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ABSTRACT 

 

The wind design of buildings is typically based on strength provisions under ultimate loads. This 

is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take 

place in the structure under extreme seismic events. This research investigates the application of a 

similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme 

event of high return period are reduced by a load reduction factor. A load reduction factor is chosen 

by the designer and accordingly a certain ductility capacity needs to be achieved in the structure. 

Two reasons have triggered the investigation of this ductility-based concept under wind loads. 

First, there is a trend in the design codes to increase the return period used in wind design 

approaching the large return period used in seismic design. Second, the structure always possesses 

a certain level of ductility that the wind design does not benefit from. The load reduction factor 

that could be applied in wind design might not be as high as its counterpart in seismic design, and 

it should be applied only on the resonant component of the wind loading. Many technical issues 

arise when applying a ductility-based approach under wind loads. The use of reduced design loads 

will lead to the design of a more flexible structure with larger natural periods. While this might be 

beneficial for seismic response, it is not necessarily the case for the wind response, where 

increasing the flexibility is expected to increase the fluctuating response. This particular issue is 

examined by considering a case study of a sixty five-story high-rise building previously tested at 

the Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-

dimensional finite element model is developed for the building. The wind pressures from the tested 

rigid model are applied to the finite element model and a time history dynamic analysis is 

conducted. The time history variation of the straining actions on various structure elements of the 



 

iii 
 

building are evaluated and decomposed into mean, background and fluctuating components. A 

reduction factor is applied to the fluctuating components and a modified time history response of 

the straining actions is calculated. The building components are redesigned under this set of 

reduced straining actions and its fundamental period is then evaluated. A new set of loads is 

calculated based on the modified period and is compared to the set of loads associated with the 

original structure.  

This is followed by non-linear static pushover analysis conducted individually on each shear wall 

module after redesigning these walls. Displacement-controlled pushover analysis is carried out to 

assess the ductility demand of shear walls with reduced cross sections to justify the application of 

the load reduction factor “R”. Furthermore, a parametric study is conduced to evaluate the effect 

of ductility level on target performance level reached in each shear wall. 

 

Keywords 

Performance-based design, Wind tunnel test, Dynamic Time-History analysis, High-rise 

buildings, Non-linear analysis, Static-pushover analysis, Shear wall ductility. 
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CHAPTER 1 

INTRODUCTION 

1.1   General 
 

Buildings subjected to wind forces are designed using elastic analysis and equivalent static lateral 

loads prescribed in building codes. Recent trends and modern architectural requirements have 

pushed towards developing increasingly taller and irregularly- shaped complex buildings, leading 

to structures that are potentially more susceptible to wind excitations. As buildings become taller 

and more slender, they become more vulnerable to wind excitations than to earthquake effects. 

However, significant benefits can be obtained with the adoption of a performance-based technique, 

where member inelastic behavior and dynamic effects of the natural hazard are explicitly 

considered. Such strategies have been successfully adopted in seismic engineering. 

 

Performance-based design is an attempt to design buildings with predictable loading-induced 

performance, rather than being based on empirical code specifications. The earthquakes and 

extreme winds are the two major loading conditions experienced through the lifetime of buildings. 

While the performance-based seismic design (PBSD) is becoming well known in professional 

practice for the design of buildings under seismic loading, the wind-induced performance-based 

design (WPBD) is also emerging as a promising design methodology to improve the current 

practice in the tall building design against wind. 

 

Performance-based wind engineering has been identified as a national research priority (CTBUH 

2014). Nonlinear analysis has been used to determine the structural reliability of tall concrete 

buildings (Hart and Jain 2014), but general application of nonlinear analysis to performance-based 
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wind analysis is still undeveloped. One motivation for a nonlinear wind analysis is that prescribed 

code method in wind design may be overly conservative. Member stresses are limited to the linear 

elastic range for strength-level events. Another motivation for a nonlinear analysis is to determine 

collapse capacity of buildings. An additional motivation that triggered the investigation of this 

subject is the fact that there has been a trend recently in current codes to increase the return period 

employed in design wind speed approaching the large return period used in seismic design. 

Furthermore, architetecutral requirements are becoming more complicated, which can encourage 

structural design to aim at reducing structural members cross sections. 

 

Performance-based design (PBD) is rapidly becoming the benchmark approach for the design of 

structures to resist lateral loads. In the design of building systems against earthquakes, the 

principles of PBD have been widely adopted as a means for achieving earthquake resilient designs. 

Many of the prescriptions contained in international building codes and standards that govern 

seismic design can be linked back to the principles of PBD (e.g. Eurocode 8 and the ASCE 7-10) 

and also capacity design procedures as defined by NBCC 2010 . As an approach, PBD focuses on 

the definition of a set of performance objectives that must be satisfied by the building system under 

investigation. 

 

A key challenge in performance-based wind engineering is how to apply nonlinear analysis to 

predict inelastic building behavior and the risk of collapse for wind loads. The difficulty of a 

nonlinear analysis for wind, as opposed to seismic loads, mainly arises from inherent differences 

in the hazards. Wind loads are generated by wind pressures applied to the building envelope, 

whereas seismic loads are inertial forces generated by ground movement. The characteristics of 
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wind pressure depend primarily on the shape of the building and the terrain exposure. Wind loads 

also depend on the type of windstorm (e.g. hurricane, extra-tropical cyclone, downburst, and 

tornado). This differs from seismic load characteristics, which depend largely on the mass of the 

building and the tectonic environment, fault mechanism, and epicenteral distance. 

 

When existing buildings are subject to alterations in later design stages such as a change in the 

cladding system, owners may need to evaluate the adequacy of the lateral load resisting system. 

For designs governed by wind loads, the standard approach is to evaluate building performance 

under current codes. This involves an elastic analysis of the building subjected to code-prescribed 

or wind tunnel equivalent static wind loads, followed by an evaluation of the building behavior at 

service and strength limit states. For structural members not satisfying code limits, rehabilitation 

measures are prescribed. An alternate approach is to consider a performance-based evaluation, 

similar to the current state of the art in building designs governed by seismic loads (ASCE 2003; 

ASCE 2007).  

 

The merits of a performance-based approach include a more accurate analysis of building response 

with explicit consideration of nonlinear behavior. In traditional building design procedures, 

cracking factors are used to represent nonlinear behavior, which is less accurate. Furthermore, a 

performance-based approach allows for an explicit evaluation of the building’s performance at a 

particular hazard level, which is generally not assessed as part of the traditional prescribed code 

method. 

 

Performance-based design (PBD) represents the most advanced and rational way of addressing the 

societal need for safety when designing civil structures. In a traditional code-based design process, 
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design professionals ensure the satisfaction of prescriptive criteria which, even though established 

based on a certain level of expected performance, do not guarantee the correct evaluation and 

understanding of the actual reliability achieved (Ellingwood 2001, FEMA 2012a).  

 

In the case of PBD, on the other hand, the performance of the structure is directly linked to the 

probability of experiencing different types of losses, which can result from natural or man-made 

hazards over the entire lifetime of the structure.  

 

1.2   Literature  
 

To date, there has been several proposed frameworks for performance-based wind design 

according to  Van de Lindt (2009), Ciampoli et al. (2011), Griffis (2013a) and Griffis et al (2013b).  

Bakhshi and Nikhbakht (2011) performed nonlinear analyses of 20 to 40- story steel frame 

buildings in a parametric study comparing earthquake and wind loads, at strength-level hazard 

intensity. Muthukumar et al. (2012) performed a nonlinear dynamic analysis of an existing 22-

story reinforced-concrete shear wall building up to strength-level wind intensities, but did not 

attempt to evaluate collapse. 

Gani and Legeron (2012) predicted the nonlinear response of single-degree-of-freedom (SDOF) 

models using a spectral stochastic method, exhibiting simple behavior (elastic, perfectly-plastic, 

and bilinear with strain hardening). However, this approach required use of an equivalent elastic 

system. 

