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Abstract

The advent of next-generation sequencing technologies has allowed for the bridging

of wet lab work and large data analysis into a cohesive work flow; with the increasing

speed and efficiency of sequencing organisms, it becomes imperative that we are able to

ensure the data that is produced is correct.

We designed and implemented a new algorithm, QUESS, which based on using mul-

tiple spaced seeds to correct DNA sequencing data from Illumina MiSeq, HiSeq and

NextSeq machines using C++ and OpenMP for parallel computing. We compared our

method with ten leading programs, producing consistently better overall results for most

tested measures. QUESS has the best average performance for all programs tested and

is also competitive in terms of time and space complexity.

Keywords: DNA sequencing error correction, spaced seeds
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Chapter 1

Introduction

1.1 Biologic Relevance

Traditional study of evolutionary genetics has taken its roots from Charles Darwin’s

theory of evolution by natural selection, which is primed on the postulate that traits are

heritable and that favourable traits persist through generations due to selection [4]. These

organisms that have traits that aid in its survival fare better against its environment

versus organisms that do not have these traits. In an extension to this idea, Mendelian

inheritance observes that the phenotype, or physical properties of offspring organisms

are bound by laws of genetic inheritance that are a function of parental genetics, or

genotype (Figure 1.1). Such observations would spur the birth of the field of genetics

and bioinformatics, due to the need to study the physical cause of this inheritance.

Figure 1.1: Sample Punnett Square. The box sur-
rounding each letter is representative of the allele that
attributes towards the phenotype, and the background
represents the overall phenotype of the specimen. If the
genotype for parent 1 (top row) is BB resulting in a blue
specimen, and the genotype for parent 2 (left column)
is Bb resulting in a green specimen, the genotype of a
resulting offspring can be either BB or Bb, resulting in
either a blue or green specimen.

1



2 Chapter 1. Introduction

Figure 1.2: Sanger
Sequencing.

Chemists would come to deduce that this information ex-

isted in sequences called deoxyribonucleic acid (DNA) comprised

of sub-units called deoxynucleotide triphosphates (dNTP). DNA

is synthesized in a process known as polymerase chain reaction

(PCR) in the 5’ to 3’ direction by a biological catalyst (enzyme),

DNA polymerase – the 5’ denotes the carbon attached to a phos-

phate group, and the 3’ denotes the carbon attached to the hy-

droxyl group, which is the active region for DNA polymerase – by

addition of one of four variants of dNTP: adenine (A), guanine

(G), and cytosine (C). Sequencing of DNA was first made pos-

sible through Sanger sequencing [16], which relied on the use of

di-deoxynucleotide triphosphates (ddNTPs) – a similar molecule

to dNTP, but does not elongate DNA – to terminate the DNA

early and radioactive tags to identify sequence DNA. Sanger se-

quencing used four DNA sequencing pools in where each pool conducted PCR, with the

caveat that each pool had in addition a ddNTP variant corresponding to each dNTP.

As the DNA in each pool replicated, some replication cycles would be cut short due to

the appending of ddNTP, resulting in each pool having all DNA strands that end in its

corresponding ddNTP. Sanger sequencing could then deduce the sequence through gel

electrophoresis – a process in which the DNA is run through a porous gel, causing larger

DNA strands to go through slower than smaller faster DNA – as the longer strands take

more time to bypass through the porous gel, which would result in radioactive bands cor-

responding to the relative position of termination in reverse (Figure 1.2 has a sequence

GGCAAGCTCGGCGACTCGGCGA). This experimentally derived sequence is called a

read.

This allowed biologists to observe the presence of genomic sequences, and linked prior

observations of parental inheritance to the physical phenomenon that is the difference in

DNA sequence. But these technologies were primitive and slow, and the reads produced

were short. The need for faster and more efficient sequencing has became a necessity
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for the growing field of bioinformatics; a shift in interest which resulted in the dramatic

drop in cost for sequencing (Figure 1.3), and has effectively shifted the bottleneck of the

advance of biology to data analysis [17].

Figure 1.3: Cost of Sequencing. The cost of sequencing against time. The cost of
sequencing DNA has decreased over the past 16 years. [22]

1.1.1 DNA Structure

Figure 1.4: DNA Struc-
ture. [21]

DNA contains a subset of four nucleotides (a subset of

dNTP): adenine, guanine, cytosine, and thymine, which

will represented in literature as A, G, C, and T. DNA ex-

ists as a double helix in its native state, in where adenine A

binds with thymine T, and guanine G binds with cytosine

C. In this double helical state, DNA maintains a reversely

complementary scheme in where the sequence on the oppo-
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site strand will have the corresponding binding nucleotide in reverse order. This reversely

complementary scheme is important as it is the state of DNA which achieves the lowest

level of energy – this means that two pieces of DNA that are reversely complementary

will bind together – and man-made primers – sequences of DNA that are designed to bind

to target segments of DNA – are created to emulate their nature-created counterpart.

1.2 Next Generation Sequencing

The advent of next-generation sequencing (NGS) technologies has allowed for the bridging

of wet lab work and large data analysis into a cohesive work flow; with the ability to

generate longer reads from test specimen, it becomes a reality to identify the hidden

trends that underlie the message that is the DNA. Illumina, the current leader of such

sequencing technologies, offers multiple models of machines that produce a range of reads

based on target size and price [9]. The HiSeq machines are designed for high output

(>15GB), have longer runtimes, and purposed to sequence larger organisms and produce

reads typically around 100 base pairs (bp). The MiSeq machines are designed to be

benchtop machines, handling smaller jobs (<15GB), have shorter runtimes, and run on

smaller organisms producing reads of around 250-300 bp. The newer NextSeq machines

are a flexible series of machines designed to be high output benchtop machines, allowing

for larger jobs (<120GB), while producing reads around 100 bp.

These machines start by taking sample DNA and breaking into smaller fragments of

200 to 600 bp. Primers are subsequently added, which bind to the 5’ and 3’ ends of the

DNA. The primer-bound DNA is subsequently replicated a few cycles and bound to a

flow cell containing obligos – lengths of DNA – complementary to the primer sequences

(Figure 1.5). Recall that DNA exists in a native state in where it is reversely complement,

and the primer will want to bind to a sequence that is reversely complement, which is

the case with the flow cell-bound oligo. These flow cell-bound fragments are used as a

template for repeated cycles of PCR, resulting in a forest of identical fragments. The

resulting clusters of fragments are then snapshot at every base pair with use of fluorescent

tags, allowing for the sequence to be deduced by consensus of each cluster.
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These reads are stored within a file that is usually of one or two formats: FastA or

FastQ. FastA files contain only reads (Figure 1.6a)– consecutive base pairs that span

anywhere from 35 bp to 300 bp – whereas FastQ files contain not only the reads, but

also the corresponding quality of each base pair, a measure of certainty of that particular

base within the read, which is represented by an ascii value (Figure 1.6b). With respect

to computer scientists, these reads are strings of characters from set { adenine, guanine,

cytosine, tyrosine } or in short by { AGCT }; the character N is used to represents a

failure to determine which of the set that particular base belongs to.

Figure 1.5: Outline of Illumina genome sequencing process. Raw DNA is frag-
mented, and subsequently added with primers. These templates are then added to a flow
cell, where primers are added, then the template is replicated and dissociated from the
primer. This process of adding the primer, extending the primer, and dissociating the
primer is repeated multitudes of times to achieve a forest of reads.
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With the aforementioned method of producing these reads, it can be noted that

errors can occur during the process, which results in one of three types of errors: insertion

errors, in where the product sequence has extra base pairs compared to the true sequence;

deletion errors, in where the product sequence is missing base pairs compared to the true

sequence; and substitution errors, in where the product sequence has base pairs that are

different than the true sequence. It should be noted that with Illumina data, substitution

errors predominate [14], as base by base addition of base pairs disfavours insertions and

deletions, which are not chemically as stable, leading to premature termination of reads.

