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Abstract 

 Metal-organic frameworks (MOFs) are a class of porous materials that have attracted much 

attention due to their large surface areas, high tunability and their high selectivity for gas 

adsorption applications. In this work, solid-state nuclear magnetic resonance (SSNMR) 

experiments and single crystal X-ray diffraction (SCXRD) experiments are used to investigate 

carbon dioxide adsorption within the ultramicroporous MOFs SIFSIX-3-Zn (Chapter 2) and 

ZnAtzOx. (Chapter 3). Analysis finds that the CO2 SIFSIX-3-Zn undergoes wobbling motions 

with a low temperature dependence, and in ZnAtzOx undergoes wobbling and hopping motions 

with a low temperature dependence. SCXRD is used to precisely determine the CO2 adsorption 

site in SIFSIX-3-Zn, centered within the pore. Chapter 4 discusses the use of SSNMR to study the 

effects of water adsorption within these MOFs, with preliminary results suggesting water is 

strongly adsorbed in both frameworks with a low degree of temperature dependence.  
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Chapter 1 : Introduction 

1.1 Background 

1.1.1 The threat of atmospheric carbon dioxide 

In 2013, the concentration of carbon dioxide in the atmosphere was observed to cross the 

400 ppm threshold for the first time since records have been kept, as shown in Figure 1.1.1 This 

represents an estimated increase of 130 ppm over pre-industrial levels.2 Carbon dioxide is one of 

the most abundant of the greenhouse gases, which also include nitrogen oxide, methane and water 

vapour. These gases absorb infrared radiation emitted by the Earth and reemit it in all directions, 

warming the Earth.3 Due to the enhancement of this greenhouse effect, it is estimated that global 

average surface temperatures will increase between 0.3 °C and 4.8 °C by the year 2100, as 

compared to temperatures between 1986 and 2005.3, 4 This warming is expected to lead to more 

frequent and intense heat waves, a greater number of extreme precipitation events, ocean 

acidification, ocean warming, and sea level rise.3, 4 Given the known problems associated with 

high atmospheric carbon dioxide concentrations, there is great interest in minimizing carbon 

dioxide emissions, which totalled 36.2 billions tons in 2015.5  

 While the stabilization of carbon dioxide concentrations can be achieved by substituting 

non carbon-based energy sources, such as wind and solar, the high costs of implementation 

combined with the current abundance of fossil fuels mean that this path is not immediately feasible. 

The Intergovernmental Panel on Climate Change has recommended the implementation of carbon 

capture and storage (CCS) as a necessary technology to mitigate increasing atmospheric CO2 

concentrations.6, 7  
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Figure 1.1: The graphs depict atmospheric CO2 concentrations from 2013-17 (above), and from 

1958-2017 (below), as measured at Mauna Loa, Hawaii). This image has been reproduced from 

reference 8.8 The red line represents the monthly mean, while the black line is corrected for the 

average seasonal cycle. It can be seen that the atmospheric CO2 concentrations just recently broke 

the 400 ppm threshold.  
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1.1.2 Carbon dioxide capture 

Anthropogenic sources of carbon dioxide can be divided into two broad categories: point 

sources and mobile sources.9 Point sources include energy production, heating, and industrial 

activities. Mobile sources of CO2 are predominantly from the transportation and automobile 

industry. Point sources make up over half of anthropogenic carbon dioxide emissions, and their 

emissions can be dramatically reduced through the development and use of CCS technologies.10 

One of the most widely explored CCS strategies is post-combustion CO2 capture. This strategy 

involves the extraction of CO2 from flue gas streams, transportation of this CO2 to a suitable 

storage site, and sequestration of the CO2 in the storage site such that there is no leakage of 

captured CO2.
11, 12 The capture process is illustrated in a general sense within Figure 1.2. There is 

also growing interest in developing technologies capable of CO2 capture directly from the air, 

which would help negate CO2 emissions from mobile as well as point sources.9, 12 

One of the advantages of post-combustion CO2 capture is that no modification is needed 

to existing combustion facilities in order to perform post-combustion capture. However, the low 

concentration of CO2 in flue gas (between 4% and 15%) as well as the presence of impurities such 

as SO2 and NOx, are problems for many of the post-combustion gas separation processes.6 

Strategies for isolating CO2 gas from flue gas streams include adsorption, absorption, gas 

separation membranes, and cryogenic distillation.11 Of these, chemical absorption by 

alkanolamine aqueous solutions, such as monoethanolamine, is one of the most well explored 

options given present-day technology.13, 14 However, there are numerous drawbacks to these 

chemical absorption processes, chiefly equipment corrosion, high energy consumption, solvent 

loss to evaporation and solvent degradation.15 As a result, there is a growing amount of research 

going into the development of solid adsorption materials that can be employed in CO2 capture. 



5 
 

 

The search for ideal solid adsorption materials has included investigations of more traditional solid 

sorbents (e.g., zeolites, a class of microporous aluminosilicate materials, and activated carbons, a 

form of carbon processed to contain small volume pores), as well recently developed materials 

such as mesoporous silicas and metal-organic frameworks (MOFs). 

 

 

Figure 1.2: A simplified depiction of two-stage post-combustion carbon dioxide capture is shown. 

Carbon dioxide rich flue gases are compressed through a carbon dioxide adsorbing material. This 

material would later be evacuated under heat and vacuum, and the CO2 gas isolated.  

 

1.1.3 Metal-organic frameworks and their applications 

MOFs have been studied for approximately two decades, during which research in the field 

has expanded dramatically. The phrase “metal-organic framework” was first introduced in 1995 
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by Yaghi et al.16 Since the structure of MOF-5 was reported in 1999,17 the MOF label has since 

expanded to include a broad class of coordination polymers with organic ligands which contain 

potential voids.18 A small number of MOFs, such as zeolitic imidazolate framework-819 (ZIF-8) 

and HKUST-1 (named for the Hong Kong University of Science and Technology),20 are currently 

available commercially.  Crystalline MOFs can be synthesized through numerous methods,21 

including solvothermal, microwave-assisted,22 electrochemical,23 and mechanochemical routes.24 

MOFs are characterized by organic ligands acting as likers, which connect metal cations or metal 

clusters to form a three-dimensional framework.  

Figure 1.3 depicts four different well known MOF structures: isoreticular MOF-1 (IRMOF-

1 or MOF-5),25 HKUST-1,20 ZIF-8,26 and M-MOF-74 (also known as Coordination Polymer of 

Oslo-27-M, abbreviated to CPO-27-M, or as M-dobdc for its 2,5-dioxido-1,4-

benzenedicarboxylate ligands).27 From these examples, it is apparent that the nearly endless 

combinations of organic and inorganic components leads to a class of highly diverse porous 

compounds. The structure and porosity of MOFs can vary with external factors (e.g., temperature, 

pressure, etc.); research is to understand the behaviour and functionality of various MOFs is 

ongoing, which will assist in intelligently modifying the nature and functionality of MOF nodes 

and linkers. This will allow for the design of new MOF structures to address practical applications 

in the coming years. 
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Figure 1.3: A depiction the frameworks MOF-5 (A), HKUST-1 (B), ZIF-8 (C) and M-MOF-74 (D) 

are shown above.20, 25-27 Spheres are used to indicate the available volume for guests within MOF-

5, HKUST-1 and ZIF-8. 
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Figure 1.4: A depiction of three MOFs MOF-5, IRMOF-6 and IRMOF-8 is shown above, as 

reproduced from reference 25. These frameworks are composed of [OZn4(CO2)6] clusters and 

organic linkers 1,4-benzenedicarboxylate (A), cyclobutylbenzedicarboxylate (B) and 2,6-

napthalenedicarboxylate (C). The structures of the linkers are shown below their respective 

frameworks. The yellow sphere indicates the available volume for guests within each framework. 

   

As many MOFs are microporous materials with high surface areas and guest gas loading 

capacities, one of the most commonly investigated applications for MOFs is gas adsorption, 

including CO2 adsorption.  MOF research has been directed toward applications such as gas 

IRMOF-6 MOF-5 IRMOF-8 

C A B 

[OZn4(CO2)6] 
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purification, gas separation, gas storage and heterogeneous catalysis,28 though other applications 

in electronics, optics, drug delivery, as well as chemical and radiation detection have also been 

explored.29 Compared with more traditional porous solids such as zeolites and activated carbon, 

MOFs typically exhibit higher surface areas,30, 31 greater flexibility, and higher tunability of their 

pore size and functionality through linker choice and functionalization, as depicted in Figure 1.4.32 

 The tunable nature of MOFs allows materials chemists to influence their adsorption 

properties. For example, after its discovery, MOF-5 was soon expanded into a large family of 

isoreticular MOFs,25 labelled IRMOF-1 to IRMOF-16 to describe the linker type within the 

structure. Three of these IRMOFs are depicted in Figure 1.4 alongside the corresponding linker 

molecule. The nodes of this MOF structure are composed of four ZnO4 tetrahedra joined by a 

single bridging oxygen atom to form [OZn4(CO2)6] clusters. Within MOF-5, these nodes are joined 

into a three-dimensional net by 1,4-benzenedicarboxylate (BDC) linkers, though different MOFs 

within this series make use of different linkers. This allows the pore size and functionality within 

this series to be dramatically influenced by the choice of linker. For example, when comparing the 

small isoreticular MOF Zn4O(FMA)3
33 with the large IRMOF-1625, the pore volume is increased 

by a factor of 8. Pore size and functionality of the MOF can additionally be influenced by the 

reactant concentrations, temperatures, and other experimental conditions.25 

1.1.4 Carbon dioxide adsorption in metal-organic frameworks 

The high porosity and surface area of MOFs is advantageous for applications in gas 

adsorption and separations. Recent work has focused on using MOFs as adsorbents for toxic or 

greenhouse gases, such as CO2.
34 Given the corrosiveness of alkanolamine absorbents and the high 

energy consumption required in the associated CO2 absorption process, there is interest in 
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developing less hazardous solid adsorbent materials that can be applied to post-combustion CO2 

capture.  

Table 1.1 compares the CO2 adsorption relevant properties of some popular MOFs with 

traditional solid physisorbents such as Zeolite 13X and the activated carbon material NCLK3. The 

values for Brunauer–Emmett–Teller (BET) surface area and pore size tend to be closely correlated 

in porous materials.35 Porous materials are generally designed with the goal of achieving high 

surface areas and pore volumes, which are associated with high CO2 uptake.36 The CO2 uptake 

heading in Table 1.1 refer to the overall uptake of CO2 in the framework.  

Table 1.1: A summary of the CO2 uptake and surface area of the activated carbon NCLK3, Zeolite 

13X, and select MOFs is shown below. MOFs tend to possess high surface areas and CO2 uptakes 

compared to other solid physisorbent materials. 

Sorbent Temp 

(°C) 

Pressure 

(kPa) 

CO2 mol 

fraction 

CO2 uptake 

(mol kg-1) 

BET Surface area 

(m2 g-1) 

NCLK337 25 120 - 3.5 - 

Zeolite 13X38-40 50 100 0.15 3 585.5 

HKUST-141 30 1000 0.20 8.07 1326 

MIL-101(Cr)41 30 1000 0.20 7.19 2549 

MOF-17742 40 100 0.15 0.65 4690 

Mg-MOF-7442 40 100 0.15 7.5 1800 

Zn-MOF-7443 25 3500 1 7.1 816 

MIL-53(Al)44 30 1000 1 5 - 

MIL-100(Fe)45 30 101.3 0.15 0.67 1894 
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The Mg-MOF-74 and HKUST-1 MOFs are examples of materials with particularly high 

CO2 uptakes that feature strong host-guest interactions with CO2 molecules. The strong host-guest 

interactions involve open metal sites of the MOF and the polar oxygen ends of guest CO2 

molecules, an example of which is shown in Figure 1.5. This strong adsorptive interaction 

promotes the selective adsorption of CO2 over competing non-polar gases such as N2, H2 and CH4.  

 

 

 

 

Figure 1.5: The interaction between the open metal site and the CO2 molecule within Mg-MOF-

74 is depicted above (A). In B, the hexagonal Mg-MOF-74 channel is shown saturated with CO2 

molecules (B). In this figure, the atom colours are green for Mg, grey for C and red for O. 

B 

A 
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Surface area, CO2 uptake, selectivity against N2 are not sufficient on their own for 

determining optimal CO2 capture performance. While evaluation of these factors are common 

metrics for evaluating adsorbent performance, there are other criteria that must also be addressed. 

The required regeneration energy of the host material should be low; physisorbent materials such 

as MOFs tend to have lower energy requirements, as the adsorption will only weakly perturb the 

electronic state. Chemisorbent solid or solution materials can require regeneration temperatures 

exceeding 100 °C,15, 46, 47 due to the strong detectable change in the electronic state and the higher 

heat of adsorption and bond strength of the adsorption interaction. Mechanical, thermal, and 

chemical stabilities are also issues. As such, the performance of individual frameworks and 

correlations between adsorption performance and host structure, pore size, and surface area must 

be studied and understood to rationally design improved CO2 adsorption and CCS materials. Two 

characterization techniques which can yield detailed information regarding the structure and 

properties of solid framework samples are single crystal X-ray diffraction (SCXRD) and solid-

state nuclear magnetic resonance spectroscopy (SSNMR).  

1.2 Experimental Background and Techniques 

1.2.1 Powder and single crystal X-ray diffraction 

Powder X-ray diffraction (PXRD) is often used to identify the phase and purity of 

crystalline solids.48 Monochromated X-ray radiation of a set wavelength (e.g., Cu Kα radiation, λ 

= 1.5418 Å), when directed at a microcrystalline sample, generates a scattering pattern 

characteristic of the long-range ordering of the crystal structure. This allows for identification of a 

material by comparing an experimental PXRD pattern with a calculated or experimental reference 

pattern. If a high-quality PXRD pattern and sufficient complementary data is present, the structure 

of a material can even be solved using PXRD patterns, although this is very challenging. 
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One of the most reliable tools to analyze the long-range crystal structure of a framework is 

SCXRD. SCXRD is advantageous in that it is typically much easier to solve a structure from 

SCXRD data than from PXRD data.49 In the context of MOFs, SCXRD can be used for many 

purposes, such as to determine the precise changes in atomic positions after guests are introduced 

within the pores.50-56 Due to the framework flexibility present in many MOFs, guest adsorption 

can induce significant structural changes in a framework. In ideal conditions, SCXRD can even 

pinpoint guest molecule locations and occupancies, allowing easy visualization of the guest-host 

interactions that occur in a given framework. Unfortunately, without the use of powerful 

synchrotronic X-rays, obtaining this information requires high quality, relatively large crystals of 

at least 0.2 mm along two dimensions, which are capable of surviving the solvent evacuation and 

guest loading process. Obtaining such crystals is not always possible. In addition, locating the 

mobile guests using SCXRD is not easy. Performing SCXRD at low temperatures can minimize 

problems arising from guest dynamics, however this also limits the amount of motional 

information that can be obtained for guest molecules such as CO2. Therefore, obtaining motional 

information regarding guest molecules is often easier achieved using alternative techniques.  

1.2.2 Solid-state nuclear magnetic resonance spectroscopy 

SSNMR is a technique primarily used to examine the properties of nuclei in powder 

samples. Most nuclei have a spin, and a corresponding nuclear spin magnetic moment. Nuclear 

spins experience several distinct interactions within an external magnetic field, notably the Zeeman 

interaction, dipolar interaction, chemical shift interaction, J-coupling interaction and quadrupolar 

interaction.57 The Zeeman interaction is the strongest interaction, shown in Table 1.2,58 with other 

interactions acting as perturbations on the Zeeman interaction. The Zeeman interaction refers to 

the interaction between the magnetic moment of the nuclear spin with the external magnetic field.  
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Table 1.2: An estimate of the magnitudes of typical nuclear spin interactions is shown below.58 

Interaction Magnitude in solids (Hz) 

Zeeman 107-109 

Chemical shift 102-105 

Dipolar 103-105 

J-coupling 100-103 

Quadrupolar 103-107 

 

 

The different spin states of a nucleus are degenerate in the absence of a magnetic field; 

when a strong external magnetic field is applied, the nuclear spin energies lose their degeneracy 

and split into 2I + 1 non-equivalent energy levels, where I is the nuclear spin. The value of the 

nuclear spin is determined by the number of protons and neutrons within a specific nucleus. The 

magnitude of the splitting between spin energy levels (ΔE) is proportional to the nuclear 

gyromagnetic ratio γ and the external magnetic field strength B0, as given in equation (1) where h 

is Planck’s constant. The gyromagnetic ratio is a particle dependant property describing the ratio 

of the magnetic moment to the angular momentum of a given particle within a magnetic field, with 

units of rad s-1 T-1.  

𝛥𝐸 = ℎ𝛾𝐵0/2𝜋    ( 1 ) 

An example of this splitting in a spin 1/2 nucleus is shown in Figure 1.6. The splitting of 

the energy levels is necessary to conduct nuclear magnetic resonance spectroscopy experiments. 

When placed in a magnetic field, such as the one associated with an NMR spectrometer, 

the nuclear magnetic moments within a sample will align either parallel or antiparallel to the 

applied magnetic field (B0), with the Zeeman interaction in a spin 1/2 nucleus causing a splitting 

in energy between the two spin states.57 The nuclear magnetic moments will precess parallel or 
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antiparallel to B0 at a Larmor frequency, which is dependant on the identity of the nuclear isotope 

and its corresponding gyromagnetic ratio, as well as the strength of B0. The majority of spins will 

align parallel to B0, in the 1/2 energy level shown in Figure 1.6, while a minority will align 

antiparallel to B0, in the -1/2 energy level. 

 

 

Figure 1.6: The energy level splitting caused by the Zeeman interaction of a spin 1/2 nuclei is 

depicted above.  

 

Using an NMR coil, radiofrequency (rf) pulses are applied at the Larmor frequency, 

generating an additional magnetic field and causing spins to transition to the higher energy, 

antiparallel orientation. This changes the net magnetization of the system. After this secondary 

magnetic field is switched off, the precession of spin magnetism back to parallel with B0 can induce 

an electric current in the NMR coil surrounding the sample, allowing for characterization of the 

magnetic shielding.57 
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1.2.3 Chemical shift and chemical shielding 

The presence of electrons produces local magnetic fields, which will circulate in an 

externally applied magnetic field B0, and the circulation of electrons generates local magnetic 

fields that act to shield or deshield the nuclei from B0. This chemical shielding produces small 

deviations in the magnetic shielding of the nucleus, which is characteristic of specific chemical 

environments and local coordination geometries.57 The chemical shielding can be modelled by a 

second rank tensor known as the chemical shielding tensor.59 Only the symmetric portions of this 

tensor (σ11, σ22 and σ33, defined such that σ11 ≤ σ22 ≤ σ33) make observable contributions to the 

NMR spectra, with the corresponding diagonalized matrix representation of the tensor given in 

equation (2). 
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Measurements from NMR spectra are typically reported in field-independent chemical 

shift (CS) values measured in ppm, which compare an experimental resonant frequency with that 

of a known reference compound and can be compared no matter the strength of B0 employed. The 

conversion of a chemical shielding σ to a CS δ is shown in equation (3). 

610
1







ref

ref




     ( 3 ) 

The CS is modelled by its own CS tensor related directly to the chemical shielding tensor, 

with components δ11, δ22 and δ33.
59 The diagonalized matrix representation of the tensor is shown 

below as equation (4). The average of these three components is the isotropic chemical shift, δiso.  
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Figure 1.7: Above, the anisotropy of individual crystallites orients the shielding tensor in random 

directions relative to the applied magnetic field B0 is depicted on the left. This leads to a broad 

NMR powder pattern shown on the right. 

 

Solid SSNMR samples consist of many crystallites, which assume all possible spatial 

orientations with respect to the magnetic field. As nuclear spin interactions are heavily dependant 

on the orientation of the corresponding interaction tensor with respect to B0, each crystallite 

orientation corresponds to slightly different SSNMR resonant frequency.59 This means that 

SSNMR spectra of powdered solid samples consist of broad lines or powder patterns arising from 

the slightly different resonant frequency of each crystallite orientation, as depicted in Figure 1.7. 

This is called chemical shift anisotropy (CSA),57, 59 and the correspondingly broad powder patterns 

limits the resolution in static SSNMR and makes it difficult  to distinguish multiple inequivalent 

nuclear sites. However, CSA-dominated powder patterns yield useful information regarding the 

CS tensor. The CS interaction and corresponding powder pattern can be discussed in terms of 
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isotropic CS, span, and skew, which are defined in relation to the CS tensor parameters as shown 

in equations (5), (6) and (7).  

Isotropic CS:    𝛿𝑖𝑠𝑜 =
𝛿11+𝛿22+𝛿33

3
    ( 5 ) 

Span:     𝛺 = 𝛿11 − 𝛿33     ( 6 ) 

Skew:      𝜅 =
3(𝛿22−𝛿𝑖𝑠𝑜)

𝛺
     ( 7 ) 

These three parameters produce characteristic effects on the SSNMR powder pattern. Their 

effects can be observed in Figure 1.8. 

 

 

 

Figure 1.8: The effects of δiso (A), Ω (B) and κ (C) on the shape of a SSNMR powder pattern are 

shown above.  

 

A B C 



19 
 

 

 

 
Figure 1.9: A depiction of a rotating MAS SSNMR sample is shown above (A). WSolids60 

simulations are used to demonstrate the effect of MAS on the 13C SSNMR spectra of CO2 (B). While 

the frequency and intensity of spinning sidebands changes, the frequency of the δiso resonance is 

unchanged regardless of spinning speed. 

A 

B 
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One of the most widely used techniques in SSNMR is magic-angle spinning (MAS). MAS 

removes the effects of CSA, and assists in the removal of dipolar and quadrupolar coupling effects, 

which will be mentioned below. Effectively, MAS at a sufficiently high spinning rate compared 

to the span of the CS tensor will narrow the NMR powder pattern to one or several sharp 

resonances.59 This is due to the orientation dependence of the nuclear spin interaction containing 

the mathematical term [3cos2(θ) – 1] where θ is the angle of the interaction tensor with respect to 

the applied magnetic field. 

If the sample is spun at an angle of 54.74° (the magic-angle) with respect to the applied 

magnetic field [3cos2(θ) – 1] equals zero, and the interaction anisotropies of the sample average to 

zero.57, 59 This averages the anisotropic powder pattern to a single narrow resonance located at the 

isotropic chemical shift. Slower spinning rates will produce spinning sidebands observed at set 

intervals along the spectra. These intervals are equal to the spinning rate of the sample.59 Nuclei 

with larger CSAs and correspondingly broad powder patterns require very high spinning rates to 

completely remove the presence of spinning sidebands. The rotor position in a MAS experiment 

and the effect of spinning speed on spinning sidebands is depicted in Figure 1.9. 

1.2.4 Examining dipolar interactions with SSNMR 

Another technique employed in SSNMR is cross-polarization (CP), typically to assist in 

observing dilute or lower frequency spins such as 13C, which has only a 1% natural abundance. CP 

allows a dilute nucleus S to be spin-polarized by a nearby network of abundant spins I, such as 

1H.59, 61 A basic example of a CP pulse sequence is shown in Figure 1.10. CP requires the 

Hartmann-Hahn match condition to be satisfied.59, 61 This depends on the gyromagnetic ratio γ of 

the type of nuclei involved, and the applied rf fields B, as shown in equation (8). 

𝛾𝑆𝐵𝑆 = 𝛾𝐼𝐵𝐼      ( 8 ) 
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A satisfied Hartmann-Hahn match condition allows spin polarization of the abundant 

nucleus I to be partially transferred to the dilute nucleus S. Contact pulses are applied for a duration 

of time known as the contact time (CT), during which time spin polarization is transferred between 

the two nuclear spins.59, 61 

 

Figure 1.10: The pulse sequence for CP of spin I to spin S is shown above. τ is the contact time 

used. A π/2 pulse flips the net magnetization by 90°, before CP is used to transfer magnetization 

between nuclei. 

 

 CP experiments are mediated by the dipolar coupling between the two nuclei involved. By 

extension, the experiments are dependent on the internuclear distance between the two nuclei by a 

factor of r-3.59 This can be seen in equation (9), where μ0
 is the permeability of a vacuum and D is 

the dipolar coupling constant quantifying the strength of the dipolar interaction.  

𝐷 =
𝜇0

4𝜋

𝛾𝐼𝛾𝑆

𝑟𝐼𝑆
3

ℎ

2𝜋
     ( 9 ) 

The CT used in a CP experiment describes the amount of time that CP is allowed to occur. 

