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 ABSTRACT 

Soluble oligomers of amyloid-beta (AβO) transmit neurotoxic signals through the cellular prion protein 

(PrPC) in Alzheimer’s disease (AD). Secreted stress-inducible phosphoprotein 1 (STIP1), an Hsp70 and 

Hsp90 cochaperone, inhibits AβO binding to PrPC and protects neurons from AβO-induced cell death. 

Here, we investigated the molecular interactions between AβO and STIP1 binding to PrPC and their 

effect on neuronal cell death. We showed that residues located in a short region of PrP (90-110) 

mediate AβO binding and we narrowed the major interaction in this site to amino acids 91-100. In 

contrast, multiple binding sites on STIP1 (DP1, TPR1 and TPR2A) contribute to PrP binding. DP1 

bound the N-terminal of PrP (residues 23-95), while TPR1 and TPR2A showed binding to the C-

terminal of PrP (residues 90-231). Importantly, only TPR1 and TPR2A directly inhibit both AβO 

binding to PrP and cell death. Furthermore, our structural studies reveal that TPR1 and TPR2A bind to 

PrP through distinct regions. The TPR2A interface was shown to be much more extensive and to 

partially overlap with the Hsp90 binding site.  Our data show a possibility of a PrP, STIP1 and Hsp90 

ternary complex, which may influence AβO-mediated cell death.  

 

SUMMARY STATEMENT  
This study reveals the molecular details of STIP1 and PrP binding regions upon complex formation and 

its implications in AβO toxicity in primary neuronal cell culture. 

 

 

 



 3 

Keywords: Alzheimer’s disease, neurotoxicity, neuroprotective, cochaperone, neuronal cell death 

 

Abbreviations: AβO, soluble oligomers of the amyloid-beta peptide; AD, Alzheimer’s disease; PrPC, 

cellular prion protein; Hsp, Heat shock protein; HSQC, heteronuclear single quantum coherence; LTP, 

long-term potentiation; NMR, nuclear magnetic resonance; SPR, surface plasmon resonance; STIP1, 

stress-inducible phosphoprotein 1; TPR, tetratricopeptide repeat. 

 



 4 

 

INTRODUCTION 

Neurotoxic assemblies composed of soluble oligomers of the amyloid-beta peptide (AβO), 

derived from the sequential proteolytic cleavage of the amyloid precursor protein (APP), are thought to 

be critical for neurotoxicity in Alzheimer’s disease (AD) [1, 2]. AβOs interact with numerous neuronal 

receptors or channel proteins resulting in impairment of synaptic plasticity, oxidative stress, disruption 

of Ca2+ homeostasis, inhibition of long-term potentiation (LTP) and neuronal cell death [3-6].   

 

The cellular prion protein (PrPC) is a high affinity AβO receptor that has garnered interest in 

relation to AβO-induced synaptic dysfunction [6-8]. PrPC is a highly expressed cell surface 

glycoprotein which functions as a membrane scaffold for numerous ligands resulting in modulation of 

cellular signaling events [9]. PrPC-AβO complex formation is coupled to activation of Fyn kinase 

through mGluR5 resulting in deregulation of NMDA receptors and calcium signaling [10-12].  

Residues 23-27 and 95-110 of the disordered N-terminal region of PrPC have been proposed to mediate 

AβO binding [6, 13, 14]. Moreover, impairment of binding to residues 95-110 seems to alleviate AβO 

neurotoxicity [6, 7]. While PrPC is not essential for all AβO-induced deficits, inhibition of hippocampal 

LTP, impaired synaptic plasticity, loss of dendritic spines and neuronal cell death seem to be PrPC-

dependent [6, 8, 15]. Disruption of AβO binding by antibodies directed against PrPC
 mitigate AβO 

induced neurotoxicity, suggesting that modulation of AβO-PrPC interactions may be of therapeutic 

value in AD [7, 16-18]. Notably, a ligand of PrPC, stress-inducible phosphoprotein 1 (STIP1), can 

inhibit AβO toxicity in neurons in a PrPC-dependent manner [19]. Moreover, decreased levels of STIP1 

in mammalian neurons or knockdown of STIP1 in C. elegans increases the toxicity of amyloid peptides 

[19, 20]. 

 

STIP1 is a cellular cochaperone that coordinates Hsp70 and Hsp90 interactions during folding 

of various cell cycle regulators and signal transduction proteins [21]. Interestingly, Hsp70, Hsp90 and 

STIP1 all can be secreted to the extracellular space through non-canonical pathways by extracellular 

vesicles, where they can increase cellular resilience by acting as extracellular chaperones or by 

signaling via membrane receptors [22-25]. In particular, STIP1 is secreted by astrocytes into the 

extracellular space, where it functions as a signaling molecule through PrPC [22, 26]. Complex 
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formation with PrPC induces neuroprotective and neuroproliferative signaling via PKA and ERK 

pathways, respectively [27, 28], which is initiated by Ca2+ influx through the α7 nicotinic acetylcholine 

receptor (α7nAChR) in hippocampal neurons [29]. 

 

STIP1 is a modular protein composed of three structurally related tetratricopeptide repeat 

domains (TPR1, TPR2A and TPR2B), as well as two aspartate-proline-rich regions (DP1 and DP2). 

