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Abstract

DNA-based self-assembly is an autonomous process whereby a disordered system of DNA

sequences forms an organized structure or pattern as a consequence of Watson-Crick comple-

mentarity of DNA sequences, without external direction.

In this research we study the theoretical power of different mathematical models of self-

assembly systems. The presented models are proposed to reduce the gap between self-assembly

models and models that have been used in existing theoretical researches such as language

theory and robotics. We propose self-assembly (SA) hypergraph automata as an automata-

theoretic model for patterned self-assembly. We investigate the computational power of SA-

hypergraph automata and show that for every recognizable picture language, there exists an SA-

hypergraph automaton that accepts this language. Conversely, we prove that for any restricted

SA-hypergraph automaton, there exists a Wang Tile System, a model for recognizable picture

languages, that accepts the same language.

We also study complex self-assembly models and investigate the computational power of

some variants of the Signal-passing Tile Assembly Model (STAM), as well as propose the

concept of Smart Tiles, i.e., tiles with glues that can be activated or deactivated by signals, and

which possess a limited amount of local computing capability. We demonstrate the potential

of smart tiles to perform some robotic tasks such as replicating complex shapes.

Keywords: DNA based self-assembly, self-assembly of tiles, hypergraph automata, smart

tiles
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Chapter 1

Introduction

Using natural systems as a tool for computation is one of the methods of unconventional com-

putation. In this thesis, we focus on formal models of natural computation that uses DNA as

their primitive tool for computation. Our research is mainly focused on self-assembly process.

DNA-based self-assembly is an autonomous process through which nanoscale DNA-based

structures join together to build a larger structure without external control. The self-assembly

model has been used for both computation and for building nanostructures. Self-assembly is

not limited to DNA-based systems. Atoms, for example, react to each other to form molecules,

molecules interact with each other to build crystals, etc. The common feature of all these pro-

cesses is that small building blocks self-assemble to form a structure that reduces their free

energy level. In this chapter, we will review the self-assembly of DNA structures, which is

used for building nanostructures and nanorobotics and also can be used for computation.

The DNA-based self-assembly system starts with single stranded DNA sequences. Using

these DNA sequences, some macro-molecular building blocks which are called tiles are built.

Each tile has 4 sticky ends, called glues, to connect to other tiles and interact with them. Each of

these sticky ends is a single stranded DNA sequence that can attach to its reverse complement

single stranded DNA sequence. Attachment of tiles builds a larger structure called DNA lattice.

For the remaining of this article, this system will be referred as Tile Assembly-System or TAS.

Tile assembly systems are autonomous, as a result, the control over the system is limited.

The limited control leads to some advantages and some disadvantages. Large number of pro-

cessors can be used simultaneously with minimum energy cost, but this limited control will

1



2 Chapter 1. Introduction

make the design more complicated. In the next chapter, an introduction to the self-assembly

systems and related topics is presented. The next three chapters after the introduction consist

of three articles, each trying to enrich our understanding of self-assembly with DNA tiles by

defining and studying theoretical models of self-assembly.

The SA-hypergraph automaton introduced in Chapter 3 is an attempt to make a connection

between language theory and the theory of DNA-based self-assembly systems: We addressed

the relationship between recognizable picture languages and automata that are capable of sim-

ulating a particular type of self-assembly systems in which a pattern is constructed. In Chapter

4, we continued our research on theoretical models of DNA-based self-assembly systems with

investigating the power of tile assembly system with limited use of signals which can only de-

activate connections between tiles. Lastly, in Chapter 5, we present a new model for complex

tiles, called smart tiles, that are enhanced with a computational device as well as the ability to

have limited communication with their neighboring tiles.

In the following we present a brief summary of Chapters 3, 4, and 5.

1.1 Hypergraph Automata: A Theoretical Model for Pat-

terned Self-assembly

Patterned self-assembly is a process whereby coloured tiles self-assemble to build a rectangu-

lar coloured patterns. We propose self-assembly (SA) hypergraph automata as an automata-

theoretic model for patterned self-assembly. We investigate the computational power of SA-

hypergraph automata and show that for every recognizable picture language, there exists an

SA-hypergraph automaton that accepts this language. Conversely, we prove that for any re-

stricted SA-hypergraph automaton, there exists a Wang Tile System, a model for recognizable

picture languages, that accepts the same language. The advantage of SA-hypergraph automata

over Wang automata, acceptors for the class of recognizable picture languages, is that they

do not rely on an a priori defined scanning strategy This research has been completed and

published as Hypergraph Automata: A Theoretical Model for Patterned Self-assembly in Inter-

national Journal of Foundations of Computer Science (IJFCS), volume 25, 2014, pages.
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1.2 The Computational Power of Glue-deactivating Signals

in Tile Self-assembly

Sending signals through DNA-based structures is a method to control the DNA-based self-

assembly systems. Signals are implemented using DNA strand displacement and make it pos-

sible for tiles to change the current state of other tiles that are attached to them.Although cur-

rently there is no experimental result that demonstrates building tiles with glue deactivation

signals, the theoretical design that we propose is plausible. There are some previous researches

to understand the power of signals, however the power of detachment signals in self-assembly

systems is not well-studied yet.

In our research we show that the detachment signals make DNA-based self-assembly sys-

tems Turing universal at temperature one. Moreover, we prove that the construction of thin

rectangles only using detachment signals needs fewer number of tile types.

The article that is presented in Chapter 4 is under review.

1.3 Smart Tiles and Replication

We investigate the computational power a variation of the signal-passing tile assembly model

(STAM), as well as propose the concept of smart tiles, i. e., tiles with glues that can be activated

or deactivated by signals, and which possess a limited amount of local computing capability.

This is a formal model, independent from implementation details, but there is no reason to

believe that small computing devices attached to tiles could not be feasible experimentally. We

demonstrate the potential of smart tiles to perform robotic tasks such as replicating complex

shapes.

The significance of this research is the definitions of three new models for self-assembly

systems. Each of these models are proved to have applications and improve the existing models

of self-assembly systems.

It is hoped that this research will empower the scientist with a set of new models for self-

assembly systems. Moreover, with introducing these new models it is hoped to connect the

theory of DNA-based self-assembly system to potential new areas such as robotic systems. The
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connection between these fields makes it possible to apply theoretical results from DNA-based

self-assembly systems to robotic systems where robots have limited computational power.



Chapter 2

Literature review

The experimental DNA-based assembly system was introduced by Seeman in 1982 where he

used DNA strands to build DNA-based junctions [62]. Winfree et al [74, 70] then used self-

assembly systems to build DNA-based lattices. Winfree in his Ph.D. thesis [71] introduced 2D

DNA-based self-assembly systems, and he proved that the 2D self-assembly can simulate a

Turing machine. Adleman wrote a mathematical description [3] of assembly systems in one-

dimensional space based on “step counting” and probabilistic distribution of events during the

time, but computation power of 1D self-assembly was very limited.

Winfree’s model of DNA-based self-assembly is based on Wang tiles [71]. A Wang tile

is a square with a colour on each side and tiles with matching colours attach to each other to

form structures. Wang tiles have also been used for the classical domino problem [69] and had

some applications in image processing [22]. Winfree’s mathematical model for self-assembly

has been modified to solve wide range of mathematical problems [5][40][44]. Winfree in [59]

introduced one new complexity measure based on the tile types and Adleman in [4] described

a new complexity measure based on the construction time. Kari in [4] and [44] introduced

mathematical models based on new design for tiles, and Doty and Kao in [29][41] changed the

environment description and mentioned a new model. Kao and Schweller defined the equiv-

alence of approximation algorithms for building structures [42] and Doty introduced a model

based on randomized algorithms to build exact shapes [27]. Moreover, Winfree [70], Kari[16]

and Summers [30] studied the computational power of self-assembly systems.

Fault reduction is one of the most important parameters in the design and implementation of

5



6 Chapter 2. Literature review

a self-assembly system. In the earliest methods of development, error rate was approximately

10 percent per each tile [60]. That error rate was significant and a model with 10 percent of

error was not suitable neither for computation nor building patterns. Chen [19][18], Winfree

[73], Doty [29], Reif [55] and Sahu [60], have reduced the error.

We can divide error and fault reduction methods into two different categories: methods

which change the structure or design of tiles, and methods that change the environment or

change the method of the design of the systems. In the first category we can see algorithms

which used larger tile or used more than one tile for each position. For the second category

we can mention Winfree’s paper [9], which proposed utilizing a seed as a starting point and

reduced the error rate with this method. Moreover, a number of methods based on modifications

on the temperature [29] or change of the growth method [73] will be discussed.

In Section 2.1, the basics of self-assembly from mathematical points of view is described,

then the probable problems such as complexity and design of new algorithms in this domain,

are mentioned. The focus of the Section 2.2 is on the error reduction and description of different

models for making a self-assembly system fault-tolerant. Although error reduction is not the

main focus of this thesis, some of the methods that are used in fault reduction, such as replacing

a tile with a gadget or using shape restrictions, are very similar to the methods that we have

used in our proof and constructions in Chapter 4. In Section 2.3 the nanorobatic and its relation

to DNA computation is explained. Section 2.3 is devoted to a review on 2D languages and their

potential relation to self-assembly systems.

2.1 Preliminaries

Seeman in 1982 [62] used DNA sequences to self-assemble a DNA-based junction. After-

wards, Adleman [1] in 1994 used one-dimensional DNA-based self-assembly as a computa-

tional tool. Adleman used single-stranded DNAs for computation. In is notable that Adle-

man’s DNA-based system solved an instance of an NP-complete problem. Due to the fact that

the number of DNA strands that were used in his design was growing exponentially in the input

size, Adleman’s solution was not exponentially scalable. However, his work was the first in-

stance of using DNA strands for computation. Winfree [71] used DNA-based structures called
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tiles with four sticky ends on the corners and introduced the abstract Tile Assembly Model

[71], as the mathematical model to describe the DNA-based tile assembly systems. The com-

mon feature of all self-assembly processes is that small building blocks self-assemble to form

a structure that reduces their free energy level [52].

Winfree used 1 × 1 squares with colours on the edges as an abstraction for a DNA tile.

Moreover, he defined a mathematical model for the self-assembly of tiles. Winfree used self-

assembly for both building nanostructures and performing computational tasks, and proved

that self-assembly in 2D can simulate a Turing machine [71].

Winfree used Wang tiles for the mathematical description of the tiles. Here we briefly

review some of the results on construction of DNA-based tiles. [46] shows different methods

of tile constructions with DNAs. After Winfree, others used different designs for tiles [46].

Some of these structures have more connection points and some other use different angles

between connection points. Yan successfully marked some of the tiles by gold particles, Mg+

ion, and some other materials [39]. Moreover, Winfree in [23] suggested that by applying such

embedded data to each tile, classical circuits can be built in small spaces. Yurke et al. [17]

successfully added some quantum dots to the tiles and proposed the usage of self-assembly as

a platform for the Quantum Dot Cellular Automata [11].

There are several different implementations of Wang tiles with DNA. It is notable that all

these tiles that we review here have single stranded DNAs at their corners. Figure 2.1 shows the

DAO and DAE tiles, which were introduced by Winfree [74, 71]. Here D stands for double,

A stands for antiparallel, and O or E denote the odd or even number of half turns between

crossovers.

In mathematical models for tile assembly systems, all these tiles are represented by 1 × 1

squares with colours on the edges. The direction of sequences, and the number of half-turns

are not included in abstract mathematical models of self-assembly systems.

In the process of building a flat structure, DAO tiles are preferred to DAE tiles. The DAE

tiles have an extra “twist” in their structure that results in their assemblies curving out of the

plane and forming tubes [57]. The DAE tiles can be used to build 3D structures. Another

concern about the DAO tiles is that, in general, each tile type in the Tile Assembly Model

(TAM) requires two versions in the DNA implementation; one version with both 5’ sticky
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Figure 2.1: Two implementations of DAO tiles on the first row [74, 71]. One of the implemen-
tations of DAE tiles [74, 71] on the second row.

ends positioned on top, and the other one with both 5’ sticky ends positioned on the bottom.

In some cases [8][58], a tile system only uses a tile in a subset of positions, as a result the

implementation of the both version of the tiles might not be necessary.

Design of the tile types is not limited to DAO and DAE tiles. [45] designed TAE and TAO

tiles, where T means that both designs have three double-helices linked by strand exchange.

[45] also designed a new process to build a tile from single strands.

Many tile implementations are not similar to DAE or DAO tiles. For example, [39] designed

a tile with the ability to attach to up to four other tiles, but this tile uses more than one single

stranded DNA on each corner as the sticky end.

2.1.1 Mathematical Description

The first mathematical model for self-assembly systems uses Wang tiles for describing the

DNA-based tiles. A Wang tile is a 4-way domino. In other words, a Wang tile is a unit square

with a colour on each edge. A function from the two-dimensional space Z2 to a set of Wang

tiles Θ is called a tiling over Θ. A tiling is called a valid tiling if and only if all common edges

of any pair of adjacent tiles have the same colour. Sometimes we replace the colours with

numbers. Wang [69] in 1961 defined the plane tiling problem as following:

Definition : Plane tiling problem ([69]). Given a set of Wang tiles determine if this set can

build a valid tiling of the plane or not.

Wang conjectured that a set of 4-way dominoes can tile the entire infinite 2 dimensional area

if and only if they can tile that area periodically [69]. Berger in 1966 found an aperiodic tile

set which could cover the entire plane [10]. Moreover, Berger proved that the plane tiling
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problem is undecidable [10]. He used a tile system to encode the Halting Problem into the

plane tiling problem. For a long time finding the smallest aperiodic tile set that can tile the

entire 2 dimensional space was an interesting problem for mathematicians. Berger’s set consist

of 20426 tile types, but currently smallest known set has only 13 different tile types [24]. Culik

[24] in 1996 found an aperiodic tile set with 13 tiles. He followed Kari’s [43] approach to

the plane tiling problem. Kari’s method was based on sequential machines that multiply Beatty

sequences of real numbers by rational constants, using this method Kari had found an aperiodic

tile set which consist only 14 tiles.

Another famous problem in this area is the Periodic Tiling Problem.

Definition Periodic tiling problem([38]). Given a set of Wang tiles determine if this set can

build a periodic tiling or not.

Koriakov in 1972 studied this problem [38], and he proved that the periodic tiling problem is

undecidable.The plane tiling problem for infinite space is interesting and well-studied, however

finite areas are also interesting from practical point of view. In this topic one of the interesting

problems is to determine whether a specific shape can be covered with a set of predetermined

domino tiles or not.

There are two important differences between domino problems and self-assembly systems.

First, in domino problems usually a predefined set of tiles exists. Second and more importantly,

in domino problems finding a final shape is the goal and the steps are not important.

The �abstract Tile Assembly Model was originally proposed by Winfree [71]. The aTAM

extends the theory of Wang tiles [69] and includes a mechanism for tiles to stick to each other

and grow into a structure. Just like tiles in domino problem, each Wang tile in aTAM is a square

with one colour (or number or letter) called glue on each edge. It is notable that in aTAM tiles

can not be flipped or rotated. Formally, a tile is a unit square with edges labelled north, east,

south and west, and one glue on each edge. For a tile t, the glues on its four edges are denoted

by σN(t), σE(t), σS (t) and σW(t).

Informally, we can assume that a tile can move freely in a 2-dimensional environment and

when it collides with another tile they will stick together if their glues match.

Formally, a tile assembly system in the aTAM is a triple 〈T, g, τ〉 where T is a finite set of
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tiles, τ ∈ Z>0 is the temperature, and g is the glue strength function from Σ × Σ to N where Σ

is the set of edge labels and N is the set of natural numbers. It is assumed that null ∈ Σ and

g(x, y) = g(y, x) for x, y ∈ Σ , and g(null, x) = 0 for all x ∈ Σ.

A configuration is a map from Z2 to T
⋃
{empty}. For t ∈ T,Λx,y

t is the configuration

such that Λx,y
t(i, j) = t if and only if (i, j) = (x, y) and empty otherwise. Let C and D be two

configurations. Suppose there exist some i ∈ T and (x, y) ∈ Z2 such that C(x, y) = empty,

D = C except at (x, y),D(x, y) = i, and g(σE(i),σW(D(x + 1, y)) +g(σW(i),σE(D(x − 1, y))

+g(σN(i),σS (D(x, y + 1)) +g(σS (i),σN(D(x, y − 1)) ≥ τ. Then we say that the position (x, y) in

C is attachable, and we write C →T D to denote the transition from C to D in attaching tile i

to C at position (x, y). Informally, an attachment transition denoted by C →T D means that D

can be obtained from C by adding a tile to it such that the total strength of the interaction in

adding the tile to C is at least τ. The self-assembly proceeds by a succession of attachments of

tiles to an existing structure.

For simplicity it is assumed that the attachment transitions in a self-assembly systems start

from a configuration that only has one specific tile, which is called seed. Practically the system

can be controlled in a way that with a high probability transitions start from the seed. Some-

times, a supertile (a structure consisting of several tiles attached to each others) is used as the

starting point of the transitions. A supertile can be used as the starting point of the transitions

of an assembly system or can be the result of adding some tiles to the seed. A tile system

can be defined as a quadruple T =< T, S , g, τ >, where S is a supertile called seed supertile.

Figure 2.2 part i) shows an example of a tile assembly system with 3 tiles. The tile with grey

background is the seed. Let assume that the temperature is one and all the glues have strength

1. We start with a configuration that consists of one tile in part ii). Part iii) shows the result of

applying an attachment transition to the configuration in part ii). Part iv) shows the result of

the attachment of the last tile to the configuration. No further attachment transition is possible

after part iv).

Intuitively, if the tile system T produces only one possible final super tile A, we say that the

tile system uniquely produces A.

The models of tile assembly systems are not restricted to this mathematical description.

Kari in [44] proposed a different model based on triangular tiles, and in [28] studied another
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Figure 2.2: Part i) shows three tiles that are used in this tile assembly system. The temperature
of the system is τ = 1, and the strength of all glues is equal to one. The tile that has grey back-
ground is the seed tile. Part ii) shows the initial configuration with one seed tile. Part iii) shows
the attachment of the second tile to the seed tile, and part iv) shows the final configuration. No
other attachment is possible at this point.

model based on the negative glues. Kao et al. in [5] described different models and in each of

them considered some of the properties of the process which the basic model Winfree ignored

for the sake of simplicity.

Kari discusses the DNA-based self-assembly systems based on triangular tiles instead of

square tiles. They were considered as different models of triangular tiles, particular right tri-

angular tiles and equilateral triangular tiles. Both of these models have been physically im-

plemented based on DNA sequences. However, even without implementation, proposing new

models is still useful and new models can result to finding new applications and different im-

plementations. Kari showed that the triangular tile assembly systems are as powerful as the

Turing machine.

Kari also considered negative weight of glue function and proved that using negative weight,

we can simulate computation with smaller size of the final shape [28]. It is an important result

because the size of the final shape has some effects on the error rate and speed.

Jonoska and McColm used flexible tiles [40]. These tiles do not have firm sticky ends and

their molecules can change positions of their sticky ends. This method will convert the final

assembly shape to a graph. [40] explained the flexible tile’s theory.

Kao et al. [5] compared several modifications on TAS.

The Multiple Temperature Model. In the multiple temperature model, it was suggested

to change the temperature during the time, and in each step it was assumed that the previous
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step is completed. It means that when step i was started, all the possible interactions between

tiles in the step i-1 were done. Kao referred to the system with k different temperatures to be a

k-temperature system. Using this method, the process will be more controllable, and as a result

some shapes are constructed with fewer number of tile types.

The Flexible Glue Model. In the flexible glue model, a partial match between two DNA

sequences has been considered. Consequently, the restriction of g(x, y) = 0 for x , y is

eliminated. Using this method, the size of the minimum tile set to build some of the shapes

will decrease. However, practically all the arbitrary strength functions cannot be designed.

The Unique Shape Model. In the unique shape model, Kao redefined what we mean for a

system to uniquely produce a shape S. In this model, a tile system uniquely produces a shape

S if the only terminal supertiles produced by the tile system are of shape S. Thus we allow the

system to produce many different supertiles as long as they all have the desired shape.

The q-Tile Model. In the q-tile, it is assumed that tiles can build supertiles and supertiles

can attach to each other. The size of the supertiles is considered to be limited.

These methods can reduce both assembly time and minimum number of tile types.

2.1.2 Computational Power

Computational power of aTAM has been studied by Winfree [71][70]. Winfree proved that

aTAM is as powerful as Turing machine. In other words, any Turing machine can be simu-

lated with the aTAM. The proof is based on Bounded Cellular Automata (BCA). It is known

that BCA is computationally universal. Winfree proved that all the rules of any BCA can be

encoded in the tiles of an aTAM. Winfree used the deterministic aTAM and temperature two

for universal computation.

In addition to the deterministic model, non-deterministic TAM has an important role in

problem solving [15]. It is trivial that the non-deterministic form is at least as powerful as

the deterministic form. Moreover, it is proved that for the infinite shape construction, deter-

ministic TAM is strictly included in non-deterministic TAM [16]. Moreover, in some cases

non-determinism can reduce the program size complexity [16]. It is noticeable that, although it

is possible to reduce the tile complexity using a non-deterministic model, it is harder to find the
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minimum tile type set needed to build a structure non-deterministicly. Solving the minimum

tile set problem in a deterministic form is a NP-Complete problem, however, this problem is

more complicated for nondeterministic TAM, and it is
∑P

2 -complete.

The power of aTAM depends on the temperature of the operation [30].[30] proved that

using negative glues can increase the power of self-assembly models. The TAM of temperature

one with negative glues is as strong as the aTAM at temperature two, and it can make the

general-purpose computation possible. Moreover, [54] proves that only one single negative

glue is enough, and temperature one in addition to one negative glue can simulate Turing

machine and general-purpose computation.

There exist two important measures to compute the complexity of the self-assembly algo-

rithms: time complexity and program size complexity. Here, these two measures are briefly

described and some examples are given.

The set of the tiles which stick together and built the final configuration can be considered

as a program. Winfree et al. [66] proved that the minimum set of tile types that can build

a specific shape and the shape’s descriptional complexity are related. They proved that the

minimal set of tiles to form a shape can be bounded both above and below in terms of the

shape’s Kolmogorov complexity.

In addition to the tile complexity, Adleman et al. [4] introduced a new measure based on

the time. Informally, the time complexity of a shape is the minimum time that is needed to

build that shape using maximum parallelism.

Based on these two complexity measures, self-assembly algorithms can be compared. For

example, there are various kinds of self-assembly systems that can build a square. Finding

an efficient way to construct a square was one of the earliest problems on the self-assembly

systems. Rothemund and Winfree [66] constructed a square with Θ(log(n)) tile types and

in minimum time of Θ(nlog(n)). Afterwards, Adleman [4] used a similar idea to construct

a square in time of Θ(n) and the optimal program size Θ( logn
loglogn ). According to Kolmogrov

complexity, both the time and tile complexity of these algorithms are optimal.

It is noticeable that these lower bounds are computed based on the aTAM. In other models,

it is possible to reach better solutions. For example, using flexible glues, a thick rectangle can

be built with only
√

logn tiles, and using the q-tile model a thin rectangle can be built with only
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logn
loglogn tiles [5].

Moreover, Kari [16] demonstrated that in some of the problems, using nondeterminism, the

program-sized complexity can be reduced by a linear factor.

Self-assembly systems can be used as a tool for computation, from simple mathematics

operation to solving instances of NP-complete problems, and simulating Turing machine. The

first implementation of tile assembly systems (TAS) started with construction of a counter

[8] and other primitive mathematical operations. Despite the fact that counting is a simple

operation, the implementation of this counter practically shows TAS’s power.

After that simple operations, many other algorithms on constructing simple shapes have

been proposed. Winfree [66] proposed an algorithm to construct any square with arbitrary

width. This algorithm was based on using a counter to build a thin rectangle and using a

constant number of tiles to convert that rectangle to a square. He used Θ(logn) tile types and

assembled the square in Θ(nlogn) time. Adleman [4] used the same idea but with a smaller tile

set. He used a different counter which was able to work in parallel. Moreover he changed the

base of counting to reduce the number of tiles. As the result, he reached the time complexity

of Θ(logn) and program-size complexity of Θ( logn
loglogn ).

Adleman [2] proved that the minimum number of tile types to build any arbitrary tree can

be computed in polynomial time. He used the similarity between subtrees, and used the same

tile for similar positions in the tree. Based on this experiment, any tree can be constructed with

this optimum solution in τ = 1.

Self-assembly can be used to implement complex algorithms. Considering its computa-

tional power, it is clear that any algorithm can be implemented using a self-assembly system.

There are several solutions for NP-complete algorithms based on self-assembly systems. These

algorithms usually have exponential times and use non-constant program-sizes. It is notable

that these theoritical solutions are relaying on the assumption that unlimited copies of tiles are

available, which is not practically true. However, the also show the potential power of self-

assembly systems to deal with complex problems. Recently, Brun [15] proposed a new tile

system with O(1) tile types which decides 3-SAT by O(1.8393n) assemblies in parallel. This

algorithm also can be executed in O(n) time non-deterministically. Using a recursive program

flow is the most important point in this new algorithm. The proposed 3-SAT algorithm can be
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easily generalized and be used for other studies. The main idea is to build a random solution

in a line, then for each step to assign some value to the last clause, apply this value to all of the

previous clauses, and continue the next step by a smaller line.

In addition to mathematics systems, algorithms to construct shapes, and algorithms for

decision problems, there are some other kinds of theoretical concepts in self-assembly algo-

rithms. Using the nature of self-assembly algorithms, different approaches for approximation

algorithms [42] and probabilistic algorithms [27] are proposed. Approximation algorithms in

this context mean building a shape close to the target shape. Probabilistic algorithm means

designing a TAS which forms the desired shape with high probability.

2.2 Error in Self-assembly

A major challenge in the practical DNA-based assembly systems is the design and the imple-

mentation of fault tolerant systems. Faults can affect computational tasks and pattern construc-

tion. Prior designs of the self-assembly systems had error rates between 0.5% to 5% or even

more [8]. It is obvious that such error rate is deleterious to the construction of large scale

structures. Elimination of the errors is one of the most challenging concepts in self-assembly

systems. Is some cases, it is possible to reduce this error through heuristic designs [8]. This

means, a specific design of a tile assembly system might reduce the error rate significantly.

Although special designs might be useful, they are not general. Moreover, finding some new

methods to reduce the error rate to an acceptable range can be useful. Several different methods

to control the error rate are explained as follows.

It is possible to affect the assembly error rate by changing the tile design. For example, it is

notable that the strength of attachment of mismatched glues is in practice not zero. Indeed, the

“sticky ends” can be partially complementary which means that they can still attach, albeit by a

weaker connection. In order to reduce these unexpected attachments, we can change the physi-

cal parameters of the experiments to make the expected attachments stronger and minimize the

strength of unexpected attachments. One way to achieve that is to use longer single-stranded

DNA as sticky ends, and another is to use more G/C in the DNA sticky ends, to make their

attachment stronger, and a third way is to decrease the temperature of the experimental system.
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Note that the third method comes of the expense of slowing down the assembly process.

Using non-standard models of the self-assembly system also has some effects on the error

rate. As an instance, putting some limitations on the maximum parallelism can reduce the error

rate as well [56].

Finally, using redundant data can result in a smaller error rate. For example it is possible

to design a fault-tolerant algorithm through data to the third dimension of the space [19]. [56]

used another method to reduce the error. They used dependency between tiles and designed a

tile set in which the occurrence of error in one position immediately leads to another error in

one of its neighbours. Using this method, they can reduce the error to ε2 or less; where ε is the

probability of the appearance of an error in each tile.

In the remaining of this section, first, a review on the fault-resistant systems based on the

changes in the environment is given. Then, the methods based on the changes in designs are

reviewed.

Changing some of the properties of the self-assembly systems’ environment can lead to a

system that is more resistant against the fault. Winfree [72] explained that the lowest error rates

occur at the melting temperature. It must be noted that, of the melting temperature, the growth

rate of the crystal has its smallest value. Low growth speed is not practically useful, therefore

the lowest error rate cannot be achieved in practice. In order to achieve a fault-tolerant system,

it is also possible to change the concentration and the strength of the sticky connections. In this

case, the error can be reduced to an arbitrary rate close to zero.

