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Abstract 

The reproductive success of parasites is entirely dependent on their ability to encounter suitable 

hosts. Obligate brood parasitic birds may increase host encounter rate, and consequently their 

reproductive output, if they cause unsuitable late-stage host nests to fail thereby stimulating the 

host to create another nest that they can parasitize. I tested key predictions of this ‘farming’ 

hypothesis for the brown-headed cowbird (Molothrus ater). I found evidence that cowbird 

attacks are not uncommon, a basic requirement of the hypothesis. Furthermore, I found multiple 

lines of evidence that cowbird attacks are not indiscriminate, but directed at non-parasitized nests 

and at those at a developmental stage too late to be suitable for parasitism. I experimentally 

demonstrate that cowbirds determine the age of a nest by directly puncturing a portion of the 

clutch or indirectly by attending to the absolute number of eggs. Cowbirds also parasitized a high 

proportion of the re-nesting attempts following their attacks suggesting that they take advantage 

of the reproductive opportunities they create. A Monte Carlo model comparing simulated 

farming and non-farming cowbirds also shows that a farming strategy may lead to higher 

reproductive output likely by enhancing individual nest discovery as opposed to increasing the 

number of nests. How cowbirds occupy space may also provide insight into how they encounter 

potential hosts. Utilization distributions (UDs) are among the most applicable methods of 

quantifying space use. In one of the first practical applications of a multidimensional UD that 

includes time as a dimension, I show that cowbirds were significantly more likely to be found 

around nesting sites when a nest was active suggesting that cowbirds optimize their nest 

searching. I did not, however, find a difference in probability of occurrence depending on the 

developmental stage of a nest. I also found evidence that cowbirds become less territorial later in 

the day. Comparisons to strictly spatial UDs suggest that including a time dimension may 
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provide a more realistic model of how cowbirds find host nests and interact with one another. 

Thus, cowbirds can discriminate appropriate vs inappropriate nests and adjust their predatory and 

spatial behaviour accordingly to improve their encounters with hosts. 

Keywords: brood parasitism, brown-headed cowbird, Molothrus ater, farming hypothesis, 

home range, host manipulation, host-parasite evolution, infanticide, territory, utilization 

distribution. 
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Chapter 1 

1  General Introduction 

My thesis has two main objectives. First, I examine how infanticidal behaviour of the brood 

parasitic brown-headed cowbird (Molothrus ater) may improve their reproduction (sensu the 

farming hypothesis). This topic is addressed within the larger context of how parasites may 

improve their transmission by manipulating the behaviour of their hosts (Chapter 2 and 3). 

Second, I employ recently developed techniques in spatial analyses to examine how available 

nests and social interactions influence cowbird space use (Chapter 4). In this general 

introduction, I first present an overview of the importance of parasitism as a lifestyle followed by 

a comprehensive summary of parasite-mediated manipulation of host behaviour. I then provide a 

review of how infanticide may also serve as a strategy to increase reproduction, specifically 

drawing parallels to behavioural manipulation by parasites. Next, I present a literature review on 

the social and brood parasites. I then review brood parasitism specifically in birds and highlight 

the diversity of strategies involved, the impact on host fitness, and examples of how avian brood 

parasites likely manipulate host behaviour. I provide a synopsis of historic and contemporary 

space use and home range analyses. Finally, I present a brief overview of the relevant biology of 

the brown-headed cowbird. 

1.1 Parasitism as a lifestyle 

Parasitism likely constitutes the most common lifestyle on the planet (Toft 1986; Thompson 

1994) and interactions among parasites and ‘free-living’ organisms are both diverse and complex 

(Moore 2002). Perhaps because parasites constitute only a small fraction of the biomass within a 
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community, they have historically been considered to be of minor ecological importance (Poulin 

1999; Lefevre et al. 2008). In the last few decades, however, ecologists have begun to recognize 

the influence parasites exert on not just individual hosts, but population dynamics, community 

structure and biodiversity (Thompson 1999; Wood et al. 2007). Given the ubiquity of parasites, 

understanding their role in ecological communities has become a central question in ecology, 

evolution and conservation biology (Rozsa 1992; Thomas et al. 2005). Typically, parasites 

negatively impact the fitness of their hosts (Price 1980) by increasing mortality, reducing 

fecundity or lowering competitive ability. The reproductive fitness of any parasite depends on its 

ability to successfully infect an individual host, replicate within and then disperse to other hosts. 

Absolutely key to this process is the likelihood that a parasite, while in its infective stage, will 

encounter susceptible hosts. Metaphors such as an ‘arms race’ (Dawkins and Krebs 1979) and 

‘Red Queen’ (Van Valen 1973) are often evoked to explain the ceaseless process of reciprocal 

coadaptation among antagonistic parasites and their hosts while either side seeks to change the 

probability of these encounters. 

1.2 Host behavioural manipulation by parasites 

Parasites exhibit a vast array of strategies to enhance the transmission of themselves or their 

offspring, by exploiting typically heterospecific hosts (Poulin 2007; Schmid-Hempel 2011). One 

particularly fascinating example occurs when parasites manipulate the behaviour of their hosts in 

ways that facilitate their own transmission (manipulation hypothesis: Holmes and Bethel 1972, 

Poulin 2000). In such cases the modified behaviour can be thought of not being due to the 

expression of the host’s genes, but instead may be considered an extended phenotype of the 

parasite itself (Dawkins 1982; Hughes et al. 2012). Parasite induced behavioural change may 
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have direct consequences for conservation, ecology, medicine, agriculture and evolutionary 

trajectories and, as such, has generated an appreciable amount of theoretical and empirical 

research (Moore 2002; Lafferty 2006, Flegr J. 2007. Reiber et al. 2010). 

Few animals infected by a parasite or pathogen behave just like uninfected animals and 

changes in behaviour can vary greatly in extent, from modest changes in time spent performing 

an ordinary activity, to the emergence of radical new and bizarre behaviours (Moore 2002; 

Poulin 1994). For example, sandflies (Phlebotomus spp.) infected with the protozoan Leishmania 

sp. moderately increase their biting frequency (Rogers and Bates 2007). At the opposite extreme, 

ants infected by the tremetode “brain worm” Dicrocolelium dendriticum uncharacteristically 

leave the protection of their colony, ascend a blade of grass and remain there clamped down with 

their mandibles (Carney 1969; Wickler 1976). In both these examples, the behaviour 

modification would appear to increase the probability that the parasite will encounter other hosts. 

Leishmania is transmitted to its mammalian definitive hosts through the bites of sandflies and 

ants atop a blade of grass would presumably be more likely to be eaten by the definitive sheep 

host of Dicrocolelium sp. The consequences of these examples appear fairly clear because of the 

obvious connection to the parasitic lifecycle, however, the adaptive significance of parasite-

mediated behavioural change may not be so easy to ascertain (Dantzer 2001, Adamo 2013). 

The vast majority of studies on parasite-mediated behavioural change have merely been 

reports on the phenomenon itself. Typically, unusual or aberrant behaviours are observed in 

infected individuals and, if this seems as though it could increase transmission then the 

behavioural change is assumed to be an adaptive strategy on the part of the parasite (Beckage 

1997; Moore 2002). While this practice is a valuable first step in identifying possible examples 

of the manipulation hypothesis, it has been criticized as adaptationist story telling (Gould and 
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Lewontin 1979; Poulin 2000). It has only been relatively recently that researchers have 

emphasized that alternative explanations need to be considered before accepting adaptive 

manipulation (Klein 2005; Thomas et al. 2005; James 2010; Cator et al 2012, 2014; Lafferty and 

Kuris 2012; Worth et al. 2013). Behavioural change following infection may simply be a side-

effect or even a maladaptation manifested because of some other trait (Heil 2016). Alternatively, 

a behavioural change may represent a host adaptation aimed to reduce or compensate for the 

detrimental consequences of infection (Lefevre et al. 2008). Perhaps sandflies combat infection 

through increased nutritional uptake or brainworm-infected ants leave to distance themselves 

from their uninfected relatives. In either example, this is likely not the case (Rogers and Bates 

2007; Highes et al. 2012), but I suggest hypothetical alternative explanations as a way to 

highlight the need for additional research before drawing such a conclusion. 

To understand the connection between infection and host behavioural change it is 

absolutely necessary to consider both the adaptive function and the proximate mechanisms 

involved (Klein 2003). Even in cases where intuition suggests that host behaviour changes 

benefit the parasite, I suggest three criteria must be satisfied before drawing such a conclusion. 

Firstly, it is necessary to establish that the behavioural change is actually caused by the parasite 

(Moore 2002). Secondly, the behavioural change must be shown to increase the probability of 

transmission— often determined by comparing the probability that infected versus uninfected 

individuals encounter additional hosts (Lafferty 1999; Berdoy et al. 2000). Thirdly, it is critical 

to identify the specific mechanisms involved in the behavioural change in order to understand the 

complexity and sophistication of the supposed manipulation (Nickol 2005; Thomas et al. 2005). 

Throughout this thesis, these are the three stringent criteria I return to when considering whether 

manipulation of a host is an adaptive parasitic strategy. 
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1.3 Infanticide and behavioural manipulation 

Infanticide among animals is a widespread occurrence with no single explanation (reviewed in 

Chapter 2). Predominant among these is the hypothesis that infanticide is a male strategy that 

enhances their reproductive success at the expense of the female (sexual selection: Hrdy 1974). 

Essentially, newly arrived males kill the unrelated infants of their competitors so that females 

come into estrous earlier than they otherwise would and rear the intruder’s young. Functionally, 

infanticidal males of several species, especially within mammals, act much like parasites in this 

way (Palombit 2015). In the broadest possible definition (Esch and Fernandez 1993), parasitism 

represents a non-mutual relationship between two groups where one benefits (the parasite) at the 

expense of the other (the host). In this sense, male lions, for example, are a type of parasite. After 

all, their days are spent predominantly sleeping, impregnating females, stealing their food and 

contributing next to nothing in care for their own young (Schaller 1972). Although I may be a bit 

tongue and cheek making the general comparison, the specific parallel to the parasite 

manipulation hypothesis is striking. Infanticidal males (the parasite) manipulate females (the 

host) to care for their young at the expense of the female. 

Sexually selected infanticide and parasite-mediated behavioural manipulation should be 

considered within very similar context. As with parasitism, infanticide can represent a 

considerable source of (juvenile) mortality (Sherman 1981; Packer and Pusey 1983). In response, 

just as with parasitic hosts, females have evolved a suite of strategies to reduce the incidence of 

infanticide including cooperative defense of young, provisional absence from a social group, 

abortion, and delayed or concealed ovulation following the arrival of new males (Hdry 1979; 

Packer and Pusey 1983; Wolff and Macdonald 2004; Palombit 2015). Just as is needed with 



 6 

parasite mediated manipulation, I propose that additional hypotheses must be considered and 

systematically rejected before one can conclude that infanticide represents a behavioural 

adaptation that facilitates the ‘transmission’ of the male aggressor. 

1.4 Social and brood parasitism 

Darwin (1859) suggested that any instinct cannot have been produced for the good of other 

individuals, but individuals may take advantage of the instincts of others. In a similar assertion, 

Dawkins (1999) suggested that “any nervous system can be subverted if treated in the right 

way”. Organisms often behave in ways that seem to benefit others rather than themselves and 

may be explained by either kin selection (Hamilton 1964) or reciprocal altruism (Trivers 1971). 

A third possibility is social parasitism— an intriguing phenomenon in which a parasite exploits 

the labour of its hosts without necessarily improving the inclusive fitness or reciprocating actions 

for the host (Moore 2002). Although social parasites do not necessarily take advantage of host 

physiology, they are rightfully called parasites in that they capitalize on the social structure of 

their hosts, exerting an appreciable fitness cost while benefiting themselves (e.g. Mori et al. 

2000; Foitzik et al. 2001; Fischer-Blass et al. 2006). By redirecting host labour they divert 

resources to themselves, presumably reducing their host’s reproductive output if not eliminating 

it altogether (Hölldobler and Wilson 1990; Ortega 1998; Davies 2000). 

Social parasitism occurs within and between species, has been documented across a 

wide range of taxa, and can encompass a range of specialization from the relatively mundane to 

the utterly remarkable. Undoubtedly, the range of specialization in social parasitism is best 

exemplified within the Hymenoptera, particularly the ants (Hölldobler and Wilson 1990) and is 

worth illustrating here. Xenobiotic or ‘Guest’ ants live within the colony of another species, 
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freely intermingle with host workers, and may even solicit food from their hosts (Buschinger 

1976). Temporary ant parasites are dependent on a host species for colony foundation but can 

otherwise care for themselves (Buschinger et al. 1990; Topoff and Zimmerli 1993). Inquiline 

ants are also reliant on other species for colony foundation, but are permanent parasites having 

lost the ability to care for themselves (Hölldobler and Wilson 1990). Some species have become 

so well adapted to their parasitic lifestyle that they have lost the worker caste and developed 

morphological, physiological and behavioural adaptations that promote complete dependence on 

their hosts (Wilson 1971). The dulotic or ‘slave-making’ ants push social parasitism to this 

extreme. Slave-makers practice non-independent colony foundation similar to that observed in 

temporary parasites (Buschinger 1986), but go further by raiding the nests of neighbouring 

species to supplement their host worker force (Alloway 1979). Several dulotic ants have become 

so specialized that they are completely reliant on their hosts for feeding and brood care (Wilson 

1975; Stuart and Alloway 1985). 

‘Brood Parasitism’ is one type of social parasitism that involves a parasitic individual 

leaving its eggs with another who raises the parasitic offspring at the expense of its own (Lack 

1968; Rothstein 1990). This type of ‘egg dumping’ may be facultative and opportunistic. For 

example, Lace bugs (Gargaphia spp.: Tallamy 1985) and some waterfowl species (Ortega 1998) 

commonly lay their own clutch of eggs among those of an unrelated conspecific. Many other 

brood parasites are obliged to leave their eggs with other species. Obligate brood parasitism is 

well known among birds (Ortega 1998), but has also been documented in some fish (Sato 1986; 

Wisenden 1999) and arthropods (Boulton and Polis 2002). In every case, if the foster parent is 

unable to differentiate between the ‘dumped’ eggs and their own, they will incur the costs of 

caring for extra young (Petrie and Møller 1991). 



 8 

To successfully infiltrate the social order of others, a social parasite must utilize 

inherent sensory preferences of their host. This can be accomplished if the parasite can 

adequately mimic their host’s sensory cues necessary for recognition (Howard et al. 2001). The 

termitophile Trichopsenius frosti, for example, biosynthesizes the same chemical signature as its 

termite host Reticulitermes flavipes (Howard et al. 1980). Many avian brood parasites also lay 

mimetic eggs resembling those of their hosts (Brook and Davies 1998; Moksnes and Røskaft 

1995; Gibbs et al. 2000; Stoddard and Stevens 2010, 2011). Additionally, supernormal stimuli 

may release exaggerated levels of host response. The relatively large size and vocal mimicry of 

cuckoo chicks persuade their warbler host to deliver increased quantities of food (Davies et al. 

1998). Similarly, larvae of the Vespid social parasite Polistes sulcifer are able to solicit more 

food from workers of their host P. dominulus than host larvae can (Cervo et al. 2004). 

Several theories have been advanced to explain why host species have not ultimately 

evolved means of rejecting their social parasites. Social parasites may represent a relatively new 

selection pressure and hosts have not had the time necessary to evolve an appropriate defense. 

This may happen when a social parasite is introduced into a new geographical location (Brooke 

et al. 1998; D’Ettorre et al. 2004) or where parasites evolve to switch host species (Fischer-Blass 

et al. 2006). Parasite-host relationships may then be locked in an evolutionary arms race 

(Dawkins and Krebs 1979) or a ‘Red Queen’ scenario (Van Valen 1973) in which the parasite is 

currently ahead (Foitzik et al. 2003; Fischer and Foitzik 2004). Some have proposed that 

parasites simply have too little impact for their hosts to evolve means of recognizing them as 

enemies (Gladstone 1981). Like physiological parasites and pathogens social parasites may have 

evolved to have less impact on their hosts (Brooker and Brooker 1996; Hare and Alloway 2001). 

More likely, however, host species have reached an evolutionary equilibrium in the stringency of 
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their recognition mechanisms (Maynard Smith 1982). That is, the costs of accepting a social 

parasite are on average outweighed by the possibility of rejecting colony members. 

1.5 Avian brood parasitism 

Avian brood parasitism is perhaps the best known and most highly studied example of social 

parasitism. Obligate interspecific brood parasites are only able to reproduce by laying their eggs 

in the nests of other species, which then take care of the parasitic young (Davies 2000). Unique 

aspects of a brood parasitic lifestyle have long held the interest of biologists for evolutionary, 

ecological and ethological reasons. Firstly, the strong selection pressure acting on both parasite 

and host can potentially produce easily detectable adaptations in both members of the interaction 

making avian brood parasitism one of the best opportunities to study co-evolutionary interactions 

in vertebrates (Rothstein 1990). Secondly, brood parasites may exert potentially dramatic and 

detrimental effects on the reproductive success of many other species of birds (Ortega 1998). 

Thirdly, the interactions between avian brood parasites and their hosts are often characterized by 

a stunning diversity of sophisticated behavioural adaptations (Davies 2000). 

Obligate brood parasitism is a rare phenomenon among birds and is found in only 1% of 

the approximately 10 000 avian species (Davies 2000). Yet, this reproductive strategy has 

evolved independently at least seven times (Jetz et al. 2012). The largest and most commonly 

known group are the cuckoos (Cuculidae), consisting of 52 species in two subfamilies that are 

mostly distributed throughout Europe and Asia. In Africa brood parasitism has evolved in two 

other families— the honeyguides (Indicatoridae) that have 20 parasitic species and two groups of 

finches (Viduidae) consisting of 17 species. In South America a single species of duck 

(Heteronetta atricapilla) has evolved an obligatory parasitic lifestyle. Lastly, throughout the 
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Americas are the cowbirds (Icteridae), the most notorious brood parasites, which consist of five 

parasitic species (Ortega 1998; Davies 2000). 

As with conventional parasites, brood parasites may substantially lower the 

reproductive success of their hosts, however, their impact on their hosts or ‘virulence’ varies 

considerably depending on the strategies they employ to exploit their hosts (Kilner 2005). The 

most virulent are those that do not tolerate any host offspring (Soler and Soler 2017). For 

example, in species such as common cuckoos (Cuculus canorus) and honeyguides, the parasitic 

chick actively kills its foster siblings, thereby reducing the host’s reproductive output to zero 

(Honza et al. 2007; Spottiswoode and Koorevaar 2011). This strategy is similar to other 

conventional parasites that castrate their hosts so that they can monopolize on the host’s 

reproductive energy (e.g. Lafferty and Kuris 2009). Meanwhile, the brood parasitic black-headed 

duck is comparatively innocuous, with precocial young that leave their foster family soon after 

hatch and appear to impose almost no costs to their hosts (Odell and Eadie 2004). Other brood 

parasites, including the cowbirds, are raised alongside host nestmates and have been traditionally 

considered to be moderately virulent (Sorenson et al. 2003). However, their actual impact on 

their hosts may have been greatly underestimated. Cowbirds, in particular, may further reduce 

host fitness in a number of less obvious ways. Adult cowbird females will often remove a portion 

of the clutch in which they will lay (Sealy 1992). Parasitism itself may cause abandonment 

(Sedgwick and Knopf 1998; Harris 1991), or clutch size may be reduced past a critical threshold 

as to cause abandonment (Sealy 1992). Cowbird nestlings are also fierce competitors in the nest 

and their typically larger size and superior begging behaviour may allow them to outcompete 

host nestlings for parental food provisioning leading to lower quality fledglings (Lichtenstein and 

Sealy 1998; Dearborn 1998; Lorenzana and Sealy 1999) or even female-biased mortality in their 
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hosts (Zanette et al. 2005, 2012). Finally, adult cowbird females may destroy the contents of late-

stage nests that they have not parasitized in order to return and parasitize the replacement nests at 

a more opportune time (Arcese et al. 1996). 

In response to the threat of parasitism many host species have evolved some measure of 

defense. Several host species reject parasitic eggs from their nests (Ortega 1998) which may 

have led to the egg mimicry seen in parasitic species such as the common cuckoo (Brooke and 

Davies 1998). Other hosts may abandon an entire nest once it is parasitized or just bury the 

clutch (Davies 2000). Many other hosts readily accept parasitic eggs likely because the cost of 

rejection outweighs that of acceptance (summarized in Ortega 1998). Unlike parasitic eggs, the 

nestlings of cuckoos and cowbirds are almost universally accepted by their hosts (Rothstein 

1990); however, recent evidence suggests that some host species discriminate against parasitic 

nestlings (Langmore et al. 2003; Schuetz 2005; Soler 2009; Sato et al. 2010; Tokue and Ueda 

2010) or fledglings (Rasmussen and Sealy 2006). Some host species successfully prevent 

parasitism altogether by either refusing to leave the nest or aggressively attacking the parasitic 

intruder (Hobson and Sealy 1989), however, the effectiveness of this strategy in preventing 

parasitism is debatable (Ortega 1998; Swan personal observations). 