Huang et al. (2015) presented an integrated computational design optimization method for the 

performance-based design of high-rise buildings subjected to different levels of wind excitation. 
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They proposed a performance-based design defining different performance objectives associated 

with multiple levels of wind hazards. In this study, nonlinear static pushover analysis was 

conducted to evaluate inelastic drifts resulting from wind events with very high return periods. 

The augmented optimality criteria method was used to formulate and solve the optimal 

performance-based design problem considering inelastic deformation. The proposed framework 

was applied on a practical 40-story residential building.  

Muthukumar et al. (2013) presented an evaluation of the Main Wind Force Resisting System 

(MWFRS) of an existing building, whose façade was proposed to be replaced with a new curtain 

wall system. The building did not meet the strength limit state prescribed under current codes. 

Therefore, a performance-based evaluation approach was utilized as per the framework outlined 

in Griffis et al. (2012). Structural testing, non-destructive evaluations and visual assessments were 

conducted to determine the condition of the existing structure and develop as-built data for the 

performance-based evaluation. Inelastic behavior of the shear walls was explicitly modeled. Wind 

loads were obtained from wind tunnel testing performed at Rowan, Williams, Davies, and Irwin, 

Inc. (RWDI). Building target performance levels were established at both the service and strength 

limit states. Nonlinear analyses were then conducted to evaluate building performance at the 

identified target levels. 

 

Judd and Charney (2015) performed nonlinear dynamic analyses to examine inelastic behavior 

and collapse risk for a 10-story SDOF model for a steel building based on a characteristic main 

wind-force resisting system (MWFRS) in the longitudinal direction. The study investigated the 

inelastic behaviour and risk of collapse of SDOF models. The study was also used to investigate 

if the application of a load factor “R” similar to that employed in seismic design would result in 
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an economic design. For the specific building studied, ductility demand was effective in increasing 

the collapse safety and reducing risk of collapse. It was concluded that by providing a limited level 

of ductility for the moment frame system, it was justified to use a load reduction factor of R = 1.25. 

 

Spence and Kareem (2014) developed a framework for the probabilistic performance-based 

assessment of large-scale uncertain linear systems driven by experimentally stochastic wind loads. 

The study was done on a 45 story steel building with an offset core. The members under study 

were box section columns. Several other probabilistic performance-based design approaches were 

proposed by Paulotto et al. (2004), Bashor and Kareem (2007), Augusti and Ciampoli (2008), and 

Ciampoli et al. (2011). 

 

Spence et al. (2015) presented a first attempt to define an appropriate framework to allow the 

principles of performance-based design to be employed during the design of building systems to 

resist severe wind events. Focus was placed on highlighting the necessary steps to reach such a 

goal, which include the definition of site-specific wind hazard models, of suitable fragility 

functions as well as of consequence functions that rationally assess damage and losses. 

 

Ciampoli et al. (2011) first extended the approach proposed by the Pacific Earthquake Engineering 

Research Center (PEER) for Performance-Based Earthquake Engineering is extended to the case 

of Performance-Based Wind Engineering. The framework was applied on a long span suspension 

bridge, and the assessment of collapse and out-of-service risks were illustrated. 
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1.3   Research Gaps 
 

The previously mentioned studies focused on proposing probabilistic approaches for performance-

based wind engineering. Inherent ductility in concrete members has not been explicitly considered 

before in a defined framework. Wind design has not yet benefited from such property of reinforced 

concrete, as it is the case in seismic design. Current codes only use equivalent static wind loads, 

which can be overly conservative. Furthermore, there has been a trend recently in current codes to 

increase the design wind event return period, but on the other hand, it should be guaranteed that 

members possess enough ductility to experience inelastic actions without major loss in strength. 

As such, it is important to define a framework for a performance-based technique, and define target 

performance levels as limits define in ASCE/SEI 41-13 to be used as a guide in assessment. 

 

Based on the addressed gaps in literature, the current thesis focuses on proposing a framework for 

a performance based design for buildings subjected to wind loads, and application of this 

framework on a high-rise building, as well as assessing the inelastic actions experienced by 

concrete shear walls. 

  



8 
 

 

1.4   Thesis Objectives 
 

The main objectives of this thesis are summarized as follows: 

1- Develop a framework for performance-based design for buildings subjected to extreme 

wind loads. 

2- Investigate the applicability of ductility-based approach adopted in building codes for 

seismic design (NBCC 2010) on wind design. 

3- Assess the inelastic behaviour of concrete shear walls under wind loads. 

 

 

1.5   Thesis Organization 
 

The thesis has been prepared in a monograph format. In chapter 1, a review of the literature related 

to the applications and importance of implementing a performance-based procedure for high-rise 

building subjected to wind is presented. This is followed by addressing the gaps in the literature 

and outlining the objectives of the thesis. In chapter 2, a finite-element numerical model is 

developed for a high-rise building, and wind loads from wind tunnel testing are applied to evaluate 

the full dynamic and quasi-static responses of the building. In chapter 3, non-linear static pushover 

analysis is conducted on concrete shear walls to assess ductility demand and determine target 

performance levels reached for each shear wall. 
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1.5.1   Preliminary Investigation to Assess the Application of Ductility – Based Approach 

for High-Rise Buildings subjected to extreme Wind Loads.  

 

In this chapter, a 3D finite element model is constructed for a 65 storey building using ETABS 

software. The building main lateral load resisting system is concrete shear walls. Wind loads are 

taken from wind tunnel pressure test results. Testing was conducted at the Boundary Layer wind 

Tunnel (BLWT) facility at the University of Western Ontario. Dynamic time history analysis is 

conducted to calculate full dynamic responses of the building (base shear, base moments, and 

displacements). This is followed by Quasi-static analysis to calculate the Mean and Background 

responses. Furthermore, wind response is decomposed into Mean, Background and Resonant 

component. Load reduction factor “R” similar to that applied in seismic design is applied on wind 

resonant component, and accordingly, concrete shear walls are redesigned. Building dynamic 

characteristics are compared before and after reduction of shear walls. The same procedure is 

implemented using different reduction factors. 

 

1.5.2   Non-linear Static Analysis for Ductility- Based Designed Reinforced Concrete Shear 

Walls Subjected to Extreme Wind Loads. 

In this chapter, a numerical 2-D finite element model is developed for concrete shear walls 

individually to conduct static-pushover analysis on reduced cross-sections based on the reduction 

procedure described in chapter 2. Load pattern for pushover analysis is taken as the shear force 

diagram applied on shear walls resulting from elastic analysis conducted in chapter 2. 

Displacement-controlled pushover analysis is carried out and ductility demand (µ) of each shear 

wall module is evaluated. 
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Furthermore, target performance levels reached for each shear wall is evaluated and compared 

with limits of acceptance criteria set by current building codes (ASCE/SEI 41-13). The same 

analysis is repeated using different levels of ductility for shear walls, which can be achieved 

through different detailing provisions as mentioned in current codes (NBCC 2010).  
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CHAPTER 2 

PRELIMENARY INVESTATION TO ASSESS THE APPLICATION OF 

DUCTLITY- BASED APPROACH FOR HIGH-RISE BUILDINGS 

SUBJECTED TO EXTREME WIND LOADS 

 

2.1    Introduction 

Buildings subjected to wind loads are traditionally designed considering only the elastic range of 

members and using equivalent static loads and prescribed code methods. It has not been considered 

before to take inherent ductility in structural members into consideration. Therefore, the 

implementation of a performance-based design for structures under wind loads would be 

beneficial, where inelastic behavior of members are considered.  