Using a seed and changing of the design based on seed can also reduce the error [61]. In

theory, the seed is a tile that the self-assembly process always starts with. Practically, the design

of the seed and using the seed can reduce the number of errors, and there is an arbitrarily large

kinetic barrier to unseeded growth [61]. Moreover, the design of a larger seed can reduce the

error and can increase the speed of the assembly process. For example, using the DNA origami

to construct a large seed [9] can reduce the program-size complexity and reduce the error rate.

Winfree [9] used a DNA origami seed with 32 starting points to build a counter.

In addition to environmental variables, a number of changes in the design of a self-assembly

system can make it more resistant against errors. Some of these changes result in new models

and some of them can be described with the standard model. Chen and Goel [18] used a snaked



2.2. Error in Self-assembly 17

proof-reading for error-correction scheme and proved that replacing each tile with k × k block

of tiles can reduce the error. The most important point about their method is that they did not

change anything in aTAM. Doty [29] used a fuzzy temperature model. In the fuzzy temperature

model, temperature two has been normally used but sometimes the temperature can change to

one and allow some of the tiles to stick to the supertile with strength one. In this model, the

structure will be more stable with the change of the temperature. The idea is to avoid the usual

lab errors with a different design of the algorithms. Doty used this model to construct a square

based on aTAM.

Yin et al. in [55] used a different model which resulted in the same output. Although pre-

vious methods built a larger structure for each tile system, Yin described a model in which the

error has been reduced without increasing the size. They forced the structure to have a stronger

dependency on the neighbours. In this structure, the occurrence of each error immediately re-

sults in the occurrence of another error. Yin et al. proved that this dependency can reduce the

error to ε2 or ε3, where ε is the probability of an incorrect attachment.

Using a three dimensional space can result in an error resistant self-assembly system [19].

Using the 3rd dimension will increase the number of tiling assemblies less than previous mod-

els, and decrease the error as much as previous methods. It is noticeable that using the third

dimension will not change the scale of the pattern in the plane. Redundancy will be added only

to the 3rd dimension.

Figure 2.3: An example of using flipped tiles. The grey tile is the seed. Since the left subtree
is the flipped version of the right one, the same tile set can be used for both of them.

In standard TAM, it is assumed that tiles cannot rotate. In the related problems in tiling,

always the same assumption exists [21][51]. Rotation problems usually ignore the transfor-

mation of the tiles. For example, Gales and Rapaport [35][36] studied the rotation board. A
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rotation board is a N × N square of tiles which colour mismatches. The problem is: Given a

rotation board as input, is it possible to convert the board to a valid tiling of the square if rota-

tion of tiles is the only allowed operation? Gales and Rapaport proved that the rotation board

problem is NP-complete. Moreover, they studied the optimization version of the rotation board

problem. The goal in the optimization version is to find a lattice with minimum mismatches.

This problem also is a NP-complete problem.

[51] and [75] defined a specific version of the board problem. These new versions allows

both rotation and local moves. However, in this version, colours of the borders must be prede-

fined.

It is noticeable that, since a tile can attach to a rotated version of itself, tiling problems in

general cannot allow rotation. However, in experimental self-assembly systems tiles cannot

attach to their rotation version (See Figure 2.3). The complementary properties and 3’ and 5’

ends prevent the attachment of a tile to itself. In a few implementations of self-assembly tiles,

rotation is allowed [39]. This kind of implementation results in infinite structures. Moreover,

some of the simulation tools can simulate rotation and flip [50][67]. The standard implemen-

tations of the Wang tiles cannot rotate. However, DAE tiles and one of implementations of the

DAO tiles can flip. The only allowed flip in these tiles is one diagonal flip. Using the flipped

tiles reduces the program size complexity. For example, Figure 2.3 shows a tree structure and

its tiling. Without the flipped tiles the construction of the tree structure of Figure 2.3 needs

five more tiles.

Adleman et al. [2] proved that the minimum tile set problem is NP-complete. With a few

changes in the solution of the minimum tile set problem, it is clear that adding flip ability to

tiles does not change the complexity. Flipped tiles can reduce the program size complexity by

two times, and they will not increase the complexity of finding minimum tiles.

2.3 DNA-based Nanorobotics

Chapter 5 introduces the smart tile assembly model, which is based on tiles that are each

enhanced by a computational device. The smart tile assembly model is then used to perform

tasks similar to robotic systems [34]. This section gives a brief description of DNA-based
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nanorobotics where we can see the power of DNA based systems to build complex nanorobots

and computational devices. Moreover, it is notable that similar ideas that are used for building

these nanorobots can be used to build complex communicating systems between tiles [53].

DNA-based walkers move on a set of predefined platforms, and DNA-based self-assembly

systems have an important role in the design of these platforms. The construction of the plat-

forms can be considered as a pattern problem. This section focuses on the following two

aspects:

• Non-autonomous nanorobotics. This part reviews the design and implementation of

nanorobots which are sensitive to the environment, whereby using the environmental

variables or adding/removing other materials, it is possible to give some instructions to

the robot.

• Autonomous nanorobotics. The second part of this section explains the design and

implementation of nanorobots which can act without any external control.

Using biological material and specially DNA strands was an important step in towards the goal

of building nanorobotics. These devices can act on a small spaces. Moreover, using DNA

sequences results in simpler designs. For example, Yan [32] reported the construction of a

DNA based device, which can change its state in different situations. Using DNA can result

in reversible systems and Yan used this property to change between two different states. This

device can act on a 2D DNA lattice. Yan also designed a sequence dependent robot. However,

this device needs a special platform and needs some extra strands as fuel. In addition to [32],

we can find different kinds of robots which are using DNA strands as a fuel. Seeman [63]

used DNA strands as a fuel for a walker on a DNA-sequence. This walker used a predefined

path.However, Seeman’s robot could not walk non-autonomously. This robot can be controlled

precisely. Seeman’s robot has two feet and can walk forward and backward. This robot does

not change the feet order during the walking but there are some other walkers which can change

their foot positions during the walking. In both designs, the addition of DNA strands as a fuel

helps each foot to attach to the platform, then adding another DNA strand disconnects the other

foot and so on. Changing the order of feet can reduce the number of auxiliary DNA strands.

To determine the exact position of the walker, usually additional material has been added to the
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feet, for example [63] added Psoralen to the end of feet and [64] used fluorescence materials.

These additional materials make it easier to monitor to process.

In addition to the walker robots, there are several different non-autonomous devices which

can switch between their states. Just like the walkers, these devices need some control mecha-

nisms for each step, and they will produce some waste products. DNA devices can have differ-

ent number of states. Open/closed states are the most common states in the DNA based devices

[65] [77]. Moreover, some of these nanodevices have more than two states. For example, [65]

introduced a DNA device which can be in the closed, relaxed or stretched configurations. Just

like the DNA walkers, the operation of these devices can be monitored using additional mate-

rials such as fluorescence materials.

To compare different non-autonomous nanorobots, we should consider different parame-

ters: number of different states, type of their fuel, number of auxiliary strands as fuel DNA,

their dependency to the environment, the amount of energy that they use for the actions, etc.

Nonautonuomous DNA-based nanorobotics always need control and monitoring by a human

or devices. The design of autonomous DNA devices, which can act without assistance of

lab procedures, can solve this problem. Although there are various kinds of implementation

of autonomous DNA-based devices, those devices usually have a number of limitations. In

some cases, they destroy the input after their action or they block the input and the input can-

not be used anymore. Moreover, prior implementation of autonomous walkers could walk

randomly in forward and backward directions[60]. Recent developed walkers can move in a

one-directional path. It is noticeable that one-directional movement means they need fuel, and

walking is not reversible anymore. Using DNA hybridization energy as a fuel is one of the

basic ideas in this area. Turberfield et al. [37] suggested that hybridization can be used to build

an autonomous DNA walker. To reach to this goal, Yin et al [76] experimentally constructed

an autonomous walker for the first time. Their walker used alternating actions of restriction

enzymes and ligase. Nowadays, there are several implementations of nanodevices which act

autonomously. but without any fuel robots have to perform some random actions, like bidirec-

tional walking.

The construction of autonomous DNA-based nanorobots is not restricted to walkers. Mao

[68] implemented a nanodevice which continuously changed its state between open and closed.
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Moreover, he constructed an autonomous walker which used a different kind of fuel. Their de-

vice used a DNAzyme. Using substrate molecules, this DNAzyme constantly extracts chemical

energy. Their DNA walker used the energy as the fuel of the motion. Their device also used

strand displacement to put its feet on the backbone.

2.4 2D Grammars

In Chapter 3, we propose self-assembly (SA) hypergraph automata as a general model for pat-

terned self-assembly and investigate its connections to other models for two-dimensional in-

formation and computation, such as 2D (picture) languages and Wang Tile Systems. Although

the connection between a specially designed tile self-assembly systems and 2D languages was

studied before [26], our proposed automata is the first that studies the connection between the

abstract tile assembly model and 2D languages. Here a brief introduction to 2D languages is

given, and the relation between 2D languages and self-assembly system are studied in more

details in Chapter 3.

Theory of 2D languages is a generalization of the theory of formal languages in one di-

mension. The first definition of an automata which works on 2D spaces was introduced in

1967 [12]. In 1997, Giammarresi and Resivo [33] defined the family of recognizable picture

languages (REC) as a generalization of regular 1D languages.

To understand the theory of picture languages, first of all, a formal definition for a picture

is required. Let Σ be a finite alphabet. A picture p over Σ, is a two-dimensional array of letters

from Σ. Each of these letters is called a pixel. The size of the picture p, denoted by |p|, is the

pair (|p|row, |p|col), where |p|row is the number of rows and |p|col is the number of columns of the

picture. Indices grow from top to bottom and from left to right. The set of all pictures over Σ

is Σ+,+. Σ∗,∗ is Σ+,+ ∪ {λ}, where λ denotes the empty picture. A 2D language over Σ is a subset

of Σ∗,∗. Sometimes, the letter # is used to border the picture. p̂ denotes the bordered version of
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picture p. For p ∈ Σk,h, p̂ is:

p̂ =

# # · · · # #

# p(1,1) · · · p(1,h) #

#
...

. . .
... #

# p(k,1) · · · p(k,h) #

# # · · · # #

Partially bordered pictures [13] have been used in some cases. Since partially bordered

pictures are not very common, their description is beyond the scope of this report. Giammarresi

and Restivo introduced the family of recognizable picture languages (REC)[33]. In this section,

first, the definition of REC using Wang tiles is recalled, and then, an equivalent definition of

REC based on the local rules is given [31].

Definition ([25]) A labeled Wang tile, shortly LWT, is a 5-tuple (c1, c2, c3, c4, a) where for all

i, 1 ≤ i ≤ 4, ci belongs to a finite set C of colours and a belongs to a finite set Σ of labels.

A Wang tiling system (WTS) is a triple 〈C,Σ,T 〉, where T ⊆ C4 × Σ is a finite set of LWTs.

Intuitively, a picture p of size (m, n) over alphabet T is a tiling over T , if for any two adjacent

LWTs, the colours of the adjacent borders are the same. For a WTS T, L(T) denotes the

language that T describes. In other words, L(T) denotes the set of all pictures that have a valid

tiling using T . A language L generated by a WTS is called Wang recognizable.

Exactly the same family of picture languages is introduced by another method using local

rules and a projection. In the field of 2D languages, these local rules are called tiles. Here the

definition of a tile is not equal to the definition of a Wang tile.

Definition ([20]) A tile is a square picture of size (2, 2). A language L ⊆ Σ∗,∗ is local if there

exists a finite set Θ of tiles over the alphabet Σ∪{#} such that L = {p ∈ Σ∗,∗|[ p̂] ⊆ Θ}, where, [p̂]

denotes the set of all tiles/subwords of picture p̂ of size (2, 2). We will refer to such a language

as LOC(Θ).

Definition ([33]) A tiling system (TS) is the 4-tuple T = (Σ,Λ,Θ, π), where: Σ and Λ are two

finite alphabets, π : Λ→ Σ is a mapping, Θ is a finite set of 2×2 tiles over the alphabet Λ∪{#}.
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The language L(T ) is the language defined by the tiling system T , if L equals to the lan-

guage LOC(Θ) after applying the mapping π on all the pixel of the pictures in LOC(Θ).

The languages over finite alphabets defined by tiling systems constitute the family REC or

TS-recognizable languages on Σ. As previously mentioned, both definitions based on Wang

tiles and tiling systems define the same class of languages [25] which is called class of recog-

nizable picture languages. Note that a tiling system without a projection can only recognize

a local language. The class of local languages is strictly included in the class of recognizable

picture languages. The results in Chapter 3 of this thesis only refer to REC picture languages

where the labeled/coloured Wang tiles are used, therefore the same result does not hold for

local languages.

All definitions of REC picture languages use non-deterministic behaviours. In [6] defini-

tions of determinism and unambiguity have been introduced.

Definition ([20]) A tiling system (Σ,Λ,Θ, π) is top-left to bottom-right deterministic (tl2br-

deterministic), if for any γ1, γ2, γ3 ∈ Λ ∪ {#} and σ ∈ Σ there exists at most one tile t ∈ Θ with

t =
γ1 γ2

γ3 γ4

, and π(γ4) = σ.

A similar definition can be used for unambiguity. The classes of deterministic REC languages

and unambiguous REC languages are strictly included in the class of REC. These definition

implicitly restrict the order that pixels of a picture are read. For example, if the a top-left to

bottom-right deterministic system is used, the pixel at position (x, y) has to be read after the

pixel in the position (x′, y′), assuming that x > x′ and y > y′. In these kind of tiling system

the definitions of determinism and unambiguity are dependent on the reading path [6]. In other

words, for different reading strategies, different classes of languages will be defined [47]. A

tiling system that is top-left to bottom-right can only scan the given picture on a path that goes

from left to right and from top to bottom, and it can never scan the picture in other directions.

Tiling systems have become an accepted model for 2D languages. However, if we want to de-

fine an automaton based on them an explicit definition of scanning path is required. A definition

for a tiling automaton has been introduced in [7]. This automaton uses a scanning strategy. For

example, scanning strategy in tiling automata can depend on the size of the picture. For any

scanning strategy, there exists a corresponding different class in Chomsky’s hierarchy. Tiling
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automata are not the first automata for picture languages. Before tiling automata, 4FA had been

introduced [12].

Definition ([33]) A 4FA is a 7-tuple A = (Σ,Q, {t, b, l, r}, q0, qa, qr, δ), where Σ is the input

alphabet, Q is the set of states, q0, qa, qr are three distinguished states, called initial, accepting

and rejecting states, δ : (Q/qa, qr) × Σ → 2(Q×t,b,l,r) is the transition function. t, b, l, and r

represent the directions.

A 4FA automaton has a head. If the automaton is in the state q ∈ Q/qa, qr and the head is

above a pixel σ ∈ Σ, based on the transition function δ, automaton will change the state and

move to one of the neighbour pixels. The 4FA can pass each of the pixels of a given picture

more than once. Moreover, 4FA can leave some of the pixels unread. Since the definition of

4FA is not similar to the self-assembly process, it cannot be an interesting tool for biological

computations. In contrast, tiling automata work on picture languages using only local rules,

and they pass every pixel exactly one time. A tiling automaton starts with a picture and in each

step tries to replace one of the letters with one of the states.

The tl2br tiling automata (defined below) assume that tiling operation will start from top-

left and will continue to bottom-right. A tiling automaton needs an explicit definition of a path

to find the next position of its head. The path in a tl2br tiling automaton starts from top-left,

goes through each row from left to right and then scan the next row starting from the left col-

umn. An informal formal definition of tiling automata is as follows. A tiling automaton [7]) of

type tl2br is consists of a tiling system, a tl2br-directed scanning strategy, a two dimensional

data structure to keep some temporary states, and a transition function. A tl2br tiling automa-

ton starts from the top left pixel of the given picture, and in each transition reads the state of

the corresponding pixels of the top, left, and top-left pixels of the current head position. Based

on these states , tiling automaton changes the state corresponding the pixel under the head. Af-

terwards, the heads moves to the next pixel following the scanning strategy. Here the scanning

strategy must be defined independently from the content of the picture.

Although tiling automata are more similar to the self-assembly process, dependence of the

scanning strategy on the size of the picture is a restriction that is hard to simulate in self-
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assembly systems. Recently, Lonati and Pradella [48] introduced a new automaton based on

Wang tiles. A Wang automaton has an explicit definition of a strategy path. However, the strat-

egy path in Wang automata has to be polite. Polite strategies do not have any information about

the size of the picture; they are only sensitive to the borders. A Wang automaton starts from

a picture, then in each step colours around one of the letters will be defined, and the coloured

area will be extended. Using Wang tiles and also polite scanning strategies made Wang au-

tomata an interesting device for self-assembly modelling. However, all existing tiling systems

that were discussed in the chapter including Wang automata still depend on the definition of

scanning strategy [14, 48, 33]. Moreover, polite scanning strategies are less powerful that reg-

ular scanning strategies. Lonati and Pradella [49] compared possible scanning strategies and

their powers, and they proved that Wang automata cannot simulate all the scanning strategies

[14].
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Chapter 3

Hypergraph Automata: A Theoretical

Model for Patterned Self-assembly 1

3.1 Introduction

DNA-based self-assembly is an autonomous process whereby a disordered system of DNA

sequences forms an organized structure or pattern as a consequence of Watson-Crick com-

plementarity of DNA sequences, without external direction. A DNA-tile-based self-assembly

system starts from DNA “tiles”, each of which is formed beforehand from carefully designed

single-stranded DNA sequences which bind via Watson-Crick complementarity and ensure

the tiles’ shape (square) and structure. In particular, the sides and interior of the square are

double-stranded DNA sequence, while the corners have protruding DNA single strands that

act as “sticky ends”. Subsequently, the individual tiles are mixed together and interact lo-

cally via their sticky-ends to form DNA-based supertiles whose structure is dictated by the

base-composition of the individual tiles’ sticky ends. Winfree [20] introduced the abstract Tile

Assembly Model (aTAM) as a mathematical model for tile-based self-assembly systems. Ma

and Lombardi [17] introduced the patterned self-assembly of single patterns, whereby coloured

tiles self-assemble to build a particular rectangular coloured pattern. Patterned self-assembly

models a particular type of application in which tiles may differ from each other by some dis-

1This chapter is based on the paper Lila Kari, Steffen Kopecki, Amirhossein Simjour: Hypergraph Automata:
a Theoretical Model for Patterned Self-assembly. Int. J. Found. Comput. Sci. 25(4): 419-440 (2014)

33



34 Chapter 3. Hypergraph Automata: A TheoreticalModel for Patterned Self-assembly

tinguishable properties, modelled as colours [19, 2]. Orponen et al. [9, 14] designed several

algorithms to find the minimum tile set required to construct one given coloured pattern. Czei-

zler and Popa [6] proved that this minimization problem is NP-hard. The problem remains

NP-hard for patterns with a constant number of 29 colours [12] and for three-coloured patterns

when the tile numbers for two of the three colours are fixed [13].

In this paper, we propose self-assembly (SA) hypergraph automata as a general model for

patterned self-assembly and investigate its connections to other models for two-dimensional

information and computation, such as 2D (picture) languages and Wang Tile Systems. A 2D

(picture) language consists of 2D words (pictures), defined as mappings p : [m] × [n] → [k]

from the points in the two-dimensional space to a finite alphabet of cardinality k. Here, [k]

denotes the set [k] = {1, 2, . . . , k}. Note that, if we take the alphabet [k] to be a set of colours,

the definition of a picture is analogous to that of a coloured pattern [17].

Early generating/accepting systems for 2D languages comprise 2× 2 tiles [8], 2D automata

[3], two-dimensional on-line tessellation acceptors [10], and 2D grammars [5]. More recently

a generating system was introduced by Prophetis and Varricchio [7] that used Wang tiles. A

Wang tile system [7] is a specialized tile-based model that generates the class of recognizable

picture languages, a subclass of the family of 2D languages. The class of recognizable pic-

ture languages is also accepted by Wang automata, a model introduced in [15]. Like other

automata for 2D languages [1], Wang tile automata use an explicit pre-defined scanning strat-

egy [16] when reading the input picture and the accepted language depends on the scanning

strategy that is used. Due to this, Wang automata are a suboptimal model for self-assembly.

Indeed, if we consider the final supertile as given, the order in which tiles are read is irrelevant.

On the other hand, if we consider the self-assembly process which results in the final supertile,

an “order of assembly” cannot be pre-imposed. In contrast to Wang automata, SA-hypergraph

automata are scanning-strategy-independent. In fact, Wang tile systems only can be used for

self-assembly systems in temperature 1, but SA-hypergraph automata does not have this re-

striction. Moreover, SA-hypergraph automata can be applied to non-rectangular shapes, which

are out of the scopes of the Wang tile systems and Wang tile automata.

SA-hypergraph automata are a modification of the hypergraph automata introduced by

Janssens and Rozenberg [11] in 1982. An SA-hypergraph automaton (Section 3.3) accepts
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a language of labelled “rectangular grid graphs”, wherein the labels are meant to capture the

notion of colours used in patterned self-assembly. An SA-hypergraph automaton consists of an

underlying labelled graph (labelled nodes and edges) and a set of hyperedges, each of which

is a subset of the set of nodes of the underlying graph. Intuitively, the hyperedges are meant

to model tiles or supertiles while the underlying graph describes how these can attach to each

other, similar to a self-assembly process.

We investigate the computational power of SA-hypergraph automata and prove that for

every recognizable picture language L there is an SA-hypergraph automaton that accepts L

(Thm. 3.4.1). Moreover, we prove that for any restricted SA-hypergraph automaton, there ex-

ists a Wang tile system that accepts the same language of coloured patterns (Thm. 3.4.2). Here,

restricted SA-hypergraph automaton means an SA-hypergraph automaton in which certain sit-

uations that cannot occur during self-assembly are explicitly excluded.

3.2 Preliminaries

A picture (two-dimensional word) p over the alphabet Σ is a two dimensional matrix of letters

from Σ. Each element of this matrix is called a pixel. p(i, j) denotes the pixel in the ith row and

jth column of this matrix. Two pixels p(i, j) and p(i′, j′) are adjacent if |i − i′| + | j − j′| = 1. The

function w(p) denotes the width and h(p) denotes the height of the picture p. Σ∗∗ is the set of

all pictures over the alphabet Σ. Let # be a letter which does not belong to the alphabet Σ. The

framed picture p̂ of p ∈ Σ∗∗ is defined as:

p̂ =

# # · · · # #

# p(1,1) · · · p(1,w(p)) #
...

...
. . .

...
...

# p(h(p),1) · · · p(h(p),w(p)) #

# # · · · # #

A picture language (2D language) is a set of pictures over an alphabet Σ. For example,

L = {p ∈ Σ∗∗| for all 1 ≤ i ≤ h(p), p(i,1) = p(i,w(p))} is the language of all rectangles that have the

same first and last column.
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A function δ : N2 → N2 is a translation function if there exists i′, j′ ∈ Z such that δ(i, j) =

(i + i′, j + j′) for all i, j ∈ N. A subpicture over Σ is a two-dimensional matrix of letters from

Σ ∪ {empty}. A subpicture q is connected if for every pair of pixels q(i′, j′), q(i, j) ∈ Σ there exists

a sequence of pixels s = 〈s0, s1, . . . , sn〉 from q such that s0 = q(i, j) and sn = q(i′, j′), for all

0 ≤ k < n, we have sk ∈ Σ. Moreover, sk and sk+1 must be adjacent. If p is a picture, then q is

a subpicture of p if there exists a translation function δ such that for all (i, j) ∈ [h(q)] × [w(q)]

we have either q(i, j) = empty or q(i, j) = pδ(i, j).

A picture tile is a 2 × 2 picture (for example
a b

c d
). The language defined by a set of

picture tiles ∆ over the alphabet Σ ∪ {#} is denoted by L(∆) and is defined as the set of all

pictures p ∈ Σ∗∗ such that any 2 × 2 subpicture of p̂ is in ∆. Giammarresi and Restivo [8]

defined a Picture Tiling System (PTS) as a 4-tuple T = (Σ,Γ,∆, π), where Σ and Γ are two finite

alphabets, ∆ is a finite set of picture tiles over Γ∪{#} and π : Γ→ Σ is a projection. The PTS T

recognizes the language L(T ) = π(L(∆)). A picture language L is called PTS-recognizable if

there exists a picture tiling system T such that L = L(T ). Tiling systems have also been studied

in conjunction with rational graphs, as tools for recognizing one-dimensional context-sensitive

languages [4] [18].

An equivalent definition of recognizability was proposed using labelled Wang tiles [16].

A labelled Wang tile, shortly LWT, is a labelled unit square whose edges may be coloured.

Formally, a LWT is a 5-tuple (cN , cE, cS , cW , l), where l belongs to a finite set of labels Σ and

cN , cE, cS , and cW belong to C ∪ {#} where C is a finite set of colours and # represents an

uncoloured edge. Intuitively, cN , cE, cS , and cW represent the colour of the north, east, south,

and west edge of the tile, respectively. Labelled Wang tiles cannot rotate. The colours on the

north, south, east, and west edges of an LWT t are denoted by σN(t), σS (t), σE(t), and σW(t),

respectively; moreover, λ(t) denotes the label of t.

A Wang Tile System (WTS)[7] is a triple W = (Σ,C,Θ) where Σ and C are two finite

alphabets (the alphabet of tile labels and the alphabet of colours, respectively) with # < C,

and Θ is a finite set of labelled Wang tiles with labels from Σ and colours from C. The WTS

W recognizes the picture language L(W) where the picture p ∈ Σ∗∗ belongs to L(W) if and

only if there exists a mapping m : [h(p)] × [w(p)] from the pixels of p to tiles from Θ such
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that the label of the tile m(p(i, j)) is equal to p(i, j); moreover, this mapping must be mismatch

free. The mapping m is mismatch free if for two adjacent pixels p(i, j) and p(i+1, j) in p the

south edge of m(p(i, j)) and the north edge of m(p(i+1, j)) are coloured by the same colour from

C; for two adjacent pixels p(i, j) and p(i, j+1) in p the east edge of m(p(i, j)) and the west edge of

m(p(i, j+1)) are coloured by the same colour from C; and for every border pixel p(i, j) with i = 1,

j = 1, i = h(p), or j = w(p) we require that the north, west, south, or east edge, respectively,

of m(p(i, j)) is uncoloured. For a pixel in a corner, e. g. p(1,1), this implies that two edges are

uncoloured. Let p̄ be a two dimensional array of labelled Wang tiles from Θ. We call p̄ a Wang

tiled version of the picture p if the width and the height of p and p̄ are equal, and there exists a

mismatch free mapping m such that for any i and j we have p̄(i, j) = m(p(i, j)). Two tiles p̄(i, j) and

p̄(i′, j′) are adjacent if the pixels p(i, j) and p(i′, j′) are adjacent. A language L is WTS-recognizable

if there exists a Wang tile system W such that W recognizes L. Figure 3.1 shows an example.
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Figure 3.1: Let W = (Σ,C,Θ) be the Wang Tile System where Σ = {a},C = {0, 1} and Θ

consists of the 13 LWTs shown in i). This Wang tile system recognizes the picture language
containing all square pictures p with h(p) = w(p) ≥ 3 and where every pixel is labelled by a.
Part ii) is an example picture and iii) shows the Wang tiled version of the picture in part ii).

Proposition 3.2.1 ([8]) A picture language L is PTS-recognizable if and only if it is WTS-

recognizable.

A coloured pattern, as defined in [17] is the end result of a self-assembly process that starts

with a fixed-size L-shaped seed supertile and proceeds as in Figure 3.2, (i), until one coloured

rectangle is formed. Note that Wang Tile Systems can be seen as generating (potentially infi-

nite) languages of such coloured patterns where the L-shaped seed is of an arbitrary size and
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is generated starting from a single-tiled seed with uncoloured North and West edges, and is

extended by tiles with uncoloured North or West edges, as shown in Figure 3.2, (ii).

