
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-11-2018 11:00 AM 

Modeling of Suspended Sediment Concentration Using Modeling of Suspended Sediment Concentration Using 

Conventional and Machine Learning Approaches, in Thames River, Conventional and Machine Learning Approaches, in Thames River, 

Canada Canada 

Issam Mohamed 
The University of Western Ontario 

Supervisor 

Shah, Imtiaz 

The University of Western Ontario Co-Supervisor 

Yanful, Ernest 

The University of Western Ontario 

Graduate Program in Civil and Environmental Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of 

Engineering Science 

© Issam Mohamed 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Civil Engineering Commons, Environmental Education Commons, Environmental 

Engineering Commons, Environmental Monitoring Commons, Hydraulic Engineering Commons, Other Civil 

and Environmental Engineering Commons, Other Environmental Sciences Commons, and the Water 

Resource Management Commons 

Recommended Citation Recommended Citation 
Mohamed, Issam, "Modeling of Suspended Sediment Concentration Using Conventional and Machine 
Learning Approaches, in Thames River, Canada" (2018). Electronic Thesis and Dissertation Repository. 
5280. 
https://ir.lib.uwo.ca/etd/5280 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1305?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1087?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5280?utm_source=ir.lib.uwo.ca%2Fetd%2F5280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

Water resource management, planning, hydraulic design, environmental conservation, 

reservoir management and operation all require reliable information and data about Suspended 

Sediment Concentration (SSC). To predict such data, direct sampling and Sediment Rating 

Curves (SRC) are commonly utilized. Since direct sampling can be risky during extreme 

weather events and SRC cannot provide satisfactorily dependable results, engineers are trying 

to propose new precise fore-casting approaches. Various soft computing techniques have been 

applied to model different hydrological and environmental problems and have showed 

promising results in this regard. Although many studies have been performed to simulate the 

phenomena of SSC at numerous rivers and creeks in the literature, the SSC is a site-specific 

problem. In this study, Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural 

Network (ANN) models were proposed and compared with the conventional SRC and linear 

regression methods. Using different combination of measured data from 1993 to 2016 of SSC 

and simultaneous Stream dis-charge, Water Temperature, and Electric Conductivity for 

Thames River at Byron Station, London, Canada, several models were trained. Goodness of 

each model was evaluated using Mean Absolute Error, Root-Mean Square Error and Nash-

Sutcliffe Efficiency Coefficient. Results show that ANN models are of a superior accuracy if 

compared with other approaches in predicting SSC for this river. 

Keywords 

Suspended sediment concentration, SRC, Linear regression, ANFIS, ANN. 
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1.                                CHAPTER 1 

1.1 Introduction 

One of the major factors that plays an important role in the transformation of the Canadian 

landscape is water. Every year water erodes great amounts of soil from the landscape in 

the form of sediments. Sediments transported by river systems and eventually deposited in 

a lake or sea. For example, the Fraser River, British Columbia, carries an average of 20 

million tons of sediment a year into the marine environment (Government of Canada, 

2013).  

Erosion process is the first stage of the sediment cycle, by which particles and fragments 

are weathered from the earth’s surface. Water, wind, glaciers, and plant and animal 

activities are all the sort of activities that cause erosion to the ground’s material. The most 

effective agents that cause erosion can be counted as water and wind. Deforestation is 

assumed to be the main reason for erosion. However, other factors counted in this case, 

such as climate, soil structure, land topography, vegetation cover and land management. 

Fluvial sediment is the term utilized to define the case where water is the main cause for 

erosion.  Natural, or geologic, erosion takes place in a slow manner, over centuries or 

millennia. Erosion that occurs because of human activity may take place much faster. It is 

important to understand the role of each when studying sediment transport (Government 

of Canada, 2013). 

Fluvial sediment transportation process initiates when raindrops accumulate and result in 

sheet flow causing the dislodgeable materials from land surface to be transported. The 

greater the discharge (i.e. rate of flow), the higher the capacity there is for sediment 

transport.  

Millions of tonnes of sediments are annually move through the Canadian waterways due 

to the forever erosion cycle, transportation and deposition processes. Figure 1-1 shows 

average annual suspended sediment load (tonnes) for selected rivers in Canada. Sediment 

is measured and categorized based on its dynamic characteristics into three major classes: 
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• suspended load (suspended in the water) 

• bed load (rolling or bouncing along the bottom) 

• bed material (stationary on the bed) 

 

Figure 1-1 Average annual suspended sediment load (tonnes) for selected rivers in Canada 

(Government of Canada, 2013) 

Many researchers have been devoting their studies to the subject of suspended load due to 

its importance to several topics, for example, erosion around structures, backfilling of 

dredged channels, pollution, channel navigability, reservoir filling, hydroelectric-

equipment longevity, fish habitat, river aesthetics and scientific interests (Demirci & 

Baltaci, 2013). Sediment transportation process is very complex and often subject to semi-

empirical or empirical treatments. On the other hand, most theoretical treatments were 

developed using idealized and simplified assumptions that the suspended load is only a 

function of one or two dominant factors, such as water flow rate, average velocity, energy 

slope and shear stress. Numerous equations have been published accordingly and because 
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of the scarcity in continuous measured data, each equation was developed using limited 

laboratory and occasional field data. A drastic difference between the calculated results 

from the various equation and the measured data is often noted. Consequently, none of 

these published equations have gained universal acceptance in predicting sediment 

transport rates, especially in rivers. Recently, due to the advancement in the machine 

learning and modeling software, computer models have been developed to simulate and 

predict the erosion, sediment transport processes and suspended load. 

1.2 Importance of Studying Suspended Sediments 

Suspended sediment carried in a river has an essential impact in various aspects (e.g. water 

quality, navigation, fisheries and aquatic habitat). It is a site-specific problem that depends 

on a several factors (e.g. the catchment area, rain fall intensity, vegetation cover) and 

should be studied for every river, creek, channel, etc. 

1.2.1  Water Quality 

Toxic chemicals, including most heavy metals and the majority of the US-EPA Priority 

Pollutants (including 96% of categories NO 1 and NO 2-most toxic and persistent 

pollutants) and many other unlisted but environmentally sensitive chemicals, have 

environmental pathways that are primarily or exclusively associated with sediment and 

biological substrates (Ongley et al., 1992). Toxic chemicals can be adsorbed or attached to 

sediment particles and therefore flow with them along the stream and would find its way 

to the recipients open water causing a major effect on the water quality issue.  

Environmentalists and engineers throughout studying quality, quantity and characteristics 

of sediment in the stream can help reducing the impact of pollutants on the aquatic 

environment. Toxic chemicals and its association with sediments is an important matter for 

the national water quality issues. 

1.2.2   Channel Navigation 

The deposition of sediments in reservoirs and navigation channels weakens or diminishes 

the performance of these projects and increases the overall project costs. To maintain 

navigability of such channels, some of the sediments has to be dredged from the stream. 
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However, toxic chemicals accompanying the dredging process, water levels and sediment 

transport rate should be studied carefully to determine how much sediments needs to be 

removed and how frequent. Sedimentation of navigation channels is a concern in the Fraser 

River (British Columbia), the Mackenzie River (Northwest Territories), and the Great 

Lakes-St. Lawrence system (Ontario and Quebec) (Government of Canada, 2013). 

1.2.3   Fisheries and Aquatic Habitat 

Several reports, such as European Inland Fisheries Advisory Commission (EIFAC), 

(1964), Hollis, Boone et al. (1964), Lloyd (1987), Newcombe and Macdonald (1991), 

Waters (1995), Anderson et al. (1996), Caux et al. (1997), examine and provide 

information on the effect of sediments and turbidity on fish and their habitat. Results of 

these studies determined that presence of sediments in a given stream would harm/kill 

fisheries and habitats in multiple ways: 

• Certain concentrations of sediment kill fish directly. Table 1-1 shows sediment 

concentration and the adjacent level of risk to fish and their habitat. 

• Fish feeding and schooling practices is directly impacted by the penetrated light 

into water, which decreases by suspended sediment. 

• Stream temperature increased by the adsorbed warmth from the sun through 

sediment particles, stressing some species of fish. 

• Plants, invertebrates, and insects in the stream bed can be dislodged due to high 

concentration of suspended sediments. This affects the food source of fish and can result 

in smaller and fewer fish. 

• Settling sediments can cause fish eggs to be buried and suffocated. 
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Table 1-1 Sediment concentration (mg/l) and the corresponding risk to fish and their 

habitat (Birtwell, 1999) 

Sediment concentration (mg/l) Risk to fish and their habitat 

0 No risk 

<25 Very low risk 

25-100 Low risk 

100-200 Moderate risk 

200-400 High risk 

>400 Unacceptable risk 

1.2.4   Water Supply Plant 

The presence of sediments in the main water source can cause an extensive damage to the 

pumps and turbines. Accordingly, the delivery of water supply for domestic, agricultural 

and industrial uses will be affected. A study determining the sediment amount in the raw 

water source can help choosing the proper equipment for the water supply plant and thus 

reducing the project’s total cost. 

1.2.5   Hydroelectric Facilities  

According to Morris et al. (2008), “About 0.5% to 1% of the total volume of 6,800 km3 of 

water stored in reservoirs around the world is lost annually as a result of sedimentation”. 

Size of the reservoir and its life expectancy span both are directly dependent on the amount 

of sediment discharged from the upstream. Sediments that are trapped in the upstream by 

a hydraulic structure, such as dams, accumulating with time, decreasing the size of the 

reservoir and consequently affecting the capacity of electricity that might be generated. 

1.3 Problem Statement 

According to Heng and Suetsugi (2013) the measurement of sediment concentration is 

deficient in most parts of the world. Several hydrological variables such as bed-form 

geometry, flow rate, friction factor and discharge have been used to develop different 

models for predicting sediment concentration in rivers (Karim & Kennedy, 1990; Lopes & 

Ffolliott, 1994). Direct analysis of the Suspended Sediment Concentration (SSC) and the 

Sediment Rating Curve (SRC) method are among the two tools used in a wide range to 
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obtain the suspended sediment load. Although direct analysis method is the most reliable 

method, but it is very costly, time consuming, and in many cases, problematic for 

inaccessible sections, especially during severe storm events, and cannot be conducted for 

all river gauge stations (Bayram et al., 2013).  On the other hand, because SSC transported 

in a river is a complex hydrological phenomenon due to presence of several ambiguous 

parameters such as spatial variability of basin characteristics, river discharge patterns and 

inherent non-linearity in hydro-meteorological parameters, the conventional SRC method 

may not be advantageous in estimation of SSC which takes into consideration only Q as an 

effective variable and assumes that all other effective variables are inherited in such 

independent variable (Joshi et al., 2015) so does the Regression Models (RM), in which 

the system is assumed to be static (Ghorbani et al., 2013). In Thames River at Byron station, 

the sampling for SSC is infrequent, this lack of continuous information about SSC can 

result in substantial errors in estimates of the SSC using the conventional SRC and RM 

methods. This imposed the necessity to use the artificial intelligence models for more 

accurate prediction (Kisi et al., 2012). 

During the last two decades, artificial intelligence techniques to estimate and predict 

various hydrological phenomena has being utilized (Tachi, 2017). Adaptive Neural Fuzzy 

Inference System (ANFIS) and Artificial Neural Network (ANN) are amongst the two 

well-known models for prediction and simulation in vital hydrology and hydraulics topics 

such as prediction of SSC (Angabini  et al., 2014). This study therefore aims to develop 

efficient ANFIS and ANN models in predicting the SSC in River Thames, London, ON, 

and to compare their results with one another and with the results of the conventional SRC 

and RM methods. This will be based on the available data concerning the inputs (discharge, 

temperature and electric conductivity) and the output (SSC) variables. 
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1.4 Research Objective 

The goal of this study is to: 

1. Develop the best model to estimate the Suspended Sediment Concentration (SSC) 

in Thames River, London, ON, using two conventional approaches (i.e. Sediment 

rating curves and linear regression) and two artificial intelligence modeling 

approaches (i.e. Adaptive neuro fuzzy inference system and artificial neural 

networks) by means of various effective input variables combinations.  

2. Compare between various models using several statistical measures, including 

mean absolute error (MAE), root mean square error (RMSE) and Nash-Sutcliffe 

efficiency (NSE), along with the uncertainty analysis, to select the best model.  

In order to achieve the above objective the following tasks were performed: 

• Data collection (including river discharge, river temperature, SSC, water electric 

conductivity) for the site over the period from 1993 to 2016. 

• Data classification and preprocessing using the Grubbs test for multiple outliers. 

• To develop a SSC predictive model using the SRC method (river discharge as the 

only input). 

• To develop a SSC predictive model using the Simple Linear Regression (SLR) 

method (river discharge is the only input). 

• To develop a SSC predictive model using The Multiple Linear Regression (MLR) 

method (a combination of inputs including river discharge, river temperature and 

water electric conductivity). 

• To develop a SSC predictive model using the ANFIS model (a combination of 

inputs including river discharge, river temperature and water electric conductivity). 

• To develop a SSC predictive model using the ANN model (a combination of inputs 

including river discharge, river temperature and water electric conductivity). 
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• To compare the accuracy of each individual model in order to select the most 

accurate predictive model using different statistical parameters, including, Root 

Mean Square Error (RMSE), Nash-Sutcliffe Efficiency coefficient (NSE) and 

Mean Absolute Error (MAE) between the measured and computed data results. 

• To conduct uncertainty analysis as an additional performance indicator and use its 

parameters to select the best model. 

• To compare the performance of the most accurate model from each approach with 

the others to select the best predictive model among all models using the same 

statistical measures. 
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2. CHAPTER 2                                                                              

LITERATURE REVIEW 

2.1 General Overview 

Sediment loading in rivers plays a major role when it comes to the availability of freshwater 

resources, it also threatens the aquatic habitat, alters stream geomorphology, and reduces 

the reservoir capacity behind various hydraulic structures (Foster and Charlesworth, 1996; 

Kondolf, 1997; Owens et al. 2005; Wood and Armitage, 1997). Freshwater ecosystems can 

be harmed by the sediments which transport in suspension; such suspended sediments 

reduce the transmission of sunlight, cause increases in the surface water temperatures, and 

interfere with the aquatic biota’s metabolic processes. The reduction of sunlight 

transmission caused by the presence of suspended sediments may limit or even restrict 

photosynthesis, hence a huge influence on the aquatic food chain results. Contaminants 

such as heavy metals, metal nutrients and other pollutants often use the suspended 

sediments as a conveyance system (Foster and Charlesworth, 1996; Uri, 1999). 

Recreational activities in various streams can also be reduced due to the effects of sediment 

on freshwater biota and aesthetics. Higher concentrations of suspended sediment can cause 

extensive damage to pumps and turbines and accordingly can increase the cost of water 

treatment processes. Reservoir storage capacity loss occurs due to the sediments that settles 

out of suspension and starts to fill the reservoir, impede channel navigability and increase 

flooding rate of recurrence and its harshness (Uri, 1999; Williams, 1989).  Not only the 

excessive existence of suspended sediment in a stream can be looked at as a harmful 

phenomenon, the very minute suspended sediment concentration (lower than the natural 

background levels) can also cause as destructive consequences to the stream 

geomorphological and ecological activities as too high sediment concentration may cause. 

Suspended sediment concentrations are usually lower in the watercourses connected with 

dams and reservoirs. Because the more the water body deprived of sediment the greater the 

potential energy to expand on erosion processes, the streams which have lower sediment 

concentrations often experience higher channel erosion and channel incision. Channel 

incision and building up (larger particle sizes) of bedload materials occurs due to the extra 

energy.  Flow energy dissipation causes the channel to erode, therefore; the more frequent 
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and the higher the flow, the larger the channel erosion rate (Wolman and Schick, 1967). 

Aquatic habitat can also be significantly changed due the deprivation of sediments in 

various watercourses (Kondolf, 1997).   

Many scientists and researchers have been conducting numerous studies to understand and 

examine the mechanism of sediment transport in natural streams during the past decades. 

The estimation of sediment discharge is being among the most important area of interest 

to various researchers due to its great impact on stream training, stream management, 

stream engineering applications, and different hydraulic structures construction, in addition 

to the previously discussed environmental effects and how it is a key to water quality 

treatment. In the literature, practical formulas and several predictive modeling approaches 

to predict the sediment yield have been developed. Yet there has been slight or not at all 

success in predicting the sediment load using the classical techniques (Tuan and 

Shibayama, 2003). SRC are the most common method utilized in estimating the sediment 

discharge when sampling and measurements on site are limited.  SRC are empirical 

relations between total flow discharge and total sediment discharge, in the form of             

𝑆 =  𝑎𝑄𝑏, where 𝑆 is the SSC,  𝑄 is the discharge, and a and b are constant and vary for 

every stream (Campbell and Bauder, 1940). However, because of the linearity assumed in 

this case (SRC) and in the several other time series conventional practices, the results 

usually are inadequate. With the advance in the artificial intelligent models, in the literature 

many researchers have been comparing the performance of conventional methods such as 

SRC and MLR methods with different soft computing techniques (i.e. Fuzzy logic, ANN, 

ANFIS, Genetic programming (GP), etc.). 

2.2 Fuzzy Logic and Conventional Methods 

2.2.1 Fuzzy Logic Approach 

Fuzzy logic systems define the relationship between the input variables and output 

variables of a model using fuzzy if-then statements (Adriaenssens et al. 2004). The input 

space is divided into different overlapping fuzzy sets, this results in a fuzzily defined 

interval. This dividing process of the inputs into fuzzy sets is referred to as fuzzification. 

Other important components of the fuzzy rule based system (FRBS) are the membership 
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function, domain partitions and IF-THEN inference rules. The membership function is also 

known is the degree of belongingness to a particular fuzzy set and its value ranges from 0 

to 1. For every membership set there are consequents given by the IF-THEN rules. These 

rules can be fuzzy and then the model is called Mamdani model (Mamdani, 1974) , or it 

can be linear in which case the model is Takagi-Sugeno-Kang (TSK) model (Takagi and 

Sugeno, 1985). 

2.2.2 SRC Overview 

The developing of a SRC is an important matter of hydrology and river engineering. It is a 

defined as a mathematical relationship between the water discharge and sediment 

concentration data. Most of the time the SRC is of the type of a power equation as below  

                                                        𝑆𝑆𝐶 =  𝑎𝑄𝑏                                                               (1) 

                                         Or, 𝑙𝑜𝑔 𝑆𝑆𝐶 =  𝑙𝑜𝑔 𝑎 +  𝑏 𝑙𝑜𝑔 𝑄                                                (2) 

Where 𝑆𝑆𝐶 and 𝑄 stand for suspended sediment concentration (mg/L) and discharge 

(m3/s), respectively. In SRC method, the coefficients 𝑎 and 𝑏 are constants without physical 

significance (Kisi and Zounemat-Kermani, 2016); however, Morgan (2009) mentioned that 

a-coefficient is an erosion severity indicator and the higher the value the easy the material 

to be transported and the intensive they to be weathered. In the same regard, he stated that 

the b-coefficient represents the erosive power of a river, high values representing an 

increase in erosive power due to a slight increase in the river’s discharge. The relationship 

between these variables (𝑎 and 𝑏) and some river characteristics like grain size of sediment, 

river channel morphology, erodibility and the stream power of the river basin were also 

examined by other researchers (Morehead et al. 2003; Wang et al. 2008; Yang et al. 2007) 
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2.2.3 Application of Fuzzy Logic and Conventional Methods in 
Predicting Suspended Sediment Problem 

The conventional SRC method is a relation between the sediment and the river discharges. 

Regression analysis is generally used to create such a relationship, and the curves are 

usually presented in a power equation form (Kisi et al. 2006).  

Uncertainty in suspended sediment curves was examined by McBean and AI-Nassr (1988) 

and they concluded that the exercise of using sediment load versus discharge is misleading 

as the goodness of fit implied by this relation is spurious. As a recommendation, they 

suggested utilizing the regression between sediment concentration and discharge as an 

alternative. 

Lopes and Ffolliott (1993) mentioned that due to the hysteresis effect, the relationship 

between SSC and streamflow is further complicated. A power equation is generally utilized 

to represent sediment rating and its transformation since the conventional regression 

method is not able to capture the hysteresis effect.  

The rating relationship establishment process is basically a non-linear problem. The 

commonly used statistical measures in such cases are curve fitting and regression. 

However, due to the complexity of the phenomena, these methods are not able to provide 

sufficiently accurate results, and an improvement can be further applied. The fuzzy rule-

based (FRB) approach introduced by Zadeh (1965) is being widely utilized in different 

areas of science and technology. It is a qualitative modeling scheme and does not require 

an extensive previous knowledge of the phenomenon to be studied, it uses linguistic 

functions and the key idea of FRB is it allows something to be partly this and partly that 

instead of having it being all this or all that, and this degree of “belongingness” of that set 

or category can numerically range from 0 to 1.0 (O. Kisi et al. 2006). The applicability of 

the FRB approach has been demonstrated in water quality management field over the past 

two decades and the results generated much of enthusiasm.  In this regard Kisi et al. (2006) 

have employed fuzzy logic modeling approach to predict the SSC and have compared the 

results with those resulted from the SRC method. The study was done based on a 5-year 

period of continuous streamflow and SSC data of Quebrada Blanca Station operated by the 
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United States Geological Survey (USGS). Nine different fuzzy logic and two SRC models 

were compared and the results showed that those who obtained with the fuzzy logic 

modeling approach are of a higher accuracy than those which found using the conventional 

SRC method. These results confirm the ability of fuzzy logic approach to provide a superior 

alternative to the conventional SRC approach. Fuzzy model presented is site-specific and 

dose not simulate the hysteresis effect. 

2.3 ANN and Conventional Methods 

2.3.1 ANN Overview 

Artificial neural network (ANN) based model is a massive parallel distributed system for 

information processing inspired by a research on the nature of the biological structure of 

the human brain and the nervous system. This processing of the information is done by a 

number of interrelated neurons or nodes (Ghorbani et al. 2013). ANN is recognized as one 

of the most powerful technique of the Artificial Intelligence (AI) of which hydrologist used 

during the past two decades. It has helped many researches to control all types of data, and 

to capture different nonlinear phenomena with its capability of identifying and recognizing 

the complex interrelationships between inputs and outputs. The most common processing 

types used in prediction application of ANN is feed-forward back propagation neural 

network (Nagy et al. 2002). 

2.3.2 ANN Application in Estimating Suspended Sediments  

Artificial neural network (ANN) idea and its applicability to model various complex water-

resources problems have been widely accepted as an alternative solid modeling tool 

especially for prediction (Firat and Güngör, 2010). The ANN model maps the input to 

output without the need to identify the physics of the priori (Ghorbani et al. 2013). Some 

of the ANN application to hydrology include river flow estimation (H. K. Cigizoglu and 

Kisi, 2003; Dawson et al. 2002; Ö. Kisi, 2007), rainfall-runoff modeling (Jeong and Kim, 

2005; Srinivasulu and Jain, 2006), monthly precipitation forecasting (Aksoy and 

Dahamsheh, 2009), municipal water demand forecasting (Firat et al. 2009), sediment 

transport prediction (H. Cigizoglu and Alp, 2003; H. K. Cigizoglu, 2003). 
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Jain (2001) used the ANN approach to establish an integrated stage-discharge-sediment 

concentration relationship. The data of two gauging sites at Mississippi River was used to 

compare the performance of ANN and the conventional SRC. Study concluded that the 

ANN results are much closer to the observed values than the conventional technique.  

Nagy, Watanabe, and Hirano (2002) provided ANN model to estimate the natural sediment 

discharge in rivers in terms of sediment concentration, using Froude’s number, water top 

width ratio and Reynold’s number as inputs. The results of the ANN model were compared 

with the other conventional formulas and models, the study showed that ANN had the 

preference in prediction of sediment concentration over the other conventional methods, 

including the regression analysis. Cigizoglu and Alp (2003) developed a feed-forward back 

propagation three-layer learning ANN algorithm consisting of an input layer, hidden layer 

and an output layer to simulate the relationship between suspended sediment, precipitation 

and river flow by using hydro-meteorological data. The study showed significant 

improvement in forecasting suspended sediment values after adding the river flow values 

as an input along with the rainfall’s instead of having rainfall as an only input. The 

performance of the ANN models were better than the multi linear regression and the study 

suggested taking ANN as an important tool in the problem of forecasting the suspended 

sediment. Kisi (2004) established three different ANN modeling techniques, namely, 

multi-layer perceptron (MLP), generalized regression neural networks (GRNN) and radial 

basis function (RBF), using Levenberg-Marquardt algorithm to predict and estimate daily 

SSC at two stations on the Tongue River in Montana, USA. The study included various 

combinations of inputs to better predict the daily SSC, e.g. water discharges at both current 

and previous time steps, sediment concentrations at previous time steps at the station of 

interest, as well as data from the upstream station. The study concluded that the MLP 

method generally gives better SSC estimates over the other neural network techniques as 

well as the conventional statistical method (MLR). In 2007, Zhu, Lu, and Zhou used the 

approach of ANN to model the monthly suspended sediment flux, (i.e. SSC multiplied by 

the water discharge), from 1960 to 2011 in the Longchuanjiang River, the Upper Yangtze 

Catchment, China. Average rainfall, rainfall intensity, temperature and streamflow 

discharge were taken as input parameters for constructing the various models of the study. 

ANN was capable to give the best accuracy in predicting the monthly sediment flux among 
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two other conventional models, the MLR and power relation (PR) approaches. Utilizing 

precipitation, discharge, and antecedent sediment data from three major rivers of USA 

(Mississippi,  Missouri and Rio Grande) as inputs, Melesse et al. (2011) emphasized the 

same idea introduced by the previously mentioned studies that ANN ability in simulation 

and prediction of daily and weekly suspended sediment load are of a superior accuracy 

compared with the conventional MLR, multiple non-linear regression (MNLR) and 

autoregressive integrated moving average (ARIMA) models. Bayram et al. (2012) 

investigated the feasibility of using turbidity as an indication for SSC employing regression 

analysis (RA) and ANN techniques. Turbidity data collected between March 2009 and 

February 2010, from six monitoring stations along the stream Harsit’s main branch, Eastern 

Black Sea Basin, Turkey, was used in the study. ANNs were found to be providing 

acceptable results. Ghorbani et al. (2013) adopted the same concept of ANN and ANFIS 

modeling approaches in their study to examine the ability of the previously mentioned 

techniques in modeling the suspended sediment load using the daily river discharge data 

(1994 to 1995) of river Rio Chama, state of New Mexico and Colorado, USA. Their results 

showed that ANN is of a higher accuracy among all. 

2.4 ANFIS, ANN and Conventional Methods 

2.4.1 ANFIS Overview 

The adaptive neuro-fuzzy inference system (ANFIS) is a hybrid system first developed by 

Jang (1993). The ANFIS technique integrates both ANN and the fuzzy logic principles, 

using ANN learning ability to generate the fuzzy IF-THEN rules that have learning 

capability to approximate nonlinear functions, which in turn leads to the inference. While 

the ANN captures the fundamental dependency in the form of the trained connection 

weights, the ANFIS does so by establishing fuzzy language rules (Ghorbani et al. 2013). 

2.4.2 ANFIS and ANN Application in Estimating the Suspended 
Sediment Problem 

Many researchers and engineers adopted the concept of ANFIS to simulate and predict the 

problem of suspended sediment load in various rivers,  Kisi (2005) evaluated the ability of 

ANFIS and ANN to model the streamflow-suspended sediment relationship for the two 
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stations of Quebrada Blanca at Jagual and Rio Valenciano near Juncos operated by the US 

Geological Survey. Daily time series streamflow and suspended sediment concentrations 

data from the 1994 and 1995 water years were used to build the various models. SRC and 

MLR approaches were also applied in this study, however; the comparison showed a better 

performance of ANFIS model among the other techniques. In 2007, Lohani, Goel, and 

Bhatia developed stage-discharge-sediment concentration relationships using data from 

two gauging sites at River Narmada in central India. Fuzzy logic, ANN and SRC methods 

were used in the study. Fuzzy logic had superiority in performance comparing it with the 

other methods employed. However, ANFIS technique was not considered in their study. 

Using hydro meteorological data, Cobaner, Unal, and Kisi (2009) estimated current SSC 

by ANFIS and ANN approaches. They used different combinations of current daily 

rainfall, streamflow and past daily streamflow, suspended sediment from Mad River 

Catchment near Arcata, USA. the potential of ANFIS method was compared with those of 

the three different ANN techniques and two different SRC. The results revealed that 

ANFIS was able to provide better performance than the other techniques in predicting the 

current SSC. Rajaee et al. (2009) examined the ability of ANN, ANFIS, MLR and SRC 

models for simulation of SSC using daily river discharge and SSC data belonging to Little 

Black River and Salt River gauging stations in the USA. The results illustrated that ANFIS 

model presented better performance in SSC prediction in compression to other models. 

Results from the study conducted by Kisi et al. (2009) emphasized the superiority of 

ANFIS among ANN and SRC techniques in predicting monthly suspended sediment. The 

study used monthly streamflow and suspended sediment time series data belonging to 

Kuylus and Salur Koprusu, in Kizilirmak Basin in Turkey. Recently, two additional studies 

using ANFIS and ANN approaches were conducted to simulate the suspended sediment 

load in the River Dalaki, Iran by Rezaei and Fereydooni (2015) and Tahmoures, Nia, and 

Naghiloo (2015). Whereas the former study used different combination of sediment 

discharge and flow discharge data for the period between (1989-2009) to predict the 

monthly suspended sediment load, the latter used daily stream flow and rainfall SSC with 

various grouping orders for ten years (1998-2008) to estimate and forecast the SSC. 

However, both studies concluded that ANFIS approach was capable to give better results 

than other approaches including ANN.  
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2.5 Genetic Programming (GP)  

2.5.1 General Overview 

Genetic programming (GP) first developed by Koza (1992), is an evolutionary computation 

method that needs no prior knowledge about the shape or structure of the solution to 

automatically solve the problem. GP is a systematic, domain-independent technique 

causing computer programs to solve problems automatically giving it a high level 

statement of what is expected to be done (Poli et al. 2008). GP involves a repeated random 

search for solutions by exploring the existing space of computer programs – eliminating 

points that are below the average quality – by applying the principle of natural evolution 

such as crossover, mutation and reproduction to form a new generation of points. This 

process is repeatedly continuing until the best solution is reached. Unlike other programs 

which is usually expressed in the form of lines of codes, these programs are represented in 

a form of a syntax trees. The syntax tree consists of nodes and links, where the nodes 

represent the instructions – called the functions, and the leaves, which are the terminals, 

represent the independent variables and random constants. Five major steps for basic type 

of GP are required to be specified before the operation of GP. These include the 

determination of (i) the terminal set; (ii) the primitive functional set; (iii) the fitness 

measure; (iv) controlling the run parameters; and (v) the termination criterion and method 

of designating the result of the run (Burke and Kendall, 2005).  

Banzhaf et al. (1998) stated that the GP has a superiority over other soft computing 

techniques because of the following: it is used to examine, classify and integrate a large 

amount of data in computer readable form; it is used in conditions where small performance 

progresses are easily and regularly measured; when the correlation between the variables 

are poorly understood; when the available dataset is small; when it is hard to reach the 

ultimate result to the problem; and lastly, when conventional mathematical models cannot 

provide the required analytical solution. 

2.5.2 GP Approach in Sediment Modeling  

The GP technique has been swimmingly and extensively used as a hydrological modelling 

tool especially for estimating sediment yield. (Kizhisseri et al. 2006) employed GP 
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approach to explore a better interrelationship between the temporal pattern of fluid field 

and sediment transport, using two datasets of numerical model results and Sandy Duck 

field data. The results from the numerical models are encouraging though GP found hard 

to find correlation from the field data. The time series data sets between 1977 and 1981 of 

suspended sediment and daily stream flow from two stations on Tongue River in Montana, 

USA were used by Aytek and Kişi (2008) to investigate the ability of GP technique to 

model the discharge-suspended sediment relationship in compare with the other 

conventional methods. The results suggested that the GP approach may provide a superior 

alternative to the SRC and MLR techniques, and that the GP approach has more 

practicability to use than the other available modeling systems.  

The suitability of a GP in estimating sediment yield considering various meteorological 

and geographic features, including; river length, drainage density, yearly average rainfall, 

erodible area and watershed area of Arno River basin in Italy, which is disposed to frequent 

floods, was investigated by Garg (2011). The results of the study showed that GP can 

efficiently capture the trend of sediment yield, even with a limited set of data. In a study 

carried out by Kisi and Shiri (2012), using data sample consisted of 11 years of daily 

records of river discharge, precipitation, suspended sediment load and maximum, 

minimum and mean air temperatures, the accuracy of three different soft computing 

methods, ANN, ANFIS ,and Gene Expression Programming (GEP) were examined and 

compared to estimate daily SSC in the Eel River near Dos Rios, in California, USA. The 

comparison of the results indicated that GEP model performed better than the ANN and 

ANFIS model. Guven and Kişi (2011) modeled daily suspended sediment in the Tongue 

River in Montana, USA using GEP, ANN and Linear Genetic Programming (LGP) 

techniques. Using the same daily discharge and suspended sediment data of the study 

conducted by Aytek and Kişi (2008) mentioned above, the results showed that GEP has 

given better performance than ANN, however, LGP models were of a superiority among 

all other models. 

2.6 Other Modelling Techniques 

A comparative study between three different machine learning techniques, namely, ANN, 

ANFIS and coupled wavelet and neural network (WANN) and the conventional SRC 
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method to best estimate the daily suspended sediment load using stream discharge and 

suspended sediment load data obtained from two gauging stations of the Flathead River at 

Flathead British Columbia, Montana and Santa Clara River, California, was done by Olyaie 

et al. (2015). Results of the study showed that a superior performance of the WANN 

method amongst the other employed techniques. Sobieszczyk et al. (2015) from the USGS 

and US Department of Interior applied regression analysis and log10-transformed and 

untransformed data approaches to model SSC using continuous turbidity and (or) 

streamflow data recorded between October 2011 and September 2014 for Wilson and Trask 

Rivers, northwestern Oregon. Turbidity and streamflow were evaluated separately using 

simple linear regressions and together using multiple linear regressions. At the two sites, 

turbidity and streamflow were extremely interrelated, so simple linear regressions were 

chosen. Results show that turbidity can be used as surrogate for the SSC.  Shamaei and 

Kaedi (2016) introduced for the first time the stacking method, (i.e. a powerful machine 

learning technique associate results obtained from various predictive models using a meta-

model based on cross validation), to predict the suspended sediment using datasets from 

the two stations of Rio Valenciano and Quebrada Blanca, in the USA. Stacking method 

was found to be a great technique to greatly improve RMSE and R2 statistical measures if 

compared with the results of LGP, ANN and ANFIS found by Guven and Kişi (2011) and 

Kisi (2005) for the same stations. Adaptive neuro-fuzzy embedded fuzzy c-means 

clustering (ANFIS-FCM) approach to predict SSC was first employed by Kisi and 

Zounemat-Kermani (2016). Using daily discharge and SSC data from two stations, Muddy 

Creek near Vaughn and Muddy Creek at Vaughn, operated by the USGS three other 

different models were built, namely, ANN, ANFIS and SRC. All the four models were then 

compared with each other using different statistical measures to select the best simulative 

model. ANFIS-FCM model performed the best in estimating SSC. 