 

In seismic design, controlled inelastic actions are permitted in lateral load resisting system 

members but under condition that these members possess a certain level of ductility. One 

motivation for adopting a ductility-based design is that there has been a trend in design codes lately 

to increase the return period as per ASCE 7-10. Another motivation is that wind design has not 

benefited so far from inherent ductility in members, which can affect the design of structural 

members and may result in savings in the structural costs in high-rise buildings. This chapter 

investigates application of performance-based approach on a high-rise building under extreme 

wind loads.  A framework for performance-based design is proposed. First, a 3D finite element 

model for the building is developed. Then the applicability of the proposed framework is tested on 

a 65 storey high-rise building. Through a series of steps: 1) conducting dynamic time-history 

analysis to evaluate building responses (base shear, bending moments, and displacements). 2) 

Separating wind response into mean and background component and resonant component alone.  
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3) Reducing wind resonant component by “R” factor. 4) Comparing the dynamic characteristic 

and modes shapes of the structure before and after cross section reduction. 

 

2.2    Flowchart for the proposed Performance - Based Design framework 

In this section, a proposed framework for performance – based design for high-rise buildings 

subjected to wind forces is presented. First, wind tunnel data is taken and processed to evaluate 

story forces that are applied on a 3D finite element model. Time history dynamic analysis is 

conducted to evaluate total response of the building (base shear VT(t), base moment MT(t) and 

displacements ΔT(t)). Second, the response fluctuating part is decomposed into background and 

resonant component by conducting Quasi-Static analysis and evaluating Mean + Background 

component then subtracting this part from the total response to get the resonant part. Then, the 

resonant part is to be reduced by an R factor as adopted in seismic design and a new set of loads 

are applied to the lateral load resisting system members and accordingly, members are redesigned 

under the reduced straining actions. Furthermore, the dynamic characteristics of the structure with 

the reduced cross sections are checked and compared with the initial design in terms of 

fundamental period and total base shear. The scope of this chapter is concerned up to this step in 

the flowchart. The next step is to check if the structure possesses enough ductility, and assess the 

inelastic actions of the reduced cross sections. This issue is addressed in chapter 3. Fig. 2- 1 shows 

the proposed framework for the performance based- design procedure. It should be noted that this 

study is preliminary in its nature and only limited to the case study presented in this thesis. 
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Dynamic time history 

analysis – Evaluate 

VT(t) 

    
Quasi-static 

analysis – Evaluate 

Vmean + VBG(t) 

Evaluate VR = 

VT(t) – [Vmean + 

VBG(t)] 

Reduced Wind 

resonant component 

Redesign shear wall 

on reduced load 

Base shear (VT-II) 

Fundamental period 

and mode shapes 

Step I:

Conduct wind tunnel pressure test - Evaluate Cp(t), Fx(t) & FY(t)

Step II:

Develop 3-D Finite element model - Evaluate
natural frequencies and mode shapes

Step III:
Evaluate Total, Mean, Background and 

resonant component (VT(t), Vmean 

,VBG(t), VR(t))

Step IV:
Ductiility design approach- VT-I(t) = 

Vmean + VB(t) + VR(t)/R

Step V:
Check the dynamic characteristics of 

the building with the new design

Step VI:
Check if the structure possesses enough 
ductility to justify the reduction of load 

- Assess the inelastic actions

Fig. 2- 1: Proposed framework for Performance-based design 
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2.3    Step I: Wind tunnel testing 

2.3.1   Building description 

The study is done on a commercial building that consists of 65 stories with a total height of 232 m 

and overall plan dimensions of approximately 50 m X 70 m. The structure’s main lateral load 

resisting system is concrete shear walls. The structural system for the typical story is flat slab with 

spans ranging between 7m and 9m. Fig. 2- 2 shows the layout for the whole site. 

 

 

 

 

 

 

 

 

 

The building under study is Tower F as shown in Fig. 2- 3 in the project layout. The building is 

functioning as a hotel. Initially the building was designed for strength as per building code ACI 

318-95, which was as a baseline for comparison of the dynamic characteristics of the structure 

after applying the reduction procedure on wind resonant component described in this chapter.  

 

Building under study     

(Tower F) 

Fig. 2- 2: Layout for the project site (Source: Wikipedia: https://en.wikipedia.org/wiki/Abraj_Al_Bait) 

https://en.wikipedia.org/wiki/Abraj_Al_Bait
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Fig. 2- 3: Elevation and plan views for the layout (Boundary Layer Wind Tunnel report, 2008) 
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2.3.2   Wind data at building location 

The predicted 50-year and 100-year return period hourly mean wind speeds at gradient level (300 

m height) at the location of the building are 35 m/s and 38 m/s respectively as shown in Fig. 2- 4. 

The most critical wind directions are those coming from West and North-West directions as shown 

in Fig. 2- 5 in the building location wind rose. 

 

 

 

 

 

 

Fig. 2- 4: Hourly- Mean wind speeds with different return periods (Boundary Layer Wind Tunnel report, 2008) 
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Fig. 2- 5: Hourly- Mean wind speeds with different return periods (Boundary Layer Wind Tunnel report, 2008) 
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2.3.3   Wind tunnel pressure test model 

A rigid model was built for the building with a 1:500 scale and a pressure test was conducted in 

the Boundary Layer Wind Tunnel (BLWT) facility at the University of Western Ontario. Fig. 2- 6 

shows the pressure test model built for the building. Local pressure measurements were taken at 

10° intervals for the full 360° azimuth range, at 400 samples per second for 26 seconds (equivalent 

to about 2.5 samples per second for one hour in full scale). Azimuths are measured from true north 

where 0o is the north, 90o is the east, 180o is the south and 270o is the west direction. Pressure 

Coefficient values from 114 pressure taps distributed along different elevations of the modelled 

building were recorded and integrated to evaluate wind story forces according to (Alan Davenport 

Wind Engineering Group, 2007).  

 

A detailed proximity model of the surrounding city was built in block outline from Styrofoam for 

a radius of approximately 750 m. The building model and the proximity model were rotated to 

simulate different wind directions with the upstream terrain being changed as appropriate. The 

upstream terrain was modelled using generic roughness blocks and turbulence-generating spires 

to produce wind characteristics representative of those at the project site. The model profiles are 

good representations of the expected full-scale wind speed variation with height but deviate 

somewhat from that expected in full scale. To account for this, the reference wind speed measured 

in the wind tunnel has been adjusted to ensure that the roof-height wind speeds match the expected 

full-scale values according to Mara et al. (2008). 
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2.3.4   Evaluation of wind forces from wind tunnel data 

Time-history pressure coefficient values (Cp) were taken from wind tunnel results to evaluate story 

forces resulting from wind loading. Pressure coefficients are referenced to the reference height 

dynamic pressure which is calculated using this expression qref =1/2.ρ.Vref 
2 according to Mara et 

al. (2007), where ρ = air density (1.225 kg/m3) and Vref is the mean-hourly wind speed at reference 

height. Thus the pressure coefficients are defined as Cp = Pressure / q ref, where the pressure 

represents the pressure at the tap relative to the undisturbed reference static pressure. Tributary 

areas are calculated for each pressure tap for different elevations of the building, and then areas 

are resolved in the horizontal-X and vertical-Y directions of the building by angle (ϴ) to account 

Fig. 2- 6: Pressure test model tested at the BLWT (Boundary Layer Wind 

Tunnel report, 2008) 
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for the inclination of the building with respect to the true north. The following equations were used 

to evaluate the wind force at each pressure tap elevation: 

 

Fx = 1/2.ρ.Vref 
2.Cp. Area Trib. Cos (ϴ) 

Where ϴ is the angle between the normal to each face of the building and the positive X-axis and 

Area Trib. is the tributary area of each pressure tap.  

 

Fy = 1/2.ρ.Vref 
2.Cp. Area Trib. Cos (Ф) 

 

Where Ф is the angle between the normal to each face of the building and the positive Y-axis. 

This procedure is done for all Cp values in the time domain to form a time-history for story forces. 