Some avian brood parasites seem to adaptively induce behavioural changes in their 

hosts. One such strategy that imposes relatively little negative impact on host reproduction is the 

‘distraction’ strategy of great spotted cuckoos (Clamator glandarius: Alvarez and Aras de Reyna 

1974; Soler et al. 1999). Male cuckoos produce loud vocalizations while flying close to the nests 

of their magpie (Pica pica) hosts causing the incubating host females to leave the nest to chase 

after the cuckoo male. The cuckoo female, which has been waiting close by, then approaches the 

undefended nest and lays her own egg. Brood parasitic nestlings can also actively manipulate the 
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feeding behaviour of their host parents in a number of ways. Some parasitic nestlings may 

appropriately adjust their begging intensity to balance the begging competition within the nest 

(Rivers 2007) by mimicking the calls of either host nestlings (Langmore et al. 2008) or 

fledglings (De Marsico et al. 2012) or even mimicking the sound of an entire host brood (Davies 

et al. 1998; Gloag and Kacelnik 2013). One rather severe example of manipulative behaviour by 

brood parasites is that of the ‘mafia’ strategy. This involves the parasite, once finding that its egg 

has been rejected, retaliating by destroying the remaining host eggs/ nestlings (Zahavi 1979). By 

imposing extra fitness costs to rejecting parasitism, the parasite promotes future acceptance in 

their hosts. The mafia hypothesis has been experimentally corroborated in both the great spotted 

cuckoo (Soler et al. 1995, 1999) and brown-headed cowbirds (Hoover and Robinson 2007). A 

similar behavioural manipulation involves supposed farming behaviour by brood parasites 

(reviewed in detail in Chapters 2 and 3). The farming hypothesis suggests that brood parasites 

will destroy, or ‘farm’, host nests found too late in the nesting cycle for it to be suitable for 

parasitism, thereby inducing those hosts to begin a new nesting attempt that the parasite can 

return to lay in at a more appropriate time (Arcese et al. 1992; 1996). 

1.6 Animal home ranges and home range estimators 

Key questions in ecology involve how the spatial distribution of individuals are 

influenced by interactions with others and their environment (Lima and Zollner 1996; Turchin 

1998; Wiegand et al. 1999; Matthiopoulos 2003). Data on the space use of wildlife are ordinarily 

represented by a series of location points obtained over time through some tracking technology 

such as radio-telemetry or some global positioning system (GPS) device. These locations can be 

used to map spatial boundaries and intensity of space use which can then be analyzed (White and 
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Garrott 1990). In brood parasitic systems, in particular, home range analyses may be especially 

informative on how parasites find, select and defend the nests of their hosts. These are the central 

topics I address in Chapter 4. 

A home range is customarily defined as the more or less confined area where an animal 

enacts its regular activities of food gathering, mating, rearing young, etc. and requires some 

degree of site fidelity (Burt 1943; Powell 2000). Stamps (1995) argued that animals occupy 

home ranges so that individuals can better learn the locations of critical resources or escape 

routes. This requires that animals form some type of spatial map of where they live that includes 

where different resources and other features are located within their home range. This cognitive 

spatial map must change over time as an animal learns new details about its environment (Powell 

2000). A territory may be defined as an area within a home range to which an animal has more or 

less exclusive access (Powell 2000). This usually requires active defense in some way or another 

of at least a portion of an animal’s home range. Almost always, animals are territorial only when 

they have a critical and limiting resource. 

Historically, the most common used method of estimating home range boundaries has 

been the minimum convex polygon (MCP: Mohr 1947). Although some other techniques have 

been proposed, MCPs are usually constructed by connecting the outermost points in a sample of 

location points. Given the simplicity of design and lack of variation in construction, MCPs may 

be the only home range estimates that can be reliably compared among studies (Harris et al. 

1990). Even so, MCPs have three main disadvantages: 1) they provide almost no insight into the 

relative use of space within a home range; 2) the may contain large areas that were never visited 

by the subject and; 3) they are greatly influenced by sample size along with peripheral and 

outlining locations (Harris et al. 1990). 
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Modern computational power now allows researchers to create much more appropriate 

home range models such as the utilization distribution (van Winkle 1975). A utilization 

distribution (UD) is a probability density function (Silverman 1986) that quantifies the relative 

use of space for an individual based upon a sample of location points (Kernohan et al. 2001). Not 

only do UDs approximate the size and boundaries of home ranges, but also depict the probability 

of an individual occurring at any given location within their home range (White and Garrott 

1990). UDs are ideal models for analyzing the space use of animals because individuals rarely 

use all parts of their home range uniformly. Rather, some areas are commonly occupied (e.g. nest 

site, location of food) while others are rarely visited (Marzluff et al. 1997). UDs can be plotted as 

a series of isopleths that represent areas of equal use in a similar way topographic maps use 

isopleths to depict equal elevation. Home range boundaries, for example, are typically 

represented as the 95th density isopleth for an individual representing a 95% probability of 

finding that individual within that boundary (Powell 2000). Using a distribution of relative use 

instead of discrete location data in space use reduces error from telemetry accuracy and allows 

for predictions in locations where animals were never actually observed because of 

discontinuous monitoring (Kernohan et al. 2001; Moser and Garton 2007). Studies may use UDs 

to link probability of use with some habitat variable(s) given that the height of a UD represents 

the relative probability of an individual being at any given location (Marzluff et al. 2004; 

Millspaugh et al 2006). Others estimate spatial overlap among individuals by overlaying multiple 

distributions (e.g. Simpfendorfer et al. 2012; Cooper et al. 2014). 

A reoccurring source of contention with any space-use study, whether they use UD or 

MCP estimators, is with the sampling protocol, specifically whether the location points using in 

the analysis are statistically independent. Because of logistical restrictions in sampling method 
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and the biology of the species being followed, achieving statistical independence can be difficult 

(Smith et al. 1981). It has traditionally been accepted that statistical independence of location 

points is generally achieved when the data is not serially autocorrelated (i.e. the location at a 

given time is not dependent on the previous location: Schoener 1981). When estimating home 

range size, for example, some studies suggest that autocorrelated locations may result in 

underestimates (Schoener 1981; Swihart and Slade 1985), however, others have not found this to 

be the case (de Solla et al. 1999). Depending on the species being monitored this restriction on 

sampling may be unreasonably limiting, allowing for few location points to be recorded over 

time. If the purpose of a study is to estimate the internal configuration of space use within an 

animal’s range (Marzluff et al. 2004), it seems much more reasonable to be concerned with 

biological rather than statistical independence of points (Barg et al. 2005). Biological 

independence is defined as any sampling interval long enough to allow an animal to travel from 

one point in its range to another (Lair 1987; Solla et al. 1999). This condition on sampling 

protocol may better accommodate species-specific movement abilities (Andersen and Rongstad 

1989). For these reasons, in chapter 4 I specifically disregard the need for statistical 

independence in my location sampling, instead using a ‘burst’ sampling method (Barg et al. 

2005) that maximized the number of points I was able to record. 

Obligate avian brood parasitizes that lay their eggs in the nests other species offer a 

unique model species for studying space use because, unlike other birds, they are not obliged to 

return to a set nesting site. Instead, freedom from parental care allows them to separate activities, 

such as mating, nest searching and feeding, both temporally and spatially (Thompson 1994). 

Nest searching is performed almost exclusively by females and there is strong selection pressure 

for them to remember both the location and developmental stage of host nests (Davies 2000). 
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This is reflected in the enlarged hippocampus of female cowbirds relative to males (Sherry et al. 

1992; Reboreda et al. 1996) and female cowbirds’ ability to perform complex memory tasks 

(Guigueno et al. 2014). In other words, the cognitive spatial map of their home ranges must be 

continually updated for female brood parasites because suitable host nests are repeatedly 

emerging and disappearing. These topics are addressed in detail in chapter 4. 

1.7 Study species: Brown-headed Cowbird (Molothrus ater) 

The brown-headed cowbird is the most studied brood parasite in the world. Cowbirds are highly 

abundant throughout North America and are considered to be extreme host generalists, 

successfully parasitizing over 170 species of passerines (Rothstein 1994; Ortega 1998; Lower 

2012). Brown-headed cowbirds can be found primarily in disturbed habitats that have high 

concentrations of food (Ortega 1998; Davies 2000). Interest in cowbirds has been spurred by the 

population declines of several migratory songbird species and the perceived role that cowbirds 

play in those declines (e.g. Smith et al. 2002; 2003). These concerns arouse primarily because of 

their overall abundance, high laying potential, competitive ability of their relatively large 

nestlings, and tendency to remove eggs while parasitizing (summarized in Ortega 1998). There is 

also an ever increasing amount of anecdotal, observational and experimental evidence suggesting 

that brown-headed cowbirds act as predators on non-parasitized host nests possibly to improve 

their reproductive success (Reviewed in Chapter 2 and 3). An individual brown-headed cowbird 

may be capable of laying up to 80 eggs in one season (Scott and Ankley 1983), however, the 

actual number laid may be significantly less (Alderson et al. 1999) suggesting that the number of 

host nests may represent a limiting reproductive resource. Despite this premium on available 

nests, female territoriality and how they find nests remains poorly understood (see Chapter 4). 
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Generally, as with all parasites, brown-headed cowbirds are entirely dependent on encountering 

hosts that are suitable for parasitism at the appropriate time. 
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Chapter 2 

2 Interspecific infanticide by the brown-headed cowbird: an 

evaluation of the farming hypothesis 

 

2.1 Introduction 

Systematic infanticide, despite offending our sensibilities, may prove an important and common 

strategy across a wide range of taxa including primates (Hrdy 1977; Hitaiwa-Hasegawa and 

Hiraiwa 1994), rodents (Sherman 1981; Elwood and Kennedy 1994; Hoogland 2007), carnivores 

(Packer and Pusey 1984), cetaceans (Patterson et al. 1998) and birds (Veiga 2000). Several 

hypotheses, none of which are mutually exclusive, try to explain how infanticide may prove 

beneficial, such as providing nutritional benefits (predation hypothesis: Palombit 2015) or 

improving access to resources for the infanticidal individual or their offspring (resource 

competition hypothesis: Agoramoorthy and Rudran 1995). Hrdy (1974) first suggested that 

killing of unrelated conspecific young by adult males may serve to increase their reproductive 

success (sexual selection hypothesis). Essentially, hostile males coerce females to become 

sexually receptive early by killing their dependent offspring. Although it has become widely 

accepted that infanticide may yield a reproductive advantage in this way, rigorous evidence in 

support of this hypothesis has only been obtained in a few species (Pusey and Packer 1994). An 

excellent and well-studied example of sexually selected infanticide may be seen in male lions 

(Panthera leo) that seize control of a new pride, kill but do not consume all small cubs, and then 
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mate with the newly sexually receptive females (Schaller 1972; Bertram 1975; Packer and Pusey 

1984; 1987; Packer et al. 1988). In a striking parallel, some brood parasitic birds may also kill 

the eggs and chicks of their hosts with similar reproductive outcomes. 

Obligate avian brood parasites, such as cuckoos and cowbirds, lay their eggs in the nests 

of other species, after which the ‘hosts’ provide all parental care for the parasitic young (Davies 

2000). Female brood parasites must synchronize their laying with that of their hosts in order to 

ensure adequate incubation for their egg to hatch (Fiorini et al. 2009). Late-stage nests are 

effectively unavailable to a brood parasite much like females out of estrous are unavailable to 

invading male lions. Also, just as a lion creates mating opportunities through infanticide, a brood 

parasite may kill eggs or nestlings when they encounter a nest too far into incubation for 

successful parasitism (Granfors et al. 2001; Peer 2006; Dubina and Peer 2013; Swan et al. 

2015)— forcing the host to renest earlier than it otherwise would and providing the perpetrator 

with another opportunity for parasitism (Arcese et al. 1996). This ‘farming’ hypothesis is 

theoretically enticing, however, there remain significant gaps in the evidence needed to conclude 

that killing host young represents a reproductive adaptation analogous to that of infanticide 

observed in other species. 

Here, I examine infanticidal behaviour by a brood parasite in order to provide a 

comprehensive evaluation of the fundamental requirements of the farming hypothesis. Based on 

infanticide literature I assert that, at a minimum, three critical conditions must be satisfied if we 

are to accept that attacking host nests represents an adaptive reproductive strategy. First and 

foremost, it is necessary to establish that infanticide by brood parasites is not uncommon, but an 

ordinary aspect of a parasitic lifestyle. Several lines of evidence suggest that brood parasites 

destroy but do not consume the contents of nests (eggs and nestlings) that are not parasitized, 
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however, most of the available data are either circumstantial or entails anecdotal reports of a 

single event (Tate 1967, Dow 1972, Arcese et al. 1992; 1996, Scott et al. 1992, Sealy 1992, 

1994, Dearborn 1996, Elliot 1999, Thompson et al. 1999, Granfors et al. 2001, Smith et al. 2002, 

Zanette et al. 2003, 2011, Briskie 2007, Hoover and Robinson 2007, Thompson 2007, Dubina 

and Peer 2013). Likely because of logistical constraints in identifying the species of nest 

predator, few direct data are available on the frequency of these attacks. Early reports of 

infanticide by male lions were also rarely observed directly because of their nocturnal tendencies 

(Pusey and Packer 1994), but have since been estimated to be among the most common causes of 

cub mortality (Bertram 1975; Packer and Pusey 1983, 1984; Packer et al. 1988). The second 

condition is that attacks by a brood parasite should not be indiscriminate, but focused on late-

stage nests that have not previously been parasitized by that individual (Arcese et al. 1996). This 

is similar to male lions killing only cubs that are not their own (Packer and Pusey 1984; Packer 

and Pusey 1994). Evidence showing that brood parasites selectively attack non-parasitized nests, 

however, is currently inconsistent. Higher predation rates generally of parasitized than non-

parasitized nests have occasionally been reported (Arcese et al. 1996, Clotfelter and Yasukawa 

1999, Hauber 2000), however, this trend is by no means universal (Ortega 1998, Table 7.6). My 

third condition requires that the brood parasite derives actual reproductive benefit from their 

infanticidal action. Just as sexually selected infanticide hinges upon male lions mating with the 

mothers of the cubs they kill (Gilbert et al. 1991), the farming hypothesis predicts high rates of 

parasitism in the replacement nests of the hosts that lost their nests to an infanticidal brood 

parasite (Hoover and Robinson 2007). 

Other than farming, multiple hypotheses have been proposed to explain egg puncture/ 

removal by brood parasites, however, most apply to only specific circumstances and rarely 
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involve the total destruction of a clutch or brood (reviewed in Peer 2006). Similar to infanticidal 

lions that rarely consume their targets (Packer and Pusey 1994), nutrition seems an unlikely 

motivator for nest attacks by brood parasites (Sulc et al. 2016). Some brood parasites may 

employ mafia-like tactics and cause nests to fail if their own egg is rejected (Hoover and 

Robinson 2007), however, this scenario only applies to particular incidents involving host 

species that eject parasitic eggs. Partial removal of a clutch may enhance the incubation 

efficiency for a parasitic egg (Peer and Bollinger 2000) or reduce competition for a parasitic 

nestling (Llambias et al. 2006). These circumstances require that the nest is parasitized (i.e. the 

parasite lays an egg in it) shortly before, after or during the egg puncture/ removal event, and 

should ideally not fail as a result. Occasionally a partial reduction in clutch size or the addition of 

a cowbird egg may cause hosts to abandon their nests (Peer 2006) and I consider these nest 

failures as failed attempts at parasitism as opposed to farming events. In contrast to egg puncture/ 

removal events in early-stage host nests associated with egg-laying by the parasite, that may 

accidentally cause nest failure, the total destruction of all eggs or nestlings in late-stage nests 

(that are unsuitable to lay in) is much more clearly suggestive of infanticide being the purpose, 

rather than the by-product, of such an act.  Experimental evidence corroborates that female brood 

parasites discriminate among nests depending on their developmental age and cause more 

damage to late-stage clutches, consistent with the principal purpose of damaging late-stage 

clutches being to commit infanticide to induce re-nesting (Swan et al. 2015).  

Although it is possible to quantify the reproductive output of a brood parasite in the 

field, it is not necessarily feasible to compare the fitness of an individual that follows a farming 

strategy to one that does not. Moreover, the degree of behavioural sophistication necessary to 

make a farming strategy worthwhile cannot be readily assessed from field data alone. In 
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particular, do farmers benefit simply by increasing the number of nests available for parasitism 

or do they also improve their chance of discovering the specific replacement nests they create 

through their predatory actions? Apparent advanced spatial processing ability in female brood 

parasites (Sherry et al. 1992; Reboreda et al. 1996; Guigueno et al. 2014) may allow them to 

approximate the location and timing of a re-nesting attempt they create. Analytical and 

simulation models have previously proven useful when comparing hypothetical behavioural 

strategies among brood parasites and their hosts (e.g. Zanette et al. 2007; Gloag et al 2011; 

Chakra et al. 2014; Hauber 2014) and may be applied in a similar fashion to estimate the relative 

benefits of different farming strategies. Here, I utilize a Monte Carlo simulation model to 

compare the reproductive output of the following three hypothetical types of brood parasite: 1) 

the “non-farmer” that does not attack host nests; 2) the “simple farmer” that attacks late-stage 

non-parasitized host nests, increasing the number of laying opportunities available, but with no 

subsequent change in nest discovery and; 3) the “advanced farmer” that attacks host nests and 

reliably returns to parasitize the re-nesting opportunity they create thereby increasing their 

chance of nest discovery. Comparing the fitness payoffs among these strategies under different 

conditions allows one to consider whether ‘farming’ one’s hosts is worthwhile, the necessary 

complexity of the behaviour, and how ecological variables may influence reproductive output. 

This study aims to provide a comprehensive evaluation of the basic requirements of the 

farming hypothesis using long term field data coupled with a computer simulation model. I focus 

on the obligate brood parasitic brown-headed cowbird (Molothrus ater) for which the farming 

hypothesis was first proposed (Arcese et al. 1996). I quantify cowbird attacks on the nests of 

their song sparrow (Melospiza melodia) hosts using video recordings and suggest a reliable and 

conservative predator identification key that resolves whether a cowbird or conventional predator 
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was responsible for an attack based on the condition of the failed nest. I test the broad prediction 

of the farming hypothesis that the overall rate of survival is higher in parasitized than non-

parasitized nests. I also directly test whether cowbirds tend to attack disproportionately fewer 

parasitized nests using my predator identification key. I test whether parasitism is relatively high 

in the re-nesting attempts following a cowbird attack, which would suggest that cowbirds 

actually benefit by taking advantage of the reproductive opportunities they create. Lastly, I ran a 

series of Monte Carlo simulations estimating the relative number of successful offspring of non-, 

simple and advanced farmers under different ecological conditions in order to consider the 

possible benefits of a farming strategy. 

 

2.2 Methods 

2.2.1 Study site and field methods 

I studied nest predation and cowbird parasitism on two populations of song sparrow hosts over 

nine years near Victoria, British Columbia (Rithet’s Bog Conservation Area: 44ha, 2000-2007, 

2009-2010; Swan Lake Nature Sanctuary: 42ha, 2000-2003, 2010). I define nest predation by 

cowbirds as the killing without consumption of eggs and/or nestlings. These sites contain small 

to medium sized ponds, dense willow thickets (Salix spp., 1-4 m tall), and grassy fens. Song 

sparrows in this area are multi-brooded rearing up to four broods with 1-4 young per year 

(Zanette et al. 2006). In my study sites song sparrows are year-round residents whereas cowbirds 

are migratory and the arrival of cowbirds occurs after the start of song sparrow breeding (Zanette 

et al. 2003). Breeding begins in late March or early April and ends in late July. Hosts were 
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captured using mist nets and uniquely colour-banded for individual identification. Migratory 

cowbirds arrive to the area and begin parasitizing in late April (mean ± SE = 28 April ±2.7 days) 

and lay their last egg by mid-July (mean ± SE = 8 July ± 1.6 days). 

Song sparrow nests were found using behavioural cues from the parents and were 

checked upon every 1-4 days until the nest either failed or fledged. Age of the nest was 

determined by candling eggs or back-dating from hatch. Nests that had already failed or fledged 

prior to the seasonal arrival of cowbirds were not considered in this study. A total of 741 nests 

were monitored for which I could reliably determine their fate (failed/ fledged, parasitized/ non-

parasitized). Parasitism was high in these study sites, with almost half of all sparrow nests on 

average containing at least one cowbird egg (i.e. parasitized) in a given year (mean ± SE = 48.3 

± 5.3%; range = 17-78%). During each check on a song sparrow nest we recorded the number of 

host and cowbird eggs/ chicks present in the nest and inspected eggs closely for puncture marks 

or other damage. Whenever possible, from 2004-2010, a small motion sensitive video camera 

was erected next to a nest in order to continuously monitor activity and identify potential nest 

predators (see Zanette, et al. 2011 for camera details). I could identify the fate (failed/ fledged) 

with certainty for a total of 89 nests monitored with cameras. These cameras were crucial to this 

study as they allowed me to identity the specific predatory species that was responsible for a 

given nest failure. However, cameras could only be positioned for nests that were no further than 

100m from out two fixed digital video recorder locations, and could only be deployed nine days 

into incubation to avoid abandonment by the host. Therefore, for all non-camera nests I devised a 

simple key to identify the predator type responsible for a given nest failure. 
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2.2.2 Predator identification key 

My predator identification key was based on the condition of the nest and allowed me to 

determine whether a cowbird or non-cowbird predator was responsible for a nest failure event 

even where the nest was not monitored by a camera (see Smith et al. 2003, Swan et al. 2015 for 

examples). My goal was to be as conservative as possible when judging whether an attack was 

by a cowbird or conventional predator. Using the video records and past studies as a frame of 

reference, I identified broad characteristics of failed nests that were unique to cowbird visits, 

unique to non-cowbird predators, or could have been caused by either a cowbird or conventional 

predator. 