The present study is aiming to compare the accuracy of two different soft computing 

modelling techniques, i.e. ANFIS and ANN and three conventional methods of SRC, SLR 

and MLR in estimating the daily SSC using several statistical indicators including; RMSE, 

MAE and NSE. Different combinations of models were built based on the available weekly 

datasets of simultaneously measured SSC, stream discharge, water temperature and water 

electric conductivity for River Thames at Byron station, London, ON, Canada.  
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3.                            CHAPTER 3             
METHODOLOGY, AREA OF STUDY AND DATA 
COLLECTION 

3.1 Conventional Approaches 

This section presents the commonly used classical approaches that have been conducted 

by several researchers in the literature to simulate the suspended sediment concentration 

problem in numerous streams. 

3.1.1  Sediment Rating Curve  

Large numbers of hydrologists and engineers have used the rating-curve approach to 

estimate the suspended sediment concentrations due to the lack of labor force or automatic 

devices for frequent sampling, and laboratory analysis facilities to analyze various samples. 

The rating curve method basically relates the sediment concentration to the discharge in a 

form of a graph or equation. It can then be used to simulate the relationship between 𝑆𝑆𝐶 

and 𝑄 utilizing the documented streamflow and 𝑆𝑆𝐶 data.  

The first documented example on the use of the sediment rating curves approach is traced 

back to a study conducted by Campbell and Bauder (1940). They developed a silt rating 

curve by plotting daily suspended sediment load against daily stream discharge on 

logarithmic scale for the River Red in Texas, USA (Kisi et al. 2006).  

As it was mentioned in the section 2.2.2 of this study, the relationship between 𝑆𝑆𝐶 and 𝑄 

is usually represented as a power function (equation (1)). The values of the constants 𝑎 and 

𝑏, which are different and unique for every river, creek, tributary, and basically every water 

stream, can be obtained by plotting the relationship between 𝑙𝑜𝑔 𝑄 on the X-axis and 

𝑙𝑜𝑔 𝑆𝑆𝐶 on the Y-axis. From this linear relationship, gradient, i.e. slope of the line, 

represents b value, while log a is the y-intercept.  
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3.1.2  Linear Regression 

Linear regression is one of the basic types of regression and is the one which is widely used 

in the prediction analysis. Regression analysis in general is a statistical methodology 

aiming to find a functional relationship (model or equation) among dependent and 

independent variables. Regression can be univariate means that only one dependent 

variable is being studied, while it is called multivariate when dealing with two or more 

dependent variables. In the case of studying the 𝑆𝑆𝐶 in rivers, the study only dealing with 

one dependent variable which is always the 𝑆𝑆𝐶. By fitting a linear equation to the data, 

the univariate linear regression analysis attempts to model the relationship among 

variables. In the case where there is only one independent variable used to predict the 

response variable the regression called simple linear regression. When there is more than 

one independent variable, the system is called multiple linear regression and in this case 

the linear fitting is attempting by providing the effect on the dependent variable from a 

one-unit change in the corresponding independent variable, holding all other independent 

variables constant. The goal of linear regression is to adjust the values of slope and intercept 

to find the line that best predicts 𝑆𝑆𝐶 from 𝑄. More precisely, the goal of regression is to 

minimize the sum of the squares of the vertical distances of the points from the line. This 

can be achieved by the Least Squares Method. In linear regression to determine the best-

fitting straight line several assumptions are made in the calculation of inferential statistics; 

these assumptions are listed below: 

• The relationship between the variables is linear. 

• The variance around the regression line is the same for all the values of the 

independent variable (𝑄). 

• Normal distribution of the errors of predictions, i.e. the deviations from the 

regression line are normally distributed. 

• The residuals are not correlated with one another. 

• The residuals are not related to the independent variables. 

In this study Microsoft Excel 2016 MSO spreadsheet was used to model the regression 

part of the study. 
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  Simple Linear Regression (SLR) 

The simple linear regression is expressed by the following form the equation: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 휀                                                                                                             (3) 

Where:  

• Y = the dependent variable (output),  

• X = the independent variable (input),  

• β0 and β1 = the regression coefficients or regression parameters, and  

• ε = an error to account for the difference between the predicted data using Eq. (3) 

and measured data.  

The predicted value form of Eq. (3) is 

�̂� = �̂�0 + �̂�1𝑋                                                                                                                    (4) 

Where: 

• �̂� “read Y hat” = the fitted or predicted value, and 

• �̂� = estimates of the regression coefficients.  

The regression coefficient in this case can be found after plotting the linear relationship 

between 𝑆𝑆𝐶 and 𝑄. Values of �̂�0 and �̂�1correspond to the Y-intercept and the slope of that 

fitted-line, respectively. 

  Multiple Linear Regression (MLR) 

The multiple linear regression, or univariate multiple regression, is the generalization of 

the simple linear regression model. The model in multiple linear regression includes more 

than one input variable. So if it is believed that the dependent variable Y is effected by n 
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number of independent variables X1, X2, …, Xn, then the regression equation of Y can be 

represented as: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑛𝑋𝑛 + 휀                                                                        (5) 

Where: 

• Y = the dependent variable (output),  

• X1, X2, …, Xn = the independent variables (inputs) with n number of observations,  

• β0, β1, …, βn = the regression coefficients or regression parameters, and  

• ε = an error to account for the difference between the predicted data. The predicted 

value form of Eq. (5) is 

�̂� = �̂�0 + �̂�1𝑋1 + �̂�2𝑋2 + ⋯ +  �̂�𝑛𝑋𝑛                                                                               (6)  

Where: 

• �̂� = the predicted value of the variable Y when the independent variables are 

represented by the values X1, X2, …, Xn.  

The estimated regression coefficients β0, β1, …, βn are evaluated similar to SLR by 

minimizing the sum of the eyi distances of observation points from the plane expressed by 

the regression equation, as follows; 

                        ∑ 𝑒𝑦𝑖
2

𝑛

𝑖=1

= ∑(𝑌1̂ − �̂�0

𝑛

𝑖=1

− �̂�1𝑋1𝑖 − �̂�2𝑋2𝑖 − ⋯ −  �̂�𝑛𝑋𝑛𝑖)
2                               (7) 

 In this study values of β0, β1, …, βn are determined using the Microsoft Excel 2016 

spreadsheet 

3.2 Machine Learning Approaches 

This section shows the two most widely used artificial intelligence approaches which have 

been utilized by many scientists and researchers in the literature to simulate the suspended 
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sediment concentration problem in numerous streams. It is worthy to note that these two 

machine learning techniques have been used in this study. 

3.2.1  Artificial Neural Networks  

Artificial Neural networks (ANN) are kind of statistical modelling approaches designed 

basically to mimic the human brain in its ability to arbitrate inputs and eventually reach to 

conclusion(s). These networks are designed to learn from the provided data “training sets” 

and then estimate the parameters of some populations. Applications of neural networks can 

be found in data modeling, system optimization and statistical analysis. Fields like 

econometrics, engineering, psychology and physics use neural networks as the statistical 

tools (Lewis-Beck et al., 2004). ANN is one of the most significant strengths of the 

Artificial Intelligence (AI) techniques that hydrologists used in the last couple decades, 

which helped researchers to handle all data types, and predict different nonlinear 

phenomena. 

ANN power lays deep in its ability to approximate arbitrary continuous functions between 

the input(s) and output(s) based on a set of given examples. This ability is gained during 

the stage of training or sometimes called learning. As this ability is obtained, they are 

known as truly adaptive systems, which do not require any previous knowledge about the 

nature of relationships between parameters (Afaghi et al., 2001) 

The structure of the ANN consists of simple units called neurons. In a network, neurons 

are connected through weighted connections. Learning process inside the network is 

achieved throughout adjusting those weights (Lipták, 2002). Networks are usually arranged 

in the form of layers (columns or rows) where the first layer represents the input and the 

last one corresponds to the output. Intermediate layers in between input and output layers 

are known as hidden layers. therefore, the very basic form of the ANN is where the input 

is processed to predict the output, single-layer or multi-layer network. 

Analyzing data process starts with feeding inputs to the first layer neurons and then further 

modification is conducted by propagation of data to the neurons of the second layer. Then 

results are transferred to the next layer and so on until they reach the output layer. The 
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objective of ANN is to learn by training and to eventually determine a logical connection 

between input and output patterns, or to analyze, or to find the structure of the input 

patterns. When a network is fed with data, network training achieved through the 

modification of the connection weights between units. This process is similar to 

interpreting the value of the connections between units as parameters from statistical point 

of view. The training process identifies the “algorithm” used to find these parameters 

(Lewis-Beck et al., 2004) 

  ANN Structure 

Neural network is a black box approach in which the input variables are processed to 

generate outputs. Generally, the neural network composed of three main components, 

called layers, as shown in Figure 3-1, and known as follows: 

i. Input Layer 

This layer is responsible for receiving information from an external source. The 

input layer consists of neurons equal to the number of inputs. Inputs could be 

measured data from an external environment or signals from sensory systems which 

passes through the network during the data processing phase. 

ii. Hidden or Intermediate Layers 

These layers do not receive data from the outside environment as it is the case for 

the input layer and it is only connected to the layers within the network. Neurons 

of these layers hiddenly perform most of the internal processing work and are 

responsible for acquiring patterns associated with the process or network being 

analyzed. Number of neurons in these layers are variable and is set during the 

writing algorithm phase. 

iii. Output Layer 

Number of neurons in this layer is the same as for those of the system output. This 

layer is responsible for producing and presenting the final outputs network that 

resulted from neurons of the previously processed layers.  
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Figure 3-1 Example of simple artificial neural network (Krenker et al. 2011) 

  Artificial Neuron 

Artificial neuron is the main elementary unit of any artificial neural network. It is designed 

to resemble the structure and the function of a biological neuron which is a biological 

neural network’s key building block that includes; the brain, spinal cord and peripheral 

ganglia. Equivalence in structural composition and functionalities are shown in Figure 3-3 

and Figure 3-3 where Figure 3-2 represents the biological neuron including its components 

(dendrites, nucleus, axon, …) while Figure 3-3 represents the artificial neuron including 

inputs, weights, activation (transfer) function, bias and outputs  

 

Figure 3-2 Biological Neuron Design (https://askabiologist.asu.edu/neuron-anatomy) 
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Figure 3-3 Artificial Neuron Design (Haykin, 2008) 

For the biological neuron case, the information is received by neurons through dendrite, 

then the cell body, namely soma processes the information and transfers it on via axon. 

Where in the case of the artificial neuron the information is received by the artificial 

neuron’s body by inputs that are then weighted (individually multiplied with a weight) then 

the body sums up the weighted inputs and bias and then processes the sum with the 

activation function also known as transfer function. At the final phase, the artificial neuron 

runs the processed information via output(s). The simple form of a mathematical 

representation for an artificial neuron can be denoted as follows: 

                                       𝑦(𝑘) = 𝐹 (∑ 𝑤𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏

𝑛

𝑖=1

)                                                       (7) 

Where: 

• 𝑥𝑖(𝑘) = input value in discrete time 𝑘 where 𝑖 goes from 0 to 𝑚, 

• 𝑤𝑖(𝑘)= weight value in discrete time 𝑘 where 𝑖 goes from 0 to 𝑚, 

• 𝑏 = bias, 

• 𝐹 = a transfer function, 

• 𝑦𝑖(𝑘) = output value in discrete time 𝑘. 
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For this equation, the main unknown variable is the transfer function. Transfer function 

outlines the properties of the artificial neuron. Generally, the various set of functions that 

the transfer function can be chosen out of are described below: 

• Step function 

It is a binary function where the output can have only two probable values, either zero 

or one for instance as illustrated in Figure 3-4. That if the input value for a specific 

threshold was met then the resulted output can be in one value and the resulted output 

will be different if the input value for that specific threshold was not met. This type of 

transfer function when used in artificial neuron then this neuron is called perceptron. 

This function can be mathematically defined with the following equation: 

                                         𝑦 = {
1 𝑖𝑓 𝑤𝑖𝑥𝑖  ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑖𝑓 𝑤𝑖𝑥𝑖  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

                                                             (8) 

 

 

 

 

 

Figure 3-4 Step transfer function 

• Linear function  

In this case as shown in Figure 3-5, the artificial neuron is applying the simple linear 

transformation over the sum of weighted inputs and bias. This function is mostly used 

in the input layer of the artificial network. 

 

 

 

 

 

    𝑦 = {
1 𝑖𝑓 𝑤𝑖𝑥𝑖  ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑖𝑓 𝑤𝑖𝑥𝑖  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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Figure 3-5 Linear (Purelin) transfer function 

The neuron’s output is calculated using the simple equation taking the following form: 

                                                         𝑎(𝑛) =  𝛼 𝑥                                                            (9) 

• Non-linear function 

The most well-known type of non-linear functions is the sigmoid function which 

produces an “S” shape function. While the perceptron outputs discrete 0 or 1, the 

sigmoid neuron outputs a more smooth or continuous range between 0 and 1. The most 

two well-known classes of the sigmoid function are: 

i. Log-sigmoid Transfer Function (LOGSIG) 

This type of transfer function (shown in Figure 3-6) takes the input (that 

could have any value falls in the range between plus and minus infinity) and 

limits the output into the range of 0 to 1. Since this function is differentiable, 

it is most commonly used in multilayer networks that are trained using the 

backpropagation algorithm (da Silva et al. 2017). 

 

 

 

 

 

 

 

Figure 3-6 Log-Sigmoid transfer function 

𝑎 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) 

𝑎 = 𝐿𝑜𝑔𝑠𝑖𝑔(𝑛) =  
1

1 + 𝑒−𝑛
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ii. Hyperbolic Tangent Transfer Function (TANSIG) 

The output of this type of a function ranges from -1 to +1, as it can be seen 

in the Figure 3-7. 

 

 

 

 

 

 

 

Figure 3-7 Tan-Sigmoid transfer function 

  Composition of ANN 

The artificial neural network is a result of combining two or more artificial neurons. Unlike 

the single artificial neuron which has nearly no importance in case of solving a real-life 

problem, the artificial neural network has the capability to solve it. Moreover, the artificial 

neural networks have also the ability to solve complicated real-life problems through their 

powerful processing ability of the information in their artificial neurons in a non-linear, 

distributed, parallel and local way.    

The topology (architecture) of the artificial neural network is the way of how single 

neurons are connected to each other. This interconnection can be performed in several ways 

which lead to different potential topologies. Predominately, these numerous possible 

topologies are categorized into two basic classes, namely, feed-forward topology in which 

the information transforms from inputs to outputs in one direction only, and recurrent 

topology in which some of the information can transform to the opposite direction as well 

and not limited to only one direction.  Figure 3-8 illustrate the difference between the main 

two topologies, the left side represents the feed-forward neural network type of topology 

while the right-hand side one shows the recurrent neural network. 

𝑎 = 𝑇𝑎𝑛𝑠𝑖𝑔(𝑛) =
2 

1 + 𝑒−2𝑛
− 1 
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Figure 3-8 Feed-forward (FNN) and recurrent (RNN) topologies of ANN (Krenker et al. 

2011) 

Choosing and building topology of an artificial neural network is only half of the task 

towards using it in solving any given problem. Similar to the biological neural networks 

and how they need to process given inputs to give a fit response, the artificial neural 

networks go through the similar procedure. To achieve such a task, the modeler has to learn 

the artificial neural network using one of the following learning algorithms; supervised, 

un-supervised or reinforcement learning.  

  Feed-forward Artificial Neural Networks 

In this type of topology, the information always flows in a single direction (unidirectional) 

from input to output and has no back-loops. No restrictions on number of layers or the 

transfer function type used in single artificial neural or the number of connections among 

the individual artificial neurons. For the purpose of analytical description, the simple multi-

layer feed-forward artificial neural network is shown in the Figure 3-9 and is represented 

by the following equations: 

𝑛1 = 𝐹1(𝑤1𝑥1 + 𝑏1) 

                                                       𝑛2 = 𝐹2(𝑤2𝑥2 + 𝑏2)                                               (10) 

𝑛3 = 𝐹3(𝑤3𝑥3 + 𝑏3) 

𝑛4 = 𝐹4(𝑤4𝑥4 + 𝑏4) 
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𝑚1 = 𝐹4(𝑞1𝑛1 + 𝑞2𝑛2 + 𝑏4) 

𝑚2 = 𝐹5(𝑞3𝑛3 + 𝑞4𝑛4 + 𝑏5) 

(11) 

𝑦 = 𝐹6(𝑟1𝑚1 + 𝑟2𝑚2 + 𝑏6) 

𝑦 = (
𝑟1(𝐹4[𝑞1𝐹1(𝑤1𝑥1 + 𝑏1) + 𝑞2𝐹2(𝑤2𝑥2 + 𝑏2)] + 𝑏4) +  …

… +  𝑟2(𝐹5[𝑞3𝐹2(𝑤2𝑥2 + 𝑏2) + 𝑞4𝐹3(𝑤3𝑥3 + 𝑏3)] + 𝑏5) + 𝑏6
)                           (12) 

As seen in Figure 3-9 and the corresponding analytical representation with the set of 

equations (10), (11), and (12) the simple feed-forward artificial neural network would lead 

to a long mathematical equation making its solving by hand is impractical. Despite that for 

any given complex artificial neural network, the mathematical representation can be used, 

however; computers and technical software (MATLAB r2016b was used in this study) are 

used to assist in building and optimizing any type of artificial neural network. 

 

Figure 3-9 Multi-layer feed-forward artificial neural network (Krenker et al. 2011) 

   Recurrent Artificial Neural Networks 

An artificial neural network with the recurrent topology has the same concept of the feed-

forward type topology with no restrictions in regards with the back-looping procedure. For 

this the input information is no longer transferred only in a unidirectional way but it is also 
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transmitted backwards. In other words, the outputs of the neurons are used as a feedback 

inputs for other neurons, this gives this type of networks the dynamic feature, meaning that 

they can be applied on time-series systems. The most basic topology of the recurrent 

artificial neural network is the fully recurrent artificial network shown below in Figure 

3-10, however; there are other special cases of the recurrent artificial networks such as 

Hopfield, Elman, Jordan and bi-directional.  

 

Figure 3-10 Fully recurrent artificial neural network (Krenker et al. 2011) 

  Learning Models 

As discussed in the section 3.2.2.3 of this chapter that there are three main learning patterns, 

namely; supervised learning, unsupervised learning and reinforcement learning. Every 

single learning model has many training algorithms, and all can be applied by any given 

type of artificial neural network. 

i. Supervised Learning 

It is documented that Donald Hebb proposed the first supervised leaning strategy inspired 

by neurophysiological observations (Hebb, 1949) 

The desired outputs for a given set of input variable(s) must be available for this type of 

leaning approach; in other words, each training sample is composed of the input variables 

and their corresponding outputs. Therefore, the supervised learning strategy necessitates a 
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table of input and output data. The neural structure therefore will be learning from these 

given set of data. This is then limits the application of this learning method to be depended 

only on the availability of that input/output table, and the network will therefore respond 

to what it learned to be correct from the fed set of “teaching” data.  

The weights and bias (thresholds) of the network are in a continuous adjustment by 

applying the comparative actions, accomplished by the learning algorithmic rules, thus the 

difference between calculated and measured data is always under supervision of the 

modeler. The network is given the title “trained” when the difference between calculated 

and measured data is within a satisfactory range. It is noteworthy to mention, that this is 

the type of learning approach was considered in this study. 

ii. Unsupervised Learning 

Contrary to the supervised learning approach, the application of an algorithm based on 

unsupervised learning technique does not need any prior information in regards with the 

targeted outputs. The application of unsupervised learning is commonly seen in the 

problems of assessment, such as statistical modelling, compression, filtering, blind source 

separation and clustering. In this type of learning the concern is to find how data is 

organized. Only unlabeled examples are given to the artificial neural network with 

unsupervised learning type and this is the key difference between it and the supervised 

learning and reinforcement learning. One of the most common forms of unsupervised 

learning is clustering that aims to categorize data in different clusters based on their 

similarity.  

iii. Reinforcement Learning  

Reinforcement learning is a type of a machine learning approach where parameters of an 

artificial neural network are set.  This case is useful where data is not given so it will be 

generated by interactions with the environment. Reinforcement learning is often utilized as 

a part of the artificial neural network’s overall learning algorithm. 

Models built utilizing the reinforcement learning are considered to be similar to a certain 

degree to those using supervised learning approach, because both continuously examine 
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the difference between the network’s response and the desired output (da Silva et al. 2017). 

The internal neural elements are modified by the learning algorithm used on the 

reinforcement learning depending on whatever quantitative or qualitative data derived by 

the interaction with the environment being assessed. The performance evaluation can 

therefore be determined using this acquired information.  

  Back Propagation Training Algorithm 

The back-propagation of errors technique is one of the most popular artificial neural 

network’s algorithms. To train a network using this algorithm, generally two phases must 

take place; first phase, namely, “forward phase”, happens when the inputs are presented 

and propagated forward through the network to calculate the output for every processing 

element. However, in the second stage, also known as “backward phase”, the recurrent 

difference calculation (of the forward phase) is performed in a backward direction. The 

algorithm will stop training when the error value of the error function become adequately 

insignificant. 

Rojas (2005) claimed that the back-propagation algorithm could be broken down into four 

main steps. Next after selecting the weights of the network randomly, the needed 

corrections are then calculated using the back-propagation algorithm. The four main steps 

forming the algorithm are as follows: 

i. Feed-forward computation; 

ii. Backpropagation to the output layer; 

iii. Backpropagation to the hidden layer; 

iv. Weight updates. 

This technique is basically a gradient descent method to process the total squared error of 

the output calculated by the net and make it negligible (minimum). Back-propagation is a 

systematic method for training multiple artificial systems. Back-error propagation is the 

most broadly used of the neural network models and has been applied successfully in 
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applications in a wide range of areas. Back-propagation network consists of layers, each 

layer entirely linked to the layers underneath and above as shown in Figure 3-11.  

In back-propagation algorithm, same as every other type of algorithms, middle and output 

layers use activation functions. Typically, sigmoid activation functions are among the most 

used; where the output of the network will be between 0 and 1. However; Gaussian 

distribution can be used as an activation function as well. After this process computed 

output value compared with the expected output value and the distance between them are 

taken as an error to back propagate, and that is why it is called back-propagation. The 

predetermined error function is: 

                                                               𝐸 = ∑(𝑡𝑛 − 𝑧𝑛)2                                                     (10)   

𝑁

𝑛=1

 

Where: 

• 𝐸 = the total error, and 

• 𝑡 and 𝑧 = the calculated and measured outputs for the input 𝑛, respectively.  

The back-propagation system takes the following form: 

The derivative of the error with respect to the weight connecting i to j is; 

                                                                
𝜕𝐸

𝜕𝑊𝑖𝑗
= 𝛿𝑗𝑦𝑖                                                                    (11) 

To change weight (W) from unit i to unit j by;  

                                                                ∆𝑊𝑖𝑗 = −𝜂𝛿𝑗𝑦𝑖                                                             (12) 

Where: 

• η = the learning rate (η > 0), 

•  𝛿𝑗 = the error for unit j, and 

• 𝑦𝑖 = the input for unit i. 
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Figure 3-11 Architecture of MLP feed-forward ANN (Nastos et al. 2011) 

Every middle layer node employs an activation function. In this back-propagation process, 

a sigmoid (LOG type) function can will be used because sigmoid function can easily be 

calculated and differentiated. 

                                                          𝑦 = 𝑓(𝑎) =
1

1 + 𝑒−𝑎
                                                         (13) 

Derivative of Eq.(14); 

                                                         𝑓′(𝑎) = 𝑓(𝑎)(1 − 𝑓(𝑎))                                                    (14) 

Each input variable is computed in a weighted form; 

                                                               𝑦(𝑥) = 𝑤𝑇 𝑓(𝑥)                                                            (15) 

It is necessary to calculate the error term for both output and middle units as follows;  
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For input units 

                                                              𝛿𝑘 = (𝑦𝑘 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)                                                       (16) 

For hidden units 

                                                         𝛿𝑗 = 𝑦𝑗(1 − 𝑦𝑗) ∑ 𝑊𝑖𝑗𝛿𝑘

𝑘

                                                (17) 

Then to minimize the error, new weight values are driven in the opposite direction. The 

learning rate determines the amount of update in the specified direction. It is noteworthy 

that this method is the one employed in this study. 

3.2.2   Adaptive Neuro-Fuzzy Inference System 

A neuro-fuzzy technique called Adaptive network based fuzzy inference system or 

semantically equivalent to adaptive neuro fuzzy inference system (ANFIS) (J.-S. R. Jang 

& Sun, 1995; J. R. Jang et al. 1997) has been used as a modeling tool in the present study. 

ANFIS may also refer to Adaptive network based fuzzy inference system, and it is a neuro 

fuzzy technique where the fusion is made between the neural network and the fuzzy 

inference system. In ANFIS the parameters can be estimated in such a way that both the 

Sugeno and Tsukamoto fuzzy models are represented by the ANFIS architecture (J. R. Jang 

et al., 1997). ANFIS technique comprises of a hybrid system of fuzzy logic and neural 

network technique in order to have better results for systems possessing nonlinear behavior. 

The fuzzy logic takes into account the imprecision and uncertainty of the system that is 

being modeled while the neural network gives it a sense of adaptability. Using this hybrid 

method, at first an initial fuzzy model along with its input variables are derived with the 

help of the rules extracted from the input output data of the system that is being modeled. 

Next the neural network is used to fine tune the rules of the initial fuzzy model to produce 

the final ANFIS model of the system. 

  Fuzzy Inference system 

The adaptive neuro-fuzzy system can be defined as a fuzzy inference system (FIS) 

equipped with a training algorithm (Bentaher & Elmazoghi, 2013).  Suparta and Alhasa 

(2016) stated that a FIS was built on three core units; (i) IF-THEN fuzzy rule base, (ii) 
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membership functions to be used in the fuzzy rules and (iii) reasoning fuzzy inference 

techniques from basic rules to get the output. Comprehensive architecture of the FIS is 

illustrated in Figure 3-12. The inputs will be fuzzified from actual values using the 

fuzzification process based on each one’s membership function, where the fuzzy value 

ranges between 0 and 1. Basic rules (rule-base) and databases are usually known as 

knowledge base, and that both of them are main components in the decision-making 

process.  

 

Figure 3-12 Architecture components of a fuzzy inference system 

Database unit typically contains information on fuzzy sets parameter along with a function 

that outlines each existing linguistic variable. While developing the database unit, number 

of the linguistic values to represent each corresponding linguistic term is determined, the 

membership function is established in this phase too. Rule base includes fuzzy logic 

operators and IF-THEN conditional statements, it is generated either by the modeler 

(human) or automatically from the environment. There are several types of FIS, including 

Takagi-Sugeno, Mamdani and Tsukamoto. However; Takagi-Sugeno model is found to be 

the one widely used in the application of ANFIS technique (Suparta & Alhasa, 2016). 

  Adaptive Network 

Adaptive network is a feedforward neural network with multiple layers as shown in Figure 

3-13. It uses the supervised learning algorithm for the learning process. Moreover, the 

adaptive network consists of various adaptive nodes connected directly without any weight 
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value in-between them. The output is then dependable on the signals and parameters of 

each node, and those nodes have different purposes and task. 

 

Figure 3-13 Architecture of an adaptive network 

  ANFIS Structure 

The structure of the ANFIS could be simply described as an adaptive network that uses 

type supervised learning as a learning algorithm and has a function similar to the model of 

Takagi-Sugeno fuzzy inference system. In other words, ANFIS is a hybrid system 

integrating the learning capabilities of ANN and knowledge representation and inference 

abilities of fuzzy logic that could self modify their membership function to achieve a 

desired performance. The structure of fuzzy reasoning mechanism for Takagi-Sugeno 

model is shown in the Figure 3-14, and the corresponding ANFIS scheme is illustrated in 

Figure 3-15. It is assumed that the system has two inputs x and y, and one output f. IF-

THEN rules are two rules for the Takagi-Sugeno model, as follows: 

Rule 1 = If x is A1 and y is B1 Then f1=p1x+q1x+r1 

Rule 2 = If x is A2 and y is B2 Then f2=p2x+q2x+r2 

Where: 

• A1, A2 and B1, B2 = the membership functions of inputs x and y, and 

• p1, q1, r1 and p2, q2, r2 = linear parameters of Takagi-Sugeno fuzzy inference model. 
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The corresponding ANFIS architecture shown in Figure 3-15 appears to have five layers. 

Layer no.1 and layer no. 4 contain adaptive nodes (rectangular), whereas the rest contain 

fixed nodes (circular).  J. R. Jang et al. (1997) provided a brief explanation of each layer 

as follows: 

 

Figure 3-14 Reasoning from a two-input first-order Sugeno fuzzy model with two rule 

(Foroozesh et al. 2013) 

 

Figure 3-15 ANFIS architecture corresponding to Figure 3-13 (Foroozesh et al., 2013) 

 

Layer 1: Every node i in this layer is an adaptive node with a node function. The degree 

of membership value which is given by the input of the membership functions can be 

derived from the output from each node. For instance, the membership function can be 

Gaussian or generalized bell membership function (Eq. 19) and (Eq. 20), respectively. Note 

that there are several other types of the membership function, including but not limited to; 
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triangular membership function, trapezoidal membership function, Pi-shaped curve 

membership function and sigmoid curve membership function. 

 

                                         𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 [− (
𝑥 − 𝑐𝑖

2𝑎𝑖
)

2

]                                                             (18) 

                                          𝜇𝐴𝑖(𝑥) =
1

1 + |
𝑥 − 𝑐𝑖

𝑎𝑖
|

2𝑏                                                                    (19) 

                                                𝑂1,𝑖 =  𝜇𝐴𝑖(𝑥),          𝑖 = 1, 2                                                   (20) 

                                                   𝑂1,𝑖 =  𝜇𝐵𝑖−2(𝑦),    𝑖 = 3, 4                                                  (21)  

Where: 

• 𝜇𝐴𝑖 and 𝜇𝐵𝑖−2 = the degree of membership functions for the fuzzy sets Ai and Bi, 

respectively, and  

• (𝑎𝑖, 𝑏𝒊, 𝑐𝒊) are the parameters of a membership function that can change the shape 

of the membership function. The parameters in this layer are typically referred to 

as the premise parameters. 

Layer 2: Nodes in this layer are fixed (non-adaptive), and the circle node is marked as Π. 

The output node is the result of multiplying of signal coming into the node and delivered 

to the next node. Each node in this layer represents the firing strength for each rule. In the 

second layer, the T-norm operator with general performance, such as the AND, is applied 

to obtain the output. 

                                                  𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∗  𝜇𝐵𝑖(𝑦),    𝑖 = 1, 2                             (22)  

 

Where: 

• 𝑤𝑖= the output that represents the firing strength of each rule. 

Layer 3: Nodes in this layer are fixed (non-adaptive), and the circle node is marked as N. 

Each node is a calculation of the ratio between the i-th rules firing strength and the sum of 

all rules’ firing strengths. This result is known as the normalized firing strength. 
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                                                   𝑂3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
,    𝑖 = 1, 2                                         (23) 

Layer 4: Every node in this layer is an adaptive node to an output, with a node function 

defined as 

                                            𝑂4,𝑖 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                             (24) 

Where: 

• �̅�𝑖 = the normalized firing strength from the previous layer (third layer), and 

• (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) = a parameter in the node. The parameters in this layer are 

referred to as consequent parameters. 

Layer 5: The single node in this layer is a fixed or non-adaptive node that computes the 

overall output as the summation of all incoming signals from the previous node. In this 

layer, a circle node is labeled as Σ. 

                                              𝑂5,𝑖 = ∑ �̅�𝑖𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
                                                        (25) 

  ANFIS Hybrid Learning Algorithm 

Hybrid learning algorithm is briefly discussed in this subsection. The learning algorithm 

uses two-passes learning cycle; forward pass and backward pass. During the forward pass 

(forward path), the parameters of the premises in the first layer should be fixed and the 

recursive least square estimator (RLSE) method is applied to modify the consequent 

parameter of the fourth layer. Hence the consequent parameters are linear, therefore the 

RSLE scheme could be utilized to fast process the convergence rate in hybrid learning 

technique. Subsequently, after obtaining the consequent parameters, passing back process 

of the input data to the adaptive network input unit takes place to generate a new output 

which will be compared with the measured ones.  

Where in the backward pass step, the consequent parameters are set to a steady state. 

Backpropagation of the error that resulted from the comparison between the actual and 

computed outputs is generated to the first layer. At the same time, premises parameters in 
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the first layer are updated using gradient descent or back-propagation learning systems. 

One level of hybrid learning is named epochs. It is noteworthy to mention that this is the 

learning method used to train various FIS models. A summary of the ANFIS hybrid 

learning procedure is described in Table 3-1. 

Table 3-1 ANFIS hybrid learning process 

 Forward Pass Backward Pass 

Premise parameters Fixed Gradient descent 

Consequent parameters recursive least square estimator Fixed 

Signals Node output Error rate 

3.2.3   Study Area and Datasets 

The study area, shown in Figure 3-16, comprises the watershed of River-Bend that is one 

of the 28 Upper Thames River basin’s watersheds. Its total area is 5830 ha, approximately 

58 km², and is located at the most downstream of the Upper Thames River basin that covers 

an area of 3362 km², so all water coming from the upstream watersheds passes through this 

area. The watershed is located within three municipalities; London (50%, 29 sq. km), 

Middlesex Centre (31%, 18 sq. km), Strathroy-Caradoc (19%, 11 sq. km) and it includes 

nine significant natural sites; four provincially significant wetlands and five significant 

natural areas. It also contains four other watercourses besides the Thames, namely; Van 

Hecke, GM Ireland, Kelly, and Stanton.  

  Soil Type and Land Use 

Agricultural activities form 44% of the total land use activities of the area, while urban 

activities compose 27%, others of 25% natural, 3% water and less than 1% aggregates 

shape the entire land use of the watershed. The watershed soil type can be broken down 

into the following categories: 

i. 25% not mapped (urban); 

ii. 21% silty loam; 

iii. 15% bottomland; 

iv. 13% coarse sand; 
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v. 9% loamy fine sand; 

vi. 6% silty clay loam; 

vii. 6% clay loam; 

viii. 5% sandy loam. 

Total of 6% of the entire watershed land is considered to be highly erodible, that means it 

could potentially contribute more than 7 tonnes/ha/year of soil to the watercourse (UTRCA, 

2012). 

Total area of the vegetation cover is approximately of about 1483 ha, forming about the 

one fourth of the total area of the watershed. Almost half of which is of a deciduous type, 

27% is mixed and 4% is coniferous. 