By using a longer CT, polarization can occur across greater internuclear distances. This allows CP 

Abundant Nuclei 

Dilute Nuclei 
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experiments to be used as a means of judging the dipolar coupling strength and the distances 

between different nuclei, such as guest nuclei and framework nuclei.62 Longer CTs will eventually 

cause a decrease in resonance intensity, due to magnetization relaxation occurring during the 

magnetization transfer. This relaxation will reduce the observed signal intensity, eventually 

reducing intensity more than the CT enhances it. This relaxation is governed by the time T1p.
59 A 

stronger dipolar interaction between nuclei means that the resonance will peak in intensity at low 

CTs. A weaker interaction requires longer CTs to observe the signal enhancement from the 

magnetization transfer. 

Rotational-echo double resonance (REDOR) experiments are another means of assessing 

the strength of the dipolar interaction between nuclei.59, 63 An initial 90° excitation pulse is applied 

to a spin I, and then a series of rotor synchronized 180° dephasing rf pulses are applied to another 

spin S. This results in a spectrum Sr with reduced signal for the observed nucleus I.59, 63 The 

dephased spectrum is compared to a control spectrum S0 generated by omitting the dephasing 

pulses. The difference between the control and dephased spectra is ΔS, which allows for 

determination of the strength of the dipolar interaction between I and S. Spectra are collected for 

several different dephasing times, which are all a multiple of twice the rotor period. The magnitude 

of the dephasing effect varies in a predictable manner depending on the dephasing time and the 

strength of the dipolar interaction.63 

 A more detailed picture of internuclear interactions and connectivity can be obtained by 

employing two-dimensional heteronuclear correlation (HETCOR) NMR experiments. These can 

be imagined as a two-dimensional version of CP experiments. In two-dimensional NMR, a 

multiple pulse one-dimensional experiment is repeated many times with a systematic variation of 
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the delay time td, and then the stacked results are plotted.57 Frequency-switched-Lee-Goldburg 

(FSLG) HETCOR experiments can be used to probe the connectivity between spins I and S.64-66  

 

Figure 1.11: The FSLG-HETCOR pulse sequence for correlating spin I to spin S is shown above. 

td is the delay time varied. θm pulses are used to align I magnetization at the magic angle with 

respect to B0. 

 

An example of an FSLG-HETCOR pulse sequence is shown in Figure 1.11. After an initial 

π/2 pulse, the magnetization of I evolves over td, with the final magnetization dependent on the 

chemical shift of the I nucleus. During this time, I magnetization is aligned with the magic angle 

using θ pulses and subjected to FSLG homonuclear decoupling.64 The I magnetization is then 

transferred into S magnetization using CP, before heteronuclear two pulse phase modulation 

(TPPM) decoupling is used.67 As td is varied, the intensity of the NMR signals varies as a function 

of the delay time and the I-S dipolar coupling constant. As the experiment is repeated for many 
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values of td, a stack is obtained containing both I and S chemical shift information for all I – S pairs 

in the molecule. A Fourier transformation in both dimensions then generates a plot correlating 

different I and S spins to one another, as indicated by cross peaks.57 Using low CTs prevents 

correlation between more distant spins. 

1.2.5 Examining the quadrupolar interaction with SSNMR 

Quadrupolar nuclei with a spin greater than 1/2 will possess an asymmetric charge 

distribution, approximated by the illustration in Figure 1.12. These quadrupolar nuclei will couple 

to the electric field gradient (EFG) surrounding the nuclei, influencing spin energy levels and the 

resulting NMR spectra.57 This interaction is the quadrupolar interaction (QI).  Quadrupolar nuclei 

will split into three or more spin states within B0, with the QI affecting all spin energy levels. The 

difference between +1/2 and -1/2 spin states (known as the central transition), is perturbed only by 

second order quadrupolar effects, and therefore this is what is observed in SSNMR experiments. 

 

Figure 1.12: An approximation of a spin 1/2 nuclei and a quadrupolar nuclei is depicted above. 

Quadrupolar nuclei possess an asymmetric distribution of positive charge, and will couple to the 

EFG about the nucleus. This interaction is highly dependent on the local distribution of charges 

and the local electronic environment. This image was reproduced from reference 68. 
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Like the CS interaction, the QI can be described by a second rank tensor with three 

principal components, V11, V22 and V33, ordered such that V11 ≤ V22 ≤ V33. In SSNMR spectra, the 

EFG tensor can be defined by two parameters, the quadrupolar coupling constant (CQ) and the 

asymmetry parameter (ηQ), defined in equations (10) and (11).57 Changes in these parameters will 

produce well-defined effects on a SSNMR powder pattern, allowing these values to be determined 

from experimental spectra. 

 𝐶𝑄 =
𝑒𝑄𝑉33

ħ
     ( 10 ) 

𝜂𝑄 =
𝑉11−𝑉22

𝑉33
     ( 11 ) 

 The CQ value describes the magnitude of the QI, and is dependant on V33, the component 

of the EFG with the greatest magnitude. The magnitude of the CQ is correlated with the spherical 

symmetry about the quadrupolar nuclei, with a smaller CQ suggesting greater spherical symmetry. 

A perfectly symmetrical environment will produce a CQ of zero, as there will be no QI. While CQ 

can be a positive or negative value, NMR experiments can only determine its magnitude.  

 

 

Figure 1.13: The effects of CQ and ηQ on a theoretical static 67Zn SSNMR powder pattern of the 

central transition at 21.1 T are shown above. The simulations were performed using WSolids.60 
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The ηQ is dependent on V11, V22 and V33, and varies between 0 and 1. If V11 and V22 are 

equal, the ηQ is zero, and V33 must coincide with a ≥ C3 axis of symmetry. The ηQ value therefore 

conveys information about the axial symmetry of the EFG about the quadrupolar nuclei, and by 

extension the chemical environment about the nucleus, with a lower value suggesting greater axial 

symmetry. Changes in CQ affect the breadth of the powder pattern, while changes in ηQ affect both 

the pattern’s breadth and position of the characteristic powder pattern “horns.” This effect is 

illustrated in Figure 1.13.  

1.2.6 SSNMR of MOFs 

SSNMR experiments have been employed on MOFs to examine both the guest, linker, and 

metal nuclei, allowing for estimates of framework-adsorbate interactions, predictions on the 

number and location of adsorption sites, and understanding the detailed motional behaviour of 

adsorbed molecules.69  

When adsorbed inside a MOF, guest molecules such as CO2 exhibit restricted motional 

behaviour. This produces predictable averaging of the 13C CSA of the 13CO2 powder pattern, since 

the CSA parameters for solid CO2 are known.70 The effects on the powder pattern vary with the 

types, rates, and angles of motion occurring. One common type of CO2 motion in MOFs is a 

temperature dependant combination of rotational wobbling upon an adsorption site along with 

hopping between adjacent adsorption sites,56, 62, 71, 72 depicted in Figure 1.14. This manifests in 

changes to the span and skew of the 13C SSNMR powder pattern. The effects of these motions on 

the powder pattern are shown in Figure 1.15. The SSNMR powder pattern of Solid CO2 has a Ω 

of 335 ppm and a κ of 1.70 In the Matériaux de l′Institut Lavoisier-53(Al) MOF, or MIL-53(Al), 

the Ω has decreased to 246 ppm and the κ to 0.78 at 293 K.62 In the PbSDB MOF, named for its 
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lead metal centres and 4,4’-sulfonyldibenzoic acid linkers, the motional angles of adsorbed CO2 

are even greater, and the Ω and κ are 115 ppm and 0.55 respectively.56 13C SSNMR is therefore a 

very useful tool for assessing the behaviour of CO2 within framework pores. 

 

 

Figure 1.14: The wobbling and hopping motions of a CO2 molecule are shown above, described 

by the α and β angles respectively. 

 

As CP NMR is dependent on the strength of the dipolar interaction, CP SSNMR offers a 

means of examining the interactions between guest molecules and framework nuclei as adsorption 

occurs. For example, in MIL-53(Al), 1H-13C MAS CP spectra were able to reveal how signals 

corresponding to carboxyl groups were affected by the presence of water molecules in the 

framework, highlighting the interactions between the guest and the linker.73 Static 1H-13C CP 

experiments were used to explore the interaction between CO2 and the MIL-53(Ga) and MIL-

53(Al) frameworks, with differences in relative CP enhancements suggesting a weaker guest-host 

interaction in MIL-53(Ga) than in MIL-53(Al). CP spectra of deuterated MIL-53 was also used to 
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help identify the binding site, suggesting that it was close to the bridging hydroxyl groups in the 

MOF.73  

 

 

Figure 1.15: WSolids60 simulated spectra performed using experimental δ values are shown above, 

depicting the effects of CSA on the 13C NMR spectra of CO2 at 293 K. In PbSDB, the CO2 wobbles 

about a 38° angle and hops between sites at a 25° angle, with the resulting motional averaging 

narrowing the powder pattern.56 Within Mil-53(Al), the motional angles are only 19°, and the 

resulting powder pattern is broader and more skewed.62  

   



29 
 

 

While 13C is a spin 1/2 nucleus, many of the metal centers within MOFs are quadrupolar. 

SSNMR of the metal centers in MOFs can help identify changes in the EFG about the metal center, 

and thus hint at changes in the chemical environment about the metal centre. However, many of 

these centers, such as 67Zn, 25Mg or 91Zr, possess high quadrupole moments, low magnetic 

moments, and/or low natural abundances, and therefore necessitate the use of strong external 

magnetic fields or large sample volumes; these nuclei have not been studied as extensively as more 

receptive quadrupoles such as 7Li and 23Na. The first characterization of 67Zn environments in 

MOFs was for MOF-5, one of the most widely studied MOFs.74-76 This was done using an ultrahigh 

magnetic field of 21.1 T. 

 SSNMR of quadrupolar nuclei also allows for the verification of structural models and 

identification of the number and local symmetry of unique metal sites.74-79 CQ and ηQ values can 

be determined computationally and the measured and calculated parameters compared to assess 

the quality of proposed models. Quadrupolar NMR can also be performed on guest molecules such 

as D2 and D2O, as well as on the framework nuclei. The motional behaviour of water in a zinc 

trimesate framework was examined using 2H NMR, where it was found that coordinated D2O 

exhibited a well defined quadrupolar pattern above temperatures of 100 °C.80 In M-MOF-74, 2H 

NMR was used to show the specific type of metal center strongly influenced the water adsorption 

behaviour of the MOF, with Mg-MOF-74 producing broad 2H spectra, while Zn-MOF-74 spectra 

consisted of a broad and narrow component.81 The spectra also demonstrated the effects of 

temperature on the D2O motions, with the Mg-MOF-74 spectra producing resonances 

characteristic of slower motional rates as the temperature was decreased to 153 K.   
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1.3 Thesis Outline 

 Increasing atmospheric CO2 concentrations and global temperatures will require a variety 

of technologies to minimize or curb these effects. Capture of CO2 gas using solid porous materials 

can be readily applied to existing CO2 point sources, and is less energy intensive and less damaging 

to equipment than aqueous amine alternatives. MOFs, as a class of tunable porous materials and 

strong CO2 adsorbents, are well-suited as potential CO2 capture materials. It is beneficial to 

understand the interactions between CO2 and different MOF materials; by elucidating the links 

between CO2 adsorption, CO2 motion, and MOF structural features, better and more efficient solid 

CO2 adsorbent MOFs can be designed. 

SCXRD and SSNMR can offer insight on the long- and short-range structure of MOFs. 

Where possible SCXRD can be applied to precisely determine MOF structural changes with 

temperature and guest loading. SSNMR can be used to gain insight into the local environment of 

target nuclei and guest-host interactions that occur inside a framework. CP, REDOR, and 

HETCOR specifically can gauge the strength of the dipolar interactions and establish connectivity 

between nuclei. NMR of quadrupolar metal centres can determine changes in the EFG, which will 

be affected by metal guest interactions which change as guests are evacuated or loaded into the 

framework.  

This thesis will focus on the use of XRD and SSNMR techniques to examine the previously 

reported ultramicroporous frameworks SIFSIX-3-Zn82 and ZnAtzOx.83 While these frameworks 

lack open metal sites to serve as strong adsorption sites for carbon dioxide, both frameworks are 

known to have unusually high adsorption selectivity for CO2 over gases such as N2, H2 and CH4. 

These characteristics are believed to be due to the strong electrostatic interactions between the 

framework walls and the carbon dioxide molecule, enhanced by the ultramicroporous nature of the 

pores. This makes both frameworks valuable subjects for study when trying to better understand 
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CO2 adsorption in solid frameworks. Using the techniques outlined above, a more complete 

understanding of the guest-host interactions within these frameworks has been developed. 
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Chapter 2 : Studying Carbon Dioxide Adsorption within the Highly Selective 

SIFSIX-3-Zn Framework 

2.1 Introduction 

One recently reported novel class of materials is the SIFSIX frameworks.1 These materials 

can be described as hybrid ultramicroporous materials (or HUMs) rather than MOFs. SIFSIX 

materials are HUMs because in addition to organic linkers that join the metal centres into a two-

dimensional sheet, the sheets are further linked into a three-dimensional framework by inorganic 

SiF6
2- pillars, giving the framework their name. This combination of inorganic and organic linkers 

alongside metal centres distinguishes this material from traditional MOFs. HUM materials that 

have been investigated for CO2 adsorption include SIFSIX materials,2, 3 TIFSIX and SNIFSIX 

materials,4, 5 MOOFOUR and CROFOUR materials6, NbOFFIVE materials7 and AlFFIVE 

materials,8 with the SIFSIX materials among the most popular and widely studied.  

Unlike many MOFs investigated for applications in gas adsorption and separation, the 

SIFSIX frameworks do not possess any open metal sites (OMSs). OMS MOFs such as HKUST-

19 and Mg-MOF-7410 are often considered among the most promising CO2 capture materials due 

to the strong interactions between OMSs and CO2 molecules. However, such sites are also 

hydrophilic, therefore water often acts as a competitor to CO2.
11, 12 In a worst-case scenario, water 

can permanently degrade a MOF through a hydrolysis or ligand displacement reaction. The 

presence of coordinatively-saturated metal centres within the frameworks, rather than unsaturated 

OMSs, is potentially advantageous for water stability and CO2 selectivity of the MOF, as the 

adsorption mechanism is no longer a metal-sorbate interaction.   
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Figure 2.1: The SIFSIX-3-Zn framework is illustrated from a perspective that lies along the c-axis 

(above) and a-axis (below). In this Figure, the atom colours are pink for Zn, tan for Si, yellow for 

F, blue for N, and grey for C. 
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SIFSIX-3 materials, which contain organic pyrazine ligands along with SiF6
2- inorganic 

pillars, have shown particular promise in the field of CO2 adsorption.12-14 The first SIFSIX-3 

material studied for CO2 adsorption applications was SIFSIX-3-Zn.2, 3 In SIFSIX-3-Zn, one-

dimensional square channels 3.84 Å diagonally across point run along the length of the 

framework’s c-axis. Four fluorine atoms extend from the corners into these channels at regular 

intervals. Small windows which measure 2 Å diagonally connect the channels along the a and b-

axes. Computational and Raman spectroscopy studies of SIFSIX-3-Zn have offered insight into 

the CO2 adsorption behaviour of the material.13-16 The fluorine atoms are thought to interact with 

the electropositive carbon atom on the CO2 molecule, oriented along the direction of the channels, 

allowing for a single guest molecule per unit cell. The maximum CO2 uptake remains unchanged 

at pressures as high as 25.0 atm, and this uptake has been observed at temperatures as high as 338 

K.14 

  One unusual aspect of SIFSIX-3-Zn adsorption behaviour is the adsorption of greater 

amounts of CO2 at room temperature than at 195 K.13 This phenomenon is thought to be partially 

due to the conformational flexibility of the pyrazine rings within the framework, which at low 

temperatures can tilt from the perpendicular direction to the parallel direction of the channel in 

order to reduce pore volume and surface area.13 Diffusion of guest CO2 within the channels is 

thought to be limited at lower temperatures due to increased interaction strengths between the guest 

molecules and the framework. This leads to pore blockage, which hinders the ability of free CO2 

molecules to access potential adsorption sites within the framework.14 

The framework structure of SIFSIX-3-Zn as viewed along the crystallographic c-axis is 

shown in Figure 2.1.2 The structure is a tetragonal crystal system with a space group of P4/mmm. 

The similar dimensions of the pore diameter, 3.84 Å, and CO2 kinetic diameter, 3.30 Å,17 facilitates  
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strong electrostatic interactions between the framework and guest molecules, as well as high 

selectivity towards CO2 over CH4, H2 and N2, despite the framework’s relatively small surface 

areas and pore sizes. Ideal adsorbed solution theory (IAST) calculations were used comparing the 

ratio of adsorbed gases divided by the ratio of the gases before adsorption.2 This quantifies the 

SIFSIX-3-Zn selectivity for CO2 at 1 bar as 1818 against N2, 231 against CH4, and over 1800 

against H2.
2 The selectivity against N2 is extremely high, easily exceeding the selectivity of popular 

frameworks such as Mg-MOF-74,10 which has a selectivity of 800 against N2, and Zeolite 13X,18 

which has a selectivity of 420 against N2.  

 

Table 2.1: The CO2 adsorption properties of various solid sorbent materials are listed below. 

These were determined using temperature-programmed desorption experiments after either direct 

air capture experiments or moist simulated-flue gas capture experiments. The SCW value indicates 

the experimental sorbent selectivity for CO2 over H2O. 

Adsorbent Direct Air Capture Moist CO2 (0.15 atm, 75% RH) 

CO2      

(mg g-1) 

H2O   

(mg g-1) 

SCW CO2              

(mg g-1) 

H2O    

(mg g-1) 

SCW 

SIFSIX-3-Ni19 8.0 93 5.43 76 46 0.27 

SIFSIX-3-Cu20 14.1 88 10.03 101 54 0.31 

Zeolite 13X19 1.5 146 0.63 26.3 93 0.05 

Mg-MOF-7419 6.3 171 2.60 68 65 0.17 

ZIF-820 2.3 7.6 18.67 2.5 >1 0.50 

MIL-10120 <1.0 95 <0.63 11.2 16.8 0.11 

TEPA-SBA-1519 158 12 830 130.3 11 1.92 
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This high selectivity for CO2 is also observed in other SIFSIX-3 materials with alternate 

metal centres, including SIFSIX-3-Cu,21 SIFSIX-3-Ni,22, 23 and SIFSIX-3-Co.23 A series of studies 

aimed at assessing CO2 adsorption properties found that SIFSIX-3-Ni and SIFSIX-3-Cu had 

especially strong selectivity for CO2 adsorption over H2O adsorption compared to other 

physisorbents, as depicted in Table 2.1.19, 20 The potential applications of SIFSIX-3 materials in 

gas adsorption were made clear from these results. While ZIF-824 was found to possess greater 

selectivity for CO2 than SIFSIX-3-Ni, it had an extremely low overall CO2 uptake.20 ZIF 

frameworks are known to be hydrophobic if their imidazolate linkers do not possess hydrophilic 

functional groups.25 The chemisorbent functionalized silica framework TEPA-SBA-1526 

possessed greater uptake and selectivity than SIFSIX-3-Ni,19 however, as a chemisorbent, it is 

vulnerable to sorbent degradation from NOx, SOx, and O2. Chemisorbents also typically require 

more energy for reactivation than physisorbents, with temperature programmed desorption 

experiments showing TEPA-SBA-15 required higher temperatures to desorb both CO2 and H2O 

than SIFSIX-3-Ni.19 SIFSIX-3-Ni has also shown little change in surface area or CO2 uptake after 

accelerated stability testing.19 

The results of these experiments are especially important for practical applications, as the 

presence of moisture in air is typically unavoidable, and mentioned above many MOFs degrade in 

the presence of moisture or liquid water due to nucleophilic water molecules attacking the metal-

ligand bonds within the framework.11, 12 Unfortunately, these results show SIFSIX materials still 

rate behind traditional chemisorbents in CO2 selectivity, thus continued investigation into their 

adsorption properties and continued development of new and improved MOFs and HUMs 

incorporating SIFSIX components is necessary to develop a practical solid physisorbent material 

for CO2 adsorption applications. 
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While the unusual CO2 adsorption behaviour of SIFSIX-3 materials are known, a 

comprehensive description of the CO2 interactions and motions within the frameworks does not 

yet exist. To improve the scientific community’s understanding of MOFs and their carbon dioxide 

capture applications, this chapter helps fill this gap by offering information on how the framework 

and guest CO2 molecule interact with and affect one another. This is done through two techniques: 

single crystal X-ray diffraction (SCXRD) and solid-state nuclear magnetic resonance spectroscopy 

(SSNMR). 

SCXRD experiments can identify the precise number, locations, and occupancies of 

adsorption sites within the framework. SCXRD is widely used for determining the crystal structure 

of MOFs, and obtaining the locations of guest molecules within the framework.27-30 This can be 

supplemented by SSNMR experiments, which provide information on guest molecule mobility. 

 

Table 2.2: Select physical properties and CO2 adsorption properties of SIFSIX-3-M materials are 

listed below. The Qst value indicates the isosteric enthalpy of adsorption for CO2 capture. 

Adsorbent BET Surface 

Area (m2 g-1) 

Pore Size (Å) Qst (kJ mol-1) Static CO2 

uptake at 0.15 

bar (mol kg-1) 

SIFSIX-3-Ni23 368 3.7 51 2.65 

SIFSIX-3-Co23 223 - 47 2.5 

SIFSIX-3-Cu21 300 3.5 54 2.45 

SIFSIX-3-Zn2 250 3.84 45 2.2 
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Solid-state NMR is a powerful tool for obtaining molecular-level insight regarding the 

origins and mechanisms of guest adsorption,27, 31-34 and for the SIFSIX family, the SIFSIX-3-Zn 

analogue was selected for study.  

SIFSIX-3-Zn shares many of the characteristic properties of SIFSIX-3 materials in terms 

of structure and CO2 adsorption behaviour, as shown in Table 2.2.2, 21-23 Unfortunately, SIFSIX-3-

Zn is sensitive to the presence of moisture, unlike other SIFSIX-3 materials.35 However, the 

diamagnetic Zn2+ metal centre was more useful for this study, as paramagnetic ions such as Ni2+, 

Co2+, or Cu2+ possess unpaired electrons giving rise to strong local magnetic fields. These can 

complicate the spectral analyses.36 It is hoped that insight into the CO2 adsorption behaviour of 

SIFSIX-3-Zn will be useful for understanding the CO2 adsorption behaviour of other SIFSIX-3 

materials. 

2.2 Experimental 

2.2.1 Synthesis of SIFSIX-3-Zn 

SIFSIX-3-Zn was synthesized solvothermally using previously described methods.2  A 

typical synthesis is as follows: a 10 mL solution of pyrazine (0.48 g, 6 mmol, Alfa Aesar, 98%) in 

methanol was decanted into a separate 10 mL solution of zinc hexafluorosilicate hydrate (0.62 g, 

3 mmol, Sigma-Aldrich, 99%) in methanol. The resulting 20 mL solution was left at room 

temperature for 3 days, after which yellow crystals were collected and dried at 90 °C in air for 

three hours. Prior to activation and guest loading, SIFSIX-3-Zn samples were solvent exchanged 

in a methanol solution for three days, as done in the literature.2 The methanol solution was replaced 

daily. 
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2.2.2  Powder X-ray diffraction 

The identities and purities of the product were confirmed using powder X-ray diffraction 

(PXRD). Patterns were recorded on an Inel CPS powder diffractometer operating with Cu Kα 

radiation (λ = 1.5418 Å). Experimental and simulated PXRD patterns are depicted in Figure 2.2. 

The experimental PXRD patterns are consistent with patterns calculated from reported crystal 

structures,2 and are also consistent with previously determined experimental PXRD patterns of the 

materials.2 This suggests phase purity of the synthesized framework.  

 

 

Figure 2.2: The experimental and calculated SIFSIX-3-Zn PXRD patterns are depicted above. 
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2.2.3 Sample activation and gas loading 

The activation process removes solvent molecules from the framework pores. A Schlenk 

line was used for the activation of SIFSIX-3-Zn. Samples were placed into the bottom of an L-

shaped glass tube, and a thin layer of glass wool was used to secure the sample in place. SIFSIX-

3-Zn samples were activated under dynamic vacuum (< 1 mbar) at 80 ± 10 °C for twenty-four 

hours. CO2 gas was released into the line, which has a measured total volume of 82.7 mL, as the 

CO2 pressure was monitored simultaneously. The sample was then loaded with a known quantity 

of CO2 while the glass tube was immersed in liquid nitrogen. The loaded sample within the glass 

tube was then flame sealed off from the Schlenk line to trap guest molecules in a closed space with 

the sample prior to SSNMR experiments. 