Hsp engagement is facilitated through sequential interactions with the TPR domains. Binding of Hsp70 

and Hsp90 to the TPR1/TPR2B and TPR2A domains of the cochaperone STI1P, respectively, allows 

the transfer of clients from Hsp70 to Hsp90 [21, 30-33]. However, recent work suggests that interaction 

between STIP1 and Hsp90 is comprised of more extensive interactions with the N-terminal domain and 

middle domain of Hsp90 [34, 35]. Previous work indicated that amino acids 113-128 within PrPC are 

critical for STIP1 interaction [19, 26, 36]. Giving that STIP1 could potentially interact with PrPC, 

Hsp90 and Hsp70 in the extracellular space, and this may modulate AβO toxicity, it is of importance to 

understand these protein interactions at the molecular level.  

 

Here we provide structural insights into the roles of individual domains of STI1P in interacting 

with PrP as well as in inhibiting the AβO-PrP binding. In addition, the potential of complex formation 

between STI1P, PrP, and Hsp90 is explored. Our results reveal multiple domain interactions between 

STIP1 and PrP are involved in complex formation and that the Hsp-interacting domains, TPR1 and 

TPR2A, directly inhibit AβO binding to PrP and neuronal toxicity. In addition, we show that Hsp90 is 

able to influence the interaction of STIP1 with PrP, inhibiting the neuroprotective role of STIP1 against 

AβO insult. 
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MATERIALS AND METHODS 	  
Protein expression and purification 

pDEST17 expression vectors (Invitrogen) containing genes encoding various mouse STIP1 

domains (i.e. full-length STIP1, TPR1 (residues 1 -118), DP1 (residues 119-216), TPR2A (residues 

217-352), TPR2B (residues 353-480) and DP2 (residues 481-542)) with an additional N-terminal 

tobacco etch virus (TEV) cleavable 6xHis tag were transformed into Escherichia coli (E. coli) BL21 

(DE3) pLysS strain. E. coli were grown in standard M9 minimal media at 37 oC to an OD600 of 0.9, at 

which point over-expression was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). 

Temperature was reduced to 22 oC and cultures were grown overnight. 

 

Proteins were initially purified by Ni2+-affinity chromatography using Ni Sepharose 6 Fast Flow 

beads (GE Healthcare). 6xHis tag was cleaved by incubation with 6xHis tagged TEV overnight at room 

temperature. Following cleavage, TEV and 6xHis tag were removed by an additional Ni2+-affinity 

chromatography purification [37]. For nuclear magnetic resonance (NMR) spectroscopy, protein was 

grown in standard M9 minimal medium supplemented with 1 g/L 15N-labeled ammonium chloride. 

Proteins were flash-frozen in liquid nitrogen and stored at -80 oC for no longer than a month. All NMR 

studies were conducted with freshly prepared protein.  

 

N-terminal 6xHis tagged recombinant mouse PrP (23-231), (90-231) and (23-95) in pRSETA 

was graciously provided by Dr. Kurt Wüthrich (ETH Zurich, Zurich, Switzerland). Plasmids were 

transformed into E. coli BL21 (DE3) and cultures were grown in lysogeny broth (LB) to an OD600 of 

0.9. Expression was induced by the addition of 1 mM IPTG and cultures were grown overnight at 22 
oC. Inclusion bodies were solubilized in 8 M urea containing 25 mM Tris, 500 mM NaCl, pH 7.5 and 

the resultant denatured protein was purified using Ni2+-affinity chromatography. Solubilized protein 

was refolded by dialysis against 10 mM sodium acetate, pH 5. Purified protein was exchanged into 10 

mM HEPES, pH 7, and the N-terminal 6xHis tag was cleaved by overnight incubation with thrombin 

(Haematologic Technologies Inc.). Thrombin was then removed by incubation with Benzamidine 

Sepharose 4 Fast Flow (GE Healthcare). 

 

pET28 vectors encoding Hsp90β containing an N-terminal 6xHis tag separated by a thrombin 

cleavage site (kindly provided by Dr. Johannes Buchner) were purified as described in [35]. Plasmid 
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was transformed in E. coli BL21 (DE3) and cultures were grown in LB to an OD600 of 0.9 and induced 

with 1 mM IPTG. Temperature was dropped to 30 °C and cultures were grown overnight. Bacterial 

pellets were resuspended in 40 mM potassium phosphate, 400 mM KCl, 5 mM ATP, 1 mM MgCl2, 6 

mM imidazole, pH 8, and lyzed by French press at 10,000 psi. The resultant protein was purified using 

Ni2+ chromatography. Eluted fractions containing Hsp90β were combined and cleaved overnight by 

incubation with thrombin at 4 °C. Hsp90β was further purified by gel filtration chromatography with a 

Superdex S200 column equilibrated in 40 mM HEPES, 150 mM KCl, 5 mM MgCl2, pH 7.5. 

 

AβOs were prepared from Aβ1-42 (rPeptide) as described previously [19]. Briefly, Aβ1-42 was 

dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and SpeedVac centrifuged generating peptide 

films. Aβ1-42 films were first re-suspended in DMSO to a concentration of 1 mM and diluted in PBS to 

a final working concentration of 100 µM or 150 µM for NMR experiments. Peptides were incubated 

for 24 hours at 4 °C and stored at -80 °C or used immediately.   

