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Abstract

Understanding cell-type specific transcriptional responses to environmental conditions is

limited by a lack of knowledge of transcriptional control due to epigenetic dynamics. Addi-

tionally, cell-type analyses are limited by difficulties in applying current technologies to single

cell-types. A novel DNase-seq protocol and analysis procedure, deemed DNase-DTS, was de-

veloped to identify DHSs in the Arabidopsis epidermis and endodermis under control and cold

acclimation conditions. Results identified thousands of DHSs within each cell-type and ex-

perimental condition. DHSs showed strong association to gene expression, DNA methylation,

and histone modifications. A priori mapping of existing DNA binding motifs within accessible

genes and the cold C-repeat/dehydration responsive element-binding factor pathway resulted

in unique motif mapping patterns. In summary, a collection of endodermal and epidermal cold

acclimation induced chromatin accessibility sites may be used to understand mechanisms of

gene expression and to best design synthetic promoters.

Keywords: chromatin accessibility, epigenetics, Arabidopsis root, DNase hypersensitive

sites, epidermis, endodermis, histone modifications, DNA methylation, transcription, cis-regulatory

motifs, gene expression, transcription, next generation sequencing
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Chapter 1

Introduction

1.1 Transcriptional regulation in Arabidopsis

A key question at the core of genetics is how, where, and when a gene is transcribed? How

does the information encoded in a simple DNA sequence of 4 base pairs result in the com-

plex expression of RNA and proteins forming diverse cellular functions? While the study of

gene expression has been at the forefront of biological research, a complete answer to these

questions still remains. Despite the basics of transcription and the central dogma of biology

being understood, an understanding into transcription’s complex regulation has been difficult.

Indeed, while countless transcriptomic studies have been performed in the last 20 years, re-

searchers only partly understand the intricacies of transcriptional regulation.

To begin with, transcription has been difficult to understand due to transcription being a

highly complex system involving the interaction of many components temporally and spa-

tially. Notably, transcription factor (TF) binding, DNA methylation, chromatin accessibility,

and histone modifications all interact and influence transcription (Arnone and Davidson (1997);

Barlow (1993); Zhang et al. (2012a); Karlić et al. (2010); Siegfried et al. (1999)). In order for

an organism to efficiently develop and respond to environmental conditions, it requires all those

components to interact in very tightly controlled ways. For instance, while TF binding mainly

involves the interaction between specific DNA sequences and TFs, other processes can inhibit

or enhance this interaction. Specifically, high amounts of DNA methylation can reduce tran-

1



2 Chapter 1. Introduction

scriptional output by interfering with TF binding (Siegfried et al. (1999); Vining et al. (2012);

Thurman et al. (2012); Jones et al. (1998); Klose and Bird (2006)). Likewise, histone modifica-

tions are linked to transcriptional output. However, histone modification’s link to transcription

may be indirect due its influence on the overall chromatin structure rather than interfering with

TF binding directly (Kouzarides (2007); Zhang et al. (2007); Ernst et al. (2011); Thurman et al.

(2012); Bernstein et al. (2002)). This being said, transcriptional output is certainly dependent

on chromatin structure. Chromatin structure is precisely defined by overall accessibility to TFs

which will directly influence gene expression. A full description of these processes and how

they influence transcription is discussed in the following subsections.

1.1.1 Transcriptional activation

In order for a gene to be expressed it requires, first and foremost, the binding of the main

transcriptional preinitiation complex. The preinitiation complex (PIC) is a large assembly of

proteins involving the interaction of an RNA polymerase and several general TFs. Once this

interaction is formed near the transcriptional start site (TSS), the complex transcribes DNA

into messenger RNA (Allen and Taatjes (2015); Darnell (2013)). Furthermore, additional TFs

will bind to nearby DNA regulatory elements and alter, either as an activator or as a repressor,

transcription through changing how much, where, and when a gene should be expressed.

Regulatory elements are DNA sequences which TFs recognize in order to bind to DNA and

control expression. These may be enhancers, enhancing the expression of the associated gene

or repressors, repressing the expression of the associated gene. These elements may contain

known binding sites, called motifs, with which the TFs specifically bind. Over 1,500 charac-

terized TFs are known in the Arabidopsis genome which control gene expression in a cell-type

and condition dependent manner (Riechmann (2002); Kaul et al. (2000)). In order to bind to

their DNA sequences, many TFs require activation through ligand binding, signal cascades, or

interaction with other proteins. TFs have been found to recruit chromatin remodelling com-

plexes which alter the surrounding chromatin structure. By recruiting these complexes and
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altering the surrounding chromatin structure, TFs modify gene expression by changing how

accessible chromatin is to other TFs and the basal transcriptional machinery (Li et al. (2001);

Yudkovsky et al. (1999)).

An additional layer of control, the epigenetic layer, highly influences and controls transcrip-

tion spatially and temporally through enhancing or inhibiting TF binding (Kouzarides (2007)).

Epigenetics is defined as any heritable change in transcription not explained through changes

in the DNA sequence. The epigenetic layer includes histone modifications, DNA methyla-

tion, and chromatin accessibility, all separate from the four base pairs (Siegfried et al. (1999);

Kouzarides (2007)). In summary, transcriptional activation is a complex process involving the

interaction of the DNA sequence, TF binding, and the epigenetic layer.

1.1.2 Transcription factor families

The Arabidopsis thaliana genome contains roughly 1,572 TFs that belong to 45 different TF

families based on their sequence and functional similarities (Riechmann et al. (2000); Riech-

mann (2002); Kaul et al. (2000)). TF families are not only structurally similar but recognize

and bind related motifs (Jakoby et al. (2002); Pabo and Sauer (1992); Weirauch and Hughes

(2011); Weirauch et al. (2014)). There are many TF families for example, the basic helix-

loop-helix (bHLH), Myb/SANT, C2H2 zinc fingers, homeodomain, and basic leucine zipper

(bZIP). In addition, plants contain several plant specific TF families including the MADS

box, APETELA2 (AP2), DNA-binding-with-one-finger (Dof), Whirly, B3, WRKY, NAC, and

SQUAMOSA binding proteins (SBP) (Weirauch and Hughes (2011)). Notably, the largest

family of TFs, the AP2 family, is critical in abiotic stress response including cold and drought

(Dietz et al. (2010); Stockinger et al. (1997); Fowler and Thomashow (2002)).

In Arabidopsis, 414 motifs representing 666 TF genes have been identified and character-

ized (Weirauch et al. (2014)). Through identifying these motifs and mapping their locations

across the genome, one may begin to understand where and when these TFs are binding. Thus,

identifying and mapping these motifs, using specialized software (e.g. Austin et al. (2016)), is
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critical for understanding how genes are expressed temporally and spatially.

1.1.3 Methods of transcriptional quantification

In order to understand why and how transcription occurs, one must first have a complete under-

standing of an organism’s transcriptome. The transcriptome is the identity but also the quantity

of all the transcripts in any tissue, cell, or organism. The main goal of understanding the

transcriptome is to identify and quantify the expression of each gene throughout development,

under certain conditions, and in certain tissues or cell-types. Through understanding what is

being transcribed and where, researchers gain a greater understanding of how an organism

develops or responds to internal and external conditions.

Currently, RNA-seq is the most common method for quantifying transcription levels (We-

ber et al. (2007); Marioni et al. (2008); Wang et al. (2009)). RNA-seq is a high-throughput

sequencing method to accurately identify and quantify gene expression across many organ-

isms and tissue types. RNA-seq takes cDNA fragments, converted from RNA, and sequences

the cDNA fragments in a high-throughput method (Weber et al. (2007); Marioni et al. (2008);

Wang et al. (2009)). Afterwards, sequenced reads are mapped to the reference genome and

information containing the transcript structure and expression level are analyzed. Transcript

abundance is subsequently used to identify differentially-expressed genes between samples or

to integrate transcript abundance with other data sources. To conclude, RNA-seq has become

a very popular tool for identifying and characterizing the transcriptome within various species,

tissues, and cell-types (Weber et al. (2007); Marioni et al. (2008); Wang et al. (2009); Zeisel

et al. (2015); Li et al. (2016)). As a result, a huge amount of sequencing data have been gener-

ated and are publicly available for researchers to use and integrate in their various experiments

(e.g. Kanz et al. (2005); Benson et al. (2012); Barrett et al. (2012)).
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1.2 Epigenetics

Transcription factor binding to the DNA sequence will only explain part of how, why, and

where transcription takes place. Each cell in an organism contains the exact same genetic code

in which only a limited amount of information can be transferred. Thus, to fully understand

transcription a complete understanding of influences above the DNA sequence is required.

Specifically, to create a complete picture of transcription, researchers require an understanding

of epigenetic’s control on gene expression.

Epigenetics includes several layers including DNA methylation, histone modifications,

and chromatin remodelling or packaging. Together these layers, in addition to the DNA se-

quence and TFs, interact and modify each other resulting in specific control of gene expression

(Siegfried et al. (1999); Kouzarides (2007); Felsenfeld (1992); Yuan et al. (2005)). Indeed,

TF binding in combination with epigenetics is a tightly controlled and interconnected process

that leads to specific control over gene expression developmentally and in response to external

conditions (Feil and Fraga (2012); Kiefer (2007)). The subsequent subsections detail the rel-

evant background and current understanding of epigenetics and its effect on transcription and

TF binding.

1.2.1 Chromatin accessibility

DNA is not simply a linear strand with no structure, packaging, or organization. Instead, DNA

forms a tightly regulated complex with proteins packaging the DNA into a highly compact and

dense structure called chromatin. By forming this complex, DNA is protected from external

damage while enabling a greater control over gene expression. (Felsenfeld (1992); Workman

and Kingston (1998); Yuan et al. (2005)). To form the DNA-protein complex, a core of proteins

called histones tightly bind and wrap DNA to form a nucleosome. A nucleosome is composed

of two copies of histones H2A, H2B, H3, and H4, making up a histone octamer (Van Holde

(2012)). The nucleosome is the basic unit of chromatin that packages DNA with further levels
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of compaction leading to highly dense chromatin.

The chromatin structure is highly flexible and dynamic constantly undergoing alterations.

DNA may change from a highly compacted state wrapped around nucleosomes to a state not

bound to any nucleosomes. In a nucleosome depleted state, DNA is highly accessible for TF

binding and interactions with other regulatory proteins. However, in a nucleosome bound state,

TFs are inhibited from binding to their respective cis-regulatory elements (Felsenfeld (1992);

Workman and Kingston (1998); Yuan et al. (2005)). As a result, nucleosome-depleted regions

are deemed accessible or open, while nucleosome bound DNA regions are deemed closed or

inaccessible.

However, rather than being a strict case of open or closed, chromatin is instead a continuous

spectrum from closed to open (Zhang et al. (2012a); Liu et al. (2017); He et al. (2012)). This

spectrum or degree of accessibility is defined as DNA accessibility. Chromatin may be in

any state from DNA tightly wrapped around nucleosomes to a state where no nucleosomes

are present. One may identify these open sites and define their accessibility using an enzyme

known as DNase I, an endonuclease (Wu et al. (1979)). Hence, these nucleosome-depleted

regions are known as DNase I hypersensitive sites (DHSs) due to their high sensitivity to DNase

I digestion. Hence, using this enzyme, detailed information into the locations and accessibility

of DHSs may be obtained.

In order to obtain a complete picture of transcription, an understanding of DNA accessi-

bility is required. Specifically, DNA accessibility has been linked to transcription through TF

binding interference (Guertin and Lis (2013); John et al. (2011); Bell et al. (2011)). In a con-

densed or closed chromatin state, the ability of transcriptional components to bind to their DNA

sequences is interfered with. Furthermore, in an open and accessible state, transcriptional com-

ponents may bind to their respective DNA sequences (Figure 1.1; Felsenfeld (1992); Workman

and Kingston (1998); Yuan et al. (2005)). As a result, open chromatin in gene promoters is as-

sociated with active transcription while closed chromatin in gene promoters is associated with

inactive transcription (Zhang et al. (2012a); Boyle et al. (2008a); Song et al. (2011)).
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Figure 1.1: Gene expression requires the coordination of histone modifications, DNA
methylation, chromatin accessibility, and TF binding. Depicted is a cartoon image of all
these factors interacting to drive expression of a downstream gene. Closed chromatin with
distinct modifications are shown on the left. Accessible DNA is shown on the right with dis-
tinct chromatin structure and modifications surrounding. TF binding is inhibited by closed
chromatin while enabled in accessible DNA. Orange squares represent histone methylation,
orange ovals represent DNA methylation, blue pentagons represent histone ubiquitination, and
purple triangles represent histone acetylation. DNase I preferentially digests within accessible
chromatin.
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In addition to the presence of accessible chromatin affecting transcription, the degree of

DNA accessibility significantly impacts transcriptional output. Previous research identified

that genes with highly sensitive promoter DHSs have higher gene expression than genes with

less sensitive DHSs (Zhang et al. (2012a); Natarajan et al. (2012)). In other words, genes more

accessible to TF binding will be on average more highly expressed.

However, even though genes may have highly accessible promoters, they may not be highly

expressed or expressed at all. As mentioned earlier, for a gene to be expressed it requires

TF binding. A gene may be accessible to TF binding but lack TFs bound to its regulatory

elements leading to no transcription. These genes are in what is called a transcriptionally

poised state. They are accessible and poised for TF binding and therefore expression, but are

not necessarily actively transcribed and bound to TFs (Gross and Garrard (1988); Sullivan et al.

(2014, 2015)). Such genes are often controlled throughout development and under specific

environmental conditions (Sullivan et al. (2014)). These accessible sites require their binding

TFs to be expressed or activated prior to binding. Sullivan et al. (2014, 2015) suggested this

may be due to the high amount of energy required for changing chromatin states. Therefore,

to reduce energy usage, genes may remain highly accessible for TF binding. Furthermore,

organisms like plants are required to respond to conditions quickly and altering chromatin

states is quite time intensive. As a result, maintaining an active open chromatin state may

significantly reduce response times in response to rapidly changing environmental conditions

(Raser and O’Shea (2004)).

Due to chromatin’s association with TF binding and gene expression, DHSs are linked with

genomic features like transcriptional start sites (TSSs), enhancers, suppressors, and transcrip-

tion factor binding sites. In general, cis-regulatory regions, active regulatory regions, or any

DNA regions requiring protein binding or interaction are associated with accessible chromatin

(Gross and Garrard (1988); Natarajan et al. (2012); Boyle et al. (2008a); Heintzman et al.

(2007)). Therefore, identifying DHSs will aid in predicting new gene regulatory regions or

”functional” regions throughout genomes. Predicting new regulatory regions, like enhancers,
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is of particular importance in Arabidopsis as they have been very difficult to identify using

existing techniques and there are many to identify (Zhu et al. (2015)). Lastly, in addition to

predicting new regulatory regions, identifying DHSs also aids in identifying the specific TF

binding sequences or motifs of those regions.

DNA accessibility is important for understanding transcription throughout an organism, in

specific cell-types, throughout plant development, and in response to environmental stimuli

(John et al. (2011); Sullivan et al. (2014); Pajoro et al. (2014); Song et al. (2011)). In order to

understand how organisms develop, how cell-types form, and how organisms respond to stress-

ful conditions, it is important to understand how those processes are affected through chromatin

dynamics. Particularly, in Arabidopsis, DNA accessibility has been mapped and shown to be

important in leaf and flower development, in seedling development, in root development, and

in response to heat and light (Pajoro et al. (2014); Zhang et al. (2012b); Sullivan et al. (2014);

Cumbie et al. (2015); Liu et al. (2017)). In general, DNA accessibility was found to be involved

in the regulation of transcription for Arabidopsis developmental and stress responsive genes.

Developmental and environmental response pathways induce changes in chromatin structure

leading to alterations in transcriptional output (Jiang (2015); Chinnusamy and Zhu (2009); Luo

et al. (2012)).

However, while whole tissue and organism samples have been well studied, cell-type spe-

cific studies in Arabidopsis are lacking. This may be due to the difficulty in isolating and

accumulating enough nuclei using current protocols, especially in very difficult tissues like the

root (Cumbie et al. (2015)). Despite this, several studies attempted and have shown the im-

portance of chromatin dynamics in cell-type development (Stergachis et al. (2013); Song et al.

(2011); Costa and Shaw (2006)). One study focused on identifying how the root epidermis

develops in alternating patterns of epidermal cells and hairs cells. Their results found the epi-

dermal alternating pattern was due to gene expression changes as a result of chromatin state

alterations around one gene locus, the GL2 locus (Costa and Shaw (2006)). As a result, in

order to understand cell-type development and formation, it is important to understand tran-
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scriptional alterations due to epigenetic changes. It is important to not only understand the

epigenetic differences between cell-types, but also how chromatin alterations arise and affect

transcription.

1.2.2 Chromatin remodelling, histone modifications, and DNA methyla-

tion

DNA accessibility and chromatin remodelling, or modifying the chromatin structure, is con-

trolled through many processes affecting the DNA-protein interaction of nucleosomes. One

process that remodels chromatin involves various nucleosome remodelling complexes using

ATP-hydrolysis to establish accessible chromatin through two distinct processes. (Clapier and

Cairns (2009); Becker and Hörz (2002); Bell et al. (2011)). The first process involves the the

SWI/SNF complexes which slide nucleosomes along DNA into adjacent DNA regions allow-

ing them to become accessible or closed (Becker and Hörz (2002); Brehm et al. (2000); Bell

et al. (2011)). This can make it difficult to identify DHSs as nucleosome sliding is consid-

erably dynamic and fluid. The second process involves remodelling complexes evicting or

removing nucleosomes completely to create accessible DNA (Becker and Hörz (2002); Phelan

et al. (2000); Bell et al. (2011)). Through these two processes, nucleosome sliding or eviction,

chromatin remodelers allow DNA to become accessible to TFs.

In addition to chromatin remodelling, chemical modifications to histone components will

aid in altering DNA accessibility by either recruiting other remodelling factors or affecting nu-

cleosome stability (Bell et al. (2011)). First, many documented proteins bind to chemical mod-

ifications on histone tails that proceed to alter surrounding chromatin (Taverna et al. (2007)).

As a result, histone modifications often precede changes to the overall chromatin structure.

For example, H3K27me3 was found to recruit Polycomb proteins that proceed to close and

compact the surrounding chromatin (Bell et al. (2011); Francis et al. (2004)). Second, histone

modifications are thought to destabilize histone/DNA interactions in nucleosomes or between

adjacent nucleosomes. Due to this destabilization, DNA then becomes more accessible. For
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instance, H4K16ac was identified directly affecting the interactions between adjacent nucleo-

somes allowing DNA to become accessible (Shogren-Knaak et al. (2006); Bell et al. (2011)).

There are too many histone modifications to be discussed within the framework of this the-

sis, hence, only those used in the current work are discussed. Two modifications, H3K4me3 and

H3K27me3, were selected as they are well characterized in the context of chromatin accessibil-

ity. H3K4me3 is found linked with open chromatin and active transcription while H3K27me3

has been linked to closed chromatin and inactive transcription (Kouzarides (2007); Zhang et al.

(2007); Ernst et al. (2011); Thurman et al. (2012); Bernstein et al. (2002)). However, while

histone modifications are associated with regions of open and closed chromatin, accessible

DNA regions are depleted of nucleosomes and therefore depleted of the majority of histone

modifications (Figure 1.1; Zhang et al. (2012a)). Despite this, regions surrounding DHSs are

associated with distinct epigenetic markers due to DHSs being flanked by highly positioned nu-

cleosomes or strongly phased nucleosome arrays (Wu et al. (2014); Radman-Livaja and Rando

(2010)). These highly positioned nucleosomes can lead to very distinct epigenetic spikes in

histone modifications surrounding DHSs (Zhang et al. (2012a)).

While DNA methylation may not be directly involved with chromatin modifications or

alterations, DNA methylation is associated and linked with chromatin accessibility patterns

(Figure 1.1). For instance, DHSs are often hypomethylated or associated with a lack of DNA

methylation. In the context of transcription, hypomethylation occurring alongside DHSs makes

biological sense as both are associated with active transcription (Zhang et al. (2012a); Sullivan

et al. (2014); Lister et al. (2009)). However, while distinct methylation patterns are associated

with DHSs, it is unknown whether DNA methylation precedes or follows DNA accessibility

changes or how they influence one another (Jones et al. (1998); Wade et al. (1999); Cho-

davarapu et al. (2010)). CpG, CHG, and CHH are the three types of DNA methylation within

plants where H is an adenine, cytosine, or thymine. While CpG methylation is biologically

universal, CHG and CHH methylation are mostly unique to plants and fungi (Suzuki and Bird

(2008); Lister et al. (2009))
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1.3 DNase I hypersensitive site identification

A challenge within genomics is to accurately and efficiently identify DHSs on a large scale

throughout entire genomes in a high-throughput manner. To date, several protocols and strate-

gies have been developed to accomplish efficient identification of DHSs through similar but

differing approaches. The majority of DHS identification protocols rely on the basic property

that DHSs are sensitive to digestion by an enzyme known as DNase I (Wu et al. (1979)). Af-

ter DNase I digestion, each protocol identifies DHSs through their own various computational

analysis strategies and techniques. The three main strategies deployed in DHS identification

are Southern blotting, DNase-chip,and DNase-seq (Wu et al. (1979); Crawford et al. (2006);

Boyle et al. (2008b); Hesselberth et al. (2009))

1.3.1 Current DHS identification strategies

Previous DHS identification protocols involved DNase I digestion followed by Southern blot-

ting (Wu (1980)). Any DHS digested would appear as distinct smearing patterns and bands on

agarose gels. Despite this protocol leading to the identification and characterization of many

DHSs, it was time consuming, limited in scale and output, and limited in detailed results (Wu

(1980); Keene et al. (1981)). Therefore, to deploy DHS identification on a large scale, new

techniques using high-throughput methods were needed.

As a result, DNase-chip was developed to replace Southern blotting as a high-throughput

DHS identification method (Crawford et al. (2006)). DNase-chip involves the same basic pro-

cess of digesting nuclei with DNase I and isolating DNA for analysis. In this method, DNA

is slightly digested with DNase I so DHSs are cut only once or twice per fragment. This re-

sults in DNA fragments whose ends are the sites of DNase I digestion. The ends of these

fragments are isolated, run on microarrays, and analyzed through existing microarray analysis

tools. Genomic regions containing a high enrichment of these fragment ends are identified

as DHSs. Thus, DNase-chip allowed for the quick identification of DHSs on a large scale in
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a high-throughput manner. However, DNase-chip is still low resolution, lacks genome wide

coverage, and is highly dependent on the microarray used. Despite this, microarray analysis of

DHSs is still widely used as its main advantage is ease of use and quite sophisticated analysis

tools.

A recent improvement in DHS identification methods was the development of DNase-seq

(Boyle et al. (2008a); Hesselberth et al. (2009)). DNase-seq overcomes and significantly im-

proves upon the issues present in previous DHS technologies allowing for single base pair

resolution of DHSs genome wide. As with previous strategies, DNase-seq involves slightly

digesting DNA with DNase I so the ends of each DNA fragment represent one DNase I cut

site. However, rather than isolating the ends of DNase I digested fragments and hybridizing

them to an array, DNase-seq sequences the ends of DNase I digested fragments. DNase-seq,

therefore, produces a genome-wide picture of chromatin not limited to the information on a

microarray. Similar to DNase-chip, DNase-seq analysis involves identifying regions of high

fragment enrichment. Despite improving upon microarray technologies considerably, DNase-

seq has somewhat immature and difficult to use analysis tools and so many studies prefer to use

DNase-chip. Finally, DNase-seq is significantly more expensive than microarray technologies

but with lowering sequencing costs, DNase-seq is slowly becoming the preferred option.

A limiting issue with DNase-seq or any current molecular protocol is the difficulty in work-

ing with single cell-types. Current protocols involve the requirement of millions of nuclei

which are difficult to produce for many organisms and cell-types (Boyle et al. (2008a)). In

addition, DNase-seq protocols are time consuming and involve extensive biochemistry making

working with resistant tissues difficult (Cumbie et al. (2015)). For example, it is difficult to

obtain enough high quality nuclei even in the entire Arabidopsis root using existing DNase-

seq protocols, as it is a difficult and uncooperative tissue (Cumbie et al. (2015); Filichkin and

Megraw (2017)). Existing nuclei isolation protocols cannot obtain the required abundance or

purity of nuclei needed from the Arabidopsis root. Nuclei isolations from this tissue are of-

ten plagued with high amounts of cellular debris which purify with the nuclei (Filichkin and
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Megraw (2017)). To move DNase-seq to a cell-type resolution, steps toward more efficient

nuclei isolation techniques and DNase-seq protocols are required.

A second issue holding DNase-seq back is the use of agarose gels and agarose gel plugs. To

prevent mechanical shearing of DNA, agarose gel plugs are required in DNase-seq protocols

(Boyle et al. (2008a); Crawford et al. (2006)). In order to obtain enough DNA in difficult tissues

like the Arabidopsis root, a large amount of agarose is required for embedding digested nuclei

(Filichkin and Megraw (2017)). Furthermore, multiple agarose plugs are required, making the

protocols time consuming and inefficient. In addition, the agarose analysis step introduces con-

siderable human error as technicians need to run and interpret gel smears to assess if samples

are optimally digested. The agarose analysis is done over a DNase I dilution series in order

to select the optimally digested sample for sequencing. Two recent papers by, Filichkin and

Megraw (2017) and Cumbie et al. (2015), overcame this issue by removing agarose gel plugs

completely. Indeed, Cumbie et al. (2015) produced enough DNA to perform DNase-seq on the

Arabidopsis root through their method. However, agarose analysis and large amounts of nuclei

are still required which cannot be obtained from Arabidopsis root cell-types. Lastly, despite

existing protocols overcoming many issues, current protocols are still time consuming, involve

inefficient fragment enrichment steps, extensive library preparation protocols, and blunt end

polishing. Hence, a new protocol and analysis strategy requires development so DNase-seq

may be performed on small samples at a single cell-type level in the Arabidopsis root.

