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Abstract 

Increasing temperatures due to rising atmospheric CO2 concentrations will have direct effects 

on plant physiology, specifically photosynthetic carbon uptake. Changes in photosynthetic 

carbon uptake will alter feedbacks between vegetation and atmospheric CO2, and changes in 

forest carbon dynamics will be important in determining whether vegetation amplifies or 

attenuates the effects of anthropogenic CO2 emissions on climate. Coniferous trees, which 

are a large component of the boreal forest, are understudied in relation to thermal acclimation 

of photosynthesis and temperature effects on growth. In the present work, I assess the impact 

of rising temperatures on carbon fluxes in coniferous trees, using meta-analysis, manipulative 

experimentation, and in silico modeling. I found that photosynthetic capacity is strongly 

regulated by temperature in white spruce seedlings, but growth is strongly regulated by 

photoperiod, desynchronizing growth and carbon uptake. I found that boreal tree carbon 

uptake is likely to respond positively to moderate warming, particularly during autumn and at 

high latitudes. However, day length may restrict how much of this carbon uptake is allocated 

to longer-term carbon stores such as woody biomass, which could enhance the release of CO2 

from boreal forests between growing seasons. As well, thermal acclimation of photosynthesis 

in conifers may reduce carbon uptake, reducing the increase in carbon uptake expected with 

warming in conifers at high latitudes. However, modeling thermal acclimation of 

photosynthesis by adjusting multiple parameters of the photosynthetic temperature response 

equations provides diminishing returns in model performance for increased complexity. 

Therefore, I recommend that multifactor thermal acclimation of photosynthesis not be used 

in large scale modeling efforts until the underlying physiology is better understood. Overall, 

my data suggest that climate change will enhance the seasonality of carbon uptake in 

conifers, increasing the magnitude of peak carbon uptake and possibly peak carbon efflux, 

and may decouple photosynthetic carbon uptake and growth during autumn. However, 

physiological variability between boreal tree species may be introducing uncertainties in 

modelled boreal tree responses to climate that may propagate into unrealistic   predictions of 

tree net carbon gain in the future. Furthermore, my work demonstrates that there is a large 

gap in understanding photosynthetic thermal acclimation, both on a fundamental level and in 

terms of the biological diversity of measured temperature responses.  
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Chapter 1  

1 General introduction 

Anthropogenic CO2 emissions are causing the global climate system to warm, which is 

associated with changing seasonal patterns of, and enhanced variability in, air 

temperature and precipitation (Collins et al., 2013; IPCC, 2013). These climatic changes 

are affecting the biosphere, which responds to and interacts with the rest of the Earth 

system, primarily through coupled vegetation-atmosphere feedbacks (Ciais et al., 2013). 

Vegetation-atmosphere feedbacks occur because vegetation consumes CO2 from the 

atmosphere through photosynthesis and water from the hydrosphere through root 

systems, and releases CO2 through respiratory processes and water through transpiration 

(Ciais et al., 2013; Hartmann et al., 2013). Vegetation thus can alter radiative forcing 

(through photosynthesis and transpiration, which affect atmospheric concentrations of 

two greenhouse gases, CO2 and water vapor) and precipitation patterns (through 

transpiration) (Myhre et al., 2013). Understanding how plants respond to a changing 

environment is crucial to our ability to predict and prepare for the future state of the Earth 

system (Collins et al., 2013; Rogers et al., 2017). The focus of this work is on 

understanding the responses of photosynthesis, net carbon gain (the balance of 

photosynthesis and respiratory processes), and growth in high latitude tree species, an 

influential vegetative component of the Earth system, to increasing temperatures. 

1.1 Climate change 

Anthropogenic activities are causing a steady rise in atmospheric CO2 concentrations 

from 280 μmol mol-1 at the beginning of the Industrial Revolution to over 400 μmol mol-1 

today (Ciais et al., 2013; Duglokencky & Tans, 2017). CO2 is a greenhouse gas, as it 

increases heat retention in the atmosphere and affects the energy balance of the Earth 

system (Stocker et al., 2013). Radiative forcing, defined as changes in the energy balance 

of the planet, is determined by much more than CO2 concentrations in the atmosphere, 

and includes concentrations of methane, halocarbons, N2O, aerosols, land surface 

reflectance, and changes in solar irradiance (Stocker et al., 2013).  
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Predictions of future climate warming are made using Earth system models (with 

terrestrial biosphere models coupling the biosphere to the rest of the Earth system) 

(Friedlingstein et al., 2006; Fisher et al., 2014). Current Earth System Models predict 

average global surface temperatures will rise between 0.3 and 4.8 °C by 2100, depending 

on the socio-economic emissions scenario used (Stocker et al., 2013). Socio-economic 

emissions scenarios are required to drive current-generation Earth System Models 

because it is unknown whether, what, and how climate change mitigations measured will 

be implemented (Stocker et al., 2013). The commitments of the 2015 Paris Climate 

agreement suggest that large-scale implementation of climate change mitigation measures 

may be achieved this century (Rogelj et al., 2016). The most recent assessment report 

from the Intergovernmental Panel on Climate Change (Stocker et al., 2013) established 

four socio-economic emissions scenarios termed representative concentration pathways. 

These representative concentration pathways range from extensive mitigation 

(representative concentration pathway 2.6), intermediate mitigation (representative 

concentration pathway 4.5 and representative concentration pathway 6.0), through to a 

business-as-usual scenario (representative concentration pathway 8.5), where the 

numbers indicate the expected increase in radiative forcing in W m-2 for the year 2100, 

relative to 1750 (Stocker et al., 2013). The projected global average annual climate 

warming for 2100 ranges from ~1.0 °C under representative concentration pathway 2.6 to 

~3.7 °C for representative concentration pathway 8.5 (Collins et al., 2013). Climate 

projections are typically cited regarding average annual global changes, which is 

misleading, since spatiotemporal warming projections are highly variable with greater 

warming projected at high latitudes and during winter compared to low latitudes and 

during summer (Collins et al., 2013; IPCC, 2013).  

One major source of uncertainty in climate projections is the response of the biosphere, 

specifically vegetation, to climate change, since the biosphere has strong effects on the 

global carbon and water cycles, which affect total radiative forcing (Pearson et al., 2013; 

Willeit et al., 2014; Rogers et al., 2017). Understanding and modeling vegetative 

responses to environmental change is thus pertinent to modeling the entire Earth system. 

Forests, due to their long-term carbon storage in woody biomass and soils, and their 
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ecological dominance (covering ~30% of Earth’s land surface; FAO, 2016), are key 

drivers of the Earth system and atmospheric CO2 concentrations concentrations, and are 

largely responsible for the magnitude of seasonal oscillations in atmospheric CO2 

concentrations (Forkel et al., 2016; Wenzel et al., 2016). Henceforth, I will focus on 

forest-climate feedbacks whenever possible instead of general vegetation-climate 

feedbacks. 

1.2 Boreal forests 

Boreal forests (synonym: taiga) occur in high latitude regions across North America and 

Eurasia, accounting for ~30% of globally forested area (FAO, 2001; Brandt et al., 2013). 

These forests contain 28 Pg of terrestrial carbon in Canada alone (Kurz et al., 2013), with 

most of the carbon stored in soil and peatlands (Davidson & Janssens, 2006). Carbon 

stocks of boreal forests increase with age with net carbon uptake peaking in the range of 

100 years and declining thereafter (Litvak et al., 2003; Luyssaert et al., 2008). Estimates 

of net boreal carbon flux vary from a net uptake of 0.5 to 0.8 Pg of carbon per year 

(Bradshaw & Warkentin, 2015), while net terrestrial carbon uptake has ranged from 0.4 

to 1.0 Pg of carbon per year (Houghton, 2007). Changes in boreal carbon flux thus have 

the potential to cause relatively large changes in net terrestrial carbon fluxes.  

Soil microbial activity has a strong impact on boreal carbon fluxes by affecting 

decomposition rates, soil respiration and methane flux (Chapin et al., 2009). Climate 

warming is expected to increase carbon inputs into boreal soils by vegetation, which may 

‘prime’ soil microbial and fungal activity by increasing energy available for microbial 

and soil respiration (Clemmensen et al., 2013; Karhu et al., 2016). This increased soil 

respiration could lead to greater efflux of carbon from the soil, releasing more carbon 

stored in the soil, potentially tipping the balance of whether boreal forests are a source or 

sink for carbon. Mosses may counterbalance increases in soil respiration by reducing 

decomposition rates, stabilizing boreal soil carbon, and modulating soil nitrogen 

availability (Turetsky et al., 2008; Turetsky et al., 2012), while contributing substantially 

to boreal forest carbon uptake (Harden et al., 1997). CO2 released from soil respiration 

may stimulate moss photosynthesis, offsetting the increase in soil respiration expected 
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with climate change (Turetsky & Wieder, 1999). However, for the remainder of my 

thesis, I will focus on the impacts of climate on vegetation. 

1.2.1 Disturbance impacts on boreal carbon balance 

Disturbance, including fire and insects, plays a crucial role in boreal forest carbon 

balance (Goetz et al., 2005; Bond-Lamberty et al., 2007; Magnani et al., 2007). Boreal 

forests frequently burn, causing forest loss (Potapov et al., 2008), directly leading to an 

increase in carbon efflux as well as an increased turnover of soil carbon (Clemmensen et 

al., 2013). Projections of future fire regimes in the boreal forest predict an increase in fire 

severity due to climate change this century, with total burned area increasing between 

200 and 500% of current levels (de Groot et al., 2013) and reaching levels unprecedented 

in the past 10,000 years (Kelly et al., 2013). While fire may initially increase radiative 

forcing of the region (through reduced albedo and carbon efflux, amplifying climate 

warming), after 80 years there may be a reduction in radiative forcing in some cases 

(dampening warming; Randerson et al., 2006). Given that the frequency of stand-

replacing disturbances in the boreal forest (Larsen, 1998), the increasing frequency and 

intensity of fires (Kasischke & Turetsky, 2006), and that young forest stands have 

relatively low to negligible carbon uptake (Litvak et al., 2003), understanding seedling 

responses to climate change will become increasingly important for understanding the 

persistence and future carbon sequestration potential of boreal forests. 

In addition to fire, insect outbreaks can dramatically affect forests: a western spruce 

budworm (Choristoneura occidentalis) outbreak in the late 20th century led to the 

infection of over 80% of trees in a mixed conifer stand (Swetnam et al., 1995). In the 

early 2000s, Canada’s boreal forests switched from a carbon sink to a carbon source, 

which is attributed to an increase in insect outbreaks (Kurz et al., 2008b). The severity of 

mountain pine beetle (Dendroctonus ponderosae) infection has increased from less than 2 

million ha in the 1980s to over 10 million ha in the 2000s, and has the potential to spread 

further with climate warming (Safranyik et al., 2010). Estimates of the carbon balance 

effect of the current mountain pine beetle outbreak from 2000 to 2020 are on the order of 

370 Gg, and historically can rival the impact of fire (Kurz et al., 2008a). Furthermore, 

insect and fire disturbance are interconnected: insect attack can increase the availability 
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of fuel for, and risk of, fire, while fire can leave trees vulnerable to insect attack 

(McCullough et al., 1998). Thus, fire and insect outbreaks are of considerable importance 

to boreal forest carbon balance. 

1.2.2 Nitrogen and water limitations on boreal carbon balance 

Nitrogen and water are often limiting resources in boreal forests (Kljun et al., 2006; 

Blaško et al., 2015). Due to relatively low nitrogen availability, atmospheric nitrogen 

deposition is relatively important in the boreal nitrogen cycle, especially after fire-related 

disturbances (Palviainen et al., 2017). Lim et al. (2015) showed that nitrogen fertilization 

of stands of Pinus sylvestris (a dominant Eurasian boreal tree species) can increase net 

carbon uptake by over 25%, suggesting a strong nitrogen limitation on carbon uptake in 

this system. Furthermore, a 10% reduction in precipitation in this system can prevent a 

response of carbon uptake to nitrogen, while a 33% increase in precipitation may double 

carbon uptake (Lim et al., 2015), indicating strong interactions between nutrient and 

moisture limitations on carbon uptake for boreal trees. However, the rate of change in 

nitrogen availability also matters in affecting vegetation growth. Höberg et al. (2006) 

found that over 30 years of nitrogen fertilization of Scots pine (Pinus sylvestris) plots, the 

lowest rate of nitrogen addition led to the greatest increase in growth. This suggests a 

more complex relationship between nitrogen and growth in boreal trees.   

Water availability is thought to contrain the southern range of boreal forests (Hogg, 

1994). Archambault and Bergeron (1992) found a strong correlation between growth of 

northern white cedar (Thuja occidentalis) and precipitation for over 800 years based on 

tree-ring analysis in the Quebec, Canada. This suggests that precipitation has historically 

limited growth in the boreal forest. In terms of boreal forest carbon balance, drought can 

limit carbon uptake (Kljun et al., 2006): in an Alaskan boreal forest, a severe summer 

drought in 2004 reduced net carbon uptake of deciduous sites by 56% and evergreen sites 

by 38% (Welp et al., 2007). Furthermore, increasing water stress since 1970 has not only 

decreased growth in the boreal forest of western Canada, it has also inceased mortality 

(Peng et al., 2011), leading to a reduction in the carbon sink capacity of this boreal 

system (Ma et al., 2012).  The prevalence of drought is projected to increase with climate 
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change in the boreal forest, excacerbating the risk of fire-related disturbance and carbon 

efflux to the atmosphere (de Groot et al., 2013). 

1.2.3 Boreal vegetation and carbon fluxes 

Boreal forests are characterized by predominantly needle-leaf conifers, large seasonal 

changes in temperature and photoperiod, and extensive land-use management for 

forestry, particularly in Europe (Brandt et al., 2013; Gauthier et al., 2015). Trees in the 

boreal forest exhibit seasonality in their growth: buds are produced and set for the next 

year’s growth during late summer/autumn, the trees become cold hardened to survive 

winter, and the buds burst the subsequent spring to initiate new growth, with each of 

these processes being regulated by a combination of temperature and photoperiod (Öquist 

& Hüner, 2003; Schwartz et al., 2006; Hamilton et al., 2016). Along with a highly 

seasonal climate, projected climate warming is greater for boreal forests than for all other 

forest biomes (Collins et al., 2013). 

Seasonal changes in temperature and photoperiod regulate growth and carbon uptake in 

boreal forest tree species, and the relative influence of these environmental variables on 

plant physiology can change with latitude. For example, in Norway spruce (Picea abies 

(L.) H. Karst.), more northern populations exhibit greater photoperiod control of growth 

than more southern populations (Clapham et al., 1998; Sogaard et al., 2008). This is 

likely because photoperiod is a more reliable seasonal signal of imminent low 

temperatures, since photoperiod at a given point in the year is constant (Dumberry & 

Bloxham, 2006), while seasonal temperatures can vary from year to year (IPCC, 2014). 

Temperature can also override photoperiod cues in some populations of Norway spruce, 

either extending growth through warming or inducing growth cessation through low 

nighttime temperatures (Heide, 1974), and there is evidence that temperature controls 

autumnal shutdown in carbon uptake (Stinziano et al., 2015).  

Large-scale changes in growth and carbon fluxes in the boreal forests could serve to 

attenuate or amplify changes in atmospheric CO2 concentrations. Warming is often 

expected to increase growth and carbon uptake in the boreal forest as this biome is 

assumed to be limited by low temperature (Myeni et al., 1997; Jarvis & Linder, 2000; 
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Tanja et al., 2003; Way & Oren, 2010). Since the boreal forest consistently contributes a 

net carbon sink of 0.5 Pg carbon year-1 to the global net forest sink of 1.1 Pg carbon year-

1 (Pan et al., 2011), changes in boreal carbon fluxes can strongly impact global forest net 

carbon sinks and atmospheric CO2 concentrations. Graven et al. (2013) found that the 

magnitude of the seasonal oscillations in atmospheric CO2 concentrations have increased 

over the last 50 years, and that this effect is driven by increased seasonality in ecosystem 

CO2 exchange in northern forests. However, while individual tree species show specific 

growth responses to climate change across the boreal forest, overall there has been no net 

effect of climate change on the overall growth of trees in Canada’s boreal forest over the 

past 50 years (Girardin et al., 2016). 

Climate warming has advanced the onset of the spring growing season in the Northern 

Hemisphere over the past 60 years by ~2 days per decade (Schwartz et al., 2006), and 

may create a permissible thermal environment for growth later into the autumn by 

delaying bud set. However, photoperiod may limit growth at northern latitudes in the 

boreal forest (Way & Montgomery, 2015) by inducing bud formation and growth 

cessation at a consistent date in the year regardless of temperature (e.g. Oleksyn et al., 

2001; Chen et al., 2012; Hamilton et al., 2016). However, in some cases an interaction 

between temperature and photoperiod signaling can affect the timing of bud formation 

and growth cessation (e.g. Heide, 1974). If photoperiod control on growth is plastic, 

warming might increase growth in boreal tree species during autumn, otherwise autumn 

growth could be unaffected or negatively affected by increasing temperatures. Given that 

photosynthetic capacity (and therefore carbon uptake) is strongly correlated to 

photoperiod in deciduous broadleaf tree species (Bauerle et al., 2012), it is possible that 

photoperiod may exert direct control on photosynthesis. However, there have been few 

direct tests of the effect of photoperiod on photosynthetic capacity (but see Bauerle et al., 

2012).  

The impact of boreal forests on future global carbon cycling lies primarily in their ability 

to store carbon in wood and soil; woody biomass accumulation removes carbon from the 

global carbon cycle for years to centuries, depending on tree longevity, mortality, and 

decomposition rates (Körner, 2017). The accumulation of woody biomass depends, first 
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and foremost, on the balance of primary metabolic processes: photosynthesis, respiration, 

and nitrogen assimilation. Given that our mechanistic understanding of the carbon 

balance implications of nitrogen assimilation is in its infancy (Busch et al., 2018), my 

thesis will focus on photosynthesis and respiration. 

1.3 Photosynthesis and respiration 

The simplest conception of plant growth is that total growth is the carbon balance of 

photosynthesis, respiration, and photorespiration. Net carbon gain can be estimated 

through gas exchange; however, this does not account for the carbon cost of secondary 

metabolism (Ramakrishna & Ravishankar, 2011). Growth itself may be limited by 

available nutrients (e.g. Sigurdsson et al., 2013), especially nitrogen since it is required 

for amino acids and nucleotides. Thus, net carbon gain represents the carbon available for 

all processes beyond maintenance respiration and photorespiration, and without 

consideration of possible constraints for building plant tissues due to the stoichiometry of 

plant carbon to nitrogen. Below, I review the processes that set the upper bound on tree 

net carbon gain: photosynthesis and respiration. 

1.3.1 Biochemical basis of photosynthesis and respiration 

Photosynthesis occurs in the chloroplasts of plants and is the conversion of light energy 

into electrochemical potential energy (in the form of electrons and carbohydrates) (Fig. 

1.1). The whole process can be described by the following equation (Hüner & Hopkins, 

2009): 

CO2  +  H2O +  ℎ𝑣 →  CH2O +  O2      Equation 1.1 

where hv represents a photon of visible light energy, and CH2O represents a carbohydrate 

molecule where the ratio of carbon to hydrogen to oxygen is 1:2:1. This equation, while 

stoichiometrically correct, is an oversimplification of the myriad processes involved in 

photosynthesis.  

  



9 

 

 

Figure 1.1. Overview of photosynthesis in the chloroplasts of plants. Photosynthetic 

electron transport occurs in the thylakoid membranes (ellipsoid structures) where 

light is absorbed and is affected by temperature (T) and irradiance (I) (Buchanan, 

1991). Electron transport produces nicotinamide adenine dinucleotide phosphate 

(NADPH) and adenosine triphosphate (ATP), which are used in the Calvin-Benson-

Bessham (CBB) cycle to fix CO2 in the stroma (Bassham et al., 1954). The Calvin-

Benson-Bessham cycle produces sugars for export from the chloroplast, and is 

sensitive to T, I (through redox regulation of enzyme activities), and CO2. Sugars 

are exported from the chloroplast to the cytosol, in a process that is highly sensitive 

to T. Compartments are underlined, processes are italicized, environmental 

parameters affecting a process are in bold, and substrates are unemphasized text. 
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To understand and predict how photosynthesis will respond to changing environments, it 

is necessary to understand the processes involved and how these can respond to 

environmental perturbations. On the most basic level, these processes can be divided 

between light harvesting and carbon fixation, which involve different proteins, processes, 

and timescales. 

Light is absorbed by pigments (where the primary pigments for photosynthetic light 

absorption by terrestrial plants are chlorophyll a and b, while carotenoids are involved in 

dissipating excess light energy) embedded in large protein structures called photosystems 

(Grossman et al., 1995; Vasil’ev & Bruce, 2004). There are two photosystems in plants, 

photosystem I and photosystem II, which are each composed of a reaction centre and 

light harvesting complexes (Alfonso et al., 1994; Grossman et al., 1995; Krauß et al., 

1996; Vasil’ev & Bruce, 2004). Light absorbed by the light harvesting complexes is 

converted into redox potential energy in the reaction centres of the photosystems, 

facilitated by special pigment pairs: P680 for photosystem II and P700 for photosystem I 

(Kok, 1957, 1961; Thornber, 1975; Vinyard et al., 2013; Wei et al., 2016; Mazor et al., 

2017). Electrons flow from photosystem II to photosystem I through a series of coupled 

redox reactions, starting with the photo-oxidation of P680 and P700. The electron 

generated by the photo-oxidation of P680 (P680 + absorbed light energy → P680+ + e-) 

results in the reduction of plastoquinone (Haehnel, 1984; Krause & Weis, 1991) to 

plastoquinol in the plastoquinone pool, the reduction of cytochrome b6/f by plastoquinol, 

the reduction of plastocyanin by cytochrome b6/f (Hurt & Hauska, 1981). The photo-

oxidation of P700 (P700 + absorbed light energy → P700+ + e-), reduces ferredoxin, and 

ferredoxin can then be used to reduce the NADP reductase complex, which subsequently 

reduces oxidized nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH 

(Zanetti & Curti, 1981), an electron carrier molecule needed for CO2 fixation (Bassham 

et al., 1954; Buchanan, 1991). Reduced plastocyanin subsequently reduces P700+ back to 

P700. Ferredoxin can also be used to reduce thioredoxin, which is involved in redox 

regulation of enzymes (Buchanan, 1991). P680+ is reduced through the oxygen evolving 

complex which oxidizes water through a water-splitting reaction to release O2 (Haehnel, 

1984). 
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The electron cycling of the plastoquinone pool in the thylakoid membranes transfers 

hydrogen ions (i.e. protons) from the stroma to the thylakoid lumen of the chloroplast, 

creating a proton-motive force across the thylakoid membrane (Arnon et al., 1981). The 

proton motive force across the thylakoid membrane is collapsed in a controlled manner 

through an adenosine triphosphate (ATP)-synthase, which uses protons to drive a motor 

that produces ATP from adenosine diphosphate, ADP, and inorganic phosphate, Pi 

(Arnon et al., 1957; Hill & Bendall, 1960; Junge, 1999; McCarty et al., 2000; reviewed 

by Allen, 2002). This ATP is then used for energy-requiring functions, including carbon 

fixation (Fig. 1.2).  
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Figure 1.2. Overview of photosynthesis in the chloroplasts of plants, split between 

the light-dependent reactions (left side) and Calvin cycle (right side). Light absorbed 

by the thylakoids is used to drive electron transport to produce ATP and NADPH, 

which are subsequently used to regenerate RuBP in the Calvin cycle. CO2 is fixed by 

Rubisco in the Calvin cycle, and sugars produced through the Calvin cycle can be 

stored inside or outside the chloroplast, or used for metabolism or growth.  
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In addition to the linear photosynthetic electron transport between photosystem II and 

photosystem I described above, there are other electron transport pathways through the 

thylakoid membranes. Cyclic photosynthetic electron transport around photosystem I is 

used to balance the ratio of ATP to NADPH in the chloroplast stroma (Shikanai, 2007) by 

redirecting electron flow from photosystem I to the plastoquinone pool via either 1) the 

NADH dehydrogenase-like dependent pathway which uses NADPH to reduce 

plastoquinone via the NADH dehydrogenase-like complex (Strand et al., 2017), or 2) the 

proton gradient regulation 5-dependent pathway where reduced ferredoxin is used to 

reduce plastoquinone via proton gradient regulation 5 and proton gradient regulation 5-

like photosynthetic phenotype complexed with photosystem I (Munekage et al., 2002; 

DalCorso et al., 2008; Hertle et al., 2013). While cyclic electron transport represents an 

important component of photosynthetic electron flow in responding to specific stress 

conditions (i.e. high light stress; Wang et al., 2015), some evidence suggests that it may 

not play a large role in affecting carbon uptake and biomass accumulation (Nishikawa et 

al., 2012). There are also alternative electron transport pathways related to high light 

stress including the water-water cycle (Asada, 1999), the Mehler reaction (Schreiber & 

Neubauer, 1990), and a plastoquinol terminal oxidase (PTOX) (McDonald et al., 2011). 

However, the remainder of my thesis will focus primarily on carbon dynamics and 

modeling that does not account for electron sinks beyond linear photosynthetic electron 

transport. 

Carbon fixation occurs via the Calvin-Benson-Bessham (CBB) Cycle (Bassham et al., 

1954), which uses the ATP and NADPH generated through photosynthetic electron 

transport to regenerate intermediate products in the cycle and produce triose phosphates. 

The primary carboxylating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase 

(Rubisco), fixes CO2 onto ribulose-1,5-bisphosphate, which generates an unstable six 

carbon intermediate that splits into the three-carbon sugar 3-phosphoglycerate (Jakoby et 

al., 1956; Weissbach et al., 1956). Next, 3-phosphoglycerate kinase uses ATP to 

phosphorylate 3-phosphoglycerate to 1,3-phosphoglycerate (Bassham et al., 1954), 

followed with reduction and dephosphorylation by glyceraldehyde 3-phosphate 

dehydrogenase to glyceraldehyde-3-phosphate (Bassham et al., 1954). Glyceraldehyde-3-

phosphate can then be interconverted to dihydroxyacetone phosphate through triose 
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phosphate isomerase. Most of the glyceraldehyde-3-phosphate and dihydroxyacetone 

phosphate produced through these reactions are used to regenerate intermediates to 

maintain the Calvin-Benson-Bessham cycle (requiring the consumption of one further 

ATP to regenerate ribulose-1,5-bisphosphate). These triose phosphates can be used to 

synthesize sucrose (in the cytoplasm; Bird et al., 1974) and starch (in the chloroplast; 

Stitt & Heldt, 1981) for growth, development, and energy storage (Bassham et al., 1954). 

Triose phosphates are exported from the chloroplast in exchange for inorganic phosphate 

from the cytoplasm (Heber & Heldt, 1981), while starch synthesis releases inorganic 

phosphate in the chloroplast (Stitt & Heldt, 1981). Thus, starch and sucrose synthesis are 

required to maintain sufficient inorganic phosphate in the chloroplasts for continued 

photosynthesis (Walker & Herold, 1977). For reviews regarding the enzymes involved in 

the Calvin-Benson-Bessham cycle, see Woodrow and Berry (1988) and Raines (2003). 

The Calvin-Benson-Bessham cycle has three primary limitations to its function: Rubisco 

substrate availability (CO2-limited), ATP and NADPH availability (photosynthetic 

electron transport- or ribulose-1,5-bisphosphate regeneration-limited), and export of 

sugars from the chloroplast (triose phosphate utilization-limited). These limitations are 

addressed in more detail below (section 1.3.2)  

Rubisco does not solely fix CO2, it can also fix O2 in a process called photorespiration 

that leads to a net CO2 release (Ogren & Bowes, 1971). However, Rubisco has far greater 

specificity for CO2 than O2 (Jordan & Ogren, 1984). Increasing CO2 is expected to 

suppress photorespiration (Whittingham et al., 1963; Bowes, 1991; Sage et al., 2008), 

while increasing temperature may increase photorespiration, since O2 solubility declines 

more slowly with increasing temperature than does the solubility of CO2 (Ku & Edwards, 

1977). Due to its role as the primary carboxylating enzyme for plants (and indeed the 

whole biosphere), maximum Rubisco carboxylation capacity, Vcmax, is of central interest 

in modeling and predicting photosynthesis (Rogers et al., 2017).  

In addition to the Calvin-Benson-Bessham cycle, chloroplasts also use an oxidative 

pentose phosphate cycle to metabolize carbon, and the oxidative pentose phosphate cycle 

is crucial for producing carbon skeletons in the chloroplast (Herrmann & Weaver, 1999). 
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The oxidative pentose phosphate cycle converts glucose-6-phosphate to ribose-5-

phosphate through three reactions, producing NADPH and releasing CO2 in the process, 

and regenerates glucose-6-phosphate by processing ribose-5-phosphate using reactants 

and enzymes from the Calvin-Benson-Bessham cycle (Kruger & von Schaewen, 2003). 

While this pathway is important to plant metabolism, particularly with respect to 

generating carbon skeletons for biosynthesis (Herrmann & Weaver, 1999), in the 

remainder of my thesis I will be focusing on photosynthesis and respiration, as these 

processes are more easily related to plant gas exchange measurements and modeling of 

plant carbon uptake.  

Respiration occurs in the mitochondria of plant cells, and results in the net consumption 

of oxygen and an energy-containing substrate (e.g. carbohydrates, lipids, proteins) with 

the release of CO2 and H2O (Goddard & Meeuse, 1950; Millerd, 1953). Respiration of 

carbohydrates starts with pyruvate, which is decarboxylated (releasing CO2), oxidized (to 

reduce nicotinamide adenine dinucleotide (NAD+) to NADH) and condensed with 

Coenzyme A to form acetyl-Coezyme A via the pyruvate dehydrogenase complex 

(Miernyk et al., 1985). Citrate synthase condenses oxaloacetate and form acetyl-

Coezyme A in the mitochondrial matrix, producing citrate and CoA (Millar et al., 2011). 

The tricarboxylic acid cycle then involves a series of oxidation reactions to produce 

NADH and flavin adenine dinucleotide (FADH2), releasing CO2 and regenerating 

oxaloacetate in the process (Krebs & Lowenstein, 1960; Sweetlove et al., 2010; Millar et 

al., 2011). NADH and FADH2 are used to drive respiratory electron transport, reducing 

O2 to water and generating a proton gradient that is used for ATP production (Michalecka 

et al., 2003; Moore et al., 2003; Miller et al., 2011). However, for the consideration of 

respiration in my thesis, respiration will be addressed in relation to its rate of CO2 

production. One important note for respiration rates of plants is that respiration can be 

suppressed (Kok, 1948; Laisk, 1977; Atkin et al., 2000) or stimulated (Kroner & Way, 

2016) in the light, complicating efforts to measure respiration in the light in plants. 
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Given the contribution of photosynthesis and respiration to carbon uptake, when 

discussing photosynthesis and CO2 fixation, we can define three different rates: gross 

photosynthesis (total photosynthetic carboxylation at the leaf level, while at the whole 

plant and ecosystem levels this is termed gross primary productivity), apparent 

photosynthesis (gross photosynthesis minus photorespiration), and net photosynthesis 

(apparent photosynthesis minus respiration) (Wohlfahrt & Gu, 2015). 

1.3.2 Models of photosynthetic CO2 assimilation 

Photosynthetic carbon uptake responds to many environmental variables, both directly 

(light, temperature, CO2) and indirectly (H2O, stressors). These responses can be modeled 

based on our understanding of the biochemistry of the processes involved. 

1.3.2.1 The photosynthetic CO2 response 

The concentration of CO2 affects photosynthetic carbon uptake by affecting substrate 

availability for Rubisco. The CO2 response of net photosynthesis is modelled using a 

rectangular hyperbola, which can be used to estimate maximum rates of Rubisco 

carboxylation capacity (Vcmax) and maximum rates of electron transport to CO2 (Jmax) 

according to the model of Farquhar et al. (1980): 

Anet = Vcmax
Cc−Γ∗

Cc+Kc(1+O
Ko

⁄ )
− Rday      Equation 1.2 

where Anet is the net CO2 assimilation rate (μmol m-2 s-1), Cc is the chloroplastic CO2 

concentration (μmol mol-1), Γ* is the CO2 compensation point in the absence of 

mitochondrial respiration (μmol mol-1), Kc is the Michaelis-Menten constant for Rubisco 

carboxylation (μmol mol-1), O is the chloroplastic [O2] (mmol mol-1), Ko is the Michaelis-

Menten constant for Rubisco oxygenation (mmol mol-1), Rday is the rate of mitochondrial 

respiration in the light (μmol m-2 s-1).  

Photosynthetic electron transport is described by a pair of equations (Farquhar et al., 

1980): 

j = 0.5(1 − f)I        Equation 1.3 
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where j is the potential rate of electron transport (μmol m-2 s-1), f is the fraction of light 

not absorbed by the light harvesting complexes, I is the incident irradiance (μmol m-2 s-1)  

Jmax =
j

2(2+2Φ)
        Equation 1.4 

where Jmax is the maximum rate of carboxylation limited by electron transport (μmol m-2 

s-1), Φ is the ratio of oxygenation to carboxylation, and the 2 is the number of electrons 

required per NADPH (Farquhar et al., 1980).  

Equations 1.2 to 1.4 describe different biochemical limitations to photosynthesis, either 

CO2 limitations (Vcmax) or ribulose-1,5-bisphosphate regeneration limitations (Jmax). A 

third type of limitation, triose phosphate limitation (TPU), occurs at extremely high CO2 

concentrations and/or at low temperatures, and is rarely studied, although it can be 

important at low temperatures (Sharkey, 1985a, 1985b; Sage et al., 1988; Busch & Sage, 

2017). This third type of limitation occurs under limitations of free phosphate in the 

chloroplast stroma and can be described as (Sharkey, 1985a; Harley & Sharkey, 1991): 

TPU =
vc

3
−

vo

6
         Equation 1.5 

where vc is the rate of carboxylation (μmol m-2 s-1), vo is the rate of oxygenation (μmol m-

2 s-1), and the numbers in the denominators reflect phosphate consumption and release by 

the CBB and photorespiratory cycles, respectively. 

To calculate each of these limitations, net photosynthesis must be measured within each 

zone of limitation (Fig. 1.3a; Gu et al., 2010). 
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Figure 1.3. The response of net CO2 assimilation (Anet) to (a) intercellular CO2 

concentration (Ci), (b) temperature, and (c) irradiance, and (d) the response of 

respiration to temperature (T). (a) The CO2-limited region (solid line) of the Anet-Ci 

response is used to calculate Rubisco-limited carboxylation and its maximum rate 

(Vcmax), the ribulose-1,5-bisphosphate-limited region (long dashed line) is used to 

calculated photosynthetic electron transport limitations on Anet to derive the 

maximum rate of electron transport, Jmax, and the phosphate-limited portion of the 

response is used to calculate triose phosphate utilization limitations (TPU). (b) The 

temperature response of Anet is characterized by a peaked response with the 

maximum rate at an optimal temperature, Topt. (c) The light response of Anet is 

characterized by a linear region at low irradiance, a light-saturated region where 

Anet is relatively constant across a range of irradiances, and a decline at very high 

irradiance due to photoinhibition. (d) The temperature response of respiration is 

characterized by an exponential region at low temperatures, peaking at a high 

temperature, and then declining rapidly at very high temperatures.   
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Estimating the CO2 concentrations within the chloroplast for the Farquhar model requires 

estimating CO2 diffusion and supply within the leaf. The CO2 supply into the intercellular 

airspace can be modelled using an equation based on Fickian diffusion (Moss & Rawlins, 

1963): 

Anet = gs(Cs − Ci)        Equation 1.6 

where gs is stomatal conductance to CO2 (mol m-2 s-1), Cs is the CO2 concentration 

outside the leaf (μmol mol-1), and Ci is the CO2 concentration in the intercellular airspace 

(μmol mol-1). The stomatal conductance component allows estimation of the intercellular 

CO2 concentration via the measurement of water flux across a leaf (Moss & Rawlins, 

1963). To further estimate the supply of CO2 to the chloroplast, mesophyll conductance 

(gm, the flow of CO2 from the intercellular airspace (gas phase) into the chloroplasts of 

the mesophyll cells (liquid phase)) must be measured to calculate chloroplastic CO2 

concentrations according to (Harley et al., 1992): 

Anet = gm(Ci − Cc)        Equation 1.7 

where gm is mesophyll conductance to CO2 (mol m-2 s-1), and Cc is the CO2 concentration 

inside the chloroplast (μmol mol-1). Mesophyll conductance can be measured through 

combined gas exchange and fluorescence (Harley et al., 1992), or through on-line isotope 

discrimination of CO2 during gas exchange measurements (Flexas et al., 2007). However, 

these techniques assume that only leaf tissue is being measured, which introduces 

significant difficulties when applying these techniques to needle-leaf species where stem 

gas exchange is necessarily included when measuring leaf gas exchange. Therefore, 

modeling of the photosynthetic CO2 response in conifers typically proceeds by assuming 

either infinite gm or a previously measured gm, such that the Cc term in the photosynthetic 

CO2 response model is replaced with Ci instead when infinite gm is assumed. When Vcmax 

and Jmax are fit on a Ci basis, it is important to recognize that these values are only 

apparent rates of photosynthetic capacity due to the assumption of infinite gm. 
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1.3.2.2 Photosynthetic light responses 

Photosynthesis increases with light intensity up to a saturating limit (Asat), beyond which 

photosynthesis can decline due to photoinhibition and photodamage (Fig. 1.2c). The 

photosynthetic light response can be described according to the equation (Ögren & 

Evans, 1993): 

ΘP2 − (QαIPm)P − QαIPm = 0      Equation 1.8 

where Θ is the curvature of the photosynthetic light response (unitless), P is the rate of 

photosynthesis in μmol m-2 s-1, Q is the maximum quantum yield (mol CO2 fixed per mol 

photon absorbed), α is the proportion of irradiance absorbed by the leaf (unitless), I is the 

irradiance in μmol m-2 s-1, and Pm is the maximum capacity for photosynthesis in μmol m-

2 s-1. Oftentimes this model replaces photosynthesis on a gas exchange basis with 

photosynthetic electron transport, j, and maximum photosynthetic electron transport 

capacity, Jmax. This model parameterizes the steady-state light response, and such light 

responses are used to determine the saturating light intensity for photosynthesis, which 

must be known for gas exchange measurements to parameterize the photosynthetic CO2 

response model (Farquhar et al., 1980). It is important to note that Equations 1.3 and 1.4 

address electron transport needed to reduce CO2, while Equation 1.8 can be used with 

chlorophyll a fluorescence measurements of electron transport to estimate total electron 

flow through the linear photosynthetic electron transport chain (Maxwell & Johnson, 

2000). Furthermore, these equations ignore other potential electron acceptors from 

photosynthetic electron transport, including O2 and thioredoxin (Schreiber & Neubauer, 

1990; Buchanan, 1991; Asada, 1999). Thus, when modeling carbon dynamics of 

vegetation, terminology referencing ‘photosynthetic electron transport’ typically means 

‘photosynthetic electron transport to CO2’.  

1.3.2.3 Photosynthetic and respiratory temperature responses 

The temperature response of photosynthesis is determined by a combination of the 

thermal sensitivity of photosynthetic enzymes and thylakoid membranes, temperature 

responses of stomatal conductance (affecting CO2 supply), temperature responses of 

photosynthetic enzymes, and the capacity for chaperone proteins to ameliorate 
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temperature stress (Schreiber & Berry, 1977; Bunce, 2000; Salvucci & Crafts-Brandner, 

2004). Photosynthesis exhibits a peaked response to changing leaf temperature (Fig. 

1.3b), and the temperature responses of Vcmax and Jmax can be described with a modified 

Arrhenius function (Medlyn et al., 2002): 

f(Tk) = k25exp [
Ea(Tk−298)

298RTk
]

1+exp(
298∆S−Hd

298R
)

1+exp(
Tk∆S−Hd

TkR
)
     Equation 1.10 

where k25 is photosynthetic capacity at 25 °C (μmol m-2 s-1), Ea is the activation energy (J 

mol-1), Tk is the leaf temperature (K), 298 is the reference temperature in K, R is the 

universal gas constant (8.314 J K-1 mol-1), ΔS is the entropy parameter (J mol-1), and Hd is 

the deactivation energy (J mol-1). In cases where peak photosynthetic capacity is outside 

the measured temperature range, a regular Arrhenius function can be used: 

f(Tk) = k25exp [
Ea(Tk−298)

298RTk
]       Equation 1.11 

These equations describe the acute response of photosynthetic capacity to temperature. 

To model acclimatory responses of photosynthetic capacity to growth temperatures, there 

are several options available (Hikosaka et al., 2006; Kattge & Knorr, 2007; Dillaway & 

Kruger, 2010), involving acclimation of Ea or ΔS, although these are discussed in detail 

in Chapter 4 and introduced in section 1.3.3. 