 

NMR spectroscopy 

 Experiments were preformed on a Varian Inova 600 MHz NMR spectrometer equipped with 

xyz-gradient triple resonance probe at 25 °C in 5 mM sodium phosphate, pH 7. Data were processed 

with NMRPipe and analyzed using NMRView [38, 39]. Chemical shift changes were mapped onto PrP 

(90-231) structure based on a previously completed amide assignment (BMRB 16071 deposited in the 

BioMagResBank (http://www.bmrb.wisc.edu))[40]. Binding of preformed AβOs to PrP (90-231) and 

(23-95) was observed by 1H-15N HSQC spectra collected in the presence and absence of equimolar 

concentration (~85 µM) of AβO. 

 

 Backbone amide resonance assignments for TPR1 and TPR2A were obtained from the 

BioMagResBank under accession numbers 18691 and 18689, respectively [37]. 1H-15N HSQC spectra 

of 15N-labelled TPR1 (50 µM) and TPR2A (50 µM) were collected in the absence and presence of 

PrP(23-231) (50 µM). The magnitude of chemical shift perturbations for traceable residues was 

calculated from the combined chemical shift changes in the 1H and 15N dimensions (Δω (ppm) = |0.2 * 

Δ15N| + |Δ1HN|) and mapped onto the crystal structures of TPR1 (PDB: 1ELW) and TPR2A 

(PDB:1ELR) [30]. 
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Protein-protein binding assay  

10 µg of full-length PrP or N-terminal PrP (23-95) were immobilized onto Falcon 96-well 

polystyrene plates by incubation overnight at 4 oC. Non-specific sites were blocked by incubation at 

room temperature for 1 hour with PBS-T (0.05%) containing 1% BSA. Plates were extensively washed 

with PBS-T and incubated with increasing concentrations of STIP1, different STIP1 domains, or Hsp90 

for 1 hour. Following washing, bound proteins were detected using polyclonal antibodies directed 

towards STIP1 (1:10,000) in PBS-T. After subsequent washing, wells were probed with horseradish 

peroxidase (HRP)-conjugated anti-rabbit IgG (1:5000) (Bio-Rad) for 1 hour. The signal was visualized 

using o-phenylenediamine (OPD) and absorbance was measured at 495 nm by microplate reader. 

 

For assessing PrP influence on Hsp90 binding to STIP1, polystyrene plates were covered with 

10 µg of STIP1 and blocked as described above. After thorough washing, plates were incubated with 

various concentrations of PrP for 1 hour at room temperature, followed by incubation with 2 µM Hsp90 

for 1 hour. After subsequent washing, wells were probed with rabbit anti-Hsp90 (1:1000, Cell 

Signaling) in PBS-T and bound Hsp90 was detected as outlined above. 

 

TPR1 was labeled with Fluoroscein-5-Maleimide (Invitrogen) as per manufacturer’s 

instructions to investigate competition of binding between TPR domains to PrP. PrP was adsorbed on 

to black polystyrene plates as described above. Plates were incubated with 1 µM fluorescein labeled 

TPR1 in the presence of various concentrations of TPR2A. Following washing, fluorescence was 

measured at excitation and emission wavelengths of 485/535 nm, respectively. 

 

Surface plasmon resonance (SPR) 

All SPR experiments were performed using a Biacore X system equipped with a CM 5 sensor 

chip (GE Healthcare). The chip was uniformly coated with PrP (23-231) using a standard amine-

coupling method to an SPR signal of ~7000 resonance units (RU). Ligands were injected in 10 mM 

HEPES, 150 mM NaCl, pH 7, over an association period of 7 minutes at a flow rate of 5 µL/min. Off-

kinetics were measured for an additional 2 minutes following the end of sample injections. The CM5 

chip surface was regenerated using a 10 mM hydrochloric acid pulse for 1 minute at a flow rate of 100 

µL/min between ligand injections.   
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Primary neuronal culture 

Primary cultures of hippocampal neurons were obtained from E17.5 brains of wild-type 

(Prnp+/+) mice from a C57BL6 background and prepared as previously described [19]. Hippocampi 

were aseptically dissected in HBSS (Invitrogen) and cells were dissociated in 0.25% trypsin at 37 oC 

for 20 minutes. Proteolysis was inactivated by re-suspension and dissociation of cells in Minimum 

Essential Media (MEM) (Invitrogen) supplemented with 10% Fetal Bovine Serum, penicillin (100 IU), 

streptomycin (100 µg/mL) and glucose (0.5%). Cultures were maintained on poly-lysine-coated 

coverslips or plates in Neurobasal Media (Invitrogen) supplemented with 2% B-27 (Invitrogen), 

penicillin (100 IU), streptomycin (100 µg/mL) and L-glutamine (500 µM). Half of the culture media 

was replaced every 3-4 days for the duration of the culture. 

 

Cell death viability assay 

Hippocampal cultures (105 cells/dish) were maintained for 11 days in vitro (DIV) then 

incubated with 1 µM AβO alone or in the presence of STIP1 (1 µM), TPR1 (2 µM), TPR2A (2 µM) or 

DP1 (2 µM) for 48 hours. Cell death was assayed using LIVE/DEAD Viability/Cytotoxicity Kit for 

mammalian cells (Invitrogen) as described by the manufacturer. NIH ImageJ Cell Counter plug-in was 

used to calculate percentage of dead cells (number of dead cells / (number of dead cells + number of 

viable cells)). For Hsp90 and AβO co-incubation experiments, cell cultures were incubated in the 

presence or absence of Hsp90 (2 µM) and AβO (1 µM) with various concentrations of STIP1 (0-600 

nM) and incubated for 48 hours. Cell death was assayed as described above.  

