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Abstract 

In shear-driven flows, an external driving force is needed to maintain the relative movement 

of horizontal plates. This thesis presents a systematic analysis on using spatially periodic 

heating and grooved surfaces to control this force. It is found that the use of periodic heating 

creates a buoyancy-driven effect that always reduces this force. The use of proper heating may 

even lead to the complete elimination of this force. It is further found that the use of isothermal 

grooved surfaces always enhances flow resistance, resulting in an increase of this force. When 

grooves and heating are applied together, their interaction induces a horizontal pressure force 

that can either increase or decrease the driving force, depending on the relative positions of the 

groove and heating patterns. Mechanisms leading to such changes of the driving force are 

discussed. 
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Chapter 1  

1 Introduction 

In simple shear-driven flows, the relative movement between two parallel plates drives the 

fluid flow. These flows are characterized by the absence of a streamwise pressure gradient. 

An external force is required to maintain the relative plate movement. There is an interest 

in the reduction of this external force as this would lead to the reduction of the     energy 

expenditure associated with operations of such systems. This reduction of the driving force 

is analogous to the drag reduction in other systems. Common techniques of drag reduction 

include injection of dilute polymers (Bonn, et al., 2005), introduction of plate oscillations 

(Hurst, et al., 2014), use of suction/blowing (Segawa, et al., 2007; Virk, 1975), use of 

various actuators (Mahfoze & Laizet, 2017), use of heating patterns (Hossain & Floryan, 

2016), and changing the plate topography (Mohammadi & Floryan, 2013b), to name a few. 

Some of these approaches can be characterized as focused on the laminar flow control so 

that transitions to secondary states are avoided. Others, like the one which is followed in 

this thesis, are focused on the creation of spatial flow modulations which would lead to the 

reduction of shear and, thus, reduction of the frictional resistance.   

 

1.1 Objective 

The main objective of this thesis is to understand the system responses in the case of shear-

driven flows when one of the bounding plates is exposed to spatial heating and surface 

irregularities. Changes of the flow-driving force in response to such irregularities are to be 

identified through a systematic analysis of each of these effects. A proper understanding of 

these effects will enhance the existing knowledge of the flow control techniques and 

contribute to the improvement of the flow system performance.  
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1.2 Motivation 

Shear-driven flows have been of interest since the works of Couette in the early nineteenth 

century. Since then, this class of flows has been widely used in industry. Applications 

include processes like coating (Weinstein & Ruschak, 2004) (see Figure 1-1A), fluid 

movement in bearings and between shafts (see Figure 1-1B), fluid sealing systems, 

lubrication problems, towing of free-floating bodies in shallow basins, etc. Further 

applications can be identified in Micro-Electro-Mechanical-Systems (Ho & Tai, 1998) and 

in chemical processes (Desmet & Baron, 2000). 

The boundary and temperature irregularities frequently occur in nature, e.g. air circulation 

in the atmospheric boundary layer and heat island effect, mixing in oceans, shark skins 

which allow them to move with a particular ease, compact heat exchangers, microfluidic 

and nanofluidic devices, cell analyzers, and many others.  

 

 

(A) 

    

(B) 

Figure 1-1: Applications of shear-driven flow in (A) Coating processes (Figure from 
(Durst, 2008)), (B) fluid movement in bearings (Figure from (Ashihara & Hashimoto, 
2010)). 
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Most of the existing studies dealing with surface and temperature irregularities are focused 

on the pressure-driven flows. Therefore, there exists a void in knowledge regarding flow 

responses due to surface irregularities and heating patterns in shear-driven flows. Given 

their frequent use in industries, the development of techniques to control the costs required 

to maintain such flows provides the main motivation for this study. 

 

1.3 Related literature survey 

There exists a considerable number of analyses dealing with the effects of surface 

irregularities, but they are mostly focused on the pressure-driven flows. Likewise, the 

existing literature dealing with the effects of heating is mostly focused on the convective 

heat transfer. Therefore, the discussion of the literature is divided into several categories, 

with each of them focused on a specific issue of interest in this analysis.  

 

1.3.1 Effects of surface irregularities 

1.3.1.1 Pressure-driven flows 

The effect of geometric irregularity (surface roughness) in pressure-driven flows is a 

classical yet not fully understood concept in fluid mechanics. The history of studying the 

effects of surface roughness dates back to the works of Darcy (1857) and Hagen (1854), 

who concluded that roughness always increases the overall flow resistance. Moody (1944) 

and Nikuradse (1933), with the limited instrumentation available at that time, carried out 

extensive experiments and proposed the concept of friction factor for drag quantification. 

They also concluded that the drag in laminar flow is independent of surface roughness or, 

at least, roughness effects were too small to be determined using the existing measuring 

techniques. These correlations suggest that surface roughness has a significant effect on 

the turbulent flow and always increases the turbulent drag.  

The prevailing conclusion that surface roughness always increases the flow resistance was 

first challenged by Walsh (1980, 1983), who showed that certain surface topographies can 
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reduce the drag below what is found for smooth plates. These special surface shapes were 

referred to as riblets, i.e. short wavelength streamwise grooves. Effects of riblets on drag 

reduction were further studied experimentally by Walsh & Lindemann (1984), Bruse, et 

al. (1993), Bechert, et al. (1997), and numerically by Choi, et al. (1991), Chu & 

Karniadakis (1993),  Chu,  et al. (1992),  Goldstein & Tuan (1998),  Goldstein, et al. (1995), 

and in all of these cases it was concluded that riblets were capable of reducing turbulent 

drag but no clear conclusion was reached about the laminar drag. 

Pressure losses for laminar flows over geometric irregularities gained interest due to the 

occurrence of such flows in micro and nano-channels, and due to deviation from the 

classical theories based on the works of Gamrat et al. (2008), Papautsky et al. (1999), Sharp 

& Adrian (2004), and Sobhan & Garimella (2001). Mohammadi & Floryan (2013b) 

investigated pressure loss in grooved channels for laminar flows and found potential to 

obtain drag reduction by the proper shaping of grooves. Mohammadi (2013), Mohammadi 

& Floryan (2013a), Moradi (2014), and Moradi & Floryan (2013) investigated longitudinal 

grooves and quantified their drag reducing abilities. 

Mohammadi & Floryan (2012) categorized the mechanisms responsible for the generation 

of drag into three types, namely associated with the pressure form drag, the pressure 

interaction drag, and the shear drag. The shear drag is associated with surface-groove-

induced changes in the wall shear, as well as with an increase of the wetted area. The 

pressure form drag is associated with the mean pressure gradient driving the flow and the 

pressure interaction drag is generated through an interaction between the groove-

modulated part of the pressure field and the surface geometry. The importance of pressure 

effects increases rapidly with the groove amplitude. Information about the types of drag 

and their dependence on the groove shape offers potential for identification of surface 

topographies that may result in a lower drag. 

Use of the superhydrophobic effect is also useful in reducing drag. In this case, the surface 

topography traps gas bubbles in micro-pores, replacing the shear stress between liquid and 

solid with a shear stress between liquid and gas (Rothstein, 2010). Existence of the laminar 

drag reduction using micro-pores has been verified by Joseph, et al.(2006), Ou, et al. 
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(2004), Ou & Rothstein (2005) and Truesdell, et al. (2006). The effectiveness of this 

method was optimized by correctly shaping the surface pores (Samaha, et al., 2011) and 

by changing the hydrophobicity using changes in the surface chemistry (Quere, 2008; 

Reyssat, et al., 2008; Zhou, et al., 2011). The stability characteristics in such flows are not 

yet fully understood. 

 

1.3.1.2 Shear-driven flows 

The plane-Couette flow represents the simplest shear-driven flow. It occurs between two 

parallel plates in relative motion. It is characterized by the lack of a streamwise pressure 

gradient as the flow is driven by plate movement only. The flow has linear velocity 

distribution and constant shear throughout the flow field. It is also linearly stable  

(Romanov, 1972). The transition to secondary states has been studied in detail by Deguchi 

& Nagata (2011) who identified various routes to secondary finite-amplitude states as well 

as to turbulence.  

The experiments on transition between the laminar and turbulent states and the role of 

roughness in Couette flow are described in Aydin & Leutheusser (1991). The form of the 

flow is predicted analytically for long wavelength grooves in Malevich, et al. (2008). The 

potential slip at the rough surface is discussed in Niavrani & Priezjev (2009), and Priezjev 

& Troian (2006). While it is known that Couette flow is linearly stable (Romanov, 1972), 

it becomes unstable in the presence of grooves resulting in the formation of streamwise 

vortices (Floryan, 2002). Similar secondary flows may appear due to the introduction of 

wall transpiration (Floryan, 2003).  Shear instability modes are generated in the annular 

Couette flow (Moradi & Floryan, 2013). Various simplified models have been used to 

study effects of varying groove geometry (Sahlin, et al., 2005; Valdés, et al., 2012; Wang, 

et al., 2014). All of these studies and a concluding remark in Mohammadi & Floryan (2014) 

suggest that introducing surface roughness always increases the flow resistance in shear-

driven flows.  
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1.3.2 Effects of heating irregularities 

A recently introduced technique for drag reduction uses spatial heating patterns (Hossain 

& Floryan, 2016) that create a buoyancy field which leads to the formation of a system of 

separation bubbles. Fluid trapped inside these bubbles rotates due to the action of 

horizontal density gradients and as a result, a propulsive force is created which contributes 

to fluid pumping. In addition, these bubbles isolate the stream from direct contact with the 

plate and thus reduce the frictional drag. This phenomenon is referred to as the super-

thermo-hydrophobic effect (Floryan, 2012). This effect is enhanced by combining 

distributed and uniform heating of the lower plate (Floryan & Floryan, 2015). Similar 

results can also be achieved by heating the upper plate (Hossain & Floryan, 2014). One 

drawback of this technique lies in the fact that the flow has to be fairly slow as stronger 

flows wash away separation bubbles (Hossain, 2011; Hossain, et al., 2012; Hossain & 

Floryan, 2015). This limitation leads to the search for ways of enhancing this effect so that 

it can be applied at higher Reynolds numbers. Yamamoto, et al. (2013) demonstrated 

simultaneous drag reduction and heat transfer enhancement using suction/blowing waves 

travelling in the downstream direction. Their results provide motivation for exploring these 

methods in conjunction with the heating non-uniformities. However, when both plates were 

heated, drag reduction strongly depended on the phase difference between the lower and 

upper heating. The drag reduction could increase by up to three times over that found in 

the case of one plate heating if the proper phase difference was used. The range of Reynolds 

numbers with effective drag reduction was doubled at the same time (Hossain & Floryan, 

2016). 

Heating non-uniformities represent a wider class of problems which have been studied on 

a case by case basis and not necessarily in the context of drag reduction. The non-

uniformities create horizontal and vertical temperature gradients which result in the 

horizontal density variations that create motions referred to as horizontal convection. 

Maxworthy (1997) reviewed the numerical and experimental analyses focused on 

convection in regions with either open or partially-open lateral boundaries. Siggers, et al. 

(2004) showed numerically that the horizontal convection can be unsteady and turbulent, 

capable of maintaining overturning circulation within a layer heated and cooled 
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differentially at its surface with a general temperature distribution imposed at the top of the 

layer and a variety of thermal boundary conditions at the base of the layer. Hughes & 

Griffiths (2008) used horizontal convection as an idealized model of the ocean overturning 

circulation with the non-uniform heating profiles imposed at a horizontal boundary and 

demonstrated that convection depends on the geometry of the flow system and on the 

externally imposed thermal conditions.  

The analyses of fundamental aspects of convection have been focused on simple reference 

cases as many variables affect the system response. Consider the simplest case of a 

horizontal slot subject to a spatially homogeneous heating applied at the lower plate, also 

known as the Rayleigh-Bénard (RB) convection (Bénard, 1900; Rayleigh, 1916). This 

convection results from the transition from a conductive state when the critical conditions 

are exceeded and it changes the character of the heat flow in qualitative terms (Ahlers, et 

al., 2009; Bodenschatz, et al., 2000; Chilla & Schumacher, 2012; Lohse & Xia, 2010). 

These critical conditions are expressed in terms of the critical Rayleigh number Racr with 

secondary flow occurring for Ra > Racr. A large enough heating intensity leads to turbulent 

RB convection (Ahlers et al., 2009; Lohse & Xia, 2010). Convection onset conditions are 

affected by the heating non-uniformities (Freund, et al., 2011) as well as geometric non-

uniformities (McCoy, et al., 2008; Seiden, et al., 2008; Weiss, et al., 2012). Results dealing 

with the effects of geometry modulation on the RB convection are very limited but 

demonstrate that the non-uniformities do play a role. Two-dimensional convection rolls 

have been observed for subcritical conditions (Ra << Racr) in the case of the lower plate 

being augmented with thin stripes. The amplitude of these rolls grew with Ra until they 

were destabilized with mechanisms which depended on the ratio of the wavenumber of the 

imposed modulation and the critical wavenumber of the RB convection producing a variety 

of three-dimensional patterns. 

There exist several studies focused on the applied aspects of convection and involving 

specialized geometries. Bergeles (2001) showed that for single phase flows in tubes, up to 

a 400% increase in the nominal heat transfer coefficient can be achieved by adjusting 

surface topography. Siddique, et al. (2011) reviewed different heat transfer enhancing 

techniques which included the use of extended surfaces including fins and micro-fins, 
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porous media, suspensions of large particles, suspensions of small particle (nanofluids), 

phase-change devices, flexible seals, vortex generators, protrusions, composite materials 

with ultra-high thermal conductivity, etc. Ligrani, et al. (2003) suggested that all these 

techniques can either create secondary flows and/or can increase the turbulence level 

resulting in an increase of fluid mixing.   Dewan, et al. (2004) reviewed the passive heat 

transfer augmentation techniques based on the use of twisted tapes and wire coils. There 

exists a lack of fundamental and systematic research on the effects of surface 

roughness/grooves on natural and mixed convection, and on the onset of secondary states 

in buoyancy-driven motions. This becomes more eminent in micro-channels where the 

roughness size cannot be reduced to a negligible level using the currently available 

manufacturing techniques. Sobhan & Garimella (2001) reviewed different studies on the 

flow and heat transfer in micro-channels with surface roughness and concluded that there 

is a need for additional systematic studies to examine the effects of each of the concerned  

parameters separately. Xia et al. (2011) studied the fluid flow and heat transfer mechanisms 

in micro-channels and concluded that change in surface area and complexities in the 

boundary layer were primarily responsible for change in heat transfer characteristics with 

a change in the pressure drop. 

