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ABSTRACT 

Hibernation, characterized by a seasonal reduction in metabolism and body temperature, 
allows animals to conserve energy when environmental conditions (e.g. temperature, 
food availability) are unfavourable. During hibernation, small mammals such as the 13-
lined ground squirrel (Ictidomys tridecemlineatus) cycle between two distinct metabolic 
states: torpor, where metabolic rate is suppressed by >95% and body temperature falls to 
~5 °C, and interbout euthermia (IBE), where metabolic rate and body temperature rapidly 
increase and are maintained at euthermic levels several hours. Suppression of metabolism 
during entrance into torpor is paralleled by rapid suppression of liver mitochondrial 
metabolism. In my thesis, I aimed to characterize the regulatory mechanisms that underlie 
this rapid and reversible mitochondrial suppression. Using high resolution respirometry 
and enzymatic assays, I determined that this suppression between IBE and torpor occurs 
at electron transport system (ETS) complexes I and II. Flux through complexes I and II is 
suppressed during torpor by 40% and 60%, respectively, despite no differences in protein 
content between the two hibernation states. I used two-dimensional differential gel 
electrophoresis and Blue-Native PAGE to determine if differences in post-translational 
modification of mitochondrial proteins parallels these metabolic changes. I found that the 
75 kDa subunit of complex I is significantly more phosphorylated in torpor than IBE, and 
that the complex II flavoprotein subunit is significantly more phosphorylated in IBE than 
torpor. To investigate the potential that this differential phosphorylation mediates the 
observed differences in enzyme activity and mitochondrial metabolism between torpor 
and IBE, I attempted to manipulate phosphorylation state of complexes I and II as well as 
stimulate the endogenous protein kinase A (PKA) pathway within intact liver 
mitochondria. I found that dephosphorylation of complex I reversed suppression of its 
activity during torpor, and that dephosphorylation of complex II induced suppression of 
its activity in IBE. I was unable to stimulate the endogenous PKA within intact 
mitochondria, and suggest that another pathway is responsible for mediating changes in 
phosphorylation in vivo. Together, my results point to novel ETS phosphorylation sites 
that may contribute to metabolic regulation in general and, in particular, suppression of 
mitochondrial metabolism during hibernation. 

 

Keywords: Hibernation, metabolism, post-translational modification, phosphorylation, 
electron transport system, metabolic suppression 
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CHAPTER 1 
	

1  General Introduction 
 

1.1 Energy homeostasis and thermal strategies 
 

The ability to maintain energy homeostasis is critical to organismal survival and has 

therefore been under strong selective pressure over evolutionary time. Many 

environmental factors constrain an animal’s ability to transform food energy into cellular 

energy in the form of adenosine triphosphate (ATP), which can lead to an imbalance 

between energy supply and demand. For example, animals experiencing hypoxic stress 

are constrained by a lack of environmental oxygen which limits their ability to produce 

ATP through cellular respiration. The ability to obtain sufficient food energy from the 

environment is also a considerable challenge to homeostasis, especially in the winter, 

when food is typically least available. In addition to limited food availability, the colder 

temperatures of winter require a higher energy demand for some animals, making winter 

a significant metabolic challenge. 

 

Ectothermy and endothermy are two major thermoregulatory patterns expressed by 

animals. In general, ectothermic animals do not rely on metabolically-derived heat to 

regulate body temperature, and as a result, body temperature is largely determined by 

environmental temperature. Ectotherms display a variety of behavioural and 

physiological adaptations to either regulate body temperature or adjust physiological 

processes to function over a range of temperatures. For example, the forest tent caterpillar 

(Malacosoma disstria) achieves a favourable body temperature for reproduction by 

basking in large groups (McClure et al., 2011). By relying largely on the external 

environment, ectothermy requires little metabolic energy to regulate body temperature. 

On the other hand, ectotherms are vulnerable to fluctuations in environmental 
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temperature, which alter the rate of temperature-dependent biological processes and have 

consequences for animal performance.  

 

Endothermic animals, including birds and mammals, retain some metabolically generated 

heat to maintain a relatively constant core body temperature. A possible advantage of 

endothermy over ectothermy is the ability to maintain a favourable internal environment 

for biochemical functions despite fluctuations in external temperature, allowing 

endotherms to inhabit a wider range of environments. Despite its advantages, endothermy 

is energetically costly, requiring much more metabolic energy than ectothermy. For 

example, in a comparison of similarly sized ectotherms and endotherms (agamid lizards 

and mice, respectively) with the same preferred body temperature (37 °C), endotherms 

displayed an 8-fold higher metabolic rate (Else and Hulbert, 1981).  

 

Most metabolic heat produced by animals originates from the mitochondrial electron 

transport system (ETS; reviewed in Section 1.3.1). During mitochondrial respiration, a 

large amount of free energy is released by the oxidation-reduction reactions that comprise 

the ETS. Some of that free energy is used to synthesize ATP, but as much as 60% may be 

released as heat (Staples, 2016). Endotherms use behavioural, morphological and 

physiological mechanisms to retain some of this endogenous heat to regulate body 

temperature. Endotherms can maintain a constant body temperature with only their basal 

metabolic rate over a fairly narrow range of environmental temperatures, designated the 

thermal neutral zone (TNZ). At temperatures below the lower limits of the TNZ, animals 

require a higher rate of metabolism to provide the heat necessary to maintain body 

temperature. This increase in heat production is accomplished in two main ways. In 

shivering thermogenesis, skeletal muscles contract in an uncoordinated fashion, 

consuming ATP. As ATP is broken down into adenosine diphosphate (ADP), flux 

through the ETS is stimulated, thereby producing more metabolic heat. In addition to 

shivering thermogenesis, some eutherian mammals can produce heat using non-shivering 

thermogenesis by brown adipose tissue. In brown adipose tissue mitochondria, ETS flux 

is uncoupled from ATP production, resulting in futile cycling of protons which produces 

a large quantity of heat.  
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Winter can be a significant energetic challenge for endotherms. Low environmental 

temperatures require high rates of metabolism to defend a constant body temperature, but 

in many habitats, food availability is lower than other seasons. This can be especially 

problematic for small animals, which have a higher surface area to volume ratio than 

larger animals, and thus lose internal heat to the environment at a faster rate. There are 

several strategies endotherms use to face this challenge. First, animals can remain active 

throughout the winter, increasing metabolic heat production with an increased metabolic 

rate. These animals minimize heat loss to the environment through mechanisms such as 

increased insulation, and many store food energy to ensure enough fuel for high winter 

metabolic rates. While larger endotherms can store much of this fuel in the form of body 

fat, a large amount of fat storage is not an option for small endotherms, who must store 

food energy other ways. For example, the American red squirrel (Tamiascurius 

hudsonicus) must forage from spring through autumn to amass a sufficient store of seeds 

to remain euthermic throughout the winter (Larivée et al., 2010). Animals can also avoid 

the thermal challenge of winter by leaving the area for more favourable conditions (e.g., 

migration). While useful for some animals, this strategy is limited to animals that can 

travel quickly and efficiently over large distances, such as birds, fish, and some large 

mammals. Finally, a strategy used by some endotherms is to reduce energy demand, 

which decreases the amount of energy that must be obtained from the environment. 

 

1.1.1 Metabolic flexibility in endotherms 

Reducing energy demand by decreasing metabolic rate can be an adaptive response to a 

variety of environmental stresses, including temperature (both cold and hot), limited food 

availability, and limited water. Hibernation, torpor, and estivation are examples of 

metabolic flexibility that occurs in such conditions, and these strategies are employed by 

a diverse assortment of animals. These strategies are also referred to as temporal 

heterothermy since decreases in metabolic rate are often accompanied by decreases in 

body temperature, which is a departure from typical endothermy. Heterothermy can result 

significant energy savings; for example, Richardson’s ground squirrels that undergo 

hibernation use 88% less energy over the winter compared to conspecifics that remain 

euthermic over the same time period (Wang, 1979). Hibernation and torpor occur in at 
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least ten mammalian orders (Geiser, 2004) and twelve avian families (McKechnie and 

Lovegrove, 2002). The presence of this metabolic flexibility in such diverse and 

unrelated groups is intriguing, and two opposing hypotheses may explain its evolution: 1) 

the common ancestor of mammals displayed metabolic flexibility (hibernation and 

torpor) and many lineages have lost the traits over evolutionary time, and 2) that the traits 

are the result of convergent evolution, having evolved repeatedly in separate lineages. In 

mammals, the hypothesis that hibernation and torpor evolved polyphyletically is 

supported by the lack of a clear common ancestor with a heterothermic phenotype. It has 

thus been suggested that the hibernation and torpor phenotypes evolved in mammal 

lineages independently as a response to environments that challenge energy homeostasis 

(Lovegrove, 2012). On the other hand, it has more recently been argued that since the 

several gene mutations required for hibernation are unlikely to occur at the same time, it 

is more likely that heterothermy is an ancestral trait in mammals (Malan, 2014). 

 

Daily torpor involves a reduction in metabolic rate and body temperature that typically 

lasts less than 24 hours and occurs during an animal’s inactive period (Geiser, 2004; Ruf 

and Geiser, 2015). Many endothermic species enter daily torpor in response to low 

ambient temperatures and short photoperiod, though torpor is often used in response to 

low food availability. In some animals such as the house mouse (Mus musculus), torpor 

can be induced with food restriction even when held at high (~20 °C) ambient 

temperature and a constant photoperiod (Brown and Staples, 2010). Social dynamics can 

also influence torpor use; for example, solitary striped skunks (Mephitis mephitis) 

frequently undergo daily torpor during the winter, but skunks that spend winter in 

communal dens rarely use torpor (Hwang et al., 2007). 

 

Metabolic suppression can also occur in endotherms that inhabit hot and dry 

environments; for example, the Madagascan fat-tailed dwarf lemur (Cheirogaleus 

medius) reduces metabolism and temperature for up to seven months of a given year 

despite ambient temperatures of over 30 °C (Dausmann et al., 2004). The reduction of 

metabolism and body temperature under hot and dry conditions has been referred to as 
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estivation, but physiological patterns are essentially indistinguishable from hibernation 

during the winter. 

