18,836 peaks, 

but detected FOXA motif from the top 5,000 peaks. 

The other reason is that the peaks in such a dataset were isolated due to direct, non-

specific binding by antibodies, rather than binding by protein molecules; thus these peaks 

are known as “noise” in the ChIP-seq technology, in contrast with the “signal” peaks that 

are pulled down in TF-DNA complexes and contain TFBSs. Sources that can introduce 

noise or bias into a ChIP-seq experiment include antibody quality, sequencing depth, 

library complexity, ChIP enrichment, differential protection against sonication across the 

genome, and differential mappability of short reads to repeat-rich genomic regions (31-

33). 

In fact, the peak calling step of a ChIP-seq experiment aims to achieve maximal signal-

noise ratio when identifying peak intervals based on the enrichment level of isolated 

DNA fragments (or tags) (34). Prior studies developed multiple discriminative peak  
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Table 7.1: Peak calling algorithms 

Algorithm Background tag distribution Operating process Reference 

SPP Poisson 
three binding detection algorithms to take advantage of the 

strand-specific tag pattern 
(36) 

CCAT Poisson 

distinguishing background from signal by maximizing signal-

to-noise ratio between immunoprecipitation data and negative 

control 

(35,37) 

PeakSeq Binomial 

scoring signal sites relative to control under the null 

hypothesis of a binomial distribution of tags with a mean 

estimated from the number of tags in the negative control at 

the same site 

(35,38) 

BayesPeak Binomial 

using a negative binomial regression model, formulated as a 

Poisson-Gamma mixture, with parameters estimated from the 

negative control via Monte Carlo Markov chain methods 

(35,39) 

MACS Poisson 

using a variable rate Poisson model, where the model mean is 

determined from the negative control by taking the maximum 

of average read counts computed on 1kb, 5kb, 10kb, and 

genome-wide intervals 

(35,40) 
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MOSAiCS Binomial 

using a negative binomial regression model computed from 

GC content, mappability, and a monomial in tag counts of the 

negative control, with a piecewise-defined mean 

(35,41) 

Coda N/A 

using convolutional neural networks to learn a generalizable 

mapping between ‘suboptimal’ and high-quality ChIP-seq 

data, while attenuating three primary sources of noise—due to 

low sequencing depth, low cell input and low ChIP enrichment 

(42) 
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calling algorithms that distinguish signal from background noise in immunoprecipitation 

data based on a negative control into which the TF proteins of interest were not added 

(Table 7.1). Most of these algorithms assume that background noise tags conform to a 

null mathematical distribution (Poisson or Binomial), and the parameters of the 

distribution are estimated from the negative control and scaled to fit true 

immunoprecipitation data (35). 

7.3.2 Predicted False Positive Transcription Factor Binding Sites  

Traditional PWMs, which assume that individual positions within the binding site are 

independent of each other, tend to predict false positives (e.g. low-complexity sequences) 

when detecting TFBSs (43). However, position interdependencies within the binding site 

were confirmed to be present by the total mutual information of the iPWMs derived in 

Chapter 3 (Appendix B.2) and a variety of experimental techniques (44), including 

crystal structure analyses (45), quantitative multiple fluorescence relative affinity 

(QuMFRA) assays (46) and PBMs (47,48). PBM data have also demonstrated that 

position dependencies are stronger between neighboring positions than others (44,47,48). 

Thus one possible reason why traditional PWMs predict false positives is the underlying 

assumption of independence between individual positions within the binding site.  

Note that these false positive binding sites predicted by PWMs differ from the non-

functional binding sites distinguished by TF-cofactor coregulations from functional sites 

in Chapter 6. False positive sites are non-sites that cannot actually be recognized or 

bound by TFs (i.e. in the case of iPWMs, their ground-truth 𝑅𝑖 values are < 0, but 

predicted 𝑅𝑖 values are > 0); by contrast, both non-functional and functional sites are true 

binding sites that can be physically bound by TFs (i.e. their ground-truth 𝑅𝑖 values are >

0), with non-functional sites being unable to alter the gene expression level upon binding. 