The duration of the test was 1 hour in full-scale applied at a rate of 2.5 samples per second, with 

14000 time steps and a time increment Δt = 0.285 sec. After evaluating wind forces in the two 

orthogonal directions for the 9 pressure tap rings installed at different elevations of the building, 

these forces are converted to story forces acting at the center of geometry of each story. Pressure 

tap elevations are divided into clusters dividing each force acting on a ring of pressure tap ring on 

the adjacent stories. Fig. 2- 7 shows wind force time histories for groups of stories (story 1-7) 

nearest to its adjacent pressure tap ring. The figures showing time history story forces for the rest 

of the stories are provided in Appendix A. 
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2.4    Step II: Finite Element Analysis  
 

 A 3D Finite Element model was developed for the building using ETABS software to evaluate 

mode shapes and natural periods of the structure, and conduct dynamic time- history analysis. 

Shear walls were modelled as shell elements in the preliminary stages just for running linear 

analysis, as computational run time was not an issue in this stage. Floor slabs were modelled as 

rigid diaphragms according to CSI Analysis Manual (2015). All walls and lateral load resisting 

system elements were fixed at the foundation level. Mass source was taken as the dead load in 

addition to the superimposed dead load on the slabs and a portion of the live load that is 25%. Fig. 

2- 8 shows plan view of the typical story of the building. 

 

 

(k
N

) 
Fig. 2- 7: Story forces for stories 1-7 
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Time history analysis is conducted to evaluate the dynamic response of the structure to an arbitrary 

loading. The dynamic equilibrium equation to be solved is given by:  

K u (t) +C ů (t) + M ü (t) = r (t) 

Where K is the stiffness matrix; C is the damping matrix; M is the diagonal mass matrix; u, ů &, 

and ü are the displacements, velocities and accelerations, and r is the applied load. ETABS 

software is used in this study to solve the dynamic equilibrium equation and evaluate the total 

responses of the structure. Damping ratio is taken as 1% of critical damping and the time step Δt 

is taken as 0.285 sec, which is the original time step of the wind record. Newmark method is used 

for performing direct-integration time history analysis with γ = 0.5 and β = 0.25. 

 

Fig. 2- 8: Plan view of the typical story of the building 
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Table 2- 1 shows modal analysis results in terms periods and mass participation factor, considering 

the first 20 modes. Mass participation factor represents the amount of the structure mass that 

contributes to each mode, so a mode with a large mass participation factor is usually a significant 

contributor to the structure response. Modal analysis results show that the structure’s fundamental 

period is 10.88 sec., and the first mode is mainly governed by the torsion direction with an 83.5% 

mass participation ratio. As for the second mode, it is a transitional mode in Y-direction with 

88.5% mass participation ratio and the third mode is governed by translation in X-direction with a 

mass 93.9% participation ratio. Fig. 2- 9 shows the first three mode shapes. 

 

Table 2- 1: Modal Analysis Results with original cross sections 

Modal Analysis Results before reducing cross sections 

Mode Period UX UY RZ 

 

sec % % % 

1 10.882 5.9 10.6 83.5 

2 10.376 0 88.5 11.5 

3 7.38 93.9 0.9 5.2 

4 2.657 2.1 12.7 85.2 

5 2.557 3.4 82.7 13.9 

6 2.198 94.1 4.6 1.2 

7 1.21 43.7 1 55.3 

8 1.13 16 63.1 20.9 

9 1.045 40.2 35.9 23.9 

10 0.752 65.7 0.6 33.7 
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Mode 1 Mode 2 Mode 3 

Fig. 2- 9: The first three mode shapes of the building 
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2.5    Step III: Evaluate response total, Mean+Background and resonant 

component (VT(t), VMean+BG, VR)  
 

2.5.1   Dynamic Time History Analysis 

 

The third step in the flowchart involves running linear dynamic time history analysis applying 

wind forces time-histories on the center of geometry of each story diaphragm to get the structure 

total response to wind loading (VT (t)). Fig. 2- 10 and Fig. 2- 11 show the time history for base 

shear in the X and Y directions.  

 

 

 

Fig. 2- 10: Total Base Shear VT-X (t) 
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2.5.2   Step IV: Decomposition of Wind Response into Mean, Background and Resonant 

component 

The second step in the analysis involves decomposition of the wind response. Wind response is 

divided into a mean part, and a fluctuating part that can be decomposed into background (quasi-

static) and the resonant response. The background component refers to the quasi-static response of 

the fluctuating part of wind response which occurs when wind load frequency is lower than the 

natural frequency of the structure. On the other hand, the resonant component refers to the 

additional dynamic amplification of the response according to (Holmes, 2001).  

Several approaches can be used to decompose the fluctuating part into Background (quasi-static) 

and Resonant. For example, most codes simplify this part into the so-called “Gust Response 

Fig. 2- 11: Total Base Shear VT-Y (t) 
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Factor” and this factor should be multiplied by the quasi-static loads resulting from applying the 

loads as if the building was rigid as per NBCC (2010). In this study, the methodology presented 

for separating the resonant component from the background (quasi-static) component is as follows: 

First, Quasi-static analysis is done applying wind load with an artificial large time step which is 

11 sec (≈ 40 times the original time step) to capture the mean + background part of the response 

VQ(t). Then resonant component VR(t) is evaluated by linear subtraction of VQ(t) from the total 

response VT(t).  

To illustrate this separation procedure, the power spectral density function for the fluctuating wind 

response (base shear Vx(t)) with different time steps and the corresponding frequencies are 

calculated and plotted using a Fast Fourier Transform application. The procedure is repeated using 

different time steps in an incremental manner, using the multiples of the original time step, which 

is 0.285 sec. Fig. 2- 12 shows the spectral density function for the fluctuating part of the response 

using different time steps. 
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It can be observed from Fig. 2- 12 that the resonant part represented in the peaks in the response 

starts to decrease gradually as time step increases. The PSD is plotted for each response resulting 

from each time step until the peaks in the resonant part eventually diminishes in the last trial, which 

was the response for Δt = 9 sec. Sensitivity analysis is performed on the peak base shear of each 

response until the variation between the peak base shear values corresponding to two different time 

steps converges. Convergence is achieved when using Δt = 11 sec and the difference between the 

Fig. 2- 12: Spectral density function for base shear Vx-T 
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peak base shear using Δt =11 sec. and Δt= 9 sec. is found to be 1.5 %. Fig. 2- 13 shows the peak 

base shear values plotted against the time step value. 

 

 

 

 

 

 

 

The final time step Δt used for running quasi-static analysis is 9 sec. This analysis is conducted to 

capture mean + background components of the response separately. Newmark method is used for 

performing direct integration time history analysis, with the same parameters used in the case of 

full dynamic analysis. Damping ratio is taken as 1% of critical damping. The mean + background 

response is plotted against time. Dynamic amplification factor (DAF) is evaluated by dividing the 

peak total base shear/ peak quasi-static base shear. DAF is found to be 1.37 for X direction (Vx) 

and 1.51 for Y direction (VY). Fig. 2- 14 and Fig. 2- 15 shows the time history for mean + 

background base shear in X and Y directions respectively. 

 

 

Fig. 2- 13: Base shear values versus different loading time steps 
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Fig. 2- 14: Mean + Background Base Shear VQ-X (t) 

Fig. 2- 15: Mean + Background base shear VQ-Y (t) 
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Resonant component of the base shear is evaluated by linear subtraction of the mean + background 

base shear VQ (t) from the total base shear VT (t). Fig. 2- 16 and Fig. 2- 17 show the time histories 

of base shear in X and Y directions respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2- 16: Resonant Base Shear VR-X (t) 

Fig. 2- 17: Resonant Base Shear VR-Y (t) 
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2.6    Step V: Ductility based approach – [VT-I (t)] 

2.6.1   Reducing Wind Resonant Component by “R” factor 

The next step in the flowchart involves reducing wind resonant component by a factor “R”. A new 

set of wind loads are applied on the structure and accordingly, redesign of the lateral load structural 

system under the reduced load is conducted. Fig. 2- 18 and Fig. 2- 19 show plots for time history 

of reduced resonant component of wind response, which yielded the new straining actions to carry 

out redesign for shear walls. The “R” factor is given the value of 2 in this study. 