1.3.2 DNase direct to sequencing

DNase-DTS (direct to sequencing) is a protocol developed in the Austin lab to overcome sev-

eral issues surrounding existing DNase-seq protocols while improving upon and introducing

new analysis techniques and quality control mechanisms (Unpublished, Figure 1.2). Firstly,

DNase-DTS removes agarose gel plugs and improves upon existing DNase-seq nuclei isola-

tion protocols by incorporating the INTACT protocol (Deal and Henikoff (2011)). INTACT

allows for high yield and pure nuclei extractions in a relatively easy and time efficient proto-
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col. Secondly, DNase-DTS improves upon time consuming steps of isolating and enriching

DNase I cut ends by avoiding those steps. Instead DNase-DTS digests nuclei with a large

amount of DNase I in order that accessible regions are heavily digested. Afterwards, DNA

is isolated from nuclei and sent directly for sequencing. The agarose analysis step is skipped

entirely and assessment of DNase I digestion and selection of the optimally digested sample is

performed post-sequencing. Instead of several days of work, as is done with previous DNase-

seq protocols, DNase-DTS is accomplished in the span of a day. However, this changes the

basic fundamentals of DNase-seq. Rather than sequencing DHSs and identifying regions of

sequence enrichment, DNase-DTS sequences closed chromatin as the DHSs are heavily di-

gested. In addition, the analysis of DNase-DTS involves the identification of regions lacking

sequencing as opposed to enriched regions. Due to the novel data generated, new analysis tools

and pipelines needed to be developed in order to identify DHSs. One of the goals of this work

was to develop new bioinformatic tools to analyze this new form of data.
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Figure 1.2: Overview of DNase-DTS protocol and analysis procedure. Transgenic Ara-
bidopsis containing a nuclei targeted fusion protein with a nuclear envelope targeting signal
called WPP, a green fluorescent protein (GFP), and a biotin ligase recognition peptide (BLRP),
are ground in liquid nitrogen and filtered through 70 µm and 40 µm filters. Total nuclei are
isolated and incubated with streptavidin-coated Dynabeads. Nuclei with a biotin signal bind to
the Dynabeads and are isolated through the interaction of a magnet pulling out the magnetic
Dynabeads. Nuclei are divided into four separate tubes and digested over a DNase I dilution
series. Isolated DNA is sequenced using an Illumina MiSeq. Generated data are then analyzed
through custom software called DNase-DTS (DDTS) and DHSs are identified.



1.4. Advantages of identifying accessible chromatin 17

1.4 Advantages of identifying accessible chromatin

The identification of cell-type specific DHSs considerably increases the knowledge of basic

biological processes. For instance, chromatin dynamics may be integrated with transcription

to further understand chromatin’s role in influencing gene expression and TF binding. In ad-

dition, research into cell-type DHSs increases the understanding of how chromatin dynamics

influence cell-type formation and development. Through extension of this research into stress

and acclimation response, a model of how chromatin dynamics initiate cellular responses to

environmental conditions may be made. Lastly, DHSs can be integrated with epigenetic data

to identify how they influence one another and interact to achieve proper cell function.

A more practical advantage of identifying accessible chromatin regions, particularly in

Arabidopsis, is for the creation of new biotechnological applications and transgenic plants.

Through an understanding of chromatin dynamics more intelligently designed synthetic pro-

moters may be designed to take advantage of chromatin dynamics influence over gene expres-

sion. Researchers would gain a greater control over where, when, and how genes are expressed.

Extension of chromatin research to cell-type development and acclimation responses would al-

low researchers to develop synthetic promoters expressed in certain cell-types and under certain

conditions. Synthetic genes may be designed to be accessible under certain conditions en-

abling expression of that gene under those conditions. Currently, synthetic genes are typically

designed with constitutive promoters resulting in gene expression across all tissues constitu-

tively. However, many transgenes require expression only in certain cell-types under certain

conditions for them to be effective. Additionally, in markets within Europe where GMOs are

unwanted, not expressing transgenes in the fruit is advantageous. For example, it is attrac-

tive for those markets to express an insect resistance gene in leaf tissues but not in the fruit

or vegetable that the consumer would consume. Lastly, while transgenic expression of genes

may give several benefits, there are often disadvantages. Expression of cold-regulated genes

(COR), while increasing cold resistance, often reduces the growth rate of plants (Jaglo-Ottosen

et al. (1998); Gilmour et al. (2004)). Expression of the transgene specifically under cold ac-
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climation or other stressful conditions would be significantly advantageous in such cases. In

summary, utilization of chromatin dynamics in biotechnological applications hopes to increase

our understanding and control over transgene expression. Combining chromatin dynamics with

TF binding, motif sites, histone modifications, and DNA methylation may allow genes to be

controlled in a very specific fashion temporally and spatially.

1.5 Cell-type specific root genomics

A large proportion of genomic studies involve the collection of entire tissues from organisms

on which the experiment is performed. While these studies have led to many discoveries,

they miss important data within separate cell-types. Single cell-type analyses improve not

only an understanding into general biological problems like transcriptional control, but also

aid in understanding cell-type development and formation (Trapnell (2015)). For instance,

cell-type specific studies enable researchers to identify how heterogeneous cell-types form and

develop from identical DNA sequences. Likewise, integration with transcriptional data enable

a further understanding into how cell-types form while improving our understanding into the

basic model of transcription. In fact, understanding cell-type chromatin alterations will lead to

the same information on the processes and proteins that lead to chromatin alterations obtained

from an entire tissue study. By performing these studies on individual cell-types we gain

additional information on cell-type development and transcriptional control which could not

be obtained through studies on entire tissues.

Analyses involving whole tissues suffer from issues arising from using heterogeneous sam-

ples (Trapnell (2015)). Namely, the output of any experiment involving whole tissues will be

the average of the population of cells. Data specific to single cell-types may not be detected

as it would be masked by the combined results of other cell-types. Observations from distinct

cell-types are consumed by the heterogeneity of the population. A single cell-type analysis

reduces these cumulative effects and allows observations of higher resolution. For instance,
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results identified from entire root samples would be attributed to the entire tissue. However,

those observations may result from a strong signal coming from the epidermal layer masking

results from other cell-types (Trapnell (2015)). Therefore, in order to understand basics of bi-

ology, like transcription and translation, a greater understanding of how such processes work

at the cell-type level is necessary.

1.5.1 The Arabidopsis root

Arabidopsis is a great model organism for use in cell-type specific analyses. Specifically, the

Arabidopsis root is of particular use in genomics due to its radial design and highly specialized

or distinct cell layers (Birnbaum et al. (2003); Benfey and Schiefelbein (1994)). From the

outermost layer inwardly the layers of the root are: the epidermis, cortex, endodermis, and

stele (Dolan et al. (1993)). All cell layers, except the stele, are a single cell in depth allowing

genomic experiments to be performed in a very targeted manner (Dolan et al. (1993)).

The epidermis is the outermost layer and is the first responder to any external environmen-

tal changes. The epidermis protects the root from external threats while acting as the first tissue

uptaking chemicals, nutrients, and water. By increasing its surface area, through tubular ex-

tensions called root hairs, the epidermis uptakes all necessary nutrients and water for the plant.

The cortex is the next layer and accumulates starch as well as aiding in gas exchange and oxy-

gen storage. Continuing further within the root, the endodermis is a critical cell layer serving

as the absorbing region of the root while controlling the flow between the outermost layers and

the stele. Within the endodermis is a tight barrier called the casparian strip tightly controlling

the flow of solutes and water into the vascular stele. The last cell-type in the Arabidopsis root

is the stele or vascular tissue which is critical for transporting solutes and water throughout the

plant. The stele includes the pericycle, phloem, and xylem. Specifically, the xylem is critical

for transporting water from the root to the rest of the plant, while the phloem is important for

transporting nutrients and signalling molecules (Esau (1977); Enstone et al. (2002)).

In summary, the Arabidopsis root contains very distinct and highly specialized cell layers
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making it a great model organism to understand how cell-types develop and form. Despite

cell-type specific differences in the Arabidopsis root being well understood, the specific mech-

anisms of their development is not. For instance, how do the epidermis and endodermis cell

layers of the Arabidopsis root develop to be so highly specialized? One mechanism, chromatin

remodelling, is one answer to this question and is the main focus of this work.

1.5.2 Root epidermis and endodermis

This thesis focused on the Arabidopsis root epidermal and endodermal cell layers for several

reasons. Transgenic Arabidopsis lines to isolate root epidermis and endodermis nuclei have

been developed in the Austin lab. As was mentioned, the epidermal root is the first layer ex-

posed to any form of environmental changes and is the first responder. Particularly, the root

is exposed to distinct changes in the temperature of the soil or the liquid media within which

they are grown. Similarly, the endodermis layer is expected to be critical for cold stress as it

controls the flow of water into the vascular tissue, making it critical for drought response in

the root (Esau (1977); Enstone et al. (2002); Kiegle et al. (2000); Henry et al. (2012)). For

cold stress and acclimation this is important, as a significant amount of cold damage is from

freezing induced dehydration (Steponkus and Webb (1992)). Lastly, the root shows distinct

changes in gene expression under cold stress with only 14% of its transcriptome changes being

shared with changes in the leaves (Kreps et al. (2002)). Thus, the root appears to drastically

respond to cold conditions in a distinct manner and research into root cold response will pro-

duce unique results. In summary, researching various biological aspects of root epidermis and

endodermis development will increase understanding into chromatin dynamic’s influence on

cell-type development and cold acclimation.

1.5.3 Cell-type specific isolation methods

A challenge with cell-type analyses is the isolation of pure distinct cell-types. The use of cul-

tured cell lines has simplified this problem for a lot of organismal tissues. However, for many



1.6. Acclimation and stress response 21

organisms and tissues, obtaining pure single cell-types can be quite challenging. One pro-

cess to overcome these challenges is fluorescence-activated cell sorting (FACS) (Bonner et al.

(1972)). FACS passes cells, one at a time, through a laser beam to identify and separate those

that have been fluorescently labelled with a fluorescent marker protein. However, this process

requires expensive equipment, is difficult to operate, uses harsh chemicals, and provides low

quality nuclei (Deal and Henikoff (2011)).

A new protocol, isolation of nuclei tagged in specific cell-types (INTACT), was developed

to overcome many of the FACS issues (Deal and Henikoff (2010, 2011)). In this method, plants

are transformed with a transgene containing a nuclear envelope targeting signal, a green fluo-

rescent protein, and a biotin ligase recognition peptide (Deal and Henikoff (2010)). Expression

of the fusion protein using a cell-type specific promoter and a nuclear envelope targeting signal

inserts the folded protein containing the biotin ligase recognition peptide into the nuclei of in-

terest. A biotin ligase is co-transformed with the previous transgene in order for a biotin marker

to be added to the biotin recognition peptide. As a result, the nuclei become biotinylated as the

biotin ligase recognition peptides became tagged with a biotin label. Nuclei of interest are now

easily isolated from the organism using the interaction of the biotin marker with streptavidin

coated magnetic beads. The INTACT protocol thus allows nuclei to be isolated relatively easily

and with high yield and purity (Deal and Henikoff (2010)).

1.6 Acclimation and stress response

Plants have adapted many processes to deal with the fact they are sessile organisms and must

cope with environmental conditions. For agriculture purposes, research into plant environmen-

tal adaptations is critical as extreme environmental conditions significantly impact plant growth

and yield. In addition, due to climate change affecting crop growth and yield, and an ever in-

creasing world population, the agriculture industry is under considerable pressure to produce

enough food for the world (Godfray et al. (2010); Singh (2012); Sinha et al. (2015)). Thus,
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in order to develop crops with high yield and resistance to extreme environmental conditions,

a clear understanding of the mechanisms through which plants respond to adverse conditions

will be critical. Specifically, understanding how crops acclimate to stressful conditions will en-

able future GMOs and agriculture practices that could significantly improve crop survivability

and yield while being exposed to stressful conditions.

Within temperate regions, cold is a major factor significantly impacting the survivability

and growth of crops (Thakur et al. (2010); Kasuga et al. (1999); Sinha et al. (2015)). Cold

stress includes two types: freezing stress, characterized as less than 0°C; and chilling stress,

characterized as less than 20°C. Freezing stress and chilling stress significantly affect the yield

and survivability of many agriculturally important crops including rice, cotton, maize, and soy-

bean (Board et al. (1980); Thakur et al. (2010); Kargiotidou et al. (2010); Rymen et al. (2007);

Sionit et al. (1987)). However, acclimating plants to cold conditions, whereby they become

accustomed to cold conditions, significantly improves their ability to survive cold conditions

(Wanner and Junttila (1999); Guy et al. (1985)). Many plants do not carry the ability to cold

acclimate while others do (Chinnusamy et al. (2007); Wanner and Junttila (1999)). Therefore,

in order to enhance cold survivability of crops, a proper understanding of how cold acclimation

occurs will be necessary. Understanding cold acclimation will aid in enhancing existing cold

acclimation but also in giving crops the ability to cold acclimate. It is interesting to note cold

and freezing stress also impart severe dehydration on plants. As a result, understanding the

effects of cold on plants will not only enable an understanding of how plants respond to cold,

but also reflect insights of how plants respond to dehydration (Steponkus and Webb (1992);

Fowler and Thomashow (2002); Steponkus et al. (1998)).

1.6.1 Cold stress and acclimation pathways

Plants respond extensively to cold stress and acclimation through the activation of many genes

and pathways. In Arabidopsis the exact number of cold regulated genes is unknown but, de-

pending on the study, between 4% and 14% of all genes are cold-regulated genes (Hannah
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et al. (2005)). One of the most studied cold stress and acclimation pathways is called the

C-repeat binding factor (CBF) pathway. The CBF pathway controls many of the downstream

cold-regulated genes upregulated during cold stress and acclimation. The most studied proteins

within this pathway are ICE1 (Interactor of little elongation complex ELL Subunit 1) and CBF

transcription factors (Chinnusamy et al. (2003); Medina et al. (2011)). The three CBF TFs:

CBF1, CBF2, and CBF3, are part of the AP2 transcriptional activator family and are critical

for cold acclimation due to binding a critical motif element in many cold-responsive genes.

This element is called the C-repeat (CRT)/dehydration-responsive element (DRE) and contains

the core sequence CCGAC (Baker et al. (1994); Yamaguchi-Shinozaki and Shinozaki (1994)).

In addition to being important for cold acclimation, this motif is critical in plant dehydration

response due to a strong overlap between those respective pathways (Yamaguchi-Shinozaki

and Shinozaki (1994)).

A secondary pathway initiated during cold stress and acclimation is the ABA signalling

pathway (Laang and Palva (1992); Xiong et al. (1999)). Previous research found ABA levels

increased in response to cold with many cold regulated genes responding to ABA input (Lang

et al. (1994); Gilmour and Thomashow (1991); Laang and Palva (1992); Gilmour et al. (1998)).

In fact, there is an enrichment in the ABA binding element, ACGTGG/T, within many cold

regulated genes in addition to the CRT/DRE element (Hannah et al. (2005)). As a result, it

appears cold stress and acclimation is controlled, at least partly, through an ABA-dependent

pathway. For a complete understanding of cold acclimation, it will be necessary to understand

these two pathways and how they both affect cold gene expression.

1.6.2 Chromatin modifications and the cold acclimation response

Chromatin remodelling and histone modifications have been found to be extensively involved

in stress and acclimation responses, including cold response (Lee et al. (2005); Kwak et al.

(2007); Hu et al. (2011); Kim et al. (2004); Jung et al. (2013); Zhu et al. (2008)). Of the cold

upregulated genes identified, many are involved in histone modifications and chromatin remod-
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elling processes (Lee et al. (2005)). For instance, high mobility group (HMG) proteins, which

are linked to extensive chromatin remodelling, are upregulated in response to cold within Ara-

bidopsis (Kwak et al. (2007)). In addition, one cold-responsive gene (DREB) became accessi-

ble after cold-induced methylation and histone acetylation in its promoter (Hu et al. (2011)).

Likewise, a cold-responsive gene, FLOWERING LOCUS C (FLC), which is heavily studied

in flowering control was found linked to histone modifications (Kim et al. (2004)). In this

case, the protein HOS1 interacts with a protein called FVE preventing the histone deacety-

lase, HDA6, from remodelling the chromatin at the FLC locus (Jung et al. (2013)). Lastly, a

protein known as HOS15 is implicated in chromatin remodelling as a result of cold stress. In

HOS15 mutants researchers observed a genome wide increase in histone 4 acetylation levels

which localize with DHSs (Zhu et al. (2008); Rando (2007); Bell et al. (2011)). In summary,

the literature documents a significant change in histone modifications and chromatin remod-

elling in response to cold stress and acclimation. In order to more completely understand plant

cold acclimation transcriptional control, details of how chromatin modifications and chromatin

remodelling occur, and how they subsequently effect DNA accessibility, will be necessary.

1.7 Research objective

This thesis set out to characterize and identify DHSs across the Arabidopsis root epidermis and

endodermis under control and cold acclimation conditions while integrating generated data

with supplemental transcriptomic and epigenetic data. The first objective of this study is to

generate an analysis pipeline and program to utilize and analyze the new data format gener-

ated through the DNase-DTS protocol. The second objective, is to use the analysis pipeline to

identify DHSs within the Arabidopsis root epidermis and endodermis under control and cold

acclimation. The third objective, is to analyze and integrate the resulting data with public tran-

scriptomic and epigenetic data to identify distinct associations and patterns. Through previous

research indicating distinct differences in chromatin accessibility across tissue and cell-types
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under various conditions, it is hypothesized there will be distinct differences in chromatin struc-

ture across the root epidermis and endodermis under cold and control conditions. In addition, it

is expected each cell-type and condition will show many shared but many unique DHSs across

the genome and that they will display unique properties. Through transcriptomic data integra-

tion, an association of DHSs with gene expression is expected to be observed. Specifically,

highly transcribed genes are expected to be associated with the majority of highly accessi-

ble DHSs in their promoters. Likewise, through epigenetic data integration, an association of

DHSs with histone modifications and DNA methylation is expected to be observed. The last

objective of this study is to identify TF binding motifs enriched within accessible promoters

of cell-type specific and cold acclimation specific genes. It is hypothesized these cell-type and

acclimation specific genes will be associated with distinct TF binding motif patterns. Integra-

tion of DHS data and motif data with the cold acclimation CBF pathway will hopefully enable

a greater understanding as to how this pathway is controlled through chromatin accessibility

and TF binding.

The resulting DNase-DTS (DDTS) analysis pipeline and program resulting from this the-

sis will enable future studies into cell-type specific DNase I studies and be used with various

data sources like ChIP-seq. The resulting DHS data from the epidermis and endodermis may

be used as a resource for future studies looking into cell-type and stress responsive chromatin

dynamics. Results from this study will enable a further understanding into the characteristics

of transcription and epigenetics across cell-types and environmental conditions. By integrat-

ing epigenetic and transcriptomic data it will enable a higher resolution snapshot into distinct

regulation patterns and the mechanisms of how they interact and are controlled. Lastly, this

study outlines a possible way to utilize DHSs with motif mapping to select motif targets for

transgenic applications.
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Materials and Methods

2.1 Plant growth conditions

T3 transgenic Arabidopsis seeds (Col-0 ecotype) were sterilized using chlorine gas in a gas

chamber for fifteen minutes. Transgenic Arabidopsis seeds were imbibed in test tubes contain-

ing 1
2 X MS salts for three days at 4°C. Seeds were sown on mesh squares approximately 1 inch

by 1 inch and placed on agar plates containing 1
2 X MS salts (Murashige and Skoog (1962))

with 50 µg/mL of kanamycin. Agar plates were allowed to germinate (in a growth chamber)

at 24°C with 24 hours of light. Ten days after germination the mesh squares were transferred

to 125 mL flasks with 1
2 X MS salts and 1% sucrose. Silicosen® C-type caps were used to seal

flasks in order to prevent contamination but enable ventilation. Flasks were shaken at 80 rpm

at 24°C with long day conditions (18 hours of light, 6 hours of dark). Media was thereafter

refreshed every three days. Control plants were grown in flasks for four weeks and cell-type

specific nuclei were isolated using the INTACT protocol (see Section 2.2.2; Deal and Henikoff

(2011)). In contrast, cold acclimated plants were grown for three weeks at room temperature

and then grown at 4°C for one additional week. Once the week of acclimation was completed,

cell-type specific nuclei were isolated.

26
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2.2 DNase direct to sequencing

2.2.1 Transgenic Arabidopsis lines

Transgenic Arabidopsis cell lines for isolating cell-type specific nuclei were created using the

floral-dip method (Zhang et al. (2006)). Transgenic Arabidopsis (ecotype Col-0) were trans-

formed using a modified pCAMBIA 2300 plasmid containing a transgene designed for isolat-

ing tagged nuclei. The transgene encodes a nuclear envelope targeting protein composed of a

nuclear envelope targeting signal, green fluorescent protein (GFP), and a biotin ligase recog-

nition peptide (BLRP) (Deal and Henikoff (2011)). To enable cell-type specific isolation the

transgene was transformed under the control of the WEREWOLF (AT5G14750) gene promoter

for root epidermis expression, and the SCARECROW (AT3G54220) gene promoter for root en-

dodermis expression (Lee and Schiefelbein (1999); Di Laurenzio et al. (1996)). Each transgene

was co-transformed with a biotin ligase (BirA) from E. coli. All experiments were performed

using T3 or higher transgenic lines. As a result, the cell-types of interest now express a BLRP

in the nuclear membrane that acquires a biotin signal from the biotin ligase. Cell lines were

confirmed through visual assessment of GFP expression under a Nikon® fluorescence micro-

scope, model Eclipse Ni-U.

2.2.2 Isolation of cell-type specific nuclei

Isolation of cell-type specific nuclei was performed using the INTACT protocol of Deal and

Henikoff (2011) with several changes. Root balls of approximately 4 g were cut from 6-12

plants grown in liquid media using a razor blade and ground in liquid nitrogen to a fine powder

using a mortar and pestle. Ground tissue was transferred to another mortar and pestle and

suspended in 10 mL of ice-cold nuclei purification buffer (NPB). NPB contains 20 mM of

MOPS, 40 mM of NaCl, 90 mM of KCl, 2 mM of EGTA, and 0.5 mM of EDTA. MOPS was

added to 250 mL of laboratory grade water and pH was adjusted to 7. Everything else was

then added and final volume was brought up to 500 mL. NPB was filter sterilized through a
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VWR®Bottle Top Filtration (500 mL, .2 µm pore size). Prior to performing INTACT, 0.2 mM

of spermine, 0.5 mM of spermidine, and 1x proteins inhibitor cocktail are added to 40 mL of

NPB.

The suspended tissue is now filtered through 70 µm and 40 µm filters and centrifuged

at 1000 g for 10 minutes at 4°()C. Meanwhile 25 µL of streptavidin-coated beads (M-280,

Invitrogen) were added to 1 mL of NPB and 10 µL of DAPI were added to 1 mL of NPB.

Discard the supernatant from the tube in the centrifuge and re-suspend tissue pellet in 1 mL

of NPB with DAPI, incubate for 3 minutes on ice. Centrifuge NPB with beads at 1000 g for

2 minutes at 4°C and discard supernatant, re-suspend in 25 µL of NPB. Centrifuge tissue with

NPB and DAPI at 1000 g for 10 minutes at 4°C, discard supernatant. Suspend tissue in 1 mL

of NPB and add beads. Rotate at 4°C using a rotating mixer for 45 minutes during which 0.1%

(vol/vol) Triton X-100 is added to the remaining NPB.

Add suspended tissue to a 15 mL conical containing 9 mL of NPB and 0.1% (vol/vol)

Triton X-100. Incubate tube for 10 minutes at 4°C using a using a DynaMag 15 (Life Tech-

nologies). Remove supernatant being careful not to disturb nuclei and add 10 mL of NPB with

0.1% (vol/vol) Triton X-100. Incubate again for 10 minutes at 4°C and remove supernatant.

Suspend beads along tube walls with 500 µL of nuclease free water. Bead-Bound nuclei and

unbound nuclei were counted using a Bright-Line® hemacytometer on a Nikon® fluorescence

microscope, model Eclipse Ni-U. Purity of nuclei preparations were calculated by dividing the

bead-bound nuclei by the total nuclei number.

2.2.3 DNase I digestion and isolation

Nuclei from each biological replicate were divided into four separate samples of 100,000 nu-

clei each. To identify an appropriate amount of digestion for each biological replicate in down-

stream bioinformatics, three samples were digested at varying amounts (0.1 U - 0.7 U) of

DNase I in addition to an undigested sample (0 U). Nuclei were digested for 10 min at 37°C.

After DNase I digestion, DNase I was inactivated using 50 mM EDTA and an incubation pe-
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riod of 10 minutes at 70°C. DNA was isolated from nuclei using the QIAamp® DNA Micro

Kit (Qiagen).

2.2.4 DNA sequencing using Nextera® and the Illumina® MiSeq®

Three digested samples and one undigested sample from the same biological replicate were

prepared for sequencing on a single Illumina v3 600 sequencing cartridge using the ’Nextera®

XT Library Prep Kit’ (Illumina). Samples were identified by labelling them with separate

indexes (Nextera Index Kit). The Agilent 2100 Bioanalyzer was used to analyze samples to

ensure efficient DNase I digestion and sequencing library prep. A proper digestion profile is

seen when there is a large peak of small sized fragments that slowly decrease towards larger

fragments. An undigested sample is observed when there is a large peak of large sized frag-

ments. It is important that a shift is observed from undigested to optimally digested across a

range of DNase I units so an accurate assessment of digestion may take place. The Bioan-

alyzer analysis is only a first line check of digestion and a more comprehensive assessment

occurs during computational analysis. DNase I analyses were repeated against fresh nuclei at

higher units of DNase I if samples appeared poorly digested. After Nextera library preparation,

the four biological-related samples were paired-end sequenced using 500 cycles of a MiSeq®

Reagent Kit v3 600 cartridge on an Illumina MiSeq® sequencer. Digested samples from the

same biological replicate were sequenced on the same sequencing cartridge to minimize se-

quencing biases.

2.2.5 Mapping sequencing reads to the reference

Raw reads produced by the Illumina MiSeq were retrieved in FastQ format. The raw paired-

end reads were aligned to the TAIR10 (Berardini et al. (2015)) genome using BWA (Li and

Durbin (2009)) with the following parameters:

-q 30 -t 15 -n 0.04 -o 1 -e -1

BWA was set to trim a read down to retain a Phred quality score >30. A phred score
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above 30 retains only high quality base pairs with a probability of an incorrect base call of 1 in

1000 (Ewing et al. (1998)). PCR duplicates generated by PCR amplification were removed by

identifying any read pairs with the same external coordinates. The pair of reads with the highest

mapping quality were retained for further analysis. In addition, reads mapping to multiple

genomic locations were removed so only uniquely mapped reads remained. Lastly, sample read

counts were downsampled to the same read count for accurate sample to sample comparisons.