Apart from different types of interacting cofactors determining the functional state of a 

binding site, multiple other approaches that can enrich for functional sites and result in 

accurate feature sets were also simultaneously applied in Chapter 6; by contrast, they 

were individually used in prior studies, including focusing on proximal promoters (49), 

using DNase I hypersensitive data (50) and detecting information-dense clusters (51,52). 
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On the other hand, there are two additional approaches that were not incorporated into 

Chapter 6, using histone modification data (50) and focusing on phylogenetically 

conserved sequences across species (53). 

7.3.2.1 Approaches to Reduce Predicted False Positive Binding 
Sites by Modelling Position Interdependencies 

Prior studies applied three mainstream mathematical approaches to enable PWMs (e.g. 

frequency matrices) to capture position interdependencies within the TFBS and reduce 

the number of predicted false positive binding sites (Table 7.2), including Hidden 

Markov Models (HMMs) (44,47,54,55), straightforward oligonucleotide frequency 

matrices (56-58), and Bayesian networks (59-61). Other approaches include directly 

adding additional terms representing extra energy dissipated from the appearance of 

specific dinucleotides at pairwise positions into the equation to compute the energy 

dissipation of a TFBS from a binding energy-based PWM (62), and mixing frequency 

matrices computed from all binding sites and individual sites using a variable mixing 

parameter and pseudocount (63). These more complicated PWMs incorporating position 

interdependencies did achieve a higher specificity in detecting TFBSs; however, the 

improvement for most TFs is minor (44,62). 

First-order HMMs can capture adjacent dinucleotide interdependencies: each position 

within the binding site corresponds to four internal states each of which emits one base 

with certainty, and a background state describing the nucleotide frequencies of flanking 

sequences is also present. The transition from the background state to an internal state 

represents the start of a binding site, and the transition probability between two internal 

states is the frequency of the dinucleotide appearing at the two positions (44,47). 

However, HMMs are less scalable; modelling interdependencies among multiple 

positions requires an increase in the order of HMMs, resulting in an exponential increase 

in the size and complexity of HMMs (55). Similarly, oligonucleotide frequency matrices 

also have a limited scalability; for example, modelling trinucleotide interdependencies 

implies that the frequencies of 43 = 256 3-mers need to be computed for every three 

positions. Thus only one prior study attempted to select a subset of 𝑘-mers (𝑘 ≥ 3) based 
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Table 7.2: Approaches to model position interdependencies in PWMs to reduce predicted false positive binding sites 

Approach 
Mathematical 

model 
Operating process Reference 

TFFMs (TF 

flexible models), 

Bulyk et al., 

PVLMM 

(permutated variable- 

length Markov model), 

FMM (feature motif model) 

Hidden Markov 

Models (HMMs) 

and Markov 

networks 

1st-order HMMs were used to model dinucleotide 

interdependencies and variable motif lengths. Each position 

corresponded to four states (i.e. four bases occurring at the 

position), and the transition probability between two states was 

derived from the frequency of the dinucleotide occurring at the 

two positions. To model interdependencies between non-

adjacent positions, PVLMM searched for the best permutation 

of the motif positions. FMM used log-linear representations of 

Markov networks to model position interdependencies. 

(44,47,54,55) 

Ponomarenko et al., Stormo 

et al., Zhou et al. 

Oligonucleotide 

alphabets/PWMs, 

dinucleotide 

PWMs 

Based on thermodynamic, conformational and electrostatic 

properties of adjacent bases, a subset of oligonucleotides of each 

different length was contained in an alphabet. Then the 

frequency of each oligonucleotide was derived to form a 

frequency matrix in Ponomarenko et al. In Stormo et al. and 

Zhou et al. position frequency matrices contain the frequencies 

of dinucleotides occurring at adjacent pairwise positions. Zhou 

(56-58) 
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et al. restricts that any position can at most correlate with one 

other position. 

Barash et al., Ben-Gal et al., 

Pudimat et al.,  
Bayesian networks 

Applying the Bayesian Theorem to model position 

interdependencies (e.g. the probability of a dinucleotide 

occurring at two positions is the probability of the 1st base 

occurring at the 1st position, times the probability of the 2nd base 

occurring at the 2nd position under the condition that the 1st base 

has occurred at the 1st position). 