A 0.25 molar ratio of CO2 to Zn2+ was used when loading samples with carbon dioxide for 

SSNMR experiments. 13C labelled CO2 was used to load samples for 13C SSNMR experiments. 

2.2.4 SCXRD experiments 

A small amount of SIFSIX-3-Zn single crystals were packed into a glass tube, activated, 

and loaded with CO2 using the procedures outlined above. Samples were loaded to saturation with 

CO2. Prior to SCXRD experiments, the glass tubes containing CO2-saturated SIFSIX-3-Zn were 

broken, and the single crystals were immediately coated with paratone oil to prevent loss of CO2 

from the framework. Using an optical microscope, high-quality single crystals were selected for 

use in structure determination and refinement.  

All X-ray measurements were made on a Bruker-Nonius KappaCCD Apex2 diffractometer 

at a temperature of 110 K. The frame integration was performed using SAINT.37 The resulting raw 

data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent 

data using SADABS.38 The structure was solved by using a dual space methodology using the 
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SHELXT program.39 All framework non-hydrogen atoms were obtained from the initial solution. 

The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent 

atom. The position of the CO2 molecule was recovered from a difference Fourier map. The 

structural model was fit to the data using full matrix least-squares based on F2. The calculated 

structure factors included corrections for anomalous dispersion from the usual tabulation. The 

structure was refined using the SHELXL-2014 program from the SHELX suite of crystallographic 

software.40 Graphic plots were produced using the NRCVAX program suite.41 

2.2.5 SSNMR experiments 

13C, 29Si, 1H and 19F SSNMR experiments were performed at the University of Western 

Ontario in London, Ontario, using a Varian Infinity Plus wide-bore NMR spectrometer, equipped 

with an Oxford 9.4 T wide-bore magnet.  Direct-excitation static 13C experiments were conducted 

with a 5 mm HFXY Varian/Chemagnetics probe. All 13C, 1H and 19F magic-angle spinning (MAS) 

experiments were performed with a 4 mm HXY Varian/Chemagnetics probe, while 29Si MAS and 

static cross polarization (CP) experiments were carried out with a 7.5 mm HXY 

Varian/Chemagnetics probe. 

13C spectra were referenced to tetramethylsilane (TMS) using the methylene carbon in 

ethanol as a secondary reference, which has a chemical shift (CS) of 58.05 ppm.42 All direct-

excitation 13C SSNMR experiments were performed using the DEPTH-echo pulse sequence to 

minimize the probe background signal.31 The Hartmann-Hahn match in 1H-13C CP experiments 

was set up using solid adamantane (Sigma-Aldrich, 98+%), while the Hartmann-Hahn match in 

19F-13C CP experiments was set up using solid polytetrafluoroethylene (Sigma-Aldrich). 29Si 

spectra were referenced to TMS using the methylsilane silicon in tris(trimethylsilyl)silane 

(TTMSS, Sigma-Aldrich, ≥97%) as a secondary reference, which has a CS  of -9.60 ppm.42 The 
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Hartmann-Hahn match in 1H-29Si CP experiments was set up using TTMSS. 19F spectra were 

referenced to trichloro-fluoro-methane using liquid trifluorotoluene (Sigma-Aldrich, 99+%) as a 

secondary reference, which has a CS of -63.0 ppm,43 while 1H spectra were referenced to TMS 

using the CH2 sites in solid adamantane (Sigma-Aldrich, 98+%) as a secondary reference with a 

CS of 1.85 ppm.44 Direct-excitation 1H and 19F experiments were performed using a one pulse 

sequence. All experiments were performed using a 30 kHz 1H decoupling field, and doubly 

decoupled spectra were collected using an additional 30 kHz 19F decoupling field (Figure S2.2). 

67Zn experiments were conducted at 21.1 T on a Bruker II Advance spectrometer at the 

National Ultrahigh-field NMR facility for Solids in Ottawa, Canada, with a home built 7 mm HX 

probe, using a solid-echo pulse sequence. Spectra were referenced to 1.0 M aqueous Zn(NO3)2, at 

0 ppm. 

Additional acquisition parameters for specific spectra are listed in Tables S2.1 to S2.4. 

2.2.6 Spectral simulations 

The WSolids45 computer software was used to analytically simulate all static 13C SSNMR 

spectra and obtain apparent powder pattern parameters. The 13C patterns are broadened and 

dominated by the CS anisotropy (CSA), while the 67Zn patterns are dominated by the quadrupolar 

interaction (QI). WSolids calculated the powder pattern of a static powder sample showing effects 

of the CSA or QI. 13C SSNMR patterns were calculated through inputting the orthogonal 

components of the CS tensor (δ11, δ22 and δ33). 
67Zn SSNMR patterns were calculated through 

inputting the electric field gradient (EFG) parameters (CQ and ηQ). By comparing the known 

experimental powder patterns to a calculated pattern, the experimental powder pattern parameters 

for 13C (δiso, Ω and κ) and 67Zn (CQ and ηQ) can be determined. The errors in pattern parameters 

were estimated by bidirectional variation of the parameters from the best-fit value.  
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The EXPRESS46 computer software was used to simulate the effects of motion on 13C 

SSNMR powder patterns. EXPRESS describes motion in terms of discrete (Markovian) jumps at 

specified rates between sites. A motional model can then be described by the number, orientation, 

and populations of sites, as well as the nature of the connections and rates of jumps. The motion 

results in a predictable averaging of CS tensor components. Given the known powder pattern 

parameters of solid CO2 (δiso = 126 ppm, Ω = 335 ppm, and κ = 1),47 and assuming a linear 

geometry for the CO2 molecule, powder patterns produced by specific types and rates of motion 

were calculated across 4096 powder increments using the ZCW powder averaging procedure and 

compared to the experimental powder pattern. 

2.2.7 Theoretical calculations 

Gauge-including projector augmented wave (GIPAW) quantum chemical calculations 

were performed by Dr. Victor Terskikh with the NMR module of the CASTEP software package 

version 4.4 within Materials Studio.48, 49 The unit cell parameters and atomic coordinates for 

SIFSIX-3-Zn were taken from the reported room temperature crystal structure,2 with and without 

geometry optimization prior to NMR calculations. Calculations were performed with a plane-wave 

cut-off energy of 500 eV and on-the-fly generated ultrasoft pseudopotentials.  

2.3 Results and Discussion 

2.3.1 SCXRD of CO2 loaded SIFSIX-3-Zn at 110 K 

SCXRD of the CO2 loaded framework provides a precise view of average CO2 locations 

within the framework and the exact dimensions of the structure after CO2 loading. This offers a 

bigger picture of the structure before SSNMR probes specific motional behaviour and host-guest 

interactions. 
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Figure 2.3: The crystal structure of CO2 loaded SIFSIX-3-Zn is shown above, as viewed along the 

c-axis. The structure is depicted with pores occupied by CO2. CO2 molecules are located about 

the crystallographic inversion centre, and positionally disordered across the centre. In Figures 

2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, the atom colours are pink for Zn, tan for Si, yellow for F, blue for 

N, and grey for C. 

 

A view of the structure along the c-axis can be seen in Figure 2.3. The exact location of 

adsorbed CO2 and the structural parameters of SIFSIX-3-Zn were determined using SCXRD. The 

CO2 was located near a crystallographic inversion centre within the centre framework channels, 

found directly between four equatorial fluorine atoms of the hexafluorosilicate ligands extending 

into the channel. The CO2 molecule positionally disordered across that centre. The occupancy 

parameter converged to a value of 0.466(7), and the CO2 geometry is linear (∠O–C–O = 178.19°, 

with the oxygen atoms tilted slightly towards the framework). Rather than adsorbing directly in 
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the centre of the channel, the CO2 molecule possesses two symmetry equivalent adsorption sites 

within each pore, located closer to the framework atoms. The relative locations of these sites are 

shown in Figure 2.3.  

A previous study using single component adsorption simulations of CO2 in SIFSIX-3-Zn 

estimated there was a distance of 4.4 Å between the CO2 molecule and the nearest silicon atom.14 

This is consistent with the distance of 4.624 Å between the guest and the Si atom, obtained from 

the single crystal structure. The location of the CO2 within the centre of the framework channels 

agrees with the previously modelled occupancy, suggesting one carbon dioxide molecule per unit 

cell within the framework.2, 14 The structure finds the CO2 molecules are aligned parallel with the 

framework channels, which is consistent with previously performed simulations.2, 14  

Fluorine and hydrogen atoms extend into the channel near the CO2, and are thought to 

interact with the CO2. The nearest two fluorine atoms are 2.958 Å from the adsorbed carbon. The 

nearest two hydrogen atoms are 3.438 Å from the adsorbed carbon and 2.935 Å from the nearest 

adsorbed oxygen. These short distances are suggestive of physical interactions between the carbon 

nucleus and the framework protons and fluorine atoms extending into the channel. These distances 

are depicted in Figure 2.4 and Figure 2.5. Changes in the framework structure after CO2 loading, 

due to these interactions, move these atoms in closer proximity to the guest CO2 molecule, as 

explained in more detail below. 

The crystallographic structure of empty SIFSIX-3-Zn has been previously studied at both 

room temperature and 100 K.2, 14 The presence of CO2 within the framework changes the space 

group of the crystal structure, from P4/mmm to I4/mcm. This is due to a redefining of the bounds 

of the unit cell, altering the unit cell parameters, depicted in Figure 2.6. The a parameter increases 

to 9.9917(14) Å (from 7.116(1) Å at 100 K) while c increases to 15.088(2) Å (from 7.58(1) Å). 
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The structure is contracted slightly from the previously reported 100 K structure, with the distance 

between Zn2+ ions being 7.065 Å along the a-axis and b-axis, alongside a 7.544 Å contraction 

along the c-axis. This indicates a slight contraction of 0.051 Å along the a-axis and b-axis, and a 

contraction of 0.036 Å along the c-axis, compared to the previously reported structure at 100 K.14 

Along the c-axis, this is due to a shrinking of the Zn – F – Si bonds by about 0.015 Å. Along the 

a-axis, this is due to a shrinking of the Zn – N bond by approximately 0.018 Å, and a shrinking of 

the pyrazine ring diameter by approximately 0.015 Å. The bond angles about the Zn and Si nuclei 

are unchanged, with both sites being octahedral.  

 

  

Figure 2.4: The position of the adsorbed carbon atom (orange) within the SIFSIX-3-Zn pore is 

shown above, as viewed along the c-axis. The carbon atom in the adsorbed CO2 is more proximate 

to two of the adjacent fluorine atoms than the others, with C to F distances of 2.958 Å and 3.746 

Å respectively, as seen in the leftmost image. Similarly, the adsorbed carbon atom is more 

proximate to two of the adjacent hydrogen atoms than to the other two, with C to H distances of 

3.438 Å and 3.789 Å respectively, as depicted in the rightmost image. 

2.958 Å 

3.746 Å 

3.438 Å 

3.789 Å 

C ∙∙∙ F Distances C ∙∙∙ H Distances 



51 
 

 

 

Figure 2.5: The position of an adsorbed oxygen atom (red) within the SIFSIX-3-Zn pore is shown 

above, as viewed along the c-axis. The oxygen atoms in the adsorbed CO2 is more proximate to 

two of the adjacent hydrogen atoms than the others, with O to H distances of 2.935 Å and 3.351 Å 

respectively. 

 

The overall contraction of the CO2 loaded framework is evidence of strong interactions 

between the CO2 and the crystal structure, as the shrinking will promote stronger interactions with 

the CO2 residing within the framework pores. 

 The contraction causes the diagonal pore diameter between fluorine atoms to shrink to 3.72 

Å, compared to the diameter of 3.79 Å previously observed in the reported framework at 100 K 

and the diameter of 3.84 Å that is observed at room temperature.2, 14 While this is primarily due to 

the overall framework contraction, it is also in some part due to the elongation of the Si – F 

equatorial bonds from 1.664 Å in the reported structure at 100 K, to 1.669 Å in the CO2 loaded 

structure. This elongation of the bonds brings the F atom closer the adsorbed CO2 molecule, and 

is likely due to strong interactions between the fluorine atom and the adsorbed CO2 molecule.  

2.935 Å 

3.351 Å 

O ∙∙∙ H Distances 
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Figure 2.6: A comparison of the unit cell of the empty SIFSIX-3-Zn (left) and CO2 loaded SIFSIX-

3-Zn (right). Unit cell bounds are outlined in black. The presence of disordered CO2 within the 

channels significantly redefines the unit cell parameters in SIFSIX-3-Zn. 

 

Adjacent pyrazine rings within the framework are no longer coplanar with each other, as 

they are reported to be at room temperature. Instead, the rings are found to be tilted into the 

channels, in alternating directions. This behaviour is displayed in Figure 2.7. The planes of the 

pyrazine rings form an angle of 22.9 ° with respect to the c-axis. Previous structural studies of 

SIFSIX-3-Zn at 100 K  report that the pyrazine rings were slanted at an angle of 13.9 °,14 while 

previous computational studies of SIFSIX-3-Zn using density functional theory found that the 

pyrazine rings were slanted at an angle of 17.2 °, at a temperature of 195 K.13 This enhanced 

angling of the pyrazine rings is due to the presence of host-guest interactions, as it brings the 
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framework protons closer to the centre of the channel, which would increase the strength of their 

dipolar interactions with the adsorbed carbon atom.  

 

        

      

 

Figure 2.7: The 22.9 ° slanting of the pyrazine rings in the CO2 loaded framework is depicted 

above as viewed along the a-axis (A), and contrasted with the parallel rings of the as made 

framework (B). This tilting is also depicted along the a-axis of the CO2 loaded framework (C) and 

compared with the as made framework (D).  Adjacent pyrazine rings are slanted in opposing 

directions. The slanting brings the framework protons closer to the guest CO2 molecule, enhancing 

guest-framework interactions.  

B: As Made, 

293 K 

A: CO2 

Loaded, 110 K 

C: CO2 

Loaded, 110 K 
D: As Made, 

293 K 
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Figure 2.8:  A view of the channels in the CO2 loaded SIFSIX-3-Zn framework is depicted above, 

as viewed along the c-axis (A). This is contrasted with a view of the channels in the as made 

framework (B). The pyrazine slanting brings carbon nuclei into the channel, decreasing the 

proximity between carbon nuclei across the channel. This limits the available space within the 

channels. Accounting for van der Waals radii, the space between opposite pyrazine carbon nuclei 

across the channel diameter of the CO2 loaded is only 2.77 Å. This is believed to limit the mobility 

of CO2 in the framework and result in low CO2 uptakes at low temperatures.13, 14 

 

The pyrazine slanting is also found to bring carbon nuclei within the linkers on opposite 

sides of the channel closer together, shortening C – C distances by 0.4 Å. This feature is depicted 

in Figure 2.8. Pyrazine slanting in SIFSIX-3-Zn has previously been used to explain low CO2 

B: As Made, 

293 K 

A: CO2 

Loaded, 110 K 

6.17 Å 

7.14 Å 
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uptake at lower temperatures, due to pore blockage restricting the movement of CO2 within the 

framework.13, 14 Given the additional slanting observed after CO2 adsorption, the pyrazine slanting 

can be expected to further limit guest molecule mobility within the channel, in addition to 

strengthening host-guest interactions. The additional contraction of the CO2 loaded structure also 

likely contributes to the lower CO2 uptake at low temperatures, as it would further restrict the 

movement of guest CO2 molecules. 

 

Table 2.3: Select structural parameters of SIFSIX-3-Zn are listed below Previous studies have 

characterized the empty SIFSIX-3-Zn framework. When compared with the values obtained for the 

CO2 loaded phase, the structure is further contracted, and the pyrazine linkers are angled more 

strongly. Zn centers and pyrazine linkers were placed at special positions with no error. 

Structural parameter SIFSIX-3-Zn, 

298 K2 

SIFSIX-3-Zn, 

100 K14 

SIFSIX-3-Zn,       

CO2 loaded, 110 K 

Zn to Zn distance (a) 7.1409 Å 7.1151 Å 7.065 Å 

Zn to Zn distance (c) 7.6068 Å 7.5747 Å 7.544 Å 

Si – F (equatorial) bond length 1.657(4) Å 1.664(1) Å 1.669(1) Å 

Diagonal pore diameter (F to F)  3.84(1) Å 3.79(1) Å 3.72(1) Å 

Pyrazine angling - 13.9(1) ° 22.9(1) ° 

Distance between pyrazine 

linkers across pore length 

7.1409 Å 6.573(6) Å 6.173(4) Å 

 

Changes in the structural parameters from those of the reported SIFSIX-3-Zn framework 

are summarized in Table 2.3. The effects of CO2 on framework contraction, while subtle, are in 

some respects more significant than the effects of a temperature change from 298 K to 100 K. 

These changes would promote stronger interactions between the framework and the guest CO2 

within the framework channels. The use of SCXRD has in this case identified the exact location 



56 
 

 

of CO2 within the framework, as well as highlighted the effects of the electrostatic interactions 

between SIFSIX-3-Zn and the framework molecules. 

2.3.2 Variable temperature (VT) static 13C SSNMR of 13CO2 loaded SIFSIX-3-Zn 

While SCXRD experiments provide detailed structural information, their ability to provide 

motional information is limited. The low temperatures required to observe the guest molecules 

limits molecular motion, and SCXRD only provides a time averaged picture of the structure. A 

detailed understanding of the motional behaviour of guest CO2 molecules can instead be obtained 

using SSNMR.  

Experimental and simulated 13C NMR spectra were collected for static 13CO2 loaded 

SIFSIX-3-Zn at temperatures between 153 K and 393 K, and can be seen in Figure 2.9. There is 

no evidence of any free CO2 within this MOF; gaseous non-adsorbed CO2 would appear as a single 

sharp resonance at 126 ppm, which is not observed. CO2 appears to be adsorbed at all experimental 

temperatures, which ranged from 153 K to 393 K. 

The apparent CS parameters determined through WSolids45 simulations are listed in Table 

2.4. SSNMR powder patterns can be described by their isotropic CS in ppm (δiso), by their span in 

ppm (Ω) and by their skew (κ). The known parameters of solid CO2 patterns are a δiso of 126 ppm, 

a Ω of 335 ppm and a κ of 1.00.47 The Ω changes to 288 (2) ppm at 393 K, and decreases to 315 

(5) ppm at 153 K. The κ reaches 1.00 (3) at 193 K and drops to 0.98 (2) at 393 K. The observed 

CS parameters are comparable those of solid CO2, and show only minimal changes as the 

temperature increases. As the CO2 is adsorbed to the framework it becomes less mobile, increasing 

CSA. The more immobile the molecule, the more similar its powder pattern is to that of solid CO2.  
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Figure 2.9: The experimental (left) and simulated (right) 13C NMR spectra of 13CO2 loaded 

SIFSIX-3-Zn are shown at temperatures of 393 K to 153 K. Spectra were collected using between 

600 and 900 scans and a 5 s recycle delay, except at 293 K where 4000 scans and a 15 s recycle 

delay was used. C6 motion of the CO2 described by α angles listed on the simulated spectra. 

Simulated spectra of solid CO2 depicted on the bottom for reference.47 
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The kind of CO2 powder patterns displayed by SIFSIX-3-Zn is extremely unusual 

compared to previously studied MOFs.27, 31, 32, 50, 51 Typically the very broad, highly skewed 

patterns shown here are only obtained at very low temperatures, where the CO2 molecule is highly 

immobile. At higher temperatures, the patterns are expected to become narrower and less skewed.  

 

Table 2.4: The observed 13C chemical shift parameters of CO2 adsorbed within SIFSIX-3-Zn are 

listed below. These parameters were obtained from analytical simulations of static 13C SSNMR 

spectra using WSolids.45 

 

A notable comparison can be made with the ultramicroporous α-Mg formate MOF, 

containing pores 4.5 by 5.5 Å across and no OMSs. 13C SSNMR of the CO2 loaded MOF produced 

narrow patterns with Ω values between 30 and 69 ppm across all temperature ranges,51 indicating 

a much greater degree of molecule mobility than what was observed in SIFSIX-3-Zn. Molecular 

dynamics simulations and CP SSNMR experiments suggested the adsorption within α-Mg formate 

Temperature (K) δiso (ppm) Ω (ppm) κ 

393 123 (1) 288 (2) 0.98 (2) 

373 123 (1) 288 (2) 0.98 (2) 

353 123 (1) 290 (2) 0.98 (2) 

333 124 (1) 300 (2) 0.98 (2) 

313 124 (1)  303 (2) 0.98 (2) 

293 125 (1) 303 (2) 0.98 (2) 

273 125 (1) 305 (2) 0.98 (2) 

253 125 (1) 307 (2) 0.98 (2) 

233 125 (1) 308 (2) 0.98 (2) 

213 125 (1) 309 (2) 0.98 (2) 

193 125 (2) 310 (2) 1.00 (3) 

173 124 (2) 312 (4) 1.00 (3) 

153 123 (2) 315 (5) 1.00 (4) 
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was due to interactions between the CO2 molecule and the hydrogen nucleus on the formate linker 

which extended into the channel. There is a ~3.2 Å distance between the proton and the CO2 

oxygen nuclei, and a ~3.9 Å distance between the proton and CO2 carbon nuclei. This is notably 

greater than the respective 2.935 Å and 3.438 Å H to O and H to C distances identified by SCXRD 

within SIFSIX-3-Zn. The confined SIFSIX-3-Zn pore promotes close proximity and strong 

interactions with multiple fluorine and hydrogen nuclei extending into the channel, with the CO2 

molecule being in close proximity to eight hydrogen nuclei and four fluorine nuclei within the 

channels. 

Therefore, though the pores in SIFSIX-3-Zn are only slightly smaller than those in α-Mg 

formate, the powder patterns are significantly broader, highlighting the sensitive relationship 

between the nature of the pore and guest molecule behaviour. This is direct evidence of the 

confined nature of CO2 within the framework pores and the strong interactions of CO2 with the 

SIFSIX framework. Even at high temperatures, the CO2 molecule in SIFSIX-3-Zn is unusually 

immobile compared to previously studied ultramicroporous frameworks. This immobility has been 

quantified using simulations. 

Simulations using EXPRESS46 allow for precise determination of the nature of CO2 

motions. The simulated powder pattern is consistent with a modelled six-fold (C6) rotation through 

a rotational angle α. In practice, the molecule would be rotating through all positions on the 

rotational cone, as shown in Figure 2.10. The motional angles of C6 rotation are listed in Figure 

2.9, with an estimated error of 1°. The motional rate was found to be at least 107 Hz, which lies in 

the fast-motion regime of NMR dynamics. The C6 rotation occurs upon a single localized 

adsorption site within SIFSIX-3-Zn, and simulations show this angle to be 10° at low temperatures, 

gradually increasing to 14° at room temperature and 17° at 393 K. No change in α at higher 
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temperatures was observed. Although a non-localized hopping motion has been observed via 

SSNMR for CO2 in a variety of other MOFs,27, 31, 32, 50 conclusive evidence of hopping between 

sites was not observed in SIFSIX-3-Zn, likely due to the relatively small dimensions of the 

channels in SIFSIX-3-Zn.  

 

Figure 2.10: The wobbling motion of a CO2 molecule is shown above, as it interacts with the 

fluorine atoms extending into the pore. This wobbling is described by the angle α. For the purposes 

of EXPRESS46 simulations, the motions are modelled as a six-fold (C6) rotation. In practice, the 

molecule would be rotating about a continuous cone.  

 

In summary, VT static 13C SSNMR provided qualitative and quantitative data regarding 

the motion of CO2 within the SIFSIX-3-Zn framework, and showed CO2 to be relatively immobile 

and strongly adsorbed within the framework. Wobbling modelled by a C6 rotation of the molecule 

upon the adsorption site was determined to occur within the framework. The wobbling angles had 

little temperature dependence, varying between 12° and 19° between 153 K and 393 K, and all 

wobbling rates were in the fast motion regime. 



61 
 

 

2.3.3 Static 13C CP SSNMR of 13CO2 loaded SIFSIX-3-Zn 

The immobile nature of CO2 within the SIFSIX-3-Zn framework pores is suggestive of 

strong interactions with the framework. The existence of such interactions can be verified with CP 

experiments, which gauge the distance of different nuclei through the dipolar interaction. Room 

temperature 1H-13C CP SSNMR experiments were performed on the 13CO2 loaded framework, 

using contact times (CTs) of 0.5 ms, 2.0 ms, 5.0 ms, 7.0 ms and 10.0 ms. The CT refers to the 

duration of time in which contact pulses are applied to transfer magnetization between different 

nuclear spins. As the dipolar coupling mediating CP experiments is related to distance by a factor 

of one over r3, the contact time can be used to gauge the internuclear distances, as longer contact 

times are required for resonance enhancement of more distant nuclei. CP is also sensitive to 

motion, as motion will average the dipolar interaction and reduce CP efficiency. The room 

temperature and 153 K spectra can be seen in Figure 2.11 in blue.  