Recently, Toppaladoddi et al. (2015) studied geometric optimization for heat 

transportation. Goluskin & Doering (2016) studied the effects of geometric parameters on 

turbulent convection.  A systematic study by Abtahi (2017), Abtahi & Floryan (2017), 

analyzed natural convection in a horizontal slot formed by two grooved plates for 

subcritical Rayleigh numbers. It was found that the grooves create a horizontal temperature 

gradient that leads to the formation of the vertical and horizontal pressure gradients which 

drive the motion for any Rayleigh number. Groove wavelengths dictated the size of the 

convection rolls for most cases except for short wavelength grooves where the motion was 

found to be confined to a boundary layer near the grooved plate. The intensity of convection 

was found to be more intense when grooves were placed on both plates rather than in either 

of the plates, and the largest intensity was found when grooves of the upper and lower 

plates were in the same phase (i.e. they formed a wavy slot) and weakest when they were 

out of phase (i.e. they formed a converging-diverging slot). They also concluded that the 

shear forces acted in a manner consistent with the groove build up whereas the effect of 
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pressure forces depended on the groove geometry, location and the heating conditions. The 

changes in the heat flow were quite complex as they resulted from a combination of 

conductive changes associated with grooves and convective changes associated with the 

heating and geometric irregularities. 

Abtahi & Floryan (2017a, b) analyzed natural convection in a horizontal fluid layer 

exposed to heating and geometric irregularities. They considered periodic distribution for 

both heating and geometric irregularities and quantified their relative position using phase 

difference. They concluded that the interaction of the heating and groove patterns was able 

to create a net horizontal flow in the absence of any mean pressure gradient. This flow 

could be directed in any direction depending on the phase difference between the heating 

and groove patterns.  

 

1.4 Outline of the present work 

This thesis is organized as follows. Chapter 1 describes the objectives and motivations for 

the present work and provides a literature review on the related topics. Chapter 2 introduces 

the model problem which provides the means for analysis of the effects of geometric and 

heating irregularities. Chapter 3 describes the numerical method used. Chapter 4 describes 

the effects of spatially periodic heating in the case of smooth plates. Chapter 5 discusses 

the effects of geometric irregularities when the system is isothermal. Chapter 6 discusses 

the system response when both the geometric as well as temperature irregularities are 

present simultaneously. Chapter 7 summarizes the main conclusions and provides 

suggestions for future work.  
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Chapter 2  

2 Model Problem 

This chapter describes the model problem which captures the physical phenomenon of 

interest in the analysis, i.e. reduction of forces required to support the relative movement 

of parallel plates. Spatially distributed heating is the method of choice for force reduction. 

This heating is applied to the stationary plate, which can be grooved, while the moving 

plate is kept isothermal and smooth. The model problem is two-dimensional as the force 

reducing method is two-dimensional.  It is assumed that the working fluid is Newtonian, 

and its properties are well described using Boussinesq approximation. Section 2.1 depicts 

the general geometry to be considered, Section 2.2 describes the external heating pattern 

to be applied, Section 2.3 provides a concise summary of the governing equations to be 

used, Sections 2.4 and 2.5 discuss the relevant boundary conditions and the flow constraint. 

A reference isothermal case is explained in Section 2.6.  Evaluation of forces, flow rate 

and induced heat transfer are discussed in Sections 2.7-2.9. 

 

2.1 Geometry 

Consider two horizontal plates moving relative to each other with the gap between them 

filled with a fluid. The upper plate is smooth while the lower one is assumed to be 

sinusoidally grooved resulting in the gap geometry of form –  

𝑦∗(𝑥∗) =  −ℎ∗ +  𝑦∗  𝑐𝑜𝑠(𝛼∗𝑥∗),       (2.1a) 

𝑦∗ (𝑥∗) = ℎ∗.          (2.1b) 

where the subscripts L and U refer to the lower and upper plates respectively, 𝑦∗ is the 

amplitude of the groove, 𝛼∗ is its wavenumber and stars identify dimensional quantities. 

The gap extends to ±∞ in the x*-direction, its mean opening is 2ℎ∗, and its periodicity is 

characterized by the wavelength 𝜆∗ = 2𝜋 𝛼∗⁄ .  
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Considering the half of the mean gap height ℎ∗ as the length scale, the dimensionless form 

of the gap geometry becomes 

𝑦 (𝑥) =  −1 + 𝑦  𝑐𝑜𝑠(𝑥),        (2.2a) 

𝑦 (𝑥) =  1.          (2.2b) 

 

 

Figure 2-1: Schematic diagram of the flow system. 

 

2.2 Heating pattern 

Introduce an external heating resulting in sinusoidal temperature variations along the lower 

plate and a constant temperature of the upper plate, i.e. 

𝑇∗(𝑥∗) = 𝑇 ,
∗ + 0.5 𝑇∗ 𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω∗),      (2.3a) 

𝑇∗(𝑥∗) = 𝑇∗,          (2.3b) 

where the subscripts “mean” and “p” refer to the mean and periodic parts, respectively, 

𝑇∗ is the peak-to-peak amplitude of the periodic component, and 𝛺∗is the phase shifts 

between the heating and groove patterns. Use of the upper plate temperature for reference 

(all material properties are to be evaluated at this temperature) and introduction of the 

relative temperature ∗  =  𝑇∗ –  𝑇∗ lead to plates’ temperatures of the form 
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𝜃∗(𝑥) = 𝜃∗ + 0.5 𝜃∗ 𝑐𝑜𝑠(𝛼∗𝑥∗ + Ω∗),      (2.4a) 

𝜃∗ (𝑥) =  0.          (2.4b) 

where 𝜃∗ = 𝑇 ,
∗ − 𝑇∗, and 𝜃∗ = 𝑇∗.  

Considering 𝜅∗𝜈∗ (𝑔∗𝛤∗ℎ∗ )⁄  as the temperature scale results in the following 

dimensionless expression for the temperatures of the plates 

𝜃 (𝑥) = 𝑅𝑎 + 0.5 𝑅𝑎  𝑐𝑜𝑠(𝛼𝑥 + Ω),      (2.5a) 

𝜃 (𝑥) = 0          (2.5b) 

where 𝑅𝑎 = 𝑔∗𝛤∗ℎ∗ 𝑇∗ (𝜅∗𝜈∗)⁄  is the uniform Rayleigh number measuring the 

intensity of the uniform (mean) part of the applied heating and 𝑅𝑎 = 𝑔∗𝛤∗ℎ∗ 𝑇∗ (𝜅∗𝜈∗)⁄  

is the periodic Rayleigh number measuring the intensity of the periodic part of the applied 

heating. 

 

2.3 Governing equations 

Assume that the upper plate is pulled in the positive x*-direction with a constant velocity 

𝑈∗  while the lower plate is stationary. The fluid is assumed to have thermal conductivity 

𝑘∗, specific heat 𝑐∗, thermal diffusivity 𝜅∗ = 𝑘∗ 𝜌∗𝑐∗⁄ , kinematic viscosity 𝜈∗, dynamic 

viscosity μ∗, thermal expansion coefficient 𝛤∗ and variations of its density 𝜌∗ follow the 

Boussinesq approximation. The gravitational acceleration 𝑔∗ is acting in the negative y*-

direction. 

Considering the velocity scale to be 𝑈 ∗ = 𝜈∗ ℎ∗⁄  and the pressure scale to be 𝜌∗𝑈∗ , the 

dimensionless field equations take the following form: 

+ = 0,          (2.6a) 

𝑢 + 𝑣 = − + ∇ 𝑢,        (2.6b) 
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𝑢 + 𝑣 = − + ∇ 𝑣 + 𝑃𝑟  𝜃,       (2.6c) 

𝑢 + 𝑣 = 𝑃𝑟 ∇ 𝜃        (2.6d) 

where (𝑢, 𝑣) are the velocity components in the (x, y) directions, respectively, 𝑝 stands for 

the pressure,  denotes the temperature and Pr = 𝜈∗/𝜅∗ is the Prandtl number.  

 

2.4 Boundary conditions 

The system (2.6) is subject to the following boundary conditions 

(i) The no-slip conditions:  

𝑢(𝑦 (𝑥)) = 0,          (2.7a) 

𝑢(1) = 𝑅𝑒          (2.7b) 

where Re is the Reynolds number defined as 𝑅𝑒 = 𝑈∗ /𝑈 ∗ = 𝑈∗ ℎ∗/𝜈∗. 

(ii) The no-penetration conditions: 

𝑣(𝑦 (𝑥)) = 0,          (2.7c) 

𝑣(1) = 0.          (2.7d) 

(iii) The thermal conditions: 

𝜃(𝑦 (𝑥)) =  (𝑥),         (2.7e) 

𝜃(1) = 0.          (2.7f) 

 



14 

 

2.5 Flow constraint 

No mean horizontal pressure gradient is permitted in the flow system, hence one must 

impose constraint of the form 

= 0.          (2.8) 

 

2.6 Reference isothermal case 

When the above system is isothermal, and both plate surfaces are smooth, the fluid 

movement in the gap is solely caused by the motion of the upper plate, and is given as 

𝒗 (𝑥, 𝑦) = [𝑢 (𝑦), 0] = (1 + 𝑦), 0 ,      (2.9a) 

𝑝 (𝑥, 𝑦) = 𝐶.          (2.9b) 

The fluid flow rate in the gap is 

𝑄 = 1,          (2.9c) 

the shear stress acting on the upper plate is 

𝜏 = −0.5.          (2.9d) 

and the force (per unit length and unit width) required to pull the upper plate is given as 

𝐹 = 0.5.          (2.9e) 

In the above, the velocity vector 𝒗𝟎 has been scaled with 𝑈∗  as the velocity scale, Q0 

stands for the flow rate scaled with the same velocity scale, 𝜏  stands for the shear acting 

on the upper plate scaled with 𝑈∗ 𝜇∗/ℎ∗, 𝐹  denotes the force per unit length and width 

required to drive the upper plate scaled with 𝑈∗ 𝜇∗/ℎ∗. 
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2.7 Driving force 

Certain force must be applied to the upper plate to maintain its movement, and the 

magnitude of this force is determined by shear forces acting on its surface. 

The presence of the grooves and the heating results in changes in the shear stress acting on 

the upper plate, ∆𝜏∗ = 𝜏∗ − 𝜏∗, which, when scaled with 𝑈∗𝜇∗/ℎ∗, has the form 

∆𝜏 = − + 𝑅𝑒.        (2.10) 

The change in the driving force, ∆𝐹∗ = 𝐹∗ − 𝐹∗, scaled with 𝜌∗𝑈∗ , can be expressed as 

∆𝐹 = 𝐹 − 𝐹 = 𝑅𝑒 − 𝑅𝑒 𝜆 ∫ 𝑑𝑥 .     (2.11) 

 

2.8 Flow rate 

The change in the amount of fluid pulled by the plate,  ∆𝑄∗ = 𝑄∗ − 𝑄∗, scaled with 𝑈 ∗, 

can be expressed as 

∆𝑄 = 𝑅𝑒 𝑅𝑒 ∫ 𝑢(𝑥, 𝑦) 𝑑𝑦 − 1 .     (2.12) 

 

2.9 Heat transfer 

The external heating required to produce the desired temperature along the lower plate 

leads to a heat flow between the plates which can be viewed as an energy cost associated 

with the use of the heating for altering the driving force. This heat flow is expressed in 

terms on the mean Nusselt number defined as 

𝑁𝑢 = 𝜆 ∫ 𝑑𝑥.         (2.13) 
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Chapter 3  

3 Solution procedure 

This chapter focuses on describing the procedure used for the determination of a solution 

for the problem presented in Chapter 2. It describes the discretization procedure for the 

field equations and boundary conditions, and the efficient solution process for solving these 

equations. The solution method presented in this chapter is based on the method described 

by Abtahi, et al. (2016) and Husain & Floryan (2013). 

 

3.1 Stream function formulation 

The field equations presented in Section 2.3 are to be expressed in terms of the stream 

function ψ defined as  

𝑢 = , 𝑣 = − .        (3.1) 

The above definition of stream function automatically satisfies the continuity equation 

(2.6a) and facilitates elimination of the pressure terms from the momentum equations 

(2.6b-c). The field equations take the following final form   

∇ 𝜓 − 𝑃𝑟 = 𝑁 ,        (3.2a) 

∇ 𝜃 = 𝑃𝑟𝑁           (3.2b) 

where the nonlinear terms NVV and NVθ are defined as 

𝑁 = 𝑢𝑢 + 𝑢𝑣 − 𝑢𝑣 + 𝑣𝑣 ,     (3.3a) 

𝑁 = 𝑢𝜃 + 𝑣𝜃.         (3.3b) 

The symbol 𝑢𝑢 refers to a product of two functions.  



17 

 

The boundary conditions (2.7a-f) expressed in terms of the stream function assume the 

following forms 

𝑦 (𝑥) = 0,         (3.4a) 

𝑦 (𝑥) = 𝑅𝑒,         (3.4b) 

𝑦 (𝑥) = 0,         (3.4c) 

𝑦 (𝑥) = 0,         (3.4d)  

𝜃 𝑦 (𝑥) = 𝜃 (𝑥),         (3.4e) 

𝜃 𝑦 (𝑥) = 𝜃 (𝑥).         (3.4f) 

 

3.2 Treatment of the irregular geometry 

The geometric irregularity of the flow domain is taken care of by using the Immersed 

Boundary Conditions (IBC) (Mittal & Iaccarino, 2005; Peskin, 2002; Szumbarski & 

Floryan, 1999) concept where a fixed rectangular computational domain is used that is 

sufficiently large to contain the flow domain in its interior. The computational domain 

consists of one period in the x-direction and (-1 - yb, 1) in the y-direction, where yb is the 

location of the lower extremity of the lower plate (see Section 2.1). Since Chebyshev 

expansions shall be used for discretizing of the transverse direction, one needs to use their 

standard definition, i.e. the y-extent of the computational domain needs to be mapped into 

(-1, 1). Mapping having the form of  

𝑦 = 2 + 1,         (3.5) 

has been used in this work.  
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3.3 Field equations in the computational plane 

The field equations (3.2a-b) expressed using the (x,𝑦)-coordinates take the form 

+ 2Γ + Γ − 𝑃𝑟 = 𝑁 ,     (3.6a) 

+ Γ = Pr 𝑁         (3.6b) 

where Γ = =  and the nonlinear terms become  

𝑁 = Γ 𝑢𝑢 + Γ 𝑢𝑣 − 𝑢𝑣 + Γ 𝑣𝑣 ,    (3.7a) 

𝑁 = 𝑢𝜃 + Γ 𝑣𝜃.        (3.7b) 

The boundary conditions are changed to the following forms 

𝑦 (𝑥) = 0, 𝑦 (𝑥) = 𝑅𝑒.              (3.8a, b) 

𝑦 (𝑥) = 0, 𝑦 (𝑥) = 0.               (3.8c, d) 

𝜃 𝑦 (𝑥) = 𝜃 (𝑥), 𝜃 𝑦 (𝑥) = 𝜃 (𝑥)               (3.8e, f) 

where 

𝑦 (𝑥) = 1 + Γ(𝑦 cos(𝛼𝑥) − 1).          (3.9) 

 

3.4 Discretization of the field equations 

The x-dependences of the stream function ψ as well as temperature 𝜃 are captured by 

expressing them as Fourier expansions based on the wavenumber 𝛼, i.e. 