(59-61) 

BEM (binding energy 

model) 

Binding energy-

based PWMs 

A binding energy-based PWM indicates the heat energy 

dissipated by each base at each position during the binding 

process. The additional energy dissipation caused by the 

occurrence of the specific dinucleotide at the two positions was 

explicitly added into the equation to compute the energy of a 

binding site. 

(62) 

King et al. 

A parametric 

mixture of 

frequency matrices 

Frequency matrices were derived from all binding sites and each 

individual site. One parameter was the pseudocount used to 

compute frequency matrices, and the other was the mixing 

weight between the two matrices from all sites and from one 

single site. 

(63) 
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on thermodynamic, conformational and electrostatic properties of adjacent bases (56), 

whereas other studies adopted dinucleotide frequency matrices (57,58). 

A Bayesian network can be represented by a directed acyclic graph in which a node 

denotes a position in the binding site and an edge denotes a dependency between two 

positions (59-61). This dependency is naturally modelled by the conditional probability in 

the Bayes’ Theorem, which is used to compute the probability of a DNA sequence being 

a binding site (Equation 7.1). 

𝑃(𝑁1, 𝑁2) = 𝑃(𝑁1) ∙ 𝑃(𝑁2|𝑁1) = 𝑃(𝑁2) ∙ 𝑃(𝑁1|𝑁2)   [7.1] 

where 𝑁1 and 𝑁2 are respectively the nucleotides appearing at Positions 1 and 2. 

Equation 7.1 computes the probability of this dinucleotide appearing at the two positions 

in the presence of an interdependency between Position 1 and Position 2. 

7.3.2.2 High-dimensional iPWMs to Model Position 
Interdependencies 

Alternatively, we propose to use high-dimensional iPWMs, a natural generalization of the 

current two-dimensional (2D) iPWMs, to capture position interdependencies within the 

TFBS. For example, a 3D iPWM is capable of capturing dinucleotide interdependencies; 

the 𝑥 and 𝑦 dimensions represent individual positions, and the 𝑧 dimension represents the 

sequence conservation of each dinucleotide appearing at the 𝑥 and 𝑦 positions, computed 

from its frequency and measured in bits of information. 

From a multiple alignment of 𝑛 binding sites, the frequencies of 16 dinucleotides at each 

pair of positions are determined. A contiguous 3D iPWM will be computed from 

𝑅𝑖𝑤(𝑑𝑛, 𝑙1, 𝑙2) = 4 − (− log2 𝑓(𝑑𝑛, 𝑙1, 𝑙2) + 𝑒(𝑛(𝑙1, 𝑙2))) (𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑎𝑠𝑒)     [7.2] 

where 𝑓(𝑑𝑛, 𝑙1, 𝑙2) is the frequency of dinucleotide 𝑑𝑛 at positions 𝑙1 and 𝑙2 in the 

aligned binding site sequences and 𝑒(𝑛(𝑙1, 𝑙2)) is a sampling error correction factor (64) 

at positions 𝑙1 and 𝑙2 for the 𝑛 sequences used to create 𝑓(𝑑𝑛, 𝑙1, 𝑙2).  



264 

 

Similarly, Equation 1.3 will also be generalized to compute the 𝑅𝑖 value of a contiguous 

binding site 𝑗, which is the dot product between the sequence and the 3D iPWM.  

𝑅𝑖(𝑗) = ∑∑𝑠(𝑑𝑛, 𝑙1, 𝑙2, 𝑗)𝑅𝑖𝑤(𝑑𝑛, 𝑙1, 𝑙2) 

𝑇

𝑏=𝐴𝑙1,𝑙2

(𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒)     [7.3] 

where 𝑠(𝑑𝑛, 𝑙1, 𝑙2, 𝑗) is a 3D binary matrix for the sequence 𝑗, in which cells have a value 

of 1 for dinucleotide 𝑑𝑛 at position 𝑙1 and 𝑙2, and a value of 0 elsewhere. Assuming 

dinucleotide interdependencies only occur within the half site and do not occur across 

two half sites, the calculation of the 𝑅𝑖 value of a bipartite binding site 𝑗 will remain the 

same, except that the 𝑅𝑖 value of either half site is computed from a 3D iPWM using 

Equation 7.2.  