 

AβO binding to primary hippocampal neurons 

13 DIV cultured neurons (6 x 104
 cells/dish) were treated for 15 minutes with 200 nM AβO 

alone or in the presence of 500 nM STIP1 or 1 µM TPR1, TPR2A and DP1 at 37 oC. Following 

incubation, cells were washed with KRH buffer (125 mM NaCl, 5mM KCl, 1.8 mM CaCl2, 2.6 mM 

MgSO4, 10 mM glucose, 5 mM HEPES, pH 7.2). Cells were fixed with 4% paraformaldehyde for 20 

minutes, washed with PBS, permeabilized with 0.5% Triton X-100 in PBS for 5 minutes and blocked 

with 5% BSA (Sigma-Aldrich) in PBS for 1 hour at room temperature. Coverslips were incubated with 

antibodies against γ-tubulin (1:500; Abcam) and amyloid-β (6E10, 1:350; Covance) overnight at 4 oC. 
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γ-tubulin and amyloid-β were detected by subsequent incubation with secondary Alexa Fluor-488 and 

Alexa Fluor-633-conjugated antibodies (Invitrogen), respectively, for 1 hour at room temperature. 

Immunofluorescence was detected on an LSM510 confocal microscope equipped with a 63x/1.4NA 

oil-immersion objective lens. The resultant fluorescence from neurites was integrated using NIH 

ImageJ software.    
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RESULTS 

Mapping of AβO interface on PrP 

Previous studies have revealed that residues 95-110 of PrPC play a pivotal role in mediating the 

interaction with AβO [6, 13, 16]. To refine the AβO binding-site on PrP in a residue specific basis, we 

performed 1H-15N-HSQC experiments on 15N-labelled PrP (90-231) in the absence and presence of 

preformed AβO at a 1:1 molar ratio (Figure 1A). A significant decrease in signal intensity was 

observed for amide resonances spanning residues 90-110 of the disordered N-terminal of PrP (Figure 

1C), while no new NMR peaks were observed in the PrP spectrum upon the addition of AβO. This loss 

in signal intensity is likely due to peak broadening resultant from residues 90-110 binding a large 

molecular weight species of AβO. No significant systematic changes in intensity were observed for C-

terminal resonances, suggesting the AβO binding site is highly localized to the region spanning 

residues 90-110 of PrP (90-231) (Figures 1B and 1C). The greatest decreases in peak intensity were 

observed in a glycine-rich region N-terminal of the sequence (residues 91-100). Interestingly, small but 

notable chemical shifts were observed for C-terminal residues Leu125, His140, Gly142, Asn174 

Val180, Asn181, His187, Thr188 and Val189. These changes are likely due to weak transient 

interactions with AβO or moderate conformational changes in PrP upon AβO binding. Unfortunately, 

we were unable to assign the N-terminal of PrP, residues 23-95, due to the high sequence redundancy 

and signal overlap of the spectrum. However, no significant intensity changes or chemical shift 

perturbations were seen in the visible peaks of the disordered N-terminal fragment PrP (23-95) in the 

presence of AβO (Figure 1D), which stresses the importance of residues 90-110 in PrP-AβO complex 

formation. 

 

Identification of STIP1 binding domains of PrP 

We next sought to identify domains of STIP1 that bind PrP and the respective regions of PrP 

that mediate the interactions. Previous studies have identified the TPR2A domain of STIP1 as the 

major interaction site for PrP [19, 26, 36]. However, additional regions of STIP1 may be involved in 

PrP binding due to the modular structure of STIP1 and the structural similarity shared between its TPR 

domains. Of particular interest were STIP1 domains that specifically bind to PrP (90-231), since they 

may impair PrP-AβO complex and provide a mechanistic basis for STIP1 neuroprotective properties 

against AβO insult [19]. We tested binding of STIP1 and its domains using a multi-well protein-
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binding assay. The domain boundaries of STIP1 are shown in Figure 2A. We confirmed that STIP1 

specifically bound PrP with high affinity (Figure 2B, Kd = 186±15 nM), which is in agreement with 

previous studies [26]. Probing full-length PrP with individual domains of STIP1 revealed that TPR1 

(Kd = 1.2±0.2 µM) and DP1 (Kd = 600±50 nM), in addition to the previously reported TPR2A (Kd = 

800±130 nM) domain, can also interact with PrP with comparable affinity, albeit lower than the affinity 

of full length STIP1 (Figure 2C). The DP1 domain of STIP1 was capable of interacting in a specific 

and saturable manner with an N-terminal fragment of PrP (23-95), whereas the other domains (TPR1 

and TPR2A) did not (Figure 2D). The results strongly suggest that DP1 interacts with the disordered N-

terminal fragment of PrP (23-95), while PrP (90-231) binds TPR1 and TPR2A. The result is consistent 

with finding of previous studies showing that residues 113-128 of mouse PrP is responsible for 

mediating the interaction with the TPR2A domain of STI1P [26]. 

 

Since TPR1 and TPR2A both bind the C-terminal fragment of PrP (90-231), we investigated 

whether these domains can bind simultaneously or compete for binding to PrP. TPR2A was capable of 

displacing fluorescently labeled TPR1 from its complex with PrP in a concentration-dependent manner 

suggesting that binding of TPR1 and TPR2A to PrP is mutually exclusive (i.e. the TPR1 and TPR2A 

binding sites on PrP are either overlapping or in close proximity) (Figure 2E).  