𝜓(𝑥, 𝑦) = ∑ 𝜑( )(𝑦)𝑒 ≈ ∑ 𝜑( )(𝑦)𝑒 ,    (3.10a) 
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𝜃(𝑥, 𝑦) = ∑ ∅( )(𝑦)𝑒 ≈ ∑ ∅( )(𝑦)𝑒 .    (3.10b) 

The nonlinear terms are also expressed as Fourier expansions of the form 

𝑢𝑢, 𝑢𝑣, 𝑣𝑣, 𝑢𝜃, 𝑣𝜃 (𝑥, 𝑦) = ∑ 𝑢𝑢( ), 𝑢𝑣( ), 𝑣𝑣( ), 𝑢𝜃( ), 𝑣𝜃( ) (𝑦)𝑒 ≈

      ∑ 𝑢𝑢( ), 𝑢𝑣( ), 𝑣𝑣( ), 𝑢𝜃( ), 𝑣𝜃( ) (𝑦)𝑒 .    (3.10c) 

where 𝜑( ) = 𝜑( )∗, ∅( ) = ∅( )∗, 𝑢𝑢( ) = 𝑢𝑢( )∗,  𝑢𝑣( ) = 𝑢𝑣( )∗, 𝑣𝑣( ) =

𝑣𝑣( )∗, 𝑢𝜃( ) = 𝑢𝜃( )∗, 𝑣𝜃( ) = 𝑣𝜃( )∗ represent the reality conditions with * denoting 

the complex conjugates.  

Substituting (3.10) in (3.6) and separating the Fourier modes lead to the modal equations 

of the form 

𝐷 𝜑( ) − 𝑖𝑛𝛼𝑃𝑟 ∅( ) = 𝑁
( ),       (3.11a) 

𝐷 ∅( ) = Pr 𝑁
( )         (3.11b) 

for  - Nm < n < Nm , where 𝐷 = 𝑑 𝑑𝑦⁄ , 𝐷 = Γ 𝐷 − 𝑛 𝛼 , 𝐷 = Γ 𝐷 − 2𝑛 𝛼 Γ 𝐷 +

𝑛 𝛼 , 𝑁
( )

= 𝑖𝑛𝛼Γ𝐷𝑢𝑢( ) + (Γ 𝐷 + 𝑛 𝛼 )𝑢𝑣( ) − 𝑖𝑛𝛼Γ𝐷𝑣𝑣( ), 𝑁
( )

= 𝑖𝑛𝛼𝑢𝜃( ) +

Γ𝐷𝑣𝜃( ).  

The modal functions are then expressed in terms of Chebyshev expansions of the form 

𝜑( )(𝑦) = ∑ 𝐺𝜑
( )

𝑇 (𝑦) ≈ ∑ 𝐺𝜑
( )

𝑇 (𝑦),    (3.12a) 

∅( )(𝑦) = ∑ 𝐺∅
( )

𝑇 (𝑦) ≈ ∑ 𝐺∅
( )

𝑇 (𝑦),    (3.12b) 

𝑢𝑢( ), 𝑢𝑣( ), 𝑣𝑣( ), 𝑢𝜃( ), 𝑣𝜃( ) (𝑦) =

∑ 𝐺𝑢𝑢
( )

, 𝐺𝑢𝑣
( )

, 𝐺𝑣𝑣
( )

, 𝐺𝑢𝜃
( )

, 𝐺𝑣𝜃
( )

𝑇 (𝑦) ≈

∑ 𝐺𝑢𝑢
( )

, 𝐺𝑢𝑣
( )

, 𝐺𝑣𝑣
( )

, 𝐺𝑢𝜃
( )

, 𝐺𝑣𝜃
( )

𝑇 (𝑦)    (3.12c) 
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where Tk are the Chebyshev polynomials of the first kind of order k and 𝐺𝑥𝑥
( ) denotes 

the unknown expansion coefficients.  

Substitution of (3.12) into (3.11) leads to 

∑ Γ 𝐷 𝑇 (𝑦) − 2𝑛 𝛼 Γ 𝐷 𝑇 (𝑦) + 𝑛 𝛼 𝑇 (𝑦) 𝐺𝜑
( )

−

𝑖𝑛𝛼𝑃𝑟 𝑇 (𝑦)𝐺∅
( )

− 𝑁
( , )

= 𝑅𝑒𝑠 (𝑦),      (3.13a) 

∑ Γ 𝐷 𝑇 (𝑦) − 𝑛 𝛼 𝑇 (𝑦) 𝐺∅
( )

− Pr 𝑁
( , )

= 𝑅𝑒𝑠 (𝑦).  (3.13b) 

where the modal functions for the nonlinear terms have been represented as Chebyshev 

expansions of the form 

𝑁
( , )

= ∑ 𝑖𝑛𝛼Γ𝐷𝑇 (𝑦)𝐺𝑢𝑢
( )

+ Γ 𝐷 𝑇 (𝑦) + 𝑛 𝛼 𝑇 (𝑦) 𝐺𝑢𝑣
( )

−

𝑖𝑛𝛼Γ𝐷𝑇 (𝑦)𝐺𝑣𝑣
( ) ,         (3.14a) 

𝑁
( , )

= ∑ 𝑖𝑛𝛼𝑇 (𝑦)𝐺𝑢𝜃
( )

+ Γ𝐷𝑇 (𝑦)𝐺𝑣𝜃
( ) .    (3.14b) 

In (3.13), Res1 and Res2 denote residua. The nonlinear terms are considered to be known 

during the iterative solution. The equations for the unknown expansion coefficients are 

constructed using the Galerkin projection method which involves the setting of projections 

of Res1 and Res2 onto the base functions of the Chebyshev expansions to zero. This leads 

to the NT number of equations for each of the Fourier modes. The projections are evaluated 

using the inner product defined as 

〈𝑅𝑒𝑠(𝑦) , 𝑇 (𝑦)〉 = ∫ 𝑅𝑒𝑠(𝑦)𝑇 (𝑦)𝜔(𝑦)𝑑𝑦     (3.15) 

where the weight function has the form of 𝜔(𝑦) = (1 − 𝑦 ) / .  

The projection equations have the form 
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∑ Γ 〈𝑇 , 𝐷 𝑇 〉 − 2𝑛 𝛼 Γ 〈𝑇 , 𝐷 𝑇 〉 + 𝑛 𝛼 〈𝑇 , 𝑇 〉 𝐺𝜑
( )

−

𝑖𝑛𝛼𝑃𝑟 〈𝑇 , 𝑇 〉𝐺∅
( )

= ∑ 𝑖𝑛𝛼Γ〈𝑇 , 𝐷𝑇 〉𝐺𝑢𝑢
( )

+ Γ 〈𝑇 , 𝑇 〉 +

𝑛 𝛼 〈𝑇 , 𝑇 〉 𝐺𝑢𝑣
( )

− 𝑖𝑛𝛼Γ〈𝑇 , 𝐷𝑇 〉𝐺𝑣𝑣
( ) , 0 ≤ 𝑗 ≤ 𝑁 − 5  (3.16a)  

∑ Γ 〈𝑇 , 𝐷 𝑇 〉 − 𝑛 𝛼 〈𝑇 , 𝑇 〉 𝐺𝑣𝜃
( )

= Pr ∑ 𝑖𝑛𝛼〈𝑇 , 𝑇 〉𝐺𝑢𝜃
( )

+

    Γ〈𝑇 , 𝐷𝑇 〉𝐺𝑣𝜃
( ) .     0 ≤ 𝑗 ≤ 𝑁 − 3  (3.16b) 

where only the leading NT - 4 equations resulting from the momentum equations and  NT  - 

2 of the equations resulting from the energy equations are retained in order to provide space 

for the boundary conditions (Tau method). Details of the evaluation of the inner products 

are discussed in Appendix A.  

 

3.5 Discretization of the boundary conditions 

It is now necessary to implement the flow and thermal boundary conditions along the flow 

domain boundaries which are located inside the computational domain. Substituting 

(3.10a-b) in (3.8) provides the boundary conditions of the form 

∑
( ) ( )

𝑒 = 0,       (3.17a) 

∑
( ) ( )

𝑒 = 𝑅𝑒,       (3.17b) 

∑ 𝑛𝜑( ) 𝑦 (𝑥) 𝑒 = 0,       (3.17c) 

∑ 𝑛𝜑( ) 𝑦 (𝑥) 𝑒 = 0,       (3.17d) 

∑ ∅( ) 𝑦 (𝑥) 𝑒 = 𝜃 (𝑥),       (3.17e) 

∑ ∅( ) 𝑦 (𝑥) 𝑒 = 𝜃 (𝑥).      (3.17f) 
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It should be noted that (3.17c-d) do not provide conditions for n = 0.  

Substitution of the Chebyshev expansions (3.12) for the modal functions into (3.17) leads 

to 

∑ ∑ 𝐺𝜑
( )

𝐷𝑇 𝑦 (𝑥) 𝑒 = 0,     (3.18a) 

∑ ∑ 𝐺𝜑
( )

𝐷𝑇 (1) = 𝑅𝑒,      (3.18b) 

∑ ∑ 𝑛𝐺𝜑
( )

𝑇 𝑦 (𝑥) 𝑒 = 0,     (3.18c) 

∑ ∑ 𝑛𝐺𝜑
( )

𝑇 (1) = 0,       (3.18d) 

∑ ∑ 𝐺∅
( )

𝑇 𝑦 (𝑥) 𝑒 = 𝜃 (𝑥).     (3.18e) 

∑ ∑ 𝐺∅
( )

𝑇 (1) = 𝜃 (𝑥).      (3.18f) 

The x-dependency of the lower plate geometry is tackled by expressing 𝑦 (𝑥) given by 

(3.9) in terms of Fourier expansion as  

𝑦 (𝑥) = ∑ 𝐴
( )

𝑒         (3.19) 

where NA denotes the number of modes used to describe plate geometry and AL
(n) are the 

known expansion coefficients. The above form represents a generalization of (3.9) which 

contains only one Fourier mode while (3.19) is able to represent arbitrary plate geometry. 

Equations (3.18) require that values of the Chebyshev polynomials and their derivatives be 

evaluated along the boundary represented by the periodic function of x and thus can be 

expressed as Fourier expansions of the form 

𝑇 𝑦 (𝑥) = ∑ 𝑊𝐿
( )

𝑒 ,       (3.20a) 

𝐷𝑇 𝑦 (𝑥) = ∑ 𝐷𝐿
( )

𝑒        (3.20b) 
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where 𝑊𝐿
( ) and 𝐷𝐿

( ) are the expansion coefficients of the Chebyshev polynomials and 

their derivatives evaluated along the lower plate. These expansions involve NS  = (NT  - 1) 

* NA terms, as the highest order polynomials are of the order NT  – 1. Evaluation of those 

terms relies on recurrence relations that lead to the following expressions (details can be 

found in the Appendix) 

𝑊𝐿
( )

= 2 ∑ 𝐴
( )

𝑊𝐿
( )

− 𝑊𝐿
( ) ,     (3.21a) 

𝐷𝐿
( )

= 2 ∑ 𝐴
( )

𝐷𝐿
( )

− 𝐷𝐿
( )

+ 2𝑊𝐿
( ).    (3.21b) 

The evaluation process begins with k = 0 and results in 

𝑊𝐿
( )

= 1, 𝑊𝐿
( )

= 0 for |m| ≥ 0,  𝑊𝐿
( )

= 𝐴
( ) for |m| ≥ 0,           (3.22a-c) 

𝐷𝐿
( )

= 0 for |m| ≥ 0,   𝐷𝐿
( )

= 1,            (3.22d, e) 

𝐷𝐿
( )

= 0 for |m| ≥ 1,   𝐷𝐿
( )

= 4𝐴
( ), for |m| ≥ 0.           (3.22f, g) 

Substituting (3.20) into (3.18) and separating Fourier modes leads to boundary relations 

of the form 

∑ ∑ 𝐺𝜑
( )

𝐷𝐿
( )

= 0,      (3.24a) 

∑ ∑ 𝐺𝜑
( )

𝐷𝑈
( )

= 𝑅𝑒,      (3.24b) 

∑ ∑ 𝑛𝐺𝜑
( )

𝑊𝐿
( )

= 0,      (3.24c) 

∑ ∑ 𝑛𝐺𝜑
( )

𝑊𝑈
( )

= 0,      (3.24d) 

∑ ∑ 𝐺∅
( )

𝑊𝐿
( )

= 𝜃
( ),      (3.24e) 

∑ ∑ 𝐺∅
( )

𝑊𝑈
( )

= 𝜃
( )      (3.24f) 

which represent the boundary conditions along the grooved plate. 
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3.6 Discretization of the pressure gradient constraint 

The discretized field equations (3.16) and boundary conditions (3.24) described in the 

previous sections need one additional closing constraint. This constraint needs to express 

the fact that the mean pressure gradient must be zero (see Eq. 2.8). 

In order to discretize this constraint, one needs to evaluate the pressure gradient from the 

x-momentum equation (2.6b) expressed in terms of the stream function   as 

= Γ + Γ − 𝑢𝑢 − Γ 𝑢𝑣.      (3.25) 

The pressure field is represented as a Fourier expansion of the form 

𝑝(𝑥, 𝑦) = 𝐴𝑥 + ∑ 𝑝( )(𝑦) 𝑒 ≈ 𝐴𝑥 + ∑ 𝑝( )(𝑦) 𝑒   (3.26) 

where A is the mean pressure gradient. Substituting (3.10) and (3.26) into (3.25) and 

separating the Fourier modes lead to equations for the pressure modal functions of the 

forms  

𝐴 + 𝑖𝑛𝛼𝑝( ) = (Γ 𝐷 − 𝑛 𝛼 Γ𝐷)𝜑( ) − 𝑖𝑛𝛼𝑢𝑢( ) − Γ𝐷𝑢𝑣( ).   (3.27) 

The mean pressure gradient is determined from the modal equation for mode n = 0 which 

has the following form 

𝐴 = Γ 𝐷 𝜑( ) − Γ𝐷𝑢𝑣( ).        (3.28) 

Substitution of the Chebyshev expansion (3.12) into the modal functions present in (3.28) 

leads to  

𝐴 = ∑ Γ 𝐺𝜑
( )

𝐷 𝑇 (𝑦) − Γ𝐺𝑢𝑣
( )

𝐷𝑇 (𝑦) .    (3.29) 

Finally, the flow constraint translates to  

𝐴 = ∑ Γ 𝐺𝜑
( )

𝐷 𝑇 (𝑦) − Γ𝐺𝑢𝑣
( )

𝐷𝑇 (𝑦) = 0.    (3.30) 
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3.7 Numerical solution 

An iterative scheme is used to determine the solution to the problem discussed in the 

previous section. The solution process yields new approximations of 𝐺𝜑
( ) and 𝐺∅

( ) 

expressed as 𝐺𝜑
( )

( )

and 𝐺∅
( )

( )

 after each iteration where the subscript l denotes 

the iteration number. The nonlinear terms on the right-hand side of (3.16) are taken from 

the previous iteration (they are ignored during the first iteration) which results in the first 

order fixed point method. This process can be expressed as 

𝐺𝜑
( )

( )

= 𝐺𝜑
( )

( )

+ 𝑅𝐹 𝐺𝜑
( )

( )

− 𝐺𝜑
( )

( )

,   (3.31a) 

𝐺∅
( )

( )

= 𝐺∅
( )

( )

+ 𝑅𝐹∅ 𝐺∅
( )

( )

− 𝐺∅
( )

( )

,   (3.31b) 

where the superscript comp is the solution computed at the new iteration, and the process 

is controlled using under-relaxation parameters 𝑅𝐹  and 𝑅𝐹∅. Iterations are continued until 

a convergence criterion of the form  

( ) ( ) ( ) ( )

( ) ( ) < 𝐶𝑂𝑁𝑉,       (3.32a) 

∅
( ) ( )

∅
( ) ( )

∅
( ) ( ) < 𝐶𝑂𝑁𝑉       (3.32b) 

is satisfied. CONV=10-8 is used for all results presented in this study. In the above, the L2 

norm of a vector V with size n is defined as ‖𝑉‖ = (∑ |𝑉 | ). 

