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ABSTRACT 

Estimating evaporation from unsaturated soil is important for many applications including 

agriculture, climate, hydrology, water resources, saturated and unsaturated groundwater flow, slope 

stability, and soil covers. As an example, the long term performance of soil covers, which are 

widely used in mining and landfill applications to protect the environment, strongly depends on 

evaporation from their surfaces.  

Evaporation depends on both moisture flow within an unsaturated soil mass, which is 

generally coupled with heat flow, and void ratio and hydraulic and air conductivities, which are in 

turn affected by stress and strain and resulting soil settlement. This makes thermo-hydro-

mechanical (THM) analysis of evaporation necessary. Evaporation also depends on environmental 

parameters, including air temperature, humidity, net radiation and wind speed. Therefore, 

considering atmospheric coupling in predicting evaporation is also necessary.  

The stress-strain behavior of the soil affects its settlement, which changes void ratio and 

porosity, and in turn permeability of the soil. This can alter the evaporation characteristics 

significantly and should be accounted for in any reliable evaluation of the actual evaporation and 

the performance of soil covers. However, existing soil-atmospheric models such as SOILCOVER (1994) 

and VADOSE/W (2002), which attempt to represent the soil-atmosphere continuum by linking the 

subsurface and the atmosphere, do not couple the equilibrium equation. Therefore, they can estimate 

evaporation but cannot estimate stress, strain and soil settlement. In fact, they perform thermo-hydraulic 

(TH) analysis. 

On the other hand, thermo-hydro-mechanical models such as 2D finite element program θ-

Stock (Gatmiri et al., 1999) can perform THM analysis of unsaturated soil by coupling equilibrium 

equation with moisture and heat flow equations, but only work under soil surface, and do not have 
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the capability to consider the environment and to incorporate atmospheric parameters. Therefore, 

they cannot estimate evaporation.  

The purpose of this study is to bring together the advantages of the above-mentioned 

programs by using an approach including both ideas and employing a formulation coupling THM 

analysis with soil-atmosphere modeling. Therefore, the resulting program EVAP1 numerically 

estimates evaporation from unsaturated soil using THM analysis and at the same time estimates 

stress, strain and soil settlement. In other words, the program can estimate evaporation considering 

soil settlement, which occurs in real world.  

The program EVAP1 was verified with published experimental and numerical studies on 

evaporation, including Wilson (1990) and Yang & Yanful (2002). Then, it was used to compare 

evaporation with and without considering soil settlement. The results showed that soil settlement 

alters the evaporation characteristics significantly and should be accounted for in any reliable 

evaluation of the evaporation from unsaturated soil. Neglecting settlement causes an 

overestimation of evaporation.   

A parametric study was also performed to evaluate the effects of environmental parameters 

on evaporation, in order to identify the parameter that affects evaporation the most. It was found 

that the most important parameters, in order, are humidity, net radiation, temperature and wind 

speed. The sensitivity of evaporation to these parameters was also evaluated, and the trend of the 

change in evaporation due to the change in each of the parameters was noted. The results showed 

that the effects of these parameters on evaporation are mostly nonlinear.  

Keywords: unsaturated soil, THM, evaporation, environment, geotechnics, θ-Stock, 

numerical, finite element 
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NOTATIONS 

  scaling factor to water pressure 

a  a constant at the equation for hydraulic conductivity of soil relative to air 

w =  a constant at the equation for hydraulic conductivity of soil relative to water 

ij  weighting factor at the sampling point ( ji sr , ) 

  scaling factor to air pressure 

  Poisson’s ratio 

  =  indicator for the type of interpolation  

         (for forward interpolation or fully explicit   = 0,    

   for linear interpolation or Crank-Nicholson  1/2,   

   and for backward interpolation or fully implicit, 1 ) 

   =  internal friction angle degree 

a  =  air viscosity at the equation of hydraulic conductivity of soil relative to air 

a  specific weight of air 

s  =  specific weight of soil  

w  =  specific weight of water 

xy  shear strain at x-y plane 

ij  Kronecker delta 
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  total stress 

 au  mean net normal stress  

e  swelling pressure at the equation of bulk modulus 

1  total axial normal stress (major principal stress) 

3  total confining pressure (minor principal stress) 

 f)( 31   deviator stress at failure condition 

 u)( 31   ultimate deviator stress  

 effective normal stress 

xx  strain tensor at x direction 

yy  strain tensor at y direction 

zz  strain tensor at z direction 

xx  stress tensor at x direction 

yy  stress tensor at y direction 

zz  stress tensor at z direction 

xy  shear stress at x-y plane 

a  air density 

w  water density 
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h  element height 

t  time step 

a  a constant at the equation of bulk modulus  

1a  =  a constant at the equation of hydraulic conductivity of soil relative to water 

ea  =  coefficient “ a ” at the equation of state surface of void ratio ( e )   

sa  =  coefficient “ a ” at the equation of state surface of saturation degree (
rs ) 

ijB  a member of strain-displacement matrix (B-matrix) at the sampling point ( ji sr , ) 

b  =  a constant at the equation of bulk modulus 

ib  body force at i  direction  

eb  coefficient “b ” at the equation of state surface of void ratio ( e ) 

sb  coefficient “b ” at the equation of state surface of saturation degree (
rs ) 

ijklC = nonlinear elasticity matrix 

c   =  cohesion coefficient 

ec  coefficient “ c ” at the equation of state surface of void ratio ( e )  

comp  compressibility of water 

hc  coefficient of consolidation (horizontal drainage) 

vc  coefficient of consolidation (vertical drainage) 

D  =  stress-strain matrix (material matrix) 
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1D  a constant at the equation of hydraulic conductivity of soil relative to air 

ed  coefficient “ d ” at the equation of state surface of void ratio ( e ) 

sd  coefficient “ d ” at the equation of state surface of saturation degree (
rs ) 

E  elastic modulus 

1E  a constant at the equation of hydraulic conductivity of soil relative to air 

eE  initial elastic modulus 

sE  representative of the effect of suction on the elastic modulus 

tE = tangent elastic modulus  

e  =  void ratio 

0e  =  void ratio with a suction and stress equal to zero  

fe  minimum elastic coefficient 

ijF  suction modulus matrix 

H  Henry constant 

H  layer thickness 

ijJ  Jacobian at the sampling point ( ji sr , ) 

K  stiffness matrix of element 

0K  bulk modulus 

0K  coefficient of earth pressure at rest 
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1K  dimensionless parameter at the equation of initial elastic modulus 


a

K  hydraulic conductivity of soil relative to air 

maxaK  maximum hydraulic conductivity of soil relative to air 

bK  number of volume module (a constant at the equation of bulk modulus) 

lK  number of elastic coefficient in loading stage 

uK =  number of elastic coefficient in unloading stage 


w

K  hydraulic conductivity of soil relative to water 

maxwK =  maximum hydraulic conductivity of soil relative to water 

wxK  hydraulic conductivity of soil relative to water at horizontal direction 

wzK  hydraulic conductivity of soil relative to water at vertical direction 


wz

wx

K

K
 relation of horizontal hydraulic conductivity to vertical hydraulic conductivity 

m  =  a constant at the equation of bulk modulus 

1m  a constant at the equation of sE  
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CHAPTER 1 

INTORDUCTION 

1.1   BACKGROUND 

The critical role of unsaturated zone near the soil surface, during groundwater recharge, 

surface runoff and evapotranspiration, was the center of attention in earlier investigations. 

However, more recently, major attention has been focused on geothermal energy extraction, 

contaminant transport analysis, safe disposal of high-level radioactive waste, and the design of 

engineered clay barriers.  

Engineered clay barriers have been used in many geotechnical projects including filling and 

sealing of underground nuclear waste repositories and other waste containment systems, such as 

soil covers. Engineered clay barriers are used in the mining industry as soil cover for mine waste 

that includes sulfide minerals, common components of ores. These minerals can react with oxygen 

and water to produce sulfuric acid, which can dissolve heavy metals in the mine waste and produce 

acid rock drainage (ARD), a solution potentially toxic to humans, animals and plants (Yanful et 

al., 2006).  

Because of the important role of moisture and heat transport in soil cover performance, and 

since the soil is continuously under the effects of temperature changes in its natural environment, 

a great deal of attention has been paid to the phenomenon of moisture transport due to thermal 

gradient, and evaporation.  

Estimating evaporation is important in many fields including geo-environmental 

engineering. For example, evaporation has a definitive role in the performance of soil covers 
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widely used for environmental protection. The ability to estimate evaporation from different soils 

is useful, especially during the initial stages of soil cover design in order to ensure its satisfactory 

long-term performance (Yanful and Mousavi, 2003). To achieve a realistic result, it is necessary 

to consider any real change in soil including the settlement at the soil surface.  

Soil settlement decreases void ratio and porosity, which in turn decreases hydraulic 

conductivity. Consequently, evaporation from the soil surface decreases. Therefore, there is an 

absolute need to consider the deformation of unsaturated soil to properly evaluate the coupling 

effects of moisture, heat, air, and soil deformation, which can be achieved by performing a thermo-

hydro-mechanical (THM) analysis. 

THM analysis is required to analyze the subsurface flow system, which is generally coupled 

with heat flow, and is also coupled to the atmosphere through the evaporation/infiltration process 

at the soil surface. In general, this process is dominated by three important factors. Firstly, 

atmospheric conditions, which control the supply of water and in turn demand for water. Secondly, 

permeability and storage characteristics of the soil, which govern the ability of the surface to 

transmit water. Thirdly, the vegetation which determines the consumption of water through root 

uptake (Wilson, 1990).  

To deal with this process, in the most general case, solving the coupled nonlinear governing 

partial differential equations of heat and mass transfer at the soil surface is required. This is a 

complex task and analytical solutions are possible only for the very simple cases, and numerical 

methods must be used. Among the numerical approaches, the Finite Element method is most 

popular because of its ability to accurately simulate complex phenomena encountered in a variety 

of engineering problems. It can easily handle irregular geometry and varying properties and 

different types of boundary conditions.  
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A number of attempts have been made to solve the coupled heat and mass transfer equations 

using finite element techniques. However, there exists a need for a numerical model that calculates 

evaporation using THM analysis. This study entitled as “Thermo-hydro-mechanical analysis of 

evaporation from unsaturated soils” is focused on this issue. 

1.2   OBJECTIVES 

The main objective of this study is to develop a THM methodology for calculating 

evaporation from unsaturated soil. The 2D finite element program, θ-Stock, uses THM analysis in 

unsaturated soil, but works only within the soil. The developed methodology couples a soil-

atmosphere model with THM analysis to account for soil equilibrium along with coupling 

atmospheric phenomena with the equations of water, vapor, air and heat flows.  The developed 

computer program, EVAP1, can estimate evaporation from unsaturated soil using THM 

methodology.  

The main contribution of this study is to estimate actual evaporation from engineered 

geotechnical structures such as soil covers, which are used to protect environment, considering soil 

settlement, and clarifying the importance of this consideration in estimating the correct amount of 

evaporation. A more accurate estimation of evaporation is very important in long-term performance 

of environmental geotechnical structures such as soil covers, and in many other fields including –

but not limited to- agriculture, water resources management, hydrology, saturated and unsaturated 

groundwater flow, and slope stability. 

1.3   ORGANIZATION OF THE THESIS 

Chapter 2 includes an extensive literature review covering both thermo-hydro-mechanical 

analysis, and atmospheric coupling. 

Chapter 3 presents the theory used in this study, including the development of the relevant 
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equations for the coupled equilibrium, atmospheric, water flow, vapor flow, air flow and heat flow 

processes. It describes the details of the numerical model, including a flowchart for the model, and 

a brief explanation of the functioning of its modules. 

Chapter 4 presents the validation of the developed model through a comparison of its 

predictions with measured evaporation of some well documented studies available in the literature. 

The influence of considering the effect of soil settlement on evaporation is investigated next. Also, 

the results of a parametric study and a sensitivity analysis considering all main environmental 

parameters affecting evaporation are presented in this chapter. 

Chapter 5 includes summary, conclusions, and recommendations for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1   INTRODUCTION 

The first three sections of literature review are devoted to evaporation, unsaturated soil, and 

thermo-hydro-mechanical (THM) analysis. The evaporation section discusses the importance and 

mechanism of evaporation and presents methods used for its estimation as well as mutual effects 

of evaporation and soil property and atmospheric parameters, and their modeling. The section of 

unsaturated soil explains the isothermal and non-isothermal behavior, deformation, evaporation 

from unsaturated soil, and their modeling. The THM section highlights the importance of the 

coupled THM phenomenon, and the analysis of evaporation from unsaturated soil using this 

approach, and its modeling. Finally, the application of THM for estimating evaporation from soil 

covers is addressed. The literature review in each section is presented in a chronological order. 

2.2   EVAPORATION 

2.2.1 The importance of evaporation and need for continued research 

Prediction of the flux boundary condition with respect to water flow across the soil-

atmosphere boundary is an important consideration in many problems in geotechnical engineering. 

The problems include long term performance of soil covers, saturated-unsaturated groundwater 

flow, and the prediction of heave for shallow foundations built on expansive soils (Wilson et al., 

1994). 

Blight (2002) emphasized that from the environmental and geotechnical viewpoints, it is 

often important to determine the rate of evaporation of water from a soil surface, a waste deposit 
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or a soil-covered waste deposit. This is particularly important in arid or semi-arid climates with 

shortage of water, or where seasonal cycles of precipitation and evaporation can lead to damage 

to shallow foundations. Similarly, Kebede et al. (2006) stated that evaporation is a crucial factor 

between land and the atmosphere, and in semi-arid regions it assumes even greater importance. 

Evaporation is a major component of the hydrologic cycle. The estimation of evaporation is 

widely used in hydrologic and irrigation engineering applications.  The accurate estimation of 

evaporation is required for many studies, such as hydrologic water balance, water resources 

planning and management, and irrigation scheduling (Valiantzas, 2006). 

Bare soil evaporation has been found to be very difficult to estimate in modeling studies 

(Seager et al., 2007). In spite of decades of research, which have improved our understanding, 

many knowledge gaps still exist in the current science on how the soil water in the shallow 

subsurface close to the land surface interacts with the air in the atmosphere. Understanding this 

interaction is paramount to our understanding of many emerging problems, including climate 

change, water and food supply, the accurate detection of buried objects such as landmines (Das et 

al., 2001), and the remediation of contaminated soil in the shallow subsurface (Weaver and 

Tillman, 2005). 

More than half of the land surface on the globe is arid or semiarid. Understanding the water 

cycle on the basis of heat and water exchanges between air and the soil surface is necessary. In 

bare soils evaporation at the soil atmosphere interface is the dominant process for water vapour 

exchange. Evaporation process has a large impact on the heat and water exchange between the 

atmosphere and land surface and is necessary to accurately predict it. (Katata et al., 2007).  
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Soil water evaporation is a key process for water exchange between soil and atmosphere. 

Bare soil evaporation and plant-soil-atmospheric interactions are important components of the 

water balance. Drying and evaporation processes are also of interest for many engineering and 

industrial applications and numerous construction activities (Lehmann et al., 2008). 

Furthermore, evaporation is a key process in the hydrologic cycle. It affects mass exchange 

between land and atmosphere and the energy balance of terrestrial surfaces. Evaporation involves 

simultaneous heat and mass transfer, phase changes, and interfacial liquid and vapor transfer at 

pore scales. This results in a complex phenomenon that is difficult to predict (Shokri et al., 2010). 

Despite a long history of application to bare soils drying by evaporation, the implications of 

the coupled heat and moisture transfer theory of Philip and de Vries (1957) for temperature and 

moisture regimes near the soil surface have not been fully described (Novak, 2010) 

Evaporation from porous media is a highly dynamic process. It may vary considerably in 

space and time reflecting the interplay between internal flow processes (capillary liquid flow to 

vaporization surface and vapour diffusion) and atmospheric conditions (air temperature, relative 

humidity, energy input, and wind speed). Prediction of drying rates from porous media has 

remained a challenge due to complex integrations between ambient conditions and the properties 

of porous media (Shahraeeni et al., 2012).  

Vapor diffusion in porous media is of interest for many natural and engineering applications 

including hydrology, geothermal reservoir performance, thermally enhanced oil recovery, and 

drying of textiles, grains, and food. The diversity of disciplines and applications has led to 

confusion in formulation and treatment of coupled heat and mass transport through porous media. 

Recent theoretical and experimental studies of vapor transport through porous media question the 
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existence and significance of the mechanisms of vapor transport enhancement postulated by Philip 

and de Vries (Shahraeeni et al., 2012).   

Accurate estimates of water losses by evaporation from shallow water tables are important 

for hydrological, agricultural, and climatic purposes (Assouline et al., 2013). The complexity of 

soil evaporation, depending on the atmospheric conditions, emphasizes the importance of its 

quantification under potential changes in ambient air temperature and relative humidity (Neriah et 

al., 2014). 

Assessment of evaporation from soil surface is critical for design of soil cover systems for 

hazardous waste sites (Teng et al., 2014) and forecasting its long-term performance (Wilson, 1994; 

Yanful and Mousavi, 2003). In addition, it is critical for many other engineering, environmental 

and hydrological applications such as hydrological modeling (Shokri and Or, 2011). Also, 

understanding the dynamics of soil water content during evaporation is required for the 

management of soil water practices (Blight, 1997; Fredlund et al., 2011).  

Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid 

environments, where vertical water movement dominates. Although extensive measurement and 

modeling studies have been conducted and reported in existing literature, the physics of drying 

soil and evaporation from bare soil is still a challenging topic and there are still significant 

remaining issues (Wang, 2015). Trautz (2016) stated that “bare soil evaporation is one of the 

governing processes responsible for controlling heat and water exchanges between the land and 

lower part of the atmospheric boundary layer with direct implications in meteorology and 

climatology, waste isolation and storage, vadose zone remediation, and water management. 

Despite its obvious importance to a wide range of scientific and industry disciplines, this process 
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remains poorly understood. This is due in part to evaporation being a complex multiphase 

phenomenon that must be described and understood in terms of a variety of processes that occur 

simultaneously at different scales”. 

2.2.2 The mechanism of evaporation 

The flow of moisture between soil and atmosphere is a complex process in which three factors 

dominate and function as a closely coupled system, not as independent variables. The first factor 

is the supply of water at soil surface, and demand for water imposed at the soil surface by 

atmospheric conditions, which are air humidity, net radiation, wind speed, and air temperature. The 

second factor is the ability of the soil to transmit water, and the associated water regime. Soil 

moisture flow is controlled by both hydraulic conductivity and storage characteristics of the soil. 