 

  

1.2 Hibernation 
 

It is challenging to find rigid criteria to define hibernation since the type of metabolic 

changes that occur can depend on many factors, such as species, body size, and ambient 

temperature. One current attempt to define hibernation refers to the seasonal regulated 

suppression of metabolic rate to less than 10% of euthermic values followed by a 

reduction in body temperature (Staples, 2016). By this definition, some animals that 

undergo seasonal heterothermy are excluded from being classified as hibernators. For 

example, arctic ground squirrels (Spermophilus parryii) that hibernate in environments 

where ambient temperatures frequently fall below -10 °C maintain a body temperature 

near -2 °C. They maintain this temperature gradient by activating thermogenesis while 

hibernating, resulting in metabolic rates near 50% of euthermic values (Buck and Barnes, 

2000). It may therefore be useful for a definition of hibernation to exclude specific 

thresholds of metabolism and body temperature, and instead be defined by the pattern of 

metabolic changes that occur.	

 

1.2.1 Obligate vs. facultative hibernation 

Hibernation is classified as facultative or obligate. Facultative hibernation occurs only 

when environmental conditions (e.g. temperature, food availability) are particularly 

unfavourable. For example, in the black-tailed prairie dog (Cynomys ludovicianus), 

colonies in similar geographical areas display different patterns of heterothermy, with 

animals from some colonies remaining euthermic for the entire winter and animals from 

other colonies hibernating (Lehmer et al., 2006). This difference in hibernation pattern is 

likely influenced by local environmental conditions, as the groups of animals that 

underwent hibernation inhabited areas that experienced lower ambient temperatures and 

less rainfall during the summer compared to other areas. 
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Obligate hibernation, mediated by an endogenous rhythm, occurs each year regardless of 

environmental conditions. This remarkable circannual rhythm is exemplified by the 

golden mantled ground squirrel (Callospermophilus lateralis), in which captive 

populations housed at a constant temperature and photoperiod enter hibernation at 

approximately the same time as their wild counterparts (Pengelley et al., 1976). As the 

winter approaches, obligate hibernators undergo many physiological changes to prepare 

for a season of inactivity. In most non-food caching hibernators, body mass increases due 

to increased food intake to supply fat to fuel metabolism over the winter. Small animals 

in particular experience large increases in body fat, for example, the arctic ground 

squirrel increases body fat by 7-8-fold prior to hibernation, and fat comprises up to 62% 

of total body mass (Sheriff et al., 2013). In small hibernators such as the golden-mantled 

ground squirrel, the increased food intake prior to hibernation is accompanied by 

increases in the activities of enzymes involved in fatty acid and triglyceride synthesis in 

white adipose tissue (Wang et al., 1997). Many small hibernators also increase deposits 

of brown adipose tissue, a tissue that facilitates much of the heat production that occurs 

during arousal from torpor. Non-hibernating mammal species require acclimation to cold 

and/or short photoperiod to accumulate deposits of brown adipose tissue, but in small 

hibernators such as the 13-lined ground squirrel (Ictidomys tridecemlineatus), brown 

adipose tissue deposits increase prior to hibernation even when animals are held at warm 

ambient temperatures (22 °C) (MacCannell et al., 2017). This pattern suggests that BAT 

deposition in hibernators is mediated by an endogenous rhythm. 

	

1.2.2 Metabolic patterns during hibernation 

Hibernation does not simply consist of one prolonged period of reduced metabolic rate 

and body temperature. Throughout the hibernation season, animals undergo multiple 

bouts of torpor that are interrupted by brief periods where body temperature 

spontaneously returns to ~37 °C. In the 13-lined ground squirrel, torpor bouts last 12-14 

days, and brief euthermic periods – termed interbout euthermia (IBE) – last 

approximately 8 hours (Figure 1-1 A). The cycle between torpor and IBE can be divided 

into four stages: 1) entrance, during which metabolic rate is rapidly reduced, followed by 

a drop in body temperature, 2) torpor, in which metabolic rate and body temperature  
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Figure 1-1. Patterns of hibernation in the thirteen-lined ground squirrel. Core body 
temperature of a ground squirrel undergoing torpor-arousal cycles at the beginning of a 
hibernation season (A), and the metabolic rate and body temperature of a ground squirrel 
throughout one torpor-arousal cycle (B). Modified with permission from Staples and 
Brown, 2008.   
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remain consistently low for several days, 3) arousal, where metabolic rate spontaneously 

and rapidly increases, followed by an increase in body temperature, and 4) IBE, where 

metabolic rate and body temperature remain consistently high for several hours (Figure 1-

1 B). With only one known exception (the common tenrec, see below), all hibernating 

mammals display this pattern of metabolic suppression and arousal during hibernation.  

 

Arousal and IBE are very energetically expensive; in species such as the arctic ground 

squirrel, these periods can contribute up to 86% of the total energy expended over the  

hibernation season (Karpovich et al., 2009). Since nearly all hibernators undergo periodic 

arousals despite significant energy costs, IBE likely offers a significant adaptive 

advantage. One potential benefit for interbout arousals is the opportunity for neuronal 

repair during slow wave sleep. During torpor, slow wave sleep does not occur, but during 

IBE, arctic ground squirrels spend much of the time in slow wave sleep (Daan et al., 

1991). The significance of neurological damage during hibernation was first described by 

(Popov et al., 1992), who found that in Siberian ground squirrels (Citellus undulatus), 

neuronal dendrites were shorter and less branched during torpor but their structure was 

completely restored two hours after arousal. Subsequently, several studies have shown 

that neuronal synapses regress during torpor and that IBE allows reversal of this damage 

(reviewed in Arendt and Bullmann, 2013). Periodic arousals are also likely important for 

immune response. Levels of circulating lymphocytes are low during torpor but 

completely rebound during IBE, indicating that immune response is diminished during 

torpor (Bouma et al., 2011). Indeed, golden mantled ground squirrels injected with 

bacterial lipopolysaccharide showed no immune response during torpor, but exhibited a 

fever upon arousal (Prendergast et al., 2002). Periodic arousals may thus be important for 

a hibernator’s immune system to cope with any bacterial infections that have 

accumulated during torpor. 

 

Free-ranging common tenrecs (Tenrec ecaudatus) hibernate for up to nine months with 

no evidence of interbout euthermia, although their body temperatures do not decrease 

below 22 °C (Lovegrove et al., 2014). It is therefore possible that there is a critical 
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threshold body temperature in hibernators, above which periods of IBE do not provide an 

adaptive advantage.   

 

1.2.3 Metabolic suppression during torpor 

As a mammal enters torpor, whole-animal metabolism is reduced by up to 95% (Staples, 

2016). This reduction in metabolic rate results from the three factors. First, during 

entrance into torpor, the thermoregulatory set point (Tset), around which core body 

temperature is regulated, progressively decreases (Heller et al., 1977). This decrease in 

Tset shifts the lower range of the TNZ to lower temperatures, reducing thermogenic 

metabolism, so that whole-animal metabolism falls towards basal levels. As a result of 

decreased thermogenic metabolism, body temperature will fall towards ambient 

temperature. Second, a decrease in body temperature results in a reduced metabolic rate 

through passive thermal effects. A decrease in temperature of 10 °C will reduce the rate 

of most biological reactions by two- to three-fold (the so-called Q10 effect), so decreased 

body temperature alone can account for part of the metabolic suppression that occurs 

during torpor. The precise contribution of these thermal effects on metabolic suppression 

are difficult to measure, however. Anaesthetized, non-hibernating ground squirrels, 

cooled exogenously, had metabolic rates approximately 15- fold higher than torpid 

animals at the same body temperature (Wang et al., 1990), suggesting that passive 

thermal effects alone can account for only a small fraction of total metabolic suppression. 

 

In addition to decreased thermogenic metabolism and passive thermal effects, a third 

contribution to the metabolic suppression that occurs during entrance into torpor is active 

suppression of metabolism in non-thermogenic tissues. In most hibernators, metabolic 

rate (measured as oxygen consumption) decreases substantially before body temperature 

begins to fall (Staples 2016; Figure 1-1B). Along with oxygen consumption rates, heart 

rate also decreases prior to body temperature (MacCannell et al., submitted to J. Exp. 

Biol.). In non-thermogenic tissues such as liver, mitochondrial metabolism is 

significantly suppressed prior to decreases in body temperature, which indicates the 

contribution of active, regulated metabolic suppression to total metabolic suppression 

during torpor (Staples and Brown, 2008). The mechanisms underlying this rapid, active 
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metabolic suppression are currently not well understood, and have been the subject of 

much research.	

	

	

1.3 Mitochondrial metabolism 
 

Mitochondria, bacteria-sized organelles bound by a double membrane, exist within most 

eukaryotic cells. Mitochondria are believed to have originated by endosymbiosis between 

two prokaryotic cells approximately 2 billion years ago (reviewed by Gray et al., 1999). 

Most mitochondrial proteins are encoded by nuclear DNA and imported into the 

mitochondria, but mitochondria also contain ribosomes and DNA which, in animals, is 

arranged in a circular pattern, like that found in most bacteria. In mammals, this distinct 

mitochondrial genome encodes 13 proteins, all of which are involved in oxidative 

phosphorylation. Mitochondria synthesize the vast majority of ATP in cells, but are also 

involved in other diverse functions such as reactive oxygen species (ROS) production, 

cell signaling, and regulation of apoptosis. 

 

1.3.1 The electron transport system 

In eukaryotes, the majority of food energy is transformed into cellular energy within 

mitochondria by the process of oxidative phosphorylation, by which electron transport is 

linked with ATP synthesis. The mitochondrial oxidative phosphorylation system contains 

the electron transport system (ETS), which is composed of four multi-subunit enzymes 

and mobile electron carriers embedded within the inner mitochondrial membrane: 

NADH-dehydrogenase (complex I), succinate dehydrogenase (complex II), cytochrome 

bc1 complex (complex III), cytochrome c (Cyt c), and cytochrome c oxidase (complex 

IV).  