As the nonlinear terms need to be updated after each iteration, it is more efficient to 

evaluate the required products by transferring data to the physical space, carrying out the 



26 

 

multiplications in the physical space, and then transferring the results back to the Fourier 

space. The velocity components and the temperature are thus expressed as 

𝑢(𝑥, 𝑦) = Γ ∑ ∑ 𝐺𝜑
( )

𝐷𝑇 (𝑦)𝑒 ,     (3.33a) 

𝑣(𝑥, 𝑦) = −iα ∑ ∑ 𝑛𝐺𝜑
( )

𝑇 𝑦 (𝑦) 𝑒 ,    (3.33b) 

𝜃(𝑥, 𝑦) = ∑ ∑ 𝐺∅
( )

𝑇 (𝑦)𝑒 ,     (3.33c) 

and are evaluated on a suitable grid in the (x, 𝑦) plane having 2Nx + 2 equidistant points in 

the x-direction. Here Nx = NM in order to remove the aliasing error.  
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Chapter 4  

4 Flow between heated smooth parallel plates in relative 
motion 

This chapter presents discussion of the dynamics of the flow system when both plates are 

smooth, and the lower plate is exposed to periodic heating. The sketch of the flow system 

is shown in Figure 4-1. The geometry of the lower plate is described by taking the groove 

amplitude yb
* = 0 in Eq. (2.1a). The computational domain in the y*-direction extends from 

-h* to +h* (it is [-1 1] in the dimensionless form). This makes the solution process slightly 

easier compared with the general case involving the irregular geometry of the lower plate.  

An external force is required for maintaining a steady motion in the upper plate.  To reduce 

the magnitude of this force, the lower plate is exposed to a spatially periodic heating. Flow 

dynamics for the case of a purely periodic heating is discussed in Section 4.1. Such heating 

corresponds to a situation where the mean temperatures of both plates are equal. Section 

4.2 describes the effect of the unequal mean temperatures of the plates while the lower 

plate is still exposed to a periodic heating. Unless otherwise stated, the results are presented 

for fluids with the Prandtl number Pr = 0.71 which approximates the properties of air. 

Effects associated with the use of other fluids (by changing Pr) are discussed in Section 

4.3. Heat transfer characteristics are elucidated in Section 4.4. System dynamics for the 

flipped system, i.e. heated upper plate and moving lower plate are discussed in Section 4.5.  

Finally, a brief summary is presented in Section 4.6.    

 

Figure 4-1: Schematic diagram of the flow system 
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4.1 Purely periodic heating at the lower plate 

A purely spatially periodic heating corresponds to Rauni = 0 (see Section 2.2 for definition). 

When the upper plate is stationary (Re = 0), this purely periodic heating results in the 

formation of convective counter-rotating rolls with the fluid moving upwards above the 

hot spots and downwards above the cold spots, as illustrated in Figure 4-2A, and its 

temperature rising above the mean in most of the fluid volume. Slow movement of the 

upper plate (Re = 1) results in a competition between the plate-driven and the buoyancy-

driven motions. The flow topology is simple in the zones with the clockwise-rotating rolls 

as the roll movement is kinematically consistent with the plate movement, resulting in the 

formation of a single stream of fluid moving in the positive x -direction located in the 

immediate vicinity of the moving plate. A complex flow topology forms in the zones with 

the counterclockwise-rotating rolls as the fluid stream separates into two branches, one 

flowing above the rolls and one flowing beneath them. The upper branch is dominated by 

the plate effect, and the lower branch is dominated by the roll effect (see Figure 4-2B). 

Most of the fluid remains trapped in the rolls, i.e. either in the clockwise rolls attached to 

the lower plate or in the counter-clockwise rolls bounded by the two branches of the stream 

moving to the right. The complexity of this topology near the upper plate is illustrated in 

Figure 4-3. A further increase of the plate velocity (Re = 5) results in the dominance of the 

plate-driven movement with most of the fluid moving to the right, the elimination of the 

counterclockwise rolls and the reduction of the size of the clockwise rolls (see Figure 4-2C) 

but with the buoyancy effects still providing a significant contribution to the overall flow 

dynamics. A further increase of Re results in the eventual elimination of the rolls (see 

topology for Re = 50 in Figure 4-2D). The sequence of plots displayed in Figure 4-2 

illustrates the process of formation of both the flow and thermal boundary layers near the 

lower plate as Re increases.  

Variations of the local maxima of the stream function associated with the upper plate 

movement and with both types of rolls as functions of Re (Figure 4-4) demonstrate that the 

dominance of the upper plate begins for Re > 4 and, for such conditions, the movement of 

the clockwise rolls results from both the buoyancy effects as well as the plate-induced pull. 
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In an isothermal system, the force F0 given by Eq. (2.9e) is required to maintain the motion 

of the plate. For non-isothermal systems, the driving force F needs to be determined 

through the solution of (2.6) - (2.8). The shear stress acting on the plate varies periodically 

in x with its amplitude significantly exceeding the isothermal stress (see Figure 4-5). Its 

mean value decreases below the isothermal stress and may even change direction. In the 

latter case, the convection-generated stresses are large enough so that the external force 

must change direction and act as a brake to maintain the prescribed plate velocity. The 

positive difference ∆𝐹 = 𝐹 − 𝐹  (see Eq.2.11) identifies conditions leading to the 

reduction of the driving force and ∆𝐹/𝑅𝑒 > 0.5 identifies conditions when the driving 

force must change direction, i.e. its role changes from driving the motion of the plate to 

opposing its motion. 
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(C) 

 

(D) 

Figure 4-2: The flow and temperature fields for Rap = 1000, Pr = 0.71, Rauni = 0, α = 2 and 
(A) Re = 0, (B) Re = 1, (C) Re = 5, (D) Re = 50. Solid and dashed lines identify streamlines 
and isotherms, respectively. Thick streamlines mark borders of bubbles trapping the fluid. 
Enlargement of the box shown in Figure 4-2B  is displayed in Figure 4-3. Flow conditions 
used in these plots are marked in Figure 4-10 using squares. 

 

 

Figure 4-3: Enlargement of the box shown in Figure 4-2B. The streamline emanating from 
the in-flow stagnation points corresponds to ψ = 0.286322. 
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Figure 4-4: Variations of the local |ψmax| associated with the upper plate (solid line), the 
clockwise rolls (dashed line), and the counterclockwise rolls (dashed-dotted line) as 
functions of Re for α = 2, Rap = 1000, Pr = 0.71, Rauni = 0. 

 

The results presented in Figure 4-6 demonstrate that all heating wavenumbers lead to a 

decrease of the driving force with the magnitude of this reduction being a strong function 

of α. The largest reduction occurs for α ≈ 1 - 2 with its magnitude decreasing proportionally 

to α4 if an excessively small α is used. The flow and temperature fields (not shown) are 

qualitatively similar to those displayed in Figure 4-2. The use of an excessively large 𝛼 

also results in a reduction of ∆𝐹 but at a much higher rate, i.e. proportionally to α-7. Plots 

of the temperature fields displayed in Figure 4-7 demonstrate that a sufficient increase in 

α leads to the formation of a boundary layer close to the lower plate containing convective 

effects and a conductive layer with a very simple flow topology above it. The qualitatively 

different dependence on Pr for small and large α shows a relatively stronger role of 

conduction for large α’s and a relatively stronger role of convection for small α’s.  
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   (A)      (B) 

Figure 4-5: Distribution of the shear stress τU  acting on the upper plate for α = 2, Rap = 
1000, Pr = 0.71, Rauni = 0 at Re = 1 (solid line) and Re  = 10 (dashed line). Enlargement of 
the box shown in Figure 4-5A is displayed in Figure 4-5B including shear mean values. 

 

 

Figure 4-6: Variations of ΔF/Re as a function of α for Pr = 0.71, Rauni = 0, Re = 1 (solid 
lines) and Re = 10 (dashed lines). Thin dotted lines identify asymptotes. The shaded area 
identifies conditions where the driving force must change direction and becomes a braking 
force. 
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Heating affects the flow rate driven by the motion of the plate. The flow rate generally 

increases with Rap, as illustrated in Figure 4-8, as the buoyancy force assists the motion of 

the plate. The maximum increase occurs for the same α’s as those which produce the largest 

force reduction. There are special cases, however, where a combination of a sufficiently 

large Rap with a proper range of small α’s results in a decrease in the flow rate. This is 

caused by the formation of various in-flow separation bubbles which block the motion of 

the fluid in the positive x-direction as illustrated in Figure 4-9.  
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(D) 

Figure 4-7: The flow and temperature fields for Rap = 1000, Pr = 0.71, Rauni = 0, Re = 1 
and α = 1 (A), α = 5 (B), α = 8 (C), α = 10 (D). Thick solid lines identify streamlines, thin 
solid lines identify negative isotherms while thin dashed lines identify positive isotherms. 
Thick streamlines mark borders of various bubbles trapping the fluid. 

 

 

Figure 4-8: Variations of change of the flow rate driven by movement of the upper plate 
ΔQ/Re as a function of α for Pr = 0.71, Rauni = 0, Re = 1 (solid lines) and Re = 10 (dashed 
lines). Thin dotted lines identify asymptotes. Dashed-dotted line identifies the negative 
values of ΔQ for Rap = 2000, Re = 1. 
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(A) 

 

(B) 

Figure 4-9: The flow and temperature fields for Rap = 2000, Pr = 0.71, Rauni = 0, Re = 1, 
α = 0.25. Enlargement of the box in Figure 4-9A is displayed in Figure 4-9B. Thick solid 
lines identify streamlines, thin solid lines identify negative isotherms while thin dashed 
lines identify positive isotherms. Thick streamlines mark borders of various bubbles 
trapping the fluid. 
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of the flow rate follow a similar pattern (see Figure 4-10B), i.e. ΔQ increases at first 

proportionally to Re, reaches a maximum at Re ~ 5-6 and then decreases at a rate 

proportional to 𝑅𝑒 . 

 

(A) 

 

(B) 

Figure 4-10: Variations of (A) ΔF  and (B) ΔQ  as functions of Re for Pr = 0.71, Rauni = 
0, α = 2 (solid lines) and α = 1 (dashed lines). Thin dotted lines identify asymptotes. Plots 
of flow and temperature field for conditions identified using squares are displayed in Figure 
4-2. See text for other details. The shaded area in Figure 4-10A identifies conditions where 
the driving force must change direction and becomes a braking force. 
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   (A)      (B) 

Figure 4-11: Variations of (A) ΔF and (B) ΔQ as functions of Rap for Pr = 0.71, Rauni = 0, 
Re = 1 (solid lines) and Re = 10 (dashed lines). Plots of flow and temperature fields for 
conditions identified using squares are displayed in Figure 4-12. See text for other details. 
The shaded area identifies conditions where the driving force must change direction and 
becomes a braking force when Re = 1 and the double shaded area identifies such conditions 
for Re = 10. 

 

Change in driving force ΔF is a stronger function of Rap than of Re as it increases 

proportionally to 𝑅𝑎  (see Figure 4-11A). A saturation develops for large enough Rap 

slowing down this growth. The saturation starts at a smaller Rap when Re is smaller. Flow 

topologies displayed in Figure 4-12 show expansion of the rolls and reduction of the size 

of the stream tube with an increase in Rap. The amount of fluid driven by the plate increases 

with Rap but the development of complex flow topologies (not shown) reduces this flow 

for a range of small α’s (see Figure 4-11B). 
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(B) 

 

(C) 

 

(D) 

Figure 4-12: The flow and temperature fields for Re = 1, Pr = 0.71, Rauni = 0, α = 2 at (A) 
Rap = 500, (B) Rap = 1000, (C) Rap = 2000 and (D) Rap = 3000. Thick solid lines identify 
streamlines, thin solid lines identify negative isotherms while thin dashed lines identify 
positive isotherms. Thick streamlines mark borders of various bubbles trapping the fluid. 
Flow conditions used in these plots are marked in Figure 4-11 using squares. 
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a periodic heating. Consider a stationary upper plate without any external forces acting on 

it and apply heating to the lower plate. The convection-induced forces increase with Rap 

(see Figure 4-11A) but the system remains at rest due to its periodicity and x-symmetry. 

The addition of any disturbance which breaks the symmetry will not generate plate motion 

if the heating is too weak as an external force is required to support such motion. For strong 

enough heating, disturbances will generate plate motion as the buoyancy forces can 

overcome friction. As the plate accelerates (Re increases), the buoyancy forces decrease 

(see Figure 4-10A) until a state of equilibrium is reached where the increasing friction 

balances the decreasing driving force. The upper plate may move in either horizontal 

direction depending on the form of the initial disturbance. This mechanism can be used to 

move a free-floating body by simply heating one of the plates.  

 

4.2 Plates with unequal mean temperatures 

As it is unlikely that the mean temperatures of both plates can be kept identical in practical 

applications, it is of interest to determine how their difference may affect the system 

response. This difference is expressed in the analysis as the uniform Rayleigh number 

𝑅𝑎  whose positive (negative) values correspond to the lower plate being hotter (cooler). 

The results displayed in Figure 4-13 demonstrate that the uniform heating increases ΔF 

while cooling decreases it, and the change is approximately linear with 𝑅𝑎 . The type of 

variations as a function of α remains nearly identical for larger Re’s (see Re = 10 in Figure 

4-13) for all 𝑅𝑎 ’s considered with an upward shift resulting from the increase of 𝑅𝑎 , 

and with the most effective α nearly unchanged. A shift from 𝑅𝑎 = −150 to 𝑅𝑎 =

150 increases ΔF by a factor of ~ 20 when Re = 10, but this is insufficient to change the 

direction of the driving force. In the case of smaller Re’s (Re = 1 in Figure 4-13), the most 

effective α shifts from α = 1.6 to α = 2.5, ΔF approximately quadruples when 𝑅𝑎  

changes in the same range, and this is sufficient to change the direction of the driving force. 

Variations of the flow rate ΔQ follow the same pattern as variations of ΔF and have similar 

magnitudes regardless of Re (see Figure 4-14).  



40 

 

        

   (A)      (B) 

Figure 4-13: Variations of ΔF/Re as a function of (A) α and (B) Rauni for Re = 1 (solid 
lines) and Re =10 (dashed lines), and Rap = 1000, Pr = 0.71. The shaded area identifies 
conditions where the driving force changes direction and becomes a braking force. 