Cowbirds characteristically either removed all nest contents or left some punctured eggs 

or nestlings in or under the nest and were never observed to cause noticeable damage to the nest 

itself. No other predator was found to leave punctured eggs or nestlings with minor wounds, but  

non-cowbird predators did occasionally empty nest contents without damaging the nest itself. 

Consequently, to be as conservative as possible, I only considered that a cowbird attack was the 

cause of nest failure whenever at least one punctured egg or nestling was found in or around an 

undamaged nest or a researcher observed a cowbird attacking a nest either directly or indirectly 

using the video system. Under the farming hypothesis it is expected that the parasites will cause 

late-stage nests they have not previously parasitized to fail in order to create the opportunity to 

parasitize the replacement nests (Swan et al. 2015). As detailed in the Introduction, cowbirds 

occasionally remove eggs in conjunction with the laying of their egg in a nest (i.e. parasitism) 

and this reduction in clutch size or the addition of a cowbird egg may cause hosts to abandon 

their nests (Peer 2006). Such nest failures should not be considered within a farming context, but 

instead suggest failed attempts at parasitism. Cowbirds use both direct and indirect cues to assess 
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the age of host eggs (Swan et al. 2015), and as this of course entails some degree of error they 

may occasionally lay their eggs in unsuitable (e.g., late-stage) nests. Nest stage alone is thus not 

a sufficient criterion to judge whether a nest failure was attributable to infanticide, or a failed 

attempt at parasitism, so to be as conservative as possible, I accordingly excluded all nest failures 

that occurred within two days of a cowbird egg being laid in the nest, regardless of nest stage, in 

my comparisons of cowbird and conventional predator attacks. 

I considered that a non-cowbird predator was responsible for nest failure whenever: nest 

contents were substantially damaged (i.e. egg fragments/ body parts were found in or around the 

nest); the nest lining was pulled up; a hole was present in the bottom of the nest; the nest was 

completely removed or missing or; a researcher observed the attack directly or indirectly. 

Clutches were considered abandoned (e.g. because the parent has been killed) when eggs were 

cold with no other signs of damage and no parents were observed near the nest for at least two 

visits over four days (Smith et al. 2003). Nests that I could not definitively assign to either a 

cowbird or non-cowbird predator or abandonment based on these criteria (i.e. nest undamaged 

with contents missing) were not assigned to either category and were excluded from any analyses 

directly comparing cowbird to non-cowbird attacks. 

2.2.3. Statistical Analyses 

All statistical analyses were performed using the R statistical software (R development team 

2008). A key correlate of the farming hypothesis is that parasitized nests should survive at higher 

rates than non-parasitized nests because parasites should not attack nests they have already laid 

in (Arcese et al. 1996). I compared predation rates of parasitized vs unparasitized nests broadly 

by calculating Mayfield daily survival values (Davies and Sealy 1998) and using the Mann-
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Whitney test. Hauber (2000) suggested that the presence of a parasitic nestling, unlike a parasitic 

egg, may bring about loud vocalizations and elicit increased activity around the nest by the host 

parents, ultimately attracting increased predation pressure on parasitized nests post-hatch 

(Broughton et al. 1987; Haskell 1994; Lichtenstein and Sealy 1998, Dearborn 1999). Therefore, 

similar to Hauber (2000) I compared daily survival values only up until hatching. In order to 

more directly assess whether cowbirds avoid attacking non-parasitized nests, I compared the 

number of parasitized and non-parasitized nests attacked by cowbirds and non-cowbird 

predators— as determined by my predator identification key— using a Fisher’s exact test. 

Another central tenet of the farming hypothesis is that, in order for farming behaviour to persist 

across generations, one would expect that cowbirds will take advantage of the laying 

opportunities created by their predatory action. Accordingly, one would expect the re-nesting 

attempts following a cowbird attack to be parasitized at a disproportionately high rate. Using a 

Fisher’s exact test, I compared the frequency of cowbird parasitism in the re-nesting attempts 

following cowbird attacks with those following attacks by non-cowbird predators— estimated 

using my predator identification key. In order to be included in this analysis re-nesting attempts 

must have been on the same host territory and involved the same host pair as the previous nest 

attacked. 

2.2.4. Simulation model 

If cowbirds selectively attack host nests found too late in the nesting cycle to be suitable for 

parasitism they theoretically can benefit by parasitizing the replacement nests. The actual 

benefits of adopting a farming strategy are difficult to assess, however, because field 

experiments comparing farmers and non-farmers are not feasible. For these reasons, I created a 

Monte Carlo simulation model (Appendix 2) using python programing language (Python 
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Software Foundation 2016) in order to evaluate: 1) whether attacking nests within a farming 

context would yield worthwhile reproductive gains and; 2) the level of behavioural sophistication 

necessary for farming to be a realistic strategy. For this model I define three types of 

hypothetical cowbird each with incremental levels of farming sophistication. First, the ‘non-

farmer’ lays only in host nests that are at an appropriate stage for parasitism and disregards late-

stage nests. Nests appropriate for parasitism are defined as those whose contents are early 

enough in embryonic development that a parasitic egg will receive adequate incubation to hatch. 

Second, the ‘simple farmer’ also lays in appropriate nests, but destroys any non-parasitized, late-

stage nests they encounter, causing the hosts to commence a new nesting attempt. The simple 

farmer theoretically benefits by increasing the proportion of appropriate nests available at any 

given time. Third, the ‘advanced farmer’ acts just as the simple farmer with one important 

difference— they gain knowledge on the location and timing of any re-nesting attempts created 

by their destructive actions. The advanced farmer is therefore able to find and parasitize those re-

nesting attempts with higher probability than they otherwise would. The purpose of the 

simulations was not necessarily to calculate realistic estimates of cowbird reproduction, but to 

visualize the conditions under which either farming strategy would be beneficial relative to a 

non-farmer in order to evaluate whether such tactics could actually develop and persist. 

If we assume no cost to finding and attacking nests, both simple and advanced farmers 

would enjoy a greater theoretical reproductive output than a non-famer, because by inducing host 

re-nesting their actions make more host nests available to lay in, however, these relative benefits 

may vary depending on other ecological conditions. For these simulations I identify and vary 

three particular ecological parameters that would logically impact the viability of a farming 

strategy. First, the number of host pairs present may affect the need to farm. More hosts available 
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may negate the need to create additional parasitism opportunities by attacking late-stage nests. In 

my simulations I define n as the number of host pairs available to a cowbird. Second, the 

likelihood that individuals naturally discover nests could impact the necessity to farm hosts 

because conspicuous nests would be easily found. I define d as the daily probability a nest may 

be discovered by a cowbird in a simulation. Third, variation in background predation rates 

caused by non-cowbird predators could drastically alter the benefits of farming. Unlike predatory 

cowbirds, other predatory species indiscriminately attack non-parasitized and parasitized nests 

alike, reducing the overall number of cowbird offspring, but at the same time increasing the 

number of laying opportunities available. For the simulations, I define the daily probability that a 

nest will be attacked by a non-cowbird predator as a. I ran a series of Monte Carlo simulations 

where we varied n, d, and a in order to visualize the reproductive output of my three hypothetical 

cowbirds (non-farmer, simple, and advanced farmer). Other than n, d, and a all other parameters 

in the simulations were constant values appropriate to my sparrow-cowbird system, however, the 

conditions of the simulation could easily be altered to apply to other host-parasite systems. 

The hosts in the simulations behave as follows. A 120 day breeding season begins with 

n host pairs. On day one each host pair initiates a nest which goes through the following 

sequential developmental stages over subsequent days: building (4 days), laying (3 days), early 

incubation (4 days), late incubation (10 days), brooding (10 days). This developmental 

progression mimics what exists in my field sites. Song sparrows typically spend 3-4 days 

building a nest, lay 3-4 eggs and begin incubation after laying the penultimate egg. They 

incubate for 13 days before the clutch hatches after which they brood nestlings for approximately 

10 days. I assume that nests are only appropriate for parasitism during the laying and early 

incubation stages of development. Each nest has the daily probability a of being attacked by a 
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non-cowbird predator thereby simulating background predation levels. The likelihood that a nest 

will fail because of a non-cowbird predator is unaffected by the parasitism status (y or n) of a 

nest, the number of other nests that were attacked on a given day, or the developmental stage of 

the nest. Following an attack, the nest will be considered a failure and the host pair begins 

building a new nesting attempt following a four-day idle period. Whenever a nest survives past 

brooding it is considered a success and the host pair also begins building a new nesting attempt 

after a four-day idle period. 

Cowbirds in the simulations behave in the following way. I assume only one cowbird 

exists in each simulation and they are able to lay an egg every second day. Ovarian dissections of 

wild breeding birds estimate the potential laying rates of cowbirds to be between 0.5 and 0.8 

eggs per day (Payne 1976, Scott and Ankney 1983, Rothstein et al 1986). However, it is worth 

noting that this potential is almost certainly less than the realized fecundity because cowbirds 

will often not find an adequate nest in which to lay (e.g. Woolfenden et al. 2001). On any day a 

cowbird may discover each nest with equal probability d. No action is taken if a cowbird 

discovers a nest during the building stage. If the nest is discovered at an appropriate stage for 

parasitism (laying/ early incubation) and the cowbird has an egg ready it will lay in (i.e. 

parasitize) that nest regardless of the type of cowbird (non-farmer, simple or advanced farmer). 

Upon discovering nests no longer appropriate for parasitism, non-farmers take no action. Simple 

and advanced farmers, meanwhile, will attack late-stage nests causing those hosts to begin 

building a new nest following a four-day idle period. Unlike non-cowbird predators, neither type 

of farmer will attack nests that they have previously parasitized. Following an attack by a simple 

farmer, the probability of encountering future nests will remain unchanged. When advanced 

farmers cause nests to fail on the other hand they improve their daily probability of discovering a 
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nest (d). Specifically, replacement nests following an attack by an advanced farmer will be found 

with a probability of 100%. The simulations assume that cowbirds can only perform one action 

per day. That is, in a given day, they may parasitize or attack, but may not do both and may not 

attack multiple nests. A single simulation runs until the end of the breeding season at which time 

the number of successful and failed parasitized and non-parasitized nests are recorded. 

For all three types of cowbird, the simulation was run 10 000 times using levels of n, d 

and a that could realistically occur in the field. The number of host nests available ranged from 5 

to 25. Genetic analyses of eggs collected from host nests reveals that individual cowbirds may 

parasitize between two and 12 separate hosts during a field season (Alderson et al. 1999; Ellison 

et al. 2006; de la Colina et al. 2016; Chapter 4). Field censuses estimate as few as 0.5 and as 

many as 14 song sparrow pairs per hectare (Arcese et al. 1992). I varied the daily probability of a 

cowbird discovering a nest (d) from 0.05 to 0.25 reflecting the extremes that were observed in 

the historic parasitism rates in my study sites. Over a seven-day parasitism period (laying/ early 

incubation) one can extrapolate the total probability a nest will be parasitized to be between 30 

and 86%. I varied the daily probability that a nest will be attacked by a non-cowbird (a) to reflect 

the absolute extremes that hosts may experience in the field. Values of a from 0.01 and 0.10 

predict that the total survival probability over a 26 day nesting cycle would be between .07 and 

0.77. 

In order to visualize the relative reproductive benefit of either type of farming strategy, I 

calculated the ratio of cowbird chicks fledged for each type of farmer to the number fledged by 

the non-farming cowbird. I then calculated and report the mean and standard deviation of these 

ratios. Because I am reporting ratios, a value of one indicates that the number of chicks fledged 

was the same as a non-farmer while values greater than one indicate that more chicks fledged 
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than the non-farmer. Note that by design, these simulations result in the absolute number of 

chicks fledged for all three types of hypothetical cowbirds to increase with the number of hosts 

(n) and chance of discovery (d) and to decrease with other predation pressure (a). Appendix 3 

shows the absolute number of nests parasitized, cowbird attacks, and cowbird chicks fledged 

within the simulations as a frame of reference. I reiterate that the goal was not to predict actual 

reproduction in the field, but to consider the ecological situations where attacking nests within 

the context of the farming hypothesis would actually prove beneficial relative to a non-predatory 

individual. 

 

2.3 Results 

I found strong evidence that cowbirds regularly commit infanticide, destroying all nest contents 

in late-stage nests. Indeed, cowbirds destroyed more nests than any of the seven species of non-

cowbird predators identified on camera, cowbirds being responsible for 20 (38.5%) of 52 nest 

failures followed most closely by cats, Felis catis: 22.9%; then rats, Rattus norvegicus: 15.4%; 

snakes, Thamnophis spp: 9.6%; raccoons, Procyon lotor: 7.7%; mink, Mustela vison: 5.8%; 

crows, Corvus brachyrhynchos: 5.8%; and Virginia rails, Rallus limicola: 2%. My predator 

identification key yielded very similar results. Of the 286 nest failures for which I could reliably 

assign a predator, I estimated that 112 (39.2%) failed as a result of an interaction with a cowbird 

and 174 (60.8%) were caused by a non-cowbird predator. The great majority (80%) of video 

recorded nest failures caused by cowbirds were what would be expected under the farming 

hypothesis as they involved the partial or total destruction of nest contents without egg laying. 

Video-recording verified that cowbirds are not perfect at estimating the age of host nests, 
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because in four cases the cowbird laid an egg in the nest in association with causing nest failure, 

even though all of the nests filmed were at too late a stage in development to be suitable to lay 

in. Considering cowbird related failures identified using my key, and focusing only on later-stage 

nests (i.e., those unsuitable to lay in; N = 56) I found results directly comparable to those 

observed with the cameras, the great majority (82%) of nest failures judged caused by cowbirds 

evidently being instances of infanticide (farming), because they were not associated with egg-

laying by the cowbird. 

Consistent with the prediction from the farming hypothesis that cowbirds avoid 

attacking nests they have already laid in I found evidence that parasitized nests survive at higher 

rates than non-parasitized nests. I found that Mayfield daily survival rates until hatching were 

significantly higher for parasitized than non-parasitized nests (P = 0.022; Figure 2.1). 

Furthermore, I found that cowbirds caused disproportionately fewer parasitized nests to fail 

compared to non-cowbird predators. According to my predator identification key, I found that 

only 27% (N = 55) of nests attacked by cowbirds contained a cowbird egg at the time of attack 

while 42% (N = 156) of nests attacked by non-cowbird predators were previously parasitized 

(Fisher’s exact test, P = 0.054, Figure 2.2). 
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Figure 2.1: Mayfield’s daily survival rates for parasitized and non-parasitized nests. Error bars 

indicate Standard Deviation. 

 

Figure 2.2: The proportion of nests attacked by cowbirds and non-cowbirds that were parasitized 

at the time of attack. Numbers inside bars indicate sample size. Error bars indicate 

Standard Error. 
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As expected if cowbirds destroy nests to improve their future parasitism opportunities, I 

found evidence that the re-nesting attempts of sparrows that had their nest destroyed by a 

cowbird were parasitized at relatively high rates. I was able to determine the parasitism state (yes 

or no) of the re-nesting attempts following 42 cowbird and 108 non-cowbird predator attacks. A 

Fisher’s exact test revealed that the re-nesting attempts following a cowbird attack were 

parasitized significantly more frequently (59.5%) than the nests following an attack by a non-

cowbird predator (39.8%, P = 0.043, Figure 2.3). 

 

 

Figure 2.3: The proportion of nests attacked by cowbirds and non-cowbirds that were parasitized 

at the time of attack. Numbers inside bars indicate sample size. Error bars indicate 

Standard Error. 
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Figure 2.4 shows the results of my Monte Carlo simulations estimating the reproductive 

output of my two hypothetical cowbird farmers (simple, advanced) in relation to that of the non-

farming cowbird. The relative number of chicks fledged is presented as a function of a (daily 

probability of attack by a non-cowbird predator) using four illustrative combinations of d (daily 

probability of discovery by a cowbird) and n (number of hosts available) in order to visualize the 

relative benefit of either farming strategy under different ecological conditions. As a reference, 

Appendix A shows the actual estimates of the number of chicks fledged for each cowbird type. 

The simulations suggest that a simple farming strategy, where individuals destroy late-stage 

nests with no increase in the likelihood of finding the subsequent replacement nest, would rarely 

provide adequate reproductive advantage to be worthwhile. Except in cases where predation 

levels are unusually low and nest discovery is high, the number of chicks fledged by the simple 

farmer does not appear substantially different from that of the non-farmer (a = 0.01, d = 0.25, 

Figure 2.4c-d). Yet, an advanced farming strategy, where attacking a nest increases the 

probability of finding the replacement nest, appears advantageous under most conditions. In 

particular, advanced farmers in the simulations enjoy a two-to-three-fold reproductive advantage 

over non-farmers when nests are difficult to discover and predation levels are low (a = 0.01-0.05, 

d = 0.05, Figure 2.4a-b). This relative advantage diminishes, however, as nests become easier to 

discover (d = 0.25, Figure 2.4c-d) suggesting that farming is unnecessary when nests will be 

found regardless. Generally, the relative benefit of a farming strategy decreases as background 

predation levels (a) increase, likely because predators provide the same function as a farming 

cowbird by creating more nests available to be parasitized while simultaneously causing greater 

failure among non-parasitized and parasitized nests alike. Although, increasing the number of 

hosts available (n) increases the absolute number of chicks fledged by any cowbird, it appears to 
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have little effect on the relative reproductive benefit of a farming cowbird to that of a non-farmer 

(Figure 2.4a vs b and Figure 2.4c vs d). 

 

 

Figure 2.4: The proportion of cowbird chicks fledged by simple (blue) and advanced farmers 

(red) to that of non-farming cowbirds. Values are plotted as a function of the daily 

probability of failure due to non-cowbird predators (a) using different illustrative 

high and low values of the number of hosts available (n) and the daily probability 

that a nest will be discovered by a cowbird (d). Values above the dotted line are 

greater than that of non-farmers. 
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2.4 Discussion 

These results satisfy several of the fundamental requirements of the farming hypothesis and 

coincide with evidence from other systems that show infanticide may yield reproductive benefits. 

I found ample evidence from the camera data and predator identification key that brown-headed 

cowbirds meet the minimum requirement of a farming strategy— namely, that they cause the 

nests of their hosts to fail independent of laying an egg. Following the expectation of the farming 

hypothesis, parasitized nests in my study sites survived at higher rates than non-parasitized nests. 

Moreover, cowbirds appeared to attack disproportionately fewer parasitized nests than what 

would be expected from the attacks of conventional predators. My finding that replacement nests 

of hosts that lost their nest to a cowbird attack were parasitized at relatively high rates (59.5%) 

compared to other nests (39.5%) supports the critical tenet of the farming hypothesis that 

individuals gain reproductive benefit from their predatory actions. The Monte Carlo simulations 

suggest that attacking late-stage nests to simply increase the number of early stage nests 

available may not be enough to provide substantial reproductive benefit to a cowbird. Indeed, the 

simple farmer in the simulations rarely showed much of a reproductive gain relative to that of a 

non-farmer. Meanwhile, the advanced farmer appeared to fledge considerably more offspring 

than the non-farmer suggesting that more benefit is derived from increasing the discovery of 

replacement nests following cowbird attacks. 

Our camera data represent the largest collection of cowbird attacks captured on video in 

any one study. Several past studies document personal observations or video recordings of 

cowbirds attacking host nests (DuBois 1956, Beane and Alford 1990, Sealy, 1994, Scott et al. 

1992, Stake and Cimprich 2003, Small 2005, Elliot 1999, Thompson 1999), however, even in 

instances where host nests were video-recorded sample sizes were small (Granfors et al. 2001). I 
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was able to show that nearly forty percent of recorded nest failures were due to a cowbird. 

Estimates using my predator identification key mirrors this percentage almost exactly, especially 

when we focus on late-stage nests, validating my key as a reliable method of quantifying 

cowbird attacks and strongly implicating possible farming behaviour as a regular occurrence. I 

emphasize that my key is highly conservative because it excludes ambiguous failures and 

therefore almost certainly underestimates the actual number of cowbird attacks within my study 

area. The basic premise of the farming hypothesis depends primarily on establishing that 

infanticide by brood parasites is not uncommon, but an ordinary aspect of a parasitic lifestyle, in 

the same way that establishing that the killing of cubs by male lions was not an anomaly but a 

regular occurrence (Bertram 1975; Packer and Pusey 1984) was the first step in demonstrating 

sexually selected infanticide in lions. 