 

Electrons enter the ETS at complexes I and II with the oxidation of NADH, succinate, 

and FADH2 (Figure 1-2). These reducing equivalents originate from different metabolic 

pathways including glycolysis, fatty acid oxidation, but most importantly, the 

tricarboxylic acid (TCA) cycle. NADH enters the ETS through complex I, whereas 
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Figure 1-2. The mammalian electron transport system (ETS). Electrons enter the ETS at complexes I and II following the 
oxidation of succinate and reducing equivalents NADH and FADH2. These electrons are passed to through the ETS to increasingly 
electronegative acceptors (indicated by dashed line), ultimately being donated to oxygen at complex IV. Some of the free energy 
released by the oxidation-reduction reactions at complexes I, III and IV is used to pump protons from the mitochondrial matrix to the 
intermembrane space, generating a proton motive force (PMF).  
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succinate and FADH2 enter the ETS through complex II or other dehydrogenases such as 

electron-transferring flavoprotein, ubiquinone oxidoreductase, and glycerol-3-phosphate 

dehydrogenase. Electrons are then transferred to coenzyme Q (CoQ), and subsequently to 

complex III, cytochrome c, and complex IV, which utilizes oxygen as a final electron 

acceptor, producing H2O. Redox reactions at ETS complexes I, III and IV result in a 

release of free energy that is sufficient for these complexes to transport protons across the 

inner mitochondrial membrane, resulting in an electrochemical gradient, the proton 

motive force (PMF). Ultimately, this gradient is utilized by ATP synthase (complex V), 

which couples the backflow of protons with phosphorylation of ADP, thereby producing 

ATP. 

 

1.3.2 Assessing mitochondrial metabolism 
The ability to accurately assess mitochondrial function is crucial for an understanding of 

energy metabolism in virtually all systems. In addition to differences in mitochondrial 

content, mitochondrial function and morphology varies among species, individuals, and 

tissue types. For example, mitochondria in mammalian skeletal muscle are interconnected 

into a reticulum, which minimizes metabolite diffusion differences for more efficient 

ATP synthesis (Glancy et al., 2015). Several different methods are used to measure the 

function of mitochondria, each with benefits and limitations. Historically, the maximal 

activities of some mitochondrial enzymes (e.g. citrate synthase, succinate dehydrogenase, 

and cytochrome c oxidase) have been used as a proxy for mitochondrial oxidative 

capacity (Lanza and Nair, 2009). While this approach has the benefit of requiring only 

small samples of tissue, it is unlikely that the activity of one enzyme can reflect the 

overall function of a complex metabolic pathway, or its regulation. Maximal capacity for 

ATP production is sometimes used to assess mitochondrial function at different levels of 

organization, as ATP is one end product of mitochondrial respiration. It is possible to use 

a luciferase assay to measure rates of change of ATP concentrations in tissues, cells, and 

isolated mitochondria. A significant limitation of this method is that ATP is generated 

and consumed in many pathways, so changes in ATP concentration are not simply the 

result of oxidative phosphorylation. Further, specialized equipment is necessary for 
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measuring ATP production in isolated mitochondria, which limits the tractability of this 

technique. 

 

Oxygen consumption can also be used to assess mitochondrial metabolism. As 

conversion of O2 to H2O by complex IV is the final oxidation-reduction reaction of the 

ETS, oxygen consumption has been used to assess the function of isolated mitochondria. 

This process was first described Chance and Williams (1956). Although ways of 

describing this type of assessment vary (for example, the substrate-uncoupler-inhibitor 

titration protocol described by Pesta and Gnaiger (2012)), I will follow the convention 

described by Brand (1998). This analysis involves measuring oxygen consumption by 

mitochondria in three experimental conditions: 1) substrate oxidation (state 2 respiration), 

in which mitochondria are supplied with saturating levels of O2 and an oxidative 

substrate (e.g. pyruvate or succinate), but no ADP, 2) ADP phosphorylation (state 3 

respiration), in which O2,  substrate and ADP are supplied at saturating levels, and 3) 

proton leak (i.e. state 4 respiration), which occurs when all ADP has been converted to 

ATP, but O2 and substrate are still saturating. State 4 respiration is typically estimated by 

inhibiting complex V with oligomycin, preventing ATP synthesis. An example trace of 

oxygen consumption by isolated mitochondria in such conditions is shown in Figure 1-3. 

State 3 respiration rates provide particularly useful information as they represent the 

maximal capacity to generate ATP with a given fuel. The ratio of state 3:state 4, termed 

the respiratory control ratio (RCR) represents the degree of coupling between oxidation 

and phosphorylation and is a useful metric to describe the quality of isolated 

mitochondrial preparations. 

 

Mitochondrial function is typically assessed using mitochondria that have been isolated 

from a tissue. The process of mitochondrial isolation aims to separate mitochondria from 

other cellular components while maintaining mitochondrial functionality. Typically, this 

is achieved by gentle homogenization of the tissue followed by centrifugation. There are 

several limitations to using isolated mitochondria to infer in vivo function. First, 

mitochondria exist in a 3-dimensional network within intact cells which is disrupted by 

the isolation process, resulting in changes in mitochondrial morphology and structure  
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Figure 1-3. An example measurement of mitochondrial respiration in mitochondria 
isolated from the liver of a 13-lined ground squirrel. Following the addition of an 
oxidative substrate (succinate), the respiration rate increases to a stable state 2 rate. ADP 
is then added, increasing the rate of oxygen consumption as a state 3 rate is reached. 
Finally, oligomycin in added, which inhibits ATP synthase, leading to a lower, stable 
state 4 rate.  
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(Picard et al., 2011). Second, isolated mitochondria lack interactions with other cellular 

components (e.g. sarcoplasmic reticulum, cytoskeleton, lipid droplets) which may lead to 

changes in function (Saks et al., 2010). Third, some tissues contain distinct 

subpopulations of mitochondria, some of which are preferentially retained during 

isolation, potentially biasing results (Krieger et al., 1980). Finally, and perhaps most 

significantly, the isolation process may affect respiratory characteristics. For example, 

flux through complex IV is significantly higher in isolated mitochondria compared to 

cells and muscle fibers, suggesting that isolation of mitochondria leads to a loss of 

regulatory control (Picard et al., 2011). It is important to note that the consequences of 

these limitations likely differ depending on tissue type. For example, retaining a network 

structure would be more important for the function of muscle mitochondria, but less 

important for tissues such as liver where mitochondria are present as discrete organelles. 

 

Recently, permeabilized tissue has been a popular alternative to isolated mitochondria for 

the assessment of mitochondrial function (Kuznetsov et al., 2008). This technique uses 

saponin, a plant-derived amphipathic glycoside, to bind cholesterol embedded within cell 

membranes, creating small pores but leaving the rest of the cell largely intact (Kuznetsov 

et al., 2008). These pores allow small molecules (e.g. pyruvate, succinate, ADP) to 

diffuse from the incubation media to the mitochondria. Since mitochondrial membranes 

have little cholesterol, mitochondria remain largely intact, and respiration can be assessed 

in a similar way as in isolated mitochondria. It has been argued that this method provides 

a better approximation of mitochondrial function in vivo than isolated mitochondria, but 

few comparisons between the two methods exist. 

 

1.3.3 Mitochondrial metabolism during hibernation 
Because of their role in energy metabolism and heat production, mitochondria in 

hibernators have been studied for decades. A consistent physiological characteristic of 

torpor is the suppression of mitochondrial metabolism in several tissues, which parallels 

suppression of whole-animal metabolic rate (reviewed in Staples and Brown 2008). 

Suppression of mitochondrial metabolism has gained much interest for its potential 

involvement in overall metabolic suppression. Of particular interest are the changes in 



	

 16 

mitochondrial metabolism that occur between torpor and IBE, given the degree of 

metabolic change between these two states and that the transition between them occurs 

extremely rapidly. In liver mitochondria isolated from torpid ground squirrels, state 3 

respiration is suppressed by 70% compared to IBE (Muleme et al., 2006). Other tissues 

show some suppression of mitochondrial metabolism but to a lesser degree; state 3 

respiration is suppressed by 60% in brown adipose tissue (McFarlane et al., 2017), and 

30% in skeletal (Brown et al., 2012) and cardiac muscle (Brown and Staples, 2014). The 

brain cortex shows no suppression of mitochondrial metabolism (Gallagher and Staples, 

2013), though this result is derived from saponin-permeabilized tissue rather than isolated 

mitochondria. 

 

The degree of suppression of mitochondrial metabolism in torpor depends on the 

conditions under which it is measured, including oxidative substrate and measurement 

temperature. In liver mitochondria, suppression during torpor is greatest with succinate 

(Muleme et al., 2006). Suppression during torpor is also evident with pyruvate and fatty 

acids as fuel, but to a much smaller degree. This pattern suggests that most of the 

mitochondrial suppression occurs at or downstream to complex II. Temperature is 

another important variable when considering changes in mitochondrial metabolism 

between torpor and IBE. Animals sampled in torpor and IBE have body temperatures of 5 

and 37 °C, respectively, but it would be of little use to compare mitochondrial respiration 

from the two conditions at their respective temperatures since it would be impossible to 

distinguish active suppression from temperature effects. A more useful approach is to 

compare respiration between hibernation states at the same temperature. In liver 

mitochondria isolated from 13-lined ground squirrels, the greatest difference 

(approximately 70%) in state 3 rates between torpor and IBE occurs when respiration is 

measured in vitro at 37 °C. When measured at 25 °C, this difference is diminished but 

still significant; at 10 °C, there is no difference between torpor and IBE (Brown et al., 

2012). These data suggest that suppression of mitochondrial metabolism would have a 

greater impact on whole-animal metabolism at higher body temperatures, e.g. the 

beginning of entrance into torpor. 
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In an attempt to determine the dynamics of mitochondrial metabolism over a torpor-

arousal cycle, a study compared liver mitochondrial respiration between animals sampled 

at various points of this cycle, as determined by body temperature (Chung et al., 2011; 

Figure 1-4). As animals arouse from torpor, succinate-fueled state 3 respiration rates, 

measured at 37 °C, increase but only slowly, with maximal respiration rates not occurring  

until animals are fully aroused with a body temperature of approximately 37 °C. In 

contrast, respiration is rapidly suppressed early during entrance into torpor, with maximal 

suppression occurring by the time body temperature has decreased to only 30 °C. The 

mechanisms that underlie these changes in mitochondrial metabolism are unknown, but 

the pattern of reversible suppression over a torpor-arousal cycle offers some insight. 