 

 

 

 

 

 

 

 

 

 

Fig. 2- 18: Reduced resonant base Shear VR-X (t)/R 

Fig. 2- 19: Reduced resonant base shear VR-Y (t)/R 
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Fig. 2- 20 and Fig. 2- 21 show the new applied base shear which is denoted by VT-I (t) which is 

the summation of Mean + Background components [VMean+VBG(t)] and the reduced resonant 

component [VR(t)/R]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2- 20: New design base shear (VT-I-X (t)) 

Fig. 2- 21: New design base shear (VT-I-Y (t)) 
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2.6.2   Redesign of the concrete shear walls under the new set of loads 

The reduction procedure is done on each wall individually in terms of their bending moments. 

Total base moment on each shear wall is separated into Mean + Background part (MQ) and 

Resonant part (MR). The new set of design straining actions are resulting from adding Mean + 

background bending moment (MQ) to the reduced resonant bending moment (MR.). Fig. 2- 22 

shows the building layout and shear wall modules under study. 

 

  

 

 

 

 

 

 

 

 

Torsion is not considered in this case as torsional effect on shear walls is studied, and it is found 

that the governing case in design is the bending moment. Check of shear is performed on each 

shear wall and torsional effects are not the governing case in shear design. Another reason for not 

Module # 1:  

I-Section 

Module # 2: 

Vertical wall 

Fig. 2- 22: Building plan layout 
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taking torsion into acouunt is that the objective of this study is just the proof of concept; which is 

the applicability of ductility-based approach on shear walls subjected to wind loads. 

Table 2- 2 shows the summary of reduction procedure and the new design moments on shear wall 

modules.  

Table 2- 2: Summary of reduction procedure on shear walls’ straining actions 

Bending moments on Shear Walls:  (R = 2) 

Module # 1: I-Section (Thickness = 35 cm) 

Total Moment  = 448626 kN.m 

Quasi-Static (M +BG) = 258982 kN.m 

Resonant =  189644 kN.m 

Reduced Resonant = 94822 kN.m 

New Moment Applied = 353804 kN.m 

Section is reduced from 35 cm to 28 cm 

Module # 2: Vertical Wall   (Thickness = 50 cm) 

Total Moment  = 21280 kN.m 

Quasi-Static (M +BG) = 12362 kN.m 

Resonant =  8918 kN.m 

Reduced Resonant = 4459 kN.m 

New Moment Applied = 16821 kN.m 

Section is reduced from 50 cm to 35 cm 
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Results show that due to reducing wind resonant component by a factor of 2, moments on shear 

walls were reduced by about 22%, and accordingly there was a saving in concrete volume of 

affected shear walls by a percentage ranging from 20-25%. 

2.7    Effect of reducing wind resonant component on Structure Dynamic 

characteristics. 

2.7.1   Modal analysis results of structure with reduced cross sections: 

The effect of reducing shear wall concrete dimension on global behavior of the structure in terms 

of fundamental periods and response to wind loading is studied. It is found that as a result of 

reducing walls’ cross sections, fundamental period of the structure changed from 10.8 sec to 11.5 

sec. Table 2- 3 presents a comparison between mode shapes and fundamental periods before and 

after reduction. The fundamental period of the structure changed from 10.88 sec to 11.5 sec with 

only 7% increase. 

 

 
Table 2- 3: Modal analysis results before and after reduction 
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2.7.2   Dynamic time history analysis of the structure with reduced cross sections: 

Step III in the flowchart is repeated and full dynamic time history analysis is conducted again on 

the building with reduced wall cross sections, applying the original time history load. The results 

show that the peak base shear in the two orthogonal directions did not change much; there is about 

4% change only. Fig. 2- 23 and Fig. 2- 24 show the base shear in X and Y directions after reducing 

shear wall cross sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2- 23: Total Base Shear VT-X (t) after redesign 

Fig. 2- 24: Total Base Shear VT-Y (t) after redesign 
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Therefore, it can be concluded from the previous comparisons, that reducing wind resonant 

component and redesigning the lateral load resisting system based on the reduced load did not have 

a major effect on the structural global behavior in terms of fundamental period and responses.  

Table 2- 4 summarizes the comparison between the structure’s dynamic characteristics before and 

after reduction. Results show that reduction of wind resonant component did not have a major 

effect on base shear in X and Y directions and dynamic amplification factor. 

 

Table 2- 4: Base Shear values before and after reduction 

 Structure with 

initial cross sections 

VT (t) 

Reduced applied load –

VT-I (t) = 

(VM+VBG+VR/2) 

Structure with 

reduced cross 

sections VT-II (t) 

Base Shear VX (kN) 18170 15715 15435 

Base Shear VY (kN) 32200 26760 24940 

DAF for Vx 1.37 - 1.33 

DAF for Vy 1.51 - 1.44 
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2.8    Parametric study on changing “R” factor and its effect on structure 

dynamic characteristics 

In this section, a parametric study is presented, trying different reduction factors on wind resonant 

component. Shear walls are redesigned based on the reduced straining actions in each case. The 

analysis is done again under the reduced set of loads. The maximum reduction factor employed 

here is R=3 as it’s not expected that the load reduction factors will be as its counterpart in seismic 

design where load factors can range between 2.8 and 5.6.  The fundamental period of the structure 

is plotted against different reduction factors as shown in Fig. 2- 25 Base shear is also evaluated in 

each case and plotted against the reduction factor as shown in Fig. 2- 26. 

 

 

 

 

 

 

 

 

 

 

TABLE4: Modal Analysis results before and after reduction 
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CHAPTER 3 

NON-LINEAR STATIC ANALYSIS FOR REDUCED REINFORCED 

CONCRETE SHEAR WALLS SUBJECTED TO EXTREME WIND LOADS 

 

3.1    Introduction  
 

It is concluded from chapter 2 that concrete shear wall modules are designed based on ductility 

design approach. Wind resonant component of the wind loading is reduced by a factor R=2. 

Accordingly, concrete shear walls are redesigned. This chapter examines the application of 

ductility-based approach on concrete shear walls of the building. Non-linearity is defined by 

assigning plastic hinges at potential locations along the shear wall, and defining moment rotation 

relationships for hinges as per (ASCE/SEI 41-13). Pushover analysis load patterns are obtained 

from linear time history dynamic analysis of the full building, applying shear force distribution on 

each wall individually. Displacement controlled pushover analysis is conducted. 

  

Pushover load-displacement curves are obtained for each shear wall module, and ductility demand 

µ is evaluated as a result of using a load reduction factor of R = 2. Moment rotation curves for 

plastic hinges are evaluated and plastic rotation experienced by the walls are compared with plastic 

rotation limits for each target performance level, Immediate Occupancy (IO), Life Safety (LS) and 

Collapse Prevention (CP). Furthermore, a parametric study is conducted on the level of ductility 

of concrete shear walls and its effect on the plastic hinge responses and target performance level 

reached. Fig. 3- 1 shows the flowchart for nonlinear analysis conduced in this chapter. 
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Displacement

- controlled 

    

Assign 

plastic hinges  

Load Pattern 

– Elastic 

shear force 

Reduced Wall cross 
Sections according to 
ductility based design

Develop 2-D model for 
shear wall and conduct 

pushover analysis

Pushover Curves -
Ductility demand.

Moment rotation curves -
Target performance levels

Evaluate the effect of 
ductility level on target 

performacne level reached

Fig. 3- 1: Flowchart for nonlinear analysis of reduced shear walls 
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3.2    Methodology: 

3.2.1 Reduced shear wall cross sections based on ductility design: 

First, Reduced shear wall cross sections (as a result of reducing wind resonant component by R=2) 

are obtained from the redesign procedure done in chapter 2. The peak bending moment is extracted 

from linear analysis of the full model of the building. Fig. 3- 2 and Fig. 3- 3 show the time history 

base shear for I-Section shear wall and vertical wall 4200 mm long. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3- 2: Base Shear Time History for I-section wall from linear analysis 

Fig. 3- 3: Base Shear Time History for Vertical wall (4200 mm) from linear analysis 
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3.2.2   2-D modelling of shear walls and static pushover analysis 

Second, Pushover analysis conducted in this case is displacement-controlled analysis, where the 

member is loaded until it reaches a target displacement and strength degradation gradually starts 

occurring, and eventually the member reaches collapse. Fig. 3- 4 shows the typical force – 

displacement pushover behavior of a reinforced concrete member. 