  Streamflow and Water Quality 

The annual 5-year (2006-2010) mean annual flow reported to be 46.1 cubic meter per 

second, while on a scale of 15-year the mean annual flow was 41.8 m3/sec when measured 

near Byron area, denoted as “Water Quality Monitoring Site” on Figure 3-16. The River 

Bend watershed has a total length of 76 km of watercourses, 81% of which is natural the 

rest is either buried or channelized. The flow type in the watershed is 66% permanent, 

about one fifth of the total flow is intermittent and nearly 13% is of the buried type. 
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Figure 3-16 Upper Thames River Basin (on the left-had side) and River Bend 

Subwatershed, the research area of study (UTRCA, 2012) 

River Bend watershed is the most downstream section of the Upper Thames River and its 

water quality is influenced by land uses and activities in this watershed and throughout the 

Upper Thames watershed. Four sewage treatment plants discharge treated effluent to the 

Thames in this watershed including London’s Oxford Pollution Control Plant, Kilworth 

Legend

Municipal Boundaries

River Bend Watershed

Legend

Municipal Boundaries

Water

Woodland / Forest

Meadow, Shrub, Young Plantation

Open Watercourse

Buried Watercourse

Water Quality Monitoring Site

Significant Natural Site



47 

 

Heights Wastewater Treatment Plant (WWTP), Komoka WWTP, and Mount Brydges 

WWTP.  This watershed also has Springbank Dam, which marks the upstream end of this 

watershed as well as 24 privately-owned barriers. However; samples taken at Byron water 

quality station shows that the river’s water quality in this watershed is in improving, for 

instance, phosphorus levels at the outlet have improved since 1990 and have remained 

steady since 2005 (UTRCA, 2012).  

  Fisheries and Great Lakes Connection  

The River Bend watershed is one of the Thames River watersheds, which is a part of the 

Lake Erie watershed. It takes 4 to 10 days for the water to reach Lake St. Clair and another 

two weeks approximately to arrive at Lake Erie. Lake Erie is a drinking water source for 

millions of people from Canada and the US.  

River Bend watershed is recorded to be a habitat of different 54 fish species and more than 

20 mussel species. More than a few species out of those are categorized as species at risk, 

so this study is crucial in conserving the suitable habitat for these fish types to survive, 

water quality concerns are a big part too (UTRCA, 2012). 

   Dataset for River Bend Watershed 

Dataset used in this study, for tainting and testing purposes, were obtained from the water 

quality monitoring site at Byron (Latitude: 42°57'46.9" and Longitude: 81°19'54.9"W). 

Almost weekly time series data of river discharge (𝑄), water temperature (𝑇), electrical 

conductivity (𝐶) and suspended sediment concentration (SSC) from 1993 to 2016 were 

employed to develop various training and testing models. These data were downloaded 

from the web server of the City of London 

(https://www.london.ca/residents/Environment/Rivers-Creeks/Pages/Water-

Quality.aspx). Simultaneous datasets of 𝑄, 𝑇, 𝐶 and 𝑆𝑆𝐶 were recorded during that period. 

Appendix A shows the raw data used in this study. Separate scatter plots of time versus 

raw datasets of river discharge in (m3/s), suspended sediment concentration (mg/l) and 

electric conductivity (μS/cm) are illustrated in the Figure 3-17, Figure 3-18 and Figure 

3-19, respectively.  

https://www.london.ca/residents/Environment/Rivers-Creeks/Pages/Water-Quality.aspx
https://www.london.ca/residents/Environment/Rivers-Creeks/Pages/Water-Quality.aspx
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Figure 3-17 Scatter plot of the raw river discharge (m3/s) data over the period between 

1993-2016 

 

Figure 3-18 Scatter plot of the raw suspended sediment concentration (mg/l) data over the 

period between 1993-2016 

 

Figure 3-19 Scatter plot of the raw electric conductivity (μS/cm) data over the period 

between 1993-2016 
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Figure 3-20 Scatter plot of the raw river temperature (0C) data over the period between 

1993-2016 
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4. CHAPTER 4                                                               
MODELS DEVELOPMENT AND RESULTS 

4.1 Data Preprocessing 

To model the SSC using SRC and SLR approaches, the only independent variable to be 

considered is the streamflow (m3/s). Presence of some identical values of Q yielding 

different SSC values creates added difficulties for prediction ability of such models. A 

sample of these data is presented in Table 4-1. Only one value of Q which believed to be 

the most representative was considered, taking into consideration the corresponding trend 

of the observed SSC values. Thus, a fair comparison between the various models using 

conventional and machine learning approaches is guaranteed. 

Table 4-1 Samples of Q data duplications 

Date Time 
T  

(oC) 

Q 

 (m3/s) 

C  

(μS/cm) 

SSC 

(mg/l) 

11-07-05 8:15 AM 18.8 6.7 556 18 

26-08-13 7:45 AM 22.2 6.7 670 6 

17-08-15 8:45 AM 23.9 6.7 890 11 

26-09-16 7:55 AM 17.2 6.7 740 10 

23-08-00 10:25 AM 21.5 13.0 741 5 

21-07-03 7:50 AM 22.2 13.0 479 15 

27-05-13 7:55 AM 14.8 13.0 887 8 

14-09-15 7:50 AM 16.1 13.0 680 9 

470 datasets for each of the input and output variables was considered in this study, to 

make better estimations for scenarios where Q is the only input. Outliers were also 

considered and the predicting procedure was  performed using the Grubbs’ test (Grubbs, 

1969) with a significance level α of 95%. A percentage of 0.088% of the total raw data was 

found to be outliers and therefore they were removed. An example below shows how 

Grubbs’ test is conducted: 

A set of data of the discharge values were recorded as 80, 67, 76, 78, 66, 120 (m3/s), 

Grubbs’ test was conducted for the data outliers as follows: 
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i. Make a normal probability plot as below 

 

Figure 4-1 Example data, normal probability plot 

ii. This plot looks nearly linear except for the point at 120. Therefore, this is 

probably an outlier. 

 

iii. Use the Grubbs’ test: 

                                 𝐺 =
𝑌𝑚𝑎𝑥 − �̅�

𝑠
=

120 − 81.2

19.9
= 1.95                                                 (26) 

         𝐺𝑐𝑟𝑖𝑡 =
𝑛 − 1

√𝑛
∗ √

𝑡𝛼
𝑛

,𝑛−2

2

𝑛 − 2 + 𝑡𝛼
𝑛,𝑛−2

2 =
6 − 1

√6
∗ √

3.9642

6 − 2 + 3.9642
= 1.82                (27) 
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Where: 

• 𝑌𝑚𝑎𝑥 = the outlier that is needed to be checked, 

•  �̅� = the mean of data, 

•  𝑠 = the data standard deviation, 

•  𝑛 = the number of data points, and 

•  𝑡𝛼

𝑛
,𝑛−2 = the 𝑡 value for probability of 

𝛼

𝑛
 and 𝑑𝐹 of 𝑛 − 2. 

iv. Because 𝐺 > 𝐺𝑐𝑟𝑖𝑡 the null hypothesis can be rejected, and the point is an outlier. 

v. This point can be removed. 

MATLAB code shown in Appendix B was used to remove some of the significant outliers 

which may affect the forecasting process of the various models to be developed, and the 

processed data after removing the duplications and the outliers are organized and shown in 

the Appendix C.  

4.1.1  Training Dataset 

Inputs were selected based on previous studies conducted to simulate the phenomena 

discussed broadly in the literature review section of this thesis. A study by Tyrrell (2015) 

investigated the effect of water temperature on sediment concentration and the study results 

indicate that sediment concentration is sensitive to changes in water temperature. The trend 

is that the sediment concentration decreases as water temperature warms. Mkpenie, Ebong, 

and Abasiekong (2007) also studied the effect of temperature on sedimentation (i.e. settling 

out of solid particles (sediments) in a liquid by gravity) and they concluded that the rate of 

sedimentation typically doubles for a 20˚C raise in temperature for some soluble 

substances. For such reasons temperature records were taking into consideration as an 

effective input for this study.. Dai et al., (2009) studied the relationship between SSC and 

electric conductivity, the results show that good linear relationship exists between the SSC 

and the electrical conductivity. Since pure water does not conduct electricity very well 

because it contains very few ions, and that suspended sediment may contain dissolvable 

solids which can make the water more conductive, simultaneous data observed of electric 

conductivity was considered as an input to study its effect on the SSC in this study. The 

selecting procedure of the training dataset was performed randomly and more than 85% of 
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the total processed data was chosen to be used for the training purposes of the various 

models of this study. Figures Figure 4-2, Figure 4-3, Figure 4-4 and Figure 4-5 show the 

distribution of the temperature, river flow, electric conductivity and suspended sediment 

concentration data over the training period, respectively. 

 

Figure 4-2 Temperature data (oC) used for training various models 

 

Figure 4-3 Discharge data (m3/s) used for training various models 

 

Figure 4-4 Electric Conductivity data (μS/cm) used for training various models 
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Figure 4-5 Suspended Sediment Concentration data (mg/l) used for training various 

models 

4.1.2   Testing Dataset 

Testing dataset selection was performed taking into consideration the data distribution for 

the dependent variable. Values from peaks, troughs and from the medium ranges, to assure 

a complete coverage of the entire dataset was considered. Nearly 15% of the total processed 

data was chosen to be used in the testing phase of the various models of this study in order 

to determine the best model. Figures Figure 4-6Figure 4-7Figure 4-8 andFigure 4-9 show 

the distribution of the temperature, river flow, electric conductivity and suspended 

sediment concentration data over the data testing period, respectively. 

 

Figure 4-6  River temperature data (oC) used for testing various models 
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Figure 4-7 Discharge data (m3/s) used for testing various models 

 

Figure 4-8 Electric conductivity data (μS/cm) used for testing various models 

 

Figure 4-9 Suspended sediment concentration data (mg/l) used for testing various models 
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4.1.3   Models Performance Evaluation 

To evaluate and examine the performance of the various models employed in this study, 

three different statistical measures were used to compute the goodness of each simulated 

model’s results compared with the measured data. These statistical performance measures 

are; mean absolute error, root mean square error and Nash-Sutcliffe efficiency. Uncertainty 

analysis for the various models developed in this study is also conducted. 

  Mean Absolute Error (MAE)  

The MAE measures the average magnitude of the errors without considering their 

direction. The MAE is the average over the verification sample of the absolute values of 

the differences between the calculated and the corresponding observed data. MAE values 

range from 0 to infinity and the smaller the value, the better the model. It is represented by 

the following form of equation: 

                                                    𝑀𝐴𝐸 =
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛
𝑖=1

𝑛
                                                             (28) 

Where: 

• 𝑥𝑖 = The predicted data. 

• 𝑦𝑖 = The observed data. 

• 𝑛 = The number of observed data. 

  Root Mean Square Error (RMSE) 

The RMSE is a quadratic scoring rule which measures the average magnitude of the error. 

The RMSE is the difference between computed and corresponding observed values are 

each squared and then averaged over the sample. After that, the square root of the average 

is taken. Because of squaring the errors takes place before they are averaged, the RMSE 

gives a high weight to large errors. It can range from 0 to infinity, the smaller the RMSE 

the better the forecasting model. RMSE is represented by the following form of equation: 

                                          𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                              (29) 
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  Nash-Sutcliffe Efficiency (NSE) 

The efficiency factor (NSE) proposed by Nash and Sutcliffe (1970) is expressed 

mathematically in the following form: 

                             𝑁𝑆𝐸 = 1 − [
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

]                                                                       (30) 

 

Where: 

• �̅� = The mean value of the observed data. 

The NSE value can range from minus infinity to one, with an efficiency NSE of a value of 

1.0 means perfect match between modeled results and observed records. An efficiency 

(NSE) of a value of 0 indicates that the model predictions are as accurate as the mean value 

of the observed time series data, and an efficiency of a value lower than 0 indicates that the 

mean value of the observed time series would have been a better predictor than the model. 

  Uncertainty Analysis 

According to Wahl (2004) as following method can be used to analyze the uncertainty: 

1. Compute individual prediction errors in terms of the number of log cycles 

separating the predicted and observed value. 

         𝑒𝑖 = log10(�̂�𝑖) − log10(𝑥𝑖) = log10 (�̂�𝑖 𝑥𝑖)⁄                                        (31) 

Where:  

• 𝑒𝑖 = the prediction error, 

• �̂�𝑖= the predicted value, and 

• 𝑥𝑖= is the observed value. 
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2. Apply the outlier-exclusion algorithm to the series of prediction errors 

computed in Step 1. The algorithm is described by Rousseeuw (1998) as 

follows: 

• Determine the estimator of location, T = median(𝑒𝑖). 

• Compute the deviations from the median, and determine the median 

of these absolute deviations, 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑇 − 𝑒𝑖|. 

• Compute an estimator of scale, 𝑆𝑀𝐴𝐷 = 1.483 ∗ (𝑀𝐴𝐷). The 1.483 

factor makes 𝑆𝑀𝐴𝐷 comparable to the standard deviation, which is 

the usual scale parameter of a normal distribution. 

• Compute a 𝑍 score for each observation,  𝑍𝑖 = (𝑒𝑖 − 𝑇)/𝑆𝑀𝐴𝐷, Then 

reject any observations for which |𝑍| > 2.5. If the samples are from 

a perfect normal distribution, this method rejects at the 98.7% 

probability level. 

3. Compute the mean, �̅� , and the standard deviation, 𝑆𝑒, of the remaining 

prediction errors. If the mean value is negative, it indicates that the 

prediction equation underestimated the observed values, and if positive the 

equation overestimated the observed values.  

4. Using the values of �̅� and 𝑆𝑒, one can express a confidence band around the 

predicted value of a parameter as, {�̂� × 10−�̅�−2𝑆𝑒 , �̂� × 10−�̅�+2𝑆𝑒  }. The use 

of ±2𝑆𝑒,  approximately yields a 95% confidence band. 

4.2 Input Variable Scenarios 

Four different scenarios were proposed using different combinations of the various inputs 

(measured simultaneously) affecting the output which is suspended sediment concentration 

(SSC). Table 4-2 shows the different scenarios and number of data used for training and 

testing purposes. 
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Table 4-2 Different scenarios proposed for this study 

Scenario 

no. 
Input 

No. of training 

dataset for each 

variable 

No. of testing 

dataset for 

each variable 

S1 Streamflow (Q) 420 50 

S2 Streamflow + 

Temperature (Q & T) 
420 50 

S3 Stream flow + 

Conductivity (Q & C) 

 

420 50 

S4 
Streamflow + 

Temperature + 

Conductivity (Q, T, & C) 

420 50 

Since each of the sediment rating curve (SRC) and the simple linear regression (SLR) is 

one input and one output type of model, they were developed using scenario S1. 

4.2.1  Training Various Models for S1 

Four different models were developed using various modeling techniques, namely, SRC, 

SLR, ANFIS and ANN. For these models. streamflow (Q) was the only input taken into 

consideration to model the targeted output, SSC. 

  SRC Model 

Training dataset was used to train the SRC model and the plot of log(Q) against log(SSC) 

is shown in Figure 4-10, and as explained in section 3.1.1 of this study, the slope of the 

trendline represents the b value, while log a is the y-intercept. 

From the equation illustrated in Figure 4-10, a and b values of equation (2) of this study 

are calculated and found to be as follows: 

log 𝑎 =  0.6898 → 𝑎 = 100.6898 = 4.896 

b =  0.271 

Therefore, the SSC using the SRC approach of the training dataset can be written as 

follows: 

                                                              𝑆𝑆𝐶 = 4.986𝑄0.271                                                         (32) 
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Figure 4-10 Applied SRC for the training dataset 

Application of equation (32) to the training and testing dataset and calculations for MAE, 

RMSE and NSE were performed using Excel spreadsheet. It is worthy to note that the 

testing dataset was not a part of the data used in the training phase and is considered as an 

independent dataset to evaluate the effectiveness of the model. Thus, it has no influence on 

the derivation of the trendline used to determine the values of a and b.  The results of the 

various statistical measures are shown in Table 4-3. To save space and to avoid repetition, 

only best model calculations for training and testing purposes are presented in Appendix 

D and Appendix E, respectively.  

Table 4-3 Statistical measures for the training and testing phases of SRC model (S1) 

 Training phase Testing phase 

MAE 4.824 6.936 

RMSE 6.925 8.709 

NSE 0.225 0.233 

 

Figures Figure 4-11 and Figure 4-12 displays observed and estimated SSC (mg/l) in the 

training (validation) period and the extent of match between the measured and predicted 
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SSC (mg/l) in terms of a scatter diagram type of comparison with respect to the testing data 

by the SRC approach (S1), respectively. 

 

Figure 4-11 Observed and calculated SSC (mg/l), the training period using SRC (S1) 

 

Figure 4-12 Scatter plot comparing predicted and observed SSC (mg/l) using SRC (S1), 

testing data 

  SLR Model 

Training dataset was used to train the SLR model and the regression add-in tool in the 

Excel spreadsheet was used to train the model. With a confidence level of 95%, the 

regression significance F and Adjusted R Square were 2.47436E-43 and 0.365, 

respectively. Summary of various regression figures is presented in Table 4-4. 
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Table 4-4 Outputs of the SLR performed using S1’s training dataset 

 Coefficients Standard Error t Stat P-value 

Intercept 8.023657725 0.470740567 17.04475521 7.67331E-50 

Q Variable 1 0.154018476 0.009907371 15.54584748 2.47436E-43 

Form Table 4-4, the representative 𝑆𝑆𝐶 equation can be written as follows: 

                                           𝑆𝑆𝐶𝑆𝐿𝑅 = 0.154𝑄 + 8.024                                                         (33) 

Equation (33) was applied (exact coefficient of 𝛽0 𝑎𝑛𝑑 𝛽1were used) to the training and 

testing datasets to determine the various statistical measures. Excel spreadsheets was used 

to perform the required calculations, and Table 4-5 shows the value of each performance 

indictor for training and testing phases separately. 

Table 4-5 Statistical measures for the training and testing phases, SLR model (S1) 

 Training Phase  Testing Phase  

MAE 4.626 5.997 

RMSE 6.262 7.563 

NSE 0.366 0.421 

Figures Figure 4-13

 

and Figure 4-14 display observed and calculated SSC (mg/l) over the training phase period 

and the extent of match between the measured and predicted SSC (mg/l) in terms of a 

scatter diagram type of comparison with respect to the testing data by the SLR approach 

(S1), respectively. 
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Figure 4-13 Observed and calculated SSC (mg/l), the training period using SLR (S1) 

 

Figure 4-14 Scatter plot comparing predicted and observed SSC (mg/l) using SLR (S1), 

testing data 

  ANFIS Model 

Several models were trained using the ANFISEDIT toolbox in MATLAB R2016b, using 

different numbers and structures of membership functions (MF). Hybrid optimization 

learning method used to train the various FIS. MF type constant was selected for the output. 

Only the best model’s results will be presented here. In this case (S1) the GBELL MF type 

using 9 MFs was the one that best modeled the phenomena. Figure 4-15 and Figure 4-16 

present the model structure and designing toolbox, the selected membership functions and 

the rules of the ANFIS model of S1 during training phase. 
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Figure 4-15 ANFIS structure and Fuzzy logic designer toolbox for (S1) training phase 

 

Figure 4-16 MF editor and rules for the ANFIS model (S1) training phase 

The training and testing phases model performance measures are listed in Table 4-6, and 

Figure 4-17 displays the observed and calculated SSC (mg/l) over the training phase period 

for the ANFIS approach (S1). Figure 4-18 displays the extent of match between the 

measured and predicted SSC (mg/l) by the ANFIS model (S1) in terms of a scatter diagram 

type of comparison with respect to the testing data. 

Table 4-6 Statistical measures for the training and testing phases, ANFIS model (S1) 

 Training Phase Testing Phase  

MAE 4.277 5.194 

RMSE 5.901 6.738 

NSE 0.437 0.541 
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Figure 4-17 Observed and calculated SSC (mg/l), the training period using ANFIS (S1) 

 

Figure 4-18 Scatter plot comparing predicted and observed SSC (mg/l) using ANFIS (S1), 

testing data 

  ANN Model 

Several models were trained using the NNTOOL toolbox in MATLAB R2016b. Feed-

forward backpropagation network type, Levenberg-Marquardt type training function and 

two hidden layers were chosen to train various models. Different trials were performed 

using different number of neurons and different types of transfer functions. Only the best 

model’s results will be shown here. In this case (S1) types TANSIG and PURELIN transfer 

functions were selected as transfer functions for hidden layer 1 and 2, respectively, 20 

neurons were used in the hidden layer 1. Figure 4-19 presents the best network structure 

for S1 using all dataset. 
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Figure 4-19 ANN best structure using all dataset (S1) 

The model was trained using 85% of data in training purposes while the 15% of the entire 

set of the processed data was chosen for the testing determinations. After successfully 

achieving the best model, the calculated output is then extracted and used to calculate 

various performance indicators taking into consideration the same dataset chosen for 

training and testing purposes for the previous approaches to ensure fair comparison. Figure 

4-20 displays the best model’s outputs, after several epochs (trails) for the S1. Note that 

the model’s built-in performance measure is 𝑅, which represents the square root of the 

coefficient of determination √𝑅2. 

 

Figure 4-20 Best ANN model outputs (S1) 
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The training and testing phases’ model performance measures are listed in Table 4-7, and 

Figure 4-21 displays the observed and calculated SSC (mg/l) over the training phase period 

for the ANN approach (S1). Figure 4-22 displays the extent of match between the measured 

and predicted SSC (mg/l) by the ANN model (S1) in terms of a scatter diagram type of 

comparison with respect to the testing data. 

Table 4-7 Statistical measures for the training and testing phases, ANN model (S1) 

 Training Phase  Testing Phase 

MAE 4.013 4.250 

RMSE 5.641 5.579 

NSE 0.486 0.685 

 

Figure 4-21 Observed and calculated SSC (mg/l), the training period using ANN (S1) 

 

Figure 4-22 Scatter plot comparing predicted and observed SSC (mg/l) using ANN (S1), 

testing data 
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To sum up all the models for the S1 scenario, Table 4-8 shows the different performance 

indicators used in each model, and Figure 4-23 shows the observed SSC along with the 

calculated SSC (mg/l) of some peaks from the testing phase using SRC, SLR, ANFIS and 

ANN modeling approaches for the S1 case. An excellence performance of the machine 

learning approaches (ANFIS and ANN) over the conventional approaches (SRC and SLR) 

is recognized. A superiority of the ANN approach is observed. 

Table 4-8 Summary of different performance indicators for all models of S1 

 SRC SLR ANFIS ANN 

 Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

MAE 4.824 6.936 4.626 5.997 4.277 5.194 4.013 4.250 

RMSE 6.925 8.709 6.262 7.563 5.901 6.738 5.641 5.579 

NSE 0.225 0.233 0.366 0.421 0.437 0.541 0.486 0.685 

 

Figure 4-23 Selected peaks of observed SSC (mg/l) from the testing phase period for S1 

and the calculated SSC (mg/l) using proposed approaches 

  Uncertainty Analysis of S1 Results 

Uncertainty analysis for all the four models developed for S1 has been performed according 

to the procedure detailed in the section 4.1.3.4 in this study. In order to save space only the 

best model’s calculation procedure for the uncertainty analysis various measures have been 

included in the Appendix F. Results for uncertainty estimates for S1 are given in Table 4-9 

and it is observable that the four approaches (models) had an absolute mean prediction 
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error of less than one-fifteenth except the ANN model, which had absolute mean prediction 

error of less than one-one hundred eightieth order of magnitude. Meaning that its prediction 

is of a better performance among all. The uncertainty bands were similar for all approaches 

(±0.3 to ±0.4 log cycles), and again with the best results for the ANN model. 

Table 4-9 Uncertainty estimates for S1 various models 

Approach 

Mean 

prediction 

error 

log cycles 

Width of 

uncertainty 

band, ±2𝑺𝒆 

log cycles 

Prediction interval around 

hypothetical prediction 

value of �̂� =1.0 

SRC -0.067 ± 0.442 0.310 - 2.375 

SLR 0.023 ± 0.427 0.395 – 2.822 

ANFIS 0.064 ± 0.369 0.496 – 2.710 

ANN 0.005 ± 0.334 0.470 – 2.183 

4.2.2   Training Various Models for S2 

Three different models were developed using various modeling techniques, namely, MLR, 

ANFIS and ANN. For these models, the temperature (T) and the streamflow (Q) were used 

as inputs in order to model the targeted output (SSC). 

  MLR Model 

Training dataset was used to train the MLR model and the regression add-in tool in the 

Excel spreadsheet was used to train the data. With a confidence level of 95%, the regression 

significance F and Adjusted R Square were 1.76626E-47 and 0.4, respectively, showing an 

improvement than what it was obtained in the SLR model in the S1 (Section 4.2.1.2). 

Meaning that the new input influences the output. The results summary of various 

regression figures is presented in Table 4-10. 

Table 4-10 Outputs of the MLR performed using S2’s training dataset 
 

Coefficients Standard Error t Stat P-value 

Intercept 4.305846954 0.862959382 4.989628765 8.89926E-07 

T Variable 1 0.233848364 0.046029283 5.080425937 5.6928E-07 

Q Variable 2 0.181922697 0.011082591 16.41517737 4.54393E-47 

From Table 4-10, the 𝑆𝑆𝐶 equation can be written as follows: 

                            𝑆𝑆𝐶𝑀𝐿𝑅 = 0.2338𝑇 + 0.1819𝑄 + 4.306                                                   (34) 
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Applying the Equation (34) (exact coefficients of 𝛽0,  𝛽1𝑎𝑛𝑑 𝛽2 were used) to the training 

and testing datasets in order to find the various statistical measures representing the 

goodness of fit between the predicted and observed data using MLR approach (S2). Excel 

spreadsheets was used to perform different needed calculations, and the Table 4-11 shows 

the values of each measure. Moreover, the Figure 4-24 presents the observed and calculated 

SSC (mg/l) over the training phase period, and Figure 4-25 displays the extent of match 

between the measured and predicted SSC (mg/l) by the MLR model (S2) in terms of a 

scatter diagram type of comparison with respect to the testing data. 

Table 4-11 Statistical measures for the training and testing phases, MLR model (S2) 

 Training Phase Testing Phase 

MAE 4.422 5.641 

RMSE 6.077 7.266 

NSE 0.403 0.466 

 

Figure 4-24 Observed and calculated SSC (mg/l), the training period using MLR (S2) 

 

Figure 4-25 Scatter plot comparing predicted and observed SSC (mg/l) using MLR (S2), 

testing data 
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 ANFIS Model 

Several models were trained using the ANFISEDIT toolbox in MATLAB R2016b, using 

different numbers and structures of membership functions (MF). Hybrid optimization 

learning method used to train the various FIS. MF type constant was selected for the output. 

Only the best model’s results will be presented here. In this case (S2) the GAUSS2 MF 

type using 5 and 2 MFs for Temperature and Streamflow inputs, respectively, was the one 

that best modeled the phenomena. Figure 4-26, Figure 4-27 and Figure 4-28 present the 

model structure and designing toolbox, the membership functions for the two inputs and 

the rules of the ANFIS model for S2 training phase. 

 

Figure 4-26 ANFIS model structure and Fuzzy logic designer toolbox for S2 training 

phase 

  
Figure 4-27 MFs editor for the two main inputs T (on the left-hand side) and Q for the 

ANFIS model, training phase (S2) 
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Figure 4-28 Rule viewer for the ANFIS model, training phase (S2) 

The model performance measures for training and testing phases, representing the 

goodness of fit between the predicted and observed data for the ANFIS model (2), are listed 

in Table 4-12. Figure 4-29 displays the observed and calculated SSC (mg/l) over the 

training phase period for the ANFIS approach (S2). Figure 4-30 displays the extent of 

match between the measured and predicted SSC (mg/l) by the ANFIS model (S2) in terms 

of a scatter diagram type of comparison with respect to the testing data. 

Table 4-12 Statistical measures for the training and testing phases, ANFIS model (S2) 

 Training Phase Testing Phase 

MAE 4.641 5.420 

RMSE 5.776 6.813 

NSE 0.461 0.531 
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Figure 4-29 Observed and calculated SSC (mg/l), the training period using ANFIS (S2) 

 

Figure 4-30 Scatter plot comparing predicted and observed SSC (mg/l) using ANFIS (S2), 

testing data 

  ANN Model 

As discussed in section 4.2.1.4, different trails were performed using different number of 

neurons and different types of transfer functions. Only the best model’s results will be 

shown here. In this case (S2) types TANSIG and PURELIN transfer functions were 

selected as transfer functions for hidden layer 1 and 2, respectively, 20 neurons were used 

in the hidden layer 1. Figure 4-31 presents the best network structure for S2 using all 

dataset. 
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Figure 4-31 ANN best structure using all dataset (S2) 

The model was trained using 85% of data in training purposes while the 15% of the entire 

set of the processed data was chosen for the testing determinations. After successfully 

achieving the best model, the calculated output is then extracted and used to calculate 

various performance indicators taking into consideration the same dataset chosen for 

training and testing purposes for the previous approaches to ensure fair comparison. Figure 

4-32 displays the best model’s outputs, after several epochs (trails) for the S2. Note that 

the model’s built-in performance measure is R, which represents √𝑅2. 

 

Figure 4-32 Best ANN model outputs (S2) 
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The training phase’s model performance measures along with the testing phase’s measures, 

in order to determine the goodness of fit between measured and calculated SSC using the 

ANN approach (S2), are listed in Table 4-13, and Figure 4-21 displays the observed and 

calculated SSC (mg/l) over the training phase period for the ANN approach (S2). Figure 

4-34 displays the extent of match between the measured and predicted SSC (mg/l) by the 

ANN model (S2) in terms of a scatter diagram type of comparison with respect to the 

testing data. 

Table 4-13 Statistical measures for the training and testing phases, ANN model (S2) 

 Training Phase Testing Phase 

MAE 3.533 3.590 

RMSE 4.865 4.869 

NSE 0.617 0.760 

 
Figure 4-33 Observed and calculated SSC (mg/l), the training period using ANN (S2) 

 

Figure 4-34 Scatter plot comparing predicted and observed SSC (mg/l) using ANN (S2), 

testing data 
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To sum up all the models for the S2 case, the Table 4-14 shows the different performance 

indicators used in each case, and Figure 4-35 shows the observed SSC along with the 

calculated SSC (mg/l) of selected peaks from the testing phase using MLR, ANFIS and 

ANN modeling approaches for the S2 case. An excellence performance of the machine 

learning approaches, i.e. ANFIS and ANN, over the conventional method, i.e. MLR, is 

recognized. A superiority of the ANN approach is observed. 

Table 4-14 Summary of different performance indicators for all models used using the 

S2 inputs 

 MLR ANFIS ANN 

 Training 

Phase  

Testing 

Phase 

Training 

Phase  

Testing 

Phase 

Training 

Phase  

Testing 

Phase 

MAE 4.422 5.641 4.641 5.420 3.533 3.590 

RMSE 6.077 7.266 5.776 6.813 4.865 4.869 

NSE 0.403 0.466 0.461 0.531 0.617 0.760 

 

Figure 4-35 Selected peaks of observed SSC (mg/l) from the testing phase period for S2 

and the calculated SSC (mg/l) using various approaches to simulate the phenomenon 

  Uncertainty Analysis of S2 Results 

Uncertainty analysis for all the four models developed for S2 has been performed according 

to the procedure detailed in the section 4.1.3.4 in this study. Results are given in Table 4-15 

and it is observable that the three approaches (models) had an absolute mean prediction 

error of less than one-thirteenth with a superiority of the ANN model, which had an 
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absolute mean prediction error of less than one-sixtieth order of magnitude. Meaning that 

its prediction is of a better performance among all. The uncertainty bands were similar for 

MLR and ANFIS (±0.4 log cycles) while for ANN it was calculated as ±0.3 log cycles. 

Table 4-15 Uncertainty estimates for S2 various models 

Approach 

Mean 

prediction 

error 

log cycles 

Width of 

uncertainty 

band, ±2𝑺𝒆 

log cycles 

Prediction interval around 

hypothetical prediction 

value of �̂� =1.0 

MLR 0.073 ± 0.420 0.450 – 3.116 

ANFIS 0.047 ± 0.422 0.422 – 2.943 

ANN 0.015 ± 0.313 0.503 – 2.126 

4.2.3  Training Various Models for S3 

Three different models were developed using various modeling techniques, namely, MLR, 

ANFIS and ANN. For these models, the electrical conductivity (C) and the streamflow (Q) 

were used as inputs in order to model the targeted output (SSC). 

  MLR Model 

Training dataset was used to train the MLR model and the regression add-in tool in the 

excel spreadsheet was used to train the data. With a confidence level of 95%, the regression 

significance F and Adjusted R Square were 1.51717E-42 and 0.370, respectively, with a 

decrease in the F significance value and an improvement in the R adjusted value from what 

it was in the SLR case in the S1 (Section 4.2.1.2). The results summary of various 

regression figures is presented in Table 4-16 

Table 4-16 Outputs of the MLR performed using S3’s training dataset 

  Coefficients Standard Error t Stat P-value 

Intercept 11.01506423 2.01608806 5.46358289 8.0402E-08 

Q Variable 1 0.149594538 0.010307846 14.51268705 6.39071E-39 

C Variable 2 -0.004275448 0.002802089 -1.525807605 0.127815854 

From Table 4-16, the 𝑆𝑆𝐶 equation can be written as follows: 

                             𝑆𝑆𝐶𝑀𝐿𝑅 = 0.1496𝑄 − 0.0043𝐶 + 11.0151                                        (35)  
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Applying the Equation (35) (exact coefficient of 𝛽0, 𝛽1𝑎𝑛𝑑 𝛽2 were used) to the training 

and the testing dataset in order to determine the various statistical measures representing 

the goodness of fit between the observed and the calculated SSC (mg/l) using the MLR 

model (S3). Excel spreadsheets was used to perform different needed calculations, and the 

Table 4-17 shows the values of each measure.  

Table 4-17 Statistical measures for the training and testing phases, MLR model (S3) 

 Training Phase Testing Phase 

MAE 4.597 6.038 

RMSE 6.244 7.555 

NSE 0.370 0.423 

 
Figure 4-36 Observed and calculated SSC (mg/l), the training period using MLR (S3) 

Moreover, the Figure 4-36 presents the observed and calculated SSC (mg/l) over the 

training phase period. and Figure 4-37 displays the extent of match between the measured 

and predicted SSC (mg/l) by the MLR model (S3) in terms of a scatter diagram type of 

comparison with respect to the testing data. 

0

5

10

15

20

25

30

35

40

45

50

Jan/93 Jan/95 Jan/97 Jan/99 Jan/01 Jan/03 Jan/05 Jan/07 Jan/09 Jan/11 Jan/13 Jan/15 Jan/17

SS
C

 (
m

g/
l)

Date (month/year)

Observed MLR (S3)



79 

 

 
Figure 4-37 Scatter plot comparing predicted and observed SSC (mg/l) using MLR (S3). 

testing data 

  ANFIS Model 

Several models were trained using the ANFISEDIT toolbox in MATLAB R2016b, using 

different numbers and structures of membership functions (MF). Hybrid optimization 

learning method used to train the various FIS. MF type constant was selected for the output. 