 

       

   (A)      (B) 

Figure 4-14: Variations of ΔQ/Re as a function of (A) α and (B) Rauni for Re = 1 (solid 
lines) and Re = 10 (dashed lines), and Rap = 1000, Pr = 0.71. 
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less affected by convection in such fluids, leading to larger changes of ΔF. The results 

displayed in Figure 4-15A demonstrate a nearly three-orders of the magnitude increase of 

ΔF resulting from replacing fluids with Pr = 10 with fluids with Pr = 0.1, changing ΔF 

from being insufficient to change the direction of the driving force at large Pr’s to being 

more than sufficient at small Pr’s. The increase of the flow rate follows the same pattern 

as documented in Figure 4-15B. The character of the changes in ΔF and ΔQ as functions 

of α remains qualitatively similar for all Pr’s with the relevant curves just shifted upwards 

for smaller Pr’s as illustrated in Figure 4-16. 

           

   (A)      (B) 

Figure 4-15: Variations of (A) ΔF/Re and (B) ΔQ/Re as functions of Pr at Re = 1 (solid 
lines) and Re = 10 (dashed lines) for Rap = 1000, Rauni = 0. 

             

   (A)      (B) 

Figure 4-16: Variations of (A) ΔF/Re and (B) ΔQ/Re as functions of α at Re = 1 (solid 
lines) and Re = 10 (dashed lines) for Rap = 1000, Rauni = 0. 
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4.4 Heat transfer effects 

The temperature differences between and along the plates lead to the formation of vertical 

and horizontal heat fluxes. The former one is of interest as the heat flow between the plates 

can be viewed as a potential energy cost associated with the use of heating to reduce the 

driving force. This heat flux can be created only by convection in the case of a purely 

periodic heating. Variations of the corresponding mean Nusselt number Nuav displayed in 

Figure 4-17A demonstrate that Nuav is a strong function of α and reaches a maximum at α 

≈ 0.8 - 1, which is smaller than the α required to maximize ∆𝐹. The use of an excessively 

small α reduces Nuav at a rate proportional to 𝛼 , which is much slower than the reduction 

of ∆𝐹. The use of an excessively large α reduces Nuav at a rate proportional to 𝛼 , which 

is also much slower than the reduction of ∆𝐹. The maximal Nuav occurs at Re = 0 with an 

increase in Re reducing Nuav (see Figure 4-17B) through the elimination of convective 

effects (see Figure 4-10). An increase in Rap results in an increase in Nuav proportional to 

𝑅𝑎 , which is the same as the rate of increase of ∆𝐹, with a very slight reduction of this 

growth due to saturation effects in the upper range of Rap’s considered in this study (Figure 

4-17C). The addition of a uniform heating component leads to a change in the heat flow 

due to both changes in the intensity of convection as well as the addition of a conductive 

flux. Nuav increases when the lower plate is heated and decreases when it is cooled, varying 

in a qualitatively similar manner as a function of α for all Re’s of interest with the relevant 

curves shifted upwards as 𝑅𝑎  increases (see Figure 4-18A). The increase is nearly linear 

in the range of 𝑅𝑎  of interest with the rate of change being a strong function of α (see 

Figure 4-18B).  

              

   (A)      (B) 

Re

N
u av

100 102101

103

Rap=

1000

500

438
355

180

130

64

41

2000

Re-1.5



43 

 

 

(C) 

Figure 4-17: Variations of Nuav in (A) as a function of α for Re = 1 (solid lines) and Re = 
10 (dashed lines), in (B) as a function of Re for α = 1 (dashed lines) and α = 2 (solid lines), 
and in (C) as a function of Rap for Re = 1 (solid lines) and Re = 10 (dashed lines), for Pr = 
0.71, Rauni = 0. Thin dotted lines identify asymptotes. 

 

 

   (A)      (B) 

Figure 4-18: Variations of Nuav as a function of (A) α and (B) Rauni for Re = 1 (solid lines) 
and Re = 10 (dashed lines) for Rap= 1000, Pr = 0.71. 
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results for Re = 1 in Figure 4-19A) with an asymptote developing for small Pr (see Figure 

4-19B). An increase in Re weakens convective effects and results in a significant reduction 

of Nuav associated with an increase in Pr (see results in Figure 4-19 for Re = 10). This 

reduction depends on α and a decrease in Pr may either increase or decrease the heat flux 

depending on the α being used. 

 

   

   (A)      (B) 

Figure 4-19: Variations of Nuav in (A) as a function of α and in (B) as a function of Pr for 
Re = 1 (solid lines) and Re =10 (dashed lines) for Rap = 1000, Rauni = 0. 

 

4.5 Heating of the upper plate 

Similar effects can be achieved by heating the upper stationary plate and imposing motion 
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heating is illustrated in Figure 4-20 and this leads to the conclusion that the externally-

imposed driving force is the same regardless of which plate is heated. 
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Figure 4-20: The flow and temperature fields for the same conditions as in Figure 4-7A 
but with the upper plate heated and the lower plate moving. Thick solid lines identify 
streamlines, thin solid lines identify negative isotherms while thin dashed lines identify 
positive isotherms. Thick streamlines mark borders of bubbles trapping the fluid. 

 

4.6 Summary 

In this chapter, the two-dimensional flow response due to the presence of a spatially 

periodic heating applied at lower plate with the upper plate moving has been discussed.  

An external force is required to generate the motion on the upper plate and the rate of this 

motion is expressed in terms of the Reynolds number Re. Heating that results in the lower 
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It has been shown that periodic heating always reduces the driving force, regardless of 

whether the heating is applied to the lower or upper plate, but the magnitude of this 

reduction is a strong function of the heating wavenumber. The largest reduction is achieved 
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for α = 1-2 with a rapid decrease of this effect when either too small or too large α’s are 

used. An increase in 𝑅𝑎  and decrease in the Prandtl number Pr magnify this effect. An 

increase in Re eliminates the rolls and reduces this effect, leading to its practical elimination 

for Re > 30-50 depending on the heating intensity. The use of proper heating intensity and 

distribution results in the complete elimination of the driving force as the plate movement 

can be supported by the buoyancy effects only. Conditions where an external braking force 

needs to be used to prevent the plate from accelerating have also been identified.  
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Chapter 5  

5 Flow between grooved isothermal plates in relative 
motion 

This chapter presents discussion of the system response when the lower plate is isothermal 

and grooved, and its mean temperature is the same as the temperature of the upper plate. 

The sketch of the flow system is shown in Figure 5-1. The knowledge of the effects of 

grooves on the pressure-gradient-driven flows is more advanced, including identification 

of the form of the drag-reducing grooves, their shape optimization for maximization of 

drag reduction, and the development of reduced geometry models for extraction of 

hydrodynamics information regardless of the groove geometry (Mohammadi & Floryan, 

2012, 2013a, 2013b). The objective of this chapter is to use concepts developed in the 

context of pressure-gradient-driven flows and apply them in the systematic analysis of 

flows between two moving surfaces with the focus on the determination of driving forces 

required to maintain such movement and demonstration of how these forces are affected 

by the grooves. The analysis is limited to small Reynolds numbers corresponding to 

conditions found in lubrication problems and small groove amplitudes. Section 5.1 gives a 

brief description of the flow geometry. Section 5.2 discusses evaluation of the driving 

force. Section 5.3 discusses the effects of sinusoidal grooves. Section 5.4 generalizes 

results to grooves of arbitrary shapes and Section 5.5 provides a short summary of the main 

conclusions. 

 

5.1 Flow geometry 

Replace the lower smooth plate with a grooved plate with the system geometry described 

as (see Figure 5-1) 

𝑦 (𝑥) =  −1 + ∑ 𝐻( )𝑒 ,       (5.1a) 

𝑦 (𝑥) = 1.          (5.1b) 
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where the subscripts L and U refer to the lower and upper plates, respectively, 𝐻( )’s are 

coefficients of the Fourier expansion describing groove shape, 𝜆 = 2𝜋 𝛼⁄  is the wavelength 

of the basic groove module, 𝛼 is the corresponding wavenumber and 𝑁  is the number of 

Fourier modes required to describe groove geometry. Relation (5.1a) must satisfy the 

reality condition with 𝐻
( ) being the complex conjugate of 𝐻

( ). It is assumed that 

grooves do not affect the mean distance between the plates, i.e. 𝐻
( )

= 0, and that the 

extremities of the grooves are located at −1 + 𝑦  and −1 − 𝑦  (see Figure 5-1). Change 

of the mean distance can be accommodated analytically (Mohammadi & Floryan, 2013b) 

and, therefore, analysis of its effects is of no interest in this investigation. 

 

Figure 5-1: Schematic diagram of the flow system. 

 

5.2 Driving force applied to the moving plate 

The presence of the grooves changes the shear stress acting on the upper plate which can 

be calculated as 

∆𝜏 = − + 𝑅𝑒.        (5.2) 

The change in the driving force due to the introduction of the grooves is determined as  

∆𝐹 = 𝑅𝑒 𝑅𝑒 𝜆 ∫ 𝑑𝑥 − .      (5.3) 
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A secondary quantity of interest is the change in the fluid volume pulled by the plate and 
can be calculated as 

∆𝑄 = 𝑅𝑒 1 − 𝑅𝑒 ∫ 𝑢(𝑥, 𝑦)
( )

𝑑𝑦  .     (5.4) 

 

5.3 Sinusoidal grooves 

We shall begin discussion by assuming that the groove geometry is described by just a 

single Fourier mode in (5.1), i.e. 𝐻( ) are zero except 𝐻( ) = 𝐻( ) = 0.5𝑦  (sinusoidal 

grooves). There are two characteristic elements of flow response, as illustrated in Figure 

5-2. The first one involves streamwise spatial modulations and occurs for all groove 

wavenumbers. The second one occurs only for large enough α’s where the groove sidewalls 

come close together, causing the stream lift-up and an effective narrowing of the flow 

cross-sectional area, with the streamwise modulations being confined to a part of the flow 

adjacent to the grooved plate (see Figure 5-2C). Modulations result in the flow acceleration 

around the groove peaks and deceleration around the groove troughs as dictated by the 

changes in the flow cross-sectional area. The resulting shear stress variations at the upper 

plate are illustrated in Figure 5-3 which displays the difference ∆𝜏  between the actual 

shear stress and the shear stress for the smooth plates. The stress decreases below the 

reference level above the groove troughs and increases above the peaks. The changes of 

ΔτU / Re are fairly small compared to the reference value of -1/2 and their mean values are 

negative, suggesting a force increase. 

          

  (A)    (B)    (C) 
Figure 5-2: Examples of typical flow fields for sinusoidal grooves at the lower plate and 
smooth upper plate for Re = 100, yb = 0.05. From left to right α = 0.1, 1, 5. 
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Figure 5-3: Variations of the difference ΔτU /Re between the shear stresses acting on the 
upper smooth plate with the sinusoidal grooves at the lower plate for α = 1, Re = 1 (solid 
lines) and Re = 100 (dashed lines). The mean values ΔτU,mean are marked using thin lines. 
 

Analysis of different spatial distributions of grooves shows that the driving force always 

increases regardless of α as illustrated in Figure 5-4A. The increase is rather small and 

nearly independent of α for α<~1 with a well-defined limit for 𝛼 → 0. It is caused by spatial 

flow modulations such as those illustrated in Figure 5-2. The force rapidly increases as α 

increases beyond α ≈ 1. This effect is associated with the stream lift-up as the short 

wavelength grooves reduce the effective flow cross-sectional area. The upper limit on ∆𝐹 

can be easily estimated by noting that the opening between the plates in the limit of 𝛼 → ∞ 

decreases to 2 − 𝑦  which leads to the force increase of ∆𝐹 = 𝑦 /[2(2 − 𝑦 )]. The same 

observation applies to the reduction of the amount of fluid being pulled by the plate 

movement. The flow rate changes marginally with 𝛼 for 𝛼 < ~1, and it decreases rapidly 

as 𝛼 increases above α ≈1. The flow reduction is caused be a decrease of the effective 

conduit opening and its upper bound can be determined through an analysis similar to that 

used to determine the upper bound on the driving force resulting in ∆𝑄 =

(𝑦 + 𝑦 − 1)/[2(1 − 𝑦 )]. 
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   (A)      (B) 

Figure 5-4: Variations of (A) ΔF/F0 and (B) ΔQ/Q0 as functions of α for Re = 1 (solid 
lines) and 100 (dashed-dotted lines). Dotted lines identify asymptotes for α → 0. The upper 
plate is smooth while the lower plate has sinusoidal grooves. 

 

Results displayed in Figure 5-5A demonstrate that the increase of the driving force is 

proportional to 𝑦 . This increase is the same for α’s for which the stream lift-up does not 

occur, and it remains rather small in the range of 𝑦 ’s considered, i.e. it is of the order of 

1% of the reference value for 𝑦 =0(10-1). The amount of fluid being pulled by the plate 

decreases at the same rate, as shown in Figure 5-5B, and this decrease is also rather small. 

The reader may note that force increase for large α’s is dominated by effects associated 

with the effective narrowing of the plates’ spacing. 
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Figure 5-5: Variations of (A) ΔF/F0 and (B) ΔQ/Q0 as functions of yb for Re = 1 (solid 
lines) and 100 (dashed-dotted lines). Thin dotted lines identify asymptotes and the upper 
bounds. The upper plate is smooth while the lower plate has sinusoidal grooves. 

 

The force reduction is proportional to Re for small Re’s as illustrated in Figure 5-6. The 

rate of its increase increases for Re > ~20 due to increasing importance of nonlinear effects. 

Reduction of the induced flow rate follows the same pattern, as illustrated in Figure 5-6B. 

    

   (A)      (B) 

Figure 5-6: Variations of (A) ΔF and (B) ΔQ as functions of Re for α = 0.1 (dashed lines), 
α = 1 (solid lines), and α = 5 (dashed-dotted lines). The upper plate is smooth while the 
lower plate has sinusoidal grooves. 

 

5.4 Arbitrary grooves 
We shall now look at grooves of arbitrary shape. As there is an uncountable number of 

such grooves, the symmetric triangular, symmetric trapezoidal, rectangular, triangular 

tilted upstream, triangular tilted downstream, bulged-shaped and asymmetric trapezoidal 

grooves illustrated in Figure 5-7 and referred to as grooves B - H, respectively, were 

selected for analysis. To make meaningful comparisons, all grooves have the same 

wavelength and the same amplitude. Their performance is compared with the sinusoidal 

grooves referred to as grooves A. 
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Figure 5-7: Geometry of grooves used in the present study. 

 

Results presented in Figure 5-8 demonstrate that up to five Fourier modes need to be used 

to accurately determine forces for grooves B, C, E-H but many more modes need to be 

used for grooves D. The difficulties in the latter case are associated with the so-called Gibbs 

phenomenon (Gibbs, 1898, 1899) as Fourier representations of functions with infinite 

derivatives have very slow rates of convergence. The convergence can be improved, as 

discussed in (Gottlieb & Shu, 1997; Rim & Yun, 2013), but these procedures have not been 

implemented in the present study. 