Zone 1 in the pushover curve that lies between points A and B represents the linear zone. Between 

points B and C. Zone 2 is the zone where concrete start to spall and strain hardening takes place, 

which, in well-confined sections, can be associated with strain hardening of the longitudinal 

reinforcement and an increase in strength from the confinement of concrete. After point C, is the 

zone where strength loss starts and member fails gradually until reaching collapse, which 

represents point D on the curve. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3- 4: Typical backbone curve for reinforced concrete cross section. (FEMA 356) 
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The shear walls in this model are modelled using a set of frame elements, with each frame element 

assigned a concrete cross-section with defined steel reinforcement designed as per (ACI – 318). 

Boundary conditions are defined assuming that the wall is fixed at its base. Plastic hinge properties 

are assigned for different frame elements as per moment rotation curve parameters shown in Table 

3-1 (as per ASCE/SEI 41-13 – table 10-8, Modelling Parameters and Numerical Acceptance 

Criteria for Nonlinear Procedures - Reinforced Concrete Shear Walls). Defining concrete section 

properties, reinforcing steel, and shear reinforcement also, the modelling parameters and 

acceptance criteria are defined and the moment rotation backbone curves are plotted for the 

concrete cross-section depending on two parameters, the first one is 
𝑃

𝐴𝑔 f′c
  where P is the axial 

force, Ag is the gross area of the cross section and f’c is concrete compressive strength. The other 

parameter is 
𝐴𝑣

𝑏𝑤.𝑆
 which represents the shear reinforcement of the section; where Av is the shear 

reinforcement, bw  is the shear depth and s is the spacing of stirrups. 

 

The backbone curve, as shown in Fig. 3- 4, consists of five segments. The first segment represents 

the linear zone until reaching yield (Vy), no deformation occurs in the hinge up to point B. Point 

C represents the ultimate capacity of the section for pushover analysis. Point D represents residual 

strength and point E represents total failure. 

 

Modelling parameters and acceptance criteria are defined depending on the level of axial force P, 

the shear reinforcement Av  ,the shear width bw and spacing of stirrups s. The parameter a which is 

the distance between points B and C on the backbone curve is a measure of the ductility of the 

section. Table 3-1 shows the modelling parameters and numerical acceptance criteria for nonlinear 
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procedures as per (ASCE/SEI 41-13). The tabulated values are given for condition i sections (as 

per ASCE/SEI 41-13) for sections governed by flexural failure, which is the case for most shear 

walls. Rows are sorted in Table 3- 1 from ductile to moderate to limited ductile as we go from top 

row to the bottom row. 

 

Table 3- 1: Modelling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures - Reinforced 

Concrete Shear Walls. (ASCE/SEI 31-41) 

𝑃

𝐴𝑔 f′c
 

𝐴𝑣

𝑏𝑤. 𝑆
 

a b c IO 

(rad.) 

LS 

(rad.) 

CP 

(rad.) 

≤ 0.1 ≥ 0.006 0.035 0.060 0.2 0.005 0.045 0.060 

≤ 0.1 = 0.002 0.027 0.034 0.2 0.005 0.027 0.034 

≤ 0.1 < 0.002 0.010 0.010 0.0 0.003 0.009 0.010 

 

For each rotational degree of freedom (bending) in the frame element, plastic hinges are assigned 

using a plastic moment – rotation behaviour. Degrees of freedom that are not specified remain 

elastic. Each plastic hinge is modeled as a discrete point hinge. All plastic hinge deformations 

whether displacement or rotation, occur within the point hinge.  

 

As per ASCE/SEI 41-13, immediate occupancy Structural Performance Level is defined as post-

hazard damage state in which only very limited structural damage has occurred. The basic vertical 

and lateral force resisting systems of the building retain nearly all of their pre-hazard strength and 

stiffness. The risk of life threatening injury as a result of structural damage is very low, and 

although some minor structural repairs may be appropriate, these would generally not be required 

prior to reoccupancy. 
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Table 3- 2 shows each structural acceptance criteria. ASCE/SEI 41-13 specifies the level of 

damage accompanied by each structural performance criteria. Immediate occupancy level is 

specified in the table, and overall damage for this structural performance level is explained. The 

overall damage life with no permanent drift occurring. Structures substantially retains its original 

strength and stiffness. Minor damages can occur in non-structural elements as facades, partitions 

and ceilings.  

Table 3- 2: Damage Control and Building Performance Levels 

Immediate 

occupancy (IO) 

Life Safety (LS) Collapse Prevention 

(CP) 

No permanent 

drift – No loss in 

strength – Minor 

cracking occurs 

in facades. 

Some permanent 

drifts occur – Minor 

loss in strength – 

Building may be 

beyond economical 

repair. 

Large permanent 

drifts – Major loss in 

strength – Building is 

near collapse. 

 

ETABS finite element software is used to do static pushover analysis for shear walls with reduced 

cross sections. Reduction was done based on the procedure described in chapter 2. The Linear 

model for elastic design was used as the baseline for non-linear analysis done in this part. 

Displacement-controlled Static pushover case is defined applying the load pattern as the shear 

force diagram resulting from elastic analysis of the section shown in Fig. 3- 5 to Fig. 3- 8. The 

application of a larger load on the wall with reduced cross-section; i.e.: reduced capacity, it is 

expected that the member will experience inelastic actions and a certain level of ductility is 

reached. 
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Fig. 3- 6: Shear Force Diagram for Vertical Wall 

4200 mm long. 
Fig. 3- 5: Shear Force Diagram for I-section 

wall. 
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Fig. 3- 8: Shear Force Diagram for inclined section 

wall 
Fig. 3- 7: Shear Force Diagram for L-section 

wall 
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The assumption of equal displacements is often used to assess the plasticity of sections in seismic 

design. In this study, the same concept is applied here in the case of wind design. In each pushover 

curve, the linear curve is extrapolated to the value of elastic base shear VE, resulting from elastic 

design of the section without taking ductility into account. After getting VE, the corresponding 

displacement Δdemand is calculated. Then by getting the value of yield displacement (Δyield) and 

getting the ratio Δdemand/Δyield, ductility demand can be evaluated. 

Fig. 3- 9 Shows the Idealized load – displacement relationship of a frame structure as per FEMA 

356 in terms of base shear plotted versus top displacement. In the same figure, an idealized bilinear 

elastic-perfectly plastic representation of this nonlinear behaviour is shown on the graph. A notable 

parameter in this figure is ductility demand (µ) which is defined as the ratio of the displacement 

corresponding to the elastic base shear Δdemand, and the displacement Δy corresponding to the 

global yield base shear (Vy) of the idealized bilinear curve. 
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3.3 Results and discussion: 
 

Non-linear static analysis is done on the reduced shear wall modules marked in the layout in Fig. 

3- 10. Reduction in shear wall thickness is done based on reduction in wind load resonant 

component by a factor of R=2, which resulted in reduction in concrete shear wall thicknesses with 

a factor ranging between 1.15 to 1.25 applied on different shear wall modules. The four shear wall 

modules in the lateral load resisting system are I-shaped shear wall, Vertical wall 4200 mm long, 

the inclined shear walls on the two sides of the layout close to the slab edges, and L-shaped shear 

walls.  

 

 

 

Fig. 3- 9: Idealized Load – Displacement relationship and ductility demand (µ) (Chopra and Goel, 1999) 
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For each shear module, proper detailing is provided as per NBCC 2010 to ensure the section 

possesses enough ductility. NBCC 2010 categorized reinforced concrete sections into three 

categories based on level of ductility provided which the designer can control through abiding by 

certain reinforcement provisions: high, moderate and limited ductility. In this study, shear wall 

sections are reinforced to ensure high ductility, which was used as a baseline for comparison with 

other ductility levels in terms of assessing inelastic behaviour.  