The final factor involves the influence of vegetation. The type and density of vegetation influences 

evaporation through the consumption of water (Wilson, 1990).  

The rate of evaporation is influenced by both atmospheric demand, and soil pore space and 

transport properties. This complexity leads to highly dynamic interactions between media 

properties, transport processes and boundary conditions, which in turn, results in a broad range of 

evaporation behaviors as discussed by Prat (2002).  

Evaporation is a complex dynamic process affected by many environmental factors including 

air temperature, relative humidity, water vapor pressure deficit, solar irradiance, wind speed, and 

soil moisture (Liu et al., 2004; Xu et al., 2006; Wang and Liang, 2008; Wang et al., 2010a, 2010b, 

Su et al., 2015).  
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Evaporation from soil surfaces involves mass and energy transfer including phase change, 

vapor diffusion, and liquid flow resulting in complex displacement patterns, which causes the 

drying rate to vary with time (Sakai et al., 2011).  

All of the factors affecting the rate of soil evaporation are strongly coupled, which leads to 

highly dynamic interactions between the atmosphere and soil resulting in dynamic evaporative 

behaviors (Sakai et al., 2011). However, the atmospheric coupling to the soil at the land-

atmospheric interface is rarely considered in most current models or practical application, due to 

complexity of the problem, and the scarcity of field or laboratory data (Davarzani et al., 2014). 

With supporting experimental evidence from three separate field studies of daily mean 

evaporation from bare soil with vastly different physical characteristics, it was shown that 

evaporation process can be described as isothermal linear diffusion in a finite depth domain. It 

appears that in many situations the soil layer which contributes to evaporation is shallow with a 

thickness of only a few tens of centimeters (Brutsaert, 2013).  

Water loss through evaporation is one of the major components of the hydrological cycle 

affecting water resources availability. Most precipitation is lost in the form of evaporation and 

evapotranspiration with the percentage varying globally in different regions (Abtew & Melesse, 

2013).  

The heat that is required to evaporate water from the surface of the earth is provided by the 

sun in radiation form. As Figure 2.1 shows a portion of sun radiation is adsorbed by the atmosphere 

and converted into heat. Two other portions are reflected back into space, and reflected towards 

the earth surface. Almost 48% of the incoming solar radiation reaches the ground surface. A 

portion of this energy is reflected back to the sky through the albedo effect; a portion is absorbed  
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Figure 2.1 Global energy balance (Pontius, 2012). 

into the soil as heat; a portion heats the air right above the ground surface; and a portion is used to 

vaporize pore water as quantified by the mass rate of evaporation and the latent heat of vaporization 

(Djalal, 2014). 

 “Bare soil evaporation involves the strong coupling of phase change kinematics, internal 

transport mechanisms, soil hydraulics and thermal properties, and atmospheric demand.” (Trautz, 

2016). 

2.2.3 Evaporation stages 

The drying process occurs in two distinct stages of “constant rate stage or stage I” and 

“falling rate stage”. The falling rate stage itself consists of two parts: very important part of “stage 
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I”, and almost negligible part of “stage III” (Figure 1) (Yanful & Mousavi, 2003). 

 

Figure 2.2 Schematic of the three stages of evaporation from soil (Yanful & Mousavi, 2003). 

Initially, evaporation rate from saturated porous media is high and almost constant. It is 

called stage I evaporation and is limited mostly by atmospheric condition. This is followed by a 

lower (stage II) evaporation, which is limited by hydraulic conductivity of porous media (Lehmann 

et al., 2008; Shokri et al., 2009). Finally, within stage III, evaporation continues with a small 

magnitude corresponding to residual moisture in the soil. 

In other words, evaporation rate from porous media often exhibits an abrupt transition from 

a high and almost constant rate supplied by capillary-induced liquid flow (stage I) to lower values 

supported by vapour diffusion (Shokri et al., 2009). The evaporation process in tight sandstone 

can be divided into three stages based on the water evaporation behavior in pores of different sizes 

(Wang et al., 2015). 

2.2.4 Potential and actual evaporations 
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All of the climatological methods for estimating evaporation provide or rely on the potential 

rate of evaporation. The term 'Potential Evaporation’ has been used by engineers and hydrologists 

for tens of years (Thornthwaite, 1948; Penman, 1948; among others). In general terms, it may be 

considered as an upper limit to evaporation.  

The simplest definition is equating potential evaporation to evaporation from a free water 

surface. The International Glossary of Hydrology WMO (1974) defines potential evaporation as 

"The quantity of water vapor which could be emitted by a surface of pure water per unit surface 

area and unit time under the existing atmospheric conditions." 

Calculation of the actual evaporation rate from an unsaturated soil is more difficult than the 

calculation of potential evaporation. The problem becomes more indeterminate because the vapor 

pressure at the surface is less than the saturation vapor pressure. Both the temperature and the 

relative humidity of the soil surface are unknown.  

Generally, evaporation occurs in two forms; one form is evaporation from free water surface 

(potential evaporation) and another form from the soil surface (actual evaporation) (Yanful & 

Mousavi, 2003). There is only a partial understanding about the link between actual evaporation 

and potential evaporation (Van Heerwaarden et al., 2010). 

2.2.5 Methods to estimate evaporation 

Climatological methods to predict evaporation are more acceptable for many applications in 

geotechnical engineering. This may be mainly attributed to the fact that these methods require only 

routine climate data such as temperature and relative humidity (Wilson, 1990).  

Standardized measurement and estimation of evaporation is challenging. The lack of 

uniformity in input data collection and quality control is another factor that causes variation in 

estimates of evaporation. However, it has relatively smaller variation for a definite time and 
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location. Moreover, estimation error is relatively low if appropriate equation and reliable input 

data is used (Abtew & Melesse, 2013). 

Estimating evaporation from standard meteorological data has been an active area of research 

and practical application. Peel & McMahon (2014) reported on recent progress in using standard 

meteorological data to estimate potential and actual evaporations from both terrestrial landscapes 

and lakes and reservoirs. They observed that remote sensing offers significant potential for 

mapping spatial variations in evaporation. However, there has been limited progress in estimating 

actual evaporation using the complementary relationship. A brief explanation of the most known 

evaporation estimation methods will follow. The details and equations will be presented in the 

Theory part (Ch. 3). 

2.2.5.1 Gardner solution 

One of the earliest and probably the most influential solutions of the soil-controlled daily 

mean evaporation problem was the one proposed by Gardner (1958) to estimate the steady state 

upward flow from a shallow water table toward the soil surface. 

Gardner and Hillel (1962) developed an equation to calculate evaporation from finite soil 

columns involving the soil moisture diffusivity. They assumed infinite evaporativity, constant 

diffusivity with depth, and uniform wetness. They neglected gravity and obtained a solution for the 

falling rate stage evaporation in a finite system. 

Yanful & Mousavi (2003) studied the capability of Gardner and Hillel (1962) equation to 

predict falling rate evaporation from finite coarse sand and fine sand. They also modeled the studied 

cases using the finite element model SOILCOVER (1994). They compared the results from the 

equation and the model with experimental data and found them to agree reasonably.  The capability 
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of the equation to predict falling rate evaporation from finite coarse sand and fine sand was studied 

and confirmed. 

2.2.5.2 Thornthwaite method  

Thornthwaite (1948) developed a method to estimate potential evapotranspiration. His 

method is an “air temperature-based” formula which provides monthly estimates of potential 

evapotranspiration. He considered meteorological conditions, i.e. solar radiation, temperature, 

relative humidity and wind speed, as the dominant factors controlling evapotranspiration, 

compared with vegetation and soil factors (Thornthwaite and Mather, 1955). 

2.2.5.3 Penman method 

The Penman (1948) approach provides an estimate of potential evaporation for a saturated 

surface under specific atmospheric and energy supply conditions (Granger, 1989a). Rosenberg et 

al. (1983) reported that Penman’s method was popular and was widely used for estimating potential 

evapotranspiration. This popularity is attributed to its simplicity and ease of application. The 

Penman formula requires only the measurement of routine weather parameters such as air 

temperature, relative humidity and wind speed.  

The application of the Penman (1948) method to water limiting problems requires adjustment 

or correction for aridity. The corrective coefficients may be based on factors such as soil moisture, 

but generally they are empirical in nature. The Penman method has been found suitable for the 

estimation of evaporation under any climate conditions (Jensen et al., 1990). The Penman approach 

considers the fact that evaporation is a diffusive process and that energy can be expressed in terms 

of mass (Kebede et al., 2006). 

2.2.5.4 Wilson method   
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The soil evaporative flux is a function of the vapor pressure gradient between the soil surface 

and the atmosphere. The solution to the problem of evaluating evaporation from unsaturated soil 

surface relies on the ability to provide more physical relationships to make the calculation 

determinant. Wilson (1990) proposed a relationship to do this. He proposed a modified Penman 

(1948) approach to estimate evaporation from unsaturated soil surface. He combined vapor transfer 

equation with heat transfer equation to determine actual evaporation from soil surface. His method 

was used in this study to estimate actual evaporation, and will be explained in detail in Chapter 3. 

 The method proposed by Wilson (1990) requires atmospheric data such as air temperature, 

wind speed, humidity and net radiation, and has a new parameter, compared to Penman (1948) 

equation, for relative humidity of the evaporating surface. Machibroda (1994) implemented the 

modified Penman formulation proposed by Wilson (1990) in the 1D finite element program 

SOILCOVER to estimate actual evaporation (1994). 

2.2.6 The effect of evaporating soil on evaporation 

The ability of the soil to transmit water, and the associated water regime is an important 

factor in the evaporation process. Figure 2.3 shows typical drying curves for sand and clay versus 

moisture availability.  

Soil moisture flow is controlled by both hydraulic conductivity and storage characteristics of 

the soil. Some of the controlling factors are briefly discussed in the following subsections. 

2.2.6.1 The effect of hydraulic properties of soil 

The hydraulic properties of the layer at the vicinity of the soil surface have significant impact 

on evaporation and could be harnessed to decrease water losses. 
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Figure 2.3 Typical drying curves for sand and clay showing actual evaporation as a percentage of 

potential evaporation versus moisture availability (Wilson 1990). PWP: permanent wilting point, 

FC: field capacity 

Assouline et al. (2014) used pore network simulations to illustrate the structure of phase 

distribution during evaporation for the various systems considered. The simulated results and the 

experimental data confirmed that adding a narrow layer of porous media with different properties 

from the underlying main soil is a simple means of controlling evaporation losses.  

2.2.6.2 The effect of the depth of the evaporating surface  

Yamanaka et al. (1997) conducted five different wind tunnel experiments, and developed a 

simple energy-balance model in which surface moisture availability was represented by 
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evaporating surface depth. The model could estimate not only the latent heat flux but also the depth 

of the evaporating surface. They verified the model by experiments under steady state atmospheric 

conditions. They demonstrated the significance of the depth of the evaporating surface as a 

determining factor for surface moisture availability. 

2.2.6.3 The effect of surface roughness, crack and deformation 

Sattler and Fredlund (1989) demonstrated how heave and settlement in expansive clay soils 

are affected by evaporation. Silvestri et al. (1990) showed settlement problems in lightweight 

structures founded on Champlain clays in Montreal to be strongly controlled by potential 

evapotranspiration.  

Moisture-induced suction changes in expansive soils due to infiltration and evaporation 

result in failure of civil infrastructures. Deformations in expansive soils closely match cyclical 

suction changes corresponding to seasonal weather variations. Volume changes fluctuated close 

to the ground surface and gradually decreased with depth (overburden pressure) due to isolation 

from meteorological effects. The top 2 m depth was found to be the active zone susceptible to 

moisture variations (Ito et al., 2014). 

Crack development in soils and the associated potential for higher evaporation rates are 

pertinent to many agricultural and engineering applications. Many researchers have attempted to 

model crack formation though none have succeeded to comprehensively capture it (Djalal, 2014). 

2.2.6.4 The effect of water retention or soil water characteristic curve (SWCC)   

Soil water characteristic curve (SWCC) or water retention curve presents the relation between 

volumetric water content and suction. As Figure 2.4 shows, in coarse sands volumetric water 
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content decreases at lower suctions than in find sands. Similarly, in sands, volumetric water content 

decreases at lower suctions than in fine grained soils, such as clay. The suction beyond which a 

sharp decrease in volumetric water content occurs is called the air entry value (AEV). This value 

is lower for coarse grained soils than for fine grained soils. Figure 2.4 shows SWCCs for coarse 

and fine sands (Yanful & Mousavi, 2003).  

Figure 2.4 Soil water characteristic curves for the studies soils (Yanful & Mousavi, 2003). 

To model soil moisture dynamics, water retention curves approaching infinitely negative 

matric potentials at residual water content are widely employed. Regarding numerical simulations, 

these retention curves fail to satisfactorily describe evaporation from arid soil because they do not 

allow the soil to dry below residual water content. Ciocca et al. (2016) introduced simple 

modification to prevent unrealistic water retention at residual water content. This might reduce the 
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need to introduce empirical enhancement factors. This may also improve the capability of 

modeling evaporation into the atmosphere in arid regions. 

2.2.6.5 The effect of layered soils 

Evaporation in layered porous media is influenced by the thickness and sequence of layers 

and capillary characteristics of each layer. Shokri et al. (2010) proposed a composite characteristic 

length to predict drying front depth at the end of a period with a high and constant drying rate 

(stage I evaporation) from layered porous media. The model was tested in laboratory experiments 

with alternating layers of coarse and fine sands. Different combinations of thicknesses and 

positions were considered.  The results showed that air invasion at the interface between fine and 

coarse layers leads to a capillary pressure jump, and this in turn, causes relaxation, which 

significantly modifies the liquid phase distribution, compared to evaporation from homogeneous 

porous media. Insights from this study are useful for designing capillary barriers for reducing 

evaporative losses (Shokri et al., 2010). 

2.2.6.6 The effect of soil air pressure gradient  

Zeng et al. (2011) developed a vertical 1D two-phase heat and mass flow model that fully 

considers diffusion, advection, and dispersion. The proposed model was calibrated and used to 

investigate the advective effect in low permeability and high permeability soils. The results of the 

study showed that there is an underestimation of evaporation when airflow is neglected. This is 

more evident in low-permeability soils. 

2.2.7 The effect of atmospheric parameters on evaporation 

In order to predict evaporation, the heat and moisture flow equations should be coupled with 

the atmosphere through the evaporation, precipitation and heat flux. This could be performed by 
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evaluating the boundary conditions at the soil-atmosphere interface for the heat and moisture flow 

equations. Atmospheric coupling is achieved by calculating the soil evaporative flux. This flux is 

a function of vapor pressure gradient between the soil surface and the atmosphere (MEND, 1996). 

Rianna et al. (2012) investigated the interaction between soil and atmosphere in pyroclastic 

soils to understand the influence of meteorological factors on soil variables (essentially water 

content and suction). Because particular interest of the work lied in the influence of evaporation, 

a physical model was set to quantify evaporation fluxes and the influence they have on fluctuations 

in soil water content and suction.  Their results indicated that soil variables, which typically control 

stability conditions (suction and water contents) may be related not only to precipitation and 

drainage as traditionally found in the literature, but also to other atmospheric variables including 

temperature, humidity, wind speed, and solar radiation. Also, according to this study, evaporation 

exerts a significant influence on suction fluctuation and cannot be neglected in interpreting or 

predicting groundwater and slope behavior. 

Atmospheric conditions control the rate of evaporation as long as the moisture content near 

the surface is sufficiently close to saturation. However, the atmospheric effect decreases drastically 

and evaporation is controlled mostly by the conductivity properties of the soil, as soon as the 

surface is drying, referred to as the falling rate stage or stage II (Brutsaert, 2013). 

2.2.7.1 The effect of temperature and radiation  

Experiments under non-steady state atmospheric conditions indicated that the transient phase 

transition of soil water in the drying soil layer can occur with dramatic change in radiation 

conditions. Therefore, to exactly simulate the diurnal variation of surface energy balance, the 
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transient phase transition must be accounted for in the energy balance model (Yamanaka et al., 

1997). 

2.2.7.2 The effect of air velocity and wind speed  

Evaporation exhibits nonlinear behavior due to enhanced diffusive fluxes from increasingly 

isolated active pores. Wind tunnel experiments showed that in contrast with nearly constant 

evaporation rates obtained at low atmospheric demand (typically <5 mm/day), evaporation fluxes 

under high atmospheric demand (high air velocities) exhibit a continuous decrease with surface 

drying even in the absence of internal capillary flow limitations (Shahraeeni et al., 2012). 

Turbulent airflows near the Earth’s surface introduce complex boundary conditions that 

affect vapor, heat, and momentum exchange rates with the atmosphere (Haghighi & Or, 2013). 

In an effort to develop methods based on integrating the subsurface boundary layer to 

estimate evaporation, Davarzani et al. (2014) developed a model and tested it using experimental 

data to study the effect of wind speed on evaporation. Their results demonstrated that increasing 

the wind speed increases the first stage evaporation rate and decreases transition time between 

stages I and II of evaporation.  

Smits et al. (2015) developed an experimental apparatus, whichconsisted of a soil tank and 

a small climate controlled wind tunnel both with sensors for the continuous in situ measurement 

of pertinent soil and atmospheric variables, including wind speed, relative humidity, soil and air 

temperature, to study the effects of atmospheric forcing on evaporation.  They aimed to 

experimentally study evaporation under various surface boundary conditions to improve the 

current understanding of this multiphase phenomenon.  
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Based on the results of their study, Smits et al. (2015) emphasized that evaporation is directly 

influenced by the interactions between the atmosphere, land surface and soil subsurface, and 

increasing wind speed leads to an increased evaporation rate and shortened stage I evaporation 

duration. However, increasing wind speed beyond 3 m/s shows little additional impact on stage I 

evaporation. Meanwhile, stage II evaporation was governed primarily by properties of the porous 

medium, and is independent of or only slightly influenced by wind speed (Smits et al., 2015). 

2.2.7.3 The effect of air relative humidity 

Relative humidity is the ratio of the current humidity of the air to the maximum amount of 

vapor air can hold at a given temperature. The rate of evaporation at a given place is always 

dependent on the humidity of that place because if the air is already filled with water vapor, it will 

not have any place to hold excess vapor and therefore, evaporation will occur at an extremely slow 

rate (FAO website, 2017; Gupta & Cosmato, 2011; among others). Relative humidity of the 

evaporating soil is a different issue, which affects evaporation from soil and is discussed in 

“Wilson method” in subsection 2.2.5.4 of this review, and “Atmospheric coupling and estimating 

evaporation” in section 3.3 of Chapter 3. 