 

TPR1 and TPR2A prevent AβO binding to PrP 

We have previously demonstrated that the TPR2A domain of STIP1 is able to inhibit AβO 

binding to PrP, albeit with lower potency than full length STIP1 [19]. Given that TPR1 and TPR2A can 

both bind to the C-terminal part of PrP (residues 90-231), we investigated whether TPR1 can modulate 

AβO-PrP binding by surface plasmon resonance (SPR). AβO injections showed a dose-‐dependent 

increase in response monitored by SPR indicating binding (Figure 3A). Co-‐injection of STIP1 (62.5 

nM) with a constant concentration of AβO showed an appreciable decrease in the response signal, 

suggesting inhibition of AβO binding to PrP. When co-injected with 125 nM STIP1, the response from 

AβO was equal to that of an injection of 125 nM STIP1 alone, suggesting complete inhibition of AβO 

binding (Figure 3B). Injections of TPR1 or TPR2A domains also inhibited AβO binding to PrP in a 

dose-dependent manner, albeit at higher concentrations than full-length STIP1 (Figures 3C and 3D, 

respectively). DP1, which binds the N-terminal region of PrP (residues 23-95), did not have any effect 

on AβO signals, consistent with this region being dispensable for AβO binding to PrP (Figure 3E). 
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Injection of each domain individually produced no detectable signal likely due to their small size and 

sensitivity of the instrument (data not shown). These results suggest that both the TPR1 and the TPR2A 

domains of STIP1 contribute to the direct inhibition of AβO binding to PrP through interactions with 

PrP (90-231). 

 

TPR1 and TPR2A inhibit AβO binding and toxicity in neurons 

STIP1 is a neuroprotective regulator of AβO toxicity in hippocampal neurons	   and TPR2A 

domain by itself can reproduce this effect [19]. We therefore investigated whether in vitro inhibition of 

AβO binding to PrP by TPR1 can also translate to a beneficiary response in cultured primary mouse 

hippocampal neurons. Ectopic treatment of neurons with recombinant STIP1, TPR1 or TPR2A 

domains in the presence of AβO significantly decreased AβO binding to neuronal cell bodies compared 

to treatment with AβO alone (Figures 4A and 4B). Co-treatment of neuronal cultures with AβO and 

DP1 resulted in no visible effect on the amount of AβO bound to neurites. These observations reflected 

our in vitro SPR results where only the TPR1 and TPR2A domains, but not DP1, were able to inhibit 

AβO binding to PrP in a concentration-dependent manor. To assess if the decrease in AβO binding 

translated to inhibition of AβO cytotoxicity, primary hippocampal neurons were treated with AβO in 

the presence or absence of STIP1, TPR1, TPR2A or DP1 and incubated for 48 hours before assessing 

the number of dead cells. AβO treatment alone increased cell death by ~15% compared to basal levels. 

Co-treatment with STIP1, TPR1 or TPR2A rescued neuronal death from AβO induced toxicity (Figure 

4C). No discernible effect on cell viability was seen in cells co-treated with DP1 and AβO compared to 

AβO treatment alone.  

 

Mapping of TPR1 and TPR2A interfaces mediating PrP binding 

 To gain molecular understanding of the STIP1-PrP interactions, NMR spectroscopy was used to 

map the binding interfaces of PrP on TPR1 and TPR2A on a residue-specific manner. 1H-15N HSQC 

spectra of TPR1 and TPR2A showed comparable amplitude of chemical shift perturbations upon 

addition of PrP (Figures 5A and 5C). Resonances undergoing fast exchange (i.e. chemical shift 

difference between the free and bound states is small compared to the rate of exchange between these 

two states) were traced upon titration of PrP and were mapped onto the crystal structures of TPR1 and 

TPR2A (Figures 5B and 5D). Notable chemical shift changes were observed for residues Asp70, 
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Trp71, Gly98, Lys100, His101 and Ala103 of TPR1, which form a contiguous patch on the surface of 

the C-terminal part of the TPR1 structure (Figure 5B). In contrast, the TPR2A binding interface for PrP 

is more extensive, extending diagonally across a hydrophobic cradle-shaped groove on one side of the 

TPR2A molecule. Interestingly, this cradle-shaped groove is reserved for binding of the C-terminal 

peptide of Hsp90 to fulfill STIP1 cochaperone function during protein client folding [30]. While 

critical contacts between TPR2A and Hsp90 C-terminal peptide made by the carboxylate clamp 

(Lys229, Asn233, Asn264, Lys301, Arg305) of TPR2A did not show the largest chemical shift changes 

upon binding of PrP, the partial overlap between the Hsp90 and PrP binding interfaces suggests that 

Hsp90 and PrP may regulate each other’s binding to STIP1 (Figure 6A). Therefore, we examined the 

potential for cooperative binding and complex formation for STIP1, PrP and Hsp90. 

 

 STIP1 was adsorbed onto polystyrene plates and probed with PrP. Following thorough washing 

of the complex; plates were incubated with a constant amount of Hsp90 (4 µM) and bound Hsp90 was 

detected using antibodies directed against Hsp90. Intriguingly, by increasing the concentration of PrP 

we achieved a saturable increase in Hsp90 binding to the plate (Figure 6B). In contrast, no Hsp90 

binding was detected to PrP immobilized onto a polystyrene plate in the absence of STIP1 (Figure 6C). 