Photosynthetic function is lost in species at temperatures as low as 33°C, although 

function can be maintained as high as 75°C depending on thermal adaptations 

(O’Sullivan et al., 2017), and these limits may be due to protein denaturation and 

breakdown of thylakoid membranes (Schreiber & Berry, 1977). Rubisco carboxylation 

rate is sensitive to more than the thermal stability of the enzyme’s protein structure: the 

CO2/O2 ratio in the chloroplast and the activation status of Rubisco are important 

contributors to total carboxylation rates (Salvucci & Crafts-Brandner, 2004; Carmo-Silva 

et al., 2012). At high temperatures, solubility of gases in aqueous solutions declines, with 

the solubility of CO2 declining faster than the solubility of O2, such that temperature 

drives down the CO2/O2 ratio. Due to the oxygenase function of Rubisco and shifts in the 

enzyme’s specificity for its substrates, Rubisco carboxylation rates decrease with 
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increasing temperature relative to oxygenation rates (i.e. photorespiration), contributing 

to net reductions in carbon fixation at high temperatures (Laing et al., 1974; Badger & 

Collatz, 1977; Brooks & Farquhar, 1985). The main chaperone protein involved in 

activating Rubisco, Rubisco activase, is thermally sensitive and often denatures at high 

temperatures (Salvucci & Crafts-Brandner, 2004; Carmo-Silva et al., 2012). While 

Rubisco activase is not necessary to activate Rubisco per se (Scales et al., 2014), it is 

necessary to maintain active Rubisco to maximize carbon fixation. 

The acute temperature response of respiration exhibits a sharper peaked response 

compared to the acute temperature response of Anet (Fig. 1.2d): respiratory rates increase 

exponentially at low temperatures, peaking at high temperatures (with a higher Topt 

relative to photosynthesis), and rapidly decline at very high temperatures due to heat-

induced damage. The acute temperature response over the exponential range is often 

described according to (Wager, 1941; Atkin & Tjoelker, 2003): 

Q10 = (
R2

R1
⁄ )

10
(T2−T1)⁄

       Equation 1.12 

where Q10 is a thermal sensitivity coefficient that describes the fold-change in the rate of 

respiration for every 10°C (or 10 K) change in temperature (for example, a Q10 of 2 

means that the rate doubles every 10°C), while R1 and R2 are the rates of respiration at 

temperatures T1 and T2 in μmol m-2 s-1, respectively.  

1.3.3 Temperature and CO2 responses of photosynthesis and 

respiration 

While photosynthesis and respiration respond to acute changes in temperature 

(respiration and photosynthesis) and CO2 (photosynthesis only), longer-term responses of 

these processes to changes in air temperature or CO2 concentration involve acclimation. 

While acute responses of metabolism to temperature involve changes in biochemical 

equilibria and post-translational modifications of enzymes, acclimation of metabolism 

involves longer-term changes in gene and protein expression. First, I will review 
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photosynthetic and respiratory acclimation to temperature, then I will review 

photosynthetic acclimation to high CO2 concentrations. 

Thermal acclimation of photosynthesis leads to changes in the temperature optimum of 

photosynthesis (Way & Yamori, 2014; Yamori et al., 2014) and temperature response 

parameters describing the acute temperature response of photosynthetic capacity 

(Hikosaka et al., 2006; Kattge & Knorr, 2007; Dillaway & Kruger, 2010). The 

mechanisms of these effects include changes in thermal stability of enzymes in the 

Calvin-Benson-Bassham cycle and photosynthetic electron transport (reviewed in Berry 

& Björkman, 1980; Badger et al., 1982), thlykoid membrane lipids (Raison & Berry, 

1979), Rubisco concentrations (Scafaro et al., 2017), and possible changes in Rubisco 

small subunit expression (Hikosaka et al., 2006). Thermal acclimation can also occur 

through modifications of sink strength for carbon metabolism to prevent phosphate 

limitations at low temperature (Hurry et al., 1992; Strand et al., 2003), or through 

modifications in electron transport to ensure adequate regeneration of ribulose-1,5-

bisphosphate in the cold (Hurry et al., 1996). The net effect of acclimation can lead to a 

constructive adjustment (where Anet at the growth temperature increases at higher growth 

temperatures), detractive adjustment (where Anet at the growth temperature decreases at 

higher growth temperatures), or homeostasis (where Anet at the growth temperature 

remains the same across growth temperatures) of Anet (Way & Yamori, 2014).  

Several studies include equations to describe acclimation of the temperature response of 

photosynthetic capacity. Kattge and Knorr (2007) found a general acclimatory response 

in the ΔS parameter of the temperature response for Vcmax and Jmax: 

ΔS = d + e × Tgrowth       Equation 1.13 

where d is 668.39 and 659.70 for Vcmax and Jmax, respectively, e is -1.07 and -0.75 for 

Vcmax and Jmax, respectively, and Tgrowth is the growth temperature to which the plant is 

acclimated. Hikosaka et al. (2006) investigated acclimation of the activation energy for 

Vcmax and found the following relationship: 

Ea = 34.1 + 1.01 × Tgrowth       Equation 1.14 
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In contrast, Dillaway and Kruger (2010) used a nonlinear equation to describe the 

activation energy of both Vcmax and Jmax: 

Ea =
x

Tgrowth
2 −

y

Tgrowth
+ z       Equation 1.15 

where x, y, and z are constants equal to 45322 kJ mol-1 °C, 3368.2 kJ mol-1 °C, and 119.9 

kJ mol-1 for Vcmax, and 80318.9 kJ mol-1 °C, 6093.6 kJ mol-1 °C, and 134.7 kJ mol-1 for 

Jmax (Dillaway & Kruger, 2010). 

There has been little investigation into how these acclimatory responses operate together, 

and whether deactivation energies (Hd) in the temperature response function acclimate to 

different growth temperatures. However, given the evidence that ΔS thermally acclimates 

(Kattge & Knorr, 2007), and that ΔS is a function of both the activation and deactivation 

energies of the temperature response of photosynthetic capacity (Medlyn et al., 2002), it 

is likely that both activation and deactivation energies of Vcmax and Jmax acclimate to 

temperature. 

Thermal acclimation of respiration involves changes to the basal rate of respiration 

(respiration at 25 °C, R25) as well as the acute temperature response of respiration which 

could involve changes in the quantity of enzymes or properties of the inner mitochondrial 

membrane (Atkin & Tjoelker, 2003; Way & Oren, 2010). In trees, R25 in the dark tends to 

decline with increasing temperatures (Way & Oren, 2010), while the thermal sensitivity 

of respiration is also suppressed (Atkin & Tjoelker, 2003; Slot & Kitajima, 2015; Heskel 

et al., 2016). The net effect of these changes is that while respiration at growth 

temperatures may be higher in warm-grown vegetation, the rate of respiration in these 

plants is suppressed relative to what would be expected without acclimation (e.g. Slot & 

Kitajima, 2015). Atkin and Tjoelker (2003) found the following relationships for thermal 

acclimation of leaf respiration across species from all biomes: 

Q10 = 3.090 − 0.043Tgrowth       Equation 1.16 

Acclimation of photosynthesis to high CO2 concentrations involves metabolic feedbacks 

that shift the balance between light harvesting and the Calvin-Benson-Bessham cycle. 



25 

 

Since Rubisco carboxylation is usually limiting under current atmospheric CO2 

concentrations, plants invest significantly in Rubisco, which is one of the most abundant 

proteins on the planet (Ellis, 1979). Under elevated CO2 concentrations, when Rubisco 

limitations are removed, plants tend to invest less nitrogen into Rubisco, distributing the 

N to other rate-limiting processes instead (Long & Drake, 1992; Ainsworth & Long, 

2005). This generally results in a down-regulation of Vcmax due to a reduction in Rubisco 

protein concentration (Ainsworth & Long, 2005). At the same time, elevated CO2 directly 

stimulates photosynthesis (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Leakey 

et al., 2009; Ellsworth et al., 2017). The mechanism by which photosynthesis is regulated 

by elevated CO2 is thought to involve an imbalance between sugar export and production 

in the chloroplast (Ainsworth & Rogers, 2007). Specifically, at high CO2 concentrations, 

sugar production is stimulated and can exceed the rate at which the sugars can be 

exported from the chloroplast, and excess sugars are stored as starch (Paul & Foyer, 

2001). Once starch stores are saturated in chloroplasts, there can be feedback inhibition 

of photosynthesis, causing a down-regulation in carbon fixation to rebalance sugar 

production and export (Moore et al., 1999; Paul & Foyer, 2001; Long et al., 2004). Over 

the long term, this involves a rebalancing of nitrogen allocation to proteins involved in 

carbon fixation and sugar export (Paul & Foyer, 2001). 

1.4 Plant growth responses to environmental change 

While the first step in understanding plant-growth responses to environmental change 

requires understanding the response of photosynthesis and respiratory processes to those 

changes, actual growth can exhibit a disconnect with primary metabolism (i.e. 

photosynthesis plus respiration does not equal carbon gain allocated to growth). This is 

because plants divert energy equivalents away from primary metabolism to secondary 

metabolic processes such as the regulation of enzymes (Carmo-Silva & Salvucci, 2011; 

Scales et al., 2014), root exudates (Baetz & Martinoia, 2014), and volatile organic 

compound production (Ryan et al., 2014; Jardine et al., 2014).  

Plant growth under elevated CO2 concentrations is generally stimulated at high CO2 

(Norby et al., 2004; Ainsworth & Long, 2005; Gielen et al., 2005; McCarthy et al., 

2010), however in some cases there is no stimulation of growth (Sigurdsson et al., 2013; 
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Klein et al., 2016; Ellsworth et al., 2017). In Eucalyptus forests, Ellsworth et al. (2017) 

found that phosphorus limitation prevented an increase in growth under elevated CO2, 

while phosphorus fertilization stimulated growth even under ambient CO2. Similarly, in 

Norway spruce (Picea abies), nitrogen limitations can prevent growth responses to 

temperature and CO2 (Sigurdsson et al., 2013). Such data suggest that nutrient limitations 

may prevent vegetative responses to rising CO2 concentrations, and since nutrient 

requirements should increase proportionally to growth, forests that currently do not 

experience nutrient limitations may become nutrient limited from CO2-stimulation of 

growth. 

Temperature has mixed effects on growth, depending on the evolutionary history and 

developmental environment of the plant. Meta-analyses however, show some general 

trends. Way and Oren (2010) found that trees show a positive response of growth, 

measured as biomass, to increasing temperatures, but that evergreen trees often do not 

benefit as much from increased temperatures.  

1.5 Boreal tree responses to environmental change 

Boreal forests are often assumed to be temperature-limited due to their northern location 

and low temperatures experienced throughout the year (Myeni et al., 1997; Jarvis & 

Linder, 2000; Tanja et al., 2003; Way & Oren, 2010), such that warming is expected to 

increase growth and carbon uptake, while elevated CO2 concentration is expected to 

promote enhanced photosynthesis and growth (Ceulemans & Mousseau, 1994; 

Wullschleger et al., 1995; Hyvönen et al., 2007; Temme et al., 2015). Boreal tree 

responses to warming are generally more positive, but more variable, than trees from 

lower latitudes, while deciduous trees show more positive growth responses than 

evergreen trees (Way & Oren, 2010). Tree-ring analyses suggest that temperature may be 

especially limiting growth in the northern boreal forest, while moisture limitations may 

play a larger role in limiting growth in the southern boreal forest (Brooks et al., 1998). 

The responses of boreal trees to climate change are complicated by myriad other 

environmental factors, including nutrients (Sigurdsson et al., 2013), water (Hogg et al., 
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2008; Ma et al., 2012), and disturbance (Bond-Lamberty et al., 2007). Satellite 

observations suggest that the North American boreal forest is browning due to reduced 

precipitation, such that drought constrains growth and carbon uptake in these forests (Bi 

et al., 2013), while tree-ring analyses support both precipitation- and temperature-driven 

browning (Lloyd & Bunn, 2007; Huang et al., 2010). Nutrients can provide further 

limitations on carbon uptake in forests, with reduced nutrient availability reducing 

photosynthetic carbon uptake relative to respiration (Fernández-Martínez et al., 2014). 

Given the nutrient limitations on carbon uptake present in the boreal forest even after 

accounting for disturbance (Magnani et al., 2007), boreal trees may show attenuated 

responses to climate change (Sigurdsson et al., 2013). 

Furthermore, the seasonality (i.e. intra-annual changes in temperature, day length, water 

availability) of the boreal forest adds complexity to any predictions of forest-level 

responses, since limitations to growth and carbon uptake may change over the year. 

Therefore, to understand the effects of global change on the boreal forest, we should 

account for possible limitations due to environmental seasonality. In Chapter 2, I review 

boreal tree responses to warming and CO2 in more detail. 

1.6 MAESTRA: modeling carbon gain 

Photosynthesis is the primary source of carbon for the biosphere, and carbon allocated 

into recalcitrant living biomass (e.g. wood) is carbon that is removed from the 

atmosphere for decades to hundreds of years. Increased carbon storage into woody 

biomass is one potential carbon sink that could attenuate climate warming by carbon 

efflux to the atmosphere. Therefore, modeling the carbon dynamics of woody species is 

crucial to understanding how atmospheric CO2 concentrations will change in the future. 

MAESTRA (Multi Array Evaporation Stand Tree Radiation A), is a three-dimensional 

model that simulates the carbon gain of individual trees within a predefined landscape, 

and accounts for interactions between trees to simulate a forest stand (Wang & Jarvis, 

1990a,b; Medlyn et al., 1999; Duursma & Medlyn, 2012; Fig. 1.4). The model accounts 

for radiative energy partitioning (Weiss & Norman, 1985; Spitters et al., 1986) and 
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transfer (Norman, 1979, 1980; Steven & Unsworth, 1979), canopy structure (Campbell, 

1986, 1990; Wang & Jarvis, 1988; Baldwin & Peterson, 1997), environmental responses 

of photosynthesis, respiration, and stomatal conductance, and shading effects of trees 

within the canopy (Wang & Jarvis, 1990a,b). Important environmental inputs to 

MAESTRA for each of the above components include air temperature, CO2 

concentration, atmospheric pressure, humidity, windspeed, day length, latitude and 

longitude, solar irradiance, and day of year. 

MAESTRA accounts for structural aspects of tree canopies (number of layers, number of 

pixels per layer, leaf area, leaf angle distribution, specific leaf area, number of leaf age 

classes, shape, physical size, physical location of each tree on a simulated plot) while 

assuming that stems do not interfere with the light environment (Wang & Jarvis, 1990a,b; 

Medlyn et al., 1999; Duursma & Medlyn, 2012). Canopy structure is used in determining 

light absorbance, transmittance, and reflectance through the tree canopy, which allows 

shading between neighbouring trees. The absorbance, transmittance, and reflectance of 

the soil is also used in calculating the light environment for leaves, however this is the 

extent of the impact of soil on MAESTRA calculations. The interactions between each 

component of the light environment, along with leaf-level transpiration, can be used to 

calculate leaf temperature for input into the gas exchange models.  

MAESTRA uses the CO2, temperature, and light response models of photosynthesis and 

the temperature response of respiration outlined above (Equations 1.2–1.12), and closes 

the system of equations with the Ball-Berry model of stomatal conductance (Equation 

1.17, described below) to calculate leaf level carbon and water exchange, as well as stem 

and root respiration (Wang & Jarvis, 1990a,b; Medlyn et al., 1999; Duursma & Medlyn, 

2012). Leaf-level carbon balance for each canopy pixel is summed to the canopy-level of 

each tree, to which stem and root respiration are subtracted out to obtain whole-tree 

carbon balance. The carbon balance of every tree can then be summed to obtain whole-

stand carbon balance. Windspeed is also incorporated which, along with leaf water 

balance and the radiation environment for each canopy pixel, can be used to calculate 

latent heat loss at the leaf-, tree- and stand- level. 



29 

 

There is no spin-up period (i.e. model training on a test data set), so MAESTRA can be 

run and the output interpreted once parameters are set, without having to train the model. 

The coding of MAESTRA is modular, which increases the flexibility of MAESTRA to 

incorporate new developments and to be highly tailored to an experimental system or 

question. The mechanistic basis of the physiology in MAESTRA, and its modular 

structure, make MAESTRA a useful in silico tool for testing new approaches for 

modeling environmental responses of vegetation and for scaling plant physiology from 

the leaf level to the ecosystem level. MAESTRA has been successfully used to inform 

best-practices for tree nurseries (Bauerle et al., 2004), and to model the water balance 

responses of trees (Barnard & Bauerle, 2013).  
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Figure 1.4. Overview of MAESTRA. MAESTRA takes environmental inputs (e.g. 

air temperature, irradiance, relative humidity, windspeed), calculates the radiation 

components incident on the canopy, scales the radiation environment throughout 

the canopy based on structural inputs and neighbouring trees, calculates leaf 

temperature and incident light intensity on leaves, feeds data into a leaf-level gas 

exchange model to calculate leaf-level, then tree- and stand- level carbon and water 

balance. The technical manual for MAESTRA and the most recent update, 

MAESPA, can be found on the MAESPA model GitHub webpage 

(maespa.github.io/index.html). 
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Stomatal conductance is often modelled as a response to relative humidity (Ball et al., 

1987), which requires defining stomatal responses a priori. In MAESTRA, the Ball-

Berry model of stomatal conductance can be used (Ball et al., 1987): 

gs = m1
A

Ca−Γ∗ relative humidity + b1     Equation 1.17 

where gs is stomatal conductance, A is net CO2 assimilation rate, Ca is the CO2 

concentration at the leaf surface, and m1 and b1 are empirically-derived treatment/species-

specific parameters. 

Modeling with MAESTRA can provide information on whether there is a fundamental 

shift in the underlying biology. For example, if MAESTRA cannot predict the net carbon 

gain of a given tree species under particularly hot conditions, that may indicate an 

element of heat stress that is unaccounted for in the model.   

1.7 Questions and hypotheses 

The primary goal of my thesis was to understand how climate change, day length, and 

temperature acclimation affect carbon dynamics in the boreal forest and its dominant 

species. To do this, I sought answers to the following questions: 

1.7.1 Questions 

1) What do we know about boreal tree photosynthetic and growth responses to 

changes in temperature and CO2? (Chapter 2) 

2) How do temperature and day length interact in regulating autumnal 

photosynthesis and growth in a boreal conifer? (Chapter 3) 

3) Do models that include multi-factor acclimation of photosynthesis improve 

estimates of gross primary productivity in conifers? (Chapter 4) 
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4) How do climate variation (seasonal and annual) and physiological variation 

interact to affect projections of net carbon gain responses of boreal trees to 

climate change? (Chapter 5) 

1.7.2 Hypotheses 

1) Boreal trees are limited in growth and photosynthesis by low temperatures. 

Predictions: elevated temperatures should increase carbon gain, growth and 

photosynthetic capacity (addressed in Chapters 2, 3, 5) 

2) Day length, not temperature, controls seasonal changes in photosynthetic capacity 

in evergreen conifers.  

Predictions: photosynthetic capacity should be better correlated with day length 

than temperature, and manipulations of day length should alter photosynthetic 

capacity (addressed in Chapters 3, 4). 

3) Evergreen conifers acclimate to multiple parameters of the temperature response 

of photosynthetic capacity.  

Prediction: multifactor thermal acclimation should improve predictions of gross 

primary productivity over that of single factor acclimation (addressed in Chapter 

4). 
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Chapter 2  

2 Combined effects of rising CO2 concentrations and 
temperature on boreal forests: growth, physiology and 
limitations 

This review and meta-analysis was published in a similar form in Botany (Stinziano & 

Way, 2017, “Combined effects of rising [CO2] and temperature on boreal forests: growth, 

physiology and limitations”, Botany 92(6), 425–436), and addresses Question 1 (what do 

we know about boreal tree photosynthetic and growth responses to changes in 

temperature and CO2) and Hypothesis 1 (boreal trees are limited in growth and 

photosynthesis by low temperatures) from Chapter 1. 

2.1 Introduction 

Atmospheric CO2 concentrations are projected to reach 730–1020 μmol mol-1 by the year 

2100, mainly due to anthropogenic fossil fuel burning and land use change (Meehl et al., 

2007). This in turn will lead to a global mean temperature increase of 1.5 to 6 °C in that 

same period, but even greater warming at high latitudes, with increases of up to 8 °C in 

boreal regions (Serreze et al., 2000; Meehl et al., 2007). Significant climate warming has 

already occurred, with four of the five hottest decades in the last 150 years occurring in 

the last 60 years (Kaufman et al., 2009). Not only will there be increases in temperature 

and CO2 concentrations, but temperature variability and precipitation patterns are also 

expected to change in coming decades (Meehl et al. 2007). Precipitation may increase in 

parts of the boreal forest; however, it is likely to become more variable, such that there is 

a greater risk of both droughts and flooding (Meehl et al., 2007). These environmental 

changes will alter the productivity of high latitude forests, but predicting how climate 

change will affect these systems requires both a deeper understanding of how key tree 

species will respond to rising temperature and CO2 concentrations, and what factors 

might limit their ability to respond to climate change. 

The boreal forest accounts for ~30% of the Earth’s total forested area (FAO, 2001). 

Given the extent of this ecosystem, changes in forest carbon fluxes and productivity 

driven by climate change can in turn impact global carbon cycling and climate. A recent 
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study found increases in the seasonal amplitude of atmospheric CO2 concentration, 

indicating a significant and unexpected shift in the global carbon cycle (Graven et al., 

2013). While the underlying cause of this shift is not known, the alterations in seasonal 

atmospheric CO2 concentration patterns have been attributed to fluxes from high latitude 

forests, implying dramatic changes in the physiological and ecological functions that 

determine carbon cycling in boreal forest landscapes. 

Current simulations suggest that increasing temperatures and CO2 levels will stimulate 

net primary productivity (NPP) in high latitude forests (Qian et al., 2010). However, 

interactions between environmental variables other than CO2 and temperature will 

complicate our ability to predict boreal forest growth under future climates (Kurz et al., 

2008). In 2002, North American boreal forests switched from being a carbon sink (that 

absorbed more CO2 than they emitted) to being a carbon source, owing to increased fire 

damage and insect outbreaks (Kurz et al., 2008), both disturbances that are likely to 

become more common in the future. More frequent water stress, caused by changes in 

precipitation regimes and a warmer environment with a higher vapor pressure deficit, is 

also expected in coming decades. At the same time, one key environmental factor, 

photoperiod, will remain stable as the climate changes. Photoperiod could constrain the 

response of trees to a changing climate, as day length is an important cue for determining 

the beginning and end of the growing season (Körner & Basler, 2010). The purpose of 

this paper is, therefore, to review the potential impacts of elevated temperature and CO2 

concentrations on photosynthesis and growth in high latitude forests, and use meta-

analytical techniques to provide a synthesis of experimental results of the effects of these 

climate change factors on boreal tree species. 

2.2 Impact of elevated temperatures 

2.2.1 Effects of warming on physiology 

Warming is expected to impact both photosynthesis and respiration, thereby affecting 

boreal carbon fluxes. Elevated temperatures can impact photosynthesis positively (e.g., 

by stimulating enzyme function) and negatively (e.g., through heat lability of key 

enzymes or membrane stability) (Sage & Kubien, 2007; Yamori et al., 2014). Because 
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photosynthesis is not linearly related to leaf temperature, the direct effect of warming on 

CO2 assimilation rates depends on how close the tree already is to its thermal optimum: 

slight temperature increases will stimulate carbon gain if the tree is below the 

photosynthetic thermal optimum, while a greater degree of warming will inhibit CO2 

uptake by pushing the system into supraoptimal temperatures (Yamori et al., 2014). 

While short-term increases in temperature impact photosynthesis, trees acclimate to 

warmer growth environments, and this response includes acclimation of the 

photosynthetic apparatus (Berry & Björkman, 1980; Yamori et al., 2014). Overall, 

photosynthetic capacity in trees is not altered by growth at elevated temperatures (Way & 

Oren, 2010): this means that maximum carboxylation rates of Rubisco (Vcmax), a key 

Calvin cycle enzyme, and maximum rates of electron transport (Jmax) measured at 25 °C 

are similar in trees that develop at current or future temperatures. But because 

temperature directly affects enzyme kinetics, Vcmax and Jmax assessed at the higher leaf 

temperatures predicted for the future are usually increased in warming experiments (Way 

& Oren, 2010). This potential stimulation of carbon fixation capacity with warming could 

enhance photosynthetic rates in forests that experience elevated temperatures, but will 

likely not occur equally in all species. In a recent meta-analysis, Way and Yamori (2014) 

found that evergreen woody species, like those that dominate boreal forests, showed the 

least ability to acclimate photosynthesis to high growth temperatures. Indeed, 

photosynthesis in many boreal species appears to be either unaffected by elevated 

temperatures or susceptible to heat inhibition under realistically warmer future 

temperatures. Light-saturated rates of photosynthesis in Picea mariana did not respond to 

warming in the field (Bronson & Gower, 2010), and neither net photosynthetic rates nor 

Vcmax were affected by an 8 °C increase in growth temperature in Populus balsamifera 

(Silim et al., 2010). In Populus deltoides and Populus balsamifera, temperatures above 

33 °C decreased net photosynthetic rates, driven by a decline in ATPase activity in 

Rubisco activase and a subsequent reduction in the Rubisco activation state (Hozain et 

al., 2010). Heat inhibition of the activation state of Rubisco has also been implicated in 

reduced photosynthetic capacity in Picea mariana seedlings grown at elevated 

temperatures (Sage et al., 2008; Way & Sage, 2008b). 
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Unlike photosynthesis, respiration rates increase exponentially with temperature, up to a 

threshold. This means that warming might be expected to increase rates of respiration in 

trees: unless CO2 fixation rates keep pace, this response would lead to a decrease in net 

CO2 assimilation rates (Anet) (Way & Yamori, 2014). However, as with photosynthesis, 

respiration can acclimate to elevated growth temperatures (Atkin et al., 2005). Tjoelker et 

al. (1999) found that respiration measured at a common temperature was lower in trees 

grown at 30 °C (day) – 24 °C (night) than for those grown at lower temperatures (18 °C 

(day) – 12 °C (night), and 24 °C (day) – 18 °C (night)) in five North American boreal tree 

species (Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and 

Picea mariana). Leaves of Populus balsamifera also acclimate respiration to high 

temperatures (Silim et al., 2010), and Bronson and Gower (2010) found acclimation of 

both foliar and stem respiration in Picea mariana to elevated growth temperatures. This 

reduction in respiration in warm-grown trees can offset reductions in photosynthesis: 

lower respiration rates in Picea mariana seedlings grown at high temperatures allowed 

them to achieve higher net CO2 assimilation rates than seedlings grown at ambient 

temperature, but only for temperatures above 30 °C (Way & Sage, 2008a). 

2.2.2 Effects of warming on phenology 

The high latitude warming that has occurred in the last 60 years exhibits substantial 

temporal variability, with the most extreme warming during winter (Serreze et al., 2000). 

Winter warming is an important factor in treeline advance (Harsch et al., 2009), and the 

boreal treeline in Canada may be expected to advance significantly this century as the 

climate warms. This expectation is based on both a climate-envelope approach, as well as 

on movements of trees in past geological periods of warming. But a meta-analysis of 

changes in treelines since 1900 found that while they advanced in over half of the studies, 

the rest of the studies reported a stable treeline, with two studies even reporting a retreat 

(Harsch et al., 2009). 

So why might treelines not advance in response to rising temperatures in coming 

decades? In North America, the main treeline-forming species are Picea glauca, which 

dominates in the northwest (Walker et al., 2012), and Picea mariana, which forms the 

treeline in the lower Mackenzie Valley and eastern Canada (Rowe, 1972; Burns & 
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Honkala, 1990). Cone production and seed germination rates in Picea glauca decrease 

toward the treeline, and reproductive capacity is thought to be limited by low 

temperatures, as higher summer temperatures increase reproductive output (Walker et al., 

2012). Warming is also expected to increase growth rates in Picea glauca (Danby & Hik, 

2007), which may allow for greater reproductive output at the northern edge of the boreal 

forest. However, the northern limit of Picea glauca has yet to respond to warming, likely 

due to the difficulty of stand establishment at the forest–tundra ecotone (Walker et al., 

2012). Environmental conditions are harsher outside of the moderating influences of an 

existing forest, owing to increased wind shear, vapor pressure deficit s, and irradiance 

close to the ground. For Picea mariana, seeds produced from trees in the forest–tundra 

region had lower masses than seeds from forest regions and were unable to germinate 

(Black & Bliss, 1980), indicating that stand establishment may also be limited by 

reproductive ability. Germination in this species is inhibited by low temperatures (<15 

°C), and only occurs in the field after burning, both traits that may prevent substantial 

increases in recruitment north of the treeline in coming decades (Black & Bliss, 1980). 

As well, Picea mariana germlings are sensitive to soil water potential (Black & Bliss, 

1980), such that warmer conditions in the future may restrict recruitment above the 

treeline by increasing evapotranspiration and drying the soils. Taken together, the results 

from these two species indicate that boreal treelines may not advance as fast or as far as 

is often expected based purely on a climate-envelope approach. 

2.2.3 Constraints on tree responses to warming 

The same types of interactions that limit treeline movement can also constrain the ability 

of boreal tree species to respond to warming in situ. In particular, constraints imposed by 

photoperiod and water availability are likely to be two of the biggest limitations to 

increases in carbon uptake and productivity in northern forests in response to warming. 

The cues used by trees in northern latitudes to sense seasonality and regulate the length of 

the growing season include both temperature and day length. For example, the timing of 

spring bud burst in trees reflects a composite of interacting factors: seasonal 

temperatures, photoperiod, temperature by photoperiod interactions, and a genotype-

dependent response to the environment (Hänninen & Tanino, 2011; Way, 2011; Cooke et 
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al., 2012). Thus, while climate change can lead to earlier spring growth and delayed fall 

senescence/dormancy where temperature is the dominant cue, species that rely on 

photoperiod to regulate the growing season may show little change in their growing 

season length under warming. 

Which species are most likely to be constrained in their response to warming by 

photoperiod? In a recent study, Basler and Körner (2012) investigated the effects of 

different photoperiod treatments on dormancy release in 14 tree species. In late-

successional species, including Picea abies and Abies alba, short photoperiods delayed 

bud burst, implying that the ability to increase the growing season length under a warmer 

climate will be limited by day length cues. In contrast, the bud burst of early-successional 

tree species (such as Larix decidua) was not photoperiod-limited (Basler & Körner, 

2012). It is thus possible that photoperiod may constrain phenological responses to rising 

temperatures in dominant late-successional coniferous species to a greater extent than in 

the deciduous species that tend to appear early in succession. 

While day length cues are likely to limit the duration of leaf presence in the canopy, they 

can also regulate the physiological activity of those leaves. In temperate, deciduous trees, 

seasonal variation in photosynthetic capacity is tightly correlated with photoperiod, more 

so than with changes in temperature (Bauerle et al., 2012). This means that even though 

deciduous leaves may remain green later into the autumn in a warmer climate, those 

leaves have lost most of their ability to fix CO2 under the short photoperiods that occur 

late in the season. This may explain recent reports of asymmetric responses of northern 

forests to warming in spring versus autumn (Barichivich et al., 2013). The photosynthetic 

activity of high latitude forests is closely coupled to temperature, such that warming over 

the last 60 years has allowed photosynthetic activity to occur about 6 days earlier in the 

spring. However, in the autumn, the photosynthetically active season is only growing at 

half the pace at which thermal limitations to growth are being lifted by climate warming 

(Barichivich et al., 2013), which may indicate that photoperiodic constraints are limiting 

CO2 uptake in boreal forests late in the year. 
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Overall, there are few studies looking at the interaction of day length and temperature on 

growing season length in trees, and none to my knowledge investigating this in a boreal 

species. I put forward four possible scenarios regarding this interaction. (i) No 

temperature stimulation, no photoperiodic constraints (Fig. 2.1a): in this scenario, net 

carbon uptake rates are not enhanced by warming; however, the growing season is 

lengthened, leading to a total increase in carbon fixation over the year. (ii) Temperature 

stimulation, no photoperiodic constraints (Fig. 2.1b): in this “best case” situation, net 

carbon uptake of northern forest species will increase, owing to both a longer growing 

season and higher net photosynthetic rates. (iii) Temperature inhibition, photoperiodic 

constraints (Fig. 2.1c): in this “worst case” scenario, net carbon fixation is reduced by 

warming and the current growing season length is maintained through photoperiod 

constraints, resulting in a net reduction in annual forest carbon uptake. (iv) Temperature 

by photoperiod interactions lead to asymmetric effects (Fig. 2.1d): in this scenario, there 

is an advance in the start of the growing season, as has already been observed (Beaubien 

& Hamann, 2011; Barichivich et al., 2013), but in the autumn, photoperiod constrains 

leaf retention or physiological activity, such that the end of the growing season is 

relatively unresponsive to warming (Fig. 2.1d). This last scenario is consistent with the 

response of temperate trees (Bauerle et al., 2012). 
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Figure 2.1. Possible responses of boreal tree function to warming and increases in 

atmospheric CO2 concentration. Broken lines (red, online only) indicate a warming 

scenario; solid lines (blue, online only) indicate the current ambient conditions. (a) 

Climate change may extend growing season length in both the spring and autumn, 

with no effect on tree performance, leading to enhanced annual productivity. (b) 

Climate change may stimulate tree performance and extend the growing season 

length, leading to a more dramatic increase in annual productivity. (c) Photoperiod 

may constrain the length of the growing season, and climate change may inhibit 

photosynthesis or growth, leading to a net decline in annual productivity. (d) Climate 

change may advance the growing season in spring, but there may be no response of 

physiological activity in the autumn, owing to photoperiodic constraints. 
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In boreal forests, there could be more than a decoupling of earlier spring onsets of the 

growing season with later autumnal ends to the growing season. Earlier springs are 

correlated with declines in midsummer productivity in boreal forests, likely due to greater 

evapotranspiration and associated water deficits when spring arrives early (Buermann et 

al., 2013). Thus, we may expect to see a shift in the growing season towards earlier dates 

in these forests (Fig. 2.1d), but an overall suppression of annual productivity due to 

greater drought stress (Buermann et al., 2013), although warmer springs can also enhance 

boreal tree growth (Wilmking et al., 2004). Plant water demand is greater at high 

temperatures: a linear rise in air temperature exponentially increases the vapor pressure 

deficit, greatly enhancing the driving force for transpirational water loss. If water 

becomes more limiting in a warmer climate, then lower stomatal conductance may limit 

CO2 uptake, potentially offsetting any temperature-related enhancements of 

photosynthetic rates. For example, in Alaskan Picea glauca, late 20th century drought 

stress has led to a negative correlation between high temperatures and radial tree ring 

width, which implies a reduction in carbon uptake for Picea glauca forests as the climate 

warms and dries (Barber et al., 2000); higher summer temperatures are also associated 

with growth declines in Picea glauca (Wilmking et al., 2004). High temperatures 

combined with water stress can increase the ratio of day respiration to photosynthesis, 

which could reduce net carbon uptake in a warmer and drier climate (Centritto et al., 

2011). Transpiration is also important for leaf thermoregulation through latent heat loss: 

under the condition of water stress, low stomatal conductance limits not only the ability 

to fix CO2, but the ability to cool the leaf as well (Ainsworth & Long, 2005). In Populus 

fremontii, water stress imposed stomatal limitations on photosynthesis, but also 

exacerbated the negative effects of high temperatures on photosynthesis, causing heat 

stress to occur at air temperatures 10 °C cooler than in trees with ample water (Tozzi et 

al., 2013). However, not all heat × drought interactions are negative: in Picea mariana, 

exposure to elevated temperatures reduced the severity of drought-induced damage to the 

photosynthetic apparatus, potentially due to similar acclimation mechanisms between 

water and heat stresses (Way et al., 2013a). 

While there is reason to believe that a higher vapor pressure deficit in a warmer world 

will be the dominant driver of increases in transpiration, temperature itself can affect 
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water loss in boreal tree species. Higher temperatures increased canopy transpiration in 

Picea mariana even when vapor pressure deficit was held constant (Van Herk et al., 

2011); saplings of this same species have higher drought-induced mortality when grown 

at elevated growth temperatures than at current temperature regimes (Balducci et al., 

2013). As well, Way et al. (2013b) showed that hydraulic traits of Populus tremuloides 

were affected by growth temperature, such that seedlings that developed at warmer 

conditions had higher hydraulic conductance and thus the ability to transport (and lose) 

water more quickly through their roots and leaves. The unexpected flip side of increasing 

drought is the possibility of too much water: warmer temperatures are thawing permafrost 

sites in northern regions, which can lead to forest loss due to waterlogging (Baltzer et al., 

2014). Given the uncertainty in future precipitation patterns, and the recent evidence that 

warmer years are already decreasing productivity in northern forests via increased water 

stress (Buermann et al., 2013), it would be dangerous to assume that rising temperatures 

will benefit these ecosystems. 

2.3 Impact of elevated CO2 concentration 

2.3.1 Effects of CO2 on physiology 

Increasing atmospheric CO2 concentration has a strong impact on tree physiology. Under 

current ambient CO2 concentrations, photosynthesis is limited by Rubisco carboxylation 

capacity, such that greater CO2 substrate availability increases photosynthetic rates 

(Bernacchi et al., 2001; Sage & Kubien, 2007) and plant productivity. It is therefore 

unsurprising that studies show that elevated CO2 concentration generally stimulates 

photosynthesis in boreal species. For example, elevated CO2 concentration increased the 

leaf area index and operating efficiency of photosystem II of Populus tremuloides 

(McGrath et al., 2010), while in a study comparing five boreal species, Tjoelker et al., 

(1998b) found that photosynthesis was stimulated more strongly by elevated CO2 

concentration in slow-growing species such as Picea mariana, Pinus banksiana, and 

Larix laricina than in rapidly growing species such as Populus tremuloides and Betula 

papyrifera. These differences in growth response were due to a strong initial, transient 

increase in growth in the broadleaf species that declined through time, while increased 

growth rates in response to elevated CO2 concentration in the conifers were maintained 
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(Tjoelker et al., 1998b). Given that this suite of species dominates the North American 

boreal forest, the results suggest that the relative dominance of each species may change 

as CO2 concentrations increase. 

In response to elevated CO2 concentration, trees often show increased Anet (when 

measured at growth CO2 concentrations), but a down-regulation of photosynthesis 

indicated by declines in both Vcmax and Jmax (Medlyn et al., 1999). This photosynthetic 

down-regulation is common in studies of high CO2 concentrations: the enhanced 

efficiency of photosynthesis achieved through greater CO2 substrate availability increases 

sugar concentrations, which instigates a negative feedback to suppress Rubisco 

expression (Gunderson & Wullschleger, 1994; Moore et al., 1999). As Rubisco operates 

more efficiently at high CO2 concentrations, the nitrogen use efficiency (NUE, the 

amount of carbon fixed per unit leaf nitrogen) of the plant is increased; the lower Rubisco 

concentration also returns the photosynthetic rate towards the pre-high CO2 concentration 

carbon fixation rate and helps rebalance carbohydrate supply with demand. Declines in 

Vcmax and Jmax at elevated CO2 concentrations increased with needle age in boreal species 

(Medlyn et al., 1999), an effect that has been confirmed in Pinus sylvestris (Jach & 

Ceulemans, 2000), Picea abies (Urban et al., 2012), and Pinus taeda (Crous et al., 2008). 

These data suggest that net CO2 uptake rates in northern forests may be initially 

stimulated by a high CO2 atmosphere, but that the effect will likely decline over time. 

Furthermore, elevated CO2 concentration leads to an increase in light use efficiency (the 

ability of a plant to use light to fix CO2) in Pinus taeda (Kellomäki & Wang, 1997) which 

contributes, along with higher leaf CO2 concentrations, to the stimulation of net CO2 

assimilation despite downregulation of Vcmax and Jmax. Even if photosynthetic rates are 

not strongly stimulated by rising CO2 concentrations in the long run, if high CO2 

concentration leads to a longer growing season, owing to delayed autumn leaf senescence 

(as seen in Populus; Taylor et al., 2008), this may still increase forest productivity in 

these strongly seasonal forests. 

However, it is unclear from these studies whether enhancements of leaf-level 

photosynthesis will scale reliably to the ecosystem level. This is hard to address without 

large-scale experiments in boreal forests, but there are some data we can use to 
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extrapolate potential responses. Rising atmospheric CO2 concentrations over a 50-year 

timespan increased growth rates by ∼50% in natural stands of Populus tremuloides (Cole 

et al., 2010). On a more experimental level, free-air CO2 enrichment sites in temperate 

forests show that elevated CO2 concentration (∼550 μmol mol-1) increases net primary 

productivity (NPP) by almost 25% (Norby et al., 2005), suggesting a strong response to 

CO2 fertilization in forest systems. However, temperate free air CO2 enrichment results 

may not be representative of boreal forests. Hickler et al. (2008) could model realistic 

NPP changes in temperate free air CO2 enrichment sites, but found only a 15% average 

enhancement of modeled NPP in boreal systems, much less than is expected for more 

equatorial regions. Results from eddy flux measurements also imply that elevated CO2 

concentration has increased the magnitude of net ecosystem exchange over time in 

temperate and boreal forest stands, primarily due to increased CO2 uptake during the 

summer (Keenan et al., 2013), but the boreal sites appear to show the weakest increase in 

net ecosystem exchange of the stands studied. Overall, the lack of field studies 

investigating the effects of high CO2 concentrations on boreal species, and conifers in 

particular, leaves a gap in knowledge about the dominant components of high latitude 

forests. Work in other boreal forest systems has shown that applying an elevated CO2 

treatment alone to Picea abies in the field did not alter tree growth (Sigurdsson et al., 

2013). Taken together, these studies imply that rising CO2 concentrations will have less 

of an effect on the productivity of high latitude forests than in other regions, although 

fast-growing species like poplars may be more responsive than evergreen conifers. 