2.2.8 The effect of climate change on evaporation 

Global warming may affect rainfall and surface evaporation, both of which, in turn, affect 

the ground’s moisture content. Measuring evaporation from a land surface is not easy. It can 

readily be inferred only over large areas and long periods of time. Actual rates of evaporation from 

land surfaces are decreasing in ‘wet’ areas but in the more prevalent ‘damp’ areas, the increase of 

evaporation is associated with slightly more soil moisture (Linacre E. T., 2004). 
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Oceans are the source of 86% of the global evaporation and the receiver of 78% of global 

precipitation (Lagerloef et al., 2010). Evaporation is a key component of the global water cycle 

and an enhanced global oceanic evaporation implies a changing global water cycle. A 

hydrographic data-based study by Curry et al. (2003) presented evidence of a 5%-10% increase in 

evaporation (Yu, 2007).  Thus, the study of the effects of environmental parameters on evaporation 

paves the way to study the effect of climate change (Douville et al., 2013; Stocker et al., 2013). 

Climate change has the potential to affect all of these parameters in a combined way. 

Therefore, any change in climatic parameters due to climate warming will affect the potential for 

evaporation. There remains a considerable amount of uncertainty concerning the magnitude and 

spatial distribution of evaporation in response to a changing climate. Thus, the study of the possible 

effects of climate warming on evaporation is an attracting considerable interest (Su et al., 2015).  

2.2.9 The effect of suction on evaporation 

Figure 2.5 shows the effect of total suction on evaporation and the proportion of actual 

evaporation to potential evaporation. As the figure shows, actual evaporation is almost equal to 

potential evaporation for suctions less than or equal to 100 kPa with Regina clay and Beaver Creek 

sand, and for suctions less than or equal to 30 kPa for Custom Silt. Actual evaporation is still more 

than 90 to 95% of potential evaporation for suctions less than or equal to 1000 kPa for the sand, 

silt and clay. For more suctions, actual evaporation decreases with a higher slope relative to 

potential evaporation. The slope becomes higher for suctions greater than approximately 20,000 

kPa. 

2.2.10 Modeling evaporation 

The lowest atmospheric layer is characterized by large vertical gradients of temperature, 
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Figure 2.5 Effect of total suction on evaporation (Wilson et al., 1997). 

humidity, and wind velocity. A numerical model of the atmosphere-soil boundary layer was 

developed to simulate heat and moisture exchange between atmosphere and soil (Sasamori, 1970). 

The atmospheric and soil equations were solved using energy and water mass conservation and 

the local thermo-dynamic equilibrium of temperature and humidity. The model was applied to the 

study of energy balance on the soil surface. The specific concern was the wetness of the soil, and 

the model simulated the clearly distinct characteristics of the energy balance depending on the 

wetness of the soil. Based on the results of the simulation, if the surface is sufficiently wet, most 

of the net radiative energy is transformed to latent heat released into the atmosphere. However, for 

the soil with deficient water the latent heat becomes negligible and most of the net radiation is 

transformed into sensible heat (Sasamori, 1970). 

Wilson (1994) presented a theoretical model for predicting the rate of evaporation from soil 

surfaces. The model was based on a system of equations for coupled heat and mass transfer in soil, 

and was used to predict soil evaporation rates for a controlled column evaporation test over a 42-
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day period. The values computed by the model agreed well with the values measured for two 

columns of Beaver Creek sand in their evaporation test. 

Katata et al. (2007) developed a 1D soil model to better predict heat and water exchanges in 

arid and semiarid areas. They incorporated the calculation of evaporation and adsorption in the 

soil in their model. The good performance of the model was confirmed by comparison of the model 

results with the measured results in the Negev Desert, Israel. They resulted that evaporation and 

adsorption processes in the soil have a large impact on the heat and water exchange between the 

atmosphere and land surface, and are necessary to accurately predict them. 

Although numerical simulations provide a valuable tool in developing designs and predicting 

general barrier performance, they have limitations when it comes to detailed system performance. 

For example, if numerical simulations are based on inadequate representations of an actual system, 

or do not recognize the key processes involved, or use parameters with large uncertainties, the 

potential for large errors exists (Guo & Dixon, 2010). 

A finite-element numerical simulation of heat and moisture regimes using the original theory 

of Philip and de Vries was applied by Novak (2010) to a bare silt-loam soil drying during a 10-

day rain-free period. Based on the results, a narrow subsurface evaporation zone developed daily 

when the surface became dry enough. The subsurface evaporation zone moved down and up most 

days due to drying and rewetting. Very fine grids near the soil surface were required to simulate 

this behaviour correctly (Novak, 2010). 

Although numerical simulation models for soil water flow and heat transport allow 

estimation of evaporation rates from unsaturated soils (Saito et al., 2006), determination of soils’ 
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required thermal and hydraulic parameters for the parameterization of the model is laborious 

(Sakai et al., 2011). 

To quantify the specific roles of liquid bridges and of local thermal and capillary gradients 

on vapor transport at the pore scale, Shahraeeni et al. (2012) considered a mechanistic pore scale 

model of evaporation and condensation dynamics as a building block for quantifying vapor 

diffusion through partially saturated media. Simulations of vapor diffusion with isolated liquid 

phase bridges revealed that enhanced vapor diffusion under isothermal conditions reflects a 

reduced gaseous diffusion path length. As liquid phase saturation increases, capillary transport 

becomes significant and pore scale vapor enhancement is limited to low water contents as 

postulated by Philip and de Vries. According to calculations, with a mild thermal gradient water 

vapor flux could be doubled relative to diffusion of an inert gas through the same system. 

Smits et al. (2012) tested different conceptual and mathematical formulations that are used 

to estimate evaporation from bare soil. They critically investigated various formulations and 

surface boundary conditions. To do this, they modified a previously developed theory and 

developed a numerical model with ability to incorporate these boundary conditions.  Their results 

showed that the approaches based on different boundary conditions varied in their ability to capture 

different stages of evaporation. They resulted that all approaches have benefits and limitations, 

and no one approach is most appropriate for every scenario, and there is a need for further research 

on heat and vapor transfer processes in soil for better modeling accuracy. 

Haghighi & Or (2013) proposed a diffusion-turbulence evaporation model to improve the 

estimation of field-scale evaporative fluxes from drying soil surfaces under natural airflows. The 

model captures nonlinearities between surface water content and evaporation flux during drying 
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of porous surfaces. The analysis showed that neglecting diffusion in the longitudinal direction may 

lead to underestimation of evaporative mass losses from porous surfaces (Haghighi and Or, 2013).  

With respect to models of water content redistribution, many numerical approaches are 

available nowadays by employing different finite difference and finite element methods (Teng et 

al., 2014). Trautz (2016) used COMSOL Multiphysics software for all numerical simulation with 

support from MATLAB. COMSOL is a finite element analysis software and has a number of 

predefined modules that allow the user to easily select the partial differential equations of interest 

with solvers that are capable of implicitly solving nonlinear problems. He reported that larger 

evaporation rate was observed in the tightly packed soil region than in the loosely packed soil 

region. He also observed that stage I evaporation was sustained longer in tightly packed soil region 

than in the loosely packed soil region. 

2.2.11 Computer programs to estimate evaporation 

There are few computer programs that used atmospheric coupling in their formulations. 

SOILCOVER (1994) and its 2D version, VADOSE/W (2002), are soil-atmospheric flux models 

that link the subsurface saturated/unsaturated groundwater system and the atmospheric system 

above the soil in an attempt to represent the soil-atmosphere continuum. The above-mentioned 

programs use the modified Penman equation proposed by Wilson (1990) and estimate potential 

and actual evaporations. However, they do not couple equilibrium equation with flow equations 

and cannot calculate stress and strain to estimate displacement in soil surface, which affects 

evaporation. 

2.3 UNSATURATED SOIL 

2.3.1 The importance of unsaturated soil 
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The accelerating pace of development throughout the world places increasing demands on 

the unsaturated zone. Unsaturated or vadose or aeration zone is the portion of the earth’s surface 

that encompasses the soil and unsaturated sediments that lie above the water table. The unsaturated 

zone affects the movement of water, nutrients, chemicals, pathogens, and contaminants to (and 

sometimes from) water table. Of special importance from a vadose-zone perspective are 

contaminants that have been buried in or released to the unsaturated zone, or contaminants that 

have been or will be disposed in special vadose zone facilities such as landfills (Fayer, 2000). 

Delage (2002) presented experimental systems and procedures of investigating the hydro-

mechanical behavior of unsaturated soils. He commented on the water retention properties of 

unsaturated soils and linked those to various physical parameters and properties of the soils.  

A large number of engineering problems are associated with unsaturated soils. One of the 

most common problems is the collapse of materials such as loess, or loosely compacted fills, which 

could undergo large settlements after wetting under large stresses. The shear failure of these 

materials is another major problem. Therefore, a sound understanding of the mechanical behavior 

of this type of material is required so that the engineer can devise safe and cost-effective solutions 

to these problems (Jotisankasa, 2005). 

A simplified approach with ignoring unsaturated flow above the phreatic surface is no longer 

acceptable, because it not only ignores an important component of moisture flow in soils, but also 

greatly limits the types of problems that can be analyzed. It is mandatory to deal with unsaturated 

flow in actual situations such as transient flow problems (GEO-SLOPE, 2008). 

Knowledge of moisture diffusivity properties is required to predict water transport through 

unsaturated porous media. Obtaining realistic estimates of the moisture diffusion properties of 
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unsaturated soils is essential for many geotechnical engineering applications. The performance of 

the structures constructed on unstable and expansive unsaturated soils is significantly affected by 

vertical deformations of the supporting local subgrade soils. Such deformations are controlled by 

suction variations in soil. In comparison to saturated soils, water movement in unsaturated (vadose) 

zone is far more complex due to  the fact that hydraulic conductivity and water content versus 

suction are nonlinear in unsaturated soils (Mabirizi & Bulut, 2009). 

Subsurface airflow in unsaturated zones induced by natural forcing can affect evaporation 

and the unsaturated soil condition. This is important in many environmental and engineering fields, 

including environmental remediation, water infiltration and groundwater recharge, coastal soil 

aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere (Kuang et 

al., 2013).  

2.3.2 Evaporation from unsaturated soil 

Feddes et al. (1988) reviewed the principles underlying water dynamics in the unsaturated 

zone and gave an overview of simulation modeling of soil water flow in the vadose zone. They 

also presented several practical examples of simulation of flow problems. Soil water flow is highly 

nonlinear, as both the hydraulic conductivity and the soil water pressure head depend on the soil 

water content. Exact analytical solutions are only possible for simplified flow under restrictive 

assumptions. However, numerical solution of the flow equation offers a powerful tool to 

approximate the real nature of the unsaturated zone for various soil systems. 

Water movement through soils goes through a three-component system consisting of soil-

atmosphere interface, near surface unsaturated zone, and deeper saturated zone. In the past, 

groundwater modeling focused primarily on the saturated zone. This focus created a discontinuity 
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in modeling the natural system because unsaturated zone and soil-atmosphere interface were not 

represented. Advances in unsaturated soil technology during the past decades led to the routine 

modeling techniques for saturated/unsaturated soil systems. However, the evaluation of the flux 

boundary condition imposed by the atmosphere was not that easy (Wilson et al., 1994).  

 For an infiltration or evaporation problem, a numerical solution using a finite difference 

method is sensitive to its upper boundary condition and the related soil parameters. |On the other 

hand, using a traditional finite element method usually yields oscillatory non-physics profiles (Xie 

et al., 1999). To address this concern, Xie et al. (1999) established a numerical model for the 

unsaturated flow equation with moisture content as prognostic variable in order to simulate liquid 

moisture flow in an unsaturated zone with homogeneous soil, and different initial and boundary 

conditions. 

Benson (2007) used four different codes to simulate unsaturated flow with atmospheric 

interactions. Each code incorporated boundary conditions that reflect atmospheric fluxes. 

Although the codes were similar conceptually and functioned in a similar manner, they comprised 

different algorithms, and therefore yield different predictions for the same input. A field validation 

exercise conducted considering three of the codes demonstrated that the predictions appeared 

realistic regardless of which code was being used. However, each code provided a different 

prediction, and none of the predictions were in agreement with the field measurements.  

Benson (2007) attributed the differences in predictions, to some extent, to differences in how 

the atmosphere boundary was implemented. He suggested more research should be conducted to 

refine how this boundary should be implemented in numerical models. This is particularly 

complicated by the fact that the space and time evolution of the soil water content in an unsaturated 
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medium is highly nonlinear due to dependence of both hydraulic conductivity and the soil water 

potential on the soil water content (Teng et al., 2014). 

2.3.3 Isothermal and non-isothermal behavior of unsaturated soil 

Ground heat transfer problems in unsaturated soil occur across a range of engineering 

disciplines. Typically, the phenomenon is important in energy conservation, soil heating, buried 

electrical cables, ground freezing, soil shrinkage, the design of nuclear waste disposal systems, and 

geotechnical structures such as soil covers with atmospheric coupling. Ewen and Thomas (1989) 

stated that, in many cases, the ground would be unsaturated and the coupled influence of moisture 

migration is important.  On the other hand, the deformation of porous media is significant in 

engineered clay barriers and soil covers. If this deformation is considered as well, the coupling 

effects among deformation, moisture, and heat should be accounted for. 

One of the basic aspects of non-isothermal behavior of unsaturated porous media is the 

simultaneous movement of heat and moisture. In saturated soil, the coupling is very strong, 

especially in the presence of large temperature gradients (Moradi et al., 2016). In saturated soil the 

moisture movement takes place in the liquid phase only. However, in unsaturated soil it occurs in 

both the liquid and vapor phases. Because of the complex nature of pore spaces and the force field, 

which acts on the vapor and water, this process is more complex in unsaturated soils. 

The modeling of infinitesimal deformation of unsaturated porous media is an important part 

of establishing a theoretical framework of non-isothermal behavior for such material. Gatmiri and 

Delage (1995) constructed the basis for development of the non-isothermal theory. The model was 

developed along similar lines to that of Alonso et al. (1988). The main differences lie in the 

relationship between strain increments and net stress increments, and the assumption of hyperbolic 

variations for both bulk modulus (K) and Young modulus (E).  



33 
 

These differences led to a new formulation of the equation of void ratio state surface, which 

incorporated the two widely used independent variables, i.e., net stress and suction as the state 

variables. This facilitated the description of water and air pore pressures distributions, and the 

deformation of porous medium. The coupling effects among suction-stress-deformation were taken 

into account by introducing the concept of the state surfaces of void ratio and degree of saturation 

(Gatmiri & Delage, 1995). 

Gatmiri (1997) formulated a framework of non-isothermal behavior of unsaturated porous 

media. His study presented a set of fully coupled thermo-hydro-mechanical equations for saturated 

and unsaturated porous media. In that formulation, heat and moisture transfer equations in an 

alternative form based on water and air pore pressures were presented for unsaturated soil. The 

effects of deformations on the temperature and suction distribution in porous medium, and the 

inverse effects were also included in this formulation, which was achieved via a new temperature-

dependent formulation of state surfaces of void ratio and degree of saturation. He assumed 

nonlinear (hyperbolic) constitutive law and the mechanical and hydraulic properties of the porous 

media were considered to be temperature-dependent. The effects of non-homogeneity of soil and 

phase changes were also introduced.  

2.3.4 Stress-strain behavior and deformation of unsaturated soil  

In order to simulate the behavior of unsaturated soil, early studies attempted to define a single 

parameter that describes the behavior of unsaturated soil.  These studies intended to combine three 

variables, i.e., stress (), air pore pressure (Pa), and water pore pressure (Pw), into a single effective 

stress ´. The first such single parameter approach, is the  factor proposed by Bishop (1959). 

However, several researches (Jenning and Burland, 1962; Bishop and Blight, 1963) demonstrated 
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the major limitations of the approach of Bishop (1959), i.e. not considering the fundamental 

difference in the behavior of saturated and unsaturated soils. In fact, “total stress” and “suction” 

contribute to the soil grain stability, and as two independent stress state variables shape the behavior 

of unsaturated soil. 

Coleman (1962), Bishop and Blight (1963) formed the basic frame work of the approach of 

two-stress state variables. Fredlund and Morgenstern (1976, 1977) showed that any pair of three 

stress parameters of -Pa, -Pw, Pa-Pw would be sufficient to describe the mechanical behavior of 

unsaturated soil. In fact, the set of two-stress state variables is a suitable set of independent stress 

state variables because no distortion or volume change of an element occur when the individual 

components of the stress state variables (, Pa and Pw) are modified while the stress state variables 

are kept constant (Fredlund & Morgenstern, 1977). The net total stress -Pa, and suction Pa-Pw are 

the most commonly used variables, because they separate the effects of total stress and suction.       

Various constitutive laws have been developed. One of the constitutive laws was the 

incremental elastic formulation suggested by Coleman (1962), and later by Fredlund (1979). 

Another constitutive law is based on the state surface concept, which was developed in order to 

describe the volumetric behavior of soil under the coupled effects of net stress and suction changes 

(Fredlund and Rahardjo, 1993).  

Matyas and Radhakrishna (1968) presented experimental data for state surfaces of void ratio 

and degree of saturation. Fredlund (1979) suggested explicit mathematical expressions for both 

state surfaces. Lloret and Alonso (1980) gave alternative expressions for the state surfaces of void 

ratio and degree of saturation. Gatmiri and Delage (1995) presented explicit expression of void 

ratio state surface compatible with nonlinear elastic (hyperbolic) constitutive law. 
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2.3.5 Modeling unsaturated soil 

Based on the approach proposed by Alonso et al. (1988), a nonlinear elastic model of 

unsaturated soil using the new state surface formulations was developed (Nanda, 1989). This model 

was incorporated in finite element code U-DAM (Gatmiri, 1992), and was used for modeling the 

coupled flow-deformation of unsaturated soil (Gatmiri & Delage, 1995).  

Dye et al. (2011) performed One-dimensional modeling of expansive soil under dry initial 

conditions (suction of 1,500 kPa) considering both infiltration and evaporation. It was found that 

small variations in the unsaturated soil hydraulic conductivity function result in significantly 

different modeling outputs, as expected, while substantial variation in SWCC alone produced 

almost identical soil response in terms of soil suction when the slope of the SWCC is similar. 

Therefore, proper characterization of the slope of the SWCC is important to proper suction profile 

determination (Dye et al., 2011). 