# # # # #

#

#

#

#

#

# #

#

#

# # # # #

#

#

#

#

i) ii)

Figure 3.2: (i) The self-assembly of a single coloured pattern, starting with a fixed-size L-
shaped seed. (ii) The process of generating a picture in the language of a Wang Tile System.

3.3 Hypergraph Automata

Let f : A→ B be a function and let A′ ⊆ A. The restriction of f to A′ is f |A′ : A′ → B such that

f |A′(x) = f (x) for all x ∈ A′. For any set A we let idA : A → A denote the identity. When the

set A is clear from the context, we will omit the subscript and simply write id.

Let Σ be an alphabet. A pseudo-picture graph is a directed labelled graph G = (N, Ev∪Eh, π)

where N is a finite set of nodes, Ev, Eh ⊆ N × N are two sets of edges such that Ev ∩ Eh = ∅,

and π : N → Σ is the label function. Edges from Ev and Eh will frequently be denoted by
v
−→

and
h
−→, respectively. The node-induced subgraph of G by a subset N′ ⊆ N is defined as the

graph (N′, E′v ∪ E′h, π|N′) where E′v = {(x, y) ∈ Ev | x, y ∈ N′} and E′h = {(x, y) ∈ Eh | x, y ∈ N′}.

A graph G′ is called a full subgraph of G if for some N′ ⊆ N it is the node-induced subgraph

of G by N′.

A pseudo-picture graph G = (N, Ev ∪ Eh, π) is an (n × m-)picture graph (for n,m ∈ N)

if there is a bijection fG : N → [n] × [m] such that for x, y ∈ N, we have (x, y) ∈ Ev if and

only if fG(x) + (1, 0) = fG(y), and (x, y) ∈ Eh if and only if fG(x) + (0, 1) = fG(y). We

want to stress that we do not use Cartesian coordinates; our pictures are defined as matrices,

hence, incrementing the first coordinate corresponds to a step downwards, and incrementing
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the second coordinate corresponds to a step rightwards. In other words, the nodes of a picture

graph G can be embedded in N2 such that every edge in Ev has length 1 and points downwards,

every edge in Eh has length 1 and points rightwards, and every two nodes with Euclidean

distance 1 are connected by an edge. Note that if a pseudo-picture graph is an n × m-picture

graph, it cannot be an n′ × m′-picture graph with n , n′ or m , m′, and the function fG is

unique. If G is a picture graph, we call e ∈ Ev a vertical edge and e ∈ Eh a horizontal edge.

The set of all picture graphs is denoted by G. Every n × m-picture graph G = (N, Ev ∪ Eh, π)

represents a picture p(G) ∈ Σ∗∗ with h(p(G)) = n and w(p(G)) = m. More precisely, for all

(i, j) ∈ [n] × [m] we let p(G)(i, j) = π( f −1
G (i, j)). Hence, p : G → Σ∗∗ can be seen as a function.

A connected pseudo-picture graph G is called a subgrid if it is a full subgraph of a picture

graph G′. We also say G is a subgrid of G′.

A hypergraph [11] is a triple H = (N, E, f ) where N is the finite set of nodes, E is the finite

set of hyperedges, and f : E → P(N) is a function assigning to each hyperedge a set of nodes;

the same set of nodes may be assigned to two distinct hyperedges. For every hyperedge e ∈ E,

we let

IH(e) = {x ∈ N | ∃e′ ∈ E \ {e} : x ∈ f (e) ∩ f (e′)}

be the set of intersecting nodes in f (e). Rozenberg and Janssens [11] introduced hypergraph

automata to describe graph languages. Here, we modified their definition in order to study

pseudo-picture graphs. The formal definition is as follows.

Definition A self-assembly (SA) hypergraph automaton is a tuple A = (N, E, f , d,G, E0) where

H = (N, E, f ) is a hypergraph, called the underlying hypergraph, d : E → IH × IH is the

transition function assigning to each hyperedge e ∈ E a transition Q1 → Q2 with Q1,Q2 ⊆

IH(e), G is a pseudo-picture graph with node set N called the underlying graph, and E0 ⊆ E is

the set of initial hyperedges.

Every hyperedge e ∈ E defines a graph Ge which is the subgraph of G induced by f (e). For

d(e) = Q1 → Q2 we call Q1 and Q2 the incoming active nodes and outgoing active nodes of Ge,

respectively. In order for the hypergraph automaton to be well-defined, we require that Ge is

connected and that the subgraph of Ge induced by its incoming active nodes is also connected,

for all e ∈ E. If e ∈ E0, then Ge is also called an initial graph.
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A configuration of the hypergraph automaton A is a triple (M,O, g) where M = (NM, EM,v∪

EM,h, πM) is a subgrid, O ⊆ NM is the set of active nodes, and g : NM → N is a function such

that πM(x) = π(g(x)) for all x ∈ NM. The set NM consists of (possibly multiple) copies of

nodes from N and the function g assigns to each node in NM its original node in N. An edge

(x, y) ∈ EM,h is a copy of the edge (g(x), g(y)) ∈ Eh and (x, y) ∈ EM,v is a copy of the edge

(g(x), g(y)) ∈ Ev. However, for two nodes x and y in M, if their originals g(x) and g(y) are

connected by a horizontal (or vertical) edge, this does not imply that x and y are connected by

a horizontal (or vertical) edge.

Let (M1,O1, g1) be a configuration with M1 = (N1, E1,v ∪ E1,h, π1) and let e ∈ E be a hy-

peredge with d(e) = Q1 → Q2. If there exists a non-empty subset P ⊆ O1 such that g1|P

forms a graph-isomorphism from the subgraph of M1 induced by P to the subgraph of Ge

induced by the incoming active nodes Q1, then the hyperedge e defines a transition or deriva-

tion step (M1,O1, g1) →
A

(M2,O2, g2). Informally speaking, the resulting graph M2 consists

of joining together the graphs M1 and Ge by identifying every node x ∈ P with the corre-

sponding node g1(x) ∈ Q1. The active nodes O2 in M2 are the active nodes O1 \ P in M1

plus the outgoing active nodes Q2 in Ge, see Figure 3.3. We also say that (M2,O2, g2) is

the result of gluing the hyperedge e to (M1,O1, g1). Formally, the configuration (M2,O2, g2)

where M2 = (N2, E2,v ∪ E2,h, π2) is constructed as follows. Let N′ = {x′ | x ∈ f (e) \ Q1} be

a set containing a copy of each node from Ge except for the incoming active nodes such that

N′ ∩ N1 = ∅, where x′ is defined as a copy of node x. Let N2 = N1 ∪ N′ and let g2 : N2 → N

be such that g2(x) = g1(x) for x ∈ N1 and g2(x′) = x for x′ ∈ N′. An edge (x, y) belongs to

E2,v if (x, y) ∈ E1,v or x, y ∈ P ∪ N′ and (g2(x), g2(y)) ∈ Ev; an edge (x, y) belongs to E2,h if

(x, y) ∈ E1,h or x, y ∈ P ∪ N′ and (g2(x), g2(y)) ∈ Eh. Naturally, π2(x) = π(g2(x)) for all x ∈ N2

and O2 = (O1 \ P) ∪ {x′ ∈ N′ | x ∈ Q2}. The reflexive and transitive closure of →
A

is denoted

by
∗
→
A

and called a derivation. For e ∈ E0 we let Oe such that d(e) = Q1 → Oe and we call the

configuration (Ge,Oe, id) an initial configuration of A. A final configuration is a configuration

(M, ∅, g) without active nodes. The graph language accepted by the SA-hypergraph automaton

A is

L(A) =

{
M ∈ G

∣∣∣∣∣ ∃e ∈ E0 : (Ge,Oe, id)
∗
→
A

(M, ∅, g)
}
.
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Figure 3.3: A transition (M1,O1, q1) →A (M2,O2, q2) joins together the graphs M1 and Ge by
identifying every node x ∈ P with the corresponding node g1(x) ∈ Q1. The set O2 of the active
nodes of the new configuration M2 consists of the nodes of the union of the active nodes in
O1 \P with the outgoing active nodes Q2 of Ge. The active nodes of M1 and M2 are represented
as circled nodes.

Note that L(A) contains picture graphs only. The picture language associated to the graph

language L(A) is the language p(L(A)).

Remark Since we only talk about picture graphs, we can assume that for every hyperedge

e ∈ E the underlying graph Ge is a subgrid, or e can be removed from the set E.

Example Figure 3.4 shows an example of a self-assembled coloured pattern and an SA-

hypergraph automaton that accepts that pattern. Part i) depicts a coloured self-assembled pat-

tern. Parts ii) and iii) together depict the underlying graph of the SA-hypergraph automaton

that constructs the same pattern.

The SA-hypergraph automaton for the example in Figure 3.4 is defined as follows. The

SA-hypergraph automaton is A = (N, E, f , d,G, E0), where

• N = {x1, x2, . . . , x9, z1, z2, . . . , z7},

• E = {e1, e2, . . . , e16},
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Figure 3.4: Part i) shows an example of coloured self-assembled pattern. Parts ii) and iii)
together depict the underlying graph of the SA-hypergraph automaton that constructs the same
pattern. Part ii) constructs the white top row and white left column, and part iii) constructs the
coloured pattern.

• function f is defined such that

f (e1) = {x1, x2, x4, x5}, f (e2) = {x2, x3, x5, x6}, f (e3) = {x3, x1, x6, x4},

f (e4) = {x4, x5, x7, x8}, f (e5) = {x5, x6, x8, x9}, f (e6) = {x6, x4, x9, x7},

f (e7) = {x7, x8, x1, x2}, f (e8) = {x8, x9, x2, x3}, f (e9) = {x9, x7, x3, x1},

f (e10) = {z1, z5, z2, x1}, f (e11) = {z5, z6, x1, x2}, f (e12) = {z6, z7, x2, x3},

f (e13) = {z7, z5, x3, x1}, f (e14) = {z2, x1, z3, x4}, f (e15) = {z3, x4, z4, x7},

f (e16) = {z4, x7, z2, x1}.

• For each hyperedge in ii), the function d describing the active areas where we can glue

new hyperedges is defined as to build a horizontal (vertical) chain of nodes that models

the top row (left column) of tiles.

d(e10) = {z1, z5, z2} → {z5, x1, z2},

d(e11) = {z5, x1} → {z6, x1, x2}, d(e12) = {z6, x2} → {z7, x2, x3},

d(e13) = {z7, x3} → {z5, x1, x3}, d(e14) = {z2, x1} → {z3, x1, x4},

d(e15) = {z3, x4} → {z4, x4, x7}, d(e16) = {x4, z7} → {z2, x1, x7}.
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The backward edges e.g. (x3, x1), (x6, x4), (x9, x7), and (z7, z5), make it possible to reuse

the hyperedges to build a periodic pattern.

For each hyperedge in iii), the function d changes the active input nodes (top-left, bottom-

left, and top-right) to the new set of active nodes (top-right, bottom-left, and bottom-

right), signifying the change of the places where the new hyperedges can be glued.

d(e1) = {x1, x2, x4} → {x2, x4, x5}, d(e2) = {x2, x3, x5} → {x3, x5, x6},

d(e3) = {x3, x1, x6} → {x1, x6, x4}, d(e4) = {x4, x5, x7} → {x5, x7, x8},

d(e5) = {x5, x6, x8} → {x6, x8, x9}, d(e6) = {x6, x4, x9} → {x4, x9, x7},

d(e7) = {x7, x8, x1} → {x8, x1, x2}, d(e8) = {x8, x9, x2} → {x9, x2, x3},

d(e9) = {x9, x7, x3} → {x7, x3, x1}.

• Parts ii) and iii) depict the underlying graphs of the white Γ-shaped top and left border

of the pattern, and the white-grey-black part of the pattern respectively.

• E0 = {e10}

The SA-hypergraph automaton A starts from the top-left white tile, corresponding to E0 =

{e10}. Afterwards, the automaton continues the construction with the hyperedges in the top row

or the left column. The construction of the white-grey-black part starts after the construction

of the white top row and left column. Figure 3.5 shows an example of possible transitions of

the SA-hypergraph automaton A.

The concept of hypergraph automata was introduced by Janssens and Rozenberg in 1982

[11]. Our definition of SA-hypergraph automata is a variant of the original definition with the

following modifications. Firstly, we start from a set of initial graphs whereas the original defi-

nition used a single initial graph. For unlabelled graphs both models are capable of accepting

the same class of graph languages, as long as one makes an exception for the empty graph.

However, for labelled graphs a single initial graph is not sufficient; e. g., if a language L of

labelled graphs consists of a graph A where every node is labelled by a and a graph B where

every node is labelled by b, then L cannot be generated from the same initial graph since A
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Figure 3.5: In this example, the construction of a picture graph from Figure 3.4 is explained.
At each step, one hyperedge or a sequence of hyperedges is glued.

and B do not have a common non-empty isomorphic subgraph. Secondly, we use final con-

figurations in order to accept only some of the graphs that can be generated by rules from the

initial graph. In the original definition, for simplicity, final configurations were omitted and

every graph which can be generated from the initial graph belonged to the accepted language.

Thirdly, it seemed more convenient to us to use the notion of active nodes rather than active

intersections.
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3.4 Hypergraph Automata for Picture Languages

In this section, we establish a strong connection between (WTS-)recognizable picture lan-

guages and picture graph languages that can be accepted by SA-hypergraph automata. We

prove that the self-assembly of a Wang Tile System can be simulated by an SA-hypergraph

automaton, see Theorem 3.4.1. The main idea is to start the tiling in the top left corner of a

tiled picture and then extend the tiled picture downwards and rightwards, just as in Figure 3.2.

Our converse result is slightly weaker: the picture language L = p(L(A)), associated to the

graph language accepted by an SA-hypergraph automaton A, is WTS-recognizable if A does

not contain a strong loop, see Theorem 3.4.2. The restriction for A not to contain a strong loop

is a natural assumption as strong loops cannot be used in any derivation that accepts a picture

graphs.

Theorem 3.4.1 For any recognizable picture language L there is an SA-hypergraph automaton

A such that the picture language associated to the graph language L(A) is L.

Proof Let V = (Σ,C′,Θ′) be a Wang Tile System that recognizes the picture language L, that

is L = L(V). We will slightly modify the WTS V such that it fulfils a certain property as

described in the following. We define a WTS W = (Σ,C,Θ) which recognizes L and such that

any two copies of a tile t ∈ Θ in a tiling of W must have a row- and a column-distance which is

a multiple of 3. The modification of V will become of importance later in the proof: We need

to ensure that for a 2 × 2 square of matching tiles t1, t2, t3, t4, it is not possible to directly attach

another copy of any of t1, t2, t3, t4 to this square.

We will define a SA-hypergraph automaton A = (N, E, f , d,G, E0) which simulates the

assembly of a tiled picture from L = L(W) as described in Fig. 3.2 ii). Let N be a set of

nodes such that |N | = |Θ | and let ϑ : N → Θ be a bijection. For each node x ∈ N there

is a corresponding tile ϑ(x) and vice versa. Let NT , NR, NB, NL be the set of nodes which

correspond to tiles on the top, right, bottom, left border of a tiled picture, respectively:

NT = {x ∈ N | σN(ϑ(x)) = #} , NR = {x ∈ N | σE(ϑ(x)) = #} ,

NB = {x ∈ N | σS (ϑ(x)) = #} , NL = {x ∈ N | σW(ϑ(x)) = #} .
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Let G = (N, Ev ∪ Eh, π) be the underlying graph of A. The label function π is naturally

defined as π(x) = λ(ϑ(x)) for x ∈ N. For all nodes x, y ∈ N there is an edge (x, y) ∈ Eh if and

only if σE(ϑ(x)) = σW(ϑ(y)) , # and either x, y ∈ N \ (NT ∪NB) or x, y ∈ NT or x, y ∈ NB; there

is an edge (x, y) ∈ Ev if and only if σS (ϑ(x)) = σN(ϑ(y)) , # and either x, y ∈ N \ (NL ∪ NR)

or x, y ∈ NL or x, y ∈ NR. This means if the east edge of a tile t can attach to the west edge of

tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s) are connected by an h-edge

(x, y) ∈ Eh. Analogously, if the south edge of a tile t can attach to the north edge of tile s, then

their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s) are connected by an v-edge (x, y) ∈ Ev.

If NT ∩ NB , ∅ or NR ∩ NL , ∅, the language L(W) possibly contains pictures p with

h(p) = 1 or w(p) = 1, respectively, which can be seen as one-dimensional pictures. These

pictures have to be treated separately. For now we assume that NT ∩ NB = NR ∩ NL = ∅.

The hyperedges E and the transition function d define the possible transitions of A. In every

transition we add exactly one node to the graph of a configuration of A. Our naming convention

is that x is the node which is attached in the derivation step and y, y1, y2, y3 are incoming active

nodes of the hyperedge. Every graph containing only one node which corresponds to a tile in

the top left corner is an initial graph. In order to construct a picture graph which represents

a picture in L(W) we introduce three types of transitions, see Figure 3.6. The transitions of

type I generate the top row of the graph and transitions of type II generate the left column

of the graph; both transition types keep every generated node active. Transitions of type III

generate the rest of the graph: A node is attached if it has a matching east neighbour (y1), a

matching north neighbour (y3), and these two nodes are connected by another node (y2); unless

we reach the right or bottom border of the graph the nodes x, y1, and y3 are active after using

the transition.

Formally, we define the set of hyperedges E, the set of initial edges E0, the function f , and

the transition function d as following:

Initial hyperedges: For each x ∈ NT ∩NL, corresponding to a tile in the top left corner, we

define a hyperedge ex ∈ E0 ⊆ E with associated nodes f (ex) = {x} and the transition function

d(ex) = ∅ → {x}.

Type I: For all nodes x, y ∈ NT , in the top row, such that (x, y) ∈ Eh, we define a hyperedge

ex,y ∈ E with associated nodes f (ex,y) = {x, y} and the derivation function d(ex,y) = {y} → {x, y}.
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Figure 3.6: The hyperedges in the SA-hypergraph automaton A induce three different types of
graphs. White nodes represent incoming active nodes of the hyperedges.

Type II: For all nodes x, y ∈ NL, in the left column, such that (x, y) ∈ Ev, we define a

hyperedge ex,y ∈ E with associated nodes f (ex,y) = {x, y} and the derivation function d(ex,y) =

{y} → {x, y}.

Type III: For all nodes x ∈ N\(NT∪NL) and y1, y2, y3 ∈ N such that (y2, y1), (y3, x) ∈ Ev and

(y2, y3), (y1, x) ∈ Eh, we define a hyperedge ex,y1,y2,y3 ∈ E with associated nodes f (ex,y1,y2,y3) =

{x, y1, y2, y3} and the derivation function

1. d(ex,y1,y2,y3) = {y1, y2, y3} → ∅ if x ∈ NB ∩ NR, (bottom right corner)

2. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y3} if x ∈ NB \ NR, (bottom row)

3. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y1} if x ∈ NR \ NB, (right column)

4. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y1, y3} otherwise.

Consider the graph Ge which is induced by the hyperedge e ∈ E. Depending on the type

of the hyperedge e, the graph Ge contains at least the edges shown in Figure 3.6. However,

by the modification of the Wang tile system V above, we ensured that the graph Ge contains

exactly those edges shown in Figure 3.6. Suppose one of the graphs Ge would contain an edge

(x′, y′) which is not shown in Figure 3.6, then the tile corresponding to y′ could occur in two

positions which are less than three rows and columns apart — a property that was excluded by

the modification.

We will show that p(L(A)) = L. Firstly, consider an array p̄ of tiles from Θ which is the

Wang-tiled version of the picture p ∈ L(W). We will show that the SA-hypergraph automaton

A accepts a picture graph M such that p(M) = p. We assume M to be embedded in Z2 such
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that the nodes cover the axis-parallel rectangle spanned by the points (1, 1) and (h(p),w(p)),

every v-edge points downwards, and every h-edge points rightwards; recall that our coordinates

represent the rows and columns of a matrix. The derivation leading to the final configuration

(M, ∅, g) simulates the assembly of tiles which form p̄ as shown in Figure 3.2. The north and

west edges of the tile tT L = p̄(1,1) in the top left corner of p̄ are labelled by #, and therefore,

the node xT L = ϑ−1(tT L) corresponding to tT L forms an initial graph M0. The adjacent edges

of two neighbouring tiles s, t in p̄ are labelled by the same colour. Suppose s is the west

neighbour of t, then σE(s) = σW(t) , # and both tiles belong to the same row, implying that

σN(s) = # ⇐⇒ σN(t) = # and σS (s) = # ⇐⇒ σS (t) = #. Therefore, their corresponding

nodes in G are connected by an h-edge (ϑ−1(s), ϑ−1(t)) ∈ Eh. Analogously, if s is the north

neighbour of t, then (ϑ−1(s), ϑ−1(t)) ∈ Ev. Next, we see that the hyperedges of type I and

type II can be used in order to create the top row and left column of the graph M, respectively.

Furthermore, the hyperedges of type III can be used in order to create all the remaining nodes

of M. We conclude that (M0, {xT L}, id)
∗
→
A

(M,O, g) is a derivation in A and we will prove

that (M,O, g) has to be a final configuration with O = ∅. Observe, that hyperedges of types I

and II leave all the nodes active while hyperedges of type III deactivate at least the top left

node in the hyperedge. Thus, all nodes except for those in the bottom row and in the right

column will be deactivated in the configuration (M,O, g). Furthermore, in order to create the

bottom row and right column hyperedges of type III.2 and III.3 are used, respectively, and one

rule of type III.1 is used in order to create the bottom-right node of M. It is easy to see that

the derivation function is designed such that all nodes will be deactivated in the configuration

(M,O, g) and, therefore, A accepts M.

Now, let M = (NM, Ev,M ∪ Eh,M, πM) ∈ L(A) be a graph which is generated by A. Let G be

accepted by the derivation

(M0,O0, g0)→
A

(M1,O1, g1)→
A
· · · →

A
(Mk,Ok, gk)

where (M0,O0, g0) = (Ge0 ,Oe0 , id) is an initial configuration with e0 ∈ E0 and (Mk,Ok, gk) =

(M, ∅, g) is a final configuration. Let Ni be the node set of the graph Mi. Note that for any

0 ≤ i ≤ k the function gi is the restriction of g by Ni, that is gi = g|Ni . In order to avoid
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confusion, nodes in the graph M are consistently denoted by x, y and nodes in the graph G are

consistently denoted by x′, y′; the nodes may have subscripts.

Let the nodes in the graphs M0, . . . ,Mk be embedded in Z2 such that all h-edges point

rightwards and all v-edges point downwards; just like we did above. The creation of graph

M = Mk starts with the initial graph M0 which contains only one node xT L ∈ NT ∩ NL. Let xT L

lie on position (1, 1) in all of the graphs M0, . . . ,Mk. The graph M0 can be extended rightwards

by using hyperedges of type I and downwards by hyperedges of type II. Since none of the

hyperedges attach a new node upwards or leftwards of an existing node in Mi−1 in order to

obtain Mi, the node xT L lies in the top row and in the left column of Mi. By the definition of

type I and II hyperedges, for every node y in the top row (resp., left column) of M we have

g(y) ∈ NT (resp., g(y) ∈ NL). By using hyperedges of type III the area spanned by the top row

and left column can be filled with nodes. It is easy to see that for all graphs M0, . . . ,Mk we have

that if a node lies on position (i, j), then for all (i′, j′) ∈ [i] × [ j] a node lies on position (i′, j′).

Furthermore, if i′ < i, then the node on position (i′, j′) has an outgoing v-edge, and if j′ < j,

then the node on position (i′, j′) has an outgoing h-edge. In other words, in the axis-parallel

rectangle spanned by the points (1, 1) and (i, j) all nodes are connected by edges with all direct

neighbours (nodes which have an Euclidean distance of 1).

In the final configuration (Mk, ∅, g) there are no active nodes. Thus, the last node which is

added to the graph Mk−1 in order to obtain Mk is a node xBR such that g(xBR) ∈ NB ∩ NR, as

all other derivation rules will leave some nodes active. Next, let us consider the nodes which

belong to the same row and column as xBR does. Note that if two nodes x and y in M are

connected by an edge, then the corresponding nodes g(x) and g(y) in G are connected by an

edge, too; more precisely, if (x, y) ∈ Ev,M, then (g(x), g(y)) ∈ Ev, and if (x, y) ∈ Eh,M, then

(g(x), g(y)) ∈ Eh. Since a node in NB (resp., NR) is connected only by h-edges (resp., v-edges)

in G to other nodes from NB (resp., NR), we see that for every node y in the row of xBR (resp.,

column of xBR) we have g(y) ∈ NB (resp., g(y) ∈ NR). A node y′ ∈ NB (resp., y′ ∈ NR) does

not have any outgoing v-edges (resp., h-edges) as the south edge (resp., east edge) of ϑ(y′) is

labelled by #. We conclude that xBR sits in the bottom row and right column of the graph M

and, by the observations made above, this implies that M is a picture graph.

We claim that the picture p(M) which corresponds to the graph M can be generated by the
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assembly p̄ given by the embedding of nodes in M and the function ϑ ◦ g. Clearly, for every

node y on position (i, j) in M we have that p(M)i, j = πM(y) = λ(ϑ(g(y))), therefore, the pictures

p and λ(p̄) coincide. Next, we prove that p̄ is a tiled picture in the Wang tile system W. Recall,

that all nodes on the top, right, bottom, and left border of M correspond to tiles in MT , MR, MB,

and ML, respectively, and therefore, p̄ is well-bordered. Let tx and ty be two neighbouring tiles

in p̄ which lie on positions (i, j) and (i, j+1), respectively. Let x and y be the nodes in M which

lie on the positions (i, j) and (i, j + 1), respectively. Note that tx = ϑ(g(x)) and ty = ϑ(g(y)).

Since M is a picture graph, (x, y) ∈ Eh,M and (g(x), g(y)) ∈ Eh. The edge set Eh was built to

ensure that σE(tx) = σW(ty). We conclude that all adjacent east-west edges in p̄ have matching

colours. By symmetric arguments, we also conclude that all adjacent north-south edges in p̄

have matching colours. Therefore, p̄ is a tiled picture in W and p ∈ L.

Finally, let us consider the case when NT ∩ NB , ∅. We can add a component to the SA-

hypergraph automaton which works similar to a non-deterministic finite automaton and where

every hyperedge induces an graph of type I in Figure 3.6. The initial graphs are given by all

nodes from NT ∩ NB ∩ NL. For all nodes x, y ∈ NT ∩ NB with (y, x) ∈ Eh we define a hyperedge

ex,y such that f (ex,y) = {x, y}. The derivation function is given as d(ex,y) = {y} → {x} if x < NR,

and d(ex,y) = {y} → ∅ otherwise. Obviously, this attachment to the hypergraph A accepts all

graphs which correspond to pictures p ∈ L with h(p) = 1. The case when NL ∩ NR , ∅ can be

covered analogously.

Next, we prove that a picture language L = p(L(A)), associated to the graph language L(A), is

WTS-recognizable if A does not contain a strong loop.

Let A be an SA-hypergraph automaton. A series of hyperedges s = 〈e0, e1, . . . , en〉 from A

is a (derivation) loop if e0 = en and Q2,i ∩ Q1,i+1 , ∅ where d(ei) = Q1,i → Q2,i for 0 ≤ i < n.

Loops in an SA-hypergraph automaton are a prerequisite for using a hyperedge several times

in one derivation. Therefore, an SA-hypergraph automaton without any loops can only accept

a finite graph language. Let Gi = Gei be the graph induced by ei, let x be a node in G0 = Gn,

and let Oi = Q2,i ∩ Q1,i+1 be the set overlapping incoming/outgoing active nodes of Gi and

Gi+1. There is a path in the underlying graph of A from x to x which only visits the subgraphs

G0, . . . ,Gn, in the given order, and passes through at least one node of each Oi (the path may

use incoming and outgoing edges). The loop s is a strong loop if, on this path, the number of
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Figure 3.7: Let A = (N, E, f , d,G, E0) be an SA-hypergraph automaton where N, E, f , and
G are defined in part i). function d is defined such that d(e1) = {x1} → {x2, x4, x5}, d(e2) =

{x2, x5} → {x2, x5, x6} and d(e3) = {x2, x4, x5, x6} → {}. SA-hypergraph automaton starts from
e1. Part ii) shows the set of all the possible tile candidates. On each tile related node and the
set of ψ are written. The tiling on part iii) is the result of overlapping of three hyperedges e1, e2

and e3.

incoming horizontal edges equals the number of outgoing horizontal edges and the number of

incoming vertical edges equals the number of outgoing vertical edges. In other words, when

starting from a configuration M and successively gluing the hyperedges from s to M, then the

subgraph added by the hyperedge e0 and the subgraph added by the hyperedge en fully overlap

when naturally embedded in Z2. Note that, by Remark 3.3, all graphs Gi are subgrids which

implies that the choice of the path from x to x does not matter in this definition.

