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 Abstract 

The availability of affordable depth sensors in conjunction with common RGB cameras, such 

as the Microsoft Kinect, can provide robots with a complete and instantaneous representation 

of the current surrounding environment.  However, in the problem of calibrating multiple 

camera systems, traditional methods bear some drawbacks, such as requiring human 

intervention. In this thesis, we propose an automatic and reliable calibration framework that 

can easily estimate the extrinsic parameters of a Kinect sensor network. Our framework 

includes feature extraction, Random Sample Consensus and camera pose estimation from 

high accuracy correspondences. We also implement a robustness analysis of position 

estimation algorithms. The result shows that our system could provide precise data under 

certain amount noise.  
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Chapter 1  

1 Introduction 

1.1 Overview 

The robotics industry has been developing rapidly in the past few years. Typical robotic 

tasks, like simultaneous localization and mapping (SLAM), navigation, object 

recognition and many others, greatly benefit from having color and depth information 

fused together. Traditional high-cost 3D profiling cameras often result in lengthy 

acquisition and slow processing of massive amounts of information. With the invention 

of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing 

has created many opportunities for multimedia computing. Our objective is to design and 

implement a system for calibrating multiple Kinect sensors in different views. 

1.2 Kinect Mechanism 

Kinect contains a normal RGB camera, an Infrared Sensor and a four-microphone array. 

Combining these devices, the Kinect is able to provide RGB images, depth images and 

audio signals simultaneously, which encourages varied applications in different fields, 

such as image signal synchronization, human 3-D motion capture, human face 

identification. 
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 Kinect Sensing Hardware 

Kinect is a composite device consisting of a near-infrared laser pattern projector, an IR 

camera and a color (RGB) camera; Figure 1.1 shows the arrangement of the sensors on a 

Kinect. The laser pattern projector and the IR camera are used as a stereo pair to capture 

depth information in 3D space. The IR projector casts an IR speckle dot pattern into the 

3D scene while the IR camera captures the reflected IR speckles. Due to the uniqueness 

of each projected dot, the depth of a point can be captured by relative left-right translation 

of the dot pattern. This translation is dependent on the distance of the object to the 

camera-projector plane. Such a procedure is illustrated in Figure 1.2. [1] 

Each component of the Kinect hardware is described below. 

1) RGB Camera: It delivers three basic color components of the video. The camera 

operates at 30 Hz, and can offer images at 1920×1080 pixels with 8-bit per channel. The 

angular field of view (FOV) is 84.1° horizontally and 54.8° vertically.  

2) 3-D Depth Sensor: It consists of an IR laser projector and an IR camera. Together, the 

depth image is constructed by triangulation from the stereo pair. The sensor has a 

practical ranging limit of 0.5 m−8.0 m distance, and outputs video at 30 frames/s with the 

resolution of 512×424 pixels. The angular field of view (FOV) is 70.6° horizontally and 

60.0° vertically.  

Table 1 also provides comparative specifications of the Kinect v2, which is used in this 

thesis, and the previous Kinect v1. 
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Figure 1.1.  Hardware configuration of Kinect v2. 
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Figure 1.2.  Illustration of Kinect depth measurement. IR camera could sense the 

depth by the unique project pattern.  

Table 1.  Comparative Specifications of Kinect v1 and Kinect v2. 

 Kinect v1 Kinect v2 

Resolution of RGB image 640 × 480(pixel) 1920 × 1080(pixel) 

Resolution of IR image 320 × 240(pixel) 512 × 424(pixel) 

Field view of RGB image 62° × 48.6° 84.1° × 53.8° 

Field view of IR and depth image 57.5° × 43.5° 70.6° × 60° 



5 

 

Maximum skeletal tracking 2 6 

Method of depth measurement Lighting coding Time of Flight 

Working range 0.8m~3.5m 0.5m~8.0m 

 

1.3 Problem and Issues 

Multiple-camera systems have become increasingly prevalent in robotics and computer 

vision research. One of the most important tasks is how to combine the visual 

information in those cameras. This problem, in general, can be interpreted as a 

mathematical problem.  Given two cameras, each with their own 3D coordinate system, 

they obtain information of the same scene from different views. There should be a rigid 

transformation between the two camera coordinates. Specifically, in 3D space, this 

transformation is determined by a rotation matrix 𝑅 and a transit vector �⃗�.  

This problem can be stated as follows: 

Assume that we have two calibrated cameras 𝐶𝑙 and 𝐶𝑟, such that the intrinsic matrices 

are 𝐾𝑙 and 𝐾𝑟. However, the absolute positions expressed in a world coordinate system 

𝑂𝑤 between them are unknown. By giving the input RGB + Depth (RGB-D) images of 

the same scene from those two cameras, can we design a system that can automatically 

determine the unknown values of  𝑅 and �⃗�. 

 



6 

 

1.4 Thesis Contribution 

This thesis presents and evaluates a framework that integrates RGB-D data capture, 

feature points selection, correspondence optimization and camera pose reconstruction 

into one application. The thesis also includes a robustness analysis of the approach which 

demonstrates that the system is resistant to noisy data and provides precise estimation. 

Besides, this thesis is the first one to introduce 3D eight-points algorithm and numerically 

compare those three pose estimation algorithms. 

 

1.5 Thesis Contents 

This thesis is organized as follows: 

Chapter 2 briefly describes the traditional methods of camera calibration as well as 

previous work on 3D sensor calibration and address the deficiency and constraints of 

each algorithm. Chapter 3 is the core of this thesis which explained in detail each stage of 

the processing within the system. With respect to feature detection and correspondence 

selection, we rely on the work of Lowe [2][3] and Bay and Herbert [4].   We also 

leverage the camera pose estimation algorithms proposed by Lepetit [5] and Hartley [6]. 

In Chapter 4, the methodology that is used to build the complete system is presented and 

the sets of experiments are described.  The results presented in Chapter 5 illustrate the 

effectiveness of the system and demonstrate its robustness to noise.  Finally, Chapter 6 

lists some areas of future work for potentially improving the system and proposes new 

directions that overcome some of the inherent constraints in our current work. 
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Chapter 2  

2 Related Work 

Camera calibration, in general, is the process of estimating the parameters of a pinhole 

camera model approximating the camera that produced a given photograph or video. The 

extrinsic calibration of a camera from independent pairwise correspondences with 

multiple views is essentially the problem of estimating the camera positions between non-

central cameras. 

Many calibration methods have been proposed to do the calibration work using a 

calibration object with known world coordinates. One possible way is to use a calibration 

object, which consists of several easily detectable non-coplanar feature points with 

known relative 3D positions, such as a checkerboard pattern [7], [8], [9].  Corresponding 

points between 3D world points and image points could be accomplished by fixing the 

world coordinate system in the calibration object. Then, by optimizing the mapping from 

picture coordinates system to corresponding 3D world coordinates, both intrinsic and 

extrinsic parameters could then be estimated.  This optimization problem could be solved 

linearly if 17 correspondences are given [10].  Apart from the time complexity, 6 pairs of 

correspondences, at a minimum, are also able to be used to find an acceptable estimation 

[11].  However, this 6-pairs correspondence method cannot output reliable results for 

some particular situations, for example, if one of the generalized views is a pin-hole. For 

the case of any arbitrary combination of correspondences between the 4 views of two 

https://en.wikipedia.org/wiki/Pinhole_camera_model
https://en.wikipedia.org/wiki/Pinhole_camera_model
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stereo rigs, Vasconcelos et al. propose a non-minimal solution using 10 correspondences 

[12]. 

To conclude, these kinds of algorithms can solve the problem for calibrating a single 

camera efficiently. However, when it comes to a camera network, which contains 

multiple cameras, it is tedious and cumbersome to calibrate all the cameras 

simultaneously using these reference objects, as it is often extremely difficult to make all 

the points on the calibration object simultaneously visible in all views. Moreover, 

designing highly accurate tailor-made calibration patterns are often difficult and 

expensive.  