2.4 THERMO-HYDRO-MECHANICAL (THM) ANALYSIS 

The presence of heat in a geologic medium causes a chain of events. These events are caused 

by what is called “coupled thermal-hydraulic-mechanical (THM) phenomenon”. The 

interdependence of each of these three phenomena leads to a coupled behavior that is very complex. 

However, progress in coupled analyses among pairs of these three phenomena provides a basis for 

treating all three phenomena in a fully coupled manner. 

THM analysis of geo-environmental phenomena and processes acquired increasing 

importance in research studies and geotechnical engineering applications. The next subsection 

briefly explains this fact. 
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2.4.1 The importance of THM analysis 

Thermo-hydro-mechanical (THM) coupled processes in porous media are important in many 

geotechnical engineering problems such as nuclear waste disposal, oil extraction, and geothermal 

energy and need to be addressed as a THM coupled problem (Schanz 2004; Vardon et al., 2009). 

Although some commercial analysis tools are already available, there is a need to develop fully 

coupled and efficient THM codes that can deal with real world problems (Wang et al., 2007). 

 Transport phenomena, which occur in porous multiphase materials involve interaction of 

the phases with each other rendering THM coupling even more important. Moreover, in 

Environmental Geomechanics, it is common to find non-isothermal situations; therefore, attention 

should be given to the mechanisms involving heat transport. The incorporation of a thermal 

component leads to numerous additional interactions between phenomena, and inevitably, a high 

degree of complexity (Gens & Olivella, 2011). 

Haxaire et al. (2011) described the governing equations of a fully coupled THM analysis for 

deformable porous media and highlighted the significant need for practical THM applications, in 

particular for geo-environmental and geo-energy related problems. The THM phenomenon even 

starts at the molecular level because temperature is associated with the motion of molecules within 

a material and this motion is directly related to the kinetic energy of the molecules, including 

vibrational and rotational motion (Sen, 2015).  

2.4.2 Coupled THM phenomenon 

Two pioneer studies on moisture movement in soil were carried out at the beginning of the 

last century. The first study investigated the effect of thermal gradient on the soil moisture 

movement (Bouyoucos, 1915). He observed that the moisture moved from the warm side to cold 
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side in a soil sample and concluded that the flow occurs largely in the liquid phase. The second 

study investigated the moisture movement in both liquid and vapor phases with and without a 

thermal gradient (Lebedeff, 1927). He reported that surface adsorption and water movement in the 

vapor phase are the critical components in determining the amount of water retained. He also 

studied the distribution of water within sand as a function of the height above the water table. He 

noted that below a certain value of water content, an increase in suction had little effect on the soil 

water content.  The details of his works were reported by Rollins et al. (1954). 

Following these pioneering studies, significant research was focused on understanding the 

physics and nature of the coupled thermal-hydraulic-mechanical phenomenon in porous media. 

Smith (1943) conducted laboratory tests in order to investigate the moisture movement in soil, 

focusing on the relative importance of the vapor versus liquid flows in moisture transfer. After 

observing negligible vapor diffusion, he suggested that the capillary liquid movement induced by 

vapor condensation should be considered as the mechanism of movement based on liquid flow.  

On the other hand, Croney and Coleman (1948) used the Kelvin equation (Tadros, 2013) to 

relate the vapor pressure to temperature and concluded that the moisture movement normally takes 

place in the vapor phase. They reported that for each soil, there is an optimum initial water content, 

at which the maximum water transfer takes place. Similarly, Gouda and Winterkorn (1949) and 

Winterkorn (1959) stated that the initial moisture content plays a significant role on the moisture 

movement.  

Several investigators assumed that all moisture movement takes place in the vapor phase. 

This assumption led to using modified Fick's law (1855) for porous media. The comparison 

between the theoretical results and laboratory tests’ results indicated that this assumption 
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underestimates the quantity of net water vapor transport by a factor of 3 to 10 (Gurr et al., 1952; 

Rollins et al.1954; and Abdel-hadi and Mitchell, 1981). 

Philip and de Vries (1957) and de Vries (1958) presented a basic framework and a 

comprehensive and representative theory of moisture and heat movement in an unsaturated and 

incompressible porous medium. In this theory, the moisture and heat transfer equations are 

formulated in terms of temperature (T) and volumetric moisture content (). Their theory assumes 

that the moisture transfer in unsaturated soil occurs in both vapor and liquid phases under combined 

influence of gravity and the gradients of temperature and moisture content. This theory 

differentiates between changes of moisture content in liquid and vapor phases. 

Owing to several agreements observed in various studies (Cassel et al., 1969; Dirksen, 1964 

among others), the theory of Philip and de Vries (1957) has been generally accepted in soil sciences 

and geotechnical engineering studies. However, it has some limitations that should be addressed. 

One of these limitations is the assumption of incompressibility of porous medium. This assumption 

is not realistic, especially in modeling the behavior of engineered clay barriers that are soft and 

significantly deformable. Meanwhile, the -based formulation is valid for homogeneous soil and 

cannot consider the hysteresis effects.  

In order to overcome these limitations, Sophocleous (1979) and Milly (1982) converted the 

-based formulation to a matrix head-based formulation in order to allow consideration of 

heterogeneity of soil and hysteresis effects in desiccation and re-saturation conditions.  

Dempsey (1978) presented a simplified version of de Vries' (1958) general formulation while 

Dakshanamurthy and Fredlund (1981b) presented formulations other than Philip and de Vries 
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(1957). Thomas (1987) presented numerical solution techniques, and Milly (1982) solved 

saturated/unsaturated soil example problems.  

Geraminegad and Saxena (1986) developed a THM model in which the soil deformation was 

considered. However, their model did not include soil deformations resulting from external 

loading. Instead, soil deformation was limited to volumetric deformation due to pore air pressure 

and suction changes.  

Devillers et al. (1996) reported test results for thermal consolidation of an unsaturated silty 

soil in a thermal triaxial apparatus. They observed that void ratio decreased when temperature 

increased independent of the stress state of samples and reported that thermal compression indices 

depend on stress state of sample. In addition, Villar et al. (1993) conducted laboratory heating tests 

to establish the steady state and transient variations of moisture content, temperature and 

volumetric deformations. 

The abovementioned researches advanced our knowledge of coupled thermo-hydro-

mechanical greatly, nonetheless the first step in developing a fully coupled THM model for 

unsaturated soil is choosing adequate independent variables. These variables should represent all 

significant interaction effects among the different components involved in the coupled process of 

a deformable unsaturated porous medium with three phases of porous medium, water and air under 

heating (Gatmiri, 1997).  

The phase changes between liquid and gas, evaporation, condensation, and induced moisture 

transfer under thermal and pore pressure gradients are important aspects in non-deformable 

unsaturated porous media. Also, the effects of moisture distribution on heat flow are important 

(Gatmiri, 1997). 
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Recent developments including successful implementation of the THM model in the finite 

element code CODE_BRIGHT (Olivella et al. 1996) and the in-situ experiments to validate the 

model and the work on the design of nuclear waste repositories allowed THM analysis to become 

a whole part of geomechanics (Haxaire et al., 2011). For example, Eslami et al. (2016) simulated 

heat dissipation over 180 days in the surrounding soil of buried electrical cables at unsteady state 

conditions to evaluate the coupled heat and moisture flow around the cables. They reported that 

the moisture flow was mainly caused by the vapor transport under temperature gradients and 

emphasized the significant effect of the hydrothermal characteristics of surrounding soil. 

2.4.3 THM analysis of unsaturated soil 

Wu et al. (2004) presented a THM constitutive model for unsaturated soils and investigated 

the thermal effect on the soil hydraulic properties. Particularly, they confirmed the thermal 

softening phenomenon, i.e. decreases in value of the pre-consolidation pressure and in critical 

value of the suction of the SI (suction increasing) curve with heating process. Likewise, Dumont 

et al. (2010) developed a simple THM constitutive model for unsaturated soils by extending the 

effective stress concept to unsaturated soils. They used a minimal number of material parameters 

based on existing models. The model was verified by evaluating the THM process qualitatively 

and quantitatively and comparing its predictions with experimental data and previous work.  

An unsaturated soil is a three-phase (solid, liquid, and gas) porous medium and contains 

multiple components. It is subject to the high temperature in some engineering applications, and 

there are complex interactions between thermal processes (T), fluid flow processes (H), and 

mechanical processes (M).  
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Gens & Olivella (2011) developed a mechanistic theoretical formulation encompassing the 

most relevant THM phenomena and their couplings. The formulation constituted four balance 

equations corresponding to water mass balance, air mass balance, internal energy balance and 

momentum balance. Mass balance equations were established in terms of species rather than 

phases. Advection term was neglected and Henry’s law was used to express equilibrium of 

dissolved air. This formulation can be incorporated into a suitable numerical scheme to analyze 

THM engineering problems involving unsaturated porous media.  

Qin et al. (2012) confirmed the necessity of coupled THM in many applications. 

Additionally, Cai et al. (2014) derived a coupled formulation based on hybrid mixture theory to 

model the THM coupling behavior of unsaturated soils. 

2.4.4 Modeling THM behavior 

The finite element method is the most employed numerical method to treat THM coupled 

problems. Rutqvist et al. (2001) presented governing equations for coupled THM processes in 

geological media and compared the formulations of four finite element programs. They concluded 

that the most apparent difference was the treatment of the gas phase. The investigated FE programs 

assumed constant and small gas pressure, implying that the gas phase is static and hence no vapor 

or heat is advected with the bulk gas flow. Thus, the dominant mode of vapor transport in the gas 

phase is by molecular diffusion caused by the vapor density gradient, which strongly depends on 

thermal gradient.  

Cola et al. (2008) used a fully coupled THM finite element approach to model the 

groundwater and saturation response of a typical salt marsh of the Venice lagoon in Italy subjected 

to tide fluctuation and flooding. The study showed the great importance of THM couplings to 
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explain the groundwater pressure evolution induced by lagoon tide cycles. Jeanne et al. (2014) 

performed a series of 3D simulations to study the influence of THM processes on the development 

of an enhanced geothermal system affected by a network of short fault zones. The developed model 

was calibrated by comparing the numerical results to field observations, including ground surface 

deformations. The results showed that the main mechanisms of induced seismicity are related to 

pressure increase caused by injection and cooling. 

On the other hand, Guo & Dixon (2010) highlighted the current limitations of using 

numerical simulations to predict detailed bulkhead performance. The models can use entirely 

appropriate physical, mechanical, and thermal formulations and relationships but they are often 

unable to capture the field construction’s “reality”.   

Lu et al. (2010) performed THM analyses on granite and clay barriers using a finite 

difference model to study the effects of high heat generated by high-level radioactive waste during 

their half-life period on deformation, stresses and pore pressure variation. They concluded that 

finite difference modeling is difficult due to the complicated geometry and physical condition and 

suggested to use a combination of different numerical methods like finite element, finite volume 

and their combinations.  

Similarly, Wang et al. (2011) compared the performance of two alternative flow models for 

the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-

isothermal Richard’s and two-phase flow concepts. They found that both models can be used to 

reproduce the vaporization process provided that the intrinsic permeability is relative high. 

However, when the intrinsic permeability is low, only the two-phase flow approach provides 

reasonable results.  
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2.5   THE APPLICATION OF THM ANALYSIS OF EVAPORATION ON SOIL 

COVERS 

Predicting the flow of water between soil surface and atmosphere is a critical issue in the 

design of soil covers used for mine tailings, acid generating waste rocks, and other land based 

disposal systems (Yanful, 1991). Maintaining a water saturated zone above tailings is necessary 

for soil covers to act as gas diffusion barriers for uranium and sulphide tailings (Yanful and St-

Arnaud, 1991). To accomplish this objective, evaporation from the cover surface should be 

predicted and minimized. 

The importance of evaporation for the water balance in soil covers is well documented, 

especially for covers located in arid or semi-arid areas. For example, Nyhan et al. (1997) found 

that 86% or more of the precipitation loss observed on soil covers was due to evaporation with 

only 2-3% due to runoff (Weeks & Wilson, 2003).  

The coupled heat and moisture transfer in a deformable, partly saturated porous medium 

deals with the interrelated effects of various phenomena, which usually lead to a highly non-linear 

problem with a great number of degrees of freedom at each node (Thomas et al., 1998).  This is 

further complicated when hydro-mechanical coupled effects are extended towards temperature and 

chemistry effects where the volume change is less documented, which deserves further 

investigation (Delage, 2002). 

In fact, the study of soil covers for waste disposal sites has largely become the study of how 

soils interact with the atmosphere. Therefore, climate conditions in the area of the cover has been 

a definitive factor. Earth-atmosphere interactions determine the fate of water added to the cover 

by precipitation, in terms of how much water evaporates back into the atmosphere, how much runs 
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off the cover, how much goes into storage within the soil pore space, and how much makes it 

through the cover into the waste material below (Weeks & Wilson, 2003).  

Yanful & Mousavi (2003) underscored the importance of evaporation as it controls the  

moisture regime and the moisture availability to vegetation. In engineering soil caps and covers  

used  for  environmental  protection, evaporation  and  evapotranspiration  rates  can  exert   

significant influence on suction, unsaturated hydraulic conductivity, and the overall water flux  

(Yang and Yanful, 2002).  

The design of such covers requires a prediction of the balance of precipitation, storage, 

runoff, evaporation or evapotranspiration. Evaporation is the most difficult part of this balance to 

obtain. In addition, the design of soil cover requires the computation of soil-atmosphere water 

fluxes through the cover as a function of soil properties and atmospheric forcing conditions 

(Gitirana et al., 2006). 

To investigate soil cover design options, it is necessary to analyze the anticipated cover long 

term performance. The challenge is maintaining a high degree of saturation in the cover over a 

long period. Both downward drainage of water from the cover towards the waste and upward 

evaporation from the cover towards the atmosphere should be prevented or at least minimized, 

especially during dry periods (Yanful et al., 2006).  

Another aspect that should be considered for compacted clay liners is the compaction of this 

barrier as it causes many problems. Additionally, the cover must keep its sealing function during 

the lifetime of the landfill and the waste monitoring period. It is very important to consider the 

potential differential settlements, because this phenomenon can induce bending strains in the clay 

layer and create damage (Camp et al., 2007).  
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Strain localization in a partially saturated soil with inhomogeneous degree of saturation is 

another concern worthy of consideration. Song et al. (2012) investigated this concern and 

demonstrated that a non-uniform degree of saturation could serve as an imperfection to trigger 

strain localization. They concluded that a fully coupled hydro-mechanical model is required to 

capture the relevant multiphase processes.  

2.6   SUMMARY AND CONCLUSIONS 

The literature review covered evaluation of evaporation, especially as applied to unsaturated 

soil in addition to the response of unsaturated soil to the gradients of moisture and temperature in 

the presence of stress and strain. The modeling of the unsaturated soil ended the section. The 

importance of THM analysis of unsaturated soil was emphasized, and modeling THM behavior 

was briefly explained along with the application of THM analysis of evaporation to soil covers.  

It is concluded that there is a pressing need for continuous research on evaporation in relation 

to unsaturated soil and THM analysis. Despite the significant amount of research conducted up to 

date, some important issues remain unresolved, and further research and analysis are needed.  For 

example, the computer programs widely used in industry for calculating the evaporation of soil 

covers do not account for the coupling of stress-strain state within the soil (i.e. equilibrium 

equation) with the water flow, vapor flow, air flow and heat flow equations. The stress-strain 

behavior of the soil affects its settlement, which changes void ratio and porosity on one hand, and 

permeability of the soil on the other hand. This can alter the evaporation characteristics 

significantly and should be accounted for in any reliable evaluation of the actual evaporation and 

the performance of soil covers.  
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Therefore, analyzing evaporation from unsaturated soil considering stress and strain in soil 

surface accompanied by a quantitative comparison of the effect of environmental parameters on 

potential and actual evaporation, analysis of sensitivity of the evaporation to the environmental 

parameters, and a parametric study are the three issues focused in this study. 
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CHAPTER 3  

THEORY AND NUMERICAL MODELING 

3.1 INTORDUCTION 

There are two approaches regarding the combined flow of moisture and heat in unsaturated 

porous media. One approach considers a combined soil atmosphere model by coupling atmosphere 

with soil. In this approach, the combined flow of moisture and heat in soil is coupled with 

atmosphere in soil surface as the boundary. Therefore, not only soil parameters but also 

atmospheric (environmental) parameters are involved in the analysis. This approach uses thermo-

hydro (TH) analysis and is not in deal with mechanical behavior of soil, and cannot estimate strain, 

stress and soil settlement, because it does not couple equilibrium equation with moisture and heat 

flow equations. This approach usually is used to deal with water balance in soil surface boundary 

considering water balance components including precipitation, infiltration and especially 

evaporation, which is very important in environmental geotechnique and related engineering 

structures such as soil covers, and could be estimated using this approach. 

The other approach regarding the combined flow of moisture and heat in unsaturated porous 

media uses a thermo-hydro-mechanical (THM) analysis. In this approach equilibrium equation is 

coupled with moisture and heat flow equations; therefore, strain and stress in soil could be 

estimated too. However, atmosphere is not coupled and atmospheric (environmental) parameters 

are not used in the analysis. As a result, evaporation cannot be estimated. In fact, in this approach 

analysis is performed only inside the soil. The analyses using this approach are performed for some 

engineering issues in environmental geotechnique field, such as nuclear waste storage. 
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To bring together the two abovementioned approaches, to be benefited from the advantages 

of both approaches, in this study equilibrium equation is coupled with moisture and heat flow 

equations, and at the same time the atmosphere is coupled through a soil-atmosphere model. 

Therefore, accompanied with soil parameters, atmospheric (environmental) parameters are used 

too, and not only quantities related to moisture, heat, strain and stress but also potential and actual 

evaporations could be estimated using program EVAP1, which is developed during this study. The 

numerical analysis is performed considering plane strain conditions using constitutional models 

formulated in two-dimensional (2D) finite element program. 

The THM formulation for unsaturated porous media is presented first. The developed 

program incorporates a nonlinear elastic model based on Duncan (1970) in which compatibility 

with the concept of the state surface of void ratio is ensured to describe the volumetric behavior 

(Gatmiri, 1997). The water transfer equation in the case of an unsaturated soil is established by 

considering both the liquid phase and the vapor phase (Gatmiri, 1997). This is based on the 

approach of Philip and de Vries (1957), which takes into account the transfer of water vapor and 

the liquid phase under the effect of temperature gradients from a realistic geotechnical viewpoint. 

The equations for the air movement are then introduced. The effect of the presence of heat in 

unsaturated porous media is taken into account as well. 