It can be anticipated that the unique binding site sequences predicted by the 3D iPWM 

will be a subset of those predicted by the 2D iPWM (Figure 7.1, Example 7.1), resulting 

in a smaller number of false positives and true positives (i.e. missing more true binding 

sites) at the same time.  

Similarly, a 4D iPWM can model trinucleotide interdependencies, etc. The highest 

possible dimension is the binding site length, which can simultaneously capture 

interdependencies among all positions. The minimum set of unique binding site 

sequences detected by such an iPWM is identical to that contained in the multiple 

alignment used to compute the iPWM. 

Compared to the aforementioned approaches modelling position interdependencies, high-

dimensional iPWMs can simultaneously capture the interdependencies among all 

possible combinations of positions. For example, the widely used 1st-order HMM only 

naturally captures adjacent dinucleotide dependencies, since taking into account non-

adjacent positions will significantly increase its complexity. By contrast, a 3D iPWM 

automatically incorporates the interactions between all pairwise positions. However, 

further studies on experimentally confirmed non-sites are needed to prove that high-

dimensional iPWMs are indeed capable of predicting less false positives, which is 

beyond the scope of this thesis. 
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Figure 7.1: Unique binding site sequences predicted by a 2D iPWM and a 3D 

iPWM. The unique binding site sequences predicted by an iPWM include true sites, as 

well as non-sites. Using a 3D iPWM will simultaneously increase specificity and 

decrease sensitivity compared to a 2D one. 

Example 7.1: Suppose that TATA, TAAT, TAGC, TACG are four true binding sites of 

some TF. According to Equations 1.1 and 1.3, the information content of the DNA 

sequence TAAA computed from the 2D iPWM is 𝑅𝑖(𝑇𝐴𝐴𝐴) = 4 𝑏𝑖𝑡𝑠 (for simplicity, the 

pseudocount and sampling error correction factor are not taken into account). Thus 

TAAA will be predicted to be a binding site. On the other hand, according to Equation 

7.2 the 3D iPWM derived from the alignment of the four binding sites is shown in Table 

7.3. 

According to Equation 7.3, the information content of the DNA sequence TAAA 

computed from the 3D iPWM is 𝑅𝑖(𝑇𝐴𝐴𝐴) = −∞ bits. Thus it will not be predicted to 

be a binding site. Since TAAA is a lower-complexity sequence compared to the four true 

sites and the dinucleotide AA never appears at Positions 3 and 4, it is more likely to be a 

non-site, which justifies the prediction made by the 3D iPWM.  
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Table 7.3: The 3D iPWM in Example 7.1 

Dinucleotide 
Pairwise positions 

1,2 1,3 1,4 2,3 2,4 3,4 

AA −∞ −∞ −∞ 2 2 −∞ 

AT −∞ −∞ −∞ 2 2 2 

AC −∞ −∞ −∞ 2 2 −∞ 

AG −∞ −∞ −∞ 2 2 −∞ 

TA 4 2 2 −∞ −∞ 2 

TT 4 2 2 −∞ −∞ −∞ 

TC 4 2 2 −∞ −∞ −∞ 

TG 4 2 2 −∞ −∞ −∞ 

CA −∞ −∞ −∞ −∞ −∞ −∞ 

CT −∞ −∞ −∞ −∞ −∞ −∞ 

CC −∞ −∞ −∞ −∞ −∞ −∞ 

CG −∞ −∞ −∞ −∞ −∞ 2 

GA −∞ −∞ −∞ −∞ −∞ −∞ 

GT −∞ −∞ −∞ −∞ −∞ −∞ 

GC −∞ −∞ −∞ −∞ −∞ 2 

GG −∞ −∞ −∞ −∞ −∞ −∞ 

7.3.3 Downstream Effects of Transcription Factor Binding Site 
Variants and Long-range DNA Interactions 

As described in Chapter 6, the ideal prediction of effects of a TFBS variant of uncertain 

significance ought to include three levels, the binding site strength, binding site cluster, 

and gene expression. In Chapters 4 and 5, the unified framework prioritized a number of 

variants within binding sites of multiple TFs (e.g. CEBPB, HSF1) known to play a role in 
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breast cancer development in the HBOC genes. However, this framework only predicted 

the effects of these variants on binding site strengths, since this study had been conducted 

earlier. 