These metabolic changes occur extremely quickly (maximal suppression between IBE 

and entrance into torpor occurring within hours), which likely rules out transcriptional 

and translational changes. In addition, initiation of protein synthesis does not occur below 

18 °C during entrance into torpor, and during torpor, peptide elongation occurs slowly 

(van Breukelen and Martin, 2001). It is unlikely, therefore, that the synthesis of new 

proteins occurs during torpor or early in arousal. The mechanisms that mediate the 

changes in mitochondrial metabolism between torpor and IBE therefore likely cause 

acute changes in the function of pre-existing proteins. 

 

1.4 Regulation of mitochondrial metabolism 
	

The evolution of mitochondria from bacterial symbionts to the main source of ATP 

synthesis in most eukaryotic cells has required the coevolution of mechanisms for 

communication at the cellular, tissue, and organ levels to adjust ATP production to 

physiological demand. Chance and Williams (1955) first described the basic mechanism 

of respiratory control in isolated mitochondria, which states that oxidative 

phosphorylation is typically regulated by ADP and phosphate, substrates necessary for 

ATP synthesis. Rates of oxidative phosphorylation will therefore decrease as ADP is 

converted to ATP, and increase as ATP is utilized and ADP concentration increases. In 

addition to basic substrate limitation, there are several other means of acute regulatory 

control of mitochondrial metabolism.  
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Figure 1-4. Succinate-fueled state 3 respiration rates in isolated liver mitochondria 
(measured at 37 °C) at six points of a torpor-IBE cycle. Bars represent average state 3 
respiration rates from animals that were sampled during torpor (Body temperature 
(Tb)=~5 °C), early arousal (Tb=~15 °C), late arousal (Tb=~30 °C), early entrance (Tb=~30 
°C), and late entrance (Tb=~15 °C), superimposed over a line showing the Tb of one 
ground squirrel over a typical torpor-IBE cycle. During torpor, mitochondrial respiration 
is low. During arousal, respiration increases gradually, reaching maximal values in IBE. 
In contrast, respiration is rapidly suppressed during early entrance into torpor, with 
maximal suppression occurring while Tb is fairly high. Modified with permission from 
Staples, 2016. 
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1.4.1 Allosteric regulation 
Allosteric regulation allows fine-tuning of oxidative phosphorylation in response to 

products, substrates, and other signalling molecules within the intermembrane space. The 

best described allosteric regulators of mitochondrial metabolism are adenine nucleotides, 

which adjust the activity of complex IV (cytochrome c oxidase) to energy status. 

Complex IV contains binding sites for both ADP and ATP, and a high ATP/ADP ratio 

within the mitochondrial matrix has a strong inhibitory effect on both the activity of 

complex IV and overall mitochondrial respiration (Arnold and Kadenbach, 1997). 

Several mechanisms allow cells to adjust the inhibitory effects of ATP on mitochondrial 

metabolism. First, ATP inhibition depends on the phosphorylation state of complex IV 

(Bender and Kadenbach, 2000). A phosphorylation site on subunit 5b has been identified 

as necessary for this allosteric regulation (Helling et al., 2012), which provides an 

additional level of respiratory control. In addition, assembly of complex IV with subunit 

4-2 rather than 4-1 leads to an insensitivity to ATP inhibition. Subunit 4-2 is upregulated 

during hypoxic stress in rodents, allowing optimization of respiratory efficiency at low 

oxygen concentrations (Fukuda et al., 2007). 

	

1.4.2 Morphological changes 
Mitochondria undergo several types of morphological changes which can impact the 

function of oxidative phosphorylation. The main morphological changes that occur are 

fusion (the joining of two mitochondria into one), fission (the division of one 

mitochondrion into two), transport (movement within a cell), and mitophagy (targeted 

destruction of mitochondria). Mitochondrial morphology within a given tissue is 

controlled by the balance of fusion and fission, which is regulated by GTPases. Increased 

mitochondrial fusion is associated with increased ATP production in mouse embryonic 

fibroblasts (Tondera et al., 2009) and rat kidney cells (Mitra et al., 2009), and disruption 

of fusion leads to respiratory dysfunction (Chen et al., 2005). Fusion optimizes 

mitochondrial function by allowing the spread of metabolites, enzymes, and gene 

products throughout newly connected mitochondria. Within a tissue, changes in 

mitochondrial morphology have been associated with energetic stress. For example, 

exposure to hypoxia followed by reoxygenation results in smaller mitochondria 
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undergoing less fusion (Liu and Hajnóczky, 2011). In the yeast Candida glabrata, 

mitochondrial fusion is associated with an increased tolerance to oxidative stress, as well 

as increased ATP production and lower ROS production. In hibernating long-tailed 

ground squirrels (Urocitellus undulatus), liver mitochondria from torpid animals are 

smaller and more resistant to swelling than mitochondria from IBE animals 

(Brustovetsky et al., 1993). Brown adipose tissue mitochondria in golden mantled ground 

squirrels also undergo morphological changes between torpor and IBE, such as increased 

size and surface area of cristae during IBE (Grodums, 1977), which may facilitate the 

rapid increases in oxidative capacity and heat production.  

 

1.4.3 Membrane structure 
Mitochondrial membrane phospholipids are critical for mitochondrial structure, protein 

transport, and activity of ETS proteins, and the composition of the mitochondrial 

membrane can have significant effects on respiratory capacity. Thermal acclimation in 

ectotherms often results in membrane remodeling to preserve respiratory function; for 

example, mitochondrial membranes in cold-acclimated fish contain higher levels of 

unsaturated fatty acids within phospholipids (Wodtke, 1978) and a decreased ratio of 

phosphatidylcholine/phosphatidylethanolamine (Hazel, 1972). In trout, this membrane 

remodeling is associated with a higher specific activity of complex IV (Wodtke, 1981). 

Changes in the phosphatidylcholine and phosphatidylethanolamine content of 

mitochondrial membrane phospholipids also occur as hibernating animals arouse to IBE 

(Armstrong et al., 2011), but the contribution to changes in metabolism is unclear. The 

interaction between phospholipids and proteins is especially important in the inner 

mitochondrial membrane, where the activity of many of the ETS complexes depends on 

the phospholipid composition.  

 

Cardiolipin, a unique phospholipid that is almost exclusive to the inner mitochondrial 

membrane, is another important membrane component. Association with cardiolipin is 

necessary for the maximal activity of ETS complexes I, III, IV, and V (Paradies et al., 

2014), and decreased levels of cardiolipin can have profound effects on mitochondrial 

metabolism. For example, in the absence of cardiolipin, complex IV functions at only 40-
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50% of its maximal activity (Fry and Green, 1980). Cardiolipin is also necessary for the 

formation and stabilization of ETS supercomplexes (Mileykovskaya and Dowhan, 2014). 

Changes in cardiolipin content may contribute to regulated suppression of mitochondrial 

metabolism – for example in lungfish (Protopterus dolloi) liver mitochondria, cardiolipin 

content decreased ~2.3-fold during estivation which corresponded with a reduction in 

mitochondrial respiration (Frick et al., 2010).	

 

1.4.4 Respiratory supercomplexes 
There is now abundant evidence that ETS complexes associate together and with other 

proteins within the inner mitochondrial membrane, forming protein groups termed 

‘supercomplexes’. Supercomplexes, found in many eukaryotic organisms, can facilitate 

electron transport by arranging complexes into formations similar to assembly lines, with 

significant effects on mitochondrial function. For example, the activity of complex I 

depends on the presence of complexes III and IV (Acín-Pérez et al., 2004; Li et al., 

2007). Further, complexes I, III and IV are found to form different groupings of 

supercomplexes in many different organisms (reviewed by Dudkina et al., 2008). There is 

no evidence that complex II associates with other enzymes of the ETS, perhaps due to its 

involvement in the TCA cycle. Complex V has been found bound with phosphate and 

nucleotide carries, which may improve delivery of its substrates, ATP and phosphate (Ko 

et al., 2003). A recent ‘plasticity model’ proposes that the mitochondrial respiratory 

complexes exist in combinations of individual enzymes and groups of supercomplexes in 

a dynamic process that can adapt to changing conditions (Porras and Bai, 2015). It has 

been proposed that supercomplex formation can allow cells to acutely adjust to energetic 

demands; for example, mammalian cells grown with limited nutrients showed increased 

supercomplex formation, likely to maximize respiratory capacity (Acín-Pérez and 

Enriquez, 2014). 

 

1.4.5 Post-translational modification 
A role for post-translational modifications (PTMs) in regulating mitochondrial 

metabolism has become apparent in the last decade. Over 1,000 different proteins are 
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found within the mammalian mitochondria. Most mitochondrial proteins are encoded by 

the nuclear genome and translated in the cytoplasm, where they can be modified prior to 

transport into the mitochondria. Several proteins encoded by mitochondrial DNA and 

synthesized by mitochondrial ribosomes exhibit PTMs however, suggesting that PTM 

events can also occur within the mitochondria. As well, several enzymes that mediate 

PTMs (e.g. kinases, phosphatases) are localized to mitochondria. 

 

Oxidative phosphorylation can be regulated by phosphorylation of several ETS protein 

subunits. Subunit NDUFS4 of complex I was the first identified ETS protein subunit 

targeted by cAMP-dependent phosphorylation (Papa et al., 1996). A subsequent study 

found that phosphorylation of this subunit results in a 2-3-fold increase in its activity 

(Scacco et al., 2000). In contrast, phosphorylation of subunit NDUFB10 decreases 

complex I activity. Complex II is a target for phosphorylation (Salvi et al., 2005; 

Augereau et al., 2005; Ogura et al., 2012), but although several phosphorylation sites 

have been identified, the net effects of phosphorylation are complex and not fully 

understood. For example, phosphorylation of the flavoprotein subunit of complex II has 

been shown to result in both a decrease in enzyme activity (Tomitsuka et al., 2009) and 

an increase in activity (Nath et al., 2015), with changes in activity depending on 

regulatory kinases (and likely phosphorylation sites). Complex IV also contains several 

phosphorylation sites, some with opposing effects on enzyme activity. For example, 

phosphorylation of subunits I, II and IV-2 of complex IV are associated with increases in 

enzyme activity and mitochondrial respiration (Miyazaki et al., 2003; Acín-Pérez et al., 

2009, 2011), and phosphorylation of subunit I has been found to inhibit complex IV (Lee 

et al., 2005). It is clear that phosphorylation of ETS proteins regulates mitochondrial 

metabolism in a complex way. Many of the apparently antagonistic effects of 

phosphorylation on enzyme activity likely result from phosphorylation of different sites. 