A soil-atmosphere model, which is based on energy exchange of soil-atmosphere system is 

then introduced. This model was used to describe and predict the evaporation rate. The soil-

atmosphere model facilitates the determination of the hydraulic and thermal conditions of water on 

the surface of the soil. The boundary conditions on the surface depend on atmospheric 

(environmental) parameters (air temperature, net radiation, relative humidity, and wind speed) on 

one hand, and soil conditions (temperature and suction) on the other hand. 
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Finally, the adopted method of numerical analysis is presented. 

3.2   Numerical studies for THM analysis 

Numerical studies in thermo-hydro-mechanical (THM) geo-materials at Centre deskinment 

et de Recherché en Mécanique des Sols (CERMES) in Paris were initiated to address the problem 

of nuclear waste storage at great depth, regarding the engineered and geological barriers. This 

research led to the development of the finite element code, θ-STOCK, incorporating THM coupling 

in storage barriers (Gatmiri, 1997). The code allows modeling of THM behavior of saturated and 

unsaturated porous media. 

Based on the results of experimental investigations of the non-isothermal behavior of 

unsaturated soils, Gatmiri (1997) proposed accounting for the transfer of liquid, vapor and gas 

phases under the effect of the moisture and temperature gradients in a deformable unsaturated soil.    

The proposed approach deliberately ignored the microscopic level, assuming that the 

concepts and principles of continuum mechanics are applicable with measurable macroscopic 

quantities. The thermal, hydraulic and mechanical loads are considered. Therefore, the studied 

fields are the displacement of the porous medium, the pressure of the fluid and gas (including water 

vapor and dry air), and the porous medium temperature. The three aspects, thermal, hydraulic and 

mechanical phenomena, interact strongly and are treated as fully coupled phenomena. Thus, a strict 

thermo-hydro-mechanical connection is fully established for geo-environmental applications.  

The porous medium is constituted of three continuous phases:  a deformable porous medium 

with connected pores, and two fluids which are present in various forms (liquid, vapor, and dry 

air). Thermal, hydraulic and mechanical parameters are needed to define the medium. The 

independent variables used in this approach are: net stress, 𝜎ij – δij pg; suction, pg – pw; and 
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temperature, T. Therefore, the describing fields of the porous medium consist of six unknowns: 

three displacements, ux (x, t), uy (x, t), uz (x, t); two pressures, p1 (x, t), p2 (x, t), i.e., pore water 

pressure, pw (x, t) and gas pressure including water vapor and dry air, pg (x, t); and Temperature, T 

(x, t). 

The main points of the approach developed by Gatmiri et al. (1993) are briefly presented first. 

This relates to heat transfer, moisture transfer, and a deformation in unsaturated porous medium. 

The thermal state surfaces of void ratio and degree of saturation, used to describe the coupled 

effects of temperature, moisture and the deformation of porous medium are briefly explained. The 

full form of the field equations and spatial and temporal discretizations, as well as the general 

algorithms of θ-STOCK and EVAP1 codes are presented. 

In the developed formulation, two theories were modified and combined to describe the 

coupled behavior of unsaturated porous media under heating. On one hand, the nonlinear theory is 

extended to non-isothermal conditions (Gatmiri, 1997) to describe the non-isothermal behavior of 

unsaturated soils under the coupled effects of net stress and suction. In this extension, statements 

for state surfaces of void ratio and degree of saturation proposed by Gatmiri (1995) are used. On 

the other hand, the Philip and de Vries (1957) theory of heat and moisture transfer is modified to 

take into account the deformation of the porous medium. This fully coupled approach is presented 

in a new suction based formulation, which is more suitable for combination with the theory of 

deformation of unsaturated soils. 

3.2.1 Constituent water 
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Moisture is composed of two phases: liquid water and water vapor. As indicated by Philip 

and de Vries (1957), the term "liquid transfer" is used for water transfer exclusively in liquid phase. 

The transfer of water vapor is called "Vapor transfer". 

3.2.1.1 Moisture transfer (liquid water + water vapor)  

The transfer of water vapor into an unsaturated soil was described based on the approach of 

Philip and de Vries (1957). The equations related to the transfer of liquid water and water vapor 

are combined as below (Gatmiri, 1997): 

   
q

ρw
=

qv

ρw
+

qliq

ρw
= V + U = −(DT∇T − Dθ∇θ − Dw∇Z)                        Eq. 3.1 

where  

DT: thermal diffusivity of moisture, which is equal to the sum of heat diffusivities of liquid water 

and water vapor  

Dθ: isothermal moisture diffusivity, which is equal to the sum of the isothermal diffusivities of 

liquid water and water vapor 

Dw∇Z: gravitational part of the equation 

Liquid phase transfer was described by Darcy's law, and  
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where 

Kw: hydraulic conductivity 
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K awzo

e 10
=  initial hydraulic conductivity in Z direction   

Sr: saturation degree of the soil 

Sru: residual saturation degree of the soil 

𝜇𝑟: dynamic viscosity of water at any arbitrary reference temperature   

𝜇𝑇: dynamic viscosity of water at any temperature 

a, b & α: constants  

A hydraulic conductivity variation pattern versus temperature and degree of saturation is 

shown in Figure 3.1. 

3.2.1.2 Conservation of the mass of moisture (liquid water + water vapor) 

The equation of moisture mass conservation is written in a similar way to the moisture 

transfer: 

𝜕(𝜃𝜌𝑤+(𝑛−𝜃)𝜌𝑣)

𝜕𝑡
=

𝜕(𝑛𝑆𝑟𝜌𝑤+𝑛(1−𝑆𝑟)𝜌𝑣)

𝜕𝑡
= −𝑑𝑖𝑣(𝜌𝑤(𝑈 + 𝑉))                                                  Eq. 3.3 

where 

V: velocity of the water vapor  

U: velocity of the liquid water  

θ: volumetric water content  

n: porosity  

Sr: degree of water saturation 
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ρw and ρv: densities of water and vapor, respectively. 

 

 

Figure 3.1 Water permeability (m/s) variation with temperature and degree of saturation (Gatmiri 

and Arson, 2008).                                           

The introduction of the thermal state surfaces of degree of saturation and void ratio, is an 

important aspect of the approach developed by Gatmiri and Delage (1995). These surfaces are 

described in the following sections. The thermal state surface of saturation degree connects the 

variation of the degree of saturation to the states of the suction, temperature and net stress.  

The concept of the water retention curve, i.e. soil water characteristic curve (SWCC), which 

considers the effect of suction on the change of water content, is extended to consider the variations 

of temperature and net stress in the soil. 
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By combining Equations (3.1) and (3.3), the final form of the differential equation for 

moisture transport in unsaturated soil is obtained as:  

𝑛𝑆𝑟 (
𝜕𝜌𝑤

𝜕𝑇
|𝑃𝑤=𝑐𝑡𝑒)

𝜕𝑇

𝜕𝑡
+ 𝑛𝑆𝑟 (

𝜕𝜌𝑤

𝜕𝑃𝑤
|𝑇=𝑐𝑡𝑒)

𝜕𝑃𝑤

𝜕𝑡
+ (𝜌𝑤 − 𝜌𝑣)𝑛

𝜕𝑆𝑟

𝜕𝑡
+ (𝑆𝑟𝜌𝑤 + 𝜌𝑣(1 − 𝑆𝑟))

𝜕𝑛

𝜕𝑡

+ 𝑛(1 − 𝑆𝑟)
𝜕𝜌𝑣

𝜕𝑡
= 𝑑𝑖𝑣(𝜌𝑤𝐷𝑤∇𝑍) + 𝑑𝑖𝑣(𝜌𝑤𝐷𝑇∇𝑇) + 𝑑𝑖𝑣(𝜌𝑤𝐷𝑝∇(𝑃𝑔 − 𝑃𝑤)) 

             Eq. 3.4 

3.2.2 Constituent air 

3.2.2.1 Air transfer  

Considering the effects of the gradients of pressure and temperature on air flow in a THM 

analysis, the velocity of gas (including water vapor and dry air) in unsaturated soil is described 

by following equation: 
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where  

Vg =
qg

ρg
: velocity vector  

qg: gas flux vector  

ρg: gas density 

Kg: gas permeability  

Pg: gas pressure  
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and  

γg: specific weight of gas  

In these equations, it is assumed that the gas pressure depends on the temperature. The gas 

permeability of the medium, Kg, depends on particle size, pore distribution, soil type, and degree 

of saturation (Lloret and Alonso 1980; Gatmiri 1992, 1997; Thomas and He 1995; Thomas et al., 

1998) as: 

  K c e Sg

g

g

r

d

 



1                                Eq. 3.6   

where 

μg: gas viscosity 

e: void ratio 

c and d: constants 

A diagram of the variation of the gas permeability as a function of the void ratio, e, and the 

degree of saturation, Sr, is shown in Figure 3.2. 

3.2.2.2 Air mass Conservation 

The differential equation of the air mass conservation is written as (Gatmiri, 1997): 

      



   

t
n S HS div V div HU divVg r r g g g w1                                             Eq. 3.7 

where 
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H: Henry's constant, which corresponds to the dissolution of air in water.   

 

Figure 3.2 Gas permeability (m/s) variation with temperature and degree of saturation (Gatmiri 

and Arson, 2008). 

The other terms were defined before.  

The first term on the right hand side of Eq. 3.7 is related to the flow of gas due to the gradient 

of gas pressure, and the second term describes the movement of the air, which was dissolved in 

water. The vapor loss due to gas condensation is represented by the third term. Thus, the general 

partial differential equation of gas transfer in unsaturated soil can be deduced as: 
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3.2.3 Behavior of porous medium 

Considering the two state variables of suction and net stress, equilibrium equation, and 

constitutive law of a non-linear and non-isothermal medium are based on the equations as are 

presented in the following. 

 3.2.3.1 Equilibrium equation 

( ), , ij ij g j g j ip p b    0                                 Eq. 3.9 

where 

σij: total stress 

δij: Kronecker delta 

bi: body force 

3.2.3.2 Incremental behavior law 

For small deformations, the law of behavior of an unsaturated porous medium, under the 

effect of heat and suction is given by the following equation: 

d p Dd Fd p p CdTij ij g g w( ) ( )                                                                                        Eq. 3.10 
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D is a non-linear stress-strain matrix, dependent on temperature and stress.  

3.2.3.3 State surface of void ratio 

To calculate the volumetric deformation modulus, volumetric strain can be taken into 

account by means of a state surface of void ratio, which depends on the stress, suction and 

temperature. Using the same approach as Gatmiri (1995), the formulation of the state surface of 

void ratio is proposed as (Gatmiri, 1997): 
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                                       Eq. 3.11            

With this equation, the compatibility with the non-linear behavior of the soil is also provided. 

Figure 3.3 shows an example of this state surface. 

3.2.3.4 State surface of degree of saturation 

Although the stress-strain behavior is already coupled to the temperature, the description of 

the coupling of the volumetric water content to temperature is also necessary for modeling 

unsaturated soil subjected to the stress and suction.  
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Based on the experimental data, the state surface of degree of saturation, which is shown in Figure 

3.4, is proposed as the following equation.  

sr a b p c p p d T T

a

s s g s g w s

s s s s

      1 1 0[ ( )][ exp( ( ))]exp( ( ))

,  b ,  c  and d  are constants.   
              Eq. 3.12 

T0 is reference temperature and the other terms were already defined.  

 

 

Figure 3.3 State surface of void ratio as a function of suction and net stress (Gatmiri and Arson, 

2008). 

3.2.4 Heat Equations 

Transferring sensible and latent heat in an unsaturated porous medium is described as: 
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                                            Eq. 3.13 

 

Figure 3.4 State Surface of degree of saturation as a function of suction and net stress (Gatmiri 

and Arson, 2008). 

where  

Cpw, Cpv and Cpg: the specific capacities of water, water vapor and gas, respectively 

T0: a reference temperature 

hfg: the latent heat of vaporization 

λ: the coefficient of Fourier heat diffusion which varies according to the following equation:  
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           1 n ns w v                              Eq. 3.14 

where λs, λw, and λv are the heat diffusion coefficients of the soil, water and water vapor, 

respectively. 

In Eq. 3.13, the first term is related to heat flow by conduction, both of the following terms 

represent the phenomenon of evaporation, and the latter describes the heat flux convection of 

liquid, vapor, and gas phases. The equation of energy conservation in a porous medium may be 

expressed as: 



t
divQ  0                     Eq. 3.15 

where Q is heat flow and  is the volumetric bulk heat content of medium, which can be defined 

as: 

        C T T n hT v fg0                   Eq. 3.16 

The specific heat of mixture, CT , is determined by the specific heat of each phase, based on 

volume fraction of each phase (de Vries, 1958;  Fredlund & Rahardjo, 1993; among others): 

CT
           1 n C C n C n Cs PS w Pw v PV g Pg                                           Eq. 3.17 

The general differential equation for heat transfer in an unsaturated porous medium is obtained by 

combining equations (3-14) to (3-17): 
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    div T      C div D T D P P T TPw w Tv Pv w g       0 + 

    C div D T D P P T TPv w Tv Pv w g       0 +                                Eq. 3.18 
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3.2.5 Initial Conditions 

The initial conditions of the problem are determined from the observation data. The initial 

vertical stress is calculated from the weight of soil, and/or additional vertical loads. The initial 

conditions of the considered problem are as follows: 

𝑡 = 0 {

𝑇(𝑥, 𝑦, 𝑡) = 𝑇0(𝑥, 𝑦)

𝑆𝑟(𝑥, 𝑦, 𝑡) = 𝑆𝑟0(𝑥, 𝑦)

𝐹(𝑥, 𝑦, 𝑡) = 𝐹0(𝑥, 𝑦)

                                                                                                 Eq. 3.19 

3.2.6 Boundary conditions 

There are four boundary conditions of thermal, hydraulic, mechanical, and air for a thermo-hydro-

mechanical problem. For each component of the medium, two types of boundary conditions exist: 

Dirichlet on boundaries with unknown heads, and Neumann on boundaries with unknown flows. 

3.2.6.1 Mechanical boundary conditions 
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The displacement boundary conditions of the solid are considered on the part Γu of Γ part of 

the domain Ω; and the force boundary conditions are considered on the Part Γσ of Γ part of the 

domain Ω. The following relation links these two parts of the boundary Γ together: 

𝛤 = 𝛤𝜎 ∪ 𝛤𝑢       𝑎𝑛𝑑     𝛤𝜎 ∩ 𝛤𝑢 = ∅ 

         The part Γu of the boundary is devoted to the boundary conditions corresponding to the 

displacement of the solid. This takes the following form:   

𝑢(𝑥, 𝑡) = 𝑈∗(𝑥, 𝑡)                   ∀𝑥 ∈ 𝛤𝑢 

We can assume that this displacement is equal to zero. Otherwise, it would be necessary that 

the equilibrium condition between the created stress field and the initial stress field be verified. In 

general, these displacement boundary conditions correspond to conditions at the interface with the 

external domain of the problem. 

• Stress boundary conditions  

It is possible to impose distributed surface forces such as T* on the 𝛤𝜎 part of the border. 

We define the stress vector field as follows: 

T − σ. n = 0 

n is normal outward to the boundary. The boundary condition is then:  

T(x, t) = T∗(x, t)                      ∀x ∈ Γσ 
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3.2.6.2 Water boundary Conditions  

There are two types of water boundary conditions: Γh, which corresponds to the water head, 

and ΓQh which corresponds to the imposed water flow. They are represented by: 

Γ = Γh ∪ ΓQh                    and                          Γh ∩ ΓQh = ∅ 

Pressure boundary condition 

Water pressures are boundary conditions that are imposed on the part Γw of the boundary Γ. 

They are expressed by 𝑃𝑤
∗: 

Pw(x, t) = Pw
∗ (x, t)                      ∀x ∈ Γw 

Flux boundary condition 

The imposed flow is represented as a function of the recharge: 

ρw(U + V)n − (q̅(w+v)) = 0                  ∀x ∈ ΓQ(w+v) 

where q̅(w+v) is the moisture flux (water + vapor). 

3.2.6.3 Air boundary conditions  

These conditions are for imposed air pressures or flows. By considering a third part of the 

boundary in two parts of Γg and ΓQg, these conditions are written as: 

Γ = Γg ∪ ΓQg                and                          Γg ∩ ΓQg = ∅ 

Gas pressure boundary condition 

Generally this occurs on free surfaces where the pressure is equal to the atmospheric 

pressure as below.  
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Pg(x, t) =  Pg
∗(x, t)     ∀x ∈ Γg 

Gas flux boundary condition 

On the part Qg of the boundary Γ, flows imposed depending on the speed of the air are as 

follows: 

ρa(Vg + HcU)n − (q̅g) = 0          ∀x ∈ ΓQg 

where 𝑞̅𝑔 is the gas flow.                   

3.2.6.4 Thermal boundary conditions 

The fourth part of the boundary Γ is divided by two: 𝛤𝑇 for temperature, and 𝛤𝑄𝑇 for heat 

flow, with relation as below: 

 Γ = ΓT ⋃ ΓQT            and                 ΓT ⋂ ΓQT = ∅    

QT is the heat flow. 