Only the best model’s results will be presented here. In this case (S3) the GBELL MF type 

using 5 MFs for both inputs, was the one that best modeled the phenomena. Figure 4-38, 

Figure 4-39 and Figure 4-40 presents the model structure and designing toolbox, the 

membership functions for the two inputs and the rules of the ANFIS model for S3 training 

phase. 

 

Figure 4-38 ANFIS model structure and Fuzzy logic designer toolbox for S3 training phase 
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Figure 4-39 MFs editor for the two main inputs Q (on the left-hand side) and C for the 

ANFIS model, training phase (S3) 

 

Figure 4-40 Rule viewer for the ANFIS model, training phase (S3) 

Table 4-18 illustrates the goodness of fit between the predicted and observed data using 

this ANFIS method (S3) for the training and testing phases 

Table 4-18 Statistical measures for the training and testing phases, ANFIS model (S3) 

 Training Phase  Testing Phase 

MAE 3.833 4.906 

RMSE 5.311 6.770 

NSE 0.544 0.536 
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Figure 4-41 Observed and calculated SSC (mg/l), the training period using ANFIS (S3) 

Figure 4-41 displays the observed and calculated SSC (mg/l) over the training phase period 

for the ANFIS approach (S3), and Figure 4-42 displays the extent of match between the 

measured and predicted SSC (mg/l) by the ANFIS model (S3) in terms of a scatter diagram 

type of comparison with respect to the testing data. 

 

Figure 4-42 Scatter plot comparing predicted and observed SSC (mg/l) using ANFIS (S3). 

testing data 

  ANN Model 

Different trails were performed using different number of neurons and different types of 

transfer functions. Only the best model’s results will be shown here. In this case (S3) types 

TANSIG and PURELIN transfer functions were selected as transfer functions for hidden 
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layer 1 and 2, respectively, 20 neurons were used in the hidden layer 1. Figure 4-43 presents 

the best network structure for S3 using all dataset. 

 

Figure 4-43 ANN best structure using all dataset (S3) 

The model was trained using 85% of data in training purposes while the 15% of the entire 

set of the processed data was chosen for the testing determinations. After successfully 

achieving the best model, the calculated output is then extracted and used to calculate 

various performance indicators taking into consideration the same dataset chosen for 

training and testing purposes for the previous approaches to ensure fair comparison. Figure 

4-32 displays the best model’s outputs, after several epochs (trails) for the S3. Note that 

the model’s built-in performance measure is R, which represents √𝑅2. 

The training and testing phases’ model performance measures are listed in Table 4-19, and 

Figures Figure 4-45 and Figure 4-46 display the observed and calculated SSC (mg/l) over 

the training phase period. and the extent of match between the measured and predicted SSC 

(mg/l) by the ANN model (S3) in terms of a scatter diagram type of comparison with 

respect to the testing data, respectively. 

Table 4-19 Statistical measures for the training and testing phases, ANN model (S3) 

 Training Phase Testing Phase 

MAE 3.586 3.473 

RMSE 5.134 4.861 

NSE 0.574 0.761 
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Figure 4-44 Best ANN model outputs (S3) 

 

Figure 4-45 Observed and calculated SSC (mg/l), the training period using ANN (S3) 
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Figure 4-46 Scatter plot comparing predicted and observed SSC (mg/l) using ANN (S3), 

testing data 

To sum up all the models for the S3 case, Table 4-20 shows the different performance 

indicators used in each case, and Figure 4-47 shows the observed SSC along with the 

calculated SSC (mg/l) of selected peaks from the testing phase using MLR, ANFIS and 

ANN modeling approaches for the S3 case. An excellence performance of the machine 

learning approaches, i.e. ANFIS and ANN, over the conventional method, i.e. MLR, is 

recognized. A superiority of the ANN approach is observed. 

Table 4-20 Summary of different performance indicators for all models used using the 

S3 inputs 

 MLR ANFIS ANN 

 
Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

MAE 4.597 6.038 3.833 4.906 3.586 3.473 

RMSE 6.244 7.555 5.311 6.770 5.134 4.861 

NSE 0.370 0.423 0.544 0.536 0.574 0.761 
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Figure 4-47 Selected peaks of observed SSC (mg/l) from the testing phase period for S3 

and the calculated SSC (mg/l) using various approaches to simulate the phenomenon 

  Uncertainty Analysis of S3 Results 

Uncertainty analysis for all the four models developed for S3 has been performed according 

to the procedure detailed in the section 4.1.3.4 in this study. Results are given in Table 4-21 

and it is observable that the three approaches (models) had an absolute mean prediction 

error of less than one-seventeenth with a superiority of the ANN model, which had an 

absolute mean prediction error of less than one-thirtieth order of magnitude. Meaning that 

its prediction is of a better performance among all. The uncertainty bands were similar for 

all approaches (±0.5 to ±0.6 log cycles) except for ANN, which had an uncertainty of ±0.2 

log cycles. 

Table 4-21 Uncertainty estimates for S3 various models 

Approach 

Mean 

prediction 

error 

log cycles 

Width of 

uncertainty 

band, ±2𝑺𝒆 

log cycles 

Prediction interval around 

hypothetical prediction 

value of �̂� =1.0 

MLR 0.058 ± 0.571 0.306 – 4.258 

ANFIS 0.056 ± 0.595 0.290 – 4.476 

ANN 0.033 ± 0.249 0.608 – 1.911 

1995 1996 2000 2002 2004 2011 2014 2016

Observed 30.000 37.000 34.000 29.000 25.000 42.000 44.000 33.000

MLR 31.402 15.968 34.918 8.432 33.028 33.240 8.370 8.270

ANFIS 36.617 10.963 55.164 10.619 36.503 33.778 10.807 10.712

ANN 22.243 36.061 33.999 32.129 24.773 41.264 46.108 33.049
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4.2.4   Training Various Models for S4 

Three different models were developed using various modeling techniques, namely, MLR, 

ANFIS and ANN. For these models, the temperature (T), the electrical conductivity (C) 

and the streamflow (Q) were used as inputs in order to model the targeted output (SSC). 

  MLR Model 

Training dataset was used to train the MLR model and the regression add-in tool in the 

excel spreadsheet was used to train the data. With a confidence level of 95%, the regression 

significance F and Adjusted R Square were 2.21568E-46 and 0.3992, respectively, with an 

increase in the F significance value and an improving in the R adjusted value from what it 

was in the SLR case in the S1 (Section 4.2.1.2). The results summary of various regression 

measures is presented in Table 4-22. 

Table 4-22 Outputs of the MLR performed using S4’s training dataset 

 Coefficients Standard 

Error 
t Stat P-value 

Intercept 3.423115474 2.5130741 1.362122778 0.17389622 

T Variable 1 0.240861238 0.049745174 4.84190163 1.81651E-06 

Q Variable 2 0.183900087 0.012289191 14.96437665 8.19838E-41 

C Variable 3 0.001102287 0.002946908 0.374048723 0.708558639 

From Table 4-22, the 𝑆𝑆𝐶 equation can be written as follows: 

                   𝑆𝑆𝐶𝑀𝐿𝑅 =  0.2409 ∗ 𝑇 + 0.1839 ∗ 𝑄 + 0.0011 ∗ 𝐶 + 3.4231                      (36) 

Applying the Equation (36) (exact coefficient of 𝛽0, 𝛽1, 𝛽2 𝑎𝑛𝑑 𝛽3 were used) to the 

training and testing datasets in order to determine the various statistical measures 

representing the goodness of fit between the observed and the calculated SSC (mg/l) . Excel 

spreadsheets was used to perform these calculations, and the Table 4-23 shows the values 

of each measure using MLR model (S4), 

Table 4-23 Statistical measures for the training and testing phases, MLR model (S4) 

 Training Phase Testing Phase 

MAE 4.413 5.614 

RMSE 6.076 7.269 

NSE 0.403 0.466 
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Figure 4-48 Observed and calculated SSC (mg/l), the training period using MLR (S4) 

Figure 4-48 presents the observed and calculated SSC (mg/l) over the training phase period, 

and Figure 4-49 displays the extent of match between the measured and predicted SSC 

(mg/l) by the MLR model (S4) in terms of a scatter diagram type of comparison with 

respect to the testing data. 

 
Figure 4-49 Scatter plot comparing predicted and observed SSC (mg/l) using MLR S(4), 

testing data 

  ANFIS Model 

Several models were trained using the ANFISEDIT toolbox in MATLAB R2016b, using 

different numbers and structures of membership functions (MF). Hybrid optimization 

learning method used to train the various FIS. MF type constant was selected for the output. 

Only the best model’s results will be presented here. In this case (S4) the GAUSS MF type 

using 3 MFs for T input, 2 MFs for Q input and 3 MFs for the C inputs, was the one that 
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best modeled the phenomena. Figure 4-50, Figure 4-51 and Figure 4-52 present the model 

structure and designing toolbox, the membership functions for the three inputs and the rules 

of the ANFIS model for S4 training phase, respectively. 

 

Figure 4-50 ANFIS model structure and Fuzzy logic designer toolbox for training phase 

(S4) 

  

Figure 4-51 MFs editor for two of the three main inputs T (on the left-hand side) and Q 

for the ANFIS model, training phase (S4) 
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Figure 4-52 MFs editor for the input C (on the left-hand side) and Rule viewer for the 

ANFIS model, training phase (S4) 

The training and testing phases’ model performance measures are listed in Table 4-24, for 

the purposes of determining the goodness of fit between the observed and calculated SSC 

(mg/l) for ANFIS model (S4). 

Table 4-24 Statistical measures for the training phase of the ANFIS model (S4) 

 Training Phase Testing Phase 

MAE 4.061 5.752 

RMSE 5.666 7.082 

NSE 0.481 0.493 

 

Figure 4-53 Observed and calculated SSC (mg/l), the training period using ANFIS (S4) 
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Figure 4-53 displays the observed and calculated SSC (mg/l) over the training phase period 

for the ANFIS approach (S4),and Figure 4-42 displays the extent of match between the 

measured and predicted SSC (mg/l) by the ANFIS model (S4) in terms of a scatter diagram 

type of comparison with respect to the testing data. 

 

Figure 4-54 Scatter plot comparing predicted and observed SSC (mg/l) using ANFIS (S4), 

testing data 

  ANN Model 

Different trails were performed using different number of neurons and different types of 

transfer functions. Only the best model’s results will be shown here. In this case (S4) types 

TANSIG and PURELIN transfer functions were selected as transfer functions for hidden 

layer 1 and 2, respectively, 20 neurons were used in the hidden layer 1. Figure 4-55 presents 

the best network structure for S4 using all dataset. 

 

Figure 4-55 ANN best structure using all dataset (S4) 
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The model was trained using 85% of data in training purposes while the 15% of the entire 

set of the processed data was chosen for the testing determinations. After successfully 

achieving the best model, the calculated output is then extracted and used to calculate 

various performance indicators taking into consideration the same dataset chosen for 

training and testing purposes for the previous approaches to ensure fair comparison. Figure 

4-32 displays the best model’s outputs, after several epochs (trails) for the S4. Note that 

the model’s built-in performance measure is R, which represents √𝑅2. 

 

Figure 4-56 Best ANN model outputs (S4) 

The training and testing phases’ model performance measures are listed in Table 4-25, for 

the purposes of determining the goodness of fit between the observed and calculated SSC 

(mg/l) for ANFIS model (S4). 
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Table 4-25 Statistical measures for the training phase of the ANN model (S4) 

 Training Phase Testing Phase 

MAE 3.456 2.823 

RMSE 4.736 3.720 

NSE 0.638 0.860 

Figure 4-57 displays the observed and calculated SSC (mg/l) over the training phase period 

for the ANN approach (S4),and Figure 4-58 displays the extent of match between the 

measured and predicted SSC (mg/l) by the ANN model (S4) in terms of a scatter diagram 

type of comparison with respect to the testing data. 

 

Figure 4-57 Observed and calculated SSC (mg/l), the training period using ANN (S4) 

 

Figure 4-58 Scatter plot comparing predicted and observed SSC (mg/l) using ANN (S4), 

testing data 
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To sum up all the models for the S4 case, Table 4-26 shows the different performance 

indicators used in each case, and Figure 4-59 shows the observed SSC along with the 

calculated SSC (mg/l) of selected peaks from the testing phase using MLR, ANFIS and 

ANN modeling approaches for the S4 case. An excellence performance of the machine 

learning approaches, i.e. ANFIS and ANN, over the conventional method, i.e. MLR, is 

recognized. A superiority of the ANN approach is observed. 

Table 4-26 Summary of different performance indicators for all models used using the 

(S4) inputs 

 MLR ANFIS ANN 

 
Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

Training 

Phase 

Testing 

Phase 

MAE 4.413 5.614 4.061 5.752 3.456 2.823 

RMSE 6.076 7.269 5.666 7.082 4.736 3.720 

NSE 0.403 0.466 0.481 0.493 0.638 0.860 

 

Figure 4-59 Selected peaks of observed SSC (mg/l) from the testing phase period for S4 

and the calculated SSC (mg/l) using various approaches to simulate the phenomenon 

  Uncertainty Analysis of S4 Results 

Uncertainty analysis for all the four models developed for S4 has been performed according 

to the procedure detailed in the section 4.1.3.4 in this study. Results are given in an absolute 

mean prediction error of less than one-thirteenth with a superiority of the ANN model, 

which had an absolute mean prediction error of less than one-hundredth order of 
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magnitude. Meaning that its prediction is of a better performance among all. The 

uncertainty bands were similar for MLR and ANFIS approaches (±0.4 log cycles) except 

for ANN, which had an uncertainty of ±0.2 log cycles. 

 and it is observable that the three approaches (models) an absolute mean prediction error 

of less than one-thirteenth with a superiority of the ANN model, which had an absolute 

mean prediction error of less than one-hundredth order of magnitude. Meaning that its 

prediction is of a better performance among all. The uncertainty bands were similar for 

MLR and ANFIS approaches (±0.4 log cycles) except for ANN, which had an uncertainty 

of ±0.2 log cycles. 

Table 4-27 Uncertainty estimates for S4 various models 

Approach 

Mean 

prediction 

error 

log cycles 

Width of 

uncertainty 

band, ±2𝑺𝒆 

log cycles 

Prediction interval around 

hypothetical prediction 

value of �̂� =1.0 

MLR 0.074 ± 0.418 0.453 – 3.099 

ANFIS 0.045 ± 0.461 0.348 – 3.209 

ANN 0.009 ± 0.210 0.628 – 1.656 
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5.                               CHAPTER 5                                                       
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

The main aim of this study was to develop the best model that estimates the Suspended 

Sediment Concentration (SSC) for the River Thames, London, Canada That is because the 

SSC is a site-specific phenomenon that ought to be modeled and estimated for every creek, 

stream, and river. Reliable estimation of such a phenomenon are of importance in many 

aspects, such as, Water resources management, hydraulic designs, environmental 

conservation, reservoir operation, river navigation and hydro-electric power generation. 

Two machine learning approaches, namely, Adaptive Neuro Fuzzy Inference 

System(ANFIS) and Artificial Neural Network (ANN) were developed to estimate the SSC 

and their performances were compared with the widely used conventional approaches, that 

is, Sediment Rating Curves (SRC) and Linear Regression (LR) models. In order to achieve 

this aim, four different scenarios were proposed in this study using different combinations 

of effective inputs (river discharge (Q), river temperature (T), and water electric 

conductivity (C)) collected over the period between 1993 and 2016. This data was used to 

train and test the various models for each scenario. Three main performance indicators 

were used to evaluate the performance of each model, namely, Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE). 

Uncertainty analysis was also conducted to test the efficiency of each model separately. 

The final architecture of the best models developed for the ANFIS and ANN approaches 

for each scenario after several trials are illustrated in  Table 5-1. Results from these best 

models have been compared with those found by developing the other two conventional 

approaches (SRC and LR). 

Table 5-1 Final structure of various machine learning approaches’ best model 

Scenario 

No. 

Scenario 

Inputs 

ANFIS 

MFs Type 

Number of 

ANFIS 

MFs 

ANN 

Structure 

S1 Q GBELL (9) (1, 2, 1) 

S2 T and Q GAUSS2 (5, 2) (2, 2, 1) 

S3 Q and C GBELL (5, 5) (2, 2, 1) 

S4 T, Q and C GAUSS (3, 2, 3) (3, 2, 1) 
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5.2 Conclusions 

After developing various models for each scenario, a summary of the calculated 

performance indicators for each model in each scenario is given in Table 5-2. The 

following conclusions can be drawn from this study. 

• A superiority of the machine learning approaches over the conventional SRC and 

linear regression models is observed. In scenario S1, NSE increased by more than 

130% and 190% when comparing the performances of SRC with ANFIS and ANN, 

respectively.  

• This increasing in performance was also noticeable after adding more effective 

inputs in scenarios S2, S3 and S4. An increase of more than 220% in the NSE 

indicator was achieved when comparing SRC with ANN models of S2 and S3.  

• The best performance in estimating the suspended sediment concentration was 

accomplished by considering all inputs concerning this study (i.e. river discharge, 

river temperature, and water electric conductivity) with NSE of 86%. 

• A quantitative analysis of the uncertainty of different conventional and machine 

learning approaches conducted in this study was also carried out and Table 5-3 

gives the uncertainty estimates for each of the proposed scenario. Mean prediction 

error of the ANN model was the best among all other models, ranging from 1/30 to 

1/200 order of magnitude. All in all, machine learning approaches have shown a 

better performance in estimating the suspended sediment concentration for the 

River Thames, London, Canada, than the conventional approaches. ANN model of 

S4 have shown the best performance considering the uncertainty analysis 

parameters. 

• The least accuracy in predicting the suspended sediment concentration in this study 

was achieved when using the conventional SRC, followed by the linear regression 

models. 
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Table 5-2 Performance indicators for various models 

Scenario 
No. 

 S1 S2 S3 S4 

Scenario 
Inputs 

 Q T and Q Q and C T, Q and C 

SRC 

MAE 6.936 - - - 

RMSE 8.709 - - - 

NSE 0.233 - - - 

SLR 

MAE 5.997 - - - 

RMSE 7.563 - - - 

NSE 0.421 - - - 

MLR 

MAE - 5.641 6.038 5.614 

RMSE - 7.266 7.555 7.269 

NSE - 0.466 0.423 0.466 

ANFIS 

MAE 5.194 5.420 4.906 5.752 

RMSE 6.738 6.813 6.770 7.082 

NSE 0.541 0.531 0.536 0.493 

ANN 

MAE 4.250 3.590 3.473 2.823 

RMSE 5.579 4.869 4.861 3.720 

NSE 0.685 0.760 0.761 0.860 

Table 5-3 Uncertainty estimates for various models 

Scenario Approach 

Mean 

prediction 

error 

log cycles 

Width of 

uncertainty 

band, ±2𝑺𝒆 

log cycles 

Prediction interval 

around hypothetical 

prediction value of 

 �̂� =1.0 

S1 

SRC – 0.067 ± 0.442 0.310 – 2.375 

SLR 0.023 ± 0.427 0.395 – 2.822 

ANFIS 0.064 ± 0.369 0.496 – 2.710 

ANN 0.005 ± 0.334 0.470 – 2.183 

S2 

MLR 0.073 ± 0.420 0.450 – 3.116 

ANFIS 0.047 ± 0.422 0.422 – 2.943 

ANN 0.015 ± 0.313 0.503 – 2.126 

S3 

MLR 0.058 ± 0.571 0.306 – 4.258 

ANFIS 0.056 ± 0.595 0.290 – 4.476 

ANN 0.033 ± 0.249 0.608 – 1.911 

S4 

MLR 0.074 ± 0.418 0.453 – 3.099 

ANFIS 0.045 ± 0.461 0.348 – 3.209 

ANN 0.009 ± 0.210 0.628 – 1.656 
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5.3 Future Work Recommendations 

The following further investigations are recommended:  

• A continuous daily time-series sampling for SSC is advised to enhance the ability 

of various approaches to model the SSC phenomenon.  

• The effect of other useful input variables (e.g. rainfall intensity) might improve the 

capability of various models in modeling the SSC for river Thames, London, 

Canada. 

• Application of other techniques, such as Wavelet and Genetic Programing, that 

have been utilized in water resources problems especially in the areas of developing 

and improving optimization algorithms, could be investigated. 

 

 

 

 

 

 

 

 

 

 

 



99 

 

References  

Adriaenssens, V., De Baets, B., Goethals, P. L. M., & De Pauw, N. (2004). Fuzzy rule-

based models for decision support in ecosystem management. Science of the Total 

Environment, 319(1–3), 1–12. https://doi.org/10.1016/S0048-9697(03)00433-9 

Afaghi, M., Ramaswamy, H. S., & Prasher, S. O. (2001). Thermal process calculations 

using artificial neural network models. Food Research International, 34(1), 55–65. 

https://doi.org/10.1016/S0963-9969(00)00132-0 

Aksoy, H., & Dahamsheh, A. (2009). Artificial neural network models for forecasting 

monthly precipitation in Jordan. Stochastic Environmental Research and Risk 

Assessment, 23(7), 917–931. https://doi.org/10.1007/s00477-008-0267-x 

Anderson, P. G., Taylor, B. R., & Balch, G. C. (1996). Quantifying the effects of 

sediment release on fish and their habitats. Canadian Manuscript Report of 

Fisheries and Aquatic Sciences. 

Angabini, S., Ahmadi, H., Feiznia, S., Vaziri, B. M., & Ershadi, S. (2014). Using 

Intelligence Models to Estimate Suspended sediment system case study : Jagin Dam. 

Bulletin of Environment, Pharmacology and Life Sciences, 3(III), 166–172. 

Aytek, A., & Kişi, Ö. (2008). A genetic programming approach to suspended sediment 

modelling. Journal of Hydrology, 351(3–4), 288–298. 

https://doi.org/10.1016/j.jhydrol.2007.12.005 

Banzhaf, W., Francone, F. D., Keller, R. E., & Nordin, P. (1998). Genetic programming: 

an introduction on the automatic evolution of computer programs and its 

applications. San Francisco, CA: MORGAN KAUFMANN PUBL Inc. 

Bayram, A., Kankal, M., & Önsoy, H. (2012). Estimation of suspended sediment 

concentration from turbidity measurements using artificial neural networks. 

Environmental Monitoring and Assessment, 184(7), 4355–4365. 

https://doi.org/10.1007/s10661-011-2269-2 



100 

 

Bayram, A., Kankal, M., Tayfur, G., & Önsoy, H. (2013). Prediction of suspended 

sediment concentration from water quality variables. Neural Computing and 

Applications, 24(5), 1079–1087. https://doi.org/10.1007/s00521-012-1333-3 

Bentaher, L. S., & Elmazoghi, H. G. (2013). ESTIMATION OF DAM BREACH 

WIDTHS USING A NEURO-FUZZY COMPUTING TECHNIQUE. In Seventeenth 

International Water Technology Conference. Istanbul,. 

Birtwell, I. (1999). The effects of sediment on fish and their habitat. Canadian Stock 

Assessment Secretariat Research Document 99/139. West Vancouver, B.C. 

Burke, E. K., & Kendall, G. (2005). Search methodologies: introductory tutorials in 

optimization and decision support techniques. Springer. 

Campbell, F. B., & Bauder, H. A. (1940). A rating-curve method for determining silt-

discharge of streams. Eos, Transactions American Geophysical Union, 21(2), 603–

607. https://doi.org/10.1029/TR021i002p00603 

Caux, P. Y., Moore, D. R. J., & MacDonald, D. (1997). Ambient water quality guidelines 

(criteria) for turbidity, suspended and benthic sediments: technical appendix. 

Prepared for the British Columbia Ministry of Environment, Lands and Parks. 

Victoria, BC: Water Quality Branch, Environment and Resource Management 

Division. 

Cigizoglu, H., & Alp, M. (2003). Suspended Sediment Forecasting by Artificial Neural 

Networks Using Hydro Meteorological Data. World Water & Environmental 

Resources Congress 2003, (90), 1–8. 

https://doi.org/doi:10.1061/40685(2003)173\r10.1061/40685(2003)173 

Cigizoglu, H. K. (2003). Estimation and forecasting of daily suspended sediment data 

using wavelet-neural networks. Advances in Water Resources, 27, 185–195. 

https://doi.org/10.1016/j.jhydrol.2008.06.013 

Cigizoglu, H. K., & Kisi, Ö. (2003). Flow prediction by three back propagation 

techniques using k -fold partitioning of neural network training data. Nordic 



101 

 

Hydrology, 36(1), 49–64. 

Cobaner, M., Unal, B., & Kisi, O. (2009). Suspended sediment concentration estimation 

by an adaptive neuro-fuzzy and neural network approaches using hydro-

meteorological data. Journal of Hydrology, 367(1–2), 52–61. 

https://doi.org/10.1016/j.jhydrol.2008.12.024 

da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., & dos Reis 

Alves, S. F. (2017). Artificial Neural Networks, 21–29. https://doi.org/10.1007/978-

3-319-43162-8 

Dai, Q., Shan, H., Jia, Y., & Cui, W. (2009). Laboratory Study on the Relationships 

Between Suspended Sediment Concentration and Electrical Conductivity. In ASME 

2009 28th International Conference on Ocean, Offshore and Arctic Engineering : 

Volume 7 (pp. 179–186). Honolulu, Hawaii, USA. 

https://doi.org/10.1115/OMAE2009-79211 

Dawson, C. W., Harpham, C., Wilby, R. L., & Chen, Y. (2002). Evaluation of artificial 

neural network techniques for flow forecasting in the River Yangtze, China. 

Hydrology and Earth System Sciences, 6(4), 619–626. https://doi.org/10.5194/hess-

6-619-2002 

Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy 

logic and multilinear regression approaches. Neural Computing and Applications, 

23(S1), 145–151. https://doi.org/10.1007/s00521-012-1280-z 

European Inland Fisheries Advisory Commission (EIFAC). (1964). Water quality criteria 

for European freshwater fish. Report on Finely Divided Solids and Inland Fisheries. 

EUROPEAN INLAND FISHERIES ADVISORY COMMISSION. Rome. 

Firat, M., & Güngör, M. (2010). Monthly total sediment forecasting using adaptive neuro 

fuzzy inference system. Stochastic Environmental Research and Risk Assessment, 

24(2), 259–270. https://doi.org/10.1007/s00477-009-0315-1 

Firat, M., Yurdusev, M. A., & Turan, M. E. (2009). Evaluation of artificial neural 



102 

 

network techniques for municipal water consumption modeling. Water Resources 

Management, 23(4), 617–632. https://doi.org/10.1007/s11269-008-9291-3 

Foroozesh, J., Khosravani, A., Mohsenzadeh, A., & Mesbahi, A. H. (2013). Application 

of Artificial Intelligence (AI) Modeling in Kinetics of Methane Hydrate Growth. 

American Journal of Analytical Chemistry, 4(11), 616–622. 

https://doi.org/10.4236/ajac.2013.411073 

Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: 

trends and explanation. Hydrological Processes, 10(2), 227–261. 

https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-

HYP357>3.0.CO;2-X 

Garg, V. (2011). Modeling catchment sediment yield: A genetic programming approach. 

Natural Hazards, 70(1), 39–50. https://doi.org/10.1007/s11069-011-0014-3 

Ghorbani, M. A., Hosseini, S. H., Fazelifard, M. H., & Abbasi, H. (2013). Sediment load 

estimation by MLR, ANN, NF and Sediment Rating Curve (SRC) in Rio Chama 

River. Journal of Civil Engineering and Urbanism, 3(4), 136–141. 

Government of Canada, E. and C. C. C. (2013). Water – The Transporter. Retrieved 

August 22, 2017, from https://www.ec.gc.ca/eau-

water/default.asp?lang=En&n=ADB791B6-1 

Grubbs, F. (1969). Procedures for Detecting Outlying Observations in Samples. 

Technometrics, 11(1), 1–21. 

Guven, A., & Kişi, Ö. (2011). Estimation of Suspended Sediment Yield in Natural Rivers 

Using Machine-coded Linear Genetic Programming. Water Resources Management, 

25(2), 691–704. https://doi.org/10.1007/s11269-010-9721-x 

Haykin, S. (2008). Neural Networks and Learning Machines. Pearson Prentice Hall New 

Jersey USA 936 pLinks (Vol. 3). https://doi.org/978-0131471399 

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological TheoryNo 



103 

 

Title. New York, NY: John Wiley & Sons. 

Heng, S., & Suetsugi, T. (2013). Using Artificial Neural Network to Estimate Sediment 

Load in Ungauged Catchments of the Tonle Sap River Basin, Cambodia. J. Water 

Resour. Prot., 5(2), 111–123. https://doi.org/10.4236/jwarp.2013.52013 

Hollis, E. H., Boone, J. G., De Rose, C. R., & Murphy, G. J. (1964). Literature review of 

the effects of turbidity and siltation on aquatic life. Annapolis, Maryland. 

Jain, S. K. (2001). Development of Integrated Sediment Rating Curves Using ANNs. 

JOURNAL OF HYDRAULIC ENGINEERING, 127(1), 30–37. 

Jang, J.-S. R. (1993). ANFIS: Adaptive-Network_Based Fuzzy Inference system. IEEE, 

23(3), 665–685. 

Jang, J.-S. R., & Sun, C.-T. (1995). Neuro-Fuzzy Modeling and Control. Proceedings of 

the Institution of Electrical Engineers IEEE, 83(3), 378–406. 

Jang, J. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence. Upper Saddle 

River, NJ: Prentice Hall Inc. 

Jeong, D.-I., & Kim, Y.-O. (2005). Rainfall-runoff models using artificial neural 

networks for ensemble streamflow prediction. Hydrological Processes, 19(19), 

3819–3835. https://doi.org/10.1002/hyp.5983 

Joshi, R., Kumar, K., & Adhikari, V. P. S. (2015). Modelling suspended sediment 

concentration using artificial neural networks for Gangotri glacier. Hydrological 

Processes, 1366(November 2015), 1354–1366. https://doi.org/10.1002/hyp.10723 

Karim, M. F., & Kennedy, J. F. (1990). Menu of Coupled Velocity and Sediment-

Discharge Relations for Rivers, 116(8), 978–996. 

Kisi, O. (2005). Suspended sediment estimation using neuro-fuzzy and neural network 

approaches. Hydrological Sciences–Journal–des Sciences Hydrologiques, 50(4). 



104 

 

https://doi.org/10.1623/hysj.2005.50.4.683 

Kisi, Ö. (2004). Multi-layer perceptrons with Levenberg-Marquardt training algorithm 

for suspended sediment concentration prediction and estimation / Prévision et 

estimation de la concentration en matières en suspension avec des perceptrons multi-

couches et l’algorithme d. Hydrological Sciences Journal, 49(6). 

https://doi.org/10.1623/hysj.49.6.1025.55720 

Kisi, Ö. (2007). Streamflow Forecasting Using Different Artificial Neural Network 

Algorithms. JOURNAL OF HYDROLOGIC ENGINEERING, 12(5), 532–539. 

Kisi, O., Dailr, A. H., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using 

genetic programming and soft computing techniques. Journal of Hydrology, 450–

451, 48–58. https://doi.org/10.1016/j.jhydrol.2012.05.031 

Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E., & Uludag, S. (2009). 

Adaptive neuro-fuzzy computing technique for suspended sediment estimation. 

Advances in Engineering Software, 40(6), 438–444. 

https://doi.org/10.1016/j.advengsoft.2008.06.004 

Kisi, O., Karahan, M. E., & Şen, Z. (2006). River suspended sediment modelling using a 

fuzzy logic approach. Hydrological Processes, 20(20), 4351–4362. 

https://doi.org/10.1002/hyp.6166 

Kisi, O., & Shiri, J. (2012). River suspended sediment estimation by climatic variables 

implication: Comparative study among soft computing techniques. Computers and 

Geosciences, 43, 73–82. https://doi.org/10.1016/j.cageo.2012.02.007 

Kisi, O., & Zounemat-Kermani, M. (2016). Suspended Sediment Modeling Using Neuro-

Fuzzy Embedded Fuzzy c-Means Clustering Technique. Water Resources 

Management, 30(11), 3979–3994. https://doi.org/10.1007/s11269-016-1405-8 

Kizhisseri, A., Simmonds, D., Rafiq, Y., & Borthwick, M. (2005). An Evolutionary 

Computation Approach to Sediment Transport Modelling. Coastal Dynamics 2005, 

(1963), 1–14. https://doi.org/doi:10.1061/40855(214)81\r10.1061/40855(214)81 



105 

 

Kondolf, G. M. (1997). Hungry water: Effects of dams and gravel mining on river 

channels. Environmental Management, 21(4), 533–551. 

https://doi.org/10.1007/s002679900048 

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of 

natural selection. Cambridge, Mass: MIT press. 

Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. 

European Journal of Gastroenterology & Hepatology, 19(12), 1046–1054. 

https://doi.org/10.1097/MEG.0b013e3282f198a0 

Lewis-Beck, M. S., Bryman, A., & Liao, T. F. (2004). The Sage encyclopedia of social 

science research methods. Sage. 

Lipták, B. G. (2002). Instrument engineers’ handbook: Process software and digital 

networks (3rd ed.). CRC Press. 

Lloyd, D. S. (1987). Turbidity as a Water Quality Standard for Salmonid Habitats in 

Alaska. North American Journal of Fisheries Management, 7(1), 34–45. 

https://doi.org/10.1577/1548-8659(1987)7<34:TAAWQS>2.0.CO;2 

Lohani, A. K., Goel, N. K., & Bhatia, K. K. S. (2007). Deriving stage–discharge–

sediment concentration relationships using fuzzy logic. Hydrological Sciences 

Journal, 52(4), 793–807. https://doi.org/10.1623/hysj.52.4.793 

Lopes, V. L., & Ffolliott, P. F. (1993). SEDIMENT RATING CURVES FOR A 

CLEARCUT PONDEROSA PINE WATERSHED IN NORTHERN ARIZONA. 

WATER RESOURCES BULLETIN, AMERICAN WATER RESOURCES 

ASSOCIATION, 29(3), 1:14. 

Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic 

plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585–1588. 

https://doi.org/10.1049/piee.1974.0328 

McBean, E. A., & AI-Nassr, S. (1988). Uncertainty in Suspended Sediment Transport 



106 

 

Curves. Journal of Hydraulic Engineering, 114(1), 63–74. 

Melesse, A. M., Ahmad, S., McClain, M. E., Wang, X., & Lim, Y. H. (2011). Suspended 

sediment load prediction of river systems: An artificial neural network approach. 

Agricultural Water Management, 98(5), 855–866. 

https://doi.org/10.1016/j.agwat.2010.12.012 

Mkpenie, V. N., Ebong, G., & Abasiekong, B. (2007). Studies on the effect of 

temperature on the sedimentation of insoluble metal carbonates 1*. J. Appl. Sci. 

Environ. Manage. December, 11(4), 67–69. Retrieved from www.bioline.org.br/ja 

Morehead, M. D., Syvitski, J. P., Hutton, E. W. H., & Peckham, S. D. (2003). Modeling 

the temporal variability in the flux of sediment from ungauged river basins. Global 

and Planetary Change, 39(1–2), 95–110. https://doi.org/10.1016/S0921-

8181(03)00019-5 

Morgan, R. P. C. (2009). Soil Erosion and Conservation (3., Auflag). New York, NY: 

John Wiley & Sons. 