When conducting 1H-13C CP experiments on the activated framework, the spectra show a 

broad resonance from the  carbon in the pyrazine linkers (Figure 2.11, red). The spectra of the CO2 

loaded framework are easily distinguishable due to additional intensity from the adsorbed 13CO2, 

resulting in a skewed lineshape characteristic of immobile CO2. This intensity becomes 

increasingly apparent when using long CTs, with the pattern intensity increasing steadily as the 

CT grows longer. The increasing intensity of the CO2 resonance with longer CTs is suggestive of 

longer distances between the adsorbed CO2 and the framework nuclei. Based on the SCXRD, there 

is a 3.438 Å distance between framework 1H nuclei and adsorbed 13C nuclei. The C – H bond in 

the framework is  0.951 Å.  

Low temperature 1H-13C CP experiments were also performed on the 13CO2 loaded 

SIFSIX-3-Zn framework at a temperature of 153 K. Based on the static 13C SSNMR experiments 
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outlined above, guest CO2 molecules are expected to be less mobile at this temperature, which 

results in less modulation and dephasing of the dipolar interaction, thus, the effective dipolar 

coupling between framework and guest molecules is expected to be stronger. However, as the CO2 

molecule in SIFSIX-3-Zn is relatively immobile even at room temperature, there is little 

observable difference in the pattern intensity and shape at low temperatures compared to room 

temperature. 

 

 

Figure 2.11: The room temperature 1H-13C (left, 5000 scans) and low temperature 1H-13C (right, 

3000 scans), static CP spectra of 13CO2 loaded SIFSIX-3-Zn are depicted in blue. A pulse delay of 

2 s was used. They were collected using various CTs, listed to the left of the spectra. In red, the 

1H-13C static CP spectrum of the activated SIFSIX-3-Zn framework is shown for comparison. The 

red spectrum was collected using 13 000 scans, a pulse delay of 1 s, and a CT of 10 ms. 
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CP experiments show that adsorbed CO2 is sufficiently proximate to interact with 1H within 

SIFSIX-3-Zn, as the 13CO2 resonance is apparent in 1H-13C CP CP SSNMR at room temperature. 

Similar results are obtained at 153 K as at 293 K, due to the relative immobility of the guest 

molecule at all experimental temperatures. A better understanding of the effects of CT can be 

determined through CP/MAS experiments. 

2.3.4 13C direct MAS and CP/MAS SSNMR of 13CO2 loaded SIFSIX-3-Zn 

The immobility and strong adsorption of CO2 within the SIFSIX-3-Zn framework allow 

for MAS experiments to be performed on the CO2 loaded MOF. This is relatively uncommon, with 

only two reported studies of MAS SSNMR on CO2 loaded physisorbent MOFs.52, 53 The use of 

MAS SSNMR allows for higher resolution spectra to be collected, allowing for a more precise 

look at the CO2 adsorption sites and the effects of CP on the adsorbed 13C nuclei. 

13C MAS, 1H-13C CP/MAS and 19F-13C CP/MAS spectra were collected and are shown in 

Figure 2.12. Within the direct-excitation 13C spectra, a sharp signal can be observed at 124 (1) 

ppm, which is consistent with the δiso obtained from static 13C spectra, and can therefore be inferred 

as belonging to the adsorbed CO2 within the framework. No CO2 signals corresponding to a second 

adsorption site or free CO2 are evident, consistent with the SCXRD structure. A second, much 

broader and less intense signal is observed at 146 (1) ppm. This signal corresponds to the carbon 

atoms of the pyrazine linker in the framework, which have an expected δiso of 145.9 ppm.54 This 

signal is much less intense than that of the adsorbed 13CO2, due to the low natural abundance of 

13C in the linker versus the enriched abundance of 13C in 13CO2. Spinning sidebands are also 

observed for the adsorbed CO2 signal, 15000 Hz from the main signal, due to the spin rate of 

15.000 kHz. A slow spinning MAS NMR spectrum at a spinning rate of 2010 Hz was also collected 

for the CO2 loaded SIFSIX-3-Zn. The δiso of 13CO2 was unchanged in this spectrum, although the 
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sidebands were brought closer to the central resonance in a shape demonstrating the effects of 

CSA, as was observed in the static spectra (see Figure 2.9 above).  

 

Figure 2.12: The experimental 13C NMR spectra of 13CO2 loaded SIFSIX-3-Zn, when subjected to 

MAS SSNMR experiments, are all depicted above. The blue spectra were collected via direct-

excitation of 13C nuclei, using between 2000 and 3000 scans and a 3 s pulse delay. The red spectra 

were collected using 1H-13C CP, between 1000 and 2000 scans and a 2 s pulse delay., The green 

spectra were collected using 19F-13C CP, 1000 scans and a 1 s pulse delay. The contact times used 

for CP are listed to the left of the spectra. The spinning rate of the sample is 15.000 kHz unless 

otherwise noted. Notable sideband locations at 15 kHz are indicated by asterisks. 
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1H-13C CP/MAS experiments were also performed on the 13CO2 loaded SIFSIX-3-Zn 

framework. Based on the SCXRD structure, there are four 1H nuclei 3.438 Å from each adsorbed 

13C nucleus, and four 1H nuclei 3.789 Å from each 13C nucleus. This should result in a calculated 

dipolar coupling constant of 743.5 Hz between the adsorbed 13C nucleus and the closest 1H 

nucleus. As the protons within SIFSIX-3-Zn are directly bound to the carbon atoms in the pyrazine 

linker, the signal from the linker is dramatically enhanced. As the CT grows longer, the 

polarization transfer from 1H to the adsorbed 13C nuclei of 13CO2 becomes more efficient. The 

13CO2 signal becomes more enhanced, clearly showing the effects of a stronger CT on the adsorbed 

13CO2 molecule.  

Similar results were also obtained using 19F-13C CP/MAS experiments on the 13CO2 loaded 

framework, though the signal from the linker is significantly diminished when using low CTs as 

there is no direct bond connecting the fluorine to the pyrazine. There are two fluorine atoms 2.958 

Å from the adsorbed carbon nuclei based on structure obtained using SCXRD, and two fluorine 

atoms 3.746 Å from the adsorbed carbon nuclei. The dipolar interaction between one 13C nucleus 

and a single proximate 19F nucleus has a calculated value of 4369 Hz. The distance between 

fluorine atoms and the framework carbon nuclei is 3.309 Å, however longer CTs appear to have a 

greater effect on the adsorbed carbon resonance, likely due to the averaging effect of the CO2 

motion on the dipolar interaction. 

A series of CT arrays (described in Figure 2.13) relating the area of the 13CO2 resonance to 

the contact time was constructed using identical acquisition parameters at a variety of CTs on a 

sample spinning at 10 kHz, using both 1H-13C and 19F-13C CP/MAS experiments. They were 

constructed at both 293 K and 223 K. The intensity of the resonance was determined through 

simulating the signal with a Lorentzian line fit.  
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Figure 2.13: Two scatter plots displaying the relationship between relative signal intensity and 

contact time in 1H-13C and 19F-13C CP experiments on CO2 loaded SIFSIX-3-Zn are shown above. 

The CT used appeared to be proportional to the intensity in all studied cases, suggesting that the 

dipolar interaction between the nuclei used were not changing notably. 

 

During magnetization transfer, the magnetization of 1H and 19F relaxes with a characteristic 

time T1ρ. This causes the resonance intensity to eventually plateau due to the effects of 

magnetization relaxation,55 however this appears to require a CT of greater than 10 ms in the case 

of the guest 13C nuclei, likely due to the mobility of the CO2 within the pores. The consistent shape 

of the intensity vs. CT curve regardless of temperature suggests that the location of the CO2 

molecule relative to the framework atoms does not change significantly as the temperature is 

reduced from 293 K to 223 K. This means that the effects of motion on the dipolar interaction are 

not significantly changing as the temperature decreases. This is due to the low temperature 
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dependence of the motions as determined based on the 13C SSNMR powder pattern, with the CO2 

being relatively immobile at both room temperature and low temperatures. 

These experiments provide additional information on the framework interactions with the 

single CO2 adsorption site within SIFSIX-3-Zn. This adsorption site is sufficiently close to both 

the pyrazine and SiF6
2- linker dipolar interactions between the CO2 and both the hydrogen and 

fluorine atoms occur. This is due to the narrowness of the channels in the ultramicroporous 

framework and the proximity between the guest molecule and the multiple fluorine and hydrogen 

nuclei extending into the channel. There is little relationship between the temperature and strength 

of the dipolar interaction, due to the low mobility of the CO2 at all temperatures. 

2.3.5 13C REDOR SSNMR of 13CO2 loaded SIFSIX-3-Zn 

REDOR based experiments using 1H-dephasing were explored for their potential to 

investigate the strength of the dipolar coupling between the framework and guest molecules in 

more detail. CP experiments had already confirmed that such interactions occurred. REDOR 

experiments offer an alternative strategy to exploring the dipolar interaction.55, 56 Using an initial 

excitation pulse on the 13C spin and then multiple rotor synchronized dephasing pulses applied to 

a second spin, a reduced spectrum Sr is produced. The magnitude of the dephasing is dependant 

on the strength of the dipolar interaction and the length of the dephasing time. 

A sample room temperature 1H-dephased 13C REDOR spectrum can be observed in Figure 

2.14. The full spectrum (S0), dephased spectrum (Sr), and difference spectrum (ΔS) are all 

depicted. The dephasing lasted for 28 rotor periods at a spinning speed of 10.000 kHz, for a total 

dephasing time of 0.0028 s. The ratio between the difference and full spectra (the ΔS/S0 value) is 

0.12 after this dephasing time.  
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Figure 2.14: The experimental 1H-dephased 13C REDOR SSNMR spectra of 13CO2 loaded SIFSIX-

3-Zn are shown above. These spectra collected while spinning at 10.000 kHz with 400 scans and 

a 3.0 second recycle delay. The dephased spectrum was collected using a dephasing time of 0.02 

s. 

 

Full REDOR arrays were collected at 293 K and 223 K, using dephasing times from 0.001 

s up to 0.025 s. This data was used to form a curve relating the maximum intensity of ΔS/S0 to the 

dephasing time, shown in Figure 2.15 on the left. The magnitude of the dephasing is slightly 

stronger at lower temperatures, likely a result of decreased CO2 mobility at lower temperatures, 

resulting in less motional averaging and a stronger effective dipolar coupling. This difference was 

not detected in the CP SSNMR experiments, however the REDOR experiments possess greater 

sensitivity and provide a more quantitative description of the dipolar interaction. 

REDOR experiments utilizing 19F dephasing were also conducted on the SIFSIX-3-Zn 

framework. REDOR arrays were collected at 293 K and 223 K, using dephasing times up to 0.020 



69 
 

 

s. The resulting curve showing the relationship between ΔS/S0 and the dephasing time can be seen 

in Figure 2.15 on the right. The ΔS/S0 values were similar at 293 K and 223 K. Furthermore, at a 

given dephasing time, the ΔS/S0 is smaller than what was observed when using 1H dephasing. This 

would be in part due to the lower gyromagnetic ratio of 19F compared to 1H, and in part due to the 

smaller number of 19F nuclei than 1H nuclei within the framework.  

 

   

Figure 2.15: Scatter plots displaying the relationship between ΔS/S0 and the dephasing time for 

experimental 1H-dephased 13C REDOR and experimental 19F-dephased 13C REDOR SSNMR 

spectra of 13CO2 loaded SIFSIX-3-Zn are depicted.  

 

The effective dipolar interaction is significant as was determined through both REDOR 

and CP/MAS experiments. However, the CO2 motion averages this interaction, despite the small 

motional angles, relatively low mobility, and low degree of temperature dependence that were 
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determined for CO2 motion within SIFSIX-3-Zn through static 13C SSNMR experiments. These 

results are also consistent with the results of 13C SSNMR experiments using varying decoupling 

fields on the sample, which were unable to distinguish between samples when different decoupling 

fields were applied, despite the supposed proximity between the CO2 molecule and the framework 

nuclei (Figure S2.2).  

2.3.6 Static 67Zn SSNMR of as made, water exposed, activated and 13CO2 loaded SIFSIX-

3-Zn 

While CP and REDOR experiments provided information on the interactions between the 

guest molecules and the 19F and 1H nuclei, investigation of the local environment around the 67Zn 

nuclei required the use of high field SSNMR. This is due to the low abundance (4.1%), low 

gyromagentic ratio (1.677 × 107 rad T-1 s-1, or 2.669 MHz T-1), and a moderate nuclear quadrupole 

moment (150 mbarn) of 67Zn.57 High field 67Zn NMR experiments offer insight into the local 

environment of the Zn2+ ion within the SIFSIX-3-Zn framework. The Zn2+ ion is bound to four 

equatorial pyrazine linkers, and two axial SiF6
2- pillars, in an octahedral fashion. Unlike 13C, 67Zn 

is a quadrupolar nucleus. The primary factors describing the QI, and by extension the 67Zn NMR, 

are the quadrupolar coupling parameter (CQ) and the asymmetry parameter (ηQ).  

The CQ value is a measure of the strength of the QI between the electric nuclear quadrupole 

moment and the electric field gradient (EFG) produced by the local environment.55 The CQ value 

is correlated with spherical symmetry about the nucleus, with rising CQ values indicating less 

spherically symmetric environments, leading to broader SSNMR powder patterns. The ηQ value is 

a measure of the axial symmetry of the EFG tensor, and varies between 0 and 1.55 A ηQ of 0 

indicates a perfectly axially symmetric EFG tensor and the presence of a Cn rotational axis where 

n ≥ 3, while a ηQ of 1 indicates low axial symmetry. 
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The 67Zn SSNMR spectra can be observed in Figure 2.16. CQ and ηQ parameters were 

obtained for the as made, activated, and CO2 loaded phases of SIFSIX-3-Zn, with the as made 

phase containing methanol solvent in the pores. These parameters were obtained from 

experimental 67Zn SSNMR powder patterns and were compared to results from computational 

methods using the CASTEP software package,48 shown in Table 2.5. 

 

Table 2.5: The observed and calculated 67Zn QI parameters of SIFSIX-3-Zn samples are listed 

below. These parameters were obtained from analytical simulations of 67Zn SSNMR spectra and 

calculated for the reported and geometry optimized structures of SIFSIX-3-Zn. 

 

 

The as made SIFSIX-3-Zn 67Zn powder patterns correspond to large CQ values, of 16.0 

MHz, and near-zero ηQ values. This indicates a low degree of spherical symmetry about the Zn 

nucleus but a high degree of axial symmetry. Six-coordinate Zn centres usually have a high degree 

of spherical symmetry, with CQ values as high as 16.0 MHz being unusual.58 The low spherical 

symmetry is likely due to the presence of unequal numbers of multiple ligand types, with both 

pyrazine and SiF6
2- ligands on the Zn2+ ion. The high axial symmetry is due to the C4 rotation axis 

about the c-axis, formed by the four pyrazine linkers. The CQ became smaller after activation when 

the adsorbed methanol was removed, with the CQ dropping from 16.0 MHz to 13.5 MHz. The CQ 

and ηQ values for the activated framework are in good agreement with the values obtained from 

Sample CQ (MHz) ηQ 

As Made 16.0 (1) 0.04 (2) 

Activated 13.5 (1) 0.03 (1) 

CO2 Loaded 13.6 (1) 0.03 (1) 

Calculated, Activated 13.93 0.00 

Calculated, Activated, Geometry optimized 15.50 0.00 
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calculations using the reported empty structure,2 with a difference of roughly 4% between 

experimental and calculated CQ. Calculations for a geometry optimized framework of SIFSIX-3-

Zn produced a higher CQ value (15.50 MHz) that was more consistent with experimental results 

for the as made phase. This indicates that the reported SIFSIX-3-Zn structure is likely accurate for 

the activated SIFSIX-3-Zn phase.  

 

 

Figure 2.16: The experimental (left) and simulated (right) 67Zn NMR spectra of as made, activated 

and CO2 loaded SIFSIX-3-Zn are shown above. Between 224 000 and 400 000 scans were used 

with a recycle delay of 0.25 s. 

 

While the bond angles around the Zn2+ remain 90° in all structures, the Zn – Si and Zn – N 

bond lengths change. The bond lengths about the Zn for the reported and geometry optimized 

activated structure are listed in Table 2.6. It can be seen that in the geometry optimized structure, 

there is a greater difference between the Zn – Si and Zn – N bond lengths, of 0.120 Å rather than 

0.115 Å. This accounts for the slightly increased 67Zn CQ value in the geometry optimized 
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structure. This suggests that higher CQ values are correlated with the difference between the Zn – 

F and Zn – N bond lengths.  

 

Table 2.6: The Zn – F and Zn – N bond lengths are listed below for the geometry optimized and 

reported structure of SIFSIX-3-Zn. The calculated 67Zn CQ values are also listed for the purpose 

of comparison. 

Activated Structure Zn – F bond length 

(Å) 

Zn – N bond length 

(Å) 

Calculated CQ 

(MHz) 

Reported 2.057(1) 2.172(1) 13.93(1) 

Geometry optimized 2.058(1) 2.178(1) 15.50(1) 

 

The as made SIFSIX-3-Zn phase possesses a slightly higher 67Zn CQ value than the 

activated and CO2 loaded phases, comparable to the calculated CQ of the geometry optimized 

phase.  The activated and CO2 loaded phases should contain Zn – F bonds and Zn – N bonds that 

are more similar to each other in length, while the as made phase possesses Zn bonds that are more 

dissimilar in length. 

  After CO2 loading, the experimental CQ and ηQ remained near identical to those of the 

activated sample, indicating that CO2 is not affecting the local structure about the Zn nucleus.    

2.4 Conclusions 

 Using SCXRD, the structure of SIFSIX-3-Zn loaded with CO2 has been determined. 

SIFSIX-3 frameworks are known to possess extremely high selectivity for adsorption of CO2 gas, 

while possessing no OMSs to promote CO2 adsorption. The CO2 adsorption site has been precisely 

identified, positionally disordered across the inversion centre within the pores. The overall 

framework structure was also found to contract slightly compared to the empty framework, due to 

the presence of the CO2 molecule. This was primarily due to the contraction of the pyrazine linker, 
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and the Zn – N and Zn – F – Si bonds due to interactions with the CO2. Bond angles about the Zn 

and Si nuclei were unchanged. The pyrazine linkers were found to tilt more strongly into the 

channels, restricting available space for the guest molecules. The equatorial fluorine atoms were 

similarly found to extend further into the channels after CO2 loading, further enhancing guest-host 

interactions.  

To supplement these findings, a series of SSNMR experiments have been conducted on the 

ultramicroporous SIFSIX-3-Zn framework, to explore CO2 motional behaviour and the 

interactions between CO2 and the framework as CO2 gas is loaded into the structure. 13C SSNMR 

has shown that the CO2 gas possesses a high level of immobility within the pores of SIFSIX-3-Zn, 

displaying only wobbling motions about a 19° α angle at 393 K, with a low degree of temperature 

dependence. 1H-13C and 19F-13C CP SSNMR experiments provided information on the dipolar 

interactions between the framework atoms and guest molecule, showing that such interactions 

existed. 1H-13C and 19F-13C REDOR and CP/MAS SSNMR experiments supported the previous 

CP experiments. The REDOR experiments confirmed a small degree of temperature dependence 

in the strength of the 1H-13C dipolar interactions. 67Zn SSNMR experiments and calculations gave 

insight into the changes in the metal centre as guest molecules were evacuated and loaded into the 

framework, and suggested that the CQ of the Zn nuclei became smaller after methanol evacuation 

from SIFSIX-3-Zn, due to changes in the Zn – F and Zn – C bond lengths. CO2 loading did not 

change the CQ value, indicating the guest CO2 does not change the Zn environment to the degree 

the methanol molecule does. 

 This chapter illustrates the unusual behaviour of CO2 guest molecules in SIFSIX-3-Zn, and 

the changes in the framework structure. It is hoped that continued study in these fields will increase 

the scientific community’s understanding of guest adsorption, and of CO2 adsorption in particular.  
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2.6  Appendix 

Table S2.1: Acquisition parameters for VT static 13C SSNMR of 13CO2 loaded SIFSIX-3-Zn are 

shown below. 

Sample Temperature 

(K) 

Acquisitions Decoupled Nuclei Pulse 

Delay (s) 

90° Pulse 

Width (μs) 

SIFSIX-

3-Zn, 

CO2 

Loaded 

393 K  749 1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

5 

5 

5 

5 

5 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

373 K  838 

353 K  706 

333 K  1110 

313 K  762 

293 K  4083 15 

273 K  623 5 

5 

5 

5 

5 

5 

5 

253 K  626 

233 K  782 

213 K  653 

193 K  671 

173 K  603 

153 K 622 

293 K 

293 K 

293 K 

4665 19F 10 

10 

10 

2.75 

2.75 

2.75 

1681 None 

1460 1H and 19F 

 

Table S2.2: Acquisition parameters for static CP SSNMR of 13CO2 loaded SIFSIX-3-Zn are shown 

below. 

Temperature CP Acquisitions Pulse Delay (s) 90° Pulse Width 

(μs) 

293 K 1H-13C 7200 2 6.90 

135 K 1H-13C 1800 2 13.5 

293 K 19F-13C 1000 2 9.50 



80 
 

 

Table S2.3: Acquisition parameters for MAS 13C direct-excitation and CP SSNMR of 13CO2 loaded 

SIFSIX-3-Zn are shown below. 

Spin Rate (Hz) CP Acquisitions Pulse Delay (s) 90° Pulse Width 

(μs) 

15 000 None 2950 20 3.70 

2010 None 2000 3 3.70 

15 000 1H-13C 1400 2 4.50 

15 000 19F-13C 1000 2 5.20 

 

Table S2.4: Acquisition parameters for MAS direct-excitation and CP SSNMR of SIFSIX-3-Zn 

using additional nuclei are shown below. 

Spin Rate (Hz) Nuclei Acquisitions Pulse Delay (s) 90° Pulse Width 

(μs) 

15 000 1H 60 5 8.75 

15 000 19F 30 10 6.25 

15 000 1H-29Si 4000 6.6 1.00 

 

Table S2.5: The observed 13C chemical shift parameters of CO2 adsorbed within room temperature 

SIFSIX-3-Zn, when using different decoupling fields, are listed below.These parameters were 

obtained from analytical simulations of static 13C SSNMR spectra using WSolids.45 

 

Decoupling δiso (ppm) Ω (ppm) κ 

1H 124 (1) 306 (2) 0.98 (2) 

19F 123 (1) 306 (3) 0.97 (3) 

None 122 (1) 308 (2) 0.96 (2) 

1H and 19F 123 (1) 308 (2) 0.95 (2) 
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Figure S2.1: The experimental 13C SSNMR spectra of as made and activated SIFSIX-3-Zn. The 

number of scans and recycle delays used are listed on the experimental spectra. 

 

 

 

Figure S2.2: On top, the experimental (left) and simulated (right) 13C NMR spectra of 13CO2 loaded 

SIFSIX-3-Zn with different combinations of decoupling fields are displayed. 1H decoupling is 

shown in blue, 19F decoupling is shown in red, non-decoupled is shown in orange, double 

decoupling is shown in green. On the bottom, the overlapping experimental spectra are shown. 
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Figure S2.3: The experimental 1H-29Si CP spectra of as made, activated and CO2 loaded SIFSIX-

3-Zn. The scan numbers and recycle delays are listed on the experimental spectra. All the spectra 

were collected while spinning at 5 kHz. Spinning sidebands are denoted by asterisks. 

 

 

 

Figure S2.4: The experimental 19F spectra of as made, activated and CO2 loaded SIFSIX-3-Zn are 

depicted above. The scan numbers and recycle delays are listed on the experimental spectra. All 

the spectra were collected while spinning at 15 kHz. Asterisks denote notable spinning sidebands. 
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Figure S2.5: The experimental 1H spectra of as made, activated and CO2 loaded SIFSIX-3-Zn. The 

scan numbers and recycle delays are listed on the experimental spectra. All the spectra were 

collected while spinning at 15 kHz. Spinning sidebands are denoted by asterisks. 