As I will discuss in more depth in the next section (1.5.1), phosphorylation is mediated by 

various enzymes, each of which respond to various regulatory cues. 

 

Lysine acetylation/deacetylation is another key modification that allows many 

mitochondrial proteins to adjust to metabolic cues. Up to 20% of all mitochondrial 
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proteins can be acetylated (Kim et al., 2006), with most acetylation events corresponding 

with inhibition of protein function (Baeza et al., 2016). The acetylation status of 

mitochondrial proteins is largely modified through the action of deacetylases, which 

remove acetyl groups from lysine residues. Sirtuin 3 (Sirt3), an NAD-dependent 

deacetylase, is found within the mitochondrial matrix and is responsible for deacetylation 

of several key mitochondrial proteins including complexes I, II, III and V. Increased 

acetylation corresponds with decreased activity of complex I (Ahn et al., 2008), complex 

II (Cimen et al., 2010; Finley et al., 2011), and complex V (Bao et al., 2010; Wu et al., 

2013). This decrease in activity may explain the decreased ATP levels observed in the 

heart, liver, and kidneys of Sirt3 knockout mice (Ahn et al., 2008). Complex IV contains 

14 acetylation sites, most associated with stabilization of enzyme structure (Liko et al., 

2016). In mouse liver mitochondria, complex IV subunit Vc showed acetylation after 

fasting but not before (Kim et al., 2006).  

 

Redox reactions are central to mitochondrial metabolism, and several redox-related 

PTMs can affect metabolism, including S-oxidation, S-nitrosylation, and S-

glutathionation. For example, nitrosylation of complex V, which occurs as nitric oxide 

reacts with cysteine residues, inhibits protein activity (Chang et al., 2014). Succinylation 

involves the addition of succinyl group to a lysine residue on a protein and is also 

involved in regulation of oxidative phosphorylation. Desuccinylation of complex II 

subunits SDHA and SDHB by Sirtuin 5 (Sirt5) decreased enzymatic complex II activity 

(Park et al., 2013). 

 

While much is known about modifications to mitochondrial proteins, less is known about 

their effects since it can be challenging to obtain functional data for many of these 

modifications. Further, it is difficult to determine which biochemical feature of a protein 

is affected by a PTM; in addition to changes in activity, PTMs can also influence protein-

protein interactions, stability, and localization. 
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1.5 Regulation of post-translational modifications in 
mitochondria 
	

1.5.1 Regulation of phosphorylation 
Phosphorylation, a common protein modification, can result in fast responses to various 

stimuli by influencing enzyme activity, subcellular localization, and stability. 

Phosphorylation can affect mitochondrial metabolism in a complex way through direct 

modification of ETS proteins (Section 1.4.5), and regulation of phosphorylation can add 

another level of complexity. 

 

Most studies of phosphorylation in mitochondrial proteins have focused on pathways 

involving 3’,5’-cyclic adenosine monophosphate (cAMP). Some of the first studies on 

PTMs in mitochondria found that cAMP-dependent protein kinase (PKA) induces 

phosphorylation on serine/threonine (S/T) residues of several mitochondrial proteins 

(Sardanelli et al. 1995, 1996; Technikova-Dobrovo et al. 1994). cAMP, a secondary 

messenger involved in many signaling pathways, is generated from ATP by adenylate 

cyclases (ACs). Two forms of ACs occur in cells: a membrane-bound form (tmAC), 

thought to be restricted to plasma membranes, and a soluble form (sAC). The 

concentration of cAMP in any subcellular compartment depends on the balance between 

its synthesis by ACs and its degradation by phosphodiesterases. PKA, a downstream 

target of cAMP, is a tetrameric enzyme composed of two catalytic subunits and two 

regulatory subunits. With no cAMP present, PKA is inactive. When cAMP is present, it 

binds to the regulatory subunits, releasing the active catalytic subunits (reviewed by 

Taylor et al. 2004). As such, the activity of PKA depends on all the upstream factors that 

determine cAMP concentration. The source of mitochondrial cAMP and the role of PKA-

mediated phosphorylation of mitochondrial proteins has been somewhat controversial. In 

contrast to theories that mitochondria contain endogenously-produced sAC, it was 

proposed that all cAMP is generated in the cytosol and imported into mitochondria 

(DiPilato et al., 2004). Acín-Pérez et al. (2009) later demonstrated a complete signaling 

cascade within rat liver mitochondria in which local sAC generates cAMP, activating 

PKA and resulting in functional changes to respiration and mitochondrial protein activity. 
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The results of this study have been contested, however, by groups that could not replicate 

the results (Covian et al., 2014).  

 

Phosphorylation of tyrosine (Y) residues also occurs, although less commonly than S/T 

phosphorylation. Tyrosine phosphorylation is emerging as an important mechanism for 

regulating mitochondrial metabolism, as over 100 mitochondrial proteins can be modified 

by tyrosine phosphorylation (Cesaro and Salvi, 2010). Abelson (Abl)-family proteins 

were the first tyrosine kinases found to associate with mitochondria (Kumar et al., 2001; 

Ito et al., 2001), and their translocation to mitochondria is often associated with 

apoptosis. Src kinases are a family of non-receptor tyrosine kinases that specifically 

phosphorylate tyrosine residues and have been found in the intermembrane space and 

inner mitochondrial membrane (Salvi et al., 2002, 2005; Miyazaki et al., 2003). The 

regulation of Src kinases is complex, as their own activity is regulated by 

phosphorylation. The phosphorylation states of two tyrosine residues on Src kinases are 

key to their activity, with one site associated with inhibition of the enzyme when 

phosphorylated, and the other associated with activation (Roskoski, 2005). The inhibitory 

site (Y530) is phosphorylated by C-terminal Src kinase (Csk), which induces a closed 

conformation of the protein, masking the catalytic site. Several tyrosine phosphatases – 

including SHP-2, PTP-1B, and PTPMT1 – can dephosphorylate the Y530 site, removing 

the inhibitory effect (Roskoski, 2004, 2005). Several of the enzymes involved in this 

regulatory cascade have been found within mitochondria; Csk and SHP-2 has been found 

in rat brain mitochondria (Salvi et al., 2005; Arachiche et al., 2008), and PTPMT1 is 

found exclusively in the inner mitochondrial membrane (Pagliarini et al., 2005). The 

localization of these regulatory kinases and phosphatases suggests that Src kinase activity 

can be regulated directly in the mitochondria. Src kinases can be regulated by redox 

conditions; they are activated by H2O2 and peroxynitrite (Akhand et al., 1999), as well as 

cellular hypoxia (Sato et al., 2005).		

 

1.5.2 Regulation of acetylation 
Reversible protein acetylation is also a major mechanism for controlling protein function, 

and occurs as an acetyl group is attached to the ε-amino group in a lysine residue 
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(reviewed by Drazic et al., 2016). N-terminal acetylation, which is mediated by the action 

of N-terminal-acetyltransferases, is considered irreversible. In contrast, acetylation of 

lysine residues, which is reversible, is more important for acute regulation of protein 

activity in response to cellular conditions. Lysine acetylation can be mediated by lysine 

acetyltransferases, but also occurs in a non-enzymatic manner when acetyl-CoA 

concentrations are high (Wagner and Payne, 2013).	A key regulator of acetylation state of 

proteins within mitochondria is the NAD-dependent protein deacetylase Sirt3. The 

Sirtuin family of is composed of seven proteins in mammals, with Sirt3, Sirt4, and Sirt5 

localized to the mitochondrial matrix (He et al., 2012). The binding of NAD+ to Sirtuin 

proteins induces a conformational change which allows deacetylation of lysine residues 

(Jin et al., 2009). Since NAD+ levels increase in response to a decrease in cellular energy 

status and altered redox status, Sirtuins are believed to be a key mechanism for cells to 

acutely adjust metabolism. No specific mitochondrial acetyltransferases have been 

identified in the mitochondria. It has been suggested that most acetylation events are 

nonezymatic, since lysine residues are very reactive with acetyl-coA (Baeza et al., 2015). 

Protein acetylation is most commonly associated with inhibitory effects (Baeza et al., 

2016), which could provide negative feedback by inhibiting mitochondrial metabolism 

when acetyl-CoA is abundant.  

	

 
1.6 Post-translational modification of proteins during 
hibernation  
 

For decades, researchers have investigated the role of PTMs in regulating metabolism 

during hibernation. One of the best-known examples is pyruvate dehydrogenase (PDH). 

PDH links glycolysis to the TCA cycle through the conversion of pyruvate to acetyl-

CoA. Phosphorylation of PDH dramatically decreases its activity, and during hibernation 

in golden-mantled ground squirrels the amount of active dephosphorylated enzyme 

decreases from 60-80% to 3-4% of the total enzyme in heart and kidney (Brooks and 

Storey, 1992). The increased phosphorylation of PDH corresponds with an upregulation 

of PDH kinase, an enzyme that specifically phosphorylates PDH. Hexokinase, also 
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involved in glycolysis, is also regulated by reversible phosphorylation during hibernation 

(Abnous and Storey, 2008). These patterns of phosphorylation likely facilitate an overall 

inhibition of carbohydrate catabolism during hibernation. Inhibition of membrane ion 

pumps also occurs during hibernation; as consumption of ATP by ion-motive ATPases 

can account for up to 50% of total cellular ATP demand (Clausen, 1986), they represent a 

significant energy sink. Phosphorylation of Na+/K+ ATPases occurs during hibernation in 

golden-mantled ground squirrels, reducing the activity of these membrane pumps by 

~50% (MacDonald and Storey, 1999). The activity of sarcoplasmic reticulum Ca2+-

ATPase is also reduced by reversible phosphorylation during hibernation (Malysheva et 

al., 2001). 