Temperature boundary condition 

On the part ΓT of the boundary, boundary condition is as below: 

F(x, t) = F∗(x, t)               ∀x ∈ ΓT     

Heat flow boundary condition  

The heat flow can be imposed and may be zero. On the part 𝛤𝑄𝑇, the boundary condition is 

written as: 

(𝑄)𝑛 − (𝑞̅ℎ) = 0                     ∀𝑥 ∈ 𝛤𝑄𝑇 
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3.3   ATMOSPHERIC COUPLING AND ESTIMATING EVAPORATION 

Penman (1948) proposed a method of calculating potential evaporation as follows:  

𝐸 =
Γ𝑄+𝜈𝐸𝑎

𝛤+𝜈
                                                                                                               Eq. 3.20 

where 

E: potential evaporation per unit time (mm/day) 

Ea: f(u)(esa-ea) 

esa: saturation vapor pressure at the mean air temperature, usually mm.Hg. 

ea: vapor pressure of the air above the evaporating surface, usually mm.Hg. 

f(u): 0.35 (1+0.15Ua) 

Ua: wind speed, usually km/day 

Q: heat budget or all net radiation (mm/day) 

Γ: slope of the saturation vapor pressure versus temperature curve at the mean temperature of the 

air 

ν: psychrometric constant  

Wilson (1990) proposed a modified Penman (1948) approach for atmospheric coupling and 

estimating actual evaporation. He combined vapor transfer equation with heat transfer equation to 

determine actual evaporation from soil surface.  This method needs atmospheric data like air 

temperature, net radiation, humidity and wind speed. He presented the “modified Penman 

equation” as below. 
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𝐸 =
Γ𝑄+𝜈𝐸𝑎

𝛤+𝐴𝜈
                                                                                                                       Eq. 3-21 

where: 

E: vertical evaporative flux (mm/day) 

Γ: the slope of the saturation vapor pressure versus temperature curve at the mean temperature of  

the air 

Q: net radiant energy available at the surface (mm/day) 

ν: psychrometric constant 

Ea = f(u)Pa(B-A) 

f(u)=0.35(1+0.15 Ua): function dependent on wind speed, surface roughness, and eddy diffusion  

Ua: wind speed (km/hr) 

Pa: vapor pressure in the air above the evaporating surface 

B: inverse of the relative humidity of the air 

A: inverse of the relative humidity at the soil surface = 1/hr 

In fact, Wilson (1990) added parameter “A” to consider unsaturated soil. In the equation 

presented by Wilson (1990), E is actual evaporation and parameter “A” is equal to the inverse of 

the relative humidity of the soil. When the soil is saturated, relative humidity is 1, which makes 

A=1, and the Wilson equation changes to the original Penman equation. Using Wilson equation, 

both potential evaporation and actual evaporation could be calculated and compared to daily based 
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experimental results. Usually, during the first few days, both potential and actual evaporations are 

the same, and evaporation is in stage I of evaporation curve, which was explained in section 2.2.3 

in Chapter 2. Later on, actual evaporation decreases because either water supply or hydraulic 

condition decreases, and stages II and III of the evaporation curve start.  

The modified Penman (1948) equation proposed by Wilson (1990) was used in soil-

atmosphere model presented in this study.  

 

Figure 3.5 Schematic Soil-Atmosphere modeling. 

3.3.1 Soil-atmosphere model  
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This section presents the soil-atmosphere model used in the code EVAP1 to facilitate 

estimating evaporation from unsaturated soil. The inputs of the model are 

A)  Atmospheric data including air temperature, net radiation, humidity, and 

               wind speed 

B) Temperature and suction in soil surface resulted from THM analysis. 

A schematic of this modeling is shown in Figure 3.5.  

3.3.2 Thermal boundary conditions in the case of Soil-Atmosphere interaction 

The thermal boundary conditions at the soil-atmosphere interface are determined from 

meteorological data. 

3.3.3 Water boundary conditions in the case of Soil-Atmosphere interaction 

Soil vapor pressure can be calculated as the product of the saturation vapor pressure at soil 

surface temperature and the relative humidity at the soil surface. Saturated vapor pressure can be 

calculated by: 

                                                  Eq. 3.22 

  The relative humidity of the surface can be calculated using the soil suction: 

        ℎ𝑟 = exp (
𝜓𝑔

𝑅𝑇
)                                                Eq. 3.23 where  

ψ: total suction at the soil surface, N/m2 

g: gravity acceleration, 9.81 m/s2 
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R: gas constant = 8.314 J/mol.Kelvin  

T: temperature, Kelvin 

The water vapor pressure at the surface is therefore calculated as: 

𝑒𝑠 = ℎ𝑟𝑒𝑣𝑠                                                                                                                       Eq. 3.24 

Soil temperature is used in Eq. 3.23 to estimate relative humidity, which is used in Eq. 3.21 

to estimate actual evaporation.                                

Figure 3.6 shows the boundary conditions of the model. 

3.4   DISCRETIZATION OF THE SYSTEM 

Given the complexity of partial differential equations governing the proposed model, the 

development of analytical solutions is difficult, even for simple situations. The Galerkin method 

widely used in finite element analysis was used to solve the system of the established equations, 

considering the previously mentioned general boundary conditions.   

3.4.1 Spatial discretization 

The method of weighted residuals is applied and the Galerkin type of weighting functions are 

used to discretize the spatial domain Ω. The overall shape of the matrix equations, represented in 

terms of the unknowns on the nodes, is as follows: 
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           Eq. 3.25 

The terms of this matrix are presented in Appendix A. 

 

Figure 3.6 Boundary conditions of soil-atmosphere model, 

   𝑞𝑤 = water flux, 𝑞ℎ = heat flux, 𝑞𝑔 = gas flux, and  𝑃𝑔 = gas pressure 

3.4.2 Temporal Discretization 

The time discretization is described by the following equations: 

  tuutuudttu
t

o
t

 ][)1()( 01

1

0

                            Eq. 3.26  
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( )u t dt u
t

t

 
0

1

                    Eq. 3.27 

where u0 and u1 are the values of the variable u at times t0 and t1, respectively. The time step is 

∆𝑡 = 𝑡1 − 𝑡0 and θ indicates the type of interpolation; θ = 0 corresponds to the explicit (forward) 

method. This method does not give satisfactory results for poorly conditioned differential 

equations. Taking θ = 1, the resolution becomes implicit (backward) method, and by taking θ = 

1/2, Crank-Nicholson algorithm is obtained. Thus the choice of θ affects the stability and the 

accuracy of the algorithm. For θ ≥1/2 the solution is unconditionally stable regardless of the initial 

conditions.  

The vector of external loads  ({rr}k+1)𝑖  imposed during the current increment (between tk 

and tk+1) is calculated in the subroutine bargo, which uses the subroutines loadnode, flotnode, 

flownode, floanode, flowevapnode and flotevapnode.  

Calculations of nodal loads due to imposed surface physical load, and surface loads due to 

temperature, water, and air flows are performed in subroutines "loadnode", "flotnode", "flownode", 

and "floanode" respectively. In "loadnode" the calculation is immediate, since it directly imposes 

stress increments to the concerned nodes. In subroutines "flotnode", "flownode", and "floanode" 

force vector is not stored. The calculation is performed from flow imposed on the current load 

increment (load step) and the increment of previous load. 

The nodal loads due to imposed surface water and temperature flows due to evaporation (for 

water and heat transfer respectively) are calculated in new subroutines of “flowevapload” and 

“flotevapnode”.  

3.4.3 Stability and Accuracy 
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The stability and accuracy conditions of the solution algorithm of the equations for 

completely coupled unsaturated soil were described in detail by Gatmiri and Magnin (1994) and 

Gatmiri et al. (1998). For isoparametric quadrilateral elements, which are used in the program, the 

accuracy criteria are set as follows: 

The criteria for the lower limit for water transfer: 

∆𝑡 should be the biggest of three amounts as below. 

                                         Eq. 3.28 

The criteria for the lower limit for air transfer:  

∆𝑡 should be the biggest of three amounts as below. 

  

           Eq. 3.29 

where 

  and   

                    Eq. 3.30 

∆ℎ: the element size 
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θ: indicator of  the interpolation type 

It is important that a value should be selected for the lower limit to avoid spatial oscillations. 

These criteria depend on two state surfaces of void ratio and degree of saturation as well as their 

derivatives. 

3.4.4 Time stepping  

 

 

An adaptive time stepping scheme is used by the model to automatically calculate the size of 

the time step. The first time step is specified by the user. The time step is controlled by controlling 

magnitudes of minimum and maximum time steps, which are defined by the user in input file.  

3.4.5 Variability of input parameters  

 

Different parameters used in each run are as below. The parameters could vary depending on the 

investigated case. 

No. of time steps 

Max and min time step 

Integration constant teta 

Boundary conditions in x and y directions 

Water, air, and temperature boundary conditions 

Initial condition data 

Unit weight of solid grains 

Minimum and max daily relative humidity of the air 

Minimum and max daily temperature of the air  

Daily wind speed  
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Daily solar radiation 

Number of days to simulate 

Degrees latitude of the site 

Soil cohesion  

Soil internal friction degree 

Soil bulk modulus 

n coefficient in hyperbolic model 

tensile strength of soil 

initial temperature 

initial saturation degree 

horizontal and vertical hydraulic conductivity of soil 

air conductivity 

latent heat 

heat capacities of soil, water and air 

heat conductivities of soil, water and air 

Residual saturation degree 

Viscosity 

State surface data 

Initial values 

Boundary conditions 

3.4.6  Assumptions 

There are some assumptions with any theory. The assumptions in the theory used in this study 

are as below. 

Infinitesimal deformation of unsaturated porous media;  
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Elastic nonlinear behavior of porous media 

The abovementioned were assumed considering the nature and thickness of used soils in soil covers 

and settlement in soil surface.   

3.5   PROGRAM ALGORITHM  

The main part of the program is managed directly by the module "Markaz", which is shown 

in Figure 3.7, which presents the general flowchart of the program. White subroutines are 

subroutines from θ-STOCK to do THM analysis. Some of them are modified for atmospheric 

coupling. Gray color distinguishes subroutines and functions for soil-atmosphere model.  

The program is divided into five parts, and each part includes several subroutines with tasks as 

follow. Points 2, 3 and 5 are established for modeling soil-atmosphere interface. 

1. Acquiring input data calculating initial conditions 

2. Acquiring meteorological data   

3. Calculation of boundary conditions on the soil-atmosphere boundary 

4. Generating nodal loads and acquisition of data in the time steps 

5. Generating nodal loads from boundary conditions of soil-atmosphere interface 

6. Generating the overall stiffness matrix  

7. Creating the system of equations of the final solution 

         8. Other calculations 
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Figure 3.7 Flowchart of the program 
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It should be noted that the elementary stiffness matrices are calculated with different 

procedures called Stif4D (for dry elements), Stif4C (for saturated elements), and Stif4U (for 

unsaturated elements) in a plane strain configuration. Figure 3.8 shows a more detailed description 

of Stiff block, which is one of the main parts of the program.   

3.6   SUBROUTINES AND FUNCTIONS   

Appendix B presents a list of subroutines and functions of program EVAP1 and their 

functionality within the program and the tasks they accomplish. From total 64 subroutines and 

functions of EVAP1, the 31 Black written subroutines are intact subroutines of program θ-Stock. 

The 15 subroutines and functions that are written in red are the added ones. The 5 and 13 

subroutines written in green and blue are modified and repeated subroutines, respectively. 

 

Figure 3.8 Flowchart to calculate the stiffness matrices for the three types of the elements. 
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3.7   SUMMARY 

Based on the literature review of the different soil-atmosphere interaction models presented 

in Chapter 2, a method based on the energy exchange over ground was adopted for modeling the 

soil-atmosphere interaction. The soil-atmosphere model was coupled to THM analysis (Gatmiri, 

1997) to develop EVAP1, a two-dimensional plane strain finite element program for thermo-hydro-

mechanical analysis of evaporation from unsaturated soils. 

The program includes four-noded drained, saturated and unsaturated elements. A hyperbolic 

model is used for drained and saturated elements. The state surface-hyperbolic model is used for 

unsaturated elements. The program considers hydraulic anisotropic soils and different boundary 

conditions considering state surfaces of void ratio and degree of saturation.  It also considers 

element pressures (water and air) based on boundary values considering physical loading, air flow, 

water flow and heat flow conditions and atmospheric coupling. Atmospheric parameters of air 

temperature, net radiation, humidity, and wind speed are used on a daily basis to calculate potential 

and actual evaporations.   
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CHAPTER 4 

VALIDATION OF THE PROGRAM AND NUMERICAL ANALYSES 

4.1 INTRODUCTION 

To verify program EVAP1, the soil column drying test of Wilson (1990), and soil column 

test of Yang and Yanful (2002) are used. The verified program is then used to conduct a parametric 

study in order to investigate the effects of variation in environmental parameters (i.e. air 

temperature, relative humidity, net radiation and wind speed) on evaporation.  In each analysis, the 

magnitude of one parameter is varied while the magnitudes of all other environmental parameters 

are kept unchanged. Accordingly, the effects of varying the considered parameter on potential and 

actual evaporations are investigated.  

In addition, a sensitivity analysis is performed to identify the environmental parameter that 

influences evaporation the most. Finally, further analyses are conducted to estimate evaporation 

with and without considering soil settlement, and the results are compared to investigate the effect 

of THM analysis considering soil settlement on the magnitude of evaporation from unsaturated 

soil. 

4.2 SET OF DATA USED IN THE MODEL FOR UNSATURATED SOILS 

The data set used for unsaturated soils are presented in Tables 4.1 to 4.3. The mechanical and 

model parameters for unsaturated soils are listed in Table 4.1. 

Table 4.1 Mechanical and model parameters for unsaturated clay (Gatmiri, 1997) and sand 

(Ghasemzadeh, 2006) 

Mechanical parameters                                                          sand             clay 

ν    Poisson coefficient     0.3         0.35 
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ρs    Solid grains density        2650 kg/m3  2750 kg/m3 

Kl           Loading modulus number    878          125  

Kb          Bulk modulus number    981           25 

m   Void ratio state surface parameter   0.35          0.6 

Patm   Atmosphere pressure           102 kPa       102 kPa 

ae   Void ratio state surface parameter   67.6          1.5 

be   Void ratio state surface parameter   6.39         0.15 

ce   Void ratio  state surface parameter                        -0.3e-3        -0.25e-3 

de   Void ratio state surface parameter   0.33         0.63 

σe          Void ratio state surface parameter   8e6        0.8e6 

as   Degree of saturation state surface parameter            0.8                 1 

bs   Degree of saturation state surface parameter     -0.2088e-4    -0.212e-14 

cs   Degree of saturation state surface parameter     -0.108855e-3   0.12e-7 

ds   Degree of saturation state surface parameter         0 .1e-4       0.1e-15  

 

The thermal parameters pertinent to unsaturated soils are presented in Table 4.2. 

 

Table 4.2 Thermal parameters for unsaturated clay (Gatmiri, 1997) and sand (Ghasemzadeh, 

2008) 

Thermal parameters                       sand            clay 

hfg (J.kg-1)   Latent heat of vaporization              2.4e6           2.4e6 

λa (J.m-1.s-1.°C-1)  Air thermal conductivity            0.0258         0.0258 

λs (J.m-1.s-1.°C-1)  Solid grain thermal conductivity            2                  2 

λw ( J.m-1.s-1.°C-1)  Water thermal conductivity                 0.6               0.6 

Cps (J.kg-1.s-1.°C-1)  Specific heat capacity of soil     575           800 



82 
 

Cpw (J.kg-1.s-1.°C-1)  Specific heat capacity of water  4180            4180 

Cpv (J.kg-1.s-1.°C-1)  Specific heat capacity of vapor  1870            1870 

Cpg (J.kg-1.s-1.°C-1)  Specific heat capacity of gas   1000          1000 

 

The hydraulic parameters pertinent to unsaturated soils are presented in Table 4.3. 

 

Table 4.3   Hydraulic parameters for unsaturated clay (Gatmiri, 1997) and sand (Ghasemzadeh, 

2008) 

Hydraulic parameters                                  sand  clay 

Kw0    Saturated permeability (m/s)                  1.2e-9         0.132e-9 

α    Coefficient                                    5    5 

d    Coefficient                                    3    3 

Sru    Residual degree of saturation         0.05                      0.05 

 

4.3 DRYING SOIL COLUMN TEST OF WILSON (1990) 

Wilson (1990) performed a series of column tests on a sandy material. Two columns of 

Beaver Creek sand, initially close to saturation, were allowed to dry over a 42-day period. The 

columns were placed in an environmental chamber, and the change in mass was monitored daily 

to determine the actual evaporation from the columns. The columns were 30 cm in height. The air 

temperature was kept at 38 degrees Celsius and the air relative humidity was measured continually 

along with temperatures and relative humidity within the soil columns.  

Figure 4.1 shows the configuration of the column test of Wilson (1990). Figures 4.2 and 4.3 

present the hydraulic and thermal properties of Beaver Creek sand, respectively. Figure 4.4 shows 

the curves of measured evaporation versus time for the two test columns of Wilson (1990). Figure 
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4.5 presents experimental results of Wilson (1990) and the modeling results of program EVAP1 

for potential and actual evaporations during the test period of 42 days. 

  

 

Figure 4.1 Problem configuration for the column test of Wilson (1990). 
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Figure 4.2 Hydraulic properties of Beaver Creek sand. 
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Figure 4.3 Thermal properties of Beaver Creek sand. 
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Figure 4.4 Measured evaporation curves versus time for two 30 cm high columns of Beaver 

Creek sand under controlled environment, Wilson (1990). (A.E.: Actual evaporation; P.E.: 

Potential evaporation). 

As it is shown in Figure 4.4, the potential evaporation is the same for both tests because it is 

dependent on the environmental data only. However, the actual evaporation differs because the 

soils in the two columns are somehow different. The sharp decline in actual evaporation from soil 

columns A and B occurs after about 4 and 2.5 days, respectively from the beginning of the test. 



87 
 

 

Figure 4.5 Potential and actual evaporations from experimental results of 

Wilson (1990) and numerical results of program EVAP1. 

As Figure 4.5 shows, the trend of actual evaporation and potential evaporation from the 

model agree with experimental results of Wilson (1990). However, there are minor differences 

between actual evaporation curves during early days and around days of 25 (about 1 mm/day) and 

35 (about 0.5 mm/day). Also, the potential evaporation from the experiment is about 0.5 mm/day 

more than the model result most of the days. 

Figure 4.6 shows the soil suction from drying soil column test of Wilson (1990) and the 

model. As the figure shows, suction at early days is less from the test than the model. That is why 

the evaporation from Wilson (1990) test is more than the model during early days in Figure 4.5. 

Figure 4.7 compares the relative humidity from the drying column test of Wilson (1990) 

and the numerical model predictions. As can be noted from Figure 4.7, initially the numerical 

model predicted lower relative humidity during early days, which is consistent with less suction 

and more evaporation. 
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Figure 4.6 Suction magnitudes from the drying column test of Wilson (1990) and the model. 

 

Figure 4.7 Relative humidity of soil from column test of Wilson (1990) and the model. 
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Figure 4.8 presents the settlement of the soil column used in the drying test of Wilson (1990). 

THM analysis made it possible to calculate the displacement magnitudes. Logarithmic scale was 

used for the horizontal axis because of the wide range of the settlement. 

 

Figure 4.8 Settlement of soil column of Wilson (1990) drying test. 
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A water supply drainage system consisting of a 2.5 m long, 6.35 mm inner diameter plastic 

tube and a 1-l Mariotte bottle was used to maintain a constant water level. Soil evaporation and 

drainage were initiated simultaneously, following saturation. During the test, the soil column and 

the whole test system were weighed daily to obtain the mass of water lost separately by evaporation 

and drainage.  