These data suggest that PrP binding to STIP1 may induce conformational changes in the complex, 

which in turn may increase the recruitment of Hsp90. 

  

To investigate the potential relevance for the ternary complex formation of STIP1, Hsp90 and 

PrP in AβO toxicity, primary mouse hippocampal neurons were incubated in the presence of AβO (1 

µM) and sub-optimal concentrations of STIP1. STIP1 caused a dose-dependent decrease of AβO-

induced cell death (Figure 6D). However, addition of excess recombinant Hsp90 (2 µM) prevented 

STIP1 neuroprotection against AβO (Figure 6D). These results suggest that excess Hsp90 is able to 

block STIP1 neuroprotective signaling, potentially by sequestering the protein or by interfering with 

signaling events through PrP at the cellular membrane.  
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DISCUSSION 

AβOs have been demonstrated to trigger synaptic dysfunction through interactions with several 

neuronal receptors [3-5, 41]. Numerous studies have identified PrPC as a high affinity receptor for 

AβOs and implicated the interaction in the transmission of neurotoxic signaling [6, 15, 17]. Disruption 

of the PrPC-AβO complex has shown therapeutic merit in the reduction of AβO toxicity [7, 19]. We 

have recently determined that the cellular cochaperone and physiological PrPC ligand STIP1 is able to 

directly inhibit AβO binding to PrPC and alleviate synaptic loss, depression of long-term potentiation 

and neuronal cell death [19]. Therefore, understanding how this complex is modulated is of 

importance. 
 

 The studies reported here provide molecular insights regarding the functional modules of STIP1 

that directly contribute to its recently described protective role against AβO neurotoxicity and 

structural details of regions involved in binding to PrP. Our NMR studies revealed significant 

resonance attenuations in the N-terminal unstructured region of PrP encompassing residues 90-110 

upon binding of mature preformed AβOs, suggesting these residues mediate complex formation. These 

results are consistent with previous observations, which indicated residues centered around 95-110 are 

essential and sufficient for AβO binding to PrP [6, 7, 13, 14]. No significant chemical shift changes 

were observed upon the addition of AβO to N-terminal PrP (23-95). A short highly basic charge cluster 

‘KKRPK’ located in the far N-terminal of PrP (residues 23-27) has been suggested as a secondary AβO 

binding; however, other groups have reported near identical AβO binding levels to PrP (90-231) as 

wild-type PrP [13, 42]. It is possible the charge cluster acts as a secondary binding event following 

initial association of AβO to the primary binding site (residues 90-110). Thus, residues 23-95 may not 

participate in binding in the absence of the high affinity site, which could explain the lack of large 

chemical shift perturbations of PrP (23-95). Unfortunately, due to high sequence redundancy and peak 

overlap problems owning to its disordered properties, we were unable to assign residues 23-95 of PrP 

constructs. Thus, we cannot rule out the possibility of minor, but localized chemical shift changes in 

residues 23-95 upon AβO titration.  

 

Small chemical shift changes were noted for C-terminal PrP residues mapping to α-helices 1 

and 2. These changes were much smaller in magnitude than those observed for the primary AβO 
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binding site. These findings are unexpected, since the globular part of C-terminal portion of PrP is 

thought to be dispensable in its interaction with AβO. These changes may result from conformational 

alterations in helix 1-helix 2 of PrP upon AβO interaction. Alternatively, transient contacts between PrP 

molecules may be induced upon binding to Aβ aggregates, stabilizing these complexes. Indeed, 

competition experiments targeting an epitope spanning residues 131-153 effectively disrupted AβO 

binding to PrP [7].  

 

Our protein-protein binding assay results showed that full-length STIP1 binds to PrP (23-231) 

with high affinity (Kd ~186 nM), which is in agreement with previous finding [26, 36]. Surprisingly, 

binding of different domains of STIP1 to PrP (23-231) indicated that not only previously identified 

TPR2A, but also the structurally related TPR1 domain and the DP1 domain bind PrP with high affinity. 

TPR2A was capable of displacing TPR1 binding to PrP suggesting that they have overlapping binding 

sites or TPR2A is capable of occluding the TPR1 binding site on PrP. Interestingly, DP1 domain bound 

to the N-terminal of PrP (residues 23-95), while the TPR domains did not, suggesting their binding-site 

on PrP lies within residues 90-231. The recently solved NMR structures of the DP1 and DP2 domains 

of yeast STIP1 reveal a novel α-helical fold composed of 6 and 5 helices, respectively [35]. 

Electrostatic potentials of DP1 illustrate a slightly positive groove containing an additional α-helix 

absent in DP2, which stabilizes secondary structure elements in DP1. Consequently, while both DP1 

and DP2 share a common tertiary structure, these distinct structural differences may indicate the 

inability of DP2 to bind to the N-terminal of PrP.  

 

Even though the function of the DP domains remains uncertain, the length of the linker between 

TPR1 and TPR2A, which includes the DP1 domain, has recently been proposed to facilitate transfer of 

Hsp90 from TPR1 to TPR2B during protein client folding [33]. This is the first study to identify a 

direct ligand of DP1, suggesting the domain may influence STIP1 binding to physiological ligands 

outside of its cochaperone role in client protein refolding.  