Theorem 3.4.2 Let A be an SA-hypergraph automaton without any strong loops. The picture

language L = p(L(A)), associated to the graph language L(A), is WTS-recognizable (Wang

tile system recognizable).

Proof Let A = (N, E, f , d,G, E0) and let G = (N, Ev∪Eh, π). We may assume that e ∈ E0 if and

only if d(e) = ∅ → Oe. Therefore, none of the initial hyperedges can be used in a transition.

This assumption is justified by the fact that we can duplicate all hyperedges in E0 such that one

copy can be used in a transition but does not belong to E0 and the other copy which belongs to

E0 cannot be used in a transition. Furthermore, any hyperedge without incoming active nodes

which does not belong to E0 is useless and can be removed from E.

For a node x ∈ N we define the list of related hyperedges to x, Hx = {e ∈ E | x ∈ f (e)}.

Let x be a node and ψ ⊆ Hx. We call a hyperedge g ∈ ψ a generator of (x, ψ) if x < Q1 with

d(g) = Q1 → Q2. Note that if g ∈ E0, then g must be a generator. We call a hyperedge c ∈ ψ
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a consumer of (x, ψ) if x < Q2 with d(c) = Q1 → Q2. The pair (x, ψ) is a tile candidate if ψ

contains exactly one generator g(x,ψ) and exactly one consumer c(x,ψ); furthermore, if g(x,ψ) =

c(x,ψ), we require that ψ = {g(x,ψ)}. Note that if g(x,ψ) , c(x,ψ), then for all e ∈ ψ with d(e) = Q1 →

Q2, we have that x ∈ Q1 unless e is the generator and x ∈ Q2 unless e is the consumer. The

tile candidate (x, ψ) describes the attachment of a copy of the node x to the output graph by the

generator; afterwards, x is used as active node by all hyperedges in ψ \ {g(x,ψ), c(x,ψ)}; finally, x

is deactivated by the consumer. Let Gψ be the node-induced subgraph of G by
⋃

e∈ψ f (e). If

Gψ is not a subgrid (a subgraph of some picture graph), we remove (x, ψ) from the set of tile

candidates. Let Ψ denote the set of all remaining tile candidates.

The Wang tile system W = (Σ,C,Θ) which recognizes L is constructed based on the list Ψ.

In order to recognize the picture language associated toL(A), we have to define the attachments

of tile candidates. We use unordered pairs {(x, ψ), (y, ϕ)} ∈ Ψ2 of tile candidates for the colours

on the edges. For a tile candidate (x, ψ) ∈ Ψ we define the set of labelled Wang tiles

Θ(x,ψ) = SN,(x,ψ) × SE,(x,ψ) × SS ,(x,ψ) × SW,(x,ψ) × {lx}

where lx is the label π(x) and SN,(x,ψ), SE,(x,ψ), SS ,(x,ψ), SW,(x,ψ) are sets of colours which are

defined below. The set of all tiles is the union Θ =
⋃

(x,ψ)∈Ψ Θ(x,ψ).

For (x, ψ), (y, ϕ) ∈ Ψ, we let {(x, ψ), (y, ϕ)} ∈ SE,(x,ψ) and {(x, ψ), (y, ϕ)} ∈ SW,(y,ϕ) if and only

if

1. (x, y) ∈ Eh,

2. Hx ∩ ϕ ⊆ ψ,

3. ψ ∩ Hy ⊆ ϕ, and

4. g(x,ψ) = g(y,ϕ) or y ∈ Q1 for d(g(x,ψ)) = Q1 → Q2 or x ∈ Q′1 for d(g(y,ϕ)) = Q′1 → Q′2.

For (x, ψ), (y, ϕ) ∈ Ψ, we let {(x, ψ), (y, ϕ)} ∈ SS ,(x,ψ) and {(x, ψ), (y, ϕ)} ∈ SN,(y,ϕ) if and only

if (x, y) ∈ Ev and conditions 2 to 4 are satisfied. For (x, ψ) ∈ Ψ, we let SE,(x,ψ) = {#} if x

does not have an outcoming horizontal edges in the graph Gψ. By symmetric condition we let

SN,(x,ψ) = {#}, SS ,(x,ψ) = {#}, or SW,(x,ψ) = {#}.
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Now, consider an m × n-picture graph M = (NM, Ev,M ∪ Eh,M, πM) ∈ L(A). We will show

that there is a tiled version p̄ of picture p = p(M) which uses tiles from Θ and, therefore, p is

recognized by W. Let G be accepted by the derivation

(M0,O0, g0)→
A

(M1,O1, g1)→
A
· · · →

A
(Mk,Ok, gk)

where (M0,O0, g0) = (Ge0 ,Oe0 , id) is an initial configuration (that is e0 ∈ E0) and (Mk,Ok, gk) =

(M, ∅, g) is a final configuration. Let ei be the hyperedge and Pi ⊆ Oi−1 be the active nodes

which are used in the transition (Mi−1,Oi−1, gi−1) →
A

(Mi,Oi, gi). Let d(ei) = Q1,i → Q2,i for

1 ≤ i ≤ k. Recall that, by definition, Mi−1 is a full subgraph of Mi and, by induction, every

graph Mi is a full subgraph of M. Being an m×n-picture graph, the nodes in M can be naturally

embedded in [m] × [n] by the function fM.

Consider one node x′ ∈ NM and its original x = g(x′) in G. We assign to x′ a list of

hyperedges ψ ⊆ E such that ei ∈ ψ if x′ ∈ Pi or x′ belongs to Mi but not Mi−1. We intend

to use a tile from Θ(x,ψ) for the pixel p̄ fM(x′) representing x′ in the tiled picture p̄. Observe

that ψ contains a consumer as x′ is not active in the final configuration and ψ cannot contain

two consumers because a node can only be deactivated once. In addition, the hyperedge ei

such that x′ belongs to Mi but not Mi−1 is the single generator in ψ. Since Gψ is isomorphic

to a subgraph of M, we conclude that (x, ψ) is indeed a tile candidate. If x′ does not have an

outgoing horizontal edge, then the node x in the graph Gψ cannot have an outgoing horizontal

edge either and, therefore, SE,(x,ψ) = {#}. Symmetric arguments apply if x does not have an

incoming horizontal, outgoing vertical, or incoming vertical edge.

Next, consider two nodes x′, y′ ∈ NM which are connected by an edge and, by symmetry,

assume (x′, y′) is a horizontal edge. Let x = g(x′), y = g(y′) be their originals and let ψ, ϕ be

the set of hyperedges associated to x′, y′, respectively. We will show that {(x, ψ), (y, ϕ)} is a

colour in SE,(x,ψ) as well as in SW,(y,ϕ). Thus, we can choose tiles from Θ(x,ψ) and Θ(y,ϕ) for the

positions fM(x′) and fM(y′) in p̄, respectively. Clearly, the choice of the tiles also depends on

the other neighbours of x′ and y′. We have to show that conditions 1 to 4, above, are satisfied.

The first condition is satisfied by assumption. By contradiction, suppose the second condition

is not satisfied. There is ei ∈ Hx ∩ ϕ \ ψ; thus, in the i-th step of the derivation we use the
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hyperedge ei that presupposes or generates an edge (x′′, y′) in M where g(x′′) = x but x′′ , x′.

This would imply that y has two incoming horizontal edges whence M is not a picture graph.

The third condition is satisfied by symmetric arguments. The edge (x′, y′) in M can only be

created in step i where x′ or y′ is added to the graph Mi−1. Thus, x′ and y′ either have the same

generator in (x, ψ) and (y, ϕ), or x′ is in the active nodes when y′ is generated, or y′ is in the

active nodes when x′ is generated. In all cases condition 4 is satisfied.

We conclude that a tiled picture p̄ such that p = p(M) and M ∈ L(A) can be generated by

using tiles from Θ and, therefore, p(M) ∈ L(W).

Consider a picture p ∈ L(W) and let p̄ be the tiled version of p, using tiles from Θ =⋃
(x,ψ)∈Ψ Θ(x,ψ).

We start by introducing the concept of masks which can be seen as connected subpictures

of the tiled picture p̄ that represent the nodes in one hyperedge. A mask m is a h( p̄) × w(p̄)

matrix of tiles from Θ ∪ {empty}, such that either m(i, j) = empty or m(i, j) = p̄(i, j) for all (i, j) ∈

[h(p̄)] × [w( p̄)]. In addition, we require that the non-empty entries in m are connected; that is,

for every pair of tiles m(i′, j′),m(i, j) ∈ Θ there exists a sequence r = 〈r0, r1, · · · , rn〉 of tiles in m

such that r0 = m(i, j), rn = m(i′, j′), rk ∈ Θ, and rk, rk+1 must be adjacent for all 0 ≤ k < n.

Let e ∈ E be an hyperedge and let Ge = (Ne, Ee,v ∪ Ee,h, πe) be the graph induced by this

hyperedge. By Remark 3.3, we assume that Ge is a subgrid. We say Ge is mapped to a mask

m if there is a injective function h : Ne → [h(p̄)] × [w( p̄)] which satisfies: m(i, j) belongs to Θ

if and only if (i, j) is in the domain of h; for all nodes x, y ∈ Ne there is an edge (x, y) ∈ Ee,h

(resp., (x, y) ∈ Ee,v) if and only if h(x) is in north (resp., west) neighbour of h(y). Whenever

we use this mapping, we will ensure that for all x ∈ Ge the tile p̄h(x) belongs to Θ(x,ψ) for some

ψ ⊆ E.

Consider a tile t ∈ p̄(i, j) ∈ Θ(x,ψ) and a hyperedge e ∈ ψ. We define the mask m[(i, j),x,e] such

that the graph Ge can be mapped by function h to m[(i, j),x,e] and h(x) = (i, j). We say that e is

the hyperedge related to the mask m[(i, j),x,e]. Let t′ = p̄(i′, j′) ∈ Θ(y, ϕ) be a tile that is adjacent

to t and let e ∈ ψ. For simplicity we only consider the case when t′ is the east neighbour of t;

i.e., (i′, j′) = (i, j + 1). We will show that if (i′, j′) is non-empty in m[(i, j),x,e], then e ∈ ϕ. Since

t′ is the east neighbour of t conditions 1 to 4, above, apply. As (i′, j′) is non-empty in m[(i, j),x,e],

there exists a horizontal edge (x, z) in Ge. Furthermore, from conditions 1 and 4 it follows that
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(x, y) is a horizontal edge in the graph Gg induced by the generator g = g(x,ϕ). As both graphs

Ge and Gg are subgraphs of the subgrid Gψ, we see that the edges (x, y) and (x, z) coincide,

thus, y = z. We conclude y ∈ Ge and e ∈ Hy. By condition 3, e ∈ ϕ. Because the hyperedge e

induces a connected graph, we can infer that for all non-empty m[(i, j),x,e]
(i′′, j′′) ∈ Θ(z,χ), we find e ∈ χ.

Note that this also implies that m[(i, j),x,e] = m[(i′, j′),y,e] = m[(i′′, j′′),z,e].

We define the set of masks µ = {m[(i, j),x,e]|p̄(i, j) ∈ Θ(x,ψ), e ∈ ψ} which are induced by

hyperedges in the above manner. Intuitively, every mask in µ represents one transition in the

derivation of a picture graph M which represents the picture p = p(M). In order to use a

transition defined by a mask, we need to guarantee that all of its input areas exist and are

active. We will order the set µ accordingly. Let us define the relation R ⊆ µ × µ such that

(m, n) ∈ R if the transition represented by m has to be used before the transition represented

by n. Let m and n be two distinct masks in µ. The pair (m, n) is in R if there exists (i, j) such

that m(i, j) = n(i, j) ∈ Θ(x,ψ), and m = m[(i, j),x,g] where g = g(x,ψ) or n = m[(i, j),x,c] where c = c(x,ψ).

The pair (µ,R) can be seen as directed graph Gµ. First, we show that the graph Gµ does not

contain any loops, afterwards, a topological sort of this graph is used to order the transitions

represented by the masks.

When two masks overlap on a tile (have a common non-empty entry), regarding the con-

struction of tile candidates, we know that the related hyperedge of exactly one of these masks

is the generator of the input area of the other hyperedges. Hence, these masks are connected

in the graph Gµ. By contradiction, assume that 〈n0, n1, . . . , nl〉 is a non-trivial loop in Gµ (i.e.,

(ni, ni+1) ∈ R for every 0 ≤ i < l − 1 and (nl, n0) ∈ R). However, the sequence of related hyper-

edges to this sequence of mask is a strong loop in the SA-hypergraph automaton A which was

excluded by assumption. Moreover, since two tiles with different generators cannot connect

without satisfying conditions 4, the graph Gµ must be connected. Therefore, graph Gµ can be

topologically sorted. Sorting of the hyperedges guaranteed that the active input nodes of one

hyperedge are generated before the gluing of the hyperedge.

By contradiction, assume that graph Gµ has two distinct nodes m1 and m2 without any

input edges. Let m3 be the first node in the topological order such that paths m1 →
∗ m3 and

m2 →
∗ m3 exist in Gµ. As m3 is chosen minimal, these paths do not share any node other than

m3. Recall that all incoming active nodes of a hyperedge are connected. Considering that two
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nodes cannot connect to each other unless they are in the same hyperedge or they have glued

to each other, we have a contradiction as m3 cannot be the first common node on both paths.

We conclude that graph Gµ has only one node without input.

Now, let m0,m1, . . . ,mk be the topological sort of µ by the relation R. We define m + n = o

such that o(i, j) = empty if m(i, j) = n(i, j) = empty; otherwise, o(i, j) = p̄(i, j). We will show that a

graph Mk can be generated by a derivation

(M0,O0, g0)→
A

(M1,O1, g1)→
A
· · · →

A
(Mk,Ok, gk)

such that the graph Mi can be mapped to the mask
∑i

j=0m j; this implies that mk can be mapped

to p̄ =
∑k

j=0m j. Let ei be the hyperedge related to the mask m. The graph M0 = Ge0 is an

initial graph because m0 has no incoming edges in Gµ and, therefore, the derivation function of

e0 is d(e0) = ∅ → Q2; thus, (M0,O0, g0) where O0 = Q2 and g0 = id is an initial configuration.

In derivation step (Mi−1,Oi−1, gi−1) →
A

(Mi,Oi, gi) we use the hyperedge ei. By induction, we

can assume that Mi−1 can be mapped to
∑i−1

j=0m j by a function hi−1. There is only one way

to glue the hyperedge ei to Mi−1 such that resulting graph Mi can be mapped to
∑i

j=0m j. We

have to prove that all incoming active nodes of Gei exist and are active in Mi. Let x be an

incoming active node which is represented by the tile p̄(a,b) ∈ Θ(x,ψ). The definition of R ensures

that the mask representing the generator of (x, ψ) in (a, b) has already been used and that the

mask representing the consumer of (x, ψ) in (a, b) has not yet been used. Finally, every tile

candidate has a consumer which means that there are no active nodes in the final configuration

(Mk,Ok, gk). As result, the picture p, generated by the suggested tiling system, is in p(L(A)).

3.5 Conclusion

We introduced SA hypergraph automata, a language/automata theoretic model for patterned

self-assembly systems. SA hypergraph automata accept all recognizable picture languages but,

unlike other models, (e.g. Wang Tile Automata) SA-hypergraph automata do not rely on an a

priori given scanning strategy of a picture. This property makes the SA hypergraph automata

better suited to model DNA-tile-based self-assembly systems.
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SA-hypergraph automata provide a natural automata-theoretic model for patterned self-

assemblies that will enable us to analyse self-assembly in an automata-theoretic framework.

This framework lends itself easily to, e.g., descriptional and computational complexity anal-

ysis, and such studies may ultimately lead to classifications and hierarchies of patterned self-

assembly systems based on the properties of their corresponding SA-hypergraph automata. An

additional feature is that each SA-hypergraph automaton accepts an entire class of “supertiles”

as opposed to a singleton set, which may also be of interest for some applications or analyses.
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Chapter 4

Simplifying the Role of Signals in Tile

Self-assembly1

4.1 Introduction

A self-assembly system is an autonomous system whereby small components attach to each

other via local interactions, in order to build a larger structure. Many examples of self-assembly

systems exist in nature, a ubiquitous example being molecules that bind to each other via

chemical bonds to form macromolecules or crystals. DNA-based self-assembly was introduced

by Seeman [16] in 1982, when he designed a nanoscale DNA complex that could attach to

four similar DNA complexes via DNA Watson-Crick complementarity. The self-assembly of

many such DNA complexes resulted into a two-dimensional DNA lattice. Afterwards [18] [19]

introduced rectangular DNA complexes called tiles, with a “sticky end” (single-stranded DNA

sequences) at each corner, called “glue”. In this framework, a tile could attach to another tile if

the sticky ends representing their corresponding corners were complementary DNA sequences.

Winfree [17] introduced the abstract Tile Assembly Model (aTAM) as a theoretical model to

describe DNA self-assembly systems. In the aTAM, labelled unit squares with coloured edges

are used to represent DNA tiles. The colours (labels) on the edges represent the glues of the

DNA tiles. In addition to the labels on its edges, each tile itself can have a label. In the aTAM,

1This chapter is based on the paper Lila Kari, Amirhossein Simjour: Simplifying the Role of Signals in Tile
Self-assembly. (Submitted)
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each glue has a “strength” (a positive integer value), and a single tile can attach to an already

assembled structure if the sum of the strengths of the glues which bind on the edges abutting

the structure exceeds an a priori given positive numerical constant, called “temperature”.

Following Winfree’s aTAM, several other models were proposed for DNA self-assembly

systems. For example, Aggarwal et al. [1] introduced a model that allows changes of the tem-

perature during the assembly process, as well as a model that allows attachments of structures

composed of multiple tiles. Aggarwal et al. [1] also compared different self-assembly models

based on the number of different tile types (called tile complexity [15]) needed to construct an

arbitrary rectangle. Reif et al. [14] investigated the possibility of tile detachment, and intro-

duced a graph model as a general model for non-square tiles. Padilla et al. [10] introduced

tiles that not only have multiple glues on each edge, but also have a limited ability to commu-

nicate with the tiles that are attached to them, via signals. The authors showed how signals

can be implemented experimentally so as to be used to activate or deactivate glues. Doty et al.

[6] expanded the aTAM model by adding the notion of repellent (negative-valued) glues. The

authors showed that such a model can simulate a Turing machine using smaller intermediate

assembly configurations compared to the original aTAM model. Other self-assembly models

exist, see [12] for a review.

Padilla et al. [11] introduced the Signal Tile Assembly Model (STAM) as a mathemati-

cal model for tiles with the ability of sending signals that can activate and deactivate glues.

The STAM uses as underlying model the 2-Handed Assembly Model (2HAM) [5], where two

structures composed of multiple tiles can attach to each other if the strength of the glues at

the abutting edges of the structures exceed the temperature (as opposed to the aTAM, where a

single tile attaches to the growing structure at every time step).

Padilla et al. [11] proved that, for some specific shapes, the use of the STAM can reduce

the tile complexity of the construction. Recently, Fochtman et al. [7] showed that a subset

of the STAM that does not allow deactivation of glues can be simulated by three-dimensional

2HAM. Keenan et al. [9] investigated the usability of STAM in the replication of some patterns

(rectangular structures with coloured tiles which form a pattern). The construction has some

limitations, e.g., patterns are hole-free, and all tiles have to be able to support a set of predefined

signals to make replication possible.
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In this paper, we introduce DTAM (Detachable Tile Assembly Model), which is a simplified

version of the STAM that is based on the 2-HAM model, and uses only glue-deactivating sig-

nals (instead of signals that can both activate and deactivate glues). We also introduce SDTAM

(Simplified Detachable Tile Assembly Model), which is a further simplified version of DTAM

wherein the attachment of only a single tile at each step is allowed. One of our main results

shows a simulation of an arbitrary Turing machine by an SDTAM at temperature one (Theorem

4.3.1), showing thus that SDTAM can achieve universal computational power in spite of being

a simplified version of STAM. Moreover, the Turing-simulating SDTAM we construct utilizes

at most one signal per tile, and signals travel through only one tile before deactivating a glue,

both of which could have implications for the practical implementations of such signal-based

self-assembly systems. Our second result, Theorem 4.4.1, presents a DTAM construction of a

“thin rectangle”, of size N × N!, that uses only O(log N) tiles. This is an improvement over the

tile complexity of existing models, the best of which use O(log N!/ log log N!) = O(N) tiles to

build the same rectangle [1].

The paper is organized as follows. Section 4.2 introduces the formal definitions of DTAM

and SDTAM. In Section 4.3 we prove that SDTAM can simulate a Turing machine - the con-

struction is based on simulating a deterministic zig-zag tile assembly system (known to be

Turing universal [4]) by an SDTAM at temperature 1. Section 4.4 presents the construction of

an N × N! rectangle using DTAM, and calculates its improved tile complexity, and Section 4.5

presents the conclusions.

4.2 The Detachable Tile Assembly Model

Informal Description of STAM

The Signal Tile Assembly Model (STAM)[11] is a tile assembly model based on 2HAM,

wherein each tile possesses a set of glues on each edge (instead of one glue per edge, like

in aTAM and 2HAM), and glues can be activated or deactivated by signals. In STAM, each

glue on an edge can be in one of three states: latent, on, or off. Only a glue that is active (it is

in the on state) can contribute to attaching the tile to another tile with an identical active glue
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on the abutting edge. If the state of a glue is off or latent, the glue is inactive and it does not

have any attachment power. In order to change the states of the glues, signals are used.

Intuitively, a signal is a mapping associated to a given tile that assigns to a glue on an edge

a set of changes in the state of the glues on the other edges. For example, assume that tile t

has glue ge on the East edge, glue gs on the South edge, and glue gn on the North edge. Also

assume that all these glues are on, and assume that there is a signal on the East side of the

tile t that assigns a change of the state of the glue gs to off. If that is the case, and if the tile t

attaches to another tile via its East edge, the signal deactivates the glue gs, that is, it changes its

state to off. Signals can change the state of a glue from latent to on or to off, or from on to off.

Note that, once a glue is in the off state, its state cannot be changed anymore. A tile can send

a signal to its neighbour tile by activating a glue on an edge that is common with a neighbour

tile. Signals can change the state of the glues, therefore signals can activate new glues and thus

initiate a signal in the next tile. Moreover, signals can activate glues on a free edge and make

new attachments possible. In addition to the activation, signals can deactivate the glues and, as

a result, an existing structure might become unstable. In the STAM model, if the deactivation

of a glue makes a structure unstable, the structure will break apart into two stable components.

Informal Introduction to DTAM

Here we define the Detachable Tile Assembly Model (DTAM) model as a variation of STAM.

DTAM is a weaker version of STAM, whereby the signals are used only to deactivate glues.

Thus all glues will start in the state on, and the state latent is not used. In addition, the signals

themselves can only be turned on. Note that, since DTAM does not use the signals to activate

glues, no new attachment possibilities (besides those that were present in the initial set-up) will

be introduced during the self-assembly process. In Section 4.4 we will show that, in spite of

these restrictions, the use of DTAM reduces the tile complexity of the construction of a thin

rectangle as compared to [1].

We also introduce the Simplified Detachable Tile Assembly Model (SDTAM), which is a

restricted version of SDTAM wherein one starts with a single seed tile and, at each step, only

the attachment of a single tile to the current configuration is allowed. In Section 4.3 we will
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prove that SDTAM is Turing universal at temperature 1.

4.2.1 Formal Definition of DTAM

Detachable Tiles

A detachable tile is a unit square with the following properties. On each of its edges it has a

set of glues and a set of signals, each of whom can be in a state from Q = {on, off}. Figure 4.1

part (i) shows an example of a tile in aTAM, and part (ii) illustrates the glues and signals of

a detachable tile in DTAM. To each tile, we also associate a transition function, as described

in the following. Note that, for simplicity, the states of the glues and signals are showed by

superscripts: The superscript ’+’ indicates the state on and the superscript ’-’ indicates the state

off. Since we only consider self-assembly models with detachable tiles, in the remainder of the

paper we will call a detachable tile simply a tile.

Figure 4.1: Part (i) shows a tile in the aTAM model: the tile has one glue on each side. Part
(ii) shows the glues and signals on the edges of a detachable tile in the DTAM model: On the
North edge, the presence of the set {b+, e−} denotes that glue b is on and glue e is off, while
the set {s+

1 , s
−
2 , s

−
3 } denotes that the signal s1 is on, and that signals s2 and s3 are off at this time.

Part (iii) shows the tile defined in Example 0.1. The transition function ∆t has two transitions.
First, the transition δ1 = ∆t(N, s3) = {(S , j)} (green) starts from the signal s3 on the North
edge, and deactivates the glue j on the South edge. Second, the transition δ2 = ∆t(S , s5) =

{(E, c), (N, s2), (W, s7)} (blue) starts from the signal s5 on South edge, deactivates the glue c
on the East edge, turns on the signal s2 on the North edge, and turns on the signal s7 on the
West edge. The arrows with filled arrowheads represent the paths that turn signals on, while
the arrows with empty arrowheads represent the paths that signals walk through to deactivate
glues. All transitions are considered pending, and will be applied only if the originating signal
(s5, respectively s3) enters the on state.

Let Γ (the set of glues) and Σ (the set of signals) be two finite alphabets. The set of directions

D = {N, E,W, S } is the set of directions North, East, West, and South, respectively. If d ∈ D is

a direction, we define d̄ to be the opposite direction of d, where W̄ = E, N̄ = S , Ē = W, and
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S̄ = N.

A tile T over the alphabet Γ × Σ is a 3-tuple t = (Gt, S t,∆t) where Gt : D → P(Γ × Q) is

a function which, for every direction d ∈ D, specifies the set of glues on the edge d of the tile

t, together with their respective states. Similarly, S t : D → P(Σ × Q) is a function which, for

every direction d ∈ D, specifies the set of all signals on the edge d of the tile t, together with

their respective states.

Note that if, for a direction d ∈ D, we have that Gt(d) = ∅ (respectively S t(d) = ∅), this

means that there are no glues (respectively no signals) on the edge d of the tile t.

The transition function of the tile t is defined as a function ∆t : D×Σ→ P((D×Γ)∪(D×Σ)).

In DTAM, glues can only be deactivated, and signals can only be turned on, that is, (d, g) ∈

∆t(d′, s′) means that an active glue g+ on the d edge of the tile will be deactivated (become g−),

and (d, s) ∈ ∆t(d′, s′) means that an off signal s− on the d edge of the tile will be turned on

(become s+).

Note that, for a tile t, the transition function ∆t is invariant, but for each direction d, the

states of glues Gt(d), and the states of signals S t(d) change over time.

Transitions can only be applied when the corresponding signals are on. For example, the

glue g+ on the edge d of the tile t will be deactivated if and only if (d, g) ∈ ∆t(d′, s′) and

(s′, on) ∈ S t(d′). Similarly the signal s− will be turned on if and only if (d, s) ∈ ∆t(d′, s′) and

(s′, on) ∈ S t(d′).

In addition, the tile t must satisfy the following conditions:

1. There can be only one glue and one signal of each kind on any given edge of a tile. In

other words, for a given tile t, for all d ∈ D and for all (g, q), (g, q′) ∈ Gt(d), we have q =

q′. Similarly for signals, for a given tile t, for all d ∈ D and for all (s, q), (s, q′) ∈ S t(d),

we have q = q′.

2. Transitions in ∆t can only deactivate glues that already exist on an edge. This means that,

if (d, g) ∈ ∆t(d′, g′) then (g, q) ∈ Gt(d) for some q ∈ Q.