Morris, G., Annandale, G., & Hotchkiss, R. (2008). “Reservoir Sedimentation,” in 

Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. 

American Society of Civil Engineers. 

Nagy, H., Watanabe, K., & Hirano, M. (2002). Prediction of Sediment Load 

Concentration in Rivers using Artificial Neural Network Model. Journal of 

Hydraulic Engineering, 128(6), 588–595. https://doi.org/10.1061/(asce)0733-

9429(2002)128:6(588) 

Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting Through Conceptual 

Models Part I-a Discussion of Principles*. Journal of Hydrology, 10, 282–290. 

https://doi.org/10.1016/0022-1694(70)90255-6 

Nastos, P., Moustris, K., Larissi, I., & Paliatsos, A. (2011). Air Quality and Bioclimatic 

Conditions within the Greater Athens Area , Greece - Development and 

Applications of Artificial Neural Networks. In F. Nejadkoorki (Ed.), Advanced Air 



107 

 

Pollution. InTech. 

Newcombe, C. P., & Macdonald, D. D. (1991). Effects of Suspended Sediments on 

Aquatic Ecosystems. North American Journal of Fisheries Management, 11(1). 

Olyaie, E., Banejad, H., Chau, K.-W., & Melesse, A. M. (2015). A comparison of various 

artificial intelligence approaches performance for estimating suspended sediment 

load of river systems: a case study in United States. Environmental Monitoring and 

Assessment, 187(4), 189. https://doi.org/10.1007/s10661-015-4381-1 

Ongley, E. D., Krishnappan, B. G., Droppo, G., Rao, S. S., & Maguire, R. J. (1992). 

Cohesive sediment transport: emerging issues for toxic chemical management. 

Hydrobiologia, 235–236(1), 177–187. https://doi.org/10.1007/BF00026210 

Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., … 

Trustrum, N. A. (2005). Fine-grained sediment in river systems: environmental 

significance and management issues. River Research and Applications, 21(7), 693–

717. https://doi.org/10.1002/rra.878 

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). Field Guide to Genetic 

Programming. Morrisville, NC: Lulu Press. Retrieved from 

http://digitalcommons.morris.umn.edu/cs_facpubs%0Ahttp://lulu.com%0Ahttp://ww

w.gp-field-guide.org.uk 

Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009). Daily 

suspended sediment concentration simulation using ANN and neuro-fuzzy models. 

Science of the Total Environment, 407(17), 4916–4927. 

https://doi.org/10.1016/j.scitotenv.2009.05.016 

Rezaei, M., & Fereydooni, M. (2015). COMPARATIVE EVALUATION OF 

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM ( ANFIS ) AND 

ARTIFICIAL NEURAL NETWORK ( ANN ) IN SIMULATION OF 

SUSPENDED SEDIMENT LOAD ( CASE STUDY : DALAKI RIVER , CHAM 

CHIT STATION ). Indian Journal of Fundamental and Applied Life Sciences, 



108 

 

5(S1), 3598–3606. 

Rojas, R. (1996). Neural Networks: A systematic introduction. New York;Berlin: 

Springer-Verlag. https://doi.org/10.1016/0893-6080(94)90051-5 

Rousseeuw, P. J. (1998). Chapter 17: Robust estimation and identifying outliers. In 

Handbook of statistical methods for engineers and scientists (2nd Ed., p. 17.1-

17.15). New York, NY: McGraw–Hill. 

Shamaei, E., & Kaedi, M. (2016). Suspended sediment concentration estimation by 

stacking the genetic programming and neuro-fuzzy predictions. Applied Soft 

Computing Journal, 45, 187–196. https://doi.org/10.1016/j.asoc.2016.03.009 

Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for 

artificial neural network rainfall–runoff models. Applied Soft Computing, 6(3), 295–

306. https://doi.org/10.1016/j.asoc.2005.02.002 

Steven Sobieszczyk, Heather M. Bragg,  and M. A. U. (2015). Water-Quality Conditions 

and Suspended-Sediment Transport in the Wilson and Trask Rivers , Northwestern 

Oregon , Water Years 2012 – 14 Scientific Investigations Report 2015 – 5109. 

Reston, Virginia. https://doi.org/http://dx.doi.org/10.3133/sir20155109. 

Suparta, W., & Alhasa, K. M. (2016). Modeling of Tropospheric Delays Using ANFIS. 

Bangi: Springer. https://doi.org/10.1007/978-3-319-28437-8 

Tachi, S. E. (2017). Contribution to the characterization and the modelling of sediment 

transport in urban hydro- systems. University of Hassiba Benbouali, Chlef. 

Tahmoures, M., Nia, A. R. M., & Naghiloo, M. (2015). Modeling of streamflow- 

suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural 

network approaches ( Case study : Dalaki River , Iran ). DESERT, 2, 177–195. 

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to 

modeling and control. Systems, Man and Cybernetics, IEEE Transactions on, SMC-

15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 



109 

 

Tuan, L. T., & Shibayama, T. (2003). Application of Gis To Evaluate Long-Term 

Variation of Sediment Discharge To Coastal Environment. Coastal Engineering 

Journal, 45(2), 275–293. https://doi.org/10.1142/S0578563403000774 

Tyrrell, J. L. (2015). the Effect of Water Temperature on in-Stream Sediment 

Concentration and Transport Rate. 

Uri, N. D. (1999). The environmental implications of soil erosion in the United States. 

Environmental Monitoring and Assessment, 66(3), 293–312. 

https://doi.org/10.1023/A:1006333329653 

UTRCA. (2012). River Bend, Watershed Report Card. London. 

Wahl, T. (2004). Uncertainty of Predictions of Embankment Dam Breach Parameters. 

Journal of Hydraulic Engineering, 130(5), 389–397. 

https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(389) 

Wang, H., Yang, Z., Wang, Y., Saito, Y., & Liu, J. P. (2008). Reconstruction of sediment 

flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of 

Hydrology, 349(3–4), 318–332. https://doi.org/10.1016/j.jhydrol.2007.11.005 

Waters, T. (1995). Sediment in streams. Sources, biological effects, and control. 

AMERICAN FISHERIES SOCIETY, BETHESDA, MD (USA), 251. 

Williams, G. P. (1989). Sediment concentration versus water discharge during single 

hydrologic events in rivers. Journal of Hydrology, 111(1–4), 89–106. 

https://doi.org/10.1016/0022-1694(89)90254-0 

Wolman, M., & Schick, A. (1967). Eects of Construction on Fluvial Sediment, Urban and 

Suburban Areas of Marylan. Water Resources Research, 3(2), 451–464. Retrieved 

from 

https://books.google.ca/books?hl=en&lr=&id=kTSBAAAAQBAJ&oi=fnd&pg=PT1

40&dq=wolman+1967+sediment&ots=KhTw_7J2u-&sig=Vm1h55l7ESrr-

d8xd9id1EAmkME 



110 

 

Wood, P. J., & Armitage, P. D. (1997). Biological Effects of Fine Sediment in the Lotic 

Environment. Environmental Management, 21(2), 203–217. 

Yang, G., Chen, Z., Yu, F., Wang, Z., Zhao, Y., & Wang, Z. (2007). Sediment rating 

parameters and their implications: Yangtze River, China. Geomorphology, 85(3–4), 

166–175. https://doi.org/10.1016/j.geomorph.2006.03.016 

Zadeh, L. a. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. 

https://doi.org/10.1016/S0019-9958(65)90241-X 

Zhu, Y. M., Lu, X. X., & Zhou, Y. (2007). Suspended sediment flux modeling with 

artificial neural network: An example of the Longchuanjiang River in the Upper 

Yangtze Catchment, China. Geomorphology, 84(1–2), 111–125. 

https://doi.org/10.1016/j.geomorph.2006.07.010 

  



111 

 

Appendices 

Appendix A: Raw data table used in this study 

Date Time 

River   

Temperature 

(degrees Celsius) 

Flow 

(m3/sec) 

Conductivity 

(μS/cm) 

Suspended 

Solids (mg/L) 

8-09-93 9:25 AM 18.5 9.73 590 11 

22-09-93 11:00 AM 15.7 10.40 641 15 

29-09-93 11:00 AM 14.4 11.70 681 13 

6-10-93 11:00 AM 13.3 14.30 603 14 

20-10-93 11:00 AM 12.1 20.10 648 13 

27-10-93 11:00 AM 11.9 17.60 686 10 

3-11-93 10:40 AM 7.8 18.00 674 52 

11-11-93 10:55 AM 7.5 16.70 698 21 

17-11-93 10:40 AM 7.8 15.40 720 17 

24-11-93 12:10 PM 5.8 17.20 732 18 

30-11-93 11:50 AM 3.9 60.10 702 22 

7-12-93 11:45 AM 5.3 59.80 698 26 

5-01-94 12:00 PM 1.8 12.40 825 8 

23-02-94 11:28 AM 2.0 151.00 481 23 

1-03-94 11:20 AM 2.6 34.30 653 8 

9-03-94 10:30 AM 1.8 38.70 616 15 

16-03-94 10:25 AM 2.1 69.50 581 76 

23-03-94 11:55 AM 3.3 260.00 491 124 

30-03-94 10:55 AM 4.2 151.00 515 17 

6-04-94 11:40 AM 5.8 83.40 571 9 

13-04-94 11:25 AM 9.7 71.30 644 13 

21-04-94 11:35 AM 10.7 32.60 764 12 

4-05-94 11:20 AM 11.4 48.40 629 10 

17-05-94 11:15 AM 11.8 61.50 641 12 

24-05-94 11:25 AM 16.7 21.70 665 11 

8-06-94 11:25 AM 19.2 16.60 680 45 

22-06-94 11:00 AM 25.4 10.20 705 4 

6-07-94 11:45 AM 23.8 17.20 686 19 

20-07-94 12:00 PM 23.9 16.30 682 41 

3-08-94 11:35 AM 23.6 14.50 658 14 

10-08-94 11:20 AM 20.7 12.80 683 18 

24-08-94 10:55 AM 22.4 10.90 693 12 

6-09-94 11:05 AM 18.9 9.50 691 16 

21-09-94 11:10 AM 20.8 8.57 697 13 

28-09-94 11:30 AM 19.1 12.00 668 25 

5-10-94 10:45 AM 14.0 9.78 677 16 

12-10-94 11:20 AM 14.9 9.17 699 14 

19-10-94 11:35 AM 15.4 12.70 667 13 
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26-10-94 11:05 AM 10.4 9.14 724 79 

9-11-94 11:20 AM 12.1 21.70 643 78 

30-11-94 11:10 AM 5.0 18.20 736 18 

6-12-94 11:05 AM 8.8 14.20 738 49 

14-12-94 11:50 AM 2.7 16.90 819 11 

4-01-95 12:05 PM 2.5 12.20 771 18 

11-01-95 11:50 AM 3.8 10.50 864 7 

18-01-95 11:40 AM 4.9 211.00 514 26 

25-01-95 11:40 AM 4.2 79.40 640 34 

1-02-95 11:30 AM 7.3 34.60 752 13 

8-02-95 11:10 AM 2.2 17.70 888 5 

14-02-95 11:30 AM 2.4 14.80 915 4 

23-02-95 11:35 AM 4.2 18.30 832 11 

1-03-95 11:50 AM 3.9 18.00 1,089 13 

15-03-95 10:50 AM 6.0 218.00 420 23 

22-03-95 11:35 AM 6.7 76.00 605 17 

29-03-95 11:35 AM 8.7 22.10 705 11 

3-04-95 11:05 AM 4.6 22.00 730 7 

12-04-95 11:40 AM 10.4 22.60 718 17 

19-04-95 1:35 PM 11.4 19.20 722 10 

26-04-95 11:30 AM 9.0 56.90 555 30 

3-05-95 11:00 AM 11.7 42.30 631 8 

17-05-95 1:35 PM 18.1 27.50 317 9 

24-05-95 11:20 AM 17.6 19.10 675 11 

7-06-95 11:50 AM 23.2 23.10 578 16 

20-06-95 1:15 PM 25.3 9.57 678 13 

28-06-95 10:50 AM 22.6 53.10 498 56 

5-07-95 12:05 PM 25.0 15.10 633 20 

12-07-95 11:20 AM 23.1 9.72 696 9 

26-07-95 11:45 AM 26.0 9.79 664 8 

9-08-95 11:35 AM 23.8 12.20 586 13 

16-08-95 11:35 AM 26.9 30.40 544 23 

30-08-95 11:45 AM 24.0 7.37 648 12 

6-09-95 11:40 AM 23.7 7.05 620 10 

20-09-95 11:40 AM 18.6 8.89 664 8 

4-10-95 11:00 AM 17.7 8.00 693 10 

11-10-95 11:40 AM 16.3 11.50 623 9 

18-10-95 11:40 AM 13.5 11.60 670 10 

1-11-95 11:15 AM 10.7 16.30 659 70 

8-11-95 11:15 AM 6.7 37.70 639 36 

15-11-95 11:00 AM 5.1 93.40 596 43 

22-11-95 11:10 AM 5.4 82.30 671 15 

29-11-95 11:10 AM 3.8 257.00 552 36 

13-12-95 10:45 AM 1.6 21.30 788 8 

3-01-96 11:15 AM 1.5 14.40 798 3 
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10-01-96 11:00 AM 1.5 12.40 873 5 

17-01-96 11:15 AM 3.0 34.60 1,074 67 

24-01-96 11:05 AM 3.2 70.60 716 19 

31-01-96 11:20 AM 1.4 43.00 638 8 

7-02-96 11:10 AM 1.8 18.90 742 1 

14-02-96 11:30 AM 1.4 50.10 568 19 

22-02-96 1:35 PM 1.9 155.00 429 62 

28-02-96 1:45 PM 2.6 116.00 457 50 

6-03-96 11:05 AM 2.2 31.70 712 8 

13-03-96 11:25 AM 4.0 26.00 714 13 

20-03-96 11:20 AM 3.8 65.00 668 17 

3-04-96 10:55 AM 6.5 44.60 628 9 

10-04-96 10:55 AM 6.0 30.80 643 8 

17-04-96 11:10 AM 5.6 239.00 532 82 

24-04-96 10:55 AM 8.1 165.00 570 37 

1-05-96 10:40 AM 8.8 151.00 514 49 

8-05-96 11:05 AM 12.2 35.70 626 20 

15-05-96 11:05 AM 11.7 46.80 600 11 

21-05-96 11:10 AM 18.2 204.00 409 221 

29-05-96 11:25 AM 16.8 30.00 611 11 

5-06-96 10:40 AM 17.5 21.90 649 4 

19-06-96 10:20 AM 20.2 72.70 576 25 

26-06-96 11:15 AM 20.3 50.00 603 17 

3-07-96 11:05 AM 22.3 16.40 656 5 

10-07-96 11:15 AM 21.9 14.70 616 18 

17-07-96 11:30 AM 23.8 26.60 605 9 

31-07-96 10:40 AM 22.0 10.90 697 14 

7-08-96 10:50 AM 25.3 9.11 665 7 

14-08-96 11:10 AM 24.7 8.95 662 6 

10-09-96 11:35 AM 19.2 49.50 386 38 

18-09-96 11:20 AM 17.6 37.60 547 90 

2-10-96 11:05 AM 16.1 93.20 574 28 

10-10-96 11:10 AM 13.5 28.00 684 14 

16-10-96 10:45 AM 13.5 20.70 668 8 

24-10-96 11:05 AM 10.7 85.30 621 21 

31-10-96 11:15 AM 9.0 98.00 618 32 

6-11-96 10:45 AM 8.8 47.20 678 32 

13-11-96 11:40 AM 5.0 47.80 696 11 

20-11-96 10:35 AM 4.4 60.50 719 7 

27-11-96 10:50 AM 3.0 28.10 774 8 

4-12-96 10:45 AM 5.0 69.80 674 11 

11-12-96 10:55 AM 4.5 41.90 710 16 

17-12-96 10:40 AM 5.6 115.00 706 40 

7-01-97 10:55 AM 1.6 184.00 533 33 

15-01-97 11:00 AM 1.5 33.80 675 9 
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21-01-97 11:00 AM 1.4 30.80 744 3 

29-01-97 1:00 PM 3.0 43.70 692 5 

5-02-97 10:50 AM 2.4 53.80 705 16 

12-02-97 11:10 AM 2.0 35.20 684 3 

19-02-97 10:50 AM 4.0 41.60 868 22 

26-02-97 11:05 AM 2.0 139.00 560 22 

5-03-97 10:20 AM 3.5 104.00 564 16 

12-03-97 10:50 AM 3.2 86.80 592 29 

19-03-97 10:45 AM 2.9 85.10 598 12 

9-04-97 10:50 AM 5.5 34.10 636 143 

16-04-97 11:15 AM 9.2 28.10 620 6 

23-04-97 11:05 AM 9.8 26.40 620 10 

30-04-97 10:50 AM 13.8 21.80 617 6 

7-05-97 11:40 AM 11.6 105.00 550 34 

28-05-97 11:05 AM 16.7 25.40 486 9 

18-03-98 10:25 AM 4.7 47.90 762 21 

25-03-98 10:40 AM 4.8 69.10 672 16 

9-04-98 10:05 AM 9.6 35.90 500 23 

15-04-98 10:45 AM 10.1 27.90 500 13 

22-04-98 11:10 AM 13.8 31.90 500 18 

6-05-98 10:45 AM 17.0 18.50 520 5 

14-05-98 10:30 AM 18.3 9.54 590 15 

20-05-98 10:15 AM 22.7 11.50 600 13 

27-05-98 10:50 AM 19.5 9.78 590 16 

3-06-98 10:15 AM 19.7 9.50 670 16 

17-06-98 11:00 AM 21.5 8.40 610 6 

8-07-98 11:00 AM 22.6 13.20 360 24 

15-07-98 10:30 AM 25.6 7.58 600 18 

22-07-98 10:30 AM 24.8 8.37 800 6 

5-08-98 10:15 AM 23.4 6.18 700 11 

12-08-98 12:50 AM 24.1 13.50 400 16 

19-08-98 12:45 PM 23.9 7.08 400 13 

2-09-98 10:20 AM 24.1 5.10 720 17 

9-09-98 10:30 AM 21.0 5.17 710 11 

16-09-98 10:10 AM 21.6 6.05 740 11 

23-09-98 11:35 AM 20.6 5.03 780 17 

30-09-98 10:15 AM 19.8 6.60 740 5 

7-10-98 9:45 AM 16.7 7.72 720 12 

14-10-98 11:00 AM 15.2 8.49 680 11 

21-10-98 10:50 AM 14.1 5.79 730 5 

28-10-98 10:50 AM 14.4 6.52 690 5 

4-11-98 10:10 AM 8.8 6.84 670 28 

11-11-98 10:30 AM 9.1 11.30 680 47 

18-11-98 10:20 AM 8.0 6.64 710 21 

25-11-98 10:20 AM 7.9 7.33 670 6 
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2-12-98 10:20 AM 9.2 7.87 620 18 

9-12-98 10:25 AM 7.0 8.70 680 14 

27-01-99 10:25 AM 1.7 105.00 460 16 

3-02-99 10:30 AM 2.4 45.70 590 18 

10-02-99 10:00 AM 3.0 40.30 490 12 

18-02-99 10:50 AM 2.9 109.00 500 27 

24-02-99 10:40 AM 1.7 18.70 460 16 

3-03-99 10:45 AM 3.3 29.80 590 13 

10-03-99 10:45 AM 2.9 13.80 470 17 

17-03-99 9:55 AM 5.7 23.90 510 8 

24-03-99 10:20 AM 4.3 38.80 420 7 

7-04-99 10:35 AM 10.3 22.40 540 6 

14-04-99 11:15 AM 10.9 19.70 470 2 

21-04-99 10:20 AM 11.2 18.20 530 2 

28-04-99 12:15 PM 12.8 21.90 510 6 

5-05-99 10:25 AM 17.6 15.80 520 14 

12-05-99 10:25 AM 16.6 9.72 570 11 

19-05-99 10:25 AM 20.2 6.62 650 5 

26-05-99 10:45 AM 15.5 11.30 540 7 

2-06-99 10:50 AM 20.2 20.70 530 17 

9-06-99 10:30 AM 24.6 9.65 580 14 

23-06-99 10:40 AM 23.0 5.87 620 13 

28-06-99 1:50 PM 26.1 8.37 610 10 

7-07-99 2:50 PM 26.5 6.20 570 11 

14-07-99 11:15 AM 24.2 6.05 540 11 

21-07-99 10:10 AM 24.6 6.45 540 13 

28-07-99 10:45 AM 26.5 5.51 510 5 

4-08-99 10:35 AM 24.2 5.46 480 9 

11-08-99 10:00 AM 22.2 6.21 570 8 

18-08-99 1:15 AM 22.8 5.68 540 10 

1-09-99 10:15 AM 21.7 5.49 600 8 

8-09-99 10:15 AM 22.9 8.62 630 8 

15-09-99 10:40 AM 20.6 6.32 580 11 

22-09-99 10:00 AM 17.3 5.82 630 13 

29-09-99 10:10 AM 20.1 7.56 600 8 

6-10-99 1:45 AM 14.0 7.10 610 14 

13-10-99 10:10 AM 16.0 8.87 610 11 

19-10-99 10:20 AM 14.6 7.17 640 11 

27-10-99 10:30 AM 10.9 8.52 610 19 

3-11-99 10:15 AM 7.1 21.10 610 43 

10-11-99 9:55 AM 11.1 19.30 560 48 

17-11-99 10:05 AM 5.9 12.50 560 10 

24-11-99 10:40 AM 12.2 9.56 660 19 

1-12-99 10:00 AM 3.4 9.72 620 10 

8-12-99 10:35 AM 5.9 31.40 747 19 
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15-12-99 9:55 AM 5.2 47.40 910 39 

5-01-00 9:50 AM 1.7 47.20 777 25 

12-01-00 10:20 AM 2.4 35.20 779 17 

19-01-00 10:30 AM 1.1 17.50 809 9 

26-01-00 10:30 AM 0.8 12.50 903 3 

2-02-00 10:30 AM 1.2 9.50 1,117 4 

8-02-00 9:40 AM 1.2 8.50 1,145 3 

16-02-00 10:10 AM 3.4 8.45 1,280 10 

23-02-00 10:30 AM 5.9 14.90 1,352 5 

2-03-00 10:40 AM 4.6 69.00 635 8 

8-03-00 10:05 AM 8.3 29.80 754 6 

15-03-00 10:00 AM 7.4 25.80 805 11 

22-03-00 10:50 AM 8.9 23.80 779 6 

29-03-00 10:30 AM 8.2 25.90 773 5 

6-04-00 11:50 AM 8.2 31.00 780 9 

13-04-00 11:00 AM 7.2 23.90 726 13 

19-04-00 10:40 AM 10.3 17.60 749 11 

26-04-00 10:25 AM 11.2 46.90 653 15 

3-05-00 10:20 AM 14.2 21.80 689 5 

10-05-00 10:20 AM 18.4 27.50 588 27 

25-05-00 10:15 AM 15.8 82.50 612 16 

31-05-00 10:40 AM 18.4 25.00 688 7 

5-06-00 10:35 AM 17.7 17.30 698 11 

14-06-00 11:05 AM 19.1 279.00 524 49 

22-06-00 10:10 AM 20.4 53.10 681 32 

26-06-00 10:45 AM 21.9 157.00 672 34 

6-07-00 10:50 AM 21.9 24.50 724 19 

19-07-00 10:55 AM 19.9 50.80 594 21 

26-07-00 10:35 AM 21.9 20.50 643 10 

2-08-00 11:15 AM 22.0 208.00 537 152 

9-08-00 10:55 AM 23.6 56.70 688 13 

16-08-00 10:50 AM 22.5 22.20 697 19 

23-08-00 10:25 AM 21.5 13.00 741 5 

30-08-00 10:50 AM 22.9 11.30 696 11 

6-09-00 10:20 AM 18.9 15.60 651 23 

13-09-00 10:20 AM 20.7 13.90 675 11 

20-09-00 10:40 AM 19.9 23.10 653 13 

27-09-00 10:30 AM 15.0 58.20 652 32 

4-10-00 11:15 AM 16.7 27.60 708 11 

11-10-00 10:10 AM 12.6 23.10 741 14 

18-10-00 10:10 AM 14.0 18.60 756 15 

25-10-00 10:25 AM 14.2 14.60 744 10 

1-11-00 9:50 AM 10.5 15.20 730 20 

8-11-00 11:30 AM 11.6 10.80 757 12 

15-11-00 10:20 AM 7.2 27.60 713 41 
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22-11-00 10:50 AM 3.0 25.00 815 7 

29-11-00 11:10 AM 2.0 113.00 709 31 

6-12-00 10:10 AM 0.0 22.00 844 23 

13-12-00 11:00 AM 1.2 15.20 964 2 

10-01-01 10:30 AM 1.1 18.50 834 8 

17-01-01 11:20 AM 2.1 38.30 909 6 

24-01-01 10:50 AM 2.5 22.50 842 13 

31-01-01 11:20 AM 2.6 49.00 897 28 

7-02-01 10:30 AM 2.7 42.50 773 7 

14-02-01 10:40 AM 2.4 230.00 453 23 

21-02-01 10:55 AM 1.0 39.00 676 8 

28-02-01 10:40 AM 1.7 178.00 485 5 

7-03-01 10:55 AM 3.4 48.00 683 11 

14-03-01 10:30 AM 3.3 70.10 679 30 

21-03-01 10:30 AM 5.2 104.00 685 22 

28-03-01 10:20 AM 4.1 81.00 580 8 

4-04-01 10:30 AM 6.1 110.00 570 5 

11-04-01 10:50 AM 9.5 74.70 558 17 

18-04-01 10:30 AM 8.6 42.80 633 8 

25-04-01 10:05 AM 10.5 31.50 656 11 

7-05-01 7:55 AM 15.6 16.90 687 6 

14-05-01 8:10 AM 15.4 15.20 685 9 

23-05-01 10:25 AM 15.6 19.20 639 14 

28-05-01 7:55 AM 14.4 75.00 566 16 

6-06-01 7:45 AM 14.8 19.40 601 17 

13-06-01 10:45 AM 21.0 21.00 584 11 

27-06-01 10:15 AM 23.5 15.20 593 17 

4-07-01 11:00 AM 21.5 9.34 590 13 

16-07-01 8:05 AM 23.1 6.06 660 28 

23-07-01 7:35 AM 25.0 7.67 631 14 

8-08-01 8:45 AM 26.8 5.66 642 20 

13-08-01 9:50 AM 24.8 5.73 660 11 

20-08-01 8:05 AM 21.5 7.90 658 26 

5-09-01 10:25 AM 21.2 5.94 641 7 

12-09-01 11:00 AM 22.7 6.60 622 12 

17-09-01 7:55 AM 17.7 6.40 598 15 

1-10-01 7:50 AM 15.0 8.33 573 8 

10-10-01 10:20 AM 13.4 12.50 545 8 

17-10-01 10:50 AM 11.5 85.30 519 20 

22-10-01 8:05 AM 12.0 28.30 627 23 

5-11-01 8:05 AM 8.7 49.80 583 44 

12-11-01 8:05 AM 7.1 27.40 618 14 

19-11-01 8:05 AM 10.9 22.30 624 12 

26-11-01 8:00 AM 9.6 61.30 566 83 

3-12-01 7:55 AM 7.7 121.00 503 27 
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10-12-01 8:05 AM 5.5 30.50 624 8 

2-01-02 8:05 AM -0.8 20.70 719 2 

14-01-02 7:50 AM 2.5 24.30 693 7 

21-01-02 8:05 AM 1.9 31.40 733 3 

28-01-02 8:10 AM 3.6 85.50 671 5 

4-02-02 8:30 AM 1.3 59.60 760 7 

11-02-02 8:10 AM 1.6 59.10 741 18 

18-02-02 8:15 AM 0.6 39.70 783 3 

4-03-02 8:15 AM 1.3 171.00 579 29 

11-03-02 8:10 AM 2.1 136.00 533 55 

18-03-02 8:10 AM 5.5 43.70 622 5 

25-03-02 7:50 AM 3.1 30.80 654 3 

8-04-02 7:15 AM 7.1 56.10 584 4 

15-04-02 8:10 AM 11.4 200.00 469 56 

22-04-02 8:05 AM 11.0 28.70 628 7 

6-05-02 7:40 AM 14.0 25.80 653 11 

13-05-02 7:50 AM 11.6 67.50 600 34 

27-05-02 7:45 AM 14.7 22.80 647 11 

3-06-02 7:45 AM 17.8 21.50 622 13 

10-06-02 7:40 AM 20.3 21.60 567 8 

17-06-02 7:40 AM 17.6 18.60 628 9 

24-06-02 8:00 AM 23.7 41.50 458 18 

2-07-02 8:05 AM 26.0 13.90 499 4 

8-07-02 8:10 AM 24.6 8.53 605 12 

15-07-02 8:10 AM 24.3 7.67 672 12 

22-07-02 7:20 AM 25.5 7.95 707 3 

12-08-02 9:05 AM 24.6 8.56 653 16 

19-08-02 7:30 AM 23.8 8.87 677 8 

26-08-02 7:40 AM 21.9 8.78 670 1 

9-09-02 7:40 AM 22.6 6.86 695 3 

16-09-02 7:50 AM 21.0 8.34 692 5 

23-09-02 7:35 AM 20.1 8.42 418 3 

7-10-02 7:40 AM 17.2 8.66 654 5 

21-10-02 7:40 AM 11.5 8.57 719 4 

28-10-02 7:40 AM 10.6 8.85 687 5 

18-11-02 7:40 AM 5.5 20.10 788 4 

25-11-02 7:30 AM 6.3 15.10 691 5 

2-12-02 7:45 AM 2.4 11.00 1,161 2 

9-12-02 7:30 AM 1.6 9.88 912 8 

6-01-03 7:40 AM 2.8 21.10 891 5 

13-01-03 7:40 AM 0.9 14.30 965 5 

20-01-03 7:50 AM 1.2 9.23 1,037 6 

3-02-03 7:40 AM 3.4 10.60 1,341 4 

10-02-03 8:50 AM 1.3 17.60 1,055 6 

17-02-03 9:40 AM 0.5 10.70 991 7 
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24-02-03 9:20 AM 0.5 14.20 1,202 8 

3-03-03 8:05 AM 0.1 11.7 1,659 4 

10-03-03 7:35 AM 0.6 13.8 1,183 13 

17-03-03 7:40 AM 5.0 36.0 986 34 

24-03-03 7:50 AM 3.7 186 460 20 

7-04-03 7:55 AM 3.8 59 781 5 

14-04-03 7:45 AM 7.7 101 587 17 

28-04-03 7:45 AM 13.6 21 714 6 

5-05-03 7:45 AM 13.4 54.8 695 12 

12-05-03 7:40 AM 13.1 60.4 698 16 

26-05-03 7:40 AM 14.9 59.2 676 11 

2-06-03 7:55 AM 15.3 21.5 722 10 

16-06-03 7:55 AM 20.0 20.2 720 10 

23-06-03 7:45 AM 21.1 18.3 687 12 

7-07-03 8:30 AM 24.4 14.3 738 11 

14-07-03 7:50 AM 20.6 9.02 788 13 

21-07-03 7:50 AM 22.2 13 479 15 

28-07-03 7:45 AM 22.0 9.54 679 9 

11-08-03 7:55 AM 23.2 20.6 644 18 

18-08-03 7:40 AM 22.4 14.9 595 13 

25-08-03 7:50 AM 22.9 8.5 674 11 

8-09-03 7:50 AM 20.7 6.44 736 16 

15-09-03 7:45 AM 22.1 9.76 740 11 

22-09-03 7:45 AM 18.1 16.1 504 7 

29-09-03 7:45 AM 15.7 14.1 599 10 

6-10-03 7:45 AM 11.9 16.3 636 9 

20-10-03 7:45 AM 10.6 15.8 663 14 

27-10-03 7:45 AM 11.1 18.8 657 17 

3-11-03 7:55 AM 11.1 114 677 49 

10-11-03 7:40 AM 5.9 38.1 694 22 

17-11-03 7:40 AM 6.9 80.3 686 38 

24-11-03 7:45 AM 9.9 60.2 642 30 

1-12-03 7:45 AM 4.8 114 633 21 

8-12-03 7:45 AM 2.0 40 728 9 

15-12-03 7:50 AM 2.5 46.9 761 12 

12-01-04 8:05 AM 1.4 30 900 10 

16-02-04 8:05 AM 0.0 14.8 968 6 

23-02-04 8:10 AM 3.0 34 1,034 20 

1-03-04 7:45 AM 2.4 52.2 920 26 

8-03-04 7:00 AM 1.6 372 413 38 

15-03-04 7:20 AM 2.6 71.4 696 17 

22-03-04 7:30 AM 1.1 74.7 767 18 

29-03-04 7:35 AM 7.8 147 563 25 

5-04-04 7:50 AM 4.9 70.2 656 19 

19-04-04 7:45 AM 14.4 30.4 718 7 
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26-04-04 7:50 AM 12.3 33.3 679 12 

3-05-04 7:45 AM 8.8 55.9 671 16 

17-05-04 7:45 AM 14.5 49.4 666 4 

31-05-04 7:50 AM 15.6 39.8 689 17 

7-06-04 7:45 AM 18.5 21.9 744 16 

21-06-04 8:00 AM 16.7 22.1 721 12 

28-06-04 7:55 AM 19.5 15.6 751 7 

12-07-04 7:50 AM 21.7 14.2 714 16 

19-07-04 7:50 AM 19.9 13.1 788 10 

26-07-04 7:55 AM 21.2 11.3 711 17 

9-08-04 8:10 AM 20.9 12.2 717 9 

16-08-04 7:30 AM 20.6 8.9 754 6 

23-08-04 7:50 AM 20.2 8.28 774 21 

13-09-04 7:55 AM 20.4 10.2 669 9 

20-09-04 7:50 AM 15.8 8.14 758 10 

27-09-04 7:50 AM 16.7 7.9 757 9 

4-10-04 7:40 AM 16.0 7.68 764 10 

18-10-04 7:50 AM 9.7 9.39 726 4 

25-10-04 7:55 AM 11.5 10 776 11 

1-11-04 7:45 AM 11.2 20.3 669 14 

8-11-04 7:40 AM 7.3 31.8 682 19 

15-11-04 8:00 AM 5.0 12.9 789 8 

22-11-04 7:50 AM 7.3 10.6 810 16 

29-11-04 7:50 AM 5.0 23.2 757 19 

6-12-04 7:50 AM 3.2 30.7 734 14 

20-12-04 8:00 AM 0.0 15.8 936 13 

10-01-05 8:30 AM 1.6 51.6 678 7 

17-01-05 8:00 AM 0.0 72.4 608 15 

24-01-05 8:00 AM 0.0 22 864 5 

7-02-05 7:50 AM 1.4 18 980 12 

14-02-05 8:00 AM 1.0 41.7 991 13 

7-03-05 8:00 AM 2.0 27.4 922 11 

14-03-05 7:50 AM 0.0 27 758 8 

21-03-05 8:05 AM 0.0 25.6 842 12 

11-04-05 8:00 AM 7.9 36.9 642 11 

18-04-05 8:05 AM 8.9 20.5 694 10 

25-04-05 7:55 AM 4.3 78 632 29 

2-05-05 7:55 AM 5.8 54 632 14 

9-05-05 7:55 AM 11.7 24.2 661 7 

16-05-05 7:50 AM 8.2 26.4 718 10 

30-05-05 7:50 AM 11.6 21.9 628 37 

6-06-05 7:55 AM 17.2 14.9 697 5 

13-06-05 7:50 AM 21.3 10.3 669 12 

20-06-05 8:10 AM 13.5 14.7 625 11 

27-06-05 8:00 AM 20.4 8.36 692 14 
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11-07-05 8:15 AM 18.8 6.7 556 18 