Another option [13], [14] is to observe the object through planar mirror reflections in 

order to handle situations of little or no overlap in the focal views. They overcome the 

need for all cameras to have overlapping direct views by allowing them to see the object 

through a mirror. They first adopt standard calibration methods to find the internal and 

external parameters of a set of mirrored cameras poses and then estimate the external 

parameters of the real cameras from their mirrored poses by formulating constraints 

between them. However, those calibration procedures are explicit, in the sense that they 

require substantial human intervention, and are meant to be carried out as an initial off-

line step before starting to operate the network of cameras. 

People have also turned to 3D sensors, which offer depth information in more convincing 

and precise ways. An important task for multiple cameras is the calibration for 3D 

sensors. 
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Auvinet et al. [15] proposed a method for calibrating multiple depth cameras by using 

only depth information. Their algorithm is based on plane intersections and the Network 

Time Protocol for data synchronization. The calibration achieves good results even if the 

depth error of the sensor is 10 mm. A drawback of their implementation is that they have 

to manually select the plane corners and, above all, they only deal with depth sensors, 

thus avoiding the possibility to add the color information to the fused data. 

Another approach to solve the calibration problem is the one proposed by Le and 

Ng [16]: they jointly calibrate groups of sensors. Each group is composed by a set of 

sensors that can provide a 3D representation of the world.  They first calibrate the 

intrinsic parameters of the sensors individually, then they calibrate the extrinsic 

parameters of each group and the extrinsic parameters of each group with respect to all 

the others.  In the end, they refine the calibration parameters of the entire system in one 

optimization step. Their experiments show that this method not only reduces the 

calibration error, but also requires little human intervention. 

In 2010, the Kinect for Xbox 360 sensor was introduced by Microsoft as an affordable 

and real-time source for RGB-D data, which was dedicated to gesture detection and 

recognition in a game controller. Due to its acquisition speed, many researchers have 

recognized the potential of the Kinect’s RGB-D imaging technology, which gives a 

significant rise to this field.  

In order to merge data collected from different Kinect sensors, various approaches have 

been proposed for simultaneous calibration of Kinect’s sensors. Burrus [17] proposes to 

use traditional techniques for calibrating the Kinect color camera involving manual 

http://www.sciencedirect.com.proxy1.lib.uwo.ca/science/article/pii/S0921889015002304#br000090
http://www.sciencedirect.com.proxy1.lib.uwo.ca/science/article/pii/S0921889015002304#br000095
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selection of the four corners of a checkerboard for calibrating the depth sensor. Zhang et 

al. [18] propose a semi-automatic method. They automatically sample the planar target to 

collect the points for calibration of depth sensor and then manually select corresponding 

points between color and depth images. Combing them together, the extrinsic relationship 

within a single Kinect sensor is established. Gaffney [19] describes a technique to 

calibrate the depth sensor by using 3D printouts of cuboids to generate different levels in 

depth images. However, after that it requires an elaborate process to construct the target. 

To avoid the need for blocking the projector when calibrating, Berger et al. use a 

checkerboard where black boxes are replaced with mirroring aluminum foil [20]. 

In conclusion, traditional methods fail to use depth information effectively which makes 

them unable to determine the distance in the real world.  A number of the previous 3D 

sensor calibrating algorithms require human intervention and thus are tedious and 

complex when calibration of multiple cameras is needed.  This thesis provides a system 

that can not only determine camera poses with a high precision but it is also robust to 

noisy data. More importantly, it is an automatic system that requires no human 

intervention. 
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Chapter 3  

3 System Description 

In this Chapter, we present each component of our system in chronological order. We 

introduce the theory of RGB-D image formation, depth information, pinhole camera 

models and four coordinate systems. Following this, the problem of calibrating the 

camera system is proposed. This part contains the definition of intrinsic and extrinsic 

camera parameters and discusses the phenomenon of camera lens distortion. In order to 

introduce the Essential and Fundamental Matrices, the theory of Epipolar Geometry is 

also discussed. 

We then discuss some common computer vison tasks such as, feature detection and 

matching. Two scale-invariant feature detection algorithms, SIFT and SURF, are 

presented. We also discuss a robust stochastic method (RANSAC) commonly used to 

match features from source images. 

Three methods of estimating camera pose from correspondences are presented. These are: 

the Eight-Point algorithm (uses 2D correspondences), Perspective-n-Point (uses 3D-2D 

correspondences), and  3D Point Registration (uses 3D correspondences). The system is 

described as a flow chart in Figure 3.1 
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Figure 3.1 Flow chart r the whole system 

3.1 Stereo Vision Theory 

Stereo vision refers to the process of extracting 3D information from two (or more) 2D 

views of a scene. In this Section, common knowledge is discussed such as disparity and 

depth. In addition, the pinhole camera model as well as different coordinate systems are 

introduced in order to discuss stereo vison effectively. 

 Disparity and Depth 

Human eyes are horizontally separated by about 50–75 mm, depending on each 

individual. Thus, each eye has a slightly different view of the world around. The term 

binocular disparity refers to geometric measurements related to the estimation of scene 

depth. In computer vision, binocular disparity is calculated from stereo images taken 

from a set of stereo cameras. The variable distance between these cameras, called the 

baseline, can affect the disparity of a specific point on their respective image plane 
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[21]. Figure 3.2 shows one point in the real world projected onto two image planes by 

two cameras in different positions.  

 

Figure 3.2 Stereo cameras projection. The quantity b refers to baseline, and (𝒙 − 𝒙′) 

is disparity. 

Disparity can be used in the extraction of information from stereo images.  One case that 

disparity is most useful is for 3D depth estimation. Disparity and distance from the 

cameras are inversely related. As the distance of an object from the cameras increases, 

the disparity decreases. According to triangulation, we have 

 Disparity d = 𝑥 − 𝑥′ = b ·
𝑓

𝑧
       

Therefore 
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 Depth z =
𝑏·𝑓

𝑥−𝑥′
=

𝑏·𝑓

𝑑
 (3.1)    

where 𝑥 and 𝑥′ are the distance between points in the image plane corresponding to the 

3D scene point and their camera centers. b is the distance between two cameras and 𝑓 is 

the focal length of camera. 

 Coordinate Systems 

1) World Coordinate (U, V, W) 

It is the absolute coordinate system of the world. In general, a 3D scene is expressed 

in this coordinate system. 

2) Camera Coordinate (X, Y, Z) 

This coordinate system is related to the pinhole camera model. In this coordinate 

system, Z is the optical axis (or line if sight), with the image plane located at 𝑓 units 

away along the optical axis. 𝑓 is known as the focal length. 

3) Film Coordinate (𝑥, 𝑦) 

By forward projecting point from camera coordinates onto the image plane, a 2D 

coordinate is obtained, which is called a film coordinate.  

4) Pixel Coordinate (𝑢, 𝑣) 

In images, the points are measured in pixel units, so the film coordinate needs to be 

digitalized into the pixel coordinate. In this coordinate, the center is normally located 
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in the upper left corner of the image and the u and v axes are parallel to x and y axes 

in film coordinates. 

Figure 3.3 shows the relationship between the four coordinate systems. 

 

Figure 3.3 Projection between different coordinate systems 

 

 Pinhole Camera Model 

Given a camera coordinate system with 𝑓 as its focal length. The line from center of 

projection and perpendicular to the image plane is called principal axis of the camera and 

the intersection of this principal axis with the image plane is called the principal point. 
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Assume (𝑋, 𝑌, 𝑍) is the 3D coordinates of an image point p(𝑥, 𝑦) on the camera image 

plane. Then, the 3D point and its 2D image point are related as:  

 𝑥 = 𝑓
𝑋

𝑍
 , 𝑦 = 𝑓

𝑌

𝑍
 (3.2)  

This relation is known as perspective projection. However, x and y are expressed in the 

units of the world coordinate system, and need to be converted to pixel units. 