 

  We confirmed by SPR the dose-dependent specific interaction between immobilized PrP and 

AβO. Due to the abnormally long dissociation kinetics, consistent with other studies, we were unable to 

quantitatively determine a binding constant for the interaction [13, 19, 43]. Thus, the effects of STIP1 

and individual domains on AβO were assessed qualitatively based on the absolute magnitude of the 
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response change. STIP1 effectively inhibited AβO binding to PrP, abolishing the interaction at low 

nanomolar concentrations, as demonstrated previously [19]. TPR2A and TPR1 domains were also 

capable of inhibiting AβO binding to PrP albeit at much greater concentrations than STIP1, in 

agreement with our previous observations of STIP1 having a greater binding affinity than the 

individual domains alone, supporting the notion of multiple binding sites. DP1, the N-terminal PrP-

binding domain of STIP1, had no discernible effect on AβO binding with full-length PrP, which agrees 

with C-terminal PrP being the primary AβO binding site. While DP1 may not actively disrupt AβO 

interaction with PrP, it may contribute to the greater binding affinity of full length STIP1 binding to 

PrP and thus its efficacy as an AβO inhibitor. Further investigation will be needed to determine the 

molecular basis by which DP1, TPR1, and TPR2A domains inhibit PrP-AβO binding in the full-length 

context.  

 

 AβO binding to neurons leads to cell death and impaired synaptic plasticity through multiple 

signaling pathways [10, 44, 45]. Activation of aberrant NMDAR signaling by AβO to PrPC resulting in 

hyper excitability and activation of Fyn kinase has been implicated in dendritic spine loss and neuronal 

cell death. We found that treatment of primary mouse hippocampal neurons with STIP1, TPR1 or 

TPR2A reduced the amount of AβO bound to the neuronal surface. Importantly, decrease in AβO 

binding translated to rescue of neuronal cell death. Consistent with the inability of DP1 to inhibit AβO 

binding in vitro, DP1 had no notable effect on binding of AβO to neurons or on cell death. These 

results suggest that the TPR1 and TPR2A domains of STIP1 may cooperate for the neuroprotective 

effects of STIP1 against AβO insult through PrPC. 

 

 Tetratricopeptide repeat motifs are highly degenerate 34 amino acids sequences arranged into 

helix-loop helix structures forming adjacent anti-parallel helices [46].  The high structural similarity 

between the TPR1 and TPR2A domains and their similar properties in inhibition of AβO to PrP led us 

to investigate whether these two regions bind similarly to PrP at the structural level using NMR. 

Intriguingly, the binding interfaces of TPR1 and TPR2A with PrP differ significantly. PrP bound TPR1 

in a short region encompassing the C-terminus of helix 6 and its respective interconnecting loop region 

with helix 7. This region is far removed from the traditional TPR binding site involved in protein-

protein interactions. 
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The TPR2A interface extends diagonally across a hydrophobic cradle-shaped groove on a single 

face of the TPR2A molecule [30]. Notably, this region overlaps with the Hsp90 binding site of TPR2A, 

which is formed by electrostatic interactions with highly conserved carboxylate clamp residues of 

TPR2A and the C-terminal EEVD motif of Hsp90 [30]. Significant chemical shift changes were 

observed in residues corresponding to the carboxylate clamp, as well as in additional residues 

occupying the cradle-shaped groove that binds Hsp90.  

 

While Hsp90 plays an important role in assisting and maintaining the proper folding of many 

non-natively structured proteins, it has been implicated as detrimental in the clearance of hyper-

phosphorylated tau and Aβ, the pathological species in AD [47-49]. Along with this, Hsp90 inhibitors 

have been shown to be effective in facilitating tau clearance and inhibiting Aβ neurotoxicity in mice 

[50]. In addition, actively secreted Hsp90 also contributes to the regulation of extracellular client 

proteins [24, 51]. Given that both STIP1 and Hsp90 are secreted, it is plausible that extracellular Hsp90 

may influence STIP1 interaction with PrP in the extracellular matrix or on the cell membrane. 

Interestingly, while the TPR2A interfaces for Hsp90 and PrP binding show large overlapping regions, 

PrP binding to STIP1 appears to promote ternary complex formation with Hsp90. PrP binding to STIP1 

has been suggested to induce conformational changes in PrP resulting in loss of helical structure [36]. 

The STIP1 induced unfolding may reveal previously buried hydrophobic pockets on PrP, thus 

mimicking a misfolded protein and resulting in the recruitment of Hsp90. Alternatively, Hsp90 binding 

to TPR2A domain of STIP1 may induce structural rearrangements in both proteins, which may hinder 

STIP1 signaling through PrP. However; the relationship and potential interplay between STIP1, Hsp90 

and the PrP is poorly understood and will require further study regarding their roles in the extracellular 

environment and implications in AD. 

 

 STIP1 has traditionally been considered as a cochaperone in the regulation of Hsp70 and Hsp90 

client protein folding, however; strong evidence has revealed its importance as a signaling molecule 

through PrP in neuroprotection [27, 29-31, 35, 52, 53]. The modular structure of STIP1 allows for 

multiple domains to contribute to complex formation with PrP, which have a direct influence on its 

protective role against AβO insult. In addition, our studies indicate the possibility of ternary complex 
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formation composed of PrP, STIP1 and Hsp90, which may influence STIP1 neuroprotective signaling 

against AβO toxicity in AD.  
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FIGURE LEGENDS 
 

Figure 1. NMR reveals AβO associate with PrP residues 90-110. (A) 1H-15N HSQC spectra of 

PrPC(90-231) in the absence (black) and presence (red) of  mature Aβ1-42 oligomers at a 1:1 ratio. 