 

2.6.1 SSNMR using additional nuclei in SIFSIX-3-Zn. 

MAS SSNMR experiments were conducted using 1H, 19F and 29Si nuclei. Experiments 

were conducted on the as made, activated, and CO2 loaded phases of SIFSIX-3-Zn. 

The collected 1H-29Si CP spectra can be seen in Figure S2.3. The spectra are characterized 

by a single resonance at approximately 185 ppm. This chemical shift value is comparable to those 

obtained in previous NMR studies of hexafluorosilicates.59 

The collected 19F spectra can be seen in Figure S2.4. The spectra feature two distinct 

resonances, one at -131 ppm and a less intense resonance at -150 ppm. The more intense resonance 

is assigned to the four equatorial fluorine atoms within the SiF6
2- linker in the framework, while 

the less intense resonance is assigned to the two axial fluorine atoms in the SiF6
2- linker. The 

fluorine atom in SiF6
2- has a previously reported CS of -130.5 ppm,60 while the CS of the fluorine 
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atom in NaSiF6 is reported as -152 ppm.59 This suggests consistency between experimental and 

literature values for these chemical shifts. 

 The 1H spectra are depicted in Figure S2.5, and characterized by a single resonance at 9.4 

ppm, corresponding the proton on the pyrazine linker. The proton in the pyrazine molecule has a 

reported CS of 8.63 ppm.61 The as made framework also contains two notable resonances at 2.2(2) 

ppm and 1.1(2) ppm. These resonances are due to the protons in the guest methanol, which have 

reported CS values of 3.49 ppm for the methyl protons and 1.09 ppm for the hydroxyl proton.62 

Given the 1.3 ppm difference between experimental and literature CS values for the methyl 

protons, it seems likely that these protons are interacting strongly with the SIFSIX-3-Zn 

framework. 

The chemical shift values of the silicon, fluorine and hydrogen atoms does not appear to 

be affected by the presence or absence of methanol or CO2 molecules within the framework pores, 

suggesting that there is little change in their chemical environment due to interactions between 

these nuclei and guest molecules. The number of unique nuclei identified is consistent with the 

known structure of SIFSIX-3-Zn in all cases.  
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Chapter 3 : Studying Carbon Dioxide Adsorption within the Amine 

Functionalized ZnAtzOx Framework 

3.1 Introduction 

Due to the known impacts of carbon dioxide on the greenhouse effect, and the 

consequences thereof,1 there has been much research into the field of carbon capture from flue-

gas and air.2, 3 Chemisorbent alkanolamines currently remain the preferred choice for CO2 capture 

applications over physisorbent materials.4, 5 However, solid physisorbent MOF materials are an 

attractive alternative due to the lower energy requirements and lack of equipment corrosion.6 

Amine-functionalized physisorbents, such as the UiO-66-NH2 metal-organic framework (MOF),7 

are known to exhibit increased adsorption enthalpy, uptake, and selectivity for carbon dioxide 

versus their nonfunctionalized counterparts.8, 9 The addition of highly polar ligands such as NH2 

enhances the affinity of the MOF for polarizable gases such as CO2, and enhances selectivity 

against N2 molecules.10-13 Given this knowledge, the study of amine-functionalized MOFs for CO2 

adsorption is a promising path for the improvement of solid physisorbents for CO2 adsorption 

applications. 

One such material is a series of porous zinc-aminotriazolato-oxalate MOFs referred to as 

ZnAtzOx, depicted in Figures 3.1, 3.2 and 3.3.14 This structure is made up of zinc-3-amino-1,2,4-

triazolate layers that are pillared into three dimensions by oxalate units, creating 3.5 × 4.0 Å 

channels along the a-axis, which are crosslinked by smaller channels running along the b and c-

axes. The ZnAtzOx framework exhibits high selectivity for CO2 adsorption against other gases 

such as H2 and N2 due to its narrow ultramicropores and amine functionality.14, 15 The effects of 

ultramicropores of less than 7 Å across on CO2 selectivity is well demonstrated in structures such 

as the SIFSIX-3 materials, and discussed in more detail in the previous chapter.16  Crystallographic 
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and computational studies of the original ZnAtzOx phase found that each pore contains two 

partially occupied CO2 binding sites; one is located near the amine group while the other is found 

closer to the oxalate group.17 The two binding sites lead to a maximum observed occupancy of 

approximately 1.3 CO2 molecules per unit cell. A similar series has also been synthesized by 

replacing the oxalate linkers in ZnAtzOx with 1,4-benzenedicarboxylate ligands to produce the 

CALF series of MOFs, though this series was not found to be viable for CO2 capture applications.18  

 

Figure 3.1: Zn2Atz2 nodes in the ZnAtzOx(H2O) framework are depicted above. Each five-

coordinate zinc centre is coordinated to an oxalate linker via a bidentate interaction. Each zinc is 

in turn coordinated to three separate aminotriazolato linkers. This forms two-dimensional zinc-

aminotriazolato layers pillared into three dimensions by oxalate linkers. For all figures in this 

chapter, the atom colours are green for Zn, grey for C, red for O, and blue for N. 

 

ZnAtzOx was originally synthesized in 2009 solvothermally using methanol.14 However, 

in 2016 it was detailed how the choice of solvent dramatically affected the CO2 uptake of the 

structure.19 A series of topologically related ZnAtzOx frameworks were synthesized 

solvothermally using water (Figure 3.3), ethanol (Figure 3.4), propanol and butanol. The CO2 
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uptakes of these different phases varied dramatically; the water synthesized structure, which will 

be referred to here as ZnAtzOx(H2O), had an uptake of over 5 mmol g-1 of CO2 at a pressure of 

800 mmHg, while the original phase adsorbed less than 4 mmol g-1 of CO2 at the same pressure.  

The propanol synthesized structure, in contrast, appeared to be non-porous.  

 

Figure 3.2: The pores of the ZnAtzOx(H2O) framework are illustrated from a perspective that lies 

along the crystallographic b-axis (A), [0 1 1] axis (B), and a-axis (C). The alternating zinc-

aminotriazolato and oxalate layers can be seen in the left two views of the structure. The exact 

shape of the pore differs depending on the phase of the MOF, where the synthesis medium can be 

methanol, water, ethanol or propanol.  

 

The CO2 uptake vs. partial pressure curve for ZnAtzOx(H2O) features a sharp increase in 

CO2 uptake at a P/P0 level of 0.2 at 273 K. This indicates that the anomalously high uptake of this 

phase is due to a CO2 assisted gate-opening mechanism, where the guest molecules induce a 

structural modification that creates additional adsorption sites within the framework. The effects 

c 

a 

A B 
C 
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of this gate-opening are significant, with the maximum occupancy of CO2 molecules per unit cell 

increasing from 1.3 to 2.25. 

 

Figure 3.3: The ZnAtzOx(H2O) framework is illustrated from a perspective that lies along the 

crystallographic b-axis. Water molecules occupy the pore and their O nuclei are depicted in the 

figure above. The structure contains two similar H2O adsorption sites 3.0 to 4.0 Å from the oxalate 

and amino-triazolate linkers.  

c 

a 
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Figure 3.4: The ZnAtzOx(EtOH) framework is illustrated from a perspective that lies along the 

crystallographic b-axis. Ethanol molecules occupying the pore are not shown.  

 

The cause of this gate-opening is thought to be the asymmetrical bonding of the oxalate 

linkers. Within ZnAtzOx(H2O), the bonds between the Zn2+ centre and the oxygen atoms of the 

oxalate linker are more symmetrically arranged than in other ZnAtzOx phases. This symmetric 

arrangement of relatively weak bonds facilitates a swivelling motion of the oxalate pillars. The 

zinc oxalate units are illustrated in Figure 3.5. This is supported by PXRD experiments showing 

that no major structural change occurs within the framework after gate-opening. This indicates that 

c 

a 
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subtle molecular motions such as linker rotation must have been the cause of the observed gate-

opening.19 

 

Figure 3.5: A comparison of the zinc-oxalate units in ZnAtzOx(MeOH) and ZnAtzOx(H2O) is 

shown. It has been argued that the symmetrical Zn – O bonds within ZnAtzOx(H2O) allow for gate-

opening to occur, as the oxalate units are able to more easily swivel.  

 

Comparing the room temperature adsorption isotherms can help gauge the selectivity for 

CO2 adsorption over N2 in ZnAtzOx(H2O).19 Selectivity was assessed by comparing the ratio of 

CO2 and N2 adsorption in adsorption isotherms, divided by the ratio of CO2 and N2 partial 

pressures. The selectivity determined by this method, at low partial pressures of 0.15 bar CO2 and 

0.75 bar N2, was found to exceed the selectivity observed in other highly selective frameworks 

such as SIFSIX-3-Zn16 and SIFSIX-3-Cu;20 the ZnAtzOx family of structures may be a viable 

solid CO2 capture material at low CO2 pressures, and therefore it is of interest to understand the 

behaviour and interactions of CO2 within the material.  

 The factors behind the carbon dioxide selectivity within ZnAtzOx(H2O) can be 

investigated using solid-state nuclear magnetic resonance (SSNMR), which is a key tool for 
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studying interactions between guest molecules and host frameworks. It is also possible to 

determine whether the phase of ZnAtzOx has a noticeable effect on the types of CO2 motion 

present within the framework. Much like the previously discussed SIFISIX-3-Zn, ZnAtzOx(H2O) 

is an ultramicroporous framework, although its structure is very different from that of the SIFSIX 

frameworks. The strong selectivity of certain ultramicroporous frameworks for CO2 adsorption 

warrants a thorough investigation of the interactions between such frameworks and their guests.   

3.2 Experimental 

3.2.1 Synthesis of ZnAtzOx 

ZnAtzOx phases were synthesized solvothermally using methods described in the 

literature.19 A typical synthesis of ZnAtzOx(H2O) or ZnAtzOx(EtOH) is as follows: oxalic acid 

(0.09 g, 1 mmol, Sigma-Aldrich, 98%), 3-amino-1,2,4-triazole (0.42 g, 5 mmol, Sigma-Aldrich, 

≥95%) and zinc carbonate basic (0.11g, 1 mmol, Alfa Aesar, 97%) were added to either (i) a 3 mL 

butanol and 3 mL water solvent mixture or (ii) a 5 mL ethanol and 1 mL water solvent mixture in 

a Teflon-lined stainless steel autoclave. The solution was stirred for 30 min at room temperature, 

and then heated at 180 °C for two days. Upon cooling, a colourless crystalline product was 

collected using vacuum filtration, washed with methanol and water, and dried at 90 °C in air for 

three hours.  

3.2.2 Powder X-ray diffraction 

The identities and purities of the material were confirmed using powder X-ray diffraction 

(PXRD). The PXRD patterns were recorded on an Inel CPS powder diffractometer operating with 

Cu Kα radiation. Experimental and simulated PXRD patterns are depicted in Figure 3.6. The 

experimental PXRD patterns are consistent with the calculated patterns from known crystal 
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structures and with previously determined experimental PXRD patterns of the materials, and 

suggest phase purity of the samples.19 There are slight discrepancies in reflection intensities when 

contrasting the experimental and calculated ZnAtzOx(EtOH) patterns, likely due to preferred 

orientation effects. Similar discrepancies in reflection intensities were observed in the previously 

reported PXRD pattern of the material,19 therefore the identity of the material can still be 

confirmed.  

 

Figure 3.6: The experimental and calculated ZnAtzOx PXRD patterns are depicted above. 
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3.2.3 Sample activation and gas loading 

The activation process removes solvent molecules from the framework pores. A Schlenk 

line was used for activation. Samples were placed into the bottom of an L-shaped glass tube, and 

a thin layer of glass wool was used to secure the sample in place. The ZnAtzOx samples were 

activated under dynamic vacuum at 150 ± 10 °C for 12 hours. CO2 gas was released into the line, 

with a measured total volume of 82.7 mL, as the CO2 pressure was monitored. The sample was 

then loaded with a known quantity of CO2 while the glass tube was immersed in liquid nitrogen. 

The loaded sample within the glass tube was then flame sealed off from the Schlenk line to trap 

guest molecules in a closed space with the sample prior to SSNMR experiments. 

A 0.25 molar ratio of CO2 to Zn2+ was used when loading samples with carbon dioxide. 

13C labelled CO2 (Sigma-Aldrich, 99 atom % 13C, <3 atom % 18O) was used to load samples for 

13C SSNMR experiments. 

3.2.4 SSNMR experiments 

13C and 1H SSNMR experiments were performed at the University of Western Ontario in 

London, Ontario, using a Varian Infinity Plus SSNMR spectrometer equipped with an Oxford 9.4 

T wide-bore magnet. Static 13C experiments were conducted with a 5 mm HX 

Varian/Chemagnetics probe, while 13C and 1H magic-angle spinning (MAS) experiments were 

conducted with a 4 mm HXY Varian/Chemagnetics probe.  

13C spectra were referenced to tetramethylsilane (TMS) using the methylene carbon in 

ethanol as a secondary reference, which has a chemical shift (CS) of 58.05 ppm.21 All direct-

excitation 13C SSNMR experiments were performed using the DEPTH-echo pulse sequence to 

minimize spectral distortions and interference from the background probe signal.22 The Hartmann-

Hahn match in 1H-13C cross polarization (CP) experiments was calibrated using solid adamantane 
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(Sigma-Aldrich, 98+%). 1H spectra were referenced to TMS using the CH2 sites in solid 

adamantane (Sigma-Aldrich, 98+%) as a secondary reference with a CS of 1.85 ppm.23, 24 Direct-

excitation 1H experiments were performed using a one pulse sequence. Additional parameters for 

individual spectral acquisitions are described in Tables S3.1, S3.2, S3.3 and S3.4. All experiments 

were performed using a 30 kHz 1H decoupling field. 

67Zn experiments were conducted at 21.1 T on a Bruker II Avance spectrometer at the 

National Ultrahigh-field NMR facility for Solids in Ottawa, Canada, with a home-built 7 mm HX 

probe, using a solid-echo (i.e., 90 - 90  echo) pulse sequence. The spectra were referenced to 1.0 

M aqueous Zn(NO3)2, at 0 ppm.  

Frequency switched Lee-Goldburg (FSLG) Heteronuclear correlation (HETCOR) 

experiments were conducted at 21.1 T using the same Bruker II Avance spectrometer described 

above. Experiments were performed using a 4 mm HCN Bruker probe in high speed ZrO2 Bruker 

rotors, spinning at 18 kHz. 32 points were used across the indirect (1H) dimension, with 512 scans 

for each point. A short contact time of 500 μs was used to prevent unwanted long-range 

correlations. Spectra were referenced to TMS using solid adamantane as a secondary reference 

with a chemical shift of 1.85 ppm.23 The Hartman-Hahn match in 1H-13C CP experiments was 

calibrated using glycine.  

3.2.5 Spectral simulations 

The WSolids25 computer software was used to analytically simulate all static 13C SSNMR 

spectra and obtain apparent powder pattern parameters. The 13C patterns are broadened and 

dominated by the CS anisotropy (CSA), while the 67Zn patterns are dominated by the quadrupolar 

interaction (QI).  WSolids calculated the powder pattern of a static powder sample showing effects 

of the CSA or QI. 13C SSNMR patterns were calculated through inputting the orthogonal 
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components of the CS tensor (δ11, δ22 and δ33). 
67Zn SSNMR patterns were calculated through 

inputting the electric field gradient (EFG) parameters (CQ and ηQ). By comparing the known 

experimental powder patterns to a calculated pattern, the experimental powder pattern parameters 

for 13C (δiso, Ω and κ) and 67Zn (CQ and ηQ) can be determined. The errors in pattern parameters 

were estimated by bidirectional variation of the parameters from the best-fit value.  

The EXPRESS26 computer software was used to simulate the effects of motion on 13C 

SSNMR powder patterns. EXPRESS describes motion in terms of discrete (Markovian) jumps at 

specified rates between sites. A motional model can then be described by the number, orientation, 

and populations of sites, as well as the nature of the connections and rates of jumps. The motion 

results in a predictable averaging of CS tensor components. Given the known powder pattern 

parameters of solid CO2 (δiso = 126 ppm, Ω = 335 ppm, and κ = 1),27 and assuming a linear 

geometry for the CO2 molecule, powder patterns produced by specific types and rates of motion 

were calculated across 4096 powder increments using the ZCW powder averaging procedure and 

compared to the experimental powder pattern. 

3.2.6 Theoretical calculations 

Gauge-including projector augmented wave (GIPAW) quantum chemical calculations 

were performed by Dr. Victor Terskikh with the NMR module of the CASTEP software package 

version 4.4 within Materials Studio.28, 29 The unit cell parameters and atomic coordinates for 

ZnAtzOx(H2O) were taken from the reported crystal structure at 173 K.19 Geometry optimization 

was performed prior to calculations. The activated structure was generated by removing H2O 

molecules from the reported as made ZnAtzOx(H2O) structure, and calculations were performed 

with and without geometry optimization on the activated structure. Calculations were performed 

with a plane-wave cut-off energy of 300 eV and on-the-fly generated ultrasoft pseudopotentials.  
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3.3 Results and Discussion 

3.3.1 Static variable temperature 13C SSNMR of 13CO2 loaded ZnAtzOx(H2O) 

The motional behaviour of the CO2 molecules in the ZnAtzOx(H2O) pores was assessed 

using static 13C SSNMR experiments. These experiments conducted on ZnAtzOx(H2O) revealed a 

similar lack of CO2 mobility as that within SIFSIX-3-Zn. Variable temperature (VT) 13C SSNMR 

experiments were conducted on 13CO2 loaded ZnAtzOx(H2O). ZnAtzOx synthesized in H2O was 

previously found to have the highest CO2 uptake of all the ZnAtzOx framework phases studied, 

being able to hold 2.25 molecules of CO2 per functional unit.19 The experimental and simulated 

SSNMR powder patterns can be seen in Figure 3.7, and the CS parameters of the simulated patterns 

can be seen in Table 3.1. Only a single crystallographically unique CO2 adsorption site can be 

identified from the NMR results.  

The Ω of the powder pattern ranges from 256(4) ppm at 393 K, to 311(3) ppm at 153 K. 

The κ value ranges from 0.69(3) to 0.94(2) over the same temperature range. The adsorbed 13CO2 

in ZnAtzOx(H2O) is relatively immobile, though not to the extent observed in SIFSIX-3-Zn, where 

Ω and κ values were 315 ppm and 1.00 respectively at 153 K. Though ZnAtzOx(H2O) displays a 

greater degree of temperature dependence for CO2 motions than what was observed in SIFSIX-3-

Zn, it is nevertheless  not so much as what has been observed in previously studied MOFs.22, 30-32 

The temperature dependence of the κ parameter is a notable difference from the CO2 behaviour in 

SIFSIX-3-Zn, where it was near 1.0 even at high temperatures. This is indicative of additional 

motions occurring in the framework, which are quantified below.  

At temperatures of 373 K and below, additional spectral intensity can be observed in the 

13C powder pattern at approximately 150 ppm. This may be indicative of an additional CO2 

adsorption site, or may simply be due to 13C nuclei present in the linkers, which have expected 

chemical shift values between 161 ppm and 140 ppm.33, 34  
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Figure 3.7: The experimental (left) and simulated (right) 13C NMR spectra of 13CO2-loaded 

ZnAtzOx(H2O) are shown at temperatures varying from 393 K to 153 K. The spectra were 

collected using between 800 and 1000 scans and a 6 s recycle delay, except at 293 K where 3000 

scans and a 20 s recycle delay was used. The C6 rotational motion and C2 hopping motion of CO2 

is described by the α and  angles listed on the simulated spectra. simulated spectra of solid CO2 

depicted on the bottom for reference.27  
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Figure 3.8: The wobbling and two-fold (C2) hopping motions of a CO2 molecule are shown above, 

and are described by the angles α and β respectively. For the purpose of EXPRESS26 simulations, 

the wobbling motions are modelled as a six-fold (C6) rotation. In practice, the molecule would be 

rotating about a continuous cone.  

 

EXPRESS26 simulations confirm the presence of C2 hopping motions between equivalent 

adsorption sites, in addition to the wobbling motions modelled as C6 rotation that were also 

observed in SIFSIX-3-Zn. These combined motions are depicted in Figure 3.8. The presence of 

hopping motions is likely due to the more open and interconnected nature of the pores in ZnAtzOx 

and fewer 1H nuclei extending into the channel, rather than the narrow and confined 1-dimensional 

channels observed in SIFSIX-3-Zn containing numerous 1H and 19F nuclei proximate to the 

adsorbed CO2. Both wobbling and hopping motions were observed at all temperatures. As in 

SIFSIX-3-Zn, the motional rate was found to exceed 107 Hz at all temperatures. The α angle, 

describing the C6 wobbling, gradually increases from 9° to 17° as the temperature rises from 153 
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K to 393 K. The β angle, describing the C2 hopping, similarly shows a gradual increase from 12° 

to 22°.  

Table 3.1: The observed 13C chemical shift parameters of CO2 adsorbed within ZnAtzOx(H2O) are 

listed below. These parameters were obtained from analytical simulations of static 13C SSNMR 

spectra using WSolids.25 

 

 

3.3.2 13C direct MAS and CP/MAS SSNMR of 13CO2 loaded ZnAtzOx(H2O) 

13C MAS SSNMR experiments can help identify adsorption sites present within the porous 

structure, in the event of changes in the chemical environment of the adsorbed CO2. Combining 

CP with MAS can provide direct evidence of dipolar interactions between the framework and guest 

molecule. 

Temperature (K) δiso (ppm) Ω (ppm) κ 

393 124 (1) 256 (4) 0.69 (3) 

373 125 (2) 259 (3) 0.71 (3) 

353 125 (2) 265 (4) 0.74 (2) 

333 124 (2) 270 (5) 0.77 (2) 

313 123 (1) 275 (5) 0.80 (3) 

293 124 (1) 278 (3) 0.81 (2) 

273 124 (2) 282 (3) 0.84 (2) 

253 124 (2) 288 (3) 0.86 (2) 

233 125 (2) 292 (3) 0.87 (2) 

213 126 (2) 295 (3) 0.90 (2) 

193 126 (2) 299 (3) 0.91 (2) 

173 126 (2) 301 (3) 0.93 (2) 

153 124 (2) 311 (3) 0.94 (2) 
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MAS SSNMR experiments were performed on the 13CO2 loaded ZnAtOx(H2O) MOF. 13C 

MAS and 1H-13C CP/MAS spectra are shown in Figure 3.9. In the 13C MAS spectra, a sharp 

isotropic signal can be observed at 124 (1) ppm. This is identical the δiso obtained from static 13C 

spectra on this CO2 loaded structure. This signal can be assigned to 13CO2 adsorbed within the 

framework.27 No other strong 13C resonances were identified at other chemical shift values, 

consistent with the static 13C spectra. 

 

 

Figure 3.9: The experimental 13C MAS SSNMR spectra of 13CO2 loaded ZnAtzOx(H2O) are all 

depicted above. The blue spectra were collected via direct excitation of 13C nuclei using a one 

pulse sequence with approximately 400 scans and a 5 s pulse delay. The red spectra were collected 

using 1H-13C CP/MAS experiments, with 360 scans and a 10 s pulse delay. The contact times used 

for CP are listed to the left of the spectra. The MAS and CP/MAS spinning rate is 12.500 kHz 

unless otherwise noted. The notable sideband locations are indicated by asterisks. 
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Additional less intense resonances can be observed in 1H-13C CP/MAS spectra, which are 

centered at 168(1) ppm, 162(1) ppm, and 150(1) ppm. These resonances originate from 13C nuclei 

within the oxalate and 3-amino-1,2,4-triazolate linkers present in the framework. Oxalic acid has 

a documented 13C chemical shift of 160.77 ppm,33 and 3-amino-1,2,4-triazole has reported 13C 

chemical shifts of 154.7 ppm for C(3) and 140.5 ppm for C(5).34  

Resonance assignments are indicated in Figure 3.9. The framework 13C resonance 

intensities increases dramatically with the use of CP, as the framework 13C nuclei are directly 

attached to 1H. The resonance at 168 ppm most likely corresponds to the oxalate carbon, here 

referred to as C(ox), at it is the most distant from 1H atoms within the framework, and is most 

enhanced by the use of a longer contact time (CT). Longer CTs allow for the enhancement of 

resonances from 13C nuclei more distant from the 1H nuclei. This is because the dipolar interaction 

mediating CP experiments is inversely related to the internuclear distance cubed, and as such 

requires the use of longer CTs to observe the full effects of CP. The resonance at 150 ppm likely 

corresponds to the C(5) atom within the 3-amino-1,2,4-triazolate linker, as it is directly bound to 

a 1H atom, and its signal is not enhanced through the use of longer CTs. 