2.2.6 Computational analysis

Mapped reads were run through a custom script, called DDTS, which processes the raw data

and identifies DHSs. DDTS was written in Python specifically for this project as no analysis

tool has been developed for this form of data. The script has been packaged to be published

and used as a Linux tool. Pseudo-code for DDTS is available in Algorithm 2.1. A detailed

description of DDTS is available in the results section.

Briefly, DDTS identifies DHSs by statistically comparing digested samples to undigested

samples and identifying regions within the digested sample with a significant lack of sequenc-

ing. DHSs are further filtered based upon a statistic, the likelihood ratio, comparable to a

fold change in microarray or RNA-seq studies. DDTS outputs the genomic locations of DHSs

and statistical information of each replicate in a BED file. Correlation between replicates

is performed on processed wig format files to ensure high reproducibility. Replicates were

run through DDTS on an individual basis to assess DNase I digestion and reproducibility of

each replicate. To identify statistically significant DHSs and produce final DHS datasets, three

replicates were run through DDTS in tandem. In combination to individual replicate assess-

ments, optimal DNase I digestion profiles and sample reproducibility were assessed in final

DHS datasets. Lastly, datasets were checked to ensure they lacked a DHS in the promoter

of a negative control gene called CINFUL-LIKE, a transposable element (AT4G03770; Zhu

et al. (2015); Shu et al. (2013)). As a transposable element, CINFUL-LIKE is a silent gene and

was previously found associated with closed chromatin (Shu et al. (2013)). Likewise, datasets
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were checked to ensure they contained a DHS in the promoter of a positive control gene called

ACTIN7 (AT5G09810; Zhu et al. (2015); Shu et al. (2013)). As ACTIN7 is a gene expressed

constitutively, it was previously found associated with open chromatin (Shu et al. (2013)).

2.2.7 DNase hypersensitive site analysis

To assure each DHS had a unique genomic location identifier, DHSs were classified into ge-

nomic categories in order of importance from the upstream 1000 bp, 5’UTR, 3’UTR, exon,

intron, downstream 200 bp, and intergenic. Gene ontology (GO) analysis was performed using

a custom script which tests for gene enrichment within GO slim categories using a hypergeo-

metric test.

Statistical comparisons between sizes of DHSs across genomic categories were performed

in R through a Kruskal-Wallis & Dunn test with a p-value <0.05. Correction of experiment-

wise error-rate was performed using a Benjamini-Hochberg adjustment. The FSA and dunn.test

R packages were used for statistical analysis of DHS size (Dinno (2017); Ogle (2017)).
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input : Undigested .bam and digested .bam files or undigested and digested .wig files
output: .wig file when input is .bam or .bed file when input is .wig

if input is .bam then
Convert input to .wig using F-Seq

end

if input is .wig then
Read in 100,000 bp basepairs of sequence for all WIG files and normalize start
position across replicates

while file end is not reached do
foreach Scanning window do

foreach Base pair in window do
foreach Biological replicate do

Append kernel probability of current base pair for each undigested
and digested replicate to storage array

end
end

end

Take mean of current scanning window of each undigested and digested replicate

if Number of replicates >= 3 then
Perform T-test between undigested and digested sample means

else
else we perform a T-test between the scanning windows of digested and
undigested samples

end

if Test Statistic > cutoff then
flag = TRUE

foreach Biological Replicate do
if LikelihoodRatio < cuto f f then

flag = FALSE;
end

end

if flag = TRUE then
Append DHS location, test statistic, p-value, and mean replicate kernel
probabilities to the output file

end
end

Read in next 100,000 bp chunk from the .wig files. Repeat loop until end of .wig
files reached

end

Return BED file with DHS position and statistical data
end

Algorithm 2.1: Main Function of DNase-DTS
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2.3 Transcriptomics

2.3.1 Processing RNA-seq data

Raw RNA-seq data were obtained from Li et al. (2016). Briefly, this study obtained RNA from

15 distinct root cell-types using fluorescence-activated cell sorting combined with paired-end

sequencing their samples on an Illumina HiSeq2000. For this work, raw paired reads were

obtained from the NCBI SRA database under BioProject PRJNA323955 and mapped to the

TAIR 10 genome using STAR (Dobin et al. (2013)) using the following parameters:

STAR --genomeDir star-genome --outFilterMultimapNmax

20 --alignSJoverhangMin 8 --alignSJDBoverhangMin8

--outFilterMismatchNmax 8 --alignIntronMin 35 --alignIntronMax

2,000 --alignMatesGapMax 100,000 --readFilesCommand zcat

--runThreadN 6 --readFilesIn

For a detailed description of what each parameter entails see Dobin et al. (2013) and Li

et al. (2016). Only uniquely paired reads were retained for further analysis. For each gene,

the number of mapped reads were counted through the featureCounts script which proceeds to

output the number of uniquely mapped reads for each gene (Liao et al. (2013)). Finally, the

read count for each gene is used to calculate the FPKM (fragments per kilobase of transcript

per million mapped reads) with the following equation:

FPKMi =
Xi

l̃iN
∗ 109 (2.1)

Where i is the current transcript, Xi are the read counts for each transcript, l̃i is the effective

length, and N is the number of reads. To control for biological variation the mean FPKM of

three replicates is used for all analyses. The FPKM is used for this expression analysis as it

enables normalization between samples and accurate comparison between genes. To integrate

DHS data with gene expression data, genes were sorted from highest to lowest FPKM and
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split into six separate expression bins (see Figure 3.7). An identical analysis was performed

on epidermal and endodermal microarray data to confirm the results with a secondary source.

Processed epidermal and endodermal microarray data were obtained from Birnbaum et al.

(2003).

Despite cold RNA-seq data not existing for cell-type specific nuclei, the prior analysis

was repeated by integrating cold DHS data with cold acclimated Arabidopsis microarray data

obtained from Hannah et al. (2005). Raw microarray data were loaded into R (Team (2013))

and analyzed using the R packages affy (Gautier et al. (2004)) and ath1121501.db (Carlson

(2016)). For cold microarray data, the mean probe intensity was calculated from the mean

of three replicates. Similar to the RNA-seq data, genes were sorted from highest to lowest

expression level and associated with respective DHSs (see Figure 3.8).

ANOVA analysis was performed to identify if DHS t-test scores or likelihood ratios were

associated with gene expression levels. A likelihood ratio was chosen as an indirect measure

of a DHS’s accessibility and is obtained by dividing the mean of a DHS’s control kernel prob-

ability by the mean of the DHS’s digested kernel probability (see Results). To accomplish this,

DHSs were associated with their respective gene and FPKM, sorted from highest to lowest

t-score or likelihood ratio, and split into six groups or bins (see Figure 3.9). To normalize

deviations, FPKM for all genes were log10 transformed. Deviations within this analysis were

assumed to have constant variance, be independent, and normally distributed with a mean of

zero. Normality assumptions were tested through visual analysis of the residuals against the fit-

ted values in addition to a Q-Q plot. To test for the assumption of constant variance a Bartlett’s

test was performed. Mean FPKM expression values for each treatment and 95% confidence

intervals were calculated using the R package lsmeans (Lenth (2016)). Fitted means on the log

scale were back-transformed to their natural scale before visual plotting.
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2.3.2 Identifying differentially-expressed genes

The R package DESeq was used to identify differentially-expressed root epidermal and endo-

dermal genes from RNA-seq data obtained from Li et al. (2016) (Anders and Huber (2010)).

DESeq identifies differentially-expressed genes using raw count data and a negative binomial

distribution. Differentially expressed genes were identified using a binomial test with adjusted

p-values (p <0.01) using a Benjamini-Hochberg adjustment. Cold differentially-expressed

genes were obtained from Hannah et al. (2005).

2.4 Epigenetics

Processed and raw Methyl-seq data were obtained from Kawakatsu et al. (2016) through the

NCBI GEO database under GSE79710. Processed data contained only identified methylated

cytosines and was used for integration with DHSs. Methylated cytosines were identified

through a binomial distribution as described in Kawakatsu et al. (2016). Cytosines were la-

belled as identified methylated cytosines if they passed a significance threshold of p < 0.01.

For comparing DHSs with all mapped cytosine positions, raw data from Kawakatsu et al.

(2016) was processed and analyzed. The bismark program utilizing the bowtie2 script mapped

the raw Methyl-seq fastq data to the Arabidopsis TAIR10 genome to obtain a site by site methy-

lation profile (Langmead and Salzberg (2012); Krueger and Andrews (2011)) through the fol-

lowing command:

bismark --bowtie2 -n 1 -l 50

Running bismark this way does not allow any more than one non-bisulfite mismatch for

every read. However, this alone does not result in the basepair resolution methylation data.

To accomplish site specific CpG, CHH, and CHG methylation data, the processed data were

filtered through the bismark methylation extractor script with the following parameters:

bismark methylation extractor --multicore 8 --comprehensive

--bedgraph --counts --cytosine report --CX context
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Methylation information for each cytosine was only retained if the specific cytosine had at

least four mapped reads.

Processed histone data were obtained from Deal and Henikoff (2010) under the GSE ac-

cession number GSE19654. Briefly, this experiment used the INTACT protocol to isolate epi-

dermal non-hair cell nuclei using the GL2 promoter. DNA was then isolated from nuclei using

ChIP with antibodies specific to the required histone modification. Isolated DNA was cohy-

bridized to a custom Roche NimbleGen Arabidopsis tiling array with H3 ChIP DNA. This

thesis took the mean of two biological replicates for each ChIP experiment and integrated it

with DHS data.

2.5 TF binding site enrichment

A-priori motif prediction was performed on 750 bp upstream and 250 bp downstream of gene

transcriptional start sites (TSSs) using Cismer and pssmROC (Austin et al. (2016)). A priori

motifs tested for enrichment were provided by Weirauch et al. (2014). This motif list contains

hundreds of motifs across 32 transcription factor families. Motifs were tested on an individual

basis for enrichment and enriched motifs summarized using their respective transcription factor

family for plotting (see Figure 3.17). The custom script, pssmROC was run on gene specific

lists using the following parameters:

pssmROC weirauch.pssms background.fasta geneList.fasta 0 1

The weirauch.pssms is a file containing the positional specific scoring matrices (PSSM)

for each motif in the dataset. The background.fasta file contains the upstream 750 bp and the

downstream 250 bp of each gene TSS in the TAIR10 genome. The geneList.fasta file contains

the upstream 750 bp and the downstream 250 bp of each gene TSS in a desired gene list. The

0 and 1 indicate the range of functional depths at which to test for motif enrichment. Motif

locations in every gene were plotted in addition to DHS locations for comparative analysis.

Motifs were identified as enriched if they were found to have a Z-score >3.
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Results

This work developed a custom script called DDTS for the efficient and accurate identification

of DHSs across the Arabidopsis genome using sequencing data obtained from nanogram quan-

tities of DNA isolated from cell-type specific nuclei preparations. DDTS statistically identified

DHSs through a novel bioinformatic tool which incorporates a novel analysis algorithm, F-Seq

(Boyle et al. (2008b)), and BEDtools (Quinlan and Hall (2010)). Computational quality checks,

in addition to DDTS, were developed to ensure proper DNase I digestion. Results identified

several thousand DHSs in the Arabidopsis root epidermis and endodermis under control and

cold conditions. Analysis of DHSs revealed distinct DHS genomic distribution profiles with

the majority of DHSs surrounding the TSS. A comparison of DHS size within genomic loca-

tions identified significantly wider DHSs within the upstream 1000 bp. Integrating DHSs with

RNA-seq, microarray, methylation, and histone modification data resulted in correlations with

gene expression and unique epigenetic patterns. Integration with RNA-seq and microarray data

obtained differentially-expressed and simultaneously differentially-accessible (DE/DA) genes

from each cell-type and condition. Testing for enrichment of TF binding motifs within DE/DA

genes identified enrichment of motifs from the TF families AP2, bHLH, bZip, and CG-1.

37
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3.1 Identifying DHSs in the Arabidopsis genome with DDTS

The DDTS computational analysis pipeline was developed to process data generated through

the DNase-DTS protocol and identify DHSs. DDTS was written in Python and has been pack-

aged to be published and used as a Linux tool in combination with existing Linux applications.

It may be used on all organisms and across different experiments generating data requiring an

identification of a lack of sequencing.

3.1.1 Raw data conversion and processing

DDTS’s first step is to convert files containing uniquely mapped reads, in BAM format, to

BED format using BEDTools bamToBed (Quinlan and Hall (2010)). Converted files are sub-

sequently run through a program called F-Seq with the following parameters: -v -l 200 (Boyle

et al. (2008b)). F-Seq converts raw mapped reads in BED format to a continuous base pair

probability signal, in WIG file format. In other words, F-Seq calculates a Gaussian kernel

density estimation which generates a continuous and smooth signal. This smooth signal is the

probability for every base pair or, is the probability or likelihood of a sequenced read being

found at that specific base pair. Wig files for each sample and separate chromosome are gener-

ated from this step. Correlation analysis between replicates, using the wig files, was performed

to ensure replicates are highly reproducible.

3.1.2 Novel algorithm for identification of DHSs

After the processing of raw data, DDTS identifies DHSs by scanning and comparing the kernel

probability of the digested and undigested samples. DDTS runs each chromosome separately

on distinct CPU cores for quick and efficient analysis times. To keep memory usage low, for

use on a wide range of computers, DDTS reads in 100,000 base pairs at a time from the wig

files. DDTS scans along the genome in specified window sizes and shifts this window a small

step at each iteration. For example, all analyses performed in this work were performed with a
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scanning window size of 300 bp and a step size of 25 bp. As a result, these settings limit DHS

size identification to a minimum of 300 bp. However, this window and step size may be altered

depending on the initial data. At this stage DDTS reports DHSs through one of two methods

depending on the number of replicates.

If there are less than three replicates, DDTS compares all probability values in the current

300 bp window of the digested sample to the 300 bp window of the undigested sample through

a t-test. If three replicates or more are inputted, a mean of the 300 bp window for each replicate

is taken. The t-test for this method is performed between means of the undigested replicates

and means of the digested replicates. For both methods, if the t-test reports a t-score higher

than the specified cut-off it continues to filter the data using a second filter.

The second filter is similar to the fold difference cut-off in RNA-seq data, called the like-

lihood fold difference or likelihood ratio. DDTS calculates the likelihood ratio for a DHS by

dividing the mean probability of finding a read in the undigested samples by the probability

of finding a read in the digested samples. To ensure a stringent identification procedure, each

replicate has to pass this likelihood ratio cut-off individually. DNase-DTS compares the undi-

gested and digested sample from the first replicate, checks to see if it passes the cut-off, and

continues on to the other replicates. If all replicates pass this cut-off, a DHS is reported for the

current window.

To control the false discovery rate (FDR) of the analysis, the likelihood ratio is adjusted

until a sufficient FDR is met. In general, the higher the ratio cut-off the lower the false discov-

ery rate. However, increasing the cut-off results in a lower true positive rate thereby trading

sensitivity for increased specificity. As a result, to keep the true positive rate as high as pos-

sible, a cut-off enabling a 5% false discovery rate (FDR <.05) was selected. In addition, the

likelihood ratio is proportional to a DHS’s accessibility and will be discussed further later. For

each window, the statistical test and filters are performed until the current loaded 100,000 bp

sequence is read, after which, the next 100,000 bp sequence is read in. This analysis is repeated

for each 100,000 bp sequence until the entire length of the chromosome is analysed.
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After the entire chromosome has been read, DDTS outputs a file of identified DHSs. DDTS

reports the location of each DHS, the t-score, p-value, and mean probability for each undi-

gested and digested replicate. Since the step size results in overlapping windows the reported

DHSs may overlap. As a result, BEDTools mergeBed combines the overlapping windows post-

analysis. Provided in the methods section is the pseudo-code describing the main function or

algorithm of the DDTS script when run with input WIG files, helper functions for reading and

writing files are left out for clarity (Algorithm: 2.1).

3.2 Assessing optimal DNase I digestion and computational

settings

Proper library prep and DNase I digestion of biological samples were analyzed on an Agilent®

Bioanalyzer. Observations of samples exposed to a DNase I dilution series revealed a shift

from a higher frequency of larger DNA fragments to a higher frequency of smaller DNA frag-

ments (Figure 3.1). The appropriate digestion profile is evident when one observes a large peak

of small sized fragments that slowly decreases as you get to larger fragments. However, over

digested samples will also display a large peak of small sized fragments. Hence, this assess-

ment should only be used in a dilution series where one may observe the shift across a range

of DNase I units. Figure 3.1 shows an optimally 0.5 U digested sample, as it displays a high

frequency of small fragments. Figure 3.1 also displays a decreased amount of DNA across the

dilution series, indicated by a decrease in fluorescence units. The Bioanalyzer step is optional

as ultimate assessment of DNase I digestion takes place through computational analysis.

After ensuring proper library prep, digested DNA samples were sequenced on an Illumina®

MiSeq NGS system. Table 3.1 shows a brief summary of sequencing information of each bi-

ological replicate and experimental condition across the DNase I dilution series. Sequencing

obtained 676 million reads from all sequencing libraries. From these 635 million reads (94%)

mapped to the Arabidopsis genome with 480 million reads (71%) mapping to a unique se-
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Figure 3.1: Bioanalyzer results for one biological replicate digested at 0.0 U, 0.1 U, 0.3 U,
and 0.5 U of DNase I. The fragment migration time (seconds) versus the fluorescence units is
shown. The x-axis represents the size of DNA fragments while the y-axis represents the quan-
tity of fragments. Peaks observed on either end of each subplot are label markers. Increased
digestion shifts fragment size distribution to a higher frequency of small sized fragments.
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quence. One outlier to note is the endodermal cold replicate #3 had a low unique read percent-

age when compared with other sequencing runs. As the 0.5 U sample resulted in a similar read

count to other runs, the data from this sample was used in downstream analysis (see Figure 3.2).

The DDTS program processed and analyzed DHSs of individual replicates to assess their

digestion profiles across a DNase I dilution series (Table 3.2). Replicates showed a typical

digestion pattern of an increasing number of DHSs as DNase I units increased. In addition,

each replicate displayed an increasing width of DHSs as DNase I units increased. These results

indicate an increase in the amount of digested DNA due to higher units of DNase I. Results

identified a greater number of DHSs and larger DHSs in endodermal cold replicate #3, an

outlier compared to other replicates. It is important to note the endodermal cold biological

replicates were digested with a different amount of DNase I compared to other samples at 0.3

U, 0.5 U, and 0.7 U of DNase I. Before continuing the analysis, individual replicates were

assessed for optimal DNase I digestion through computational analysis. Appendix A displays

the complete digestion profiles of each replicate in pie and bar chart figures. Replicates showed

ideal DNase I digestion profiles across DNase I dilution series. Each replicate displayed an

increase in percent of DHSs within the upstream 1000 bp and a decrease in percent of DHSs

within other genomic regions. These figures may also be used to assess the number and size of

DHSs in a dataset, as was done in Table 3.2.

Individual replicates were correlated using processed bigWig format files to ensure high

reproducibility before continuing the analysis with combined replicates. Table 3.3 shows the

correlation between each replicate in each cell-type and experimental condition. All replicates

demonstrated high correlation with one outlier, the endodermal cold replicate showed lowest

correlation with r=0.829 at 0.7 U of DNase I. To additionally assess high reproducibility, repli-

cates were compared using all available data including DHS distribution, size, and number of

DHSs.

Running individual replicates through DDTS is used to assess reproducibility and DNase

I digestion of individual replicates. To identify optimal DHS data for each cell-type and ex-
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perimental condition, replicates were run through DDTS in tandem across the DNase I dilution

series. Final DHS data for each sample were chosen from the DNase I dilution series through

analysis of DNase I digestion patterns. The optimal DHS data is the sample showing an opti-

mal amount of DNase I digestion such that DNA is sufficiently digested but not over digested

(see Methods). 0.5 U of DNase I was selected as the appropriate amount of digestion when

assessing DHS datasets for 100,000 isolated nuclei (Figure 3.2). 0.7 U was found inappropri-

ate for further analysis as it was found to be over digested. The discussion section discusses

the reasoning behind selection of the optimal digested sample in greater detail. Selection of

the optimal digested sample is important as it will enable a higher quality of identified DHSs.

Over digestion results in regions not accessible being digested and identified as DHSs, while

under digestion results in regions accessible not being digested and identified as DHSs. Thus,

optimal digestion results in low false positives and low false negatives. Briefly, 0.5 U had the

highest percentage of upstream 1000 bp DHSs and the smallest percentage of DHSs in other

genomic categories. While 0.1 U and 0.3 U digested samples were not over digested, 0.5 U had

a higher degree of digestion enabling efficient identification of DHSs. In addition 0.1 U and

0.3 U digested samples were under digested and identification of all DHSs would be difficult.

0.7 U had a drop in the percentage of upstream 1000 bp DHSs and a larger percentage of DHSs

and was deemed too over digested to be used in the final analysis (see ’Epidermis and endo-

dermis DHSs share distinct characteristics’). Repeating the dilution series for all biological

samples was performed as it serves as an important quality control step in DNase digestion. It

is important to select the appropriate digested sample for analysis as under digestion or over

digestion will complicate DHS analysis and introduce high false negative rates.

To keep the false discovery rate (FDR) lower than 5%, the likelihood ratio cut-off in DDTS

was adjusted and the number of DHSs identified in final datasets compared to the number of

DHSs identified from equally sized random datasets (Table 3.4). Random sequencing datasets

are randomly generated from existing data using BEDTools random and run through DNase-

DTS exactly as performed to biological sequencing data (Quinlan and Hall (2010)). The t-
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test statistically identified significant DHSs as long as the t-test reported a t-score above 3.

Increasing the t-score only slightly altered the FDR compared with adjusting the likelihood

ratio and so remained at 3 for all DHS datasets. Adjusting the likelihood ratio reduced the true

positive rate (TPR), therefore, a balance was made between lowering the FDR and maximizing

the TPR. The selected fold difference or likelihood ratio cut-offs for the epidermal control was

1.6, 1.5 for the endodermal control, 1.5 for the epidermal cold, and 1.6 for the endodermal cold.

The final number of identified DHSs for each condition at 0.5 U of DNase I were: 18599 for

the epidermal control, 16566 DHSs for the endodermal control, 16285 DHSs for the epidermal

cold, and 15834 DHSs for the endodermal cold. These datasets at 0.5 U of DNase I were used

for subsequent analyses.
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Table 3.4: Summary of the false discovery rate analysis for all experimental conditions at
0.5 U of DNase I.

Experimental Condition Fold
Differencea

DHSs b

(Biological Datasets)
DHSsc

(Random Datasets) FDRd

Root Epidermal Control 1 32074 22663 70.66%
1.5 20621 1294 6.28%
1.6 18599 500 2.69%
1.7 16946 178 1.05%
1.8 15552 75 0.48%
2 13270 13 0.10%

Root Endodermal Control 1 27405 23311 85.06%
1.4 18560 1665 8.97%
1.5 16566 508 3.07%
1.6 14891 164 1.10%
1.7 13553 47 0.35%
1.8 12286 12 0.10%
2 10248 1 0.01%

Root Epidermal Cold 1 26401 23247 88.05%
1.5 16285 625 3.84%
1.6 14205 183 1.29%
1.7 12571 57 0.45%
1.8 11241 10 0.09%
2 9166 1 0.01%

Root Endodermal Cold 1.0 25954 22023 84.85%
1.5 17643 1499 8.50%
1.6 15834 637 4.02%
1.7 14152 251 1.77%
1.9 11706 32 0.27%

Note: Selected cut-offs for final datasets are bolded. DHSs identified have a t-score >3.
a To lower the FDR of each sample below 5% the likelihood ratio cut-off was adjusted. The fold difference is the the
ratio of the undigested probability value over the digested probability value.
b The number of DHSs identified for biological datasets.
c The number of DHSs identified for random datasets. Random datasets are generated with an identical number of reads
to the biological samples.
d FDR is calculated as the number of DHSs identified in a random dataset divided by the number of DHSs in the
biological samples.
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3.3 Epidermis and endodermis DHSs share distinct charac-

teristics

Final DHS data and DNase I digestion profiles for each cell-type and condition were analyzed

to identify shared and unique characteristics. A summary of DNase I digestion profiles for each

dataset are shown in Figure 3.2. Initial analysis of the bar plots in these figures revealed the

number and size of DHSs increased as the units of DNase I increased, reconfirming the previous

findings in Table 3.2. Additionally, the percentage of upstream 1000 bp DHSs increased as the

DNase I units increased. As a consequence, the percentage of DHSs within other genomic

locations decreased as the units of DNase I increased. However, Figure 3.2d revealed that

when a large amount of DNase I is used, the sample can become over digested resulting in

the percentage of upstream 1000 bp DHSs decreasing. The percentage of promoter DHSs

increased within this sample except when digested with 0.7 U of DNase I. At 0.7 U of DNase,

the percentage of promoter DHSs decreased by 20% and the percentage of exonic DHSs and

intergenic DHSs increased.

Each cell-type and experimental condition displayed a shared genomic distribution of DHSs

when exposed to identical DNase I units. For example, all samples digested with 0.5 U of

DNase I contain 65%-70% of upstream 1000 bp DHSs (Figure 3.2). The epidermal and en-

dodermal cell-types under control conditions display a similar distribution with all genomic

locations within a couple percent of each other (Figure 3.2ab). The digestion pattern in Fig-

ure 3.2b at 0.3 U of DNase I displayed atypical results compared with other samples. Notably,

a drop in the upstream 1000 bp DHSs were displayed at 0.3 U of DNase I. This atypical pattern

was also observed in individual replicates of this sample. The reason for this result is un-

clear, but may indicate a biological phenomenon as it occurred in all three separate biological

replicates.

The exact number of DHSs across genomic categories and the number of genes containing

a DHS across genomic locations are shown in Table 3.5. In general, the number of DHSs de-
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Figure 3.2: DNase I digestion profiles of each cell-type and experimental condition.
DNase-DTS bar plots displaying the frequency of DHSs with respect to DHS size. Also dis-
played are pie graphs showing the distribution of DHSs within genomic locations. DHSs were
classified into genomic categories in order of importance, upstream 1000 bp, 5’UTR, 3’UTR,
exon, intron, downstream 200 bp, and intergenic. Concentration of DNase I shown in lower
right of each subplot. Asterisk indicates chosen dataset for downstream analysis. a) Digestion
profile from epidermis under control conditions. b) Digestion profile from endodermis under
control conditions. c) Digestion profile from epidermis under cold conditions. d) Digestion
profile from endodermis under cold conditions.
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creased from control to cold acclimated datasets. Results revealed the number of exon DHSs

and genes within the cold datasets are more numerous compared with the number of control

exon DHSs and genes. Additionally, while there is an overall reduction in upstream DHSs

between control and cold conditions, the number of genes associated with an upstream 1000

bp DHS was not altered significantly. 14,071 genes with an upstream 1000 bp DHS in epi-

dermal control compared to 13,477 in epidermal cold conditions. Reconfirming the previous

results, the endodermal control dataset contained 13,112 genes with an upstream 1000 bp DHS

compared with 13,443 genes in the endodermal cold dataset.