Transforming the coordinates requires knowing the column-wise and row-wise density of 

the pixels (pixels per millimeter), let them be 𝑎𝑢and 𝑎𝑣 respectively. We also need to 

know the deviation of the principal point from the image center. Let its coordinates be 

(−𝑥0, −𝑦0). Then p can be written as 

 𝑢 = 𝑎𝑢(𝑥 + 𝑥0) = 𝑎𝑢𝑓
𝑋

𝑍
+ 𝑎𝑢𝑥0 (3.3)  

𝑣 = 𝑎𝑣(𝑦 + 𝑦0) = 𝑎𝑣𝑓
𝑌

𝑍
+ 𝑎𝑣𝑦0 .   

The pinhole camera model is illustrated in Figure 3.4. 
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Figure 3.4 A pinhole camera model. 

3.2 Camera Calibration 

 Intrinsic Parameters 

Equation (3.3) 

𝑢 = 𝑎𝑢(𝑥 + 𝑥0) = 𝑎𝑢𝑓
𝑋

𝑍
+ 𝑎𝑢𝑥0 

𝑣 = 𝑎𝑣(𝑦 + 𝑦0) = 𝑎𝑣𝑓
𝑌

𝑍
+ 𝑎𝑣𝑦0 . 

can written in matrix form. First, let point P be expressed as: 
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 𝑃′ =
𝑃

𝑍
= (

𝑋
𝑍⁄

𝑌
𝑍⁄

𝑍
𝑍⁄

) = (
𝑋′

𝑌′

1
) (3.4) 

Then (3.3) can be expressed as:  

 (𝑢
𝑣
1
) = (

𝑎𝑢𝑓 0 𝑎𝑢𝑥0

0 𝑎𝑣𝑓 𝑎𝑣𝑦0

0 0 1

) (
𝑋′

𝑌′
1

) = 𝐾𝑃′ (3.5) 

 and let  

𝑓𝑥 = 𝑎𝑢𝑓, 𝑓𝑦 = 𝑎𝑣𝑓, 𝑐𝑥 = 𝑎𝑢𝑥0, 𝑐𝑦 = 𝑎𝑣𝑦0. 

 Those four quantities are determined by the internal structure of the camera, and are 

known as intrinsic parameters. Therefore, the camera intrinsic parameter matrix 𝐾 can be 

represented as: 

 𝐾 = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

) (3.6) 

Normally, the intrinsic parameters of the camera are usually found by calibration [22]. 

For the Kinect cameras, they can be obtained using the Microsoft Kinect SDK v2.0 [23]. 

 

3.2.1.1 Distortion Coefficients 

In the section 3.1.3, we introduced the pinhole camera model, disregarding the possibility 

of distortions introduced by the camera assembly and the lens itself. Because of such 

imperfections, when projecting points into the image plane, distortions are introduced. 
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There are two types of distortions: optical and perspective. Both result in some type of 

image deformations, lightly or noticeably. In optical distortion, there has been two most 

common and significant distortions: Barrel Distortion and Pincushion Distortion. Figure 

3.5 shows how they deform images. 

  

Figure 3.5 Barrel Distortion and Pincushion Distortion 

These distortions are accounted for and corrected with relatively simple models [22], 

[24]. Let (𝑥, 𝑦) be the ideal coordinates on image plane, and (𝑥𝑑, 𝑦𝑑) the corresponding, 

real observed coordinates. Also, let (0,0) denote the principal point, free of any 

distortion.  Then we can write:  

 𝑥𝑑 = 𝑥 ∙ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6), (3.7) 

 𝑦𝑑 = 𝑦 ∙ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6), 

Where 

r = √𝑥2 + 𝑦2 
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and 𝑘1, 𝑘2, 𝑘3 are radial distortion coefficients. Zhang claims that the first two terms in 

these equations are sufficient to adequately undistort images in most cases [2].  

3.2.1.2 Extrinsic Parameters 

In the pinhole camera model, we have a prerequisite assumption that the center of the 

camera coordinate system is the center of world coordinate system. But in real life, it not 

always the case. We define a rotation matrix 𝑅 and a translation vector �⃗� to denote the 

coordinate system transformations from 3D world coordinates to 3D camera coordinates. 

Let P(𝑈, 𝑉, 𝑊) to be a point in the world coordinate and P(𝑋, 𝑌, 𝑍) corresponding to 

coordinates in the camera coordinate system. Then, 

 (
𝑋
𝑌
𝑍

) = 𝑅 · (
𝑈
𝑉
𝑊

) + �⃗� = (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

) · (
𝑈
𝑉
𝑊

) +· (

𝑡𝑥

𝑡𝑦

𝑡𝑧

) (3.8) 

The parameters 𝑅 and �⃗� are known as extrinsic parameters. They describe the camera's 

location and orientation in the world coordinate system. The extrinsic parameters are 

often written in a matrix form: 

 [𝑅|�⃗�] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

|

𝑡𝑥

𝑡𝑦

𝑡𝑧

] , (3.9) 

known as the extrinsic matrix. 
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3.3 Epipolar Geometry 

3.3.1.1 Overview 

When using two cameras or the same camera in two different locations to image the same 

scene, the two resulting pictures are related by what is known as Epipolar Geometry. This 

type of geometry is independent of scene structure, and only depends on the cameras’ 

internal parameters and relative pose [25]. 

Suppose 𝑋 is a point in 3D world coordinates, where 𝑋 is projected onto the two views, 

as 𝑥 in the first view, and as 𝑥′ in the second view. 3D Point 𝑋 and the camera centers 𝐶 

and 𝐶′ form what is known as the epipolar plane 𝜋. Figure 3.6, shows that the rays back-

projected from 𝑥 and 𝑥′ intersect at 𝑋, and are lying in the plane 𝜋. 

If we only know 𝑥, the position of 𝑥′ is impossible to determine (See Figure 3.7). The 

plane 𝜋 is determined by the stereo baseline and the rays defined by 𝑥. The point 𝑥′ lies 

on a line 𝑙′, which is the image in the second view of the ray back-projected from x. This 

constraint is quite crucial to stereo correspondence, since the search for the point 

corresponding to x need not cover the entire image plane but can be restricted to the line 

𝑙′, known as an epipolar line. 

We introduce the terminology of Epipolar geometry. 

➢ Epipole: the epipole is the point of intersection of the line joining the camera centers 

(the baseline) with the image plane. 

➢ Epipolar plane: an epipolar plane is a plane containing the baseline. 
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➢ Epipolar line: an epipolar line is the intersection of an epipolar plane with the image 

plane. All epipolar lines intersect at the epipole. 

The geometric entities involved in Epipolar geometry are illustrated in Figure 3.8. 

 

 

Figure 3.6 Points correspondence geometry (a) 

 

Figure 3.7 Points correspondence geometry (b) 
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Figure 3.8 Illustration of Epipolar geometry 

3.3.1.2 Fundamental and Essential Matrices 

In 1981, Longuet-Higgins found that there is a special 3 × 3 matrix that associates two 

images from different perspectives of the same scene [26]. Then in the late 1980s and 

early 1990s, other scholars re-discovered this matrix in various fields. It came to be 

known as the Fundamental Matrix. 

Let’s consider two perspective images of a scene as taken from a stereo pair of cameras. 

(or equivalently, assume the scene is rigid and imaged with a single camera from two 

different locations) and suppose 𝐾𝑙 and 𝐾𝑟 are the intrinsic parameter matrices of these 

two cameras. Let P be a point in the world coordinate, and 𝑃𝑙(𝑃𝑙𝑥
, 𝑃𝑙𝑦

, 𝑃𝑙𝑧
) and 

𝑃𝑟(𝑃𝑟𝑥
, 𝑃𝑟𝑦

, 𝑃𝑟𝑧
) be the coordinates of P in left and right camera coordinate system. The 

position and orientation of the two cameras are related by a rotation matrix 𝑅 and a 

translation vector �⃗� = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑇in the following way: 

 𝑃𝑟 = 𝑅 · 𝑃𝑙 + �⃗� (3.10) 
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Due to the epipolar constraint (see Figure 3.9) and outer product properties we can write: 

 𝑃𝑟 ∙ (�⃗�  ×  𝑃𝑟) = 0 (3.11) 

Combining (3.10) and (3.11) yields: 

 𝑃𝑟 ∙ (�⃗�  × (𝑅 · 𝑃𝑙 + �⃗�)) = 0 (3.12) 

Since, �⃗�  ×  �⃗� = 𝟎, the equation is equivalent to: 

 𝑃𝑟 ∙ �⃗�  ×  𝑅 ∙ 𝑃𝑙 = 0  (3.13)  

We have 

 �⃗�  ×  𝑅 = S𝑅 (3.14) 

where 

𝑆 = [

   0 −𝑡𝑧    𝑡𝑦

    𝑡𝑧    0 −𝑡𝑥

−𝑡𝑦     𝑡𝑥     0
] , 

is a skew-symmetric matrix of rank 2. 