3. Transitions in ∆t can only activate signals that already exist on an edge. This means that,

if (d, s) ∈ ∆t(d′, g′) then (s, q) ∈ S t(d) for some q ∈ Q.
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4. Transitions in ∆t cannot deactivate their own starting signals. This means that (d, s) <

∆t(d, s).

The following example, illustrated in Figure 4.1 part (iii), describes a detachable tile with

the states of its glues, states of its signals, and its transitions. Note that, in this and subsequent

figures, transitions are depicted by arrows: The origin (respectively the destination) of the

arrow in the tile indicates the signal that must be turned on for the transition to be applied

(respectively which signal is turned on by this transition, or which glue is deactivated by this

transition). The convention that we use is that arrows depicting transitions which turn signals

on have filled arrow-heads, while those depicting transitions that deactivate glues have empty

arrowheads.

Example 0.1 Assume that Γ = {a, b, c, e, f , h, i, j} and Σ = {s1, s2, s3, s4, s5, s6, s7}. The tile t is

defined as t = (Gt, S t,∆t) where Gt(W) = {a+}, Gt(N) = {b+, e−}, Gt(E) = {c+, f −, h−}, Gt(S ) =

{d+, j−}, and S t(W) = {s7
−}, S t(N) = {s1

+, s2
−, s3

−}, S t(E) = {s4
−}, S t(S ) = {s5

−, s6
+}. The

transition function ∆t is defined by ∆t(N, s3) = {(S , j)} and ∆t(S , s5) = {(E, c), (N, s2), (W, s7)}.

Informally, the transition δ1 : ∆t(N, s3) = {(S , j)} starts from the signal s3 on the North edge

and activates the glue j on the South edge. Similarly, δ2 : ∆t(S , s5) = {(E, c), (N, s2), (W, s7)},

starts from the signal s5 on the South edge and deactivates the glue c on the East edge, turns

on the signal s2 on the North edge, and turns on the signal s7 on the West edge. The transitions

are considered pending, and will only be applied if the corresponding signals enter into the on

state.

4.2.2 Transitions

Before the formal definition of transitions and DTAM, we review the definitions of assembly-

graph, glue strength, configuration, and supertile.

Configurations and Associated Binding Graphs

Let f : A → B be a function and A′ ⊆ A. The restriction of f to A′ is a function f |A′ : A′ → B

defined as f |A′(x) = f (x) for all x ∈ A′.
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A pseudo-grid graph is a directed weighted graph G = (NG, EGv ∪ EGh, πG) where NG

is a finite set of nodes, EGv, EGh ⊆ NG × NG are two sets of edges (called the vertical and

horizontal edges respectively) such that EGv∩EGh = ∅, and the function πG : (EGv∪EGh)→ Z+

is a weight function that associates a weight to every edge in the graph. The node-induced

subgraph of G by the subset N′G ⊆ NG is defined as the graph G|N′G = (N′G, EG
′
v ∪ EG

′
h, π

′
G)

where EG
′
v =

{
(α, β) ∈ EGv

∣∣∣ α, β ∈ N′G
}

and EG
′
h =

{
(α, β) ∈ EGh

∣∣∣ α, β ∈ N′G
}
, while π′G equals

πG|EG
′
v×EG

′
h
.

If Γ is a set of glues, a glue-strength function g over Γ is defined as g : Γ → Z+ where

Z+ = {x ∈ Z|x ≥ 0}, and for a glue γ ∈ Γ, g(γ) is called the glue-strength of the glue γ or

shortly the strength of γ.

Let Θ be a set of tiles over Γ × Σ, and let g be a glue-strength function over Γ. A (partial)

mapping C : Z2 → Θ is called a general configuration over the tile set Θ. Note that, in the

experimental implementation of self-assembly by square DNA tiles that can bind to each other,

tiles and supertiles can move on the two-dimensional plane during the process of assembly.

To reflect this, if two general configurations coincide in all definition details, except that the

domain of one can be obtained from the domain of the other via a translation, they will be

considered to be the same.

A pseudo-grid graph GC = (NG, EGv ∪ EGh, πG) is called the assembly-graph associated to

the general configuration C over the tile set Θ, if there is a bijection f : NG → dom(C) such

that for all α, β ∈ NG, we have (α, β) ∈ EGv if and only if f (α) + (0, 1) = f (β), and (α, β) ∈ EGh

if and only if f (α) + (1, 0) = f (β).

The weight function πG of GC is defined as follows. Assume, without loss of generality,

that e = (α, β) is a vertical edge in EGv, from node α to node β, where f (α) = (x1, y1), and

C(x1, y1) = (G1, S 1,∆1) ∈ Θ while f (β) = (x2, y2), and C(x2, y2) = (G2, S 2,∆2) ∈ Θ. The

weight of an edge e of the assembly-graph GC is defined as π(e) =
∑

g(Γ) where Γ ranges

over all glues that are active on both the North edge of tile C(x1, y1) and the South edge of tile

C(x2, y2). If there is no glue Γ with this property then π(e) = 0. The weight function is defined

similarly for horizontal edges.

In other words, the nodes of an assembly-graph GC associated to a general configuration

C can be embedded in Z2 such that every edge in EGv has length 1 and points upwards, every
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edge in EGh has length 1 and points rightwards, two nodes with Euclidean distance 1 are con-

nected by an edge, and a tile is placed at each node. Note that graph edges are different from

(perpendicular to) the edges of the tiles, with each graph edge corresponding to an attachment

between two adjacent tiles, see Figure 4.2. The weight of a graph edge indicates the power of

the attachment of corresponding adjacent tiles.

Figure 4.2: An example of a general configuration and the assembly-graph associated to it. All
the edges of the graph are considered to be directed, with all the vertical edges pointing up, and
all the horizontal edges pointing to the right.

The general configuration C over a tile set Θ is called a connected configuration or simply

a configuration or supertile if the assembly-graph associated to C is connected. The configura-

tion C is called stable at temperature τ (τ-stable supertile), if either

- For all i and j ∈ Z,C(i, j) is undefined except for one position (x, y), where C(x, y) ∈ Θ

or,

- The sum of the weights of the edges of each of the the possible cuts of the assembly graph

(all the edges between two partitions in the partitioning of the vertices of the assembly

graph associated to C into two disjoint sets) associated to C is greater than or equal to τ.

A supertile C over Θ is called a signal-stable supertile if none of the transitions ∆t of tiles

t in C are applicable, moreover, the tiles in the configuration do not have any pending actions.

The self-assembly process proceeds by repeated applications of one of the following three

types of transitions applied to either one supertile (detachment transition or action transition)

or two supertiles (attachment transition) in the current set of configurations. If more than one

transition is possible, then the order in which the transitions are applied is non-deterministic.

Attachment Transitions

During an attachment transition, two stable shape-compatible supertiles, with sufficient glue-

strength at their abutting perimeter, assemble to form a larger supertile as shown in Figure 4.3
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part (i) and (ii).

Formally, we say that the supertile V with associated assembly-graph GV = (NG, EGv ∪

EGh, πG) is the result of an attachment of the two τ-stable supertiles V1 and V2, if there exist

two sets P1 ⊂ NG, P2 ⊂ NG, with P1 ∪ P2 = NG, and P1 ∩ P2 = ∅, satisfying the following

conditions:

1. dom(V) = dom(V1)∪dom(V2), dom(V1)∩dom(V2) = ∅

2. V(x, y) = V1(x, y) for all (x, y) ∈dom(V1), and V(x, y) = V2(x, y) for all (x, y) ∈ dom(V2),

with the exception of any adjacent tiles at positions (x1, y1), (x2, y2) ∈ Z2 where V1(x1, y1) =

t1 = (G1, S 1,∆1), V2(x2, y2) = t2 = (G2, S 2,∆2), V(x1, y1) = t′1 = (G′1, S
′
1,∆

′
1), V(x2, y2) =

t′2 = (G′2, S
′
2,∆

′
2), where the following conditions hold:

- The signal s+ exists on the edge d of the tile t1 that abuts t2, that is, (s, on) ∈ S 1(d),

- The signal s− exists on the corresponding edge d̄ of the tile t2, (s, off) ∈ S 2(d̄).

If these conditions are satisfied, then, the state of the signal s− on the edge d̄ of t2 is

changed by this attachment transition to on, that is, S ′2(d̄) = (S 2(d̄) \ {(s, off)} ∪ {(s, on)}.

All other elements of t1 and t2 remain unchanged.

3. The supertile V is stable at temperature τ.

Informally, condition (2) stipulates that if, during an attachment transition, two tiles attach and

one of them has the signal s+ on the abutting edge, then the signal s on the corresponding edge

of the second tile also becomes on.

Detachment Transitions

During a detachment transition, a supertile in which the glue-strength along an internal “cut”

is not strong enough (due to the deactivation of one or more glues), breaks into two smaller

stable supertiles, as shown in Figure 4.3 part (v).

Formally, supertiles V1 and V2 are the result of a detachment transition applied to a supertile

V with associated assembly graph GV = (NG, EGv∪EGh, πG), if there exist two sets N1,N2 ⊂ NG,

such that N1 ∪ N2 = NG, N1 ∩ N2 = ∅, and the following conditions hold:
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Figure 4.3: Parts (i) and (ii) show an example of the attachment transition: Two supertiles
attach via the active glue k+ (one assumes that the strength of the glue k is larger than or equal
the temperature). Moreover, since the signal s4

+ on the top-right tile of the newly formed
supertile is on, the signal s−4 on the abutting edge of its western neighbour tile is turned on,
becoming s+

4 . Parts (iii) and (iv) illustrate two consecutive action transitions: part (iii) - turning
a signal on, part (iv) - deactivating a glue. First, since the top-middle tile contains the transition
(s4,W) ∈ ∆1(E, s4) (illustrated by the green arrow with filled arrowhead), and since the signal
s4 on the East edge of the top-middle tile is on, during the first action transition the signal
s4 on the West edge of the top-middle tile is turned on, becoming s+

4 . Second, since the top-
left tile contains the transition (d, S ) ∈ ∆2(E, s4) (illustrated by the blue arrow with empty
arrowhead), and since the signal s4 on the East edge of the top-left tile is on, during this second
action transition the glue d on the South edge of the tile is deactivated, becoming d−. Part (v)
illustrates a detachment transition: because there are no more active glues to hold together the
top-left tile and the bottom-left tile of the supertile, two supertiles detach from each other.

1. dom(V) = dom(V1)∪dom(V2), dom(V1)∩dom(V2) = ∅,

2. V(x, y) = V1(x, y) for all (x, y) ∈dom(V1), and V(x, y) = V2(x, y) for all (x, y) ∈ dom(V2),

3. The weight of the cut (N1,N2) is smaller than τ, and G|N1 is the assembly-graph associated

to V1, while G|N2 is the assembly-graph associated to V2.

Note that the supertiles V1 and V2 that result from a detachment transition are not neces-

sarily τ-stable, and may further break into smaller supertiles if there exist cuts along which the

attachments are not strong enough.
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Action Transitions

The result of an action transition applied to the τ-stable supertile U is the supertile V , iff V

coincides with U in all positions but one, where the tile in the supertile U appears before

the application of the action transition, while the tile in the supertile V appears after of the

application of that action transition. Note that there are two types of actions transitions: those

that turn signals on (Figure 4.3 (iii)), and those that deactivate glues (Figure 4.3, (iv)).

Formally, a supertile V is the result of applying one of the transitions of one of the tiles

of the τ-stable supertile U, iff for all (x, y) ∈ Z2,V(x, y) = U(x, y) except two adjacent posi-

tions (x1, y1), (x2, y2) ∈ Z2 where U(x1, y1) = t1 = (G1, S 1,∆1), U(x2, y2) = t2 = (G2, S 2,∆2),

V(x1, y1) = t′1 = (G′1, S
′
1,∆

′
1), and V(x2, y2) = t′2 = (G′2, S

′
2,∆

′
2), the tiles t1 and t2 are adjacent

on the direction d of t1, and one of the following conditions holds:

• (glue deactivation) There exists a glue g ∈ Γ and a signal s ∈ Σ such that (d′, g) ∈ ∆1(d, s)

and (s, on) ∈ S 1(d). Then, S 1 = S ′1, ∆1 = ∆′1, t2 = t′2. The sets G1 and G′1 are the same

except that G′1(d′) = (G1(d′) \ {(g, q)|q ∈ Q}) ∪ {(g, off)}.

• (turning a signal on) There exist a signal s ∈ Σ and a signal s′ ∈ Σ such that (d′, s′) ∈

∆1(d, s) and (s, on) ∈ S 1(d). Then, G1 = G′1, S 1 = S ′1, ∆1 = ∆′1, G2 = G′2, ∆2 = ∆′2.

The sets S 2 and S ′2 are the same except that, if (s′, q) ∈ S 2(d̄′), for some q ∈ Q, then

S ′2(d̄′) = (S 2(d̄′) \ {(s′, q)|q ∈ Q}) ∪ {(s′, on)}.

A Detachable Tile Assembly System based on Detachable Tile Assembly Model (DTAM) over

alphabets Γ and Σ is a 5-tuple (Θ, g, τ, λ, f ), where Θ is a set of tiles over Γ × Σ, g is a

strength function over Γ, τ is a positive integer (temperature), λ is a finite set of starting

τ-stable configurations, and t f ∈ Θ is a single tile which will “mark” the final configura-

tion of the assembly. The self-assembly process begins with the set of configurations λ ∪

{all configurations that consist of one tile} and proceeds by successive applications of the three

types of transitions to either one configuration (in the case of a detachment or an action transi-

tion) or two configurations (in the case of an attachment transition) in the current set of configu-

rations, asynchronously and non-deterministically. After applying each transition, the resulting

configurations are be added to the current set of configurations. We say that a set of configura-
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tionsC is derived from (Θ, g, τ, λ, f ) if, starting from λ∪{all configurations that consist of one tile},

we can obtain C by iteratively applying any of the three types of transitions.We call a supertile

Z a final supertile if there exists a set of configurations C derived from (Θ, g, τ, λ, f ) with the

property that Z ∈ C and Z is a τ-stable signal-stable supertile such that there exist i, j ∈ Z2 with

Z(i, j) = t f .

Given positive integers M and N, we say that a detachable tile assembly system (Θ, g, τ, λ, f )

assembles an M × N rectangle if there exists a final supertile Z derived from this detachable

tile assembly system, and there exist integers k1 and k2, such that Z(i + k1, j + k2) ∈ Θ for all

1 ≤ i ≤ M and 1 ≤ j ≤ N, while Z(i, j) is undefined otherwise. Given positive integers M and

N, we say that a detachable tile assembly system (Θ, g, τ, λ, f ) uniquely assembles an M × N

rectangle, if it assembles an M × N rectangle and no other final supertile.

In comparing DTAM (the model we introduced in this section) with STAM, note first that,

while DTAM has sets of signals separate from the sets of glues, these signals could easily be

simulated in the STAM model as glues with strength zero. Thus, the introduction of the sets of

signals as notation does not enhance the STAM model, that is, DTAM is not a generalization of

STAM in this respect. The second observation is that in DTAM glues can only be deactivated

and signals can only be activated: In this sense DTAM is a weaker version of STAM. Thirdly,

since glues can only be deactivated, and signals can only be activated, the sets of pending

actions are not needed in DTAM. Thus, while the formalism is slightly different, the DTAM

model is a simplified version of STAM.

A Simplified DTAM (SDTAM) is a simplified version of DTAM, where all definitions are

the same except those of the seed configuration and attachment transitions: In SDTAM, a seed

configuration consists of a single seed tile, and the attachment of two supertiles is restricted to

the case where one of the supertiles consists of a single tile.

4.3 Turing Universality

In this section we show that the SDTAM model can simulate a Turing machine at temperature

τ = 1. The basis of the proof is the simulation by SDTAM of any given deterministic zig-zag

tile assembly system at temperature τ = 2 – a type of self-assembly system that was proved in
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[4] to be Turing universal. Moreover, our construction utilizes an SDTAM with at most one

signal per tile, and where signals travel through only one tile before deactivating a glue.

A deterministic zig-zag tile assembly system at temperature τ = 2 is a system that deter-

ministically assembles a structure row by row, growing only upwards: Each row has to be

completed before the next row starts, and each row grows in the opposite direction compared

to the previous row. Moreover, the width of each row can only be greater than or equal to the

width of the preceding row. For example, the first row could start from a seed tile and only

grow to the right until a tile is placed that has a North glue of strength 2 and no East glue; then

the second row starts assembling above this tile and has to grow to the left. See Figure 4.4 (i),

where the order of tile placement is illustrated in that the directed path shows the direction of

the growth of the assembly. Figure 4.4 (ii) illustrates the way in which attachment happens in

such a system: Here, for any pair of tiles (t, t′), a small arrow enters tile t′ from tile t if tile t was

attached to the structure before tile t′, and tile t′ attaches to the structure via the edge indicated

by the arrow. Thus, incoming arrows in a tile indicate the edges by which the tile attached to

the structure, and outgoing arrows indicate the edges by which the subsequent tile will attach.

For example, the arrows of the top-right tile of Figure 4.4 (ii) indicate that the tile attached to

the structure through its East and South glues, each of temperature 1, and that the next tile of

the assembly will attach to the structure through the North glue of this tile, which has to have

temperature 2 since only one edge is used for attachment. Figure 4.4 (iii) shows the 7 different

ways in which tiles can attach in a temperature 2 deterministic zig-zag tile assembly system.

We refer to [4] for a more detailed description.

In our construction, for a given deterministic temperature 2 zig-zag tile assembly system

Φ = 〈T, s, 2〉, where T is a set of aTAM tiles, s is the seed tile, and 2 denotes the temperature,

we define an SDTAM self-assembly system at temperature 1, namely Ψ = (Θ, g, τ, λ, f ) that

simulates Φ. In this construction, each tile t ∈ T will be replaced with a “gadget” of new tiles

in Ψ that encodes the glues of t in the glues and shape of its borders. A “gadget” is a set of new

tiles that simulate the behaviour of the original tile by uniquely assembling into a super-tile

with the same attachment properties as the originating tile t.

Similar to [13] and [8] we will now simulate a deterministic zig-zag tile assembly model at

temperature 2 with an SDTAM at temperature 1. Similar to the construction in [2] and [4], the
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Figure 4.4: Simulation of a Turing machine using a deterministic zig-zag tile assembly system
at temperature 2. The directed path in part (i) shows the direction of the growth of the assembly.
Part (ii) illustrates the way in which attachment happens in such a system: Here, for any pair
of tiles (t, t′), a small arrow enters tile t′ from tile t if tile t was attached to the structure before
tile t′ and tile t′ attaches to the structure via the edge indicated by the arrow. Part (iii) shows all
the possible kinds of tile types in such a system, based on the way they attach to the structure.

simulation will be achieved by replacing each original tile by a “gadget” of new tiles. Since the

new tile system operates at temperature 1, this construction alone is not sufficient to guarantee

the growth of each gadget uniquely, and incorrect attachments can form. Behsaz et al. [2]

employed staged tile assembly system to control the assembly growth. In our construction, we

will use signals that lead to the detachment of incorrect growths to solve the same problem.

Theorem 4.3.1 For any deterministic temperature 2 zig-zag tile assembly system Γ = 〈T, s, 2〉

there exists a simplified detachable tile assembly system SDTAM at temperature τ = 1 that

simulates Γ with horizontal scale O(log(|T |)).

Proof The proof is by construction. Each tile in the tile set T is replaced by a set of new

tiles with the property that they self-organize uniquely into a supertile which we will call a

“gadget”. Figure 4.5 shows the original tiles and their corresponding gadgets made out of new

tiles. The arrows indicate the path that describes the order in which the self-assembly of the

gadget proceeds, with the observation that the two bottom “legs” of each gadget self-assemble

independently of this path.
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Figure 4.5: In each of the two columns, a tile on left is an original tile from the deterministic
zig-zag tile assembly model at temperature 2, and its corresponding gadget made out of SD-
TAM tiles is shown at its immediate right. For example, the top left tile with North glue 00
(right/right) and South glue 10 (left/right) is simulated by the gadget immediately next to it.
This gadget has on its North side two bumps both positioned at the right of their respective
two-level blocks. The gadget has at its South two dents, the first positioned at the left and
the second positioned at the right of their corresponding two-level blocks. The arrows on the
gadget show the order of growth of the assembly.

Consider for example the original tile and its corresponding gadget situated at the top-left

of Figure 4.5.

The East and West glues of the original tile are simulated as follows. The West glue of

the original tile becomes the West glue of the first (new) tile of the path in the corresponding

gadget, indicated by the arrow that enters the gadget, see Figure 4.5, top-left. Similarly, the

East glue of the original tile becomes the East glue of the (new) tile of the corresponding gadget

indicated by the arrow that exits the gadget.

Since the new tile system is a temperature 1, the fact that sometimes two glue matching

sides are needed for an attachment cannot be simulated directly, and a combination of bumps-

and-dents will be needed to create the same effect. To that end, the North and South glues of

the original tile are simulated as follows.
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Figure 4.6: The (new) tiles in part (i) are used in the bit reader (South glue bit of a gadget)
in the construction in Theorem 4.3.1. Part (ii) shows the construction of the bit reader when
the bump of an incoming bottom gadget indicates bit 1. Part (iii) shows the construction of
the bit reader when the bump of an incoming bottom gadget indicates bit 0. Part (iv) shows
an example of an incorrect growth, and how it will be fixed. As shown in part( iv), incorrect
attachments cannot grow beyond the bump and will stop. Afterward, tile BD can attach to the
east edge of the tile CA to detach the incorrect attachments. For readability, in parts (ii), (iii),
and (iv), the tile labels have been omitted.

The glues on the North and South edges of t are first encoded as binary numbers. Since

there are no more than 4 ∗ |T | glues, we only need to use numbers from zero to 4 ∗ |T | for the

coding, and only log(4 ∗ |T |) bits are needed to encode these numbers. To simulate the North

glue of the tile t, each bit in the binary number encoding that glue is encoded as a two-level

block with a bump, consisting of seven new tiles (5 tiles in the bottom row and 2 tiles in the top

row). If the two tiles in the top row are located on top of the second and third tile of the bottom

row, that is, the bump is positioned at the left, then the bit is 1 (see Figure 4.6 (ii), the hashed

tiles). Similarly, if the two tiles in the top row are placed on top of the third and forth tile from

the bottom row, that is, the bump is positioned at the right, then the bit is 0 (see Figure 4.6

(iii), the hashed tiles).

Similarly, the glue on the South edge of t is encoded as a binary number implemented by a

sequence of two-level blocks with dents (that will geometrically fit into blocks with matching
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bumps), as follows. Each bit in the binary number representing the South glue of t is encoded

by a two-level block with a dent, consisting of eight tiles (5 tiles in the top row and 3 tiles in

the bottom row). If the three tiles in the bottom row are located under the first, forth, and fifth

tile in the top row, that is, the dent is positioned at the left, then the bit is 1 (see Figure 4.6 (ii),

the grey tiles). Similarly, if the three tiles in the bottom row are placed under the first, second

and fifth tiles from the top row, that is, if the dent is positioned at the right, then the bit is 0 (see

Figure 4.6 (iii), the grey tiles).

Figure 4.5 illustrates some tiles and the corresponding gadgets made out of new tiles, that

simulate them. For example, the top-left tile with North glue 00 and South glue 10 is simulated

by the gadget at its immediate right.

Note that, in each gadget in Figure 4.5, the (dark and light) grey portions implement the

portions that encode the South glue. These portions acts as “bit-readers” in the sense that they

“read” the bits that encode the North glue of a gadget that could attach to it from the South.

Figure 4.6 (i) shows the (new) tile types used to encode the bit readers (i.e. South glue). Note

that if a tile edge has no label, this means there is no glue on that edge and no attachment can

form. The tile can still attach to a structure, via another edge, and glue mismatches are allowed.

Figure 4.6 (ii) shows bit 1 on the North part of a gadget (hashed) and its corresponding bit

reader, i.e. the South glue of a gadget that will fit on top of it (grey). Assuming that the bottom

gadget with its hashed portion representing bit 1 is already assembled, the only tile that can

attach to it is the one labelled CA, through glue b. After that, the tile labelled AG is the only

possible attachment, followed by the attachments of tiles labelled GI1, IJ1, JD, DB, BI and EI,

in this order. Similarly Figure 4.6(iii) shows bit 0 (hashed) of a gadget, and its bit reader, i.e.,

South glue of a gadget that will fit on top (grey). Assuming that the bottom gadget with its

hashed portion representing bit 0 is already assembled, the self-assembly proceeds with BD,

CA, EG, E, GI0, IJ0, JF, FC.

Note here that if the West glue of the original tile is labelled c, that glue is transmitted to

the bit reader of the corresponding gadget. After all the bits of the South glue of the gadget

are formed, the last tile of the bit reader contains in its East glue (marked in red in Figure 4.5,

top-left gadget) information about both the West glue of the original tile, and about its South

glue. This information is encoded in the label of the glue, which is c1 if the West glue was c and
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the South glue was 1, and c0 if the West glue was c and the South glue was 0 (see Figure 4.6(i)).

Incorrect attachments during the assembly of the bit reader (South glue) may form, due to

the fact that there may exist original tiles that have the same West glue but different South glues

(bit readers). Figure 4.6(iv) shows how an incorrect attachment may begin to form, and how it

is corrected by the use of signals which will detach the incorrect growth. For example, assume

we are reading bit 0 (Figure 4.6(iii)), but the bit reader attempts to read it as a 1 (Figure 4.6(ii)).

After the attachment of tile CA, both tile AG and BD can attach to the current configuration. If,

instead of tile BD (which would proceed to correctly read bit 0), tile AG incorrectly attaches,

then tiles GI1, IJ1, and JD will attach to the corresponding positions. After the attachment

of the tile JD, since the bump representing bit 1 occupies the South side of JD, no further

attachment to JD is possible, and the growth of the structure in this direction stops. In order

to repair this incorrect growth, when tile BD attaches to the hole on East side of the tile CA, it

activates the signal on the east edge of CA. This signal deactivates the glue a on the north edge

of the tile CA and detaches the incorrect growth, which can now be replaced by the bit reader

for bit 0.

Due to the fact that the zig-zag self-assembly systems that we are simulating are deter-

ministic, once the West glue and the South glue of a tile are known, the other two glues are

uniquely determined, so the rest of the white tiles in the gadget in Figure 4.5 top-left can be

hard-coded (this means that the tile at each position is unique and has glues that make sure that

the tile can only attach at that particular position).

One can similarly construct gadgets simulating all the other tile types of the given deter-

ministic zig-zag tile system at temperature 2. From the construction it follows that the function

that maps each original tile to a set of new tiles that self-organize into the corresponding gadget

is a one-to-one correspondence. Since deterministic zig-zag tile systems at temperature 2 are

Turing universal, it follows that SDTAM is also Turing universal at temperature 1.

Regarding the scale of the construction, assume that the original tile set has |T | tile types

and their glues which, as seen previously, each necessitates log(4 ∗ |T |) bits to encode. Each

of the original tiles is simulated by a gadget. The width of such a gadget consists of 3 extra

tiles on each side, plus 5 tiles for each bit, for a total of (3 + 5 ∗ log(4 ∗ |T |) + 3) tiles. Thus, if

the width of a structure assembled in the original deterministic zig-zag tile assembly system at
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temperature 2 is W, then the width of the structure assembled by SDTAM tiles at temperature

1 that simulates it is (3 + 5 ∗ log(4 ∗ |T |) + 3) ∗W, that is, O(log(|T |) ∗W.

If we ignore the right and left leg of each gadget, and the North bumps (which will interlock

with the gadget above it and with the one underneath it, and thus do not add to the height), then

the height of a simulating gadget is 5 tiles. If the height of the original zig-zag structure at

temperature 2 was H, then the height of the new structure at temperature 1 that simulates it will

be (2 + 5 ∗H + 1) = O(H) (the constants account for the height of the legs of the gadgets on the

first row of the new structure, and the height of the North bumps of the gadgets on its top-most

row, respectively).

From the construction above it also follows that, besides being Turing universal, this SD-

TAM utilizes at most one signal per tile, and signals travel through only one tile before deacti-

vating a glue.