Water content was measured by TDR and gravimetry oven-dry method. During the 

evaporation and drainage tests, laboratory temperature and relative humidity were monitored using 

a digital hygrometer/thermometer. To optimize the evaporation rate from the soil, a desk-fan was 

used to blow air above the test column and the applied wind speed from the fan was measured 

using an air velocity meter. Laboratory lighting provided the only radiation to the soil surface.   

The evaporation column measured 115 mm in diameter and 255 mm in height. Each column 

was instrumented with time-domain reflectometry (TDR) probes and thermocouples along its 

height to measure water content and temperature, respectively.  

Figure 4.9 shows a schematic of the test system. The location of the datum and the various 

water levels used in the tests are presented in Figure 4.10. Figure 4.11 presents hydraulic 

conductivity-suction functions for test soils. 
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Figure 4.9 Schematic of the test system (Yang and Yanful, 2002). 
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Figure 4.10 Schematic of typical soil column showing datum and locations of water levels used 

in Yang and Yanful (2002) test. 

The measured potential evaporation for the fine sand test started at almost 19 mm/day and 

increased to about 20 mm/day at the end of the test. The numerical model predicted potential 

evaporation at 17 mm/day.  
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Figure 4.11 Hydraulic conductivity-suction functions for test soils.  

It should be mentioned that there are some differences between the results of the test and the 

numerical model. One reason for the differences could be the measurement, observation and 

equipment errors with the experiment, and inability of the program to simulate all real facts which 

govern the test conditions. 
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4.4.2 Water level at 0.25 m 

Figure 4.12 displays potential and actual evaporations for fine sand for water level at 0.25 m.  

As can be noted from Figure 4.12, potential evaporations from the test and the numerical model 

are about 19 and 17 mm/day, respectively. Actual evaporation from the test started at 16 mm/day 

and fluctuated between 14 and 17.5 mm/day. The model predicted actual evaporation of 

approximately 17 mm/day. 

 

 

 

Figure 4.12 Potential and actual evaporations for find sand and silt from Yang and Yanful (2002) 

test and the model for water level at 0.25 m. 
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Figure 4.13 presents potential and actual evaporations for fine sand and clayey till with water 

level at 0 m. The trends of the evaporation rates from the numerical model agree with the test 

results. Potential evaporations measured from the test and predicted from the numerical model are 

almost constant at 19.5 and 17.5 mm/day, respectively. For the clayey till, actual evaporation from 

the test was 4 mm/day at the beginning and decreased to 2 mm/day at the end of the test. Actual 

evaporation obtained from the numerical model for the clayey till started at about 8 mm/day at the 

beginning and ended at 4 mm/day. 

 

Figure 4.13 Potential and actual evaporations for find sand and clayey till from Yang and Yanful 

(2002) test and the model for water level at 0 m. 
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12 and ended with almost 15 mm/day. The numerical model, however, predicted actual evaporation 

at 17 mm/day.   

4.4.4 Water level at -1 m 

As displayed in Figure 4.14, the potential evaporation obtained from the test started with 19 

mm/ day, and increased slightly to 19.9 mm/day at the end of the test. The potential evaporation 

calculated from the numerical model was almost constant at 17 mm/day with minor fluctuations. 

 

Figure 4.14 Potential and actual evaporations for find sand and clayey till from Yang and Yanful 

(2002) test and the model for water level at -1 m. 
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calculated from the numerical model started at 7 and 15.8 mm/day, and ended at 0.1 and 1.7 

mm/day, respectively.  

For clayey till, the actual evaporations measured from the test and that calculated from the 

numerical model started at 4 and 8.5 mm/day, respectively; but became almost the same after day 

6 and remained almost equal at 1.5 mm/day to the end of the test. 

4.5 PARAMETRIC STUDY AND SENSITIVITY ANALYSIS 

There are four main environmental parameters that directly affect potential and actual 

evaporations.  These parameters are: air temperature, air humidity, net radiation and wind speed. 

In this section, the effect of these parameters on evaporation is investigated one by one qualitatively 

and quantitatively. These parameters are changed one at a time, while keeping all other parameters 

unchanged, and the effect of this change is studied. Air temperature, air humidity, net radiation and 

wind speed are considered, respectively.  

In addition, the sensitivity of evaporation to each of those four environmental parameters is 

investigated.   

4.5.1 The effect of temperature on evaporation 

The potential and actual evaporations were estimated with three different maximum temperatures 

of 21, 16 and 11˚C. The minimum temperature was 1˚C. These temperatures were selected because 

July is the hottest month in Toronto with an average temperature of 21°C (70°F) and the coldest 

is January at -3°C (28°F) (Holiday Weather, 2017). Wind speed was kept constant as 11.2 km/hr 

because according to the annual average wind speed in Canadian cities (Environment Canada, 

2017) the amount of wind that London, Ontario averages in a year is 14.1 km/hr (Table 4.4).  
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Table 4.4     Annual average wind speed in some of Canadian cities (Environment Canada, 2017) 

                                                                                Annual average wind 

                   Days City MPH KPH 

3 Abbotsford, British Columbia 5.2 8.3 

28 Calgary, Alberta 8.8 14.2 

3 Edmonton, Alberta 7.4 11.8 

18 Halifax, Nova Scotia 9.4 15.1 

28 Hamilton, Ontario 10.1 16.2 

               9                                 London, Ontario                   8.7      14.1  
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Net radiation was selected as 80 W/m2 according to Figure 4.15 (NASA, 2017).  

            

                      
 

Figure 4.15 Net Radiation map (NASA Earth Observatory, 2017).  

Maximum and minimum humidity were selected as 0.8 and 0.4, according to Table 4.5 (Current 

Results, 2017). The normal humidity levels throughout the year at Canada's largest cities are 

listed below.  

Table 4.5   Average Annual Humidity at some of Canadian Cities (Current Results, 

2017) 

Annual relative humidity averages 

                  City Morning Afternoon 

Abbotsford, British Columbia 85 62 

Calgary, Alberta 72 48 

Edmonton, Alberta 76 54 

Halifax, Nova Scotia 87 71 

Hamilton, Ontario 86 65 

Kelowna, British Columbia 82 52 

Kingston, Ontario 81 67 

Kitchener - Waterloo, Ontario 88 74 

          London, Ontario              85   64  

http://www.nasa.gov/
http://earthobservatory.nasa.gov/?eocn=topnav&eoci=logo
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 Figure 4.16 Potential and actual evaporations for four different temperature values 

 

The results shown in Figure 4.16, and also the output data, demonstrated that by decreasing 

the average temperature from 21 to 16, 11˚C and 1 ˚C, the starting potential evaporation decreased 

from 6.3 to 5.5, 4.9 and 4 mm/day, respectively, and the actual evaporation decreased from 5.2 to 

4.6, 4.2 and 3.4 mm/day, respectively. Therefore, even though the decrease of average temperature 

from 21 to 16 and from 16 to 11˚C is the same (i.e. 5˚C), the decrease of the starting potential 

evaporation is not the same and instead is 0.8 and 0.4, respectively.  

Similarly, the decrease of the starting actual evaporation is not the same; instead it is 0.6 and 

0.4, respectively. It means that the relation is nonlinear, and from evaporation estimation viewpoint 

the effect of temperature change is more important at higher temperatures. In addition, actual 

evaporations exhibited a decreasing trend with time, which is logical. Actual evaporation reaches 

the same amount of almost 1 mm/day on day 10 for the four studied temperature values.  



101 
 

 

Figure 4.17  Soil settlement for three different temperature values 

Figure 4.17 presents soil settlement for the three examined temperature values. In higher 

degrees, evaporation is more; therefore, effective stress and as a result, settlement is more. At the 

beginning, evaporation at 3 temperatures almost equals potential evaporation; therefore, the 

displacements are close to each other. Also at the end the evaporation at the 3 temperatures is 

minimized regarding the residual water content of the soil. Therefore, soil settlement again is 

almost the same. However, in the middle, the settlement difference at different temperatures is 

more because still soil can supply water for different evaporation rates at different temperatures. 

difference is.  

Figure 4.18 presents potential and actual evaporations for three other temperature values.  
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Figure 4.18  Potential and actual evaporations for three other temperature values 

4.5.2 The effect of humidity on evaporation  

In this section, the maximum humidity varied from 0.7 to 0.8 and 0.9, and the minimum 

humidity varied from 0.3 to 0.4 and 0.5, considering Table 4.5. The other parameters were kept as 

before, i.e. maximum and minimum temperatures as 21 and 1˚C, wind speed as 11.2 km/hr, and 

net radiation as 80 W/m2.  

As Figure 4.19 shows, with the increase of minimum humidity from 0.3 to 0.4 and 0.5 (same 

increase of 0.1), and with the similar increase of maximum humidity from 0.7 to 0.8 and 0.9 

(considering Table 4.5) the starting potential evaporation decreases from 7.2 to 6.3 and 5.4 

mm/day, respectively. Similarly, actual evaporation decreases from 6.1 to 5.2 and 4.3 mm/day, 

respectively. The results are presented in Figure 4.19 and it is observed that the numerical model 
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correctly predicted that evaporation decreases as the humidity increases. Also, the decreasing trend 

of actual evaporation with time is confirmed. 

 

 Figure 4.19 Potential and actual evaporations for three different humidity values 

 

Figure 4.20 shows settlement at three abovementioned humidity values. More humidity 

causes less evaporation and it leads to less effective stress and less settlement. 
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Figure 4.20  Soil settlement for three humidity values 

 

4.5.3 The effect of net radiation on evaporation 

In this section, three values of net radiation were considered, i.e. 80, 110 and 140 W/m2, 

respectively, considering Figure 4.15. The other parameters were kept constant: maximum and 

minimum temperatures as 21 and 1˚C, respectively (considering Holiday Weather, 2017); 

maximum and minimum humidity as 0.8 and 0.4, respectively (considering Table 4.5); and wind 

speed as 11.2 km/hr (considering Table 4.4). As Figure 4.18 shows, as net radiation increases, the 

evaporation increases as well, which is a correct trend, but in a nonlinear fashion as is explained 

below. Also, the actual evaporation has a decreasing trend with time, which is correct. 
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Figure 4.21 Potential and actual evaporations for three different net radiation values 

The change of starting potential and actual evaporations due to 30 W/m2 increase in net 

radiation from 80 to 110 W/m2 was 6.3 to 7.9 mm/day, and 5.2 to 6.6mm/day, respectively; i.e. 1.6 

mm/day increase in potential evaporation and 1.4 mm/day increase in actual evaporation. However, 

another increase of 30 W/m2 in net radiation from 110 to 140 W/m2 changed potential evaporation 

from 7.9 to 9.4 mm/day (i.e. 1.5 mm/day increase), and actual evaporation from 6.6 to 7.9 mm/day 

(i.e. 1.3 mm/day increase).  

The two paragraphs above, imply an important reality: when net radiation increases to some extent, 

evaporation increases to some extent, but another increase of radiation to the same extent does not 

increase evaporation the same amount. This is a familiar concept in literature too. Usually to keep 

increasing or decreasing a parameter does not lead to the continuous and similar increase or 

decrease of the investigated phenomenon. For example, although making the finite element mesh 

smaller helps the accuracy of the results of a finite element analysis, to keep making the mesh 
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smaller does not necessarily help with the same amount of increase in accuracy, and even it may 

hurt the accuracy of the analysis results by affecting vice versa.  

 Figure 4.22 presents soil settlements for three abovementioned net radiation values. As Figure 

presents, more radiation causes more evaporation, which in turn causes more effective stress and 

more settlement. 

 

Figure 4.22  Soil settlement for three net radiation values 

Figure 4.23 shows potential and actual evaporations for three other net radiation values. 

Again, increasing radiation increases evaporation in a nonlinear manner. 
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Figure 4.23  Potential and actual evaporations for three other net radiation values 

4.5.4 The effect of wind speed on evaporation 

Three different wind speeds were considered in the analysis, i.e. 11.2, 14.7 and 18.4 km/hr, 

considering Table 4.4. The other parameters were kept constant: maximum and minimum 

temperatures as 21 and 1˚C, respectively (considering Holiday Weather, 2017), maximum and 

minimum humidity as 0.8 and 0.4, respectively (considering Table 4.5); and the net radiation as 80 

W/m2 (considering Figure 4.15). Figure 4.19 shows the results. 

The obtained results presented in Figure 4.19 demonstrate that increasing wind speed 

increases both potential and actual evaporations.  As wind speed increased from 11.2 to 14.7 km/hr, 

the starting potential evaporation increased from 6.2 to 6.5 mm/day. Also, increasing wind speed 

from 14.7 km/hr to 18.4 km/hr increased the starting potential evaporation from 6.5 to 6.8 mm/day.  
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However, increasing wind speed from 11.2 to 14.7 km/hr increases the starting actual evaporation 

from 5.24 to 5.40 mm/day, while increasing wind speed from 14.7 to 18.4 km/hr increases the 

starting actual evaporation from 5.40 to only 5.47 mm/day, i.e. nonlinear effect. 

It should be noted that starting evaporation was considered in these comparisons, instead of ending 

evaporation because the latter is not as accurate due to the diminishing evaporation at the end 

(usually less than 1 mm). 

 

 

Figure 4.24 Potential and actual evaporations for three different wind speed values 

Figure 4.25 presents soil settlement for three wind speed values. 
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Figure 4.25  Soil settlement for three wind speed values 

Figure 4.26 shows potential and actual evaporations for three other wind speed values. 

Again, increasing wind speed increases evaporation rate in a nonlinear manner. 
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Figure 4.26  Potential and actual evaporations for three other wind speed values 

4.5.5 Sensitivity analysis 

The objective of this analysis is to identify the environmental parameter that affects 

evaporation the most. Therefore, in this section the effects of the four main parameters on 

evaporation are compared. 

Using Figure 4.16 and the output data, it was deduced that 0.31% change in temperature 

caused 12% change in potential evaporation, and 11% change in actual evaporation.  On the other 

hand, considering Figure 4.17 and more accurately the output data, 12% change in humidity led to 

14% change in potential evaporation, and 17% change in actual evaporation. 

Meanwhile, considering Figure 4.18 and the output data, 27% change in net radiation caused  
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20% change in both potential and actual evaporations. Finally, according to Figure 4.19 and using 

the output data 24% change in wind speed led to 5% change in potential evaporation and 3% change 

in actual evaporation.  

Having an overall look at the above-mentioned material, it is clear that evaporation is 

sensitive the most to humidity. The second, third and fourth parameters that evaporation is sensitive 

to are net radiation, temperature and wind speed, respectively.  

4.6   THE EFFECT OF THM ANALYSIS ON EVAPORATION 

In this section, the effect of THM analysis, which enables considering soil settlement, on 

evaporation from unsaturated soil is investigated.  

Due to the soil settlement, void ratio and porosity decrease. Hydraulic conductivity of soil 

depends on void ratio as below:     
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where 

e: void ratio 

(The other terms were defined in Chapter 3). 

The soil settlement, which decreases void ratio decreases conductivities too and it, in turn, 

decreases evaporation. Therefore, neglecting THM behavior leads to neglecting soil settlement, 

and consequently neglecting the decrease in void ratio, which for the abovementioned reason 

overestimates evaporation from unsaturated soil surface, and that is what the model shows in Figure 

4.27.              

 

Figure 4.27 A comparison between potential and actual evaporations with and without 

considering soil settlement 
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As Figure 4.27 shows, potential evaporation is the same, because it depends only on 

environmental parameters, which are the same for both analyses. However, actual evaporation is 

different because it depends on soil properties too, which is different because of different void 

ratios, as was mentioned before. Meanwhile, the two graphs are close to each other both at the 

beginning, when still there is not much settlement, and at the end when the water content was 

decreased to residual water content and the evaporation was minimized. 

4.7   SUMMARY AND CONCLUSION 

In this chapter, first program EVAP1 was validated using Wilson (1990) drying column test, 

and column test of Yang and Yanful (2002). The comparison results were acceptable. 

Next, a parametric study was performed and the effects of the changes of the main 

environmental parameters, i.e. air temperature, air humidity, net radiation and wind speed on 

evaporation were investigated one by one. According to the results, the increase of temperature, 

net radiation and wind speed increased the potential and actual evaporations. However, the increase 

of humidity decreased the evaporation. The evaporation changes due to the changes of those 

parameters were mostly nonlinear. 

A sensitivity analysis was performed next to find out to which environmental parameter 

evaporation is more sensitive. The results showed that evaporation changes the most with the 

change of air humidity. The net radiation, air temperature and wind speed were the second, third 

and fourth effective parameters, respectively, which their changes made more changes in 

evaporation amount.   

The chapter was ended with investigating the effect of THM analysis on evaporation estimate. 
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The result showed that using THM analysis which enables considering soil settlement, evaporation 

amount was estimated less. In other words, neglecting soil settlement overestimates evaporation. 
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CHAPTER 5 

 SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH 

5.1   SUMMARY 

There are two approaches regarding the combined flow of moisture and heat in unsaturated 

porous media. One approach considers a combined soil atmosphere model by coupling atmosphere 

with soil. This approach uses thermo-hydro (TH) analysis and is not in deal with mechanical 

behavior of soil, and cannot estimate strain, stress and soil settlement. The other approach uses a 

thermo-hydro-mechanical (THM) analysis. In this approach equilibrium equation is coupled with 

moisture and heat flow equations; therefore, strain and stress in soil could be estimated too. 

However, atmosphere is not coupled and atmospheric (environmental) parameters are not used in 

the analysis. As a result, evaporation cannot be estimated.  

In this study, equilibrium equation is coupled with moisture and heat flow equations, and at 

the same time the atmosphere is coupled through a soil-atmosphere model to be benefited from the 

advantages of both the abovementioned approaches. Therefore, accompanied with soil parameters, 

atmospheric (environmental) parameters are used too, and not only quantities related to moisture, 

heat, strain and stress but also potential and actual evaporations could be estimated using program 

EVAP1, which is developed during this study. The numerical analysis is performed considering 

plane strain conditions using constitutional models formulated in two-dimensional (2D) finite 

element program. 

The theoretical formulation was a combination of two extended theories. The first part was 

an extension of the theory presented by Milly (1982) based on the theory of Philip and de Vries 
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(1957). The second part was the extension of the isothermal deformation theory of unsaturated soil 

to thermal effects.  

A complete set of equations was presented in which the suction-based equations of moisture, 

heat and air transport were combined with the equilibrium equation of porous medium and 

constitutive law relation with the state surfaces of void ratio and degree of saturation (Gatmiri and 

Delage (1995), Gatmiri (1997)). These state surfaces are temperature-dependent. 