Thus, we write: 

 𝑃𝑟
𝑇 ∙ 𝑆𝑅 ∙ 𝑃𝑙 = 0 . (3.15) 

Let 𝐸 = 𝑅𝑆: 

  𝑃𝑟
𝑇 ∙ 𝐸 ∙ 𝑃𝑙 = 0. (3.16) 
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The matrix 𝐸 here called the Essential Matrix. The matrix 𝐸: 

 has rank 2, and 

 depends only on the extrinsic parameters (𝑹 and �⃗�). 

Consider 𝑥𝑙 =  (𝑢𝑙 , 𝑣𝑙) and 𝑥𝑟 =  (𝑢𝑟 , 𝑣𝑟) as the projections of 3D point 𝑃 onto the two 

image planes, with 𝑥𝑙 and 𝑥𝑟 defined as: 

 𝑥𝑙 = (
𝑢𝑙
𝑣𝑙
1

)      ,   𝑥𝑟 = (
𝑢𝑟
𝑣𝑟
1

)    (3.17) 

According to (3.4), we have 

 𝑍 · 𝑥𝑙 = 𝐾𝑙𝑋𝑙 , (3.18) 

 𝑍 · 𝑥𝑟 = 𝐾𝑟𝑋𝑟.  

Combing (3.16) and (3.18) 

 𝑍2 ∙ 𝑥𝑟
𝑇 ∙ 𝐾𝑟

−𝑇 ∙ 𝐸 ∙ 𝐾𝑙
−1 ∙ 𝑥𝑙 = 0 , (3.19) 

which is equivalent to  

 𝑥𝑟
𝑇 ∙ 𝐾𝑟

−𝑇 ∙ 𝐸 ∙ 𝐾𝑙
−1 ∙ 𝑥𝑙 = 0 (3.20) 

The matrix 𝐹 = 𝐾𝑟
−𝑇 ∙ 𝐸 ∙ 𝐾𝑙

−1, is called Fundamental Matrix and expresses epipolar 

geometry in image coordinates (see Figure 3.9). 
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Figure 3.9 Epipolar constraint 

3.4 Feature Detection 

 SIFT Feature 

The Scale Invariant Feature Transform (SIFT) was first proposed by David Lowe in 1999 

and improved in 2004 to identify points of interest in an image [2], [3]. The SIFT 

approach, for image feature generation, takes an image and transforms it into a "large 

collection of local feature vectors", with each of these feature vectors invariant to scaling, 

rotation or translation of the image. 

The SIFT algorithm consists of a 4-stage filtering approach: 

 Scale-space peak detection 

This stage of the filtering attempts to identify those locations and scales that are 

identifiable from different views of the same object. The approach to achieve this is 

building a scale space by using Laplacian of Gaussian (LoG). The scale space is defined 

by the function: 
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𝐿(𝑥, 𝑦, 𝜎𝐷) = 𝐺(𝑥, 𝑦, 𝜎𝐷) ∗ 𝐼(𝑥, 𝑦) , 

where 𝐼(𝑥, 𝑦) represents the original image, ∗ is the convolution operator, and 𝐺 is a 

Gaussian kernel. Figure (3.10) shows an input image to which a Gaussian kernel is 

applied in a successive manner.  

There are various techniques to detect stable key point locations in scale-space. One of 

them is the Difference of Gaussians technique: locating scale-space peak 𝐷(𝑥, 𝑦, 𝜎𝐷) by 

computing the difference between two images, one with scale 𝑘 times the other. 

𝐷(𝑥, 𝑦, 𝜎𝐷) is then given by: 

𝐷(𝑥, 𝑦, 𝜎𝐷) = 𝐿(𝑥, 𝑦, 𝑘𝜎𝐷) − 𝐿(𝑥, 𝑦, 𝜎𝐷) 

To detect the local maxima and minima of 𝐷(𝑥, 𝑦, 𝜎𝐷), each point is compared with its 8 

neighbors at the same scale, and its 9 neighbors up and down one scale. If this value is 

the minimum or maximum of all these points then this point is an extremum. 
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Figure 3.10 Input image applied with different Gaussian kernel. Applied with 

different scales factor, input image shows different details.  

 Key point localization 

The purpose of this step is to pinpoint the location of the feature key. To reach this goal, 

the Laplacian value for each key point found in stage 1 is calculated.  The location of 

extremum, z is given by: 

z = −
𝜕2𝐷−1

𝜕𝑋2

𝜕𝐷

𝜕𝑋
 , 
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If the function value at z is below a threshold value then this point is excluded. By doing 

this, low contrast extrema and poorly localized candidates are removed. It is noted for 

difference of Gaussian function that there is a large principle curvature across the edge 

but a small curvature in the perpendicular direction. If this difference is below the ratio of 

largest to smallest eigenvector, from the 2x2 Hessian matrix at the location and scale of 

the key point, the key point is rejected. 

 Orientation assignment 

This is the third step of SIFT. The purpose is to achieve the orientation invariance of the 

SIFT feature. The approach taken to find an orientation is: 

➢ Use the key points scale to select the Gaussian smoothed image L 

➢ Compute gradient magnitude 𝑚 and orientation 𝜃  

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 , 

𝜃(𝑥, 𝑦) = tan−1((𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)) (𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))⁄ ) 

➢ For each key point, we select the 16 x 16 neighborhood and quantify the gradient of 

all pixels (256) in this window into the histogram of 36 bin. 

➢ Locate the highest peak in the histogram. Use this peak and any other local peak 

within 80% of the height of this peak to create a key point with that orientation 

 Key point descriptor 



30 

 

Once Completed the above three steps of SIFT, then we need to find a Local Image 

Descriptors at key points. Here we chose to use the gradient direction histogram to 

describe this key point. Key point descriptors typically use a set of 16 histograms, aligned 

in a 4x4 grid, each with 8 orientation bins, one for each of the main compass directions 

and one for each of the mid-points of these directions. This results in a feature vector in 

128-dimensions, (see Figure 3.11). 

 

Figure 3.11 SIFT key point descriptor 

 

 SURF Feature 

In computer vision, speeded up robust features (SURF) is a patented local feature 

detector and descriptor. This algorithm is based on the same principles and steps of SIFT, 

but it utilizes a different scheme [4]. 

 Hessian Matrix-based interest points 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
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SURF uses a Hessian based blob detector [27] to find interest points. The determinant of 

a Hessian matrix expresses the extent of the response and is an expression of the local 

change around the area.  

A Hessian Matrix is defined as: 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
] , 

where  

𝐿𝑥𝑥(𝑥, 𝜎) = 𝐼(𝑥) ∗
𝜕2

𝜕𝑥2
𝑔(𝜎) 

𝐿𝑥𝑦(𝑥, 𝜎) = 𝐼(𝑥) ∗
𝜕2

𝜕𝑥𝑦
𝑔(𝜎) 

The core of SURF detection is non-maximal-suppression of the determinants of the 

Hessian matrices. However, to calculate the convolutions is a time-consuming process. 

To speed it up, integral images and approximated kernels are being used.    

An Integral image 𝐼(𝑥) is an image where each point 𝑝(𝑥, 𝑦)𝑇stores the sum of all pixels 

in a rectangular area between center 𝑂(0,0)𝑇and p. 