DHS datasets from each experimental condition and cell-type were compared visually and

statistically. Distributions of DHSs across each chromosome and the overlap between datasets

are shown as Hilbert plots in Figure 3.3. Hilbert plots were built for all conditions and cell-

types but were all similar and so only the epidermal and endodermal datasets are shown. Hilbert

curves show each chromosome not as a typical linear representation but as a recursively built

fractal. This enables a 2D visualization of each chromosome allowing one to infer spatial prop-

erties by keeping neighbouring positions on each chromosome within close proximity (Gu et al.

(2016)). A distinct observation from these figures is the lack of DHSs within the centromeres,

or condensed heterochromatin, of each chromosome. Comparisons between each dataset dis-

play a large amount of overlap but also show distinct differences between each cell-type and

between cold and control conditions (Figure 3.3c). The epidermal and endodermal datasets

significantly overlapped with 11,823 shared DHSs, 6,776 unique epidermal DHSs (36.4%),

and 4,743 unique endodermal DHSs (28.6%) (p <0.001, Fishers exact test). The epidermal

control and cold datasets significantly overlapped with 10,112 DHSs shared between these two

respective datasets, 8,487 (45.6%) unique epidermal control DHSs, and 6,173 (37.9%) unique

cold epidermal DHSs (p <0.001, Fishers exact test). In other words, 8,487 DHSs closed and

6,173 DHSs opened in the epidermis in response to cold. Repeating this with the endodermal

control and cold dataset reveals significant overlap with 9,425 DHSs shared, 7,141 (43.1%)

unique to the endodermal control dataset, and 6,409 (40.5%) unique to the endodermal cold
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dataset (p <0.001, Fishers exact test).

The distribution of DHSs around the TSS were investigated since, as expected, the majority

of DHSs are located within gene promoters (Figure 3.2). Specifically, the question to be an-

swered was if the majority of DHSs were found upstream or downstream of the TSS. Figure 3.4

shows a peak of DHSs centred on the TSS for all cell-types and experimental conditions. Re-

sults also revealed a slight drop of DHSs slightly after +1000 bp and -1000 bp of the TSS that

increased towards the +2500 and -2500 bp.

Further characterization of DHSs looked at DHS size between genomic locations to identify

if significant size differences occur with DHS location. A Kruskal-Wallis rank sum test found

that the location of DHSs significantly affected the size of DHSs (p <0.001). A post-hoc

analysis using the Dunn test identified which genomic locations were significantly different. In

all cell-types and experimental conditions, upstream 1000 bp DHSs were significantly wider

than other regions (p <0.05). The 3’UTR (untranslated region), the downstream 200 bp, and

the intergenic regions contained the next largest DHSs. The 5’UTR, exon, and intron regions

contained the smallest DHSs (Figure 3.5).

Gene ontology analysis was performed to identify enriched gene functions within each

cell-type and experimental condition (Figure 3.6). Gene ontology analysis was restricted to

genes containing DHSs within their upstream 1000 bp. The highest enriched category for

every dataset was found to be ’response to stress’; closely linked to the third highest, response

to abiotic or biotic stimulus.
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Figure 3.4: Mean frequency of DHSs 2500 bp upstream and downstream of the transcrip-
tional start site. DHS abundance is centred over the TSS. a) Epidermal control b) Endodermal
control c) Epidermal cold acclimated d) Endodermal cold acclimated.
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Figure 3.5: Box plots of DHS size in base pairs with respect to genomic location. Genomic
locations in order are intergenic, 1000 bp upstream of TSS, 5’UTR, exon, intron, 3’ UTR, and
200 bp downstream of translational termination site. Note that all plots start at 300 bp due to
a minimum DHS size of 300 bp. Genomic locations with the same letter are not significantly
different (Kruskal-Wallis & Dunn test, p <0.05). a) Epidermis control b) Endodermis control
c) Epidermis cold acclimated d) Endodermis cold acclimated
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Figure 3.6: Gene ontology slim analysis of upstream 1000 bp DHSs in each experimental
condition. Shown on the x-axis are the gene ontology slim categories and on the y-axis the
associated p-value (10-x) from the hypergeometric test.
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3.4 DHSs correlate with distinct transcriptional patterns

Results showed DHSs were highly localized within the upstream 1000 bp and enriched around

the TSS. Likewise, DHSs were found significantly larger within the upstream 1000 bp. These

results point to the potential that DHSs are significantly altering transcriptional output by af-

fecting the accessibility of a gene’s promoter. To identify if DHSs are correlated with gene

expression levels, the epidermal and endodermal DHS datasets were integrated with existing

RNA-seq data. Raw RNA-seq data was obtained from Li et al. (2016) in which RNA from the

root epidermis and endodermis were isolated through fluorescence activated cell sorting. For

use in this work, RNA from Li et al. (2016) was obtained from the NCBI SRA database under

BioProject PRJNA323955. Raw reads were mapped to the Arabidopsis TAIR10 genome and

the FPKM for each gene was calculated for integration with DHS data.

Figure 3.7 displays the percentage of genes with a DHS in each genomic category across

the highest and lowest expressed genes. For the purposes of this figure, any DHS falling within

the 5’UTR and the upstream 1000 bp was not removed from the 5’UTR category. This was to

identify if the 5’UTR DHSs display a similar trend to the 1000 bp upstream, since DHSs were

found centred on the TSS. The epidermal and endodermal integrated data display nearly identi-

cal results. The percentage of genes with a upstream 1000 bp DHS and a 5’UTR DHS display a

decreasing trend from the highest to lowest expressed genes. However, this observation is due

to the upstream 1000 bp DHSs overlapping the 5’UTR region and the fact that DHSs localize

centrally over the TSS. Removing 5’UTR DHSs crossing the upstream 1000 bp eliminated this

effect. Thus this trend is the result of TSS DHSs. In comparison, the percentage of genes with

a DHS in the intron and 3’UTR display a slight decreasing trend. DHSs within the exon and

downstream 200 bp do not display any specific decreasing or increasing expression trend.

The highest expressed genes possess the highest percentage of DHSs with 80.13% of genes

in the epidermal dataset and 77.64% of genes in the endodermal dataset containing a DHS

in at least one genomic location. In comparison, 29.02% of the weakest expressed epidermal

genes possess a DHS and 24.63% of lowest expressed endodermal genes possess a DHS. This
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Figure 3.7: Percentage of genes containing a DHS from the epidermal and endodermal
control samples across genomic locations and expression levels. Genes were divided into
six equal sized bins from highest (100%) to lowest (0%) expression from three replicates.
RNA-seq data obtained from Song et al, 2016. DHSs were classified into genomic locations if
the DHS overlapped the region by at least 1%. a) Epidermal DHSs associated with epidermis
RNA-seq data b) Endodermal DHSs associated with endodermis RNA-seq data.
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analysis was repeated with cell-type specific microarray data obtained from Birnbaum et al.

(2003) and obtained similar results (data not shown due to redundant results).

With the previous decreasing trend in mind, it was expected this trend would be observed in

the cold acclimated datasets. However, to date there are no cell-type specific RNA-seq studies

on cold acclimation. Instead, the cold DHS data was compared with total root microarray

data from cold acclimated Arabidopsis (Hannah et al. (2005)). Only general trends can be

taken from this analysis as the data was collected from different tissue and growing conditions.

DHS data compared with cold microarray data displayed the decreasing trend observed in the

control datasets (Figure 3.8). However, since the microarray data are on the whole root under

different experimental conditions, the association appears weaker compared with the control

datasets. Despite this, a decreasing trend is observed from highest to lowest expressed genes in

the upstream 1000 bp, the 5’UTR, and in the intron genomic locations. The 3’UTR displayed

a weak decreasing trend in the cold datasets. Compared with the control data only 70.73% of

the highest expressed genes in the microarray data contain an epidermal cold DHS and 70.23%

contain an endodermal cold DHS.

As mentioned in the introduction, genome accessibility acts like a dimmer switch in which

accessibility is a continuous spectrum from completely off to completely on (Zhang et al.

(2012a); Liu et al. (2017); He et al. (2012)). TF binding is significantly reduced or signifi-

cantly enhanced depending on how accessible a DHS may be to TFs. The proceeding analysis

tested the hypothesis that a DHS’s accessibility would affect TF binding and therefore tran-

scriptional output. It was expected that highly accessible DHSs would result in the highest

expressed genes. Due to DHSs displaying an association to gene expression levels, it was also

tested if a gene’s expression level could be predicted based upon the DHS’s accessibility.

Every DHS is identified by its respective t-test score and average likelihood ratio between

the undigested and digested probability values. The likelihood ratio is an indirect measure of

the digestion level or a DHS’s accessibility. A DHS highly sensitive to DNase I digestion will

show a high likelihood ratio between the undigested and digested sample. DHSs were sorted



3.4. DHSs correlate with distinct transcriptional patterns 61

Figure 3.8: Percentage of genes containing a DHS from the epidermal and endodermal
cold samples across genomic locations and expression levels. Genes were divided into six
equal sized bins from highest (100%) to lowest (0%) expression based of the mean probe
intensity of three replicates. Microarray data obtained from Hannah et al. (2005). DHSs were
classified into genomic locations if the DHS overlapped the region by at least 1%. a) Epidermal
cold DHSs associated with cold microarray data. b) Endodermal cold DHSs associated with
cold microarray data.
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separately based on the t-test score and likelihood ratio from highest to lowest and divided

into six separate bins. Furthermore, DHSs were separated based on genomic location and gene

expression levels. To statistically identify if an association between a gene’s accessibility and

FPKM existed, an ANOVA was performed for each genomic location and cell-type.

The t-score and likelihood ratio of DHSs significantly affected the FPKM of associated

genes for each genomic location except 3’UTR and downstream 200 bp DHSs (p <0.001).

Due to the likelihood ratio more significantly impacting the FPKM of genes, it was used for the

rest of the analysis. The fitted FPKM means with 95% confidence intervals for each cell-type

and condition from highest to lowest likelihood ratio are displayed in Figure 3.9. Epidermal

DHSs within the upstream 1000 bp (F=57.2 on 5 Df, p <0.001), 5’UTR (F=41.24 on 5 Df,

p <0.001), exon (F=82.77 on 5 Df, p <0.001), and intron (F=17.56 on 5 Df, p <0.001) had

a significant effect on the FPKM of their associated genes. An identical effect was observed

for endodermal DHSs within the upstream 1000 bp (F=53.36 on 5 Df, p <0.001), 5’UTR

(F=28.83 on 5 Df, p <0.001), exon (F=44.3 on 5 Df, p <0.001), and intron (F=8.536 on 5

Df, p <0.001). However, DHSs within the 3’UTR and the downstream 200 bp did not have a

significant effect on the FPKM of their genes (F=1.732 on 5 Df, p = 0.124; F=0.665 on 5 Df,

p = 0.650 - F=0.5 on 5 Df, p = 0.777; F=1.52 on 5 Df, p = 0.180). Genes with a DHS in the

upstream 1000 bp, 5’UTR, exon, or intron displayed a decreasing FPKM from the highest to

lowest likelihood ratio (Figure 3.9). Genes with a DHS in their 5’UTR had the highest average

FPKM of all genomic locations (Figure 3.10). Genes with a DHS in their intron had the second

highest average FPKM of all genomic locations (Figure 3.10). Despite DHSs in 3’UTR regions

affecting transcriptional output in Figure 3.7, the accessibility of DHSs in 3’UTR regions did

not increase or decrease the FPKM (Figure 3.9 b,h; Figure 3.10). In addition, while exon

presence did not affect transcriptional output in Figure 3.7, the accessibility of exon DHSs

significantly altered gene FPKM.
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Figure 3.9: Fitted mean of fragments per kilobase of transcript per million reads mapped
(FPKM) with 95% confidence intervals across genomic locations separately. DHSs in each
genomic location were sorted based on their fold likelihood ratio from highest (1) to lowest (6).
Significant effects (p <0.001) are indicated with *. a-f) Epidermal DHSs with epidermal RNA-
seq . g-l) Endodermal DHSs with endodermal RNA-seq. a,g) Upstream 1000 bp. b,h) 5’UTR.
c,i) Exon. d,j) Intron. e,k) 3’UTR. f,l) Downstream 200 bp.
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Figure 3.10: Fitted mean of fragments per kilobase of transcript per million reads mapped
(FPKM) with 95% confidence intervals across genomic locations. DHSs in each genomic
location were sorted based on their fold likelihood ratio from highest (1) to lowest (6). a)
Epidermal DHSs with epidermal RNA-seq. b) Endodermal DHSs with endodermal RNA-seq
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3.5 DHSs correlate with distinct epigenetic patterns

Genome wide methylation patterns from raw and processed Methyl-seq data were analyzed to

identify methylation patterns around DHSs in the Arabidopsis root (Kawakatsu et al. (2016)).

Here, fluorescence activated cell sorting was used to isolate GFP tagged nuclei from the root

epidermis and endodermis utilizing the WEREWOLF and SCARECROW gene promoter. Bisul-

fite converted DNA were sequenced on an Illumina HiSeq 2000, mapped to the ’cytosine to

thymine’ converted Arabidopsis TAIR 10 reference genome, and methylated cytosines identi-

fied through a binomial distribution. A detailed description of all methods used, including read

mapping and identification of methylated cytosines, can be found in Kawakatsu et al. (2016)

and Lister et al. (2009).

3.5.1 CpG, CHG, and CHH methylation display distinct patterns

For each cell-type and condition the average methylation percentage 2500 bp upstream and

downstream of each DHS centre were identified, calculated, and plotted from identified methy-

lated cytosines (Figure 3.11). Results found CpG and CHG methylation decreased within

DHSs for each cell-type. CpG methylation displayed a slight increase in methylation 500

bp before and after endodermal DHSs (Figure 3.11b). However, this increase was short as

1000 bp upstream and downstream of DHSs the CpG methylation decreased once more. CHH

methylation across DHSs demonstrated a unique trend in which epidermal DHSs displayed a

very sharp and distinctive increase in methylation. A similar spike was observed in endoder-

mal DHSs, however, the increase appeared less noticeable as the epidermal methylation spike.

A decrease in methylation was observed prior to the peak, as was observed in the epidermal

dataset.

As shown in Figure 3.4, DHSs are highly clustered around gene TSSs. With this in mind,

the previous methylation trends could be indicative of a TSS feature rather than a DHS feature.

To exclude such an artifact, the methylation percentage was identified and plotted across DHSs
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that do not occur at the TSS (Figure 3.12). The decrease in CpG and CHG methylation within

DHSs is still present and similar to results with TSS DHSs. However, the decrease observed

1000 bp upstream and downstream, in addition to the increase in methylation 500 bp upstream

and downstream, were not present. CHH methylation within the epidermal DHSs retained the

distinctive methylation increase. Likewise, CHH methylation within the endodermal DHSs

retained the increase in methylation and the decrease in methylation observed prior to this

spike.

The previous analysis utilized identified methylated cytosines but missed information from

unmethylated cytosines. As a result, the previous analysis only included information on statis-

tically methylated cytosines and misses methylation information from cytosine positions that

were not significantly methylated. To that end, the analysis was repeated with the methy-

lation percentage from all cytosines as long as the cytosine had at least four mapped reads.

This increased the number of CpG methylation sites mapped around epidermal DHSs from

576,045 to 3,741,065. Furthermore, it increased mapped CHG methylation sites from 148,107

to 3,820,633 and CHH methylation sites from 376,244 to 18,769,608. CpG methylation sites

around endodermal DHSs increased from 563,972 to 386,717. Lastly, CHG sites increased

from 185,581 to 3,940,192 and CHH sites from 322,821 to 19,238,648. Performing an anal-

ysis with this cytosine information allows the methylation profile across all cytosines to be

considered.

Figure 3.13 shows the methylation percentage around all DHSs in the epidermal and en-

dodermal datasets. Despite distinct similarities between this analysis and the previous, many

slight differences are observed. For instance, while CpG methylation is observed to sharply

decrease within DHSs for both cell-types, the decrease appears more gradual than the previ-

ous analysis. Unlike the previous analysis, CHG methylation displayed a small increase around

DHSs before it decreased within DHSs. This effect is observed within both the endodermal and

epidermal DHSs. Furthermore, a large decrease in CHH methylation is observed within DHSs

rather than a peak of CHH. In other words, while CHH methylation increased within DHSs for
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methylated cytosines, CHH methylation in a broader aspect decreases. Finally, a prominent in-

crease in CHH methylation is observed around the sharp decrease in CHH methylation within

DHSs (Figure 3.13).

To remove a potential TSS artifact, the previous analysis was repeated with all cytosines

by mapping methylation around a DHS dataset lacking TSS DHSs. Figure 3.14 displays the

methylation level, using all cytosines, around a DHS dataset lacking TSS DHSs. Identical re-

sults were observed for this analysis compared to the previous analysis. A decrease in methyla-

tion percentage within DHSs is observed for CpG, CHG, and CHH methylation. CHG methy-

lation increased downstream of DHSs to levels higher than upstream of the DHS. In addition,

an increase is observed for CHH methylation downstream of DHSs that is not seen prior to

DHSs in both the epidermal and endodermal datasets.

3.5.2 Histone modifications display modification-specific patterns

To identify histone modification patterning around DHSs, genome wide histone data were

mapped 2500 bp upstream and downstream of DHSs. Processed H3K4me3 and H3K27me3

data were obtained from Deal and Henikoff (2010). Here, H3K4me3 and H3K27me3 ChIP

DNA were hybridized to a custom Roche NimbleGen microarray alongside H3 ChIP DNA

from the same biological sample. H3 ChIP DNA was hybridized for normalizing nucleosome

occupancy during computational analysis. Histone data for both H3K4me3 and H3K27me3

were mapped and averaged across DHSs for both epidermal and endodermal DHS data (Fig-

ure 3.15). H3K27me3 +500 bp and -500 bp from DHSs increased followed by a decrease

within DHSs back to background levels (Figure 3.15a,c). Likewise, H3K4me3 +500 bp and

-500 bp from DHSs increased. However, rather than decrease back to background levels, a

third spike in H3K4me3 was observed directly within DHSs (Figure 3.15b,d).

To remove a potential TSS artifact, the previous analysis was repeated with a dataset lacking

TSS DHSs (Figure 3.16). While H3K27me3 decreased within DHSs and increased 500 bp up-

stream and downstream of DHSs, similar to previous results, the downstream 500 bp increase
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is greater than the upstream increase (Figure 3.16a,c). In addition, results identified H3K4me3

decreased within DHSs rather than increase as in the previous analysis. (Figure 3.16b,d). How-

ever, a slight increase in H3K4me3 is observed -500 bp from the centre of DHSs.

3.6 A priori motif enrichment finds unique TF binding pat-

terns

To further connect DHSs with a transcriptional response, a priori motifs identified through

previous ChIP-seq experiments were tested for enrichment in selected gene groups from the

epidermis, endodermis, and cold regulated pathways (Weirauch et al. (2014)). An incentive of

integrating DHS data with motif data is to filter out motifs with the potential to be biologically

active. Motifs within accessible regions are open to TF binding and therefore are biologically

active, while motifs within inaccessible regions are closed to TF binding and biologically inac-

tive. In other words, identifying motifs within DHSs serves as a form of biological validation.

Furthermore, through identifying motifs within DHS, the motifs responsible for chromatin re-

modelling may be identified. Lastly, the motifs responsible for cell identity and stress response

will be identified by mapping motifs within gene groups from the epidermis, endodermis, and

cold regulated pathways. Coupled with DHS data, motif mapping will enable the selection of

motif targets for biotechnology applications and future mutagenesis experiments.

A priori motifs were obtained from a study by Weirauch et al. (2014) in which known

Arabidopsis transcription factors were used to generate an expansive motif library through

high-throughput ChIP-seq experiments. This motif library is used to map TF binding sites and

test for motif enrichment within the promoter regions of selected gene groups. The assessment

of motif enrichment within selected gene groups was performed using Cismer on the upstream

750 bp and downstream 250 bp genomic sequences from the TSS for all genes (Austin et al.

(2016)). Enriched motifs were summarised by transcription factor family and mapping loca-

tions plotted in selected gene groups.
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3.6.1 Epidermal and endodermal enriched motifs

Prior to assessment of motif enrichment in the epidermis and endodermis, selected gene groups

from each category were identified. To accomplish this, epidermal and endodermal upregu-

lated genes were identified through comparison of publicly available epidermal and endoder-

mal RNA-seq data (Li et al. (2016)). From this, 793 genes were found to be upregulated in

the epidermis and 462 genes were found to be upregulated in the endodermis (p <0.01). Ad-

ditionally, genes with a DHS specific to the endodermis or epidermis in the upstream 1000

bp were identified. To have high confidence in these gene lists, a DHS had to have at least

50% of its length within the upstream 1000 bp in order for the gene to be added. 2112 genes

had a cell-type specific epidermal DHS in their upstream 1000 bp. 1501 genes contained a

cell-type specific endodermal DHS in their upstream 1000 bp. Differentially-expressed (DE)

differentially-accessible (DA) genes were identified by combining the cell-type specific gene

lists from the RNA-seq analysis and the DHS analysis. From this 54 DE/DA epidermal genes

and 64 DE/DA endodermal genes were identified (B). A priori motifs from Weirauch et al.

(2014) were mapped to these gene groups and tested for significant enrichment compared to a

randomized background.

Figure 3.17 displays the locations of enriched motifs within the 54 epidermal DE/DA genes

along with their DHSs. Four enriched motifs categories were identified in the epidermal pro-

moters. Enriched motifs belonged to the transcription factor families of AT-hook (Z>3.35), Dof

(Z=3.45), homeodomain (Z>3.58), and general transcription binding proteins (TBP) (Z>3.12).

Interestingly, all of the enriched binding motifs are rich in adenine and thymine basepairs (AT

rich sequences). Lastly, the TF binding sites were highly enriched in the upstream 750 bp and

depleted in the downstream 250 bp.

Figure 3.18 displays the locations of enriched motifs within the 64 DE/DA endodermal

genes along with identified DHSs. Two enriched motif categories were identified in the en-

dodermal promoters: the AT-hook (Z>3.16) and the homeodomain transcription factor family

(Z>3.01). These two transcription factor families also have enriched motifs within the epi-
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Figure 3.17: Arabidopsis epidermal DE/DA genes mapped with a priori motifs and DHSs
from the epidermal cell layers. Shown are the upstream 750 bp and downstream 250 bp
from the TSS. Gene names and AGIs are labelled on the left for each gene. White regions are
identified DHSs.

dermal gene list and similarly have rich AT binding domains. Similar to the epidermal motif

distribution, a high proportion of these binding motifs are located within the upstream 750 bp.

3.6.2 Cold pathway enriched motifs

A database of upregulated cold acclimated genes was obtained from Hannah et al. (2005).

672 long term upregulated genes (upregulated >72 hours) were identified from this database

and used for motif enrichment analysis. Of these, 447 genes contained an upstream 1000 bp

epidermal DHS and 410 contained an upstream 1000 bp epidermal cold DHS. 343 of the 672

genes contained an epidermal DHS in both control and cold conditions, indicating the majority

of genes are consistently open. 41 of the shared genes contained an additional unique upstream

epidermal control DHS and another 31 shared genes contained an additional unique upstream

epidermal cold DHS.

A list of 9304 epidermal cold genes contained an epidermal cold DHS overlapping the

promoter by at least 50%. This list was further reduced by removing genes containing an
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Figure 3.18: Arabidopsis endodermal DE/DA genes mapped with a priori motifs and DHSs
from the endodermal cell layers. Shown are the upstream 750 bp and downstream 250 bp
from the TSS. Gene names and AGIs are labelled on the left for each gene. White regions are
identified DHSs.
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epidermal control DHS. From this, 1897 genes contained an epidermal cold DHS but lacked

an epidermal control DHS in the upstream 1000 bp. In contrast, 3776 genes contained and

epidermal control DHS but lacked an epidermal cold DHS. In other words, 1897 genes became

accessible and 3776 genes closed due to cold stress in the epidermis. Intersecting the 1897

genes with the 672 long term upregulated genes resulted in 53 DE/DA epidermal cold genes

(Appendix B).

A priori motifs from Weirauch et al. (2014) were assessed for enrichment within the 53

DE/DA epidermal cold genes. Motifs for the transcription factor families of AP2 (Z>3.26),

bZIP (Z>3.04), SQUAMOSA binding proteins (SBP)(Z=3.33), MADS box (Z=3.04), and

several unknown (Z=3.00) were enriched in the epidermal cold DE/DA genes. The locations

of DHSs and enriched motifs within this epidermal cold DE/DA genes are displayed in Fig-

ure 3.19. MADS box binding domains were identified to be heavily distributed downstream of

the TSS in the 5’UTR while all other enriched motifs were distributed upstream of the TSS.

Repeating the previous analysis on endodermal DHS data found similar results. 432 of

the 672 upregulated cold genes contained an endodermal upstream 1000 bp DHS and 399 con-

tained an endodermal cold upstream 1000 bp DHS. 328 of the 672 upregulated genes contained

a DHS in both control and cold conditions. 28 of the shared genes contained an additional

unique upstream endodermal DHS and another 28 contained an additional unique endodermal

cold DHS. Similar to the epidermal dataset, a list of cold endodermal genes containing a DHS

overlapping the promoter by at least 50% were selected. Any genes containing a DHS in the

control sample were removed. 2296 genes contained an endodermal cold DHS but lacked an

endodermal control DHS in the upstream promoter. In addition, 5833 genes contained an en-

dodermal control DHS but lacked an endodermal cold DHS. In other words, 2296 genes in the

endodermis became accessible and 5833 genes closed under cold acclimation. Intersecting the

2296 accessible genes with the 672 long term upregulated genes resulted in 53 DE/DA endo-

dermal cold genes. The transcription factor families of AP2 (Z>3.07), bZIP (Z>3.08), E2F

(Z>3.19), storekeeper (Z=3.00), and MYB-SANT (Z=3.43), were enriched in the endodermal
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Figure 3.19: Arabidopsis epidermal cold DE/DA genes mapped with a priori motifs and
DHSs from the epidermal cold dataset. Shown are the upstream 750 bp and downstream 250
bp from the TSS. Gene names and AGIs are labelled on the left for each gene. White regions
are identified DHSs.
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cold DE/DA genes. Figure 3.20 shows the locations of DHSs and enriched motifs within the

53 DE/DA genes. AP2, E2F, and MYB-SANT were found heavily distributed downstream of

the TSS in the 5’UTR. Storekeeper motifs were distributed across the 1000 bp range and bZIPs

were distributed around the TSS evenly.