 

 

Figure 5-8: Variations of ΔF/Re as a function of the number of Fourier modes used for 
geometry representation for Re = 1, yb = 0.05, α = 1.  
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Results displayed in Figure 5-9 demonstrate that the driving force correction varies in a 

very similar manner as a function of yb, α and Re for all grooves in the range of parameters 

of interest in this study. This leads to a conclusion that the system response is qualitatively 

similar regardless of the groove geometry. This similarity leads to the reduced geometry 

model with the groove geometry being represented by the leading Fourier mode of its 

Fourier expansion. The error Er of this procedure is defined as  

 

𝐸𝑟 =
∆ ∆

∆
.        (5.5) 

 

where Δ𝐹𝑎𝑐𝑡𝑢𝑎𝑙 stands for the actual force change while Δ𝐹𝑚𝑜𝑑𝑒1 stands for the force change 

determined by approximating the groove shape using the first Fourier mode of its Fourier 

expansion. Results displayed in Figure 5-10 demonstrate that the error of this procedure is 

less than 20% except for shapes whose Fourier expansions are affected by the Gibbs 

phenomenon where the error increase up to 50% (see results for groove D). If 20% error is 

acceptable then data presented in Section 5.3 represents a general solution. The 

determination of forces created by a selected groove distribution should start with the 

determination of the leading mode of its Fourier representation and extracting information 

about the forces from the results presented in Section 5.3. The error of this procedure is 

likely to be acceptable for most applications. If intentional introduction of grooves is of 

interest, one can select shapes which are easy to manufacture, and the desired performance 

will be achieved by matching their leading Fourier modes with the one which is able to 

deliver this performance according to the results discussed in this section. While the Gibbs 

phenomenon limits the applicability of this procedure, it nevertheless delivers an order of 

magnitude determination of forces which could still be of interest in the design process, 

e.g. performance of rectangular grooves (shape D in Figure 5-7). One can obviously 

improve accuracy by incorporating more Fourier modes for geometric description but in 

this case each groove distribution must be studied separately, and one reverts to the case-

by-case studies without the ability to generalize. 
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(A)       (B)

 

(C) 

Figure 5-9: Variations of the force increase ΔF for different grooves as functions of (A) 
yb for Re = 1, α = 1, (B) α for yb = 0.025, Re = 1, (C) Re for yb = 0.025, α = 1. 
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(C) 

Figure 5-10: Variations of the error Er associated with using the first mode of the Fourier 
expansion representing each groove shape as a function of (A) yb for Re = 1, α = 1, (B) α 
for yb = 0.025, Re = 1, and (C) Re for yb = 0.025, α = 1. 

 

5.5 Summary 
In this chapter, the effects of grooved geometry on the magnitude of force required to 

maintain the relative movement of parallel plates have been presented. The analysis is 

limited to the grooves which do not affect the mean conduit opening but are arbitrary 

otherwise. These grooves are placed at the stationary lower plate and their geometry is 

described using the appropriate Fourier expansion. The analysis considers different spatial 

groove distributions, is limited to groove amplitudes of less than 10% of the conduit 

opening and a Reynolds number of less than 1000. 

 

It has been shown that the force required to maintain the plate movement can be predicted 

with an acceptable accuracy using the reduced geometry model. In this model, the groove 

geometry is represented by the leading mode of the Fourier expansion representing this 

geometry. It has been shown that the difference between forces determined using the 

complete geometry and the reduced model is of the order of a few percent and, thus, the 

error associated with the use of the simplified geometry model is acceptable in most 

applications. The main advantage of the reduced geometry model is the generality and 

simplicity of the solution as the force determination involves the extraction of the dominant 

mode from the Fourier expansion describing groove geometry and determination of this 
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force from the tabulated results for sinusoidal grooves. The reduced geometry model 

eliminates the need to study each groove geometry separately. 

 

It has been shown that grooves always increase the force required to maintain the plate 

movement. The long wavelength grooves produce spatial flow modulations resulting in a 

small force increase when compared with the smooth conduits. The short wavelength 

grooves provide a much larger force increase due to the blockage effect resulting in the 

stream lift-up phenomenon. This phenomenon is driven by the groove sidewalls coming 

closer together and forcing the stream to move away from the grooved plate reducing the 

effective hydraulic conduit opening. The magnitude of the force associated with the spatial 

flow modulations increases proportionally to the second power of the groove amplitude 

and proportionally to the flow Reynolds number for conditions of interest in this analysis. 
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Chapter 6  

6 Flow between heated grooved plates in relative motion  

Results presented in Chapters 4 and 5 demonstrated that periodic heating reduces the 

driving force while geometric irregularities increase this force. It is of interest to determine 

how a combination of these two effects may affect the driving force. The dynamics of a 

system composed of a grooved lower plate subject to a spatially periodic heating 

characterized by the same wave number and a smooth isothermal upper plate is discussed 

in this chapter. The flow system is illustrated in Figure 6-1. Geometric irregularities have 

the form of sinusoidal grooves which are heated in a manner giving rise to sinusoidal wall 

temperature distribution. The relative position of the heating pattern with respect to the 

geometric pattern is measured using the phase difference . The effects of variations of 

the phase difference are highlighted in Section 6.1. Effects of different parameters such as 

the heating wave number α, the flow Reynolds number Re, the amplitude of the grooves yb 

and the heating intensity Rap are discussed in Sections 6.2-6.5. Effects of the unequal mean 

temperatures of the plates are discussed in Section 6.6. All results presented in Sections 

6.1- 6.6 are for fluids with the Prandtl number Pr = 0.71, which well approximates the 

properties of air. The effects of changing the type of fluid (changing Pr) are discussed in 

Section 6.7. Heat transfer characteristics are discussed in Section 6.8. Finally, a concise 

summary of the results presented in this Chapter is given in Section 6.9. 

 

Figure 6-1: Schematic diagram of the flow system. 
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6.1 Effects of the phase difference 

The evolution of the flow field in response to changes of Ω is illustrated in Figure 6-2(A-

H). When Ω = 0, the heating pattern is in-phase with the geometric pattern and the 

temperature peaks at the lower plate overlap with the groove peaks. The resulting flow 

field consists of rolls rotating in the clockwise and counter-clockwise directions with the 

fluid moving upwards above the hot spots and downwards above the cold spots. There 

exists a stream tube moving upwards around the hot spots and downwards around the cold 

spots while carrying the fluid in the positive x-direction (see Figure 6-2A). Similar flow 

structures were seen in Chapter-4 when the lower plate was smooth. At Ω = π/4, when the 

groove peaks and the hot spots do not overlap, the size of the convection rolls slightly 

decreases to allow for the increase of the stream tube; this permits more fluid to move in 

the positive x-direction and creates a jet-like effect near the upper plate (see Figure 6-2B). 

The strength of this jet-like effect further increases at Ω = π/2 as the size of the clockwise 

rolls decreases (see Figure 6-2C). However, at Ω = 3π/4, as the temperature peaks move 

closer to the groove troughs, the intensity of the jet begins to decrease due to the dominance 

of the centrifugal effects around the troughs (see Figure 6-2D). The jet disappears when 

the temperature peaks overlap with the groove troughs at Ω = π and the size of the 

convection rolls becomes the same as that observed at Ω = 0 with the direction of the 

rotation of the corresponding rolls reversed (see Figure 6-2E). A narrow stream tube still 

exists and carries fluid in the positive x-direction. When the phase difference is further 

increased to Ω = 5π/4, the hot spots move to the other side of the troughs and the increase 

of the reverse rotation of convection rolls causes the jet-like-effect to reverse its direction, 

producing a backward motion in the stream tube (see Figure 6-2F). An enlargement of the 

upper part of this figure (see Figure 6-3A) demonstrates the formation of a stagnation point 

in the vicinity of the upper plate, the existence of a thin layer of fluid dragged forward in 

the immediate vicinity of the upper plate and the reversed movement of the fluid in the 

stream tube. The magnitude of the backward flow in the stream tube is further increased at 

Ω = 3π/2 (see Figure 6-2G). As the locations of the hot spots approach groove peaks, the 

intensity of the backward motion gradually decreases (see Figure 6-2H) and, at Ω = 2π, the 

flow field returns to the form observed at Ω = 0 (Figure 6-2A).  
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   (A)      (B) 

   

   (C)      (D) 

         

   (E)      (F) 

   

   (G)      (H) 

Figure 6-2: Evolution of the flow fields as a function of Ω for yb = 0.05, α = 1, Rap = 1000, 
Re = 1. Figures (A-H) display results for Ω = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 
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respectively. Black solid lines identify streamlines associated with the buoyancy-driven 
rolls while black dashed lines identify streamlines associated with the net flow in the 
horizontal direction. Grey solid and dashed lines identify the positive and negative 
isotherms. The lower plate temperature distribution is shown below each figure. 
Enlargements of boxes marked using dotted lines in Figures (F-H) are shown in Figure 6-3. 

 

 

   (A)      (B) 

 

(C) 

Figure 6-3: Enlargements of the flow fields near the upper plate for (A) Ω = 5π/4, (B) Ω = 
3π/2, and (C) Ω = 7π/4. The remaining flow conditions are given in Figure 6-2. 
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formation of a stagnation point very near to the upper plate which separates fluid being 

pulled by the plate from fluid flowing backwards inside the stream tube (see Figure 6-3A-

C). Consequently, the fluid in the upper plate region continues to move in the forward 

direction while the fluid in the rest of the channel moves in the opposite direction. Because 

of these two opposing mechanisms, a larger force would be needed to maintain the motion 

of the plate in the positive x-direction.  
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Further investigation of mechanisms responsible for the creation of the backward flow in 

the stream tube for Ω > π raises the question of the identification of forces responsible for 

this effect. As there is no external pressure gradient and only the movement of the upper 

plate drives the flow, there must be other forces which push the fluid. It has been found 

that the presence of grooves and heating leads to a change in the distribution of pressure 

and viscous forces (see Appendix B for their evaluation) and it is the induced pressure 

force, more specifically, the x-component of the induced pressure force, that forces the 

fluid movement in the stream tubes.  This pressure force was referred to as the pressure 

interaction drag by Mohammadi & Floryan (2012) in the analysis of drag formation in 

isothermal grooved channels, and as the thermal drifting force by Abtahi & Floryan 

(2017b) in the analysis of convection problems. This force acts as the external propulsion 

that creates the movement of fluid in the stream tubes and is formed through an interaction 

of the grooves and the external heating.  

Distributions of the pressure field in the channel and the pressure force at the lower plate 

are displayed in Figure 6-4(A-C) for three representative Ω’s. The interaction of the 

pressure field with the grooves creates pressure force which may have a non-zero x-

component when integrated over one wavelength. This pressure force acts in the favorable 

direction for Ω = π/2 and in the adverse direction for Ω = 3π/2; it is this pressure force 

which causes the fluid in the stream tubes to move in the forward and backward directions, 

respectively. The variations of the x- and y-components of the pressure force can be seen 

in Figure 6-5. The y-component drives the convection rolls. A positive x-component assists 

the plate in forcing the fluid to move in the forward direction (when Ω = π/2) and a negative 

x-component opposes the movement created by the upper plate (when Ω = 3π/2).  
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(C) 

Figure 6-4: Evolution of the flow field as a function of Ω for yb = 0.05, α = 1, Rap = 1000, 
Re = 1. Figures (A-C) display results for Ω = 0, π/2, 3π/2, respectively. Solid lines identify 
streamlines, and dashed and dashed-dotted lines identify the positive and negative isobars. 
Arrows at the lower plate illustrate pressure forces. 

         

   (A)      (B) 

Figure 6-5: Distribution of (A) the x-component σxp,L, and (B) the y-component σyp,L of the 
pressure force at the lower plate for yb = 0.05, Re = 1, α = 1, Rap = 1000, and Ω = 0, π/2, 
3π/2. The dashed-dotted line illustrates the no heating conditions. The thick line below 
each figure illustrates the groove shape, and dashed and dotted lines illustrate plate 
temperatures for Ω = π/2, 3π/2, respectively. 

 

Changing the relative position of grooves with respect to the temperature pattern leads to 

changes of the magnitude in the horizontal pressure force and, thus, affects the net 

horizontal flow. As a result, change in the flow pattern changes the shear force opposing 

movement of the upper plate. The variation of the shear stress distribution at the upper 

plate is depicted in Figure 6-6. It is seen that the magnitude of the mean shear varies with 
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Ω, and this mean shear needs to be overcome by the external force in order to maintain the 

plate movement. Larger positive values of this mean shear translate into a smaller force 

needed to drive the upper plate (in the forward direction). Thus, one can easily infer that 

the driving force decreases when Ω = π/2 and increases when Ω = 3π/2.  

 

Figure 6-6: Shear stress distributions at the upper plate (τU) for yb = 0.05, Re = 1, α = 1, 
Rap = 1000 and Ω = 0, π/2, 3π/2. The thick line below the figure illustrates the shape of the 
groove, and dashed and dotted lines illustrate plate temperatures for Ω = π/2, 3π/2, 
respectively. The mean values of shear are marked using horizontal lines.  

 

Variations of the driving force as a function of the phase difference Ω are illustrated in 

Figure 6-7A. Positive values of ΔF denote force reduction whereas negative values denote 

force increase. It can be seen that ΔF exhibits nearly sinusoidal variations with Ω which 

can be divided into three distinct zones. Zone III identifies conditions leading to an increase 

in the driving force which occurs at Ω ∈ [π, 2π] for groove amplitudes yb  ~ > 0.01, with 

the maximum force increase occurring at Ω ~ 3π/2. Zone II identifies conditions leading to 

a decrease in the driving force which can be achieved for all Ω’s through a proper choice 

of the groove amplitude with the maximum force reduction occurring at Ω ~ π/2. Zone I 

corresponds to conditions which would lead to plate acceleration. Since such acceleration 

is not allowed, the driving force must change direction and becomes the braking force. 

These conditions occur at Ω ∈ [0, π] for yb ~ > 0.005. One should note that at Ω = 0, the 

force reduction is less than that found in the smooth heated channel. The force reduction 
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increases for Ω ∈ [0, π/2] and, when combined with the grooves, the reduction is almost 

four times larger than that found in the case of a smooth heated plate.  

        

   (A)      (B) 

Figure 6-7: Variations of (A) ΔF/Re and (B) ΔQ/Re as functions of the phase difference Ω 
for Rap = 1000, Re = 1, α = 1 and different groove amplitudes. Dashed lines identify results 
for the smooth lower plate. The light gray shaded area (zone I) identifies conditions 
requiring the use of braking force. The white area (zone II) identifies conditions resulting 
in a reduction of the driving force. The dark gray shaded area (zone III) identifies 
conditions requiring an increase of the driving force. 

 

The change in the amount of fluid dragged by the upper plate, ΔQ, follows a similar trend 

with the maximum of ΔQ occurring at Ω ~ π/2 and a minimum occurring at Ω ~ 3π/2 (See 

Figure 6-7B). 