I found that the Mayfield daily survival rates in my study sites were higher for 

parasitized versus non-parasitized nests. These results are consistent with the prediction that 

cowbirds should focus their attacks on nests that they have not already laid in and are 

corroborated by multiple studies (Arcese et al. 1996, Clotfelter and Yasukawa 1999, Hauber 

2000), however, others report no such trend (Rothstein 1975, Kus 1999, Whitfield and Sogge 

1999). High background levels of predation can potentially impede statistical detection of 

differences in survival rates of parasitized and non-parasitized nests, especially with lower 

sample size. This may partially explain why parasitized nests appear to fare significantly better 

in areas with naturally low predation or where predators were removed or otherwise prevented 

for accessing the nest (Smith and Arcese 1994, Arcese et al. 1996; Hauber 2000, Hoover and 

Robinson 2007). Corroborating this is the pattern that cowbird attacks happen on proportionately 

fewer parasitized nests than attacks by conventional predators— as estimated from my predator 
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identification key. But why do we find evidence that cowbirds attack any parasitized nests at all? 

In areas of overlap among individual laying ranges, cowbirds may destroy the contents of nests 

that their neighbour had already parasitized (Arcese et al. 1996). Unlike in my idealized Monte 

Carlo simulations, cowbird females do appear to have some degree of overlap among their 

breeding ranges (Chapter 4). Just as DNA evidence confirms that lions only attack the cubs of 

their rivals (Gilbert et al. 1991), future studies should determine whether cowbirds only attack 

parasitized nests when they contain a neighbour’s egg and not their own. 

According to the farming hypothesis, causing a nest to fail is adaptive only if the culprit 

takes advantage of the laying opportunity they create in the subsequent re-nesting attempt. 

Consistent with this prediction is my finding that the re-nesting attempts following cowbird 

attacks were parasitized at a disproportionately high rate (59.5%) compared to the re-nesting 

attempts following attacks by non-cowbird predators (39.8%). Similar results were reported by 

Hoover and Robinson (2007) for prothonotary warblers (Protonotaria citrea). While these 

results strongly support the farming hypothesis, I suggest that future studies confirm that 

individual females parasitize the re-nesting attempts caused by their own predatory behaviour, 

just as DNA evidence confirms that infanticidal male lions impregnate the mothers of the cubs 

they kill (Gilbert et al. 1991). 

Overall, my Monte Carlo simulations suggest that simply creating additional laying 

opportunities is insufficient to make farming behaviour worthwhile. Indeed, simple farmers in 

the simulations fledged similar numbers of offspring as non-farmers. Instead, it appears that 

farming behaviour may yield substantial reproductive gains when it increases the chances of 

future nest discovery, as evidenced by the relatively high number of offspring fledged by 

advanced farmers. This would require that female parasites learn the approximate timing and 
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location of replacement nests following an attack and adapt their nest searching accordingly. 

Female cowbirds have relatively enlarged brain regions associated with spatial memory (Sherry 

et al. 1993; Reboreda et al. 1996) and perform well in spatial memory tasks (Guigueno et al. 

2014) suggesting that they may be suited for such cognitive demands. Whether, such advanced 

nest searching behaviours manifest in the wild should be the subject of future research. The 

simulations further predict that the benefits of farming one’s host may vary depending on 

ecological conditions. First, when nests are naturally easy to discover the relative benefits of 

farming are diminished. This is not entirely surprising because tactics to increase nest discovery 

would likely be redundant when nests will be found anyway. Second, the reproductive output of 

farmers approaches that of non-farmers as background levels of predation increase predicting 

that farming may be ineffective in areas with high nest predation. Conventional predators 

indiscriminately attack nests regardless of parasitism status and, when almost all nests will fail as 

a result, farming tactics may indeed prove futile. This corroborates my suggestion that 

differences in survival between parasitized and non-parasitized nests are difficult to detect where 

background rates of predation are high. Third, the relative benefits of farming were surprisingly 

unaffected by the number of hosts available. This reinforces my inference that increasing nest 

discovery is the true purpose of cowbird predatory behaviour. 

Our results indicate that, as in intra-specific infanticide: 1) incidents of infanticide are 

not anomalous but occur quite commonly; 2) incidents of infanticide are not indiscriminate and 

culprits evidently avoid killing their own young; and 3) infanticide does appear to accelerate the 

rate at which reproductive opportunities become available. What remains to be shown is that 

cowbirds definitively do take advantage of the opportunities created by infanticide, using DNA 

evidence, just as DNA evidence confirms that infanticidal male lions impregnate the mothers of 
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the cubs they kill.  Until such time as such DNA evidence becomes available it is perhaps 

premature to consider re-naming cowbirds “lionbirds”, but I suggest that my results strongly 

support there being a remarkable convergence between the reproductive strategies of avian brood 

parasites and the sexually selected strategies of infanticidal males. 
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Chapter 3 

3 Brood parasites manipulate their hosts: experimental evidence 

for the farming hypothesis 

 

3.1 Introduction 

Parasites, of all sorts, exhibit a wide variety of strategies to maximize the successful transmission 

of themselves and/or their offspring, by exploiting typically unrelated hosts (Poulin 2007). One 

such strategy occurs when parasites manipulate host behaviour in a way that increases their 

probability of transmission to an uninfected host (Holmes & Bethel 1972; Poulin 2000). 

Examples of parasites altering host behaviour abound and the effects may be dramatic and often 

focus on host reproductive behaviour (Moore 2002). For instance, rodents infected with 

Toxoplasma gondii appear less ‘fearful’ of the parasite’s definitive cat host (Berdoy et al. 2000) 

and may even seem more sexually attractive to uninfected members of the opposite sex (Vyas 

2013). Host behavioural changes such as these may be considered an adaptive extended 

phenotype of the parasite (Dawkins 1982), when the behavioural change is actually caused by 

the parasite and can be shown to increase the probability of transmission (reviewed in Poulin 

1995; Moore 2002; Thomas et al. 2005). Also critical is the need to identify the mechanisms 

involved in the behavioural change in order to understand the complexity and sophistication of 

the supposed manipulation (Nickol 2005; Thomas et al. 2005). Brood parasitic birds are 

functionally indistinguishable from conventional parasites and pathogens in that they may reduce 
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the reproductive success of infected hosts (Ortega 1998; Davies 2000; Hauber 2003; Kilner 

2005; Smith et al. 2002) and their transmission success is wholly dependent on their ability to 

encounter hosts suitable for parasitism during the infective stage (i.e. during egg laying/ early 

incubation). Nevertheless, instances of adult brood parasites manipulating host behaviour in 

order to increase the probability of infection have rarely been considered (but see Soler et al. 

1995; Ponton et al. 2006; Hoover & Robinson 2007). 

Obligate avian brood parasites, such as cowbirds and cuckoos, lay their eggs in the nests 

of other species (‘hosts’) whereupon the host parents provide all parental care for the parasitic 

young (Davies 2000). To successfully ‘infect’ a host, a brood parasite must be attuned to its 

hosts’ reproductive stage as there is only a narrow window of time during egg laying and early 

incubation in which parasitism will be effective (Fiorini et al. 2009). Some brood parasites also 

attack host nests— destroying eggs/nestlings and causing nest failure of their potential hosts 

(Arcese et al. 1996; Peer & Sealy 1999; Soler et al. 1995). Such behaviour is perplexing as it 

appears to be a superficial waste of a laying opportunity on the one hand, but these predatory 

habits could actually increase the probability of successful transmission (Arcese et al. 1996). The 

farming hypothesis suggests that brood parasites will destroy, or ‘farm’, host nests found too late 

in the nesting cycle to be suitable for parasitism, thereby manipulating those hosts into starting a 

new reproductive cycle prematurely — ultimately creating future opportunities to parasitize the 

host’s re-nesting attempts (Arcese et al. 1992; 1996). As long as the parasite focuses its attacks 

on late-stage nests no laying opportunity is wasted. Hence, as with parasitic egg-laying, 

‘farming’ behaviour requires that the parasite can assess the host’s reproductive stage and acts 

accordingly by destroying late-stage nests. 
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I investigated the predatory behaviour of the brood parasitic brown-headed cowbird 

(Molothrus ater; hereafter cowbird) to determine whether it was consistent with what would be 

expected from the farming hypothesis. Cowbirds are common throughout North American and 

are extreme host generalists, successfully parasitizing over 100 species of passerines (Lowther 

1993). To date, most studies of the farming hypothesis have focused on whether or not cowbirds 

are substantial nest predators because this is one general condition that would be necessary if 

farming were occurring. While several lines of evidence indicate that they are (Arcese et al. 

1996; Clotfelter & Yasukawa 1999; Hoover and Robinson 2007; Granfors et al. 2001), the 

critical prediction that cowbirds focus their attacks on late-stage host nests that are no longer 

suitable for parasitism remains untested. Moreover, the recognition mechanisms that cowbirds 

use to discriminate early- from late-stage nests before deciding to attack are largely unknown 

(King 1979). Cowbirds are adept at finding hosts and appear to be capable of discriminating 

appropriate from inappropriate nests when deciding whether to lay in a nest (White et al. 2007; 

2009). If cowbirds are indeed ‘farming’ their hosts then it makes logical sense that the parasite 

must be attuned to the host’s reproductive cycle and use this knowledge to assess whether or not 

to destroy nests. 

Cowbirds typically cause nest failure by either puncturing or removing enough eggs to 

cause the host parents to abandon. Beyond farming, other hypotheses have been proposed to 

explain egg removal or egg puncture by cowbirds (Sealy 1992; Peer 2006; Hover & Robinson 

2007). For example, female cowbirds are known to occasionally consume the eggs they destroy 

(Sealy 1992). Nutrition does not appear to be the primary motivator for attacking nests, however, 

as most documented incidents do not involve the cowbird eating any nest contents (Scott et al. 

1992, Sealy 1992, Granfors et al. 2001). In cowbird parasitized nests, removal of host eggs may 
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enhance the incubation efficiency of the parasitic egg (incubation efficiency hypothesis: Peer & 

Bollinger 2000) or reduce future competition for a parasitic nestling (competition reduction 

hypothesis: Carter 1986; Llambias et al. 2006). Also in parasitized nests, if a host rejects the 

parasitic egg the parasite may retaliate by destroying enough of the nest contents to cause 

complete failure (mafia hypothesis: Hoover & Robinson 2007). The incubation efficiency, 

competition reduction and mafia hypotheses do not, however, explain attacks on non-parasitized 

nests, which are the focus of the farming hypothesis and this study. 

The most direct and reliable way a cowbird could gauge the developmental stage of a 

host nest is by puncturing a portion of the clutch (Massoni & Reboreda 1999). Conceivably, the 

degree of development of a single host embryo could easily be evaluated in this way and such 

information could be used when deciding whether or not to destroy the clutch. Other indirect 

methods of evaluating nest stage include attending to cues (e.g. absolute egg number) that are 

indicative of a clutch being complete and most likely late-stage (White et al. 2007; White et al. 

2009). Here, I report the results from a series of experiments in the lab demonstrating that 

cowbirds use both direct and indirect methods to gauge host egg stage and are more likely to 

destroy evidently later-stage eggs. These experimental results in the lab are corroborated by 

evidence from 10-years of field data suggesting that cowbirds preferentially cause late-stage 

nests to fail likely in an attempt to ‘farm’ their hosts. 
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3.2 Methods 

3.2.1 Experimental Procedures 

I performed four independent “cafeteria style” choice experiments designed to test whether 

female cowbirds preferentially destroy late-stage nests that would no longer be suitable for 

parasitism (as per the farming hypothesis). I also evaluated whether cowbirds use direct and/or 

indirect methods of assessing the age of host eggs. Specifically, I examined the tendency of 

females to approach and attack artificial nests that contained eggs of different developmental 

stages or different numbers of eggs. I assessed whether female cowbirds would preferentially 

attack nests that simulated late- vs early-stage nests by comparing nests containing: (1) eggs 

collected when highly developed vs. eggs collected when freshly laid and undeveloped; (2) 

different numbers of eggs, permitting me to determine if absolute or relative number is 

important; and (3) changing number of eggs across days vs. a continual “full” clutch. 

I captured 58 adult cowbirds (40 female and 18 male) using mist-nets and funnel traps 

baited with cracked corn at Long Point Bird Observatory and Ruthvin Park Banding Station in 

Ontario during April 2012. Cowbirds were transported to the University of Western Ontario, 

Canada, colour-banded for individual recognition and housed in four large outdoor cages at the 

Advanced Facility for Avian Research (AFAR). Birds were fed a modified Bronx-Zoo diet for 

omnivorous birds daily (See White et al. 2007) and had ad libitum access to white millet, canary 

seed mix, crushed oyster shells and vitamin treated water. In order for cowbirds to regularly lay 

eggs in captivity they require spacious outdoor aviaries much larger than the cages my birds 

were housed in (White et al. 2007; 2009). However, I assumed that my birds were in breeding 
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condition because eggs were occasionally found (approximately two per week) within the cages 

and males and females continued to perform breeding displays throughout the duration of the 

study. 

Before each trial for each experiment, individual birds were transferred to an outdoor 

flight chamber and left for 24 hours to habituate. I randomly selected a subset of females from 

the captive population for each experiment and subjects used multiple times had a minimum five 

day interval between trials (18 ± 1.7 days, mean ± SE). No subject was used multiple times 

within a single experiment. Flight chambers contained natural perches situated across one wall 

along with food and water. Immediately before each trial, two artificial open-cup nests 

containing different egg stimuli (see below for details) were placed in either corner of the wall 

opposite the perches approximately one meter from the ground. A short perch was positioned 

proximate (within 10 cm) to each nest, to facilitate investigation. The nests were constructed 

from raffia and white glue shaped around a tennis ball. Trials commenced as soon as the 

researcher left the flight chamber and lasted for 20 minutes. All trials were video recorded in the 

absence of an observer. Generally I found that female cowbirds readily attacked experimental 

nests and usually punctured or removed their first egg within the first five minutes of a trial 

(199.3 ± 28.9 s, mean ± SE). 

For each experiment I recorded and compared three possible measures of a cowbird’s 

intent to cause a nest to fail. First, I compared the incidence of attack (i.e. total number of nests 

in which one or more eggs were destroyed) and the total number of visits (bird lands on nearby 

perch: following White et al. 2007) to each nest type. Second, I compared the overall attack 

intensity (proportion of eggs destroyed per nest) for each nest type. I reasoned that the proportion 
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of host eggs removed or punctured during an attack was a reasonable proxy for attack intensity 

and a bird’s intent to cause failure (see field procedures for justification). Thirdly, I compared the 

number of incidents in which the entire nest contents were destroyed. This is the most 

unambiguous measure of intent to cause nest destruction, which is a necessary element of the 

‘farming’ hypothesis. 

3.2.2 Attacks and Developmental Stage 

The most direct way cowbirds may assess the viability of a nest is by attending to the 

developmental stage of eggs (White et al. 2007; 2009). For example, shiny cowbirds (Molothrus 

bonariensis) may gain valuable information in deciding whether or not to parasitize a nest by 

puncturing a host egg to assess embryonic development of the entire clutch (test-incubation 

hypothesis; Massoni & Reboreda 1999). When ‘farming’ their hosts, brown-headed cowbirds 

could use such information when deciding whether to cause nest failure. I expect cowbirds to 

puncture few eggs if nests are early-incubation stage and most or all of the eggs in a developed 

late-incubation stage nest. To assess this possibility, 26 females were presented with two nests, 

one containing eggs collected when freshly laid (zero to one days incubated) and the other 

containing eggs collected when highly developed (11 to 12 days incubated). Each nest contained 

three eggs thereby allowing me to isolate the effect of egg development from clutch size as a cue 

to nest age. 

Eggs were collected from the nests of red-winged blackbirds (Agelaius phoeniceus) 

which are commonly parasitized by cowbirds and likely suffer from cowbird predation 

(Clotfelter and Yasukawa 1999). After collection, eggs were stored at 4°C for a minimum of 10 

days, where as little as four hours of cooling would have ensured effective and humane 



 75 

euthanization (Leary et al. 2013).  All eggs were returned to ambient temperature prior to 

presentation. 

Red-winged blackbirds are among the most abundant species of bird in North America 

(Yasukawa & Sercy 1995; Beletsky 1996) and are not protected under either federal or 

provincial law because they are considered agricultural pests (Migratory Birds Convention Act 

1994). Also, the Canadian Council on Animal Care place eggs in the lowest category of 

invasiveness for wildlife studies (Category A: CCAC 2010). Even so, to minimize the impact on 

blackbird reproduction, I collected one egg per nest and only enough eggs to ensure a minimum 

sample size of 10 for this experiment (30 undeveloped, 30 developed eggs). Eggs left undamaged 

in trials were reused in subsequent trials so that I could maximize the total number of trials I 

could carry out without requiring collection of additional eggs (N = 26). In accordance with 

Canadian law and guidelines outlined by the Canadian Council for Animal Care these protocols 

were approved by the University of Western Ontario Animal Care Committee (Protocol Number: 

2010-005). 

3.2.3 Attacks and Egg Number 

The number of eggs in a nest may indirectly signal the approximate age of a nest to cowbirds 

(White et al. 2007). Whereas females prefer to parasitize nests with a clutch size indicative of a 

nest at the egg-laying stage (King 1979; Trine 2000; White et al. 2007), I expect that they should 

preferentially attack nests that have a number of eggs representative of a complete clutch. The 

typical clutch size for cowbird hosts ranges from three to six eggs, but is most commonly four 

and most hosts begin incubation after laying the last or second to last egg (Friedmann et al. 1977; 

Terres 1980). Therefore, I presented 26 females with a nest containing four unfertilized yellow 
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canary (Serinus flaviventris) eggs (21.1 x 14.3 mm), simulating a complete clutch, and a nest 

containing two canary eggs, simulating an early nest that is still in the egg laying stage (White et 

al. 2007; King 1979). 

While the absolute number of eggs in a nest may indicate approximate incubation 

timing, it is possible that cowbirds in the previously described experiment may simply attend to 

the relative number of eggs and target a larger clutch. To confirm that cowbirds are responding 

to absolute clutch size and to rule out a possible effect of the experimental manipulation itself, 

we presented 20 females simultaneously with a nest containing six and a nest containing four 

eggs. In this experiment both nests contained a number of eggs that would typically represent the 

completion of egg laying though a two-egg difference between treatments was maintained. If 

cowbirds do preferentially attack late-incubation stage nests, I would not expect to see any 

behavioural differences between these two nest types because information on their relative 

developmental stage could not be gleaned from egg number. 

3.2.4. Attacks and Changing Number of Eggs 

Cowbirds are known to evaluate a nest’s suitability for parasitism by monitoring whether eggs 

appear across multiple days and perceive nests with an increasing clutch as being suitable for 

parasitism (White et al. 2009). This could allow females to better synchronize their laying with 

that of their hosts because a nest with a changing number of eggs would always be in the egg 

laying stage. A clutch size that could be indicative of completion of laying (i.e. which remains 

constant in size across days) meanwhile would simulate complete clutches where incubation has 

already commenced. To determine whether the rate at which eggs are added to a nest across days 

affects the readiness of female cowbirds to attack, I performed an experiment similar to that 



 77 

described by White et al. (2009). Two nests were set up containing model plasticine eggs. 

Twenty females were presented with a nest containing two model eggs and a nest containing four 

model eggs. The initial setup mirrored experiment 1, but here each nest was wrapped in a 

protective ball (≈25 cm diameter) of 1.25 cm chicken wire mesh. This prevented the cowbirds 

from puncturing or removing any eggs, while still allowing them to approach and investigate. 

The following morning a third egg was added to the two-egg clutch. On the third morning a 

fourth egg was added to the three-egg clutch and the chicken-wire ball was removed from both 

nests. Thus, trials involved a choice between two nests containing four eggs each— one nest 

with a changing number of eggs and one with a constant clutch size. 

3.2.5. Field Procedures 

To complement my experiments using captive birds I assessed whether wild cowbirds tailor their 

attacks depending on their hosts’ reproductive stage. I tested for a positive correlation between 

the timing of a cowbird attack and the proportion of host eggs destroyed for non-parasitized nests 

and again for parasitized nests. Based on the farming hypothesis, I expected that the overall 

attack intensity (proportion of host clutch destroyed) of cowbirds would increase as the nesting 

cycle progressed for non-parasitized nests only, as explained in the introduction. 

I monitored parasitism and predation on 1035 song sparrow nests (Melospiza melodia) 

resident near Victoria, British Columbia, Canada over 10 years (2000-2007; 2009-2010). Song 

sparrows make an ideal species for studying possible ‘farming’ behaviour as they are a favorite 

cowbird host (Woolfenden el al. 2003), do not reject cowbird eggs, and have been the subject of 

intensive study in the context of parasitism and predation in and around my study sites (Smith et 

al. 2002, 2003; Zanette et al. 2007; Zanette & Clinchy 2010). Song sparrows typically lay 
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clutches of 3-4 eggs and begin incubation after laying their penultimate eggs. A cowbird egg will 

only receive enough incubation to hatch if laid before day seven following the laying of the first 

sparrow egg (Zanette unpublished). Therefore nests were considered inappropriate for parasitism 

following this time. Other specific details regarding study sites, song sparrows and methods used 

to find and monitor nests can be found elsewhere (Zanette et al. 2003; Zanette et al. 2006). 

Migratory brown-headed cowbirds begin parasitizing nests in the area in late April (28 April ± 

2.7 days, mean ± SE) and lay their last egg by mid July (8 July ± 1.6 days, mean ± SE). 