In order identify biologically active motifs within the upstream cold CBF pathway, eleven

genes from the upstream cold CBF pathway were selected and assessed for a priori motif en-

richment using Cismer (Austin et al. (2016)). Figure 3.21 displays the mapping locations of

enriched motifs and DHS locations in all cell-types and experimental conditions across the 11

cold pathway genes. TF families with enriched motifs within this gene list are as follows: the

AP2 (Z>3.17), bZIP (Z>3.02), Myb-SANT (Z>3.22), TBP (Z>3.2), bHLH (Z>3.00), CG-1

(Z=3.50), homeodomain (Z>3.03), and unknown (Z=4.13). The dominant core binding motif

enriched within this dataset is called the G-box with the consensus sequence of CACGTG. The

TF families binding to this motif are the bHLH’ and the bZIP. The second enriched motif iden-

tified is known as the AP2 binding motif with the core sequence of CCGAC. More importantly,

this motif is known as the DRE/C-repeat cis-acting element to which CBF proteins bind.
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Figure 3.20: Arabidopsis endodermal cold DE/DA genes mapped with a priori motifs and
DHSs from the endodermal cold dataset. Shown are the upstream 750 bp and downstream
250 bp from the TSS. Gene names and AGIs are labelled on the left for each gene. White
regions are identified DHSs.
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As seen from Figure 3.21 most of the upstream cold pathway genes contain a DHS in

all cell-types and experimental conditions. However, ICE1 was found lacking a DHS in all

datasets except within the endodermal cold DHS dataset. As well, RAP2.1 lacked a DHS under

control conditions but upon cold acclimation a DHS in both the epidermis and endodermis

opened. Unique observations can be made by observing this pathway and the motifs identified

in them. For instance, CBF1, CBF2, CBF3 are under the control of the MYB15 protein and

importantly contain a Myb-SANT binding motif downstream of the TSS. RAP2.1, RAP2.6,

LOS2, and ZAT10 promoters all contain multiple AP2 binding motifs. Interestingly, CBF1,

CBF2, and CBF3 are AP2 transcription factors and the previously mentioned genes are under

the control of CBF proteins. One additional gene, HOS1, contained three AP2 binding motifs.

The TF family bHLH contained binding motifs dispersed across all these genes. Notably, ICE1

is included within the bHLH family. It is also interesting to note a highly densed portion of

binding motifs within a DHS of HOS1, possibly indicating a cis-regulatory module. Lastly, for

CBF1 an upstream DHS is found to open in the endodermal and epidermal cold conditions.
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Figure 3.21: Arabidopsis cold acclimation pathway mapped with a priori motifs and DHSs
from the epidermal and endodermal cell layers under control and cold conditions. Shown
are the upstream 750 bp and downstream 250 bp from the TSS of the upstream genes in the
cold acclimation pathway. In order from top to bottom from each gene are the DHSs from
the epidermal control, epidermal cold, endodermal control, and the endodermal cold samples.
White regions are identified DHSs.



Chapter 4

Discussion

The development of cell-types and tissues; how they acquire cell identity, and how they re-

spond to environmental conditions is a question researchers have been studying for decades.

Within the Arabidopsis root, cell-type expression profiles have been generated for most cell-

types and tissues (Birnbaum et al. (2003); Li et al. (2016)). Despite this, how cells acquire

cell-type specific transcriptional responses and the downstream effects of transcriptional dif-

ferences has been largely understudied. The entire biological story from DNA to transcription,

to proteomics, to metabolomics remains to be pieced together. This work focused on identify-

ing how epigenetics, specifically chromatin accessibility, affects the transcription component

of this story. This study aimed to investigate the chromatin dynamics of cell-type identity

and stress response through DHS identification and integration with transcriptomic data and

epigenetic data within the Arabidopsis root epidermis and endodermis cell layers.

This work developed a custom designed program, called DDTS paired with a novel next

generation sequencing (NGS) protocol, to identify DHSs from cell-type specific populations

of the Arabidopsis root and to overcome challenges of traditional DNase-seq protocols. It has

been used to successfully identify thousands of DHSs from the Arabidopsis root epidermis and

endodermis under control and cold conditions. Through computational assessment, DHSs dis-

played characteristics shared among cell-types and experimental conditions. DHSs displayed

84
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shared genomic location distributions, sizes, frequency distribution around the TSS, distinct

overlaps, and gene ontologies. Integration with transcriptomic data identified unique transcrip-

tional patterns revealing higher expressed genes to be significantly more associated with DHSs

than low expressed genes. Furthermore, gene expression levels were found statistically associ-

ated with the accessibility of their DHSs. Integration with epigenetic data identified a distinct

drop of DNA methylation and histone modifications within DHSs. Lastly, a priori motifs were

tested for enrichment within DHSs of cell-type specific and stress responsive genes. From this

many TF families and respective motifs were identified from cell-type and stress responsive

gene promoters. Overall, this work presents a comprehensive analysis and identification of

DHSs in the Arabidopsis root epidermis and endodermis through the use of a novel DNase-seq

protocol and associated computational analysis tool. A discussion of how transcription, tran-

scription factors, TF motifs, DHSs, methylation, and histone modifications, interact to respond

to external conditions and develop cell identity are discussed within the following sections.

4.1 DNase-DTS: Advancement in DNase-seq protocols and

analysis

To overcome problems associated with previous DNase-seq protocols and analysis procedures,

the INTACT protocol in conjunction with Nextera and DDTS was developed. Previous work

in the Austin lab developed the wet lab protocols necessary to perform DNase-seq on cell-

type isolations from the Arabidopsis root. The remaining step for this work was to develop

analysis pipelines and procedures to process the generated data. The DNase-DTS protocol and

analysis program proved effective at overcoming issues with previous DNase-seq protocols and

in identifying DHSs at a cell-type level.
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4.1.1 Challenges with existing DNase-seq studies

For DNase-seq to be performed in difficult tissues on a cell-type level, certain issues with exist-

ing DNase-seq protocols first needed to be solved. The first complicated and time consuming

DNase-seq step solved was with the use of agarose gel plugs. Agarose gel plugs were required

in DNase-seq protocols to prevent mechanical shearing of DNA, albeit at the cost of time and

low DNA output (Boyle et al. (2008a); Crawford et al. (2006)). The low DNA output prevented

DNase-seq from being used within tissues where DNA isolation was difficult. Cumbie et al.

(2015) simplified DNase-seq and enabled isolation of nuclei from uncooperative Arabidop-

sis tissues and saved two days of wet lab work by removing agarose plugs. Despite this, the

DNase-seq protocol was still time consuming and required agarose gel analysis. The agarose

gel analysis is required to assess DNA digestion over a DNase I dilution series in order to select

the sample optimally digested by DNase I to sequence in order to enable efficient and accurate

DHS identification.

Though Cumbie et al. (2015) enabled analysis of difficult tissues, DNase-seq on single

cell-types was challenging and time consuming to perform due to the low amounts of nuclei

obtained in addition to high cellular debris isolated. To enable single cell-type analysis the

requirement of millions of nuclei for DNase-seq protocols needed solving. Single cell-type

analysis was feasible, although time consuming and tedious, if many nuclei isolations and

DNase I digestions could be performed. Therefore, to obtain the required nuclei and DNA,

DNase-seq requires the removal of the agarose gel analysis completely as it reduces the total

DNA output (Boyle et al. (2008a); Crawford et al. (2006); Song and Crawford (2010)). Each

DNase-seq protocol is limited by the amount of DNA obtained due to DNA isolation from

an agarose gel DNA smear. Additionally, an agarose gel assessment can be inaccurate and is

currently prone to the experimental bias of selecting the appropriate digestion level. One paper,

by Jin et al. (2015), overcame the agarose gel assessment and performed DNase-seq analysis

on a single cell, albeit in a more complicated and time consuming fashion than existing DNase-

seq protocols. Lastly, despite small improvements, existing DNase-seq protocols still require
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time consuming blunt end polishing, fragment enrichment, size fractionation, and extensive

library preparation that limit DNase-seq’s use on certain tissues and cell-types.

4.1.2 DNase-DTS improves upon existing DNase-seq challenges

To overcome these issues, the Austin lab developed the wet-lab portion of DNase-DTS which

uses many of the same procedures in Cumbie et al. (2015). However, it skips agarose gel

assessment and improves upon the nuclei isolation stage through the use of the INTACT pro-

tocol (Deal and Henikoff (2011)). Using INTACT, DNase-DTS isolates high quality cell-type

specific nuclei easily and quickly without the use of special equipment. However, even with

INTACT, isolating the required millions of nuclei in a single cell-type for typical DNase-seq

protocols is challenging. Hence, the Austin lab shifted from the typical DNase-seq protocols

and analysis procedures to develop the complete DNase-DTS protocol and analysis pipeline

requiring a fraction of the nuclei needed by other methods.

Previous DNase-seq protocols involved enriching DNase I digested regions and identifying

DHSs as peaks of sequencing above a specified threshold (Boyle et al. (2008a); Crawford et al.

(2006); Song and Crawford (2010)). In addition, previous protocols required a minute amount

of DNase I for minimal digestion of DHSs to enable accurate identification. Instead, DNase-

DTS identifies regions of the genome lacking sequencing through comparing an undigested to

a digested sample. To accomplish this, DNase-DTS requires more extensive DNase I digestion

over a longer period of time in order for DHSs to be fully digested. Thus, to increase power

and confidence in DHS identification, DNase-DTS require high depth sequencing. DNase-DTS

next replaces assessing DNase I digestion on an agarose gel with downstream computational

analysis and optional Bioanalyzer assessment. By skipping gel assessment, a greater amount

of DNA is retained for sequencing library preparation.

Furthermore, DNase-DTS skips blunt end polishing, fragment enrichment, size fractiona-

tion, and extensive sequencing library preparation as these steps are not required for this proto-

col. Instead, DNase-DTS uses enzymatic library preparation (i.e. Illumina Nextera) to prepare
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DNA for sequencing. With this method, undigested regions are prepared for sequencing while

digested DHSs are not prepared for sequencing as they are heavily digested and lack sufficient

DNA for enzymatic library preparation. Thus, it is important to adequately digest DHSs as

they will be library prepared and sequenced if they are not sufficiently digested. DHSs are

accordingly identified as a lack of sequencing in a digested sample compared to an undigested

sample over a particular genome range. In summary, by skipping blunt end polishing, fragment

enrichment, size fractionation, and laborious library preparation, DNase-DTS saves a signifi-

cant amount of wet-lab and analysis time. In fact, everything up to data analysis requires only

a single day of wet lab work.

This procedure not only allows identification of DHSs from single cell-types but improves

upon previous protocols. By comparing a digested sample and an undigested sample, se-

quenced on the same sequencing cartridge, DNase-DTS removes many sequencing biases that

affect final results. Through comparing the digested to the undigested sample, DNase-DTS

also produces meaningful statistical values. However, no analysis tool exists to analyze the

new data generated from the wet-lab portion of DNase-DTS. As a result, the computational

analysis side of DNase-DTS (i.e. DDTS), was developed to compare and identify regions lack-

ing sequencing.

DDTS is a custom designed program, written in Python, to handle the unique form of data

generated from DNase-DTS. DDTS identifies DHSs through comparing an undigested sam-

ple to a digested sample and performing a statistical test to identify if the region significantly

lacks sequencing in the digested sample. Through comparing two samples sequenced together,

DDTS significantly improves upon previous analysis protocols by removing sequencing biases

without complex algorithms. Furthermore, previous analysis programs computationally gener-

ate a background dataset for statistical analysis while DDTS creates a biological background in

the form of an undigested sample (Boyle et al. (2008b)). DDTS is an easy to use Linux program

written for use on a wide range of organisms, on multiple forms of data, and across various ex-

periments. Theoretically, DDTS can be utilized for any analysis that utilizes differential read
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abundance between sequencing runs.

Due to the creation of the new protocol and analysis procedure called DNase-DTS, new

quality checks on sequencing quality and DNase I digestion needed development. Previous

DNase-seq protocols would run samples on an agarose gel and select the optimal sample to

sequence (Song and Crawford (2010)). However, this step involves agarose gel plugs, is quite

time consuming, and is very inaccurate (Song and Crawford (2010); Cumbie et al. (2015)).

Instead, DNase-DTS sequences all samples and computationally assesses DNase I digestion

making it quite simple, quick, and accurate. A technician no longer has to visually assess li-

brary preparation or DNase I digestion, but instead receives more concise visual assessments

and numerical results for those assessments. DNase-DTS also utilizes an optional step of run-

ning samples through a Bioanalyzer 2100 (Agilent) to assess digestion prior to sequencing.

However, while optional it does not mean one should skip a Bioanalyzer assessment. DNase

I digestion is highly prone to experimental errors and any slight changes in experimental con-

ditions can result in faulty digested samples. To save costs on sequencing faulty digested

samples, it would be advantageous to assess DNA libraries prior to sequencing.

Prior to running DDTS to identify final DHS datasets, each individual replicate is analysed

individually to ensure proper DNase I digestion and that replicates are highly reproducible.

To accomplish replicate assessment, each replicate is run through DDTS individually to pro-

duce information on its digestion profile. The first replicate assessment identifies if the number

of DHSs increase as the amount of DNase I units increase. Similarly, a check to identify if

DHS width increases with increasing DNase I units is performed. Analysis of this is accom-

plished with a table of values or in bar charts as seen in Figure 3.2. As the amount of DNase

I increases, an increasing amount of DNA is digested resulting in wider and more identified

DHSs. Increasing the amount of DNase allows heavier digestion of DHSs enabling a greater

power in their identification. If these observations are missing, there could have been issues

with DNase I digestion, sample preparation, or sequencing. For instance, if the number and

size of DHSs at 0.1 U and 0.5 U of DNase I are similar, proper DNase I digestion or sample
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preparation did not take place. Lastly, relative consistency in DHS width and numbers should

be observed between individual replicates. Likewise, consistency and reproducibility between

replicates is evaluated through a correlation assessment before running DDTS with replicates

combined.

The last step in replicate assessment is to observe individual digestion profile figures in a bar

plot and pie figure manner as shown in Appendix A. Here a proper digestion profile is observed

if the percent and number of upstream 1000 bp DHSs increase as DNase I units increase. In

addition, a drop in the percent of DHSs in other genomic regions should be observed. An

increase in upstream 1000 bp DHSs is expected as DHSs, also called nucleosome free regions

(NFRs), are localized directly upstream of gene TSSs (Albert et al. (2007); Schones et al.

(2008)). A further description of why these trends are observed is discussed later. The size of

DHSs and the number of DHSs across DNase I units can also be assessed in the bar plot portion

of these figures. Using all the previous information together, one can properly assess the DNase

I digestion and sample quality of individual replicates over the dilution series. Compared to

assessing DNase I digestion on an agarose gel, the Bioanalyzer assessments and computational

assessments of DNase-DTS results in extensive information on sample quality and DNase I

digestion. Thus, DNase-DTS significantly improves upon existing DNase-seq studies.

Repeating this entire analysis over a dilution series enables an analysis of replicate quality

and ensures proper DNase I digestion of all samples in addition to the selection of the optimally

digested sample. If the sample digested at 0.5 U of DNase I is always selected for further

analysis, comparing it to a dilution series will allow an extensive assessment of its quality and

digestion that could not be obtained individually. Indeed, a dilution series allows researchers

to more accurately assess and identify if any issues arise. For instance, DNase I digestion

is itself a difficult procedure to maintain consistency between experiments and assess with a

single sample. DNase I activity can vary considerably between isolates and even reduce in

efficiency when stored. DNase-seq methods require tiny amounts of DNase I to be added to

samples and any slight errors in pipetting can produce widely differing results. Indeed, even
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an extra 30 seconds of DNase I treatment changes the degree of DNase I digestion. With only

one digested sample, this extra degree of DNase I digestion may not be identified immediately.

Additionally, human errors and experimental conditions may change, even slightly, and affect

DNase I digestion and sample quality. Degraded samples, faulty DNase, over digested samples

due to incorrect DNase I inactivation, etc, may all be accurately identified from the sequenced

dilution series data.

The final step of DDTS, post replicate analysis, runs all replicates together to statistically

identify DHSs shared across all replicates. Previously, DNase-seq studies on Arabidopsis failed

to statistically identify DHSs shared across three replicates (Zhang et al. (2012b); Pajoro et al.

(2014); Cumbie et al. (2015)). In fact, most DNase-seq studies analyzed at most two replicates.

Even when three replicates were used, sequenced reads from all replicates were combined

and DHSs identified from pooled data (Sullivan et al. (2014)). Previous DNase-seq studies

identified DHSs by generating a continuous probability landscape using F-Seq and identifying

the regions that exceeded a standard deviation above a computationally generated background

mean (Boyle et al. (2008b)). Comparing a digested sample to an undigested sample to control

for sequencing biases are never performed in traditional DNase-seq studies. DDTS improves

upon this by performing a statistical test between the mean values of three replicates from a

digested and an undigested sample, very akin to a typical microarray or RNA-seq study. By

statistically comparing an undigested and a digested sample, sequencing biases are reduced

and a tighter statistical rigour is applied to DHS identification.

As done with individual replicates, assessment of the digestion profile is repeated with final

DHS datasets. The number of DHSs, size of DHSs, and percentage of DHSs across genomic

locations are required to be assessed here in addition to the assessment on individual replicates.

Any abnormality missed previously may arise here instead. More importantly, issues across

three replicates or simply issues arising with all replicates combined may be identified here. It

is at this point the final optimally digested sample is selected for further analysis. The main

reason for the dilution series, in addition to quality checks, is to create options for choosing the
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final optimally digested DHS dataset.

Upon initial analysis of new samples, a sample with optimal DNase I digestion is chosen.

The selected sample should not be over digested, with closed chromatin digested, but should

not be under digested, with many DHSs undigested. An optimal digested sample may be iden-

tified through several observations that indicate the sample is at its maximum DHS digestion.

This selection is similar to picking the peak point on a parabola. For example, through obser-

vations it was found the percent of upstream 1000 bp DHSs increased up to a certain DNase

I unit, followed by a decrease. Specifically, upstream 1000 bp DHSs were digested until they

were saturated leading to digestion of closed regions, thereby, lowering the percent of upstream

1000 bp DHSs. This is expected as DHSs, also called nucleosome free regions (NFRs), are lo-

calized directly upstream of the TSS (Albert et al. (2007); Schones et al. (2008)). The final

decision on the optimal digested sample is made through the analysis of all data available, in-

cluding individual replicate assessment and DHS data from replicates combined. For this work,

at 100,000 nuclei, 0.5 U of DNase I was found to optimally digest samples. It was the tipping

point of the distribution of DHSs across genomic locations as 0.7 U decreased the percent of

upstream 1000 bp DHSs and increased digestion in unexpected DHS regions such as the exon

and the downstream 200 bp.

Once an optimal digested sample is selected at given DDTS settings, DDTS requires the se-

lected sample to be re-analyzed with settings adjusted to reduce the false discovery rate (FDR).

A 5% FDR must be maintained through adjustment of the t-score cutoff and the likelihood ratio

cutoff. Previous DNase-seq studies often did not identify their FDR. However, when studies did

identify a FDR, they compared their results to data obtained from a computationally generated

dataset. DDTS also provides this option (Zhang et al. (2012a)).

In summary, both the NGS protocol and computational features of DNase-DTS signifi-

cantly improve upon existing DNase-seq protocols by reducing the time and complexity of

existing DNase-seq methods, allowing small samples sizes, and improving upon quality con-

trol mechanisms. Additionally, DNase-DTS introduces a new analysis pipeline that may be
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utilized across various organisms and experiments. Finally, DDTS may be used with data other

than DNase-seq data such as ChIP-seq data.

4.2 Epidermal and endodermal DHSs reveal unique and shared

characteristics

One goal of this thesis was to identify the characteristics and the defining similarities and

differences between DHSs across datasets. To accomplish that, several thousand DHSs were

identified by DDTS and their locations, sizes, distributions, and numbers of DHSs were com-

pared across datasets. In sum, this work identified that promoter DHSs are the largest and most

numerous DHSs.

4.2.1 Chromatin’s control on cell and tissue identity

DDTS was effective at accurately identifying thousands of DHSs in the Arabidopsis root epi-

dermis and endodermis cell layers. Indeed, 15,000 to 18,000 DHSs were identified across

both cell-types under control and cold conditions. Similarly, several previous DNase-seq ex-

periments identified thousands of DHSs across various tissues within Arabidopsis. However,

results seem to differ widely (Zhang et al. (2012b); Pajoro et al. (2014); Cumbie et al. (2015);

Sullivan et al. (2014)). Zhang et al. (2012b) identified 38,290 and 41,193 DHSs in leaf and

flower tissues, while Pajoro et al. (2014) identified 5,680 and 8,789 high confidence DHSs

within flower tissues. Sullivan et al. (2014) identified 26,712 to 34,288 DHSs across various

tissues and Cumbie et al. (2015) identified 57,000 and 79,000 DHSs within the leaf and root

tissues. Lastly, Liu et al. (2017) identified 10,380 DHSs in seedlings under control conditions.

Altogether, results tend to differ widely even within the same tissue. One explanation for differ-

ing results from this work is that single cell-type DHSs were from four week old plants rather

than bulk tissue DHSs on one week old seedlings. Additionally, variation in results likely arose

from the different methods, protocols, or analysis programs used to identify DHSs. Slightly
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changing settings within any analysis program on the same raw data can often produce dra-

matically different results. Moreover, results can vary depending on sample quality, the total

read number, and how digested DNA was prior to sequencing. These differing results reveal

the necessity to have normalization and rigorous statistical tests to reproduce findings.

Previous results comparing DHSs from callus and seedling tissues found less than half

(49.1%) of DHSs from callus tissue were shared with seedling tissue DHSs (Zhang et al.

(2012a)). Considering these are widely different tissue types, it is not surprising they have dis-

tinct chromatin accessibility landscapes. In contrast, this work identified the majority, 63.6%

epidermal and 71.4% endodermal, of DHSs were shared between cell-types. As these cell-

types arise from the same root tissue, their high overlap is expected. Despite the high overlap,

these results revealed distinctive differences in the chromatin landscape between cell-types of

the same tissue with 30%-40% unique DHSs. The unique DHSs from each cell-type may po-

tentially regulate their cell identity. Supporting this conclusion, Song et al. (2011) found a

strong connection between chromatin accessibility and cell-type identity with 30% - 40% of

DHSs shared between functionally related human cell-types. Thus, the observed chromatin

landscape differences make biological sense as the root is a highly specialized structure and

each cell-type serves specific functions.

A potential for distinct differences in accessibility between shared epidermis and endoder-

mis DHSs exist. Accessibility is a continuous spectrum from completely open to completely

closed (Zhang et al. (2012a); Liu et al. (2017); He et al. (2012)). It is possible a DHS may

be accessible in both cell-types but may be more or less accessible in one or the other. The

shared DHSs between the epidermis and endodermis cell layers may have specific differences

in accessibility significantly affecting TF binding. A highly epidermal expressed gene may be

more accessible in the epidermis than within the endodermis leading to higher TF binding and

gene expression. For instance, Zhang et al. (2012a) found 19,628 or roughly 30% of shared

callus and seedling DHSs had distinct changes in accessibility, indicating shared DHSs vary in

accessibility between cell-types. Thus, cell identity may be the result of changed accessibility
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in shared DHSs rather than simply the presence of DHSs. A change in accessibility between

shared DHSs was not analysed within this work but is a possible future direction. Furthermore,

a future experiment could identify if differentially-expressed genes are the result of changed

accessibility between shared DHSs.

4.2.2 Gene promoters are highly accessible

Several clear DHS characteristics are displayed among all cell-types of this work and across

diverse experiments. The majority of DHSs were present within the upstream 1000 bp with the

second most abundant located in the intergenic regions. Compared to previous experiments,

the distributions are similar, but the percentage of DHSs across all genomic locations differ.

For example, Zhang et al. (2012b) found 45% of DHSs within the upstream 1000 bp of Ara-

bidopsis, Sullivan et al. (2014) found 37% of DHSs within the upstream 400 bp, and lastly Liu

et al. (2017) identified 47% of DHSs within gene promoters. Compared to 65% of DHSs within

the upstream 1000 bp in this work, widely different results are found across diverse datasets.

The percentage of intergenic DHSs is considerably varied across datasets with 15% of DHSs

located within intergenic regions of Zhang et al. (2012b), 37% in Sullivan et al. (2014), 21.5%

in Liu et al. (2017), and 15% in this work. However, these differences can easily be explained

by each experiments method of classifying DHSs into genomic regions. For instance, this

work defined the intergenic region separate from the upstream 1000 bp, while previous stud-

ies often grouped the upstream 1000 bp and intergenic regions. Furthermore, DHSs may be

classified into two categories or be classified into a unique category even if the DHS overlaps

two genomic categories. Of course, the observed variation may also be attributed to the dif-

ferences in experimental procedures for DNase I digestion and analysis. The high percent,

65%, of DHSs within the upstream 1000 bp likely attests to the largely cis based control of

Arabidopsis promoters (<1000 bp), that NFRs are highly enriched within upstream elements,

and the accuracy of DDTS (Zou et al. (2011); Hernandez-Garcia and Finer (2014); Albert et al.

(2007); Schones et al. (2008)). Indeed, the majority of Arabidopsis transcriptional regulation



96 Chapter 4. Discussion

is due to cis-regulatory elements within gene promoters (Zou et al. (2011); Hernandez-Garcia

and Finer (2014)). Finally, the more clearly defined genomic regions, like exons and UTRs,

are quite comparable across datasets and overall DHS genomic distributions are consistently

shared across studies. For instance, all Arabidopsis datasets agree that the majority of DHSs

are within gene promoters (Boyle et al. (2008b); Zhang et al. (2012a,b)).