Aside from its direct effects on photosynthesis and growth, elevated CO2 concentration 

enhances water use efficiency (the amount of CO2 fixed per unit water lost), potentially 

increasing drought tolerance (Ainsworth & Long, 2005). Increases in water use efficiency 

are due to an increase in Anet and a decline in stomatal conductance in response to 

elevated CO2, responses that are commonly reported in free air CO2 enrichment 

experiments (Ainsworth & Long, 2005). Recently, data from ∼15 years of eddy flux 

covariance at northern temperate and boreal sites indicated enhancements in water use 

efficiency, with increases in CO2 over that time being the primary driving factor (Keenan 

et al., 2013). There is thus good evidence that water use efficiency is increasing as CO2 

concentration increases, but this does not necessarily correlate with increased growth in 
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boreal tree species. A meta-analysis looking at changes in water use efficiency across 

biomes world-wide since 1960 found that while water use efficiency increased ∼20% 

owing to increases in atmospheric CO2 concentrations, tree growth (measured as annual 

ring width) did not (Peñuelas et al., 2011); further, there were no differences between 

biomes in the growth response to elevated atmospheric CO2 concentrations. A similar 

dendrochronological study showed that water use efficiency increased ∼50% in Quercus 

rubra, Acer rubrum, Picea mariana, and Pinus resinosa since 1950, as atmospheric CO2 

concentrations increased (Silva et al., 2010). But there was a concurrent net decline in 

basal area increment in these species, suggesting that other environmental variables are 

limiting the growth response of trees to CO2 concentration. 

2.3.2 Constraints on responses of boreal trees to high CO2 
concentrations 

While the direct effects of rising CO2 concentrations on photosynthetic physiology are 

usually positive, higher CO2 concentration can also negatively impact the performance of 

high latitude tree species. One such effect is through changes in freeze tolerance. In 

treeline species, elevated CO2 concentration increased freezing sensitivity in Larix 

decidua, although it had no such effect on the evergreen species Pinus uncinata and 

Empetrum hermaphroditum (Martin et al., 2010). Elevated CO2 concentration also 

increases freezing damage in other alpine species (Rixen et al., 2012), possibly by 

increasing the ice nucleation temperature (Beerling et al., 2001). 

Although the expectation is that higher CO2 concentrations will reduce water demand in 

forests by reducing stomatal conductance, the ability of trees to respond to elevated CO2 

concentration is often dependent on water availability. In a free air CO2 enrichment study 

with Pinus taeda, interannual variations in aboveground NPP and fecundity were driven 

by water demand, and this effect was stronger in plots with elevated CO2 concentrations 

than in stands with ambient CO2 concentrations (Way et al., 2010). The CO2-induced 

growth stimulation of Populus tremuloides stands was also more pronounced when water 

availability was high, suggesting that drought may be an important limitation in growth 

responses to CO2 concentration in high latitude forests (Cole et al., 2010). And while 

elevated CO2 concentrations may improve drought tolerance, extreme moisture stress 
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could be a different issue. During an intense summer drought at the Oak Ridge free air 

CO2 enrichment site, canopy net CO2 uptake in Liquidambar styraciflua declined faster 

in plots with elevated CO2 concentrations than in plots with ambient CO2 concentrations, 

and leaf drop was greater in stands with elevated CO2 concentrations after the drought 

relative to the plots with ambient CO2 concentrations (Warren et al., 2011). These data 

suggest that elevated CO2 concentrations could reduce tree resiliency to drought stress 

that co-occurs with heat events. While elevated CO2 concentration reduces leaf-level 

stomatal conductance, canopy leaf area often increases, which can increase whole tree 

water loss, while the reduced transpiration rates can increase leaf temperatures and 

thereby exacerbate heat stress (Way, 2011). Given that more variable and extreme 

weather is projected for the future (Gao et al., 2012), water availability will be a key 

factor in limiting how forests respond to rising atmospheric CO2 concentrations in 

coming decades. 

And it’s not just water. Nutrient availability, in particular nitrogen, is a primary constraint 

on forest and ecosystem responses to CO2 (Oren et al., 2001; Reich et al., 2006; Norby et 

al., 2010). At the Oak Ridge free air CO2 enrichment site, elevated CO2 concentrations 

initially stimulated CO2 uptake and NPP. However, soil nitrogen limitations did not lead 

to differences in NPP between plots with elevated or with ambient CO2 concentrations 

after several years (Norby et al., 2010). This effect is common in high CO2 experiments, 

and is termed progressive nitrogen limitation (Luo et al., 2004; Johnson, 2006). Increased 

biomass under high CO2 concentrations requires more nitrogen, even accounting for 

increases in NUE, and initially available soil nitrogen becomes sequestered in tree 

biomass and less labile soil pools, limiting further nitrogen uptake. In a Pinus taeda free 

air CO2 enrichment site, CO2 enrichment stimulated annual nitrogen requirements by 

∼30% (Finzi et al., 2002). While NPP was increased over the 4-year study period, the 

authors predicted (based on the increase in nitrogen requirements) that NPP would 

eventually decline in the CO2-enriched plots (Finzi et al., 2002). However, after 11 years 

of CO2 enrichment, NPP was still higher in plots with high CO2 concentrations compared 

with the ambient CO2 concentration plots, although plot-level variation in NPP was 

strongly dependent on nutrient availability (McCarthy et al., 2010; Way et al., 2010). The 

results above suggest that a sustained response to elevated CO2 concentrations requires 
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additional nitrogen inputs. Norby et al. (2010) hypothesized that evergreen forests might 

have a more prolonged increase in NPP under elevated CO2 concentrations, owing to 

their lower nitrogen requirements compared with deciduous forests. But even in 

evergreen conifer species, the CO2 concentration-dependent growth response and its 

interaction with nitrogen supply varies. Soil fertilization enhanced the positive growth 

response of Pinus taeda stands to CO2 enrichment (Oren et al., 2001), and the high CO2 

concentration-induced enhancement of growth in Picea mariana also increased with 

greater nitrogen supply (Li et al., 2013). Lastly, in one of the only studies to examine the 

responses of a boreal conifer to high CO2 concentrations in situ, growth was not 

stimulated at all under elevated CO2 concentrations unless the trees were fertilized 

(Sigurdsson et al., 2013), which corresponds well to the earlier suggestion that there may 

not be a response to CO2 enrichment in nutritionally poor soils (Oren et al., 2001). 

2.4 Combined effects of elevated temperature and CO2 
concentration on boreal species: a meta-analysis 

As I described in the preceding sections of this review, understanding how a combination 

of elevated CO2 concentrations and temperature will alter boreal tree growth and 

performance is critical, since both environmental factors are changing simultaneously. To 

determine whether there are trends in the response of either photosynthetic traits or tree 

growth to future climate scenarios in boreal trees, I collected studies that imposed 

elevated CO2 concentrations and/or elevated temperature regimes on these species. I 

conducted a meta-analysis using 58 studies involving 15 boreal tree species (number of 

studies in parentheses): Abies alba (1), Betula papyrifera (11), Betula pendula (6), Larix 

laricina (1), Picea abies (8), Picea glauca (4), Picea mariana (9), Picea sitchensis (4), 

Pinus banksiana (5), Pinus contorta (1), Pinus sylvestris (8), Populus balsamifera (1), 

Populus tremuloides (6), Pseudotsuga menziesii (8), and Tsuga heterophylla (1) (Table 

2.1). Studies were selected using Google Scholar with the following criteria: (i) a boreal 

tree species; (ii) an experimental manipulation of elevated temperature and/or CO2 

concentrations; (iii) the study collected data on total biomass, net CO2 assimilation rates 

(Anet) measured at the growth conditions, and/or photosynthetic capacity (Vcmax, and/or 

Jmax). For growth chamber studies, the current ambient temperature or CO2 treatment was 
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considered the control. For studies in which multiple temperatures were used, the average 

June day/night temperatures from the site nearest to the seed source was used as the 

control treatment (see Way & Oren, 2010); for field studies, the control temperature was 

the average day/night temperatures of the month during which data were collected. Data 

where growth temperature was reduced below this control temperature were included in 

the study to increase the range of temperature change and aid in visualizing the overall 

pattern of response to changing temperature. For studies that manipulated other variables 

(e.g., nutrients, water availability), only data from the well-watered, well-fertilized subset 

of treatments were used. 

Owing to variation in growth temperatures between studies and variation in atmospheric 

CO2 concentrations across studies over time (as CO2 concentration continues to rise 

annually), all physiological parameters were analyzed against the respective change in 

temperature and CO2 concentration (treatment – control values) from the study. The 

response ratio of the measured parameters (treatment/control) were calculated: a response 

ratio = 1 means there was no change in the parameter, <1 means that there was a decrease 

in the parameter in the high CO2 concentration/temperature plants relative to the control, 

while >1 means that there was an increase in the parameter in trees grown at future 

climates compared with the control trees. Because there were few data on Vcmax and Jmax 

from temperature × CO2 concentration experiments, temperature terms were left out of 

the analysis. 
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Table 2.1. Summary of the studies used in the meta-analysis. 

Species Ontogenic Stage 
Variable(s) 

Manipulated 
Response(s) Measured 

Treatment 

Location 
Reference 

Abies alba Seedling CO2 Biomass OTC Hattenschwiler & Körner, 2000 

Betula papyrifera 

 
Seedling CO2 Anet, Jmax, Vcmax Greenhouse Ambebe & Dang, 2009 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Ambebe et al., 2010 

Seedling CO2 Anet Greenhouse Cao et al., 2007 

Seedling CO2 Biomass Greenhouse Cao et al., 2008 

Mature CO2 Anet Field Riikonen et al., 2008 

Seedling CO2, T Anet, Biomass Chamber Tjoelker et al., 1998a 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Zhang & Dang, 2005 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Zhang & Dang, 2006 

Seedling CO2, T Biomass Greenhouse Zhang & Dang, 2007 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Zhang & Dang, 2013 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Zhang et al., 2013 

Betula pendula 

 
Seedling CO2, T Anet, Biomass Chamber Kellomäki & Wang, 2001 

Seedling CO2, T Biomass Chamber Kuokkanen et al., 2001 

Seedling CO2, T Biomass WTC Lavola et al., 2013 

Seedling CO2 Anet, Biomass Chamber Pettersson & McDonald, 1992 

Seedling CO2 Jmax, Vcmax OTC Rey & Jarvis, 1998 

Seedling CO2 Biomass, Jmax, Vcmax OTC Rey & Jarvis, 1997 

Larix laricina Seedling CO2, T Anet, Biomass Chamber Tjoelker et al., 1998a 

Picea abies 

 
Mature CO2, T Biomass WTC Kostiainen et al., 2009 

Seedling CO2 Anet, Biomass Chamber Lippert et al., 1996 

Seedling CO2 Biomass Chamber Liu et al., 2004 

Seedling CO2, T Anet, Biomass Chamber Pumpanen et al., 2012 
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Mature CO2 Anet Field Roberntz, 2001 

Seedling CO2, T Biomass Chamber Sallas et al., 2003 

Mature CO2 Anet OTC Špunda et al., 2005 

Seedling CO2 Jmax, Vcmax Field Urban et al., 2012 

Picea glauca 

 
Seedling CO2 Anet, Jmax, Vcmax Greenhouse Dang et al., 2008 

Seedling CO2 Biomass Greenhouse Marfo & Dang, 2009 

Seedling CO2 Biomass Chamber Yakimchuk & Hoddinott, 1994 

Seedling CO2, T Biomass Greenhouse Zhang & Dang, 2007 

Picea mariana 

 
Mature T Anet Field Bronson & Gower, 2010 

Seedling CO2 Anet, Biomass Chamber Johnsen, 1993 

Seedling CO2 Anet, Biomass Greenhouse Johnsen & Seiler, 1996 

Seedling CO2 Biomass Greenhouse Li et al., 2013 

Seedling CO2 Biomass Greenhouse Marfo & Dang, 2009 

Seedling CO2, T Anet, Biomass Chamber Tjoelker et al., 1998a 

Seedling T Biomass Greenhouse Way & Sage, 2008b 

Seedling CO2 Biomass Chamber Yakimchuk & Hoddinott, 1994 

Seedling CO2, T Biomass Greenhouse Zhang & Dang, 2007 

Picea sitchensis 

 
Sapling CO2 Anet, Jmax, Vcmax OTC Centritto & Jarvis, 1999 

Seedling CO2 Biomass, Jmax, Vcmax OTC Murray et al., 2000 

Seedling CO2 Biomass Greenhouse Townend, 1995 

Sapling CO2 Biomass OTC Centritto et al., 1999 

Pinus banksiana 

 
Seedling T Biomass Chamber Cantin et al., 1997 

Seedling CO2, T Anet, Biomass Chamber Tjoelker et al., 1998a 

Seedling CO2 Biomass Chamber Yakimchuk & Hoddinott, 1994 

Seedling CO2 Anet, Jmax, Vcmax Greenhouse Zhang & Dang, 2005 

Seedling CO2, T Biomass Greenhouse Zhang & Dang, 2007 

Pinus contorta Seedling CO2 Biomass, Vcmax Chamber Higginbotham et al., 1985 
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Pinus sylvestris 

 
Seedling CO2 Biomass OTC Hattenschwiler & Körner, 2000 

Seedling CO2 Biomass OTC Jach et al., 2000 

Mature CO2, T Anet, Jmax, Vcmax Field Kellomäki & Wang, 1996 

Seedling CO2 Biomass Chamber Perez-Soba et al., 1995 

Seedling T Anet, Biomass Chamber Pumpanen et al., 2012 

Seedling CO2, T Biomass Chamber Sallas et al., 2003 

Seedling CO2 Biomass OTC Utriainen et al., 2000 

Sapling CO2 Jmax, Vcmax OTC Wang et al., 1996 

Populus balsamifera Seedling T Anet Greenhouse Silim et al., 2010 

Populus tremuloides 

 
Mature CO2 Anet Field Kets et al., 2010 

Seedling CO2 Anet, Biomass Greenhouse Liu et al., 2006 

Mature CO2 Anet Field Riikonen et al., 2008 

Seedling CO2 Anet Chamber Sharkey et al., 1991 

Seedling CO2, T Anet, Biomass Chamber Tjoelker et al., 1998a 

Seedling CO2 Biomass OTC Zak et al., 2000 

Pseudotsuga menziesii 

 
Seedling T Anet Chamber Brix, 1967 

Seedling T Biomass Chamber Brix, 1971 

Seedling CO2 Anet, Biomass Chamber Hollinger, 1987 

Seedling CO2, T Anet Mesocosm Lewis et al., 1999 

Seedling CO2, T Biomass Field Olszyk et al., 2003 

Seedling CO2, T Biomass Field Olszyk et al., 2005 

Seedling T Biomass Chamber Sorenson & Ferrell, 1973 

Seedling CO2, T Anet Mesocosm Tingey et al., 2007 

Tsuga heterophylla Seedling T Biomass Chamber Brix, 1971 

Note: Studies are grouped by species used and may appear more than once. T, temperature; Anet, net CO2 assimilation rate; Jmax, 

maximum rate of electron transport; Vcmax, maximum rate of Rubisco carboxylation; OTC, open top chamber; WTC, whole tree 

chamber.
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Data were analyzed using multiple regressions with R (version 2.13.0, R Development 

Core Team). Linear models were run on measured parameters using the following 

predictor variables (where applicable): evergreen or deciduous leaf form; broad-leaf or 

needle growth form; chamber type (open-top chamber, whole tree chamber, greenhouse, 

growth chamber, open field); life stage (seedling, sapling, mature); species; day 

temperature change; night temperature change; and CO2 concentration change. Candidate 

models were first constructed using the leaps package in R to select the best additive 

model containing numerical predictors with the lowest Bayesian information criterion 

(BIC) (Quinn & Keough, 2002); BIC was chosen over Akaike’s information criterion 

(AIC) because BIC is more conservative and penalizes the complexity (i.e., number of 

terms) in a model more intensely than does AIC. Next, all possible interaction terms and 

categorical explanatory variables were added to the model, which was then reduced 

stepwise by removing nonsignificant predictor variables and/or interaction terms until 

BIC was minimized. The top two models (those with the lowest BIC) are shown for 

comparison; the best model is that which has the lowest BIC and is significant. Three 

points (two for Pinus banksiana, one for Pinus contorta) had biomass response ratios >4 

under elevated CO2 concentration, and these points are not shown in the figures but were 

used in the analysis; these points were not significant in the best model. 

The biomass response ratio was best explained by increases in day temperature and CO2 

concentration. Biomass responded positively to increases in day temperature (P < 0.001) 

and elevated CO2 concentrations (P < 0.0001; Fig. 2.2; Table 2.2); however, the best 

model did not show an interaction between temperature and CO2 concentrations and the 

general response of biomass gain in boreal species to rising temperatures does not 

therefore depend on CO2 concentration. There was no significant difference between 

evergreen and deciduous growth forms or between species, suggesting that boreal trees 

may respond similarly to increasing temperature and CO2 concentration, in contrast to the 

overall pattern seen in Way and Oren (2010). Given that there was no significant effect of 

chamber type or life stage, it therefore may be possible to generalize across life stages 

and studies in regard to CO2 concentration × warming manipulations. The biomass of 

trees exposed to elevated CO2 concentration was stimulated above the ambient CO2-
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treated tree biomass (Fig. 2.2). Much of the significant temperature response was driven 

by reduced biomass in trees grown at cooler than current growth temperatures; in fact, the 

median biomass was similar in trees grown at high growth temperatures and ambient CO2 

concentrations compared with the control temperature and CO2-treated trees (Fig. 2.2). 

Viewing the data in Fig. 2.2 as a growth-response curve therefore implies that increased 

temperatures (of +1–5 °C) may increase future growth in these species at elevated CO2 

concentrations, but that the more extreme warming predicted for these regions may offset 

this effect, as median biomass is barely stimulated above control values when elevated 

CO2 concentration is combined with the elevated temperatures of 5–10 °C (Fig. 2.2). 

However, more data are needed on extreme warming (>+6 °C) with elevated CO2 

concentrations to verify whether growth will be reduced at higher temperatures despite 

CO2 fertilization. 

The Anet of boreal species showed a different response to changes in climate factors than 

biomass. Anet was positively correlated with increases in CO2 concentration (P < 0.0001), 

but unaffected by growth temperature changes (Fig. 2.3a; Table 2.2). As with biomass, 

there was no effect of evergreen/deciduous leaf type, species, chamber type, or life stage 

suggesting that Anet exhibits the same response for all boreal trees in these studies. While 

the effect of CO2 concentration on Anet was strong, that of temperature was not 

significant, indicating that photosynthetic rates in boreal tree species were not affected by 

an increase in growth temperature, consistent with the discussion presented earlier in the 

paper (see section 2.2.1 Effects of warming on physiology). 

There were not enough data on the responses of photosynthetic capacity (either Vcmax or 

Jmax) to increased temperature for analysis, so all data were pooled into ambient or 

elevated CO2 concentration categories. Growth CO2 concentration significantly reduced 

Vcmax by ∼10% on average (i.e., down-regulation of photosynthetic capacity; Fig. 2.3b; 

Table 2.2), while Jmax was not significantly affected by either growth temperature or CO2 

concentration (Table 2.2). As my data show that Anet is stimulated by elevated CO2 

concentration, this down-regulation of Vcmax is generally more than compensated for by 

the direct effect of high CO2 concentrations on photosynthesis. Chamber type, 

evergreen/deciduous growth form, species, and life stage were not significant 
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components of any of the models. Thus, the balance between Vcmax and Jmax may decrease 

with elevated CO2 concentrations in boreal tree species, but the temperature (and 

temperature × CO2 concentration) response of Vcmax and Jmax remains unclear. 
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Figure 2.2. Effects of changes in growth temperature at either ambient (open boxes) 

or elevated CO2 concentrations (filled boxes) on the biomass response ratio in boreal 

tree species. Average level of CO2 concentration elevation was 316 ± 165 μmol mol-1 

(mean ± SD). Horizontal line indicates biomass response ratio = 1; N = 203 

measurements from 47 studies. Boxplots show temperature bins in 5 °C intervals, 

see text for details. Numbers associated with boxplots indicate sample size (N = 4–

44, N = 46 for 0 °C temperature change and ambient CO2 concentrations); boxplots 

indicate median, 25th, and 75th percentiles; whiskers indicate 10th and 90th 

percentiles.  
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Table 2.2. Summary of best general linear models for responses of biomass, net CO2 

assimilation rate (Anet), maximum Rubisco carboxylation rate (Vcmax), and 

maximum electron transport rate (Jmax) to changes in growth temperature and CO2 

concentrations according to Bayesian Information Criterion (BIC). 

  F 

Model 

P-value BIC TDay TNight CO2 Species 

Biomass F2,207 = 22.8 <0.0001 518 <0.001  <0.0001  
F3,206 = 16.0 <0.0001 521 <0.0005 0.151 <0.0001  

Anet F1,129 = 50.6 <0.0001 -9.27   <0.0001   
F2,128 = 25.3 <0.0001 -4.59 0.661  <0.0001  

Vcmax F1,32 = 20.1 <0.0001 -47.0    <0.0001   
F9,24 = 4.66 <0.005 -36.6     <0.0001 <0.05a  

Jmax F1,29 = 0.59 0.4496 -24.0   0.45   
F7,23 = 2.34 0.0582 -19.5    <0.05a  

Note: other parameters used in construction of the models were chamber type (open top 

chamber, whole tree chamber, greenhouse, growth chamber, open field), life stage 

(seedling, sapling, mature), evergreen/deciduous, broadleaf/needleleaf; these parameters 

did not appear in the best models. TDay, day temperature warming; TNight, night 

temperature warming; CO2, CO2 elevation. aPicea glauca and Pinus banksiana both had 

significant effects in the model, such that they responded differently than the other 

species.  
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Figure 2.3. (a) The effect of elevated CO2 concentrations on the response ratio of net 

CO2 assimilation rates (Anet) measured at growth levels of temperature and CO2 

concentration; N = 131 measurements from 29 studies. (b) The effect of elevated 

CO2 concentrations (excluding a CO2 elevation of 1670 μmol mol-1) on the response 

ratios for photosynthetic capacity (Vcmax) measured at growth temperature; N = 34 

from 15 studies. Filled circles represent elevated CO2 concentrations; open circles 

represent ambient CO2 concentrations. The solid horizontal lines indicate response 

ratio = 1.  
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2.5 Implications for boreal forests 

As the climate warms, the boreal treeline is expected to advance northward (Grace et al., 

2002) and forest NPP is projected to increase (Qian et al., 2010). My data suggest that 

boreal tree species do have the potential for positive physiological and growth responses 

to moderate combined increases in temperature and CO2 concentrations. However, forest 

responses to these climate factors may not be realistically predicted from these results if 

tree responses to rising CO2 and temperature are limited by water stress, nutrient 

availability, or photoperiod in the field. As discussed above, there is a positive correlation 

between warmer, earlier springs and drier growing seasons that can limit tree productivity 

(Buermann et al., 2013). A study on drought-induced mortality in North American boreal 

forests found that mortality rates have increased 2–5% since 1963 (Peng et al., 2011), 

reinforcing the message that water may be the primary limiting factor on forest 

productivity in the future. Recent evidence of asymmetry between positive spring growth 

responses and negative autumn growth responses to warming also point to the need to 

better understand the role of photoperiod in these forests. Lastly, the strong nutrient 

limitations seen on growth responses to elevated CO2 concentrations and temperature in 

Picea abies in whole-tree chambers indicate that small-scale studies are unlikely to 

capture the true environmental dynamics controlling growth in the field (Ryan, 2013; 

Sigurdsson et al., 2013). Low nutrient availability strongly limited photosynthesis and 

growth in high latitude Picea glauca as well: fertilizer addition enhanced growth at the 

treeline, but not in sites with warmer soils, likely due to reduced rates of nitrogen fixation 

by soil microbes in cold soils (McNown & Sullivan, 2013). 

The likelihood of negative responses to warming in the boreal is also borne out by remote 

sensing data and tree ring analyses. Widespread browning trends are evident in central 

boreal zones in North America, and greening is generally limited to the very northern 

edges of the ecosystem and is attributable to shrub expansion on the tundra (Goetz et al., 

2005; Verbyla, 2008; Beck et al., 2011). Dendrochronology work shows that these 

browning trends are common in dominant spruce species and in the warmest regions of 

species’ ranges, implying that elevated temperatures alone or warming-associated drying 

is responsible for tree declines (Lloyd & Bunn, 2007). 
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Understanding how key environmental limitations will affect boreal forests in coming 

decades is therefore a key to improving our ability to predict how northern forests will 

respond to climate change in coming decades. Most greenhouse and chamber 

experiments, like those analyzed here, provide ample water and nutrients, factors that are 

likely to limit photosynthetic and growth responses to warming and elevated CO2 in 

natural forest systems. To fully address how boreal forests will respond to a changing 

climate will therefore require a combination of (i) multifactor experiments manipulating 

CO2 concentrations and temperature along with nutrients and water supply; (ii) field 

experiments that address the role of CO2 concentrations and rising temperatures on tree 

performance under natural conditions; and (iii) better linkages between researchers who 

work on these experiments with those studying larger scale processes, such as the eddy 

flux, remote sensing, and modeling communities, to better guide research questions. 
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Chapter 3  

3 Autumn photosynthetic decline and growth cessation in 
seedlings of white spruce are decoupled under warming 
and photoperiod manipulations 

This article was published in a similar form in Plant, Cell & Environment (Stinziano & 

Way, 2017, “Autumn photosynthetic decline and growth cessation in seedlings of white 

spruce are decoupled under warming and photoperiod manipulations”, Plant, Cell & 

Environment 40(8), 1296–1316), and addresses Question 2 (how do temperature and day 

length interact in regulating autumnal photosynthesis and growth in a boreal conifer?) 

and Hypotheses 1 and 2 (1: boreal trees are limited in growth and photosynthesis by low 

temperatures; 2: day length, not temperature, drives seasonal changes in photosynthetic 

capacity in evergreen conifers) from Chapter 1. 

3.1 Introduction 

Global mean air temperature increases of up to 4.5 °C are predicted by the year 2100, but 

even greater warming is projected for mid to high northern latitudes (Collins et al., 2013). 

At these latitudes, evergreen conifers overwinter in a state of dormancy, which is 

associated with a reorganization of the photosynthetic apparatus, and a suppression of 

photosynthetic capacity (Öquist & Hüner, 2003). The physiological changes associated 

with preparing for winter dormancy are induced during the summer and autumn as 

temperatures drop and days become shorter (Hänninen & Tanino, 2011). Increasing 

temperatures could therefore delay the induction of dormancy in conifers, extending the 

period of growth in northern forests and increasing ecosystem-level carbon uptake 

(Stinziano & Way, 2014). Delays in autumn phenology due to recent warming in 

northern forests have already increased ecosystem carbon uptake, in agreement with 

expectations, though this effect is weakest in evergreen-dominated sites (Keenan et al., 

2014).  

While the projected impacts of moderate climate warming on northern temperate and 

boreal forests are often assumed to be positive, the effects of warming on northern 

conifers are mixed. Experimentally imposed elevated temperatures can increase 
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photosynthetic carbon uptake (Danby & Hik, 2007; Zhao & Liu, 2009; Hall et al., 2013; 

Deslauriers et al., 2014), allowing new shoots to reach the carbon break-even point 

sooner (Hall et al., 2009), maintain photosynthetic rates under short photoperiods 

(Stinziano et al., 2015; Hamilton et al., 2016), and stimulate growth (Danby & Hik, 2007; 

Yin et al., 2008; Zhao & Liu, 2009; Reich et al., 2015) or the length of the active 

growing season in conifers (Bronson et al., 2009; Hamilton et al., 2016). But warming 

can also suppress photosynthetic rates (Busch et al., 2007, 2008; Way & Sage, 2008a; 

Deslauriers et al., 2014) and growth (Kang et al., 1994; Way & Sage, 2008b; Reich et al., 

2015) in both young and mature northern conifers, and higher temperatures are correlated 

with increased tree mortality rates in boreal forest stands (Zhang et al., 2015a), which 

could lead to species range shifts at southern range limits where high temperatures may 

limit growth and survival. Lastly, in other cases, warming imposed on mature trees may 

have little or no effect on photosynthesis and growth (Slaney et al., 2007; Sigurdsson et 

al., 2013) due to nutrient limitations, particularly in boreal sites (Sigurdsson et al., 2013). 

Warming in autumn has been linked to decreases in net CO2 uptake in high latitude 

systems (Piao et al., 2008; Barichivich et al., 2013), a result attributed to the greater 

stimulation of respiration than of photosynthesis by high temperatures in autumn, which 

may be partly due to the low capacity of evergreen trees to thermally acclimate 

photosynthesis to elevated temperatures (Way & Yamori, 2014; Yamori et al., 2014). 

These results cast doubt on the notion that northern forests will necessarily become 

stronger carbon sinks as the climate warms. 

Despite these concerns, warming could still stimulate tree carbon uptake and growth in 

mid to high latitudes if it primarily relieves cold limitations during autumn on these 

processes, without suppressing carbon fixation and growth in the summer (Buermann et 

al., 2013). But plant phenology responds to photoperiod as well as temperature. Since 

photoperiod cues will not be affected by climate change, trees may experience a 

desynchronization between the temperature and day length cues that normally lead to the 

cessation of growth and the down-regulation of photosynthesis (Busch et al., 2007, 

2008). If photoperiod is a stronger regulator of these changes over the season than is 

temperature, then warming may have little effect on the length of the active growing 

season or the duration of active carbon uptake in northern forests (Chapter 2; Stinziano & 
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Way, 2014; Way & Montgomery, 2015). This effect could explain remote sensing data 

showing a decoupling between the end of the potential growing season, based on thermal 

conditions, and the end of the photosynthetically active season in the autumn in high 

latitude forests (Barichovich et al., 2013). 

Photoperiod is known to be a strong regulator of plant growth: increasing day lengths 

promote bud burst (Basler & Körner, 2012) and continued growth (Kramer, 1936; Downs 

& Borthwick, 1956), while declining day lengths in the autumn promote growth cessation 

and dormancy (Kramer, 1936; Heide, 1974; Öquist & Hüner, 2003; Hamilton et al., 

2016). However, temperature can also regulate growth cessation in conifers (Hänninen & 

Tanino, 2011), and the relative importance of photoperiod and temperature cues for 

inducing growth cessation varies by species (Delpierre et al., 2016). In Norway spruce 

(Picea abies (L.) H. Karst.) seedlings, low temperatures can induce shoot growth 

cessation (Dormling et al., 1968), while in white spruce (Picea glauca (Moench) Voss) 

this is modulated by short photoperiods (Hamilton et al., 2016). When photoperiod and 

temperature signals are conflicting, the coordination of the timing of growth cessation in 

roots and shoot tissues can become disrupted (Hamilton et al., 2016), as shoot tissue 

growth may be more strongly regulated by photoperiod, while root growth appears to be 

better correlated with temperature (Bigras & D’Aoust, 1993). 

There is also evidence that photoperiod may play a role in regulating photosynthesis. 

Photoperiod explained more seasonal variability in photosynthetic capacity (the 

maximum rate of Rubisco carboxylation, Vcmax, and the maximum rate of electron 

transport, Jmax) across 23 broadleaf deciduous tree species than did temperature, implying 

that the seasonal duration of carbon uptake would be unresponsive to warming (Bauerle 

et al., 2012). In the same study, red maple (Acer rubrum L.) exposed to longer 

photoperiods maintained a higher Vcmax than control trees (Bauerle et al., 2012). In 

agreement with these findings, warming had no effect on the autumn induction of 

photosynthetic down-regulation in Pinus sylvestris L. in a free air temperature experiment 

with natural photoperiod (Chang et al., 2015). Studies such as these that assess how 

changes in photoperiod or temperature affect photosynthetic dynamics often use large 

step-changes in photoperiod (e.g. Caspar et al., 1985; Öquist & Hüner, 1991; Busch et 
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al., 2007, 2008; Hamilton et al., 2016) or make monthly measurements of photosynthetic 

performance (e.g. Chang et al., 2015). However, detecting shifts in the timing of autumn 

photosynthetic down-regulation may require frequent measurements of plants 

experiencing ecologically realistic declines in photoperiod and temperature: when 

Norway spruce seedlings were exposed to weekly changes in photoperiod and 

temperature based on field conditions, a 4C warming treatment delayed the autumn 

down-regulation of photosynthesis (Stinziano et al., 2015), although all trees experienced 

the same photoperiods. The relative roles of temperature and photoperiod on 

photosynthetic capacity in evergreen conifers are therefore still unclear, and there is 

currently no proposed mechanism to explain how seasonal changes in photosynthetic 

capacity might be regulated by photoperiod.  

Changes in photosynthetic capacity over the growing season are underlain by changes in 

the relationships between leaf nitrogen, nitrogen investment in photosynthetic machinery, 

and realized photosynthetic capacity, which can be altered by enzyme activation states 

and other processes (Reich et al., 1991; Niinemets & Tenhunen, 1997; Wilson et al., 

2000). Work on the leaf economic spectrum has demonstrated strong correlations 

between photosynthetic rates and leaf nitrogen concentrations across a broad range of 

plants (Amundson et al., 1992; Reich et al., 1997; Wright et al., 2004; Zhang et al., 

2015b), and the correlation between photosynthetic capacity and both chlorophyll and 

nitrogen concentrations has been known for decades (e.g. Evans, 1989; Reich et al., 

1995). While these patterns hold across species, correlations between leaf nitrogen and 

photosynthesis are not constant within a species over a growing season (Reich et al., 

1991; Niinemets & Tenhunen, 1997), especially in evergreen conifers (Wilson et al.,  

2000). In seedlings of Norway spruce (Picea abies), photosynthetic capacity decreased 

sharply near the end of the growing season, although leaf nitrogen concentrations 

remained stable (Stinziano et al., 2015), and in a suite of deciduous temperate tree 

species, declines in photosynthetic capacity after the summer solstice were coupled with 

constant estimates of leaf greenness (Bauerle et al., 2012). Understanding how the 

relationships between photosynthetic capacity, chlorophyll, and leaf nitrogen change 

seasonally has implications for our ability to estimate carbon uptake from remote sensing 
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data, where photosynthetic activity is derived from spectral data by assuming 

relationships between light absorption by leaf pigments, leaf nitrogen concentrations and 

primary productivity (Gitelson et al., 2015; Park et al., 2016).  

In the present study, I measured the effects of realistically-based weekly changes in 

photoperiod and temperature on photosynthetic capacity, leaf biochemistry, and growth 

in seedlings of white spruce (Picea glauca), a dominant conifer in the North American 

boreal forest. My goals were to determine: 1) the relative importance of photoperiod and 

temperature in regulating autumn declines in photosynthetic capacity; 2) how leaf 

chlorophyll and nitrogen concentrations are correlated with photosynthetic capacity 

across a simulated autumn when temperature and photoperiod were manipulated; and 3) 

the effect of increases in temperature (and photoperiod) on biomass and growth. 

3.2 Materials and methods 

3.2.1 Plant material and growing conditions 

White spruce (Picea glauca (Moench) Voss) seeds from a southern provenance located 

near Belleville, Ontario (lat.: 44.216 N, long.: 77.133 W) were obtained from the 

Canadian National Tree Seed Centre. This seed lot was chosen because, while it still 

represents a broadly distributed boreal tree species, it has a relatively long growing 

season compared to more northerly provenances, allowing for a longer experiment to 

disentangle photoperiod and temperature effects. Seeds were moist-chilled for 21 days at 

3 °C and then planted in 2 L pots filled with PRO-MIX BX Mycorrhizae (Premier Tech 

Horticulture Rivière-du-Loup, QC, Canada) mixed with Miracle-GRO slow release 

fertilizer (as per product instructions, 12-4-8, Miracle-Gro, Marysville, OH, USA). 

Temperature and photoperiod conditions during the first 16 weeks of growth were based 

on summer solstice conditions for the provenance (based on ten-year historical averages 

for Trenton, ON, the closest Environment Canada climate data available for the seed lot), 

and seedlings were grown at a light intensity of 558 ± 122 μmol photons m-2 s-1 in four 

growth chambers (GCW15, Environmental Growth Chambers, Chagrin Falls, OH). 

Chambers were kept at 60% relative humidity, and pots were watered daily as needed to 

maintain moist growth medium. After 16 weeks, when the seedlings were large enough 
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(~15 cm tall) to measure gas exchange, four treatments were imposed. The control 

treatment consisted of weekly changes in temperature and photoperiod representing field 

conditions from the summer solstice to the week of October 8, where the photoperiod and 

day/night temperatures used were ten-year historical averages from the seed source site. 

The warming treatment was the same as the control treatment, except that the day/night 

temperatures were 5 °C warmer than the control treatment. The constant photoperiod 

treatment had the same weekly temperatures as the control treatment, but with a constant 

summer solstice photoperiod, and the constant temperature treatment had the same 

weekly photoperiod as the control and warming treatments, but with constant summer 

solstice day/night temperatures (Fig. 3.1). The experiment was run twice to obtain two 

independent replications (trial 1 & 2). Four seedlings per week per treatment per trial 

were randomly selected for gas exchange, biomass, and biochemical analyses.   
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Figure 3.1. The day/night temperatures (bounding the shaded region) and 

photoperiod (solid lines) treatments for white spruce (Picea glauca). All seedlings 

were grown under summer solstice temperature and photoperiod conditions for 16 

weeks; treatments began at week 0. (a) Control treatment, with day/night 

temperatures and photoperiod for the provenance; (b) warming treatment, with 

control treatment day/night temperatures +5 °C and control treatment photoperiod; 

(c) constant photoperiod treatment, with control treatment day/night temperatures 

and a constant summer solstice photoperiod; and (d) constant temperature 

treatment, with constant summer solstice day/night temperatures and control 

treatment weekly photoperiod. Note: temperature and photoperiod refer to the 

weekly temperature and photoperiod experienced by the seedlings, while treatment 

denotes the integrated temperature and photoperiod regimes (i.e. control, warming, 

constant photoperiod, and constant temperature).  
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3.2.2 Gas exchange measurements 

Gas exchange measurements were performed weekly (seven days after the weekly 

photoperiod/temperature condition was imposed in each treatment) using a portable 

photosynthesis system (Licor 6400XT, 6400-22L opaque conifer chamber and 6400-02B 

LED light source, Licor Biosciences, Lincoln, NE). The response of net CO2 assimilation 

rate (Anet) to intercellular CO2 concentrations (Ci) under saturating light intensity (1500 

μmol photons m-2 s-1) was measured by changing ambient CO2 concentrations 

sequentially (from 400, 200, 150, 100, 50, 400, 1500, 2000, and 2200 μmol mol-1 CO2) 

and holding leaf temperature at 25 °C and the vapor pressure deficit between 1.0 and 1.6 

kPa. The Anet-Ci curves were then used to calculate both the maximum rate of Rubisco 

carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) according to 

Farquhar et al. (1980). As Vcmax and Jmax were determined on a Ci basis, rather than on a 

chloroplastic CO2 basis or from in vitro assays, I refer to these parameters as apparent 

Vcmax and apparent Jmax. Leaf dark respiration (Rdark) was measured at 25 °C and a CO2 

concentration of 400 μmol mol-1 in the middle of the dark period (i.e. between 00:00 and 

03:00 hours) during the last three weeks of the experiment. 

Needles used for gas exchange were harvested and projected leaf area was measured by 

photographing the needles and analyzing the photographs using ImageJ (NIH, Bethesda, 

MD). A subsample of the needles was dried at 60 °C until constant mass, and weighed 

for dry mass to calculate specific leaf area (SLA); another subsample was immediately 

frozen in N2(l) and stored at -80 °C for biochemical analysis. Seedling height and stem 

diameter were measured, and the rest of the seedling was harvested, divided into leaves, 

stems and roots, and dried at 60 °C until constant mass for growth analysis. Leaf mass 

ratio, stem mass ratio and root mass ratios were calculated by dividing the dry mass of 

leaves, stems, and roots (respectively) by total biomass. 

3.2.3 Modeling of Vcmax, Anet, Rdark, and carbon gain 

Values for Vcmax at the growth temperature (growth Vcmax) of each treatment in each week 

were estimated from the weekly measured Vcmax at 25 C. The temperature dependency 

of Vcmax was modelled with an Arrhenius function (Medlyn et al., 2002): 
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f(Tg) =  k25 × exp [
Ea×(Tg−298)

(298×R×Tg)
]      Equation 3.1 

where Tg is growth temperature in Kelvin; R is the universal gas constant (8.314 J mol-1 

K-1); k25 is the measured parameter value at 25 °C, and Ea is the activation energy (64.8 

kJ mol-1; Badger & Collatz, 1977). 

Net CO2 assimilation rates (Anet) were also calculated for each week for each treatment. 