Figure 1.6: Sample Read. Illumina input read datasets would have thousands to billions
of these reads, of longer lengths. a) A FastA file, denoted by the ′ >′ at the beginning
of every other line. The first line is a comment describing the read (usually relating to
its order). The second line dictates the nucleotide base identity, the read. b) The FastQ
file, denoted by the ′@′ at the beginning of every fourth line. The first two lines are the
same as FastA files, the third line is a comment about the quality of the reads that are
present on the fourth line. The quality of the reads is denoted in ascii value.

The resulting product contains thousands to billions of reads that are to be inter-

preted by the researcher and applied downstream to a number of applications such as de

novo genome assembly, metagenomics, and DNA-protein interactions. The magnitude

of downstream uses implies the need for a stand-alone error correction program that is

able to reliably produce the best results; is time and space efficient to integrate into a

workflow; and is simple and easy to use to allow for easily reproducible results.
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1.3 Error Correction

Error correction is predicated upon the underlying redundancy of data; the machines

produce data that is several multitudes larger than the true sequence, and with sufficient

coverage – the number of times an input read dataset would overlap the reference genome

(Figure 1.7) – many error correction programs can determine and correct erroneous se-

quences into true sequences, as according to their reference genomes.

Figure 1.7: Example Genome Coverage. (blue) The reference genome. (yellow)
Fragment input read dataset. (red) The read breadth for the fragment reads compared
to the reference genome. (a) An area of high coverage, has a depth of 7. (b) An area
with low depth coverage, has a depth of 2. (c) An area of no coverage. The coverage
of the input read dataset (yellow) is equal to how many times it overlaps the reference
genome (blue) on average.

There are multiple trains of thought behind error correction, existing algorithms can

be classified into three categories: (i) k-mer counting algorithms, such as ACE [18] and

RACER [8]; (ii) k-mer spectrum algorithms, such as BLESS 2 [6], Blue [5], Lighter [20],

and Musket [12]; and multiple sequence alignment algorithms, such as BFC [10], Karect

[1], and SGA [19]. Each branch of thought has its advantages and disadvantages; k-mer

spectrum algorithms tend to use less time and space, but also do not correct as well,

multiple sequence alignment algorithms are slow and tend to use up a lot of space and

time, and k-mer counting programs can also take up a lot of space due to its counting

of k-mers. The end goal of such implementations is to aid researchers to better analyze

and interpret their information.

We present QUESS, an error correction program that utilizes multiple optimal spaced

seeds to correct errors found within input reads. While traditional error correction pro-
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grams use continuous seeds of to determine likeness between two sequences between

reads, QUESS utilizes multiple spaced seeds, which ignores set positions within the seed,

which increases the amount of hits – matches to the database – that each seed incurs

[3]. QUESS offers the following advantages: (i) it is the best performer amongst all

the aforementioned programs; (ii) it is reasonably time and space efficient compared to

the other top performers; and (iii) unlike some k-mer spectrum algorithms, it does not

require optimized parameters upon initial runtime.



Chapter 2

Existing Algorithms

The majority of programs utilize k-mers – all the possible substrings of length k that are

contained in a string – to correct (Figure 2.1), and categorized into one of three major

categories: k-mer counting, k-mer spectrum, and sequence alignment. K-mer counting

posits that given multiple variations of a k-mer – a sequence of consecutive base pairs

spanning k base pairs – that are not too different from one another, the correct variant of

these k-mers is the one with the highest count. In contrast, k-mer spectrum techniques

utilize thresholds to ascertain the correctness of a specific k-mer – based on the deviance

from the strongest value – usually through two phases; they will tally up k-mers and create

a k-mer occurrence frequency histogram and set a threshold and evaluate correctness of

k-mers based on this histogram. Alignment algorithms attempt to search for similar

k-mers by attempting to bridge the difference between two or more different k-mers into

a consensus k-mer in the least costly way. We describe in this chapter nine leading error

correction programs.

9
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Figure 2.1: K-mer Example. a) The original 7-mer. b) The 6-mers. c)The 5-mers.
d) The 4-mers. e) The 3-mers. f) The 2-mers, note that AA appears twice.

2.1 K-mer Counting

2.1.1 ACE

ACE [18] organizes k-mers into tries – prefix trees in where the edge sequence denoted

from the parent node to the root node is the prefix of a child node – storing 2-bit encoding

of nucleotides { A,G,C,T } with 2 bits { 00,10,01,11 }. Given the ith nucleotide of a k-

mer, where 1≤i<k, the ith nucleotide would have been represented as the edge connecting

the current node and its parent node and the (i+1)th nucleotide of the k-mer would be

represented by the base identity of the (i+1)th nucleotide in binary as an edge linking

to a child node (Figure 2.2). The nodes between edge each denote count of i-mers that

ACE has encountered.

ACE iterates through two steps: Construct Subtrie() and Detect and Correct(). Con-

struct Subtrie() applies prefix-based insertion of k-mers from the input read bank to

construct the trie where each edge corresponds to the 2-bit encoded identity of a base

pair of the k-mer, and each node corresponds to the frequency of that particular variant

of the k-mer (Figure 2.2). Detect and Correct() detects substitutions from within the



2.1. K-mer Counting 11

sub-tries and attempts to search for alternatives for the branch nodes with the lowest

frequencies. ACE mutates the aforementioned branch nodes into all 3 alternative bases

for these branches and if such a change results in a variant with a high frequency, it

will conduct a 1-change. If such a high-frequency variant is not found, it will conduct a

2-change, in where two bases are mutated, for which nine variants of the low-frequency

branch node is tested.

2 

4 

2 

2 

2 

1 

1 

1 

1 

1 

A

2 

T
C

A
C

A 

A A

T
T

C

 

Figure 2.2: ACE Trie Data Structure. K-mers are utilized in ACE as a trie, where
each edge corresponds to the 2-bit encoded nucleotide base pair, and each node corre-
sponds to the count of the k-mer at that level.[18]

2.1.2 RACER

RACER [8] utilizes 2-bit encoding of nucleotides of reads and represents each k-mer as

a 64-bit integer, storing them in a hash table along with their count. A threshold t is

computed to discern correct k-mers versus incorrect k-mers. For each k-mer, the flanking

nucleotides are denoted as a and b, and these nucleotides are replaced if there exists a

variant in the hash table that exceeds the count of the current variant, and is greater

than t.
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2.2 K-mer Spectrum

Bloom Filters

Most of the best performing k-mer spectrum algorithms utilize Bloom filters, which are

probabilistic data structures that are designed to ascertain membership of an input string

within a set [2]. To insert a key into the dataset, the key would have be hashed by k

hash functions, and the Bloom filter would set the resulting bits in the Bloom filter to 1.

To determine if an element is within the Bloom filter, the key would be hashed by these

k hash functions, and if all the resulting bits would be 1, it is assumed to be a member

within the set defined by the Bloom filter (Figure 2.3). The advantage that comes from

use of a Bloom filter is its space efficiency, but it can be subject to false positive matches.

All algorithms that utilize Bloom filters are inherently probabilistic due to the nature of

Bloom filters erroneously accepting membership of an erroneous entry. This false positive

rate can be modeled as (1− ekn/m)k in where e is the natural logarithm, k is the number

of hash functions, n is the number of elements inserted, and m is the size of the Bloom

filter.