Discounting nests that failed or fledged before cowbirds arrived in the spring, 17 to 78% of nests 

were parasitized (contained at least 1 cowbird egg) in a given year (48.3 ± 5.3%, mean ± SE). 

Using behavioural cues from the parents (Zanette et al. 2006), nests were located and monitored 

regularly (every 1-4 days) until the nests failed or fledged. During each visit the number of host 

and cowbird eggs present in the nest was recorded. I candled eggs to determine age or back-

dated from hatch day. During each visit the number of eggs found punctured or removed from 

the nest was also recorded. From 2004-2010 a total of 90 song sparrow nests in my study sites 

were monitored using a custom video surveillance system (see Zanette et al. 2011 for camera 

details). I found that 48 of these nests failed as a result of a predator attack and that cowbirds 

were the number one predator, responsible for 35% of all nest failures (Chapter 2). These video 

records show that cowbirds either removed all eggs or left punctured eggs in the nest. No other 

predator was found to leave punctured eggs in my study sites. I therefore reasoned that a cowbird 

had attacked a nest whenever: 1) one or more eggs were found punctured in or around the nest; 

2) a researcher directly observed a cowbird attacking a nest; 3) a cowbird attack was captured on 

camera. Under these criteria, I estimate that 74 non-parasitized nests and 62 parasitized nests 

were attacked by a cowbird. This is likely a conservative estimate of the actual number of 
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cowbird attacks because I did not include nests where I could not definitively assign a cowbird as 

the predator (i.e. nest contents missing; 217 nests). 

3.2.6 Statistical Analyses 

For the manipulations in the lab the total number of nests attacked was compared using a 

Fisher’s exact test. The number of visits to each nest type, whether the nest was attacked or not, 

was compared using a Wilcoxon-signed ranks test. The proportion of eggs destroyed in each nest 

type was compared using a Wilcoxon-signed ranks test.  A Fisher’s exact test was used to 

compare the number of attacks that resulted in complete destruction (i.e. those that would have 

certainly failed) and those that suffered only partial destruction for each nest type. Trials were 

omitted from all analyses whenever an individual did not puncture or remove at least one egg 

from either nest. Whenever one or more eggs was destroyed in a nest that trial was included in 

all pertinent analyses. For my field data, I used a Spearman rank correlation to compare the 

proportion of eggs destroyed with the timing of cowbird attack relative to when the first host egg 

was laid for both parasitized and non-parasitized nests. 
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3.3 Results 

3.3.1 Attacks and Developmental Stage 

Consistent with the prediction from the farming hypothesis that cowbirds preferentially cause 

late-stage nests to fail, cowbirds were more likely to destroy all three eggs when they attacked 

late-incubation stage nests and only one egg at the early-incubation stage (Fisher’s exact test: P = 

0.02). Of the 12 attacks on late-incubation stage nests 66%, 17% and 17% of cases involved the 

destruction of three, two and one egg respectively, whereas attacks on early-incubation stage 

nests showed the opposite pattern (0%, 11% and 89%, N = 9). Cowbirds destroyed a 

significantly greater proportion of eggs in nests containing developed late-incubation stage eggs 

than in nests containing undeveloped early-incubation stage eggs (Wilcoxon-signed ranks test: W 

= 76; P = 0.014, Figure 3.1). There was no significant difference in the overall incidence of 

attacks (Fisher’s exact: early-incubation = 35%, late-incubation = 46%, P = 0.48) and cowbirds 

did not visit late-incubation (mean ±  SE = 3.65 ± 1.24, median = 4, range = 0-20) and early-

incubation stage (mean ±  SE = 1.35 ± 0.21, median = 1, range = 0-3) nests a significantly 

different number of times (Wilcoxon-signed ranks test: W = 105, P = 0.16). I excluded nine of 

the 26 trials (35%) from analyses because these cowbirds did not destroy any eggs. 
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Figure 3.1: The proportion of eggs punctured or removed from experimental nests containing 

developed late-incubation eggs and nests containing undeveloped early-incubation 

stage eggs. Error bars indicate Standard Error. 
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3.3.2 Attacks and Egg Number 

Consistent with cowbirds using absolute egg number to indirectly determine nest stage, I found 

that cowbirds destroyed over two times the proportion of eggs in four-egg nests than in two-egg 

nests (W = 112.5; P = 0.0136; Figure 3.2a). Out of the 15 four-egg nests attacked 40% suffered 

complete destruction and 27%, 20%, 13% had three, two and one eggs destroyed respectively. 

Attacks on two-egg nests meanwhile involved complete destruction 11% of the time and 

destruction of one egg 89% of the time (N = 9). Cowbirds did not attack nests containing four-

eggs significantly more often than two-egg nests (four-egg = 58%; two-egg = 35%, P = 0.164). 

There was also no significant difference in the number of visits between the two nest types (two 

egg: mean ± SE = 3.76 ± 1.31, median = 2, range = 0- 36; four egg: mean ± SE = 2.00 ± 0.26, 

median = 1, range = 0-7 : W = 298.5; P = 0.79). Six of the 26 trials (23%) were excluded from 

analyses because no eggs were destroyed. 

Corroborating that cowbirds attend to the absolute number of eggs in a clutch, when I 

increased the clutch size so that both treatments simulated complete clutches though a two-egg 

difference was maintained (four-eggs in one nest and six-eggs in the other), I found no 

significant difference in the proportion of eggs destroyed (W = 130; P = 0.31; Figure 3.2b). 

Moreover, both nests types were attacked an equal number of times (n = 15 of 26; P = 1.00) and 

visits to both nests were not significantly different (six-egg: mean ± SE = 3.47 ± 0.52, median = 

3, range = 0-10; four-egg: mean ± SE = 3.84 ± 0.70, median = 4, range = 0-7; W = 182.5, P = 

0.96). No eggs were destroyed in two out of 20 trials (10%) and were therefore excluded from 

analyses. 
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Figure 3.2: The proportion of eggs punctured or removed from experimental nests containing 

developed late-incubation eggs and nests containing (a) four-egg and two-egg 

clutches and (b) six-egg and four-egg clutches. Error bars indicate Standard Error. 

 

3.3.3 Attacks and changing number of eggs 

I found no evidence that cowbirds used the change in clutch size to indirectly evaluate nest stage. 

There was no significant difference in the proportion of eggs destroyed regardless of whether the 

clutch size changed on a daily basis or remained constant (W = 99.5; P = 0.96). Further, there 

was no difference in the number of attacks that resulted in complete destruction and those that 
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did not (P = 1.00). Attacks on nests with a changing clutch number resulted in four eggs, three 

eggs, two eggs and one egg destroyed 36%, 9%, 18% and 36% of the time. Attacks on nests with 

a constant clutch number ended in destruction of four, three, two and one eggs 30%, 50%, 0% 

and 20% of the time. There were also no significant differences between treatments in the overall 

incidence of attacks (constant = 50%, changing = 55%, P = 1.00), or the number of visits 

(constant: mean ± SE = 2.70 ± 0.744, median = 3, range = 0-14; changing: mean ± SE = 3.10 ± 

0.864, median = 3, range = 0-11; W = 194.5; P = 0.89). Six out of 20 trials (30%) were omitted 

from analyses because no eggs were destroyed. 

3.3.4 Wild Cowbird Predation 

Based on my 10-year dataset concerning song sparrow nests in the wild, I found that cowbird 

attack effort increased significantly as the nesting cycle progressed on non-parasitized nests 

(Spearman: rs = 0.35; F1,72 = 11.08; P = 0.001; Figure 3.3), with no significant effect for 

parasitized nests (Spearman: rs = 0.07; F1,60 = 0.26; P = 0.61; Figure 3.4). 
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Figure 3.3: The proportion of eggs killed by cowbirds in non-parasitized nests relative to the day 

when the first host egg was laid. Each point represents one song sparrow nest (N = 

74). Points are offset slightly where overlap occurs. 
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Figure 3.4: The proportion of eggs killed by cowbirds in parasitized nests relative to the day 

when the first host egg was laid. Each point represents one song sparrow nest (N = 

64). Points are offset slightly where overlap occurs. 
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3.4 Discussion 

My experiments in the lab and the results from the long-term field data demonstrate that 

destruction of host nests by brood parasitic cowbirds is attuned to their host’s reproductive cycle, 

which would be expected from the ‘farming’ hypothesis. My lab experiments demonstrate that 

cowbirds use the most direct and straightforward method of assessing host egg stage (i.e. egg 

puncture) in addition to using indirect means such as evaluating absolute clutch size. These 

manipulations confirm that cowbirds intensely attack nests simulating a late-incubation stage by 

destroying all or a large proportion of eggs, but destroy few eggs from nests simulating an early-

stage. These results are supported with the field data showing that the proportion of eggs 

destroyed by cowbirds in a non-parasitized clutch significantly increases as the nesting cycle 

progresses. 

The underlying mechanisms that I report in this study match some of the criteria 

necessary to conclude that ‘farming’ behaviour is adaptive for the parasite (Poulin 1995; Moore 

2002; Thomas et al. 2005). Firstly, in order for ‘farming’ to enhance their probability of 

transmission, cowbirds would first need to direct intense attacks towards nests no longer suitable 

for parasitism, which is what out manipulations show. Secondly, host nests in the wild are more 

likely to fail as cowbird attack intensity increases, demonstrating that the hosts’ behavioural 

change is unambiguously caused by the parasite. Lastly, my results suggest that cowbirds are 

capable of using both very direct and straightforward, and more indirect and thus, potentially 

more sophisticated mechanisms, to discriminate among nests. The fact that these parasites 

employ multiple methods of discrimination reinforces that ‘farming’ behaviour is not just a 

random act of violence, and instead could be an active attempt to manipulate their host’s 
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reproductive behaviour. However, to complete the picture, one would need to demonstrate that 

‘farming’ does improve the probability of transmission which could come about if the cowbird 

returns to parasitize the subsequent re-nesting attempts (Hoover and Robinson 2007) and/ or if 

cowbird-induced nest failure simply increases the proportion of suitable to unsuitable nests 

available for parasitism throughout the season. The relative benefits of either strategy should be 

the focus of future studies. 

Puncturing an egg in order to estimate development is likely among the most reliable 

and direct of methods for determining nest age, and I have demonstrated that cowbirds vary the 

intensity of their attacks based on this developmental cue. Interestingly, the closely related shiny 

cowbird (Molothrus bonariensis) has been reported to puncture host eggs to gauge embryonic 

development to avoid laying in late-incubation stage nests, but that species apparently does not 

‘farm’ their hosts (Massoni and Reboreda 1999). Whether brown-headed cowbirds also puncture 

to optimize their timing of parasitism is unknown. The birds in my experiments also appear able 

to indirectly assess the age of a clutch by attending to absolute clutch size. These results are 

consistent with those of White et al. (2007) who showed that cowbirds preferentially parasitize 

nests containing three eggs over nests with one, but showed no behavioural differences between 

nests with three versus six eggs. Accurately estimating nest age is important for both parasitism 

and farming behaviour and cowbirds appear to employ a similar method of doing so in both 

contexts. Using quantitative information is not unusual for birds (e.g. food hoarding; Hunt et al. 

2008) and has been reported for other brood parasites (Odell and Eadie 2010). Notwithstanding, I 

cannot yet be certain of a cowbird’s numerical competency. Cowbirds, for example, could count 

individual eggs (e.g. Lyon 2003) or attend to the volume of eggs in a nest. 
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White et al. (2009) previously demonstrated that cowbirds attend to the changing 

number of eggs in a nest across days when deciding to parasitize. I found no indication that the 

same information is used when attacking nests. I found that cowbirds attacked a similar 

proportion of eggs in nests with changing clutch size as in nests with constant clutch size. These 

apparently contrasting results may be due to methodological differences between studies. 

However, a more compelling explanation is that cowbirds simply do not monitor nests across 

days when farming hosts. It is reasonable to assume that inaccurately gauging the age of a host 

nest would be a more costly venture when laying in a nest than farming it, because the former 

would lead to the mortality of the parasite’s offspring. Cowbirds often observe nests over 

multiple days prior to parasitizing them (Clotfelter 1998, White et al. 2009) and the extra effort 

may ensure that parasitism is not mishandled. By contrast, it is conceivable that, relying on quick 

and easy methods of determining nest stage, such as egg puncture, may yield more efficient 

‘farming’ results. 

In my experiments I tested three methods by which cowbirds may assess host 

reproductive stage in relation to farming, based on established methods used in relation to 

parasitism (Massoni & Reboreda 1999; White et al. 2007; 2009). These are in no way the only 

methods cowbirds may use to evaluate nest stage and various authors have proposed a plethora 

of different means (e.g. egg temperature, host activity; Banks & Martin 2001). My lab results 

demonstrate that cowbirds evaluate nest stage by at least two means and my field results 

corroborate that they destroy nests depending on host reproductive stage. Which method they 

employ in the field will of course be governed by the set of cues available and likely requires 

substantial cognitive processing. My field and laboratory data were collected using different 

populations of cowbirds and, while not the focus of this research, future studies comparing nest 



 90 

predation of different populations may yield valuable results. For example, ‘farming behaviour’ 

may become less necessary in areas where the density of host nests is high. 

Interactions between parasites and their hosts are often cited as textbook examples of an 

evolutionary arms race (e.g. Alcock 2005; Krebs 2009) and several studies in the last decade 

point to remarkable complexity in these interactions— in particular among brood parasites and 

their hosts (e.g. Kilner et al. 2004; Hoover & Robinson 2007; Pagnucco et al. 2008; Stoddard & 

Stevens 2010; Zanette & Clinchy 2010). Cowbirds clearly do destroy host nests and evident 

‘farming’ by brown-headed cowbirds is arguably among the most striking possible examples of a 

brood parasite manipulating its host. The results of this study are likely applicable to many host-

parasite systems as they illustrate the need for understanding how parasites interact with their 

hosts. Indeed, by ignoring the costs of host ‘farming’ in my system, the demographic 

significance of the parasite may be substantially undervalued. 

In summary, my results in the lab and field clearly show that cowbirds do discriminate 

among nests and adjust the intensity of their attacks depending on the perceived age of non-

parasitized nests. Such effects are consistent with expectations from the ‘farming’ hypothesis in 

that cowbirds seem to selectively cause failure in late-stage nests that are no longer suitable for 

parasitism. Moreover, I show that cowbirds employ multiple methods of discriminating among 

early- and late-stage host nests— both directly by puncturing eggs, and indirectly by monitoring 

absolute egg number in a clutch. 
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Chapter 4 

4 Modelling breeding ranges in space and time: cowbirds follow 

available nests and avoid each other 

 

4.1 Introduction 

How animals occupy space within their environment is a primary focus of ecological and 

behavioural research and has direct implications for inter/intra-specific competition (e.g. 

Mattison et al. 2011), resource selection (Marzluff et al. 2004), and predator-prey/ 

parasite-host interactions (Millspaugh et al. 2000; Honza et al. 2002). Following the 

development of utilization distributions (UDs, Van Winkle 1975) our ability to 

understand space use of animals has moved beyond simple mapping of home range 

boundaries to establishing probabilistic measures of space use. Traditionally, UDs have 

been defined solely using horizontal spatial dimensions; however, we are no longer 

limited to two-dimensional models (Duong 2007; Keating and Cherry 2007; Toms et al 

2015). Depending on the question at hand, higher dimensional UDs may be more 

appropriate. For example, the accuracy of home range and space use of aerial or diving 

animals can be greatly improved by incorporating height or depth, respectively, as a third 

dimension in UD models (Zhu and Weng 2007; Cooper et al. 2014). For instance, 

Simpfendorfer et al. (2012) found that the overlap of space use among European eels 

(Anguilla anguilla) was significantly greater in two-dimensional (2D) home range models 
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than three dimensional (3D) models that included a depth dimension— likely because 

individuals may occupy the same horizontal location, but at different depths. Similarly, 

animals could alter their space use over time for various reasons such as tracking 

resources (Cooper et al. 2014). Conceivably, three-dimensional UD models would greatly 

improve the accuracy of space use in such cases, but including time as a third-dimension 

has rarely been used (Laver and Kelly 2008). Considering how space use varies in time 

may also resolve home range characteristics like size and shape, and may show how 

transitory resources within the environment influence an individual’s space use (Keating 

and Cherry 2009, Clement et al. 2010). Here, I apply three dimensional (3D) UDs using 

spatial and temporal data to describe the space use over time of brood parasitic brown-

headed cowbirds (Molothrus ater; hereafter cowbirds) in relation to short-lived resources 

and neighbouring conspecifics. 

Obligate avian brood parasites, including cowbirds and cuckoos, lay their eggs 

in the nests of other ‘host’ species who subsequently care for the parasitic young as their 

own (Davies 2000). There is a large literature on the impact brood parasites may have on 

their hosts and in understanding the coevolutionary processes involved in host-parasite 

interactions (e.g. Rothstein 1990). Less is known, however, as to how parasites find nests, 

optimize their searching behaviour, and defend breeding resources from conspecifics 

(Rothstein et al. 1984; Clotfelter 1998; Honza et al. 2002), largely due to logistical 

difficulties involved in monitoring cryptic females while they search for nests (Norman 

and Robertson 1975; Wiley 1988; Kattan 1997; Banks and Martin 2001). The brood 

parasite-host system provides an ideal model for evaluating the utility of a time-

dimension in UDs due to the ephemeral nature of host nests. Host nests are the essential 
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reproductive resource for a female parasite, but can only be successfully parasitized 

during a brief window of time early in development (Stausberger 1998; Fiorini et al. 

2009). Thus, a breeding range is punctuated over space and time with discrete and brief 

laying opportunities and the timing and proximity of a parasite’s activity can be readily 

correlated with these opportunities. 

Brown-headed cowbirds are among the best-studied obligate brood parasite (see 

Lowther 1993), but information on important reproductive behaviours such as how 

individuals prioritize their nest searching to efficiently find host nests is lacking. 

Cowbirds find host nests primarily by quietly observing host activity (Norman and 

Robertson 1975, Wiley 1988, Kattan 1997), or occasionally by systematic searching 

(Fiorini and Reboreda 2006)— a process that requires substantial time and effort. 

Regardless of whether a nest is actually found the behaviour of the host parents may offer 

easily recognizable clues as to the developmental stage of that nest (Banks and Martin 

2001). A brood parasite could capitalize on this information, forming dynamic maps of 

potential laying opportunities, and allot their time accordingly by nest searching in areas 

that likely have an active nest. Female cowbirds appear particularly well suited to handle 

the spatial processing demands associated with a parasitic lifestyle. Female cowbirds 

have an enlarged hippocampus relative to males— the brain region involved with spatial 

information processing (Sherry et al. 1993, Reboreda et al. 1996) and perform 

significantly better than males in spatial memory tasks (Guigueno et al. 2014). At present, 

little information is available on how the developmental stage of host nests may influence 

cowbird nest searching effort in the wild. Even more generally, habitat and resource 
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selection studies have not previously applied UDs that included a time dimension in this 

way to test whether relative activity varies with the availability of short-lived resources. 

Territories can generally be defined as relatively exclusive areas that are actively 

defended against intruders (Davies and Houston 1984) and have been the subject of 

several studies on brood parasites (e.g. Clotfelter 1998; Martinez et al. 1998). Field 

studies using genetic parentage analysis point to the realized fecundity of cowbirds being 

relatively low (Hahn et al. 1999; Alderson et al. 1999; Strausberger and Ashley 2003; 

Woolfenden et al. 2003) compared with earlier studies that predicted high egg laying 

potential (Payne 1976; Scott and Ankney 1980, 1983; Jackson and Roby 1992; Kattan 

1993). Consequently, the value of individual host nests is higher than previously accepted 

suggesting that individual cowbirds may benefit by monopolizing and defending laying 

opportunities from conspecifics. Nevertheless, evidence of cowbirds maintaining 

exclusive breeding territories is equivocal. Some studies strongly suggest that females 

defend breeding territories (e.g. Rothstein et al. 1984) but others show little evidence of 

territoriality (e.g. Fleshier 1985). I suspect that it is difficult to evaluate territoriality in 

brood parasites for two key reasons. First, unlike other birds, brood parasites are not 

obligated to return to a fixed nest site and are therefore free to shift their space use 

throughout the season— allowing for dynamic boundaries. In such cases, overlap among 

breeding ranges may be grossly overestimated if time is not accounted for. Second, 

because brood parasites are uniquely free of parental responsibilities, breeding (i.e. nest 

searching and laying), socializing, and feeding activities can be separated spatially and 

temporally (Thompson 1994). It is well documented that cowbirds tend to lay eggs just 

after dawn, search for nests throughout the morning, and commute to feeding areas for 
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the rest of the day (Rothstein et al. 1984; Thompson 1994; Gates and Evans 1998). Thus, 

active defense of a breeding territory may only be necessary early in the day when 

females are engaged with finding and parasitizing host nests. Hence, accounting for long-

term variation in space use coupled with short-term variation in behaviour may be 

necessary to properly understand the territoriality of a brood parasite. 