The Anet was assumed to be Rubisco limited and calculated using (Farquhar et al., 1980): 

Anet =  
Vcmax×(Ci−Γ∗)

[Ci+Kc(1+
Oi
Ko

)]
− Rday       Equation 3.2 

where Anet is in μmol CO2 m
-2 s-1, Oi is the intercellular O2 concentration (assumed to be 

210,000 µmol mol-1 based on an atmospheric pressure of 95.3 kPa and O2 concentration 

of 21%), and Ci is the intercellular CO2 concentration (set at 280 µmol mol-1, with an 

assumed Ci/Ca of 0.7 based on Farquhar & Wong, 1984). Values for Kc and Ko (the 

Michaelis-Menten constants for Rubisco carboxylation and oxygenation, respectively) 

and for the photorespiratory CO2 compensation point, Γ*, were calculated for each 

weekly growth temperature in each treatment. The Kc and Ko values were derived using 

Equation 3.1 with k25 values of 419 μmol mol-1 for Kc and 381 mmol mol-1 for Ko (Jordan 

& Ogren, 1981, 1984) and Ea values of 81,655 kJ mol-1 and 15,632 kJ mol-1 for Kc and 

Ko, respectively (Jordan & Ogren, 1981,1984). The temperature dependency of Γ* was 

modelled according to Yamori et al. (2006): 

Γ∗ = 0.0021 ∗ (Tg − 273.15)
3

− 0.1083 ∗ (Tg − 273.15)
2

+ 2.5821 ∗ (Tg −

273.15) + 9.837         Equation 3.3 

Rday, mitochondrial respiration in the light, was calculated as described below. 

Weekly measured Rdark values at 25 C were temperature-acclimated using (Atkin & 

Tjoelker, 2003): 

Q10 = 3.09 − 0.043 × Tavg       Equation 3.4 
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where the thermal sensitivity coefficient, Q10, was determined for each week based on 

Tavg, the average daily temperature for that week in each treatment. The measured Rdark 

was then temperature-scaled to the nightly temperatures (Tnight) for each week in each 

treatment according to Atkin & Tjoelker (2003): 

Rnight = 10
[

Tnight−25

10
×log Q10+log R25]

      Equation 3.5 

where Rnight is Rdark at Tnight (in μmol CO2 m
-2 s-1), and R25 is the treatment-specific dark 

respiration rate at 25 C. Leaf respiration during the day (Rday) was assumed to be 0.7 

times Rdark (Ayub et al., 2011), but calculated with daytime temperatures (Tday) instead of 

Tnight in Equation 3.5. 

I modelled the weekly carbon gain of seedling tissues for each seedling as: 

Weekly carbon gain =
Anet∗DL−Rnight∗NL

1,000,000 μmol  mol CO2
−1 ∗ 7 days week−1 ∗

12.01 g carbon mol CO2
−1 ∗ LA −  

Rroot,day∗DL−Rroot,night∗NL

1,000,000 μmol  mol CO2
−1 ∗ 7 days week−1 ∗

12.01 g carbon mol CO2
−1 ∗ Root mass     Equation 3.6 

where weekly carbon gain is in g carbon; DL and NL are day length and night length per 

day in seconds, respectively; dividing by 1,000,000 converts Anet, Rnight and Rroot from 

μmol to mol; the constant 7 converts daily carbon gain into a weekly value; 12.01 

converts carbon gain from mol CO2 to g C; and LA is seedling leaf area in m-2; Rroot, day 

and Rroot, night are root respiration rates during the day and night, respectively, with a rate 

of 0.02948 μmol CO2 g
-1 s-1 at 23.5 °C (Reich et al., 1998) scaled to growth temperatures 

with the leaf Q10; root mass is in g dry mass. I then summed weekly carbon gain across 

the experiment to obtain cumulative net carbon gain. I estimated a 1:1 relationship 

between measured dry biomass and cumulative net carbon gained by assuming that dry 

biomass is 50% carbon to determine whether differences in modeled cumulative net 

carbon gain explained differences in measured dry biomass. 
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3.2.4 Carbon, nitrogen and chlorophyll analysis 

Dried needles were ground using a Wiley mill, and analyzed for % carbon and % 

nitrogen (Thermo Finnigan Delta Plus XL continuous flow mass spectrometer, Thermo 

Fisher Scientific, Waltham, MA, USA). Frozen needle samples were ground in N2(l), and 

chlorophylls and carotenoids were extracted in 100% methanol under dim light at 4 °C 

for 2 h, followed by two more extractions with 100% methanol for 15 min each, with 

each extraction followed by centrifugation for 5 min at 16,100 x g (protocol modified 

from Busch et al., 2007). Chlorophyll a and b, and total carotenoid concentrations were 

determined using a spectrophotometer (Varian Cary 50 UV-Vis Spectrophotometer, 

Agilent Technologies, Inc., Santa Clara, CA, USA) according to equations in Wellburn 

(1994).   

3.2.5 Rubisco quantification and immunoblotting 

To determine whether Rubisco concentrations correlated with the observed patterns in 

Vcmax, Rubisco was quantified for a subset of weeks for each treatment (weeks 0, 5, 9, 13, 

and 17), with two individuals randomly selected from each trial for each chosen week 

(for a total of four individuals/week). Frozen leaf tissue was ground in N2(l), and proteins 

were extracted by grinding in 2 ml of 4% (w/v) sodium dodecyl sulfate containing 3 mg 

ml-1 dithiothreitol per 1 cm2 of leaf tissue using a Ten-Broeck glass homogenizer. Crude 

extracts were heated at 95 °C for 5 minutes then diluted two-fold with loading buffer 

containing 4% (w/v) sodium dodecyl sulfate, 0.3 M Trizma base and bromophenol blue 

dye prior to sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins from 

crude extracts were separated on 12.5% (w/v) polyacrylamide gels using sodium dodecyl 

sulfate polyacrylamide gel electrophoresis in a protocol modified from Laemmli (1970). 

Proteins were electrotransferred for 1 h at 100 V onto nitrocellulose membranes, which 

were then blocked with milk powder in Trizma-buffered saline followed by three 5 

minute washes of Trizma-buffered saline. Rabbit primary antibodies toward the Rubisco 

large subunit (donated by NPA Hüner) were diluted to 1:5000 and used to incubate 

blocked membranes for 1 h followed by four 10 minute washes in Trizma-buffered 

saline. Secondary goat antibodies toward rabbit proteins conjugated to horseradish 

protein (A6154, Sigma-Aldrich, Oakville, ON, Canada) were diluted 1:5000, and 
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incubated with the membrane for 1 h, followed by four 10 minute washes in Trizma-

buffered saline. Enhanced chemiluminescence reagent (RPN2109, GE Life Sciences, 

Mississauga, ON, Canada) was used to detect horseradish peroxidase antibodies on film. 

Rubisco large subunit standard (AS01 017S, Agrisera, Vännäs, Sweden) was used to 

create a standard curve to quantify Rubisco on each immunoblot. Immunoblot bands 

were quantified against the Rubisco standard curve using ImageJ (NIH, Bethesda, MD, 

USA; Appendix A; Fig. A.1). 

3.2.6 Statistical analyses 

Data were analyzed in R GUI Version 3.0.2 (R Core Development Team, 2013). To test 

for responses to photoperiod and temperature, as well as treatment effects, ANOVA 

models were used to test for effects of weekly photoperiod, weekly temperature, 

treatment, week, trial, and all relevant interactions, treating each variable as a fixed 

effect. ANOVA models with the lowest Bayesian Information Criterion (BIC) were 

selected for final interpretation. To meet the ANOVA model assumptions, ratio and 

compositional data were log10-transformed according to Aitchison (1986), however these 

data are presented in untransformed units. P-values from ANOVA outputs were adjusted 

for control of family-wise error rates using the Holm method, which gives more power 

than a standard Bonferroni correction (Holm, 1979).  

Correlations between Vcmax and Jmax with weekly growth temperature and photoperiod 

were calculated using data from the control, constant photoperiod, and constant 

temperature treatments, with means and standard errors calculated for each unique 

photoperiod and temperature. The warming treatment was excluded from this analysis to 

maintain a balanced design of equal data points with manipulated temperature or 

photoperiod in each week. Values of Rdark were analyzed using a two-way ANOVA to 

test the effects of week and treatment. Biomass data were also analyzed using an 

ANOVA to test for the effects of treatment and trial and either accumulated temperature 

sum (calculated as the number of degrees Celsius above 0 °C times the number of days) 

or irradiance (calculated as the number of hours of accumulated light based on the 

photoperiod). Rubisco concentrations were analyzed using an ANOVA testing the effects 

of treatment along with time, Vcmax, and nitrogen concentration. Rubisco concentrations 
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on week 0 were tested for differences using an ANOVA for treatment effects. Curve 

fitting was performed using SigmaPlot Version 11.0 (Systat Software Inc., California, 

USA). Data are presented as means ± s.e.m. (standard error of the mean). 

3.3 Results 

White spruce seedlings were exposed to changing weekly temperature and photoperiod 

regimes in the following treatment combinations: control changes in temperature and 

photoperiod (control), 5 °C warming with control changes in photoperiod (warming), 

control changes in temperature with constant summer solstice photoperiod (constant 

photoperiod), and constant summer solstice temperature with control changes in 

photoperiod (constant temperature). The control and constant photoperiod treatments had 

a common temperature regime, while the warming and constant temperature treatments 

both represent elevated temperature treatments. 

3.3.1 Photosynthetic capacity is maintained under warmer 
temperatures at low photoperiods, but respiration is 
stimulated by long photoperiods 

Both apparent Vcmax and Jmax changed over the experiment in all treatments (Week; P < 

0.001; Table 3.1). Photosynthetic capacity peaked in the control and constant photoperiod 

treatments near week 13, but plateaued or continued to increase at short photoperiods in 

the treatments with elevated temperatures (warming and constant temperature treatments) 

(Table 3.1; Fig. 3.2). Apparent Vcmax and Jmax were higher in the warming and constant 

temperature treatments than in the control and constant photoperiod treatments 

(treatment; P < 0.001; Table 3.1) due to high photosynthetic capacity late in the 

experiment. There was a linear relationship between apparent Vcmax and Jmax across all 

treatments (P < 0.001; R2 = 0.86; Fig. 3.3), with a slope of 1.96, indicating that a high 

apparent Vcmax was associated with even higher apparent Jmax. This resulted in effects of 

treatment (P < 0.0001), week (P < 0.0005), and a treatment x week interaction on the 

ratio of apparent Jmax:apparent Vcmax (P < 0.05; Table 3.1), as the ratio was highest in the 

treatments and weeks where apparent Vcmax was high. Photosynthetic capacity was 

significantly correlated with both photoperiod and temperature across the pooled data 

from the control, constant temperature and constant photoperiod treatments (P < 0.0001 
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for both; Fig. 3.4), although the relationship was stronger for photoperiod than for 

temperature. 
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Table 3.1. ANOVA of photosynthetic responses of Picea glauca to different autumn temperature and photoperiod regimes.  

    Vcmax Jmax 

Jmax : 

Vcmax Rdark LMA 

Nitrogen 

conc. 

Rubisco 

conc. 

Vcmax / 

nitrogen 

conc. 

Vcmax / 

Rubisco 

conc. 

Temperature df 1,563 1,562 1,560         1,563   

F 5.24 3.89 0.77     107.63  

P 0.07 0.10 0.38         <0.0001   

Photoperiod df 1,563 1,562 1,560     1,565   1,563   

F 216.64 207.62 3.29   20.98  3.28  
P <0.0001 <0.0001 0.0340    <0.0001   0.34   

Trial df 1,563 1,562 1,560  1,566 1,565   1,563   

F 10.69 4.83 0.12  47,37 0.01  1.20  
P 0.0091 0.20 1.00  <0.0001 1.00   1.00   

Treatment df 3,563 3,562 3,560 3,40 3,566 3,565 3,72 3,563 3,72 

F 22.67 24.27 12.20 17.0 8.07 4.95 0.18 2.96 0.20 

P <0.0001 <0.0001 <0.0001 <0.0001 0.0003 0.0170 1.00 0.16 1.00 

Week df 1,563 1,562 1,560 1,40 1,566 1,565 1,72 1,563 1,72 

F 80.45 109.98 16.31 2.41 438.70 4.41 16.08 31.74 0.13 

P <0.0001 <0.0001 0.0003 0.128 <0.0001 0.11 0.0006 <0.0001 1.0000 

Temperature 

x 

Photoperiod 

df 1,563 1,562 1,560        1,563   

F 20.54 29.65 7.85     11.27  
P <0.0001 <0.0001 0.0053        0.0025   

Temperature 

x Trial 
df              1,563   

F        9.35  
P              0.0094   
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Photoperiod 

x Trial 
df 1,563 1,562              

F 27.34 23.47        
P <0.0001 <0.0001              

Treatment x 

Week 
df 3,563 3,562 3,560 3,40     1,72   3,72 

F 3.11 4.23 4.33 0.26   16.36  7.26 

P 0.0602 0.0248 0.0248 0.857     0.0602   0.0020 

Treatment x 

Trial 
df     3,560  3,566 3,565   3,563   

F   6.59  7.27 10.03  4.50  

P     0.0015  0.0007 <0.0001   0.0157   

Week x Trial df   1,562 1,560  1,566 1,565       

F  7.27 4.81  74.38 22.03    

P   0.0289 0.09  <0.0001 <0.0001       

Treatment x 

Week x Trial 
df                  

F          
P                  

BIC   4416 5270 -1542 150 6280 -740 1090 -400 453 

Vcmax, apparent maximum rate of Rubisco carboxylation; Jmax, apparent maximum rate of electron transport; Rdark, dark respiration; 

LMA, leaf mass area; conc., concentration. Significant P-values are bolded (P < 0.05). Note that temperature and photoperiod refer to 

the weekly temperature and photoperiod experienced by the seedlings, while treatment denotes the integrated temperature and 

photoperiod regimes (i.e. control, warming, constant photoperiod and constant temperature).
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Figure 3.2. Apparent maximum Rubisco carboxylation (apparent Vcmax) and 

apparent maximum electron transport rates (apparent Jmax) across time since the 

beginning of the experiment. Data presented as means ± s.e.m. (of total number of 

individuals, N = 8). N = 4 seedlings per chamber and two chambers per point. 

Regression equations: (a) Vcmax = 18.2 + 6.1 × week − 0.3 × week2, R2 = 0.43, P < 

0.0001; (b) Vcmax = 35.2 + 1.9 × week, R2 = 0.48, P < 0.0001; (c) Vcmax = 23.8 + 4.1 × 

week − 0.2 × week2, R2 = 0.23, P < 0.0001; (d) Vcmax = 25.0 + 2.0 × week, R2 = 0.47, P 

< 0.0001; (e) Jmax = 28.0 + 14.6 × week – 0.7 × week2, R2 = 0.45, P < 0.0001; (f) Jmax = 

46.4 + 3.8 × week, R2 = 0.44, P < 0.0001; (g) Jmax = 39.6 + 9.6 × week − 0.5 × week2, 

R2 = 0.29, P < 0.0001; (h) Jmax = 49.2 + 4.1 × week, R2 = 0.49, P < 0.0001.  
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Figure 3.3. Correlation between apparent maximum rates of Rubisco carboxylation 

(Vcmax) and electron transport (Jmax) rates. Data presented as means ± s.e.m. N = 8 

(four seedlings per chamber and two chambers per point). Regression equation: Jmax 

= 1.96 × Vcmax − 0.59, R2 = 0.86, P < 0.0001. 
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Figure 3.4. The apparent maximum rates of Rubisco carboxylation rate (apparent 

Vcmax, a, b) and electron transport (apparent Jmax, c, d) correlated to photoperiod 

and temperature across the control, constant photoperiod and constant temperature 

treatments. Data presented as means ± s.e.m. N = 16 (for a and c: four seedlings per 

chamber, two chambers per treatment and two treatments per point, except at the 

highest photoperiod, which includes all seedlings in the constant photoperiod 

treatment so that N = 144; for b and d: four seedlings per chamber, two chambers 

per treatment and up to two treatments per point, except for week 0, which includes 

all seedlings from the constant temperature treatment). Regression equations: (a) 

Vcmax = −231.7 + 44.6 × photoperiod − 1.8 × photoperiod2 (peak Vcmax at 12.4 hr 

photoperiod); (b) Vcmax = −75.4 + 11.5 × temperature − 0.3 × temperature2 (peak 

Vcmax at 19.2 °C); (c) Jmax = −705.4 + 125.7 × photoperiod − 4.9 × photoperiod2 (peak 

Jmax at 12.8 hr photoperiod); (d) Jmax = −212.8 + 28.8 × temperature − 0.7 × 

temperature2 (peak Jmax at 20.6 °C).  
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When the apparent Vcmax was scaled to reflect the weekly growth temperatures (growth 

Vcmax; Fig. 3.5; Table 3.2), the pattern of Vcmax over time was similar in the control and 

constant photoperiod treatments, but there was a delayed decline in Vcmax in the warming 

seedlings, and a maintenance of Vcmax in the constant temperature treatment. Modelled 

Anet at growth temperatures diverged between treatments at the end of the experiment, 

with a higher Anet in the elevated temperature treatments relative to the control and 

constant photoperiod treatments (Fig. 3.5, Table 3.2). 
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Figure 3.5. Apparent maximum rates of Rubisco carboxylation (Growth Vcmax; a, b, 

c, d) and net CO2 assimilation rates (Growth Anet; e, f, g, h) modelled under weekly 

growth temperatures for the control (a, e), warming (b, f), constant photoperiod (c, 

g), and constant temperature (d, h) treatments. Data presented as means ± s.e.m. 

N = 8 (four seedlings per chamber and two chambers per point). 
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Table 3.2. ANOVA of photosynthetic and respiratory responses of Picea glauca to different autumn temperature and 

photoperiod regimes at their respective growth temperatures along with modelled weekly and cumulative carbon gain. 

    Growth Vcmax Growth Anet Night Rdark 

Weekly Net 

Carbon Gain 

Net Cumulative 

Carbon Gain 

Temperature df 1,565 1,561  1,557 1,555 

F 20.2 15.5  46.85 3426 

P <0.0001 <0.0001  <0.0001 <0.0001 

Photoperiod df 1,565 1,561  1,557 1,555 

F 87.3 27.4  9.38 1183 

P <0.0001 <0.0001  0.064 <0.0001 

Trial df 1,565 1,561  1,557 1,555 

F 5.62 6.88  86.45 888 

P 0.018 0.0090  <0.0001 <0.0001 

Treatment df 3,565 3,561 3,40 3,557 3,555 

F 39.1 19.9 28.32 10.72 195 

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Week df 1,565 1,561 1,40 1,557 1,555 

F 7.50 0.007 0.026 100.079 1230 

P 0.0064 0.93 0.873 <0.0001 <0.0001 

Temperature x Photoperiod df  1,561  1,557 1,555 

F  35.4  19.90 13.46 

P  <0.0001  0.0002 0.0075 

Temperature x Trial df  1,561  1,557 1,555 

F  1.39  1.16 294 

P  0.24  0.99 <0.0001 
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Photoperiod x Trial df  1,561  1,557 1,555 

F  0.034  0.09 129 

P  0.85  0.99 <0.0001 

Treatment x Week df 3,565 3,561 3,40 3,557 3,555 

F 20.82 12.2 1.35 3.99 82.03 

P <0.0001 <0.0001 0.273 0.22 <0.0001 

Treatment x Trial df    3,557 3,555 

 F    5.33 114 

 P    0.0017 <0.0001 

Week x Trial df    3,557 1,555 

F    7.51 34.92 

P    0.60 <0.0001 

Treatment x Week x Trial df     3,555 

F     12.20 

P     <0.0001 

Temperature x Photoperiod x Trial df  1,561  1,557  

F  4.08  9.01  

P  0.44  0.079  

BIC  4753 3082 -32 1298 2407 

Growth Vcmax: apparent maximum rate of Rubisco carboxylation at growth temperature; Growth Anet: net CO2 assimilation rate at 

growth temperature; Night Rdark: dark respiration at night time growth temperature. Significant P-values are bolded (P < 0.05). Note: 

temperature and photoperiod refer to the weekly temperature and photoperiod experienced by the seedlings, while treatment denotes 

the integrated temperature and photoperiod regimes (i.e. control, warming, constant photoperiod, and constant temperature). 
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Leaf Rdark did not vary with time (P > 0.05). Averaged over the three measured weeks, 

Rdark in the control, warming and constant temperature seedlings was 2.64 ± 0.08 µmol m-

2 s-1, but Rdark was 79% greater than this in the constant photoperiod seedlings (4.73 ± 

0.44 µmol m-2 s-1) (P < 0.0001; Table 3.1). When Rdark was scaled to the growth 

temperatures, there were still no effects of time (P > 0.05, Table 3.2), but control 

seedlings had lower Rdark (0.34 ± 0.02 µmol m-2 s-1) and constant temperature seedlings 

had higher Rdark (0.84 ± 0.04 µmol m-2 s-1) than the constant photoperiod (0.59 ± 0.05 

µmol m-2 s-1) and warming (0.54 ± 0.03 µmol m-2 s-1) treatment seedlings. 

3.3.2 Foliar nitrogen did not change over time, while pigment 
concentrations increased  

Mass-based foliar nitrogen concentrations did not respond to time (week, P > 0.1; Table 

3.1; Fig. 3.6), and nitrogen concentration was slightly higher in the constant temperature 

treatment than in the other treatments (treatment, P < 0.05; Table 3.1). The leaf mass area 

(LMA) increased over time in all treatments (week, P < 0.0001; Table 3.1; Fig. 3.6) and 

seedlings from the constant temperature treatment generally had higher LMA than those 

from other treatments (P < 0.0005; Table 3.1). Because LMA increased over time, the 

constant mass-based nitrogen concentration translates to an increase in N per unit leaf 

area over the experiment in all treatments (data not shown).  
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Figure 3.6. Foliar nitrogen concentrations, chlorophyll a and b concentrations (Chl 

a and b), carotenoid concentrations (Car), and leaf mass area (LMA) across time for 

the control (a, e, i, m, q), warming (b, f, j, n, r), constant photoperiod (c, g, k, o, s), 

and constant temperature (d, h, l, p, t) treatments. Data presented as means ± s.e.m. 

N = 8 (4 seedlings per chamber and 2 chambers per point). 
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Mass–based Chl a, Chl b, and carotenoid concentrations increased over time in all 

treatments (week, P < 0.0001; Table 3.3; Fig. 3.6), and were lower in the constant 

photoperiod treatment relative to other treatments (treatment, P < 0.0001), leading to 

significant effects of photoperiod and temperature on pigment concentrations (P < 0.0001 

for all; Fig. 3.6). Although there were significant effects of trial on pigment 

concentrations, due to lower Chl a and carotenoid concentrations in trial 2, and higher 

Chl b concentrations toward the end of the experiment in trial 1 (Table 3.3), all pigments 

increased in concentration over time in both trials (P < 0.05, Table 3.3; Fig. 3.6). The Chl 

a:Chl b ratio was constant (4.4 ± 0.1) across weeks and treatments (P > 0.05 for both; 

Table 3.3). 
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Table 3.3. ANOVA of photosynthetic pigment responses of Picea glauca to different autumn temperature and photoperiod 

regimes. 

    [Chl a] [Chl b] Chl a : Chl b [Car] Jmax / [Total Chl] 

Temperature df 1,563 1,562   1,563 1,557 

F 69.94 54.76  73.41 7.09 

P <0.0001 <0.0001   <0.0001 0.0320 

Photoperiod df 1,563 1,562   1,563 1,557 

F 181.66 168.00  171.99 0.19 

P <0.0001 <0.0001   <0.0001 0.66 

Trial df 1,563 1,562 1,560 1,563 1,557 

F 258.58 67.05 8119.81 790.37 89.58 

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Treatment df 3,563 3,562 3,560 3,563 3,557 

F 20.84 14.05 3.50 25.67 2.19 

P <0.0001 <0.0001 0.0918 <0.0001 0.27 

Week df 1,563 1,562 1,560 1,563 1,557 

F 56.32 29.12 0.10 57.15 192.52 

P <0.0001 <0.0001 1.00 <0.0001 <0.0001 

Temperature x Photoperiod df           

F      

P           

Temperature x Trial df   1,562       

F  7.94    
P   0.010       

Photoperiod x Trial df 1,563 1,562   1,563 1,557 
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F 16.05 53.75  5.14 4.30 

P 0.0002 <0.0001   0.0480 0.0480 

Treatment x Week df     3,560     

F   6.08   
P     0.0031     

Treatment x Trial df 3,563 3,562 3,560 3,563 3,557 

F 16.44 12.11 6.59 19.62 0.70 

P <0.0001 <0.0001 0.0015 <0.0001 0.5500 

Week x Trial df 1,563 1,562 1,560 1,563   

F 9.00 9.29 4.52 12.00  
P 0.0145 0.0145 0.09 0.0040   

Treatment x Week x Trial df     3,560   3,557 

F   5.00  3.56 

P     0.0039   0.0140 

BIC   8437 6963 -1225 6773 -377 

[Chl a]: chlorophyll a concentration; [Chl b]: chlorophyll b concentration; [Car]: carotenoid concentration. Significant P-values are 

bolded (P < 0.05). Note: temperature and photoperiod refer to the weekly temperature and photoperiod experienced by the seedlings, 

while treatment denotes the integrated temperature and photoperiod regimes (i.e. control, warming, constant photoperiod, and constant 

temperature).
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3.3.3 Declines in photosynthetic capacity were associated with 
changes in nitrogen allocation 

The ratio of apparent Vcmax to nitrogen concentration (an indication of the investment of 

N in Rubisco carboxylation) declined over time (P < 0.0001), an effect driven by the 

trends in the control and constant photoperiod treatments, with no significant effects of 

photoperiod, trial or treatment (P > 0.05) (Table 3.1; Fig. 3.7). There was a significant 

effect of temperature (P < 0.0001) and a temperature × photoperiod interaction (P < 

0.005) on the ratio of apparent Vcmax to nitrogen concentration, indicating that high 

growth temperatures, even under short photoperiods, maintain a high apparent 

Vcmax/nitrogen concentration ratio (Table 3.1; Fig. 3.7). In contrast, the ratio of apparent 

Jmax/[total Chl] (an indication of electron transport capacity relative to light capture, such 

that a decrease would suggest increased energy dissipation) declined in a similar manner 

across time in all treatments (week, P < 0.0001; treatment, P = 0.27; Table 3.3; Fig. 3.7). 
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Figure 3.7. Apparent Vcmax on a nitrogen-basis (Vcmax /N; a, b, c, d) and apparent Jmax on a chlorophyll-basis (Jmax/total Chl; e, 

f, g, h) across time for the control (a, e), warming (b, f), constant photoperiod (c, g), and constant temperature (d, h) 

treatments. Data presented as means ± s.e.m. N = 8 (4 seedlings per chamber and 2 chambers per point).
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3.3.4 Decreases in apparent Vcmax were associated with increases 
in Rubisco 

Initial Rubisco concentrations (at week 0) did not differ among treatments (F3,12 = 2.19, P 

= 0.142) and while Rubisco concentrations generally increased over time (week, P < 

0.001; Table 3.1), this was driven by increases in Rubisco concentration in the control 

and constant photoperiod treatments (Fig. 3.8), which both experienced control 

temperatures. Rubisco concentration was not correlated with Vcmax (P = 0.20; Fig. 3.8; 

Table 3.4). However, when the Rubisco-Vcmax relationship was examined through time, 

there was an initial linear relationship between Vcmax and Rubisco concentration in the 

two control temperature treatments (control and constant photoperiod treatments) that 

was disrupted late in the experiment when weekly day/night temperatures dropped to 

12.7/3.7 C; this trajectory was not seen in the elevated temperature treatments (Fig. 3.8). 

Rubisco concentration was correlated with nitrogen concentration across the entire data 

set (P < 0.001; Table 3.4), a relationship also driven by correlations between Rubisco 

concentrations and nitrogen concentrations in the control and constant photoperiod 

treatments (P = 0.028; Table 3.4; Fig. 3.8), but not in the treatments with elevated growth 

temperatures. 
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Figure 3.8. Rubisco concentrations versus (a, d, g, j) time, b, e, h, k) apparent Vcmax 

and (c, f, i, l) leaf N for the control (a, b, c), warming (d, e, f), constant photoperiod 

(g, h, i) and constant temperature (j, k, l) treatments. Rubisco content is significantly 
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correlated with: time in a) R2 = 0.38, P < 0.005 and b) R2 = 0.42, P < 0.005 and 

nitrogen in g) R2 = 0.69, P < 0.001 and i) R2 = 0.24, P < 0.05. Dashed grey lines 

indicate means, and vectors in b) and h) indicate time to illustrate the relationship 

between Rubisco and Vcmax over the experiment. Data presented as means ± s.e.m. N 

= 4 seedlings per point (2 seedlings per chamber and 2 chambers per point).  
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Table 3.4. ANOVA of Rubisco concentrations as a function of foliar nitrogen 

concentration or maximum Rubisco carboxylation rate (Vcmax) across treatments. 

Significant P-values are bolded (P < 0.05). 

  

Rubisco 

concentration 

vs. nitrogen 

concentration 

Rubisco 

concentration 

vs. Vcmax 

(Vcmax or nitrogen 

concentration) 
df 1,72 1,72 

 F 16.4 1.64 
 P 0.0001 0.2 

Treatment df 3,72 3,72 
 F 0.18 0.13 
 P 0.91 0.94 

(Vcmax or nitrogen 

concentration) * 

Treatment 

df 3,72 3,72 

 F 3.22 0.38 
 P 0.028 0.77 

BIC  1089 1111 
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3.3.5 Biomass accumulation responds to photoperiod, not 
temperature 

Seedlings in the constant photoperiod treatment had significantly higher biomass (43.5 ± 

5.3 g) and height (28.7 ± 6.0 cm) by the end of the experiment than those in the control 

(30.0 ± 6.5 g, 20.8 ± 3.9 cm) and warming treatments (26.7 ± 5.1 g, 20.7 ± 4.4 cm), while 

seedlings from the constant temperature treatment were smaller and shorter than all other 

treatments (24.5 ± 4.0 g, 18.1 ± 1.6 cm) (treatment; P < 0.001; Table 3.5; Figs. 3.9a-d,i-

l). Despite differences in growth trajectory, allocation to leaves and roots was consistent 

across treatments over time (P > 0.5; Table 3.5, Figs. 3.9e-h). Allocation to stems 

significantly varied between treatments (Table 3.5), but this was due to small variance 

around the means and not considerable variation in stem mass ratio (SMR; 0.199 ± 0.004, 

0.189 ± 0.003, 0.206 ± 0.004, 0.202 ± 0.004 for the control, warming, constant 

photoperiod, and constant temperature seedlings, respectively). When biomass was 

plotted against either accumulated temperature sums or accumulated irradiance, the 

constant photoperiod treatment seedlings had significantly faster growth compared to 

other treatments (P < 0.0001; Table 3.6; Fig. 3.10). This indicates that the constant 

photoperiod treatment seedlings were not larger because they had more hours of light to 

photosynthesize, a result that also held when the last two weeks of growth (where 

seedling biomass increased considerably in the constant photoperiod treatment) were 

omitted from the analysis (data not shown). In contrast, the warming treatment had the 

lowest growth rate of all treatments, a response that occurred even before the seedlings 

accumulated a greater temperature sum than the other treatments (Table 3.6, Fig. 3.10).  



138 

 

Table 3.5. ANOVA for leaf mass ratio (LMR), stem mass ratio (SMR), root mass ratio (RMR), and seedling height (H). 

Parameter   Biomass LMR SMR RMR H 

Week df 1,560 1,560 1,566 1,560 1,560 

 F 424.58 686 113 371 47.8 

 P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Treatment df 3,560 3,560 3,566 3,560 3,560 

 F 23.27 0.762 4.56 0.716 13.7 

 P <0.0001 0.52 0.0036 0.54 <0.0001 

Trial df 1,560 1,560 1,566 1,560 1,560 

 F 42.73 38.3 2.6 27.4 611 

 P <0.0001 <0.0001 0.11 <0.0001 <0.0001 

Week * Treatment df 3,560 3,560  3,560 3,560 

 F 16.11 8.26  5.14 4.42 

 P <0.0001 <0.0001  0.0016 0.0044 

Week * Trial df 1,560 1,560 1,566 1,560 1,560 

 F 0.31 1.63 10.5 0.186 47.8 

 P 0.58 0.2 0.0013 0.67 <0.0001 

Treatment * Trial df 3,560 3,560 3,566 3,560 3,560 

 F 24.92 0.467 4.15 1.19 14.7 

 P <0.0001 0.71 0.0064 0.31 <0.0001 

Week * Treatment * Trial df 3,560 3,560  3,560 3,560 

 F 15.08 8  7.42 4.65 

 P <0.0001 <0.0001  <0.0001 0.0032 

BIC   4326 -1136 -1973 -1048 3735 
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Significant P-values are bolded (P < 0.05). Note: temperature and photoperiod refer to the weekly temperature and photoperiod 

experienced by the seedlings, while treatment denotes the integrated temperature and photoperiod regimes (i.e. control, warming, 

constant photoperiod, and constant temperature). 
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Figure 3.9. Weekly changes in (a, b, c, d) biomass, (i, j, k, l) height, (e, f, g, h) leaf mass ratio (LMR), stem mass ratio (SMR), 

and root mass ratio (RMR) for the control (a, e, i), warming (b, f, j), constant photoperiod (c, g, k), and constant temperature 

(d, h, l) treatments. N = 8 (4 seedlings per chamber and 2 chambers per point). 
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Table 3.6. ANOVA of biomass as a function of accumulated irradiance or degree 

days across treatments. Significant P-values are bolded (P < 0.05). 

Parameter   

Biomass vs. 

Irradiance Biomass vs. Degree Days 

Irradiance or Degree Days df 1,560 1,560 

 F 624 534 

  P <0.0001 <0.0001 

Treatment df 3,560 3,560 

 F 23.7 53.7 

  P <0.0001 <0.0001 

Trial df 1,560 1,560 

 F 176 176 

  P <0.0001 <0.0001 

(Irradiance or Degree Days) * 

Treatment 

  

df 3,560 3,560 

F 7.72 9 

P <0.0001 <0.0001 

(Irradiance or Degree Days) * 

Trial 

  

df 1,560 1,560 

F 20.8 11.3 

P <0.0001 0.0008 

Treatment * Trial df 3,560 3,560 

 F 29.6 32.1 

  P <0.0001 <0.0001 

(Irradiance or Degree Days) * 

Treatment * Trial 

  

df 3,560 3,560 

F 5.1 5.85 

P 0.0017 0.0006 

BIC   1078 1076 
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Figure 3.10. Biomass as a function of (a) thermal sum and (b) accumulated 

irradiance. Treatments are coded as follows: C, control; W, warming; CP, constant 

photoperiod; CT, constant temperature. Data presented as means ± s.e.m. N = 8 (4 

seedlings per chamber and 2 chambers per point). Note the log scale for biomass. 
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Modelled weekly net carbon gain showed a peaked seasonal trajectory that differed 

among treatments (P < 0.0001) and with weekly growth temperature (P < 0.0001) (Table 

3.2; Fig. 3.11). The modelled cumulative net carbon gain showed complex statistical 

interactions (Table 3.2), but seedlings in the control and warming treatments had lower 

cumulative net carbon gain than those from the constant temperature and constant 

photoperiod treatments (Fig. 3.11). Measured biomass was consistent with modeled 

cumulative net carbon gain in the control, warming, and constant photoperiod treatments, 

but not in the constant temperature treatment, suggesting that carbon was allocated to 

carbon sinks other than growth in the constant temperature seedlings (Fig. 3.12). 
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Figure 3.11. Modelled (a, b, c, d) weekly net carbon gain and (e, f, g, h) cumulative 

net carbon gain across the experiment for the control (a, e), warming (b, f), constant 

photoperiod (c, g), and constant temperature (d, h) treatments. Data presented as 

means ± s.e.m (of total number of individuals, N = 8). N = 4 seedlings per chamber 

and 2 chambers per point. 
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Figure 3.12. Modelled cumulative net carbon gain versus measured biomass. Solid 

line indicates the expected relationship if all carbon from cumulative net carbon 

gain was used in biomass (assumed to be 50% carbon). (a) control treatment, (b) 

warming treatment, (c) constant photoperiod treatment, (d) constant temperature 

treatment. Data presented as means ± s.e.m (of total number of individuals, N = 8). 

N = 4 trees per chamber and 2 chambers per point. 
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3.4 Discussion 

Warmer temperatures caused the seedlings to maintain photosynthetic capacity even at 

low photoperiods, implying that climate warming could stimulate the duration of carbon 

uptake in seedlings, and possibly mature trees, in northern forests. Regardless of whether 

elevated temperatures were imposed with a 5C warming or with a constant day/night 

temperature, both Vcmax and Jmax were stimulated compared to control temperature 

treatments (control and constant photoperiod). In both the elevated temperature 

treatments (warming and constant temperature), these high photosynthetic capacities 

were associated with a constant ratio of Vcmax/N (per unit leaf area) and stable Rubisco 

concentrations. In the control temperature treatments, low photosynthetic capacities 

towards the end of the experiment were correlated with decreases in the ratio of Vcmax/N 

but an increase in Rubisco concentrations, implying that Rubisco accumulated as a 

nitrogen storage protein (which has been observed in Eucalyptus spp. (Warren et al., 

2003), Nicotiana tabacum L. (Stitt & Schulze, 1994), Pinus sylvestris L. (Warren et al., 

2000), and in the tropical species Licania unguiculata Prance (Bahar et al., 2017)). In 

contrast to my photosynthetic results, biomass and respiration rates responded to 

photoperiod, while warmer temperatures suppressed growth.  

3.4.1 Warming maintained photosynthetic capacity despite short 
photoperiods 

Exposure to warmer temperatures under declining photoperiods representative of autumn 

field conditions maintained high photosynthetic capacity in white spruce seedlings, which 

should allow this species to continue fixing CO2 at a high rate later into the autumn as the 

climate warms. I previously found that 4 C warming stimulates Vcmax and Jmax under 

short photoperiods in Norway spruce (Stinziano et al., 2015), and the data presented here 

demonstrate that autumn temperatures affect photosynthetic and leaf biochemistry 

dynamics regardless of whether seedlings are exposed to long photoperiods or realistic 

declines in photoperiod. The stimulation of photosynthetic capacity under warming and 

short photoperiods in seedlings is also consistent with large-scale patterns of enhanced 

CO2 uptake in northern forests in warmer autumns (e.g. Keenan et al., 2014), hinting that 

these patterns may be more broadly applicable to mature trees as well.   
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In temperate deciduous trees, declines in photosynthetic capacity in the late summer and 

autumn were more strongly correlated with photoperiod than temperature (Bauerle et al., 

2012). While I also found a stronger correlation between apparent Vcmax or Jmax and 

photoperiod than with temperature, this relationship did not limit the ability of warming 

to stimulate photosynthetic capacity at short photoperiods, and I found no evidence for a 

direct effect of photoperiod on Vcmax. The difference between these two data sets may 

indicate that photosynthetic responses to photoperiod differ between plant functional 

types or vary with tree age.  

3.4.2 Leaf biochemistry responses to temperature and 
photoperiod 

Down regulation of photosynthetic capacity in the control temperature treatments was 

associated with a decline in photosynthetic nitrogen use efficiency (apparent 

Vcmax/nitrogen concentration). This decline in apparent Vcmax and the apparent Vcmax/N 

ratio occurred even though Rubisco concentrations increased over the experiment, 

leading to an uncoupling of the expected relationship between leaf N, apparent Vcmax and 

Rubisco concentration in the last weeks of the experiment, and a curvilinear relationship 

between apparent Vcmax and Rubisco concentrations (Fig. 3.8). The increasing Rubisco 

concentration and decreasing apparent Vcmax in the control temperature treatments 

suggests that Rubisco was used as a nitrogen storage protein (i.e. inactive Rubisco is 

accumulated for nitrogen storage; Stitt & Schulze, 1994; Warren et al., 2000, Bahar et al., 

2017), which is common, especially in evergreen trees (Quick et al., 1992; Warren et al., 

2003; Millard et al., 2007).   

In the warming treatments, high photosynthetic capacity was correlated with a high and 

stable apparent Vcmax/N ratio: on a leaf area basis, apparent Vcmax increased over the 

experiment and so did leaf nitrogen concentration. However, this did not result from an 

increase in Rubisco concentrations over the same time period. Instead, in both the 

elevated temperature treatments, Rubisco concentrations were constant, implying that 

cooler temperatures were required to initiate the build-up of Rubisco as a storage protein. 

Indeed, the break in the relationship between Vcmax and Rubisco in the control 

temperature treatments (Figs. 3.8b and h) occurred when day/night temperatures dropped 
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to 12.7/3.7 C, temperatures cooler than those experienced in the elevated temperature 

treatments. As Rubisco concentrations were constant in the elevated temperature 

treatments, there was no correlation between Rubisco concentrations and apparent Vcmax 

or leaf nitrogen concentration. Rubisco is an intricately controlled enzyme whose in vivo 

activity is dependent on leaf energy status, the activity of a chaperone protein, Rubisco 

activase, and the CO2 concentrations around the enzyme, among other factors (Carmo-

Silva et al., 2015). While I do not have Rubisco activation state data, increases in the 

activation state of Rubisco as the experiment progressed could have led to the higher 

apparent Vcmax measured in later weeks. High growth temperatures could also have 

increased mesophyll conductance, increasing chloroplastic CO2 concentrations around 

Rubisco, thereby increasing my measurements of apparent Vcmax. High measurement 

temperatures generally increase mesophyll conductance, though the strength of this 

response varies between species (von Caemmerer & Evans, 2015), and the response of 

mesophyll conductance to growth temperature is variable and currently unclear (Lewis et 

al., 2015).  