Thus a future study will extend the framework by integrating predictions of effects of 

TFBS variants on information-dense clusters and gene expression, and apply this 

extended framework to reanalyze the prioritized variants in Chapters 4 and 5. This will 

further prioritize these variants by classifying them into two categories, truly deleterious 

mutations that can actually significantly alter gene expression and result in disease 

phenotypes, and variants that can be compensated for by other clusters and result in 

diverse natural phenotypes.  

In fact, deleterious variants in the binding sites of many TFs have been known to be 

associated with a variety of diseases (Table 7.4), which in turn reflect the tissue-specific 

functions of the TFs. For example, 797 established SNPs associating with 144 diseases 

were found to lie within binding sites of NFKB, a significant overrepresentation (2.25-

fold) compared with all common variants (P-value = 4.2 × 10-90) (65). SNPs associated 

with primarily inflammatory and autoimmune diseases and cancers, including rheumatoid 

arthritis, systemic lupus erythematosus, primary biliary cirrhosis, asthma, and lymphoma, 

were highly enriched in NFKB binding sites (65). This is consistent with the known 

NFKB-mediated regulation of various aspects of innate and adaptive immune responses, 

including the transcription of cytokines and antimicrobial effectors, and the development 

and survival of the cells and tissues that carry out immune responses (66). Similarly, the 

B cell-specific EBF1 is essential for maintaining B cell identity and preventing 

alternative fates in committed cells (76), which accounts for the correlation between 

SNPs resulting in allele-specific binding of EBF1 and autoimmune diseases (77-80). 

A recent study used the Hi-C technology to identify TF-mediated long-range interactions 

between 31,253 promoters and distant regulatory elements (e.g. distal enhancers and 

promoters of other genes) in 17 human primary hematopoietic cell types (81). 698,187 

high-confidence unique promoter interactions were detected across all cell types, of 

which 9.6% were promoter-to-promoter interactions and 90.4% promoter-to-enhancers,   
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Table 7.4: Association of TFBS variants with diseases 

TF 

Diseases with which SNPs 

in the binding sites of the 

TF are associated 

Functions of the TF in the 

specific tissue 
Reference 

NFKB 

Inflammatory and 

autoimmune diseases and 

cancers (e.g. asthma) 

Regulates various aspects of 

innate and adaptive immune 

responses 

(65,66) 

CTCF 

Breast cancer (BC)  

(e.g. rs11540855) 

Affects BC development by 

regulating target genes; the 

hypopoly(ADPribosyl)ated 

isoform is characteristic for BC 

(67-69) 

Skin cancer 
CTCF knockdown promoted 

invasion, metastasis and 

epithelial-mesenchymal transition 

in liver and skin cancer. 

(70,71) 

Liver cancer (71,72) 

Gastrointestinal Cancers 

Associations were established 

between motif mutations and late 

replication. 

(70,71) 

GABPA BC (e.g. rs2853669) 
Controls cell migration in breast 

epithelial cells 
(67,73,74) 

USF1/2 BC (e.g. rs3760982) 

Have a potent growth-inhibitory 

effect and loss of USF function 

favors cell proliferation. 

(67,75) 

EBF1 

Autoimmune diseases 

(psoriasis, primary biliary 

cirrhosis and rheumatoid 

arthritis) (e.g. rs909685, 

rs9603612) 

Essential for the maintenance of 

B cell identity and prevention of 

alternative fates in committed 

cells. 

(76-80) 
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with a median linear distance between promoters and their interacting regions of 331 kb 

(81). These promoter interactions were found to be highly cell type specific, and 

interacting regions are enriched in genetic variants linked with altered expression of 

genes they contact (81). However, this study did not identify which specific TFBSs 

present in the promoters and distal interacting regions are responsible for the formation of 

long-range loops. As described above, this unified framework can be directly generalized 

to analyze all variants in the whole genome instead of specific genes. Therefore, this 

unified framework can be further extended by first ascertaining whether the prioritized 

TFBS variants lie in distal interacting regions using the Hi-C data, then predicting how 

these variants affect the expression levels of the distant genes whose promoters form 

long-range loops with the interacting regions. For example, the intron 19 of the 

CLEC16A gene serves as a distal enhancer (∼160 kb away) interacting with the promoter 

of DEXI gene (82), and the SNP (rs12708716) within this intron associated with the type 

1 diabetes significantly altered the expression level of DEXI (82). 