In this study, I use radio-telemetry data to describe the activity and behaviour of 

individual female brown-headed cowbirds within their breeding range and highlight the 

importance of considering time in both resource selection and territoriality studies. I 

applied recent product kernel methods (Duong 2007, Keating and Cherry 2009) that 

allow a time dimension to be included in a utilization distribution home range model. I 

then use these UDs to relate the relative probability of activity to the spatial and temporal 

availability of host nests. Specifically, I test whether cowbirds were more likely to be 

found around active versus inactive nests and test whether cowbird activity differs 

depending on the developmental stage of the nest in an area. A positive relationship 

between probability of use and nest availability would suggest that cowbirds monitor 

hosts and optimize their space use accordingly to efficiently search for nests. I also utilize 

multidimensional UDs to address possible territoriality in cowbirds. I compare the 

overlap among strictly spatial 2D breeding range estimates to that of 3D estimates that 

include a time dimension to: (1) quantify the degree of exclusivity among individual 

breeding ranges and; (2) identify limitations or biases of breeding range estimates that do 

not account for time. Further, I expected that on a short time scale cowbirds will become 

less territorial later in the day after laying and nest searching. To this end, I use 

behavioural observations of radio-tracked females to test whether group size and 
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proportion of aggressive interactions changed as the day progressed. Lastly, I use highly 

variable microsatellite DNA markers (Alderson et al. 1999, OT Longmire et al. 2001) to 

assign maternity to several cowbird eggs found in my study site in order to map laying 

ranges and visually inspect laying range exclusivity. 

 

4.2 Methods  

4.2.1 Study site 

I monitored the movements and parasitism of radio-tagged female brown-headed 

cowbirds during two breeding seasons (2009-2010) from mid-May to late-July at Rithet’s 

Bog— a 42 hectare nature sanctuary near Victoria B.C., Canada (4826 N, 12320 W). 

Cowbird parasitism has been monitored in detail at this site since 2000 on a population of 

resident song sparrow (Melospiza melodia) hosts. Other common hosts in the area 

include common yellow throats (Geothlypis trichas), yellow warblers (Setophaga 

petechia), and red-winged black birds (Agelaius phoeniceus), however, cowbird activity 

was only monitored at song sparrow nests. From 2000-2010 parasitism rates on song 

sparrows were high, ranging from 17 – 78% (48.3 ± 5.3%, mean ± SE; Swan et al. 2015). 

Migratory cowbirds arrive to the area in mid April and the first cowbird egg has typically 

been found at the study site a few weeks later (mean date: 30 April; range: 15 April – 16 

May). The final cowbird egg of the season was found mid July (mean date: 7 July; range: 

2 July – 14 July). Additional details regarding the study site can be found elsewhere 

(Zanette et al. 2003; 2006). 
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In 2009 and 2010 I searched the study site daily to locate song sparrow host 

nests. Once found, nests were monitored regularly (every one to three days) and during 

each visit to a nest a researcher recorded the number of host and cowbird eggs present. 

When present, cowbird eggs were removed from nests and replaced with model eggs to 

maintain clutch size and reduce the chance of nest abandonment. Cowbird eggs were then 

placed in an incubator until there was sufficient tissue development for genetic extraction 

(see below). I determined the age of a host clutch by candling eggs or by back-dating 

from hatch day. 

4.2.2 Capture and radio-tracking 

Cowbirds were captured using seven semi-permanent house traps (1.6m x 1.6m x 2m) 

positioned throughout the study site where trapping had previously proven successful. 

House traps were supplied ad libitum with water and bird seed and contained two female 

and three male live cowbird decoys. Decoy birds were captured from other sites at least 

two km away. On first capture, all cowbirds were fitted with a metal leg band for 

permanent identification and a unique combination of coloured leg bands for 

identification at a distance. A blood sample was also collected from the brachial vein 

(≈50 µl) for parentage analyses (see below).  

Eleven female cowbirds (five in 2009, six in 2010) were equipped with radio 

transmitters (1.8g, Holohil Systems, Carp, Ontario) and tracked throughout the season. 

These transmitters constituted less than 5% of an individual’s body mass (36.4 ± 0.8 g, 

mean ± SE) and were attached using a figure-8 leg harness (Rappole and Tipton 1991). It 

is generally accepted that tracking technology less than 5% of body mass does not 
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substantially affect the behaviour or survival of flying animals (Aldridge and Brigham 

1988). Transmitters were only given to females that were captured or observed in the 

study area for longer than five days to ensure that they were resident to the area and not 

migrating through (Wolfenden et al. 2001). In addition to the 11 radio-tracked birds, two 

cowbirds known to be resident based on my criteria were excluded from analyses because 

one was found dead, likely due to a cat based on the remains, and the other did not 

respond well to the transmitter when I tested her before release and hence, I removed the 

transmitter. Based on continual trapping and observations throughout the breeding 

season, I estimated that we caught all resident cowbirds in the study area. 

I located birds using the homing method or via triangulation with a handheld 

receiver and Yagi antenna. To reduce error associated with triangulation, I confirmed that 

an individual was within 30 m prior to taking a compass bearing by removing the 

antennae from the receiver and listening for a signal. Systematic testing previously 

showed that a signal could be detected by a receiver after the antennae was detached 

when a transmitter is closer than 30 m. Location data were collected using “burst 

sampling”— a technique that allows many observations to be taken over short, regular 

time intervals (Barg et al. 2005). Bursts typically lasted one to two hours and successive 

observations within a burst were separated by short time intervals (10-20 minutes). Given 

that cowbirds are highly active and can easily move across their entire range in this 

amount of time (Swan personal observation) I felt that this method of sampling 

maximized the number of relocation points and provided biologically independent 

locations (Lair 1987, Barg et al. 2005). In total I obtained between 102 and 273 (160 ± 

13, mean ± SE) relocation points per individual for the 11 radio-tracked birds— an 
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amount more than adequate to reliably create and analyze two-dimensional and three-

dimensional utilization distributions (Seaman et al. 1994, Cooper et al. 2014). 

Because of the cryptic nature of female cowbirds and the dense vegetation 

throughout much of my study site it was not always possible to visually confirm an 

individual’s location. When possible however, I recorded the number of male and female 

cowbirds present with a focal individual (17% of 1974 total relocation points). If other 

females were present I classified behaviour of the focal individual as aggressive or non-

aggressive. I define an interaction as aggressive whenever a female performed a chatter 

call (a vocalization often considered antagonistic between females, but also attractive to 

males: Dufty 1982; Burnell and Rothstein 1994; Ortega 1998), a heads-up display (bill 

pointed vertically towards another cowbird: Dufty 1982; Teather & Robinson 1984; 

Burnell and Rothstein 1994) or chased or was chased by another cowbird (Teather & 

Robinson 1984). If none of these three behaviours were observed, I recorded the 

interaction as non-aggressive. I assumed that aggressive interactions among individuals 

within my study site reflected territorial behaviour. 

4.2.3 Parentage analysis using microsatellite DNA loci 

I genotyped the blood from cowbird females and tissue collected from cowbird eggs at 

seven hypervariable microsatellite loci (Dpu16, Mau20, Mau25, Mau29 from Alderson et 

al. 1999;  CB1, CB12, CB15 from Longmire et al. 2001). One primer of each locus was 

dye-labelled and microsatellites were amplified using polymerase chain reaction (PCR). 

Each PCR was conducted in a total volume of 10 µl and included the following: 10 mM 

of Tris-HCl, 50 mM of KCl, 0.1% Triton X-100, 0.2 mg/ml of BSA, 2.5 mM of MgCl2, 
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0.2 mM of each dNTP, 0.1 - 0.4 mM of each primer, 0.5 U of Taq polymerase (Fisher 

Scientific GoTaq) and 20 - 100 ng of genomic DNA. Cycling conditions included an 

initial step of 180 seconds at 94oC, followed by 29 cycles of 30 seconds at 94oC, 90 

seconds at the annealing temperature and 60 seconds at 72oC, ending with a final step of 

270 seconds at 72oC. The PCR products were analyzed on an Applied Biosystems 3130 

Genetic Analyzer according to the manufacturer’s protocols, and alleles scored manually. 

I determined the identity of the genetic mother by comparing all offspring-adult female 

allele combinations at each locus. Adult females were excluded as a possible mother 

whenever they could not have contributed at least one of the alleles present in an 

offspring at each locus. I excluded the microsatellite loci Mau29 (Alderson et al. 1999) 

from this analysis because it failed to produce a sufficient number of peaks to be 

informative. I included both resident birds and migrating birds as potential maternal 

candidates. I did this to be more conservative when assigning maternity and to validate 

my trapping estimates of the number of breeding resident females in the area. 

4.2.4 Creating Utilization Distributions 

Two of my primary goals were to create utilization distributions to evaluate how the 

arrangement of host nests in space and time correlate with the spatial distribution of 

female cowbirds and to estimate the amount of overlap among females within their 

breeding range in space and time. A utilization distribution provides a continuous and 

probabilistic estimate of space use throughout an individual’s range based on telemetry 

location density (Worton 1989; Millspaugh et al. 2006). Using a distribution of relative 

use instead of discrete location data in space use reduces error from telemetry accuracy 
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and allows for predictions in locations where animals were never actually observed 

because of discontinues monitoring (Kernohan et al. 2001; Moser and Garton 2007). 

Studies often use UDs to link probability of use with some habitat variable(s) given that 

the height of a UD represents the relative probability of an individual being at any given 

location (Marzluff et al. 2004; Millspaugh et al 2006). Others estimate spatial overlap 

among individuals by overlaying multiple distributions (e.g. Simpfendorfer et al. 2012; 

Cooper et al. 2014). Currently, however, there are almost no other practical ecological 

examples of UDs, which include a time dimension, being used for such purposes (but see 

Calenge et al. 2010). 

4.2.5 Estimating relative activity around nests over time 

To estimate how individual space use changed throughout the season I created utilization 

distributions for all radio-tracked birds that allowed smoothing of a distribution of 

relocation points in both space and time (Keating and Cherry 2009). I used a robust 

multi-dimensional product kernel method described in the adehabitat package for the R 

statistical program (R development team 2008) specifically designed to analyze UDs in 

space and time (Calenge 2006). This package returns a series of 2D UDs at set time 

periods (i.e. daily) thereby allowing me to estimate how relative spatial activity changed 

day to day (see Figure 4.1). After initial exploration of the data, I choose smoothing 

bandwidths of 100 m and 72 hours for the spatial and time dimensions respectively. 

Because I was primarily interested in the spatial distribution of cowbirds that were 

engaged in breeding activities, I only included locations recorded before 13:00 when 

constructing these UDs. Several previous studies report that female cowbirds tend to 
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parasitize and search for host nests during the morning and early afternoon (Thompson 

1998, Rothstein et al. 1984). 

 

Figure 4.1: Cowbird home range and host nests visualized across time using adehabitat 

(Calenge 2006). The outer line in each panel represents the home range of a 

single bird estimated at different days. The numbers represent the locations of 

four song sparrow nests. The magnitude of the numbers indicate the age of 

the nest relative to the first day of incubation. 
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I assumed that the standardized height of a UD (hereafter “activity”) reflects the 

overall effort a cowbird devoted to nest searching in the immediate area. This approach 

allowed me to quantify the activity of individual cowbirds around nests at different 

biologically meaningful stages of development (see below). For each cowbird, I 

quantified activity immediately around every nest (averaged over a 10m radius) that fell 

within the 95% isopleth of their estimated range for at least one day. A single measure of 

activity was recorded for each day around each nest that the bird was radio-tagged. I then 

assigned the activity estimates to biologically meaningful categories depending on the 

developmental stage of a nest on that day. These categories include: nest building; 

laying/early incubation (time from first egg to four days post-lay), late incubation (five 

days post-lay to hatch); brooding (chicks present); and inactive (no nesting activity). I 

averaged activity values within categories so that there was only one measure of activity 

for each bird-nest combination within each developmental category. Among these 

categories, laying and early incubation represents the suitable time period in which a 

cowbird egg will receive sufficient incubation to hatch (Swan et al. 2015, Fiorni and 

Reboreda 2006). The inactive period only included days when I was certain that no nest 

was active in that host’s territory— typically three to seven days before or after. 

Obviously, any nest that were active outside of the period when cowbirds were radio-

tracked could not be included in analyses. 

4.2.6 Overlap among cowbird breeding ranges   

I quantified spatial overlap among individual cowbirds using two-dimensional spatial 

UDs first, followed by three-dimensional UDs that included a time dimension, using the 
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“ks” package in the R statistical program (Duong 2007, see Figure 4.2). Unlike the 

method described above using the adehabitat package that estimates several daily two-

dimensional UDs (Calenge 2006), this technique using the ks package allowed me to 

readily calculate a single measure of percent overlap among individual ranges and to 

compare the average amount of overlap between the 2D and 3D estimates. Because least-

squares cross-validation (LSCV) repeatedly resulted in unrealistic under-smoothing, 

bandwidth selection was calculated using the plug-in method (Wand and Jones 2002, 

Gitzen et al. 2006, Duong 2007). UDs can be visualized at different isopleths, each of 

which describes equal probability of finding the focal bird within that boundary. Here I 

define an individual’s breeding range to be within the 95th isopleth (White and Garrott 

1990, Laver and Kelly 2008, Ehrenberg and Steig 2003, Zhu and Weng 2007, 

Simpfendorfer et al. 2012). I estimated 2D breeding ranges using spatial GPS data 

(UTMs) and 3D breeding ranges using the same spatial input plus the Julian date on 

which the location was recorded. As above, I only used locations recorded before 13:00 

when constructing UDs for each individual. 
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Figure 4.2: Overlapping 95% utilization distributions of two neighbouring brown-headed 

cowbird females in two-spatial dimensions (left panel) and three space and 

time dimensions (right panel). Easting and northing are UTM coordinates in 

meters. 
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I calculated the percent overlap among individual ranges from each model 

following Simpfendorfer et al. (2012). I then calculated the amount of overlap among 

birds in a pairwise approach wherein I determined the overlap of each individual with 

every other individual. Overlap was calculated for both the area of two-dimensional 

spatial UDs and the volume of three-dimensional space-time UDs. I changed the amount 

of overlap to a proportion by dividing the area/volume of the overlap by the total 

area/volume for an individual. For a given pair of birds, I calculated overlap only using 

relocation points that were collected when both birds were equipped with radio-

transmitters. For example, if one bird was tracked from 1 to 30 June and another was 

tracked from 5 June to 3 July, overlap between these individuals was calculated using 

points collected between 5 and 30 June. This ensured that any lack of overlap was 

genuine and not simply the result of different sampling periods.  

4.2.7 Statistical analyses 

Data from individual cowbirds were included in analyses in all cases whenever more than 

80 relocation points were collected— the minimum sample size required for 3D UD 

modelling (Cooper et al 2014). I hypothesized that cowbirds would prioritize their nest 

searching efforts in areas that contained active nests or nests at a suitable stage for 

parasitism. I performed a linear mixed model to test for differences in activity among 

stages of nest development (Building, Early Incubation, Late Incubation, Brooding, and 

Non-Active). Standardized activity was the response variable and nest stage was the fixed 

explanatory variable. Individual nest and cowbird identity were included as random 

explanatory variables.  If cowbirds have dynamic territorial boundaries throughout the 
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season one would expect a fundamental bias in the amount of home range overlap using 

2D spatial estimates. Such bias would manifest as more overlap among 2D vs 3D 

estimates because individuals may occupy the same location, but at different times. I 

tested for such a possibility using an ANOVA, with proportion of overlap as response 

variable and UD type (2D or 3D) as the explanatory variable. I included cowbird identity 

as a within-subjects factor. Proportions were arcsine-transformed prior to analysis.  To 

test my hypothesis that female cowbirds become less territorial as the day progresses we 

tested for a correlation between the time of day that a cowbird was observed and the 

number of other cowbirds in the immediate area. I also tested for a correlation between 

time of day and the proportion of aggressive interactions among individuals. I averaged 

the number of male and female cowbirds observed with each focal bird over 3-hour 

blocks of time throughout the day (i.e. before 6:00, 6:01-9:00, … , 18:01-21:00) . I then 

calculated the Spearman rank correlation between group size and time period. Similarly, 

for each bird, I calculated the proportion of aggressive vs non-aggressive interactions 

with other females during each time period. I then performed a logistic regression to test 

for a correlation between this proportion and time period. 

 

4.3 Results 

4.3.1 Relative activity around nests over time 

Consistent with my prediction that female cowbirds prioritize their nest searching in areas 

that were likely to contain a viable nest, I found a significant difference in cowbird 
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activity (standardized UD heights) around nest sites among the different stages of 

development (No nest, Building, Laying/Early incubation, Late incubation, Brooding; 

X2 (4) = 16.6; P = 0.002; Fig 4.3). Post-hoc Tukey’s tests among the nest stages revealed 

that there was no significant difference in activity among any of the developmental 

categories where a nest was actually present in an area (i.e. build, early inc, late inc and 

brood stages), but all four of these stages showed significantly more activity that when 

there was no active nest in the area. 

 

 

Figure 4.3: Relative activity of cowbird females (standardized height of utilization 

distributions) around nests across different stages of development. 
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4.3.2 Overlap among cowbird breeding ranges: two-versus three-

dimensions 

I quantified breeding range size and overlap among breeding ranges for all possible pairs 

(five in 2009, six in 2010) of cowbird females using 2D spatial and 3D spatio-temporal 

UDs. For comparison with other studies, the mean size of female breeding ranges over 

the entire season based on my 2D estimates was 27.5 ± 3.6 ha (mean ± SE). As expected 

if cowbirds have dynamic breeding range boundaries throughout the season, my results 

indicate that the 2D models overestimate the amount of overlap among neighbouring 

ranges by nearly double (20%). Almost universally, 3D estimates of overlap were smaller 

than their corresponding 2D estimates (Figure 4.4). Overall the average overlap among 

birds using 2D estimates (41.4 + 3.2%) was significant greater that using 3D estimates 

(21.1 + 2.2%; F1,10 = 64.01; P < 0.001); however, I found a fairly wide range overlap 

among individual breeding ranges calculated using both 2D (range = 0-95%) and 3D UDs 

(range = 0-57%). 
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Figure 4.4: Comparison of two-dimensional spatial and three-dimensional spatio-

temporal estimates of home range overlap among female cowbirds. Points 

above the line indicate overestimation of overlap using two-dimensional 

spatial methods. 
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4.3.3 Daily patterns in group size and aggression 

Female cowbirds tended to follow a similar pattern of behaviour throughout the day, 

which is constant with my prediction that territoriality should abate as the day progresses 

and bolsters my claim that breeding territories should be estimated using relocation points 

collected before 13:00 (see above). Individuals were usually solitary in the morning and 

early afternoon and later congregated in groups. Typically, before 13:00, focal 

individuals were observed with fewer that one female or male in the immediate area and 

could be found in significantly larger groups later in the afternoon and evening (Figure 

4.5; Spearman: number males, t = 7.7, R = 0.38, P < 0.001; number females, t= 8.2, R = 

0.40, P= < 0.001). Furthermore, when another female was observed with a radio tagged 

bird it was much more likely that the interaction would be aggressive early in the day, but 

not so later on. Overall, the proportion of aggressive interactions among females 

significantly decreased as the day progressed (Logistic regression, P = 0.002, Figure 4.6). 

Indeed, over 70% of interactions among females before 13:00 could be categorized as 

aggressive, whereas fewer than 15% of interactions were considered aggressive after 

15:00 (Figure 4.6). This apparent drop in aggression and increase in group size as the day 

progressed typically coincided with individuals traveling away from host abundant areas 

to locations with large trees, bird feeders and/or community gardens. 
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Figure 4.5: Number of male and female cowbirds (mean ± SE) observed with radio-

tracked females throughout the day. 

 

Figure 4.6: Proportion of aggressive interactions among female cowbirds throughout the 

day.  
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4.3.4 Egg-laying areas 

Figure 4.7 shows the two-dimensional home ranges (95% UD isopleth)and location of 

parasitized nests for cowbirds in 2009. The location of parasitized nests suggests that 

female cowbirds generally have nearly exclusive egg laying ranges that are in close 

proximity to one another. I estimated egg laying areas for individual females as the 

minimum convex polygon surrounding the location of nests they had parasitized (as per 

Alderson et al. 1999). This was done for females that laid eggs in at least three different 

nests as inferred from genetic analyses (N = 4, Figure 4.7). The size of these areas ranged 

from 1.6 to 6.2 ha (mean ± SE = 3.1 ± 2.2). I was not able to calculate the egg-laying 

areas in three cases where females laid in fewer than three nests. Egg laying overlap was 

generally small, however, nests parasitized by different females could be as close as 17 

m. I found three cases where a nest was multiply parasitized by different females.  
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Figure 4.7: Home ranges and locations of host nests parasitized by female cowbirds in 

2009. Each colour represents a different cowbird. Solid lines represent home 

range boundaries defined by the 95% isopleth of two dimensional utilization 

distributions. Triangles represent the location of specific parasitized nests. 

Triangles with multiple colours indicate multiple parasitism. Egg laying areas 

for females laying eggs in at least three different nests are shown as minimum 

convex polygons (dashed lines) encompassing the locations of parasitized 

nests. Single dashed lines connect two nests parasitized by the same female. 