In contrast to the variable pattern of apparent Vcmax /Rubisco between treatments, 

apparent Jmax/[Chl] declined over time in all treatments, a result driven mainly by 

increases in chlorophyll concentrations in all treatments. While chlorophyll and 

carotenoid concentrations often increase during autumn in conifers (Chang et al., 2015; 

Stinziano et al., 2015; Wong & Gamon, 2015), pigment concentrations in my study were 

unaffected. The decrease in apparent Jmax/[Chl] suggests an increase in energy dissipation 

away from photochemical quenching for CO2 assimilation towards nonphotochemical 

quenching, which has been observed in Pinus banksiana Lamb. where both low 

temperature and short photoperiods can separately induce increased nonphotochemical 

quenching (Busch et al., 2007). Apparent Jmax did not co-vary with pigment 

concentrations, but was co-regulated with apparent Vcmax, emphasizing the importance of 

maintaining a balance between electron transport and the Calvin cycle.  
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3.4.3 Growth was strongly stimulated by long photoperiods but not 
warming 

Photoperiod, but not warming, stimulated biomass accumulation. Growth cessation in 

many conifers is known to be sensitive to photoperiod (Gyllenstrand et al., 2007; 

Holliday et al., 2008; Hamilton et al., 2016), so photoperiod cues may prevent north-

temperate and boreal conifers from extending their growing season in warmer autumn. 

The stimulation of growth under constant photoperiod was not simply due to having more 

hours of light to photosynthesize, as growth plotted against accumulated irradiance shows 

the constant photoperiod seedlings grow faster for a given amount of light than in other 

treatments, and is thus likely related to photoperiod cues on growth per se. The rate of 

biomass accumulation was lowest in seedlings experiencing elevated temperatures, 

despite ample access to water and nutrients. Warming often suppresses growth in conifers 

(Way & Oren, 2010) and spruce may be particularly sensitive to temperature increases 

(Way & Sage, 2008b; Kroner & Way, 2016). Phytochrome activity may explain the 

reduced growth at high temperatures and the enhanced growth at long photoperiods, since 

phytochromes act as both temperature sensors and light sensors in regulating growth 

(Jung et al., 2016; Legris et al., 2016). Specifically, Legris et al. (2016) found that 

phytochrome B activity declined at higher temperatures, and since light is also required 

for phytochrome function, low photoperiods and high temperatures may suppress 

seedling growth by suppressing phytochrome signalling, while constant photoperiod 

maintains the phytochrome activity necessary for continued growth.  

While growth rates varied between treatments, the relative biomass allocation strategy 

was remarkably constant across the different growth conditions. Although shoot growth 

may be more photoperiod-driven and root growth more correlated with temperature in 

some experiments (Bigras & D’Aoust, 1993; Hamilton et al., 2016), leaf, stem and root 

growth were all greatest under the long photoperiods of the constant photoperiod 

treatment. It is important to note however, that growth patterns change with age (Ununger 

et al., 1988), and can be quite different in first year seedlings than in older trees. 
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3.4.4 Carbon uptake and growth respond to different seasonal 
cues 

Although elevated temperature maintained photosynthetic capacity in my study, it had 

little effect on growth, while long photoperiods allowed biomass to accumulate rapidly 

even at low temperatures. The differential responses of photosynthetic traits and growth 

to temperature and photoperiod could lead to a desynchronization of the carbon uptake 

period and the period of active growth as the climate warms. This desynchronization 

would have important implications for ecosystem-level carbon fluxes if these results hold 

in mature trees. The finding of increased carbon uptake rates and capacity but no 

concurrent stimulation of biomass under the elevated temperature treatments also 

suggests that the extra fixed carbon is being directed to processes other than growth. 

While this appears to be the case in the constant temperature treatment seedlings, where 

biomass accumulated more slowly than my cumulative net carbon gain model predicted, 

the reduced biomass in the (more ecologically realistic) warming treatment was predicted 

based on cumulative net carbon gain, implying that extreme warming is required to 

disrupt the carbon gain/growth relationship. The control of growth by photoperiod rather 

than temperature could be adaptive, as shutting down growth based on photoperiod could 

reduce the risk of frost damage to the seedling, while continued carbon uptake would 

allow for enhanced carbon storage to ensure adequate energy supplies for respiration 

during winter. 

There was no evident thermal acclimation of Rdark, and Rdark at growth temperatures was 

higher in the elevated temperature treatments than the control temperature treatment, 

which had the lowest Rdark. Thus, instead of being allocated to biomass, the increase in 

carbon uptake went hand in hand with greater respiration rates and the extra carbon was 

invested in labile carbon pools with short residency times. If this holds true in natural 

systems, CO2 fixed during warm autumns may cycle back to the atmosphere quickly, 

rather than entering recalcitrant carbon pools, limiting the impact of increased 

photosynthesis during the autumn on offsetting anthropogenic CO2 emissions.  
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Chapter 4  

4 Improving models of photosynthetic thermal 
acclimation: which parameters are most important and how 
many should be modified? 

This chapter was published in a similar form in Global Change Biology (Stinziano, Way 

& Bauerle, 2018, “Improving models of photosynthetic thermal acclimation: which 

parameters are most important and how many should be modified?”, Global Change 

Biology 24, 1580–1598), and addresses Question 3 (do models that include multi-factor 

acclimation of photosynthesis improve estimates of gross primary productivity in 

conifers?) and Hypotheses 2 and 3 (2: day length, not temperature, drives seasonal 

changes in photosynthetic capacity in evergreen conifers; 3: evergreen conifers acclimate 

multiple parameters of the temperature response of photosynthetic capacity) in Chapter 1. 

4.1 Introduction 

Globally, the biosphere absorbs ~120 Gt carbon yr-1 from the atmosphere through 

photosynthesis, a significantly larger flux than the release of carbon from either 

autotrophic or heterotrophic respiration (each ~60 Gt carbon yr-1) or anthropogenic 

emissions (~7.9 Gt carbon yr-1) (Amthor, 1995; Schlesinger & Andrews, 2000; Ciais et 

al., 2013). Given that net carbon uptake (i.e. photosynthetic carbon uptake minus 

(photo)respiratory carbon release) by terrestrial ecosystems is on the order of 2–4 Gt 

carbon yr-1 (Le Quéré et al., 2016), relatively small changes in photosynthesis as the 

climate warms and atmospheric CO2 concentrations increase in coming decades could 

mitigate or amplify the on-going increase in atmospheric CO2 concentrations. Accurate 

modeling of photosynthesis and its response to climate drivers such as temperature are 

thus necessary to predict future carbon cycle dynamics and coupled vegetation-climate 

feedbacks.  

Net CO2 assimilation rates (Anet) increase with temperature up to a thermal optimum 

(Topt, between 25-30 C for C3 plants), above which Anet declines (Way & Yamori, 2014). 

This temperature response is driven by the combination of increases in respiration (Atkin 

& Tjoelker, 2003), photorespiration, and photosynthesis with increasing leaf temperature, 



163 

 

which increase at different rates as temperature rises. Thermal acclimation of the 

photosynthetic temperature response shifts Topt towards the recent growth temperature, as 

well as affecting maximum rates of Anet and the overall shape of the Anet temperature 

response curve (Way & Yamori, 2014; Yamori et al., 2014). There are numerous studies 

addressing how photosynthesis acclimates to temperature changes (summarized in these 

meta-analyses: Hikosaka et al., 2006; Kattge & Knorr, 2007; Way & Yamori, 2014; 

Yamori et al., 2014; for examples of ecosystem-level responses, see Baldocchi et al., 

2001; Niu et al., 2012), but thermal acclimation of photosynthesis still represents a key 

uncertainty in the Earth System Models used to predict future vegetation-atmosphere 

carbon exchange (Smith & Dukes, 2013; Lombardozzi et al., 2015; Rogers et al., 2017). 

Recent studies have shown the potential to improve Earth System Model performance by 

incorporating thermal acclimation of photosynthesis (e.g. Smith et al., 2016), and 

photosynthetic temperature acclimation has been included in some Earth System Models 

(e.g. Oleson et al., 2013), but the generality with which this acclimation can be 

incorporated is unclear. 

As Earth System Models use photosynthetic capacity (which includes both maximum 

rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax)) to estimate 

photosynthesis, any attempt to incorporate temperature acclimation of photosynthesis 

should be based on photosynthetic capacity. Thermal acclimation of photosynthetic 

capacity could occur in two fundamental ways: acclimation of the acute temperature 

response parameters that describe the shape of the temperature response of Vcmax and 

Jmax, and acclimation of the basal photosynthetic capacity (k25; i.e. Vcmax or Jmax measured 

at 25 °C). The acute temperature response of photosynthetic capacity (i.e. the 

instantaneous response of Vcmax or Jmax to a change in leaf temperature) is captured by a 

modified Arrhenius function (Johnson et al., 1942; Harley et al., 1985; Medlyn et al., 

2002), which can be described using activation and deactivation energies: 

𝐟(𝐓𝐤) = 𝐤𝟐𝟓𝐞𝐱𝐩 [
𝐄𝐚(𝐓𝐤−𝟐𝟗𝟖)

𝟐𝟗𝟖𝐑𝐓𝐤
]

𝟏+𝐞𝐱𝐩(
𝟐𝟗𝟖∆𝐒−𝐇𝐝

𝟐𝟗𝟖𝐑
)

𝟏+𝐞𝐱𝐩(
𝐓𝐤∆𝐒−𝐇𝐝

𝐓𝐤𝐑
)

     Equation 4.1 
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where k25 is photosynthetic capacity at 25 °C (μmol m-2 s-1), Ea is the activation energy of 

Vcmax or Jmax (J mol-1), Tk is the leaf temperature (K), 298 is the reference temperature 

(K), R is the universal gas constant (8.314 J K-1 mol-1), ΔS is the entropy parameter (J 

mol-1), and Hd is the deactivation energy of photosynthetic capacity (J mol-1). An 

equivalent form of the modified Arrhenius function can also be used to describe the acute 

temperature response of Vcmax and Jmax (Johnson et al., 1942): 

𝐟(𝐓𝐤) =  𝐤𝐨𝐩𝐭

𝐇𝐝𝐞𝐱𝐩(𝐄𝐚

𝐓𝐤−𝐓𝐨𝐩𝐭𝐤

𝐑𝐓𝐤𝐓𝐨𝐩𝐭𝐤
)

𝐇𝐝−𝐄𝐚[𝟏−𝐞𝐱𝐩(𝐇𝐝

𝐓𝐤−𝐓𝐨𝐩𝐭𝐤

𝐑𝐓𝐤𝐓𝐨𝐩𝐭𝐤
)]

      Equation 4.2 

where Toptk is the thermal optimum of Vcmax or Jmax (K) and kopt is the photosynthetic 

capacity at this optimum temperature (μmol m-2 s-1). The relationship between Equations 

4.1 and 4.2 can be described as (Medlyn et al., 2002): 

𝐓𝐨𝐩𝐭𝐤 =
𝐇𝐝

𝚫𝐒−𝐑𝐥𝐧[
𝐄𝐚

𝐇𝐝−𝐄𝐚
]
        Equation 4.3 

In some cases, an unmodified Arrhenius equation is used to describe the temperature 

response of photosynthetic capacity (Medlyn et al., 2002): 

f(Tk) = k25exp [
Ea(Tk−298)

298RTk
]       Equation 4.4 

The acute temperature response of Vcmax, Jmax and Toptk may therefore acclimate to 

prevailing temperatures through changes in Ea, Hd, ΔS, k25, or some combination of these 

parameters (i.e. multifactor acclimation). While acclimation of other parameters, such as 

the Michaelis-Menten constants for Rubisco carboxylation (Kc) and oxygenation (Ko) can 

affect carbon gain, carbon gain tends to be more sensitive to changes in the acute 

temperature response parameters such as Ea, Hd, and ΔS (Maire et al., 2012), which I 

focus on in the present study. For acclimation of Ea, Hikosaka et al. (2006) found a 

positive linear relationship between the Ea of Vcmax and leaf temperature, while Dillaway 

and Kruger (2010) found a nonlinear relationship between the Ea for both Vcmax and Jmax 

and air temperature, with a minimum Ea between 25 and 28 °C. Acclimation of the Hd of 

photosynthetic capacity has not been explored to my knowledge: temperature response 
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parameters of Vcmax and Jmax are laborious to measure, and Hd is often constrained to a 

specific value (i.e. 200,000 J mol-1 from Farquhar et al. (1980), based on data from Nolan 

and Smillie (1976) in barley, Hordeum vulgare L. cv. Abyssinian) which may not be 

appropriate for all species. The entropy parameter, ΔS, has been shown to decrease 

linearly when acclimating to increasing air temperature for both Vcmax and Jmax (Kattge & 

Knorr, 2007); when acclimation of photosynthetic capacity is added to an Earth System 

Model (e.g. Oleson et al., 2013) or the effect of photosynthetic thermal acclimation on 

plant carbon fluxes has been investigated in models (Smith et al., 2016), it is usually 

accomplished by altering ΔS. However, the accuracy of ΔS may be problematic, as ΔS 

can be quite variable between species grown under similar conditions (up to 4-fold for ΔS 

of Vcmax and 8-fold for ΔS of Jmax; Dreyer et al., 2001). As well, since ΔS is estimated 

concurrently with Hd, there may be issues with current ΔS data as many studies assume 

that Hd is 200,000 J mol-1, which should affect the value of ΔS. Lastly, while k25 can 

change when growth air temperature changes (e.g. Han et al., 2004; Panek, 2004; Misson 

et al., 2006; Han et al., 2008; Stinziano et al., 2015; Stinziano & Way, 2017), there is 

little evidence for a consistent pattern of thermal acclimation of k25 (Way & Oren, 2010; 

Way & Yamori, 2014), making it difficult to determine how thermal acclimation of k25 

should be modelled.  

Accurately modeling vegetation carbon fluxes requires that not only temperature, but 

other climate factors that influence photosynthetic capacity over the growing season are 

incorporated as well. While seasonal changes in temperature can affect photosynthetic 

capacity (e.g. Xu & Baldocchi, 2003; Stinziano et al., 2015; Stinziano & Way, 2017), so 

can seasonal changes in day length (Bauerle et al., 2012). In temperate, deciduous trees, 

photosynthetic capacity was better correlated with day length than temperature, and 

imposing a longer day length on Acer rubrum increased Vcmax (Bauerle et al., 2012). 

However, this may not hold true for the longer-lived foliage of conifers, as seasonal 

trajectories of photosynthetic capacity in Picea glauca were driven by temperature and 

not day length (Stinziano & Way, 2017). Therefore, any attempts to investigate the 

impact of seasonal changes in temperature on photosynthetic capacity (via thermal 

acclimation) should also address possible impacts of seasonal changes in day length.  
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Given that incorporating thermal acclimation of ΔS can improve carbon flux estimates in 

Earth System Models (Smith et al., 2016), I explored how incorporating thermal 

acclimation of Ea, Hd, ΔS, and k25 for photosynthetic capacity affected estimates of 

carbon uptake. I used a spatially explicit canopy model, MAESTRA (Wang & Jarvis, 

1990a,b; Medlyn, 2004; Duursma & Medlyn, 2012), to model gross primary productivity 

(GPP) of a loblolly pine (Pinus taeda) stand, and used eddy covariance data from the 

same site to assess model performance. I hypothesized that an evergreen conifer would 

acclimate multiple parameters of the photosynthetic temperature response, i.e. 

acclimation of multiple parameters in the acute temperature response of photosynthetic 

capacity, which would cause large improvements in model performance when using 

multifactor models of thermal acclimation of photosynthetic capacity. I also investigated 

whether photosynthetic capacity was better correlated with day length or temperature in 

evergreen conifers to develop a model of seasonal acclimation for k25. While day length 

appears to correlate well with photosynthetic capacity in deciduous broadleaf trees 

(Bauerle et al., 2012), I hypothesized that this would not be the case in evergreen species, 

such as the loblolly pine stand used here, as photoperiod was not a strong driver of Vcmax 

or Jmax in an evergreen conifer species grown under controlled conditions (Stinziano & 

Way, 2017). 

4.2 Materials and methods 

4.2.1 Meta-analysis of seasonal Vcmax for acclimation of basal 

Vcmax 

First, I set out to determine whether seasonal thermal acclimation of basal photosynthetic 

capacity (k25) occurs in evergreen conifers to allow us to derive seasonal trajectories of 

basal Vcmax (Vcmax25, measured at 25 C) for the pine forest stand I was modeling. A 

comprehensive Google Scholar search was made, using the terms “seasonal” or 

“monthly” AND “Vcmax”. Since the site I modelled was a Pinus taeda forest, the 

secondary terms I used were the following genera of evergreen conifers: Abies, 

Chamaecyparis, Juniperus, Libocedrus, Picea, Pinus, Pseudotsuga, Sequoia, 

Sequoiadendron, Thuja, Tsuga, Taxodium, and Taxus. The search yielded 12 studies on 9 
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species, which were combined with one set of unpublished data on Thuja canadensis 

(Figs. B.1 and B.2, see Appendix B for methods) for data on a total of 10 species (Table 

4.1). Studies all fit the following selection criteria: 1) contains seasonal Vcmax data or 

contains both seasonal light-saturated rates of net CO2 assimilation (Asat) data and either 

seasonal intercellular CO2 concentrations (Ci) or the ratio of Ci to ambient CO2 

concentrations (Ca) (Ci/Ca) values to allow us to calculate Vcmax via the one-point A-Ci 

method (De Kauwe et al., 2016); and 2) contains enough information to determine the 

daily temperatures and day length of the study site, to allow us to partition whether 

temperature, day length, or both factors explain seasonal acclimation in Vcmax. Data were 

extracted from published figures using Data Thief III v. 1.7 (Tummers, 2015).  
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Table 4.1. Species and studies used in the meta-analysis. 

Species Study 

Chamaecyparis obtusa Han et al., 2006; Han & Chiba, 2009 

Picea abies Stinziano et al., 2015 

Picea glauca Stinziano & Way, 2017 

Picea mariana Bigras & Bertrand, 2006 

Pinus densiflora Han et al., 2004; Han et al., 2008 

Pinus ponderosa Panek, 2004; Misson et al., 2006 

Pinus rigida Renninger et al., 2013 

Pinus sylvestris Strand et al., 2002 

Pinus taeda Lewis et al., 1996 

Thuja canadensis This study (Appendix B) 
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All but one study measured Vcmax25 (i.e. k25), and the Vcmax data of the remaining study on 

Pinus sylvestris were standardized to 25 C using the Ea, Hd, and ΔS for Vcmax from P. 

sylvestris with Equation 4.1 (Medlyn et al., 2002). The Vcmax25 data were then plotted 

versus day of year and fit with second-order polynomials (Bauerle et al., 2012) to 

estimate the annual peak Vcmax25 for each species and study, on the assumption that the 

measured data were unlikely to capture the true peak of Vcmax25. Vcmax25 data for each 

species in each study were then normalized to this peak annual Vcmax25 to yield relative 

Vcmax25 to account for large differences in the magnitude of Vcmax amongst conifers 

(Peaucelle et al., 2017). Relative Vcmax25 values were aggregated for all species and 

studies and examined as a response of mean daily air temperature (°C) for the preceding 

10 days (calculated using 30 minute intervals of air temperature) and relative day length 

(as a proportion of the summer solstice day length for each location). I used 10 days for 

the acclimation time to ensure that acclimation will have occurred (i.e. 7 or more days; 

Smith & Dukes, 2017; Way et al., 2017) and reflected seasonal changes in temperature to 

contrast the effects of seasonal changes in temperature and day length on Vcmax25. 

Data were analyzed using multiple linear regression in R GUI (R Core Development 

Team, 2013), running all combinations (with and without each term and interactions) of 

the following model: Relative Vcmax25 ~ Air Temperature * Relative Day Length. The 

best model was selected by choosing the model with the lowest Bayesian Information 

Criterion (BIC) using the {BIC} function on the models in R. 

4.2.2 Sensitivity analysis of the Arrhenius temperature response 

model 

To determine the potential importance of thermal response parameters, I investigated the 

sensitivity of the modified (Equation 4.1) and unmodified (Equation 4.4) Arrhenius 

function to the temperature response parameters Ea, Hd (modified Arrhenius function 

only), and ΔS (modified Arrhenius function only) for Vcmax. For simplicity, I started with 

the following base parameter values: k25 of 1 (to assess hypothetical rates of Vcmax 

relative to 25 °C) Ea of 60 kJ mol-1, Hd of 200 kJ mol-1, and ΔS of 650 J mol-1. Next, I 

varied individual parameters, keeping everything else constant, by ± 5% of the base 
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value, and chose the highest (Ea: 224.47 kJ mol-1, Leuning (2002); Hd: 415.551 kJ mol-1, 

Leuning (2002); ΔS: 1341 J mol-1, Leuning (2002)) and lowest (Ea: 33.92 kJ mol-1, 

Medlyn et al. (2002); Hd: 90 kJ mol-1, Leuning (2002); ΔS: 293 J mol-1, Leuning (2002)) 

values for each parameter that I could find in the literature. 

4.2.3 Model parameterization and validation 

The MAESTRA model is a three-dimensional, spatially explicit model of tree canopy 

carbon flux, water balance, and radiation (Wang & Jarvis, 1990a, 1990b; Medlyn, 2004; 

Duursma & Medlyn, 2012). The model simulates individual trees within a stand and 

includes neighboring tree interactions. MAESTRA has been used to successfully simulate 

a range of species and canopy types, including Pinus taeda (Luo et al., 2001), but also 

Acer rubrum (Bowden & Bauerle, 2008) and Eucalyptus grandis (Binkley et al., 2010).  

MAESTRA was used to test the effects of thermal acclimation of photosynthetic capacity 

on the model’s ability to capture eddy covariance data from loblolly pine at the Duke 

Forest (lat.: 35.9782 N, long.: 79.0942 W) for 1998 to 2001 (available from 

ameriflux.ornl.gov). This model and dataset were chosen to compare my results with 

those of Luo et al. (2001) who modelled canopy carbon gain with MAESTRA at this site 

for 1996 to 1998. The site is a Pinus taeda forest that has been growing since 1983 

(Ellsworth et al., 1995), where P. taeda is responsible for most of the ecosystem carbon 

fixation (DeLucia et al., 1999). The soil is a low-fertility Ultic Alfisol with a pH of 5.75 

(Andrews et al., 1999). Mean annual temperatures were 15.6 °C, 14.9 °C, 14.0 °C, and 

14.7 °C and annual precipitation was 1305 mm, 1363 mm, 1132 mm, and 947 mm in 

1998, 1999, 2000, and 2001, respectively. I parameterized the model per Luo et al. 

(2001), where Vcmax and Jmax were scaled to leaf nitrogen in the canopy (Table 2). 

MAESTRA was validated by running the model for all four site-years to determine 

hourly GPP. I validated the data by performing a linear regression between modelled 

GPP and measured GPP for data averaged for each hour across August for all site years 

as per Luo et al. (2001). I did not perform a sensitivity analysis, as this was done in Luo 
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et al. (2001) for all parameters relevant to carbon uptake for the Duke Forest site from 

1996 to 1998. 

4.2.4 Acclimation scenarios 

Acclimation of Vcmax25 was performed as follows. Vcmax25 was calculated on a leaf 

nitrogen basis (Equation 5; Ellsworth et al., 1998) and measured at 25 °C on P. taeda at 

the Duke site (Luo et al., 2001; Table 4.2):  

Vcmax25 = 25.3Narea + 28.6       Equation 4.5 

where Vcmax25 is the Vcmax at 25 °C (μmol m-2 s-1) and Narea is the foliar nitrogen 

concentration on an area basis (g m-2). This value of Vcmax25 was assumed to represent the 

peak annual value of Vcmax25 in the Vcmax25-air temperature relationship derived from the 

meta-analysis (Fig. 4.1a). This peak Vcmax25 was then scaled to vary over the year using 

the regression developed above from the meta-analysis of Vcmax and air temperature. In 

this way, Vcmax25 was first scaled with canopy nitrogen concentration, then scaled to the 

previous ten-day running mean air temperature to provide a seasonal trajectory of k25 for 

the study site. Basal Jmax (Jmax at 25 °C, Jmax25, μmol m-2 s-1) was also scaled with nitrogen 

within the canopy (Equation 4.6; Ellsworth et al., 1998), then scaled against the seasonal 

Vcmax25 values to preserve a Jmax25:Vcmax25 ratio of 2.1 (based on the ratio of Equations 4.6 

and 4.5 calculated at the leaf nitrogen concentrations in each canopy position used in 

MAESTRA; Table 4.2):  

Jmax25 = 53.1Narea + 60       Equation 4.6
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Table 4.2. Parameter values used in MAESTRA, from Luo et al. (2001). 

Parameter names and units Abbreviation Parameter value 

Confile:   

Start Date STARTDATE January 1 

End Date ENDDATE December 31 

Number of layers in the crown NOLAY 6 

Number of points per layer PPLAY 12 

Number of zenith angles NZEN 9 

Number of azimuth angles NAZ 6 

Number of shading trees NOTREES 8 

Physiological File:   

Transmittance and Reflectance (PAR/NIR/IR):   

Soil reflectance (%) RHOSOL 0.10/0.30/0.05 

Needle transitivity (%) ATAU 0.03/0.26/0.0 

Needle reflectance (%) ARHO 0.09/0.33/0.05 

Jmax Parameter   

Jmax-Nitrogen Slope JMAXA 53.1 

Jmax-Nitrogen Intercept JMAXB 60 

Curvature of light response curve of electron transport THETA 0.7 

Quantum yield of electron transport (mol e- mol-1 CO2) AJQ 0.12 

Activation energy (J mol-1) EAVJ 37000 

Deactivation energy (J mol-1) ADVJ 220000 

Entropy term (J K-1 mol-1) DELSJ 710 

Vcmax Parameter:   

Vcmax-Nitrogen Slope VCMAXA 25.3 

Vcmax-Nitrogen Intercept VCMAXB 28.6 
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Activation energy (J mol-1) EAVC 58500 

Foliar dark respiration:   

Foliar dark respiration rate (μmol m-2 s-1 at 25 °C) RD 0.804 

Temperature (in °C) at which RD is specified RTEMP 25 

Fraction by which dark respiration is reduced in the light DAYRESP 0.7 

Foliage Q10 values FOLQ10 0.07 

Stomatal Conductance Model (Ball-Berry):   

Input parameter (mol m-2 s-1) G0 0.0002 

Input parameter (mol m-2 s-1) G1 4.84 

 NSIDES 2 

Width of the leaf (m) WLEAF 0.001 

Nitrogen Concentration (for different canopy layers) NFOL 

2.1, 2.1, 1.92, 

1.73, 1.55, 1.37 

Structural File:   

Number of age classes  1 

Shape of the canopy  ELIP 

Leaf angle distribution (spherical)  1.64 

Number of leaf area classes  1 

Average leaf incidence angle   45 

Beta distribution coefficients for leaf area density BPT 5.5, 0.62, 1.4 

Trees file:   

Height (m) ALLHTCROWN 16 

Stem diameter (m) ALLDIAM 0.425 

Crown Radius (m) 

ALLRADY, 

ALLRADX 1.2 

Trunk height (m) ALLHTTRUNK 6 

Leaf area index  2.63 to 4.67  
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Plot description:   

m XMAX 25 

m YMAX 25 

 XSLOPE 0 

 YSLOPE 0 

° BEARING 180 

  NOTREES 100 

Aerodynamics:   

Measurement height (m) ZHT 16 

Zero-plane displacement (m) ZPD 10.4 

Roughness length (m) Z0HT 1.6 

Some parameters contain multiple parameters to specify canopy-layer values, values that change through time, or different 

components (e.g. reflectance and transmittance). 
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Figure 4.1. Relative maximum Rubisco carboxylation capacity (Vcmax) across air temperature (a) and relative day length (b) in 

evergreen conifers. Data presented as means ± 1 SD for 5 °C bins in (a) and for bins of 0.1 for relative day length except for 

peak (0.95 to 1.0) and below 0.45 (due to few data points at low day lengths). Circle size indicates the number of measurements 

per bin (between 5 and 101 measurements per bin). Solid line indicates quadratic regression for (a) Relative Vcmax = -0.0013 * 

(Air Temperature)2 + 0.0621 * Air Temperature + 0.1808, R2 = 0.359, P < 0.01, and (b) Relative Vcmax = -1.1917 * (Relative Day 

Length)2 + 2.4826 * Relative Day Length – 0.4468, R2 = 0.123, P < 0.001.
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Thermal acclimation of ΔS was performed using the previous ten-day running mean air 

temperature (Tgrowth) (Kattge & Knorr, 2007): 

ΔS = d + e × Tgrowth       Equation 4.7 

where d is a constant with a value of 668.39 for Vcmax and 659.70 for Jmax and e is a 

constant with values of -1.07 for Vcmax and -0.75 for Jmax. 

The Ea was thermally acclimated either linearly for Vcmax (Hikosaka et al., 2006):  

Ea = 34.1 + 1.01 × Tgrowth       Equation 4.8 

or non-linearly for both Vcmax and Jmax (Dillaway & Kruger, 2010): 

Ea =
x

Tgrowth
2 −

y

Tgrowth
+ z       Equation 4.9 

where x, y, and z are constants equal to 45322 kJ mol-1 °C, 3368.2 kJ mol-1 °C, and 119.9 

kJ mol-1 for Vcmax, and 80318.9 kJ mol-1 °C, 6093.6 kJ mol-1 °C, and 134.7 kJ mol-1 for 

Jmax. Constants were derived from temperature responses for Vcmax and Jmax for trembling 

aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), eastern 

cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides), and sweetgum 

(Liquidambar styraciflua L.) (Dillaway & Kruger, 2010). 

I modified the intercepts of Equations 4.8 and 4.9 so that the Ea values intercepted with 

the values used in Luo et al. (2001) at 25 °C, then used the ten-day running average air 

temperature in Equations 4.8 and 4.9. I did this to preserve the original values of Ea for 

Pinus taeda, while maintaining the reported shape of the thermal acclimation responses. 

Since Luo et al. (2001) used Equation 4.4 for Vcmax instead of Equation 4.1 and therefore 

had no Hd or ΔS for Vcmax in their results, my baseline “no acclimation” scenario also 

does not incorporate changes in Hd or ΔS for Vcmax, so that my “no acclimation” results 

can be directly compared to those in Luo et al. (2001). I built acclimation scenarios that 

incorporated acclimation of k25 (using the temperature response equation in Figure 1 and 

preserving a Jmax25:Vcmax25 of 2.1; these scenarios are denoted as k25 below), Ea (using 
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Equation 4.8 for Vcmax only (denoted as Eav below) or using Equation 4.9 for both Vcmax 

and Jmax (denoted as Eavj below)), and ΔS (using Equation 4.7 for Jmax only when 

Equation 4.4 was used to scale Vcmax as in Luo et al. (2001), or for both Vcmax and Jmax 

when Vcmax was scaled with Equation 4.1; denoted as ΔS below). Scenarios using 

Equation 4.4 for Vcmax are denoted by ‘(-)’ to indicate that these scenarios do not consider 

Hd or ΔS for Vcmax, while scenarios using Equation 1 for Vcmax are denoted by ‘(+)’.  

I built up the scenarios from no thermal acclimation (NA; where Vcmax25, Vcmax Ea, Jmax25, 

and the Ea and ΔS for Jmax are all held constant) up to multifactor acclimation, combining 

acclimation of multiple parameters at the same time. I tested 18 different base 

acclimation scenarios (Table 4.3):  

1) no acclimation; Equation 4.4 for Vcmax (NA (-)); 

2) no acclimation; Equation 4.1 for Vcmax (NA (+)); 

3) acclimation of k25; Equation 4.4 for Vcmax (k25 (-)); 

4) acclimation of k25; Equation 4.1 for Vcmax (k25 (+)); 

5) acclimation of the Ea of Vcmax using Equation 4.7; Equation 4.4 for Vcmax (Eav (-

)); 

6) acclimation of the Ea of Vcmax using Equation 4.7; Equation 4.1 for Vcmax (Eav 

(+)); 

7) acclimation of the Ea of both Vcmax and Jmax using Equation 4.9; Equation 4.4 for 

Vcmax (Eavj (-)); 

8) acclimation of the Ea of both Vcmax and Jmax using Equation 4.9; Equation 4.1 for 

Vcmax (Eavj (+)); 

9) acclimation of ΔS using Equation 4.4; Equation 4.1 for Vcmax (ΔS); 

10) k25/Eav (-) 

11) k25/Eav (+) 

12) k25/Eavj (-) 

13) k25/Eavj (+) 

14) k25/ΔS  

15) Eav/ΔS 

16) Eavj/ΔS 
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17)  k25/Eav/ΔS 

18) k25/Eavj/ΔS 

Note that anywhere that ΔS acclimation is included in a scenario, Hd for Vcmax is 

necessarily already included as well. These base scenarios all used an Hd value of 

200,000 J mol-1 for Vcmax (as per Farquhar et al., 1980) and of 220,000 J mol-1 for Jmax (as 

per Luo et al., 2001). 
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Table 4.3. Components used (indicated by an ‘X’) to build each acclimation scenario. 

  Acclimated Parameters 

Scenario 

Modified or unmodified 

Arrhenius for Vcmax 

k25 

(Fig. 4.1a) 

Vcmax Ea (Hikosaka 

et al., 2006) 

Vcmax and Jmax Ea (Dillaway 

& Kruger, 2010) 

ΔS 

(Kattge & Knorr, 2007) 

1. NA (-) Unmodified     

 Eq. 4.4     

2. NA (+) Modified     

 Eq. 4.1     

3. k25 (-) Unmodified X    

 Eq. 4.4 Eq. Fig. 4.1a     

4. k25 (+) Modified X    

 Eq. 4.1 Eq. Fig. 4.1a    

5. Eav (-) Unmodified  X   

 Eq. 4.4  Eq. 4.8   

6. Eav (+) Modified  X   

 Eq. 4.1  Eq. 4.8   

7. Eavj (-) Unmodified   X  

 Eq. 4.4   Eq. 4.9  

8. Eavj (+) Modified   X  

 Eq. 4.1   Eq. 4.9  

9. ΔS Modified    X 

 Eq. 4.1    Eq. 4.7 

10. k25/Eav (-) Unmodified X X   

 Eq. 4.4 Eq. Fig. 4.1a Eq. 4.8   
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11. k25/Eav (+) Modified X X   

 Eq. 4.1 Eq. Fig. 4.1a Eq. 4.8   

12. k25/Eavj (-) Unmodified X  X  

 Eq. 4.4 Eq. Fig. 4.1a  Eq. 9  

13. k25/Eavj (+) Modified X  X  

 Eq. 4.1 Eq. Fig. 4.1a  Eq. 9  

14. k25/ΔS Modified X   X 

 Eq. 4.1 Eq. Fig. 4.1a   Eq. 4.7 

15. Eav/ΔS Modified  X  X 

 Eq. 4.1  Eq. 4.8  Eq. 4.7 

16. Eavj/ΔS Modified   X X 

 Eq. 4.1   Eq. 4.9 Eq. 4.7 

17. k25/Eav/ΔS Modified X X  X 

 Eq. 4.1 Eq. Fig. 4.1a Eq. 4.8  Eq. 4.7 

18. k25/Eavj/ΔS Modified X  X X 

  Eq. 4.1 Eq. Fig. 4.1a   Eq. 4.9 Eq. 4.7 

NA: no acclimation, (-) Equation 4.4 is used for Vcmax, (+), Equation 4.1 is used for Vcmax, k25: basal acclimation of Vcmax and Jmax at 

25 °C, Eav: linear acclimation of Vcmax activation energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, ΔS: 

acclimation of the entropy parameter.  
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4.2.5 Deactivation analysis 

As all scenarios contained an Hd parameter for Jmax (although a subset did not include Hd 

for Vcmax (i.e. the (-) scenarios)), I tested how sensitive modelled GPP was to the Hd 

values used. The 18 base acclimation scenarios were therefore rerun with both the highest 

and the lowest (non-zero) Hd values found in the literature (Scenarios 19 to 36 and 37 to 

54, respectively; Table 4.4). The high value scenarios used a Vcmax Hd value of 415,551 J 

mol-1 (from Brassica rapa) and a Jmax Hd value of 714,000 J mol-1 (from Juglans regia), 

while the low value scenarios used a Vcmax Hd value of 90,000 J mol-1 (from Fraxinus 

excelsior) and a Jmax Hd value of 88,300 J mol-1 (from Quercus robur); all Hd values are 

from Leuning (2002).   
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Table 4.4. Outline of the thermal acclimation scenarios used. 

Thermal Domain Full Range 8 to 25 °C 18 to 31 °C 

Scenario Mid Hd High Hd Low Hd Mid Hd Mid Hd 

NA (-) 1 19 37 
  

NA (+) 2 20 38 
  

k25 (-) 3 21 39 
  

k25 (+) 4 22 40 
  

Eav (-) 5 23 41 55 
 

Eav (+) 6 24 42 56 
 

Eavj (-) 7 25 43 
 

61 

Eavj (+) 8 26 44 
 

62 

ΔS 9 27 45 
  

k25/Eav (-) 10 28 46 57 
 

k25/Eav (+) 11 29 47 58 
 

k25/Eavj. (-) 12 30 48 
 

63 

k25/Eavj. (+) 13 31 49 
 

64 

k25/ΔS 14 32 50 
  

Eav/ΔS 15 33 51 59 
 

Eavj/ΔS 16 34 52 
 

65 

k25/Eav/ΔS 17 35 53 60 
 

k25/Eavj/ΔS 18 36 54 
 

66 

NA: no acclimation, (-) Equation 4.4 is used for Vcmax, (+), Equation 4.1 is used for 

Vcmax, k25: basal acclimation of Vcmax and Jmax at 25 °C, Eav: linear acclimation of Vcmax 

activation energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, ΔS: 

acclimation of the entropy parameter. 
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4.2.6 Temperature domain analysis 

Since the equations describing the thermal acclimation of Ea were developed from data 

measured under specific temperature ranges, I also tested the effect of restricting my 

modeling efforts to the appropriate temperature range. The linear acclimation for Vcmax Ea 

was restricted to 8-25 °C (Hikosaka et al., 2006), while the nonlinear acclimation for 

Vcmax Ea and Jmax Ea was restricted to 18-31 °C (Dillaway & Kruger, 2010) in this 

analysis. I compared all acclimation scenarios across the full temperature range at the 

Duke site, but also only ran MAESTRA for the times when the field air temperature data 

was between 8 and 25 C for scenarios with Eav acclimation (Scenarios 55 to 60) and 

between 18 and 31 C for acclimation scenarios with Eavj acclimation (Scenarios 61 to 

66) (Table 4.4). 

Each of the acclimation scenarios (Scenarios 1-66) were run for five separate days 

(February 1st, April 6th, August 8th, September 30th, and November 21st) for each year of 

the Duke eddy covariance data to match the periods of physiological measurements in 

Luo et al. (2001), and to provide a seasonal range over which to test the scenarios. 

Hourly modelled gross photosynthetic rates from MAESTRA were then compared 

against observed hourly GPP for the eddy covariance data. Model performance was 

evaluated based on model R2 and BIC. 

4.3 Results 

4.3.1 Seasonal acclimation of Vcmax25 

Relative Vcmax25 was more strongly correlated with mean daily air temperature (R2 = 0.36, 

Fig. 4.1a) for evergreen conifers than with relative day length (R2 = 0.12, Fig. 4.1b), 

peaking at ~25 °C in the temperature correlation, while peaking at the longest day length 

in the day length correlation. The best model of seasonal changes in relative Vcmax25 

included only mean daily air temperature (Table 4.5). Temperature acclimation of k25 was 

therefore scaled using the quadratic relationship between relative Vcmax25 and air 

temperature (Fig. 4.1a). This scaling may also account for within-season leaf age and 
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temperature effects on Vcmax25 (see Wilson et al. (2000) for possible within-season aging 

effects on Vcmax25). 
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Table 4.5. Models of relative maximum Rubisco carboxylation capacity (Vcmax). 

Model BIC 

Relative Vcmax ~ Air Temperature * Relative Day Length 16.9 

Relative Vcmax ~ Air Temperature + Relative Day Length 14.5 

Relative Vcmax ~ Air Temperature 9.4 

Relative Vcmax ~ Relative Day Length 79.6 

BIC, Bayesian information criterion. 
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4.3.2 The Arrhenius model is more sensitive to Hd and ΔS than Ea 

The Arrhenius model is relatively insensitive to small changes in Ea, with 5% changes in 

Ea causing little difference for estimates of relative Vcmax with either the modified or 

unmodified Arrhenius equation (Fig. 4.2a). The highest Ea caused convergence of the 

modified and unmodified Arrhenius equations, while the lowest Ea value had a more 

pronounced effect on the estimates of relative Vcmax from the unmodified Arrhenius 

equation than the modified Arrhenius equation. Changing either Hd or ΔS caused 

substantial shifts in the temperature response function of relative Vcmax, with a 5% 

increase in Hd and a 5% decrease in ΔS shifting the temperature optimum upwards by 

~20 °C, while a 5% decrease in Hd and a 5% increase in ΔS shifted the temperature 

optimum downwards by ~15 °C (Figs. 4.2b, c). The highest value of Hd and lowest value 

of ΔS caused the modified Arrhenius equation to resemble the unmodified Arrhenius 

equation at biologically relevant temperatures, while the lowest value of Hd and highest 

value of ΔS caused an exponential decline in relative Vcmax across the temperature range 

modelled. 
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Figure 4.2. Sensitivity analysis of the Arrhenius temperature response models of 

relative Vcmax to changes in (a) activation energy (Ea), (b) deactivation energy (Hd), 

and (c) the entropy parameter (ΔS). Base parameter values were varied ± 5%, as 

well as using the highest (High) and lowest (Low) values available in the literature. 