Figure 2.3: Bloom Filter Example. Set { a,b,c } hashed into the 1 bits of the Bloom
filter (the array of 1s and 0s) using k = 3 hash functions. d (orange) belongs in the set
due to hashing into bits of 1. e (purple) does not belong in the set, having hashed into
a bit of 0. f (pink) hashes into bits of 1, but is a false positive.
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2.2.1 BLESS 2

BLESS 2 [6] is an enhanced parallelized version of BLESS that implements improved

methods of detecting weak k-mers. BLESS 2 corrects input reads by first constructing

a k-mer occurrence histogram as well as a quality score histogram. K-mers that occur

more than a computed threshold are kept as solid k-mers, and these k-mers are used by

a Bloom filter by each node to correct the input reads. BLESS 2 corrects weak k-mers

and k-mers with low quality scores by cross-referencing them with the solid k-mers.

2.2.2 Blue

Blue [5] uses read context to choose between alternative replacement k-mers. Blue first

tiles the input reads to produce a k-mer occurrence histogram, in which it uses to de-

termine what thresholds to use to correct the reads. Then it uses a partitioned hash

table to hold consensus k-mers corresponding to the peaks in the aforementioned k-mer

occurrence histogram. It corrects its data in the least number of possible fixes such that

the resultant fix is a good k-mer, as dictated by the hash table generated prior. Blue

calculates appropriate threshold levels based on the harmonic mean of each read rather

than the entire dataset, allowing for effective error correction for datasets of lower cov-

erage. TryHealingRead() will subsequently attempt to fix each read from left to right,

attempting to fix any k-mers below an acceptable threshold level. Once it encounters

such a k-mer it attempts to recursively take the k-mer and perform a depth-first search

of possible fixes with FindPlausibleVariants(), and select an appropriate change that is

dependent on not affecting the quality of the remainder of the read.

2.2.3 Lighter

Lighter [20] utilizes three passes through multiple Bloom filters to determine the trusted

k-mers and transform similar k-mers into those trusted k-mers. In the first pass, Lighter
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examines each k-mer and stores with a probability of α. Lighter assumes that if a

distinct k-mer a occurs N times within the dataset, reduction of α would reduce the

survivability of a should it not be a correct k-mer, since correct k-mers are assumed to

be more numerous. In the second pass, Lighter stores trusted k-mers into a Bloom filter

B, then sets a threshold such that if not enough k-mers overlap a position, it will be

marked untrusted. Inversely, if it surpasses this threshold, it will be marked trusted.

Lighter then looks for regions of consecutive trusted positions and stores these k-mers

within a Bloom filter B. In the third pass, it utilizes a greedy error correction algorithm

that looks for the region of longest trusted k-mers that appear in Bloom filter B, and

attempts to stretch this region by introducing substitution to the adjacent positions. If

such substitutions would result in a change to a k-mer present in Bloom filter B, the

position is changed. If more than one candidate is present, the following position will be

marked ambiguous and the algorithm continues.

2.2.4 Musket

Musket [12] constructs a k-mer occurrence histogram by counting all non-unique k-mers

using both a hash table and a Bloom filter in parallel utilizing a multiple master-slave

model, in where the masters are dedicated to task designation, and slaves are dedicated

to assigned work. With this model, each master fetches reads in parallel from the input

file, and feeds them to their respective slaves, which all hold a local Bloom filter and

hash table. Each slave captures the k-mers and performs a membership look up to

include within its own Bloom filter. Musket will then repeat this step, but this time,

incrementing non-unique k-mers and deleting all unique k-mers. Musket then estimates

a coverage cut-off based on this histogram.

When correcting, Musket utilizes three techniques: a two-sided conservative correc-

tion, one-sided aggressive correction and voting based refinement. In two-sided correc-

tion, bases are classified as trusted or untrusted. If an untrusted base is found on either

border of two k-mers, these will be prime targets for correction. One-sided aggressive
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correction occurs when two or more sequencing errors occur within a single k-mer. For

each region of trusted bases, Musket will conduct aggressive replacement with alternative

bases to form trusted k-mers, ending only once trusted regions aggregate. Voting-based

refinement corrects a base by looking at the number of occurrence of possible fixes, choos-

ing the one with the largest number of occurrences.

2.3 Multiple Sequence Alignment

2.3.1 BFC

BFC [10] utilizes a non-greedy algorithm – in where it explores a greater search space

in order to be more accurate – that defines correction as a spectral alignment problem.

BFC defines a set of trusted k-mers and attempts to extend the trusted k-mer within a

read with such minimal corrections such that all k-mers within the error becomes trusted.

BFC utilizes a solution consisting of a 4-tuple of values: the current position i, the last

(k-1)-mer W ending at i, the set of previous corrected solutions C, and the penalty

associated with the set of solutions p. With each new base, it will retrieve states of

minimal penalty from C, and put into context with the new base on a new solution with

a new penalty.

2.3.2 Karect

Karect [1] corrects a read by taking all similar reads to a target read r, and stores them

in a partial order graph. Karect aligns each similar read in the graph against r and

notes the possible changes to similar reads within the graph to recreate r. Each change

is noted, and a consensus is derived.
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2.3.3 SGA

SGA [19] error correction is based on k-mer frequencies. SGA assumes that k-mers

covering a position of error in a read will incur a low frequency of those k-mers. SGA

scans a read from left to right to identify problematic bases that yield low frequencies of k-

mers that are less than a frequency of c. It will iterate over the other three possibilities of

the problematic position, and if such a possibility that exists yields k-mers with frequency

c, it will make the change. SGA also stores the entire read dataset using an FM-index

– which is a compressed substring index based on the Burrows-Wheeler transform of an

input string – to greatly reduce the peak memory usage.



Chapter 3

QUESS: QUality Error correction

using Spaced Seeds

3.1 Introduction

QUESS is an error correction program that utilizes multiple optimal spaced seeds to

correct errors found within input reads. In this chapter, we will describe in depth the

concept of spaced seeds, and give an in-depth explanation as to the mechanisms behind

QUESS.

3.2 Spaced seeds

Traditional seed matching is when a region of consecutive bases is matched to a region in

the dataset. However, Califano and Rigoutsos posit that use of non-consecutive matches

allows for increase chance to find similarities [13] [3]. These spaced seeds have an increased

hit – a match from the seed against a sequence within the dataset – rate as opposed to a

larger seed of the same length, allowing for a specific seed to be comparing more regions.

17
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In addition, with the introduction of multiple optimal spaced seeds, we can reach Smith-

Waterman sensitivity [11], the sensitivity that can be derived by use of the much slower

dynamic programming.

Figure 3.1: Spaced Seed Example. (a and b) Two spaced seeds of seed length 26,
and seed weight 16.

A spaced seed is a bit array consisting of 1-bits equal to the seed weight, and 0-bits

for the rest of array (Figure 3.1). Compared to other programs which utilize the concept

of k-mers – strings of length k – QUESS error correction introduces a new concept called

s-mers, which are the strings denoted by the bitwise operation AND between a spaced

seed and the input strings. When attempting to match against a sequence of the dataset,

the s-mer would only compare bits that have the value 1, and ignore bits with the value

0. QUESS error correction is dependent on use of multiple optimal spaced seeds [7] –

each having a seed length of 26 and a static weight of 10-26 – to generate s-mers and their

s-gaps, which are the matches against the dataset of the ignored 0 bits. QUESS then

derives a canonically correct s-gap, which is the highest count of all variant s-gaps of each

s-mer, in which it uses to correct all other similar s-gap variants. QUESS utilizes a seed

weight of 16 or 20, dependent on the size of the dataset, which was derived experimentally.

Table 3.1 reflects one of many experimental measures used to decide on final seed weight;

in this measure, while seed weight of 17 does the best on average across number of seeds

equal to 4 and 8, seed weight of 16 does the best on the iteration of number of seeds

equal to 8 and does better with all other measures, so it was chosen. It was found that

performance due to seed weight variance was correlated to size of dataset, and the final

seed weight for the smaller datasets was chosen to be 16, and the final seed weight for

the larger datasets was chosen to be 20.
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Table 3.1: QUESS Seed Weight Selection. Comparison on relative seed weight
performance on MiSeq datasets comparing the ReadDepthGain measure. Darker colors
indicate better results.