Module 

# 1 

Module 

# 2 

Module 

#4 

Module 

#3 

Fig. 3- 10: Structural Layout showing governing shear walls in Lateral Load Resisting System (ETABS FE Model) 
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3.3.1   Module #1: I-Section Pushover analysis results: 

First shear wall module that is tested for non-linear static pushover analysis is the I-Section shaped 

shear wall. Load pattern applied in the analysis is obtained from the shear force diagram of the 

wall resulting from linear analysis of the building. Level of axial load is an important issue when 

conducting non-linear analysis. For this shear wall, axial force P is found to be 83743 kN. Fig. 3- 

11 shows the pushover curve for this shear wall module. 

 

 

 

 

 

 

 

 

 

 

Load combination used for evaluating the level of axial force is 1.25 Dead Load + 0.5 Live Load 

as this is the combination used in wind design as per NBCC 2010. 

Fig. 3- 11: Pushover Load – Displacement Curve for I-Section shear Wall 
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Adopting the concept of equal displacements, displacement corresponding to the elastic base shear 

on the pushover curve is divided by the yield displacement and ductility demand µ is found to be 

1.17. 

Plastic moment M3 is plotted against the plastic hinge rotation as shown in Fig. 3- 12. On the same 

graph also, the backbone curve of the member is plotted to show the acceptance criteria defined 

by ASCE/SEI 41-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from Fig. 3-12 that the maximum plastic rotation experienced by the member 

is 0.008 rad. Which is very close to immediate occupancy (IO) limit which is 0.005 rad. 

Fig. 3- 12: Moment – Rotation Curve for I-Section shear wall 
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3.3.2   Module #2: Vertical Wall 4200 mm long Module Pushover analysis results: 

The Second Shear wall module in which static pushover curve is carried out is the Verical wall 

4200 mm long. Value of axial load P from the full model was 49860 kN. Assuming equal 

displacements theory, the value of displacements corresponding to elastic base shear Ve divided 

by the yield displacements gives the ductility demand of the section which is found to be 1.3. Fig. 

3- 13 shows the pushover curve for this shear wall module. 

 

 

 

 

 

 

 

 

 

 

Adopting the concept of equal displacements, displacement corresponding to the elastic base shear 

on the pushover curve is divided by the yield displacement and ductility demand µ is found to be 

1.3. 

Fig. 3- 13: Pushover Load – Displacement Curve for vertical section shear Wall 
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Plastic moment M3 is plotted against the plastic hinge rotation as shown in Fig. 3- 14 . On the 

same graph also, the backbone curve of the member is plotted to show the acceptance criteria 

defined by ASCE/SEI 41-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from Fig. 3- 14 that the maximum plastic rotation experienced by the member 

is 0.004 rad. Which is very close to immediate occupancy (IO) limit which is 0.005 rad. 

 

Fig. 3- 14: Moment – Rotation Curve for vertical section shear wall 
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3.3.3   Module #3: L-Section Module Pushover analysis results: 

The third module of shear walls that is evaluated under static pushover analysis is the L-section 

shaped shear wall. Axial load P applied on this section is 51225 kN. Assuming equal 

displacements, ductility demand is calculated by dividing Δdemand / Δyield. This value is found to be 

1.25. Fig. 3- 15 shows the pushover curve for this shear wall module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plastic moment M3 is plotted against the plastic hinge rotation as shown in Fig. 3- 16. On the same 

graph also, the backbone curve of the member is plotted to show the acceptance criteria defined 

by ASCE/SEI 41-13. 

Fig. 3- 15: Pushover Load – Displacement Curve for L-section shear Wall 
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It can be observed from Fig. 3- 16 that the maximum plastic rotation experienced by the member 

is 0.0053 rad, which is very close to immediate occupancy (IO) limit which is 0.005 rad. 

 

Fig. 3- 16: Moment – Rotation Curve for L- section shear wall 
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3.3.4   Module #4: Inclined Wall Module Pushover analysis results: 

The fourth module of shear walls that is evaluated under static pushover analysis is the L-section 

shaped shear wall. Axial load P applied on this section is 51225 kN. Assuming equal 

displacements, ductility demand is calculated by dividing Δdemand / Δyield. This value is found to be 

1.2. Fig. 3- 17 shows the pushover curve for the inclined shear wall module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3- 17: Pushover Load – Displacement Curve for Inclined shear Wall 
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Plastic moment M3 is plotted against the plastic hinge rotation as shown in Fig. 3- 18. On the same 

graph also, the backbone curve of the member is plotted to show the acceptance criteria defined 

by ASCE/SEI 41-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3- 18: Moment – Rotation Curve for Inclined shear wall 
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Table 3- 3 shows a comparison between ductility demand values µ for different shear wall 

modules. 

 

Table 3- 3: Ductility demand values for different shear wall modules 

 

 

Table 3- 4 shows a comparison between target performance level reached for each wall cross 

section. 

Table 3- 4: Target performance reached for different shear wall modules 

 

 

3.4    Effect of ductility of Shear walls on Non-linear behaviour and 

Performance Criteria: 

In this section, a parametric study is presented, by changing the level of ductility of all reduced 

shear walls, and monitoring the plastic deformations. Furthermore, inelastic rotations are 

compared with performance limits defined by ASCE/SEI 41-13 in table 10-8. The Designer always 

Shear Wall Module Ductility Demand (µ) 

I - Section 1.17 

Vertical Wall (4200 mm long) 1.3 

L – Section 1.25 

Inclined shear walls 1.2 

Shear Wall Module Ductility Demand (µ) 

I - Section Between IO and LS 

Vertical Wall (4200 mm long) Smaller than IO 

L – Section Between IO and LS 

Inclined shear walls Between IO and LS 



61 
 

 

selects the level of ductility in all reinforced concrete members depending on the desired locations 

of plastic hinge formation and failure or collapse mechanisms.  

In this study, the level of ductility of reinforced concrete shear walls is changed from ductile to 

moderate ductile. This is achieved by changing the reinforcement details of the shear wall, and 

abiding by moderate ductility code provisions defined by NBCC 2010. 

3.4.1   I-Section Moment Rotation curve and Acceptance Criteria with Moderate Ductility 

Pushover analysis is conducted again on the same I-Section but this time given different 

reinforcement detailing and shear reinforcement ratio, which corresponds to different level of 

ductility. Fig. 3- 19 shows the moment rotation curve and hinge response in the I-section shear 

wall in case it’s designed as moderately ductile.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3- 19: Moment – Rotation Curve for I-Section shear wall with moderate ductility 
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It can be observed from the figure that the section is still between Imeediate Occupancy (IO) (0.005 

rad.) and Life Safety (0.027) limits with a maximum plastic rotation of 0.008 rad. 

3.4.2   Vertical Wall 4200 mm Moment Rotation curve and Acceptance Criteria 

with Moderate Ductility 

The vertical wall 4200 mm long is analyzed again providing different detailing and different 

ductility level (moderate ductility). Hinge response shown in Fig. 3- 20 indicates that the plastic 

hinge is still before the Immediate occupancy limit (0.005 rad.) with a value of plastic rotation of 

0.004 rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3- 20: Moment – Rotation Curve for Vertical shear wall 4200 mm with moderate ductility 
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3.4.2   I-Section Moment Rotation curve and Acceptance Criteria with Limited Ductility 

Pushover analysis is conducted again on the same I-Section but this time given different 

reinforcement detailing and shear reinforcement ratio, which corresponds to different level of 

ductility (limited ductility). Fig. 3- 21 shows the moment rotation curve and hinge response in the 

I-section shear wall in case it is designed as limited ductile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from the Fig. 3- 21 that the section is still between Immediate Occupancy (IO) 

(0.003 rad.) and Life Safety (0.009) limits with a maximum plastic rotation of 0.008 rad. 