4.4 Self-assembly of Thin Rectangles

In this section, we present a DTAM tile assembly system that, for a given N > 6, uniquely

assembles an N × N! rectangle, and uses only O(log N) tile types. Throughout the proof we

will assume that the DTAM self-assembly system that we construct is at temperature τ = 6 and

that the strength of each glue is either τ/2 = 3 or τ/3 = 2.

4.4.1 Informal description of the DTAM tile assembly system

We start with a high level explanation of our construction. Figure 4.7 shows the method that

can be used to build an (M + 1) × ((M + 1)! + 2C) rectangle starting from an M × (M! + 2C)

rectangle, for a given M > 6. This method can then be used for the construction of an N × N!

rectangle as follows.

Start with an initial 6 × (6! + 2C) rectangle, where C = dlog (N − 5) + 2e, and use the

method (illustrated in Figure 4.7) to add a row and an appropriate number of columns. C is the

width of each of the two dark grey borders of the rectangle in Figure (4.7a), which control the
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Figure 4.7: This figure illustrates the idea of the steps that replace an M × (M! + 2C) rectangle
(7a) by an (M + 1) × ((M + 1)! + 2C) rectangle (7f), for M = 3 and C = 3. (7b) illustrates the
addition of a new row to the rectangle in (7a). (7c) illustrates the detachment of the leftmost
light grey column. (7d) illustrates the replacement of one light grey column by (M+1) columns
of the same shape and size. (7e) illustrates the reattachment of the left part of (7d) to the right
part. Repeating steps (7b) to (7e) for all the M! light grey columns results into an (M + 1) ×
((M + 1)! + 2C) rectangle that is shown in (7f).

assembly process but will not be retained in the final structure. Repeat the steps illustrated in

Figure (4.7b)-(4.7e) for increasing values of M, until an N × (N! + 2C) rectangle is obtained.

At the end, remove the C columns from the left and C columns from the right to obtain the

desired N × N! rectangle.

Figure 4.7 illustrates the method used to obtain an (M + 1)× ((M + 1)! + 2C) rectangle from

an M × (M! + 2C) rectangle for the case M = 3 and C = 3. Note that this is an illustration of

the general idea of the method, and not a real example, for which N (and M) should be greater

than 6. The input is a rectangle of size M × (M! + 2C), see Figure (4.7a).

Step 1. One row is added to the bottom of this rectangle, as illustrated in Figure (4.7b).

Step 2. The leftmost white tile of the rectangle in Figure (4.7b) sends a signal to all the tiles above

it, resulting in the detachment of this light grey column from the rest of the rectangle.
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Figure 4.8: This figure illustrates the use of the mirror rectangle (hashed) in the process de-
tailed in Figure (4.7c) through (4.7e). The mirror rectangle is used to make sure that only
the corresponding right and left parts in Figure (4.7d) can attach to each other (not pieces of
rectangles from different steps), and prevent any incorrect attachments by imposing additional
geometrical constraints on the attachment.

As a result, the rectangle is now divided into three parts as seen in Figure (4.7c). (The

middle column that was detached in this step is waste, and will not be used anymore.)

Step 3. The remaining left part of the rectangle (its left dark grey portion) expands by (M + 1)

columns, Figure (4.7d).

Step 4. The expanded part (the left part of Figure (4.7d)), and the right part of Figure (4.7c)

reattach to each other, see Figure (4.7e).

Step 5. When the two parts reattach, the tile that was the bottom-right tile of the left part of

Figure (4.7d) sends a signal eastwards, to start the detachment of the next light grey

column.

Step 6. The above four steps are repeated for all the light grey columns in Figure (4.7c), resulting

in Figure (4.7f).

The output is a new rectangle of size (M + 1)× ((M + 1)! + 2C). In the case of our example

the output is the 4 × (4! + 2 · 3) rectangle in Figure (4.7f).

In order to prevent incorrect attachments in the process illustrated in Figure 4.7, we will

need another rectangle, of the same dimensions (see Figure 4.8, the hashed rectangle at the

bottom of each subfigure). This second rectangle is built using a functionally equivalent but

disjoint tile set. This means that, if the tile set Θ was used to build the first rectangle as well

as the row underneath it, then a mirror tile-set set Θ′ can be used, whose tiles are obtained by
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flipping each of the tiles from Θ about their top-left/bottom-right diagonal but using, instead

of its original glues, the corresponding glues from a glue set that is isomorphic to the set of

glues of the tiles in Θ. As a result, the tiles from Θ′ will self-assemble into a copy of the

first rectangle, flipped about its top-left/bottom-right diagonal. We will call this the “mirror

rectangle”. The tiles from Θ′ will not interact with tiles from Θ. (There are some exceptions,

namely some glues that are common to Θ and Θ′, that will be explained later in this section.)

The mirror rectangle attaches to the one we wish to expand (Figure (4.7a)) at the end of the

step in Figure (4.7b), and will stay connected to it for the duration of the expansion. The mirror

rectangle expands alongside with the original one, as it has mirror tiles that can self-assemble

in the same way.

The purpose of the mirror rectangle is to make sure that in the step from Figure (4.7d) to

Figure (4.7e), only the left part and the right part of the rectangle in Figure (4.7d) reattach to

each other, and not other partial rectangles.

When all the columns are expanded, the top rectangle and its mirror rectangle detach from

each other.

After adding (N − 6) rows, the dark grey parts (which encode a counter) stop the self-

assembly. Finally, the dark grey columns detach, and only the desired N×N! rectangle remains.

4.4.2 Detailed description of the DTAM tile assembly system

Theorem 4.4.1 For any given N > 6 there exists a DTAM tile assembly system at temperature

τ = 6, with glues of strengths either τ/2 or τ/3, that uniquely assembles an N × N! rectangle

and uses only O(log(N) tile types.

Proof: By construction. The starting configuration of the system is a 6 × (6! + 2C) rectangle,

where C = dlog (N − 5) + 2e, and which satisfies the properties (detailed in the sequel) of the

input rectangle for Step 1. We now describe in detail the steps of the method used to obtain an

(M + 1)× ((M + 1)! + 2C) rectangle from an M × (M! + 2C) rectangle.

Step 1 (Figure 4.9 (i), (ii), (iii), (iv)): Addition of a new bottom row, and of the mirror rectan-

gle.
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Figure 4.9: Illustration of Step 1 and Step 2. (i) is the input rectangle, (ii) shows the attachment
of tiles A and C, (iii) shows the addition of the new bottom row and the mirror rectangle, (iv)
shows the paths of the detachment signal that is initialized by tile C (green), and its mirror
signal path (blue), (v) shows the tiles that are the final recipients of the detachment signals
(outlined in red), and (vi) shows the detachment of one column from the input rectangle and of
the mirror column from the mirror rectangle.

The rectangle we start from consists of C columns on the right side, and C columns on the

left side, in addition to the M! columns in the middle. In addition, the rectangle must satisfy

the following properties:

• The glues on the south edge of the rectangle follow the pattern shown in Figure 4.10.

(Detailed definitions of the tile types and their glues are shown in Figure 4.11.)

• The tiles in the white area are connected to their east and west neighbours only with the

glues from the set {d, d1, d2, x,m1,m2}. (Detailed definitions of the tile types and their

glues are shown in Figure 4.11.)

To this thin rectangle, a new row will be attached at the bottom, as described below.

The tiles from the tile set Θ1 = {A, B, C, E, F0, F1, F2, F3, F4, G, G′, H, I, J, K}, shown in

the first three rows of Figure 4.11, attach a new row to the bottom of the rectangle, as well as
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Figure 4.10: A thin rectangle that is the input of Step 1 of the construction, and the glues on the
tiles of its bottom edge. (Detailed definitions of the tile types and their glues are in Figure 4.11)

an extra tile (C) underneath it, that connects it to the mirror rectangle. In addition, tiles J and

K fill in the positions at the right of tile C (see Figure 4.9(iv)), as follows.

The tiles C and B are the ones that enable the mirror rectangle to attach under the original

rectangle. Their glues b′ and c′ are mapped to the glues c′ and b′, respectively, of mirror tiles

in the mirror tile set. We define the power of these two glues to be τ/2. As a consequence, the

mirror rectangle can attach to the original one using only tiles B and C, through their two glues

c′ and b′, as τ/2 + τ/2 = τ (see Figure 4.9(iii)).

In order to prevent the detachment of the mirror rectangle from the original one in the next

step (Step 2 - column detachment), this connection has to be stronger than τ. This is achieved

by adding two tile types, J and K, with north glues of strength τ/3. Tiles J and K attach

to the structure after the mirror rectangle is completely attached. Their addition makes the

connection between the right part of the original rectangle and the mirror rectangle have total

strength τ/2+ (C−2)τ/3+τ/3 > τ (through tile C, followed by C−2 copies of tile J, followed

by tile K), see Figure 4.9(iv). Due to the construction of the mirror tile set tile, mirror tiles of

the tiles J and K exist, that will ensure that the connection between the left side of the original

rectangle and the mirror rectangle becomes also τ/2 + (C − 2)τ/3 + τ/3 > τ.

Note that each of these set of bonds has a total strength greater than τ. Thus, when the entire

structure breaks into two (a left part and a right part) during the next step, the top piece (from

the original rectangle) and the bottom piece (from the mirror rectangle, directly underneath it)

in each of these parts remain attached together.

Step 2 (Figure 4.9 (iv), (v), (vi)): Column detachment.

The column detachment is initiated by tile C. Signal s1 from tile C (shown in green in
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Figure 4.11: The tile types that are used in the construction of a thin rectangle and their respec-
tive glues (signals are not shown in this figure). The tile types in the top three rows are used
in Step 1, and the tile types in the bottom three rows are used in Step 3. The power of all the
glues is τ/2, where τ is the temperature of the DTAM system, except for the glues t, k, k′, l
and l′ whose power is τ/3. (Note that glue superscripts 0 and 1 are only used in this figure,
to simplify the explanation for the glue strengths. That is, the presence of d0 and d1 on the
same edge only indicates that glue d is present, and that its strength is the sum the individual
strengths of its components d0 and d1, both of which have strength τ/2). Functionally, glues x,
o, t, d, d2, d1 are used for the attachment of columns, while glue m with different subscripts is
used for the attachment of rows. Glue f with different subscripts is used for the attachment of
the counter. Table 4.1 and Table 4.2 include the detailed definition of the signals and transitions
for all these tile types.

Figure 4.9(iv)) travels through tiles J and K, continues through the top row of the mirror rect-

angle, and then travels through the tiles under G, F1 and B (the mirror tiles of C, J and K),

reaching tile E (marked in red in Figure 4.9(v)). Similarly, the mirror tile of C (the tile under

B) sends the signal s2 (shown in blue in Figure 4.9(iv)), which travels a symmetric path and

reaches the mirror tile of E (marked in red in Figure 4.9(v)). If these two signals reach their

destination, this guarantees that the two portions that connect the original rectangle with the

mirror rectangle are filled in, with no holes. This further implies that the subsequent column

detachment will not result, inadvertently, in the separation of any part of the original rectangle

from its corresponding part in the mirror rectangle (the total strength of the attachments that
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keep them together is larger than τ).

The column detachment is illustrated schematically in Figure 4.9(v) and (vi). When the

detachment signal reaches tile E, this tile deactivates the glue on its west edge. Moreover, tile

E sends a signal to its north edge, which travels northwards. As a result, all the tiles above tile

E, in the same column, deactivate their attachment with their west tile. In order to deactivate

the east side of the column, tile E sends another signal to the tile on its east side. This signal

goes through all the tiles above it, and deactivates their west attachments. As a result of this

process, the column becomes detached from the original rectangle and becomes waste. A

similar process, which starts when the signal reaches the mirror tile of E, happens in the mirror

rectangle. As a result, a mirror column becomes detached from the mirror rectangle, as seen in

Figure 4.9 (vi).

The details of the process are illustrated in Figure 4.12. In order to prevent undesired

attachments, instead of first deactivating all the west glues of the column tiles, and then deac-

tivating of all its east glues, we alternate. That is, starting with the bottom column tile E, we

first detach the west glue of E, then its east glue, as well as send a signal to the tile east of E,

deactivating its west glue. As tile E detaches and leaves a hole, the hole is immediately filled

by a new tile, L. This new tile is part of the first new column generated during the expansion

process of Step 3, and this new tile sends a signal to the tile above it, so as to continue the

column detachment. Combining column detachment with the attachment of the first column

of the subsequent expansion step, together with the signals that deactivate the glues of the tiles

situated east of the column being detached, guarantee that no incorrect attachments can occur.

This is because, during the expansion process, when the right and the left parts of the rectangle

are separated, the left part will not have any east glue that matches an active west glue from the

right part and that could have potentially led to an incorrect attachment.

Step 3 & 4 (Figure 4.13 and 4.14): Expansion and re-attachment.

During this step, the left part of the rectangle (as well as the mirror rectangle) is expanded

by (M + 1) columns. Figure 4.11 (last three rows) shows all the tile types that are needed to

expand a rectangle with new columns.
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Figure 4.12: A detailed view of Step 2, and the attachment of the first column in Step 3, that
were illustrated schematically in Figure 4.9(iv): (i) - tile L8 initiates a signal to detach tile E
at the bottom of the first light grey column (marked in red in Figure 4.9(iv)); (ii) - tile E is
detached; (iii) - tile L attaches in the place of tile E and sends a signal to the tile above it,
deactivating its west glue; (iv) - all the tiles above tile L are detached and are replaced by tiles
from the first column of Step 3; (v) - the left and right part of the rectangle(s) detach from each
other; (vi) the first column of Step 3 is completed; (vii) enlarged copy of the bottom rows of
part (iii).
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Figure 4.13: Together with the next figure (Figure 4.14), this figure illustrates Step 3 (expan-
sion), and Step 4 (reattachment). The top of the figure lists the colour coding of the glues of
tiles involved in these steps, and their strength - the actual glues were listed in Figure 4.11. (i)
shows the construction of the square that starts from tile L (bottom left) and adds the columns
of the square one by one, from left to right, ending in tile M2 (top right); (ii) shows the reat-
tachment of the right part of the rectangle to its left part, through tile M2 and its mirror tile in
the mirror rectangle (the latter is not shown here).

The construction started already in Step 2 by the attachment to the left part of the rectangle

of tile L, via its west edge (this tile replaces tile E). Subsequently, a square will self-assemble

that will attach to the east of the left part of the rectangle (see Figure 4.13 (ii)). Since the

rectangle (that now includes the added bottom row) has height (M + 1), the attachment of a

square shape amounts to adding (M + 1) columns, as required.
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Figure 4.14: Together with the previous figure (Figure 4.13), this figure illustrates Step 3
(expansion), and Step 4 (reattachment).(i) The column underneath tile M2 is completed, using
tiles L7, L6 and L8. This refers to the case when the bottom left tile of the right part of the
rectangle is tile E, which signifies that there are still columns to be expanded. (ii) illustrates
the case when the bottom left tile of the right part of the rectangle is tile A, which signifies the
end of the expansion process. In this case, tile L9 attaches instead of tile L8 as the last tile of
the column headed by M2, and the process is continued by the construction of a new dark grey
border of the rectangle, as illustrated in (iii).

The construction of this square is shown in Figure 4.13 and 4.14. Starting from tile L, the

square self-assembles column by column, using the tile types and glues shown in Figure 4.13

(i). The last column of the square has tile M2 in the top row. Tile M2 and its mirror tile in
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the tile set Θ′ bring the corresponding left and right parts of the rectangles together via the

glue o (Figure 4.13 part (ii)). Tiles L7, L6, and L8 complete this last column, filling the gaps

between the corresponding left and right parts of the rectangles (see Figure 4.14 part (i)), and

thus reattaching the left and right parts of the rectangles to each other.

Step 5 - Initiate the repetition of Steps 2-4 above.

The last tile of the square constructed in Step 3, tile L8, sends a signal to the tile situated

on its east side, which initiates Step 5 - the repetition of Steps 2-4.

Note that the replacement of a column with a square in Steps 3 & 4 is different for the

very last column. In this case, the last tile of the square is, instead of tile L8, a special tile L9.

This tile could not attach previously, because tile E, its east neighbour, does not attach to it,

and can only attach when all tiles E have been consumed, and only tile A remains on the same

row (see Figure 4.9 (iv), Figure 4.14(ii)). Tile A attaches to tile L9, which sends a signal to tile

A which travels through the dark grey part and detaches all of it. Instead of starting a square

construction, tile L9 starts to build a new dark grey portion and the two rows underneath it (see

Figure 4.9(v), (vi) and Figure 4.14(iii)). The tiles that are required to build this new “border”

are hard-coded, and are not included in the tile set presented in Figure 4.11. The construction

of the new border needs O(C) tiles, and the construction of both dark grey borders is the only

part of the construction that needs more than a constant number of tiles.

As a result of Steps 1-6, all M! columns, except the dark grey columns, are replaced by

(M+1)×(M+1) squares. Thus, the new rectangle has width M!×(M+1)+2C = (M+1)!+2C.

The procedure above, which started with a rectangle of size 6 × (6! + 2C), where C =

dlog(N − 5) + 2e, is then repeated N − 6 times.

To initiate the termination of the self-assembly, the left dark grey border is used. The left

dark grey border acts as a counter, as follows. In order to count the number of rows and stop at

N, the tiles F1, F2, F3 and F4 are used in the standard way, see, e.g., [15][3].

When the counter tile reaches N and stops counting, tile G′ attaches to the leftmost column

(instead of tile G), at the beginning of Step 1, see Figure 4.9(iii). Tile G′ does not pass the

column-detachment signal from its south edge to its east edge and instead will stop the growth
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process, as follows. Tile G′ initiates a signal to deactivate all the glues on the south edges of

the last row. As a result, the rectangle above this last row detaches, and cannot grow anymore.

This rectangle has size N × N!.

The complete list of tile types in Figure 4.11, together with their signals can be found in

Table 4.1 and Table 4.2. Note that the signal st, not shown in any of the tiles, starts from tile

G′ - which replaces tile G in Figure 4.9(iii) during the last application of Step 6. It then travels

towards the east of tile G′: If a tile has an active glue st on its west edge, this signal activates

st on its east edge. In addition, for all tiles it encounters, st deactivates all glues from the south

edge, and thus detaches the mirror rectangle from the output rectangle. The signal st is common

to all tiles, and is not shown in this table, for readability reasons. Signal s1 is activated by tile

C; the path that it travels is shown in green in Figure 4.9(iv). Once it reaches tile B, signal s1

is converted to signal s5. Tile E changes signal s5 to s6 (shown in black, respectively orange

in Figure 4.12(i)), and s6 starts the column detachment process. Signals s7, s8 (red), and s9

(green), s10 (blue) in Figure 4.12(iii) and Figure 4.12(vii), are all used in column detachment,

as follows. Signals s7 and s8 are used to travel to the tiles above L. Signal s9 deactivates the

west glues of a column tile, while signal s10 deactivates the west edge of its neighbouring east

tile, which belongs to the right part of the rectangle. Similarly, signal s2 is the signal activated

by the tile that mirrors C; the path it travels is shown in blue in Figure 4.9(iv), and it will lead

to the column detachment in the mirror rectangle.

Note that, since all self-assemblies happen in parallel, it would in principle be possible for

various rectangle components to assemble at the same time, bringing the potential of undesired

attachments. During the entire construction of the thin rectangle, the existence of the mirror

rectangle prevents the attachment of incorrect left and right parts of rectangles (with different

number of rows, or erroneous number of columns), by posing a geometrical constraint.

More precisely, in Step 5 (reattachment) the left and the right parts of the corresponding

rectangle(s) must reattach, and this is where the possibility of an incorrect attachment occurs.

Since the reattachment of the two parts happens through tile M2 and its mirror tile in Θ′ (marked

in red in Figure 4.15), and since these two tiles only appear in the top row of the left part

(the bottom row of the right part), the vertical distance between these two tiles in a potential

attachment guarantees that the two parts of the rectangle(s) have the same number of rows.
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Tile
Name

List of Signals Transitions

North West South East
A s−2 s−2 (s2,W)→ {(s2, E)}
B s−1 , s

−
2 s−5 , s

−
2 (s2,W)→ {(s2, E)},

(s1, S )→ {(s5, E)}
C s−2 s+

1 , s
−
2 (s2, E)→ {(s2, S )}

E s−2 , s
−
6 ,

s−5

s−2 , s
−
6 (s2,W)→ {(s2, E)},

(s5,W) →

{(s6, E), (e,W), (s1, E)},
(s6,W)→ {(e,W)}

F0 s−2 s−2 (s2,W)→ {(s2, E)}
F1 s−2 s−2 (s2,W)→ {(s2, E)}
F2 s−2 s−2 (s2,W)→ {(s2, E)}
F3 s−2 s−2 (s2,W)→ {(s2, E)}
F4 s−2 s−2 (s2,W)→ {(s2, E)}
G s−2 s−2 (s2, S )→ {(s2, E)}
G′ s+

t
H s−2 s−2 (s2,W)→ {(s2, E)}
I s−2 s−2 (s2,W)→ {(s2, S )}
J s−1 ,s−2 s−1 ,s−2 (s1,W)→ {(s1, E)}

(s2, E)→ {(s2,W)}
K s−2 s−1 , s−2 s−1 (s1,W)→ {(s1, S )}

(s2,N)→ {(s2,W)}
L s−8 , s+

7
s−9

s−5 s−7 ,s−8 ,
s−9

s−10 (s5,W)→ {(s7,N)},
(s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N) → {(t,W), (x,W) ,
(d,W)}
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Tile
Name

List of Signals Transitions

North West South East
L1 s−8 ,

s−9 , s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L2 s−8 ,
s−9 , s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)} ,
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L3 s−8 ,
s−9 , s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L4 s−8 ,
s−9 , s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s10,W)→ {(s10, S )},
(s10,N) → {(t,W), (x,W) ,
(d1,W)}

Table 4.1: Together with Table 4.2, this table list the signals and transitions for all the tiles
types, except the dark grey border areas. Signals are denoted by the letter s, with subscripts
or superscripts, while the other letters indicate glues. The signal st, not shown in any of the
tiles, starts from tile G′ - which replaces tile G in Figure 4.9(iii) during the last application of
Step 6. It then travels towards the east of tile G′: If a tile has an active glue st on its west edge,
this signal activates st on its east edge. In addition, for all tiles it encounters, st deactivates all
glues from the south edge, and thus detaches the mirror rectangle from the output rectangle.
The signal st is common to all tiles, and is not shown in these tables, for readability reasons.
Signal s1 is activated by tile C; the path that it travels is shown in green in Figure 4.9(iv). Once
it reaches tile B, signal s1 is converted to signal s5. Tile E changes signal s5 to s6 (shown
in black, respectively orange in Figure 4.12(i)), and s6 starts the column detachment process.
Signals s7, s8 (red), and s9 (green), s10 (blue) in Figure 4.12(iii) and Figure 4.12(vii) are all
used in column detachment, as follows. Signals s7 and s8 are used to travel the tiles above
L. Signal s9 deactivates the west glues of a column tile, while signal s10 deactivates the west
glues of its neighbouring east tile, which belongs to the right part of the rectangle. Similarly,
signal s2 is the signal activated by the tile that mirrors C; the path it travels is shown in blue in
Figure 4.9(iv), and it will lead to the column detachment in the mirror rectangle.
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Tile
Name

List of Signals Transitions

North West South East
L5 s−8 ,

s−9 , s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L6 s−8 , s−9 ,
s−10

s−10 s−7 ,s−8 ,
s−9 , s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L7 s−8 , s−9 ,
s−10

s−10 s−7 ,s−8 ,
s−9 ,s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L8 s−8 , s−9 s−10 s−7 ,s−5 ,
s−8 ,
s−9 ,s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s9,N)→ {(t,W), (x,W)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

L9 s−8 ,
s−9 ,s−10

s−10 s−7 ,s−8 ,
s−9 ,s−10

s−10 (s7, S )→ {(s8,N)},
(s8, S )→ {(s9, S ), (s10, E)},
(s10,W)→ {(s10, S )},
(s10,N)→ {(t,W), (x,W)}

M s−10 s−10 (s10,W)→ {(s10, S )}
M1 s−10 s−10 (s10,W)→ {(s10, S )}
M2 s−10 s−4 , s−10 (s4, S )→ {(o,W), (x2,W),

(m4, S ), (x1, E), (o, E)},
(s10,W)→ {(s10, S )}

M3 s−10 s+
4 , s−10 (s10,W)→ {(s10, S )}

Table 4.2: Together with Table 4.1, this table list the signals and transitions for all the tiles
types, except the dark grey border areas. See caption of Table 4.1 for details.
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The horizontal distance between these two tiles in a potential attachment guarantees that the

two parts of the rectangle(s) have the same number of columns in the interlocking portion.

Together, these two conditions guarantee that the left and right parts of the rectangle(s) belong

to the same step.

Note that tile G, which marks the final configuration, can only attach to the leftmost column

when the assembled rectangle has size N × N!. As a result, the proposed DTAM tile assembly

system only assembles rectangles of size N × N!.

Figure 4.15: The mirror rectangle guarantees correct reattachments in Step 5, through the
geometrical constraints which it imposes on the attachment. The tiles marked in red are the
only tiles through which the left and right parts of the rectangle(s) can reattach in Step 5.

This concludes the construction and the proof of Theorem 4.4.1.

4.4.3 DTAM tile complexity and waste analysis

The tile sets Θ and Θ′ that are used to build the rectangles and mirror rectangles have a constant

number of tiles. In order to construct an N × N! rectangle, we start from a small rectangle of

size 6 × (6! + 2dlog(N − 5) + 2e). Assuming that the assembly of this initial rectangle needs

O(log(N)) tile types, the entire construction will need a constant number of tile types for Steps

2-4, and O(log(N)) tile types to construct the dark grey borders, totalling O(log(N)) tiles types.

In [1], tile complexities of various constructions of “thin rectangles” are compared. The

construction of an N × N! rectangle using the most economic self-assembly models (multi-

temperature self-assembly model, q-tile model, or unique shape model [1]) have a tile com-

plexity of O(log N!/ log log N!), that is, use approximately O(N) tile types. In comparison, our

DTAM self-assembly system utilizes only O(log N) tile types.

Regarding waste analysis, note first that the waste configurations that are produced during

the assembly process cannot reattach to the non-waste main or mirror rectangle. In addition,

the waste configurations cannot attach to single tiles. Lastly, the waste configurations cannot
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attach to other waste configurations.

As a result, and since during each repeat of Step 1 through Step 5 all light grey columns of

the rectangle in Figure 4.7 are replaced with new squares, the total size of the waste supertiles

that is generated to build an N ∗N! rectangle is O(6 ∗ 6!)+ O(7 ∗ 7!)+ ...+ O((N − 1) ∗ (N − 1)!)

which is smaller than the size of the final configuration O(N ∗ N!).

4.5 Conclusions

This paper introduces a simplified version of the Signal Tile Assembly Model (STAM), called

DTAM (Detachable Tile Assembly Model) which is based on the 2-HAM and uses a re-

stricted version of signals, namely signals that can only deactivate glues (as opposed to the

glue-activating and glue-deactivating signals of STAM). We show that a doubly-simplified ver-

sion of STAM, namely SDTAM, that uses glue-deactivating signals only and, in addition, uses

only one-tile-at-a-time attachments, is still capable of universal Turing computation at tem-

perature one. Moreover, our Turing-simulating SDTAM uses at most one signal per tile, and

signals travel through only one tile before deactivating a glue. All these simplifications, that are

achieved without sacrificing any computational power, could have potential implications on the

practical implementations of signal-based tile assembly systems. We also present a DTAM that

assembles a thin N ×N! rectangle, and has a lower tile-complexity than existing constructions.

This illustrates the potential benefits of the DTAM model for tile-complexity reduction.
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4.6 Addendum

More Details on the Definition of Binding Graphs

A pseudo-grid graph is a directed weighted graph G = (NG, EGv∪EGh, πG) where NG is a finite

set of nodes, EGv, EGh ⊆ NG×NG are two sets of edges (called the vertical and horizontal edges

respectively) such that EGv ∩ EGh = ∅, and the function πG : (EGv ∪ EGh) → Z+ is a weight

function that associates a weight to every edge in the graph. The weight function assigns a

number to each edge of the graph. In the context of the associated binding graph to a supertile,

the weight of the edge between two neighbour tiles t1 and t2 is the σ(g) where g is the common

glue on the common edge of t1 and t2, and σ is the glue function.