Numerical solution of this set of fully coupled equations by the numerical method of finite 

element for spatial discretization and single step integration in time was used. Atmospheric 

coupling was performed using modified Penman equation presented by Wilson (1990). 

Atmospheric parameters of temperature, humidity, wind speed and net radiation were used in 

calculating evaporation from unsaturated soil surface. 

To do validation, the results of the soil column tests of Wilson (1990) in predicting potential 

and actual evaporations from unsaturated soil were compared with EVAP1 results and a good 

agreement was achieved. Also, the results of Yang and Yanful (2002) test to estimate evaporation 

from 4 different soils with 3 different water levels were compared with the model results, which 

was acceptable.  

5.2   CONCLUSIONS 

A parametric study was performed to show the effect of the change of each of the four main 

environmental parameters (temperature, humidity, net radiation and wind speed) on potential and 

actual evaporation amounts. The results of the study are as below.  

5.2.1 The effect of temperature 
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The potential and actual evaporations were estimated with three different average 

temperatures. Based on the results, the decrease of temperature decreased the evaporation. 

However, although the decrease of the maximum temperature from 21 to 16 ˚C and from 16 to 11 

˚C was the same (5˚C), the decrease of the potential was not the same. In fact, the effect of 

temperature change on evaporation amount was not linear. Regarding actual evaporation, the result 

was almost the same as potential evaporation. Meanwhile, actual evaporations correctly showed a 

decreasing trend.  

5.2.2 The effect of humidity 

In this section, all parameters were kept constant except for humidity, and the potential and 

actual evaporations due to a 12% change in humidity were estimated and compared with unchanged 

condition. The results showed correctly that evaporation decreases with the increase in humidity. 

However, the change in evaporation was nonlinear. In other words, the decrease in potential 

evaporation due to a 12% increase in humidity was not the same amount as the decrease in potential 

evaporation with another 12% increase in humidity. In fact, the decrease was less than before. 

 

5.2.3 The effect of net radiation 

The only parameter that changed in the analysis was net radiation. According to the results, 

the trend in the change of potential and actual evaporations was correct; i.e. decreasing net radiation 

decreased evaporation. Again, the change was not linear. Meanwhile, the change in both potential 

and actual evaporations were 20% due to a 27% change in net radiation.  

5.2.4 The effect of wind speed 
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As it was expected, the increase in wind speed increased both potential and actual 

evaporations. However, the change was again nonlinear. Meanwhile, a 24% change in wind speed 

led to only 5% change in potential evaporation and 3% change in actual evaporation.  

Therefore, when any of the four environmental parameters change to some extent, 

evaporation changes as well, but the same change in an environmental parameter does not change 

evaporation by the same amount as before.  

5.2.5 Sensitivity analysis 

Also, a sensitivity analysis was performed to find out the most important parameter from four 

main environmental parameters. The analysis result showed that humidity, net radiation, 

temperature and wind speed are the most important parameters in that order.  

5.2.6 The effect of THM analysis  

THM analysis enables the settlement of soil surface to be considered. Soil settlement 

decreases void ratio and porosity, which in turn decreases hydraulic conductivity and air 

conductivity, which in turn decreases evaporation. Therefore, neglecting soil settlement leads to 

overestimation of evaporation. A better estimation of actual evaporation considering soil settlement 

will be helpful in many fields including environmental geotechnics, where analysing the long-term 

performance of engineering structures such as soil covers, directly depends on the evaporation 

amount during the life-time of the structure. 

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

The following recommendations can be made for further development of the model:  
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 Calibration of parameters and extension of the program by probable modifications, to 

model the real cases, including cracks, fissures and other features; 

Estimating the amount of evaporation change due to ruts that result from soil settlement and 

retention of water at the soil surface and its influence on the amount of evaporation; 

Investigating other kinds of soils to acquire a more general idea about evaporation from 

different kinds of soils with and without considering soil settlement; 

Extending the capability of the program to estimate oxygen diffusion and to consider the 

effect of vegetation on evaporation; 

Instrumentation of a field case and measuring settlement in the soil surface over time, and 

comparing the measurements with the results from the model to have a better and more documented 

judgment on the model results, and to understand the limitations of the model; 

Performing a parametric study and analysis of the sensitivity of evaporation from other kinds 

of soils, like silt and coarse sand, which are used in different layers of soil covers, to environmental 

parameters of air temperature, humidity, net radiation and wind speed, using THM approach.  
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APPENDIX A 

The terms of the matrix (Eq. 3.24) are as below: 
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APPENDIX B 

Subroutines and functions of Program EVAP1 

The following is a list of subroutines and functions of program EVAP1 and their functionality 

within the program and the tasks they accomplish. From total 64 subroutines and functions of 

EVAP1, the 31 Black written subroutines are intact subroutines of program θ-Stock. The 15 

subroutines and functions that are written in red are the added ones. The 5 and 13 subroutines 

written in green and blue are modified and repeated subroutines, respectively. 

Program EVAP1 

It is a two-dimensional plane strain finite element program for the thermo-hydro-mechanical 

analysis of evaporation from unsaturated soils. 

The program includes four-noded drained, saturated and unsaturated elements. Hyperbolic 

model is used for drained and saturated elements. 

The state surface-hyperbolic model is used for unsaturated elements. The program considers 

hydraulic anisotropic soils and different boundary conditions considering state surface of void ratio 

and degree of saturation.  It also considers element pressures (water and air) based on boundary 

values considering physical loading, air flow, water flow and heat flow conditions and atmospheric 

coupling.  

 Atmospheric parameters of air temperature, net radiation, wind speed, and humidity are used 

on daily based to calculate potential and actual evaporations.   

 Following is a list of subroutines and functions of the program. 
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ccno( 0) 

   Main program 

ccno( 1) 

   subroutine Markaz(a,lmax) 

  This subroutine controls the program. 

ccno( 2) 

    subroutine nlchk(iconst,nload,itime,k,i) 

    This subroutine checks for loading step. 

ccno( 3) 

    subroutine checkpl(nelcam,icam) 

    This subroutine checks the occurrence of plasticity. 

ccno( 4) 

   subroutine dim1(l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13, 

   *l14,l15,l16,l17,l18,l19,l20) 

   This subroutine reads basic and climate data and allocates 

   storage. 

ccno( 5) 

   subroutine input(ie4d,ie4c,ie4u,iconst,kodex,kodey, 

     *kodew,kodea,x,sm4d,sm4c,sm4u) 

     This subroutine reads mesh, material, boundary conditions 

     and loading data. 

ccno( 6) 

      subroutine dim2(ie4d,ie4c,ie4u,id,l20,l21,l22,l23,l24,l25,l26) 

      This subroutine further allocates dynamic storage 

      and determines degrees of freedom (id array). 
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ccno( 7) 

      subroutine detna(ie4d,ie4c,ie4u,id,kodex,kodey,kodew,kodea, 

     *di,na) 

      This subroutine determines the na vector (this locates the 

      diagonal coefficient for skyline storage) and the length of 

      the stiffness vector. 

ccno( 8) 

      subroutine init1(ie4d,ie4c,ie4u, 

     *sig4d,sig4c,sig4u,dsig4d,dsig4c,dsig4u, 

     *r,rr,dt,iact) 

       This subroutine initializes stress and displacement arrays. 

ccno( 9) 

      subroutine init2(ie4d,ie4c,ie4u,x,sm4d,sm4c,sm4u, 

     *sig4d,sig4c,sig4u,dsig4d,dsig4c,dsig4u,r,rr,dt,id) 

      This subroutine performs initial calculation. 

ccno( 10) 

      subroutine init3(r,rr,di,dt,id) 

      This subroutine stores and prints initial stresses. 

ccno( 11) 

      subroutine build(ie4d,ie4c,ie4u,id,iconst,x, 

     *sm4d,sm4c,sm4u,sig4d,sig4c,sig4u,rr,iact,dt) 

      This subroutine determines the loading condition 

      and calls the load routines. 

ccno( 12) 

       subroutine loadnode(x,id,rr) 
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       This subroutine calculates nodal loads due to surface 

       physical loads. 

ccno( 13) 

       subroutine flotnode(x,id,rr) 

       This subroutine calculates nodal heat loads due to surface 

       heat flow. 

ccno( 14) 

       subroutine flotevapnode(x,id,rr) 

       This subroutine calculates nodal temperature loads due to 

       evaporation in surface elements. 

ccno( 15) 

       subroutine flownode(x,id,rr) 

       This subroutine calculates nodal  water loads due to surface 

       water flow. 

ccno( 16) 

       subroutine flowevapnode(x,id,rr) 

       This subroutine calculates nodal water loads 

       due to evaporation in surface elements. 

ccno( 17) 

       subroutine floanode(x,id,rr) 

       This subroutine calculates nodal loads due to surface air  

       Flow. 

ccno( 18) 

      subroutine lstp(r,rr) 

      This subroutine adds the external loads to r. 
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ccno( 19) 

       subroutine stiff(ie4d,ie4c,ie4u,id,x,sm4d,sm4c,sm4u, 

       * sig4d,sig4c,sig4u,dsig4d,dsig4c,dsig4u, 

       * r,rr,di,dt,na,iact,s1,s2) 

      This subroutine assembles the global stiffness matrix. 

ccno( 20) 

      subroutine shap4n(s,t,f,pfs,pft) 

      This subroutine calculates the shape functions and 

      their derivatives. 

ccno( 21) 

      subroutine bmat4n(xe,ye,f,pfs,pft,b,detj) 

      This subroutine calculates the strain displacement 

      matrix for a 4 noded soil element. 

ccno( 22) 

      subroutine body(m,mt,mb,xe,ye,q,gam) 

      This subroutine calculates body loads. 

ccno( 23) 

      subroutine stif4d(m,mt,qk,q,sige,dsige,xe,ye,sm4d,istop) 

      This subroutine calculates the stiffness matrix for 

      a 4 noded drained element. 

ccno( 24) 

      subroutine dmatd(m,mt,d,sige,dsige,sm4d,et,bt,sr) 

      This subroutine calls the appropriate soil model 

      and determines the stress for nonlinear analysis 

      for drained materials. 
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ccno( 25) 

      subroutine dmatdh(m,mt,d,sstr,sm4d,et,bt,sr) 

      This subroutine calculates the d matrix 

      using the hyperbolic model for drained materials. 

ccno( 26) 

      subroutine stif4c(m,mt,qk,q,sige,dsige,xe,ye,sm4c,pw,istop) 

      This subroutine calculates the stiffness matrix for 

      a 4 noded saturated element. 

ccno( 27) 

      subroutine dmatc(m,mt,d,sige,dsige,sm4c,et,bt,sr,xkw,comp,sat 

     *,coef) 

      This subroutine calls the appropriate soil model 

     and determines the stress for nonlinear analysis 

     for saturated materials. 

ccno( 28) 

      subroutine dmatch(m,mt,d,sstr,sm4c,et,bt,sr,xkw,comp,sat,coef) 

      This subroutine calculates the d matrix 

      using the hyperbolic model for drained materials. 

ccno( 29) 

      subroutine perm(permws,xkw,coef,rw,tvisc,ev,vide,tt,pp) 

      This subroutine calculates the water permeability. 

ccno( 30) 

      subroutine stif4u(m,mt,qstif,q,sige,dsige,xe,ye,sm4u,pw,pa, 

      istop) 

      This subroutine calculates the stiffness matrix for 
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      a 4 noded unsaturated element. 

ccno( 31) 

     subroutine dmatu(m,mt,d,dfs,ds,sige,dsige,sm4u,bt,et,permwu, 

    *xka,g1,g2,xm1,ev,sat,sr) 

     This subroutine calls the appropriate soil model 

     and determines the stress for nonlinear analysis 

     of unsaturated materials. 

ccno( 32) 

      subroutine dmatuh(m,mt,d,dfs,ds,sstr,sm4u,bt,et,permwu,xka, 

     *g1,g2,xm1,ev,sat,sr) 

     This subroutine calculates the d matrix for unsaturated soil 

     using the hyperbolic model and also suction matrix. 

ccno( 33) 

      subroutine statevt(sy,tt,suc,a,b,c,d,ct,xm,sigb,ev,bt, 

     *xm1,xmt,s1,s3,ten,tamb) 

     This subroutine calculates the void ratio, bulk modulus 

     and suction modulus from the new thermal void ratio state 

     surface. 

ccno( 34) 

     subroutine statest(sy,tt,suc,a,b,c,d,sat,g1,g2,g3,tamb) 

     This subroutine calculates the saturation and gradients. 

ccno( 35) 

     subroutine perwt(a,sat,sru,al,ev,pm,tt,tamb,pp,rw,xkw) 

     This subroutine calculates the water permeability. 

 ccno( 36) 
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      subroutine pergt(b,sat,sru,bet,xmu,ev,pm,xkg) 

      This subroutine calculates the air permeability. 

ccno( 37) 

      subroutine strent(c,phi,s1,s3,sm,suc,sucm,succ, 

     *sucp1,sucp2,smax,tt) 

      This subroutine calculates the strength. 

ccno( 38) 

      subroutine condt(ev,sat,tlans,tlanw,tlana,tlan,hfg,tt,pg,rw 

     *,rv,rmix,drv0,rv0,humr,rg,crg,dov,dtv,dow,dtw,tamb,xkg,xkw,cps 

     *,cpw,cpv,cpg,betpg,alsr,alp,altt,cktt,cktw,cktg,fxt,cf4,cf5 

     *,cf6) 

     This subroutine calculates the heat conductivity, Dtv  

     and Dov, Dtw and Dow. 

ccno( 39) 

     subroutine solve(a,c,b,na,neq,isolv) 

     This subroutine solves for the global displacements and  

     pore pressures. 

     skyline solver for symmetric matrix (isolv=1) 

     skyline solver for unsymmetric matrix (isolv=3) 

ccno( 40) 

     subroutine stress(ie4d,ie4c,ie4u,id,x,sm4d,sm4c,sm4u, 

     *sig4d,sig4c,sig4u,dsig4d,dsig4c,dsig4u,r,rr,di,dt) 

     This subroutine calculates stress in the element. 

ccno( 41) 

     subroutine princp(sx,sy,sxy,s1,s3,theta) 



152 
 

     This subroutine calculates principal stresses. 

ccno( 42) 

     subroutine str4nd(m,mt,xe,ye,du,sm4d,sige,dsige) 

     This subroutine calculates the stresses for drained elements 

     at the centroid.    

 ccno( 43) 

     subroutine str4nc(m,mt,xe,ye,du,sm4c,sige,dsige,pw,dpw) 

     This subroutine calculates the stresses for saturated 

     elements at the centroid.   

ccno( 44) 

     subroutine str4nu(m,mt,xe,ye,du,sm4u,sige,dsige,pw,pa,dpw,dpa) 

     This subroutine calculates the stresses for unsaturated 

     elements at the centroid.    

ccno( 45) 

      subroutine update(ie4d,ie4c,ie4u,id,iconst,sig4d,sig4c,sig4u, 

     *dsig4d,dsig4c,dsig4u,r,rr,di,dt) 

     This subroutine updates the displacements, stresses and pore 

     pressures at the end of each time step. 

ccno( 46) 

      subroutine varup(i,mt,sm4c,ics,ingp,ncode,varpmc,pe,qt, 

     *pc0,psc,evs,evd,pc,pp,dgama1,dgama2,pinv0c)   

     This subroutine determines the current stress state at the 

     end of the current increment. 

ccno( 47) 

      subroutine output(ie4d,ie4c,ie4u,id,x,sm4d,sm4c,sm4u, 



153 
 

     *sig4d,sig4c,sig4u,dt,iact) 

     This subroutine prints out results of each 

     load step. 

ccno( 48) 

      subroutine rread(a,l5,l6,l17,l14) 

      This subroutine reads data for restart analysis(init=0). 

ccno( 49) 

      subroutine wwrite(a,l5,l6,l17,l23,l24) 

      This subroutine writes data for restart analysis. 

ccno( 50) 

     subroutine rread1(a,l23,l24) 

     This subroutine reads data for restart analysis. 

ccno( 51) 

      subroutine caldi(r,di)    

      This subroutine stores displacements and pore pressures in vector di. 

ccno( 52)  

      subroutine General_Climate_Data(surfacElemNo,evaporl 

      *,total_evap_length) 

      This subroutine calculates total length of evaporation surface. 

ccno( 53) 

      subroutine Calculate_Evap(csuction,ctemper,evaporlen, 

     *slpotOne,starQ,windNday,pvair,rhair,airtemperature, 

     *currentevap) 

     This subroutine calculates evaporation using suction, temperature 

     and atmospheric data. 
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ccno( 54) 

      subroutine EVAP_FLUX (csuction, ctemper,slpotOne,starQ, 

     *windNday,pvair,rhair,airtemperature,evaporlen,VFLUX)  

     This subroutine calculates the surface flux and the potential 

     evaporation based on suction and temperature. 

ccno( 55) 

      subroutine SET_INITIAL_SETTINGS(currentime,specif,DAYLENGth, 

     *TEMPeratureAIR,RHAIR,SLPOT,PVAIR,STARq)   

     This subroutine calculates the air temperature, the air 

     relative humidity, the slope of the saturated vapor pressure 

     function, and the net radiation, and saves the starting 

     suctions and temperatures for the current time step. 

ccno( 56)  

    function Calc_AirRH(DayLeng,TimeScnds) 

    This function calculates a sin distribution for relative humidity. 

ccno( 57) 

    function Calc_RH(Suction,Temperature) 

   This function calculates Relative Humidity for given suction 

   (kPa) and temperature (k). 

ccno( 58) 

    function Calc_AIRTemp(DayLeng,Timescnds) 

   This function calculates a sin distribution for temperature. 

ccno( 59) 

   function Calc_DAYLENG(N) 

  This function calculates the time (HR) of the DAYLENG. 
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ccno( 60) 

   function Calc_NETRAD(Dayleng) 

  This function calculates a sin distribution for net radiation. 

ccno( 61) 

   function Calc_SatVp(Temp) 

  This function calculates the saturated vapor pressure given the  

  temperature in Kelvin. 

ccno( 62) 

  function Calc_SoilTemp(TheWind,TheSpecified,minimumtemp) 

   This function calculates the soil temperature to be applied to 

   the top node. 

ccno( 63) 

   function Calc_Vflux(RhSoil,slpotOne,starQ,windNday,pvair,rhair, 

  *airtemperature) 

   This function calculates the vertical flux to be applied to 

    the top node. 

ccno( 64) 

function Calc_Vfluxpen(rh1,slpotOne,starQ,windNday,pvair,rhair, 

    *airtemperature) 

    This function calculates the potential evaporation at the top 

    Node. 
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