3.3 QUESS - overview

QUESS utilizes multiple spaced seeds to correct errors found within input reads. While

established algorithms utilize seeds with consecutive bases, QUESS masks these bases

with the spaced seeds to produce an s-mer and an s-gap. With a bank of sufficient s-mers

and their corresponding optimal s-gap, derivation of the most correct variant s-gap is

obtained and correction of the input dataset is accomplished by comparison of s-gaps of

input reads versus the computed correct s-gaps. An overview of the program is given in

Algorithm 1.
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Algorithm 1 Main Algorithm

input: RI , L . RI – input dataset, L – genome size
output: RO . RO – output dataset
move RIreads to RT . RT – temp reads
computeTC( L )
initialize hash table H, file RTC . RTC – empty read file
for each seed SI do

if I <= 3 then
TE = max( 2, TC/4 ), TDIFF = 4

else
TE = TC/2, TDIFF = 2

insertSMers( SI , RT , H )
rehashFrequentSMers( H, TC )
insertSGaps( SI , RT , H )
removeAmbiguousSMers( TC , TE, H )
correct( SI , TC , TE, TDIFF , RT , RTC , H )
clear H
move RTC to RT

move RT to RO, export RO

3.4 Computing parameters

QUESS has two parameters that depend on the specifications of the input dataset. TC

and TE are threshold values that adjust based on the coverage of the dataset against

the estimated size of the reference genome. These values will be important in determine

the correctness of the input s-mers and s-gaps and are calculated based on the Poisson

distribution, which posits that the probability of any given event occurring within a fixed

interval of time or space is a constant rate and is independently determined (3.1).

P ( k, I ) = e−λ
λk

k!

P ( k, I ) = Poisson distribution of k events in I time or interval

e = Euler′s number

λ = the event rate

(3.1)
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To calculate TC , we have to define λ and I, which are function dependent on the

average lengths of reads |r|, the number of reads within a dataset N , the estimated

length of the reference genome L, the estimated rate of error of the dataset ε, and the

weight of the s-mer w.

To calculate λC , we can posit (1-ε) as the probability of a base being correct, and

(1-ε)w is the probability of a s-mer being correct, |r|N
L

as the average coverage of read r,

and wN
L

as the average coverage of a s-mer. We then can expect that the likelihood of a

s-mer being correct as a function of the difference of coverage of |r| versus s multiplied by

the likelihood that an arbitrary s-mer of weight w is correct: λC = (|r|−w)N
L

(1− ε)w. In

addition, we can express the likelihood that an arbitrary s-mer of weight w is incorrect

at one base: λE = (|r| −w)N
L

(1− ε)w−1ε1
3
. We can then calculate the Poisson ( λC , TC )

and Poisson ( λE, TC ) as a function of λC , λE and TC (3.2).

P ( λC , TC ) is the likelihood of a s−mer being correct

P ( λE, TC ) is the likelihood of a s−mer being incorrect at one base

λC = (|r| − w)
N

L
(1− error)w

λE = (|r| − w)
N

L
(1− error)w−1error1

3

P ( λC , TC ) =
e−λCλTCC
TC !

P ( λE, TC ) =
e−λEλTCE
TC !

(3.2)

It can be noted that Poisson( λE, TC ) is greater than Poisson ( λC , TC ) at TC = 1,

which denotes the attribution of an arbitrary s-mer of weight w to be correct or not, given

no context. A low TC indicates that a lower threshold to s-mer correctness, resulting in

more erroneous s-mers being interpreted as correct. Inversely, if TC is set too high, not

enough s-mers are interpreted as correct, and correction is minimal. Therefore, TC is set

to a significant value greater than where the number of average correct s-mers equals the
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number of average incorrect s-mers. This ensures that the TC value is not too low to pick

up too many ambiguous s-mers, and not too high as to not pick up any s-mers at all.

Using some datasets M1, M2, and M5 (Figure 4.1), we can illustrate selection of

TC by computing the Poisson(λC , TC) and Poisson(λE, TC) on multiple TC (3.2). We

can see for dataset M1, that the point of intersection of when Poisson(λC , TC) exceeds

Poisson(λE, TC) is at TC = 18. This means that at 18 observations of an arbitrary s-

mer, we can reason it to be more likely to be fully correct as compared to being incorrect

at one base. QUESS will select the TC value that is 2 greater than this, being at 20

for dataset M1, resulting in a Poisson(λC , TC) value that is about 1000x greater than

Poisson(λE, TC), illustrating that at 20 observations of an arbitrary k-mer in the dataset,

it is about 1000 more likely to be fully correct than incorrect at exactly one base.

Figure 3.2: TC Selection. Each dataset has two lines mapping the Poisson distribu-
tion of λC and λE where the lighter shade is Poisson(λC , TC), and the darker shade is
Poisson(λE, TC). The point of intersection is when it is more likely that a s-mer is likely
to be correct compared to correct except for one base.
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Algorithm 2 computeTC( L )

input: L . L – genome size
output: TC . TC – threshold for correctness
let r denote a read
let |r| denote average read length
let w denote s-mer of weight w
let N represent number of reads from input dataset
let ε represent error
λC = (|r| − w)N

L
(1− ε)w.

λE = (|r| − w)N
L

(1− ε)w−1ε1
3

while Poisson(λC , TC) < Poisson(λE, TC) do . 4 ≤ TC ≤ 254
TC + +

TC+=2;

In where TC is more related to the expected s-mer frequency, TE is the threshold that

is related to the expected s-gap frequency. For each s-mer found within the dataset, there

will be a number of variant s-gaps, and if the count of multiple s-gaps exceed TE, then it

might dictate that the s-mer is inherently ambiguous to begin with. A low TE dictates

that the s-mer will be very trusted, as it is more easily classified as ambiguous, and a

TE of 1 forces every s-mer to be classified as ambiguous given any variant s-gap at all.

Inversely, a high TE dictates that the s-mer will be less trusted, due to an acceptance

of variant s-gaps. QUESS computes TE as a function of TC to allow for conservative

correction in the first iterations, by computing TE as 1
4

of TC with the first four spaced

seeds, and 1
2

of TC with the last four spaced seeds, with a floor of TE = 2, to not force

all s-mers to be classified as ambiguous.

3.5 Counting s-mers and s-gaps

QUESS refers to a s-mer as the collective 1-bits of a specific spaced seed, and a s-gap as

the collective 0-bits corresponding to the gaps in the seed (Figure 3.3). It can further be

related that these s-mers will be the anchor points in where QUESS accumulates variant

s-gaps counts to ascertain the most frequent s-gap for each corresponding s-mer. Recall
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that base pairs can be denoted by the set { A,G,C,T }, which can be represented by 2

bits per base pair (Figure 3.3). With QUESS, we denote A as 00, T as 11, C as 01, and

G as 10, where the reverse complement of A is T and C is G. Recall in biology, these

are the complementing base pairs that bind to each other ( A binds to T, G binds to C

), which allows for the inference of the opposite read. We only characterize a s-mer and

its reversely complementing pair as the same, as they are redundant and represent the

same s-mer.

Figure 3.3: S-mer Example. a) The input read r of size 26, also known as a 26-mer. b)
The binary encoding of r, r2, note that A=00, T=11, C=01, G=10. c) The s-mer mask.
d) The s-mer given r2 and s-mer mask (highlighted in blue). e) The s-gap mask (inverse
of s-mer mask) f) The s-gap given r2 and the s-gap mask (highlighted in red).

In the next step after parameter computation, insertSMers() fetches the reads r from

the filtered input dataset RT in parallel and encodes each r into their 2-bit encoding r2.