The Hi-C long-range interacting data can also be used to improve the general machine 

learning framework for prediction of genes with similar tissue-wide expression profiles in 

Chapter 6. After the Bray-Curtis similarity measure identify the genes with similar 

expression profiles to the TFs, distal interacting regions that can perform long-range 

interactions with the promoters of these genes can be further obtained using the Hi-C 

data. The same feature sets will be derived from the information-dense clusters detected 

from iPWM-detected TFBSs within these interacting regions by the IDBC algorithm. 

Since the expression pattern of a gene is determined by all regulatory regions, the high 

similarity between these genes and the TFs in the tissue-wide expression profile is 

attributable to the high similarity in all regulatory regions including long-range 

interactions. Therefore, the incorporation of the spatial organization and information 

composition of transcriptional regulatory modules in the distal interacting regions into the 

machine learning framework, in addition to those in the proximal promoters, will result in 

an improvement in the classifier performance. 
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7.4 Conclusions 

Compared to prior studies, this thesis presents an improved three-level computational 

modelling of the transcriptional regulation of human genes, involving TFBSs, 

information-dense clusters, and gene expression. The ultimate goal of transcriptional 

regulation is to accurately regulate expression levels of TF target genes via the 

underlying physical interactions between TFs and individual binding sites.  

The lowest level is the derivation of contiguous and bipartite iPWMs from ENCODE 

ChIP-seq datasets modelling TF binding specificities in Chapter 3. The information 

content of a binding site computed from an iPWM is quantitatively related to the amount 

of heat energy dissipated by the TF-binding site physical association, enabling iPWMs to 

more accurately quantify binding site strengths than log likelihood ratio-based PWMs 

derived by prior studies. The bipartite iPWMs more precisely model the binding behavior 

of dimeric TFs by taking into account the variable-length spacers within bipartite binding 

sites. Compared to prior studies only analyzing a small number of top peaks, the derived 

iPWMs incorporated the maximum number of intermediate and weak binding sites via 

the recursive thresholding functionality. This enabled the accurate quantification of 

binding site strengths across a broad range of affinities, which was proven by the 

successful detection of true binding sites and interpretation of experimentally measured 

effects of SNPs in Chapter 3, and prioritization of TFBS variants in HBOC genes in 

Chapters 4 and 5. 

The intermediate level is the relationship between individual binding sites and clusters in 

terms of composition and variation in Chapter 6. Compared to prior clustering 

algorithms, the detection of the information-dense clusters by the IDBC algorithm 

simultaneously rely on both the spatial distribution and information contents of binding 

sites, enabling the more accurate modelling of the clustering composition of binding sites. 

Apart from the additive, complementary cooperation between individual sites within a 

cluster on inducing gene expression found by prior studies, mutation analyses on 

artificially introduced mutations and naturally occurring SNPs also revealed another 

compensatory cooperation; that is, the presence of multiple binding sites in a cluster 
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enable the cluster to be robust against mutations by compensating for each other’s 

destruction, with the central strong site playing a more significant role. 

The highest level is the relationship between individual clusters and gene expression in 

terms of composition and variation in Chapter 6. The Bray-Curtis similarity measure and 

gene knockdown data respectively enabled the accurate identification of similar tissue-

wide gene expression profiles and differentially expressed TF target genes. Machine 

learning features accurately modeled the spatial organization and information 

composition of TFBS clusters in proximal promoters, which substantially dictate the 

expression profiles of TF target genes. Mutation analyses on TF targets revealed that the 

presence of multiple information-dense clusters in a promoter enable gene expression to 

be robust against TFBS mutations by compensating for each other’s destruction, relating 

deleterious and protective variants respectively to disease and diverse natural phenotypes. 

Therefore, by comprehensively delineating physical TF-binding site interactions, 

functional binding site-binding site interactions within the information-dense cluster and 

cluster-cluster interactions within the promoter, this thesis aims to improve the current 

computational modelling of human transcriptional regulation. 
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