 

While there is ample evidence that PTMs (primarily phosphorylation) are involved in 

regulating metabolism during hibernation, most studies (e.g. Brooks and Storey, 1992) 

compare animals in torpor with animals during summer when they are euthermic and will 

not hibernate. Such seasonal patterns may be affected by many factors that change 

throughout the year including reproductive status, food quantity and quality, and 

photoperiod. Experiments that compare torpor and IBE eliminate these seasonal effects, 

and allow a focused examination of acute metabolic changes. The role of PTMs in 

mediating the torpor-IBE transition, however, remains largely unknown. A recent 

proteomics study found few changes in PTMs of liver proteins between torpor and IBE in 

13-lined ground squirrels (Hindle et al., 2014), and another study found no significant 

differences in phosphorylation of liver mitochondrial proteins between torpor and IBE 

(Chung et al., 2013). There is some evidence of differential acetylation during a torpor 

arousal cycle; in skeletal muscle of 13-lined ground squirrels, the amount of Sirt3 protein 

increased during late torpor, corresponding with decreased acetylation of the Sirt3 target 

superoxide dismutase (Rouble and Storey, 2015). It is still unclear if and how differential 

acetylation contributes to the changes in metabolism that occur between torpor and IBE. 
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1.7 Inducing metabolic suppression: the search for a 
“hibernation induction trigger” 
 

The ability of hibernators to supress metabolic rate and body temperature without 

disrupting homeostasis is a remarkable feat. When ATP production decreases without a 

corresponding suppression in ATP demand, homeostasis is disrupted, which can lead to 

cell death and organ damage, such as that observed in hypoxia (Hochachka, 1986; 

Boutilier, 2001). In hibernators however, significant cell death and organ damage do not 

occur (Zancanaro et al., 1999; Fleck and Carey, 2005; van Breukelen et al., 2010). 

Researchers have long tried to understand the mechanisms by which hibernation and 

torpor are regulated, as the potential to manipulate such physiological parameters to 

allow a controlled reduction in metabolism and body temperature could have profound 

implications for both biological and medical sciences. 

 

Dawe and Spurrier (1969) first proposed the existence of a hibernation “trigger” in the 

blood. They transfused summer euthermic 13-lined ground squirrels with whole blood, 

red blood cells, or serum from hibernating ground squirrels, and most animals entered 

torpor within 60 days of injection (Dawe et al., 1970). This led to the proposition of an 

unidentified blood-borne “hibernation induction trigger” (HIT). A subsequent study, 

however, found that when plasma from hibernating Richardson’s ground squirrels 

(Urocitellus richardsonii) was transfused into both Richardson’s ground squirrels and 13-

lined ground squirrels, torpor was only induced in 13-lined ground squirrels (Wang et al., 

1988). Further, injections of saline were just as effective at inducing torpor as injections 

with the plasma of hibernators. Though these data contradicted the hypothesis of a 

universal blood-borne HIT, the search for such has molecule has continued.  

 

Some hormonal changes occur throughout a torpor-IBE cycle (e.g., insulin and leptin; 

Weitten et al., 2013). Interestingly insulin has been associated with regulating diapause in 

insects (Sim and Denlinger, 2013), but to my knowledge, there is no evidence that links 

these hormones to the substantial metabolic changes that occur during hibernation. 

Several endogenously produced metabolites and signaling molecules that play a role in 
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metabolic regulation undergo concentration cycles that parallel the annual hibernation 

cycle in ground squirrels (Epperson et al., 2011). Although most of these changes are 

seasonal, some plasma metabolites (e.g., riboflavin, ascorbate, and glycerol) differ within 

the winter among different stages of the torpor-IBE cycle. It has been proposed that 5’-

adenosine monophosphate (5’-AMP) is involved in torpor induction; ATP/AMP ratio can 

be an important regulator of cellular energy status, and plasma levels of 5’-AMP increase 

during entrance into torpor in fasted mice (Zhang et al., 2006). Furthermore, injection of 

5’-AMP into euthermic mice led to a dramatic decrease in body temperature (Zhang et 

al., 2006). However, in these experiments the patterns of heart rate and cooling do not 

match the patterns observed during torpor, so doubt has been raised about the role of 5’-

AMP in the natural induction of torpor. It has been suggested that the observed 

temperature effects are either due to the breakdown of 5’-AMP to adenosine which 

reduces cardiac output, or the activation of AMP-activated kinase which is a key 

metabolic regulator (Swoap et al., 2007). Other metabolites involved in energy status 

signaling may play a role in inducing torpor; for example, in 13-lined ground squirrel 

liver, NAD+ concentration increases during entry into a torpor bout (Serkova et al., 2007). 

This increase in NAD+ could activate NAD-dependent Sirtuins and trigger deacetylation 

of target proteins, which could significantly affect metabolic pathways. 

 

Several pharmacological compounds have been investigated recently for their potential to 

induce metabolic suppression. One compound that has gained significant attention is 

hydrogen sulfide (H2S), an endogenously produced molecule that plays a role in cell 

signaling. H2S is a potent inhibitor of ETS complex IV, and results in decreased enzyme 

activity and cellular respiration (Cooper and Brown, 2008). Inhalation of 80 ppm H2S 

was shown to trigger a substantial decrease in body temperature and metabolic rate in 

mice (Blackstone et al., 2005). After inhalation, metabolic rate decreased by 90% and 

body temperature dropped to approximately 2 °C above ambient temperature, and these 

effects were completely reversible following the removal of H2S. While these results 

have proven repeatable in mice (Volpato et al., 2008) inconsistent results have been 

found in larger animals such as pigs (Li et al., 2008) and sheep (Haouzi et al., 2008). 

Since mice have the capacity to enter torpor whereas pigs and sheep do not, the inability 
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to induce metabolic suppression in pigs and sheep with H2S may be because they lack the 

mechanisms required for metabolic suppression and heterothermy. It is therefore possible 

that H2S inhalation triggers metabolic suppression in mice through pathways unique to 

animals capable of hibernation and torpor. 

 

The role of respiratory acidosis in metabolic suppression has also been investigated. As 

the body temperature of a hibernator decreases, blood plasma pH remains constant 

(Malan et al., 1973). Since the pH of neutrality increases as body temperature decreases, 

the blood of hibernators is considered acidic, relative to the euthermic condition. 

Entrance into torpor is also accompanied by a retention in CO2 as ventilation initially 

decreases more than metabolic rate, leading to respiratory acidosis (reviewed by Milsom 

and Jackson, 2011). Hypercapnia alone was shown to significantly reduce metabolic rate 

in euthermic golden-mantled ground squirrels (Bharma and Milsom, 1993), potentially by 

direct inhibition of metabolic enzymes. For example, phosphofructokinase, a rate-limiting 

glycolytic enzyme, is inhibited at low pH (Hand and Carpenter, 1986). This result has 

been contested by MacDonald and Storey (2001), who found that under conditions with 

high protein concentrations, such relative acidosis has little effect on 

phosphofructokinase activity. It is possible that changes in pH contribute to the induction 

of metabolic suppression in hibernators, but it is difficult to determine independent 

effects of pH as other biological parameters (e.g. body temperature) change in parallel as 

animals enter torpor and will affect pH dynamics. 

 

It is important to take a multi-systems and mechanistic approach when trying to elucidate 

the mechanisms of such a complex physiological phenomenon as metabolic suppression 

in hibernation. For example, the transcription factor p53 decreased four-fold during 

torpor in 13-lined ground squirrels (Fleck and Carey, 2005), which led to speculation 

about its potential role in torpor induction. A subsequent study however found that the 

changes in p53 levels over a torpor-IBE cycle do not correspond with changes in the 

expression of any of its target genes (Pan el al., 2014). It is therefore critical that research 

examines multiple biological levels for a comprehensive, mechanistic understanding of 

metabolic suppression during hibernation.	
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1.8 Thesis overview 
	

1.8.1 Rationale 
During hibernation, transitions between torpor and interbout euthermia (IBE) involve 

rapid and substantial changes in metabolic rate. In animals such as the 13-lined ground 

squirrel, suppression of whole-animal metabolic rate during torpor is paralleled by 

suppression of mitochondrial metabolism in several tissues including liver. Suppression 

of liver mitochondrial metabolism occurs prior to decreases in body temperature, 

indicating active, regulated metabolic suppression. Little is known about that the 

mechanisms that underlie this suppression. Post-translational modifications such as 

phosphorylation and acetylation can regulate mitochondrial metabolism, but little is 

known about how such protein modifications may contribute to mitochondrial metabolic 

suppression during hibernation. 

	

1.8.2 Objectives 
The major research goal of my thesis is to understand how changes in liver mitochondrial 

metabolism are regulated in hibernation. I hypothesize that the substantial changes in 

mitochondrial metabolism between torpor and IBE are acutely regulated by post-

translational modification of mitochondrial ETS complexes. Further, I hypothesize that 

manipulating these post-translational modifications will induce and reverse suppression 

in liver mitochondria from hibernators. To address these hypotheses, I have structured my 

thesis into three main objectives, each of which is addressed in a single chapter. An 

additional chapter (Chapter 3) supports one these main objectives by providing unique 

insights into the potential of PTMs to regulate changes in mitochondrial metabolism 

between torpor and IBE. 

 

My first objective was to determine which enzymes of the mitochondrial ETS are 

reversibly suppressed during torpor. In Chapter 2 (Regulation of mitochondrial 

metabolism during hibernation by reversible suppression of electron transport system 

enzymes), I measured flux through each of the ETS enzymes in intact liver mitochondria 
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and related these measurements to the maximal activity of individual ETS complexes. I 

found that ETS complexes I and II were significantly suppressed in torpor compared to 

IBE, but that this suppression was not paralleled by changes in protein content. I 

conclude that changes in liver mitochondrial metabolism during hibernation are regulated 

by changes in complexes I and II activity, and predict that post-translational modification 

of these complexes underlies this regulation. 