The highly centred distribution of DHSs around the TSS in all DHS data of this work is not

unexpected. Previous experiments in Arabidopsis and rice display this distribution within their

datasets as well (Zhang et al. (2012b); Sullivan et al. (2014); Zhang et al. (2012a); Cumbie

et al. (2015)). Previous distributions also support the high frequency of DHSs located in the

upstream 1000 bp region. It is expected this distribution is the result of actively transcribing

genes requiring the space around their TSS to be open for transcriptional machinery binding

(Guertin and Lis (2013)). The transcriptional complex in combination with a whole array of

TFs requires significant space for DNA binding, particularly in gene promoters (Guertin and

Lis (2013)). Therefore, for gene transcription, transcriptional machinery requires DNA in the

promoter to be free of obstructing histones. As a result, chromatin has a direct effect on the

overall transcriptional output of cells (Guertin and Lis (2013); John et al. (2011); Bell et al.

(2011)). This hypothesis was tested with results shown in Figure 3.7.

The DHS sizes displayed in this work are quite comparable to previous findings. In fact,

previous literature reports highly variable DHS sizes with a reported average between 300 bp

- 600 bp (Natarajan et al. (2012); Boyle et al. (2008a)). Similarly, this work reports averages

between 400 bp-500 bp depending on the genomic location (Figure 3.5). Furthermore, the

size of DHSs across genomic locations further supports the role of DHSs directly influencing

transcription. Indeed, DHSs within the upstream 1000 bp genomic regions were significantly

larger than other DHSs. This observation is not new as similar results were obtained by Boyle

et al. (2008a) and Natarajan et al. (2012). The highly positioned large DHSs surrounding gene

TSSs are necessary for active transcription as TF binding requires significant space (Pugh and

Tjian (1991); Kim et al. (2005)).
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4.3 Transcriptional control through chromatin accessibility

As chromatin accessibility has been previously found to inhibit TF binding and gene expres-

sion, this work set out to identify if the DHSs identified within this work could be associated

with gene expression (Zhang et al. (2012a); Boyle et al. (2008a); Song et al. (2011); Felsenfeld

(1992)). Thus, the thousands of DHSs identified in this work were integrated with RNA-seq

data obtained from Liu et al. (2017). Results identified a clear association between the presence

and the degree of DHS accessibility with gene expression.

4.3.1 DHS presence dictates gene expression level

Results displayed a high frequency of large DHSs within the promoters and TSSs of genes,

indicating a role of chromatin structure in transcription. Gene expression is initiated from

TF binding within the promoter and at gene TSSs. Thus, the trends and patterns of DHSs

within gene promoters could not be coincidence. To explain these results, it was hypothesized

that chromatin accessibility significantly affects gene transcription by limiting TF and tran-

scriptional machinery binding. To test this, RNA-seq data was integrated with the DHS data

obtained in this work (Li et al. (2016)). Results showed the percent of genes containing a DHS

in the upstream 1000 bp or 5’UTR regions decreased from the highest to lowest expressed

genes (Figure 3.7). The decreasing trend indicates that highly expressed genes are most as-

sociated with TSS DHSs. In other words, high gene expression requires an accessible TSS.

Similarly, previous DHS datasets across various species identified the same decreasing trend,

supporting these results (Zhang et al. (2012a); Boyle et al. (2008a); Song et al. (2011)). Tran-

scription requires accessible TSS chromatin as nucleosome structure inhibits transcriptional

initiation by preventing the binding of the preinitiation complex and of general transcription

factors (Felsenfeld (1992); Workman and Kingston (1998); Yuan et al. (2005)).

Altogether, these results indicate that high gene expression requires accessible DHSs in the

promoter and TSSs of genes. All results support the hypothesis of actively transcribed genes
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requiring accessible promoter regions for transcriptional machinery and transcription factor

binding. Hence, the presence of TF binding, in addition to the chromatin state of TF binding

sites, should be considered when studying gene transcription (Kouzarides (2007)).

Interestingly, not all highly expressed genes in this analysis contained a DHS around their

genomic location. Biologically, all highly expressed genes would be expected to contain a DHS

in their promoter region. While this may be due to experimental error, there are other possible

explanations worth exploring. Firstly, despite the RNA-seq data being obtained through the use

of the same WEREWOLF (WER) gene promoter, FACS was used for cell-type isolation (Bon-

ner et al. (1972); Li et al. (2016)). Thus, different cell populations could have been obtained

resulting in slightly differing results. Secondly, plants were grown in completely different con-

ditions for different lengths of time compared with this work. Notably, this project grew plants

for four weeks in liquid media compared to one week on a Petri dish, potentially altering tran-

scriptional output. Lastly, previous datasets also did not obtain 100% of their highest expressed

genes containing a DHS (Zhang et al. (2012a); Boyle et al. (2008a); Song et al. (2011)). One

explanation supported by Boyle et al. (2008a), puts unannotated TSSs as the blame for this ob-

servation. Specifically, many genes may have a mislabelled TSS interfering with the observed

results. Additionally, Boyle et al. (2008a) gives a list of other reasons explaining this observa-

tion including: gene regions not easily sequenced, other genomic annotation errors, biological

variation, and false positive rates.

Biologically, this observation of highly expressed genes not containing a DHS may simply

be explained through biological exceptions. While nucleosomes significantly inhibit TF bind-

ing, many exceptions have been discovered where TFs bind even when their cis-element was

enclosed within a nucleosome (Albert et al. (2007); Yuan et al. (2005); Adams and Workman

(1995)). For instance, the PHO5 gene promoter interacted with its binding element Pho4 prior

to any chromatin alterations (Adkins et al. (2004)). Indeed, many pioneering factors, those that

initiate changes in chromatin accessibility, bind to closed chromatin (Zaret and Carroll (2011)).

An additional explanation may be due to rapid spontaneous unwrapping of nucleosomes allow-
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ing temporary access to binding sites that may not be detected through DNase-DTS (Bucceri

et al. (2006)). If specific binding sites rapidly change states from open to closed it may be quite

difficult to detect them. Lastly, many mechanisms control gene expression and it would be too

simple for chromatin accessibility to be the ultimate deciding factor. Regardless, chromatin

accessibility appears to play a dominant role in gene expression.

Intriguingly, a large percentage of the lowest expressed or repressed genes contained a

DHS within their upstream 1000 bp. Results showing the same observation have previously

been reported (Zhang et al. (2012a); Boyle et al. (2008a)). These results beg the question as

to why transcriptionally inactive genes require accessible chromatin. One possible explanation

labels these genes as transcriptionally poised (Gross and Garrard (1988); Muse et al. (2007)).

In other words, these genes are not currently actively transcribed but are prepared for imme-

diate active transcription. The quick activation of the necessary genes would be advantageous

for an organism requiring an immediate response to external conditions. Thus, maintaining

genes in an accessible chromatin state where TF binding is only required will save significant

time. Indeed, altering chromatin accessibility is a slow time consuming process and is the rate

limiting step in transcriptional response (Raser and O’Shea (2004); Barbaric et al. (2001)).

Additionally, transcription is controlled through many processes including TF binding, histone

modifications, and DNA methylation (Jiang (2015); Vavouri and Elgar (2005); Prokhortchouk

and Defossez (2008); Kass et al. (1997); Kouzarides (2007)). DHSs may require activation or

changes in the mentioned processes in order for active transcription to take place.

4.3.2 DHS accessibility dictates gene expression level

The previous section emphasized that the simple presence of DHSs highly influenced gene ex-

pression levels. However, further integration of DHS data with RNA-seq data also revealed a

strong correlation between the overall degree of DHS accessibility and gene expression (Fig-

ure 3.9). Results identified that high gene expression was associated with a high degree of

DHS accessibility as measured by the likelihood ratio. The likelihood ratios of upstream 1000
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bp, 5’UTR, exonic, and intronic DHSs were found to be directly proportional to the expression

level of associated genes (Figure 3.9).

Thus, the more accessible a gene’s DHS, the higher its potential expression. In support of

this, previous experiments have also found DHS accessibility associated with gene expression

levels (Boyle et al. (2008a); Zhang et al. (2012a). Overall, this indicates that highly accessible

DHSs enable easier TF binding, thereby increasing gene expression. The more accessible

a DHS is, the more likely a TF will bind. With this information it is possible to predict a

gene’s expression level, at least somewhat, using the genomic location of DHSs around it and

DHS sensitivity. Predicting a gene’s expression level based on open chromatin information has

previously been attempted (Natarajan et al. (2012)). Thus, a new potential for predicting gene

expression level and patterns may be utilized through DHS mapping. In summary, the degree

of DHS accessibility significantly affects the potential of TF binding and thereby affects gene

transcription.

A secondary conclusion from these analyses was that 5’UTR DHSs and intronic DHSs

result in the highest gene expression levels of any DHSs. Biologically, a gene with a DHS

in their 5’UTR allows transcriptional machinery to bind to the TSS and initiate transcription.

Furthermore, genes with a DHS in the 5’UTR are more likely currently actively transcribed.

The intronic DHSs resulting in higher levels of transcription is very interesting. Previous stud-

ies identified that when introns were removed from a gene, its expression level was greatly

reduced (Gruss et al. (1979)). In fact, introns were found to significantly increase a gene’s

expression level in many different species (Duncker et al. (1997); Lu and Cullen (2003); Rose

et al. (2016); Rose (2002)). Taking that into consideration, DHSs within intronic sequences

may allow enhancer elements to become accessible to their binding elements, thereby enhanc-

ing gene expression (Bianchi et al. (2009); Levy-Wilson et al. (1992)). Despite an intronic

DHS link to gene expression, analysis into a general mechanism has not been studied.

In summary, the presence and accessibility of DHSs significantly affects the overall ability

of TF binding and hence, significantly affects the overall transcriptional output (Zhang et al.
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(2014)). As a result, the creation of these epigenetic maps, i.e. locations of DHSs and chro-

matin structure maps, for cell-types and abiotic conditions will be essential for the complete

understanding of gene expression. Research has moved passed the simplistic view of gene

expression resulting from simple TF binding an activation. Rather it is now at the point where

gene expression is an acknowledged complicated process involving the interaction of TF bind-

ing and an array of epigenetic mechanisms.

4.4 Methylation and histone modifications: their role with

DHSs

A key question regarding epigenetics is how the individual factors of chromatin accessibility,

histone modifications, and DNA methylation interact. What causes chromatin accessibility

across tissue types and what are the defining factors or characteristics of open chromatin in re-

gards to other epigenetic factors? Are there key defining factors dictating accessible chromatin

from inaccessible chromatin? This work identified many defining epigenetic factors of open

chromatin and DHSs.

4.4.1 DNA methylation

CpG, CHG, and CHH methylation displayed unique patterns within and around DHSs (H is an

adenine, cytosine, or thymine). DHSs were found hypomethylated in CpG and CHG contexts

in both cell-type datasets. Similar hypomethylation within DHSs was identified within Ara-

bidopsis and other organisms, supporting results (Zhang et al. (2012a); Sullivan et al. (2014);

Thurman et al. (2012)). As DHSs are associated with active transcription, a lack of methylation

within DHSs makes biological sense. Specifically, CpG methylation is associated with tran-

scriptional silencing while hypomethylation is linked to transcriptional activation (Siegfried

et al. (1999); Vining et al. (2012); Thurman et al. (2012)). Methylation blocks transcription

through multiple processes with the end result of interfering with TF binding (Jones et al.
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(1998); Klose and Bird (2006)). Therefore, in order to activate transcription, hypomethylation

within DHSs is required for transcription factor binding. In other words, active transcription

appears to require both open chromatin and hypomethylated DNA for efficient TF binding.

Supporting this, the link between DNA methylation, DHSs, and TF binding was previously

reported (Wiench et al. (2011)).

The most interesting finding from the methylation analysis was the spike in CHH methy-

lation within DHSs using the limited set of CHH methylated cytosines (Figure 3.11). The

limited set of CHH methylated cytosines contained only statistically identified methylated cy-

tosines from CHH contexts using a binomial distribution (Kawakatsu et al. (2016)). The ob-

servation disappeared when all CHH cytosines independent of any site-wise statistical testing

were considered (Figure 3.13). Therefore, with CHH methylated cytosines, an increase in CHH

methylation at DHSs is observed but overall there is a decrease in CHH methylation. Similarly,

Sullivan et al. (2014) noted an increase in CHH methylation in DHSs, although it appears they

also used only identified CHH methylated cytosines in their analysis.

Both CHG and CHH methylation are unique to plants and fungi and to date their pre-

cise role in any biological function has not been identified (Suzuki and Bird (2008); Lister

et al. (2009)). Thus, further investigations into the function of CHG and CHH methylation are

needed, particularly in the case of CHH’s effect on chromatin structure. Specifically, why does

CHH methylation increase at methylated cytosines but decreases across all CHH cytosines?

A drop in methylation makes biological sense due to TF binding requiring hypomethylation,

but the function of CHH’s methylation spike is unknown (Jones et al. (1998); Klose and Bird

(2006)). Also of importance to note is the spike in methylation seen for CpG methylation +500

and -500 bp from the centre of DHSs (Figure 3.11). This is believed to be methylation due

to TSS effects since the spike disappeared when TSS DHSs were removed (Figure 3.13). Ad-

ditionally, this is supported as Vining et al. (2012) identified a methylation peak upstream of

the TSS. However, in this study the reason a peak is observed +500 and -500 bp, rather than

simply upstream, is due to DHSs not being normalized for strand directionality.
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Another question is whether hypomethylation develops before chromatin becoming acces-

sible or after? One possible explanation is through observing methylation of highly expressed

genes versus repressed genes containing DHSs. Zhang et al. (2012a) suggested poised DHSs,

DHSs within non transcribed genes, could become demethylated to become transcriptionally

active. However, this remains to be tested for DHSs within this work. In previous research,

methylation was found recruiting transcriptional co-repressor molecules that have the poten-

tial to alter chromatin structure (Jones et al. (1998); Wade et al. (1999)). As methylation is

removed, transcriptional co-repressor molecules are no longer bound and chromatin becomes

accessible. A specific example is when methylated cytosines recruit histone deacetylases lead-

ing to inaccessible chromatin (Jones et al. (1998)). These findings support methylation arising

before chromatin modifications and paints a clear association between chromatin remodelling

and DNA methylation. However, Ooi et al. (2007) found de novo DNA methylation arising

after histone modifications occur. Further, the epigenetic state of genomic regions, i.e. his-

tone modifications, were found to be dependent on the methylated state of that region (Suzuki

and Bird (2008); Cedar and Bergman (2009)). Lastly, DNA methyltransferases have been

found to specifically target nucleosome bound DNA and may be responsible for such results

(Chodavarapu et al. (2010)). Thus, these findings differ and support methylation arising after

chromatin modifications.

As there is both evidence for DNA methylation influencing histone modifications and his-

tone modifications influencing DNA methylation, a complex interaction between DNA methy-

lation, chromatin modifications, and chromatin remodelling leading to transcriptional changes

likely exists. In sum, there is a clear association and strong connection between DNA methy-

lation, histone modifications, chromatin remodelling, and gene transcription. Future research

will be required in order to decipher how they interact and influence one another.
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4.4.2 Histone modifications

To further understand the link between DNA methylation, histone modifications and chromatin

remodelling; H3K27me3 and H3K4me3 were mapped around DHSs. Caution must be taken

with interpreting results as while the data were obtained from the epidermal cell layer, a dif-

ferent promoter was used in the analysis. Results showed unique histone modification patterns

around DHSs. H3K27me3 increased 1000 bp upstream and downstream of DHSs with a large

decrease within DHSs. H3K4me3 increased 1000 bp upstream and downstream of DHSs with

a large increase within DHSs (Figure 3.15). Similar histone patterns were observed in exist-

ing DHS datasets supporting the current results (Vierstra et al. (2014); Zhang et al. (2012a);

Thurman et al. (2012)). Indeed, previous literature displays quite similar results in terms of the

defined histone peaks surrounding DHSs (Figure 3.15; Zhang et al. (2012a)).

Biologically, the observed histone modification patterns within DHSs make sense as H3K27

methylation is linked to silent chromatin and transcription repression while H3K4 methylation

is linked to active chromatin and high transcription (Kouzarides (2007); Zhang et al. (2007);

Ernst et al. (2011); Thurman et al. (2012); Bernstein et al. (2002)). Thus, taken together with

the previous results, DHSs are associated with low DNA methylation, low H3K27me3, and

high H3K4me3. All of these are indicative of high TF binding and active transcription as con-

firmed by results in Figure 3.7. H3K27me3 is particularly important as it is controlled through

the Polycomb Group protein complexes. Polycomb Group protein complexes are found critical

in gene repression in a tissue and cell-type specific fashion (Zhang et al. (2007)).

As with the methylation analysis, a TSS bias may arise within the observed results due to

the high frequency of DHSs around the TSS. Thus, all analyses were repeated with datasets

lacking TSS DHSs. For histone modifications, the previous observed results are significantly

altered. For instance, while H3K27me3 still increased 1000 bp upstream and downstream of

DHSs with a decrease within DHSs, the pattern slightly changed. The increase downstream

of DHSs is larger than the increase upstream. Previous literature has shown similar results

displaying H3K27me3 increasing around DHSs (Zhang et al. (2012a)). H3K4me3 on the other
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hand, now displays a large decrease within DHSs. Zhang et al. (2012a) found very similar

H3K4me3 results when mapping histone modifications around DHSs. These results are not

unexpected as histone modifications, like H3K4me3, are closely tied to TSSs (Li et al. (2012)).

In fact, previous research identified enriched H3K4me3 within promoter DHSs (Vierstra et al.

(2014); Thurman et al. (2012); Li et al. (2012)). Additionally, Vierstra et al. (2014) identified

H3K4me3 and DNase I sensitivity tightly follow each other and are significantly linked. How-

ever, they focused on TSS DHSs as well. Hence, these results reveal histone modifications

may not necessarily be linked directly to all DHSs, but may be specific to DHSs within certain

genomic locations. Further research is required to identify whether these histone modifications

are specific to promoter regions or to promoter DHSs. The drop in H3K27me3 and H3K4me3

within DHSs is not unexpected as DHSs are regions lacking nucleosomes (Albert et al. (2007);

Schones et al. (2008)).

The peaks of DNA methylation and histone methylation around DHSs are due to the pres-

ence of flanking nucleosomes around DHSs (Thurman et al. (2012); Zhang et al. (2012a)).

Results showing similar peaks in histone modifications around DHSs have been previously

identified (Vierstra et al. (2014); Thurman et al. (2012); Zhang et al. (2012a)). As mentioned

previously, DHSs are also called nucleosome free regions (NFRs) and are found highly lo-

calized around TSSs (Albert et al. (2007); Schones et al. (2008)). This is supported by this

work’s results identifying an enrichment of DHSs centred on the TSS. These NFRs are flanked

by highly positioned nucleosomes or strongly phased nucleosome arrays (Wu et al. (2014)).

These highly positioned nucleosomes are the first nucleosomes upstream and downstream of

the TSS and are labelled as the +1 and -1 nucleosomes (Mavrich et al. (2008); Radman-Livaja

and Rando (2010); Mavrich et al. (2008); Wu et al. (2014)). These nucleosomes are impor-

tant as they acquire histone modifications that contribute to their stability to serve as barri-

ers for nucleosome packing (Mavrich et al. (2008)). Considering H3K27me3, a marker of

closed chromatin, is enriched at these nucleosomes supports this theory (Figure 3.15). As a

result, the highly positioned nucleosomes surrounding DHSs gather specific histone modifi-
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cations or DNA methylation patterns resulting in the observed distinct histone modification

peaks. Indeed, the highly positioned nucleosomes are associated with histone variants and

histone modifications that may facilitate their stability around DHSs or the eviction of nucle-

osomes within DHSs (Jiang and Pugh (2009); Kouzarides (2007)). For instance, H3K4me3

was previously found highly enriched at highly positioned nucleosomes around NFRs (Vier-

stra et al. (2014); Thurman et al. (2012); Zhang et al. (2012a)). Additionally, DNA methylation

is linked to nucleosome positioning with DNA methyltransferases found to specifically target

nucleosome bound DNA (Chodavarapu et al. (2010)). The peaks in DNA methylation may be

explained through the targeting of these highly positioned nucleosomes. Overall, DHSs are

flanked by highly positioned nucleosomes which gather histone modifications like H3K27me3

and H3K4me3.

4.5 DHSs and the role of motifs in epidermal and endoder-

mal DE/DA genes

A list of differentially-expressed and simultaneously differentially-accessible (DE/DA) genes

were selected to identify potential enriched motifs within gene promoters. It was hoped to

identify motifs and combinations of motifs responsible for chromatin remodelling or a cell-

type specific response and to associate these motifs with DHSs. Epidermal DE/DA promoters

were enriched in motifs belonging to the transcription factor families of AT-hook, Dof, home-

odomain, and transcription binding proteins (TBP). In contrast, endodermal DE/DA promoters

were enriched in motifs belonging to the transcription factor AT-hook and homeodomain fam-

ilies.

Interestingly, the AT-hook motif is implicated in chromatin remodelling across different

organisms (Yun et al. (2012); Aravind and Landsman (1998)). Specifically, the HMG family

of proteins significantly effects the structure of chromatin and importantly binds to AT-hook

motifs as they contain an AT-hook binding peptide (Thanos and Maniatis (1992); Reeves and
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Nissen (1990)). The observation that these DE/DA genes contain binding sites for AT-hook

binding proteins which modify chromatin, like HMG proteins, provides evidence as to how

they may become differentially-accessible. However, to confirm this, future research into mod-

ifying these cis-elements and confirming chromatin structural changes would be needed.

Plotting known motifs across promoter regions in conjunction with DHSs returned a great

deal of information. For instance, by knowing what motifs are common across a group of

differentially-expressed genes allows one to infer a potential common control mechanisms.

In this work, epidermal cell-type promoters were enriched in AT-hook, Dof, homeodomain,

and TBPs binding domains. Further testing will confirm if this represents a governing control

mechanism for epidermal cell-type expression.

Plotting DHSs allowed for the identification of motifs falling within accessible chromatin.

As mentioned previously, for most transcription factors, nucleosomes inhibit TF ability to bind

to their respective binding sites (Felsenfeld (1992); Workman and Kingston (1998); Yuan et al.

(2005)). In fact, the majority of transcription factor bound motifs are associated within nucleo-

some free regions (Yuan et al. (2005)). As a result, it is expected that the majority of functional

motifs in this work will be located within DHSs. Motifs have pervasive mapping across the

genome and sifting out the functional motifs from unfunctional motifs represents a significant

challenge. Indeed, motif mapping across a genome always results in extensive mapping at

numerous locations across the genome. It is hoped by combining motif data with chromatin

accessibility data, one can discern functional motif sites over background noise.

This has great implications when identifying potential targets for future experiments and

biotechnology applications. It will aid in weeding out potential motif targets driving gene

expression for use in deletion or mutagenesis experiments. At present, these results provide

a map of motifs and DHSs of which one may select potential targets for future experiments.

Testing these motifs through deletion experiments to identify if they control cell-type specific

expression or chromatin alterations will be performed in the future.

One goal of these experiments is to identify the motifs responsible for cell-type expres-
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sion and to integrate those results with DHS data to locate regulatory modules causing specific

expression profiles. It would be ideal to design synthetic promoters with specific custom ex-

pression profiles as opposed to recycling native promoters, as is commonly employed. One

could potentially design promoters with certain motifs and genome accessibility in order for it

to be expressed in certain cell-types and under certain conditions. By combining accessibility

control with motif patterns specific to certain cell-types and conditions, a greater control over

cell-type specific expression would be obtained. By having this control over cell-type spe-

cific expression, genes advantageous for crop growth or development, but not ideal for human

consumption, can have their expression fine tuned within certain cell-types and under certain

conditions. For example one could test if the combination of motifs enriched within the epi-

dermal DE/DA genes could be used to create an epidermal specific expression promoter within

an accessible region. It is hoped that this data will enable the creation of novel promoters with

the ability to fine tune gene expression.

4.6 DHSs and the cold regulated pathway

An important goal of this thesis was to identify chromatin alterations present during the cold

acclimation response. Cold and other abiotic stresses have been quite extensively implicated in

inducing epigenetic and chromatin alterations (Chinnusamy and Zhu (2009); Luo et al. (2012);

Hu et al. (2011)). More specifically, cold itself is linked to huge changes in chromatin state

within cold-regulated (COR) genes (Mayer et al. (2015)). This study set out to identify these

chromatin alterations by identifying the changes in DHSs across the epidermal and endodermal

cell layers of the Arabidopsis root during cold acclimation.

4.6.1 Extensive chromatin alterations in response to cold

Previous plant cold acclimation and stress experiments have revealed quite differing results

with either more or less down regulated genes compared to upregulated genes (Kreps et al.
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(2002); Seki et al. (2002); Lee et al. (2005); Hannah et al. (2005)). Specific cold acclimation

expression data produced from 7 days of acclimation revealed more genes downregulated than

upregulated (Oono et al. (2006)). Furthermore, another study identified 672 long term up-

regulated genes and 915 down regulated genes in response to cold acclimation (Hannah et al.

(2005)). Similar to these results, this study revealed a clear decrease in the number of acces-

sible sites due to cold acclimation (Table 3.5). Thus, the extensive downregulation of genes

occurs alongside a reduction in accessible chromatin, possibly indicating an association. A re-

cent study looking at DHSs due to dark exposure identified a decrease in the number of DHSs

alongside a reduction in gene expression (Liu et al. (2017)).

However, while the number of DHSs decreased overall, the number of genes with an up-

stream 1000 bp DHS did not decrease significantly (Table 3.5). Therefore, an identical number

of genes were accessible but their enhancers may possibly have become inaccessible. These

enhancers may be located in other genomic DHSs or within the upstream 1000 bp region if a

gene contained two DHSs within their promoter. It would be interesting to identify the genes

with two promoter DHSs and identify which genes closed only one. This overall decrease in

DHSs may provide a link to significant downregulation of genes due to cold acclimation (Han-

nah et al. (2005)). Thus, it appears the control of cold acclimation gene expression is controlled

by enhancer DHSs closing rather than promoters closing completely.

While distinct alterations in chromatin were found between cell-types and between control-

cold datasets, DHS data displayed a high degree of overlap. Indeed, results identified 9,000-

11,000 shared DHSs between cell-type and control-cold data. As mentioned, more DHSs were

found closed than open in response to cold acclimation. Specifically, 8487 DHSs closed in the

epidermis under cold acclimation and 6173 DHSs opened. This corresponded to 1897 genes

opening and 3776 genes closing due to cold acclimation within the epidermal cell-type. Thus,

more genes under cold acclimation became inactivated or reduced their transcription. Cold

acclimation induces extensive changes to chromatin with the main result being more closed

chromatin. Unfortunately, no other paper has done this form of analysis with their data and
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compared open DHSs versus closed DHSs. Hence, any comparisons with numbers generated

from this dataset to others can not be made.