𝐼(𝑥) = ∑ ∑ 𝐼(𝑥, 𝑦) 

𝑗<𝑦

𝑗=0

𝑖<𝑥

𝑖=0

 

 

 Scale-space representation and interest point localization 



32 

 

As in the first stage of SIFT, interest points can be found at different scales, partly 

because the search for correspondences often requires the comparison of images where 

these points are seen at different scales. In the stages of building a scale pyramid, the 

SURF and SIFT use different strategies. For SIFT, the Gaussian filter size is kept 

unchanged, but the image size changes at different scales. The SURF technique is 

opposite, the image size remains unchanged but the filter size changes (see Figure 3.12). 

In order to localize interest points in the image and over scales, a non-maximum 

suppression in a 3 × 3 × 3 neighborhood is applied. 

 

Figure 3.12 Differences between SIFT (left side) and SURF (right side) when 

constructing a scale space. 

 Orientation assignment 

In order to be invariant to image rotation, SURF builds the distribution of first-order Haar 

wavelet responses in the x and y direction for those interest points. 
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The dominant orientation is estimated by calculating the sum of all responses within a 

sliding orientation window of size 𝜋 3⁄ , as in Figure 3.13.  

 

Figure 3.13 Orientation assignment of SURF. The right region has a strongest Haar 

Wavelet response, therefore such orientation serves as the dominant orientation for 

the interst point.  

 Descriptor based on sum of Haar wavelet responses 

For the extraction of the descriptor, the first step consists of constructing a square region 

centered around the interest point and oriented along the dominant orientation. The size 

of this window is 20s, where s is the scale at which the interest point was detected. The 

region is then split up regularly into smaller 4 × 4 square sub-regions. Then, the wavelet 

responses 𝑑𝑥, 𝑑𝑦,|𝑑𝑥| and |𝑑𝑦| are summed up over each sub-region and form a feature 

vector for each interest point, as in Figure 3.14. 
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Figure 3.14 Feature descriptor for SURF 

 

3.5 Correspondence 

 Overview 

Given two or more images of the same 3D scene, taken from different points of view, the 

correspondence problem refers to the task of finding a set of points in one image which 

can be identified as the same points in another image.  

There are two basic ways to achieve this: 

 Correlation-based methods 
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The idea of the correlation is to check if one part in one image looks like another in 

another image. One simple method is to compare small patches between rectified images: 

A filter window is passed over a number of positions in one image to check how well it 

compares with the same location as well as several nearby locations in the other image. 

 Feature-based methods 

This kind of methods first finds features in one image and then associates them with 

features from a second image that are most similar. As mentioned in Section 3.4, SIFT, 

SURF and other feature point detection algorithms could be used to reach this goal. For 

example, rough correspondence could be found by just comparing two key points 

descriptor’s Euclidean distance.  

  Random Sample Consensus (RANSAC) 

The RANSAC algorithm performs a robust fitting of models in the presence of many data 

outliers [27], [28],[29]. Given a dataset whose data elements contain both inliers and 

outliers, RANSAC uses the voting scheme to find the optimal fitting result. The 

implementation of this voting scheme is based on two assumptions:  

 Few Outliers: the noisy features will not vote consistently for any single model.  

 Few Missing Data: there are enough features to agree on a good model. 

RANSAC algorithm is often used in computer vision. To be specific, it could be used to 

simultaneously solve the correspondence problem and estimate the fundamental 

matrix related to a pair of stereo cameras. 

https://en.wikipedia.org/wiki/Image_rectification
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Correspondence_problem
https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)
https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)
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This algorithm works as follows: 

Algorithm: 

Input: source RGB-D image 𝐼𝑙 and 𝐼𝑟, threshold 𝜀, Maximum iteration 𝜇 

Output: high-quality correspondences set 𝑆 and Essential Matrix 𝐸 

Step 1: Calculate Feature points set 𝐹𝑙 and 𝐹𝑟 from source image. (e.g. using SURF 

feature.) 

Step 2: Calculate correspondence set 𝐶 from 𝐹𝑙 and 𝐹𝑟 by using feature based 

correspondence methods. 

Step 3: Initialize 𝑁 = 0. 

Step 4: Randomly select a set 𝑆𝑡 , which contains 8 correspondences, from 𝐶 and 

compute 𝐸𝑡 with 8 points algorithms and initialize 𝑁𝑡=0. 

Step 5: for correspondence 𝑝 ↔ 𝑞 in 𝐶, compute 𝑝𝐸𝑡𝑞. 

 if  𝑝𝐸𝑡𝑞 <  𝜀 

 then 𝑁𝑡 = 𝑁𝑡 + 1 

Step 6: if  𝑁𝑡 > 𝑁 

 then 𝑁 = 𝑁𝑡, 𝑆 = 𝑆𝑡, 𝐸 = 𝐸𝑡. 

Step 7: Repeat Step 4 ~ Step 6 𝜇 times. 
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Step 8: output set 𝑆 and Essential Matrix 𝐸. 

3.6 Camera pose estimation Algorithm 

 Eight-Points Algorithm (2D-2D) 

3.6.1.1 Computing the Fundamental Matrix 

In Section 3.1.1.2, we introduced the Fundamental Matrix 

𝑥𝑟
𝑇 ∙ 𝐹 ∙ 𝑥𝑙 = 0 

where 𝑥𝑟 and 𝑥𝑙 are projections of the same 3D point in two different image planes. 

Given any pair of correspondence 𝑝 ↔ 𝑞 where 𝑝 = (𝑢, 𝑣, 1)𝑇 and 𝑞 = (𝑢′, 𝑣′, 1)𝑇, the 

equation relating points p and q to the Fundamental Matrix 𝐹 is: 

𝑢𝑢′𝑓11 + 𝑢𝑣′𝑓21 + 𝑢𝑓31 + 𝑣𝑢′𝑓12 + 𝑣𝑣′𝑓22 + 𝑣𝑓32 + 𝑢′𝑓13 + 𝑣′𝑓23 + 𝑓33 = 0 . 

Each correspondence gives rises to one linear equation in the unknown entries of 𝐹. 

Therefore at least 8 correspondences are needed to estimate matrix 𝐹 from a homogenous 

set of linear equations: 

 [
𝑢1𝑢1

′ 𝑢1𝑣1
′ 𝑢1 𝑣1𝑢1

′ 𝑣1𝑣1
′ 𝑣1 𝑢1

′ 𝑣1
′ 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑢8𝑢8

′ 𝑢8𝑣8
′ 𝑢8 𝑣8𝑢8

′ 𝑣8𝑣8
′ 𝑣8 𝑢8

′ 𝑣8
′ 1

] 𝑓 = 0 . (3.21) 

Where 𝑓 = (𝑓11, 𝑓21, 𝑓31, 𝑓12, 𝑓22, 𝑓32, 𝑓13, 𝑓23, 𝑓33)𝑇, 

Writing (3.21) as 
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 𝑨𝑓 = 0 (3.22) 

 we are seeking 𝑓 that minimizes ‖𝑨𝑓‖ subject to the constraint ‖𝑓‖ = 𝑓𝑇 ∙ 𝑓 = 1. This 

represents a least-squares estimation of the Fundamental Matrix.  

 

3.6.1.2 Extracting Camera Pose from the Essential Matrix 

Once 𝐹 is estimated, we can compute the Essential Matrix with the following equation:  

𝐸 = 𝐾𝑟
𝑇 ∙ 𝐹 ∙ 𝐾𝑙 

We also have 

 𝐸 =  �⃗�  × 𝑅 = 𝑆𝑅 , (3.23) 

where 𝑅 and �⃗� are the rotation matrix and the translation vector describing the positions 

of the two cameras, relative to each other. 

 𝐸 has the following properties, 

 rank 2 

 det( 𝐸) = 0 

 its two non-zero singular values are equal.  

Since the scale is arbitrary, we set a constraint stipulating ‖�⃗�‖ = 1. 