Red indicates the parameter value has been increased, while blue indicates a 

decrease in the parameter value, relative to the base parameter value. MA: modified 

(peaked) Arrhenius function (Equation 4.1), UA: unmodified Arrhenius function 

(Equation 4.4). 
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4.3.3 Thermal acclimation improves model predictions 

Modelled and measured GPP were strongly correlated (r = 0.95) with a slope of 1.048 

(95% confidence interval: 1.017 to 1.080) and an intercept of 0.084 μmol m-2 s-1 (95% 

confidence interval: 0.012 to 0.156), indicating that the MAESTRA model slightly over-

estimated GPP (Fig. 4.3). Incorporating photosynthetic temperature acclimation into 

MAESTRA had scenario-dependent effects on model performance, where single factor 

acclimation tended to improve model performance (Table 4.6, Fig. 4.4). In general, ΔS-

based scenarios, which are currently used in efforts to acclimate photosynthesis in Earth 

System Models, improved explanatory power over the base model. However, including 

values for both Hd and ΔS for Vcmax to single factor acclimation scenarios (the ‘+’ versus 

‘–’ scenarios in my analysis) generally reduced model performance (for example Figs. 

4.4g, h). The best performing models under the full temperature domain all included 

acclimation of k25 (k25 (-), k25/Eav (-), k25/Eav/ΔS). While the two and three parameters 

scenarios that included k25 performed well, the addition of a second or third parameter 

generally led to relatively small improvements in model performance. Including Eav to 

the k25 (-) acclimation only improved R2 by 0.2% (though it reduced carbon gain by 40 

μmol m-2 relative to k25 (-); Table 4.6), while adding ΔS to the k25/Eav scenario increased 

R2 by 0.5% relative to k25 (-) (and reduced carbon gain by 6 μmol m-2 relative to k25 (-)). 

Including Eavj (the k25/Eavj (-) scenario) to the k25 (-) scenario reduced model 

performance (reducing the R2 by 6.4% and carbon gain by 189 μmol m-2 relative to k25 (-

)), though adding ΔS as well (i.e. k25/Eavj/ΔS) improved R2 over the k25/Eavj scenario by 

1.1% (but still reduced R2 by 5.3% and reduced carbon gain by 161 μmol m-2 relative to 

the k25 (-) scenario). Overall, multifactor models provided minimal improvements in 

model performance over the single factor model, and the greatest improvements in 

multifactor acclimation were due to the inclusion of k25 (Table 4.6). When summing 

carbon gain across all days for each scenario, incorporating photosynthetic thermal 

acclimation generally reduced modelled carbon gain compared to the NA (-) scenario 

(although ΔS increased carbon gain by 69 μmol m-2) (Table 4.6). The two best scenarios 

(by R2 and/or BIC), k25/Eav (-) (lowest BIC) and k25/Eav/ΔS (highest R2), had five-day 
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carbon gain predictions that were 159 μmol m-2 and 125 μmol m-2 less, respectively, than 

the NA (-) model. 
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Figure 4.3. Modelled hourly gross primary productivity (GPPmod) from MAESTRA 

corresponds well with hourly GPP measurements (GPPmeas) from eddy covariance 

for the Duke Forest site from each year between January 1st, 1998 and December 

31st, 2001. Data were modelled using MAESTRA as per the parameterisation of Luo 

et al. (2001), without any acclimation. See Table 4.2 for the parameters used in 

MAESTRA. Grey line indicates the regression between modelled and measured 

GPP, while the black line indicates the 1:1 line. Note that the temperature range was 

-13.7 to 39.7 °C across the site years used. 



191 

 

Table 4.6. Slope and intercepts of photosynthetic acclimation scenarios across all temperature (Full) and under restricted 

temperature domains of the linear Ea (8 - 25 C; Eav-containing scenarios) and the Eavj (18 - 31 C; Eavj-containing) 

scenarios. The scenarios with the highest R2 and/or lowest BIC are bolded within each temperature domain scenario. 

Temperature Domain Full     Restricted    
Scenario Slope Intercept R2 BIC C Gain (μmol m-2) Slope Intercept R2 BIC 

1. NA (-) 1.044 0.309 0.688 1551 746     

2. NA (+) 0.926 0.461 0.520 1777 751     

3. k25 (-) 0.950 0.712 0.799 1178 627     

4. k25 (+) 0.801 0.303 0.565 1550 604     

5. Eav (-) 1.142 0.220 0.720 1562 760 1.150 0.242 0.723 1303 

6. Eav (+) 0.903 0.498 0.494 1802 756 0.883 0.396 0.530 1423 

7. Eavj (-) 0.883 -0.042 0.730 1292 486 0.977 0.132 0.885 432 

8. Eavj (+) 0.690 0.025 0.550 1437 407 0.672 0.222 0.553 639 

9. ΔS 1.100 0.389 0.709 1552 817     

10. k25/Eav (-) 0.922 0.124 0.801 1141 587 0.933 0.207 0.825 916 

11. k25/Eav (+) 0.802 0.302 0.566 1549 604 0.799 0.344 0.563 1294 

12. k25/Eavj (-) 0.810 -0.054 0.735 1197 438 0.926 0.123 0.879 422 

13. k25/Eavj (+) 0.618 0.014 0.559 1311 361 0.620 0.214 0.551 610 

14. k25/ΔS  0.989 0.193 0.797 1222 660     

15. Eav/ΔS  1.078 0.308 0.749 1437 766 1.079 0.279 0.772 1154 

16. Eavj/ΔS 0.906 -0.047 0.730 1317 496 1.004 0.133 0.883 447 

17. k25/Eav/ΔS 0.963 0.144 0.804 1175 621 0.974 0.218 0.825 948 

18. k25/Eavj/ΔS 0.845 -0.037 0.746 1210 466 0.965 0.124 0.882 433 
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C Gain: the total carbon uptake calculated by summing data across all simulated days; NA: no acclimation, (-) Equation 4.4 is used for 

Vcmax, (+), Equation 4.1 is used for Vcmax, k25: basal acclimation of Vcmax and Jmax at 25 °C, Eav: linear acclimation of Vcmax activation 

energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, ΔS: acclimation of the entropy parameter.
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Figure 4.4. Modelled hourly gross primary productivity (GPP) from MAESTRA 

across scenarios with different types of photosynthetic temperature acclimation for 

February 1st, April 6th, August 8th, September 30th, and November 21st from each 

year between 1998 and 2001. Solid black lines represent significant linear 

regressions (P < 0.001). Grey dashed line indicates a 1:1 relationship. See Table 4.6 

for slopes and intercepts. NA: no acclimation, (-) Equation 4.4 is used for Vcmax, (+), 

Equation 4.1 is used for Vcmax, k25: basal acclimation of Vcmax and Jmax at 25 °C, 

Eav: linear acclimation of Vcmax activation energy, Eavj: nonlinear acclimation of 

Vcmax and Jmax activation energies, ΔS: acclimation of the entropy parameter. ΔR2 

indicates the absolute change in R2 compared to the base NA (-) scenario, with red 

text indicating an improvement. 
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4.3.4 Deactivation analysis 

Next, I replaced the Hd value in MAESTRA for all base scenarios (1 to 18) with the 

highest or lowest Hd values for Vcmax and Jmax. Under high Hd, scenarios using Equation 

4.1 to describe Vcmax (i.e. (+)-containing scenarios) produced the greatest performance 

increases (up to 27.7% compared to the base Hd case), and the difference from describing 

Vcmax with Equation 4.1 instead of Equation 4.4 disappeared (i.e. it did not matter 

whether or not Hd and ΔS for Vcmax were included in the scenario; Fig. 4.5; Table 4.7). 

The best performing acclimation scenarios with the alternate Hd values (highest R2 and/or 

BIC) all contained acclimation of k25, corresponding to the best performing scenarios 

under the base Hd case. 
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Figure 4.5. High deactivation energy (Hd) scenario: modelled hourly gross primary 

productivity (GPP) from MAESTRA across scenarios with different types of 

photosynthetic temperature acclimation for February 1st, April 6th, August 8th, 

September 30th, and November 21st from each year between 1998 and 2001. Solid 

black lines represent significant linear regressions (P < 0.001). Grey dashed line 

indicates a 1:1 relationship. See Table 4.7 for slopes and intercepts. NA: no 

acclimation, (-) Equation 4.4 is used for Vcmax, (+), Equation 4.1 is used for Vcmax, 

k25: basal acclimation of Vcmax and Jmax at 25 °C, Eav: linear acclimation of Vcmax 

activation energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, 

ΔS: acclimation of the entropy parameter. ΔR2 indicates the absolute change in R2 

compared to the same scenario with the original Hd value used in Fig. 4.4, with red 

text indicating an improvement. 
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Table 4.7. Acclimation scenario performance under the highest Hd for Vcmax and Jmax (High Hd) and the lowest Hd (Low Hd). 

Slope and intercepts of photosynthetic acclimation scenarios across all temperature (Full) and under restricted temperature 

domains of the linear Ea (8 - 25 C; Eav-containing scenarios) and the Eavj (18 - 31 C; Eavj-containing scenarios) scenarios. 

The scenarios with the highest R2 and/or lowest BIC are bolded within each temperature domain scenario. 

Hd High     Low    

Scenario Slope Intercept R2 BIC Scenario Slope Intercept R2 BIC 

19. NA (-) 1.100 0.312 0.737 1486 37. NA (-) 0.782 0.686 0.377 1893 

20. NA (+) 1.100 0.312 0.737 1486 38. NA (+) 1.215 0.576 0.534 2011 

21. k25 (-) 0.966 0.166 0.803 1181 39. k25 (-) 0.894 0.210 0.755 1243 

22. k25 (+) 0.966 0.166 0.803 1181 40. k25 (+) 1.084 0.502 0.537 1894 

23. Eav (-) 1.049 0.245 0.771 1353 41. Eav (-) 0.985 0.282 0.719 1424 

24. Eav (+) 1.049 0.245 0.771 1353 42. Eav (+) 1.175 0.649 0.498 2047 

25. Eavj (-) 0.896 -0.046 0.729 1308 43. Eavj (-) 0.842 -0.003 0.715 1282 

26. Eavj (+) 0.896 -0.046 0.729 1308 44. Eavj (+) 0.968 0.008 0.652 1555 

27. ΔS 1.080 0.349 0.732 1479 45. ΔS 1.164 0.653 0.493 2047 

28. k25/Eav (-) 0.937 0.128 0.790 1190 46. k25/Eav (-) 0.862 0.152 0.769 1168 

29. k25/Eav (+) 0.938 0.119 0.803 1152 47. k25/Eav (+) 1.069 0.470 0.560 1837 

30. k25/Eavj (-) 0.832 -0.060 0.733 1226 48. k25/Eavj (-) 0.764 -0.020 0.732 1147 

31. k25/Eavj (+) 0.832 -0.060 0.733 1226 49. k25/Eavj (+) 0.903 -0.010 0.657 1478 

32. k25/ΔS  0.966 0.166 0.803 1181 50. k25/ΔS 1.084 0.498 0.541 1887 

33. Eav/ΔS 1.040 0.246 0.768 1352 51. Eav/ΔS 1.175 0.650 0.498 2047 

34. Eavj/ΔS 0.896 -0.046 0.729 1308 52. Eavj/ΔS 0.968 0.008 0.652 1555 

35. k25/Eav/ΔS 0.938 0.119 0.803 1152 53. k25/Eav/ΔS 1.069 0.470 0.560 1837 

36. k25/Eavj/ΔS 0.836 -0.039 0.744 1205 54. k25/Eavj/ΔS 0.922 0.064 0.626 1562 
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NA: no acclimation, (-) Equation 4.4 is used for Vcmax, (+), Equation 4.1 is used for Vcmax, k25: basal acclimation of Vcmax and Jmax at 

25 °C, Eav: linear acclimation of Vcmax activation energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, ΔS: 

acclimation of the entropy parameter. 
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Replacing Hd with the lowest available values had the greatest impact on scenario 

performance, reducing the R2 in the NA (-) scenario by 0.311 (Fig. 4.6). In general, the 

spread of the data was increased (Fig. 4.6), and apart from Eavj (+) and k25/Eavj (+) 

scenarios (which had increased model performance of 10.2 and 9.8%, respectively), most 

other scenarios showed drastic reductions in performance (up to -25.6%) (Fig. 4.6; Table 

4.7). As with the base Hd and the high Hd cases, scenarios containing k25 performed best, 

with minor improvements from multifactor acclimation in the k25/Eav (-) and k25/Eavj (-

) scenarios (Table 4.7). 
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Figure 4.6. Low deactivation energy (Hd) scenario: modelled hourly gross primary 

productivity (GPP) from MAESTRA across scenarios with different types of 

photosynthetic temperature acclimation for February 1st, April 6th, August 8th, 

September 30th, and November 21st from each year between 1998 and 2001. Solid 

black lines represent significant linear regressions (P < 0.001). Grey dashed line 

indicates a 1:1 relationship. See Table 4.7 for slopes and intercepts. NA: no 

acclimation, (-) Equation 4.4 is used for Vcmax, (+), Equation 4.1 is used for Vcmax, 

k25: basal acclimation of Vcmax and Jmax at 25 °C, Eav: linear acclimation of Vcmax 

activation energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, 

ΔS: acclimation of the entropy parameter. ΔR2 indicates the absolute change in R2 

compared to the same scenario with the original Hd value used in Fig. 4.4, with red 

text indicating an improvement. 
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4.3.5 Restricting temperature domain improves performance of 

thermal acclimation scenarios 

Since measurements of thermal acclimation of Ea for Vcmax and Jmax are made over a 

restricted range of leaf temperatures, I investigated the effect of restricting the 

temperature domains to those matching the measurements of the Ea of Vcmax and Jmax (i.e. 

if the ten-day running mean air temperature for a given date was outside of the 

temperature range used to generate the estimate from Equations 4.8 and 4.9, that date was 

excluded from the model run). Restricting the temperature domain to that of Equation 8 

showed slight improvements of up to 3.6% in the performance of scenarios containing 

Eav relative to their performance under the full temperature domain (Figs. 4.7a-f; Table 

4.6).  
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Figure 4.7. Modelled gross primary productivity (GPP) from MAESTRA with 

temperature ranges restricted to the respective domains of Equations 4.8 (Eav) and 

4.9 (Eavj). Solid black lines represent significant linear regressions (P < 0.001). Grey 

dashed line indicates a 1:1 relationship. See Table 4.6 for slopes and intercepts. (-) 

Equation 4.4 was used for Vcmax, (+) Equation 4.1 was used for Vcmax, k25: basal 
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acclimation of Vcmax and Jmax at 25 °C, Eav: linear acclimation of Vcmax activation 

energy, Eavj: nonlinear acclimation of Vcmax and Jmax activation energies, ΔS: 

acclimation of the entropy parameter. ΔR2 denotes the absolute change in R2 

relative to the full temperature domain for that scenario in Fig. 4.4, with red text 

indicating an improvement. 

  



206 

 

Restricting the temperature domain to that of Equation 4.9 greatly improved the 

performance of the Eavj scenarios relative to their base case, with improvements of up to 

15.5%. However, minimal effects of restricted temperature domain were seen in the Eavj 

(+) and k25/Eavj (+) scenarios (Figs. 4.7g-l; Table 4.6). The performance of the Eavj 

scenario under its temperature domain relates to the extreme values of Ea calculated from 

Equation 4.8 at low temperatures, which causes carbon assimilation in MAESTRA to 

collapse to 0 below moderately low (~10 °C) temperatures, reducing model performance.   

4.4 Discussion 

Incorporating thermal acclimation of photosynthesis generally improved scenario 

performance. Overall, the best acclimation scenarios generally overestimated GPP at low 

rates, and under-estimated GPP at high rates, since the intercepts were greater than zero 

and the slopes slightly less than 1. Multiple unaccounted-for factors that can affect 

photosynthetic carbon uptake could contribute to this, including stresses which could 

depress GPP in the measured data (Luo et al., 2001), differences amongst leaf age classes 

(although the model performs well with a single age class; Fig. 4.3), uncertainties in how 

to partition GPP from net ecosystem exchange (Reichstein et al., 2005; Schaefer et al., 

2012; Wohlfahrt & Gu, 2015), and not accounting for photosynthetic carbon uptake in 

the understory. Including the parameters Hd and ΔS for Vcmax had the most detrimental 

effects on model performance (see differences between + and – scenarios), while 

including k25 acclimation had the most positive effects. It is also important to consider the 

concept of equifinality here (Medlyn et al., 2005), since different parameterizations of the 

model could give similar model results, as is illustrated by the ability to produce similar 

temperature responses of relative Vcmax by altering either Hd or ΔS. Therefore, while k25 

acclimation is the most parsimonious way to include thermal acclimation of 

photosynthetic capacity, other acclimation functions could also be used. However, 

multifactor acclimation provided only modest improvements over single factor 

acclimation (<1% increase in R2) (Table 4.6). Including ΔS acclimation (currently 

implemented in some Earth System Models; Oleson et al., 2013; Smith & Dukes, 2013; 

Smith et al., 2016) improved performance by only ~2% and when combined with 

acclimation of other parameters, provided some improvements over single factor 
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acclimation. This suggests that current implementations of photosynthetic temperature 

acclimation (Oleson et al., 2013; Smith & Dukes, 2013; Smith et al., 2016) may not be 

the best way to acclimate photosynthesis in models since single-factor acclimation of ΔS 

did not perform as well as single-factor acclimation of k25 (-), Eav (-) and Eavj (-). 

Overall the best performing multifactor acclimation scenarios included k25 acclimation, 

but these showed near-equivalent performance to single factor k25 acclimation. Including 

Eavj tended to reduce the performance of multifactor models compared to single- or dual- 

factor models that did not contain Eavj, while using Eav tended to improve multifactor 

models. The lack of large improvements in multifactor acclimation models may be 

related to the equations being derived from data on different species (i.e. ‘mixing and 

matching’ parameters) (Hikosaka et al., 2006; Kattge & Knorr, 2007; Dillaway & 

Kruger, 2010). This supports the Rogers et al. (2017) recommendation that measured 

photosynthetic parameters cannot be mixed and matched – with my extension being that 

they should be used within the confines of their measurement environment. Therefore, I 

recommend that multifactor thermal acclimation of photosynthesis not be used in large 

scale modeling efforts until the underlying physiology is better understood.  

4.4.1 Acclimation of k25 outperforms acclimation of other 

parameters 

Our data show that k25 is the most important parameter to acclimate to temperature, as 

acclimation of k25 improves GPP predictions both under the full temperature range and 

when restricted to the temperature range of Equation 4.8. In addition, under the most 

restricted temperature range for Equation 4.9, acclimation of k25 still performed well. 

While previous studies found that k25 did not necessarily acclimate to changes in growth 

temperature in an easily described pattern (Way & Oren, 2010; Way & Yamori, 2014), 

Smith & Dukes (2017) found that short-term temperature acclimation caused acclimation 

of basal rates of Vcmax in 22 species, implying that photosynthetic responses to short- and 

long-term temperature changes may need to be addressed separately. My acclimation 

scenario is not developmental acclimation, but a combination of temperature effects and 

leaf age (i.e. seasonal acclimation) and specifically a short-term, air temperature 

acclimation. Leaf age effects, which include nitrogen reallocation, (e.g. Wilson et al., 
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2000; Xu et al., 2017) may explain why k25 tended to improve the scenarios in which it 

was included. Within-season leaf age is confounded with changes in air temperature in 

my k25 acclimation scenario, and without Rubisco concentration data, it is difficult to 

parse whether the k25 acclimation is capturing 1) a true temperature effect, 2) a shift of 

Rubisco function towards nitrogen storage, 3) within-season aging, or 4) all of these 

effects. However, my data, when combined with that from Smith & Dukes (2017), 

suggests that k25 acclimation should improve carbon gain predictions over seasonal 

timescales. I would like to note, however, that my acclimation function for k25 was 

derived from coniferous tree data, and conifers are not broadly represented in the data 

used to derive the other acclimation functions (Hikosaka et al., 2006; Kattge & Knorr, 

2007; Dillaway & Kruger, 2010). Given this, these other acclimation functions may 

perform better on other plant functional types than they do in my analysis.  

4.4.2 Vcmax25 was better correlated with air temperature than day 

length 

My data suggest that photosynthetic capacity in evergreen conifers is regulated 

differently than in broadleaf deciduous trees, contrasting with the findings of Bauerle et 

al. (2012), which may be related to the use of Rubisco as a nitrogen storage protein 

during the winter in evergreen conifers (Quick et al., 1992; Warren et al., 2003; Millard 

et al., 2007; Stinziano & Way, 2017). If this is the case, Earth System Models that 

incorporate a day length scalar for Vcmax, such as the Community Land Model(Oleson et 

al., 2013), may need to use air temperature, as opposed to day length, to scale Vcmax25 in 

evergreen conifers across the season. Currently, however, Earth System Models typically 

incorporate temperature acclimation of ΔS (Smith & Dukes, 2013; Smith et al., 2016) 

and/or day length acclimation of Vcmax (Oleson et al., 2013), and my data suggest that 

acclimating ΔS only minimally improves model performance for an evergreen conifer. In 

this regard, incorporating acclimation of k25 in lieu of ΔS acclimation for evergreen 

conifers may improve model performance.  
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4.4.3 Hd has strong impacts on model performance 

In my investigation of using high and low Hd values, I found that the best acclimation 

scenarios tended to include acclimation of basal photosynthetic acclimation (k25). 

Reducing Hd of both Vcmax and Jmax from the commonly used values to low, but 

biologically realistic values had the greatest impact on model performance, reducing R2 

of NA (-) by almost half, and increasing the positive effect of temperature acclimation 

scenarios on model performance. Meanwhile, increasing Hd of both Vcmax and Jmax from 

the commonly used values to high, but biologically realistic values generally improved 

the performance of all acclimation scenarios. Interestingly, the largest improvements 

were seen in scenarios that included Hd and ΔS for Vcmax, and using a high value for Hd 

eliminated the differences between using the modified (Equation 4.1) and unmodified 

(Equation 4.4) Arrhenius equation for Vcmax (Fig. 4.5; Table 4.7). This effect is due to the 

high Hd value pushing meaningful divergences between the modified and unmodified 

Arrhenius equations to high temperatures outside the range used in the present study (Fig. 

4.2). Such responses illustrate the importance of Hd, a parameter often fixed to 200,000 J 

mol-1 due to overparameterization of the modified Arrhenius model and the difficulty in 

measuring it (due to the high temperatures required) (Medlyn et al., 2002; Kattge & 

Knorr, 2007), which has limited systematic investigations into acclimation of Hd for 

Vcmax and Jmax (although see Leuning, 2002, and Galmés et al., 2015 for Hd data in vivo 

and in vitro, respectively). Therefore, understanding the degree of thermal acclimation of 

Hd, and whether it even occurs, remains an important knowledge gap. Given the 

sensitivity of model performance to the value of Hd used (Figs. 4.5, 4.6), the high 

sensitivity of the Arrhenius model to both Hd and ΔS relative to Ea (Fig. 4.2), and the 

(required) simultaneous fitting of Hd and ΔS, a renewed focus on quantifying values of 

Hd and determining to what extent Hd responds to changes in leaf temperature is needed. 

In light of this sensitivity to Hd and ΔS, and the similar model outputs obtained by 

changing these two parameters, it is necessary to address whether the modified Arrhenius 

model used here is the correct approach to modeling photosynthesis and assessing 

acclimation, since this function is embedded in larger models (Duursma & Medlyn, 2012; 

Oleson et al., 2013). The Johnson et al. (1942) modified Arrhenius function requires 
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simultaneous fitting of Hd and ΔS, which may be modified relative to each other to 

achieve the same results (Figs. 4.2b, c). There may be other ways to model temperature 

responses that avoid this particular equifinality issue, such as the modified Arrhenius 

function from Kruse et al. (2017), which requires only two parameters to describe the 

curvature of the temperature response.   

4.4.4 Temperature domains of acclimation functions affect 

modeling conclusions 

Restricting the modeling results to the temperature domains of the Ea acclimation 

scenarios improved model performance.  The greatest increases in performance under the 

limited temperature ranges were seen in scenarios containing Eavj acclimation (Equation 

4.9; Tables 4.6, 4.7), which is likely due to the rapid increase in Ea values outside the 

temperature domain of the function. My data support the conclusion that using 

acclimation equations outside their temperature domain could adversely affect 

predictions (particularly regarding Equation 4.9 from Dillaway & Kruger, 2010), and 

should be discouraged. More research is needed, however, to expand the temperature 

domains for the parameters investigated here, as we currently lack data at temperature 

extremes.  

4.4.5 Conclusions and future directions 

To my knowledge, the present study is the first to compare the influence of acclimation 

of the individual parameters dictating the thermal response of Anet on predictions of 

canopy carbon flux. In my dataset, incorporating multifactor scenarios of thermal 

acclimation of photosynthesis into models of carbon uptake increased model complexity 

without improving performance. I therefore have two final recommendations that could 

improve photosynthetic modeling efforts in Earth System Models: 1) further research into 

the parameters that underlie photosynthetic thermal acclimation, particularly Hd, is 

needed to determine if these parameters co-acclimate across a broad range of species and 

plant functional types and across the range of temperatures experienced by the earth 
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system; and 2) thermal acclimation of basal rates of photosynthetic capacity should be 

incorporated into models. 
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Chapter 5  

5 Variation in photosynthetic physiology among boreal 
trees leads to divergent modelled carbon gain 
responses to climate change 

A version of this chapter has been submitted to Global Change Biology (Manuscript ID: 

GCB-18-0412), and addresses Question 4 (how do climate variation (seasonal and 

annual) and physiological variation interact to affect projections of boreal tree net carbon 

gain responses to climate change?) and Hypothesis 1 (boreal trees are limited in growth 

and photosynthesis by low temperatures) from Chapter 1. 

5.1 Introduction 

Boreal forests account for ~30% of the globe’s forested area (FAO, 2001) and contain 

~32% of the world’s forest carbon (Bradshaw & Warkentin, 2015). These high latitude 

forests also exhibit high sensitivity to climate variability (Seddon et al., 2016) and will 

experience greater and more seasonally variable warming than temperate or tropical 

forests (Collins et al., 2013). The response of boreal forests to climate change is 

particularly important as photosynthetic and respiratory fluxes from high latitude forests 

strongly influence the global carbon cycle, as evidenced by the impact that the 

seasonality of these carbon fluxes has on the amplitude of annual atmospheric CO2 

oscillations (Graven et al., 2013; Forkel et al., 2016). As such, understanding how carbon 

fluxes respond to rising CO2 and temperature in the small number of tree species that 

dominate the boreal forest is necessary for modeling how climate change will impact 

future atmospheric CO2 trajectories.   

The Earth system models used to predict future climate scenarios group plant species 

according to plant functional types to model climate responses of carbon fluxes in the 

boreal forest and other biomes (Sitch et al., 2008; Fisher et al., 2014; Rogers et al., 

2017). This simplification assumes that all species within a plant functional type are 

physiologically similar, and thus these models use an identical set of parameter values to 

model photosynthesis and respiration for all the species in a given plant functional type 

(Bonan et al., 2002). However, the physiological parameters used to estimate plant 
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carbon fluxes in these models, such as the maximum carboxylation rate of Rubisco 

(Vcmax), can vary by more than 350% between species within the boreal evergreen needle-

leaved tree plant functional type (Warren et al., 2003; Goodine et al., 2008). Variability 

in the physiology of species represented by a given plant functional type thus introduces 

large uncertainties into our predictions of vegetation responses to climate change 

(Wullschleger et al., 2014; Ali et al., 2015; Atkin et al., 2015). However, it is unclear 

whether ignoring this variation in photosynthetic and respiratory parameterizations 

significantly impacts predictions of how boreal forest carbon fluxes will be affected by 

climate change, or whether the large increases in high latitude temperature will have such 

a strong effect on tree carbon fluxes that these physiological differences between species 

are trivial in comparison.       

Modeling the responses of vegetation carbon fluxes to climate requires estimates of how 

photosynthetic CO2 uptake and CO2 losses from respiration respond to short-term 

changes in leaf temperature. The temperature response of photosynthetic capacity can be 

described by a modified Arrhenius function (Medlyn et al., 2002): 

f(Tk) = k25exp [
Ea(Tk−298)

298RTk
]

1+exp(
298∆S−Hd

298R
)

1+exp(
Tk∆S−Hd

TkR
)
     Equation 5.1 

where f(Tk) is the photosynthetic capacity (either the maximum rate of Rubisco 

carboxylation, Vcmax, or the maximum rate of electron transport, Jmax, both in μmol CO2 

m-2 s-1), k25 is the photosynthetic capacity at 25 °C (μmol CO2 m
-2 s-1), Tk is the 

temperature (K), R is the universal gas constant (8.314 J mol-1 K-1), Ea is the activation 

energy (J mol-1), Hd is the deactivation energy (J mol-1), and ΔS is the entropy parameter 

(J mol-1). The Ea determines the steepness of the slope of the temperature response of 

photosynthetic capacity below the thermal optimum, while Hd describes the steepness of 

the slope above the thermal optimum, and ΔS affects the temperature at which the 

thermal optimum occurs. The temperature response of photosynthetic capacity can also 

be described with an unmodified Arrhenius equation (Johnson et al., 1942): 

f(Tk) = k25exp [
Ea(Tk−298)

298RTk
]       Equation 5.2 
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which assumes that f(Tk) increases monotonically with temperature (i.e. the temperatures 

used in scaling are far below the thermal optimum where modifications to Equation 2 are 

needed). In contrast to photosynthetic capacity, the temperature response of respiration 

can be described by (Atkin & Tjoelker, 2003): 

R2 = e[
T2−T1

10
log Q10+log R1]

       Equation 5.3 

where R1 and R2 are respiration rates (μmol CO2 m
-2 s-1) at temperatures T1 and T2 (°C), 

respectively, and Q10 is the thermal sensitivity coefficient, representing a fold change in 

the rate of respiration per 10 °C temperature increase. 

The approaches to modeling leaf carbon fluxes described above are widely used in 

describing plant responses to their thermal environment. But the parameter values 

describing these temperature responses are not necessarily static, as they may change 

when plants are exposed to different environmental conditions. Both photosynthesis and 

respiration can acclimate to higher temperatures in plants that are exposed to warm 

conditions for weeks or longer (Berry & Björkman, 1980; Atkin & Tjolker, 2003; 

Hikosaka et al., 2006; Kattge & Knorr, 2007; Yamori et al., 2014; Heskel et al., 2016), 

and incorporating thermal acclimation of these processes improves model predictions of 

ecosystem CO2 exchange and tends to increase net carbon gain (Smith et al., 2016a). 

Photosynthetic acclimation tends to shift the thermal optimum of photosynthetic capacity 

to a higher temperature, where a shift in the temperature optimum can be related to a 

change in the ΔS parameter of the modified Arrhenius response in Equation 5.1 (Kattge 

& Knorr, 2007). But there is conflicting evidence as to how thermal acclimation of the 

photosynthetic temperature response occurs (Dillaway & Kruger, 2010): values for the Ea 

and ΔS parameters of Equation 5.1 have been proposed to change in leaves acclimated to 

warmer temperatures (Hikosaka et al., 2006; Kattge & Knorr, 2007; Dillaway & Kruger, 

2010), and it remains unknown whether acclimation of Hd occurs (Chapter 4; Stinziano et 

al., 2018). Thermal acclimation to warmer temperature also tends to reduce respiration 

rates (Slot & Kitajima, 2015), which can reduce the effect of climate warming on 

respiration by 80% in boreal and temperate tree species (Reich et al., 2016). Temperature 
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acclimation of respiration can be achieved by a reduction in the Q10 of respiration (Slot & 

Kitajima, 2015; Heskel et al., 2016), described by (Atkin & Tjoelker, 2003): 

Q10 = 3.090 − 0.043T       Equation 5.4 

where T is the acclimation temperature (°C). 

While the methods for incorporating thermal acclimation of plant carbon fluxes are still 

debated (and are therefore the focus of the present study), photosynthetic capacity can 

also respond to both elevated CO2 (Ainsworth & Rogers, 2007; Chapter 2; Stinziano & 

Way, 2014) and seasonal changes in day length (Bauerle et al., 2012). In general, 

photosynthetic capacity declines with acclimation to elevated CO2, an effect that is 

relatively well understood and can be implemented in models via reductions in leaf N 

(and therefore photosynthetic capacity) at elevated CO2 (Ainsworth & Rogers, 2007; 

Rogers et al. 2017). With regard to the effects of seasonal changes in day length, both 

Vcmax and Jmax show a stronger correlation with the day of year (DOY) than with 

temperature for deciduous broadleaf trees, such that decreasing day length causes a 

reduction in photosynthetic capacity (Bauerle et al., 2012). In an evergreen conifer, there 

is a stronger correlation of photosynthetic capacity with day length than with 

temperature, although there does not appear to be a causative relationship with day length 

(Stinziano & Way, 2017). Scaling photosynthetic capacity with DOY improves global 

and regional models of vegetative carbon uptake (Bauerle et al., 2012; Stoy et al., 2014), 

and provides a way to account for seasonal variation of photosynthetic capacity that is 

separate from the temperature acclimation described above, as implemented in the 

Community Land Model (Oleson et al., 2013) and the Ecosystem Demography 2 model 

(Medvigy et al., 2013). 

Here I assess how net carbon gain (the sum of photosynthesis, respiration, and 

photorespiration) is affected by considering species-level physiological variation and 

thermal acclimation of photosynthesis and respiration under a range of climate scenarios 

at five sites across a latitudinal gradient in the boreal forest. I used a spatially-explicit 

three-dimensional model (MAESTRA; Duursma & Medlyn, 2012) to predict net carbon 

gain in 20 x 20 m plots for seven boreal conifer species (Abies balsamea, Larix laricina, 
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Picea abies, Picea glauca, Picea mariana, Pinus banksiana, and Pinus sylvestris) under a 

set of climate change scenarios for the year 2100. I hypothesized that: 1) modelled net 

carbon gain would be stimulated by both warming and elevated CO2 in boreal trees 

species; 2) all the species modeled would have similar responses to climate change, but 

the magnitude of the effect of increasing CO2 and temperature would vary between 

species; 3) the effect of incorporating species variation in physiological parameter values 

on modeled net carbon gain would be smaller than the effect of simulated climate change; 

and 4) thermal acclimation of photosynthesis and respiration would enhance net carbon 

gain across all climate scenarios at all sites.   

5.2 Materials and methods 

5.2.1 Meteorological data 

To test how physiological variability of boreal conifers affected modelled net carbon gain 

across a range of climate conditions, I compiled average hourly air temperature, relative 

humidity and wind speed data for 2011 to 2015 for each month from June to October 

(climate.weather.gc.ca/, Environment Canada, 2016) at five locations across the Canadian 

boreal forest: Trenton, ON (44°07'00" N, 77°32'00" W) (Site 1), Moosonee, ON 

(51°17'28" N, 80°36'28" W) (Site 2), Peawanuck, ON (54°59'00" N, 85°26'00" W) (Site 

3), Churchill, MB (58°44'21" N, 94°03'59" W) (Site 4), and Fort Good Hope, NT 

(66°14'32" N, 128°38'39" W) (Site 5) (Fig. 5.1). Solar insolation was estimated in 15 

minute intervals using an online calculator 

(http://www.pveducation.org/pvcdrom/calculation-of-solar-insolation) that estimates 

maximum solar insolation based on latitude and day of year.  
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Figure 5.1. Locations of climatological stations used for MAESTRA simulations to 

provide a breadth of seasonal changes in temperature and day length. 
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5.2.2 Model description and parameterization  

I used a process-based model of radiation absorption and carbon balance for individual 

trees (MAESPA, run in MAESTRA mode) that scales tissue-level measurements of 

carbon flux to the whole tree, by integrating data on canopy structure, radiation, weather, 

and physiology (Duursma & Medlyn, 2012). For each boreal conifer species (Abies 

balsamea (L.) Mill., Larix laricina (Du Roi) K. Koch., Picea abies (L.) H. Karst., Picea 

glauca (Moench) Voss, Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb, and Pinus 

sylvestris L.) where I could find sufficient photosynthetic and respiratory data in the 

literature (i.e. photosynthetic capacity at 25 C, leaf respiration at 25 C), I parameterized 

MAESTRA to estimate net carbon gain for that species (Table 5.1). For species where 

data on necessary parameters were missing (e.g. photosynthetic temperature response 

parameters, stomatal conductance model parameters), parameter data from the same 

genus was used, and if no genus-specific parameter values were available, a mean value 

of that parameter from all other boreal conifer species was used. I used a value for 

quantum yield of electron transport (AJQ) of 0.218 (mean value from Wallin et al., 1992; 

Long et al., 1993, and Marek et al., 2002 for Picea spp.), and a thermal sensitivity 

coefficient (Q10) for respiration (leaf, stem, and root) of 2.0, which has been found to be 

stable across a range of elevated growth temperatures and CO2 concentrations in a boreal 

conifer species (Kroner & Way, 2016). However, since the focus of my study was on the 

interplay between physiological traits and climate variability, I kept tree dimension 

parameter values constant across species in MAESTRA, a similar approach to canopy 

structure as that used in larger-scale models like the Community Land Model (Oleson et 

al., 2013). Both Vcmax and Jmax were calculated for June 16 (DOY 167), July 16 (DOY 

197), August 16 (DOY 228), September 16 (DOY 259) and October 16 (DOY 289) as a 

function of day of year. I used an equation to scale photosynthetic capacity from the 

literature with day length, assuming the literature value to be a maximum photosynthetic 

capacity. This day of year scaling equation (and the values for the equation constants) 

were based on an evergreen conifer (Picea glauca; Chapter 3; Stinziano & Way, 2017): 

PC =  Pmax ×
aDOY2+bDOY+g

Pmax,pg
       Equation 5.5 
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where PC is either Vcmax or Jmax on a given DOY, Pmax is the maximum value of PC for a 

given species (assumed to be equal to the literature value), and Pmax,pg is the maximum 

value of PC for Picea glauca. The equation constants a, b and g are -0.0003 and -0.0022 

for a, 0.2968 and 1.2992 for b, and -8.8682 and -97.2139 for g, for Vcmax and Jmax, 

respectively.  
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Table 5.1. Species-specific mean parameter values used in MAESTRA to model carbon gain for each boreal conifer species at 

the stand level. 