While the number of DHSs decreased due to cold acclimation, the number of DHSs within

exons drastically increased (Table 3.5; Figure 3.2). A similar effect has been observed with

plants exposed to dark conditions or heat stress (Liu et al. (2017); Sullivan et al. (2014)). How-

ever, a precise explanation as to why this increase occurs remains unknown. One explanation

identified a link between exonic DHSs and cotranscriptional splicing with exonic DHSs colo-

calizing with gene promoters (Mercer et al. (2013)). It is possible exonic DHSs may fold into

close proximity with the promoter region and bind TFs allowing high transcription. A future

direction would be to identify these exonic DHSs and attempt to identify why they are opening

under cold or dark acclimation and identify what motifs they contain.

It should be noted that many of these exonic DHSs could in fact be intronic DHSs due to

the order of importance for classifying DHSs into genomic locations (see Methods). The DHSs

within exonic regions may overlap intronic regions. DHSs opening up in intronic DHSs could

be enhancer elements increasing the expression of cold genes. This is important as introns

have been shown to frequently contain enhancer binding sites that significantly affect gene

expression levels in many different species (Duncker et al. (1997); Lu and Cullen (2003); Rose

et al. (2016); Rose (2002)). Thus, it could be DHSs within exonic or intronic regions affecting

TF binding and transcriptional output.

Out of 672 upregulated genes more than half were found with an upstream 1000 bp DHS in

both control and cold conditions. Results also revealed several cold responsive genes becoming

accessible in response to cold. However, several cold responsive genes also became inacces-

sible, at least in the upstream 1000 bp. Although cold responsive genes closing in response to

cold is counter-intuitive it may be due to unannotated TSSs, other genomic annotation errors,

or false positives/false negatives (Boyle et al. (2008a)). A more intriguing explanation may be

the inactivation of repressor regions allowing transcription of cold responsive genes. Neverthe-

less, the overall result identified is that the majority of cold responsive genes are open in both
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control and cold conditions.

This observation is important when considering the cold response. For any abiotic stress

response, rapid stress gene expression will ensure damage is kept to a minimum. This is

important when considering that changing a chromatin state is time consuming and very slow

(Raser and O’Shea (2004)). It has been previously identified as the rate limiting step in the

overall transcriptional response (Barbaric et al. (2001)). In comparison, TF activation and

binding occurs quickly. Therefore, having these cold responsive genes highly accessible under

control conditions will allow the plant to quickly respond to cold.

Having genes accessible to quickly respond to stress is particularly important when consid-

ering the upstream genes of a pathway. These are often the first line genes activated to become

highly transcribed under conditions. For instance, the main pathway initiated under cold stress

and acclimation is the CBF/DREB pathway (Medina et al. (2011); Thomashow (2010); Lee

and Thomashow (2012)). The majority of these genes were found highly accessible in all

cell-types and conditions supporting the hypothesis that they are accessible for a quick re-

sponse (Figure 3.21). The observation that the three CBF genes of the CBF/DREB pathway

are induced within 15 minutes of cold exposure supports these findings (Gilmour et al. (1998);

Shinwari et al. (1998)).

Further, while these upstream cold pathway genes may be highly accessible in both con-

trol and cold conditions they are not necessarily highly transcribed under control conditions

(Zarka et al. (2003)). As stated previously, DNA methylation, histone modifications, miRNA,

TF activation and binding, all influence transcriptional activation (Jones et al. (1998); Klose

and Bird (2006); Kouzarides (2007); Zhang et al. (2007); Liu et al. (2017)). A gene may be

highly accessible but not highly transcribed due to its binding TF not being activated. As TF

activation and binding is quicker than chromatin modifications, a gene that is highly acces-

sible but requiring TF binding will respond quicker. These 672 cold responsive genes could

be under control of complex transcriptional factor binding and regulation instead. Addition-

ally, these genes may have a highly accessible upstream region to allow basal expression but
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require further open chromatin to initiate high transcription. Specifically, in cold acclimation

these shared genes may contain a DHS in the upstream promoter allowing basal expression.

However, upon cold exposure exonic or intronic DHSs open which allow further TF binding

thereby increasing transcription. For genes that become accessible under cold conditions, a

more long term cold response not required during early exposure to cold may be the case.

A majority, 62.1% of epidermal cold DHSs were shared in the epidermal control dataset

and 59.5% of endodermal cold DHSs were shared in the endodermal control dataset. Thus,

while most cold genes are associated with a DHS in both control and cold conditions, there

are still vast chromatin alterations taking place within the genome specific to these cell-types.

Whether or not these chromatin changes lead to transcriptional changes or not remains to be

identified. Considering roughly 50 of the 672 cold responsive genes were found DE/DA, it

seems chromatin alterations influence transcriptional changes under acclimation conditions

only slightly. However, DE/DA genes were limited to genes with an upstream 1000 bp DHSs

and many other genes may be DE/DA classified due to DHSs in other genomic regions (e.g.

exonic/intronic). The DE/DA analysis simply identified 50 genes changing expression due to

changes in upstream 1000 bp DHSs. Further testing to identify if changes in DHSs across

other genomic locations affect transcription are required. Indeed, gene transcription may be

controlled through DHSs in other genomic locations separate from upstream 1000 bp DHSs.

It could be that chromatin alterations influence where and when genes get expressed more

than how much or how little. As mentioned previously, the splicing of a gene may be altered

by exonic DHSs affecting its function thereby allowing cold acclimation (Mercer et al. (2013)).

Chromatin alterations in other genomic locations could lead to changes in transcriptional output

that may not be linked to those transcriptional changes. For instance, nucleosome position can

allow two binding sites to become spatially connected allowing transcription factor binding

and interaction between those sites to initiate transcription (Stünkel et al. (1997)). Although

the majority of cold acclimated genes contain a DHS in control conditions, it does not mean

their chromatin state is static. Accessibility is not simply an on or off switch, or an open or
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closed switch, but a spectrum from completely closed to completely open and everything in

between (Zhang et al. (2012a); Liu et al. (2017); He et al. (2012)). Hence, while a site may

be accessible within a control and cold condition, it may be more accessible under the cold

conditions. However, this needs further investigation. An increase in accessibility at a DHS

would enhance TF binding thereby increasing transcription of that gene (Figure 3.10, Boyle

et al. (2008a); Zhang et al. (2012a)). One way to test this would be comparing the likelihood

ratio between shared DHSs in cold acclimated and control conditions.

In summary, drastic changes to chromatin structure were identified in the Arabidopsis root

epidermis and endodermis under cold acclimation. This work focused on identifying differ-

ences primarily between DHSs within the upstream 1000 bp region. Results identified that

while the total number of DHSs decreased within the upstream 1000 bp, the number of genes

with an upstream 1000 bp DHS did not decrease to the same degree. Additionally, more than

half of the 672 upregulated cold genes were shared between cold and control conditions. Con-

nections between upstream 1000 bp DHSs and cold acclimation transcriptional changes could

not be made in this work (Hannah et al. (2005)). Overall, transcriptional control of stress

responsive genes appears to be controlled by individual enhancer DHSs closing rather than en-

tire promoters closing. Indeed, exonic or intronic DHSs drastically increased in the epidermis

and endodermis under cold acclimation. Hence, it appears chromatin alterations within other

genomic regions, like the exon or intron, may influence total transcriptional output.

4.6.2 Unique motifs enriched within cold accessible genes

Due to the fact the majority of downstream and upstream cold responsive genes were accessible

in both control and cold conditions, they must be highly controlled through other factors such

as transcription factor activation and binding. Of course, another possible explanation for

transcriptional changes may be DHSs opening within other genomic locations. However, this

analysis focused on TF binding and activation. In order to get a greater understanding of how

the downstream and upstream cold pathway genes are controlled, TF motifs were tested for
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enrichment and mapped within the downstream and upstream cold pathway genes. The goal

was to identify combinations of motifs responsible for an upstream cold response.

The AP2 transcription factor binding sites enriched within the upstream genes are impor-

tant when considering the cold transcription factors CBF1, CBF2, and CBF3. CBF proteins

belong to the AP2 family of transcriptional activators (Stockinger et al. (1997); Fowler and

Thomashow (2002)). Thus, it is not surprising their binding elements are enriched within the

set of upstream cold responsive genes (Figure 3.21). It is interesting to note that downstream

genes of the three CBF proteins were also enriched for AP2 motifs (Figure 3.19, Figure 3.20).

In fact, all of the downstream genes within Figure 3.21 contain at least one AP2 binding site.

Additionally, HOS1 contained three AP2 binding sites possibly indicating a feedback mecha-

nism where CBF proteins regulate HOS1 expression (Figure 3.21). This requires further testing

to confirm as no study has looked into this. All of these AP2 binding sites are within DHSs

supporting a high potential for function. The specific AP2 motif enriched within this dataset

is called the C-repeat/dehydration-responsive (CRT/DRE) regulatory element with the core se-

quence of CCGAC (Baker et al. (1994); Yamaguchi-Shinozaki and Shinozaki (1994)). This

core motif is important as it is required for inducing the expression of many cold responsive

genes and is the specific cis-binding site for the CBF genes (Baker et al. (1994); Jiang et al.

(1996)). Furthermore, this core motif is found in many drought responsive genes as there is

a slight overlap between cold induced expression and drought induced expression (Seki et al.

(2002)). A significant portion of cold induced damage is more so the result of cold induced

dehydration (Steponkus et al. (1998); Steponkus and Webb (1992)).

The bHLH is another interesting TF family found with pervasive motif mapping across this

set of upstream genes. It is interesting due to the fact that ICE1, an upstream cold responsive

gene, is a bHLH transcriptional activator (Chinnusamy et al. (2003)). As shown in Figure 3.21,

ICE1 affects the expression of CBF1, CBF2, and CBF3. However, it affects CBF1 and CBF2

very slightly and not as drastically as it affects CBF3 expression (Chinnusamy et al. (2003)).

Thus, the enriched bHLH binding motifs across this upstream pathway make biological sense
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as ICE1 binds to this respective motif family. The main motif found mapping within this set of

upstream genes has the consensus sequence of a Myc binding site CANNTG, with a significant

portion having the G box motif CACGTG (Jakoby et al. (2002); Bailey et al. (2003)). Inter-

estingly, the bHLH transcription factor family binds to DNA with that Myc binding consensus

sequence (Meshi and Iwabuchi (1995)). Thus, the bHLH binding domains within the CBF

DHSs provide support for this pathway’s control mechanisms.

In addition to the CBF pathway controlling cold responsive genes, many cold induced

genes are controlled through the ABA-dependent pathway (Lang et al. (1994); Laang and Palva

(1992); Gilmour et al. (1998)). Induction of these cold responsive genes due to the ABA-

dependent pathway is thought to be caused by the interaction of bZIP transcription factors.

This is interesting as motifs within the bZIP transcription factor family were enriched in this

upstream cold pathway (Figure 3.21). Hence, these sites within DHSs provide a link to the

CBF pathway and the ABA independent pathway for cold acclimation.

CG-1 is another interesting transcription factor family found to previously map in the CBF2

promoter (Finkler et al. (2007); Doherty et al. (2009)). In this work, CG-1 binding motifs were

enriched across the upstream pathway, particularly in all three CBF genes and ZAT12. Addi-

tionally, these binding sites were found within the DHSs of the CBF and ZAT12 promoters.

These binding sites are critical as they are binding sites for calmodulin transcriptional activa-

tors. Upon cold exposure there is a large influx of calcium interacting with the calmodulin

transcriptional activators allowing them to bind their CG-1 sites (Doherty et al. (2009); Knight

et al. (1991, 1996)). In fact, a mutant copy of camta3, one of the calmodulin activators, reduces

transcription of CBF1, CBF2, and ZAT12 (Doherty et al. (2009)). This provides a link to the

CG-1 binding sites within DHSs and a cold specific response due to calcium induction.

The final transcription factor family motif enriched within this upstream pathway is the

MYB-SANT family. The three CBF proteins each carry a MYB-SANT binding motif and all

CBF proteins were previously found to interact with MYB15 (Agarwal et al. (2006)). Under

normal conditions, MYB15 negatively regulates CBF expression by binding to its binding
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sites within the three CBF genes. Under cold stress MYB15 interacts with ICE1 allowing

ICE1 to bind to and activate the expression of the CBF genes while preventing MYB15 from

inhibiting the CBF genes (Zhou et al. (2011); Agarwal et al. (2006)). Therefore, MYB15

acts to inhibit CBF expression and enable activation of CBF expression. This may be why

early research into MYB15 showed confusion as to whether it activated or repressed genes

in the cold pathway (Agarwal et al. (2006)). Importantly, under cold stress, the binding sites

for MYB15 within CBF3 are located within closed chromatin, rather than open chromatin.

The interaction between MYB15 and ICE1 is expected as research previously found bHLH

transcription factors, like ICE1, require co-transcription factors like MYB15 in order to activate

target genes (Chinnusamy et al. (2003); Spelt et al. (2000)).

Downstream mapping results shared similar motif enrichment patterns as the upstream

pathway, with enrichment of AP2, bZIP, and MYB-SANT TF binding domains. In the context

of cold stress and acclimation, such transcription factor binding sites make biological sense.

Particularly, for CBF proteins to bind to cold responsive genes, as shown in Figure 3.21, they

require the enrichment of AP2 binding sites. Interestingly, the CCGAC AP2 motif was en-

riched within downstream genes, connecting the downstream cold genes with CBF interaction

(Figure 3.19, Figure 3.20).

The MADS box transcription factor family displayed significant enrichment within the epi-

dermal cold DE/DA gene list (Pajoro et al. (2014)). MADS box transcription factors precede

changes in chromatin accessibility and have the ability to bind to closed chromatin (Pajoro

et al. (2014)). Additionally, MADS box transcription factors bind with nucleosome remodelers

or histone modification enzymes, suggesting they may function as pioneering factors affect-

ing the chromatin state (Zhang et al. (2012b); Smaczniak et al. (2012); Pajoro et al. (2014)).

Thus, it appears the epidermal cold DE/DA gene list may undergo chromatin alterations due to

cold acclimation through the binding of MADS box transcription factor families. Endodermal

specific genes were not enriched with motifs belonging to TF families with strong ties to any

chromatin remodelling or histone modification potential.
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4.6.3 Motif locations for future modifications

One goal of mapping motifs and DHSs within this upstream cold pathway and in the down-

stream genes was to identify target motifs and/or genes for future cold-resistant crop engineer-

ing. Additionally, with DHS integration and analysis it is hoped that a greater control over the

chromatin accessibility of transgenes may be obtained. An ideal outcome would be to create

cold stress resistant plants without having the plants become cold acclimated. This would al-

low plants to respond quickly to cold stress and increase plant survivability. This could involve

inserting motifs into a promoter to enable activation of select genes or modifying existing mo-

tifs so they become inactivated. Having DHS data in combination with motif data makes it

significantly easier to identify the functional motif regions from the non-functional motifs for

targeted mutagenesis.

Possible sites for modification within this pathway could be the MYB-SANT binding sites

in the three CBF genes. Deactivating or removing these motifs may potentially alter how they

are repressed, allowing these genes to be activated in a more consistent manner. Addition-

ally, MADS domain transcription factor binding domains could be modified to test for a cold

resistant plant. This may allow the chromatin state of cold resistant genes to be constantly

accessible allowing active and quick transcription. Future experiments can use this available

information to target potential motif sites within DHSs for CRISPR/Cas9 modification experi-

ments to obtain a specific transcriptional outcome. Another possible outcome for this research

would be the creation of synthetic promoters discussed in the previous section. One could

design a promoter for a cold resistance gene with a specific expression profile by taking ad-

vantage of accessible chromatin. Furthermore, if a gene is found to be detrimental to the plant

in certain cell-types, its expression could be fine tuned with chromatin accessibility or motif

placement. In sum, this research has far reaching applications in the design of synthetic genes

and promoters by taking advantage of motif and DHS placement.
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Conclusions and future perspectives

5.1 Arabidopsis DNase hypersensitive site importance in cell-

type identity and stress response

DNase-seq was utilized within this thesis to identify DHSs within the Arabidopsis epidermal

and endodermal root cell-types under control and cold conditions. However, existing DNase-

seq protocols could not enable the identification of DHSs from a single cell-type from the Ara-

bidopsis root. Therefore, a novel wet-lab DNase-seq protocol within the Austin lab, deemed

DDTS, was used identify DHSs. However, this generated a new form of data with no existing

analysis procedures to identify the DHSs. As a result, this work developed a novel bioinfor-

matic tool, called DDTS, to identify DHSs from the newly generated data. This tool works by

comparing an undigested sample to a digested sample and identifying regions with significant

lack of sequencing information in the digested sample compared to the undigested sample. The

bioinformatic tool is an easy to use program written general enough for use on a wide range

of organisms across various different experimental forms of data. It could potentially be used

on data other than DNase-seq generated data like ChIP-seq data. DDTS has significant advan-

tages over other DNase-seq wet-lab and analysis procedures in that it is easy to perform on

single cell-types, requires minimal equipment, a minimal amount of nuclei/DNA, and minimal

118
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sequencing information. Additionally, new quality control checks were developed to ensure

proper digestion of DNA samples and accurate identification of DHSs through DDTS.

Thousands of DHSs were identified across the epidermal and endodermal root cell-types

across control and cold conditions through the use of DDTS. These DHS datasets contained

many shared but many unique DHSs indicating a pervasive role of chromatin alterations in

cell-type identity and under acclimation conditions. The majority, >60%, of DHSs were shared

between the epidermal and endodermal dataset. The remaining 40% percent of DHSs is not un-

expected as cell-types within the Arabidopsis root serve highly specific functions. DHSs across

all conditions were heavily enriched within the upstream 1000 bp, particularly around the TSS.

DHSs showed unique size distributions across genomic locations, with the largest sites located

within the upstream 1000 bp. Results indicated that DHSs largely regulate transcriptional out-

put by affecting TF binding within promoter regions of genes. Indeed, the presence of DHSs

largely influenced gene transcription with the highest expressed genes more likely associated

with DHSs than the lowest transcribed genes. This effect was largely seen for DHSs in the

upstream 1000 bp and in the 5’UTR. Furthermore, in addition to the presence of DHSs, the

accessibility of DHSs significantly affected gene transcription. Results identified that the most

accessible DHSs led to genes with the highest expression. Additionally, the highest accessible

DHSs within the 5’UTR and intron had the highest overall expression. This indicates the de-

gree of accessibility significantly affects the ability of TFs to bind to their respective sequences

thereby influencing gene expression. In sum, the presence and accessibility of DHSs, mainly in

the upstream 1000 bp, significantly affected TF binding thereby influencing gene expression.

To characterize chromatin accessibility across the genome, DHSs were mapped with ex-

isting epigenetic data to look for unique epigenetic patterns within and around DHSs. DHSs

displayed unique epigenetic patterns within and around them. CpG and CHG methylation were

reduced within DHSs across all analyses. CHH methylation, when considering only methylated

cytosines, uniquely increased within DHSs. Within the context of all cytosines, CHH methy-

lation dropped within DHSs but increased around DHSs. H3K27me3, an inactivation marker,
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was reduced within DHSs while H3K4me3, an activation marker, was enriched in DHSs. How-

ever, the enrichment of H3K4me3 was only found located within TSS DHSs. The occurrence

of DNA methylation and histone modification peaks around DHSs is explained by highly po-

sitioned nucleosomes surrounding DHSs (Jiang and Pugh (2009); Kouzarides (2007)).

The majority of downstream cold acclimation genes contained a DHS in their upstream

1000 bp in both control and cold conditions. Similarly, the majority of upstream cold CBF

pathway genes contained a DHS in their upstream 1000 bp under control and cold conditions.

It is hypothesized plants have stress responsive genes accessible in all conditions so the plant

may respond quickly. Furthermore, while the number of DHSs reduced due to cold, the number

of genes with an upstream 1000 bp DHS did not significantly change. Additionally, only 50

DE/DA genes were identified as this work only considered upstream 1000 bp in the analysis.

Hence, it is hypothesized that upstream 1000 bp DHSs do not significantly alter transcription

due to cold acclimation. In support of this, a large increase in exonic or intronic DHSs under

cold acclimation was identified. A hypothesis is that exonic or intronic DHSs become accessi-

ble due to cold acclimation, thus affecting transcription of cold responsive genes via TF binding

sites in exonic or intronic regions. However, future work to support this is needed.

Furthermore, a priori scanning of existing TF binding motifs in select DE/DA genes of cell-

type specific and upstream cold induced genes identified unique results. This was performed

in hope of identifying motifs responsible for chromatin changes seen within these genes. The

epidermal and endodermal cell-types shared enriched binding domains for the TF family of

AThook. Interestingly, the AThook TF family has strong ties to chromatin remodelling. Cold

DE/DA genes were enriched with many AP2 binding sites, specifically CCGAC, a known cold

binding domain. Additionally, MADS box binding domains were enriched within these cold

DE/DA genes pointing to a possible mechanism as to how they become accessible under cold

conditions. Lastly, the upstream cold CBF pathway was enriched in binding domains for the

transcription factors AP2, bZIP, Myb-SANT, TBP, bHLH, CG-1, and homeodomain.

Ultimately, through mapping motif data with DHS data it is hoped the identification of
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functional motifs will be made easier. Functional motifs are those with ability to bind TFs

since their regions are highly accessible. Results showed DHSs heavily enriched in motifs for

various TF families. Integrating epidermal and endodermal motif data with DHS data will en-

able the identification of functional motifs that lead to cell identity or control cell-type specific

chromatin accessibility. Cold motif data and DHS data will enable the identification of motifs

responsible for cold response or for altering chromatin accessibility under cold acclimation.

The ultimate goal being to identify motifs responsible for cell identity, chromatin alterations,

and stress response within DHSs. This has great promise identifying potential targets for fu-

ture experiments and biotechnology applications. Mutagenesis or CRISPR/Cas9 experiments

benefit from this research by narrowing down the motifs to select for experimentation. Ad-

ditionally, it is hoped this research will enable the creation of a motif ”tool-box” to control

cell-type specific and abiotic stress expression. This ”tool-box” would not only contain the

TF binding motifs for cell-type specific and stress response expression but also the motifs or

processes to control where and when that motif will be accessible. Controlling not only the po-

sition of motifs in a promoter but also when that promoter will become accessible will enable

a greater control over transgene expression.

In conclusion, DHSs displayed unique and shared characteristics across cell-types and abi-

otic stress conditions. Results found DHSs change drastically across cell-types and under cold

acclimation. Finally chromatin accessibility displayed transcriptional control, has defined epi-

genetic characteristics, and has the potential to be used in conjunction with motif data for

biotechnology purposes.

5.2 Study limitations

DHSs were successfully identified and integrated with various data sources across the Ara-

bidopsis root epidermis and endodermis under control and cold conditions through the use of a

novel protocol and analysis procedure called DDTS. However, the identification of DHSs and
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integration with other data sources came with several limitations. There are significant chal-

lenges facing not only DDTS but other DNase-seq protocols in generating and processing the

raw data.

While DDTS was successful at identifying DHSs with limited sequencing information,

DDTS is highly limited by the amount of sequencing information used for analysis. As se-

quencing reads across datasets were downsampled, the quality of DHSs degraded and the iden-

tification of DHSs was significantly more difficult (results not shown). Specifically, the false

positive rate increased significantly with a lower read count and DHS width increased. There-

fore, it is necessary to obtain a high amount of sequencing information in order to produce high

quality results. However, sequencing is time consuming and costly, thus a compromise must

be made between quality and the amount of dollars spent. The more sequencing data obtained,

the more power an experiment will have in identifying high quality DHSs. It is suggested that

increasing the number of reads above what was used within this thesis will enable more power

in identifying high quality DHSs and lower the false positive rate. However, 10 million reads

should suffice to produce results for the Arabidopsis genome.

Additionally, there are many settings that can be altered within DDTS and helper programs,

like F-Seq, that may significantly alter results. Changing any of the countless settings may

increase power of DHS identification or decrease the power. Additionally, the false positive

rate or the false negative rate could significantly increase or decrease. One may change these

settings to increase the effectiveness of identifying DHSs, however, that can lead to complex

analysis procedures of constantly changing and testing results. There are many settings and

combinations of settings to alter, potentially leading to time consuming analysis procedures.

It is best to select settings through an educated guess based on past knowledge and biological

information at hand. In sum, DDTS worked effectively in identifying thousands of DHSs but

caution should be used in analysis procedures.

The use of external transcriptional and epigenetic data produces many analysis and data

integration limitations making interpretation of the results difficult. For example, RNA-seq,
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Methyl-seq, and ChIP-seq contain many challenges in processing and analysing their results.

For any of these procedures, proper analysis is difficult and wildly different results can be

obtained across not only biological replicates but also technical replicates. All of these pro-

cedures have differing analysis tools and programs that can produce different results from the

same data. Similarly with DDTS, slight changes in settings can produce differing results.

Further, similar growing conditions are a challenge when comparing data from various

sources. A change in lighting, water, heat, and soil conditions can significantly affect results

and cause plants to display wildly different responses. This work grew plants in liquid media in

order to obtain the required number of nuclei for DDTS. Growing Arabidopsis in liquid media

is expected to significantly affect transcription profiles compared to growing it in soil. There-

fore, comparing data between several sources and interpreting information should be done

carefully, especially when looking at fine details. Any generalizations must be made carefully

and should be investigated and supported further with additional experimentation. However,

when looking at general trends or general observations, comparing data across various sources

is a powerful tool. It enables distinct observations to be made in a cost and time efficient

manner. Any conclusions made should be supported with previous literature or with further

experimentation.

An additional difficulty with the external data sources used in this work concerned each ex-

periment’s procedure to isolate cell-type specific nuclei. While Li et al. (2016) and Kawakatsu

et al. (2016) isolated nuclei using the same Werewolf (wer) promoter, as used in this work,

they utilized FACS for nuclei isolation. Despite biological variation being reduced through the

use of the same promoter, it is unknown whether FACS and INTACT would produce differing

samples of isolated nuclei. Each protocol may produce slightly differing nuclei pools that can

significantly affect results. Furthermore, while Deal and Henikoff (2010) used the INTACT

protocol to isolate the same cell-type specific nuclei, they did not use the same promoter to iso-

late nuclei. Their data were used to identify if any trends could be observed within DHSs and

specific details could not be pulled out from this analysis. However, data were obtained from
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a similar root cell-type using the promoter of GL2. Unlike the Werewolf promoter isolating

the entire epidermis, the GL2 promoter isolates only the non-hair cells of the root epidermis.