A cut on the graph G is an unordered pair of set of nodes C = {N1,N2}, where N1 ⊂ NG,

N2 ⊂ NG, N1 ∪ N2 = NG and N1 ∩ N2 = ∅. The weight of the cut C is defined to be the sum of

the weight of all the edges that connect a node from N1 to a node from N2, or a node from N2

to a node from N1.

A configuration consists of only one tile if and only if its associated binding graph has only

one node.

Corrections

Page 71-72. t f should be replaced with f in the last paragraph of page 71, and first paragraph

of page 72. The correct text is as follows.

A Detachable Tile Assembly System based on Detachable Tile Assembly Model (DTAM)

over alphabets Γ and Σ is a 5-tuple (Θ, g, τ, λ, f ), where Θ is a set of tiles over Γ × Σ, g is

a strength function over Γ, τ is a positive integer (temperature), λ is a finite set of starting

τ-stable configurations, and f ∈ Θ is a single tile which will “mark” the final configura-

tion of the assembly. The self-assembly process begins with the set of configurations λ ∪

{all configurations that consist of one tile} and proceeds by successive applications of the three

types of transitions to either one configuration (in the case of a detachment or an action transi-

tion) or two configurations (in the case of an attachment transition) in the current set of configu-

rations, asynchronously and non-deterministically. After applying each transition, the resulting



100 Chapter 4. Simplifying the Role of Signals in Tile Self-assembly

configurations are be added to the current set of configurations. We say that a set of configura-

tionsC is derived from (Θ, g, τ, λ, f ) if, starting from λ∪{all configurations that consist of one tile},

we can obtain C by iteratively applying any of the three types of transitions.We call a supertile

Z a final supertile if there exists a set of configurations C derived from (Θ, g, τ, λ, f ) with the

property that Z ∈ C and Z is a τ-stable signal-stable supertile such that there exist i, j ∈ Z2 with

Z(i, j) = f .



Chapter 5

Smart Tile Self-Assembly and

Replication1

5.1 Introduction

Self-assembly in nature is one the main inspirations for multi-robot systems [14, 21]. In such

multi-robot systems, robots can cooperate in order to move blocks and build structures [22],

assemble complex two-dimensional shapes [13, 19], or replicate given two-dimensional shapes

[8]. Robots in many multi-robot systems do not use any central control, and use instead their

limited local computational capabilities and communication with nearby robots to accomplish

these tasks. Indeed, robots in multi-robot systems often do not need to have extensive compu-

tational power [7].

In the context of DNA computing and molecular programming, self-assembly of DNA

tiles has been used extensively for either computational tasks or for the assembly of complex

nanostructures [17]. Traditionally, these tiles have been “static” in the sense that they are

unchangeable entities that can attach to their neighbouring tiles based on pre-programmed

local attachment rules. However, recently, an “active” dimension has been added to tiles in the

form of, e.g., the addition of signal transmission that can activate or deactivate glues on the tile

edges [15, 16, 10]. On the other hand, several DNA-based computational devices have been

1This chapter is based on the paper: Lila Kari, Amirhossein Simjour: Smart Tile Self-Assembly and Replica-
tion. Fundam. Inform. 154(1-4): 239-260 (2017)
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implemented, such as finite state automata [2], computational state transitions [12], and digital

circuits [18], to name just a few.

In this paper, we bring together these three ideas, multi-robot systems with local computing

capabilities, static DNA tiles, and DNA-based computational devices, by proposing a dynamic

self-assembly model based on smart tiles, that is, dynamic tiles which are equipped with local

computational devices in addition to being able to transmit signals that can activate or deacti-

vate glues.

Smart tiles are based on the classical tiles as defined in the abstract tile self-assembly model,

aTAM [23], but they are enhanced with the ability to transmit signals that can activate or

deactivate glues, as proposed in the signal tile assembly model STAM [16, 15]. The novel

feature of smart tiles, which we propose in this paper, is the fact that each is equipped with a

local computational device.

We show the potential of smart tile self-assembly (smart-TAM) systems to perform com-

plex tasks by proving their ability to replicate arbitrary convex shapes, in a manner that is

similar to the 2D shape replication by smart sand robotic systems [8]. Note that, in contrast

to previous methods for pattern replication by self-assembly [11], the smart tile self-assembly

systems we use for shape replication do not make any special assumptions about the tiles lo-

cated in the interior of the shape. Moreover, in contrast to other methods for shape replication

by self-assembly systems [4] [9] [1], our proposed smart tile assembly replication system is not

in-place. This means that our construction assembles a replica separately from the original ob-

ject, rather than cutting out the original object to leave an imprint to be filled in by the replica.

We also note that [4] uses negative glues and is based on the 2HAM attachment model, wherein

two supertiles can attach to each other during an attachment transition, while our model allows

attachment of one tile only to the existing structure, during each transition. Another replication

system, [1], is based on the staged tile assembly model, which allows changes of the tile set at

different stages of the assembly process.

Overall, the model we propose offers a general framework to discuss and compare various

tile self-assembly systems. For example, STAM with an one-tile-at-a-time attachment model

becomes a particular case of smart-TAM wherein the local tile computational device is a simple

look-up table, and activation of deactivated glues is not allowed. The local tile computational
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device that we use in the smart-TAM system presented in this paper, for two-dimensional

shape replication, is a generalized sequential machine (a deterministic finite state automaton

with output). At the other end of the spectrum, the local tile computational device can be as

complex as a Turing Machine.

The paper is organized as follows. Section 5.2 introduces basic definitions and notations,

as well as formally defines a smart tile assembly system. Section 5.3 constructs a smart-TAM

system that can replicate a supertile of any L-convex shape, and indicates how this construction

can be easily modified to replicate any convex shape. Section 5.4 discusses complexity issues

and illustrates the idea for a construction of a smart-TAM system with lower tile and space

complexity, which could replicate a supertile of any shape.

5.2 Smart Tile Assembly

In this section we will introduce the Smart Tile Assembly Model (smart-TAM), a tile self-

assembly model with tiles that are equipped with identical local computational devices. The

local computational device may be as simple as a look-up table or as complex as a Turing

machine. The only constraint placed on the computational devices is that the input and the

output must be defined based on the signals and the glues on the edges of the tile.

5.2.1 Basic Definitions

The following basic definitions will be used in the formal description of the smart tile assembly

model.

Given a set A, its cardinality is denoted by |A|, and the set of all subsets of A is denoted

by P(A). A multiset is a generalized set, the elements of which can appear more than once.

The multiplicity of an element a from a multiset S is the number of times that a appears in S .

The cardinality of a multiset is the sum of the multiplicities of its elements. For example, if

S = {a, a, b, c, d, c} is a multiset, the multiplicity of a in S is 2 and the cardinality of S is 6.

The set of directions is defined as D = {N, E, S ,W}, and the elements in D represent the

directions north, east, south and west respectively.



104 Chapter 5. Smart Tile Self-Assembly and Replication

In this paper we will define and investigate smart tile assembly systems, which use smart

tiles, that is, tiles endowed with a local computational device. The local computational device

that we will use to illustrate the capabilities of such self-assembly systems is the generalized

sequential machine. A generalized sequential machine (GSM) is similar to a finite nondeter-

ministic automaton but which can output a word for each input letter it reads. Formally, a GSM

is a sextuple g = (S ,VI ,VO, s0, S f , P) where S is the set of states, VI is the input alphabet, VO

is the output alphabet, with S ∩ (VI ∪ VO) = ∅, and s0 is an element in S called the start state,

S f ⊆ S is the set of final states, and the productions in P are of the form

sia −→ ws j, si, s j ∈ S , a ∈ VI , and w ∈ V∗O.

For a generalized sequential machine g and a word u over its input alphabet VI , we denote

g(u) = {w|s0u =⇒∗ ws1, for some s1 ∈ S f }

where =⇒∗ is derivation relation induced by −→. If L is a language over VI , then the GSM

translates, or maps, L into the language

g(L) = {w|w ∈ g(u) for some u ∈ L}.

A generalized sequential machine is deterministic iff, for every si ∈ S and a ∈ VI , there is

exactly one production in P. A deterministic GSM is a Meally machine iff all words w appear-

ing in productions in P consists of only one letter in VO.

The smart tile assembly model that we will define is a generalization of the Signal Tile As-

sembly Model (STAM), which was introduced by Padilla et al. [16], which itself is an extension

of the Abstract Tile Assembly Model (aTAM) introduced by Winfree in [23]. More precisely,

STAM is a tile assembly model based on 2HAM [5, 6], wherein each tile possesses a set of

glues on each edge (instead of one glue per edge, like in aTAM and 2HAM), and glues can be

activated or deactivated by signals. In addition, unlike aTAM, where the growth of an assem-

bled structure happens one tile at a time, in STAM (as in 2HAM), a whole multi-tile structure

that was assembled separately can attach to an existing structure in one attachment step.
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In the STAM model, the status of each glue on an edge can be latent, on, or off. Only a

glue whose status is on is active and can contribute to attaching the tile to another tile with an

identical glue with on status on the abutting edge. If the status of a glue is off or latent, the

glue is inactive and it does not have any attachment capabilities. In order to change the status

of glues in STAM, signals are used. Intuitively, a signal is a mapping associated to a given tile

that assigns to a glue on an edge a set of changes in the status of the glues on the other edges.

For example, assume that tile t has glue ge on its east edge, glue gs on its south edge, and glue

gn on its north edge. Also assume that all these glues are on, and assume that there is a signal

on the east side of the tile t that assigns a change of the status of the glue gs to off. If that is the

case, and if the tile t attaches to another tile via its east edge, the signal deactivates the glue gs,

that is, it changes its status to off. Signals can change the status of a glue from latent to on or

to off, or from on to off. Note that, once a glue is in the off state, its status cannot be changed

anymore. A tile can send a signal to its neighbour tile by activating a glue on the edge that they

have in common. Signals can change the status of the glues, therefore signals can activate new

glues and thus initiate a signal in the next tile. Moreover, signals can activate glues on a free

(unattached) edge and make new attachments possible. In addition to the activation, signals can

deactivate glues and, as a result, an existing structure might become unstable. In the STAM

model, if the deactivation of a glue makes a structure unstable, the structure will break apart

into stable components.

More formally, if Γ is a set of glues, Σ is a set of tile labels, Q = {on, off, latent}, and D is

the set of directions, then an STAM tile over the alphabet Γ × Σ is a quadruple t = (G, L,Π, δ),

where G : D → P(Γ × Q) denotes the sets of glues on the edges of t, and L ⊆ Σ is a set of

tile labels. The transition function δ : D × Γ→ P((D × Γ × {on, off, latent}) ∪ (Σ × {on × off}))

defines the set of actions that result as a consequence of an attachment through a glue on one

of the edges of the tile t. More precisely, the transition function of the tile t associates to a glue

on one of its edges changes of the status of glues on other edges, or a change of a tile label,

or both. These outputs are called actions. During a self-assembly process, when a transition is

applied, the outputs of the transition function are added to Π, the multiset of pending actions.

For a detailed formal definition of STAM, the reader is referred to [16].
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5.2.2 The Smart Tile Assembly Model

Informally, in the smart tile assembly model, a local computational device is added to each tile

which, if it is in a certain state and receives as input a glue and a direction, it changes its state

and outputs an action that amounts to the activation or deactivation of some other glues and tile

labels. This is a generalization of the STAM feature wherein the mapping between the glues

and the actions was defined by the transition function. In the smart tile assembly model, this

role is played by the local computational device, which may be as simple as a look-up table or

as complex as a Turing machine.

Smart tiles: A smart tile can be viewed as a unit square with a tile label, as well as glues

on each of its four edges. A glue over the glue alphabet Γ is a triplet (γ, d, q) where γ ∈ Γ,

the alphabet of glues, d ∈ D is one of the directions, and q ∈ {on, off}. A tile label over the

tile label alphabet Σ is a pair (σ, q) where σ ∈ Σ and q ∈ {on, off}. Moreover, a smart tile is

endowed with a computational device C, that can change the status q of glues and tile labels.

Formally, a smart tile over the alphabet Γ × Σ is a quadruple (G, L,Π,C) that has a set of

glues G over the glue alphabet Γ, a set of labels L over the tile label alphabet Σ, a multiset

of a pending actions Π with elements from (Γ × D × {on, off}) ∪ (Σ × {on, off}), and a tile

computational device C. A computational device C in the context of smart-tile assembly is

a rewriting system with input alphabet I ⊆ Γ × D, and output alphabet O ⊆ P((Γ × D ×

{on, off}) ∪ (Σ × {on, off})). Generalized sequential machines (finite automata with output) and

Turing machines are examples of valid computational devices.

Definition A smart tile assembly system (smart-TAM system), over the alphabet Γ × Σ is a

quadruple (Θ, g, τ, sseed), where Θ is a set of smart tiles over the same alphabet, g : Γ→ N is the

glue-strength function that defines the binding strength of each glue, τ ∈ N is the temperature

which defines the minimum total strength required for an attachment of a tile to occur, and

sseed ∈ Θ is the seed smart tile, which is the tile from which the self-assembly process starts.

A configuration over the set of smart tiles Θ is a mapping c : Z2 −→ Θ. Informally, a

configuration is a placement of tiles on the rectangular Z × Z grid, with the centers of the tiles

placed on the integer coordinate nodes of the grid. If for a position (x, y) we have that c(x, y) is

undefined, we will say that c(x, y) = null. Two smart tiles in a configuration are called adjacent
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if the Euclidean distance between their centers is equal to 1. In other words, two smart tiles are

adjacent if they have a common edge.

The weighted graph B = (N, E,W) with the set of nodes N, set of edges E and the weight

function W : E → N is the binding graph of a configuration c : Z2 −→ Θ if there exists a bijec-

tive mapping between the set of nodes N and dom(c), such that two nodes in N are connected

by an edge in the graph if and only if the corresponding smart tiles in the configuration are

adjacent and, moreover, the strength of the attachment between the tiles equals the weight of

the edge connecting the corresponding nodes in the graph. A configuration is called a supertile

iff its binding graph is connected. A weighted graph G has a cut with weight w if one can par-

tition the nodes of G into two disjoint sets such as the sum of the weights of the edges between

these two sets is w. A supertile is called τ-stable if its binding graph does not have any cut with

weight less than τ. If its binding graph G has at least one cut with the weight w < τ, then the

supertile is called τ-unstable.

The self-assembly in a smart-TAM system proceeds through transitions: A supertile V is

obtained from the supertile U in one transition, iff the supertile V is the result of one of the

following three types of transitions applied to the supertile U: attachment transitions, signal

transitions, and detachment transitions.

Attachment transition: The τ−stable supertile V is the result of the attachment of a new

smart tile t to the τ−stable supertile U, in position (x, y), iff U(x, y) = null, V(x, y) = t, and all

other smart tiles in position (i, j) in U are the same as the tiles in position (i, j) in V , with the

exception of the tiles in positions adjacent to (x, y), where the following hold:

• The sum of the strengths of the glues on the common edges between tile t and all its

adjacent tiles t′ from U is greater than or equal to the temperature τ. In addition, for

all such t′, the glues on the edges common with the newly attached smart tile t become

inputs for the computational devices in both t and t′.

• For each of the inputs (on all newly attached edges) to the computational device of t and

all its adjacent t′ in U, one computational step is performed, and the output is added to
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Figure 5.1: The attachment transition from Example 1. Note that superscripts are used to de-
note the status of glues and labels, with “+” indicating on, and “-” indicating off. (i) A smart
supertile and a smart tile that can attach to it. (ii) The result of an attachment transition of the
smart tile labelled T ′′ to the smart supertile containing the tile labelled T ′. The glues of T ′′

after the attachment are changed due to the actions of the computational device on T ′′. The
pending actions that are added to the set of pending actions of T ′′ are {(d, E, off), (e, E, on)}.
(iii) The outcome of a signal transition applied to the smart tile T ′′ with pending actions
{(d, E, off), (e, E, on)}, in the supertile from (ii).

the multiset of pending actions of that smart tile. In case there are multiple inputs, the

order in which they are processed is non-deterministic.

Example 1. The smart tile (G1, L1,Π1,C1) with tile label T ′ in Figure 5.1 is defined

such that G1 = {(a, E, on), (b, E, on), (g,W, off) , (h,N, on)}, L1 = {T ′}, Π1 = ∅, and the

computational device C1 is defined so that it never changes its state and outputs the empty

set for every input. The smart tile (G2, L2,Π2,C2) with tile label T ′′ is defined such that

G2 = {(a,W, on), (b,W, on), (c,W, on), (d, E, on) , (e, E, off), ( f , E, on)}, L2 = {T ′′}, Π2 =

∅, and the computational device C2 is the GSM with set of states {s1, s2}, the input alpha-

bet {a, b, c, d, e, f , g, h} × D, the output alphabet {(d, E, off), (e, E, on)}, and transition function

(s1, (a, E)) −→ {s2} × {(d, E, off), (e, E, on)}.

Figure 5.1(i) shows the smart tile T ′′ in the process of attaching to a a supertile containing

the smart tile T ′. Assume that the temperature of the system is τ = 2 and that the strength of

the glues a and b is equal to 1 (therefore the smart tiles T ′ and T ′′ attach via the glues a and b

on the west edge of T ′′).

As a result of an attachment transition, the supertile in Figure 5.1(ii) is formed. During this

attachment transition, the multiset Π2 of the smart tile T ′′ will change from the empty set to

Π2 = {(d, E, off), (e, E, on)}. Note that the attachment of the smart tiles T ′ and T ′′ changes the

state of the computational device C2 in T ′′ to s2, and generates the output {(d, E, off), (e, E, on)},

which will be added to the set of pending actions which becomes Π2 = {(d, E, off), (e, E, on)}.
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Note also that this output only changes the set of pending actions Π2 and it does not have any

effect on the status of the glues. The status of the glues will be changed during a subsequent

signal transition.

Signal transition: The supertile V is the result of signal transition in the smart tile t =

(G, L,Π,C) from the position (x, y) of the τ−stable supertile U, iff t has at least one pending

action in the set of its pending actions Π (activate or deactivate a glue or a label) and the

following conditions hold. For all (i, j) ∈ Z2 all the smart tiles in the positions (i, j) in V are

the same as the smart tiles in the positions (i, j) in U, except the smart tile t and the smart tiles

t′ that are adjacent to t which are changed as follows:

• The smart tile t removes one of the pending actions from its multiset Π and applies it to

the indicated glue or tile label. The application of an action means changing the status

of the corresponding glue or tile label accordingly.

• In addition, if the pending action is to activate a glue (change its status to on), then the

computational device of the smart tile t′ that is adjacent to t, on the same edge as the

glue, performs a computational step with this glue as the input, and adds the output of

this computational step to the set of its own pending actions. Subsequently, the used

pending action is removed from the set Π of the pending actions of t.

Figure 5.1(iii) shows the outcome of the two signal transitions that result from applying the

two pending actions {(d, E, off), (e, E, on)} of the smart tile T ′′ from Figure 5.1(ii).

Detachment transition: If a supertile U consists of two parts whose connection strength is

lower than the temperature, then U can break into two supertiles. Formally, supertiles U1 and

U2 are the result of a detachment transition of a τ-unstable supertile U if the following con-

ditions hold: GV = (N, E,W) is the associated assembly-graph of the supertile U, and there

exist two disjoint sets N1,N2 ⊂ N,N1 ∪ N2 = N such that the weight of the cut (N1,N2) is

smaller than τ, and G|N1 is the assembly-graph associated to U1 and G|N2 is the assembly-graph

associated to U2.
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A computation in a smart-TAM system starts from the seed smart tile and proceeds by non-

deterministic applications of attachment transitions, signal transitions, and detachment transi-

tions. A configuration is called final iff it is a τ-stable configuration, the computational devices

on all its tiles are in a final state, and no more attachment or signal transitions are possible.

The following example shows a smart-TAM system at temperature 1, with a single tile

type, that can assemble a linear supertile consisting of a row of three tiles. Without the local

tile computational devices, such a tile system in the abstract tile assembly model, aTAM, could

only generate an infinite linear supertile.

Example 2. Consider a smart-TAM system at temperature 1 that consists of a single smart

tile, which is also its seed tile, t1 = (G1, L1,Π1,C1), see Figure 5.2 (1). The tile t1 is defined

such that G1 = {(a, E, on), (a,W, on), (s, E, on), (s,W, off)}, the strength of glue a is 1, the

strength of glue s is 0, L1 = {T }, Π1 = ∅, and the computational device C1 is the GSM with set

of states {q0, qR, qC, qL, qF}, the initial state q0, the set of final states {qR, qL, qF}, input alphabet

{a, s} × D, output alphabet {(a, E, off), (s,W, on), (a,W, off)}, and transition function defined as

follows:

(q0, (a,W))→ {qR} × {(a, E, off)}

(q0, (a, E))→ {qC} × {(s,W, on)}

(q0, (s, E))→ {qL} × {(a,W, off)}

(qC, (s, E))→ {qL} × {(a,W, off)}

(qC, (a,W))→ {qF} × ∅.

The seed tile t1 can attach to two more tiles of same tile type, one at its left and one at its

right, to assemble a final configuration consisting of a row of three tiles. In the beginning, the

computational devices in all individual smart tiles are in their start state, q0. Figure 5.2 (2) illus-

trates an attachment transition of one tile to the right of the seed tile. The seed tile changes its

state from q0 to qC, indicating that it will become the center tile in the final configuration. The
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newly attached tile changes its state from q0 to qR, indicating that it will become the rightmost

tile in the final configuration. Figure 5.2 (3) shows the result of applying a signal transition to

the supertile in Figure 5.2 (2), that is, of applying the pending actions to that supertile. Note

that glue a on the east edge of the rightmost tile is deactivated, and thus no tile can attach to

the east side of this supertile. Figure 5.2 (4) shows the result of an attachment transition to the

left of the supertile in Figure 5.2 (3). The newly attached tile changes its state from q0 to qL,

indicating that this tile will be leftmost tile in the final configuration. Figure 5.2 (5) shows the

result of applying a signal transition to the supertile in Figure 5.2 (4), that is, of applying all

pending actions. This supertile is the final configuration since no more attachment or signal

transitions are possible, and the GSMs of all tiles are in a final state.

There are three main differences between smart-TAM and STAM. First, smart tiles in smart-

TAM are endowed with computational devices which allow signal reuse as well as having ad-

ditional control over the self-assembly due to their internal states. Second, smart-TAM allows

both activation and deactivation of glues, while STAM does not allow activation of deactivated

glues. Third, smart-TAM as defined in this paper only allows the attachment of one tile at a

time in each attachment transition, while STAM allows the attachment of two supertiles to each

other during one attachment transition.

Informally, if STAM were restricted to the attachment of one tile at a time, then STAM

would be a particular case of smart-TAM, with a “look-up table” as the local tile computa-

tional device, and no activation of deactivated glues. Alternatively, if one were to generalize

smart-TAM to 2smart-TAM, that is, a smart tile assembly model exactly like the one in this

paper except that it would use 2HAM-style attachments instead of only one-tile-at-a-time at-

tachments, then STAM would be strictly weaker than such a 2smart-TAM.
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Figure 5.2: A smart-TAM system at temperature 1 with a single tile type that can assemble a
final configuration consisting of a row of three tiles (Example 2). The state of the GSM of a
smart tile is shown inside a circle at the center of the tile. The tile labels are not shown. The
final states of the GSM are indicated by double circles around the states. (1) Left: The only
smart tile type in the system; Right: The GSM of the smart tile. (2) The result of an attachment
transition of one tile to the right of the seed tile. (3): The result of applying a signal transition to
the supertile in (2), that is, of applying all the pending actions. (4): The result of an attachment
transition of a tile to the left of the supertile in (3). (5): The final configuration obtained after
applying a signal transition to the supertile in (4).
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5.3 A Smart Tile Assembly System that Replicates L-Convex

Shapes

In this section, we construct a smart tile assembly system that can replicate any L-convex shape,

and indicate how it can be easily modified to perform arbitrary convex shape replications. We

note that the replication is at a one-to-one scale, and that the constructed smart-TAM system

(and implicitly its tile-complexity) is independent of the size and particular shape that it is

replicating. The only requirement is the existence of an initial supertile of the desired shape,

whose exterior edges contain minimal information about their being a north, east, south or west

edge, or their respectively being edges of one of the four ”corner tiles” (similar assumptions

have been made in, e.g., [4]). We start by recalling some basic notions about 2D grids.

A cell on a 2D grid is an ordered pair (x, y), where x, y ∈ Z. The vectors (0, 1), (0,−1), (−1, 0),

and (1, 0) are the unit vectors. Two cells c1 = (x1, y1) and c2 = (x2, y2) are adjacent if

(x1, y1) = (x2, y2) + ~u where ~u is one of the unit vectors. A shape is, informally, a set of

connected cells. Formally, a set of cells C = {(x, y)|x, y ∈ Z} is called a shape if for all pairs

of distinct cells c1 ∈ C and c2 ∈ C there exists a sequence of unit vectors p = (~u1, ~u2, . . . , ~un),

n ≥ 1, such that c2 = c1 +
∑n

i=1 ui and, for all 1 ≤ k ≤ n we have (c1 +
∑k

i=1 ui) ∈ C. A sequence

of unit vectors p = (~u1, ~u2, . . . , ~un) satisfying the conditions above is called a path from cell c1

to cell c2, inside the shape C, and n is called the length of p.

Definition A shape C is called a convex shape if, for all pairs of cells c1, c2 ∈ C, there exists a

path p = (~u1, ~u2, . . . , ~un) inside C from the cell c1 to the cell c2 and, moreover, the cardinality of

the set {~u1, ~u2, . . . , ~un} is 2. In other words, p contains at most two distinct types of unit vectors.

A convex shape C is called L-convex if, for all pairs of cells c1, c2 ∈ C, there exists a path

p inside of C with no more than one change of direction.

Definition A convex shape C is called L-convex if, for all pairs of cells c1, c2 ∈ C, there exists a

path p = (~u1, ~u2, . . . , ~un), n ≥ 1, inside the shape C, from cell c1 to c2, such that either the length

of the path is n ≤ 2 or there exists a 1 ≤ k < n such that ~u1 = . . . = ~uk and ~uk+1 = . . . = ~un.
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Figure 5.3: An example of an L-convex supertile. From every tile in the above supertile, all
other tiles inside the supertile can be reached via a path inside the supertile that has maximum
one change in direction. The edges labelled with n are north-free, the edges labelled with w are
west-free, the ones labelled with e are east-free, and the ones labelled with s are south-free.

Given a supertile S , since the binding graph of S is connected, we have that dom(S ) is a

shape. The set dom(S ) will be called the shape of S , and a supertile will be called L-convex if

its shape is L-convex. Figure 5.3 shows an example of an L-convex supertile.

Conversely, given a shape A ⊆ Z2, a supertile S is said to have shape A iff dom(S ) either

equals A, or can be obtained from A via a translation, rotation by a multiple of 90◦, or reflection.

When it is clear from the context, the mapping between a supertile domain and its shape will

not be mentioned, and the same path definition will be used for both supertiles and shapes.

The north edge of a tile t from the supertile S is called north-free if there is no tile from S

attached to the north edge of t. The east-free, west-free, and south-free edges of a tile t from

the supertile S are similarly defined. Figure 5.3 illustrates the north-free, east-free, west-free,

and south-free edges of an L-convex supertile.

A north-free edge of the tile t from the L-convex supertile S is called the north-west edge of

S , if the tile t is the tile located on the west-most column of the north-most row of the supertile

S . Formally, the north-free edge of a tile t from the L-convex supertile S , with coordinates

(x, y), is called the north-west edge of S if, for all tiles t′ with coordinates (x′, y′) from S , we

have that either y′ < y or y′ = y and x′ > x. Moreover, the tile t that has the north-west edge

of S is called the north-west tile of S . Similarly, the east-north tile is the north-most tile of

the east-most column, the south-east tile of S is the east-most tile of its south-most row, the

west-south tile is the south-most tile of west-most column. These tiles will be called the corner

tiles of an L-convex supertile.