 

6.2 Effects of the wavenumber  

Results shown in Figure 6-8 demonstrate that variations of the driving force as a function 

of the wavenumber α are qualitatively similar to those discussed in Chapter 4, except for 

zone III where an increase of driving force occurs due to the flow reversal for certain Ω’s.  

For favorable phase differences, i.e. Ω = π/2, all heating wavenumbers lead to force 

reduction and the magnitude of this reduction is much bigger than that found in the case of 

a smooth heated plate.  The maximum force reduction occurs at α ~ 1.8 - 2. This reduction 
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decreases when an excessively small α is used. Also, the use of an excessively large α leads 

to its very rapid decrease.  Corresponding change in flow rate is shown in Figure 6-9. Flow 

topologies shown in Figure 6-10 demonstrate that an increase of α leads to the formation 

of a thermal boundary layer near the lower plate where the convective effects concentrate 

with a conductive layer forming above it. 

 

Figure 6-8: Variations of ΔF/Re as a function of α for yb = 0.01, Rap =1000 and Re = 1, 5 
(solid and dashed lines, respectively). Dotted lines illustrate conditions for the smooth 
lower plate. The light gray shaded area (zone I) identifies conditions requiring the use of 
braking force. The white area (zone II) identifies conditions resulting in a reduction of the 
driving force. The dark gray shaded area (zone III) identifies conditions requiring an 
increase of the driving force. 

 

Figure 6-9: Variations of ΔQ/Re as a function of α for yb = 0.01, Rap =1000 and Re = 1, 5 
(solid and dashed lines, respectively). Dotted lines illustrate conditions for the smooth 
lower plate. 
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   (A)      (B)

   

   (C)      (D) 

Figure 6-10: Variations of the flow and temperature field for Ω = π/2, Rap = 1000, yb = 1, 
Re = 1 for (A) α = 1, (B) α = 2, (C) α = 5, (D) α = 8. Thin dashed and solid lines illustrate 
the positive and negative isotherms, respectively. 

 

6.3 Effects of the Reynolds number 

The change of driving force as a function of Re is illustrated in Figure 6-11. It can be seen 

that the force-reducing effect is a strong function of Re for all Ω’s. The magnitude of ΔF 

increases almost proportionally to Re for small Re’s, reaches a maximum at Re ~ 5-6 and 

then decreases with a higher rate. The flow topologies shown in Figure 6-13 demonstrate 

that the decrease of ΔF is associated with the reduction of convection bubbles and 

confinement of convection effects to a thin boundary layer near the lower plate at higher 

Re. Variations of the flow rate follow a similar pattern (see Figure 6-12), i.e. it increases at 

first almost proportionally to Re, reaches a maximum at Re ~ 5-6 and then decreases. 
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Figure 6-11: Variations of ΔF as a function of Re for yb = 0.01, Rap = 1000 and α = 2, 3 
(solid and dashed lines, respectively). Dotted lines illustrate results for the smooth lower 
plate. The light gray shaded area (zone I) identifies conditions requiring the use of braking 
force. The white area (zone II) identifies conditions resulting in a reduction of the driving 
force. The dark gray shaded area (zone III) identifies conditions requiring an increase of 
the driving force. 

 

 

Figure 6-12: Variations of ΔQ as a function of Re for yb = 0.01, Rap = 1000 and α = 2, 3 
(solid and dashed lines, respectively). Dotted lines illustrate results for the smooth lower 
plate. 
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   (A)      (B) 

  

   (C)      (D) 

Figure 6-13: Variations of the flow and temperature fields for Ω = π/2, Rap = 1000, yb = 1, 
α = 2 for (A) Re = 1, (B) Re  = 5, (C) Re  = 10, (D) Re  = 50. Thin dashed and solid lines 
illustrate the positive and negative isotherms. 

 

6.4 Effects of the groove amplitude 

The effect of increasing the amplitude of surface irregularities on the driving force is 

illustrated in Figure 6-14. In general, an increase of the groove amplitude increases the 

force augmentation. This augmentation may be either positive or negative, depending on 

the phase difference Ω. When the most effective phase difference is used (Ω = π/2) together 

with the most effective wavenumber (α = 2), the force reduction (zones I and II) increases 

for all Re’s. When the least effective phase difference is used (Ω = 3π/2), the magnitude of 

force reduction decreases and, if the groove amplitudes are large enough, driving force 

must increase, i.e. ΔF < 0 (zone III). 
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Figure 6-14: Variations of ΔF/Re as a function of yb for Rap = 1000, α = 2, Re = 1, 5 (solid 
and dashed lines, respectively). Dotted lines illustrate the solution for the smooth plate. 
The light gray shaded area (zone I) identifies conditions requiring the use of braking force. 
The white area (zone II) identifies conditions resulting in a reduction of the driving force. 
The dark gray shaded area (zone III) identifies conditions requiring an increase of the 
driving force. 

 

The difference in the flow rate ΔQ varies in a similar manner (see Figure 6-15). For 

favorable phase differences, larger amounts of fluid are pulled by the plate, and for the 

non-favorable phase differences, smaller amounts of fluid are pulled with magnitudes of 

the augmentation increasing with yb. This trend is similar for all Re’s considered in this 

study. Both ΔF and ΔQ increase proportionally to yb for all phase differences considered.  

 

Figure 6-15: Variations of ΔQ/Re as a function of yb for Rap = 1000, α = 2 and Re = 1, 5 
(solid and dashed lines, respectively). Dotted lines illustrate solutions for the smooth lower 
plate. 
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A closer look at the flow fields (see Figure 6-16) for Ω = π/2 reveals that as yb increases, 

the convection rolls contract. This facilitates an increase of the stream tube and an increase 

of the net horizontal flow rate. An increase of the groove amplitude results in an increase 

of the thermal drift effect (the x-component of the surface pressure force increases) and, 

hence, change in the force ΔF increases. Selection of the appropriate yb can place the system 

response either in zone I or zone II. 

       

   (A)      (B) 

 

(C) 

Figure 6-16: Variations of the flow and pressure fields for Ω = π/2, Rap = 1000, α = 1, Re 
= 1 for (A) yb = 0.001, (B) yb = 0.025, and (C) yb = 0.05. Thin dashed and solid lines illustrate 
the positive and negative isobars. 

 

Figure 6-17: Variations of the x-component of the induced pressure force for the flow 

fields shown in Figure 6-16(A-C).  
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6.5 Effects of the heating intensity 

The strength of the thermal drift increases with an increase of the heating intensity and, 

thus, the change in driving force is a strong function of Rap. As Rap is increased, the force 

reduction increases proportionally to Rap for favorable phase differences. A state of 

saturation develops for large enough Rap slowing down this growth. The saturation starts 

at a smaller Rap when Re is small (Figure 6-18). Change in ΔF occurs due to the change in 

the thermal drift as well as the change in the size of the convection rolls. Flow topologies 

shown in Figure 6-20 illustrate the roll expansion and reduction of the stream tube due to 

an increase of Rap. The amount of fluid driven by the plate increases with Rap for favorable 

phase differences (Ω = 0, π/2) (see Figure 6-19).  

 

               

   (A)      (B) 

Figure 6-18: Variations of ΔF/Re as a function of Rap for yb = 0.01, α = 2 and Re = 1, 5 
(solid and dashed lines, respectively). Dotted lines illustrate results for the smooth lower 
plate. Figure (A) displays results in the log-log scale while Fig. (B) uses the semi-log scale. 
The light gray shaded area (zone I) identifies conditions requiring the use of braking force. 
The white area (zone II) identifies conditions resulting in a reduction of the driving force. 
The dark gray shaded area (zone III) identifies conditions requiring an increase of the 
driving force. 
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   (A)      (B) 

Figure 6-19: Variations of ΔQ/Re as a function of Rap for yb = 0.01, α = 1 and Re = 1, 5 
(solid and dashed lines, respectively). Dotted lines identify results for the smooth lower 
plate. Grey lines identify negative values. Figure (A) displays results in the log-log scale 
while Fig. (B) uses the semi-log scale. 

 

  

   (A)      (B) 

   

   (C)      (D) 

Figure 6-20: Variations of the flow and temperature fields for Ω = π/2, yb = 1000, α = 1, 
Re = 1 for (A) Rap = 100, (B) Rap  = 500, (C) Rap  = 1000, (D) Rap = 2000. Thin dashed and 
solid lines identify the positive and negative isotherms. 
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6.6 Effects of the plates’ mean temperature 

It is important to determine how the system reacts when the mean temperatures of the plates 

are different. This situation is important in practical applications as it may not be possible 

to maintain equal mean temperatures of both plates. The difference in the mean 

temperatures is expressed in terms of the uniform Rayleigh number Rauni. Positive values 

for Rauni correspond to the lower plate having a higher mean temperature than the upper 

plate and negative values denote a colder lower plate.  

Results presented in Figure 6-21 demonstrate that, for any phase difference Ω, an addition 

of the uniform heating to the lower plate increases ΔF while reduction of its temperature 

decreases ΔF. This change in the driving force is approximately linear with Rauni. 

Variations of the force change for higher Re’s (see lines for Re = 5) remain qualitatively 

similar for the range of Rauni studied. Variations of the force as a function of α remain 

nearly identical for all phase differences for all Rauni’s with an upward shift resulting from 

an increase of Rauni and with a slight increase of the most effective α (the most effective α 

always remains between 2 and 3). Variations of the flow rate ΔQ (Figure 6-22) follow the 

same pattern as variations of ΔF. 

 

                    

   (A)      (B) 

Figure 6-21: Variations of ΔF/Re for Rap = 1000, yb = 0.01 as a function of (A) Rauni for α 
= 1 and (B) α for Re = 1. In (A), solid and dashed lines correspond to Re = 1, 5, respectively. 
In (B), dashed, solid and dashed-dotted lines correspond to Rauni = -150, 0, 150, 
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respectively. Dotted lines identify results for the smooth lower plate. The light gray shaded 
area (zone I) identifies conditions requiring the use of braking force. The white area (zone 
II) identifies conditions resulting in a reduction of the driving force. The dark gray shaded 
area (zone III) identifies conditions requiring an increase of the driving force. 

 

         

  (A)       (B) 

Figure 6-22: Variations of ΔQ/Re for Rap = 1000, yb = 0.01 as a function of (A) Rauni for α 
= 1 and (B) α for Re = 1. In (A), solid and dashed lines correspond to Re = 1, 5, respectively. 
In (B), dashed, solid and dashed-dotted lines correspond to Rauni = -150, 0, 150, 
respectively. Dotted lines identify results for the smooth lower plate. 

 

6.7 Effects of the Prandtl number 

The Prandtl number describes transport properties with the conductive effect expected to 

play a larger role in small-Pr fluids. For such fluids the magnitude of the thermal drift 

increases (Abtahi & Floryan, 2017a, b) and this leads to an increase of ΔF. Results shown 

in Figure 6-23  demonstrate that a change of Pr from Pr = 10 to Pr = 0.1 increases ΔF by 

almost three orders of magnitude (Figure 6-23). For a favorable phase difference, Ω=/2, 

the braking force which needs to be applied to the upper plate (zone I) increases with 

reduction of Pr. Change in the flow rate ΔQ follows the same pattern as documented in 

Figure 6-24. 
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   (A)      (B) 

Figure 6-23: Variations of ΔF/Re as a function of Pr for yb = 0.01, Rap = 1000, α = 2 at Re 
= 1, 5 (solid and dashed lines, respectively). Figure (A) displays results in the log-log scale 
while Fig. (B) uses the semi-log scale. In (A), dashed-dotted lines identify negative values. 
Dotted lines are used to identify results for the smooth lower plate at Re = 1.  The light 
gray shaded area (zone I) identifies conditions requiring the use of braking force. The white 
area (zone II) identifies conditions resulting in a reduction of the driving force. The dark 
gray shaded area (zone III) identifies conditions requiring an increase of the driving force. 

 

        

   (A)      (B) 

Figure 6-24: Variations of ΔQ/Re as a function of Pr for yb = 0.01, Rap = 1000, α = 2 at Re 
= 1, 5 (solid and dashed lines, respectively). Fig. (A) displays results in the log-log scale 
while Fig. (B) uses the semi-log scale. In (A), dashed-dotted lines identify negative values. 
Dotted lines are used to identify results for the smooth lower plate at Re = 1. 
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The character of changes of ΔF and ΔQ as functions of α remain qualitatively similar for 

all Pr’s with the relevant curves just shifting upwards for smaller Pr’s, as illustrated in 

Figure 6-25. 

       

   (A)      (B) 

Figure 6-25: Variations of (A) ΔF/Re, and (B) ΔQ/Re as function of α for yb = 0.01, Rap = 
1000, Re = 1 and Pr  = 0.71, 1, 5 (solid, dashed-dotted and dashed lines, respectively). 
Dotted lines identify conditions for the smooth lower plate. The light gray shaded area 
(zone I) identifies conditions requiring use of braking force. The white area (zone II) 
identifies conditions resulting in a reduction of the driving force. The dark gray shaded 
area (zone III) identifies conditions requiring an increase of the driving force. 

 

6.8 Heat transfer effects 

The temperature differences between and along the plates generate heat flow in the vertical 

and horizontal directions. The vertical heat flux, expressed in terms of the mean Nusselt 

number Nuav, is of more interest as it can be viewed as an energy cost associated with the 

use of heating for reduction of the driving force. Figure 6-26 demonstrates that Nuav is a 

strong function of both Ω and α, and its magnitude reaches a maximum for Ω ~ 0 and ~2π 

(minimum at Ω ~ 3π/4) and for α ~ 0.9-1 whereas the maximum of ΔF occurs at Ω ~ π/2 

and at α ~ 2.  

The maximum of Nuav occurs at Re → 0 (Figure 6-27A). An increase of Re reduces Nuav 

through the elimination of convection effects (Figure 6-13). An increase in Rap results in 
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an increase of Nuav proportional to Rap, which follows the same trend as ΔF, with a slight 

reduction of growth due to saturation effects in the upper range of Rap’s considered (Figure 

6-27B).  Increasing the groove amplitude yb can either increase or decrease Nuav depending 

on the phase difference between the groove and heating patterns (Figure 6-27C). 

           

   (A)      (B) 

Figure 6-26: Variations of Nuav as a function of (A) Ω and (B) α. In (A), Rap = 1000, α 
= 1, Re = 1. In (B), Rap = 1000, yb = 0.01, Re = 1, 5 (solid and dashed lines, respectively). 
Dotted lines illustrate conditions for the smooth lower plate. 

 

 

  (A)    (B)    (C) 

Figure 6-27: Variations of Nuav as a function of (A) Re, (B) Rap, (C) yb. In (A), Rap = 
1000, α = 2 (solid lines) and α = 3 (dashed lines), yb = 0.01. In (B), yb = 0.01, α = 2, Re = 1 
(solid lines) and Re = 5 (dashed lines). In (C), Rap = 1000, α = 2, Re = 1 (solid lines) and 
Re = 5 (dashed lines). Thin dotted lines identify asymptotes. 
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An addition of the uniform heating component always leads to a change in the heat flow 

as it changes both the intensity of convection as well as adds a new conductive flux. Nuav 

increases when the lower plate is heated (Rauni > 0) and decreases when the lower plate is 

cooled (Rauni < 0), and it varies in a qualitatively similar manner as a function of α for all 

Ω’s with the relevant curves shifted upwards when Rauni is increased (Figure 6-28). This 

increase of Nuav with an increase of Rauni is also dependent upon Re. 