Therefore, any discrepancies should be reduced to a minimum as differences within the same

tissue will be kept to a minimum. Additionally, this analysis only observed averaged trends

across a group of sites thereby reducing potential errors.

Lastly, genomics generates a vast amount of data that is difficult to interpret and analyze.

For example, as of 2016, over 4 x 1015 base pairs of sequencing information are available

on-line in public repositories (Leinonen et al. (2010); Kanz et al. (2005); Benson et al. (2012);

Barrett et al. (2012)). While the issue of computing power and analysis programs is certainly an

important one requiring solutions, it is definitely not the main issue. The main issue regarding

this vast amount of data is in the man power to analyze and interpret the data in a biological

meaningful way. While the cost of sequencing has drastically reduced, the cost of analysis and

of human resources has now become the main part of any lab’s budget (Sboner et al. (2011)).

Cost aside, the human aspect is a significant limiting factor in regards to large experiments.

Proper interpretation and making sense of data is a challenging task and often involves many

sets of eyes (Mardis (2010)). This difficulty was observed within this work particularly with the

integration of the data with other sources. It is often difficult to know how to process gigabytes

of data or even what to look for in results. Reducing data to a meaningful result through

data reduction is often a difficult task within genomics. Additionally, genomics suffers from

analysing with a wide brush rather than having specific scientific questions requiring answers.

While often bioinformaticians are needed to analyze this vast amount of data, biologists are

also required to interpret it in a meaningful fashion. Work flows need to be made to enable

scientists to focus on analysing and interpreting the data in the most efficient manner possible.

Within any of these genomic experiments there will always be some result that goes missed.
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5.3 Future directions

There are many possible future directions and improvements for the work presented here. A

number of these have been discussed in the previous chapters but many additional avenues for

future direction are possible. Whenever working with vast amounts of data, there will always

be more questions requiring answers than those answered. For instance, there is continued

work in analysing differences in accessibility between shared DHSs, predicting new regulatory

elements from DHSs, understanding why DHSs display unique epigenetic patterns, exonic or

intronic DHS role in cold transcriptional control, and future experiments utilizing DHS data in

combination with motif data.

A possible future direction with DHS data is to test how shared DHSs across conditions

and cell-types change in accessibility. As mentioned previously, accessibility is not an on

or off switch. Rather, it is instead more akin to a dimmer switch from completely closed to

completely open and everything in between. While a site may be accessible in both control and

cold conditions, it may be more accessible under cold conditions. However, this remains to be

tested with the DHSs generated in this work. It is still unknown whether this type of analysis

will work with this custom DDTS protocol. Comparing the likelihood fold ratio between DHSs

across conditions could work in theory, however it is unknown if it is practical to compare

across datasets. Additionally, DHSs could be used within Arabidopsis to predict enhancer

elements. Enhancer elements are seemingly rare within Arabidopsis. Thus, utilizing DHSs to

identify new enhancer elements, shown successful in previous experiments, is a great avenue

to continue this work (Jiang (2015)). However, connecting distal elements to their respective

genes is a difficult task to overcome.

In addition, while a connection was made between DHSs, methylation, histone modifi-

cations, and transcription; how exactly these processes interact and influence one another is

largely unknown The order of events or even how one factor influences another has been the

focus of many research experiments but its answers still remain unknown. Despite this, many

studies have reported the link between these individual factors and displayed their defining pat-
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terns (Zhang et al. (2012a); Sullivan et al. (2014); Thurman et al. (2012); Vierstra et al. (2014);

Zhang et al. (2012a); Thurman et al. (2012)).

Furthermore, a unique possible avenue to continue research is in the role of exonic or in-

tronic DHSs in cold transcriptional control. Results identified an increase in exonic or intronic

DHSs due to cold acclimation in both the epidermis and endodermis. While possible theories

exist to explain this observation, no conclusive answer has been found. Thus, future work in

identifying exonic or intronic DHS’s role in cold acclimation, particularly in a transcriptional

response, is required.

Lastly, this type of research may be used in the future for designing synthetic promoters.

This work looked into aspects of genomics from motif data, chromatin alterations, histone

modifications, methylation, and transcription. It is hoped by analysing all biological aspects

affecting transcription, a better promoter can be developed. A promoter designed to take into

consideration various aspects of motif placement and combination, individual methylation pat-

terns, histone modifications, and DHSs, could enable a greater control over expression at the

cell-type and stress response level. A promoter designed with specific TF binding motifs and

DHSs for cell-type specific expression will enable a greater control over its expression level

spatially and temporally. Promoters can be intelligently designed to be slightly accessible or

highly accessible allowing its expression to be fine tuned. This is why this thesis identified

motifs enriched within gene sets and under abiotic stress conditions. Additionally, it is also

why this work set out to show a connection between a DHS’s accessibility and transcriptional

output.

DHS data is a powerful tool for use in mapping a priori motif sites and de novo motif sites.

The discussion mentioned DHSs could be used to identify functional motifs for use in future

experiments. While this was not validated here, previous work found strong connections be-

tween TF binding and accessible chromatin painting a clear picture of chromatin interfering

with TF binding (Zhang et al. (2014); Yuan et al. (2005)). As a result, motifs within DHSs

have an increase likelihood of functionality and DHSs can be used to more accurately identify
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functional motifs bound to TFs. Lastly, DHS data has shown great promise in enabling more

powerful identification of novel binding motifs (Sullivan et al. (2014)). Motif algorithms re-

quire a base pair input in order to predict novel motifs and the size of the input sequence can

significantly affect results. However, by feeding these algorithms only functional regions, i.e.

DHSs, the input sequence is significantly reduced, thereby enabling a greater statistical power

in identifying novel motifs.

Complete epigenetic maps for various tissues and cell-types including all aspects of possi-

ble data from DNA methylation, to histone modifications, to chromatin accessibility are needed

to fully understand epigenetics role in transcription and gene expression. Indeed, epigenetic

maps across various tissues, cell-types, and stresses is essential for a future work to completely

understand the nuances of gene transcription and regulation. Additionally, further research

connecting how chromatin accessibility influences expression under acclimation conditions is

required. Trying to decipher why some genes are always accessible against those that become

accessible under cold acclimation will be necessary for understanding chromatin’s role in ac-

climation conditions.
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Figure A.1: DNase digestion profiles of individual replicates. DNase-DTS bar plots display-
ing the frequency of DHSs with respect to DHS size. Also displayed are pie graphs showing the
distribution of DHS within genomic locations. DHSs were classified into genomic categories
in order of importance, upstream 1000 bp, 5’UTR, 3’UTR, exon, intron, downstream 200 bp,
and intergenic. Concentration of DNase shown in lower right of each subplot. a) Epidermal
replicate #1 b) Epidermal replicate #2. c) Epidermal replicate #3. d) Endodermal replicate #1.
e) Endodermal replicate #2. f) Endodermal replicate #3 . g) Epidermal cold replicate #1. h)
Epidermal cold replicate #2. i) Epidermal cold replicate #3. j) Endodermal cold replicate #1.
k) Endodermal cold replicate #2. l) Endodermal cold replicate #3.



Appendix B

DE/DA genes

B.1 List of epidermal DE/DA genes

Table B.1: List of epidermal DE/DA genes

AT1G05562 Unknown

AT1G12070 Immunoglobulin E-set superfamily protein (PTHR10980:SF30)

AT1G13480 SUBFAMILY NOT NAMED (PTHR31050:SF2)

AT1G21130 Caffeic acid 3-O-methyltransferase-like protein-related (PTHR11746:SF118)

AT1G23149 Unknown

AT1G23150 Gb—AAC00605.1 (PTHR33270:SF14)

AT1G30530 UDP-glycosyltransferase 78D1-related (PTHR11926:SF451)

AT1G37130 Nitrate reductase [NADH] 1-related (PTHR19370:SF182)

AT1G44100 Amino acid permease 5 (PTHR22950:SF350)

AT1G54030 GDSL esterase/lipase 1-related (PTHR22835:SF485)

AT1G64300 Protein kinase (PTHR44630:SF3)

AT1G64940 Cytochrome P450 89A2-related (PTHR24298:SF45)

AT1G66200 Glutamine synthetase cytosolic isozyme 1-2 (PTHR20852:SF58)
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AT2G04090 MATE efflux family protein-related (PTHR11206:SF189)

AT2G15830 SUBFAMILY NOT NAMED (PTHR37705:SF1)

AT2G19800 Inositol oxygenase 2-related (PTHR12588:SF1)

AT2G21188 Unknown

AT2G28760 UDP-glucuronic acid decarboxylase 3-related (PTHR43078:SF9)

AT2G43610 Chitinase family protein-related (PTHR22595:SF104)

AT2G45220 pectinesterase/pectinesterase inhibitor 17-related (PTHR31707:SF11)

AT2G45400 Protein BRI1-5 ENHANCED 1 (PTHR10366:SF560)

AT3G03640 Beta-D-glucopyranosyl abscisate beta-glucosidase-related (PTHR10353:SF81)

AT3G03650 Exostosin family protein (PTHR11062:SF51)

AT3G06210 ARM repeat superfamily protein-related (PTHR33115:SF3)

AT3G07410 Ras-related protein RABA5b (PTHR24073:SF884)

AT3G13790 Beta-fructofuranosidase, insoluble isoenzyme CWINV1-related (PTHR31953:SF16)

AT3G16420 Jacalin-like lectin domain-containing protein-related (PTHR23244:SF208)

AT3G20935 Cytochrome P450-related (PTHR24298:SF59)

AT3G20960 Cytochrome P450-related (PTHR24298:SF59)

AT3G52820 Purple acid phosphatase 21-related (PTHR22953:SF7)

AT3G56060 Glucose-methanol-choline (GMC) oxidoreductase family protein (PTHR11552:SF141)

AT3G59480 fructokinase-1-related (PTHR43085:SF6)

AT4G00730 C. elegans Homeobox (PTHR24326:SF511)

AT4G03480 Ankyrin repeat family protein-related (PTHR24177:SF109)

AT4G12910 Serine carboxypeptidase-like 20-related (PTHR11802:SF188)

AT4G13990 xyloglucan galactosyltransferase GT14-related (PTHR11062:SF110)

AT4G15215 ABC transporter G family member 30-related (PTHR19241:SF449)

AT4G15760 FAD/NAD(P)-binding oxidoreductase family protein-related (PTHR13789:SF1)

AT4G24670 Tryptophan aminotransferase-related protein 2 (PTHR43795:SF22)
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AT4G25310 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein-related (PTHR10209:SF168)

AT4G28940 Phosphorylase superfamily protein (PTHR21234:SF19)

AT4G31320 Auxin induced like-protein (PTHR31374:SF59)

AT4G35840 NEP1-interacting protein 1-related (PTHR14155:SF307)

AT4G37160 Pectinesterase like protein-related (PTHR11709:SF113)

AT4G37330 Cytochrome P450 81D1-related (PTHR24298:SF205)

AT5G24070 peroxidase 26-related (PTHR31235:SF78)

AT5G25170 Expressed protein (PTHR12378:SF12)

AT5G33290 Xylogalacturonan beta-1,3-xylosyltransferase (PTHR11062:SF61)

AT5G41315 Transcription factor EGL1-related (PTHR11514:SF28)

AT5G41800 GABA transporter 2-related (PTHR22950:SF229)

AT5G43030 C1 domain-containing protein-related (PTHR32410:SF152)

AT5G43040 C1 domain-containing protein-related (PTHR32410:SF152)

AT5G45280 Pectin acetylesterase 11-related (PTHR21562:SF37)

AT5G56870 Beta-galactosidase 12-related (PTHR23421:SF63)

B.2 List of endodermal DE/DA genes

Table B.2: List of endodermal DE/DA genes

AT1G01120 3-ketoacyl-CoA synthase 1-related (PTHR31561:SF61)

AT1G03440 Leucine-rich repeat family protein-related (PTHR44450:SF2)

AT1G14040 Phosphate transporter PHO1 homolog 2-related (PTHR10783:SF43)

AT1G17970 RING zinc finger protein— 69105-67310-related (PTHR22937:SF98)

AT1G19450 Sugar transporter ERD6-like 4-related (PTHR23500:SF337)

AT1G21520 Unknown

AT1G22220 SUBFAMILY NOT NAMED (PTHR31215:SF6)
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AT1G22470 SUBFAMILY NOT NAMED (PTHR34046:SF3)

AT1G23050 Hydroxyproline-rich glycoprotein family protein (PTHR37702:SF1)

AT1G43910 AAA-type ATPase family protein-related (PTHR23070:SF31)

AT1G46264 Heat stress transcription factor B-4 (PTHR10015:SF159)

AT1G48480 inactive receptor kinase RLK902-related (PTHR27008:SF19)

AT1G53440 SUBFAMILY NOT NAMED (PTHR27006:SF93)

AT1G61590 SUBFAMILY NOT NAMED (PTHR27001:SF495)

AT1G64330 Protein NETWORKED 3A-related (PTHR32258:SF2)

AT1G65710 SUBFAMILY NOT NAMED (PTHR34367:SF1)

AT1G67050 F1O19.11 protein (PTHR31722:SF10)

AT1G69295 Unknown

AT1G70580 Glutamate–glyoxylate aminotransferase 1-related (PTHR11751:SF373)

AT1G70640 PB1 UP2 domain-containing protein (PTHR31066:SF1)

AT1G72230 SUBFAMILY NOT NAMED (PTHR33021:SF151)

AT1G76700 Chaperone protein dnaJ 10-related (PTHR44094:SF3)

AT2G16970 Hippocampus abundant transcript 1 protein (PTHR23504:SF1)

AT2G22000 Unknown

AT2G25150 HXXXD-type acyl-transferase family protein-related (PTHR31147:SF25)

AT2G28670 Dirigent protein 10-related (PTHR21495:SF41)

AT2G28790 SUBFAMILY NOT NAMED (PTHR31048:SF79)

AT2G31360 Delta-9 acyl-lipid desaturase 1-related (PTHR11351:SF2)

AT2G36290 Alpha/beta-Hydrolases superfamily protein-related (PTHR10992:SF997)

AT2G41050 Lysosomal amino acid transporter 1 (PTHR16201:SF34)

AT2G46590 Dof zinc finger protein DOF1.2-related (PTHR31992:SF15)

AT2G46680 Homeobox-leucine zipper protein ATHB-12-related (PTHR24326:SF122)

AT3G13000 SUBFAMILY NOT NAMED (PTHR23054:SF10)
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AT3G23160 SUBFAMILY NOT NAMED (PTHR31371:SF2)

AT3G24020 Dirigent protein 16-related (PTHR21495:SF86)

AT3G24030 Hydroxyethylthiazole kinase (PTHR44423:SF1)

AT3G28130 SUBFAMILY NOT NAMED (PTHR31218:SF64)

AT3G47220 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase classes I and II (PTHR10336:SF36)

AT3G50230 Leucine-rich repeat protein kinase family protein (PTHR27008:SF1)

AT3G59140 ABC transporter C family member 10 (PTHR24223:SF192)

AT4G15330 Cytochrome P450-related (PTHR24298:SF59)

AT4G18610 Protein LIGHT-DEPENDENT SHORT HYPOCOTYLS 9 (PTHR31165:SF8)

AT4G26140 Beta-galactosidase 12-related (PTHR23421:SF63)

AT4G26200 1-aminocyclopropane-1-carboxylate synthase 7 (PTHR43795:SF28)

AT4G26320 Arabinogalactan peptide 12-related (PTHR34114:SF2)

AT4G35550 Homeobox protein rough (PTHR24326:SF220)

AT4G36900 Ethylene-responsive transcription factor ERF008-related (PTHR31729:SF0)

AT4G40085 Unknown

AT5G01100 O-fucosyltransferase family protein (PTHR31741:SF4)

AT5G05220 SUBFAMILY NOT NAMED (PTHR37758:SF1)

AT5G07830 Heparanase-like protein 1-related (PTHR14363:SF21)

AT5G18690 Classical arabinogalactan protein 25 (PTHR35725:SF2)

AT5G19740 Glutamate carboxypeptidase 2 homolog (PTHR10404:SF46)

AT5G24380 Metal-nicotianamine transporter YSL2-related (PTHR31645:SF4)

AT5G41040 Trichothecene 3-O-acetyltransferase (PTHR31642:SF119)

AT5G41790 Centrosomin (PTHR13140:SF694)

AT5G42500 Dirigent protein 1-related (PTHR21495:SF71)

AT5G52790 SUBFAMILY NOT NAMED (PTHR12064:SF36)

AT5G57480 Mitochondrial chaperone BCS1 (PTHR23070:SF17)
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AT5G62880 Rac-like GTP-binding protein ARAC10-related (PTHR24072:SF255)

AT5G63590 Flavonol synthase 3-related (PTHR10209:SF382)

AT5G65230 MYB transcription factor (PTHR10641:SF882)

AT5G65530 Protein kinase family protein-related (PTHR27001:SF105)

AT5G66390 Peroxidase 36-related (PTHR31388:SF3)

B.3 List of epidermal cold DE/DA genes

Table B.3: List of epidermal cold DE/DA genes

AT1G03940 Coumaroyl-CoA:anthocyanidin 3-O-glucoside-6”-O-coumaroyltransferase 1-related (PTHR31625:SF13)

AT1G10370 Glutathione S-transferase U11-related (PTHR11260:SF487)

AT1G10410 CW14 protein (PTHR31558:SF3)

AT1G11330 G-type lectin S-receptor-like serine/threonine-protein kinase SD1-13 (PTHR27002:SF165)

AT1G24530 F21J9.19 (PTHR22844:SF199)

AT1G31020 Thioredoxin O1, mitochondrial-related (PTHR10438:SF275)

AT1G33600 Leucine-rich repeat (LRR) family protein-related (PTHR45271:SF1)

AT1G46768 Ethylene-responsive transcription factor ERF008-related (PTHR31729:SF0)

AT1G55820 GBF-interacting protein 1-like (PTHR12758:SF30)

AT1G63900 E3 ubiquitin-protein ligase SP1-related (PTHR12183:SF18)

AT1G70710 Endoglucanase 4-related (PTHR22298:SF28)

AT1G73480 Alpha/beta-Hydrolases superfamily protein (PTHR11614:SF114)

AT1G80130 F18B13.21 protein-related (PTHR26312:SF75)

AT1G80280 Alpha/beta-Hydrolases superfamily protein-related (PTHR43689:SF2)

AT2G04650 ADP-glucose pyrophosphorylase-like protein (PTHR22572:SF123)

AT2G15790 Peptidyl-prolyl cis-trans isomerase CYP26-1-related (PTHR11071:SF381)

AT2G21160 Translocon-associated protein subunit alpha (PTHR12924:SF0)
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AT2G21580 40S ribosomal protein S25 (PTHR12850:SF5)

AT2G21620 Dessication responsive protein (PTHR31964:SF113)

AT2G22170 Expressed protein (PTHR31718:SF19)

AT2G23120 Expressed protein-related (PTHR33922:SF9)

AT2G28900 Outer envelope pore protein 16-1, chloroplastic (PTHR15371:SF2)

AT2G41190 Expressed protein (PTHR22950:SF358)

AT2G46680 Homeobox-leucine zipper protein ATHB-12-related (PTHR24326:SF122)

AT3G08630 Protein RETICULATA-RELATED 2, chloroplastic-related (PTHR31620:SF5)

AT3G14790 Trifunctional UDP-glucose 4,6-dehydratase (PTHR43000:SF8)

AT3G46460 Ubiquitin-conjugating enzyme E2 13-related (PTHR24067:SF237)

AT3G48890 Membrane steroid-binding protein 2 (PTHR10281:SF45)

AT3G52570 SUBFAMILY NOT NAMED (PTHR43248:SF6)

AT4G02520 Glutathione S-transferase F14-related (PTHR43900:SF7)

AT4G09020 Isoamylase 3, chloroplastic (PTHR43002:SF3)

AT4G25870 Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein (PTHR31042:SF1)

AT4G33070 Pyruvate decarboxylase 1-related (PTHR43452:SF1)

AT4G33140 SUBFAMILY NOT NAMED (PTHR35134:SF2)

AT4G38130 Histone deacetylase 19 (PTHR10625:SF178)

AT5G02590 Tetratricopeptide repeat domain-containing protein (PTHR26312:SF76)

AT5G06760 Late embryogenesis abundant protein 4-5 (PTHR33493:SF2)

AT5G14040 Mitochondrial phosphate carrier protein 3, mitochondrial (PTHR24089:SF460)

AT5G17220 Glutathione S-transferase F11-related (PTHR43900:SF18)

AT5G19440 Alcohol dehydrogenase-like protein-related (PTHR10366:SF564)

AT5G19550 Aspartate aminotransferase (PTHR11879:SF22)

AT5G20180 39S ribosomal protein L36, mitochondrial (PTHR18804:SF13)

AT5G20320 Dicer-like protein 4 (PTHR14950:SF15)
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AT5G27760 Respiratory supercomplex factor 2, mitochondrial (PTHR28018:SF2)

AT5G28540 78 kDa glucose-regulated protein (PTHR19375:SF144)

AT5G50450 SUBFAMILY NOT NAMED (PTHR12298:SF37)

AT5G55180 O-Glycosyl hydrolases family 17 protein (PTHR32227:SF102)

AT5G55770 C1 domain-containing protein-related (PTHR32410:SF152)

AT5G57290 Unknown

AT5G61760 Inositol polyphosphate multikinase (PTHR12400:SF21)

AT5G66100 La-related protein 1B-related (PTHR22792:SF99)

AT5G66330 Leucine-rich repeat-containing protein (PTHR44632:SF2)

AT5G67470 Formin homology 2 domain containing ortholog, isoform I (PTHR23213:SF269)

B.4 List of endodermal cold DE/DA genes

Table B.4: List of endodermal cold DE/DA genes

AT1G09780 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1-related (PTHR31637:SF6)

AT1G10070 Branched-chain-amino-acid aminotransferase 1, mitochondrial-related (PTHR42825:SF5)

AT1G12200 Flavin-containing monooxygenase FMO GS-OX-like 1-related (PTHR23023:SF198)

AT1G14820 SUBFAMILY NOT NAMED (PTHR10174:SF121)

AT1G16470 Unknown

AT1G16900 Alpha-1,2-mannosyltransferase ALG9-related (PTHR22760:SF2)

AT1G17170 Glutathione S-transferase U19-related (PTHR11260:SF493)

AT1G18540 60S ribosomal protein L6 (PTHR10715:SF0)

AT1G24510 T-complex protein 1 subunit epsilon (PTHR11353:SF94)

AT1G46768 Ethylene-responsive transcription factor ERF008-related (PTHR31729:SF0)

AT1G47710 Accessory gland protein Acp76A-related (PTHR11461:SF211)

AT1G48850 Chorismate synthase (PTHR21085:SF0)
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AT1G55820 GBF-interacting protein 1-like (PTHR12758:SF30)

AT1G55915 SUBFAMILY NOT NAMED (PTHR23153:SF37)

AT1G62570 Flavin-containing monooxygenase FMO GS-OX-like 1-related (PTHR23023:SF198)

AT1G71750 Hypoxanthine PhosphoRibosylTransferase homolog (PTHR43340:SF1)

AT1G76520 Protein PIN-LIKES 1-related (PTHR31651:SF5)

AT2G04650 ADP-glucose pyrophosphorylase-like protein (PTHR22572:SF123)

AT2G17120 LysM domain-containing GPI-anchored protein 2 (PTHR33734:SF5)

AT2G28550 AP2-like ethylene-responsive transcription factor SMZ-related (PTHR32467:SF46)

AT2G35840 sucrose-phosphatase 1-related (PTHR12526:SF2)

AT2G36010 Transcription factor E2F/dimerisation partner (TDP) family protein (PTHR12081:SF18)

AT2G36620 60S ribosomal protein L24-1-related (PTHR10792:SF18)

AT2G36930 C2H2-type zinc finger-containing protein (PTHR20863:SF54)

AT2G38730 Peptidyl-prolyl cis-trans isomerase H (PTHR11071:SF58)

AT2G46390 Unknown

AT3G02420 SUBFAMILY NOT NAMED (PTHR30603:SF18)

AT3G03640 Beta-D-glucopyranosyl abscisate beta-glucosidase-related (PTHR10353:SF81)

AT3G08640 Protein RETICULATA-RELATED 2, chloroplastic-related (PTHR31620:SF5)

AT3G13570 Serine/arginine-rich SC35-like splicing factor SCL30A (PTHR23147:SF41)

AT3G14890 Bifunctional polynucleotide phosphatase/kinase (PTHR12083:SF9)

AT3G25585 FI05338p (PTHR10414:SF37)

AT3G53500 Serine/arginine-rich splicing factor RS2Z32-related (PTHR23147:SF21)

AT3G53880 Aldo-keto reductase family 4 member C11-related (PTHR11732:SF365)

AT3G55610 Delta-1-pyrroline-5-carboxylate synthase (PTHR11063:SF8)

AT3G59380 Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha (PTHR11129:SF1)

AT4G02520 Glutathione S-transferase F14-related (PTHR43900:SF7)

AT4G13180 SUBFAMILY NOT NAMED (PTHR43361:SF1)
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AT4G14320 IP17351p (PTHR10369:SF3)

AT4G14800 Proteasome subunit beta type-2-A-related (PTHR11599:SF99)

AT4G19460 Glycosyltransferase (PTHR12526:SF316)

AT4G24820 26S proteasome non-ATPase regulatory subunit 6 (PTHR14145:SF1)

AT4G26120 Unknown

AT4G31810 3-hydroxyisobutyryl-CoA hydrolase-like protein 2, mitochondrial (PTHR43176:SF8)

AT5G11430 SPOC and transcription elongation factor S-II domain protein-related (PTHR11477:SF20)

AT5G11640 Protein TMX2-CTNND1-related (PTHR15853:SF0)

AT5G20360 Octicosapeptide/Phox/Bem1p and tetratricopeptide repeat domain-containing protein (PTHR22904:SF392)

AT5G27760 Respiratory supercomplex factor 2, mitochondrial (PTHR28018:SF2)

AT5G44390 Berberine bridge enzyme-related (PTHR32448:SF38)

AT5G47550 Cysteine proteinase inhibitor 5 (PTHR11413:SF65)

AT5G52390 PAR1 protein (PTHR33649:SF2)

AT5G57950 26S proteasome non-ATPase regulatory subunit 9 (PTHR12651:SF1)

AT5G60590 YrdC domain-containing protein, mitochondrial (PTHR17490:SF10)
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