𝐸 has a special form of Singular Value Decomposition (SVD): 
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 𝐸 = 𝑈 ∙ 𝑑𝑖𝑎𝑔(1,1,0) ∙ 𝑉𝑇 (3.24) 

We introduce two auxiliary matrices: 

𝑊 = [
0 −1 0
1 0 0
0 0 1

]     and    𝑍 = [
0 1 0

−1 0 0
0 0 0

] 

where the matrix 𝑊 is a rotation and 𝑍 is skew symmetric. Furthermore, for these 

matrices we have: 

 𝑍𝑊 = diag(1,1,0)  , (3.25) 

 𝑍𝑊𝑇 = −diag(1,1,0) 

Using (3.23) and (3.24), we have two solutions that fit 𝐸 = 𝑆𝑅, which are  

 𝑆1 = −𝑈𝑍𝑈𝑇 ,   𝑅1 = 𝑈𝑊𝑇𝑉𝑇 , (3.26) 

 𝑆2 = 𝑈𝑍𝑈𝑇   ,    𝑅2 = 𝑈𝑊𝑉𝑇 . 

It’s easy to validate that both 𝑅1 and 𝑅2 are rotations and 𝑆1 = 𝑆2. We can extract �⃗� from 

𝑆1(or 𝑆2) such that �⃗� = ±(𝑠32, 𝑠13, 𝑠21)𝑇. 

Therefore, we have four possible solutions of 𝑅 and  �⃗�, which are (𝑅1, �⃗�), (𝑅2, �⃗�), 

(𝑅1, −�⃗�), (𝑅2, −�⃗�), and only one of them is the right solution. Since �⃗� is normalized to 

‖�⃗�‖ = 1, the actual translation vector between the two cameras is determined up to a 

scale factor: 𝑇 = λ ∙ �⃗�. To solve for the exact camera pose, we need to use 3D point depth 

information. Only one of these solutions puts the scene points in front of both cameras. 

So the correct solution can be identified by computing structure for all four cases by 
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triangulation, and choosing the one solution that enforces most of the structure solution 

(allowing for a few reconstruction errors) to be in front of both cameras. In Figure 3.15, 

only solution 2 has positive depths, thus solution 2 is the correct one. 

 

 

Figure 3.15 Four solution form decompose Essential Matrix. The correct 

solution(right top one) makes the world points P has a positive depth in both camera 

coordinate system. 
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 Perspective-n-Point Algorithm (3D-2D) 

Perspective-n-Point (PnP) [30] is the problem of estimating the pose of an intrinsically 

calibrated camera given a set of n 3D points in the world and their corresponding 2D 

projections in the image of the camera. Suppose we have 𝒏 3D points in the real scene 

and their corresponding 2D image projections. Assuming the intrinsic matrix of the 

camera is 𝐾, the perspective projection model for cameras can be described as follows: 

 𝑠𝑃𝑐 = 𝐾 [𝑅|�⃗�]𝑃𝑤 (3.27) 

where 𝑃𝑤 = (𝑥, 𝑦, 𝑧, 1)𝑇is the homogenous world point; 𝑃𝑐 = (𝑢, 𝑣, 1)𝑇 is the 

corresponding homogenous image point, s is a scale factor for the image point, R and �⃗� 

are the desired rotation matrix and translation vector. 

This equation also has an equivalent matrix form: 

 𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑥
𝑦
𝑧
1

] . (3.28) 

Efficient PnP (EPnP) which was developed by Lepetit [5], is a common method for 

solving the general problem of PnP for n ≥ 3. 

They introduce the concept of virtual control points, and design the algorithm based on 

the notion that each of the n points, also known as reference points, can be expressed as a 

weighted sum of 4 non-coplanar virtual control points (only 3 for planar configurations). 
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 Let those n points whose 3D coordinates are known in the camera coordinate system be 

𝑝i
c , 𝑖 = 1, ⋯ , 𝑛 and assume 4 virtual control points expressed as 𝑐𝑗  , 𝑗 = 1, ⋯ ,4. 

Then we can express each reference point as a weighted sum of control points: 

 𝑝𝑖
𝑐 = ∑ 𝑎𝑖𝑗𝑐𝑗

𝑐4
𝑗=1 , with ∑ 𝑎𝑖𝑗

4
𝑗=1 = 1 (3.29) 

Combining with (3.28), we obtain: 

 ∀𝑖 , 𝑠𝑖 [
𝑢𝑖

𝑣𝑖

1
] = [

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] ∑ 𝑎𝑖𝑗
4
𝑗=1 [

𝑥𝑗
𝑐

𝑦𝑗
𝑐

𝑧𝑗
𝑐

] (3.30) 

Substituting this expression in the first two rows yields two linear equations for each 

reference point: 

 ∑ 𝑎𝑖𝑗𝑓𝑥𝑥𝑗
𝑐4

𝑗=1 + 𝑎𝑖𝑗(𝑐𝑥 − 𝑢𝑖)𝑧𝑗
𝑐 = 0 (3.31) 

 ∑ 𝑎𝑖𝑗𝑓𝑥𝑦𝑗
𝑐4

𝑗=1 + 𝑎𝑖𝑗(𝑐𝑦 − 𝑣𝑖)𝑧𝑗
𝑐 = 0 

Note that projective parameter 𝑠𝑖 disappear in those equations. Grouping all references 

points, we generate a linear system: 

 M𝑥 = 0   (3.32) 

Where 𝑥 = [𝑐1
𝑐𝑇

, 𝑐2
𝑐𝑇

, 𝑐3
𝑐𝑇

𝑐4
𝑐𝑇

]𝑇 is a vector in 𝑅12 (the coordinates of those control points 

are unknown), and M is a 2n × 12 matrix generated by arranging the coefficients of (3.31) 

for each reference point. 

The solution is to the null space of M, which can be expressed as: 

 𝑥 = ∑ 𝛽𝑖𝑣𝑖
𝑁
𝑖=1  (3.33) 

The solution is found efficiently by solving the null eigenvectors of matrix 𝑀𝑇𝑀. 

Depending on 𝑛, the proper linear combination coefficients {𝛽𝑖}𝑖=1,⋯4 is calculated. 
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In order to have an optimized result, those four coefficients β = [𝛽1, 𝛽2, 𝛽3, 𝛽4] are 

refined by choosing the values that minimize the change in distance between control 

points, using Gauss-Newton Optimization: 

 Error( β) = ∑ (‖𝑐𝑖
𝑐 − 𝑐𝑗

𝑐‖
2

− ‖𝑐𝑖
𝑤 − 𝑐𝑗

𝑤‖
2

)(𝑖,𝑗) 𝑠.𝑡.  𝑖<𝑗  (3.34) 

where 𝑐𝑖
𝑤 are 3D world coordinates. 

After determining the best 𝛽, 𝑥 is solved. Therefore, the pose transformation between the 

world coordinates system and the camera coordinate system is easily formed. 

This algorithm is found in the open source library OpenCV (routine name: solvePnP). 

Also, RANSAC can be used to deal with outliers in the data set to optimize the result 

(routine name, solvePnPRansc) [31]. 

 Point Set Registration (3D-3D) 

3D Registration is a method to seek for the optimal rotation and translation between two 

sets of corresponding 3D point data, that makes them well registered [32]. Suppose we 

have two sets of 3D points, dataset A and B. This method has three main steps: 

 Finding the centroids 

This is quite straightforward: the centroids are the average point and can be calculated as 

follows: 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴 =
1

𝑁
∑ 𝑃𝐴

𝑖  ,𝑁
𝑖=1  (3.35) 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵 =
1

𝑁
∑ 𝑃𝐵

𝑖   𝑁
𝑖=1  
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Here, 𝑃𝐴 and 𝑃𝐵 are points in dataset A and B respectively. 

  Finding the optimal rotation 

To find the optimal rotation, we need to re-center the datasets so that their centroids are at 

the origin. This is shown in Figure 3.16.  

 

Figure 3.16 Re-center dataset 

The next step involves the computation of a covariance matrix 𝐻, and using SVD to find 

the rotation as follows: 

 𝐻 = ∑ (𝑃𝐴
𝑖 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴)(𝑃𝐵

𝑖 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵)𝑇𝑁
𝑖=1  (3.36) 

 [𝑈, 𝑆, 𝑉𝑇] = 𝑆𝑉𝐷(𝐻) (3.37) 

The optimal rotation can be calculated as  

 𝑅 = 𝑉𝑇𝑈𝑇 (3.38) 

Note: 
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R here has to be a rotation matrix, which means ‖𝑅‖ = 1. We need to validate this 

property in case the SVD returns a reflection matrix, which is numerically correct but is 

nonsense for real cases. If R is the reflection matrix, then ‖𝑅‖ = −1, and we multiply the 

third column of R by -1 as a remedy. 