18-07-05 8:00 AM 20.2 56.2 418 22 

25-07-05 7:50 AM 19.9 9.43 493 17 

8-08-05 7:50 AM 17.4 7.76 474 14 

15-08-05 8:10 AM 17.3 8.84 660 16 

22-08-05 7:50 AM 17.6 18.3 551 25 

29-08-05 7:55 AM 16.8 7.83 677 12 

12-09-05 8:05 AM 16.2 6.02 702 14 

19-09-05 8:00 AM 15.0 8.16 619 10 

26-09-05 7:55 AM 14.2 15 618 122 

17-10-05 7:45 AM 15.1 13.8 629 12 

24-10-05 7:55 AM 12.0 8.81 744 19 

31-10-05 7:55 AM 11.1 14.8 737 12 

7-11-05 7:50 AM 11.3 8.67 730 36 

14-11-05 7:45 AM 9.5 12.4 696 30 

21-11-05 7:50 AM 5.9 35.7 610 31 

28-11-05 7:50 AM 5.1 27.8 940 31 

5-12-05 8:10 AM 3.0 42.7 672 16 

12-12-05 8:10 AM 1.2 16 1,020 11 

19-12-05 8:00 AM 1.2 12.4 888 6 

9-01-06 7:50 AM 3.0 55.3 688 16 

16-01-06 8:25 AM 1.5 73.8 657 19 

23-01-06 7:55 AM 2.5 107.6 602 21 

30-01-06 7:50 AM 4.0 220.3 586 83 

6-02-06 8:10 AM 1.5 146.3 685 27 

13-02-06 7:50 AM 1.5 45.2 823 1 

20-02-06 7:50 AM 0.6 154.2 569 11 

27-02-06 8:00 AM 0.4 33.3 626 7 

6-03-06 8:40 AM 2.2 27.3 702 17 

13-03-06 8:30 AM 8.7 450.5 615 64 

20-03-06 8:45 AM 8.7 59.1 649 12 

27-03-06 8:00 AM 8.6 32.3 684 4 

10-04-06 8:00 AM 6.6 48.2 600 15 

24-04-06 7:50 AM 11.2 48.77 524 37 

8-05-06 8:00 AM 13.2 14.5 779 6 

15-05-06 7:50 AM 14.2 21.1 714 8 

29-05-06 8:00 AM 18.9 16.8 520 14 

5-06-06 8:05 AM 16.1 53.3 441 35 

19-06-06 8:00 AM 21.0 13.1 751 10 

26-06-06 8:15 AM 21.0 15.8 714 11 

10-07-06 8:05 AM 20.4 10.1 752 10 

17-07-06 8:00 AM 22.9 13.9 589 12 

24-07-06 8:00 AM 19.0 12.6 684 7 

31-07-06 8:00 AM 21.7 47.7 544 21 

14-08-06 8:00 AM 20.3 11.9 698 26 
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21-08-06 7:55 AM 19.6 9.8 620 14 

28-08-06 7:45 AM 19.5 10.0 681 9 

11-09-06 7:50 AM 16.7 9.5 712 9 

18-09-06 7:55 AM 17.5 33.7 712 16 

25-09-06 8:00 AM 13.2 25.0 565 53 

16-10-06 7:45 AM 7.7 59.0 626 22 

23-10-06 7:30 AM 8.8 106.6 529 20 

30-10-06 7:55 AM 5.7 211.6 524 37 

6-11-06 7:55 AM 5.7 41.5 654 13 

13-11-06 7:50 AM 6.3 51.1 648 12 

20-11-06 8:00 AM 5.0 81.1 575 22 

27-11-06 7:55 AM 6.1 34.0 672 10 

4-12-06 7:55 AM 2.1 143.0 472 65 

11-12-06 7:55 AM 2.0 53.6 908 20 

18-12-06 7:55 AM 5.2 64.5 674 22 

8-01-07 8:00 AM 4.3 141.8 598 40 

15-01-07 8:00 AM 2.9 105.8 699 31 

22-01-07 8:00 AM 0.0 38.5 948 13 

29-01-07 8:00 AM -0.9 24.9 917 10 

5-02-07 8:10 AM -1.0 17.0 994 7 

12-02-07 8:00 AM 0.2 17.1 952 9 

19-02-07 8:00 AM -0.8 14.8 1,123 22 

26-02-07 8:05 AM 0.7 15.7 1,129 7 

5-03-07 8:00 AM 0.0 19.5 1,307 7 

12-03-07 7:55 AM 0.3 41.7 933 13 

19-03-07 8:05 AM 1.0 105.1 537 15 

26-03-07 8:05 AM 2.0 237.0 444 51 

16-04-07 8:00 AM 3.7 47.2 650 12 

23-04-07 7:05 AM 12.3 29.5 612 4 

30-04-07 8:00 AM 12.6 47.2 472 7 

7-05-07 8:00 AM 14.2 20.7 491 6 

14-05-07 8:05 AM 14.9 17.2 762 17 

28-05-07 7:55 AM 16.8 15.9 667 9 

4-06-07 8:00 AM 20.4 20.3 759 6 

11-06-07 7:55 AM 19.7 15.7 670 11 

25-06-07 8:00 AM 21.3 9.4 699 8 

9-07-07 8:00 AM 23.2 7.3 750 14 

16-07-07 7:50 AM 17.1 7.0 495 16 

23-07-07 8:05 AM 17.0 6.3 715 21 

30-07-07 8:00 AM 22.0 6.4 452 14 

13-08-07 8:05 AM 22.3 7.6 401 15 

20-08-07 7:55 AM 18.1 10.2 762 19 

27-08-07 1:12 AM 19.7 8.8 696 20 

10-09-07 8:00 AM 19.4 7.7 757 11 

17-09-07 8:10 AM 14.7 7.5 855 14 
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24-09-07 7:55 AM 17.1 7.2 818 10 

15-10-07 8:00 AM 13.6 7.6 852 14 

22-10-07 8:00 AM 15.1 7.5 789 6 

29-10-07 8:00 AM 11.1 7.9 787 13 

5-11-07 8:00 AM 9.3 7.7 839 8 

12-11-07 8:00 AM 9.9 6.4 895 10 

19-11-07 8:00 AM 6.5 6.5 775 6 

26-11-07 7:50 AM 5.8 14.5 752 8 

3-12-07 8:00 AM 3.9 32.0 960 48 

10-12-07 8:00 AM 2.7 18.8 896 5 

7-01-08 8:00 AM 4.9 116.4 814 33 

14-01-08 8:00 AM 4.1 89.0 700 27 

21-01-08 7:55 AM 1.4 29.6 887 12 

28-01-08 8:00 AM 2.3 21.2 1,228 11 

25-02-08 8:00 AM 1.0 47.3 781 11 

3-03-08 8:20 AM 2.7 45.8 810 4 

17-03-08 7:55 AM 2.0 58.4 810 7 

7-04-08 7:55 AM 6.6 157.2 732 15 

14-04-08 7:55 AM 7.3 87.1 891 1 

21-04-08 7:50 AM 13.3 29.2 805 9 

28-04-08 7:55 AM 13.6 21.1 782 5 

5-05-08 7:55 AM 11.9 21.6 645 6 

26-05-08 7:50 AM 15.3 17.0 684 4 

2-06-08 8:05 AM 14.8 21.4 612 34 

9-06-08 7:55 AM 21.2 13.5 684 6 

16-06-08 8:35 AM 16.8 18.7 657 7 

23-06-08 8:05 AM 18.2 31.2 671 29 

30-06-08 8:25 AM 15.9 54.5 507 23 

7-07-08 8:35 AM 17.4 14.8 684 7 

14-07-08 8:15 AM 17.1 38.0 500 18 

28-07-08 9:00 AM 17.5 15.4 635 4 

11-08-08 8:05 AM 15.2 27.2 508 40 

18-08-08 7:50 AM 18.0 11.3 624 17 

25-08-08 7:25 AM 19.4 8.2 655 13 

8-09-08 7:55 AM 15.7 10.1 526 17 

15-09-08 8:10 AM 17.1 95.4 563 62 

22-09-08 8:00 AM 15.5 15.6 566 20 

26-09-08 8:05 AM 15.7 15.0 626 6 

6-10-08 7:50 AM 11.0 29.0 559 9 

20-10-08 7:55 AM 8.0 17.3 651 1 

3-11-08 7:55 AM 7.7 25.9 659 10 

10-11-08 8:05 AM 5.6 53.2 666 6 

17-11-08 8:05 AM 4.9 219.7 562 16 

1-12-08 8:05 AM 2.3 72.2 587 14 

15-12-08 7:55 AM 5.5 144.6 732 42 
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9-02-09 7:50 AM 1.9 55.0 885 18 

9-03-09 8:05 AM 2.7 331.6 320 124 

16-03-09 7:40 AM 4.3 70.2 467 17 

23-03-09 8:00 AM 5.3 47.0 616 12 

30-03-09 7:55 AM 7.3 47.0 647 10 

6-04-09 8:00 AM 7.5 115.9 602 41 

20-04-09 8:00 AM 10.6 39.4 690 5 

11-05-09 7:55 AM 12.6 42.4 653 11 

25-05-09 7:55 AM 16.8 20.9 733 14 

1-06-09 7:35 AM 15.1 64.3 636 15 

15-06-09 7:55 AM 18.7 24.1 704 7 

29-06-09 8:00 AM 20.9 18.8 727 2 

20-07-09 7:50 AM 19.1 12.7 772 12 

27-07-09 7:50 AM 20.0 21.6 727 21 

17-08-09 8:05 AM 24.2 13.4 723 16 

24-08-09 7:55 AM 19.3 11.9 756 19 

31-08-09 8:00 AM 16.4 13.2 699 14 

14-09-09 7:55 AM 19.3 10.7 721 13 

28-09-09 7:55 AM 17.4 14.6 772 29 

5-10-09 8:00 AM 12.4 15.6 706 9 

19-10-09 8:10 AM 8.7 15.7 746 12 

26-10-09 8:00 AM 10.7 14.4 799 13 

2-11-09 8:00 AM 9.8 15.7 802 6 

9-11-09 8:00 AM 10.3 16.6 788 9 

16-11-09 7:50 AM 8.5 14.8 798 7 

7-12-09 7:55 AM 3.2 24.3 792 1 

14-12-09 8:00 AM 3.4 38.5 798 23 

18-01-10 7:55 AM 2.7 13.7 948 5 

25-01-10 7:55 AM 4.4 50.1 825 23 

8-02-10 7:50 AM 0.6 18.4 855 6 

22-02-10 8:00 AM 2.9 14.3 790 10 

1-03-10 8:00 AM 3.4 14.3 1,230 8 

8-03-10 8:00 AM 4.3 21.3 882 14 

15-03-10 8:05 AM 4.0 329.8 477 47 

29-03-10 8:05 AM 7.8 25.7 759 24 

12-04-10 8:30 AM 9.8 66.3 691 18 

19-04-10 7:50 AM 10.0 22.7 750 6 

26-04-10 8:00 AM 11.7 19.0 735 11 

3-05-10 8:00 AM 17.4 14.1 804 3 

10-05-10 8:05 AM 10.0 61.5 631 20 

17-05-10 8:00 AM 13.3 36.6 714 13 

31-05-10 8:30 AM 21.6 25.5 748 2 

7-06-10 8:00 AM 18.0 155.3 568 52 

14-06-10 8:00 AM 19.3 26.4 738 11 

21-06-10 8:00 AM 22.1 12.8 741 2 
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28-06-10 7:50 AM 22.9 11.8 709 7 

5-07-10 8:30 AM 24.5 10.2 711 1 

12-07-10 8:30 AM 23.6 23.6 699 12 

19-07-10 7:00 AM 23.3 17.6 653 22 

26-07-10 7:50 AM 22.6 18.6 669 13 

9-08-10 8:00 AM 22.5 10.1 704 7 

23-08-10 7:55 AM 21.5 11.7 671 14 

30-08-10 8:25 AM 23.1 8.1 720 5 

13-09-10 7:55 AM 17.0 8.7 750 8 

20-09-10 8:05 AM 15.5 10.2 711 5 

27-09-10 8:00 AM 15.1 8.6 775 6 

4-10-10 7:55 AM 11.7 18.5 689 13 

18-10-10 7:55 AM 11.8 22.0 732 10 

25-10-10 7:55 AM 13.6 23.6 734 18 

1-11-10 8:05 AM 7.5 21.5 771 5 

8-11-10 9:45 AM 6.7 17.8 781 5 

15-11-10 7:55 AM 7.1 14.9 785 10 

22-11-10 7:55 AM 8.8 19.0 795 8 

29-11-10 7:50 AM 3.5 41.6 791 12 

14-03-11 7:45 AM 5.2 197.7 610 18 

21-03-11 7:55 AM 4.9 218.3 630 45 

28-03-11 8:35 AM 3.0 59.5 700 10 

4-04-11 8:15 AM 7.0 70.5 753 18 

11-04-11 8:10 AM 11.5 62.1 648 15 

18-04-11 7:55 AM 6.8 42.6 698 4 

2-05-11 8:05 AM 10.8 83.6 618 19 

9-05-11 7:50 AM 13.8 47.2 671 7 

16-05-11 7:50 AM 12.5 161.9 516 42 

30-05-11 7:55 AM 17.6 67.1 529 138 

6-06-11 8:10 AM 18.9 36.0 602 18 

13-06-11 7:50 AM 16.2 27.8 621 20 

20-06-11 7:55 AM 19.5 15.4 639 8 

27-06-11 8:00 AM 19.6 42.8 563 20 

4-07-11 8:35 AM 22.8 16.6 620 10 

11-07-11 7:20 AM 23.9 10.0 670 16 

18-07-11 7:55 AM 24.9 9.1 650 8 

25-07-11 7:55 AM 24.3 18.3 460 26 

8-08-11 7:50 AM 24.1 9.7 730 18 

15-08-11 7:50 AM 20.8 9.8 700 18 

22-08-11 8:40 AM 20.2 11.4 644 12 

29-08-11 8:45 AM 20.4 14.0 669 8 

19-09-11 7:55 AM 16.8 8.4 680 10 

26-09-11 7:50 AM 18.4 15.7 610 21 

3-10-11 7:50 AM 12.8 29.6 510 30 

17-10-11 8:00 AM 11.4 115.0 464 20 
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24-10-11 8:00 AM 11.1 92.4 490 27 

31-10-11 8:05 AM 9.2 46.5 520 12 

7-11-11 7:50 AM 9.6 21.5 550 6 

14-11-11 7:50 AM 10.3 19.5 560 7 

21-11-11 7:50 AM 7.7 19.2 523 16 

28-11-11 7:55 AM 8.6 35.4 500 46 

5-12-11 8:00 AM 7.4 128.1 520 42 

12-12-11 8:00 AM 2.9 77.5 540 21 

9-01-12 8:10 AM 2.7 72.6 540 21 

16-01-12 8:20 AM 2.5 51.1 540 18 

23-01-12 7:45 AM 3.2 46.6 650 22 

6-02-12 8:00 AM 3.0 66.3 540 8 

13-02-12 7:55 AM 1.4 28.7 391 9 

27-02-12 7:55 AM 3.0 51.5 600 4 

5-03-12 8:05 AM 1.7 138.6 330 24 

12-03-12 8:00 AM 5.9 47.4 430 8 

19-03-12 7:55 AM 12.7 41.5 503 10 

26-03-12 7:55 AM 10.8 24.3 511 1 

2-04-12 8:00 AM 8.1 18.0 500 8 

16-04-12 7:55 AM 14.1 13.9 600 6 

23-04-12 8:05 AM 9.8 12.7 540 <3 

4-06-12 7:55 AM 16.6 37.7 511 38 

11-06-12 8:00 AM 22.4 13.3 700 8 

18-06-12 7:00 AM 21.8 9.7 702 10 

9-07-12 9:00 AM 24.0 6.1 890 14 

13-08-12 8:15 AM 21.8 12.2 680 26 

27-08-12 8:50 AM 23.7 6.8 730 1 

10-09-12 8:45 AM 18.3 11.0 590 12 

17-09-12 8:15 AM 18.3 7.6 650 14 

1-10-12 8:05 AM 14.0 9.8 800 7 

15-10-12 8:05 AM 14.0 9.2 816 12 

29-10-12 8:15 AM 10.1 23.7 629 28 

5-11-12 8:05 AM 6.6 36.5 680 17 

12-11-12 8:00 AM 10.3 11.6 880 10 

19-11-12 8:00 AM 6.7 10.7 790 10 

26-11-12 8:10 AM 4.8 9.9 803 6 

3-12-12 8:05 AM 7.6 13.2 760 11 

10-12-12 7:55 AM 5.5 25.5 737 8 

14-01-13 7:45 AM 4.8 225.7 460 89 

21-01-13 7:40 AM 1.1 46.3 550 11 

25-02-13 7:45 AM 2.1 49.1 644 12 

4-03-13 7:45 AM 2.4 35.8 700 4 

11-03-13 7:35 AM 4.0 64.1 665 108 

18-03-13 7:40 AM 2.2 95.8 690 8 

8-04-13 8:00 AM 6.3 39.8 605 10 
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15-04-13 8:45 AM 5.8 264.8 448 26 

29-04-13 7:50 AM 11.5 51.3 690 12 

6-05-13 8:00 AM 15.7 28.0 810 1 

13-05-13 7:45 AM 10.7 22.3 750 10 

27-05-13 7:55 AM 14.8 13.0 887 8 

3-06-13 8:00 AM 17.8 76.4 753 35 

10-06-13 7:40 AM 18.4 20.3 758 14 

24-06-13 7:50 AM 23.8 21.6 750 8 

8-07-13 8:35 AM 22.1 37.7 583 12 

15-07-13 7:55 AM 24.6 24.5 665 12 

29-07-13 7:55 AM 18.4 11.9 608 11 

12-08-13 8:45 AM 20.0 9.6 637 8 

19-08-13 8:00 AM 20.1 7.7 630 <3 

26-08-13 7:45 AM 22.2 6.7 670 6 

9-09-13 8:00 AM 18.7 7.0 640 8 

23-09-13 8:00 AM 15.2 211.7 620 31 

30-09-13 7:50 AM 17.3 21.8 700 8 

7-10-13 8:20 AM 16.5 61.7 390 94 

21-10-13 8:05 AM 12.0 58.6 520 16 

28-10-13 8:00 AM 8.0 210.4 410 25 

4-11-13 8:00 AM 7.7 216.3 480 24 

11-11-13 8:15 AM 6.5 74.4 570 14 

18-11-13 7:40 AM 8.0 47.2 520 10 

17-03-14 7:40 AM 0.2 58.00 430 5 

31-03-14 7:45 AM 2.2 172.70 452 44 

7-04-14 8:00 AM 3.5 261.63 557 12 

14-04-14 7:55 AM 9.9 118.86 550 14 

28-04-14 7:45 AM 9.8 27.36 486 1 

5-05-14 7:55 AM 9.0 79.96 440 10 

12-05-14 7:55 AM 15.6 30.52 550 1 

26-05-14 8:05 AM 16.1 56.83 535 8 

2-06-14 7:55 AM 19.6 19.97 640 2 

16-06-14 7:05 AM 20.8 18.22 570 12 

23-06-14 8:00 AM 21.8 9.92 680 8 

7-07-14 8:40 AM 22.2 9.19 570 33 

14-07-14 7:55 AM 21.3 25.16 580 13 

28-07-14 7:55 AM 20.9 10.73 560 22 

11-08-14 8:00 AM 21.5 11.70 650 9 

18-08-14 7:55 AM 19.5 14.94 600 13 

25-08-14 8:35 AM 20.6 13.92 640 12 

8-09-14 8:00 AM 18.6 107.36 450 37 

15-09-14 7:55 AM 14.6 72.98 600 28 

29-09-14 8:05 AM 16.6 12.81 640 5 

6-10-14 8:00 AM 13.3 81.68 550 18 

20-10-14 8:10 AM 11.3 52.42 560 10 
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27-10-14 8:05 AM 9.3 21.21 570 4 

10-11-14 7:50 AM 7.0 32.30 530 1 

24-11-14 9:05 AM 5.5 54.50 470 76 

8-12-14 8:10 AM 2.0 27.57 490 6 

16-03-15 7:30 AM 1.5 50.6 441 39 

23-03-15 7:45 AM 0.5 17.3 508 26 

13-04-15 8:05 AM 8.0 23.3 540 39 

27-04-15 7:50 AM 9.4 17.5 590 0.5 

4-05-15 8:00 AM 15.3 79.9 700 6 

11-05-15 8:50 AM 20.4 12.9 840 6 

17-08-15 8:45 AM 23.9 6.7 890 11 

14-09-15 7:50 AM 16.1 13.0 680 9 

21-09-15 8:30 AM 16.2 6.6 690 7 

28-09-15 7:50 AM 19.4 4.8 810 10 

5-10-15 7:50 AM 13.6 8.5 650 12 

26-10-15 7:25 AM 11.0 10.4 620 10 

2-11-15 7:50 AM 9.8 20.2 568 12 

9-11-15 8:10 AM 8.1 17.3 455 0.5 

16-11-15 7:55 AM 7.7 23.3 440 8 

23-11-15 7:50 AM 3.9 17.5 504 6 

30-11-15 7:30 AM 4.2 79.9 370 21 

14-12-15 7:40 AM 8.0 14.7 500 4 

4-01-16 7:50 AM 0.2 36.7 480 13 

11-01-16 8:00 AM 0.0 163.2 430 62 

25-01-16 8:05 AM 0.9 31.3 500 8 

1-02-16 7:50 AM 3.0 134.3 550 36 

8-02-16 7:55 AM 4.1 59.9 470 15 

22-02-16 8:05 AM 1.9 160.0 400 33 

7-03-16 7:50 AM 3.4 34.5 440 8 

14-03-16 7:55 AM 7.3 45.4 430 6 

21-03-16 7:55 AM 5.0 35.2 420 10 

4-04-16 8:00 AM 3.2 124.8 420 28 

11-04-16 8:05 AM 4.0 141.1 460 17 

18-04-16 7:50 AM 11.2 46.2 460 7 

25-04-16 7:55 AM 11.1 27.1 480 1 

2-05-16 7:35 AM 10.6 29.3 480 8 

16-05-16 7:35 AM 9.3 21.5 450 1 

30-05-16 7:50 AM 20.9 12.2 710 1 

6-06-16 7:45 AM 18.9 16.8 560 6 

20-06-16 7:55 AM 22.5 8.1 750 6 

27-06-16 8:05 AM 23.2 7.0 820 10 

4-07-16 8:00 AM 20.3 6.1 790 8 

11-07-16 7:55 AM 22.2 6.4 760 12 

18-07-16 7:55 AM 22.6 7.3 670 14 

25-07-16 7:55 AM 23.8 5.6 800 17 
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8-08-16 8:05 AM 21.6 4.9 790 12 

15-08-16 8:40 AM 22.7 12.3 620 22 

22-08-16 8:50 AM 21.4 13.2 620 24 

29-08-16 8:15 AM 22.0 15.1 630 24 

12-09-16 8:00 AM 18.5 7.4 660 16 

19-09-16 8:10 AM 19.7 8.1 660 14 

26-09-16 7:55 AM 17.2 6.7 740 10 

17-10-16 8:30 AM 16.2 7.6 690 12 

24-10-16 7:50 AM 12.0 14.5 520 12 

31-10-16 8:00 AM 8.9 7.5 620 15 

21-11-16 8:05 AM 4.1 9.0 740 10 

28-11-16 7:35 AM 4.9 12.2 530 8 

5-12-16 8:05 AM 4.4 22.8 500 14 

 

Appendix B Grubb’s test MATLAB Code 

function [b,idx,outliers] = 

deleteoutliers(a,alpha,rep); 

% [B, IDX, OUTLIERS] = DELETEOUTLIERS(A, ALPHA, REP) 

%  

% For input vector A, returns a vector B with outliers 

(at the significance 

% level alpha) removed. Also, optional output argument 

idx returns the 

% indices in A of outlier values. Optional output 

argument outliers returns 

% the outlying values in A. 

% 

% ALPHA is the significance level for determination of 

outliers. If not 

% provided, alpha defaults to 0.05. 

%  

% REP is an optional argument that forces the 

replacement of removed 

% elements with NaNs to presereve the length of a. 

(Thanks for the 

% suggestion, Urs.) 

% 

% This is an iterative implementation of the Grubbs 

Test that tests one 

% value at a time. In any given iteration, the tested 

value is either the 



130 

 

% highest value, or the lowest, and is the value that 

is furthest 

% from the sample mean. Infinite elements are discarded 

if rep is 0, or 

% replaced with NaNs if rep is 1 (thanks again, Urs). 

%  

% Appropriate application of the test requires that 

data can be reasonably 

% approximated by a normal distribution. For reference, 

see: 

% 1) "Procedures for Detecting Outlying Observations in 

Samples," by F.E. 

%    Grubbs; Technometrics, 11-1:1--21; Feb., 1969, and  

% 2) _Outliers in Statistical Data_, by V. Barnett and 

%    T. Lewis; Wiley Series in Probability and 

Mathematical Statistics; 

%    John Wiley & Sons; Chichester, 1994. 

% A good online discussion of the test is also given in 

NIST's Engineering 

% Statistics Handbook: 

% 

http://www.itl.nist.gov/div898/handbook/eda/section3/ed

a35h.htm 

% 

% ex: 

% [B,idx,outliers] = deleteoutliers([1.1 1.3 0.9 1.2 -

6.4 1.2 0.94 4.2 1.3 1.0 6.8 1.3 1.2], 0.05) 

%    returns: 

%    B = 1.1000    1.3000    0.9000    1.2000    1.2000    

0.9400    1.3000    1.0000    1.3000    1.2000 

%    idx =  5     8    11 

%    outliers = -6.4000    4.2000    6.8000 

% 

% ex: 

% B = deleteoutliers([1.1 1.3 0.9 1.2 -6.4 1.2 0.94 4.2 

1.3 1.0 6.8 1.3 1.2 

% Inf 1.2 -Inf 1.1], 0.05, 1) 

% returns: 

% B = 1.1000  1.3000  0.9000  1.2000  NaN  1.2000  

0.9400  NaN  1.3000  1.0000  NaN  1.3000  1.2000  NaN  

1.2000  NaN  1.1000 

% Written by Brett Shoelson, Ph.D. 

% shoelson@helix.nih.gov 

% 9/10/03 
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% Modified 9/23/03 to address suggestions by Urs 

Schwartz. 

% Modified 10/08/03 to avoid errors caused by duplicate 

"maxvals." 

%    (Thanks to Valeri Makarov for modification 

suggestion.) 

  

if nargin == 1 

    alpha = 0.05; 

    rep = 0; 

elseif nargin == 2 

    rep = 0; 

elseif nargin == 3 

    if ~ismember(rep,[0 1]) 

        error('Please enter a 1 or a 0 for optional 

argument rep.') 

    end 

elseif nargin > 3 

    error('Requires 1,2, or 3 input arguments.'); 

end 

  

if isempty(alpha) 

    alpha = 0.05; 

end 

  

b = a; 

b(isinf(a)) = NaN; 

  

%Delete outliers: 

outlier = 1; 

while outlier 

    tmp = b(~isnan(b)); 

    meanval = mean(tmp); 

    maxval = tmp(find(abs(tmp-mean(tmp))==max(abs(tmp-

mean(tmp))))); 

    maxval = maxval(1); 

    sdval = std(tmp); 

    tn = abs((maxval-meanval)/sdval); 

    critval = zcritical(alpha,length(tmp)); 

    outlier = tn > critval; 

    if outlier 

        tmp = find(a == maxval); 

        b(tmp) = NaN; 

    end 
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end 

if nargout >= 2 

    idx = find(isnan(b)); 

end 

if nargout > 2 

    outliers = a(idx); 

end 

if ~rep 

    b=b(~isnan(b)); 

end 

return 

  

function zcrit = zcritical(alpha,n) 

%ZCRIT = ZCRITICAL(ALPHA,N) 

% Computes the critical z value for rejecting outliers 

(GRUBBS TEST) 

tcrit = tinv(alpha/(2*n),n-2); 

zcrit = (n-1)/sqrt(n)*(sqrt(tcrit^2/(n-2+tcrit^2))); 

Appendix C Processed data after removing the duplications and outliers 

Date River Temp 

(C) 

Flow 

(cms) 

Conductivity 

(uS/cm) 

Suspended 

Solids 

(mg/L)           

28-Sep-2015 19.4 4.8 810 10 

8-Aug-2016 21.6 4.9 790 12 

23-Sep-98 8.2 5.03 780 17 

2-Sep-98 8.1 5.1 720 17 

9-Sep-98 8.1 5.17 710 11 

4-Aug-99 8.1 5.46 480 9 

1-Sep-99 7.6 5.49 600 8 

28-Jul-99 7.6 5.51 510 5 

25-Jul-2016 23.8 5.6 800 17 

8-Aug-01 8 5.66 642 20 

18-Aug-99 7.7 5.68 540 10 

13-Aug-01 8 5.73 660 11 

21-Oct-98 8.1 5.79 730 5 

22-Sep-99 7.6 5.82 630 13 

23-Jun-99 7.9 5.87 620 13 

5-Sep-01 8 5.94 641 7 

12-Sep-05 8.4 6.02 702 14 

14-Jul-99 8 6.05 540 11 

16-Sep-98 8.2 6.05 740 11 
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9-Jul-2012 24 6.1 890 14 

5-Aug-98 8.2 6.18 700 11 

7-Jul-99 7.8 6.2 570 11 

11-Aug-99 7.8 6.21 570 8 

23-Jul-2007 17 6.3 715 21 

15-Sep-99 7.7 6.32 580 11 

11-Jul-2016 22.2 6.4 760 12 

8-Sep-03 8.4 6.44 736 16 

21-Jul-99 7.7 6.45 540 13 

19-Nov-2007 6.5 6.5 775 6 

28-Oct-98 8.1 6.52 690 5 

30-Sep-98 8.1 6.6 740 5 

19-May-99 8.1 6.62 650 5 

26-Aug-2013 22.2 6.7 670 6 

9-Sep-02 8.1 6.86 695 3 

9-Sep-2013 18.7 7 640 8 

6-Sep-95 7.9 7.05 620 10 

19-Aug-98 7.8 7.08 400 13 

6-Oct-99 8.1 7.1 610 14 

19-Oct-99 7.7 7.17 640 11 

24-Sep-2007 17.1 7.2 818 10 

18-Jul-2016 22.6 7.3 670 14 

9-Jul-2007 23.2 7.3 750 14 

30-Aug-95 8.2 7.37 648 12 

12-Sep-2016 18.5 7.4 660 16 

17-Sep-2007 14.7 7.5 855 14 

29-Sep-99 7.7 7.56 600 8 

15-Jul-98 8.1 7.58 600 18 

17-Sep-2012 18.3 7.6 650 14 

15-Oct-2007 13.6 7.6 852 14 

23-Jul-01 8 7.67 631 14 

4-Oct-04 8 7.68 764 10 

10-Sep-2007 19.4 7.7 757 11 

7-Oct-98 8.1 7.72 720 12 

8-Aug-05 8.1 7.76 474 14 

29-Aug-05 8 7.83 677 12 

2-Dec-98 8.2 7.87 620 18 

29-Oct-2007 11.1 7.9 787 13 

4-Oct-95 7.8 8 693 10 

19-Sep-2016 19.7 8.1 660 14 

20-Sep-04 8 8.14 758 10 
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19-Sep-05 8 8.16 619 10 

25-Aug-2008 19.4 8.2 655 13 

1-Oct-01 7.8 8.33 573 8 

27-Jun-05 8.3 8.36 692 14 

28-Jun-99 7.9 8.37 610 10 

19-Sep-2011 16.8 8.4 680 10 

14-Oct-98 8.1 8.49 680 11 

25-Aug-03 8 8.5 674 11 

27-Oct-99 7.9 8.52 610 19 

8-Jul-02 8.3 8.53 605 12 

21-Sep-94 7.8 8.57 697 13 

27-Sep-2010 15.1 8.6 775 6 

8-Sep-99 8 8.62 630 8 

7-Oct-02 7.8 8.66 654 5 

13-Sep-2010 17 8.7 750 8 

27-Aug-2007 19.7 8.8 696 20 

24-Oct-05 8 8.81 744 19 

15-Aug-05 7.8 8.84 660 16 

13-Oct-99 7.3 8.87 610 11 

20-Sep-95 7.9 8.89 664 8 

16-Aug-04 8.1 8.9 754 6 

14-Aug-96 7.4 8.95 662 6 

21-Nov-2016 4.1 9 740 10 

14-Jul-03 8.1 9.02 788 13 

18-Jul-2011 24.9 9.1 650 8 

7-Aug-96 7.9 9.11 665 7 

12-Oct-94 8.1 9.17 699 14 

15-Oct-2012 14 9.2 816 12 

20-Jan-03 8.1 9.23 1037 6 

4-Jul-01 6.9 9.34 590 13 

18-Oct-04 7.4 9.39 726 4 

25-Jun-2007 21.3 9.4 699 8 

25-Jul-05 7.9 9.43 493 17 

3-Jun-98 8.3 9.5 670 16 

6-Sep-94 8.2 9.5 691 16 

14-May-98 8.2 9.54 590 15 

24-Nov-99 8.6 9.56 660 19 

20-Jun-95 8.1 9.57 678 13 

12-Aug-2013 20 9.6 637 8 

9-Jun-99 8.1 9.65 580 14 

18-Jun-2012 21.8 9.7 702 10 
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12-May-99 8.2 9.72 570 11 