 

Fig. 3- 21: Moment – Rotation Curve for I-shear wall 4200 mm with limited ductility 
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3.4.3   Vertical wall 4200 mm Moment-Rotation curve and Acceptance Criteria with 

Limited Ductility 

Pushover analysis is conducted again on the same vertical section but this time given different 

reinforcement detailing and shear reinforcement ratio, which corresponds to different level of 

ductility (limited ductility). Fig. 3- 22 shows the moment rotation curve and hinge response in the 

vertical section shear wall in case it is designed as limited ductile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from the Fig. 3- 22 that the section is still between Immediate Occupancy (IO) 

(0.003 rad.) and Life Safety (0.009) limits with a maximum plastic rotation of 0.004 rad. 

Fig. 3- 22: Moment – Rotation Curve for Vertical shear wall 4200 mm with limited ductility 
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CHAPTER 4  

SUMMARY AND CONCLUSIONS 

4.1    Summary 

The research conducted in this thesis investigates the application of the ductility-based approach 

employed in seismic design, on high-rise buildings subjected to extreme wind loads. In addition 

to that, inelastic actions experienced by concrete shear walls are evaluated in terms of ductility 

demand (µ), and target performance levels reached for different ductility levels of shear walls are 

compared with limits of acceptance criteria defined by current codes (ASCE/SEI 41-13). First, a 

3D numerical finite element model is developed for an existing 65-storey building tested 

previously in the Boundary Layer Wind Tunnel (BLWT) facility in the University of Western 

Ontario. The building lateral load resisting system is concrete shear walls. Second, dynamic time 

history analysis is conducted to evaluate building total responses. This is followed by conducting 

Quasi-static analysis to evaluate Mean + Background responses to separate the total response into 

Mean, Background and Resonant component. A load reduction factor “R” is implemented on wind 

resonant component, and a new set of loads are applied, and shear wall cross-sections are 

redesigned accordingly. Third, a comparison between building dynamic characteristics and total 

responses before and after reducing shear wall cross-sections is presented. Furthermore, non-linear 

finite element models were developed for individual shear walls to conduct static pushover 

analysis. Ductility demand (µ) is calculated for each shear wall module. Target performance levels 

reached for each shear wall module are compared with limits of acceptance criteria defined by 

ASCE/SEI 41-13. Furthermore, analysis is repeated for different ductility levels of shear walls. 
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4.2    Conclusions: 

A high-rise 65-story building subjected to wind loads was considered in this study to assess 

ductility-based design approach for high-rise buildings under extreme wind loads. Pressure 

coefficient (CP) time history values were taken from wind tunnel test and used to evaluate wind 

story forces. A 3D model was constructed for the building and time-history dynamic analysis was 

conducted to evaluate total wind responses of the structure. Quasi-static analysis was conducted 

to capture the mean + background components of the response (VQ (t)) and separate them from the 

resonant part (VR (t)). Resonant part of the response was reduced by a factor “R” and shear walls 

were redesigned under reduced load to assess structure’s dynamic characteristics. The case study 

results presented in this chapter shows that by reducing wind resonant component by a factor of 

“2”, and redesigning wind load resisting system members under reduced loads results in reduction 

in concrete walls dimensions by 20-25% with no major change in the fundamental period. 

Fundamental period of the period increased by 6% only. Peak responses did not increase when 

making the building more flexible, with a decrease of 7%. A parametric study was done on the 

“R” reduction factor studying its effect on building response. It was found that as a result of 

increasing R factor, the peak base shear decreases, and the fundamental period of the building 

increases but the variation doesn’t exceed 6%. 

In the second part of the study, non-linear static pushover analysis is done on several shear wall 

modules, which were reduced in thickness by a percentage ranging between 20 % – 25 %, 

depending on the reduction procedure presented in chapter 2. Results of wind responses and initial 

strength design of shear walls were taken from a full finite element model of a high-rise 65-storey 

building. 
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A reduction factor R = 2 was selected by the designer and applied on wind resonant component of 

the response, and a certain level of ductility has to be achieved. The study presented in this chapter 

elaborates the inelastic behaviour for different sections of reinforced concrete shear walls, and 

assesses the ductility demand in these sections to justify the application of this reduction factor.  

Plastic rotations experienced by plastic hinges in shear walls are monitored and compared with 

Performance Limits defined in current codes (ASCE/SEI 41-13 and FEMA 356). Based on this 

comparison, the assessment is done on each individual wall and it was checked whether this 

ductility level and performance is acceptable as the philosophy adopted in seismic design, where 

controlled inelastic actions are permitted without major loss in strength and the members still have 

some margin before collapse. Each Performance level or plastic hinge state has to be associated 

with an action to be taken on the members experiencing inelastic actions as adopted in current 

building codes. In this study, all members are found to be in the Immediate Occupancy (IO) level, 

which as per (ASCE/SEI 41-13) is the state where the building is still safe to be occupied 

immediately after the extreme event occurred during the lifetime of the building. 

Furthermore, shear wall sections are evaluated with different levels of ductility. Moderately ductile  

and limited ductile shear walls are analyzed and it is found that the inelastic behaviour in this case 

is the same in terms of target performance level reached. Members are still within the Immediate 

Occupancy (IO) limit. Therefore, this study concludes that members that are susceptible to 

excessive inelastic actions due to wind can still be detailed as limited ductile as per current building 

codes (NBCC 2010) which will most likely be the case for buildings governed by wind loads. 
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The following conclusions are obtained from application of a ductility-based approach for a high-

rise building subjected to extreme wind loads: 

1- Concrete shear wall cross sections were reduced by 20-25% as a result of applying a load 

reduction factor to wind resonant component by R =2. 

2- Fundamental period of the structure changed by only 6% after reducing shear wall cross-

sections. 

3- Total base shear of the building in the two orthogonal directions did not increase as a result 

of reducing shear wall cross-sections, and almost remained the same. 

4- The same reduction procedure was repeated with R = 3, with no major change in 

fundamental period and building responses for the studied building. 

The conclusions drawn from conducting static pushover analysis on reduced cross-sections of 

concrete shear walls are: 

1- Ductility demand values for different shear wall modules, applying the assumption of equal 

displacements, are evaluated, and values are ranging between 1.17 and 1.3. 

2- Target performance levels reached for ductile shear walls are between Immediate 

Occupancy (IO) and Life Safety (LS). 

3- In case of limited ductile shear walls, target performance level reached is still in within the 

Immediate Occupancy (IO) range. 

It should be noted that these conclusions are only limited to this case study and only for concrete 

shear walls Further research needs to be conducted in a probabilistic manner in order to reach a 

more general conclusion. 
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4.3    Recommendations for future work: 

The current study investigated the application of ductility-based approach on high-rise building 

subjected to extreme wind loads, and assessed the inelastic actions experienced by concrete shear 

walls. The following investigations are suggested for future research: 

1- Conducting non-linear static pushover analysis for the full model of the building using a 

powerful finite element tool, to monitor the sequence of plastic hinge formation within 

different members in the lateral load resisting system.  

2- Carrying out dynamic time-history analysis on the reduced cross section of shear walls, to 

evaluate the hysterias loops, and assess the stiffness degradation due to large number of 

loading cycles. 

3- Trying different number of cycles, and assessing the stiffness degradation in each case. 

4- Repeating the analysis for several wind events with different return periods.  

5- Extending the study on different lateral load resisting systems as moment resisting frames 

or frame-wall systems.  
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APPENDICIES 

Appendix A:  
 

Story time history wind forces from integrating pressure coefficients 
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Fig . A-2: Story forces for stories 8-15 
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Fig . A-1: Story forces for stories 33-39 
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Fig . A-3: Story forces for stories 40-49 
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Fig . A-4: Story forces for stories 50-61 
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Fig . A-5: Story forces for stories 25-32 
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Fig . A-6: Story forces for stories 16-24 
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