 

The experiment described in Chapter 3 was initially intended as a methodological study 

to assess the suitability of using saponin-permeabilization of liver tissue to evaluate 

mitochondrial respiration in a hibernator. In contrast to isolated mitochondria from the 

same animals, the permeabilization method yielded no difference in state 3 respiration 

between torpor and IBE, leading me to hypothesize that the regulatory mechanisms 

responsible for suppression during torpor were somehow reversed during the 

permeabilization process. To test this hypothesis, I repeated the experiment with the 

inclusion of phosphatase and deacetylase inhibitors during permeabilization in an attempt 

to preserve the phosphorylation and acetylation state of mitochondrial proteins. With 

phosphatase inhibitors present during permeabilization, the suppression of mitochondrial 

respiration in torpor was restored. From these results, I conclude that phosphorylation is 

critical to mitochondrial metabolic suppression during torpor. 

 

My second objective was to determine how post-translational modifications of liver 

mitochondrial proteins differ between torpor and IBE. In Chapter 4, I conducted a large-

scale proteomics analysis of liver mitochondrial proteins that differ in expression or post-

translational modification between torpor and IBE. I identified several proteins that differ 

in phosphorylation and acetylation state, providing potentially novel sites of metabolic 

regulation. Most significantly, I found differential phosphorylation in ETS complexes I 

and II between torpor and IBE, providing direct support for my initial hypothesis.  

 

My final objective was to use the mechanistic knowledge gained from my previous 

studies to manipulate metabolism in liver mitochondria. In Chapter 5, I attempted to 

induce and reverse metabolic suppression at the enzyme and mitochondrial levels by 
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manipulating the phosphorylation state of mitochondrial proteins in vitro. I treated 

homogenized liver mitochondria from IBE and torpid ground squirrels with kinases and 

phosphatases to stimulate phosphorylation and/or dephosphorylation of mitochondrial 

proteins. I found that the maximal activities of both complexes I and II were differentially 

altered following treatment with kinases and phosphatases, providing direct evidence for 

the role of phosphorylation in regulating the activity of these enzymes between torpor 

and IBE. Following successful manipulation of enzyme activity, I attempted to 

manipulate the respiration rates of intact mitochondria by stimulating the endogenous 

protein kinase A (PKA) pathway. Though I was able to induce some changes in 

mitochondrial respiration, there was no clear effect of PKA pathway activation on 

mitochondrial respiration. I conclude that it is possible to manipulate enzyme activity 

directly by manipulating phosphorylation state, but the PKA pathway does not likely 

regulate the metabolic changes that occur between torpor and IBE. 

In Chapter 6 I synthesize the results from these four studies to propose a model by which 

liver mitochondrial metabolism is reversibly suppressed during hibernation. 
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CHAPTER 2 
	

2  Regulation of mitochondrial metabolism during 
hibernation by reversible suppression of electron 
transport system enzymes 

 

 

A version of this chapter has been previously published in Journal of Comparative 

Physiology B1. 

 

2.1 Introduction 
Many small mammals, such as the 13-lined ground squirrel (Ictidomys tridecemlineatus), 

hibernate seasonally to conserve energy when environmental conditions are 

unfavourable. For these animals, hibernation is characterized by a distinct cycle of body 

temperature and metabolic suppression as animals cycle between periods of torpor and 

interbout euthermia (IBE) during the hibernation season (reviewed in Chapter 1.2.2). It is 

estimated that 40-70% of the decrease in metabolic rate as an animal enters torpor is due 

to active suppression, with the rest of the decline in metabolic rate being due to passive 

thermal effects as body temperature decreases (Guppy and Withers, 1999; Heldmaier and 

Elvert, 2004; Staples and Brown, 2008). Suppression of liver metabolism likely 

contributes to the substantial reduction of whole animal metabolic rate, as the liver is a 

metabolically important organ for rodents, contributing 12-17% to total metabolism but 

only 6-7% to whole-animal mass (Martin and Fuhrman, 1955). In isolated liver 

mitochondria, state 3 (phosphorylating) respiration is suppressed by up to 70% during 

torpor relative to IBE (Muleme et al., 2006). Recently, work from the Staples lab has 

shown that this suppression of mitochondrial metabolism is rapid and independent of 

body temperature, since maximal suppression of succinate-fueled state 3 respiration 

																																																								
1 Mathers, K.E., McFarlane, S.V., Zhao, L. and Staples, J.F. (2017). Journal of Comparative 

Physiology B 187:227-234.  
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occurs before body temperature falls below 30 oC (Chung et al., 2011). In contrast, the 

increase in the respiration rate of liver mitochondria during arousal from torpor into IBE 

is slow, with increases in succinate-fueled state 3 respiration rates roughly paralleling 

increases in body temperature. 

 

Suppression of liver mitochondrial metabolism in hibernators is greatest with succinate as 

an oxidative substrate, which suggests that most of the suppression occurs at or 

downstream of ETS complex II (Staples, 2014). The regulatory mechanism(s) underlying 

this suppression remain largely unknown. Significant changes in the concentration for 

metabolites related to mitochondrial metabolism (e.g. isovalyrlcarnitine, uridine, and 

flavin adenine dinucleotide) occur between torpor and IBE in liver (Nelson et al., 2009), 

but metabolite inhibition can explain a maximum of 25% of the suppression of complex 

II seen during torpor (Armstrong and Staples, 2010). Changes in mitochondrial 

membrane composition, such as degree of phospholipid fatty acid saturation, can affect 

the activity of complex II and other proteins in the inner mitochondrial membrane (Hazel, 

1972), but in 13-lined ground squirrels, there appear to be no differences in membrane 

composition between torpor and IBE (Chung et al., 2011). 

 

Given the rapid nature of the suppression that occurs in liver mitochondria, especially 

during entrance into torpor (within approximately two hours), it is unlikely that 

differential transcription and translation are responsible. In addition, initiation of 

transcription does not occur at body temperatures below 18 °C in ground squirrels (van 

Breukelen and Martin, 2001). It is more likely that ETS enzyme activity is directly and 

reversibly supressed during torpor, perhaps through post-translational modifications. 

Such modifications can be powerful regulators of mitochondrial metabolism (Hofer and 

Wenz, 2014), though their role in regulating mitochondrial metabolism between torpor 

and IBE remains largely unexplored.  

 

In this Chapter I aimed to better characterize the regulation of the rapid, reversible 

metabolic suppression displayed by liver mitochondria during hibernation. Our research 

group has demonstrated previously that liver mitochondrial metabolism of succinate and 



	

 49 

pyruvate is reversibly suppressed during torpor (Muleme et al., 2006; Chung et al., 2011), 

but the role of individual complexes and their effect on overall mitochondrial metabolism 

is not yet clear. Specifically, the roles of individual complexes downstream of complex II 

(complexes III, IV, and V) are completely unknown. 

 

I hypothesized that complex II is the main site of suppression in liver mitochondria, and 

that this suppression is mediated by differential post-translational modification between 

torpor and IBE. To test this hypothesis, I first measured flux through each of the ETS 

complexes in intact liver mitochondria. I then measured the maximal activity of each 

complex in liver mitochondria and liver tissue to estimate their contributions to 

suppression of mitochondrial respiration. I also measured the protein content of each ETS 

complex. Since I hypothesized that changes in activity are mediated by PTM to existing 

proteins rather than changes in transcription or translation, I predicted that the protein 

content of all ETS complexes would not change between torpor and IBE. 

 

 

2.2 Materials and methods 

2.2.1 Animals 
All procedures were approved by the University of Western Ontario Animal Use 

Subcommittee (Protocol number: 2012-016; Appendix A). Thirteen-lined ground 

squirrels (Ictidomys tridecemlineatus) were live-trapped in Carman, MB, Canada 

(49°30’N, 98°01’W, with approval from the Manitoba Ministry of Conservation; 

Appendix B) or bred in captivity, following previously established protocols (Vaughan et 

al., 2006). All squirrels were housed at the University of Western Ontario. Squirrels were 

individually housed in plastic shoe-box style cages (26.7 x 48.3 x 20.3 cm) and provided 

with dried, shredded corn cob bedding (Bed-o’Cobs ¼”, The Andersons, Maumee, OH), 

shredded paper nesting material (Crink-l’Nest, The Andersons, Inc.), and a cardboard 

tube (8 x 15 cm, Bio-Serv, Flemington, NJ) for enrichment. Rat chow (5P00, LabDiet, St. 

Louis, MO) and water were provided ad libitum. During the spring and summer, squirrels 

were housed at 22 °C ± 3 °C with a photoperiod matching that of Carman, MB (adjusted 
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weekly) under full-spectrum, fluorescent lighting. In early October, squirrels were 

transferred to environmental chambers where the temperature was reduced by 1 °C per 

day until it reached 4 °C ± 2°C and photoperiod was reduced to 2 h of light and 22 h of 

dark (with lights on at 10:00 h). This photoperiod mimics that of the inside of a burrow 

during the hibernation season while allowing sufficient light for animal care. 

	

2.2.2 Radiotelemetry implants 
Radiotelemeters were surgically implanted in adult ground squirrels to continuously 

monitor core body temperature during hibernation (Muleme et al., 2006). Radio 

telemeters (Model TA-ETAF10, Data Sciences International, New Brighton, MN) were 

implanted intraperitoneally under isofluorane gas anesthesia. Squirrels were provided 

with postoperative analgesia (subcutaneous meloxicam, 0.05 mg/kg) prior to surgery, and 

once daily for three days following surgery. Core body temperature measurements were 

collected every four minutes using telemetry receivers (model RA1010, Data Sciences 

International) using DataQuest ART software (Data Science International).  