Easting and northing are UTM coordinates in meters. 
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4.4 Discussion 

My results clearly demonstrate that a time dimension can be an important consideration 

in resource selection and home range studies and can lead to important ecological 

revelations. This is especially true in cases where probability of occurrence varies over 

time according to the availability of some short-lived resource(s) or when space-use 

boundaries drift over time. Here, I am among the first to demonstrate the practical 

application of utilization distributions that include a time dimension (Calenge 2010). I 

found that the relative likelihood of finding a female cowbird at some point within their 

breeding range is correlated with the availability of a host nest in the immediate area. 

These results suggest that rather than methodical searching over their entire breeding 

range (Fiorini and Reboreda 2006), female cowbirds concentrate their nest searching 

efforts in areas where they are more likely to find a nest. Evidence of this kind of 

sophisticated searching optimization may go undiscovered using strictly spatial analyses. 

Accounting for seasonal variation in space use also allowed for a more realistic 

understanding of the amount of overlap among individuals within their breeding ranges. I 

found that 2D home range estimates overestimated the amount of home range overlap by 

nearly double when compared to 3D spatio-temporal estimates. Likely, individuals 

occurred at similar locations, but at different times throughout the season. In addition to 

seasonal variation, I also found evidence that territorial behaviour seems to diminish 

throughout the day likely because cowbirds separate breeding and non-breeding 

behaviours spatially and temporally. Cowbird group size increased and aggressive 

interactions decreased significantly as the day progressed. 
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The relative probability of a cowbird occurring in an area was significantly 

greater when there was an active nest present. These results are entirely in line with my 

prediction that cowbirds attend to host activity and prioritize their space use in areas that 

contain a nest (Honza et al. 2002). It is generally thought that cowbirds primarily find 

nests by monitoring host behaviour and that the process takes a substantial amount of 

time (e.g. Banks and Martin 2001). Female cowbirds have the potential to lay large 

quantities of eggs throughout the breeding season and their fecundity is almost certainly 

limited by the number of suitable host nests they can find and exploit (Payne 1977, 

Wyllie 1981, Scott and Ankney 1983). By attending to host behaviour and adjusting their 

space use accordingly a cowbird could greatly increase nest searching efficiency. 

Although I did not measure host activity directly, it seems the likely driver of my results 

for several reasons. First, multiple species of brood parasite have been observed 

monitoring host individuals for extended periods (e.g. Honza et al. 2001). Second, the 

overall activity of hosts around their nests during nest building can affect the probability 

of parasitism (Gill et al. 1997; Banks and Martin 2001). Third, several hosts including 

song sparrows exhibit distinct behavioural cues depending on the developmental stage of 

a nest or whether they have an active nest at all (Swan personal observation). Female 

cowbirds appear to have relatively advanced spatial processing ability (Sherry et al. 1992; 

Reboreda et al. 1996; Guigueno et al. 2014) and it would not be surprising if their spatial 

cognition was uniquely adapted to form dynamic maps of where and when host nests are 

available within their breeding range. Note that my results do not definitively show that 

higher activity around a nest necessarily results in parasitism. Indeed, I did not monitor 

all host nests in my study site and many nests I did were never parasitized. I was, 
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however, able to demonstrate that the existence of a nest influences the likelihood of a 

cowbird being present in space and time. 

Contrary to my expectations, I did not find any difference in the probability of 

occurrence around nests at different stages of development. Cowbirds and cuckoos 

certainly tend to disproportionately parasitize nests early in development, so why do we 

not find a difference in probability of occurrence? Possibly, cowbirds do not infer the 

developmental stage of a nest from host behaviour alone and the decision to parasitize 

may occur only after a nest is discovered. Indeed, there is strong evidence that cowbirds 

determine the suitability of a nest for parasitism from the nest contents (White et al. 2007, 

2009, Swan et al. 2015)— requiring close inspection. Alternatively, my presupposition 

that cowbirds should attempt to only find early stage nests may be wrong. Brood 

parasites often visit nests without laying perhaps to check on their status (e.g. Scott 1992; 

Honza et al. 2002). Common cuckoos, for example, have been shown to significantly 

increase their visits to an area once a nest appeared, but show no difference in time 

around nests whether they lay or not (Honza et al. 2002). There is also mounting 

evidence that cowbirds act as nest predators destroying nests discovered too late in the 

nesting cycle to be suitable for parasitism, thereby creating future opportunities to 

parasitize the host’s resetting attempts (Farming hypothesis: Arcese et al. 1992, 1996). 

Searching for late-stage nests may be well worth the effort especially when predatory 

cowbirds are able to learn the approximate timing and location of the subsequent 

resetting attempt (Arcese et al. 1996, Hoover and Robinson 2007). In order to tease apart 

why cowbirds are equally likely to be found around early and late-stage nests, future 

studies may need to monitor behaviour directly. 
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My two dimensional spatial estimates of UDs indicate a high degree of overlap 

among individual cowbird breeding ranges. These results are similar to those found in 

other studies (e.g. Teather and Robinson 1985) and could lead to the conclusion that 

females share large areas where they compete for every laying opportunity. Three 

dimensional estimates of UDs that include a time dimension, however, show that cowbird 

ranges may overlap spatially, but often do so at different times throughout the season. As 

a result, the amount of overlap from the 3D estimates was nearly half that of the 2D 

estimates. This can lead to the drastically different conclusion that cowbirds in my study 

site may segregate themselves, thereby reducing competition for individual nests 

(Langmore et al. 2007). These results alone do not indicate that the cowbirds in my study 

maintain completely exclusive breeding ranges. Indeed, the 3D space-time UDs 

occasionally show fairly large amounts of overlap among neighbours; although, visual 

inspection of where particular females lay seems to indicate fairly separate laying ranges 

(Figure 4.7). I do, however, suggest a systematic bias when studying cowbird spatial use 

without considering time. While I corroborate other findings that cowbirds hold relatively 

constant breeding ranges (Teather and Robinson 1985, Scardamaglia and Reboreda 

2014), it seems that the boundaries shift subtly over time. Future consideration of why 

cowbirds shift their space use can only increase our understanding of competition for 

nests among neighbours. 

Understanding how spatial activity varies with time may be critical when 

studying territorial behaviour among neighbouring cowbirds. This is true on both a 

seasonal and daily time scale. Female cowbirds tend to be asocial in the morning while 

on their breeding ranges and congregate with others later in the afternoon while feeding 
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(Rothstein et al. 1984). Accordingly, my results corroborate other studies that report the 

mean number of cowbirds in a group increasing throughout the day. (Thompson 1994; 

Gates and Evans 1998; Goguen and Mathews 2001) and further show that females had 

proportionally fewer aggressive interactions as the day progressed. So, females appear to 

spatially segregate themselves while engaged in breeding activities and also actively 

defend breeding areas to some degree. The breakdown of this apparent territorial 

behaviour later in the day likely reflects the spatial and temporal separation of breeding, 

feeding and socializing behaviour commonly and uniquely observed in cowbirds (Dufty 

1982; Rothstein 1984, 1986; Thompson 1994). Flocking together later in the day may be 

important for social reasons (White et al. 2007), predator detection (Lima 1993), or may 

simply result from birds congregating at prime feeding locations (Rothstein et al. 1986), 

however, the actual advantages remain largely speculative. Detailed analyses of the 

benefits from following this pattern of being solitary on breeding ranges and highly social 

later in the same day would be an informative topic of future study. 

The resolution of the utilization distributions in space and time in this study is 

admittedly crude. Typically, a single researcher was recording locations of a single 

cowbird, leaving gaps in my records of where every individual was at any given time. 

That said, I want to emphasize the novel results I was able to generate despite these 

sampling limitations. With higher resolution, even more meaningful questions could be 

asked. For example, do cowbirds spend more time around nests they are about to 

parasitize or is equal effort given to all nests in their breeding range? Do females defend 

individual host nests or do they patrol and defend breeding range boundaries (Martinez et 

al. 1998). Do they spend more time after they parasitize to either defend against other 
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cowbirds or to ensure that the host has not rejected the egg (Hoover and Robinson 2007)? 

Do they return to an area after the have destroyed a nest to find the new resetting attempt 

(as per the farming hypothesis; Arcese et al. 1996). For this current study I simply lacked 

the power to test for such possibilities, however, as equipment becomes increasingly 

miniaturized and monitoring becomes better automated, answers to these questions and 

more may be answered. 

Incorporating, multiple dimensions into animal movement and homerange 

studies may provide much more accurate and realistic estimates of how animals occupy 

space (Cooper et al. 2014). Time has by in large been ignored when creating utilization 

distributions (Laver and Kelly 2008) and, to my knowledge, this is the first study to relate 

a 3D probabilistic measure of space use over time to resource availability or to examine 

territory characteristics. Needless to say, past studies recognize that animal space use can 

change over time, however, these typically analyze strictly-spatial UDs at discrete time 

periods instead of incorporating time into a continuous model (E.g. Ehrenberg and Steig 

2003; Simpfendorfer et al. 2012; Cooper et al. 2014). Although I present one example 

here, the application of multidimensional space-time UDs is clearly relevant to a wide 

range of ecological questions (Keating and Cherry 2009) and should be considered in 

future research. 
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Chapter 5 

5 General Discussion 

5.1 Summary 

Parasites exhibit a wide variety of strategies to maximize the successful transmission of 

themselves and/or their offspring, by exploiting hosts. One such strategy occurs when parasites 

manipulate host behaviour in a way that increases their probability of transmission to an 

uninfected host. In Chapters 2 and 3 of this thesis, I examined whether brood parasitic brown-

headed cowbirds (Molothrus ater) attack and cause nest failure in late-stage, and hence, 

inappropriate host nests which theory suggests they may do to parasitize the replacement nests at 

an opportune time— effectively manipulating their host’s reproductive behaviour and improving 

their own transmission (farming hypothesis). Consistent with the predictions of the farming 

hypothesis, I found evidence that cowbirds are substantial predators of the nests of their hosts. 

Furthermore, cowbirds appear attuned to the reproductive stage of their hosts and act accordingly 

by destroying non-parasitized clutches they find late in the nesting cycle. They likely determine 

the developmental stage of nest either directly by puncturing a portion of the clutch or indirectly 

by attending to the absolute number of eggs present. I also found that the re-nesting attempts of 

hosts following suspected cowbird attacks were parasitized at significantly higher rates than 

those following non-cowbird predators suggesting that cowbirds gain reproductive benefits from 

their predatory actions. My Monte Carlo simulations suggest that farming behaviour may yield 

increased reproductive output not by increasing the number of appropriate nests available, but by 

increasing the chances of discovering future laying opportunities. The parallels of farming 
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behaviour to infanticide observed in other species are notable, as sexually selected infanticide by 

males may also create additional breeding opportunities, advance the onset of those opportunities 

and improve the perpetrators ability to synchronize mating at the appropriate time. 

In Chapter 4 I use radio-telemetry data on cowbirds to create multi-dimensional UDs 

that include a time as a dimension. I found that cowbirds were significantly more likely to be 

found around nesting sites when a nest was active suggesting that cowbirds prioritize their nest 

searching in areas where they are more likely to find a nest. I did not, however, find a difference 

in probability of occurrence depending on the developmental stage of a nest. Comparison of 2D 

spatial and 3D spatio-temporal breeding range estimates showed that strictly spatial analyses 

significantly overestimated overlap among individuals by an average of 20%, likely because 

individuals may occupy similar locations, but do so at different times. Analyses of behavioural 

observations indicated that female cowbirds tended to be solitary early in the day while nest 

searching, but associated with significantly larger groups of conspecifics as the day progressed. 

Also, aggressive interactions among females significantly decreased throughout the day 

suggesting that any territorial behaviour happens in the mornings when females are searching for 

host nests. Finally, using microsatellite DNA markers, I map individual female egg laying and 

show relatively little overlap among egg laying ranges. This is among the first practical 

applications of UDs that incorporate a time dimension and appears to provide a more realistic 

model of how cowbirds find host nests and interact with one another.  
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5.2 Cowbirds manipulate their hosts 

Interactions between brood parasites and their hosts can serve as informative models for studying 

coevolutionary processes in the wild (Rothstein 1990). The complexity of the coevolutionary 

arms races between avian brood parasites and their hosts has become increasingly apparent in 

recent years (Feeney et al. 2014). Examples of parasitic adaptations and host counter adaptations 

have been found in every stage of the host nesting cycle including nest building, incubation, 

brooding and fledgling stages (Brooke and Davies 1988, Langmore et al. 2003. Welbergen and 

Davies 2009, De Mársico et al. 2012). Based on the results in this Thesis, farming behaviour by 

female cowbirds certainly appears to be another example of an adaptation to increase the 

transmission of the parasite. Many of the complexities of a farming strategy have yet to be 

elucidated. My simulation model (Chapter 2) predicts that farming should increase a cowbird’s 

ability to find re-nesting attempts. Whether cowbirds actually alter their nest searching behaviour 

depending on past predation behaviour has yet to be determined. Future work may also identify 

counter adaptations in hosts to resist farming tactics (Chakra et al. 2017). For example, a 

‘farmed’ host may lower the chances of their replacement nests being found by re-nesting further 

away or in more cryptic locations. It is clear that more research is needed into the subtleties and 

complexities of possible farming behaviour. 

 

5.3 Specific challenges for studying cowbird predatory behaviour 

In the field the most substantial challenge of studying cowbird predatory behaviour is not being 

able to directly observe females while they searched for host nests. Female cowbirds are 
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exceedingly cryptic in the mornings and even when equipped with a radio-telemetry transmitter 

it is often impossible to observe their behaviour directly (Swan personal observation). It is likely 

that this limitation has been the main reason why incidence of cowbirds causing total nest failure 

have been reported so rarely (Thompson et al. 1999; Pietz and Granfors 2000; Granfors et al. 

2001). The use of cameras allowed me to document rarely observed behaviours of cowbirds 

while at a host nest. Specifically, cameras allowed me to provide valuable evidence that 

cowbirds act, not just as parasites, but as nest predators. In many cases, cowbirds would not have 

been suspected as the cause of nest failure if I was not monitoring with a camera. These video 

records were also invaluable because they allowed me to create the predator identification key 

discussed in Chapter 2. Even so, because so many failures resulted in empty nests that gave 

inconclusive evidence as to the identity of the nest predator, we are still unsure of the total 

impact of cowbird predatory behaviour in the wild. As cameras become increasingly 

miniaturized and memory rich I am confident that nest monitoring will be even more 

informative. 

In Chapter 3 I carried out a series of experiments using captive cowbirds. This 

eliminated the need for monitoring cryptic females in the field, but presented other challenges. It 

took almost a full month before my birds in captivity would reliably approach the model nests 

used in the trials. Moreover, individuals needed a minimum of 24 hours to habituate to the flight 

chambers before each trial. Under these conditions the birds readily approached and attacked the 

nests with which they were presented and the experiments were a success. Even so I was unable 

to design experiments testing preferential laying patterns. In particular, I wished to test whether 

captive birds that attacked an artificial nest would return to parasitized ‘replacement’ nests as 
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would be expected under the farming hypothesis. Cowbirds typically require large aviaries that 

they need to be well habituated to if they are to lay in captivity (White et al. 2007, 2009). 

5.4 Implications for future home range studies 

The results in Chapter 4 clearly demonstrated the utility of including additional dimensions in 

resource selection and home range studies. In particular, my finding that the likelihood of finding 

a cowbird in an area varies with the temporal availability of a host nest suggests that time may be 

considered whenever resources are short-lived in the environment. Yet, similar to height and 

depth, time has hardly ever been considered when creating utilization distributions (Laver and 

Kelly 2008) and to my knowledge has never been practically incorporated simultaneously with 

spatial dimensions. That said, space use clearly varies with time and this variation may have 

important implications for spatial studies depending on the ecology and behaviour of the species 

being studied (Spencer et al. 1990; Keating and Cherry 2009; Cooper et al. 2014). Incorporating 

time into measures of spatial overlap may be especially important for measuring competition 

among species. For example, my results indicate a high degree of spatial overlap for cowbirds in 

two-dimensions, but significantly less in both space and time. Therefore accounting for time may 

help us to determine whether competition for resources is based on interference or exploitation. 

The software packages used in Chapter 4 (ks: Duong 2007, adehabitat: Calenge 2006) 

allow for estimation of UDs in up to six dimensions. It should be possible, therefore, to include 

additional dimensions such as height/ depth or any other relevant variable, however, collection of 

the necessary data may present a challenge. A pivotal practical limitation in applying higher 

dimensional spatial models is the supposed “curse of dimensionality”, which states that the data 

requirements increase by at least one order of magnitude for each additional dimension of 
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interest (Silverman 1986). It is currently feasible to apply higher dimension UDs to larger 

species that can accommodate satellite tracking devices that automatically records many 

locations over time, however, this may not be possible with smaller species such as cowbirds. As 

technology gets smaller and more automated, this size limitation may no longer be relevant. 

Bandwidth selection is often considered a problem when creating utilization 

distributions. In general, selecting bandwidths that are too small will create choppy home range 

estimates with false structure, and choosing bandwidths that are too large over-smooths estimates 

which can obscure important structure (White and Garrott 1992). Despite considerable research 

into optimal and objective bandwidth selection for two-dimensional UDs (Horne and Garton 

2006; Zhang et al. 2006), almost no theory has been advanced for optimal bandwidth selection 

procedure for higher dimension UDs (Keating and Cherry 2009). In Chapter 4 I chose the 

smoothing factor fairly subjectively based largely on what seemed to fit with realistic cowbird 

movement. This procedure follows others that have suggested that the importance of choosing 

optimal bandwidth is often overstated (Scott 1992) and that it is often more appropriate to select 

bandwidths subjectively (Scott 1992; Silverman 1986). Even so, if we are to ensure objective 

results that are comparable among studies an objective bandwidth selection procedure for higher 

dimension utilization distributions may be needed in the future. 

5.5 Implications for conservation 

Several populations of passerines face many risks due to habitat loss and degradation (Samson et 

al. 2004; Askins et al. 2007; Benson et al. 2013). The expansion of energy infrastructure across 

North America, for example, may substantially contribute to population declines of grassland 

songbirds (Askins et al. 2007; Nasen et al. 2011). In order to develop suitable mitigation 
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strategies, it is first necessary to identify the specific threats associated with habitat 

fragmentation (Bernath-Plaisted et al. 2017). Increasing edge habitat has been associated with 

increases in brown-headed cowbird abundance (Howell et al. 2007) and overall parasitism rates 

(Johnson and Temple 1990; Patten et al. 2006). Such increases in cowbird abundance has been 

shown to lead to declining host species abundance (e.g. Smith et al. 2002) because cowbirds 

cause nest abandonment (18), reduce the number and quality of host young fledged (Burhans et 

al. 2000, Davies and Sealy 2000, Zanette et al. 2005) and may increase risk of predation 

(Mclaren and Sealy 2000). My findings indicate that cowbirds may also represent a substantial 

nest predator of passerines. Nest predation, in particular, is believed to be the most important 

cause of nest failure in birds. Thus, farming behaviour in cowbirds could amplify the potential 

threat of habitat loss on cowbird hosts and may have the potential to jeopardize populations 

already at risk. 

5.6 Future directions 

Further research is required to better understand the ecological, evolutionary and conservation 

implications of cowbird predatory behaviour. Clearly, we are still in the early stages of 

identifying the prevalence and reasons for these attacks. It is absolutely imperative that the 

identity of nest predators is reliably identified in other sites and that the frequency of cowbird 

attacks is established. Host species in other geographical areas certainly appear to endure 

cowbird predation (Arcese et al. 1996; Clotfelter and Yasukawa 1999; Hoover and Robinson 

2007), but we are a far cry from confirming that such behaviour is ubiquitous. 

If brown-headed cowbirds gain reproductive advantages by attacking late-stage nests 

one may expect to find predatory behaviour to be common among other brood parasites and 
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should be the subject of future study. Shiny cowbirds (Molothrus bonariensis) are also generalist 

brood parasites that regularly peck, puncture eggs from nest that they visit, but do not remove 

eggs as brown-headed cowbirds (Fraga 1998). It was recently demonstrated that, similar to my 

experiments in Chapter 3, shiny cowbirds puncture significantly more eggs in nests simulating 

complete clutches (containing 4 eggs) than those simulating incomplete clutches (containing one 

egg: Cossa et al. 2017). In either case, however, shiny cowbirds usually didn’t puncture the 

complete clutch of eggs. These results were interpreted as cowbirds reducing nestling 

competition as opposed to enforcing host re-nesting (Cossa et al. 2017). However, hosts of shiny 

cowbirds will often abandon when not all eggs are destroyed (Massoni and Reboreda 1998; 

Tuero et al. 2007). Therefore, I strongly encourage future study of farming behaviour in other 

brood parasites such as shiny cowbirds. 

Mafia behaviour in which brood parasites enforce future acceptance by destroying the 

nest contents of hosts that reject their eggs (Zahavi 1979) was first experimentally reported in 

great-spotted cuckoos (Soler et al. 1995) and later in brown-headed cowbirds (Hoover and 

Robinson 2007). The necessary mechanisms between possible farming and mafia behaviour are 

similar, however, according to each hypothesis, the reasons for causing nest failure are quite 

different. Whereas the farming hypothesis assumes that parasites cause failure to induce host re-

nesting (Arcese et al. 1996), the mafia hypothesis assumes that loosing a nest after ejecting a 

parasitic egg will encourage future acceptance. This element of the mafia hypothesis where hosts 

are more likely to accept either within a season or across generations has not been demonstrated. 