QUESS subsequently utilizes a window along r2 along with two masks: the s-mer mask

and the mask of its reverse complement. This works due to DNA’s reverse complementary

binding nature, in where it binds inversely in the opposite direction, and we can therefore

not ignore the reverse complement sequence. QUESS will use the bit-wise function AND

to extract the s-mer and the corresponding reverse complement. The smaller of the two

resulting 64-bit integers is added to the hash table using a hash function dependent on

its 64-bit integer representation, or increment an existing entry.
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Algorithm 3 insertSMers( SI , RT , H )

input: SI , RT , H . SI – spaced seed, RT – input dataset, H –hash table
output: H . H – updated hash table
let r represent a read, RC stand for reverse complement
while ( !EOF( RT ) & !full ( H ) ) do

for t threads in parallel do . Each t works on |RT |/t reads of RT

r2 = r . r2 – binary coding of r
s−mer = r2 & masks−mer
s−merRC = r2 & maskRC(s−mer)
s−mer inserted into H using double hashing
min( s−mer , s−merRC ) inserted into H using double hashing

if full ( H ) then
increase hash table size and restart from beginning of file

Figure 3.4: Data Structure 1: S-Mer Insertion. An overview of how s-mers are
inserted. a) A s-mer is inserted with a key 2 321 082 162 356 924 finding an empty spot
in H. It is inserted, where the first 28 bits contain its s-mer, and the last 8 bits contain
its count. b) A s-mer is inserted with a key 3 443 120 877 092 556 and encounters a
collision. It will then use double hashing to find another empty spot in H.
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After initial insertion of s-mers, rehashFrequentSMers() utilizes TC to disambiguate

and reduce the size of the hash table. A correct s-mer is expect to appear at least TC

times throughout the dataset, and QUESS uses these s-mers to form a new smaller hash

table that contains only unambiguous s-mers, along with their count. These s-mers are

considered strong s-mers.

Algorithm 4 rehashFrequentSMers( H, TC )

input: H, TC . H –hash table, TC – threshold for correctness
output: H . H – updated hash table
initialize Freq . Freq – counter for number of frequent S-Mers
for i = H.size do

if H[i].count TC then
Freq ++

initialize H ′ of approximately Freq
for i = H.size do

if H[i].count TC then
H ′.insert( H[i] )

replace H with H ′

QUESS then utilizes insertSGaps() to add the s-gaps in the same way as s-mer in-

sertion. However, s-gaps are directly related to their corresponding s-mer, due to their

interlinking nature. This means that they are not added to the hash table as a function

of their own hash function, but as an additional element, linked to the original s-mer

hash key. Variant s-gaps can be added to the same s-mer, so long as no s-mer has two

s-gaps that exceed TC or if multiple s-gaps exceed TE – a measure based on TC that

denotes the threshold of erroneous s-gaps allowed to exist – since this would denote an

ambiguity of either the s-mer or s-gap. Similar to the way s-mers were inserted, insertion

of new s-gaps inserts an element to linked to the s-mer, and insertion of existing s-gaps

increments the count of pre-existing s-gaps.
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Algorithm 5 insertSGaps( SI , RT , H )

input: SI , RT , H . SI – spaced seed, RT – input dataset, H –hash table
output: H . H – updated hash table
let r represent a read, RC stand for reverse complement
while ( !EOF( RT ) ) do

for t threads in parallel do . Each t works on |RT |/t reads of RT

r2 = r . r2 – binary coding of r
s−mer = r2 & masks−mer
s−merRC = r2 & maskRC(s−mer)
s− gap = r2 & masks−gap
s− gapRC = r2 & maskRC(s−gap)
s−mer inserted into H using double hashing
if H(min(s−mer, s−merRC )) exists and is not marked ambiguous then

corresponding s− gap inserted into H under key = s−mer
if more than 1 s-gap variant TC for H(s−mer) then

mark H(s−mer) as ambiguous

3.6 Error correction

Before correction can occur, the s-gaps present in H must be disambiguated. With

removeAmbiguousSMers(), QUESS iterates through the hash table and assigns the s-

gap with the largest count as the canonical correct s-gap for its associated s-mer. The

strength of this s-gap is denoted as a function of its count versus the count of the next

strongest variant.

Algorithm 6 removeAmbiguousSMers( TC , TE, H )

input: TC , TE, H . TC – threshold for correctness, TE – threshold for extra s-gaps,
H –hash table
output: H . H – updated hash table
for i = H.size do

if H[i].s−mer exists and not ambiguous then
check count of all variant S-Gaps
if 1 variant count = TE or no variant count TC then

Mark H[i].s−mer as ambiguous

if H[i].s−mer is not ambiguous then
Take highest count s− gap to be most correct s− gap for that s−mer
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After ambiguous s-mers and s-gaps have been removed from the hash table, correct()

then corrects the reads by iterating through the input dataset in parallel. If it encounters

an s-mer that matches an s-mer or its reverse complement in H, it will compare the s-gap

from the input dataset with the canonically correct s-gap present in H. These s-gaps

may have different bits, and only if the input s-gap is different to the correct s-gap by

less than TDIFF – defined as the allowance of difference of bits between the s-gaps of the

input dataset and computed one – will the program correct it.

Figure 3.5: Data Structure 2: S-Gap Insertion and Correction. An overview of
s-gap insertion and correction. c) A s-gap is inserted with the s-mer as its key, 2 321
082 162 358 924 and finds that its s-gap, 70 406 328 418 352, is different from the s-gap
associated with the s-mer, 70 406 328 418 304. It adds another entry under the same
s-mer. d) A read probes the dataset with its s-mer, 2 321 082 162 358 924, and finds that
the correct s-gap associated with it is 70 406 328 418 352. This is different (highlighted
in red) from its own s-gap, 70 406 328 418 336, and we proceed to change the dataset
s-gap to the correct s-gap.



3.7. Data structures and Parallelization 29

Algorithm 7 correct( SI , TC , TE, TDIFF , RT , RTC , H )

input: SI , TC , TE, TDIFF , RT , RTC , H . TC – threshold for correctness
. TE – threshold for extra s-gaps, H –hash table

. TDIFF – difference threshold for s-gaps
output: RTC . RT – input dataset, RTC – output dataset
let r represent a read, RC stand for reverse complement
while ( !EOF( RT ) ) do

for t threads in parallel do . Each t works on |RT |/t reads of RT

r2 = r . r2 – binary coding of r
s−mer = r2 & masks−mer
s−merRC = r2 & maskRC(s−mer)
s− gap = r2 & masks−gap
s− gapRC = r2 & maskRC(s−gap)
if H(min(s−mer, s−merRC )) exists and is not marked ambiguous and (dif-

ference of s− hapRT and s− hapH) < TDIFF then
change s− gapRT to s− gapH

write r into RTC

QUESS will subsequently reiterate through using the newly corrected dataset with

more variant seeds of the same weight and length. Note that as QUESS runs on multiple

seeds, TE and TDIFF are different between iterations. In earlier iterations, TE will have

smaller values, which will correspond to more s-mers being marked ambiguous, leading to

only having strong s-mers in the pool by the time insertSGaps() is invoked. In addition,

TDIFF will be larger, which allows for a greater number of input dataset reads to be

corrected by a stronger s-mer. This allows for later iterations to be more aggressive in

their correction, as their initial input reads will have been conservatively corrected.

3.7 Data structures and Parallelization

QUESS uses a hash table to store and correct k-mers from an input dataset. The input

28-mers, originally represented by a string of char is reinterpreted as an encoding of 2

bits, which is then masked to a resulting s-mer. Initially, each entry of the hash table is

double hashed in as an 64 bit integer entry consisting of an s-mer (2 bit ∗ 28 = 56 bits),

and a 8 bit count (Figure 3.4). Additionally, an associated s-gap table is created, where

the parent s-mer identity is used as a key, and the value consists of an array of 64 bit

integers (2 bit ∗ 28 = 56 bits s-gap and 8 bit count) (Figure 3.5).
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Figure 3.6: QUESS Parallelization Model. Fork-join model depicting work done by
QUESS on various stages of the program. The orange lines depicts threads, in where the
test cases will have 12 threads.