 Finding the translation vector 

Since we have the optimal R, the translation vector �⃗�  is obtained with:  

 �⃗� = −𝑅 ∙ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴 + 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵 (3.39) 
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Chapter 4  

4 Methodology 

This thesis proposes to evaluate the algorithms described in the last Section to calibrate 

for the extrinsic parameters of two Kinect cameras. In this Section, we follow with 

appropriate justifications for our approach, and what the advantages are for each chosen 

method or process. Also, this Section justifies the reasons for our choices in the 

experiments that follow in the next Chapter.  

4.1 Feature Selection 

In section 3.4, we presented the SIFT and SURF algorithms. They are quite similar in the 

generating phase. In our case, SIFT has detected larger numbers of features compared to 

SURF but with slower speed. For its high speed and relatively high-quality performance, 

we choose SURF as our feature point detection approach [33]. 

4.2 Correspondence Method Selection 

In the selection of correspondence methods, feature-based methods provide relatively 

accurate information about local regions of interest and thus achieve better matching 

compared to correlation-based methods, which are also computationally expensive. 

Feature-based methods work best with images taken with roughly the same point of view 

and either at the same time or with little to no movement of the scene between image 

captures, such as stereo images. 
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4.3 Experiments with Real RGB-D Images 

Normally, camera pose estimation techniques are aimed at calibrating multiple cameras 

in different positions. However, one equivalent way to validate a calibration algorithm is 

to keep the scene unchanged and capture images from different positions with one 

camera. By doing so, we only need to calibrate intrinsic parameters once, with no 

synchronization issues. The experiments in this thesis are based on the second method. 

 Case 1 

For this case, we manually set the pose of the Kinect camera and measure the distance of 

the two successive locations used to take images. Since the rotation is hard to physically 

measure, we did not rotate the camera. The objective for this case is to prove that the 

camera pose obtained by the algorithm is close to the physically measured distance. 

 Case 2 

In this case, we investigate how our algorithm performs in random cases. So, the camera 

position is chosen with no particular preference, and the square error of the computed 3D 

correspondence sets is calculated to estimate the correctness of the results. Note that the 

choice of camera positions is constrained by the fact that there must be a scene overlap in 

the two images in order to obtain valid point correspondences.  
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4.4 Robustness Analysis 

We are interested in finding out the behavior of the algorithms when confronted to noise. 

In order to compare the robustness of camera pose estimation algorithms, we used a 

synthetic set of 3D points, with a known rotation and translation to also generate the 

second 3D set. Noise is then added, and we compare the so obtained translation and 

rotation to the original one. We proceed to list the specifics of our robustness analysis.  

 Gaussian Noise 

Gaussian noise is a random form of noise with a probability density function equal to that 

of the normal distribution. In the field of Computer Vision, Gaussian noise is widely used 

since it is regarded as the most realistic simulation of noise for most circumstances. 

  Synthetic Data 

The goal of the robustness experiments is to analyze how algorithms behave when noise 

is present. To achieve this goal, we tested the algorithms without the use of the cameras, 

to avoid any unwanted noise such as that introduced when finding image 

correspondences. The use of synthetic 3D points sets and camera position and orientation 

reflects robustness in an unbiased fashion and allows us to know the real total amount of 

noise that is being introduced.  

 Offsets of R and �⃗� 

The rotation matrix is completely specified by three angles about the x-, y-, and z- axes, 

which we denote as 𝜃𝑥, 𝜃𝑦 and 𝜃𝑧. We use 𝜃0 = (𝜃𝑥0
, 𝜃𝑦0

, 𝜃𝑧0
)𝑇 and 𝑡0 = (𝑡𝑥0

, 𝑡𝑦0
, 𝑡𝑧0

)𝑇 
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as the ground truth for the rotation angle vector and the translation vector, and 𝜃 =

(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)𝑇 and 𝑡 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑇as the results obtained from the algorithms under study. 

To measure the system behavior towards noise, the offsets of R and �⃗� is defined as follow: 

Offset_R = √(𝜃 − 𝜃0)𝑇 ∙ (𝜃 − 𝜃0) 

Offset_T = √(𝑡 − 𝑡0)𝑇 ∙ (𝑡 − 𝑡0)  

which calculate the Euclidian distance between two points in 𝑅3 space. 
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Chapter 5  

5 Experiments and Results 

To properly identify the correctness and the robustness of the algorithms, a series of 

experiments are performed in the indoor lab scene. The input for the first experiment are 

RGB-D images obtained from our Kinect sensor. This experiment aims to prove that our 

work is not only numerically correct but also well suited for general cases. The second 

experiment focuses on the robustness of the chosen camera pose estimation algorithms. 

Various levels of Gaussian noise are added to the synthetic data and the distance between 

the synthetic pose parameters and the output of each algorithm is calculated. 

Figure 5.1 shows the type of RGB-D images used for the experiments. The left image is 

the RGB image from the color camera, which is resized to 512 × 424 (original resolution 

1920 × 1080). The right image is the depth image-capture from the IR sensor, which 

also has a resolution of 512 × 424. The red points inside the image indicate invalid depth 

values. The intensity of the depth value is related to object distance: nearer surfaces are 

darker while further surfaces are lighter. 
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Figure 5.1 RGB-D image structure. The red dots indicate invalid depth value. RGB 

image and Depth image has slightly difference if you look carefully (only 

demonstrate the RGB-D image structure), they do have intrinsic mapping function 

from each RGB pixel to depth pixel. 

5.1 Results with Real RGB-D Data 

 Case 1 

In this case, the Kinect sensor first captured an indoor scene at one location and was then 

relocated along the 𝑥 axis of the camera coordinate system by approximately 3 inches 

(76.2 mm). These two RGB-D images only contain a slight perspective difference, which 

makes feature points easy to match correctly. The SURF features (colored dots) from the 

image obtained at the second camera position are shown in Figure 5.2 and the optimized 

correspondences between the two RGB-D image sources are displayed in Figure 5.3. 

Table 2 gives the rotation matrix and translation vector obtained from each specific 

algorithm (4 digits after the decimal point are retained). We conclude from the results 
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that, in this case, all the algorithms give a nearly perfect solution for the rotation matrix, 

which is very close to identity matrix. However, for the translation vector, the 

Perspective-n-points algorithm and the 3D point registration algorithm both perform 

better than the Eight-point algorithm. These results support the correctness of the 

implementations. Moreover, it also indicates that the intrinsic parameters of the camera 

are well measured so that the points in the image plane could be adequately re-projected 

as 3D coordinates. 
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Figure 5.2 Case 1: Feature Points. The bottom images zoom in the black region of 

the top one. Those colorful dots are SURF feature points detected from feature 

detection phases. 
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Figure 5.3 Case 1: Correspondences. The bottom images zoom in the black region of 

the top one, which shows the details of matching correspondence. 

 

Table 2 Comparison of results from different camera pose estimation algorithms 

Algorithms Rotation Matrix Translation Vector 

Eight-Point 

Algorithm 

[
0.9992 −0.0050 0.0398
0.0053 0.9999 0.0074

−0.0398 0.0076 0.9992
] [

−0.0908
0.0215

−0.0083
] 

Perspective-n-Point 

Algorithm 

[
1.0000 0.0004 −0.0008

−0.0004 0.9999 0.0059
0.0008 −0.0059 1.0000

] [
−0.0804
0.0022

−0.0018
] 
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3D Point 

Registration 

[
0.9999 −0.0005 −0.0028
0.0005 0.9999 0.0076
0.0028 −0.0076 0.9999

] [
−0.0734
−0.0015
−0.0030

] 

Pre-given  

Ground Truth 

[
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

] [
−0.7620
0.0000
0.0000

] 

 

 Case 2 

In this case, the Kinect senor is placed at two random locations where the two 

perspectives have a visual overlap over the scene. Figures 5.4 and 5.5 show the feature 

points and their correspondences separately.  