In a series of elegant experiments Hoover and Robinson (2007) showed that nests where cowbird 

eggs were removed were preyed upon at high rates, non-parasitized nests were preyed upon at 

intermediate rates and parasitized nests in which the cowbird egg was not removed were hardly 
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preyed upon at all. While these results are consistent with the Mafia hypothesis, I suggest they 

could be explained by the farming hypothesis as well. Cowbirds destroy late-stage nests that they 

encounter (Chapter 3), avoid destroying nests they have parasitized (Chapter 2), and repeatedly 

visit nests that they have already laid in (Scott 1992). Therefore, the difference in predation rates 

in nests where a cowbird egg was removed and nests that were not parasitized reported by 

Hoover and Robinson (2007) may be explained by cowbirds simply encountering the previously 

parasitized nests more often. In either case, from the cowbird’s perspective, they were attacking 

late-stage nests that did not contain one of their eggs. I believe that this is a more parsimonious 

explanation than the mafia hypothesis and should be the subject of future study.  

5.7 Conclusions 

This work is among the first to comprehensively evaluate the connection between nest predation 

and brood parasitism in brown-headed cowbirds. My research strongly supports the assertion of 

the farming hypothesis that cowbirds are common predators of their hosts, thereby creating 

future reproductive opportunities in a manner directly comparable to other infanticidal species. 

Moreover, my results suggest that cowbirds take advantage of these reproductive opportunities 

suggesting that their predatory behaviour may be an adaptation similar to other parasites that 

manipulate the behaviour of their hosts. Perhaps just as important, my work helps to elucidate 

how cowbirds use farming tactics to increase their reproductive output. In particular how they 

determine the developmental stage of a nest so that they can direct their attacks at late-stage nests 

no longer suitable for parasitism. Generally, I see the significance of my research as establishing 

whether farming is a potentially adaptive behaviour. If cowbirds derive a clear reproductive 

benefit from destroying host nests, as my research suggests, this behaviour is likely to be 
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commonplace, widespread and perhaps present in other species of brood parasites. Much of the 

controversy over whether cowbirds represent a significant conservation threat currently centers 

on the prevalence of their predatory behaviour (Rothstein and Peer 2005; Peer 2006; Peer et al. 

2013; Zanette et al. 2007). Hence, my work will provide valuable insight into the mechanisms 

underlying the evolutionary refinement of brood parasitism and has immediate application to 

conservation strategy. 
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Appendix 1: Animal use protocol approval for Chapter 3 

 
 
AUP Number: 2012-005 
PI Name: Zanette, Liana 
AUP Title: An Experimental Test Of Brown-headed Cowbird (Molothrus ater) Predatory 
Behaviour 
 
Approval Date: 06/20/2012 
Official Notice of Animal Use Subcommittee (AUS) Approval: Your new Animal Use 
Protocol (AUP) entitled "An Experimental Test Of Brown-headed Cowbird (Molothrus ater) 
Predatory Behaviour" has been APPROVED by the Animal Use Subcommittee of the University 
Council on Animal Care. This approval, although valid for four years, and is subject to annual 
Protocol Renewal.2012-005::1 

 
. This AUP number must be indicated when ordering animals for this project. 
. Animals for other projects may not be ordered under this AUP number. 
. Purchases of animals other than through this system must be cleared through the ACVS office. 

Health certificates will be required. 
 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional 
safety standards and have received all necessary approvals. Please consult directly with your 
institutional safety officers. 
 
Submitted by: Copeman, Laura  
on behalf of the Animal Use Subcommittee 
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Appendix 2: Python code for Monte Carlo simulation in Chapter 2 

Appendix 2.1 Create the ‘cowbird’ object 
class CowBird(object): 
    'A class representing a cowbird' 
    def __init__(self,yamlFile): 
        self.interEggIntervalMean = yamlFile['interEggIntervalMean'] 
        self.interEggIntervalStdDev = yamlFile['interEggIntervalStdDev'] 
        self.initEggTimer() 
        self.totalEggs = 0 
        self.wastedEggs = 0 
        self.cowbirdType = yamlFile['cowbirdType'] 
        self.cowbirdUpdatedProbabilityOfBeingFoundForParasitism = 

yamlFile['cowbirdUpdatedProbabilityOfBeingFoundForParasitism'] 
     
    def initEggTimer(self): 
        self.eggTimer = 

max(1,round(random.normalvariate(self.interEggIntervalMean,self.interEggInter
valStdDev))) 

     
    def step(self): 
        self.eggTimer-=1 
        layEgg = False 
        if self.eggTimer == 0: 
            self.initEggTimer() 
            layEgg = True 
            self.totalEggs = self.totalEggs + 1 
        return layEgg 
     
    def nextEggTime(self,currentTime): 
        return currentTime + self.eggTimer 
 
# conditions for the non-farmer cowbird 
simulation: 
  seasonLength: 120 
  numberOfNests: 5 
  interEggIntervalMean: 2.1 
  interEggIntervalStdDev: 0.3 
  # Type of cowbird: Standard, SimpleFarmer, or AdvancedFarmer 
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  cowbirdType: Standard 
  cowbirdUpdatedProbabilityOfBeingFoundForParasitism: 0.05 
 
# conditions for the simple farming cowbird 
simulation: 
  seasonLength: 120 
  numberOfNests: 5 
  interEggIntervalMean: 2.1 
  interEggIntervalStdDev: 0.3 
  # Type of cowbird: Standard, SimpleFarmer, or AdvancedFarmer 
  cowbirdType: SimpleFarmer 
  cowbirdUpdatedProbabilityOfBeingFoundForParasitism: 0.05 
 
# conditions for the advanced farming cowbird 
simulation: 
  seasonLength: 120 
  numberOfNests: 5 
  interEggIntervalMean: 2.1 
  interEggIntervalStdDev: 0.3 
  # Type of cowbird: Standard, SimpleFarmer, or AdvancedFarmer 
  cowbirdType: AdvancedFarmer 
  cowbirdUpdatedProbabilityOfBeingFoundForParasitism: 0.9 
 
 

Appendix 2.2 Create the ‘nest’ object 
class Nest(object): 
    'A song sparrow nest and associated state' 
    def __init__(self, nestId, nestyaml): 
        if not type(nestyaml) is dict: 
            # Load the yaml file 
            with open(nestyaml) as nesty: 
                nestyaml = yaml.load(nesty.read()) 
        # Now nestyaml is a yaml object 
        theNest = nestyaml['nest'] 
         
        statesYaml = theNest['states'] 
        states={} 
        # This is a trick for building structures from the 
        # YAML file.  
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        for key, value in statesYaml.items(): 
            states[key] = util.Struct(**value) 
        # Now "states" is a dictionary. The key 
        # is the state name (as a string), the 
        # value is a struct with the fields necessary 
        # for the simulation: 
        #   durationMean:                             4 
        #   durationStdDev:                           0 
        #   nextStateName:                            Building 
        #   probabilityOfBeingPredated:               0.0 
        #   probabilityOfBeingFoundForParasitism:     0.0 
        #   probabilityOfBeingFoundForCowbirdAttack:  0.0 
        #   resetProbabilitiesOnTransition            True 
 
        # Set up the internal state of the object 
        self.initialState = theNest['initialState'] 
        self.initialStates = states 
        self.parasitized=False 
        self.isParasitized=False 
        self.nestId = nestId 
        self.stateName = self.initialState 
 
    def transitionIntoInitialState(self): 
        return self.doStateTransition(self.initialState, True, "InitialState") 
 
    def copyStates(self): 
        #return copy.deepcopy(self.initialStates) 
        states = {} 
        for key, value in self.initialStates.iteritems(): 
            states[key] = util.Struct( **(value.__dict__) ) 
        return states 
    def doStateTransition(self, stateName, resetProbabilities, reason): 
        'Sets the state and does bookkeeping' 
        if resetProbabilities: 
            self.states = self.copyStates() 
         
        transition = util.StateTransition(self.nestId, self.stateName, stateName, reason, 

self.isParasitized) 
 
        self.stateName = stateName 
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        self.state = self.states[stateName] 
        self.stateTime = 

max(1,round(random.normalvariate(self.state.durationMean,self.state.durationSt
dDev))) 

         
        # Hardcode the reset of parasitization to Idle transtions. 
        if self.stateName == "Idle": 
            self.isParasitized=False 
         
        return transition 
 
    def checkForPredation(self): 
        transition = None 
         
        # Check for predation 
        if self.state.probabilityOfBeingPredated > np.random.rand(): 
            transition = self.doStateTransition( 'Idle', True, "PredatorAttack" ) 
        return transition 
         
    def step(self, seasonOver): 
        'A function to process one normal timestep' 
         
        # If the season is over and the state is in idle, 
        # do nothing. 
        if seasonOver and self.stateName == 'Idle': 
            return 
         
        transition = None 
         
        # Decrement the time and do a state transition if necessary 
        self.stateTime -= 1 
        if self.stateTime == 0: 
            # This is a timeout. Process the state transition 
            transition = self.doStateTransition( self.state.nextStateName, 

self.state.resetProbabilitiesOnTransition, "Timeout" )           
         
        return transition 
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Appendix 2.3 Running a single simulation 
class Simulation(object): 
    'An object representing a single simulation' 
    def __init__(self, simYaml, nestYaml): 
        # Now yamlFile is a dictionary 
        self.yaml = simYaml['simulation'] 
 
        nests = [] 
        for i in range(0,self.yaml['numberOfNests']): 
            nests.append( nest.Nest(i, nestYaml) ) 
 
        self.cowbird = cowbird.CowBird(self.yaml) 
 
        self.nests = nests 
        self.seasonLength = self.yaml['seasonLength'] 
        self.day=0 
        self.transitions = [] 
        self.cowbirdEggs = [] 
        for n in self.nests: 
            transition = n.transitionIntoInitialState() 
            self.transitions.append(transition) 
 
         
    def step(self): 
        'Do one step of the simulation' 
 
        # A new day dawns! 
        self.day += 1 
 
        # The cowbird's internal clock advances. 
        isLaying = self.cowbird.step() 
         
        egg = None 
        if isLaying: 
            # Create an egg 
            egg = util.CowBirdEgg(self.day,None) 
 
        # The cowbird visits the nests in random order 
        nestIndices = range(len(self.nests)) 
        random.shuffle(nestIndices) 
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        for idx in nestIndices: 
            nest_i = self.nests[idx] 
             
            # The cowbird should move first. 
            # If the cowbird lays its egg,  
            # the nestid will be set 
            transition, egg = self.cowbirdExaminesNest(nest_i, egg) 
             
            # Now we check for predation 
            if transition is None: 
                transition = nest_i.checkForPredation() 
 
            # Then we step the nest...this checks for predation, 
            # then it checks timeout values. 
            if transition is None: 
                transition = nest_i.step(self.isSeasonOver()) 
             
            # Here we can do statistics on transitions. 
            # Each day can create exactly one transition 
            # Either the result of a timeout, or a predation  
            # event 
            if not transition is None: 
                # Store the current day 
                transition.day = self.day 
                self.transitions.append(transition) 
         
        if not egg is None: 
            self.cowbirdEggs.append(egg) 
            if not egg.isLaid(): 
                # The cowbird was not able to find a nest for this egg...the egg is wasted 
                self.cowbird.wastedEggs = self.cowbird.wastedEggs + 1 
         
    def cowbirdExaminesNest(self, nest_i, egg): 
        transition = None 
        if (not egg is None and not egg.isLaid()) and \ 
           not nest_i.isParasitized: 
            # This nest may be parasitized. Check if the cowbird can find the nest 
            draw = random.random() 
            if draw < nest_i.state.probabilityOfBeingFoundForParasitism: 
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                # print "Probability: {0}, random draw: 
{1}".format(nest_i.state.probabilityOfBeingFoundForParasitism,draw) 

                # The nest is parasitized. 
                nest_i.isParasitized = True 
                # The egg is used up 
                egg.nestId = nest_i.nestId 
         
        # Check if the cowbird attacks the nest. 
        if not self.cowbird.cowbirdType == "Standard": 
            if not nest_i.isParasitized: 
                draw = random.random() 
                if draw < nest_i.state.probabilityOfBeingFoundForCowbirdAttack: 
                    # This nest is attacked! 
                    if self.cowbird.cowbirdType == "SimpleFarmer": 
                        transition = nest_i.doStateTransition( "Idle", True, "CowbirdAttack" ) 
                    elif self.cowbird.cowbirdType == "AdvancedFarmer": 
                        # This is the advanced farmer... 
                        transition = nest_i.doStateTransition( "Idle", True, "CowbirdAttack" ) 
                        # increase the probability of finding the nest during parasitism 
                        nest_i.states['Laying'].probabilityOfBeingFoundForParasitism = 

self.cowbird.cowbirdUpdatedProbabilityOfBeingFoundForParasitism 
                        

nest_i.states['IncubatingAppropriate'].probabilityOfBeingFoundForParasitism = 
self.cowbird.cowbirdUpdatedProbabilityOfBeingFoundForParasitism 

                    else: 
                        raise RuntimeError("Unknown cowbird type {0}. Try 'Standard', 

'SimpleFarmer', or 'AdvancedFarmer'") 
 
        return (transition, egg) 
     
    def isSeasonOver(self): 
        return self.day >= self.seasonLength 
     
    def isSimOver(self): 
        simOver = False 
        if self.isSeasonOver(): 
            simOver = True 
            # Check if the simulation is over 
            for n in self.nests: 
                if not n.stateName == 'Idle': 
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                    simOver = False 
         
        return simOver 
 
    def runFullSim(self): 
        while not self.isSimOver(): 
            self.step() 
     
    def countNestsThatStartBuilding(self): 
        return len([ t for t in self.transitions if t.stateTo == 'Building' ]) 
     
    def countNestsThatArePredatorized(self, isParasitized=None): 
        return len([ t for t in self.transitions if t.reason == 'PredatorAttack' and (isParasitized 

is None or t.isParasitized == isParasitized) ]) 
 
    def countCowbirdAttacks(self): 
        return len([ t for t in self.transitions if t.reason == 'CowbirdAttack' ]) 
 
 
    def countNestsThatSucceed(self, isParasitized=None): 
        return len([ t for t in self.transitions if  t.reason == 'Timeout' and t.stateTo == 'Idle' 

and (isParasitized is None or t.isParasitized == isParasitized) ]) 
 
    def countParasitizedNests(self): 
        return len([ e for e in self.cowbirdEggs if not e.nestId is None ]) 
     
    def countEggs(self): 
        return len( self.cowbirdEggs ) 
 

Appendix 2.4 Run experiment using multiple simulations for 
multiple cowbird types 

# All simulations use the same nest definition file. 
with open('nest.yaml') as yamldoc: 
    nestYamlOriginal = yaml.load(yamldoc.read()) 
 
# Loop through the farmers 
yamls = ['simulationStandard.yaml', 'simulationSimpleFarmer.yaml', 

'simulationAdvancedFarmer.yaml'] 
# Loop through different predation levels 
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# np.linspace( startingValue, endingValue, numberOfSteps) 
predationLevels = np.linspace(0.0,0.1,11) 
# Number of trials to run for each combination (yaml, predationLevel) 
NUM_TRIALS=10 
 
idxFarmerType = 0 
idxPredationLevel = 1 
idxTotalNests = 2 
idxTotalNestsStd = 3 
idxTotalParasitizedNests = 4 
idxTotalParasitizedNestsStd = 5 
idxTotalNestsFledged = 6 
idxTotalNestsFledgedStd= 7 
idxTotalParasitizedNestsFledged = 8 
idxTotalParasitizedNestsFledgedStd = 9 
idxTotalNonparasitizedNestsFledged = 10 
idxTotalNonparasitizedNestsFledgedStd = 11 
idxTotalNestsPredated = 12 
idxTotalNestsPredatedStd = 13 
idxTotalParasitizedNestsPredated = 14 
idxTotalParasitizedNestsPredatedStd = 15 
idxTotalNonparasitizedNestsPredated = 16 
idxTotalNonparasitizedNestsPredatedStd = 17 
idxTotalCowbirdAttacks = 18 
idxTotalCowbirdAttacksStd = 19 
idxTotalEggs=20 
idxTotalEggsStd=21 
idxTotalWastedEggs=22 
idxTotalWastedEggsStd=23 
idxTotalLaidEggs=24 
idxTotalLaidEggsStd=25 
tableSize = 26 
 
output = np.zeros([len(yamls)*len(predationLevels), tableSize]) 
 
for yamlIdx in range(0,len(yamls)): 
    yam = yamls[yamlIdx] 
    print "Processing {0}".format(yam) 
    with open(yam) as yamldoc: 
        simYaml = yaml.load(yamldoc.read()) 
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    for predationLevelIdx in range(0,len(predationLevels)): 
        nestYaml = copy.deepcopy(nestYamlOriginal) 
        outputRow = yamlIdx * len(predationLevels) + predationLevelIdx 
 
        probabilityOfBeingPredated = predationLevels[predationLevelIdx] 
        print "\tProcessing predation level of {0}".format(probabilityOfBeingPredated) 
        theNest = nestYaml['nest'] 
        statesYaml = theNest['states'] 
        # Update the background predation levels 
        for key, value in statesYaml.items(): 
            if value['probabilityOfBeingPredated'] > 0.0: 
                value['probabilityOfBeingPredated'] = probabilityOfBeingPredated 
        # Test... 
        for key, value in statesYaml.items(): 
            if value['probabilityOfBeingPredated'] > 0.0: 
                assert(value['probabilityOfBeingPredated'] == probabilityOfBeingPredated) 
     
        totalNests = [] 
        totalParasitizedNests=[] 
        totalNestsFledged=[] 
        totalParasitizedNestsFledged = [] 
        totalNonparasitizedNestsFledged = [] 
        totalNestsPredated = [] 
        totalParasitizedNestsPredated = [] 
        totalNonparasitizedNestsPredated = [] 
        totalCowbirdAttacks = [] 
        totalEggs = [] 
        totalEggsWasted = [] 
        totalEggsLaid = [] 
 
        for i in range(0,NUM_TRIALS): 
            sim = simulation.Simulation(simYaml, nestYaml) 
            sim.runFullSim() 
            # Accumulate statistics 
            totalNests.append(sim.countNestsThatStartBuilding()) 
            totalParasitizedNests.append(sim.countParasitizedNests()) 
            totalNestsFledged.append(sim.countNestsThatSucceed()) 
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totalParasitizedNestsFledged.append(sim.countNestsThatSucceed(isParasitized=
True)) 

            
totalNonparasitizedNestsFledged.append(sim.countNestsThatSucceed(isParasitiz
ed=False)) 

            totalNestsPredated.append(sim.countNestsThatArePredatorized()) 
            

totalParasitizedNestsPredated.append(sim.countNestsThatArePredatorized(isPar
asitized=True)) 

            
totalNonparasitizedNestsPredated.append(sim.countNestsThatArePredatorized(is
Parasitized=False)) 

            totalCowbirdAttacks.append(sim.countCowbirdAttacks()) 
            totalEggs.append(sim.countEggs()) 
            totalEggsWasted.append(sim.countWastedEggs()) 
            totalEggsLaid.append(sim.countLaidEggs()) 
            
        lists=[ totalNests, totalParasitizedNests, totalNestsFledged, 

totalParasitizedNestsFledged, totalNonparasitizedNestsFledged, 
totalNestsPredated, totalParasitizedNestsPredated, 
totalNonparasitizedNestsPredated, totalCowbirdAttacks, totalEggs, 
totalEggsWasted, totalEggsLaid ] 

 
        # Write the output for this yaml file 
        output[outputRow,idxFarmerType] = yamlIdx 
        output[outputRow,idxPredationLevel] = probabilityOfBeingPredated 
        offset = 2 
        for idx in range(0,len(lists)): 
            vals = np.array(lists[idx]) 
            mean = np.mean(vals) 
            std  = np.std(vals) 
            output[outputRow, offset + (2*idx)] = mean 
            output[outputRow, offset + (2*idx) + 1] = std 
         
 
# Save the output 
np.savetxt('output.csv', output, delimiter=', ') 
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Appendix 3: Actual values from Monte Carlo simulation in 

Chapter 2 

 

 

 

Figure App3.1: The number of cowbird eggs laid by non-farmers (grey), simple (blue) and 

advanced farmers (red). Values are plotted as a function of the daily probability of 

failure due to non-cowbird predators (a) using different illustrative high and low 

values of the number of hosts available (n) and the daily probability that a nest will 

be discovered by a cowbird (d). 
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Figure App3.2: The number of cowbird chicks fledged by non-farmers (grey), simple (blue) and 

advanced farmers (red). Values are plotted as a function of the daily probability of 

failure due to non-cowbird predators (a) using different illustrative high and low 

values of the number of hosts available (n) and the daily probability that a nest will 

be discovered by a cowbird (d). 
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Figure App3.3: The number of attacks on host nests by simple (blue) and advanced farmers 

(red). Values are plotted as a function of the daily probability of failure due to non-

cowbird predators (a) using different illustrative high and low values of the number 

of hosts available (n) and the daily probability that a nest will be discovered by a 

cowbird (d). 
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