OpenMP was the choice of parallelization going forward due to the flexibility of eval-

uating serial versus parallel code during testing. While work stealing protocol is not

explicit in documentation, the asymmetric nature of the input reads may cause unin-

tended bottlenecks during parallelization. OpenMP support of dynamic loop scheduling

and simple use of directives made it the first choice in implementation, although other

parallelization concurrency platforms may be considered in future studies. Speedup is

measured and is sufficient given 12 cores, as given in Table 3.2.

Table 3.2: QUESS Speedup. Comparison on program performance on use of different
number of cores on MiSeq data. Darker colors indicate better results.
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3.8 My Contributions

My contributions towards implementation of QUESS can be categorized into a three main

categories: design and implementation of algorithm; optimization of run-time parameters;

and dataset retrieval and analysis.

I implemented the algorithm using C++ and OpenMP with a design based on quality,

speed and memory. With regards to quality, there was a lot of deliberation on initial

test parameters such as seed weight, number of seeds, and the computed parameters TC ,

TE and TDIFF . Seed weight and number of seeds were experimentally derived as shown

in Figure 3.1. TC was derived through calculation of optimal breakpoints as denoted by

Figure 3.2, in where the point of intersection was initialized as TC .

Subsequent optimization demonstrated that an additional 2 units allowed for signifi-

cant increase in performance due to the additional representation of correct s-mers over

incorrect s-mers at this level of TC . In addition, educated choices were made with regards

to TE and TDIFF that correlated them to fit the overall heuristic of the program, in where

iterations of initial seeds allows for more aggressive correction of the DNA sequencing

data on the later iterations of the program.

Some optimizations were experimented but did not enhance performance and did not

make it into the thesis. In particular, I tried to incorporate the quality scores of FastQ

datasets into the correction heuristic in a way akin to how BLESS 2 deals with quality,

but the results were negligible with an increase time and memory. In addition, I tried to

test acceptance of correctness of 2-to-many variant s-gaps given sufficient support above

TC , as well as trying to reduce the amount of ambiguous s-mers by setting higher thresh-

olds for TE; but these changes tended to decrease performance and were subsequently

discontinued.
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With regards to speed, I implemented the algorithm with use of OpenMP due to its

ease of implementation, and it was shown to have good speed up on 12 cores (Table 3.2).

Initially, QUESS was utilizing about 2-3 times more memory than the program at the

time of thesis submission. To mitigate this problem, I minimized the threshold in which

the s-gap hash table could accept new s-gaps depending on the seed number; when the

program would run unchanged, there was tens to hundreds of erroneous s-gaps that were

added to the s-gap hash table, which ended up increasing hash table size by about 2 to

3 fold. QUESS allowed for greater variation of variant s-gaps for the initial seeds – due

to having a larger pool of variant s-gaps due to the relative incorrectness of the dataset

– while the later seeds had less leniency because the dataset should be mostly correct

at that point. This allowed for reduction of hash table size – which was a bottleneck in

terms of memory usage of QUESS – while not compromising quality. This shifted the

burden of memory usage to a mixture between the hash table sizing and the parallel

functions acting upon the input reads.

To test our results, it was often not useful to rely on other documented sources, as

they were outdated and/or simulated. Because of this, with aid from my background in

biology, I compiled a list of a large variety of organisms spanning varying genome sizes,

with datasets having various coverage levels, read lengths, and error levels. This was

not a simple task, as datasets often did not correspond well with the available reference

genomes; I compiled datasets that were of high quality and were good candidates for

downstream applications (as most datasets were relevant only for a specific application).

I installed competing programs onto SHARCNet and created scripts to automati-

cally run everything, collect data, and organize into a cohesive format to transfer onto

a spreadsheet for interpretation. Running programs took a significant time, as some

datasets were exceedingly large (>200GB), and some competing programs took either

too much time (>14 days) to execute or too much memory (>1TB) to execute. I have

also compiled multi-paged spreadsheets summarizing the results of all aforementioned

optimizations and experiments.
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Results

4.1 Datasets

We have performed testing on a variety of datasets spanning different models of machines,

different read lengths, genome sizes and coverage levels. Unaltered real datasets are

used in favour of artificial datasets since errors from artificial datasets can be localized.

With the case of real datasets, there are often reads that very difficult to correct due to

their inherent ambiguity, and a reference genome may not always be reliable or readily

available. In order to improve correction numbers, discarding of these difficult reads

that do not align to a reference genome allow for programs to inflate their performance.

However, if there is such a scenario in where the reference genome is unavailable (such as

in de novo assembly), reliance on these shortcuts do not aid in performance, and in these

cases, it can be seen that evaluation of real datasets is the only method that allows for

unbiased results. The accession numbers and details for each of the 10 MiSeq datasets,

10 HiSeq datasets, and 7 NextSeq datasets are given in Table 4.1.

33
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Table 4.1: Datasets. Summary of all datasets. (Top) MiSeq ( M1 – M10 ). (Middle)
HiSeq ( H1 – H10 ). (Bottom) NextSeq ( N1 – N7 ). Each dataset includes the organism;
the accession number to access the dataset from NCBI; the number of reads within the
input read bank; the number of base pairs within the input read bank; the coverage
level (total base pairs / genome length); the reference genome accession number; and the
genome length.

4.2 Correction Evaluation

There are two branches of thought that have emerged behind evaluation of program

performance: one method considers individual base correction [23], whereas the other

considers evaluation of reads and k-mers [15]. However, one must consider not only

individual base pair corrections in the context of de novo genome assembly and general

correction, as correction of an arbitrary base pair cannot be equated to the correction
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of a base pair that allows for a whole read to be interpreted as correct. As such, we

will consider the latter evaluation, and the relative performance of QUESS and all tested

programs will be evaluated as described in [15]. For completeness, we describe briefly

the evaluation method described in [15].

Consider an organism, its reference genome G of length L nucleotide base pairs, and

an uncorrected dataset D of N number of reads, r: D = {ri|1 < i < N}, where the

length in base pairs of read r can be denoted as |r| or `. We can evaluate the resulting

file in comparison to the initial uncorrected file in terms of gains in depth and breadth

of coverage (Figure 1.7), where depth of coverage is the average number of times each

base position of G is sequenced: 1
L

∑N
n=1|ri|. The breadth of coverage is the percentage

of the genome covered covered by the union of the reads of D. It can be noted that there

must be a sufficient overlap of ` bases of G to facilitate useful sequences. For reads of

size `, we can define the breadth of coverage as a ratio of `–mers in G that appear in D:

|`−mer(G)∩`−mer(D)|
`−mer(D)

.

4.2.1 Depth of Coverage Gain

A read r is considered correct if it is found in the reference genome, r = G[i...i+ |r| − 1]

for some arbitrary 1 ≤ i ≤ L − |r| − 1, and erroneous otherwise. We can categorize

program output in one of four ways; TP = number of reads that were erroneous before

and correct after program execution; FP = number of reads that were correct before

and erroneous after; TN = number of reads that were correct both before and after;

and FN = number of reads that were erroneous before and after. We can then define

ReadDepthGain = TP−FP
TP+FN

, where TP-FP represents the net gain of correct reads after

program execution, and TP+FN representing the total possible number of erroneous

reads prior to program execution. We can also express the quality of the original dataset

as a function of OrigReadDepth = N
N+P

= TN+FN
TN+FN+TP+FP

, and the quality of the

corrected dataset as CorrReadDepth = TP+TN
N+P

= TP+TN
TN+FN+TP+FP

.
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However, assessing the ratio of corrected versus uncorrected reads is not sufficient as

a means to represent a program’s overall effectiveness. There is a lot of significance that

comes from correctness of consecutive bases; in the natural world, enzymes (which are

the natural machines of the natural world) bind to specific sequences on the genomic

and proteomic level. Errors within the sequence cause changes in levels of enzymatic

binding, and can cause the mechanism to not interact at all. It is therefore imperative

that sequences of consecutive bases are judged as a parameter for program evaluation.