Residues that demonstrate a change in intensity (black arrows) or chemical shift changes (blue arrows) 

are noted. (B) Sample of one-dimensional traces of peak intensity presented in (A). Residues 90-231 

show a loss in signal intensity (Q91) while C-terminal residues remain unchanged (E221). (C) 

Normalized peak intensity of PrP (90-231) plotted against residue number. (black line) Normalized 

peak intensity level expected if no interaction took place between PrP (90-231) and Aβ1-42 oligomers. 

(red line) Average normalized intensity decrease for all residues of PrP (90-231).  (D) Normalized peak 

intensity of N-terminal PrP (23-95) peaks resolved in the1H-15N HSQC spectra in the presence of AβO.  

Due to signal overlap and sequence redundancy, the identity of the residues represented by each peak 

could not be determined and the thus were assigned an arbitrary number. (black line) Normalized peak 

intensity level expected if no interaction took place between PrP (23-95) and Aβ1-42 oligomers. (red 

line) Average normalized intensity decrease for all peaks of PrP (23-95). 

 

 

Figure 2. DP1, TPR1 and TPR2A associate with PrPC. (A) Domain structure of STIP1 illustrating 

domain boundaries of three TPR (TPR1, TPR2A and TPR2B) and two DP (DP1 and DP2) domains. 

(B) Polystyrene plates were pre-coated with 10 µg of PrP (23-231). Wells were probed with various 

concentrations of STIP1 (B) or STIP1 domains (C). STIP1 or domain immunoreactivity was detected 

using polyclonal anti-STIP1 antibodies and binding is presented as OD495 values. (D) N-terminal PrP 

(23-95) was incubated with increasing concentrations of STIP1 domains. Binding of the domains was 

detected as in (B and C) (n=3). (E) Immobilized PrP (23-231) was incubated with 1 µM fluorescein-

labeled TPR1 in the presence of various concentrations of TPR2A (n=4). Fluorescence of bound TPR1 

was measured at excitation and emission wavelengths of 485/535 nm, respectively. 

 

Figure 3. TPR1 and TPR2A, but not DP1, inhibit AβO binding to PrP(23-231) in vitro. PrP (23-

231) was covalently immobilized on to a CM5 sensor chip. (A) Sensograms were collected for various 
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AβO concentrations binding to PrP (23-231). (B-E) Binding of AβO (2 µM) in the presence of 

increasing concentrations of STIP1 (B), TPR1 (C), TPR2A (D) or DP1 (E). 

 

Figure 4. STIP1, TPR1 and TPR2A inhibit AβO binding and toxicity in primary mouse 

hippocampal neurons. (A) Representative images of 13 DIV neurons stained for γ-tubulin (red) and β-

amyloid (green) after treatment with AβO in the presence of STIP1, TPR1, TPR2A or DP1. (B) 

Quantification of A. (C) Comparison of neuronal cell death after 48 hours treatment with AβO (1 µM) 

alone or in the presence of STIP1 (1 µM), TPR1 (2 µM), TPR2A (2 µM) or DP1 (2 µM). Experiments 

were analyzed by one-way ANOVA, followed by Tukey’s post hoc test. ***P < 0.001, (n=3). 

	  

Figure 5. NMR indicates distinct regions of TPR1 and TPR2A interact with PrP(23-231). (A) 

Graphical representations of chemical shift changes observed in 1H-15N spectra of 15N-labelled TPR1 

or (C) TPR2A in the presence of PrP(23-231). (B) Combined chemical shift changes mapped on to the 

crystal structure of TPR1 (PDB:1ELW) or (D) TPR2A (PDB:1ELR). The protein structure images are 

generated using the Chimera molecular graphics software [54]. 

 

Figure 6. Hsp90 inhibits STIP1 rescue of primary mouse hippocampal neurons against AβO 

induced cell death. (A) Chemical shift changes of PrP binding site on TPR2A (top) compared to the 

solved crystal structure of Hsp90 C-terminal MEEVD peptide bound to TPR2A (bottom) (PDB:1ELR). 

Residues of TPR2A involved in electrostatic interactions, hydrogen bonding or Van der Waals 

interactions with Hsp90 peptide are labeled (black). The protein structure images are generated using 

the Chimera molecular graphics software [54]. (B) Polystyrene plates pre-coated with 10 µg of STI1P 

were first incubated with increasing concentration of PrP, followed by incubation with Hsp90 (2 µM). 

Bound Hsp90 was detected using polyclonal anti-Hsp90 antibodies. Binding is presented as OD495 

values (n=3). (C) Polystyrene plates were pre-coated with 10 µg of full-length PrP (23-231). Wells 

were probed with various concentrations of Hsp90, followed by detection of bound Hsp90 using 

polyclonal anti-Hsp90 antibodies. Binding is presented as OD495 values (n=3). (D) Comparison of cell 

death of 13 d neurons after 48 hour treatment with AβO (1 µM) and various concentrations of STIP1 

(0-600 nM) in the presence (red) or absence of HSP90 (2 µM) (black) (n=7). Experiments in the 



 23 

presence or absence of Hsp90 were analyzed by two-way ANOVA, followed by Bonferroni’s post hoc 

test. **P<0.01. 
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