 

           

  (A)       (B) 

Figure 6-28: Variations of Nuav as a function of (A) Rauni, and (B) α. In (A), yb = 0.01, Rap 

= 1000, α = 2, Re = 1 (solid lines) and Re = 5 (dashed lines). In (B), yb = 0.01, Rap = 1000, 
Re = 1, Rauni = -150 (dashed lines), Rauni = 0 (solid lines), and Rauni = 150 (dashed-dotted 
lines). Dotted lines illustrate results for the smooth lower plate. 

 

The effects of changing the types of fluids are illustrated in Figure 6-29. The most effective 

Nuav is found for Pr ~ 0.5 – 1 (such values correspond to gases, including air) with a strong 

dependence upon Re. Nuav varies in a qualitatively similar manner as a function of α for all 

Ω’s of interest with the relevant curves shifting downwards with an increase of Pr (Figure 

6-29B). Although this change is small for Pr ~ 0.71-1, a noticeable reduction occurs for Pr 

= 5 for all phase differences.   
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Figure 6-29: Variations of Nuav as a function of (A) Pr, and (B) α. In (A), yb = 0.01, Rap = 
1000, α = 2, Re = 1 (solid lines) and Re = 5 (dashed lines). In (B), yb = 0.01, Rap = 1000, 
Re = 1, Pr = 0.71 (solid lines), Pr = 1 (dashed-dotted lines), and Pr = 5 (dashed lines). 
Dotted lines illustrate results for the smooth lower plate. 

 

6.9 Summary 

Flow responses to different combinations of geometric irregularities (surface grooves) and 

heating irregularities (spatial heating pattern) applied at the lower plate have been analyzed.  

Although no external pressure gradient exists in the flow system, the interaction of the 

heating and the grooves generates a horizontal pressure force. This induced pressure force 

(thermal drift) assists with the reduction of the driving force required to maintain 

movement of the upper plate if a favorable phase difference between heating and the 

grooves is used. An unfavorable phase difference causes a backward flow in the lower 

region of the channel, and thereby increases the required driving force. The most favorable 

phase difference was found to be Ω = /2, and the least favorable phase difference was 

found to be Ω = 3/2. The magnitude of the induced pressure force decreases with an 

increase of the Reynolds number Re, and increases with an increase of the heating intensity 

Rap. Hence, the change in the driving force ΔF decreases with an increase of Re and 

increases with an increase of Rap. An increase in 𝑅𝑎  and decrease in the Prandtl number 

Pr magnify this effect. Conditions where an external braking force needs to be used to 

prevent the plate from accelerating have been identified.  
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Chapter 7  

7 Conclusions and Recommendations 

 

7.1 Conclusions 

Mechanisms suitable for the control of the driving force in the shear-driven flows utilizing 

surface and temperature irregularities have been studied. The model problem involves two 

parallel plates, a moving upper plate which drives the flow and a stationary lower plate. 

An external force has to be applied to the upper plate to maintain its movement. Changes 

in the magnitude of this force in response to geometric and heating irregularities at the 

lower plate were sought.  Effects of these irregularities were modelled using the Immersed 

Boundary Conditions concept. The relevant field equations were solved using an algorithm 

described by Abtahi, et al., (2016). The spatial discretization relied on the Fourier 

expansions in the horizontal direction and Chebyshev expansions in the vertical direction.  

The analysis began with an investigation of the effects of a spatially periodic heating 

applied at the stationary, smooth lower plate. An external force was needed to maintain 

movement of the upper plate at the prescribed rate expressed in terms of the Reynolds 

number (Re). The spatially periodic heating resulted in a sinusoidal temperature 

distribution of the lower plate whose periodicity was expressed in terms of the wavenumber 

(α) and the amplitude was expressed in terms of the periodic Rayleigh number (RaP). The 

difference between the mean temperatures of the upper and lower plates was expressed in 

terms of the uniform Rayleigh number (Rauni) whose positive values corresponded to the 

lower plate having a higher temperature. The formation of secondary flows was avoided 

by using relatively low heating intensities (RaP < 3000). Heating in the case of a stationary 

upper surface created counter-rotating rolls driven by the buoyancy effects. When the upper 

plate moved, the fluid movement between the plates resulted from a competition between 

the buoyancy-driven effects and the plate-driven motion. The latter created a rectilinear 

motion that led to the reduction and eventual elimination of the rolls when Re was large 

enough (Re > 70 - 80). It was found that heating always reduced the force required to 
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maintain the prescibed movement of the upper plate. The force reduction was a strong 

function of the heating wavenumber. The largest force reduction was found at α ~ 1.8 -2. 

This reduction rapidly decreased when the wavenumber was either too high or too low. An 

increase in Rauni and decrease in the Prandtl number (Pr) resulted in a larger force 

reduction. An increase in Re washed away the rolls and decreased the force reduction with 

its complete elimination at Re ~ 100. Use of the proper heating could result in the complete 

elimination of the driving force. Conditions were identified where an external braking force 

was needed to prevent the plate from accelerating. 

The second step involved the analysis of the effect of surface irregularities placed at the 

isothermal lower plate. The analysis was limited to irregularities which did not change the 

mean distance between the plates and was focused on the transverse grooves with arbitrary 

shapes. It included the analysis of the effects of different spatial groove distributions and 

was limited to grooves having an amplitude of less than 10% of the channel opening. 

Different groove shapes were analyzed leading to the formulation of the reduced geometry 

model. The essence of this model was the demonstration that the replacement of the actual 

groove shape with the first mode of its Fourier expansion produced an error in the 

prediction of the required pulling force which is acceptable in most applications. The long 

wavelength grooves produced spatial flow modulations that resulted in small force 

increases. The short wavelength grooves resulted in larger force increases due to the 

blockage effect. This effect was associated with the lift-up phenomenon where the 

reduction of the gap between the groove sidewalls forced the stream to move away from 

the grooved plate reducing the effective hydraulic channel opening.  

The last step involved analysis of the combined effects of grooves and periodic heating. 

Only sinusoidal grooves were studied. It was found that the presence of temperature and 

surface irregularities might either increase or decrease the driving force. The interaction 

between the heating and the grooves induced a horizontal pressure force (thermal drift) 

which might act either in the direction of the upper plate movement or opposite. The 

relative position of the temperature and surface irregularities was expressed in terms of the 

phase angle (Ω). When the heating patterns overlapped with the groove pattern (Ω = 0), i.e. 

the wall temperature maxima overlapped with the groove peaks, a reduction of the driving 
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force was achieved but its magnitude was smaller than that achieved by heating the smooth 

plate. As the position of the heating changed relative to the position of the grooves, both 

the magnitude and the direction of the driving force changed. It was found that the 

maximum force reduction occurred at Ω = π/2, whereas the maximum increase of the 

driving force occurred at Ω = 3π/2. The magnitude of the force augmentation was found to 

be a strong function of the system wavenumber with the maximum change occurring for α 

~ 2-3 with its rapid reduction if either too big or too small α’s were used. This magnitude 

was also a strong function of the groove amplitude and the heating intensity. It was also 

found that an increase of Rauni and a decrease of Pr amplified force augmentation.   

It was concluded that the temperature and surface irregularities can be used as effective 

means for control of the driving force in the shear-driven flows.  

 

7.2 Future recommendations 

Effects of temperature and surface irregularities in the shear-driven flows were analyzed.  

The following questions may be considered for future work: 

 This thesis was limited to the analysis of two-dimensional grooves. It would be of 

interest to determine how the flow would react to the presence of three-dimensional 

grooves. 

 Surface irregularities in the form of transverse grooves were considered. It would 

be of interest to determine the effects of longitudinal grooves. 

 The analysis was limited to low heating intensities to prevent the formation of 

secondary states. It is of interest to determine conditions leading to the formation 

of secondary states and how these states may affect the driving force. 

 The analysis was focused on the small Re-flows as stronger flows wash away 

convection rolls.  It is of interest to determine the system response for stronger 

flows and more intense heating.  

 The spatial heating patterns studied in this thesis were limited to sinusoidal forms. 

It is of interest to determine how the system would respond to heating with other 

spatial distributions.  
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 Time-dependent surface topographies were studied in the literature (Bielarz & 

Kalliadasis, 2003; Mancktelow & Grasemann, 1997). Determining the effect of 

time variations of surface topographies on the driving force would be of interest. 

 Optimization of distributions of the temperature and surface irregularities could 

increase the range of variations of the driving force. Determination of the optimal 

distributions would be of interest in the development of flow control devices. 
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Appendices  

Appendix A: Recurrence formulae and Chebyshev inner products 

Chebyshev polynomials satisfy the following relations 

𝑇 (𝑦) = 1, 𝑇 (𝑦) = 𝑦, 𝑇 (𝑦) = 2𝑦𝑇 (𝑦) − 𝑇 (𝑦),  for k ≥ 2     (A.1a-c) 

𝐷 𝑇 (𝑦) = 2𝑛𝐷 𝑇 (𝑦) + 2𝑦𝐷 𝑇 (𝑦) − 𝐷 𝑇 (𝑦),   for n ≥ 1 (A.2) 

The inner product of two Chebyshev polynomials are defined as, 

〈𝑇 (𝑦) , 𝑇 (𝑦)〉 = ∫ 𝑇 (𝑦)𝑇 (𝑦)𝜔(𝑦) 𝑑𝑦,      (A.3) 

where 𝜔(𝑦) = (1 − 𝑦 ) ⁄  is the weight function. Its evaluation results in 

〈𝑇  , 𝑇 〉 = 𝐶 𝛿

0,                         for 𝑗 ≠ 𝑘
𝜋,               for 𝑗 = 𝑘 = 0

𝜋 2⁄ ,         for 𝑗 = 𝑘 > 0
     (A.4) 

where δi,k  is the Kronecker delta and  𝐶 =
2,   𝑘 = 0
1,   𝑘 ≥ 1

 

The first, second, and fourth derivatives of a Chebyshev polynomial can be expressed as, 

𝐷𝑇 = 2𝑘 ∑ 𝑇  ,   for k - l =odd, k ≥ i+1   (A.5a) 

𝐷 𝑇 = ∑ (𝑘 − 𝑙 )𝑇  ,  for k - l=even, k ≥ l+2   (A.5b) 

𝐷 𝑇 = ∑ (𝑘 − 𝑙 ) 2𝑙 ∑ 𝑇  ,  for k - l=even,  l- z=odd, 

 when  k ≥ l+2, l ≥ z+1        (A.5c) 

𝐷 𝑇 = ∑ 𝑘(𝑘 − 𝑙 )𝐷 𝑇  ,  for k - l=even, k ≥ l+2   (A.5d) 

The following inner products of the Chebyshev polynomials can be evaluated explicitly as,  
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〈𝑇 , 𝐷𝑇 〉 = 𝑘𝜋, for k - j=odd, k ≥  j+1      (A.6a) 

〈𝑇 , 𝐷 𝑇 〉 = 𝑘(𝑘 − 𝑗 )  , for k - j=even, k ≥  j+2    (A.6b) 

〈𝑇 , 𝐷 𝑇 〉 = ∑ 𝑘(𝑘 − 𝑙 )[𝜋𝑙] ,  

for  
𝑘 − 𝑗 = even,   𝑘 ≥ 𝑙 + 2
𝑙 − 𝑗 = odd,   𝑙 ≥ 𝑗 + 1

        (A.6c) 

〈𝑇 , 𝐷 𝑇 〉 = ∑ 𝑘(𝑘 − 𝑙 ) 𝑙 𝑙 − 𝑗  ,  

for  
𝑘 − 𝑙 = even, 𝑘 ≥ 𝑙 + 2 ≥ 𝑗 + 4

𝑖 − 𝑗 = even,   𝑙 ≥ 𝑗 + 2
       (A.6d) 

The integral of a Chebyshev polynomial 𝐼 (𝑦) = ∫ 𝑇 (𝑦) can be evaluated analytically 

as, 

𝐼 (𝑦) = 𝑇 (𝑦) + 1,         (A.7a) 

𝐼 (𝑦) =
( )

.         (A.7b) 
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Appendix B: Evaluation of viscous and pressure forces at the lower plate 

The surface stresses acting on the fluid at the lower plate (σL) are expressed as  

𝜎 = [𝑛 , 𝑛 , ]
𝜏 − 𝑝 𝜏

𝜏 𝜏 − 𝑝       (B-1) 

where 

 𝜏 = 2 ,   𝜏 = 𝜏 = + ,    𝜏 = 2        (B-2) 

denote the viscous component of the stress tensors and  

[𝑛 , 𝑛 , ] = 𝑁 [−𝛼𝑦 sin (𝛼𝑥) −1]      (B-3) 

are components of the normal unit vector with 𝑁 = [1 + (𝛼𝑦 sin(𝛼𝑥)) ] / . The x and 

y components of the surface stresses are expressed as 

𝜎 , = 𝜎 , + 𝜎 , = 𝑁 −2𝛼𝑦 sin(𝛼𝑥) − + + 𝑁 [𝛼𝑦 sin(𝛼𝑥) 𝑝] . 

           (B-4) 

𝜎 , = 𝜎 , + 𝜎 , = 𝑁 −𝛼𝑦 sin(𝛼𝑥) + − 2 + 𝑁 [𝑝]   (B-5) 

where 𝜎 , , 𝜎 ,  are generated by viscous effects while 𝜎 , , 𝜎 ,  are generated by the 

pressure. The x- and y-components of forces acting on the fluid per unit length in the x – 

direction are  

𝐹 , = 𝐹 , + 𝐹 , = 𝜆 ∫ 𝜎 , + 𝜎 , 𝑁 𝑑𝑥.    (B-6) 

𝐹 , = 𝐹 , + 𝐹 , = 𝜆 ∫ 𝜎 , + 𝜎 , 𝑁 𝑑𝑥.    (B-7) 

 

  



97 

 

Curriculum Vitae 

 

Name:   Sakib Shadman 
 
Post-secondary  Islamic University of Technology 
Education and  Gazipur, Dhaka, Bangladesh 
Degrees:   2012-2016 B.Sc. (Mechanical Engineering) 
 

The University of Western Ontario 
London, Ontario, Canada 
2016-2018 M.E.Sc (Mechanical and Materials Engineering) 

 
 

Honours and   Western Graduate Research Scholarship 
Awards:   2016-2018 
 

Organization of Islamic Cooperation (OIC) Scholarship 
2013-2016 

 
Related Work  Teaching Assistant 
Experience   The University of Western Ontario 

2016-2018 
 
Lecturer 
Sonargaon University 
Dhaka, Bangladesh 
2016-2016 

 
 


	On the Reduction of the Driving Force in Shear-driven Flows
	Recommended Citation

	Microsoft Word - 2018-April 24 - thesis.docx