A positional k-mer ( k, i, j ) – a k-mer starting at position j of read ri – is considered

correct if it is found within the reference genome, ri[j...j + k − 1] = G[`...i + k − 1]

for some 1 ≤ ` ≤ L − k + 1. In this case, we can define program output similarly

as ReadDepthGain with TP, TN, FP and FN. We can define KmerDepthGain=

TP−FP
TP+FN

, where TP-FP represents the net gain of correct positional k-mers after program

execution, and TP+FN representing the total possible number of erroneous positional

k-mers prior to program execution.

4.2.2 Breadth of Coverage Gain

While evaluation of datasets using the depth of coverage can be helpful in evaluating

a program’s effectiveness in correcting certain errors, it may represent a programs de-

pendence on correct only certain regions of the genome, rather than the entirety of the

genome. Therefore, we can denote KmerBreadthGain as the gain in coverage as a

result of correct positional k-mers, where TP, TN, FP and FN are defined by correctness

before and after the program execution. Similarly, ReadBreadthGain is proportional

to the number of elements covered after program correction versus before. It can be

noted that programs with higher ReadBreadthGain denote a gain in overall cover-

age of the reference genome, and programs with higher KmerBreadthGain denote a

greater preservation of unique k-mers. We refer the reader for more details to [15].
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4.3 Comparison of Programs

All experiments were conducted on the goblin cluster under SHARCNet with an Intel R©

Xeon R©, utilizing 32 cores running at 2.2 GHz and 1 TB RAM, and given a maximum

run time of 14 days. The command-line options used for each program – ACE, BFC,

BLESS 2, Blue, Karect, Lighter, Musket, RACER, SGA, and QUESS – are determined

to be the example options that were given alongside supplementary materials, or default

values if not given.

Our results are presented in Tables 4.2 – 4.4. The quality of the original and optimally

corrected datasets is given for MiSeq ( Table 4.5 ), Hiseq (Table 4.6 ) and NextSeq (Table

4.7 ), where each dataset is evaluated prior to correction, and the programs yielding the

highest values for each measure is reported with their values after. The aforementioned

evaluation parameters are noted in detail for each program tested in Table 4.2 for MiSeq

datasets, Table 4.3 for HiSeq datasets, and Tables 4.4 for NextSeq datasets. Note that

some datasets could not be run for specific programs, and the result is annotated at each

relevant table.
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4.3.1 Comparison of MiSeq datasets

Table 4.2: MiSeq Performance. Comparison on program performance on MiSeq
datasets ( M1 – M10 ). (Top to Bottom) ReadDepthGain, ReadBreadthGain,
KmerDepthGain, KmerBreadthGain. Darker colors indicate better results. Mus-
ket results are excluded due its very poor performance.
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The error correction comparison on MiSeq datasets ( M1 – M10 ) is presented in Table 4.2

for each of the four measures: ReadDepthGain, ReadBreadthGain, KmerDepth-

Gain, and KmerBreadthGain. It should noted that Musket results are not compared

as its performance is too subpar compared to the performance of other programs.

With regards to ReadDepthGain results, QUESS performs the best on average with

the exception of M9, topping the most datasets, with Blue and Karect following behind,

while SGA consistently performs the worst, followed by BLESS 2. This trend appears

similarly again with ReadBreadthGain results, with QUESS performing the best,

and Karect and BLESS behind it. QUESS is the best performer with the KmerDepth-

Gain measure, followed by Karect and ACE. For KmerBreadthGain results, SGA

outperforms all other programs, but it is suspected that the reason it does so well in this

measure is due to its relative poor performance in every other measure. ACE is consis-

tently the worst performing program with regards to KmerBreadthGain, and it can

be inferred to be much more aggressive compared to the other programs. QUESS has the

best average score amounts three of the four measures, except for KmerBreadthGain.
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4.3.2 Comparison of HiSeq datasets

Table 4.3: HiSeq Performance. Comparison on program performance on HiSeq
datasets ( H1 – H10 ). (Top to Bottom) ReadDepthGain, ReadBreadthGain,
KmerDepthGain, KmerBreadthGain. Darker colors indicate better results. [a]
Maximum runtime exceeded (14 d). [b] “ERROR: Irregular quality score range”. [c] Out
of memory (>1TB).
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The error correction comparison on HiSeq datasets ( H1 – H10 ) is presented in Table 4.3

for each of the four measures: ReadDepthGain, ReadBreadthGain, KmerDepth-

Gain, and KmerBreadthGain. It should be noted that some programs did not run for

specific programs. In the case of ACE and Blue for datasets H9 and H10, the maximum

runtime of 14 days was exceeded. BLESS 2 gave an error “Irregular quality score range

33-77” for dataset H7 and “Irregular quality score range 35-75” for dataset H10. Karect

exceeded the maximum memory allotted of 1TB for datasets H8-H10.

With regards to ReadDepthGain results, QUESS does the best on average, closely

followed up by Karect, which beats it in some datasets. However, Karect was unable

to complete the larger jobs in H8–H10, which inflates its average correction. There is

a similar trend with ReadBreadthGain results, in where SGA performs the worse,

especially for the smaller datasets. However, ACE, Blue, Karect and QUESS are very

close in terms of performance, except that the former three are unable to complete some

of the larger datasets.

QUESS is the best performer with the KmerDepthGain measure, followed by

Karect and ACE, and has a better KmerDepthGain for the largest datasets H9 and

H10, in where it did not perform as well in ReadDepthGain. For KmerBreadthGain

results, BFC and SGA are the clear leaders, but inferring from their other measures, it

can be posited that they are doing relatively less correction. Karect also has an inflated

average, due to being unable to correct the dataset that gave the other programs a lot

of trouble (H8).
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4.3.3 Comparison of NextSeq datasets

Table 4.4: NextSeq Performance. Comparison on program performance on NextSeq
datasets ( N1 – N7 ). (Top to Bottom) ReadDepthGain, ReadBreadthGain,
KmerDepthGain, KmerBreadthGain. Darker colors indicate better results.

The error correction comparison on NextSeq datasets ( N1 – N7 ) is presented in Table 4.4

for each of the four measures: ReadDepthGain, ReadBreadthGain, KmerDepth-

Gain, and KmerBreadthGain.

With regards to ReadDepthGain results, QUESS performs the best on average,

once again topping the most datasets, with Karect and Blue following behind, and SGA

performing the worst. With both ReadBreadthGain results, ACE, BLESS 2, Karect

and QUESS have similar performances, with QUESS beating out the other three on
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average. With KmerDepthGain results, QUESS is the best on average, with ACE

and Karect closely behind. With KmerBreadthGain results, as with both MiSeq and

HiSeq datasets, SGA performs the best, but performs the worst on the other categories.

RACER also appears to handle some datasets poorly, with outlier performances at N4

and N7. QUESS has the best average score amounts three of the four measures, except

for KmerBreadthGain.

4.3.4 Overall Performance

Table 4.5: MiSeq Performance Summary. A collection of the best performers for each
dataset for each measure; the depth measures are in orange and the breadth measures
are in green.
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Table 4.5 summarizes the programs that do the best at each dataset for each measure for

MiSeq data. It can be seen that QUESS dominates most categories except for Kmer-

Breadth. It can be noted that the changes in MiSeq datasets are due to changes in

ReadDepth, which generally have a low percentage of correct reads beforehand, but

gain a lot from correction. KmerDepth appears to be relatively high before and after

correction, and ReadBreadth appears to be relatively low before and after correction.