The resonance from adsorbed 13CO2 was also enhanced with the use of CP, and with the 

use of longer CTs. This enhancement was much less notable versus that observed for the 

framework carbon nuclei, as it is not connected to the protons through chemical bonds. 

Qualitatively, the use of longer CTs appears to lead to a greater 13CO2 resonance intensity up to a 

CT of 9 ms. This suggests a degree of proximity between some of the guest carbon nuclei and 

framework protons and the presence of dipolar interactions between both nuclei. 

Spinning sidebands from the adsorbed CO2 signal are observed at 12 500 Hz intervals, 

which is a well-known phenomenon and is consistent with the spinning rate used when collecting 
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the spectra. A slow spinning (2800 Hz) MAS SSNMR spectrum was also collected for 13CO2 

loaded ZnAtzOx(H2O). The observed δiso was unchanged in this spectrum, though the spinning 

sidebands were brought closer to the central resonance and trace out the CSA-dominated static 

powder pattern (see Figure 3.6 above).  

3.3.3 13C REDOR SSNMR of 13CO2 loaded ZnAtzOx(H2O) 

1H-dephased, 13C REDOR-based experiments were used to investigate dipolar coupling 

strength between the framework and guest molecules in ZnAtzOx(H2O) to complement the 

information obtained in CP/MAS experiments. This is done through the use multiple rotor 

synchronized dephasing pulses applied to the 1H spin, producing a reduced 13C spectrum Sr. The 

magnitude of the dephasing will vary based on the strength of the dipolar interaction and the length 

of the dephasing time. The difference ΔS between the reduced and full S0 
13C spectra can be 

measured as a function of the dephasing time. The effects of dephasing on signal intensity should 

be predictable for a given dipolar coupling strength, allowing for an assessment of the strength of 

the dipolar coupling interaction.35 

A room temperature 1H-dephased 13C REDOR spectrum of ZnAtzOx(H2O) can be found 

in Figure 3.10. The full spectrum (S0), dephased spectrum (Sr), and difference spectrum (ΔS) are 

all depicted. The dephasing was performed for 28 rotor periods at a spinning speed of 10.000 kHz, 

for a total dephasing time of 0.0028 s. No dephasing effects were observed on the 13CO2 resonance 

in the dephased spectrum, despite of the use of a relatively lengthy dephasing time.36 However, 

dephasing effects were observed for the resonances at 166 ppm and 160 ppm. These resonances, 

as discussed above, correspond to the oxalate carbon and the C(3) carbon of 3-amino-1,2,4-triazole 

respectively. These carbon atoms are expected to be located 3.414 Å and 1.960 Å, respectively, 

from the nearest framework protons, based on the reported framework structure.19 The spatial 
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proximity, and resulting dipolar coupling, strongly affects the magnitude of the observed 

dephasing. Due to the dramatic difference in the observed dephasing effect, effective proximity 

between the framework proton and guest carbon nuclei is lower than the effective proximity 

between the framework proton and framework carbon nuclei. Similar results were obtained when 

performing REDOR experiments at 223 K. 

 

 

Figure 3.10: The room temperature experimental 1H-dephased 13C REDOR SSNMR spectra of 

13CO2 loaded ZnAtzOx(H2O) are shown above. These spectra were collected while spinning at 10 

kHz with 44 scans and a 25 second recycle delay. The dephased spectrum was collected using a 

dephasing time of 0.0028 s.  

 

Though REDOR-based experiments were able to provide evidence of dipolar interactions 

within SIFSIX-3-Zn, this is not the case in ZnAtzOx(H2O). The CO2 molecules possess greater 
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mobility, as was evidenced by static 13C SSNMR patterns. Additionally, the 1H-13C CP 

experiments only weakly increased the signal of the adsorbed 13C nuclei within ZnAtzOx(H2O). 

The nature of the pores in ZnAtzOx(H2O) reduces dipolar coupling effects to the point that 

they are no longer detected through REDOR dephasing. The smaller number of nuclei extending 

into the pore proximate to the CO2 adsorption site in ZnAtzOx likely contributes to the weaker 

observed effects than in SIFSIX-3-Zn. This suggests only weak host-guest interactions with CO2 

at room temperature and temperatures of 223 K. This illustrates the importance of pore nature and 

guest motion on host-guest interactions within ultramicroporous frameworks.  

 

 

 Figure 3.11: The structures of the oxalate (Ox) and 3-Amino-1,2,4-triazolate (Atz) linkers are 

shown above. The Atz linker contains two carbon nuclei, referred to here as C(3) and C(5), which 

are proximate to 1H nuclei H(a) and H(b). The Ox also contains two chemically equivalent carbon 

nuclei, C(ox), which are distant from any 1H nuclei.  

 

C(3) 

C(5) 

C(ox) 

Ox Atz 

H(a) 

H(b) 
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3.3.4 Two-dimensional 1H-13C HETCOR SSNMR of ZnAtzOx(H2O) 

Two-dimensional correlation spectroscopy allows for the 1H and 13C signals obtained using 

MAS SSNMR to be correlated with one another. This was done using FSLG-HETCOR 

experiments at 21.1 T, to determine the proximity of heteronuclei to one another. FSLG-HETCOR 

essentially functions as two-dimensional CP SSNMR, correlating nuclei based on the strength of 

their dipolar interactions, increasing spectrum resolution, and increasing the separation of 

overlapping peaks. For this purpose, it is useful to understand in more detail the linker chemistry 

in ZnAtzOx(H2O). Each Atz linker, shown in Figure 3.11, contains two carbon nuclei, C(3) and 

C(5), two 1H nuclei bound to the amine group, H(a), and one 1H nucleus bound to the Atz ring, 

H(b). Each Ox linker contains two chemically identical carbon nuclei, C(ox) and no 1H nuclei. 

 

 

Figure 3.12: The experimental one-dimensional 1H-13C CP and 1H SSNMR spectra of CO2 loaded 

(blue) and activated (red) ZnAtzOx(H2O) are shown above. Previously assigned carbon 

resonances are labelled. Asterisks indicate spinning sidebands. A contact time of 5 ms was used 

for CP spectra. CP spectra were collected using 512 scans and a recycle delay of 10 s. 1H spectra 

were collected using 32 scans and a recycle delay of 10 s.  
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One-dimensional 1H-13C CP SSNMR spectra and one dimensional 1H SSNMR spectra are 

shown in Figure 3.12. 13C resonance assignments are discussed above, based on literature chemical 

shifts of oxalic acid and 3-amino-1,2,4-triazole and based on the effects of 1H-13C CP experiments. 

The one-dimensional 1H SSNMR spectra had resonances at 4.5(1) ppm and 7.7(1) ppm. Literature 

1H chemical shifts of 3-amino-1,2,4-triazole include a resonance at 5.78 ppm from the protons on 

amine group and a resonance at 7.48 ppm from the proton on the ring.37 

 

 

Figure 3.13: The 2D FSLG-HETCOR spectrum of activated ZnAtzOx(H2O) is shown above. The 

spectrum was collected at 293 K while spinning at 18 kHz using 32 points across the indirect 

dimension, 400 scans and a 5 second recycle delay. A contact time of 500 μs was used for the 

HETCOR experiment. The one-dimensional 1H-13C CP spectrum is projected along the bottom in 

black, while the one-dimensional 1H spectrum is projected along the right in green. 

 

The 2D HETCOR spectrum for the activated phase is shown in Figure 3.13. This spectrum 

correlates the 1H resonance at 4.5 ppm with the 13C resonance at 162 ppm, from C(3), suggesting 

C(5) 

C(3) 

H(a) 

H(b) 
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this 1H resonance corresponds to H(a). The 1H resonance at 7.7 ppm is likewise correlated to the 

13C resonance at 150 ppm, from C(5), meaning the 1H resonance corresponds H(b). These 

assignments are consistent with the literature 1H chemical shifts of 3-amino-1,2,4-triazole. The 1H 

resonances can therefore be assigned with certainty. 

 

 

Figure 3.14: The 2D FSLG-HETCOR spectrum of 13CO2 loaded ZnAtzOx(H2O) is shown above. 

The spectrum was collected at 293 K while spinning at 18 kHz using 32 points across the indirect 

dimension, 400 scans and a 5 second recycle delay. A contact time of 500 μs was used for the 

HETCOR experiment. The one-dimensional 1H-13C CP spectrum is projected along the bottom in 

black, while the one-dimensional 1H spectrum is projected along the right in green. 

 

FSLG-HETCOR should also function through space to link framework 1H nuclei to the 

adsorbed 13C nuclei within guest CO2 molecules. This can be seen in Figure 3.14, depicting the 

2D HETCOR spectrum of 13CO2 loaded ZnAtzOx(H2O). The correlation between guest 13C and 

CO2 

C(5) 

C(3) 

C(ox) 

H(a) 

H(b) 
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framework 1H is significantly weaker than the correlations between framework 13C and 1H. This 

is unsurprising given the weak dipolar interactions that were observed through CP/MAS and 

REDOR experiments. The 13C resonance at 125(1) ppm from the adsorbed CO2 appears weakly 

correlated to both 1H framework signals. This suggests the adsorbed 13CO2 molecule is not 

selectively proximate to either the H(a) or the H(b), but is rather somewhat proximate to both sites 

at 293 K. The CO2 is therefore too mobile within ZnAtzOx(H2O) to possess a strong specific 

adsorption site at room temperature. 

3.3.5 Static 67Zn SSNMR of as made, activated and CO2 loaded ZnAtzOx(H2O) 

The Zn centres can be investigated using high field NMR, in order to assess changes in the 

metal centre of the MOF as guest molecules are evacuated and loaded into the framework. 

Investigation of the electric field gradient (EFG) about the 67Zn nuclei was performed using 67Zn 

SSNMR at an ultrahigh magnetic field of 21.1 T on as made, activated and CO2 loaded 

ZnAtzOx(H2O) samples. The ZnAtzOx(H2O) framework possesses two distinct Zn environments, 

referred to here as Zn(1) and Zn(2).19 The experimental powder pattern was therefore simulated as 

two distinct Zn sites, to determine the quadrupolar coupling parameter (CQ) and asymmetry 

parameter (ηQ) values. The experimental and simulated ZnAtzOx(H2O) spectra are shown in 

Figure 3.15. The CQ and ηQ were also calculated using the CASTEP software package.28  The CQ 

and ηQ values that were determined experimentally and through calculations are shown in Table 

3.2.  

The CQ and ηQ values obtained from experimental spectra were in moderate agreement 

with those obtained from theoretical calculations. A crystal structure for the activated framework 

was not available in the literature, and was modeled by removing H2O molecules from the reported 

structure of the as made framework.19 When geometry optimization was performed on this 
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framework, the computed CQ and ηQ values were found to be similar to experimental results from 

the activated structure.  

A comparison of the experimental and calculated static 67Zn SSNMR spectra is shown in 

Figure 3.15. The overall shape of experimental and calculated spectra are similar. Though the 

samples studied were confirmed to be ZnAtzOx(H2O), there were nevertheless some differences 

between calculated and experimental CQ and ηQ values. This may be due to localized disorder 

about individual 67Zn nuclei affecting the symmetry of the EFG.  

Table 3.2: The observed and calculated 67Zn CS parameters of ZnAtzOx(H2O) samples are listed 

below. These parameters were obtained from analytical simulations of 67Zn SSNMR spectra, and 

calculated for the reported and geometry optimized structures of ZnAtzOx(H2O). 

 

 

Overall, the EFG of the 67Zn nuclei appears to possess a low CQ values and a high ηQ, with 

experimental CQ values of 5.8 MHz for Zn(1) and 6.5 MHz for Zn(2), and an ηQ of greater than 

Sample CQ (MHz) ηQ 

Activated, Experimental – Zn(1) 

Activated, Experimental, – Zn(2) 

5.8 (2) 

6.5(3) 

0.6 (1) 

0.6(1) 

As Made, Experimental – Zn(1) 

As Made, Experimental – Zn(2) 

5.8 (2) 

6.5(3) 

0.8(2) 

0.9(1) 

CO2 Loaded, Experimental – Zn(1) 

CO2 Loaded, Experimental, – Zn(2) 

5.8 (2) 

6.5(3) 

0.6 (1) 

0.6(1) 

Activated, Calculated, Unoptimized – Zn(1) 

Activated, Calculated, Unoptimized – Zn(2) 

4.56 

8.952 

0.549 

0.945 

Activated, Calculated, Optimized – Zn(1) 

Activated, Calculated, Optimized – Zn(2) 

5.788 

7.467 

0.667 

0.524 

As Made, Calculated, Optimized – Zn(1) 

As Made, Calculated, Optimized – Zn(2) 

7.217 

6.970 

0.449 

0.924 
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0.4 for all Zn sites. Five-coordinate Zn is often highly asymmetrical, resulting in higher CQ values 

than what was observed for ZnAtzOx(H2O).38 The activated structure and CO2 loaded structure 

produced identical 67Zn SSNMR patterns, suggesting that the presence of CO2 does not affect the 

EFG or local electric environment about the Zn nucleus; CO2 has little to no effect on the local Zn 

environment and it seems that Zn plays no direct role in CO2 adsorption within this system.  

 

 

Figure 3.15: The experimental, simulated and calculated static 67Zn NMR spectra of as made, 

activated and CO2 loaded ZnAtzOx(H2O) are shown above, as acquired at  a magnetic field of 

21.1 T. 160 000 scans were used with a recycle delay of 0.5 s. A calculated spectra for the CO2 

loaded phase was not constructed, due to the lack of a SCXRD structure for the CO2 loaded phase. 

Simulated and calculated patterns for Zn(1) are shown in purple, while patterns for Zn(2) are 

shown in brown. 

 

Looking at the distribution of bond lengths and angles about the Zn2+ ions can offer insight 

into why the CQ and ηQ values change in different phases of this MOF. Larger parameter 
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distributions should increase the value of the CQ parameter. Both Zn sites possess a distorted 

trigonal-bipyramidal geometry. A comparison of the sites is shown in Figure 3.16. 

 

   

       

 

   

      

Figure 3.16: The local geometry of the Zn sites in the geometry optimized ZnAtzOx(H2O) 

structures are shown above, along with their calculated CQ values. The Zn – O bond lengths are 

shown in red, and the Zn – N bond lengths are shown in blue. The angle between axial Zn – O and 

Zn – N bonds is shown in green. The angles between equatorial Zn – O and Zn – N bonds are 

shown in purple. 

 

The lack of a symmetrical rotation axis about the various Zn nuclei is consistent with the 

high ηQ values determined for each site, listed in Table 3.2. When looking at bond lengths and 
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angles, there is mostly little change in the measured values between different Zn sites and MOF 

phases. However, the bond length between Zn and the axial oxygen atom contracts and elongates 

significantly when comparing different sites and phases. 

Calculations suggest that after activation, Zn(1) should experience large decrease in CQ 

from the as made form, while Zn(2) should experience moderate increase in CQ. 

This can be related to changes in the axial Zn – O bond length. The Zn(1) axial Zn – O 

bond length decreases by 0.083 Å after activation, correlated with a decreasing CQ. The Zn(2) axial 

Zn – O bond length increases by 0.32 Å after activation, correlated with an increasing CQ. This 

suggests the axial Zn – O bond length is generally linked to CQ values, with a greater bond length 

leading to a higher CQ value. The angles between axial Zn – O and Zn – N, shown in green in 

Figure 3.16, also increases slightly after activation for both sites (from 162° and 161° to 167° and 

166°), reducing the distortion on the trigonal bipyramidal structure. This can be expected to cause 

an overall decrease in CQ. 

However, the CQ values of Zn(2) seem notably higher than those of Zn(1) given the shorter 

axial Zn – O bond lengths. Aside from these bond lengths, the most notable difference in 

geometries between sites is the equatorial bond angle distribution. A greater angle distribution 

distors the trigonal bipyramidal structure, and can be expected to increase the CQ parameter. These 

angles are listed in purple in Figure 3.16.  

Within Zn(1), the equatorial bond angles in the as made phase have a value of 118.97° ± 

6.98°, while the Zn(2) angles have a value of 119.59° ± 14.03°, with a much larger variance. 

Similarly in the activated phase, the equatorial bond angles are 119.05° ± 8.33° for Zn(1) and 

119.42° ± 10.37° for Zn(2). The consistently greater variance in equatorial bond angles for the 
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Zn(2) site explains the higher CQ values for Zn(2) given the shorter axial Zn – O bond lengths, as 

this greater variance distorts the trigonal bipyramidal geometry. 

This highlights the importance of the axial Zn – O bond lengths and equatorial bond angle 

distributions on the spherical symmetry of the EFG about 67Zn within the ZnAtzOx(H2O). In both 

Zn sites, the change in the axial Zn – O bond length distributions was correlated with a 

corresponding change in the CQ parameter. When comparing different Zn sites, the greater bond 

angle distribution in Zn(2) appeared to be responsible for higher CQ values. 

3.3.6 Static VT 13C SSNMR of 13CO2 loaded ZnAtzOx(EtOH) 

ZnAtzOx(H2O) is known to possess the highest CO2 uptake among ZnAtzOx phases, 

though it is not the only phase of the MOF known to adsorb CO2. The ethanol synthesized phase, 

here referred to as ZnAtzOx(EtOH), possesses a significantly lower CO2 uptake than 

ZnAtzOx(H2O).19 The difference in CO2 uptake is thought to result from changes in the oxalate 

linker bonds altering the shape of the pore to be less condusive to CO2 adsorption. This dramatic 

change in adsorption performance from subtle changes in the framework structure can be better 

understood with the aid of SSNMR experiments, providing insight into the guest behaviours 

present in ultramicroporous MOFs.  

Static VT 13C SSNMR experiments were performed on the ZnAtzOx framework 

synthesized solvothermally within ethanol, to determine whether subtle pore shape differences 

between ZnAtzOx phase was affecting CO2 motional behaviour as well as  the maximum CO2 

uptake of the framework. The experimental and simulated powder patterns can be seen in Figure 

3.17, and CS parameters of the simulated powder patterns are listed in Table 3.3. These 

experiments identified two distinct CO2 adsorption sites within the framework, with a third site 
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becoming apparent at lower temperatures. All simulated patterns had δiso values characteristic of 

the CO2 carbon nuclei, identical to the δiso of 13C resonances in ZnAtzOx(H2O). 

 

 

Figure 3.17: The experimental (left) and simulated site 1 (middle) and site 2 (right) 13C NMR 

spectra of 13CO2-loaded ZnAtzOx(EtOH) are shown at temperatures varying from 293 K to 153 

K. Spectra were collected using between 100 and 200 scans and a 10 s recycle delay, except at 

293 K where 6000 scans and a 10 s recycle delay was used. The C6 rotational motion and C2 

hopping motion of CO2 is described by the α and  angles listed on the simulated spectra. 

Simulated spectra of solid CO2 depicted on the bottom for reference.27  
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WSolids25 simulations of the adsorption site in ZnAtzOx(H2O) quantified the Ω value as 

278(3) ppm and the κ value as 0.81(2) for the 13C SSNMR powder pattern of adsorbed 13CO2 guest 

molecules at 293 K. This was determined to correspond to an α of 13° and a β of 18°. However, 

for 13CO2 adsorbed within ZnAtzOx(EtOH), the primary adsorption site possessed Ω and κ values 

at 293 K of 240(3) ppm and 0.60(2) respectively. This indicates notable differences in CO2 

motional behaviour within the two structures. Therefore, not only was the solvent induced phase 

change significantly affecting the CO2 uptake capacity, but also affecting the motional behaviour 

of CO2 within the framework pores.  

A third CO2 adsorption site does not become apparent until temperatures of 253 K and 

lower. At 253 K this new site comprises approximately 10% of the pattern intensity, a Ω of 80(20) 

ppm and a κ of 0.2(2). The intensity and Ω values increase as the temperature decreases, with the 

apparent parameters at 153 K being 25% of the pattern intensity and 140(10) ppm. This suggests 

that the binding energy within the third site is too weak to adsorb CO2 at higher temperatures. An 

alternative possiblity structural changes within the MOF at low temperatures may be opening an 

additional third adsorption CO2 site and perhaps restrict the occupation of sites 1 and 2.  

EXPRESS26 simulations confirm the presence of both C6 wobbling motions and C2 

hopping motions for the CO2 located at all adsorption sites. These motional angles were 

determined with an estimated error of 2°. The CO2 in these sites display greater α and β angles 

than the CO2 adsorbed in ZnAtzOx(H2O). The motional rate was found to exceed 107 Hz in all 

cases. In site 1, the α angle gradually increases from 12 ° to 16 ° as the temperature rises from 153 

K to 293 K. The β angle shows a gradual increase from 14° to 24°. These angles are slightly greater 

than those describing the CO2 motions in ZnAtzOx(H2O). The motional angles for CO2 within the 

second site are significantly greater, with α angles between 28° and 35°, and β angles between 39° 
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and 43°. The greater degree of motion suggests weaker guest – host interactions within the second 

adsorption site. The CO2 within the third site exhibits similarly large motional angles, with α angles 

between 32° and 42° and β angles between 29° and 33°. 

 

Table 3.3: The observed 13C chemical shift parameters of CO2 adsorbed within ZnAtzOx(EtOH) 

are listed below, for all CO2 adsorption sites. These parameters were obtained from analytical 

simulations of static 13C SSNMR spectra using WSolids.25
 

Temperature (K) δiso, Site 1 

(ppm) 

Ω, Site 1 

(ppm) 

1κ, Site 1 δiso, Site 2 

(ppm) 

Ω, Site 2 

(ppm) 

κ, Site 2 

293 125 (2) 240 (3) 0.60 (2) 125 (2) 105 (5) -0.3 (1) 

273 124 (2) 247 (3) 0.64 (2) 125 (2) 110 (5) -0.3 (1) 

253 125 (2) 251 (3) 0.70 (2) 125 (2) 110 (5) -0.3 (1) 

233 123 (2) 260 (3) 0.73 (3) 123 (2) 110 (5) -0.5 (1) 

213 122 (2) 267 (5) 0.76 (3) 122 (2) 110 (5) -0.6 (1) 

193 124 (2) 267 (5) 0.80 (3) 124 (2) 115 (5) -0.7 (1) 

173 124 (2) 277 (5) 0.88 (5) 124 (2) 120 (5) -0.7 (1) 

153 127 (2) 275 (5)  0.95 (5) 124 (2) 125 (5) -0.6 (1) 

Temperature 

(K) 

δiso, Site 3 

(ppm) 

Ω, Site 3 

(ppm) 

κ, Site 3 Intensity, 

Site 1 

Intensity, 

Site 2 

Intensity, 

Site 3 

333    30% 70% 0% 

313 - - - 40% 60% 0% 

293 - - - 50% 50% 0% 

273 - - - 50% 50% 0% 

253 125 (5) 80 (20) 0.2 (2) 55% 35% 10% 

233 125 (5) 80 (20) 0.2 (2) 55% 30% 15% 

213 125 (5) 100 (10) 0.2 (1) 55% 30% 15% 

193 120 (5) 120 (10) 0.4 (1) 50% 35% 15% 

173 120 (5) 140 (10) 0.3 (1) 40% 35% 25% 

153 130 (5) 140 (10)  0.2 (1) 30% 45% 25% 
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Despite the similar framework structure in ZnAtzOx(H2O) and ZnAtzOx(EtOH), the 

motional behaviour of the adsorbed CO2 changes notably between the two frameworks. The slight 

changes in pore dimensions create changes in the strength of the adsorption interaction, in addition 

to changing the overall framework uptake as has been previously reported.19 

3.3.7 13C direct MAS 13CO2 loaded ZnAtzOx(EtOH) 

Direct excitation 13C MAS SSNMR experiments were performed on ZnAtzOx(EtOH) at 

293 K to help characterize the CO2 adsorption sites within the framework. The resulting spectrum 

can be seen in Figure 3.18.  

 

Figure 3.18: The experimental 13C MAS SSNMR spectrum of 13CO2 loaded ZnAtzOx(EtOH) is 

depicted above. The spectrum was collected via direct excitation of 13C nuclei using a one pulse 

sequence with approximately 100 scans and a 10 s pulse delay. The MAS spinning rate is 15.000 

kHz. 