9-Aug-93 7.8 9.73 590 11 

15-Sep-03 8.1 9.76 740 11 

27-May-98 8.2 9.78 590 16 

5-Oct-94 7.9 9.78 677 16 

26-Jul-95 7.9 9.79 664 8 

1-Oct-2012 14 9.8 800 7 

9-Dec-02 8 9.88 912 8 

26-Nov-2012 4.8 9.9 803 6 

23-Jun-2014 21.8 9.92 680 8 

28-Aug-06 7.9 10 681 9 

10-Jul-06 8.2 10.1 752 10 

13-Sep-04 8.1 10.2 669 9 

13-Jun-05 8.1 10.3 669 12 

26-Oct-2015 11 10.4 620 10 

11-Jan-95 7.7 10.5 864 7 

17-Feb-03 7.9 10.7 991 7 

8-Nov-00 8.2 10.8 757 12 

24-Aug-94 7.8 10.9 693 12 

10-Sep-2012 18.3 11 590 12 

30-Aug-00 8.3 11.3 696 11 

22-Aug-2011 20.2 11.4 644 12 

20-May-98 8.2 11.5 600 13 

18-Oct-95 7.9 11.6 670 10 

12-Nov-2012 10.3 11.6 880 10 

11-Aug-2014 21.5 11.7 650 9 

28-Jun-2010 22.9 11.8 709 7 

29-Jul-2013 18.4 11.9 608 11 

9-Aug-04 8.4 12.2 717 9 

5-Jan-94 7.8 12.4 825 8 

10-Oct-01 8.1 12.5 545 8 

24-Jul-06 7.9 12.6 684 7 

20-Jul-2009 19.1 12.7 772 12 

10-Aug-94 7.8 12.8 683 18 

15-Nov-04 7.9 12.9 789 8 

14-Sep-2015 16.1 13 680 9 

19-Jun-06 8.1 13.1 751 10 

19-Jul-04 8.2 13.1 788 10 

3-Dec-2012 7.6 13.2 760 11 

11-Jun-2012 22.4 13.3 700 8 

9-Jun-2008 21.2 13.5 684 6 
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18-Jan-2010 2.7 13.7 948 5 

17-Oct-05 7.7 13.8 629 12 

17-Jul-06 8.2 13.9 589 12 

25-Aug-2014 20.6 13.92 640 12 

29-Aug-2011 20.4 14 669 8 

29-Sep-03 7.9 14.1 599 10 

26-Oct-2009 10.7 14.4 799 13 

24-Oct-2016 12 14.5 520 12 

20-Jun-05 8.1 14.7 625 11 

18-Aug-03 8 14.9 595 13 

18-Aug-2014 19.5 14.94 600 13 

26-Sep-2008 15.7 15 626 6 

25-Nov-02 8.2 15.1 691 5 

14-May-01 7.6 15.2 685 9 

20-Jun-2011 19.5 15.4 639 8 

5-Oct-2009 12.4 15.6 706 9 

11-Jun-2007 19.7 15.7 670 11 

26-Jun-06 8.2 15.8 714 11 

28-May-2007 16.8 15.9 667 9 

12-Dec-05 7.9 16 1020 11 

22-Sep-03 7.5 16.1 504 7 

6-Oct-03 8 16.3 636 9 

3-Jul-96 8.3 16.4 656 5 

9-Nov-2009 10.3 16.6 788 9 

6-Jun-2016 18.9 16.8 560 6 

7-May-01 7.7 16.9 687 6 

5-Feb-07 7.9 17 994 7 

12-Feb-07 8 17.1 952 9 

5-Jun-00 7.4 17.3 698 11 

19-Jan-00 8.4 17.5 809 9 

27-Oct-93 8.1 17.6 686 10 

8-Feb-95 8.1 17.7 888 5 

8-Nov-2010 6.7 17.8 781 5 

2-Apr-2012 8.1 18 500 8 

16-Jun-2014 20.8 18.22 570 12 

23-Feb-95 8.3 18.3 832 11 

8-Feb-2010 0.6 18.4 855 6 

10-Jan-01 8.1 18.5 834 8 

17-Jun-02 7.7 18.6 628 9 

16-Jun-2008 16.8 18.7 657 7 

10-Dec-2007 2.7 18.8 896 5 
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26-Apr-2010 11.7 19 735 11 

24-May-95 8 19.1 675 11 

19-Apr-95 8.4 19.2 722 10 

6-Jun-01 7.7 19.4 601 17 

14-Nov-2011 10.3 19.5 560 7 

14-Apr-99 8.2 19.7 470 2 

2-Jun-2014 19.6 19.97 640 2 

18-Nov-02 8.1 20.1 788 4 

16-Jun-03 8.1 20.2 720 10 

4-Jun-2007 20.4 20.3 759 6 

26-Jul-00 8.2 20.5 643 10 

18-Apr-05 8.1 20.5 694 10 

11-Aug-03 8.1 20.6 644 18 

16-Oct-96 8.2 20.7 668 8 

13-Jun-01 7.9 21 584 11 

15-May-06 8.2 21.1 714 8 

27-Oct-2014 9.3 21.21 570 4 

13-Dec-95 7.8 21.3 788 8 

2-Jun-03 7.5 21.5 722 10 

10-Jun-02 8 21.6 567 8 

24-Jun-2013 23.8 21.6 750 8 

24-May-94 7.9 21.7 665 11 

30-Sep-2013 17.3 21.8 700 8 

28-Apr-99 8.2 21.9 510 6 

18-Oct-2010 11.8 22 732 10 

29-Mar-95 8.2 22.1 705 11 

16-Aug-00 8.3 22.2 697 19 

13-May-2013 10.7 22.3 750 10 

7-Apr-99 8.2 22.4 540 6 

24-Jan-01 8.1 22.5 842 13 

12-Apr-95 8 22.6 718 17 

19-Apr-2010 10 22.7 750 6 

5-Dec-2016 4.4 22.8 500 14 

11-Oct-00 7.7 23.1 741 14 

29-Nov-04 7.9 23.2 757 19 

16-Nov-2015 7.7 23.3 440 8 

12-Jul-2010 23.6 23.6 699 12 

29-Oct-2012 10.1 23.7 629 28 

22-Mar-00 8.7 23.8 779 6 

17-Mar-99 8.1 23.9 510 8 

15-Jun-2009 18.7 24.1 704 7 
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9-May-05 8.1 24.2 661 7 

14-Jan-02 8 24.3 693 7 

15-Jul-2013 24.6 24.5 665 12 

29-Jan-07 8.1 24.9 917 10 

31-May-00 8.1 25 688 7 

22-Nov-00 8.3 25 815 7 

14-Jul-2014 21.3 25.16 580 13 

28-May-97 8.1 25.4 486 9 

10-Dec-2012 5.5 25.5 737 8 

21-Mar-05 8 25.6 842 12 

29-Mar-2010 7.8 25.7 759 24 

6-May-02 8.3 25.8 653 11 

15-Mar-00 8.6 25.8 805 11 

3-Nov-2008 7.7 25.9 659 10 

13-Mar-96 7.9 26 714 13 

23-Apr-97 8.3 26.4 620 10 

16-May-05 8.1 26.4 718 10 

17-Jul-96 8.3 26.6 605 9 

14-Mar-05 8.1 27 758 8 

6-Mar-06 7.7 27.3 702 17 

7-Mar-05 8.1 27.4 922 11 

17-May-95 8.3 27.5 317 9 

8-Dec-2014 2 27.57 490 6 

4-Oct-00 8 27.6 708 11 

13-Jun-2011 16.2 27.8 621 20 

15-Apr-98 8.2 27.9 500 13 

10-Oct-96 8.2 28 684 14 

27-Nov-96 8 28.1 774 8 

13-Feb-2012 1.4 28.7 391 9 

6-Oct-2008 11 29 559 9 

21-Apr-2008 13.3 29.2 805 9 

2-May-2016 10.6 29.3 480 8 

23-Apr-2007 12.3 29.5 612 4 

21-Jan-2008 1.4 29.6 887 12 

3-Mar-99 8.2 29.8 590 13 

29-May-96 8.4 30 611 11 

19-Apr-04 8.3 30.4 718 7 

10-Dec-01 7.9 30.5 624 8 

6-Dec-04 8 30.7 734 14 

10-Apr-96 8 30.8 643 8 

6-Apr-00 8.2 31 780 9 
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23-Jun-2008 18.2 31.2 671 29 

25-Jan-2016 0.9 31.3 500 8 

8-Dec-99 8.5 31.4 747 19 

25-Apr-01 8.2 31.5 656 11 

6-Mar-96 8.1 31.7 712 8 

8-Nov-04 8 31.8 682 19 

22-Apr-98 8.2 31.9 500 18 

27-Mar-06 8 32.3 684 4 

21-Apr-94 7.8 32.6 764 12 

26-Apr-04 8 33.3 679 12 

18-Sep-06 7.8 33.7 712 16 

15-Jan-97 8.1 33.8 675 9 

27-Nov-06 7.9 34 672 10 

1-Mar-94 8 34.3 653 8 

7-Mar-2016 3.4 34.5 440 8 

1-Feb-95 8 34.6 752 13 

21-Mar-2016 5 35.2 420 10 

8-May-96 8.1 35.7 626 20 

4-Mar-2013 2.4 35.8 700 4 

9-Apr-98 8.2 35.9 500 23 

6-Jun-2011 18.9 36 602 18 

5-Nov-2012 6.6 36.5 680 17 

17-May-2010 13.3 36.6 714 13 

4-Jan-2016 0.2 36.7 480 13 

11-Apr-05 8.1 36.9 642 11 

8-Jul-2013 22.1 37.7 583 12 

14-Jul-2008 17.1 38 500 18 

10-Nov-03 8 38.1 694 22 

17-Jan-01 8.1 38.3 909 6 

22-Jan-07 8.2 38.5 948 13 

9-Mar-94 7.6 38.7 616 15 

24-Mar-99 8.2 38.8 420 7 

21-Feb-01 8.2 39 676 8 

20-Apr-2009 10.6 39.4 690 5 

18-Feb-02 8.1 39.7 783 3 

8-Apr-2013 6.3 39.8 605 10 

8-Dec-03 8.3 40 728 9 

10-Feb-99 8.1 40.3 490 12 

19-Mar-2012 12.7 41.5 503 10 

29-Nov-2010 3.5 41.6 791 12 

12-Mar-2007 0.3 41.7 933 13 
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14-Feb-05 7.9 41.7 991 13 

11-Dec-96 8 41.9 710 16 

3-May-95 8.3 42.3 631 8 

11-May-2009 12.6 42.4 653 11 

7-Feb-01 8.4 42.5 773 7 

18-Apr-2011 6.8 42.6 698 4 

5-Dec-05 8 42.7 672 16 

18-Apr-01 8 42.8 633 8 

31-Jan-96 8.2 43 638 8 

18-Mar-02 7.9 43.7 622 5 

29-Jan-97 8.1 43.7 692 5 

3-Apr-96 8.1 44.6 628 9 

13-Feb-06 7.9 45.2 823 1 

14-Mar-2016 7.3 45.4 430 6 

3-Feb-99 8.2 45.7 590 18 

3-Mar-2008 2.7 45.8 810 4 

16-Apr-2018 11.2 46.2 460 7 

21-Jan-2013 1.1 46.3 550 11 

31-Oct-2011 9.2 46.5 520 12 

23-Jan-2012 3.2 46.6 650 22 

15-May-96 8.3 46.8 600 11 

15-Dec-03 7.9 46.9 761 12 

23-Mar-2009 5.3 47 616 12 

16-Apr-2007 3.7 47.2 650 12 

25-Feb-2008 1 47.3 781 11 

12-Mar-2012 5.9 47.4 430 8 

31-Jul-06 7.7 47.7 544 21 

13-Nov-96 8.1 47.8 696 11 

18-Mar-98 8 47.9 762 21 

7-Mar-01 8.3 48 683 11 

10-Apr-06 8.1 48.2 600 15 

4-May-94 7.9 48.4 629 10 

24-Apr-06 8 48.77 524 37 

31-Jan-01 8.1 49 897 28 

25-Feb-2013 2.1 49.1 644 12 

17-May-04 8 49.4 666 4 

10-Sep-96 8.1 49.5 386 38 

5-Nov-01 8.1 49.8 583 44 

26-Jun-96 8.2 50 603 17 

14-Feb-96 7.4 50.1 568 19 

16-Mar-2015 1.5 50.6 441 39 
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19-Jul-00 8.2 50.8 594 21 

13-Nov-06 7.9 51.1 648 12 

29-Apr-2013 11.5 51.3 690 12 

27-Feb-2012 3 51.5 600 4 

10-Jan-05 7.9 51.6 678 7 

1-Mar-04 7.8 52.2 920 26 

20-Oct-2014 11.3 52.42 560 10 

22-Jun-00 8.1 53.1 681 32 

5-Jun-06 8 53.3 441 35 

11-Dec-06 8.4 53.6 908 20 

5-Feb-97 8.1 53.8 705 16 

2-May-05 8 54 632 14 

30-Jun-2008 15.9 54.5 507 23 

5-May-03 7.9 54.8 695 12 

9-Feb-2009 1.9 55 885 18 

9-Jan-06 8 55.3 688 16 

3-May-04 8 55.9 671 16 

8-Apr-02 8.5 56.1 584 4 

18-Jul-05 7.8 56.2 418 22 

9-Aug-00 8.3 56.7 688 13 

26-May-2014 16.1 56.83 535 8 

26-Apr-95 7.8 56.9 555 30 

17-Mar-2014 0.2 58 430 5 

27-Sep-00 7.7 58.2 652 32 

17-Mar-2008 2 58.4 810 7 

21-Oct-2013 12 58.6 520 16 

16-Oct-06 8 59 626 22 

20-Mar-06 7.9 59.1 649 12 

26-May-03 7.8 59.2 676 11 

28-Mar-2011 3 59.5 700 10 

4-Feb-02 8.2 59.6 760 7 

7-Dec-93 7.7 59.8 698 26 

8-Feb-2016 4.1 59.9 470 15 

30-Nov-93 7.7 60.1 702 22 

24-Nov-03 8 60.2 642 30 

12-May-03 7.3 60.4 698 16 

20-Nov-96 8.2 60.5 719 7 

17-May-94 8.2 61.5 641 12 

11-Apr-2011 11.5 62.1 648 15 

1-Jun-2009 15.1 64.3 636 15 

18-Dec-06 8.4 64.5 674 22 
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20-Mar-96 8.1 65 668 17 

12-Apr-2010 9.8 66.3 691 18 

13-May-02 7.9 67.5 600 34 

2-Mar-00 8.4 69 635 8 

25-Mar-98 8.1 69.1 672 16 

4-Dec-96 7.9 69.8 674 11 

14-Mar-01 8.3 70.1 679 30 

5-Apr-04 8.2 70.2 656 19 

4-Apr-2011 7 70.5 753 18 

24-Jan-96 8.2 70.6 716 19 

13-Apr-94 7.6 71.3 644 13 

15-Mar-04 7.9 71.4 696 17 

1-Dec-2008 2.3 72.2 587 14 

17-Jan-05 7.9 72.4 608 15 

9-Jan-2012 2.7 72.6 540 21 

19-Jun-96 8.3 72.7 576 25 

15-Sep-2014 14.6 72.98 600 28 

16-Jan-06 8.8 73.8 657 19 

11-Nov-2013 6.5 74.4 570 14 

11-Apr-01 7.9 74.7 558 17 

28-May-01 7.7 75 566 16 

22-Mar-95 8.2 76 605 17 

3-Jun-2013 17.8 76.4 753 35 

12-Dec-2011 2.9 77.5 540 21 

25-Apr-05 8 78 632 29 

25-Jan-95 7.7 79.4 640 34 

30-Nov-2015 4.2 79.9 370 21 

5-May-2014 9 79.96 440 10 

17-Nov-03 8.2 80.3 686 38 

28-Mar-01 8.2 81 580 8 

20-Nov-06 7.9 81.1 575 22 

6-Oct-2014 13.3 81.68 550 18 

22-Nov-95 7.8 82.3 671 15 

25-May-00 8.1 82.5 612 16 

6-Apr-94 7.6 83.4 571 9 

2-May-2011 10.8 83.6 618 19 

19-Mar-97 8.2 85.1 598 12 

17-Oct-01 7.9 85.3 519 20 

24-Oct-96 8.1 85.3 621 21 

28-Jan-02 7.9 85.5 671 5 

12-Mar-97 8.2 86.8 592 29 
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14-Apr-2008 7.3 87.1 891 1 

14-Jan-2008 4.1 89 700 27 

24-Oct-2011 11.1 92.4 490 27 

2-Oct-96 8 93.2 574 28 

15-Nov-95 7.8 93.4 596 43 

18-Mar-2013 2.2 95.8 690 8 

31-Oct-96 8.1 98 618 32 

14-Apr-03 7.9 101 587 17 

5-Mar-97 8.2 104 564 16 

27-Jan-99 8.2 105 460 16 

19-Mar-2007 1 105.1 537 15 

15-Jan-07 8 105.8 699 31 

23-Oct-06 7.9 106.6 529 20 

8-Sep-2014 18.6 107.36 450 37 

23-Jan-06 8 107.6 602 21 

18-Feb-99 7.6 109 500 27 

29-Nov-00 8.3 113 709 31 

17-Dec-96 7.9 115 706 40 

6-Apr-2009 7.5 115.9 602 41 

7-Jan-2008 4.9 116.4 814 33 

14-Apr-2014 9.9 118.86 550 14 

3-Dec-01 7.9 121 503 27 

4-Apr-2016 3.2 124.8 420 28 

5-Dec-2011 7.4 128.1 520 42 

1-Feb-2016 3 134.3 550 36 

5-Mar-2012 1.7 138.6 330 24 

26-Feb-97 8.1 139 560 22 

11-Apr-2016 4 141.1 460 17 

8-Jan-07 8.4 141.8 598 40 

15-Dec-2008 5.5 144.6 732 42 

6-Feb-06 7.8 146.3 685 27 

29-Mar-04 7.7 147 563 25 

23-Feb-94 7.9 151 481 23 

20-Feb-06 7.6 154.2 569 11 

26-Jun-00 8.1 157 672 34 

7-Apr-2008 6.6 157.2 732 15 

22-Feb-2016 1.9 160 400 33 

16-May-2011 12.5 161.9 516 42 

24-Apr-96 7.8 165 570 37 

4-Mar-02 8.2 171 579 29 

31-Mar-2014 2.2 172.7 452 44 
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Appendix D Sample spreadsheet of calculations implemented to find the various statistical 

measures adopted for this study over the training period for the best scenario case. 

Date 
T 
0C 

Flow  
cms 

 C 
µS/c

m 

SSC 
mg/l 

SSCi (𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶)2 | 𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶| (𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶̅̅ ̅̅ ̅)2 

8-Sep-93 18.5 9.73 590 11 10.413 0.344 0.587 6.661 

27-Oct-93 11.9 17.6 686 10 11.076 1.158 1.076 12.823 

30-Nov-93 3.9 60.1 702 22 16.237 33.218 5.764 70.880 

7-Dec-93 5.3 59.8 698 26 19.924 36.924 6.077 154.233 

5-Jan-94 1.8 12.4 825 8 7.506 0.244 0.494 31.147 

1-Mar-94 2.6 34.3 653 8 12.534 20.561 4.534 31.147 

9-Mar-94 1.8 38.7 616 15 12.547 6.020 2.454 2.014 

6-Apr-94 5.8 83.4 571 9 18.668 93.476 9.668 20.985 

13-Apr-94 9.7 71.3 644 13 22.668 93.466 9.668 0.338 

21-Apr-94 10.7 32.6 764 12 10.406 2.542 1.595 2.499 

4-May-94 11.4 48.4 629 10 14.554 20.737 4.554 12.823 

17-May-94 11.8 61.5 641 12 14.403 5.774 2.403 2.499 

24-May-94 16.7 21.7 665 11 10.170 0.690 0.831 6.661 

10-Aug-94 20.7 12.8 683 18 9.216 77.152 8.784 19.528 

24-Aug-94 22.4 10.9 693 12 9.133 8.220 2.867 2.499 

6-Sep-94 18.9 9.5 691 16 11.250 22.559 4.750 5.852 

21-Sep-94 20.8 8.57 697 13 10.743 5.096 2.257 0.338 

5-Oct-94 14 9.78 677 16 11.580 19.541 4.421 5.852 

12-Oct-94 14.9 9.17 699 14 11.720 5.200 2.280 0.176 

11-Jan-95 3.8 10.5 864 7 7.762 0.581 0.762 43.309 

25-Jan-95 4.2 79.4 640 34 18.930 227.117 15.070 416.938 

1-Feb-95 7.3 34.6 752 13 13.809 0.654 0.809 0.338 

8-Feb-95 2.2 17.7 888 5 9.479 20.059 4.479 73.633 

23-Feb-95 4.2 18.3 832 11 9.603 1.951 1.397 6.661 

22-Mar-95 6.7 76 605 17 17.690 0.476 0.690 11.690 

29-Mar-95 8.7 22.1 705 11 11.409 0.167 0.409 6.661 

12-Apr-95 10.4 22.6 718 17 11.191 33.746 5.809 11.690 

19-Apr-95 11.4 19.2 722 10 11.105 1.220 1.105 12.823 

3-May-95 11.7 42.3 631 8 13.533 30.614 5.533 31.147 

17-May-95 18.1 27.5 317 9 8.938 0.004 0.062 20.985 

24-May-95 17.6 19.1 675 11 10.215 0.616 0.785 6.661 

20-Jun-95 25.3 9.57 678 13 9.339 13.406 3.661 0.338 

26-Jul-95 26 9.79 664 8 8.267 0.071 0.267 31.147 

30-Aug-95 24 7.37 648 12 10.041 3.840 1.960 2.499 

6-Sep-95 23.7 7.05 620 10 10.723 0.522 0.723 12.823 

20-Sep-95 18.6 8.89 664 8 11.201 10.246 3.201 31.147 

4-Oct-95 17.7 8 693 10 11.728 2.984 1.728 12.823 

18-Oct-95 13.5 11.6 670 10 11.479 2.189 1.479 12.823 

15-Nov-95 5.1 93.4 596 43 29.074 193.922 13.926 865.480 
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22-Nov-95 5.4 82.3 671 15 21.107 37.291 6.107 2.014 

13-Dec-95 1.6 21.3 788 8 7.554 0.199 0.446 31.147 

24-Jan-96 3.2 70.6 716 19 20.781 3.172 1.781 29.366 

14-Feb-96 1.4 50.1 568 19 14.150 23.524 4.850 29.366 

6-Mar-96 2.2 31.7 712 8 11.289 10.816 3.289 31.147 

13-Mar-96 4 26 714 13 7.704 28.043 5.296 0.338 

20-Mar-96 3.8 65 668 17 18.391 1.935 1.391 11.690 

10-Apr-96 6 30.8 643 8 9.053 1.109 1.053 31.147 

8-May-96 12.2 35.7 626 20 11.338 75.029 8.662 41.204 

15-May-96 11.7 46.8 600 11 15.090 16.724 4.090 6.661 

29-May-96 16.8 30 611 11 16.548 30.783 5.548 6.661 

19-Jun-96 20.2 72.7 576 25 23.054 3.788 1.946 130.395 

26-Jun-96 20.3 50 603 17 20.322 11.032 3.322 11.690 

3-Jul-96 22.3 16.4 656 5 9.962 24.621 4.962 73.633 

17-Jul-96 23.8 26.6 605 9 7.615 1.917 1.385 20.985 

7-Aug-96 25.3 9.11 665 7 8.717 2.947 1.717 43.309 

14-Aug-96 24.7 8.95 662 6 9.684 13.575 3.684 57.471 

10-Sep-96 19.2 49.5 386 38 37.938 0.004 0.062 596.290 

2-Oct-96 16.1 93.2 574 28 26.731 1.612 1.270 207.909 

10-Oct-96 13.5 28 684 14 8.934 25.662 5.066 0.176 

16-Oct-96 13.5 20.7 668 8 10.481 6.155 2.481 31.147 

24-Oct-96 10.7 85.3 621 21 23.454 6.023 2.454 55.042 

31-Oct-96 9 98 618 32 27.755 18.022 4.245 339.261 

13-Nov-96 5 47.8 696 11 11.659 0.434 0.659 6.661 

20-Nov-96 4.4 60.5 719 7 17.135 102.722 10.135 43.309 

27-Nov-96 3 28.1 774 8 8.098 0.010 0.098 31.147 

4-Dec-96 5 69.8 674 11 17.488 42.092 6.488 6.661 

11-Dec-96 4.5 41.9 710 16 9.975 36.307 6.026 5.852 

17-Dec-96 5.6 115 706 40 43.929 15.440 3.929 697.966 

15-Jan-97 1.5 33.8 675 9 12.669 13.460 3.669 20.985 

5-Feb-97 2.4 53.8 705 16 10.699 28.098 5.301 5.852 

26-Feb-97 2 139 560 22 21.111 0.791 0.889 70.880 

5-Mar-97 3.5 104 564 16 11.448 20.724 4.552 5.852 

12-Mar-97 3.2 86.8 592 29 22.717 39.472 6.283 237.747 

19-Mar-97 2.9 85.1 598 12 20.059 64.952 8.059 2.499 

23-Apr-97 9.8 26.4 620 10 10.846 0.715 0.846 12.823 

28-May-97 16.7 25.4 486 9 9.747 0.557 0.747 20.985 

18-Mar-98 4.7 47.9 762 21 19.011 3.956 1.989 55.042 

25-Mar-98 4.8 69.1 672 16 17.912 3.656 1.912 5.852 

9-Apr-98 9.6 35.9 500 23 14.837 66.633 8.163 88.718 

15-Apr-98 10.1 27.9 500 13 12.859 0.020 0.141 0.338 

22-Apr-98 13.8 31.9 500 18 9.407 73.840 8.593 19.528 

14-May-98 18.3 9.54 590 15 10.528 19.995 4.472 2.014 

20-May-98 22.7 11.5 600 13 13.108 0.012 0.108 0.338 

27-May-98 19.5 9.78 590 16 10.008 35.906 5.992 5.852 
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3-Jun-98 19.7 9.5 670 16 10.511 30.132 5.489 5.852 

15-Jul-98 25.6 7.58 600 18 13.826 17.419 4.174 19.528 

5-Aug-98 23.4 6.18 700 11 11.704 0.495 0.704 6.661 

19-Aug-98 23.9 7.08 400 13 12.912 0.008 0.088 0.338 

30-Sep-98 19.8 6.6 740 5 11.309 39.807 6.309 73.633 

7-Oct-98 16.7 7.72 720 12 11.605 0.156 0.395 2.499 

14-Oct-98 15.2 8.49 680 11 11.829 0.688 0.829 6.661 

28-Oct-98 14.4 6.52 690 5 11.306 39.766 6.306 73.633 

2-Dec-98 9.2 7.87 620 18 9.813 67.035 8.188 19.528 

27-Jan-99 1.7 105 460 16 17.772 3.138 1.772 5.852 

10-Feb-99 3 40.3 490 12 13.425 2.031 1.425 2.499 

18-Feb-99 2.9 109 500 27 27.431 0.186 0.431 180.071 

3-Mar-99 3.3 29.8 590 13 12.231 0.591 0.769 0.338 

17-Mar-99 5.7 23.9 510 8 10.181 4.757 2.181 31.147 

24-Mar-99 4.3 38.8 420 7 8.482 2.196 1.482 43.309 

7-Apr-99 10.3 22.4 540 6 10.366 19.064 4.366 57.471 

14-Apr-99 10.9 19.7 470 2 4.946 8.680 2.946 134.118 

28-Apr-99 12.8 21.9 510 6 10.889 23.906 4.889 57.471 

12-May-99 16.6 9.72 570 11 11.144 0.021 0.144 6.661 

19-May-99 20.2 6.62 650 5 10.638 31.789 5.638 73.633 

9-Jun-99 24.6 9.65 580 14 12.317 2.833 1.683 0.176 

28-Jun-99 26.1 8.37 610 10 14.978 24.783 4.978 12.823 

7-Jul-99 26.5 6.2 570 11 11.742 0.551 0.742 6.661 

21-Jul-99 24.6 6.45 540 13 12.065 0.874 0.935 0.338 

11-Aug-99 22.2 6.21 570 8 8.863 0.745 0.863 31.147 

8-Sep-99 22.9 8.62 630 8 10.420 5.858 2.420 31.147 

15-Sep-99 20.6 6.32 580 11 10.937 0.004 0.063 6.661 

29-Sep-99 20.1 7.56 600 8 9.967 3.870 1.967 31.147 

6-Oct-99 14 7.1 610 14 11.433 6.592 2.567 0.176 

13-Oct-99 16 8.87 610 11 11.702 0.493 0.702 6.661 

19-Oct-99 14.6 7.17 640 11 11.689 0.475 0.689 6.661 

27-Oct-99 10.9 8.52 610 19 9.988 81.218 9.012 29.366 

24-Nov-99 12.2 9.56 660 19 10.774 67.670 8.226 29.366 

8-Dec-99 5.9 31.4 747 19 14.129 23.731 4.871 29.366 

19-Jan-00 1.1 17.5 809 9 6.559 5.957 2.441 20.985 

2-Mar-00 4.6 69 635 8 13.693 32.408 5.693 31.147 

15-Mar-00 7.4 25.8 805 11 11.694 0.482 0.694 6.661 

22-Mar-00 8.9 23.8 779 6 11.350 28.621 5.350 57.471 

6-Apr-00 8.2 31 780 9 12.487 12.156 3.487 20.985 

25-May-00 15.8 82.5 612 16 19.353 11.242 3.353 5.852 

31-May-00 18.4 25 688 7 10.658 13.383 3.658 43.309 

5-Jun-00 17.7 17.3 698 11 10.645 0.126 0.355 6.661 

22-Jun-00 20.4 53.1 681 32 32.617 0.380 0.617 339.261 

19-Jul-00 19.9 50.8 594 21 18.477 6.366 2.523 55.042 

26-Jul-00 21.9 20.5 643 10 12.806 7.871 2.806 12.823 
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16-Aug-00 22.5 22.2 697 19 10.970 64.486 8.030 29.366 

30-Aug-00 22.9 11.3 696 11 8.927 4.299 2.073 6.661 

27-Sep-00 15 58.2 652 32 21.456 111.176 10.544 339.261 

4-Oct-00 16.7 27.6 708 11 9.471 2.339 1.529 6.661 

11-Oct-00 12.6 23.1 741 14 10.867 9.819 3.134 0.176 

8-Nov-00 11.6 10.8 757 12 10.302 2.884 1.698 2.499 

22-Nov-00 3 25 815 7 12.473 29.953 5.473 43.309 

29-Nov-00 2 113 709 31 33.521 6.354 2.521 303.423 

10-Jan-01 1.1 18.5 834 8 5.783 4.915 2.217 31.147 

17-Jan-01 2.1 38.3 909 6 14.506 72.344 8.506 57.471 

24-Jan-01 2.5 22.5 842 13 11.618 1.911 1.382 0.338 

31-Jan-01 2.6 49 897 28 18.677 86.915 9.323 207.909 

7-Feb-01 2.7 42.5 773 7 9.689 7.231 2.689 43.309 

21-Feb-01 1 39 676 8 12.378 19.165 4.378 31.147 

7-Mar-01 3.4 48 683 11 10.281 0.516 0.719 6.661 

14-Mar-01 3.3 70.1 679 30 18.417 134.159 11.583 269.585 

28-Mar-01 4.1 81 580 8 16.867 78.620 8.867 31.147 

11-Apr-01 9.5 74.7 558 17 23.870 47.194 6.870 11.690 

25-Apr-01 10.5 31.5 656 11 10.288 0.507 0.712 6.661 

7-May-01 15.6 16.9 687 6 11.302 28.111 5.302 57.471 

14-May-01 15.4 15.2 685 9 11.598 6.752 2.598 20.985 

28-May-01 14.4 75 566 16 14.637 1.857 1.363 5.852 

6-Jun-01 14.8 19.4 601 17 10.474 42.583 6.526 11.690 

13-Jun-01 21 21 584 11 12.810 3.275 1.810 6.661 

4-Jul-01 21.5 9.34 590 13 11.288 2.933 1.713 0.338 

23-Jul-01 25 7.67 631 14 11.613 5.697 2.387 0.176 

1-Oct-01 15 8.33 573 8 11.429 11.759 3.429 31.147 

10-Oct-01 13.4 12.5 545 8 10.472 6.112 2.472 31.147 

17-Oct-01 11.5 85.3 519 20 22.455 6.027 2.455 41.204 

5-Nov-01 8.7 49.8 583 44 19.346 607.810 24.654 925.318 

3-Dec-01 7.7 121 503 27 31.104 16.842 4.104 180.071 

10-Dec-01 5.5 30.5 624 8 7.637 0.132 0.363 31.147 

14-Jan-02 2.5 24.3 693 7 10.811 14.524 3.811 43.309 

28-Jan-02 3.6 85.5 671 5 19.293 204.278 14.293 73.633 

4-Feb-02 1.3 59.6 760 7 8.882 3.542 1.882 43.309 

18-Feb-02 0.6 39.7 783 3 9.457 41.692 6.457 111.957 

6-May-02 14 25.8 653 11 9.363 2.681 1.638 6.661 

13-May-02 11.6 67.5 600 34 22.277 137.431 11.723 416.938 

10-Jun-02 20.3 21.6 567 8 10.360 5.571 2.360 31.147 

17-Jun-02 17.6 18.6 628 9 10.778 3.163 1.778 20.985 

8-Jul-02 24.6 8.53 605 12 12.991 0.981 0.991 2.499 

9-Sep-02 22.6 6.86 695 3 11.135 66.173 8.135 111.957 

7-Oct-02 17.2 8.66 654 5 11.757 45.658 6.757 73.633 

18-Nov-02 5.5 20.1 788 4 10.453 41.646 6.453 91.795 

25-Nov-02 6.3 15.1 691 5 11.429 41.326 6.429 73.633 
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9-Dec-02 1.6 9.88 912 8 8.991 0.983 0.991 31.147 