KmerBreadth is essentially not changed due to the best correction program SGA not

yielding much result.

Table 4.6: HiSeq Performance Summary. A collection of the best performers for each
dataset for each measure; the depth measures are in orange and the breadth measures
are in green. Note that programs that fail to run for specific datasets are not accounted
for in the average.
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Table 4.6 summarizes the programs that do the best at each dataset for each measure

for HiSeq data. It can once again be seen that QUESS performs the best in most cate-

gories except for SGA for KmerBreadth. Similar to MiSeq data, the greatest change

in HiSeq data occurs in ReadDepth, albeit at a smaller amount, as these datasets

have a greater initial measure as opposed to the MiSeq datasets. Also similar to MiSeq

datasets is the high uncorrected and corrected KmerDepth and KmerBreadth values.

However, initial ReadBreadth is a moderate level as compared to MiSeq datasets.

Table 4.7: NextSeq Performance Summary. A collection of the best performers
for each dataset for each measure; the depth measures are in orange and the breadth
measures are in green.

Table 4.7 summarizes the programs that do the best at each dataset for each measure

for NextSeq data. Compared to MiSeq and HiSeq datasets, NextSeq datasets have lesser

values in all measures before and after correction, but follow the same trend as MiSeq

data, in where there is most correction in ReadDepth and KmerBreadth, moderate

correction in KmerDepth, and a small drop in KmerBreadth. QUESS is the best

performer for all measures except for KmerBreadth.



46 Chapter 4. Results

Table 4.8: Aggregation of Best Performers. (leftmost) Tally of best measures for
MiSeq datasets ( M1 – M10 ). (second from left) Tally of best measures for HiSeq
datasets ( H1 – H10 ). (centre) Tally of best measures for NextSeq datasets ( N1 – N7
). (second from right) Tally of best measure for all datasets. (rightmost) A tally of
top average performances for each four measures for each of the three types of datasets

We can observe that QUESS is the besr performer in the most datasets ( Table 4.8 ).

Overall, QUESS tops 42 out of 108 ( 38.9% ) of all measures, or 42 out of 81 ( 51.9% ) of

measures that are not KmerBreadth. This contrasts the machine that does the second

best, Blue, which performs best in 11 out of 81 ( 13.6% ) measures. In total, QUESS

performs the best, on average, in every single measure outside of KmerBreadth.

4.3.5 Time and Space

Time and space is provided in Tables 4.9 – 4.11. Each program is allotted 1TB of CPU

memory, and has a maximum run time of 14 days. Each table is followed by a subsequent

table denoting the normalized space and time measures that reflect the size of the input

read bank size. Note that some datasets could not be run for specific programs, and the

result is annotated at each relevant table.
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Table 4.9: MiSeq Run Time and Space Usage. Runtimes and space usages of each
program on each MiSeq dataset ( M1 – M10 ). (Top) Raw Elapsed time. (Second
from Top) Per mega base pair (106). (Second from Bottom) Raw memory usage in
GB. (Bottom) Per mega base pair (106). Musket results are excluded due to resulting
in outlier results. Darker colours indicate better results.

With regards to MiSeq datasets, ACE and Blue take magnitudes more time than

the rest of the programs and Karect takes the most memory of all the programs by a

substantial margin. In contrast, BLESS 2 and Lighter take the least time and memory
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among all the programs. QUESS is in the middle for both measures, and consistently

utilizes approximately the same memory through all the MiSeq datasets.

Table 4.10: HiSeq Run Time and Space Usage. Runtimes and space usages of each
program on each HiSeq dataset ( H1 – H10 ). (Top) Raw Elapsed time. (Second
from Top) Per mega base pair (106). (Second from Bottom) Raw memory usage in
GB. (Bottom) Per mega base pair (106). [a] Maximum runtime exceeded (14 d). [b]
“ERROR: Irregular quality score range”. [c] Out of memory (>1TB). Darker colours
indicate better results.

With regards to HiSeq datasets, as with MiSeq datasets, ACE and Blue take magni-

tudes more time than the rest of the programs and Karect takes the most memory of all
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the programs by a substantial margin. In addition, ACE and Blue were unable to finish

within the maximum allotted time of 14 days for 2 datasets H9 and H10. Karect utilized

more than the allotted CPU memory of 1TB for three datasets H8-H10. Due to these

incomplete jobs, the relative ranking of other programs is affected. Of the programs that

completed all datasets, BFC is the fastest and QUESS is the slowest (ACE is estimated

to take the longest), and Lighter uses the least memory, whereas QUESS uses the most

(Karect, ACE and Blue are expected to take more memory).

Table 4.11: NextSeq Run Time and Space Usage. Runtimes and space usages of
each program on each NextSeq dataset ( N1 – H7 ). (Top) Raw Elapsed time. (Second
from Top) Per mega base pair (106). (Second from Bottom) Raw memory usage in
GB. (Bottom) Per mega base pair (106).

With regards to NextSeq datasets, similarly to MiSeq and HiSeq data, ACE and

Blue are the slowest programs, and BLESS 2 and BFC are the fastest. Karect takes the

most memory, whereas Lighter takes the least memory. QUESS is on the slower end of

programs, but uses a relatively lesser amount of memory.
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Conclusions

5.1 Discussion

It can be concluded that programs having higher ReadDepthGain and ReadBreadth-

Gain result in having fully correct reads, and this aids in saving incorrect reads from

the input read bank. Similarly, programs with high ReadBreadthGain illustrate a

stronger ability to make corrections that will allow for better genome assembly, due to

their increased coverage of the reference genome. Programs with high KmerBreadth-

Gain correspond to programs that are conservative in nature, and make little changes,

relative to programs with lower scores in this measure.

It should be noted that the negative values represented by KmerBreadthGain

could be a result of programs that miscategorize unique k-mers, and miscorrect them

into a more frequent and similar k-mer. Inherently, correction of programs tends to

bring datasets of high diversity into a more ordered set of reads. This is a problem that

arises from lack of coverage or uneven coverage, as this miscategorizes less frequent k-

mers within the dataset to be unique, and unique reads with low contextual support is a

prime target for correction.

50
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From observation of the performance from each measure, we can characterize each

program for its strengths and weaknesses. ACE runs an aggressive algorithm, leading

to the greatest loss in KmerBreadth among all programs constantly, but produces

good results in the Depth measures as a result. BFC runs a non-greedy algorithm,

and this results in having decent but not leading results in a lot of measures; it also runs

faster and with less memory than its leading competitors. BLESS 2, Lighter and Musket,

which are all Bloom filter based algorithms, are faster and use less memory, but result

in worse measurements as compared to other algorithms; as a result, they rarely lead in

any measures. Karect runs a memory-intensive algorithm, resulting in strong contention

for leading position in a lot of members, but it also uses magnitudes more memory than

every other program, unable to run medium sized programs, even with 1 TB of memory.

RACER can be seen as a less aggressive algorithm compared to ACE, achieving decent

scores across all measures, beating the Bloom filter algorithms, but not enough to lead.

SGA is a slow and conservative algorithm, leading to small corrections with minimal loss

in KmerBreadth.

5.2 Final Thoughts

The strongest performer in the majority of measures is QUESS, which tops in 42 out

of 108 ( 38.9% ) total measures, or 42 out of 81 ( 51.9% ) non-KmerBreadthGain

measures. As aforementioned, QUESS is unequivocally the best program to use on an

entirely new dataset with no reference genome assembled as of yet, as it consistently has

the greatest scores in most measures, rarely having outlier results. In addition, while there

are programs that run faster than it, and use less memory than it, QUESS outperforms

those programs in all measures. In addition, it runs faster and on less memory than other

leading competitors, who either run out of time or memory on the largest datasets.
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