Comparative results from the camera pose estimation algorithms are displayed in Table 3. 

Since we no longer have synthetic pose data (rotation and translation), the average 

squared error is recorded to measure the performance of each algorithm. The average 

squared error is calculated in the following way: For all the matching pairs in the 

correspondence set, we use the rotation matrix and the translation vector produced by 

each algorithm to re-project the 3D matching points in the left image into a new 3D point 

set and then we average the squared error of the re-projection and with the right image 

matching points.  

From Table 3 we conclude that the Perspective-n-points algorithm and the 3D point 

registration algorithm both have the same level of average squared error, under 0.005. 
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The result from the Eight-Point algorithm is significantly higher, which is around 0.0775. 

However, this error rate is still acceptable. 

 

 

Figure 5.4 Case 2: Feature Points 

 

Figure 5.5 Case 2: Correspondences 
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Table 3 Comparative results from different camera pose estimation algorithms 

Algorithms Rotation Matrix Transit 

Vector 

Average 

Squared Error 

Eight-Points 

Algorithm 

[
0.9983 −0.0237 0.0520
0.0097 0.9967 0.2538

−0.0563 −0.2528 0.9659
] [

−0.1508
−0.6120
−0.0477

] 
0.07746700 

Perspective-n-Point 

Algorithm 

[
0.9985 −0.0186 0.0506
0.0053 0.9679 0.2512

−0.0537 −0.2506 0.9666
] [

−0.2034
−0.5638
−0.0517

] 
0.00492257 

3D Points 

Registration 

[
0.9986 −0.0187 0.0501
0.0056 0.9674 0.2531

−0.0533 −0.2525 0.9661
] [

−0.2033
−0.5719
−0.0488

] 
0.00473059 

 

5.2 Robustness Analysis 

In this experiment, we randomly generate a Kinect-like set of (𝑢, 𝑣, 𝑑) points with 𝑢 ∈

(0,1920), 𝑣 ∈ (0,1080), 𝑑 ∈ (500,8000) (see Table 4). These points, along with the 

intrinsic parameters form a set of points 𝑆1 in the world coordinate system. 

In addition, we also defined a rotation matrix 𝑅 and a translation vector �⃗� as ground truth, 

where 

𝑅 = [
0.684718 0.136252 0.715959
0.492042 0.638267  −0.592039

−0.537639 0.757661 0.369991
] 
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�⃗� = [
0.35

−0.28
0.76

] 

For all the points in the set 𝑆1, we follow the convention that 𝑞 = 𝑅 ∙ 𝑝 + �⃗�, forming set 

𝑆2 which is the perfect matching set for  𝑆1. 

The next step is to add the Gaussian noise in. We defined our levels of Gaussian noise 

with various standard deviations, but kept the mean to 0. Figure 5.6 shows how the 

Gaussian distribution behaves with different standard deviations. 

We form the correspondence sets 𝐺1 and 𝐺2 by generating Gaussian noise and adding it 

to the points in 𝑆1 and 𝑆2. The noise could be interpreted as the error in dealing with real 

case usage, which may come from data gathering, parameter measuring, feature matching 

and so on. 

 We then input 𝐺1 and 𝐺2 into the camera pose estimation stage of our chosen algorithms 

and record the offsets between the outputs and the pre-set ground truth values. Note that, 

when sigma equals to 0, both algorithms give nearly error-free solutions, as expected. 

The results are shown in Figures 5.7 and 5.8. From these, we conclude that each 

algorithm has a different tolerance to input noise. The 3D Registration algorithm 

performs best when faced with noise, as the offset for both R and T is close to 0 if sigma 

is less than 0.6. The Perspective-n-points algorithm’s output is a relatively precise result 

if the noise level (sigma) is less than 0.4. The Eight-point algorithm is very sensitive to 

noise. Even a tiny amount of noise has a great influence on the results. Only when sigma 

is under 0.1, do we obtain results that we somehow could regard as reliable.  

https://en.wikipedia.org/wiki/Standard_deviation
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Past a certain noise level, it becomes clear that the offset changes irregularly (our error 

measure becomes meaningless). This is due in part to the fact that the space in which a 

rotation matrix can be wrong is bounded. For instance, there seems to be a peak noise 

value for the Eight-point algorithm at sigma=0.8, as seen in Figure 5.7. For these reasons, 

we focus our noise analysis to a sigma span of [0, 0.7] and use smaller intervals. Figures 

5.9 and 5.10 report on these results. 

Table 4 Synthetic Data 

Index u v d Index u v d 

1 1185.36 441.60 2564 5 688.74 447.77 1986 

2 236.50 875.36 1185 6 1122.33 842.32 4952 

3 1542.77 992.21 5508 7 785.79 689.55 866 

4 989.88 155.80 7421 8 908.11 258.49 3358 

 

Table 5 Theta at sigma=0.8 and sigma=0.9 

 𝜃𝑥 𝜃𝑦 𝜃𝑧 Offset_R 

Sigma=0.8 −41.3203° 12.8374° 61.4392° 110.166 

Sigma=0.9 125.078° −43.3872° 22.8942° 98.2871 

Ground Truth 63.9722° 32.5231° 35.7012°  
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Figure 5.6 Gaussian Distribution with different values for sigma 
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Figure 5.7 Comparative offsets of R for sigma∈ [0,1] 

 

Figure 5.8 Comparative offsets of T for sigma∈ [0,1] 
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Figure 5.9 Comparative offsets of R for sigma∈ [0,0.7] 

 

Figure 5.10 Comparable offsets of T for sigma∈ [0,0.7] 
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5.3 Conclusion 

To conclude, this thesis integrates RGB-D data capture, feature points selection, 

correspondence optimization and camera pose reconstruction into one application to 

solve the problem of automatically calibrating the network of Kinect Sensors. And 

it firstly introduces 3D eight-points algorithm and numerically compare the robustness to 

noise data of three pose estimation algorithms, which are Eight-point algorithm, 

Perspective-n-point algorithm and 3D point set registration algorithm. This thesis finds 

that all the pose estimation algorithms output precise results in normal circumstance. 

Among them, 3D point set registration algorithm works best even when towards heavily 

noised data set. 
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Chapter 6  

6 Future Work 

6.1 System Constraints 

Since our system is based on feature points correspondences, the inherent constraint for 

this system is that there be some significant view overlaps between the Kinect sensors. 

Therefore, additional sensors are required if we wish to calibrate for greater scene areas. 

To avoid this inherent constraint, Bok et al. [34] propose a practical solution to calibrate 

between a camera and a laser sensor system, without overlap. These ideas could be 

integrated in our framework. 

6.2 Device Limitations 

Kinect cameras have problems handling intricate light reflections very well, partially due 

to the method by which Kinect cameras use to estimate depth (infrared). Transparent 

objects such as glass, may partially reflect the infrared spectrum and cause significant 

errors in the depth images. In Figure 6.1, the drinking glass is almost not 3D-captured and 

the main effect is a distortion of depth information. In addition, if two Kinects are 

capturing a scene at the same time, their respective IR patterns may interfere, in turn 

causing errors when generating RGB-D images. More work is definitely needed at the 

sensor level.  
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What’s more, temperature as well as air draft may also have an influence on the process 

of range measurement of the Kinect [35]. Figure 6.2 indicates that various temperatures 

can cause slightly different results with all other parameters remaining constant.   

 

 

Figure 6.1 The reflection problem with a transparent glass. Different color in the 

right indicates the surface of a glass have different depth. This mismeasurement 

may cause problem in further algorithms. 

 

Figure 6.2 Different RGB-D images caused by a change in ambient temperature. In 

cold state, the Kinect was cooled down by an externally mounted fan which slowly 

streams air through the Kinect’s body and cools down its internal components to the 
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environmental temperature of 𝟐𝟕. 𝟔℃.  In warm state, the fan was deactivated and 

the Kinect was warmed up just by processing the color and depth image-stream for 

45 minutes. 
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