20-Jan-03 1.2 9.23 1037 6 5.609 0.153 0.391 57.471 

17-Feb-03 0.5 10.7 991 7 7.105 0.011 0.105 43.309 

14-Apr-03 7.7 101 587 17 23.040 36.478 6.040 11.690 

12-May-03 13.1 60.4 698 16 7.706 68.785 8.294 5.852 

26-May-03 14.9 59.2 676 11 13.124 4.509 2.124 6.661 

2-Jun-03 15.3 21.5 722 10 10.692 0.479 0.692 12.823 

16-Jun-03 20 20.2 720 10 8.938 1.127 1.062 12.823 

14-Jul-03 20.6 9.02 788 13 11.311 2.852 1.689 0.338 

11-Aug-03 23.8 20.6 644 18 14.230 14.211 3.770 19.528 

18-Aug-03 22.4 14.9 595 13 13.127 0.016 0.127 0.338 

25-Aug-03 22.9 8.5 674 11 9.643 1.841 1.357 6.661 

8-Sep-03 20.7 6.44 736 16 11.662 18.817 4.338 5.852 

15-Sep-03 22.1 9.76 740 11 11.095 0.009 0.095 6.661 

22-Sep-03 18.1 16.1 504 7 8.355 1.836 1.355 43.309 

29-Sep-03 15.7 14.1 599 10 11.007 1.014 1.007 12.823 

6-Oct-03 11.9 16.3 636 9 10.815 3.295 1.815 20.985 

10-Nov-03 5.9 38.1 694 22 15.644 40.399 6.356 70.880 

17-Nov-03 6.9 80.3 686 38 28.110 97.820 9.890 596.290 

24-Nov-03 9.9 60.2 642 30 14.231 248.665 15.769 269.585 

8-Dec-03 2 40 728 9 10.774 3.145 1.774 20.985 

15-Dec-03 2.5 46.9 761 12 10.447 2.411 1.553 2.499 

1-Mar-04 2.4 52.2 920 26 19.009 48.878 6.991 154.233 

15-Mar-04 2.6 71.4 696 17 18.098 1.205 1.098 11.690 

5-Apr-04 4.9 70.2 656 19 15.306 13.646 3.694 29.366 

19-Apr-04 14.4 30.4 718 7 8.327 1.761 1.327 43.309 

26-Apr-04 12.3 33.3 679 12 8.689 10.961 3.311 2.499 

17-May-04 14.5 49.4 666 4 12.836 78.077 8.836 91.795 

19-Jul-04 19.9 13.1 788 10 11.190 1.416 1.190 12.823 

9-Aug-04 20.9 12.2 717 9 9.927 0.859 0.927 20.985 

16-Aug-04 20.6 8.9 754 6 11.420 29.377 5.420 57.471 

13-Sep-04 20.4 10.2 669 9 9.856 0.733 0.856 20.985 

20-Sep-04 15.8 8.14 758 10 11.142 1.305 1.142 12.823 

4-Oct-04 16 7.68 764 10 10.973 0.947 0.973 12.823 

18-Oct-04 9.7 9.39 726 4 9.239 27.450 5.239 91.795 

8-Nov-04 7.3 31.8 682 19 13.511 30.127 5.489 29.366 

15-Nov-04 5 12.9 789 8 9.151 1.324 1.151 31.147 

29-Nov-04 5 23.2 757 19 12.190 46.383 6.811 29.366 

6-Dec-04 3.2 30.7 734 14 8.350 31.923 5.650 0.176 

10-Jan-05 1.6 51.6 678 7 10.200 10.240 3.200 43.309 

17-Jan-05 0 72.4 608 15 12.009 8.946 2.991 2.014 

14-Feb-05 1 41.7 991 13 12.618 0.146 0.382 0.338 

7-Mar-05 2 27.4 922 11 10.656 0.118 0.344 6.661 

14-Mar-05 0 27 758 8 9.448 2.095 1.448 31.147 

21-Mar-05 0 25.6 842 12 6.926 25.744 5.074 2.499 
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11-Apr-05 7.9 36.9 642 11 13.570 6.603 2.570 6.661 

18-Apr-05 8.9 20.5 694 10 11.165 1.357 1.165 12.823 

25-Apr-05 4.3 78 632 29 18.646 107.199 10.354 237.747 

2-May-05 5.8 54 632 14 14.566 0.320 0.566 0.176 

9-May-05 11.7 24.2 661 7 10.249 10.559 3.249 43.309 

16-May-05 8.2 26.4 718 10 12.161 4.669 2.161 12.823 

13-Jun-05 21.3 10.3 669 12 9.318 7.196 2.683 2.499 

20-Jun-05 13.5 14.7 625 11 11.053 0.003 0.053 6.661 

27-Jun-05 20.4 8.36 692 14 10.841 9.977 3.159 0.176 

25-Jul-05 19.9 9.43 493 17 16.268 0.537 0.733 11.690 

8-Aug-05 17.4 7.76 474 14 13.498 0.252 0.502 0.176 

15-Aug-05 17.3 8.84 660 16 11.748 18.077 4.252 5.852 

29-Aug-05 16.8 7.83 677 12 11.892 0.012 0.108 2.499 

19-Sep-05 15 8.16 619 10 11.777 3.156 1.777 12.823 

17-Oct-05 15.1 13.8 629 12 11.319 0.464 0.681 2.499 

24-Oct-05 12 8.81 744 19 10.249 76.578 8.751 29.366 

12-Dec-05 1.2 16 1020 11 6.506 20.198 4.494 6.661 

16-Jan-06 1.5 73.8 657 19 10.748 68.089 8.252 29.366 

23-Jan-06 2.5 107.6 602 21 23.255 5.087 2.255 55.042 

6-Feb-06 1.5 146.3 685 27 26.098 0.815 0.903 180.071 

6-Mar-06 2.2 27.3 702 17 11.291 32.597 5.709 11.690 

20-Mar-06 8.7 59.1 649 12 18.693 44.796 6.693 2.499 

27-Mar-06 8.6 32.3 684 4 12.320 69.216 8.320 91.795 

10-Apr-06 6.6 48.2 600 15 11.880 9.737 3.120 2.014 

24-Apr-06 11.2 48.77 524 37 23.356 186.151 13.644 548.452 

15-May-06 14.2 21.1 714 8 10.822 7.966 2.822 31.147 

5-Jun-06 16.1 53.3 441 35 36.042 1.086 1.042 458.776 

19-Jun-06 21 13.1 751 10 10.349 0.122 0.349 12.823 

26-Jun-06 21 15.8 714 11 8.758 5.025 2.242 6.661 

10-Jul-06 20.4 10.1 752 10 11.249 1.560 1.249 12.823 

17-Jul-06 22.9 13.9 589 12 12.866 0.751 0.866 2.499 

24-Jul-06 19 12.6 684 7 10.538 12.514 3.538 43.309 

31-Jul-06 21.7 47.7 544 21 20.938 0.004 0.063 55.042 

28-Aug-06 19.5 10 681 9 10.703 2.901 1.703 20.985 

18-Sep-06 17.5 33.7 712 16 12.263 13.964 3.737 5.852 

16-Oct-06 7.7 59 626 22 20.814 1.406 1.186 70.880 

23-Oct-06 8.8 106.6 529 20 20.526 0.277 0.526 41.204 

13-Nov-06 6.3 51.1 648 12 16.008 16.066 4.008 2.499 

20-Nov-06 5.6 81.1 575 22 17.070 24.310 4.931 70.880 

27-Nov-06 6.1 34 672 10 14.458 19.870 4.458 12.823 

11-Dec-06 2 53.6 908 20 19.386 0.377 0.614 41.204 

18-Dec-06 5.2 64.5 674 22 18.847 9.943 3.153 70.880 

8-Jan-07 4.3 141.8 598 40 37.789 4.891 2.212 697.966 

15-Jan-07 2.9 105.8 699 31 29.041 3.838 1.959 303.423 

22-Jan-07 0 38.5 948 13 9.384 13.075 3.616 0.338 
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29-Jan-07 -0.9 24.9 917 10 2.889 50.562 7.111 12.823 

5-Feb-07 -1 17 994 7 7.646 0.417 0.646 43.309 

12-Feb-07 0.2 17.1 952 9 9.052 0.003 0.052 20.985 

12-Mar-2007 0.3 41.7 933 13 10.490 6.300 2.510 0.338 

19-Mar-2007 1 105.1 537 15 13.961 1.080 1.039 2.014 

16-Apr-2007 3.7 47.2 650 12 10.185 3.293 1.815 2.499 

23-Apr-2007 12.3 29.5 612 4 10.102 37.232 6.102 91.795 

28-May-2007 16.8 15.9 667 9 10.987 3.947 1.987 20.985 

4-Jun-2007 20.4 20.3 759 6 8.833 8.026 2.833 57.471 

11-Jun-2007 19.7 15.7 670 11 9.398 2.565 1.602 6.661 

25-Jun-2007 21.3 9.4 699 8 10.315 5.358 2.315 31.147 

9-Jul-2007 23.2 7.3 750 14 12.937 1.131 1.063 0.176 

23-Jul-2007 17 6.3 715 21 11.425 91.688 9.575 55.042 

27-Aug-2007 19.7 8.8 696 20 11.062 79.881 8.938 41.204 

10-Sep-2007 19.4 7.7 757 11 11.153 0.024 0.153 6.661 

17-Sep-2007 14.7 7.5 855 14 9.535 19.937 4.465 0.176 

24-Sep-2007 17.1 7.2 818 10 9.793 0.043 0.207 12.823 

15-Oct-2007 13.6 7.6 852 14 9.580 19.536 4.420 0.176 

29-Oct-2007 11.1 7.9 787 13 9.475 12.429 3.526 0.338 

19-Nov-2007 6.5 6.5 775 6 7.557 2.424 1.557 57.471 

10-Dec-2007 2.7 18.8 896 5 8.969 15.749 3.969 73.633 

7-Jan-2008 4.9 116.4 814 33 31.803 1.434 1.197 377.099 

14-Jan-2008 4.1 89 700 27 21.419 31.146 5.581 180.071 

21-Jan-2008 1.4 29.6 887 12 11.840 0.025 0.160 2.499 

25-Feb-2008 1 47.3 781 11 9.028 3.889 1.972 6.661 

17-Mar-2008 2 58.4 810 7 12.297 28.056 5.297 43.309 

14-Apr-2008 7.3 87.1 891 1 12.440 130.876 11.440 158.280 

21-Apr-2008 13.3 29.2 805 9 10.063 1.130 1.063 20.985 

9-Jun-2008 21.2 13.5 684 6 8.795 7.809 2.795 57.471 

16-Jun-2008 16.8 18.7 657 7 10.447 11.883 3.447 43.309 

23-Jun-2008 18.2 31.2 671 29 15.135 192.230 13.865 237.747 

30-Jun-2008 15.9 54.5 507 23 17.565 29.537 5.435 88.718 

14-Jul-2008 17.1 38 500 18 17.301 0.489 0.699 19.528 

25-Aug-2008 19.4 8.2 655 13 10.745 5.087 2.256 0.338 

26-Sep-2008 15.7 15 626 6 11.041 25.416 5.041 57.471 

6-Oct-2008 11 29 559 9 11.616 6.842 2.616 20.985 

3-Nov-2008 7.7 25.9 659 10 12.435 5.927 2.435 12.823 

1-Dec-2008 2.3 72.2 587 14 14.527 0.278 0.527 0.176 

15-Dec-2008 5.5 144.6 732 42 42.782 0.612 0.782 807.642 

23-Mar-2009 5.3 47 616 12 10.362 2.682 1.638 2.499 

6-Apr-2009 7.5 115.9 602 41 38.458 6.460 2.542 751.804 

20-Apr-2009 10.6 39.4 690 5 9.997 24.970 4.997 73.633 

11-May-2009 12.6 42.4 653 11 12.228 1.507 1.228 6.661 

1-Jun-2009 15.1 64.3 636 15 25.121 102.441 10.121 2.014 

15-Jun-2009 18.7 24.1 704 7 9.905 8.438 2.905 43.309 
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20-Jul-2009 19.1 12.7 772 12 11.363 0.405 0.637 2.499 

5-Oct-2009 12.4 15.6 706 9 11.223 4.940 2.223 20.985 

26-Oct-2009 10.7 14.4 799 13 10.242 7.609 2.759 0.338 

9-Nov-2009 10.3 16.6 788 9 10.478 2.183 1.478 20.985 

18-Jan-2010 2.7 13.7 948 5 7.092 4.375 2.092 73.633 

8-Feb-2010 0.6 18.4 855 6 5.325 0.456 0.675 57.471 

29-Mar-2010 7.8 25.7 759 24 11.971 144.706 12.029 108.557 

12-Apr-2010 9.8 66.3 691 18 11.808 38.346 6.192 19.528 

19-Apr-2010 10 22.7 750 6 11.240 27.462 5.240 57.471 

26-Apr-2010 11.7 19 735 11 11.133 0.018 0.133 6.661 

17-May-2010 13.3 36.6 714 13 7.705 28.034 5.295 0.338 

28-Jun-2010 22.9 11.8 709 7 8.980 3.921 1.980 43.309 

12-Jul-2010 23.6 23.6 699 12 12.643 0.413 0.643 2.499 

13-Sep-2010 17 8.7 750 8 11.413 11.648 3.413 31.147 

27-Sep-2010 15.1 8.6 775 6 10.909 24.099 4.909 57.471 

18-Oct-2010 11.8 22 732 10 11.039 1.080 1.039 12.823 

8-Nov-2010 6.7 17.8 781 5 9.876 23.779 4.876 73.633 

29-Nov-2010 3.5 41.6 791 12 16.761 22.671 4.761 2.499 

28-Mar-2011 3 59.5 700 10 13.992 15.933 3.992 12.823 

4-Apr-2011 7 70.5 753 18 23.051 25.517 5.051 19.528 

11-Apr-2011 11.5 62.1 648 15 11.913 9.530 3.087 2.014 

18-Apr-2011 6.8 42.6 698 4 15.723 137.429 11.723 91.795 

2-May-2011 10.8 83.6 618 19 23.282 18.339 4.282 29.366 

6-Jun-2011 18.9 36 602 18 20.586 6.686 2.586 19.528 

13-Jun-2011 16.2 27.8 621 20 13.397 43.604 6.603 41.204 

20-Jun-2011 19.5 15.4 639 8 9.789 3.199 1.789 31.147 

18-Jul-2011 24.9 9.1 650 8 9.457 2.124 1.457 31.147 

22-Aug-2011 20.2 11.4 644 12 9.407 6.724 2.593 2.499 

29-Aug-2011 20.4 14 669 8 9.094 1.197 1.094 31.147 

19-Sep-2011 16.8 8.4 680 10 11.906 3.632 1.906 12.823 

24-Oct-2011 11.1 92.4 490 27 25.409 2.531 1.591 180.071 

31-Oct-2011 9.2 46.5 520 12 14.270 5.153 2.270 2.499 

14-Nov-2011 10.3 19.5 560 7 10.263 10.645 3.263 43.309 

5-Dec-2011 7.4 128.1 520 42 42.856 0.733 0.856 807.642 

12-Dec-2011 2.9 77.5 540 21 23.087 4.357 2.087 55.042 

9-Jan-2012 2.7 72.6 540 21 21.782 0.611 0.782 55.042 

23-Jan-2012 3.2 46.6 650 22 10.494 132.390 11.506 70.880 

13-Feb-2012 1.4 28.7 391 9 8.220 0.609 0.780 20.985 

27-Feb-2012 3 51.5 600 4 13.063 82.140 9.063 91.795 

5-Mar-2012 1.7 138.6 330 24 22.522 2.184 1.478 108.557 

12-Mar-2012 5.9 47.4 430 8 9.190 1.416 1.190 31.147 

19-Mar-2012 12.7 41.5 503 10 12.752 7.571 2.752 12.823 

2-Apr-2012 8.1 18 500 8 6.773 1.507 1.227 31.147 

11-Jun-2012 22.4 13.3 700 8 8.517 0.267 0.517 31.147 

18-Jun-2012 21.8 9.7 702 10 10.084 0.007 0.084 12.823 
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10-Sep-2012 18.3 11 590 12 10.488 2.287 1.512 2.499 

17-Sep-2012 18.3 7.6 650 14 11.376 6.884 2.624 0.176 

1-Oct-2012 14 9.8 800 7 10.603 12.984 3.603 43.309 

15-Oct-2012 14 9.2 816 12 10.317 2.832 1.683 2.499 

29-Oct-2012 10.1 23.7 629 28 10.770 296.866 17.230 207.909 

5-Nov-2012 6.6 36.5 680 17 14.819 4.758 2.181 11.690 

12-Nov-2012 10.3 11.6 880 10 9.327 0.453 0.673 12.823 

26-Nov-2012 4.8 9.9 803 6 8.550 6.502 2.550 57.471 

3-Dec-2012 7.6 13.2 760 11 9.074 3.711 1.927 6.661 

10-Dec-2012 5.5 25.5 737 8 12.882 23.835 4.882 31.147 

21-Jan-2013 1.1 46.3 550 11 12.644 2.702 1.644 6.661 

25-Feb-2013 2.1 49.1 644 12 11.322 0.460 0.678 2.499 

4-Mar-2013 2.4 35.8 700 4 11.415 54.982 7.415 91.795 

18-Mar-2013 2.2 95.8 690 8 14.611 43.699 6.611 31.147 

8-Apr-2013 6.3 39.8 605 10 7.357 6.986 2.643 12.823 

29-Apr-2013 11.5 51.3 690 12 12.194 0.038 0.194 2.499 

13-May-2013 10.7 22.3 750 10 11.157 1.339 1.157 12.823 

3-Jun-2013 17.8 76.4 753 35 33.068 3.733 1.932 458.776 

24-Jun-2013 23.8 21.6 750 8 8.755 0.569 0.755 31.147 

8-Jul-2013 22.1 37.7 583 12 8.669 11.093 3.331 2.499 

15-Jul-2013 24.6 24.5 665 12 14.537 6.435 2.537 2.499 

29-Jul-2013 18.4 11.9 608 11 10.373 0.393 0.627 6.661 

12-Aug-2013 20 9.6 637 8 9.773 3.145 1.773 31.147 

26-Aug-2013 22.2 6.7 670 6 10.503 20.277 4.503 57.471 

9-Sep-2013 18.7 7 640 8 11.150 9.920 3.150 31.147 

30-Sep-2013 17.3 21.8 700 8 9.981 3.924 1.981 31.147 

21-Oct-2013 12 58.6 520 16 16.510 0.260 0.510 5.852 

11-Nov-2013 6.5 74.4 570 14 15.451 2.107 1.451 0.176 

14-Apr-2014 9.9 118.8

6 

550 14 13.893 0.011 0.107 0.176 

5-May-2014 9 79.96 440 10 10.140 0.020 0.140 12.823 

2-Jun-2014 19.6 19.97 640 2 11.383 88.043 9.383 134.118 

16-Jun-2014 20.8 18.22 570 12 9.781 4.924 2.219 2.499 

23-Jun-2014 21.8 9.92 680 8 9.437 2.066 1.437 31.147 

14-Jul-2014 21.3 25.16 580 13 9.883 9.716 3.117 0.338 

11-Aug-2014 21.5 11.7 650 9 8.889 0.012 0.111 20.985 

18-Aug-2014 19.5 14.94 600 13 10.866 4.556 2.134 0.338 

25-Aug-2014 20.6 13.92 640 12 9.280 7.398 2.720 2.499 

8-Sep-2014 18.6 107.3

6 

450 37 37.025 0.001 0.025 548.452 

15-Sep-2014 14.6 72.98 600 28 19.302 75.650 8.698 207.909 

6-Oct-2014 13.3 81.68 550 18 17.985 0.000 0.015 19.528 

20-Oct-2014 11.3 52.42 560 10 21.124 123.739 11.124 12.823 

27-Oct-2014 9.3 21.21 570 4 10.945 48.226 6.945 91.795 

8-Dec-2014 2 27.57 490 6 7.929 3.721 1.929 57.471 

16-Mar-2015 1.5 50.6 441 39 30.965 64.563 8.035 646.128 

14-Sep-2015 16.1 13 680 9 11.788 7.772 2.788 20.985 
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26-Oct-2015 11 10.4 620 10 10.246 0.060 0.246 12.823 

16-Nov-2015 7.7 23.3 440 8 2.250 33.066 5.750 31.147 

30-Nov-2015 4.2 79.9 370 21 18.787 4.896 2.213 55.042 

4-Jan-2016 0.2 36.7 480 13 10.604 5.742 2.396 0.338 

25-Jan-2016 0.9 31.3 500 8 7.971 0.001 0.029 31.147 

1-Feb-2016 3 134.3 550 36 38.571 6.612 2.571 502.614 

8-Feb-2016 4.1 59.9 470 15 20.045 25.455 5.045 2.014 

7-Mar-2016 3.4 34.5 440 8 11.204 10.264 3.204 31.147 

21-Mar-2016 5 35.2 420 10 5.637 19.036 4.363 12.823 

4-Apr-2016 3.2 124.8 420 28 25.359 6.975 2.641 207.909 

11-Apr-2016 4 141.1 460 17 21.087 16.704 4.087 11.690 

18-Apr-2016 11.2 46.2 460 7 12.384 28.989 5.384 43.309 

2-May-2016 10.6 29.3 480 8 9.897 3.599 1.897 31.147 

6-Jun-2016 18.9 16.8 560 6 11.154 26.559 5.154 57.471 

11-Jul-2016 22.2 6.4 760 12 12.861 0.742 0.861 2.499 

18-Jul-2016 22.6 7.3 670 14 10.152 14.809 3.848 0.176 

12-Sep-2016 18.5 7.4 660 16 11.396 21.196 4.604 5.852 

19-Sep-2016 19.7 8.1 660 14 10.675 11.054 3.325 0.176 

24-Oct-2016 12 14.5 520 12 9.878 4.502 2.122 2.499 

21-Nov-2016 4.1 9 740 10 12.032 4.131 2.032 12.823 

5-Dec-2016 4.4 22.8 500 14 9.626 19.133 4.374 0.176 

 

N= 420   𝑆𝑆𝐶̅̅ ̅̅ ̅ = 13.851 ∑ 9421.165 1451.709 25990.248 
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Appendix E Sample spreadsheet of calculations implemented to find the various statistical 

measures adopted for this study over the testing period for the best scenario case. 

Date 
T 
0C 

Flow  
cms 

 C 
µS/c

m 

SSC 
mg/l 

SSCi (𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶)2 | 𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶| (𝑆𝑆𝐶𝑖- 𝑆𝑆𝐶̅̅ ̅̅ ̅)2 

23-Feb-94 2 151 481 23 22.269

7 

0.533 0.730 63.362 

26-Apr-95 9 56.9 555 30 23.800

4 

38.435 6.200 223.802 

31-Jan-96 1.4 43 638 8 12.234

6 

17.932 4.235 49.562 

3-Apr-96 6.5 44.6 628 9 11.173

5 

4.724 2.174 36.482 

24-Apr-96 8.1 165 570 37 36.977

1 

0.001 0.023 482.242 

29-Jan-97 3 43.7 692 5 10.303

1 

28.123 5.303 100.802 

2-Sep-98 24.1 5.1 720 17 13.399

1 

12.966 3.601 3.842 

9-Sep-98 21 5.17 710 11 11.881

6 

0.777 0.882 16.322 

16-Sep-98 21.6 6.05 740 11 12.273

1 

1.621 1.273 16.322 

23-Sep-98 20.6 5.03 780 17 10.957 36.518 6.043 3.842 

21-Oct-98 14.1 5.79 730 5 10.686

8 

32.340 5.687 100.802 

3-Feb-99 2.4 45.7 590 18 12.693

1 

28.163 5.307 8.762 

23-Jun-99 23 5.87 620 13 11.032

3 

3.872 1.968 4.162 

14-Jul-99 24.2 6.05 540 11 12.347

2 

1.815 1.347 16.322 

28-Jul-99 26.5 5.51 510 5 5.4609 0.212 0.461 100.802 

4-Aug-99 24.2 5.46 480 9 8.5614 0.192 0.439 36.482 

18-Aug-99 22.8 5.68 540 10 11.598

2 

2.554 1.598 25.402 

1-Sep-99 21.7 5.49 600 8 11.519

1 

12.384 3.519 49.562 

22-Sep-99 17.3 5.82 630 13 11.739

8 

1.588 1.260 4.162 

26-Jun-00 21.9 157 672 34 33.816

8 

0.034 0.183 359.482 

9-Aug-00 23.6 56.7 688 13 14.822

1 

3.320 1.822 4.162 

18-Apr-01 8.6 42.8 633 8 15.526

4 

56.647 7.526 49.562 

8-Aug-01 26.8 5.66 642 20 20.099

3 

0.010 0.099 24.602 

13-Aug-01 24.8 5.73 660 11 8.3739 6.896 2.626 16.322 

5-Sep-01 21.1 5.94 641 7 10.404

3 

11.589 3.404 64.642 

4-Mar-02 1.3 171 579 29 27.973

8 

1.053 1.026 194.882 

18-Mar-02 5.5 43.7 622 5 8.7669 14.190 3.767 100.802 

8-Apr-02 7.1 56.1 584 4 11.977 63.633 7.977 121.882 

5-May-03 13.4 54.8 695 12 9.8108 4.793 2.189 9.242 

29-Mar-04 7.8 147 563 25 24.190

8 

0.655 0.809 99.202 

3-May-04 8.8 55.9 671 16 18.948 8.691 2.948 0.922 

18-Jul-05 20.2 56.2 418 22 22.124

9 

0.016 0.125 48.442 

12-Sep-05 16.2 6.02 702 14 11.500

1 

6.250 2.500 1.082 

5-Dec-05 3 42.7 672 16 10.635 28.783 5.365 0.922 

9-Jan-06 3 55.3 688 16 11.906

5 

16.757 4.094 0.922 

13-Feb-06 1.5 45.2 823 1 9.0234 64.375 8.023 197.122 

20-Feb-06 0.6 154.2 569 11 13.886 8.329 2.886 16.322 

3-Mar-2008 2.7 45.8 810 4 13.529

5 

90.811 9.530 121.882 

7-Apr-2008 6.6 157.2 732 15 14.823

4 

0.031 0.177 0.002 
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9-Feb-2009 1.9 55 885 18 19.661

3 

2.760 1.661 8.762 

16-May-2011 12.5 161.9 516 42 42.038

2 

0.001 0.038 726.842 

9-Jul-2012 24 6.1 890 14 15.430

5 

2.046 1.431 1.082 

17-Mar-2014 0.2 58 430 5 8.2794 10.754 3.279 100.802 

31-Mar-2014 2.2 172.7 452 44 39.813

4 

17.528 4.187 838.682 

26-May-2014 16.1 56.83 535 8 14.338

9 

40.182 6.339 49.562 

28-Sep-2015 19.4 4.8 810 10 9.1174 0.779 0.883 25.402 

22-Feb-2016 1.9 160 400 33 34.985

2 

3.941 1.985 322.562 

14-Mar-2016 7.3 45.4 430 6 5.0535 0.896 0.947 81.722 

25-Jul-2016 23.8 5.6 800 17 15.770

1 

1.513 1.230 3.842 

8-Aug-2016 21.6 4.9 790 12 12.024

8 

0.001 0.025 9.242 

 

N= 50   𝑆𝑆𝐶̅̅ ̅̅ ̅ = 15.04 ∑ 692.012 141.129 4943.920 
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Appendix F Sample spreadsheet of calculations implemented to find the uncertainty analysis measures adopted for this study over the 

testing period for the best scenario case. 

 

Observed 

SSC 

(mg/l) 

Predicted 

SMLR 

Predicted 

SANFIS 

Predicted 

SANN 

ei  

MLR 

│T-ei│ 

MLR 

Z 

MLR 

ei  

ANFIS 

│T-ei│ 

ANFIS 

Z 

ANFIS 

ei  

ANN 

│T-ei│ 

ANN 

Z 

ANN 

 

ei  

MLR 

ei  

ANFIS 

ei  

ANN 

              
   

1.000 13.004 10.901 9.023 1.114 1.095  1.037 0.994  0.955 0.953   
   

4.000 16.094 16.482 11.977 0.605 0.585  0.615 0.572  0.476 0.474   
   

4.000 13.389 11.768 13.530 0.525 0.505 2.325 0.469 0.426 1.875 0.529 0.527   0.525 0.469  

5.000 12.945 15.518 10.303 0.413 0.394 1.812 0.492 0.449 1.977 0.314 0.312   0.413 0.492  

5.000 8.689 6.596 10.687 0.240 0.221 1.015 0.120 0.077 0.340 0.330 0.328   0.240 0.120  

5.000 11.381 12.790 5.461 0.357 0.338 1.555 0.408 0.365 1.607 0.038 0.036 0.335  0.357 0.408 0.038 

5.000 13.470 13.939 8.767 0.430 0.411 1.891 0.445 0.402 1.772 0.244 0.242 2.251  0.430 0.445 0.244 

5.000 14.611 17.741 8.279 0.466 0.447 2.054 0.550 0.507 2.234 0.219 0.217 2.020  0.466 0.550 0.219 

6.000 14.004 9.307 5.054 0.368 0.349 1.605 0.191 0.148 0.650 -0.075 0.077 -0.716  0.368 0.191 -0.075 

7.000 10.304 6.515 10.404 0.168 0.149 0.684 -0.031 0.074 -0.327 0.172 0.170 1.582  0.168 -0.031 0.172 

8.000 12.371 13.928 12.235 0.189 0.170 0.782 0.241 0.198 0.871 0.184 0.182 1.698  0.189 0.241 0.184 

8.000 10.321 10.916 11.519 0.111 0.091 0.420 0.135 0.092 0.405 0.158 0.156 1.454  0.111 0.135 0.158 

8.000 14.063 14.294 15.526 0.245 0.226 1.038 0.252 0.209 0.921 0.288 0.286   0.245 0.252  

8.000 18.342 19.441 14.339 0.360 0.341 1.569 0.386 0.343 1.509 0.253 0.251 2.340  0.360 0.386 0.253 

9.000 13.883 14.165 11.174 0.188 0.169 0.777 0.197 0.154 0.678 0.094 0.092 0.854  0.188 0.197 0.094 

9.000 10.785 13.525 8.561 0.079 0.059 0.273 0.177 0.134 0.590 -0.022 0.024 -0.224  0.079 0.177 -0.022 

10.000 10.555 12.090 11.598 0.023 0.004 0.019 0.082 0.039 0.173 0.064 0.062 0.579  0.023 0.082 0.064 

10.000 9.871 6.071 9.117 -0.006 0.025 -0.114 -0.217 0.260 -1.145 -0.040 0.042 -0.395  -0.006 -0.217 -0.040 

11.000 10.215 9.923 11.882 -0.032 0.051 -0.236 -0.045 0.088 -0.387 0.033 0.031 0.291  -0.032 -0.045 0.033 
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11.000 10.554 9.832 12.273 -0.018 0.037 -0.171 -0.049 0.092 -0.405 0.048 0.045 0.422  -0.018 -0.049 0.048 

11.000 10.960 12.112 12.347 -0.002 0.021 -0.096 0.042 0.001 -0.006 0.050 0.048 0.446  -0.002 0.042 0.050 

11.000 11.178 10.313 8.374 0.007 0.012 -0.056 -0.028 0.071 -0.313 -0.118 0.121 -1.125  0.007 -0.028 -0.118 

11.000 32.552 26.576 13.886 0.471 0.452 2.079 0.383 0.340 1.498 0.101 0.099 0.921  0.471 0.383 0.101 

12.000 17.494 16.420 9.811 0.164 0.144 0.665 0.136 0.093 0.410 -0.087 0.090 -0.837  0.164 0.136 -0.087 

12.000 10.398 9.332 12.025 -0.062 0.081 -0.375 -0.109 0.152 -0.671 0.001 0.001 -0.013  -0.062 -0.109 0.001 

13.000 10.726 10.718 11.032 -0.084 0.103 -0.473 -0.084 0.127 -0.559 -0.071 0.074 -0.686  -0.084 -0.084 -0.071 

13.000 9.355 10.601 11.740 -0.143 0.162 -0.746 -0.089 0.132 -0.580 -0.044 0.047 -0.434  -0.143 -0.089 -0.044 

13.000 20.293 16.968 14.822 0.193 0.174 0.801 0.116 0.073 0.320 0.057 0.055 0.509  0.193 0.116 0.057 

14.000 9.206 7.795 11.500 -0.182 0.201 -0.926 -0.254 0.297 -1.311 -0.085 0.088 -0.818  -0.182 -0.254 -0.085 

14.000 11.307 6.096 15.431 -0.093 0.112 -0.515 -0.361 0.404 -1.781 0.042 0.040 0.372  -0.093 -0.361 0.042 

15.000 34.729 28.916 14.823 0.365 0.345 1.589 0.285 0.242 1.066 -0.005 0.007 -0.069  0.365 0.285 -0.005 

16.000 16.562 17.658 18.948 0.015 0.004 -0.019 0.043 0.000 -0.001 0.073 0.071 0.663  0.015 0.043 0.073 

16.000 12.739 11.615 10.635 -0.099 0.118 -0.544 -0.139 0.182 -0.803 -0.177 0.180 -1.674  -0.099 -0.139 -0.177 

16.000 15.074 10.886 11.907 -0.026 0.045 -0.208 -0.167 0.210 -0.927 -0.128 0.131 -1.217  -0.026 -0.167 -0.128 

17.000 10.959 9.853 13.399 -0.191 0.210 -0.965 -0.237 0.280 -1.234 -0.103 0.106 -0.985  -0.191 -0.237 -0.103 

17.000 10.170 9.348 10.957 -0.223 0.242 -1.115 -0.260 0.303 -1.334 -0.191 0.193 -1.799  -0.223 -0.260 -0.191 

17.000 11.067 9.390 15.770 -0.186 0.206 -0.946 -0.258 0.301 -1.326 -0.033 0.035 -0.325  -0.186 -0.258 -0.033 

18.000 13.056 15.198 12.693 -0.139 0.159 -0.730 -0.073 0.117 -0.514 -0.152 0.154 -1.435  -0.139 -0.073 -0.152 

18.000 14.971 17.201 19.661 -0.080 0.099 -0.457 -0.020 0.063 -0.277 0.038 0.036 0.336  -0.080 -0.020 0.038 

20.000 11.627 10.470 20.099 -0.236 0.255 -1.172 -0.281 0.324 -1.428 0.002 0.000 -0.001  -0.236 -0.281 0.002 

22.000 19.084 24.310 22.125 -0.062 0.081 -0.372 0.043 0.000 0.001 0.002 0.000 0.001  -0.062 0.043 0.002 

23.000 32.204 22.570 22.270 0.146 0.127 0.584 -0.008 0.051 -0.226 -0.014 0.016 -0.152  0.146 -0.008 -0.014 

25.000 32.956 32.604 24.191 0.120 0.101 0.464 0.115 0.072 0.318 -0.014 0.017 -0.155  0.120 0.115 -0.014 

29.000 35.821 35.062 27.974 0.092 0.073 0.334 0.082 0.039 0.173 -0.016 0.018 -0.167  0.092 0.082 -0.016 

30.000 16.667 12.771 23.800 -0.255 0.274 -1.263 -0.371 0.414 -1.824 -0.101 0.103 -0.958  -0.255 -0.371 -0.101 

33.000 33.746 24.833 34.985 0.010 0.010 -0.044 -0.123 0.167 -0.734 0.025 0.023 0.215  0.010 -0.123 0.025 

34.000 38.311 38.468 33.817 0.052 0.033 0.150 0.054 0.011 0.046 -0.002 0.005 -0.043  0.052 0.054 -0.002 
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37.000 36.346 28.677 36.977 -0.008 0.027 -0.124 -0.111 0.154 -0.677 0.000 0.003 -0.024  -0.008 -0.111 0.000 

42.000 36.776 41.640 42.038 -0.058 0.077 -0.354 -0.004 0.047 -0.206 0.000 0.002 -0.018  -0.058 -0.004 0.000 

44.000 36.211 48.764 39.813 -0.085 0.104 -0.478 0.045 0.002 0.007 -0.043 0.046 -0.426  -0.085 0.045 -0.043 

  

 

            

   

             

 MLR ANFIS ANN          

T 0.019 0.043 0.002  
        

MAD 0.147 0.153 0.072  
        

SMAD 0.217 0.227 0.107  
        

 

0.074 0.045 0.009  
        

Se 0.209 0.231 0.105  
        

2Se 0.418 0.461 0.210  
        

+ 3.099 3.209 1.656  
        

- 0.453 0.384 0.628  
        

 

Note that the │Z│ score values of greater than 2.5 order of magnitude has been removed as per the procedure described at section 

4.1.3.4 of this study

�̅� 
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