 

 A sharp signal can be observed at 124(1) ppm, corresponding to 13C nuclei within the 

adsorbed 13CO2 molecules. There is also a weak resonance from the carbon within the linkers, 

observed between 160 and 170 ppm. These results are almost identical to those that were obtained 

after similar experiments on ZnAtzOx(H2O), which is expected given the similarities of both 

structures.  
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 While two CO2 adsorption sites were identified in the static room temperature 13C SSNMR 

spectra of ZnAtzOx(EtOH), only a single unique adsorbed 13C resonance was identified in MAS 

experiments. This suggests the two adsorption sites are chemically equivalent, likely due to weak 

interactions between the guest CO2 and the host ZnAtzOx(EtOH) framework. This is consistent 

with static 13C SSNMR powder patterns of the CO2 loaded framework, where the δiso values for 

both sites were found to be identical. 

3.4 Conclusions 

 Using static and MAS SSNMR experiments on the water synthesized ZnAtzOx MOF, CO2 

motional behaviour and guest-host interactions have been explored. Similar to the previously 

discussed SIFSIX-3-Zn MOF, the ultramicroporous nature of ZnAtzOx leads to well-defined CO2 

motions with a relatively low temperature dependence within the framework. The nature of the 

channels within ZnAtzOx lead to notably more CO2 mobility within the framework than was 

observed within SIFSIX-3-Zn, and both CO2 hopping and rotational wobbling motions could be 

quantified using EXPRESS simulations.26  

1H-13C CP/MAS SSNMR experiments reveal the magnitude of dipolar coupling and 

proximity between the two nuclei, suggesting the existence of weak dipolar interactions between 

the guest 13C and framework 1H nuclei. FSLG-HETCOR experiments found these interactions 

were not strongly directed towards one framework 1H nucleus over another, and that the CO2 does 

not possess a strong specific room temperature adsorption site. Additional 67Zn SSNMR 

experiments and calculations also revealed insight into the changes in Zn nuclei symmetry as water 

was evacuated from the framework, with an increase in the CQ value for the Zn(1) site and an 

decreasing CQ value for the Zn(2) site after activation of the as made structure. This is likely due 
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to the changes in bond angle and bond length distributions about the nuclei, particularly the axial 

Zn – O bond lengths. 

 As ultramicroporous MOFs like ZnAtzOx and SIFSIX-3-M are subjected to increasing 

interest due to their unusually high CO2 selectivity and CO2 uptakes, it has become important to 

understand how CO2 interacts with these frameworks, and to make sense of the trends in CO2 

motions. SSNMR experiments have provided information on these structures not available through 

other experimental methods, and illustrate that a sharp contrast exists between CO2 behaviour in 

these highly selective ultramicroporous MOFs and CO2 within selective microporous or 

mesoporous MOFs.  
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3.6 Appendix 

Table S3.1: Acquisition parameters for VT static 13C SSNMR of 13CO2 loaded ZnAtzOx(H2O) are 

shown below. 

Sample Temperature 

(K) 

 Acquisitions Decoupled 

Nucleus 

Pulse 

Delay 

(s) 

90° Pulse 

Width 

(μs) 

ZnAtzOx(H2O), 

CO2 Loaded 

393 K   801 1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

6 

6 

6 

6 

6 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

2.67 

373 K   824 

353 K   838 

333 K   915 

313 K   800 

293 K   3394 20 

273 K   826 6 

6 

6 

6 

6 

6 

6 

253 K   812 

233 K   800 

213 K   803 

193 K   801 

173 K   816 

153 K  827 

 

 

Table S3.2: Acquisition parameters for MAS 13C direct-excitation and CP SSNMR of 13CO2 loaded 

ZnAtzOx(H2O) are shown below. 

Spin Rate (Hz) CP nuclei Acquisitions Pulse Delay (s) 90° Pulse 

Width (μs) 

12 500 None 400 5 4.00 (13C) 

2800 None 400 5 4.00 (13C) 

12 500 1H-13C 360 10 4.25 (1H) 
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Table S3.3: Acquisition parameters for 1H-13C REDOR SSNMR of ZnAtzOx(H2O) are shown 

below. 

Sample Spinning 

Speed (Hz) 

Acquisitions Pulse Delay 

(s) 

90° Pulse 

13C Width 

(μs) 

90° Pulse 1H 

Width (μs) 

ZnAtzOx(H2O), 

CO2 Loaded 

10 000 56 30 4.00 4.70 

ZnAtzOx(H2O) 15 000 1700 2 4.00 4.88 

 

 

Table S3.4: Acquisition parameters for 1H-13C HETCOR SSNMR of ZnAtzOx(H2O) are shown 

below. 

Sample Spinning Speed 

(Hz) 

Acquisitions Pulse Delay (s) Contact Time (μs) 

ZnAtzOx(H2O), 

CO2 Loaded 

18 000 512 5 500 

ZnAtzOx(H2O) 18 000 512 5 500 
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Chapter 4 : Studying Water Adsorption within the Ultramicroporous SIFSIX-

3-Zn and ZnAtzOx frameworks, Preliminary Results 

4.1 Introduction 

One of the biggest challenges in using physisorbent materials to capture CO2 is their 

sensitivity to moisture in gaseous mixtures. While open metal sites (OMSs) are highly selective 

adsorption sites for CO2 against the adsorption of non polar gases such as H2, N2 and CH4, OMSs 

are also often promising adsorption sites for gaseous H2O.1 In addition to competing for adsorption 

sites, H2O can block diffusion pathways within the pores2 or even cause a complete collapse of the 

framework.1 This collapse can occur through two primary mechanisms: ligand displacement or 

hydrolysis.3, 4 As such the presence of water in post-combustion flue gas is a significant barrier for 

the implementation of physisorbent materials in carbon capture applications. 

 The water content of flue-gas varies, though it has been previously found to be about 5% 

to 7% by volume from a coal burning power plant.5 Completely dehydrating the gas before CO2 

capture would significantly increase the cost of implementation of carbon capture technologies.2 

The presence of moisture is also a concern in shifted gas, for pre-combustion capture applications, 

or in air, for direct air capture applications.6 This means development of solid CO2 adsorbing 

materials which functions in the presence of moisture, and understanding how frameworks interact 

with moisture, is a key area of metal-organic framework (MOF) design. 

For example, Mg-MOF-74,7 considered one of the most promising MOFs for CO2 

adsorption, displays CO2 uptake behaviour that is strongly inhibited by the presence of moisture.8 

The water in this case adsorbs most strongly to the OMS within the MOF, the same adsorption site 

used by CO2. Temperature programmed desorption experiments found that in moist simulated flue 

gas, the measured CO2 desorbed per g by Mg-MOF-74 was only a quarter of that measured in dry 
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simulated flue gas, with almost half of desorbed analyte by mass being H2O.9 Keeping the MOF 

in accelerated storage conditions for two weeks resulted in its maximum CO2 uptake dropping by 

two thirds due to the presence of moisture.9  

 

 

Figure 4.1: The masses of desorbed analyte per mass of adsorbent, collected from physisorbent 

materials exposed to simulated moist and simulated dry flue gas are depicted on this graph. The 

analytes, H2O and CO2, are measured in mg of analyte per g of sorbent. While Mg-MOF-74 

adsorbed the most CO2 in dry flue gas, it was overtaken by SIFSIX-3-Ni and SIFSIX-3-Cu when 

moisture was introduced. This data was obtained from refences 9 and 10.  
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Similar temperature programmed desorption experiments indicated there was a notable 

drop in CO2 desorbed by other porous frameworks, as shown in Figure 4.1.9, 10 Frameworks 

including SIFSIX-3-Ni, HKUST-1, Zeolite 13X, SIFSIX-3-Cu, MIL-101 and UiO-66 all desorbed 

between 15% and 82% less CO2 per g in experiments with moist simulated flue gas compared to 

dry simulated flue gas. The ZIF-8 framework proved to be unaffected by the presence of moisture, 

but possessed an exceptionally low maximum CO2 uptake. SIFSIX-3-Ni and SIFSIX-3-Cu 

possessed the highest CO2 uptake capacity in moist simulated flue gas of all tested solid 

physisorbents, due to their highly selective ultramicropores.11-13 SIFSIX-3-Ni also had a negligible 

drop in surface area and maximum CO2 uptake after being left in accelerated storage conditions 

for two weeks.9 

UiO-66-NH2 was another tested MOF that showed only a small drop in CO2 desorbed when 

exposed to moist flue gas, despite adsorbing H2O. Amine functionalized MOFs are known to 

possess an increased affinity for CO2 while still being more easily regenerated than chemisorbent 

materials.10, 14  The selectivity of highly selective ultramicropores and amine groups for CO2 

adsorption over water adsorption makes understanding the guest-host interactions involved 

desirable. 

A better understanding of the effects of water adsorption on CO2 adsorption can be 

obtained using solid-state nuclear magnetic resonance spectroscopy (SSNMR). The motions of 

water molecules within M-MOF-74 materials have already been studied using these techniques.15 

It was found that within Mg-MOF-74, D2O was strongly adsorbed at OMSs, at temperatures up to 

293 K, where it exhibited π flip-flop motions in the fast-motion regime. At lower temperatures, 

the motional rate was found to slow to 1.5 × 106 Hz.  
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Very different behaviour was observed in the case of Zn-MOF-74. The spectra consisted 

of a broad pattern similar to what was observed in Mg-MOF-74, as well as a narrow resonance 

suggesting the presence of weakly coordinated D2O molecules. This supported additional TGA 

measurements and calculated hydration energies suggesting the water was more weakly 

coordinated within Zn-MOF-74 than Mg-MOF-74.16, 17 

Though SIFSIX-3-Ni and SIFSIX-3-Cu have both been reported as being highly selective 

for CO2 in the presence of water, SIFSIX-3-Zn exhibits very different behaviour. Initial 

breakthrough experiments suggested the presence of moisture had little effect on the selectivity 

for CO2 of the framework.11 However, multicomponent adsorption experiments conducted later 

suggested a much more significant change in CO2 uptake of SIFSIX-3-Zn due the presence of 

water.18 Repeated experiments obtained multiple values for the CO2 uptake capacity in the 

presence of moisture, with the uptake dropping as low as 0.0 mmol g-1. This was determined to be 

due to a previously reported phase transition which occurs within the framework when exposed to 

increasing H2O partial pressures.11  

The factors and mechanism behind this phase change are not well understood, though a 

recent report on water vapor sorption in SIFSIX materials discussed the phase change in SIFSIX-

3-Ni.19 Powder X-ray diffraction (PXRD) was used to determine the structure of SIFSIX-3-Ni after 

a humidity-induced phase change. It was found that water would cleave the bond between the 

nickel cation and SiF6
2- anion, in favour of the formation of an aqua complex. It is likely a similar 

interaction occurs in SIFSIX-3-Zn. The study also found that SIFSIX materials with larger pores, 

such as SIFSIX-14-Cu-I, were more susceptible to hydrolysis than the structures with smaller 

pores, such as SIFSIX-3-M materials. A better understanding of H2O adsorption within SIFSIX-
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3-M materials through SSNMR studies, as well as H2O and CO2 coadsorption, will help shed light 

on the effects of H2O on ultramicroporous physisorbent structures. 

Given this unusual behaviour compared to more traditional physisorbents such as Mg-

MOF-74, it is of interest to study water adsorption in ultramicroporous materials to better 

understand the effects of water on MOFs. SIFSIX-3-Zn11, 20 was studied for it’s similarities and 

differences compared to other SIFSIX-3-M materials, in both structure and CO2 adsorption 

behaviour. The lack of a paramagnetic metal centre means it can be more easily studied through 

SSNMR techniques, as unpaired electrons give rise to strong local magnetic fields that complicate 

structural analyses.21  

ZnAtzOx(H2O) was also studied due to its similarly ultramicroporous nature, and its known 

stability when the material is occupied by water molecules.22 This structure was first reported in 

2016 and has not had it’s water adsorption behaviour studied previously, but it possesses a known 

strong selectivity for CO2 adsorption over other gases, high CO2 uptake, and is known to possess 

H2O in its pores in the as made phase. Additionally, ZnAtzOx(H2O) contains amine groups thought 

to promote CO2 adsorption, much like the UiO-66-NH2 MOF which was found to perform well in 

the presence of moisture.10 This amine functionalization combined with ultramicropores and high 

CO2 uptake make ZnAtzOx(H2O) an promising porous structure. Studying water adsorption in this 

structure will offer insight into how the framework interacts with guest molecules within its pores.  

The results of these experiments are preliminary; further research needs to be conducted before 

publication can be considered, to develop a more comprehensive understanding of the systems and 

to ensure the accuracy of conclusions.  
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4.2 Experimental 

4.2.1 Synthesis of SIFSIX-3-Zn and ZnAtzOx(H2O) 

SIFSIX-3-Zn and ZnAtzOx(H2O) were synthesized solvothermally using methods 

described in the literature.20, 22  

A typical SIFSIX-3-Zn synthesis is as follows: a 10 mL solution of pyrazine (0.48 g, 6 mmol, Alfa 

Aesar, 98%) in methanol was decanted into a separate 10 mL solution of zinc hexafluorosilicate 

hydrate (0.62 g, 3 mmol, Sigma-Aldrich, 99%) in methanol. The resulting 20 mL solution was left 

at room temperature for 3 days, after which yellow crystals were collected and dried at 90 °C in 

air for three hours. Prior to activation and guest loading, SIFSIX-3-Zn samples were solvent 

exchanged in a methanol solution for three days, as done in the literature.11 The methanol solution 

was replaced daily.  

A typical synthesis of ZnAtzOx(H2O) is as follows: oxalic acid (0.09 g, 1 mmol, Sigma-

Aldrich, 98%), 3-amino-1,2,4-triazole (0.42 g, 5 mmol, Sigma-Aldrich, ≥95%) and zinc carbonate 

basic (0.11g, 1 mmol, Alfa Aesar, 97%) were added to a 3 mL butanol and 3 mL water solvent 

mixture in a Teflon-lined stainless steel autoclave. The solution was stirred for 30 min at room 

temperature, and then heated at 180 °C for two days. Upon cooling, a colourless crystalline product 

was collected using vacuum filtration, washed with methanol and water, and dried at 90 °C in air 

for three hours.  

4.2.2 Powder X-ray diffraction 

The identities and purities of the product were confirmed using PXRD. Patterns were 

recorded on an Inel CPS powder diffractometer operating with Cu Kα radiation (λ = 1.5418 Å). 

Experimental and simulated PXRD patterns are depicted in Figure 4.2. The experimental PXRD 

patterns are consistent with patterns calculated from reported crystal structures,11, 22 and are also 
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consistent with previously determined experimental PXRD patterns of the materials.11, 22 After 

synthesis, the PXRD patterns were used to confirm phase purity of the samples. The PXRD pattern 

of H2O loaded SIFSIX-3-Zn was used to confirm the guest induced phase change at a given loading 

level. At a ratio of 0.8 H2O to Zn there was no observed phase change in the PXRD pattern. At a 

ratio of 2.5 H2O to Zn a phase change was observed. Very slight impurities appear to arise in the 

ZnAtzOx(H2O) PXRD pattern after H2O loading, likely due to a slight framework decomposition 

after the evacuation and loading process, however this is not expected to affect the results of 

SSNMR experiments. 

 

 

Figure 4.2: The experimental and calculated SIFSIX-3-Zn and ZnAtzOx(H2O) PXRD patterns are 

depicted above. 
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4.2.3 Sample activation, gas loading, and thermal gravimetric analysis 

The activation process removes solvent molecules from the framework pores. A Schlenk 

line was used for activation. Samples were placed into the bottom of an L-shaped glass tube, and 

a thin layer of glass wool was used to secure the sample in place. SIFSIX-3-Zn samples were 

activated under dynamic vacuum (< 1 mbar) at 80 ± 10 °C for twenty-four hours. The ZnAtzOx 

samples were activated under dynamic vacuum at 150 ± 10 °C for twelve hours. D2O or 13CO2 gas 

was then released into the line, which has a measured total volume of 82.7 mL, as the gas pressure 

was monitored simultaneously.  Samples were then loaded with a known quantity of D2O 

(Cambridge Isotope Laboratories, Inc., 99.9%) or CO2 while the bottom of the L-shaped tube was 

immersed in liquid nitrogen to trap guests within the MOF. The loaded MOF sample within the 

glass tube was then flame sealed off from the Schlenk line prior to SSNMR experiments. 

Due to the condensation of D2O vapour within the Schlenk line, it is difficult to gauge the 

loading level with certainty based on changes in pressure. Thermal gravimetric analysis (TGA) 

was used to determine the loading level of D2O or H2O within framework samples. The TGA 

curves for samples were measured under dry N2 flow using a Mettler Toledo TGA/SDTA851e 

instrument. For each TGA experiment, 5 to 10 mg of the sample was placed within a ceramic 

crucible. A temperature range between 25 °C and 800 °C and a heating rate of 10 °C/min were 

utilized. The resulting TGA curves can be seen in Figure 4.3. 

TGA experiments on H2O loaded SIFSIX-3-Zn revealed a weight loss of 4% between 50 

to 150 °C, corresponding to an H2O loading of 0.8 mols of H2O per mol of Zn in SIFSIX-3-Zn. 

Samples at this loading level were used for SSNMR experiments.  
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TGA experiments on H2O loaded ZnAtzOx(H2O) revealed a weight loss of 7% between 

50 to 150 °C, corresponding to an H2O loading of 0.7 mols of H2O per mol of Zn in 

ZnAtzOx(H2O). Samples at this loading level were used for SSNMR experiments.  

A 0.25 molar ratio of CO2 to Zn2+ was used when SIFSIX-3-Zn and ZnAtzOx(H2O) 

samples with carbon dioxide. 13C labelled CO2 (Sigma-Aldrich, 99 atom % 13C, <3 atom % 18O) 

was used to load samples for 13C SSNMR experiments. For coadsorption experiments, samples 

were first loaded with 13CO2 and then exposed afterwards to D2O.  

 

   

Figure 4.3: The experimental TGA curves for water loaded SIFSIX-3-Zn and ZnAtzOx(H2O) 

samples used in SSNMR experiments are shown above. 
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4.2.4 SSNMR experiments 

2H and 13C SSNMR experiments were performed at the University of Western Ontario in 

London, Ontario, using a Varian Infinity Plus SSNMR spectrometer equipped with an Oxford 9.4 

T wide-bore magnet. All experiments were conducted with a 5 mm HX Varian/Chemagnetics 

probe. 

 2H experiments referenced using liquid D2O as a secondary standard at 4.8 ppm, relative 

to (CD3)4Si.23 2H spectra were collected using a quadrupole echo pulse sequence. 13C spectra were 

referenced to tetramethylsilane (TMS) using the methylene carbon in ethanol as a secondary 

reference, which has a chemical shift (CS) of 58.05 ppm.24 All direct-excitation 13C SSNMR 

experiments were performed using the DEPTH-echo pulse sequence to minimize the probe 

background signal.25 All experiments were performed using a 30 kHz 1H decoupling field. 

Additional acquisition parameters for specific spectra are listed in Tables S4.1, S4.2 and 

S4.3. 

4.2.5 Spectral simulations 

The WSolids26 computer software was used to analytically simulate all static 2H and 13C 

SSNMR spectra and obtain apparent powder pattern parameters. The 2H patterns are dominated 

by the quadrupolar interaction (QI), while the 13C patterns are broadened and dominated by the CS 

anisotropy (CSA). WSolids calculated the powder pattern of a static powder sample showing 

effects of the QI or CSA. 2H SSNMR patterns were calculated through inputting the electric field 

gradient (EFG) parameters (CQ and ηQ). 13C SSNMR patterns were calculated through inputting 

the orthogonal components of the CS tensor (δ11, δ22 and δ33). By comparing the known 

experimental powder patterns to a calculated pattern, the experimental powder pattern parameters 
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for 13C (δiso, Ω and κ) and 2H (CQ and ηQ) can be determined. The errors in pattern parameters were 

estimated by bidirectional variation of the parameters from the best-fit value.  

The EXPRESS27 computer software was used to simulate the effects of motion on the 2H 

and 13C SSNMR powder patterns. EXPRESS describes motion in terms of discrete (Markovian) 

jumps at specified rates between sites. A motional model can then be described by the number, 

orientation, and populations of sites, as well as the nature of the connections and rates of jumps. 

The motion results in a predictable averaging of CS tensor components. For 2H patterns, given the 

known D – O – D bond angle of 104.5°,28 the inputted CQ value could be varied to produce the 

motionally averaged 2H line shape that matches the experimentally observed 2H NMR spectrum.  

The static ηQ value is assumed to be zero, due to the axial symmetry of the D2O molecule. In the 

case of 13C patterns, given the known powder pattern parameters of solid CO2 (δiso = 126 ppm, Ω 

= 335 ppm, and κ = 1),29 and assuming a linear geometry for the CO2 molecule. powder patterns 

produced by specific types and rates of motion were calculated. All patterns were calculated across 

4096 powder increments using the ZCW powder averaging procedure and compared to the 

experimental powder patterns. 

4.3 Results and Discussion 

4.3.1 Static variable temperature 2H SSNMR of D2O loaded SIFSIX-3-Zn 

As the presence of water is known to dramatically affect CO2 adsorption behaviour, 2H 

SSNMR was used to understand the behaviour of water within the SIFSIX-3-Zn framework. The 

SSNMR pattern of 2H nuclei are dominated by the QI, described by the quadrupolar coupling 

constant CQ, and asymmetry parameter ηQ. The EFGs of the D – O bonds within D2O are 

approximately axially symmetric, giving the ηQ a value of zero. The CQ value meanwhile is 
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characteristic of the chemical environment, and the line shape is characteristic of the types and 

rates of motion. 

 

 

Figure 4.4: The experimental (left) and simulated (right) 2H spectra of D2O loaded SIFSIX-3-Zn 

at 393 K is shown above. The spectra were collected using 1800 scans and a 1 s recycle delay. 

The simulated narrow and broad components are shown in red and green respectively.  

  

 At 293 K, the spectrum exhibits a broad pattern with an apparent CQ of 120(10) kHz and 

an ηQ of 0.90(5). Additionally, there is a narrow component with a width of approximately 5(5) 

kHz. This narrow component is likely due to disordered D2O within the pores only weakly 

interacting with the framework. The combination of both broad and narrow components can be 

seen in Figure 4.4. 2H static spectra of D2O loaded SIFSIX-3-Zn across all experimental 

temperatures are shown in Figure 4.5.  
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Figure 4.5: The experimental (left) and simulated (right) 2H spectra of D2O loaded SIFSIX-3-Zn 

are shown above at temperatures ranging from 393 K to 153 K. The spectra were collected using 

between 1500 and 4000 scans and a 1 s recycle delay, except at 293 K where 30 000 scans and a 

2 s recycle delay was used. The motional rate of the D2O molecule’s π flip-flop is listed on the 

simulated spectra. 
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At a temperature of 393 K, the apparent CQ of the broad component drops to only 115(5) 

kHz, though the intensity of the narrow component is significantly greater. At 393 K, the narrow 

component begins to dominate the pattern, as shown in Figure 4.4. At 153 K, the broad component 

has an apparent CQ of 120(10) kHz, and the narrow component appears to have disappeared. The 

existence of the broad powder pattern across a wide array of temperatures is suggestive of strong 

interactions between the guest D2O and the framework, though at sufficiently high temperatures 

the broad pattern can be expected to disappear as D2O is evacuated completely.  

Using EXPRESS,27 these powder patterns can be accurately simulated and the static CQ 

value obtained for the D – O bond. At 293 K, the motions are simulated as a π flip-flop of D2O 

about its symmetry axis, at a rate of 1 × 107 Hz in the intermediate motion regime. This motion is 

illustrated in Figure 4.6. Using a D – O – D angle of 104.5°, the pattern was reproduced using a 

static CQ value of 250 kHz. 

 

 

Figure 4.6: The π flipping motion of a D2O molecule is illustrated above. The 2H SSNMR spectra 

of D2O loaded SIFSIX-3-Zn suggests that the molecules undergo this motion in the fast and 

intermediate motional regimes, with the exact motional rate depending on the temperature. 
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The CQ value for D2O depends on the EFG at the deuteron position. It’s value reflects 

different binding and different deuteron positions.30 A static CQ value of 250 kHz is characteristic 

of hydrogen bonded molecules in crystalline hydrates.31 At temperatures of 313 K and above, the 

rate of motion exceeds 2 × 107 Hz, in the fast motion regime.  At a temperature of 153 K, the 

motional rate was found to drop to 2 × 106 Hz.  

It is observed that the D2O is adsorbed strongly within the SIFSIX-3-Zn framework, 

exhibiting motions with a low degree of temperature dependence. A single D2O adsorption site 

observed in the SSNMR pattern, with a high CQ value. The apparent CQ value does not change as 

the temperature increases, though the broad pattern begins to become dominated by a narrow 

component. The lack of any obvious motions aside from a π flip-flop of the molecule, and the 

existence of adsorbed D2O at temperatures as high as 393 K, is evidence of the strength of the 

interactions between the D2O and SIFSIX-3-Zn, comparable to the interactions observed between 

CO2 and SIFSIX-3-Zn. 