Parameter names and units Abbreviation Species             

   

Abies 

balsamea 

Larix 

laricina 

Picea 

abies 

Picea 

glauca 

Picea 

mariana 

Pinus 

banksiana 

Pinus 

sylvestris 

Maximum rate of electron transport at 

25 °C (µmol m-2 s-1) Maximum Jmax 54.31 61.252 70.93 97.94 154.55-7 2457,8 1439-11 

Curvature of light response curve 

of electron transport THETA 0.7112       

Quantum yield of electron transport 

(mol e- mol-1 CO2) AJQ 0.21813-15       

Activation energy of Jmax (J mol-1) EAVJ 5082016 5082016 4000017 4000017 4000017 10028016 10028016 

Deactivation energy of Jmax (J mol-1) EDVJ 20000016 20000016 22000017 22000017 22000017 14792016 14792016 

Entropy term of Jmax (J K-1 mol-1) DELSJ 71017 
      

Maximum rate of Rubisco 

carboxylation at 25 °C (µmol m-2 s-1) Maximum Vcmax 23.31 41.22 51.63 44.54 465-7 73.77,8 849-11 

Activation energy of Vcmax (J mol-1) EAVC 6002016 6002016 5600017 5600017 5600017 6983016 6983016 

Foliar dark respiration rate at 25 °C 

(µmol m-2 s-1) RD 1.218 0.622 0.5319 2.784 0.625,6 1.1520 2.3110 

Rlight as proportion of RD DAYRESP 0.721       

Foliage Q10 values (exponential form) FOLQ10 0.86222       

Stem respiration at 25 °C (µmol m-2 s-1)  1.7728 1.5929 1.9230 1.9230 1.9230 1.0931 1.0931 

Root respiration at 25 °C (µmol g-1 s-1)  0.021629 0.022132 0.006333 0.009534 0.029932 0.024432 0.019435 

Intercept of the Ball Berry model (mol 

m-2 s-1) G0 0.039529 0.03642 0.02536 0.02564 0.097437 0.0138 0.0138 

Slope of the Ball Berry model (mol m-2 

s-1) G1 5.9229 5.682 636 9.844 2.8537 538 538 
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CO2 compensation point in the absence 

of mitochondrial respiration at 25 °C 

(µmol mol-1) GAMMA 40.829 40.829 36.936 36.936 36.936 44.738 44.738 

Soil reflectance (%) (PAR/NIR/IR) RHOSOL 

0.10, 0.30, 

0.0517       

Needle transitivity (%) (PAR/NIR/IR) ATAU 

0.03, 0.26, 

0.017       

Needle reflectance (%) (PAR/NIR/IR) ARHO 

0.09, 0.33, 

0.0517       

Number of sides for leaf NSIDES 117       

Width of the leaf WLEAF 0.00117       

Number of age classes  14       

Foliage clumping factor  0.6412       

Shape of canopy  CONE39       

Leaf angle distribution  139       

Number of leaf area classes  139       

Mean leaf incidence angle  4539       

Crown radius (y-axis, m) ALLRADY 1.3840 
      

Crown radius (x-axis, m) ALLRADX 1.3840 
      

Height (m) ALLHTCROWN 7.8441-44 
      

Trunk height (m) ALLHTTRUNK 1.4645 
      

Stem diameter (m) ALLDIAM 0.091241-44 
      

Leaf area (m) ALLLAREA 16.346 
      

Plot x-dimension (m) XMAX 20       
Plot y-dimension (m) YMAX 20       
Slope x-dimension (°) XSLOPE 0       
Slope y-dimension (°) YSLOPE 0       
(°) BEARING 180       
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Number of trees NOTREES 8141-44 
      

Measurement height (m) ZHT 7.8447 
      

Zero-plane displacement (m) ZPD 5.0947 
      

Roughness length (m) Z0HT 0.7847             

Note: data listed in one column only were used for all species. In cases where data were not available, means of the species for which 

data are available were used instead. For calculation parameters, I used 10, 12, 9, 6, and 8 for number of layers in the crown, number 

of points per layer, number of zenith angles, number of azimuth angles, and number of shading trees, respectively. 1Goodine et al., 

2008; 2This study (Table C.1); 3Stinziano et al., 2015; 4Stinziano & Way, 2017; 5Major et al., 2014; 6Rayment et al., 2002; 7Cai & 

Dang, 2002; 8Zhang & Dang, 2005; 9Warren et al., 2003; 10Jach & Ceulemans, 2000; 11Kellomäki & Wang, 1996; 12Medlyn et al., 

2005; 13Marek et al., 2002; 14Long et al., 1993; 15Wallin et al., 1992; 16Medlyn et al., 2002; 17Ibrom et al., 2006; 18Lusk & Reich, 

2000; 19Tarvainen et al., 2013; 20Busch et al., 2007; 21Ayub et al., 2011; 22Stockfors & Linder, 1998; 23Scheller & Mladenoff, 2004; 

24Richardson et al., 2001; 25Tjoelker et al., 1998; 26Way & Sage, 2008; 27Wuytack et al., 2013; 28Lavigne et al., 2004; 29Mean of other 

parameters; 30Acosta et al., 2008; 31Zha et al., 2004; 32Tjoelker et al., 1999; 33Weger & Guy, 1991; 34Koch et al., 2007; 35Crookshanks 

et al., 1998; 36Zheng et al., 2002; 37Way et al., 2011; 38Thum et al., 2007; 39Gspaltl et al., 2013; 40Vezina, 1962; 41Peichl et al., 2007; 

42Fournier et al., 1997; 43Harrell et al., 1995; 44Robertson, 1987; 45Riano et al., 2004; 46Chen et al., 2002; 47Calculated from Norman & 

Campbell, 1998. 
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In MAESTRA, model plots of forest stands were set up as uniform monocultures based 

on mean height, diameter at breast height, leaf area index, and mean stand density data 

for boreal conifers (Vezina, 1962; Robertson, 1987; Harrell et al., 1995; Fournier et al., 

1997; Chen et al., 2002; Riano et al., 2004; Peichl et al., 2007; Table 5.1). Using a 

consistent set of structural values for all species allowed for an assessment of the direct 

impacts of physiological and biochemical variability between species on net carbon gain 

in the absence of tree structural variation. 

5.2.3 Assessing how boreal tree physiology affects net carbon 
gain responses to climate change 

I used warming predictions for the representative concentration pathway 8.5 scenario 

(75th percentile predictions for 2081-2100 from Annex I from Working Group 1 of 

Assessment Report 5 for the Intergovernmental Panel on Climate Change (Figs. 

AI.SM8.5.28, AI.SM8.5.31, AI.SM8.5.32, AI.SM8.5.36, AI.SM8.5.39, AI.SM8.5.40 

from IPCC, 2013)) to construct eight climate scenarios of increasing spatiotemporal 

resolution. 1) Global average annual warming (+4.5 °C) represents the simplest case and 

is often used in experimental investigations of warming effects on vegetation. 2) 

Regional average annual warming (varying from +6 to 10 °C across the latitudinal 

gradient examined here) accounts for regional variation in warming predictions; since 

higher latitudes experience greater warming, this scenario represents a more accurate 

depiction of warming at high latitude locations than does global average annual warming. 

3) Seasonal regional warming (varying from +6 to 8 °C) represents a spatiotemporally 

explicit warming scenario that accounts for differential warming expected across seasons; 

peak warming is less than the regional average annual warming because I did not run 

simulations during the winter season, and the temporal resolution is three months for this 

scenario instead of one year for the annual warming. I constructed the control (2011 to 

2015 climate data) and the three warming scenarios with and without elevated CO2 of 

936 ppm (average representative concentration pathway 8.5 prediction) for a total of 

eight climate scenarios (Table C.2). These scenarios were run for each species separately 

at each of the five locations across the boreal forest (see Meteorological Data above). 

Each model simulation consisted of one day in June, July, August, September, and 
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October (with climate data reflecting the average climate data for the whole month) such 

that one monoculture stand of each species was simulated for each climate scenario, 

location, and time. The range of climate scenarios, locations, and times were selected to 

achieve a wide range of climate conditions (minimum mean 24-hr temperature: -2.7 °C, 

maximum mean 24-hr temperature: 27.49 °C; Table C.2) to adequately assess differences 

among physiological parameter sets. With seven species (Table 5.1), eight climate 

scenarios, five locations, and five time points, a total of 1400 simulations were run for the 

interspecies comparison. Climate change effects on net carbon gain were calculated by 

taking the ratio of net carbon gain under the climate change scenario relative to net 

carbon gain under the current climate data. 

5.2.4 How do species-specific parameter values and metabolic 
acclimation affect carbon gain responses to climate change 
scenarios? 

Given the relative lack of data on thermal response parameters for photosynthetic 

capacity, I next assessed the effect of modifying the thermal response parameters from 

Equations 5.1 and 5.2 (i.e. Ea for Vcmax and both Ea and Hd for Jmax) on net carbon gain in 

MAESTRA. I used the extensive physiological dataset available for Picea glauca in 

Stinziano and Way (2017) for this in-depth modeling. I tested the effect of varying Ea and 

Hd on net carbon gain responses to climate scenarios by running MAESTRA with the full 

Picea glauca parameter set, then substituted the thermal response parameter sets from 

Picea glauca for those of Abies and Pinus. I then quantified the total variance in net 

carbon gain within a climate scenario (across all time points and locations) for each of the 

three species-specific parameter sets (for a total of 600 simulations). To test the impact of 

the photosynthetic capacity values on modelled net carbon gain among boreal trees, I 

used a Picea glauca parameterization of MAESTRA and switched out Vcmax and Jmax 

values from P. glauca for those from Abies balsamea (the lowest Vcmax and Jmax values in 

my study) and Pinus banksiana (the highest Vcmax  and Jmax values in my study), then ran 

MAESTRA for all 200 combinations of location, month, and climate scenario for each 

photosynthetic capacity parameterization of MAESTRA (for a total of 600 simulations 

for the Vcmax/Jmax swapping). 
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To test the effect of photosynthetic thermal acclimation on net carbon gain, total carbon 

gain, and variability in net carbon gain, I tested two separate acclimation approaches. For 

the first approach, activation energies for Vcmax and Jmax were scaled with average 

monthly temperature as per Dillaway & Kruger (2010): 

Ea,Vcmax = 45322
Tair

2⁄ − 3368.2
Tair

⁄ + 119.9    Equation 5.6 

Ea,Jmax = 80318.9
Tair

2⁄ − 6093.6
Tair

⁄ + 134.7    Equation 5.7 

where Ea,Vcmax and Ea,Jmax are the activation energies for Vcmax and Jmax (in kJ mol-1), 

respectively, and Tair is the mean air temperature (C) for the simulated month. The 

equations were translated (by changing the constants for Ea,Vcmax and Ea,Jmax, respectively) 

to intersect with the activation energies for Picea, which changed the constants for 

Ea,Vcmax and Ea,Jmax from 119.9 to 118.2 and from 134.7 to 155.2. Note that the 

parameterizations of MAESTRA with Equations 5.6 and 5.7 use Equation 5.2 for Vcmax 

and Equation 5.1 for Jmax. For the second approach, I tested the effects of acclimating ΔS 

for Vcmax and Jmax on net carbon gain; this required a value for Hd for Vcmax (which is 

present only in Equation 5.1), which I set to 200 kJ mol-1 (Medlyn et al., 2002). I then 

acclimated photosynthesis according to Kattge & Knorr (2007): 

ΔS = d + e × Tair        Equation 5.8 

where d and e are constants with separate values for Vcmax (668.39 J mol-1 and -1.07 J 

mol-1 °C-1, respectively) and Jmax (659.70 J mol-1 and -0.75 J mol-1 °C-1, respectively).  

The two photosynthetic thermal acclimation scenarios and the control (no acclimation) 

scenario were also run with and without respiratory acclimation, where the Q10 of 

respiration was scaled to the monthly mean air temperature using Equation 5.4 (for a total 

of 1200 simulations for comparing acclimation scenarios). 
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5.2.5 Statistical analysis 

Data analyses were carried out using R GUI Version 3.3.3 (R Core Development team, 

2017). To determine whether net carbon gain varied by: 1) species-specific physiologcial 

parameter sets, 2) species-specific photosynthetic capacity (i.e. swapping out Vcmax and 

Jmax while holding all other parameters constant), or 3) species-specific Arrhenius 

parameters, I ran ANOVAs with the following structure, treating all variables as fixed 

effects: Net Carbon Gain ~ Warming Scenario * CO2 Scenario * Mean 24-hr 

Temperature * Species, where species represents the parameter set used (1) or the 

photosynthetic capacity or Arrhenius parameters used (for 2 & 3, respectively). To 

determine whether net carbon gain varied with acclimation of photosynthesis and 

respiration across the climate scenarios, the ANOVA structure was: Net Carbon Gain ~ 

Warming Scenario * CO2 Scenario * Mean 24-hr Temperature * Pn * Rn, where Pn 

respresents photosynthetic temperature acclimation (either Ea or ΔS), and Rn represents 

respiratory temperature acclimation. ANOVA models were stepwise-reduced, removing 

parameters until the lowest Bayesian Information Criterion (BIC) was achieved. The 

model with the lowest BIC was then used for final interpretation. Tukey’s HSD was used 

to determine differences in net carbon gain between species, parameters, and acclimation 

types within the respective ANOVAs. 

5.3 Results 

Under current climate conditions and CO2, the timing and rates of net carbon gain 

showed considerable and realistic latitudinal variation, with a shorter and more intense 

period of peak net carbon gain at higher latitudes (Fig. C.1a). Warming of +4.5 °C 

enhanced carbon gain and extended the period of carbon gain at all latitudes except the 

most southerly site (where net carbon gain was reduced in the summer for most species), 

with larger increases in peak net carbon gain at higher latitudes (Figs. 5.2b, C.1b). 

Annual regional warming reduced summer net carbon gain at the lowest and highest 

latitude sites, but enhanced net carbon gain during autumn at all sites and during all 

months at Sites 3 and 4 (Figs. 5.2d, C.1c). Seasonal regional warming, the most complex 

and realistic warming scenario, showed a less complex effect on net carbon gain, strongly 

increasing net carbon gain at higher latitudes, particularly in the autumn, while reducing 
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net carbon gain during summer at the lowest latitudes, similar to the 4.5 °C warming 

scenario (Figs. 5.2f, C.1d). In general, warming had the most positive effect on net 

carbon gain across all species in the autumn, and tended to reduce net carbon gain at the 

lowest latitude site during the warm summer months (Figs. 5.2, C.1). Increasing the 

atmospheric CO2 concentrations in these scenarios preserved the patterns seen in net 

carbon gain changes across time and space (Figs. C.1e-h). Unsurprisingly, elevated CO2 

generally enhanced net carbon gain relative to the ambient CO2 scenario, although it had 

the greatest effect mid-summer and at the lowest latitudes, where temperatures were 

warmest (Fig. 5.2a). When the two climate change factors were considered together, 

elevated CO2 attenuated reductions in net carbon gain at high temperatures compared to 

the ambient CO2 scenarios (Figs. 5.2a, c, e, g, C.1e-h), while also increasing the 

differences seen between species across the climate scenarios (Fig. C.1). The seasonal 

regional warming with elevated CO2 increased net carbon gain and the period of carbon 

uptake relative to current climate conditions, except for two species (Larix laricina and 

Abies balsamea) at the lowest latitude site (Figs. 5.2g, C.1h).  
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Figure 5.2. Percent change in net daily carbon (C) gain of boreal trees across time 

and site relative to current climate conditions under (a, c, e, g) elevated CO2, (b, c) 

4.5 °C of warming, (d, e) annual regional warming, and (f, g) seasonal regional 

warming, at (a, b, c, d) ambient or (e, f, g, h) elevated CO2 for the year 2100. Data 

represent the means of simulations run with monoculture stands of seven boreal tree 

species at five sites and five time points. 0 °C indicates current climate conditions, 

+4.5 °C indicates global average warming for 2100, annual regional indicates 

spatially explicit annual warming, and seasonal regional indicates spatiotemporally 

explicit warming, while eCO2 indicates elevated CO2 concentrations. JJASO stands 

for June, July, August, September, October, and indicate the date for each point 

within a site. Sites are delineated with dashed lines. 
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Under current CO2 concentrations in all species, changes in net carbon gain relative to 

current climates started to approach 0% when mean monthly 24-hr temperatures 

increased above ~21 °C (Fig. 5.3). However, elevated CO2 ameliorated most of the 

negative effects of the warming scenarios at high temperatures (Fig. 5.3). 

  



238 

 

 

Figure 5.3. Percent change in net carbon (C) gain of boreal trees relative to current 

climate conditions under different climate change scenarios is reduced at higher 

average daily temperatures. Dashed grey line represents 0% change. Each point is 

one mean of one simulation of each of seven species per month per latitude per 

species, N = 175 per climate scenario. +4.5 °C indicates global average warming for 

2100, annual regional indicates spatially explicit annual warming, regional seasonal 

indicates spatiotemporally explicit warming, and +eCO2 indicates elevated CO2. 
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5.3.1 Differences in species responses to climate change 
correlates with species’ physiology 

There were notable differences between species responses to the climate scenarios (Figs. 

5.2, C.1, Table 5.2), with the relative order from highest net carbon gain across the 

climate scenarios to the lowest being: Pinus banksiana > Pinus sylvestris > Picea 

mariana > Picea abies > Picea glauca = Larix laricina > Abies balsamea (Table 5.2; 

Tukey’s HSD for P < 0.05). Abies balsamea had the lowest net carbon gain and the 

greatest reductions in net carbon gain in the warming scenarios, as well as the strongest 

stimulations and suppressions of net carbon gain in response to combined elevated CO2 

and warming (Fig. 5.2). This translated into Abies balsamea having the lowest summed 

carbon gain across all months and sites (Table 5.3), more than 50% less than the next 

lowest value (seen in Larix laricina). Responses of net carbon gain to the climate 

scenarios in Larix laricina also showed considerable variation: net carbon gain was 

strongly stimulated at high latitudes in the autumn but suppressed at low latitudes in the 

summer under warming-only scenarios, while tending towards the median response of all 

species under elevated CO2 (Fig. 5.2). The highest summed carbon gain under all climate 

scenarios was found in the pine species (Pinus sylvestris and Pinus banksiana) (Table 

5.3). The pine species both showed strong stimulations of net carbon gain across all 

latitudes and months under the elevated CO2 scenarios, and under most sites and months 

in the warming only scenarios. Net carbon gain in the three Picea species was less 

responsive to warming than in the other species, and Picea abies and Picea glauca 

showed the least response to the elevated CO2 scenarios, either with or without warming 

(Figs. 5.2, C.1).  
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Table 5.2. ANOVA output comparing the effects of species parameters, acclimation, and climate scenario on net carbon gain, 

with the number of simulations in parentheses. 

 
All Species (1400) 

Vcmax and Jmax Swap 

(600) 
Arrhenius Swap (600) Acclimation (1200) 

 df F P df F P df F P df F P 

Warming 3, 1330 71 <0.0001 3, 573 32 <0.0001 3, 572 1.4 0.23 3, 1167 92 <0.0001 

CO2 1, 1330 1990 <0.0001 1, 573 1047 <0.0001 1, 572 242 <0.0001 1, 1167 473 <0.0001 

24-hr T 1, 1330 2990 <0.0001 1, 573 1507 <0.0001 1, 572 371 <0.0001 1, 1167 2658 <0.0001 

Species 6, 1330 772 <0.0001 2, 573 2527 <0.0001 2, 572 11 <0.0001    

Pn           2, 1167 505 <0.0001 

Rn           1, 1167 10 0.0016 

Warming * CO2    3, 573 5.3 0.0013    3, 1167 9.7 <0.0001 

Warming * 24-hr T 3, 1330 13 <0.0001 3, 573 3.8 0.0105 3, 572 11 <0.0001 3, 1167 0.5 0.6662 

Warming * Species 18, 1330 5.5 <0.0001 6, 573 16 <0.0001 6, 572 1.5 0.179    

CO2 * 24-hr T 1, 1330 209 <0.0001 1, 573 124 <0.0001 1, 572 15 0.002 1, 1167 130 <0.0001 

CO2 * Species 6, 1330 42 <0.0001 2, 573 90 <0.0001 2, 572 6 0.0025    

24-hr T* Species 6, 1330 80 <0.0001 2, 573 243 <0.0001 2, 572 5.1 0.0062    

Warming * Pn          6, 1167 42 <0.0001 

CO2 * Pn          2, 1167 3.6 0.0284 

24-hr T * Pn          2, 1167 186 <0.0001 

24-hr T * Rn          1, 1167 5.9 0.0152 

Warming * 24-hr T 

* Species 
18, 1330 3.1 <0.0001    6, 572 2.5 0.0206    

Warming * 24-hr T 

* Pn 
         6, 1167 3.9 0.0008 
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CO2 * 24-hr T * 

Species 
6, 1330 6.3 <0.0001 2, 573 14 <0.0001       

All Species: each species-specific parameter set from Table 5.1; Vcmax and Jmax Swap: switching out Vcmax and Jmax within a Picea 

glauca modeling framework; Arrhenius Swap: switching out the Arrhenius temperature response parameters for Vcmax and Jmax within 

a Picea glauca framework; Acclimation: comparing the effects of acclimating activation energy or the entropy parameter of the 

Arrhenius response and/or respiratory acclimation within a Picea glauca modeling framework; Warming: degree of warming, average 

annual, regional annual, regional seasonal; CO2: elevated CO2; 24-hr T: mean 24-hr temperature; Species: parameter sets for each 

species (or effect of swapping in different species parameters); Pn Acclimation: acclimation of activation energy or the entropy 

parameter; Rn acclimation: respiratory acclimation; BIC: Bayesian Information Criterion.
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Table 5.3. Total carbon gain (mol tree-1) summed across all latitudes and months for each species under each scenario. Bolded 

values indicate the highest total carbon gain within a climate scenario, italicized values indicate the lowest total carbon gain 

within a climate scenario. 

 Species       

Climate Scenario 

Abies 

balsamea 

Larix 

laricina 

Picea 

abies 

Picea 

glauca 

Picea 

mariana 

Pinus 

banksiana 

Pinus 

sylvestris 

Current 26.3 75.6 92.1 89.8 93 103 101 

+4.5°C 27.4 84.2 103.5 94.3 106 122 113 

Annual Regional 22.9 81.2 110.3 93.4 115 132 114 

Seasonal Regional 26.3 84.7 107.8 94.5 112 128 115 

eCO2 52.2 116.8 110.9 113.6 138 158 158 

+4.5°C + eCO2 58.9 128.6 128.3 123.5 162 190 176 

Annual Regional + eCO2 55.7 122.3 140.7 129.3 180 210 179 

Seasonal Regional + eCO2 60 128.4 136.0 128.1 173 203 182 

Current indicates current climate conditions, +4.5°C indicates global average warming for 2100, annual regional indicates spatially 

explicit annual warming, regional seasonal indicates spatiotemporally explicit warming, and +eCO2 indicates elevated CO2. 
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I switched the Picea glauca Vcmax and Jmax values to those of either Abies balsamea or 

Pinus banksiana while holding all other parameter values constant in a Picea glauca 

parameterization to evaluate the effect of changing Vcmax and Jmax on the patterns seen in 

net carbon gain. Unsurprisingly, I found that Vcmax and Jmax explained the large 

differences in net and total carbon gain across species, since modeling Picea glauca with 

the low Abies balsamea Vcmax and Jmax values generated very low net carbon gain and 

total carbon gain (< 30% of that compared to using Picea glauca values for 

photosynthetic capacity) while using the high Pinus banksiana Vcmax and Jmax values in a 

Picea glauca framework increased total carbon gain up to 75% (net carbon gain: Fig. 5.4, 

Table 5.2; total carbon gain: Table 5.4). 
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Figure 5.4. Net carbon (C) gain across 24-hr temperature using three sets of Vcmax 

and Jmax (Picea glauca, Abies balsamea, Pinus banksiana) in a Picea glauca 

parameterization of MAESTRA under (a, e) current climate conditions, (b, f) 4.5 °C 

of warming, (c, g) annual regional warming, (d, h) seasonal regional warming, at (a, 

b, c, d) current ambient CO2 or (e, f, g, h) elevated CO2 for the year 2100. +4.5 °C 

indicates global average warming for 2100, annual regional indicates spatially 

explicit annual warming, and seasonal regional indicates spatiotemporally explicit 

warming, while eCO2 indicates elevated CO2 concentrations. 
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Table 5.4. Total carbon gain (mol tree-1) summed across latitude and time for each Arrhenius temperature response 

parameter set (or Vcmax and Jmax parameter set) within a Picea glauca modeling framework. For comparisons between 

Arrhenius parameter sets, bolded values indicate the highest total carbon gain within a climate scenario, italicized values 

indicate the lowest total carbon gain within a climate scenario. For comparisons between Vcmax and Jmax parameter sets, 

starred (*) values indicate the highest total carbon gain within a climate scenario, underlined values indicate the lowest total 

carbon gain within a climate scenario. 

Arrhenius Parameters Abies balsamea Picea glauca Picea glauca Picea glauca Pinus banksiana 

Vcmax and Jmax Set Picea glauca Abies balsamea Picea glauca Pinus banksiana Picea glauca 

Current 103 25 90 103* 87 

+4.5°C 103 26 94 122* 96 

Annual Regional 87.8 19 93 132* 92 

Seasonal Regional 98 24 95 129* 96 

eCO2 156 52 114 158* 135 

+4.5°C + eCO2 158 57 124 190* 146 

Annual Regional + eCO2 139 46 129 210* 142 

Seasonal Regional + eCO2 152 58 128 202* 148 

Current indicates current climate conditions, +4.5°C indicates global average warming for 2100, annual regional indicates spatially 

explicit annual warming, regional seasonal indicates spatiotemporally explicit warming, and +eCO2 indicates elevated CO2.
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5.3.2 Arrhenius parameters strongly influence net carbon gain 
responses to climate 

Switching the Arrhenius parameters in the MAESTRA parameterization used to model 

Picea glauca, I found that climatic effects on net carbon gain were smallest when using 

the set of Picea Arrhenius parameter values, largest with the Abies Arrhenius parameter 

values, and intermediate for the Pinus values (Figs. 5.5, C.2). In general, using the Abies 

and Pinus Arrhenius parameter values led to greater net carbon gain than using the Picea 

parameters, although Abies parameters led to the absolute highest total carbon gain (Figs. 

5.5, C.2 Tables 5.2, 5.4). The total carbon gain was increased up to ~30% just by 

switching Arrhenius parameters from Picea to Abies. However, there were no differences 

in the responses of net carbon gain to warming scenarios amongst the model runs using 

different Arrhenius parameter sets (Fig. 5.5, Table 5.2), although the Abies and Pinus 

parameter values led to more positive net carbon gain responses to elevated CO2 than 

were seen with the Picea Arrhenius parameter values (Figs. 5.5, C.2, Table 5.2; Tukey’s 

HSD at P < 0.05). 
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Figure 5.5. Percent change in net daily carbon (C) gain of boreal trees across time 

and site relative to current climate conditions under (a, c, e, g) elevated CO2, (b, c) 

4.5 °C of warming, (d, e) annual regional warming, and (f, g) seasonal regional 

warming, at (a, b, c, d) ambient or (e, f, g, h) elevated CO2 for the year 2100. Data 

represent simulations run with monoculture stands of Picea glauca at five sites and 

five time points using one of the Arrhenius temperature response parameters for 

Picea, Abies, or Pinus. 0 °C indicates current climate conditions, +4.5 °C indicates 

global average warming for 2100, annual regional indicates spatially explicit annual 

warming, and seasonal regional indicates spatiotemporally explicit warming, while 

eCO2 indicates elevated CO2 concentrations. JJASO stands for June, July, August, 

September, October, and indicate the date for each point within a site. Sites are 

delineated with dashed lines. 
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5.3.3 Photosynthetic temperature acclimation has variable effects 
across climate scenarios 

Using the Picea glauca parameterization of MAESTRA, I investigated how thermal 

acclimation of photosynthesis (via Ea or ΔS of both Vcmax and Jmax) and respiration altered 

net carbon gain. Across the full temperature range investigated in the modeled climate 

scenarios, acclimation of Ea for Vcmax and Jmax caused a convergence in the temperature 

response of net carbon gain at low temperatures, and large reductions in total carbon gain 

of up to 175% compared to the non-acclimated control (Figs. 5.6a,c , 5.7a, Tables 5.2, 

5.5). Restricting the analysis to the temperature domain at which the Ea acclimation 

functions for Vcmax and Jmax were determined (i.e. 18 – 31 °C), these effects largely 

disappeared: there was no convergence in net carbon gain responses to temperature 

across climate scenarios, and total carbon gain was reduced by only ~10–15% (Fig. 5.6c, 

5.7a, Table 5.5). Acclimation of ΔS for Vcmax and Jmax had little effect on the temperature 

response of net carbon gain (Table 5.2; Tukey’s HSD at P > 0.05), although it slightly 

reduced total carbon gain within some of the elevated CO2 climate scenarios compared to 

the non-acclimated control (Figs. 5.6e, 5.7b, Table 5.5). The effect of acclimating ΔS for 

Vcmax and Jmax on net carbon gain showed two divergent patterns (Fig. 5.7b): a positive 

stimulation of net carbon gain occurred at temperatures below ~21 °C in climate 

scenarios without elevated CO2, while a positive stimulation of net carbon gain occurred 

above ~21 °C in scenarios with elevated CO2, explaining the reductions in total carbon 

gain for the elevated CO2 scenarios (Table 5.5). Restricting the temperature range of this 

analysis to the thermal domain of the ΔS acclimation functions for Vcmax and Jmax (11 – 

35 °C) had no effect on the patterns observed above (Figs. 5.6e, 5.7b; Table 5.5).  
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Figure 5.6. Net carbon (C) gain predictions for a monoculture stand of Picea glauca 

under (a) no acclimation, (b) temperature acclimation of respiration (Rd) according 

to Equation 5.4, (c) temperature acclimation of the activation energy (Ea) of 

photosynthetic capacity according to Equations 5.6 and 5.7 (Dillaway & Kruger, 

2010), (d) thermal acclimation of both respiration and Ea for photosynthetic 

capacity, (e) acclimation of the entropy parameter of the photosynthetic 

temperature response (ΔS) according to Equation 5.8 (Kattge & Knorr, 2007), and 

(f) acclimation of both respiration and ΔS. Each point is one simulation of one stand 

of Picea glauca for one time point and latitude. N = 25 per climate scenario. Current 

indicates current climate conditions, +4.5 °C indicates global average warming for 

2100, annual regional indicates spatially explicit annual warming, regional seasonal 

indicates spatiotemporally explicit warming, and +eCO2 indicates elevated CO2. 

Grey regions in c-f indicate regions outside of the temperature domains of the 

photosynthetic acclimation equations (18 to 31 °C for Equations 5.6 and 5.7; 11 to 

35 °C for Equation 5.8). 
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Figure 5.7. Percent change in net carbon (C) gain predictions for a monoculture 

stand of Picea glauca under (a) temperature acclimation of the activation energy 

(Ea) of photosynthetic capacity according to Equations 5.6 and 5.7 (Dillaway & 

Kruger, 2010), and (b) acclimation of the entropy parameter of the photosynthetic 

temperature response (ΔS) according to Equation 5.8 (Kattge & Knorr, 2007). Each 

point is one simulation of one stand of Picea glauca for one time point and latitude. 

N = 25 per climate scenario. Current indicates current climate conditions, +4.5 °C 

indicates global average warming for 2100, annual regional indicates spatially 

explicit annual warming, regional seasonal indicates spatiotemporally explicit 

warming, and +eCO2 indicates elevated CO2. Grey regions indicate regions outside 

of the temperature domains of the photosynthetic acclimation equations (18 to 31 °C 

for Equations 5.6 and 5.7; 11 to 35 °C for Equation 5.8). 
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Table 5.5. Total carbon gain (mol tree-1) summed across latitude and time for each acclimation scenario under each climate 

scenario, and under one of: full temperature range, temperature range of Equations 5.6 and 5.7 (for Vcmax Ea and Jmax Ea; 18 - 

31°C), and temperature range of Equation 5.8 (ΔS; 11 - 35°C). Bolded values indicate the highest total carbon gain within a 

climate scenario, italicized values indicate the lowest total carbon gain within a climate scenario. 

Full Temperature Range Acclimation Scenario 

Climate Scenario None Ea ΔS Rd Ea + Rd ΔS + Rd 

Current 90 20 93 96 27 99 

+4.5°C 94 57 96 98 60 100 

Annual Regional 93 74 94 96 78 96 

Seasonal Regional 95 69 96 97 72 98 

eCO2 114 30 111 120 36 117 

+4.5°C + eCO2 123 77 121 128 83 127 

Annual Regional + eCO2 129 106 131 132 108 133 

Seasonal Regional + eCO2 128 97 128 131 100 131 

18 - 31°C       
Current 12 11 12 16 14 16 

+4.5°C 52 50 53 53 50 53 

Annual Regional 67 66 66 71 69 71 

Seasonal Regional 64 63 64 69 66 69 

eCO2 16 16 16 22 19 21 

+4.5°C + eCO2 71 67 70 73 69 73 

Annual Regional + eCO2 96 94 98 101 99 103 

Seasonal Regional + eCO2 90 88 91 92 91 92 

11 - 35°C       
Current 68 29 70 70 31 73 

+4.5°C 86 61 88 88 63 90 

Annual Regional 87 77 88 92 78 92 
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Seasonal Regional 89 72 90 90 74 91 

eCO2 87 38 85 90 41 88 

+4.5°C + eCO2 114 81 112 117 85 116 

Annual Regional + eCO2 122 109 124 127 110 128 

Seasonal Regional + eCO2 121 100 121 123 102 123 

Current indicates current climate conditions, +4.5°C indicates global average warming for 2100, annual regional indicates spatially 

explicit annual warming, regional seasonal indicates spatiotemporally explicit warming, and +eCO2 indicates elevated CO2. None 

indicates no acclimation, Ea indicates acclimation of the activation energies for photosynthetic capacity according to Equations 5.6 and 

5.7, ΔS indicates acclimation of the entropy parameter according to Equation 5.8, and Rd indicates acclimation of respiration 

according to Equation 5.4. 
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Acclimating respiration (as per Equation 5.4) increased total carbon gain across the 

photosynthetic acclimation and climate scenarios (Tables 5.2, 5.5; Tukey’s HSD at P < 

0.05). But incorporating thermal acclimation of respiration had only a relatively small 

effect on the patterns of the temperature response of net carbon gain (Figs. 5.6b, d, f, 

Table 5.2). There was no interaction between respiration acclimation and photosynthetic 

acclimation, so there were no complex effects of combining photosynthetic and 

respiratory acclimation on the observed patterns of net carbon gain (Table 5.2). 

5.4 Discussion 

I hypothesized that modeled net carbon gain would increase under warming and elevated 

CO2 scenarios in all the boreal tree species I evaluated. While total carbon gain (summed 

across all sites and months) was indeed stimulated by elevated CO2 and by elevated CO2 

combined with warming, warming alone had relatively little, and sometimes a negative, 

effect on net carbon gain in species like Abies balsamea, but had large positive effects on 

others (like Pinus banksiana) (Figs. 5.2, C.1, Table 5.3). This same pattern was seen 

across the sites and months, where most species responded positively to future climate 

projections, but some species showed decreased net carbon gain in a warmer climate. 

Reductions in net carbon gain were most common at the southerly sites and during 

midsummer, and occurred even when the scenario included elevated CO2. Thus, at the 

warmest sites and months, leaf temperatures in Abies balsamea and Larix laricina likely 

exceeded their thermal optima for photosynthesis, leading to declines in modeled net 

carbon gain. My results highlight that even within species from a single plant functional 

type, differences in physiological parameter values can produce highly varied responses 

to climate change. These results are also in agreement with studies that find plants at 

lower latitudes within their range have reduced or non-existent thermal safety margins 

where negative growth responses to warming tend to occur (Goldblum & Rigg, 2005; 

Girardin et al., 2016a; Girardin et al., 2016b; O’Sullivan et al., 2017). Based on the 

relative order of species in their modelled net carbon gain, we hypothesize that the boreal 

forest will experience compositional changes in conifer species under climate change, 

with Pinus spp. increasing in relative abundance, while Abies balsamea and Larix 

laricina will decline in relative abundance. 
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5.4.1 Boreal conifers show divergent modelled responses of net 
carbon gain to climate change 

Using species-specific physiological parameters from the literature, I found that 

differences in net carbon gain between species under current climates across the boreal 

forest were more pronounced under future climate scenarios (Fig. C.1). But rather than 

finding that only the magnitude of the effect of rising CO2 and warming varied between 

species as I hypothesized, I found that both magnitude and sometimes the direction of the 

response of net carbon gain to climate change varied. Species like Picea glauca and 

Picea abies showed a small, but consistent stimulation of net carbon gain in response to 

the seasonal regional warming with elevated CO2 scenario in all months and sites, while 

Abies balsamea had suppressed net carbon gain at the most southerly site in the summer 

and a 303% increase in net carbon gain at the most northerly site in October under that 

same climate scenario (Fig. 5.2g). These differences in how species respond to the 

climate scenarios are correlated with the Arrhenius parameter values for the species. 

When net carbon gain is modeled using a common physiological framework with 

species-specific Arrhenius parameter values (Figs. 5.5, C.2), net carbon gain shows 

similar patterns across the climate scenarios, sites and months for the assessed species as 

it does in the full model analysis. In the seasonal regional warming, elevated CO2 

scenario, the Picea glauca Arrhenius parameter values generate a small increase in net 

carbon gain across all sites and months, while the Abies balsamea Arrhenius parameter 

values reduce net carbon gain in the warmer sites and months, but strongly stimulate net 

carbon gain in the northern sites in the autumn months. My analysis therefore highlights 

the importance of these relatively poorly characterized parameters for correctly predicting 

how vegetation will respond to climate change. But my analysis also highlights that all 

the boreal conifers I studied fix more carbon at high latitudes in the autumn, where 

temperature is currently limiting, as evidenced by strong increases in net carbon gain in 

future climate scenarios. As well, the elevated CO2 scenarios enhanced the seasonality of 

net carbon gain at higher temperatures, implying that the increasing amplitude of 

atmospheric CO2 concentrations that have been linked to boreal forest carbon fluxes 

(Graven et al., 2013; Forkel et al., 2016) may be related to the CO2 fertilization effect on 

photosynthesis. 



259 

 

5.4.2 Physiological variability introduces greater variability in net 
carbon gain than climate variability 

In contrast to my third hypothesis, physiological variability across species introduced 

greater variability in net carbon gain than did temperature changes in the climate 

scenarios, and the variability introduced by considering species-specific physiology was 

further enhanced under elevated CO2 (Fig. 5.4). Simply using realistic Vcmax values from 

another boreal evergreen conifer species net carbon gain could be changed from 1 to 6 

mol tree-1 day-1 under a current climate scenario (Abies balsamea to Pinus banksiana, 

Fig. 5.4a), a six-fold difference, while maximum net carbon gain was increased by 

warming from 6 to 7.5 mol tree-1 day-1 and by warming with elevated CO2 from 6 to 12 

mol tree-1 day-1 in Pinus banksiana, a two-fold difference or less (Fig. 5.4). Total carbon 

gain varied across these three Vcmax values by almost seven-fold in the annual regional 

climate scenario (Table 5.4). My data therefore support the importance of using the 

correct Vcmax value in modeling carbon fluxes, as discussed in Rogers et al. (2017). My 

findings also have important implications for the use of a plant functional type approach 

in models, where a mean value for a physiological parameter is often used to describe a 

suite of species with similar ecological and life history traits. While six of the seven 

species modelled here are in the boreal evergreen needleleaf tree plant functional type 

(and all species are in the family Pinaceae), the large variation in physiology and net 

carbon gain responses to climate could not be captured by a single set of physiological 

parameters. This raises a question on whether differences in population-level 

photosynthetic physiology may be important, however it appears that at least for 

evergreen conifers, photosynthetic physiology is consistent across populations (Johnsen 

& Seiler, 1996; Centritto & Jarvis 1999). My data support the growing movement away 

from plant functional types towards using plant functional traits (Yang et al., 2015; 

Butler et al., 2017; Peaucelle et al., 2017), since the physiological variation within a plant 

functional group could introduce large uncertainties into estimates of carbon uptake. 

Approaches incorporating variability in leaf traits can improve model estimates of gross 

primary productivity (Reich et al., 2014). Other modeling approaches that embrace this 

physiological variation across species within a plant functional type are also likely to 

produce realistic predictions of vegetation responses to climate change, since using trait 
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distributions for plant functional types can reproduce global patterns in leaf traits (Butler 

et al., 2017). However, a key challenge to better incorporate plant traits into vegetation 

models involves ensuring that the added complexity reduces, rather than increases, 

uncertainties in model predictions.  

5.4.3 Photosynthetic thermal acclimation has a stronger impact on 
net carbon gain than respiratory thermal acclimation 

While I hypothesized that thermal acclimation of photosynthesis and respiration would 

consistently improve net carbon gain, incorporating thermal acclimation had mixed 

effects on net carbon gain depending on how it was implemented (Figs. 5.6, 5.7; Table 

5.5). In general, thermal acclimation of photosynthesis had much larger impacts on net 

and total carbon gain than acclimation of respiration (Fig. 5.6, Table 5.5), although these 

impacts were often negative, indicating the importance of properly implementing this 

process in models. I also demonstrate that acclimation functions need to be implemented 

within the temperature domain of the equations being used, otherwise they can produce 

highly unrealistic results (e.g. acclimation of Ea for Vcmax and Jmax; Fig. 5.6) (Stinziano et 

al., 2018). Acclimation of the Ea for Vcmax and Jmax caused severe reductions in net carbon 

gain when used outside the thermal domain where the acclimation equation was derived, 

but had relatively small negative effects on net carbon gain from 18-31 C (Table 5.5). In 

contrast, acclimation of ΔS had little effect on net carbon gain regardless of whether the 

acclimation was implemented within or outside of the temperature domain of that 

acclimation function (Fig. 5.6, Table 5.2). Thermal acclimation of respiration did increase 

net carbon gain, but had little effect on the patterns in net carbon gain in response to 

climate scenarios (Fig. 5.6, Tables 5.2 and 5.5). The greatest total carbon gain within a 

climate scenario was consistently achieved when temperature acclimation of respiration 

was included in the model, either alone or with photosynthetic thermal acclimation using 

the ΔS approach (Table 5.5). Campbell et al. (2007) found that thermal acclimation of 

respiration is generally greater than acclimation of photosynthesis, while I found that 

acclimation of photosynthesis has a greater impact on net carbon gain. These data are not 

at odds with my findings here, as Campbell et al. (2007) used light-saturated net CO2 

assimilation as a proxy for photosynthesis, such that thermal acclimation of 
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photosynthesis may act in a compensatory way on net CO2 assimilation, reducing the 

apparent acclimation of net CO2 assimilation. However, whether and how coordination 

between thermal acclimation of photosynthesis and respiration occurs remains to be 

determined. 

5.4.4 Caveats on statistics 

It is important to note that the data presented here come from a deterministic model, and 

may violate the assumption of independence of observations. Thus, even though the 

assumptions of linearity, homogeneity of variances, and normality were met, care should 

be taken in interpreting the statistics, as the statistical output may be misleading (e.g. 

variables and their interactions may be significant when they are not, or vice versa). The 

statistics used to aid in the interpretation of the model output show that responses to 

environmental variables may be highly contigent on the individual species. This means 

that predictions on the responses of boreal trees to climate change may need to be 

considered on a species by species basis, as the underlying physiology may have a strong 

influence on directionality and magnitude of the response of carbon gain to climate. 