Lemma 5.3.1 Every L-convex supertile S has at most four corner tiles: one north-west, one
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east-north, one south-east, and one west-south tile.

Lemma 5.3.2 Let tile c1 with coordinates (x1, y1) be the north-west tile of the L-convex super-

tile A, and tile c2 with coordinates (x2, y2) be the east-north tile of A. Then, for all x, y ∈ Z, if

x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2 then the tiles with coordinates (x, y2) and (x1, y) are in A.

Proof Because the supertile A is L-convex, there exists a path between c2 and c1 that lies inside

A and that has only one change of direction. Since c2 is the east-north tile and c1 is the north-

west tile of the supertile A, the directions on this path from c2 to c1 can only be north and west.

Moreover, this path that starts from c2 cannot start with the north direction, so it has to start

in a west direction, move west until it reaches the x-coordinate x2, then turn north and move

north until it reaches the y-coordinate y2. As a result, for all x, y ∈ Z, if x1 ≤ x ≤ x2 and

y1 ≤ y ≤ y2 the tiles with coordinates (x, y2) form the horizontal part of the path, while the tiles

with coordinates (x1, y) form the vertical part of the path between c2 and c1, and all these lie

within A because A is L-convex.

Corollary 5.3.3 Statements analogous to Lemma 5.3.2 hold for the pairs of tiles east-north

with south-east, south-east with west-south, and west-south with north-west, respectively.

Our goal is to design a smart-tile assembly system at temperature τ = 2 that can replicate

any L-convex shape. That is, we construct a smart-tile assembly system that, given as input

an L-convex supertile of the required shape, produces a second supertile that is identical to

the original one, modulo a translation and a reflection. In contrast with [11], our construction

makes no assumptions on the interior tiles of the input supertile. In particular, our construction

does not require any specific glues, or signal transitions associated with the tiles from the

interior of the input supertile. The only requirement is that the border tiles of the input supertile

satisfy the following conditions: All the free edges (edges without attachment and belonging

to a tile on the border of the supertile) on the north, east, south and west must have glues n, e,

s, and w respectively. The exceptions are the north-west, east-north, south-east, and west-south

edges of the supertile which must have the glues S n, S e, S s, and S w respectively. Figure 5.4

(left) shows an example of an L-convex supertile and the expected glues on its borders.
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Figure 5.4: Left: An example of an L-convex supertile with the border glues needed for its
replication by the smart-TAM system from Theorem 5.3.4. Right: The tile set Θ f ill−ne, which
fills the area at the north-east of the L-convex supertile, up to a rectangle. The tile marked in
grey is the seed tile, sseed. Glues S n (on the north-east edge of the supertile), S e (on the east-
south edge of the supertile), S ′s (on the south-west edge of the supertile) and S ′w (on the west-
north edge of the supertile) have strength equal to the temperature, τ = 2, and the remaining
glues have strength 1.

Theorem 5.3.4 There exists a smart-TAM system (Θ, g, τ, sseed) at temperature τ = 2 with the

following property: For any L-convex shape A, there exists an L-convex supertile A′ with shape

A such that, given A′ as an input, the smart-TAM system self-assembles a second supertile with

shape A.

Proof Figure 5.5 shows the general idea of the replication process.

The self-assembly process starts from an L-convex supertile A′ of the required shape A,

with predefined glues on the border edges as described in the preamble of this theorem, and

the seed tile sseed (the tile marked in grey in Figure 5.4). The replication process starts with

Step 1, filling in the areas on the four sides of the input supertile A′ to form a rectangle that

surrounds it. This is accomplished using the tile set Θfill = Θfill-ne ∪ Θfill-nw ∪ Θfill-se ∪ Θfill-sw.

The borders of the rectangle that surrounds the input supertile encode information about the

external border of the supertile itself. In Step 2, a different set of tiles, Θtransfer, is used to

transfer the information from the borders of this rectangle to construct an identical rectangular

hole underneath it. Following this, in Step 3, the set of tiles Θborder fills in this rectangular hole,

modulo a supertile-shaped hole in the middle. Finally, in Step 4, the set of tiles Θreplica fills in the

remaining supertile-shaped hole with a replica of the input supertile, and detaches this replica

from the entire scaffold structure. Note that Step 3 and Step 4 are the only ones requiring the

active use of the local computational devices on tiles, herein generalized sequential machines.
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Figure 5.5: The general idea of the replication process of an L-convex supertile of a given
shape, by a smart tile self-assembly system. The original shape is shown in black, and the
constructed replica is in light grey. After tiles are used to fill in a rectangle that surrounds the
original supertile (Step 1), information about the borders of the supertile (now encoded on the
edges of the rectangle) is transported to form an identical rectangular hole underneath it (Step
2).The flow of this information is indicated by arrows. Afterwards, the rectangular hole is filled
in, modulo a supertile-shaped hole (Step 3). Finally, the supertile-shaped hole is filled in with
a replica of the input supertile, and the replica then detaches from the scaffold structure (Step
4).

Figure 5.6: Left: The tile set Θfill-ne is used to fill the area at the north-east of the L-convex
supertile (in black). The inside border of the assembled quarter-rectangle, read from top-left
to bottom-right, starts with S ′n and ends with S ′e. The glues on the free edges of the white
quarter-rectangle contain information about the “north-east” border of the supertile. Right:
The arrows show the bijective mapping between the glues on the edges on the “north-east”
border of the original supertile and the glues on the free edges of the tiles on the border of the
quarter-rectangle.
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Figure 5.7: The result of Step 1: Filling all four quarter-rectangles around the original supertile
from Figure 5.4. The glues on the border of the resulting rectangle correspond to the glues on
the free edges of the original supertile.

The details of the construction are described below.

Step 1: Figure 5.4 (right) shows the tiles in Θfill-ne that fill the north-east corner of the

rectangle that will surround the input supertile. The first row consists of the tiles that attach to

the border of the supertile, while the second and the third row are the tiles that fill the remaining

area of the rectangle. All glues of the tiles in Θfill-ne have temperature 1, except glues of the

north-west edge S n and that of the east-north edge, S e, which have temperature 2.

The role of the tiles in Θfill-ne is to transmit the information about the border of the supertile

towards the edges of the rectangle. They transmit the information from their south edge to the

east, and the information from their west edge to the north. For example, the first tile on the

first row in Figure 5.4 (right) has glue n on its south edge and glue e on its west edge, which

means it attaches to the supertile as illustrated in Figure 5.6 (left) (the grey tile). To transmit

the information n coming from its south edge, the east edge of this tile has glue an. Similarly,

to transmit information e coming from its west edge, the north edge of the grey tile has glue

ae. Figure 5.6 (left) shows the result of the attachment of the tile set Θfill-ne to the L-convex

supertile from Figure 5.4. Figure 5.6 (right) shows the mapping between the glues on the

border of the supertile and the glues on the edges of the tiles of the filled rectangle. The result

of Step 1 is shown in Figure 5.7.

Step 2: The arrows in Figure 5.5 show the general directions in which the self-assembly

proceeds, that results in the transfer of the information from the borders of the rectangle that
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Figure 5.8: The rectangular hole that is obtained at the end of Step 2. The tiles that border
the rectangular hole are outlined in thick lines: The inside glues of these tiles are identical
in information content to the glues on the free edges of the tiles on the outside border of the
rectangle that surrounded the input supertile. The thin lines inside the rectangular hole are a
preview of the subsequent steps, which will first (Step 3) fill up the rectangular hole, modulo a
supertile-shaped hole (light grey). This will be followed (Step 4) by filling the supertile-shaped
hole with a replica. Tiles T5 and T6 will guide this process in the north-east quarter-rectangle.
Note that the north-east quarter-rectangle (dashed lines) can overlap with, e.g., the south-west
quarter-rectangle (dotted lines).

surrounds the supertile to the borders of a rectangular “hole”, underneath it. The tiles on the

inside border of this rectangular hole encode information about the edges of the input supertile,

and this hole will be the place where the replica of the input supertile will be assembled. The

strength of all the glues on this inner border of the rectangular hole is 1. The construction

of the tile set Θtransfer, that assembles squares and rectangles which transfer information about

the input supertile’s border glues horizontally, vertically, or at 90◦ (Figure 5.5), is standard,

see, e.g., [3] or [20], and will be omitted. Note that all the squares that transfer information

at 90◦ (see Figure 5.5), that is, “turn corners”, can be built using a constant number of tiles,

similar to [3]. The rectangles that transfer information vertically or horizontally (marked with

horizontal or vertical thick arrows in Figure 5.5) have sizes determined by the adjacent squares

and the border of the original supertile, and thus the tile set that constructs these rectangles

does not need any prior information regarding their size. The result of this step is illustrated in

Figure 5.8.

Step 3: The purpose of this step is to fill in the rectangular hole obtained in Step 2, until

only a smaller hole remains in the middle, shaped exactly like the input supertile. The smart
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Figure 5.9: The tile set Θborder-ne = {T1, . . . ,T6}, and Θreplica = {Treplica}.

tiles in the tile set used in this step, Θborder-ne and Θreplica are listed in Figure 5.9, and each of

them is equipped with a GSM as a computational device.

The filling in of the north-east part of the rectangular hole starts from its north-east corner

(since all glues on the tiles of its border have strength 1), and it continues through attachments

of tiles through their north and east edges. The tiles labelled T1,T2,T3,T4 account for all pos-

sible combinations of north and east encoding glues (a′n and a′e) on the two attaching edges of

each tile. Tiles T5 and T6 (see Figure 5.8) are used to attach to the tiles that contain informa-

tion about the special north-west and east-north tiles of the input supertile, represented through

glues S ′′n and S ′′e .

While this is a non-deterministic process, in principle, the tiles T1 through T6 first fill

in the north-east quarter rectangle of the hole. Afterwards, the GSM’s implement the carv-

ing of a supertile-shaped hole from this rectangle. The GSM will start from its start state,

qstart and then branch in one of four different computations, depending on whether the tile it

belongs to is located in the north-east, south-east, south-west or north-west part of the bor-

der of the rectangular hole. The set of states of the north-east component of the GSM is

{qstart, qnorth, qeast, qwest, qsouth} ∪ {q
j
0, q

j
1, q

j
2, q

j
3, q

j
4| 1 ≤ j ≤ 6} ∪ {q′13 } ∪ {q

replica
i | 1 ≤ i ≤ 4},

the input alphabet is a set included in Γ × {N, S , E,W} where Γ is the set of glues, the out-

put alphabet is the set of subsets of Π, the set of pending actions, and the final state set is

{q j
4| 1 ≤ j ≤ 6} ∪ {qreplica

4 }. The transitions of the GSM that direct the computations for its

north-east component are illustrated in Figure 5.10 and listed in the sequel.
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Figure 5.10: The local tile computational device (GSM). Only the component that deals with
the north-east rectangle is shown. The complete input and outputs for each transition are listed
in the text.

Initial transitions : (qstart, (ae,N))→ {qeast} × ∅

(qstart, (an,N))→ {qnorth} × ∅

(qeast, (an, E))→ {q1
0} × ∅

(qeast, (ae, E))→ {q3
0} × ∅

(qnorth, (an, E))→ {q2
0} × ∅

(qnorth, (ae, E))→ {q4
0} × ∅

T1 :(q1
0, (s1,N))→ {q1

1} × {(a
′
e,W, off), (a′n, S , off), (s1, E, on)}

(q1
1, (s2,N))→ {q1

2} × {( f ,W, on), ( f , S , on), (s2, E, on)}

(q1
2, (be,W))→ {q′3

1} × ∅

(q′3
1, (bn, S ))→ {q1

3} × ∅

(q1
3, (s3,N))→ {q1

4} × {(s4,W, on), (s4, S , on), (s3, E, on)}

T2 :(q2
0, (s1,W))→ {q1} × {(s1, S , on)}

(q1, (s2,W))→ {q2
4} × {(s2, S , on)}
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T3 :(q3
0, (s1,N))→ {q3

1} × {(a
′
e,W, off), (s1, S , on)}

(q3
1, (s2,N))→ {q3

2} × {( f ,W, on), (s2, S , on)}

(q3
2, (s3,N))→ {q3

3} × ∅

(q3
3, (be,W))→ {q3

4} × {(s4,W, on), (s3, S , on)}

T4 :(q4
0, (s1,W))→ {q4

1} × {(a
′
n, S , off), (s1, E, on)}

(q4
1, (s2,W))→ {q4

2} × {( f , S , on), (s2, E, on)}

(q4
2, (s3,W))→ {q4

3} × ∅

(q4
3, (bn, S ))→ {q4

4} × {(s4, S , on), (s3, E, on)}

T5 :(qstart, (S ′′n ,N))→ {q5
0} × {(s1, E, on)}

(q5
0, (s1,W))→ {q5

1} × {( f , S , on), (s2, E, on)}

(q5
1, (s2,W))→ {q5

2} × {(s3, E, on)}

(q5
2, (s3,W))→ {q5

3} × {(s3, E, on)}

(q5
3, (bn, S ))→ {q5

4} × {(s4, E, on)}

T6 :(qstart, (S ′′e , E))→ {q6
0} × ∅

(q6
0, (s1,N))→ {q6

1} × {( f ,W, on), (s1, S , on)}

(q6
1, (s2,N))→ {q6

2} × {(s2, S , on)}

(q6
2, (s3,N))→ {q6

3} × {(s3, E, on)}

(q6
3, (bn,W))→ {q6

4} × {(s4, E, on)}
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Treplica :(qstart, ( fs,N))→ {qstart} × {( f1, S , on)}

(qstart, (bs,N))→ {qreplica
1 } × {(bs, S , on)}

(qreplica
1 , (bn, S ))→ {qreplica

2 } × {(bn,N, on)}

(qreplica
2 , (be,W))→ {qreplica

3 } × {(be, E, on)}

(qreplica
3 , (bw, E))→ {qreplica

4 } × {(be, E, on)}

(qreplica
4 , (s4, E))→ {qreplica

4 } × {( f , E, off)}

(qreplica
4 , (s4,W))→ {qreplica

4 } × {( f ,W, off)}

(qreplica
4 , (s4,N))→ {qreplica

4 } × {( f ,N, off)}

(qreplica
4 , (s4, S ))→ {qreplica

4 } × {( f , S , off)}

Note that the first two transitions of the GSM in tiles Ti, 1 ≤ i ≤ 4 are applied during the

two attachment transitions that attach the tile to the assembly and that, after this attachment

stage, the GSM’s in all tiles in the north-east quarter-rectangle are in a state q j
0, 1 ≤ j ≤ 4.

The role of the “signal” s1 (a signal is a glue with strength 0) is to carve a supertile-shaped

hole from the rectangle. It starts in tile T5 (see Figure 5.8) and travels clockwise through the

tiles right outside of the replica, deactivating the glues on the replica border tiles, and changing

their GSM states to q j
1, 1 ≤ j ≤ 6. After arriving in T6, this signal continues travelling through

the other three quarter-rectangles, deactivating the glues of the replica border tiles on its way,

until it arrives back to T5. At this moment, the supertile-shaped middle of the rectangle detaches

completely, leaving a supertile-shaped hole.

At this point, tile T5 activates the “signal” s2 (glue with strength 0). This signal then travels

clockwise through the same path as s1, along the tiles right outside the supertile-shaped hole,

making their inside edges “sticky”, and changing the states of their GSM’s to q j
2, 1 ≤ j ≤ 6.

This is in preparation for the next step (the assembly of the supertile-shaped replica). Making

the inside edges of the tiles sticky is achieved by the use of a single new glue, f , which is

activated by s2. At this moment, all computational devices in the tiles T1, T3 ,T4 in the north-

east quarter-rectangle are in state q j
2, j ∈ {1, 2, 4}. Moreover all tiles T2 in the north-east quarter

rectangle are in state q2
4.
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At the end of Step 3, we have a rectangle underneath that input supertile, which has a

supertile-shaped hole with sticky edges in the middle.

The fact that the input supertile is L-convex is essential for Step 3. Due to the L-convexity of

the shape, Lemma 5.3.2 guarantees that the attachment of the tiles T1 through T4 from Θborder-ne

does not interfere with the construction of the border of the supertile-shaped hole in the other

quarter-rectangles. Indeed, the one problem that could have arisen in this step that, because

the system is non-deterministic, the four quarter-rectangles can assemble independently and

potentially overlap (see Figure 5.8) and this could interfere with signal transmission. However,

we note that the inside “straight” borders of these quarter-rectangles coincide with the path

between two of the “corner” tiles of the replica that was mentioned in Lemma 5.3.2, augmented

with two end-tiles. Due to Lemma 5.3.2, this entire path lies on the inside of the replica.

Together, these guarantee that any intersection between two quarter-rectangles lies inside the

replica, and since both signals s1 and s2 travel right outside the replica, this implies that the

paths of the signals never fall inside an overlap. Thus, any such overlap is unimportant, since

it does not interfere with signal transmission and, moreover, any overlap tiles will anyway be

all detached in the process of carving the supertile-shaped hole.

Step 4. At the start of this step, tile T5 activates signal s3 (which will later be used for

starting the detachment of the constructed replica). In this last step, the one tile from the tile

set Θreplica, see Figure 5.9, fills in the supertile-shaped hole as follows.

Tile Treplica has glue f + and f −1 as well as glues bn, be, bs, bw, on all of its edges. Glue f

has strength 1 and is used to attach each tile inside the replica to its neighbours in the replica.

Glue f1 has strength 1 and is used to make sure that the replica is τ-stable, by strengthening

the power of the attachment of the corner tile to the replica (see transitions corresponding to

Treplica). Glues bn, be, bs, bw have strength 0 (are signals), and are used to guarantee that the

replica is hole-free. Indeed, signal bn is sent by each tile from the south edge of the replica

to the north, and bs is sent in the opposite direction. Similarly, signal be is sent from each tile

on the west edge of the replica to the east edge, and bw is sent in the opposite direction. The

fact that these signals have all reached the opposite edge means that the supertile-shaped hole

is completely filled in. This fact is recorded by the GSM’s of the tiles situated immediately

outside the replica, on its outside border, changing their state from q j
2 to q j

3, 1 ≤ j ≤ 6 (via
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state q′3
1 in the case of T1). In addition, when each tile in the replica has passed all four signals,

bn, be, bs, bw, the state of its GSM changes to qreplica
4 , a final state.

When signal s3, after having started in tile T5, comes back to T5, after having travelled

clockwise, right outside the border of the replica, if the GSM of T5 is in state q5
3 (indicating

that the supertile-shaped hole has been filled with the replica) then tile T5 initiates signal s4

which travels along the outside border of the replica and deactivates the outside glues of the

tiles on the border of the replica. As result of this second part of Step 4 the replica, whose tiles

all have their GSM’s in a final state, detaches from the scaffold structure.

Note that the replica of the input supertile is τ-stable. Indeed, all the tiles in the replica

are from the tile set Θreplica and have at least two common edges with the tiles from the same

tile set, with maximum four exceptions. These exceptions are the tiles that are attached to

the four special “border” tiles (representatives of the north-west, north-east, south-east and

south-west edges), as these tiles might have only one common edge with tiles from the replica.

However, the attachments between these special tiles and the replica have been strengthened by

the activation of the glue f1, and now suffice to keep such special tiles attached to the replica.

The smart-TAM system in Theorem 5.3.4 can be used, with slight modifications, to repli-

cate any convex shape (not necessarily L-convex). Indeed, the only part in the construction

that relied on the input supertile being L-convex was Step 3, that fills in the rectangular hole in

which the replication will take place. Here, the problem was the potential overlap between the

north-east, south-east, south-west and nort-west quarter-rectangles (Figure 5.8) could poten-

tially interfere with the signal transmission. In our construction, this problem was avoided by

the assumption of L-convexity and Lemma 5.3.2 and Corollary 5.3.3. However, this situation

can also be handled in a different way, by using (additional) different signals in each of the

quarter rectangles. We did not use this solution, and preferred adding the L-convex assump-

tion instead, because using more signals would have lead to the GSM’s having more states and

being more complex.
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Figure 5.11: High-level design of another smart tile assembly system that replicates arbitrary
shapes, and which uses a method similar to the smart sand robotic system replication of shapes
[8].

5.4 Discussion and Future Work

Note that the tile complexity (number of tiles) and the space complexity (the “area” of the

computation) of the construction of the smart-TAM replicating systems in Theorem 5.3.4 can

be further reduced if we use a more complex tile computational device. The main idea is il-

lustrated in Figure 5.11. Basically, in order to replicate the original supertile, the smart-TAM

system should be able to read the edges and send signals accordingly. During each phase of

the replication, the system attaches a new tile (labelled with “A”) to the border of the original

supertile that reads the glue on one of the free edges of a tile on the border of the original

supertile, and sends a signal to the position where this edge will be replicated. Unlike the

construction in this paper, this signal has to travel back to the next free-edge on the original

supertile, and be reused to repeat the process. The complexity of the GSM will increase ac-

cordingly, as it has to keep track of the position of the last tile from where the signal was sent.

When the border structure (labelled with “B”) is complete, the interior is filled in, forming a

replica of the original shape. The tiles that fill the inside of the supertile-shaped hole can be

similar to the tile Treplica. This smart-TAM system for the replication of arbitrary shapes has
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lower tile and space complexity than the smart-TAM system constructed in Theorem 5.3.4, but

this comes at the expense of an increased complexity of the computational devices on the tiles.
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Chapter 6

Conclusion

The goal of this research was to enrich our understanding of self-assembly of tiles by defining

and studying theoretical models of self-assembly, and making a connection between research

on tile-based self-assembly systems and other research areas such as robotics and the formal

language theory. Compared to formal language theory and robotic systems, tile-based assem-

bly systems are a relatively new research area. To be able to use theoretical results in other

fields, a mapping between models is needed. We started this research project with an attempt to

make a connection between patterns in tile-based self-assembly systems and two-dimensional

languages. The definition of SA-hypergraph automata in Chapter 3 is a step in this direction.

However, we believe many unanswered question are left, and a deeper study of hypergraph au-

tomata can result in more interesting connections between self-assembly systems and picture

languages. Since tiles in DNA-based self-assembly systems do not always have different prop-

erties or colors, one of the interesting topics to study is the relationship between the hypergraph

automata and local picture languages. Also, many self-assembly systems do not have borders

or have a partial border on one side. In Chapter 3, we only used framed picture languages, and

an investigation into the picture languages that do not have frame or have partial frames, and

their connection to self-assembly systems, would be a potential future area of research.

In the Chapter 4, it was shown that a small change in the definition of the tile assembly

model can result in significantly different results, such as improving the computational power.

Considering that we proved that glue deactivation is a powerful tool, it would be interesting

to have a comparison between self-assembly systems using glue-deactivation-only signals and
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self-assembly systems that use glue-activation-only signals. Both models are capable of simu-

lating a Turing machine at temperature one. However, it is not known if there is any shape that

can only be constructed using glue-activation-only models, and not by using glue-activation-

only models. Moreover, it would be interesting to investigate the detachable tile assembly

model from the point of view of Kolmogorov complexity.

Since there previously was no common framework for self-assembly models, no standard

way to compare different self-assembly models was available. Our research in Chapter 5 aimed

to define the smart tile assembly model, that can be used later as a general framework for self-

assembly systems. Indeed, as a computational device on the smart tiles can range from being

absent, to a simple counter, all the way to a Turing machine, it would be possible to frame and

compare the existing self-assembly systems in terms of smart tile assembly models.

Lastly, we used smart tile systems to replicate given shapes. Although there have been other

researchers who achieved shape replication using DNA-based tile assembly systems, none of

the existing systems perform the replication task without moving the original shape from its

place. This is important because replication of three-dimensional objects is not possible by

building a frame around them, since the frame would stop the original shape from leaving its

place. The fact that in our proposed system the original shape does not need to leave the frame

that is built around it puts our proposed system in a unique position to be scalable to a three-

dimensional version self-assembly. Indeed another direction of future work would be to extend

our replication system to 3D

We hope the models that were proposed in this research can be used to apply research

results from language theory to tile-based self-assembly systems and from tile-based self-

assembly systems to robotics.



Appendix A

Examples of SA-Hypergraph Automata

In this section, we provide three example SA-hypergraph automata and illustrate their relation

to self-assembly systems. Our findings, presented in Section 3.4, do not build upon this section.

In all examples, every node in the underlying graph has a distinct colour which, for simplicity,

is the same as the identifier of the node.

The following examples show an SA-hypergraph automaton to accept the pictures in Fig-

ure A.1 part a). This example shows that SA-hypergraph automata can accept a picture lan-

guage with a simple description. The SA-hypergraph automaton in this example has 8 nodes

and 3 hyperedges; the equivalent tile system needs 8 tile types.

Example The SA-hypergraph automaton for the example in Figure A.1 is defined as follows.

The SA-hypergraph automaton is A = (N, E, f , d,G, E0), where

• N = {x1, x2, x3, x4, x5, x6, x7, x8},

• E = {e1, e2, e3},

• function f is defined such that

f (e1) = {x1, x2, x3, x4},

f (e2) = {x3, x4, x5, x6},

f (e3) = {x3, x4, x7, x8}
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• function d is defined such that

d(e1) = {x1, x2} → {x3, x4},

d(e2) = {x3, x4} → {},

d(e3) = {x3, x4} → {}

• underlying graph is shown in Figure A.1 part b.

• E0 = {e1}
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Figure A.1: Part a) shows an example of language of coloured self-assembled patterns. Part b)
depicts the underlying graph of the SA-hypergraph automaton that constructs the same pattern.

Example A shows a simple picture language containing two 2D-words. The SA-hypergraph

automaton uses two overlapping hyperedges with different active inputs and outputs. There-

fore, the number of nodes in this SA-hypergraph automaton will be less than the number tiles

in a tile assembly system which recognizes the same language. The SA-hypergraph automaton

in this example has 4 nodes and 3 hyperedges. An equivalent tile assembly system needs at

least 6 tile types.

Example The SA-hypergraph automaton for the example in Figure A.2 is defined as follows.

The SA-hypergraph automaton is A = (N, E, f , d,G, E0), where

• N = {x1, x2, x3, x4},
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• E = {e1, e2, e3},

• function f is defined such that

f (e1) = {x1, x2},

f (e2) = {x1, x2},

f (e3) = {x1, x2, x3, x4}

• function d is defined such that

d(e1) = {x1} → {},

d(e2) = {x1} → {x1, x2},

d(e3) = {x1, x2} → {}

• underlying graph is shown in Figure A.2 part b).

• E0 = {e1, e2}
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c2 c4

c3 c1

c2

a) b)

h
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Figure A.2: Part a) shows an example of language of coloured self-assembled patterns. Part b)
depicts the underlying graph of the SA-hypergraph automaton that constructs the same pattern.

Example A shows a language with an infinite number of one dimensional pictures. The SA-

hypergraph automaton uses three hyperedges to build the chain, moreover, one more hyperedge

is used to make the final configurations. Therefore, the number of nodes in this SA-hypergraph

automaton will be less than the number tiles in a tile assembly system which recognizes the

same language. The SA-hypergraph automaton in this example has 3 nodes and 4 hyperedges.
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Whereas an equivalent tile assembly system needs at least 5 tile types (one tile type to start, 3

tile type to build the chain, and one tile type to stop).

c1 c2

c3

c1 c2 c3

c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

a) b)

h

hh

Figure A.3: Part a) shows an example of language of coloured self-assembled patterns. Part b)
depicts the underlying graph of the SA-hypergraph automaton that constructs the same pattern.

Example The SA-hypergraph automaton for the example in Figure A.3 is defined as follows.

The SA-hypergraph automaton is A = (N, E, f , d,G, E0), where

• N = {x1, x2, x3},

• E = {e1, e2, e3, e4},

• function f is defined such that

f (e1) = {x1, x2},

f (e2) = {x2, x3},

f (e3) = {x3, x1} f (e4) = {x2, x3},
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• function d is defined such that

d(e1) = {x1} → {x2},

d(e2) = {x2} → {x3},

d(e3) = {x3} → {x1} d(e4) = {x2} → {},

• underlying graph is shown in Figure A.3 part b).

• E0 = {e1}
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