4.3.2 Static 67Zn SSNMR of H2O saturated SIFSIX-3-Zn 

When saturated with moisture, a phase change occurs within SIFSIX-3-Zn, as confirmed 

by PXRD. This is known to cause a loss of porosity and CO2 uptake within the framework, likely 

due to the cleaving of the Zn – F bond and the formation of an aqua complex.18, 19 It is therefore 

expected that upon saturation with H2O, the local Zn environment will change. The spectrum 

resulting from high field 67Zn SSNMR on water saturated SIFSIX-3-Zn is shown in Figure 4.7. 

This provides insight into the changes in chemical environment SIFSIX-3-Zn undergoes when 

exposed to moisture, which are known to affect the framework’s CO2 uptake behaviour. 
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The 67Zn powder pattern is significantly different from the patterns previously obtained for 

the as made, activated and CO2 loaded phases of SIFSIX-3-Zn. The pattern is characterized by a 

narrow centre component possessing a Lorentzian line width of approximately 7 kHz. 

 The 67Zn environment of SIFSIX-3-Zn after undergoing a moisture-induced phase change 

is dramatically different from the 67Zn environment prior to the phase change. The water molecule 

directly affects the 67Zn environment, significantly more than methanol or CO2 molecules when 

occupying of the pores. 

 

Figure 4.7: The H2O saturated (purple) and as made (blue) 67Zn spectra of SIFSIX-3-Zn are shown 

above. The spectra were collected using 256 000 scans and a 0.25 s recycle delay.  

 

4.3.3 Static variable temperature 2H SSNMR of D2O loaded ZnAtzOx(H2O) 

2H SSNMR spectra of ZnAtzOx(H2O) loaded with D2O produced more complex powder 

patterns than the equivalent SIFSIX-3-Zn spectra, with evidence of two distinct D2O adsorption 

sites. These spectra are depicted in Figure 4.8. At 293 K, the sites have apparent CQ values of 

120(5) kHz and 60(5) kHz, and apparent ηQ values of 0.50(5) and 0.8(1).  
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Figure 4.8: The experimental and simulated 2H spectra of D2O loaded ZnAtzOx(H2O) are shown 

above at temperatures ranging from 393 K to 153 K. The spectra were collected using between 

3000 and 4000 scans and a 1 s recycle delay, except at 293 K where 30 000 scans and a 2 s recycle 

delay was used.  
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Figure 4.9: The arrangement of the literature reported H2O sites (A and B) in ZnAtzOx(H2O) are 

shown along the b-axis. The arrows and captions indicate distances to the nearest oxalate, amine 

and C-H groups. Site A is slightly more proximate (0.05 to 0.45 Å) to the groups of interest. The 

overall locations of the sites are similar.  

 

A 
A 

A 
A A 

A 

B 

B 
B B B B 

B B B B B 

B B B 
B B 

A A A 
A 

A A 

c 

a 



142 
 

 

As the temperature increases, these parameters are unchanged within error. At low 

temperatures, the apparent CQ values increase, to 150(20) and 110(20) kHz at 153 K. The changes 

in apparent CQ and ηQ are detailed in Table 4.1. There is also a slight narrow intensity from mobile 

D2O present at temperatures of 193 K and above, however its intensity does not appear to vary 

significantly with temperature.  

 

Table 4.1: The observed 2H QI parameters of H2O-loaded ZnAtzOx(H2O) are listed below. These 

parameters were obtained from analytical simulations of static 2H SSNMR spectra using 

WSolids.26 

Temperature (K) CQ, Site 1 (kHz) ηQ Site 1 CQ, Site 2 (kHz) ηQ Site 2 

393 K 120 (5) 0.55 (5) 55 (5) 0.6 (1) 

373 K 120 (5) 0.50 (5) 55 (5) 0.6 (1) 

353 K 120 (5) 0.50 (5) 60 (5) 0.7 (1) 

333 K 120 (5) 0.50 (5) 60 (5) 0.7 (1) 

313 K 120 (5) 0.50 (5) 60 (5) 0.8 (1) 

293 K 120 (5) 0.60 (5) 60 (5) 0.8 (1) 

273 K 125 (5) 0.60 (5) 65 (5) 0.8 (1) 

253 K 130 (5) 0.60 (5) 70 (5) 0.8 (1) 

233 K 130 (5) 0.60 (5) 80 (5) 0.8 (1) 

213 K 130 (5) 0.60 (5) 80 (5) 0.8 (1) 

193 K 135 (5) 0.65 (5) 85 (5) 0.8 (1) 

173 K 150 (20) 0.7 (2) 100 (20) 0.9 (1) 

153 K 150 (20) 0.7 (2) 110 (20) 0.8 (2) 

 

Simulations performed using EXPRESS27 were inconclusive in describing the motions of 

D2O at each site, due to the complexity of the powder pattern. Given the known SCXRD structure 

of ZnAtzOx(H2O) from the literature,22 it is surprising that such different apparent CQ values 
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would be observed for the different D2O sites within the framework. Both known H2O sites possess 

comparable proximities to the framework nuclei.  

The previously reported structure of the as made ZnAtzOx(H2O) framework identified 

locations for H2O oxygen atom within the pores.22 The sites are arranged in alternating pore layers 

as viewed along the b-axis, shown in Figure 4.9.  Based on the known position of the H2O oxygen 

atom, one site (A) is located 3.04 Å from the amine nitrogen, 3.24 Å from the C – H carbon, and 

3.46 Å from the oxalate carbons. The second site (B) is located 3.49 Å from the amine nitrogen, 

3.51 Å from the C – H carbon and 3.51 Å from the oxalate carbons. While both sites are similarly 

positioned within the framework, site A is slightly more proximate to framework groups and likely 

corresponds to the broader feature within the 2H SSNMR powder pattern (site 1 in Figure 4.8). 

Regardless of the nature of the D2O motions within ZnAtzOx(H2O), it is clear that the 

framework has strong interactions with water, and is capable of adsorbing water at temperatures 

as high as 393 K. This is not entirely surprising, given the literature activation conditions for 

ZnAtzOx(H2O),22 which recommend a temperature of 423 K under vacuum to remove water 

adsorbed within the pores. There is also little temperature dependence of the D2O behaviour that 

could be quantified, as the 2H powder patterns possessed the same shape between 193 K and 393 

K.  

4.3.4 Static variable temperature 13C SSNMR of H2O and 13CO2 loaded SIFSIX-3-Zn and 

ZnAtzOx(H2O) 

While the presence of moisture is known to inhibit CO2 uptake in many MOFs, there are 

several ways in which the H2O can affect the CO2 guest. Broadly speaking, the adsorption sites for 

different guests can be either overlapping, distinct, or proximate.32 A better understanding of 
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cosorption effects can be developed through 13C SSNMR of a structure loaded with both water and 

CO2.  

After SIFSIX-3-Zn has coadsorbed H2O and CO2, the powder pattern parameters of the 13C 

SSNMR spectra are unchanged from the phase containing no H2O. The implication of this is that 

while moisture dramatically hinders the CO2 uptake of SIFSIX-3-Zn, it is not changing the nature 

of the adsorption site for CO2 within the structure. The H2O is presumably occupying an adsorption 

site overlapping with that of the CO2 such that it is completely blocked, or causing pore blockage 

within the structure, preventing the CO2 from accessing adsorption sites within the structure. The 

H2O induced phase change may also be altering the structure of the MOF such that suitable 

adsorption sites for CO2 no longer exist. 

However, after ZnAtzOx(H2O) has coadsorbed H2O and 13CO2, there are notable changes 

to the 13C SSNMR powder pattern, shown in Figure 4.10. The 13CO2 loaded phase contains 

produced a pattern with relatively high skew and span parameters of 0.81(2) and 278(3) ppm at 

293 K. In contrast, the resulting pattern from the coadsorbing phase possesses a significantly 

smaller skew and span values, of 0.46(4) and 240(3). This means the nature of the most occupied 

CO2 adsorption site has changed after exposure to water. It is possible that the primary H2O and 

CO2 adsorption sites are identical or overlapping. The H2O guest would therefore force the CO2 

molecule to occupy a less favourable, less confined second adsorption site, where the CO2 is more 

mobile and less strongly adsorbed. Alternatively, given the small pores within ZnAtzOx(H2O), 

guest-guest interactions between CO2 and H2O may be weakening the interaction between CO2 

and the framework. 
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Figure 4.10: The experimental 13C NMR spectrum of H2O and 13CO2-loaded SIFSIX-3-Zn at 333 

K, 293 K, 253 K and 173 K is shown above in blue. The experimental spectra of SIFSIX-3-Zn when 

loaded with dry 13CO2 is overlaid in red. The spectra were collected using 800 scans and a 2 s 

recycle delay. 

 

Variable temperature static 13C SSNMR experiments were performed on the sample, 

shown in Figure 4.11. As the sample is heated, the intensity of the sharp resonance at 126 ppm 

increases dramatically. This means that there is more free CO2, with the MOF adsorbing less CO2 

at higher temperatures. Above temperatures of 333 K, no powder pattern corresponding to 

adsorbed 13CO2 is apparent in the spectrum. This contrasts with the 13C SSNMR powder patterns 

produced by the MOF when loaded with dry 13CO2, where adsorbed 13CO2 was detected by 

SSNMR at temperatures as high as 393 K. This suggests that CO2 interacts much more weakly 

with this second adsorption site. 
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Figure 4.11: The experimental (left) and simulated (right) 13C NMR spectra of H2O and 13CO2-

loaded ZnAtzOx(H2O) are shown at temperatures varying from 353 K to 153 K. The spectra were 

collected using between 800 and 2000 scans and a 2 s recycle delay. The C6 rotational motion and 

C2 hopping motion of CO2 is described by the α and  angles listed on the simulated spectra. 

Simulated spectra of solid CO2 depicted on the bottom for reference.29  
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Table 4.2: The observed 13C chemical shift parameters H2O and 13CO2-loaded ZnAtzOx(H2O) are 

listed below. These parameters were obtained from analytical simulations of static 13C SSNMR 

spectra using WSolids.26 

 

 

 A full list of powder pattern parameters across all experimental temperatures can be seen 

in Table 4.2. The CO2 motions were quantified using EXPRESS27 simulations. It was found that 

the CO2 exhibited wobbling and C2 hopping motions, described by the α and β angles respectively. 

These motions were also previously observed in the primary CO2 adsorption site in 

ZnAtzOx(H2O). The α angle was found to vary between 16° and 10°, while the β angle varied 

between 29° and 19°, throughout the temperature range used. The α angle values are comparable 

to those determined for the first CO2 adsorption site. However, the β angle is much greater, having 

previously varied only from 18° to 12° over the course of the same temperature range. These 

greater β values for the second adsorption site are likely why the CO2 evacuates at lower 

temperatures than what was observed for the first adsorption site. 

Temperature (K) δiso (ppm) Ω (ppm) Κ 

333 130 (5) 230 (5) 0.40 (5) 

313 126 (2)  230 (3) 0.44 (4) 

293 125 (2) 240 (3) 0.46 (4) 

273 125 (2) 241 (2) 0.48 (2) 

253 125 (2) 237 (3) 0.44 (4) 

233 125 (2) 240 (2) 0.46 (2) 

213 125 (2) 244 (2) 0.50 (2) 

193 126 (2) 253 (3) 0.53 (2) 

173 125 (2) 269 (3) 0.62 (3) 

153 127 (3) 282 (4) 0.77 (3) 
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4.4 Conclusions 

 2H SSNMR experiments have been used to study H2O adsorption in ultramicroporous 

frameworks known to be highly selective for the adsorption of CO2 gas. It has been found that 

both SIFSIX-3-Zn and ZnAtzOx(H2O) adsorb H2O at temperatures as high as 393 K, and that the 

guest-host interactions between the framework and adsorbed D2O do not change significantly with 

temperature. The lack of temperature dependence in guest-host interactions is characteristic of 

these frameworks, having also been observed when studying their CO2 adsorption. The rates of 

motion of D2O within SIFSIX-3-Zn have been quantified. 

 Additionally, the effects of H2O on adsorbed CO2 behaviour was studied in both 

frameworks using 13C SSNMR. It was found that in ZnAtzOx(H2O), H2O forced the adsorbed CO2 

into a less preferential adsorption site, which was not able to adsorb CO2 at temperatures above 

333 K. The CO2 within this second adsorption site was more mobile than the CO2 previously 

observed in the first adsorption site. These motions were quantified through computer simulations. 

 This chapter helps illustrate the interactions of physical adsorbents with water, and how 

the water might affect the structures in CO2 capture applications. The work outlined in this chapter 

is preliminary, and not yet suitable for publication until additional experiments confirm and 

supplement the findings. However, a better understanding of the interactions of a framework with 

all components of flue gas and open air, including H2O, will aid in the future design of CO2 capture 

materials. 
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4.6 Appendix 

Table S4.1: Acquisition parameters for VT static 2H SSNMR of D2O loaded SIFSIX-3-Zn are 

shown below. 

Sample Temperature 

(K) 

 Acquisitions Decoupled 

Nucleus 

Pulse 

Delay 

(s) 

90° Pulse 

Width 

(μs) 

SIFSIX-3-Zn, 

D2O Loaded 

393 K   1802 1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

2 

2 

2 

2 

2 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

373 K   1803 

353 K   18210 

333 K   1920 

313 K   2482 

293 K   3000 2 

273 K   1835 2 

2 

2 

2 

2 

2 

2 

253 K   2276 

233 K   3711 

213 K   2590 

193 K   1803 

173 K   1801 

153 K  1805 
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Table S4.2: Acquisition parameters for VT static 2H SSNMR of D2O loaded ZnAtzOx(H2O) are 

shown below. 

Sample Temperature 

(K) 

 Acquisitions Decoupled 

Nucleus 

Pulse 

Delay 

(s) 

90° Pulse 

Width 

(μs) 

ZnAtzOx(H2O), 

D2O Loaded 

393 K   3790 1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

1H 

2 

2 

2 

2 

2 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

373 K   8760 

353 K   3605 

333 K   3773 

313 K   3707 

293 K   31120 2 

273 K   3615 2 

2 

2 

2 

2 

2 

2 

253 K   3614 

233 K   3624 

213 K   3602 

193 K   3616 

173 K   3606 

153 K  3615 
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Table S4.3: Acquisition parameters for VT static 13C SSNMR of 13CO2 and H2O loaded 

ZnAtzOx(H2O) are shown below. 

Sample Temperature 

(K) 

Acquistions Decoupled 

Nucleus 

Pulse Delay 

(s) 

90° Pulse 

Width (μs) 

ZnAtzOx(H2O), 

13CO2 and H2O 

Loaded 

333 K 1689 1H 2 2.7 

 313 K 1668 1H 2 2.7 

 293 K 1653 1H 2 2.7 

 273 K 969 1H 2 2.8 

 253 K 830 1H 2 2.8 

 233 K 961 1H 2 2.8 

 213 K 924 1H 2 2.8 

 193 K 867 1H 2 2.8 

 173 K 887 1H 2 2.8 

 153 K 867 1H 2 2.8 
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Chapter 5 : Summary and Future Works 

5.1 Summary 

  In this work, the motions, interactions and adsorption sites of CO2 and H2O within highly 

selective ultramicroporous frameworks were investigated using solid-state nuclear magnetic 

resonance (SSNMR) and single-crystal X-ray diffraction (SCXRD). The results highlighted the 

strong guest-host interactions within these frameworks, and the low degree of temperature 

dependence in guest molecule behaviour. 

 In Chapter 2, the adsorption of CO2 within SIFSIX-3-Zn was studied. SCXRD of the CO2 

loaded crystal at 110 K was able to precisely locate the CO2 adsorption site within the pore, located 

between fluorine and hydrogen atoms of the framework. SCXRD was additionally able to quantify 

changes in the framework structure after CO2 loading, which strengthened guest-host interactions. 

13C variable temperature (VT) SSNMR experiments on 13CO2 loaded samples found that the 

wobbling motions of the CO2 molecule exhibited an anomalously low degree of temperature 

dependence, due to the strong interactions between the host and guest. Guest-host interactions 

were analyzed using magic-angle spinning (MAS), cross polarization (CP) and rotational-echo 

double resonance (REDOR) SSNMR experiments, finding evidence of dipolar interactions 

between fluorine and hydrogen nuclei from the framework and the adsorbed carbon nuclei. A low 

degree of temperature dependence was found for the strength of the interaction between hydrogen 

and carbon nuclei, with the interaction growing stronger at 223 K compared to 293 K. 67Zn 

SSNMR conducted at 21.1 T showed that the EFG about the Zn nucleus changed after activation, 

likely due to changes in the bond lengths creating a more symmetrical environment about the Zn 

nucleus. 
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 Chapter 3 focuses on studying the CO2 gas behaviour within the amine-functionalized 

ultramicropores of the ZnAtzOx framework. Within ZnAtzOx(H2O), 13C VT SSNMR experiments 

on 13CO2 loaded samples found small wobbling and hopping guest motions with low temperature 

dependence. MAS/CP and hetero nuclear correlation (HETCOR) SSNMR experiments found 

weak interactions between the framework protons and guest 13C nuclei. HETCOR experiments 

found that the guest 13C nuclei possessed weak interactions with both kinds of framework protons, 

suggesting there was no clear adsorption site at room temperature. High-field 67Zn SSNMR 

identified changes in the EFG about both Zn sites, thought to be due to changes in the bond strength 

between Zn and O. An alternative ZnAtzOx phase, ZnAtzOx(EtOH), also had the behaviour of 

guest 13CO2 molecules investigated through VT 13C SSNMR experiments. It was found that the 

CO2 in this framework exhibited notably more motional freedom than the CO2 within 

ZnAtzOx(H2O), despite their conformational nature.  

 Chapter 4 showcased the preliminary results of water adsorption studies within SIFSIX-3-

Zn and ZnAtzOx(H2O). 2H static VT SSNMR experiments on D2O loaded samples determined the 

number of adsorption sites within each MOF, and found there was a low degree of temperature 

dependence for the D2O behaviour within both frameworks. High-field 67Zn SSNMR found that 

the Zn environment in SIFSIX-3-Zn was completely changed when the sample was saturated with 

water, due to the material’s phase change. 13C SSNMR experiments found that H2O adsorption 

within ZnAtzOx(H2O) was found to alter and weaken the interaction between the framework and 

guest CO2 when both were loaded simultaneously into the framework.   

5.2 Suggestions for Future Work 

 A comprehensive knowledge of the interactions between water, SIFSIX-3-Zn and 

ZnAtzOx would clarify H2O adsorption within these frameworks, building on the research begun 



156 
 

 

in Chapter 4. Structural studies using SCXRD, or more comprehensive SSNMR studies targeting 

different nuclei, would be useful in understanding how the framework changes upon exposure to 

H2O. Alternatively, H2O interactions with similar SIFSIX-3-M materials could be explored. 

Materials such as SIFSIX-3-Cu and SIFSIX-3-Ni are not as sensitive as SIFSIX-3-Zn to water,1, 2 

and so an understanding of the differences in interactions between SIFSIX-3-Zn and other 

members of the SIFSIX-3-M family can further elaborate on the impact of H2O on CO2 adsorption. 

Studying other SIFSIX-3-M Materials using SSNMR would be difficult however, due to their 

paramagnetic nature,3 so experiments would primarily need to focus on the use of SCXRD or 

alternative techniques. Similar SSNMR and SCXRD techniques can be applied to different 

families of materials, such as UiO-66-NH2, which possesses a strong uptake of both water and CO2 

due to amine functionalization.4  

The interactions between CO2 and H2O while within the same framework are of particular 

interest, due to the presence of both molecules within flue gas. While experiments in Chapter 4 

showed that the behaviour of CO2 in ZnAtzOx(H2O) was affected by the presence of water in the 

framework, additional SSNMR experiments, such as those employing MAS and CP, could help 

highlight changes in guest-host interactions between CO2 and ZnAtzOx due to the presence of 

water, or identify guest-host interactions between water and ZnAtzOx. Similarly, while static 13C 

experiments could not identify changes in the CO2 behaviour within SIFSIX-3-Zn due to water, 

more comprehensive experiments employing CP and MAS may identify interactions between the 

two guest molecules. 

 This work has demonstrated the strong guest-host interactions and unusual CO2 behaviour 

within certain ultramicroporous MOFs without open metal sites. Future work can be focused on 

structural modification to further strengthen the electrostatic interactions between pillared 
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ultramicroporous structures and their guest molecules, particularly carbon dioxide. With additional 

research into guest-host interactions of ultramicroporous frameworks, structures can be further 

tuned to promote stronger selectivities towards other industrial gases such as xenon and 

acetylene.5, 6 The low temperature dependence of CO2 adsorption within such frameworks allows 

for the use of MAS SSNMR, greatly increasing the effectiveness of SSNMR in understanding 

host-guest interactions. Continued use of MAS SSNMR experiments on guest-loaded structures 

will help in understanding guest-host interactions in more novel ultramicroporous frameworks 

such as NbOFFIVE materials.7  

5.3 References 

1. Kumar, A.; Madden, D. G.; Lusi, M.; Chen, K. J.; Daniels, E. A.; Curtin, T.; Perry, J. J.; Zaworotko, 
M. J., Direct Air Capture of CO2 by Physisorbent Materials. Angewandte Chemie-International Edition 
2015, 54 (48), 14372-14377. 
2. Madden, D. G.; Scott, H. S.; Kumar, A.; Chen, K. J.; Sanii, R.; Bajpai, A.; Lusi, M.; Curtin, T.; Perry, 
J. J.; Zaworotko, M. J., Flue-gas and direct-air capture of CO2 by porous metal-organic materials. 
Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2017, 
375 (2084). 
3. Bertmer, M., Paramagnetic solid-state NMR of materials. Solid State Nuclear Magnetic 
Resonance 2017, 81, 1-7. 
4. Madden, D. G.; Scott, H. S.; Kumar, A.; Chen, K. J.; Sanii, R.; Bajpai, A.; Lusi, M.; Curtin, T.; Perry, 
J. J.; Zaworotko, M. J., Flue-gas and direct-air capture of CO2 by porous metal-organic materials. 
Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2017, 
375 (2084). 
5. Elsaidi, S. K.; Mohamed, M. H.; Simon, C. M.; Braun, E.; Pham, T.; Forrest, K. A.; Xu, W. Q.; 
Banerjee, D.; Space, B.; Zaworotko, M. J.; Thallapally, P. K., Effect of ring rotation upon gas adsorption in 
SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science 2017, 8 (3), 2373-2380. 
6. Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q., Thermodynamic analysis of Xe/Kr 
selectivity in over 137 000 hypothetical metal-organic frameworks. Chemical Science 2012, 3 (7), 2217-
2223. 
7. Bhatt, P. M.; Belmabkhout, Y.; Cadiau, A.; Adil, K.; Shekhah, O.; Shkurenko, A.; Barbour, L. J.; 
Eddaoudi, M., A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air 
Capture Using Physisorption. Journal of the American Chemical Society 2016, 138 (29), 9301-9307. 

 

  



158 
 

 

Curriculum Vitae 

Name:   Bligh Desveaux 

 

Post-secondary  Dalhousie University 

 

Education and  Halifax, Nova Scotia, Canada 

Degrees:   2011-2015 B.Sc. 

 

The University of Western Ontario 

London, Ontario, Canada 

2016-2017 M.Sc. 

 

Honours and   Dalhousie Entrance Scholarship 

Awards:   2012 

 

Dalhousie Science Entrance Scholarship 

2012 

 

Dalhousie Dean’s Honour Roll 

2012 

 

Dalhousie In-Course Scholarship 

2013 

 

Related Work  Teaching Assistant 

Experience   The University of Western Ontario 

2016-2017 

 

Posters:  Desveaux, B.; Lucier, B.; Terskikh, V.; Boyle, P.; Huang, Y.  “Deducing 

 Adsorbed CO2, Gas Behaviour in Ultramicroporous Metal-Organic 

 Frameworks  using Solid-State NMR Spectroscopy” 100th Canadian 

 Chemistry Conference and Exhibition, Toronto ON, June 2017, & at 

 the 30th Annual MOOT NMR Conference, London ON, September 

 2017. 


	Adsorbed Gas Behaviour and Guest-Host Interactions in Ultramicroporous Metal-Organic Frameworks
	Recommended Citation

	tmp.1514993983.pdf.YZ_JJ