5.4.5 Conclusions and future directions 

While my data suggest that carbon accumulation will be enhanced under the 

representative concentration pathway 8.5 climate change scenario, realized responses to 

climate change will be strongly influenced by other extrinsic factors, such as water 

(Smith et al., 2016b), nutrient limitations (Sigurdsson et al., 2013) and disturbances 

(Randerson et al., 2006)). Given that my results were modeled under non-limiting 

nutrient and water conditions, and without photosynthetic CO2 acclimation, they 

represent a “best-case scenario”, implying that declines in net carbon gain may be more 

extensive under the more ecologically realistic conditions outlined above. Better 

representation of Vcmax and Jmax, as well as further development of our understanding of 

physiological thermal acclimation, should be high-priority research targets to improve the 

accuracy and precision in coupled climate-vegetation models, because this current 

knowledge gap can introduce large uncertainties into models. There is also a growing 

body of literature showing the efficacy of acclimation in improving vegetative models 
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(e.g. Lombardozzi et al., 2015; Smith et al., 2016a; Smith & Dukes, 2017), which would 

benefit from improved acclimation functions. Lastly, my work highlights that a one-size 

fits all approach for plant functional types (e.g. boreal evergreen conifer) will introduce 

significant uncertainties in estimates of tree carbon gain. Approaches that increase the 

specificity of traits in models (e.g. Yang et al., 2015; Peaucelle et al., 2017) should be 

favoured over the traditional plant functional type approach.  
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Chapter 6  

6 Discussion 

6.1 Thesis summary 

There are relatively few data available on photosynthetic and growth responses of boreal 

trees to climate change. In Chapter 2, I addressed what we know about these responses 

(Question 1 and Hypothesis 1 in Chapter 1), and showed that moderate warming is 

likely to increase biomass accumulation in the boreal forest (Chapter 2, Fig. 2.2; 

Stinziano & Way, 2014). This observation provided one line of support for Hypothesis 1 

in Chapter 1, that boreal trees are limited in growth and photosynthesis by low 

temperatures. In Chapter 3, I addressed Question 2 and Hypotheses 1 and 2 from 

Chapter 1, and showed that warming during autumn has the potential to disrupt seasonal 

patterns in photosynthesis by delaying the autumn decline in carbon gain, but not growth, 

causing a decoupling between photosynthesis and growth in white spruce (Picea glauca) 

(Chapter 3, Figs. 5.2, 5.9; Stinziano & Way, 2017). This was due to photoperiodic control 

of the timing of growth. Whether this decoupling is an issue for all boreal trees remains 

an open question; however, a decoupling of photosynthesis and growth could lead to 

increased respiratory carbon losses during both spring and autumn (Chapter 3; Stinziano 

& Way, 2017). This decoupling of growth and photosynthesis could alter carbon flux 

dynamics across the boreal forest, possibly turning forests from a net sink to a net source 

of carbon for part of the year, which could amplify anthropogenic climate change. 

Chapter 3 further addressed the hypothesis that day length drives changes in 

photosynthetic capacity. While photosynthetic capacity was better correlated with day 

length, it was not a causative relationship, and photosynthetic capacity was primarily 

modulated by growth temperature (Figs. 3.2, 3.4, 6.1). In Chapter 4, I addressed 

Question 3 and Hypotheses 2 and 3 from Chapter 1. I showed that photosynthetic 

capacity was better correlated with temperature than day length in evergreen conifers 

(Fig. 4.1), the opposite of the effect found in broadleaf deciduous trees (Bauerle et al., 

2012), and contrary to my predictions for Hypothesis 2. I also showed that amongst 18 

acclimation scenarios, acclimation of basal photosynthetic capacity had the strongest 

impact on modeling performance, with multifactor acclimation adding only minimal 



274 

 

returns on explanatory power for increased complexity (Fig. 4.4). While this finding 

supports Hypothesis 3 (that multifactor acclimation should improve model performance), 

the practical implication is that adding two additional acclimation equations only yields a 

1% increase in explained variation (Stinziano et al., 2018) and this improvement is not 

great enough to justify additional equations in Earth System models. Furthermore, 

changes in deactivation energy of the temperature responses of Vcmax and Jmax (Hd) 

strongly impacted model performance, although thermal acclimation of basal 

photosynthetic capacity remained one of the top performing acclimation functions (Figs. 

4.5, 4.6). In Chapter 5, I addressed Question 4 and Hypothesis 1 from Chapter 1, and I 

show that thermal acclimation of photosynthetic capacity (within appropriate thermal 

conditions) tends to reduce modelled net carbon gain in boreal trees (Figs. 5.6, 5.7, 6.1). I 

also showed that warming has differential effects on net carbon gain across seasons and 

latitudes, with greater increases in net carbon gain through warming at higher latitudes 

and in the autumn (Fig. 5.2). Finally, I found that physiological variability in 

photosynthetic parameters led to greater variability in net carbon gain than did predicted 

climatic change (Figs. 5.4, C.1). These findings support Hypothesis 1 (that boreal trees 

are low temperature limited in net carbon gain), although specifically later in the growing 

season and at higher latitudes. This provides further support for the findings from Chapter 

2 that more extreme warming can have less positive, or even negative, effects on carbon 

gain (Stinziano & Way, 2014). These data underlie the importance of considering 

seasonal, latitudinal, and physiological variation in climate change experiments and 

modeling of carbon gain. 
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Figure 6.1. Overview of the response of net carbon gain in boreal trees to 

temperature, CO2, and photoperiod. Temperature was expected to have a positive 

effect on photosynthesis, increasing net carbon gain, however my data suggest that 

boreal trees may not be low temperature limited and photosynthesis could respond 

negatively to warming (either through acclimation or exceeding the thermal 

optimum), causing a decrease in net carbon gain, but not necessarily a decline in 

growth. Photoperiod was known to limit growth in some species (Oleksyn et al., 

2001; Chen et al., 2012; Hamilton et al., 2016) and was assumed to have a positive 

effect on photosynthesis (Bauerle et al., 2012), however my data in Chapter 3 call the 

effect on photosynthesis into question, pointing to a photoperiod limitation only on 

growth. Based on my data, increasing temperatures may not impact growth due to 

photoperiod constraints, contributing instead to changes in carbon storage and 

exudation. Red lines indicate state of knowledge prior to my thesis, blue lines 

indicate the contribution of my thesis. Solid lines indicate positive effects, dashed 

lines indicate negative effects, and dotted lines indicate unclear effects. 
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6.2 Boreal forest responses to climate change  

Due to the influence of day length on tree growth, we may expect complex interactions 

between rising temperatures and CO2, and the impact of day length on tree responses to 

climate change (Fig. 6.2). Currently, day length and temperature signals co-occur (i.e. 

shorter day lengths and low temperatures), such that when growth is shut down below a 

certain critical day length (Fig. 6.2a), carbon gain is relatively low and potential carbon 

losses (from fixed carbon allocated to pools other than biomass) are minimized (Fig. 

6.2b, blue line). However, warming will potentially increase carbon gain during the 

period of growth limitations (Fig. 6.2b, light red line). But without biomass growth to use 

the extra carbon, this may lead to increased release of carbon through respiration, volatile 

organic compound production, absorbed light energy as heat and root exudates. Carbon 

exudation into the soil could stimulate (‘prime’) microbial activity in boreal soils, 

enhancing carbon efflux from the soil, reducing carbon storage, and contributing to a 

change in boreal forests from a carbon sink to a carbon source (Chapin et al., 2009). 

Meanwhile, elevated CO2 enhances carbon gain further (Fig. 6.2b, grey line), with 

combined elevated CO2 and warming causing increases in carbon gain during cool 

seasons and reductions during the summer (Fig. 6.2b, dark red line). Thermal acclimation 

(Fig. 6.2b, dashed lines in all scenarios) could reduce net carbon gain during the active 

growth season when temperatures are higher, and increase carbon gain when growth 

ceases and temperatures are lower, leading to a reduction in carbon that is allocated to 

biomass. Combined, these effects could lead to enhanced carbon uptake during the 

photosynthetically active period, but the greater uptake of carbon during the growth-

limited period could lead to a greater efflux of carbon during winter. The net effect of 

these processes would be a greater difference between total carbon fixed (which would be 

increased) and total carbon efflux (which would also be increased due to carbon 

allocation to more labile pools).  

The data in my thesis support the idea by Piao et al. (2017) that increased seasonal 

oscillations in atmospheric CO2 are due to a CO2 fertilization effect at high latitudes. Piao 

et al. (2017) used a combination of atmospheric CO2 oscillations and dynamic global 

vegetation models to explain the increasing seasonal amplitude of atmospheric CO2 seen 
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by other papers (Graven et al., 2013; Forkel et al., 2016), and suggest that rising CO2 

concentrations are driving the increased seasonal amplitude in atmospheric CO2. Piao et 

al. (2017) further suggested that carbon release during the non-growing season is 

responsible for increased net carbon efflux at higher latitudes, and that climate explains 

latitudinal differences in the seasonal amplitude of atmospheric CO2. I showed that there 

is enhanced seasonality of carbon gain under rising CO2 and temperatures in boreal 

forests (Chapter 5; Fig. C.1), and a decoupling of growth and carbon gain in the autumn 

that could lead to greater carbon efflux during winter (Chapter 3; Stinziano & Way, 

2017). Combined, these findings suggest that enhanced seasonal oscillations in 

atmospheric CO2 (Graven et al., 2013) may be partly due to CO2 stimulation of 

photosynthesis in boreal trees and enhanced winter efflux (possibly due to stimulation of 

microbial activity and soil respiration, Chapin et al., 2009) of CO2 fixed after growth 

cessation.  

Increased seasonality of net carbon uptake due to CO2 fertilization of photosynthesis may 

not necessarily be correlated with increased growth at high latitudes. Recent data using 

tree rings to estimate stem growth from Girardin et al. (2016) suggest that, on average, 

there has been no net growth response of the boreal forest to climate change over the past 

50 years. This may be related to day length-mediated control of growth, which could 

limit any increases in carbon gain from being retained and used for growth. Furthermore, 

if day length provides a control over growth (instead of temperature) such that warming 

and rising CO2 increase net carbon uptake after growth ceases, there may be a diversion 

of the CO2 to more labile pools where the carbon is respired off in the winter. 
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Figure 6.2. (a) Growth is controlled by day length in many boreal evergreen conifers 

(Clapham et al., 1998; Oleksyn et al., 2001; Sogaard et al., 2008; Hamilton et al., 

2016), and climate warming will greatly affect temperatures under the shorter days 

during the growth limited seasons. (b) Climate warming could decrease carbon gain 

during the warmest seasons, while increasing carbon gain during cold seasons 

(Chapter 5). Elevated CO2 will generally increase carbon gain. However, growth 

limitations (denoted by the dashed vertical line) may prevent fixed carbon from 

being allocated to biomass (Chapter 3), meaning that under warming and elevated 

CO2 a large amount of carbon may be allocated to more labile pools and may be 

released from boreal trees into the ecosystem. Furthermore, thermal acclimation 

(dashed lines, all scenarios) may reduce net carbon gain during the warmest seasons 

and stimulate net carbon gain during the cooler seasons (Chapter 5), leading to a net 

reduction in carbon gain during the active growth season.  
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The meta-analysis in Chapter 2 (Stinziano & Way, 2014) and modeling study in Chapter 

5 predict an increase in growth from moderate warming and elevated CO2, in contrast to 

the findings of Girardin et al. (2016). However, individual species showed divergent 

responses in the Girardin et al. (2016) study (as found in Chapter 5), which was focused 

on mature trees growing in a field setting. In Chapters 2 and 5, I used physiological data 

collected mainly from seedlings, and given that seedling phenology can be more sensitive 

to environmental conditions than mature trees (Vitasse & Basler, 2014), it is possible that 

seedlings would show a stronger response to climate change than mature trees. Mature 

trees have large energy and nutrient stores, which may buffer the trees from 

environmental stresses. Such redundancies could dampen environmental responses, 

especially if the tree responds to an internal parameter (e.g. carbohydrate status) that is 

affected by the external parameter (e.g. temperature). Recently, O’Leary et al. (2017) 

found that leaf night respiration is strongly correlated to carbon compounds across 

accessions in Arabidopsis thaliana. If this holds true for trees, then carbon stores in 

mature trees may help to buffer respiratory responses to environmental change for a 

period of time. Furthermore, my data focus on tree responses to climate change in the 

absence of nutritional, water, or light limitations. Given that much of the boreal forest 

may be nutrient-limited (Van Cleve & Zasada, 1976; Bonan, 1990), especially relative to 

other forest types (Foster & Bhatti, 2002), this could explain the lack of a mean growth 

response of boreal forests to climate change (Jarvis & Linder, 2000; Sigurdsson et al., 

2013; Girardin et al., 2016). As such, the experimental data and modeling predictions 

should represent an upper bound on carbon uptake for boreal and coniferous tree 

responses to climate change. 

The seasonality of boreal forests may have a strong impact on the responses of net carbon 

uptake to climate change. Hadden and Grelle (2016) found that increases in respiration 

during the shoulder seasons at a boreal plot in Sweden since 1997 reduced net carbon 

fixation since there were no corresponding changes in gross carbon fixation. This 

contrasts with my modeling in Chapter 5, where I found increases in net carbon gain 

during autumn months under climate warming. Hadden and Grelle (2016) argue that their 

data indicate a change in the temperature response of the boreal ecosystem causing an 

increase in respiration at low temperatures. Meanwhile Zhang et al. (2017), using eddy 



281 

 

covariance data from over 100 sites in boreal and temperate forests, found that net carbon 

uptake is likely to increase with climate warming. Combined, these studies suggest that 

there will be spatial heterogeneity in the response of boreal forest carbon gain to climate 

warming. The extent of such heterogeneity in carbon gain responses will be directly 

related to seasonality in climate change (see section 6.3–6.4 below) and other 

environmental limitations (see section 6.5.2 below). 

6.3 Disruption of seasonal environmental cues 

Tree phenology and photosynthesis are regulated throughout the year by a seasonally 

changing environment, and trees may use one or more of a combination of environmental 

variables to trigger new growth, senescence, or photosynthesis (Gyllenstrand et al., 2007; 

Holliday et al., 2008 Bigras & D’Aoust, 1993; Stinziano et al., 2015; Hamilton et al., 

2016). The most common environmental parameters used are day length, light quality, 

temperature, and water availability. In the boreal forest, light and temperature cues can 

have strong regulatory effects on growth and photosynthesis. In broadleaf angiosperm 

trees, photoperiod can directly affect photosynthetic capacity (Bauerle et al., 2012). 

Regarding growth for broadleaf angiosperm trees, a certain photoperiod may be required 

for growth cessation while the timing could be modified by growing temperatures 

(reviewed by Maurya & Bhalerao, 2017). The interaction between photoperiod and 

temperature signals in angiosperms is supported by data in Arabidopsis showing 

temperature modulation of photoperiod signaling (Legris et al., 2016; Jung et al., 2016). 

However, based on my data in Chapter 3 it appears that in white spruce (Picea glauca 

Moench Voss.) growth cessation is regulated strictly by photoperiod, while 

photosynthesis is more strongly regulated by temperature. This resulted in a decoupling 

of growth from photosynthesis under a climate warming scenario in seedlings (Stinziano 

& Way, 2017), however it is important to note that seedlings may respond differently 

than older trees (Ununger et al., 1988). Furthermore, coordinated temperature and 

photoperiod signals are required to achieve maximum cold hardiness during autumn in 

conifers (Öquist & Hüner, 2003). As such, disruptions of seasonal temperature cues from 

climate change could have consequences for growth (e.g. by limiting potential growth), 
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survival (e.g. by increasing the risk of frost damage; Way & Montgomery, 2015), and 

carbon cycling of forests, by reducing the proportion of carbon allocated to growth. 

6.4 Thermal versus photoperiod acclimation in models 

Bauerle et al. (2012) and Stoy et al. (2014) demonstrated the importance of including 

photoperiod acclimation of photosynthetic capacity into coupled vegetation-climate 

models. However, such work was based on responses in broadleaf trees, and my work in 

Chapter 3 demonstrates that while photosynthetic capacity in an evergreen conifer is well 

correlated with photoperiod, photoperiod effects on photosynthetic capacity are not 

causative (as they are in red maple, Bauerle et al., 2012). Therefore, any improvement in 

modelled carbon gain in evergreen conifer-dominated regions when using photoperiod 

acclimation may be due to the autocorrelation of changes in photoperiod with some biotic 

(and/or abiotic) process(es) including, but not limited to: within-season aging of leaf 

tissue, feedbacks between growth and photosynthesis, temperature, and water 

availability. This photoperiod acclimation however, is separate from thermal acclimation 

of photosynthetic capacity in Earth System models. 

Including thermal acclimation of photosynthetic capacity improves the ability of coupled 

vegetation-climate models to capture net ecosystem exchange of CO2 (Smith et al., 

2016). However, there are many possible implementations of thermal acclimation of 

photosynthetic capacity as I outline in Chapter 4, including different formulations for 

acclimating the activation energy (Ea) of the temperature response (Hikosaka et al., 2006; 

Dillaway & Kruger, 2010), acclimation of the entropy parameter (ΔS, Kattge and Knorr, 

2007), and acclimation of basal photosynthetic capacity (Chapter 4). Studies addressing 

thermal acclimation in Earth System models currently ignore the possibility of 

multifactor acclimation, which I show using MAESTRA in Chapter 4 provides 

diminishing returns for enhanced model complexity. It is important to note that the 

multifactor acclimation used in Chapter 4 necessarily compiled acclimation responses of 

individual parameters based on data from different sets of species for each parameter. 

This mixing and matching of data from different species could have introduced a bias 

against multifactor thermal acclimation improving the ability of MAESTRA to model 

gross primary productivity of a forest stand (Chapter 4). 
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To properly assess multifactor acclimation, we need to understand whether deactivation 

energy of the temperature responses of Vcmax and Jmax (Hd), which affects the modeling of 

ΔS, acclimates to temperature. In Chapter 4, I show that unnecessarily fixing Hd of the 

temperature response of photosynthetic capacity can affect the performance of thermal 

acclimation scenarios. An experimental test of multifactor thermal acclimation is needed: 

this would involve measuring temperature responses of photosynthetic capacity across a 

broad range of temperatures (with enough data to prevent the issue of 

overparameterization) that encompass the high temperature decline in photosynthetic 

capacity. This experimental design would need to be coupled with a large number of 

species to have the statistical power to detect acclimation in Ea, Hd, and ΔS, which can 

have high variability in their estimates (Leuning, 2002; Hikosaka et al., 2006; Kattge & 

Knorr, 2007; Dillaway & Kruger, 2010).  

It is crucial to consider whether the modified Arrhenius equation is appropriate and/or 

biologically relevant. The Hd and ΔS terms are incorporated in a way that suggests the 

equation is based on the Gibbs free energy of the reaction. In this case, the ΔS term 

would represent the change in entropy of the reaction, while Hd would represent the 

change in enthalpy of the reaction rather than the deactivation energy. However, the 

Arrhenius equation was developed to interpret single-enzyme reactions (Arrhenius, 

1915). Medlyn et al. (2002) interpreted the Arrhenius modification with ΔS and Hd to 

relate to temperature-induced changes in enzyme conformation, with Hd representing the 

slope of decline above the thermal optimum of the temperature response and ΔS 

specifically being left out of a biological interpretation. Since Vcmax and Jmax determined 

on a gas exchange basis integrate myriad biological processes (Farquhar et al., 1980), the 

interpretation of these terms may change. It is unclear whether Ea would represent the Ea 

of the rate-limiting reaction for Vcmax and Jmax under a given set of conditions, or whether 

it would indeed actually represent the Ea of a single reaction. For Vcmax, Ea is more likely 

to represent the Ea for the Rubisco-catalyzed carboxylation reaction based on its 

derivation according to Farquhar et al. (1980). For Jmax, the interpretation is unclear: does 

Ea pertain to the oxidation or reduction of PQ, cytochrome b6/f, plastocyanin, NAD+? 

These same arguments apply to both the ΔS and Hd terms so that the modified Arrhenius 

temperature response parameters may retain their biological meaning for Vcmax (i.e. 
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activation energy, the change in entropy, and the change in enthalpy of the Rubisco-

catalyzed RuBP carboxylation), while the biological meaning of these parameters in 

relation to Jmax is unclear. Thus, when interpreting changes in the Arrhenius temperature 

response parameters for gas exchange-derived photosynthetic capacity, it is important to 

recognize that the parameters may not have mechanistic relevance to the temperature 

response of photosynthetic capacity. It is also crucial to note that the equation differs 

markedly (with a ‘1 + exponential function’) from the latest temperature response 

function from macromolecular rate theory that describes temperature responses enzyme-

catalyzed reactions on the basis of Gibbs free energy (Arcus et al., 2016). This suggests 

that the modified Arrhenius equation may not contain biologically relevant terms, and 

that a switch to a new temperature response function with biologically relevant terms is 

needed. 

In addition to our lack of understanding about whether multifactor thermal acclimation of 

photosynthetic capacity actually occurs, the effects of photoperiod on thermal 

acclimation are relatively unknown. However, the meta-analysis in Chapter 4 provides a 

clue as to what the effects of photoperiod may be. Many studies have shown that thermal 

acclimation of basal rates of photosynthetic capacity does not occur in a consistent 

manner (see meta-analyses by Way & Oren, 2010; Way & Yamori, 2014) – however, 

nearly all the data in these studies were from thermal acclimation under constant 

photoperiod. The meta-analysis in Chapter 4 includes only seasonal data where 

temperature and photoperiod are changing, and shows that basal photosynthetic capacity 

acclimates to temperature, as is also shown by Smith and Dukes (2017). It is possible that 

this discrepancy between Chapter 4 and the meta-analyses by Way and Oren (2010) and 

Way and Yamori (2014) is partly due to a photoperiod-modulation of thermal acclimation 

of photosynthetic capacity. To address this, an experiment measuring temperature 

responses of photosynthetic capacity across different photoperiods would be needed, 

however this experiment would require a control treatment with no changes in 

photoperiod to account for possible aging effects on thermal acclimation of 

photosynthetic capacity. 
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6.5 Future directions to improve vegetative models 

6.5.1 Photosynthetic acclimation 

Current models of vegetative carbon uptake tend to include (if at all) only one type of 

photosynthetic temperature acclimation, and almost exclusively the entropy parameter of 

the acute temperature response (Oleson et al., 2013; Smith et al., 2016). However, there 

may be acclimation of all parameters in the acute temperature response of photosynthesis, 

as well as acclimation of the basal rates. There are also significant hurdles to 

incorporating more comprehensive photosynthetic temperature acclimation into 

vegetation models, rooted in the paucity of data on the acclimation of the temperature 

response of photosynthesis.  

The main parameter used in photosynthetic models in dynamic global vegetation 

models/Earth system models is the maximum rate of Rubisco carboxylation (Vcmax) (e.g. 

Cox, 2001; Sitch et al., 2008; Oleson et al., 2013). However, under the Farquhar et al. 

(1980) paradigm, Vcmax represents only one limitation-state of photosynthesis (CO2-

limited). Other limitation states include ribulose-1,5-bisphosphate regeneration 

limitations (i.e. the maximum rate of electron transport, Jmax, is limiting), and phosphate 

regeneration limitations where ATP production is limited by the dephosphorylation and 

export of triose phosphates from the chloroplast (triose phosphate utilization limitation, 

TPU). Acclimation of these other limitation states must occur to some extent, as 

manipulation of limitation states is one mechanism through which a chloroplast can be 

energetically balanced (Hüner et al., 2012). However, thermal acclimation studies focus 

mostly on Vcmax and Jmax (e.g. Hikosaka et al., 2006; Kattge & Knorr, 2007; Dillaway & 

Kruger, 2010; Smith & Dukes, 2017; Stinziano et al., 2018), and almost none on 

acclimation of TPU. The primary limitation to photosynthesis changes across the acute 

temperature response at a given intercellular CO2 concentration in the leaf (Ci), such that 

Vcmax limitations are important at high temperatures, while TPU limitations are important 

at low temperatures (Sage & Kubien, 2007; Busch & Sage, 2017). In this way, ignorance 

of TPU limitations and its acclimation may be introducing as-yet unquantified 

uncertainties into our modeling of high latitude systems characterized by lower 

temperatures.  
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6.5.2 Environmental interactions 

Beyond the impact of rising temperatures on growth and photosynthesis in boreal trees, 

there are other environmental factors projected to change with climate change, including 

precipitation, fire, drought, nutrient availability, and insect pests. These factors could 

interact with temperature and CO2 effects on tree physiology and growth (Allen et al., 

2010), and I will address some of those interactions here. 

Climate warming has led to increased risks of drought and fire in the boreal forest. In the 

boreal forest, drought-induced tree mortality has increased by over 4% year-1 since 1963 

(Peng et al., 2011). Fire intensity (annual burned area) and frequency have increased 

more than two-fold (Kasischke & Turetsky, 2006), while stand-level carbon 

accumulation has decreased (Ma et al., 2012; Hogg et al., 2017). Forest fires have a very 

strong influence on boreal forest carbon balance in Canada (Bond-Lamberty et al., 2007). 

Nonetheless, Canada’s boreal forests remained a carbon sink between 1990 and 2008 

(Kurz et al., 2013), and even though fire emissions may quadruple by 2100, CO2 

stimulation of photosynthesis may maintain the boreal carbon sink (Balshi et al., 2009).  

Nutrient availability is also known to restrict forest carbon uptake (Fernández-Martínez et 

al., 2014), and there are some experiments investigating interactions of nutrient status 

with climate change (Sigurdsson et al., 2013; Ellsworth et al., 2017). In mature Norway 

spruce (Picea abies), nutrient limitations prevented a biomass response to elevated 

temperatures and CO2 (Sigurdsson et al., 2013).  

Given that my thesis focuses on tree responses to climate change under high water and 

nutrient availability, drought would likely constrain carbon uptake at the tree and stand 

level, reducing any increases in carbon gain with warming and elevated CO2, and leading 

to negative carbon gain in some cases. Current greening and browning trends across the 

boreal forest are linked to water availability (Bi et al., 2013), and given that modelled 

carbon gain can decline at high temperatures even under ideal moisture conditions 

(Chapter 5), future drought events in a warmer climate could cause large reductions in 

growth and carbon uptake in boreal trees, further enhancing the moisture-induced 

browning of the boreal forest. Meanwhile fire effects have greater meaning at the stand-
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level, where fire may destroy photosynthetically active tissue and change whole stands 

from carbon sinks to carbon sources. Thus, the increases in net carbon uptake predicted 

under future climate conditions in my thesis (Chapters 2, 3, 5), and specifically in areas 

that are low temperature-limited, represent an upper limit on future carbon gain in boreal 

trees. 

6.6 Concluding remarks 

In conclusion, moderate future warming, especially under elevated CO2, is likely to 

enhance photosynthetic carbon uptake in conifers (Chapters 2, 3) with the timing of more 

extreme warming being important in whether climate change enhances carbon uptake 

(Chapter 5), while day length may dictate whether that additional carbon is fixed into 

more or less labile pools by modulating growth (Chapter 3). When looking into possible 

vegetation-atmosphere feedbacks, it appears as though photosynthetic temperature 

acclimation may reduce carbon gain (Chapters 4, 5) compared to an unacclimated state. 

However, our understanding of photosynthetic thermal acclimation is poor, and current 

functions available to incorporate acclimation of photosynthetic capacity in Earth System 

models may be unsuitable for conifers (Chapter 4). Furthermore, current Earth System 

models assume that at least some proportion of fixed carbon is used to produce new 

biomass. If photoperiod limits the allocation of carbon to longer-term stores such as 

growth, leading to an efflux of recently fixed carbon during the non-growth season, then 

current Earth System models may be overestimating annual carbon uptake in high 

latitude ecosystems by excluding such an effect. Overall, the experimental and modeling 

data in this thesis are consistent with the hypothesis that CO2 stimulation of 

photosynthesis is a primary contributor to the increasing amplitude of atmospheric CO2 

oscillations (Piao et al., 2017). Meanwhile, improving our ability to model photosynthetic 

thermal acclimation will require extensive collaborative research to capture the thermal 

response parameters of all the biochemical and diffusional limitations to photosynthesis, 

including Vcmax, Jmax, TPU, stomatal conductance, and mesophyll conductance, and 

across a large range of biological and geographical diversity so as to be useful in 

modeling efforts. Modeling necessarily requires some simplifying assumptions, however 

at some point more complexity will be needed to improve model predictions of reality.  
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Appendix A: Chapter 4 supplementary material 

A.1 Materials and methods 

Rubisco large subunit standard curves and immunoblotting were used to quantify 

Rubisco in leaves of Picea glauca in Chapter 3. The standard curve contained 0.12 pmol, 

0.24 pmol, and 0.48 pmol of Rubisco large subunit. Samples were initially loaded on an 

equal extract volume basis (4 μL), and samples were re-run (by either diluting or loading 

more sample) whenever the Rubisco content was outside the quantification range of the 

standard curve until the samples were within the quantifiable range (Fig. A.1a). Rubisco 

quantities were determined first by measuring the peak area of the optical density of the 

immunoblot bands using the Gels > Plot Lanes function in ImageJ (Fig. A.1b). The peak 

areas of the Rubisco large subunit standards were then used to generate a standard curve 

with which to quantify the Rubisco content of the samples (Fig. A.1c).  
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A.2 Figures 

 

Figure A.1. Example analysis of immunoblot for quantifying Rubisco. (a) 

Immunoblot for Rubisco large subunit showing the quantity of Rubisco large 

subunit standard loaded (lanes 11 to 13) and ten samples (lanes 1 to 10). Black 
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arrows indicate quantifiable samples where Rubisco content falls within the range 

of the Rubisco standards, while white arrows indicate unquantifiable samples due to 

too much Rubisco. (b) Optical density peaks for the Rubisco standards in (a) from 

the gel analysis function in ImageJ. Total Rubisco quantity is represented by the 

area under the curve. (c) Rubisco content as a function of peak area (O.D.: optical 

density), with the Rubisco large subunit standards as black points, quantifiable 

samples as white points, and standard curve as the black line. Numbers near the 

sample points indicate the sample lane from (a). 

  



298 

 

Appendix B: Chapter 4 supplementary material 

B.1 Materials and methods 

Six 2-year old seedlings of Thuja canadensis were grown in a rooftop greenhouse with 

ambient temperature and lighting conditions at the Biotron Centre for Climate Change 

Research in London, Ontario, Canada (lat.: 42.9849 N, long.: 81.2453 W) during the 

summer of 2015. Irradiance during the day peaked between 700 and 1000 W m-2, and 

temperatures ranged from 10 to 37 °C, coincident with outdoor conditions (Fig. B1). 

Photosynthetic CO2 response curves were measured approximately every two weeks from 

July 20th until September 22nd. Net CO2 assimilation was measured with a LI-6400XT 

portable photosynthesis system equipped with a 6400-22 L opaque conifer chamber and a 

6400-02B LED light source (Licor Biosciences, Lincoln, NE) at 25 °C under saturating 

light (of 1000 μmol m-2 s-1 determined from light response curves) with a vapor pressure 

deficit held constant at a value between 0.9 and 1.8 kPa, and reference CO2 

concentrations of 400, 300, 200, 150, 100, 50, 400, 800, 1200, 1600, and 2000 μmol mol-

1 CO2. Maximum Rubisco carboxylation capacity was determined by fitting the model of 

Farquhar et al. (1980) to the CO2 response data. The CO2 compensation point in the 

absence of mitochondrial respiration (Γ*), and the Michaelis-Menten constants for 

Rubisco carboxylation and oxygenation (Kc and Ko, respectively) for cold-acclimated 

Spinacia oleracea were used (Yamori et al., 2006) as per Way and Sage (2008). 

B.2 References 

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90. 

Way DA, Sage RF. 2008. Elevated growth temepratures reduce the carbon gain of black 

spruce [Picea mariana (Mill.) B.S.P.]. Global Change Biology 14, 624–636. 

Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I. 2006. Effects of Rubisco 

kinetics and Rubisco activation state on the temperature dependence of the 

photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell & 

Environment 29, 1659–1670. 
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B.3 Figures 

 

Figure B.1. Environmental data in the greenhouse over the experiment with Thuja 

canadensis. (a) maximum (red), mean (white) and minimum (blue) daily air 

temperatures and (b) maximum daily irradiance. 
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Figure B.2. Maximum Rubisco carboxylation rates (Vcmax) for Thuja canadensis. 

Data presented as means ± s.e.m. N = 6 per point. 
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Appendix C: Chapter 5 supplementary material 

C.1 Materials and methods 

Six 2-year old seedlings of Larix laricina were grown in a rooftop greenhouse, which 

was allowed to vary with ambient environmental conditions from June 18th to July 21st, 

2015 at the Biotron Centre for Climate Change Research in London, Ontario, Canada 

(lat.: 42.9849 °N, long.: 81.2453 °W). Temperatures ranged from 12.5 to 35 °C, while 

irradiance peaked between 700 and 1000 W m-2. The CO2 response of net CO2 

assimilation was measured on July 21st. Gas exchange measurements were performed 

with a LI-6400 XT portable photosynthesis system with a 6400-22L opaque conifer 

chamber and a 6400-02B LED light source (Licor Biosciences, Lincoln, NE) at 25 °C 

under predetermined saturating light of 1000 μmol m-2 s-1, and vapor pressure deficit held 

constant between 1.0 and 1.5 kPa, with measurements performed at reference CO2 

concentrations of 400, 300, 200, 150, 100, 50, 400, 800, 1200, 1600, and 2000 μmol mol-

1 CO2. Biochemical limitations to photosynthesis, including maximum rates of Rubisco 

carboxylation (Vcmax) and electron transport (Jmax) were fit to the CO2 response data using 

the model of Farquhar et al. (1980). Data from cold-acclimated Spinacia oleracea 

(Yamori et al., 2006) for the CO2 compensation point in the absence of mitochondrial 

respiration (Γ*), and the Michaelis-Menten constants for Rubisco carboxylation and 

oxygenation (Kc and Ko, respectively) were used as per Way and Sage (2008). Dark 

respiration (Rdark) was measured at 25 °C in the middle of the night on July 20th. 

We parameterized the stomatal conductance (gs) response to relative humidity (RH) 

according to the Ball Berry model of gs (Ball et al., 1987) using gs measured at a 

reference CO2 of 400 μmol mol-1: 

gs = m1
A

Ca−Γ
RH + b1       Equation C.1 

where m1 and b1 are treatment-specific parameters (Table C.1).  
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Table C.1. Gas exchange parameters measured in Larix laricina at 25°C. Data 

presented as means ± s.e.m. Ball-Berry parameters were derived from data pooled 

from all individuals (N = 6). 

Parameter Value 

Vcmax (μmol m-2 s-1) 41.2 ± 2.9 

Jmax (μmol m-2 s-1) 61.3 ± 7.5 

Rdark (μmol m-2 s-1) 0.62 ± 0.05 

Intercept of the Ball-Berry model (mol m-2 s-1) 0.0364 ± 0.0105 

Slope of the Ball-Berry model (mol m-2 s-1) 5.68 ± 0.84 

Vcmax: maximum Rubisco carboxylation capacity; Jmax: maximum rate of electron 

transport; Rdark: dark respiration. 
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Table C.2. Temperature (°C) conditions used in modeling for each warming scenario in Chapter 5. All warming scenarios 

were run with current (400 μmol mol-1) and elevated (936 μmol mol-1) CO2. 

 Scenario Current  +4.5 °C  Annual Regional  Seasonal Regional 

Site DOY Min. Mean Max.  Min. Mean Max.  Min. Mean Max.  Min. Mean Max. 

1 167 13.8 18.4 22.2  18.3 22.9 26.7  19.8 24.4 28.2  19.8 24.4 28.2 

 197 16.8 21.5 25.5  21.3 26.0 30.0  22.8 27.5 31.5  22.8 27.5 31.5 

 228 16.0 20.2 24.0  20.5 24.7 28.5  22.0 26.2 30.0  22.0 26.2 30.0 

 259 12.6 16.4 20.8  17.1 20.9 25.3  18.6 22.4 26.8  18.6 22.4 26.8 

 289 7.3 10.6 13.6  11.8 15.1 18.1  13.3 16.6 19.6  13.3 16.6 19.6 

2 167 8.7 13.7 18.3  13.2 18.2 22.8  16.7 21.7 26.3  14.7 19.7 24.3 

 197 12.5 16.6 20.5  17.0 21.1 25.0  20.5 24.6 28.5  18.5 22.6 26.5 

 228 12.0 15.8 19.8  16.5 20.3 24.3  20.0 23.8 27.8  18.0 21.8 25.8 

 259 8.2 11.6 15.7  12.7 16.1 20.2  16.2 19.6 23.7  14.2 17.6 21.7 

 289 3.0 5.4 8.5  7.5 9.9 13.0  11.0 13.4 16.5  9.0 11.4 14.5 

3 167 6.1 11.3 16.2  10.6 15.8 20.7  14.1 19.3 24.2  14.1 19.3 24.2 

 197 9.8 14.2 18.3  14.3 18.7 22.8  17.8 22.2 26.3  17.8 22.2 26.3 

 228 8.9 12.6 16.8  13.4 17.1 21.3  16.9 20.6 24.8  16.9 20.6 24.8 

 259 6.6 9.0 12.3  11.1 13.5 16.8  14.6 17.0 20.3  12.6 15.0 18.3 

 289 1.1 2.7 5.0  5.6 7.2 9.5  9.1 10.7 13.0  7.1 8.7 11.0 

4 167 4.9 8.7 12.0  9.4 13.2 16.5  12.9 16.7 20.0  10.9 14.7 18.0 

 197 10.3 13.5 16.4  14.8 18.0 20.9  18.3 21.5 24.4  16.3 19.5 22.4 

 228 9.6 12.3 14.7  14.1 16.8 19.2  17.6 20.3 22.7  15.6 18.3 20.7 

 259 5.8 7.8 10.3  10.3 12.3 14.8  13.8 15.8 18.3  13.8 15.8 18.3 

 289 -0.7 0.2 1.3  3.8 4.7 5.8  7.3 8.2 9.3  7.3 8.2 9.3 

5 167 11.7 17.2 21.6  16.2 21.7 26.1  21.7 27.2 31.6  17.7 23.2 27.6 

 197 12.7 17.3 21.3  17.2 21.8 25.8  22.7 27.3 31.3  18.7 23.3 27.3 

 228 10.0 14.5 18.4  14.5 19.0 22.9  20.0 24.5 28.4  16.0 20.5 24.4 
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 259 3.4 6.7 10.6  7.9 11.2 15.1  13.4 16.7 20.6  11.4 14.7 18.6 

 289 -4.2 -2.7 -0.8  0.3 1.8 3.7  5.8 7.3 9.2  3.8 5.3 7.2 

Current: current temperature conditions for each site x month combination; +4.5 °C: temperature increase of 4.5 °C compared to 

current climate conditions; Annual Regional: spatially explicit annual warming projections for 2100; Seasonal Regional: spatially and 

temporally explicit warming projections for 2100; Min.: minimum daily temperature; Mean: mean 24-hr temperature; Max.: 

maximum daily temperature; Site 1: Trenton, ON; Site 2: Moosonee, ON; Site 3: Peawanuck, ON; Site 4: Churchill, MB; Site 5: Fort 

Good Hope, NT; DOY: day of year; DOY 167: June 16th; DOY 197: July 16th; DOY 228: August 16th; DOY 259: September 16th; 

DOY 289: October 16th.
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C.3 Figures 

 



307 

 

Figure C.1. Projected net daily carbon (C) gain of boreal trees across time and site 

under (a, e) current climate, (b, f) 4.5 °C of warming, (c, g) annual regional 

warming, and (d, h) seasonal regional warming, at (a, b, c, d) ambient or (e, f, g, h) 

elevated CO2 for the year 2100. Data represent the means of simulations run with 

monoculture stands of seven boreal tree species at five sites and five time points. 0 

°C indicates current climate conditions, +4.5 °C indicates global average warming 

for 2100, annual regional indicates spatially explicit annual warming, and seasonal 

regional indicates spatiotemporally explicit warming, while eCO2 indicates elevated 

CO2 concentrations. JJASO stands for June, July, August, September, October, and 

indicate the date for each point within a site. Sites are delineated with dashed lines. 
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Figure C.2. Projected net daily carbon (C) gain of boreal trees across time and site 

under (a, e) current climate, (b, f) 4.5 °C of warming, (c, g) annual regional 

warming, and (d, h) seasonal regional warming, at (a, b, c, d) ambient or (e, f, g, h) 

elevated CO2 for the year 2100. Data represent simulations run with monoculture 

stands of Picea glauca at five sites and five time points using one of the Arrhenius 

temperature response parameters for Picea, Abies, or Pinus. 0 °C indicates current 

climate conditions, +4.5 °C indicates global average warming for 2100, annual 

regional indicates spatially explicit annual warming, and seasonal regional indicates 

spatiotemporally explicit warming, while eCO2 indicates elevated CO2 

concentrations. JJASO stands for June, July, August, September, October, and 

indicate the date for each point within a site. Sites are delineated with dashed lines. 
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