	

2.2.3 Experimental groups 
This study compared animals that were either in torpor (a stable body temperature near 5 

°C for 3-5 days) or IBE (a stable body temperature near 37 °C for 3-4 h following a 

spontaneous arousal). Torpid animals were sampled at 8:30am EST, but IBE animals 

could not be sampled at a standardized time due to the spontaneous nature of interbout 

arousals. Animals sampled during IBE were euthanized by anesthetic overdose 

(intraperitoneal injection of Euthanyl; 54 mg/100g). Euthanyl has no known effects on 

mitochondrial metabolism (Takaki et al., 1997). Torpid animals were euthanized by 

cervical dislocation, since anaesthetic injection would cause arousal. Liver was dissected 

immediately following euthanasia, and a small section was frozen in liquid nitrogen for 

enzyme assays. 

	



	

 51 

2.2.4 Isolation of mitochondria 
Following excision, liver tissue was immediately submerged in ice-cold homogenization 

buffer 1 (HB1; 250 mM sucrose, 1 mM EGTA, 10 mM HEPES, 1% (w/v) BSA, pH 7.4) 

and minced into 1 mm3 pieces using surgical scissors. Minced tissue was then 

homogenized in approximately 30 ml HB1 in a 50 ml glass mortar, using three passes 

(100 rpm for approximately 30 sec) of a loose-fitting Teflon pestle. The homogenate was 

subsequently filtered through one layer of cheesecloth and centrifuged at 1000 g for 10 

min at 4 °C (Centrifuge 5804R, Eppendorf, Mississauga ON), and this step was repeated 

once with the resulting supernatant. Following the second centrifugation, the supernatant 

was filtered through four layers of cheesecloth and centrifuged at 8700 g for 10 min at 4 

°C. The supernatant was then aspirated, and the resulting crude mitochondrial pellet was 

resuspended in 1 ml ice-cold homogenization buffer 2 (HB2; 250 mM sucrose, 1 mM 

EGTA, 10 mM HEPES, pH 7.4). This sample of crude mitochondria was purified using a 

Percoll gradient centrifugation technique outlined by Petit et al. (1990). Crude 

mitochondria (1 ml) were layered on top of a Percoll (Sigma-Aldrich) gradient solution 

composed of 10 ml layers of 10, 18, 30, and 70% (v/v) solutions, diluted in HB2, layered 

with the densest at the bottom of a 50 ml centrifuge tube. The mitochondria and Percoll 

solution was then centrifuged at 13,000 g for 35 min at 4 °C. Following centrifugation, 

approximately 1 ml of purified mitochondria was isolated from the boundary between the 

30 and 70% Percoll layers and resuspended in 40 ml HB2. The mitochondrial suspension 

was centrifuged at 8700 g for 10 min at 4 °C, with this wash step repeated once more to 

remove all Percoll. The final, purified mitochondrial pellet was resuspended in 1 ml HB2 

and kept on ice until respiration measurements were made, with aliquots flash frozen in 

liquid nitrogen and stored at -80 °C for subsequent enzyme assays. This mitochondrial 

isolation and purification technique results in mitochondrial samples with 85 to 96% of 

contaminants (endoplasmic reticulum, peroxisomes, lysosomes, and plasma membranes) 

removed, demonstrated by assays of marker enzyme activity (Armstrong and Staples, 

2010). 
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2.2.5 Mitochondrial respiration and ETS complex flux 
Mitochondrial oxygen consumption was measured using an Oxygraph-O2K high-

resolution respirometer (Oroboros Instruments, Austria). Mitochondria (10 µl, ~150 µg 

protein) were transferred to respiration chambers containing 2 ml of mitochondrial 

respiration medium (0.5 mM EGTA, 3 mM MgCl2, 60 mM L-lactobionate, 20 mM 

taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 1 g/l fatty acid free BSA, pH 

7.1; (Kuznetsov et al., 2008) under constant stirring (750 rpm) at 37 °C. Oxygen partial 

pressure was sensed by polarographic electrodes and converted to dissolved oxygen 

concentration using DatLab software (version 4.3.2.7, Oroboros Instruments, Austria) 

following calibration with air-saturated respiration medium and oxygen-depleted medium 

(obtained with the use of a yeast suspension). Unless indicated otherwise, all substrates 

and inhibitors were dissolved in respiration medium. Flux through each ETS complex 

was assessed in one mitochondrial sample from each animal by measuring oxygen 

consumption rates following sequential stimulation and inhibition of each complex. Flux 

values were calculated from the mean of duplicates for each animal. Flux through 

complexes I-IV was measured following the addition of ADP (1 mM), pyruvate (1 mM), 

and malate (1 mM). Once a stable rate was reached, rotenone (0.5 µM, dissolved in 95% 

(v/v) ethanol) was added to inhibit complex I, and flux through complexes II-IV was 

measured by adding succinate (6 mM). Complex II was then inhibited by the addition of 

malonate (5 mM), and flux through complexes III-IV was determined after the addition 

of reduced ubiquione2 (10 µl of 10 mg/ml, reduced as described by (Rieske, 1967)). 

Antimycin A (2.5 µM, dissolved in 95% (v/v) ethanol) was added to inhibit complex III, 

and flux through complex IV was measured following the addition of N, N’, N’-

tetramethyl-p-phenylenediamine (TMPD; 0.5 mM) and ascorbate (2 mM). Parallel 

measurements were made with and without potassium cyanide (1 mM) to correct for 

uncatalyzed oxidation of TMPD. Flux through each ETS complex was expressed relative 

to total protein content of each isolated mitochondria sample. The protein content of each 

mitochondrial sample was determined with protein assay dye (Bio-Rad) using BSA 

dissolved in homogenization buffer as protein standards. 
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2.2.6 ETS complex activity assays  
Aliquots of liver mitochondria from animals sampled during torpor and IBE were thawed 

in an ice/water slurry and centrifuged for 10 min at 20,000 g and 4 °C. The resulting 

pellets were resuspended in an isotonic assay medium (100 mM KCl, 25 mM K2HPO4, 5 

mM MgCl2, pH 7.4) to a concentration of 1 mg protein/ml and freeze-thawed three times 

in liquid nitrogen and an ice/water slurry and used for assays. Frozen liver tissue from the 

same animals was homogenized in 10 volumes of buffer (20 mM Tris, 1 mM EDTA, 

0.1% Triton X-100, pH 7.2). These homogenates were diluted to 2 mg tissue/ml and used 

for assays. 

 

All assays were performed as described by Kirby et al. (2007), using a Spectromax plate 

spectrometer (Molecular Devices, Sunnyvale, CA) at 37 °C. For all assays, samples were 

run in triplicates and Vmax values for individuals were calculated from the mean of the 

triplicates. Complex I activity was measured following the addition of 10 µl 

mitochondrial or tissue homogenate (corresponding to 10 µg mitochondrial protein and 

20 µg liver tissue) to 290 µl of assay mixture containing 25 mM K2HPO4 (pH 7.4), 2 

µg/ml antimycin A, 2 mM KCN, 2.5 mg/ml BSA, and 0.2 mM NADH. The oxidation of 

NADH was tracked by measuring absorbance (340 nm) for 3-5 mins. Complex II activity 

was measured following the addition of 5 µl mitochondrial or tissue homogenates 

(corresponding to 5 µg mitochondrial protein and 10 µg liver tissue) to 294 µl of assay 

mixture containing 25 mM K2HPO4 (pH 7.4), 2 µg/ml rotenone, 2 µg/ml antimycin A, 2 

mM KCN, 20 mM succinate, and 50 µM dichlorophenolindophenol (DCPIP). The 

reaction was started with 1 µl of 10 µM ubiquinone1, and the oxidation state of DCPIP 

was tracked by measuring absorbance (600 nm) for 3-5 min. Complex III activity was 

measured following the addition of 3 µl mitochondrial or tissue homogenates 

(corresponding to 3 µg mitochondrial protein and 6 µg liver tissue) to 296 µM of assay 

mixture containing 25 mM K2HPO4 (pH 7.2), 2 µg/ml rotenone, 2 mM KCN, 2.5 mg/ml 

BSA, 0.6 mM n-dodecyl-b-D-maltoside, and 15 mM oxidized cytochrome c. The 

reaction was started with 1 µl of reduced ubiquinone2 (10 mg/ml), and the oxidation state 

of cytochrome c was tracked by measuring absorbance values (550 nm) for 2-5 min. 
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Complex IV activity was measured following the addition of 1 µl mitochondrial or tissue 

homogenates (corresponding to 1 µg mitochondrial protein and 2 µg liver tissue) to 299 

µl of assay mixture containing 25 mM K2HPO4 (pH 7.2), 5 mM MgCl2, 2.5 mg/ml BSA, 

0.6 mM lauryl maltoside, and 50 µM reduced cytochrome c. Cytochrome c was reduced 

by adding a few grains of sodium hydrosulfite to 250 µl of oxidized cytochrome c 

immediately before the complex IV assays. The reduction state of the cytochrome c was 

determined by measuring its absorbance at 550 nm and at 565 nm, and was considered 

sufficient only if the ratio of A550/A565 was greater than 6 (Kirby et al., 2007). Parallel 

assays were run with and without 150 mM sodium azide to account for non-ezymatic 

oxidation of TMPD. Absorbance values (550 nm) were collected for 3-5 min. Complex V 

activity was measured following the addition of 1 µl mitochondrial or tissue homogenates 

(corresponding to 1 µg mitochondrial protein and 2 µg liver tissue) to 299 µl of assay 

mixture containing 5 mM ATP, 1 mM phosphoenolpyruvate, 0.2 mM NADH, 1 U/ml 

pyruvate kinase, and 1 U/ml lactate dehydrogenase. Absorbance values (340 nm), 

corresponding with concentration of NADH, were collected for 3-5 min, with complex V 

rates calculated from the difference between rates collected with and without oligomycin 

inhibition. 

 

2.2.7 Immunoblots 
Samples of isolated liver mitochondria from animals sampled during torpor and IBE were 

denatured in loading buffer (100 mM Tris, 10% (v/v) glycerol, 2% (w/v) lithium dodecyl 

sulfate (LDS), 0.175 mM Phenol Red, 100 mM dithiothreitol (DTT), pH 8.5) at 37 oC for 

10 minutes and electrophoresed on sodium dodecyl sulfate (SDS) polyacrylamide gels 

(10% (w/v) acrylamide). Gels were loaded with 10 ng of protein from each liver 

mitochondria sample. Gels were run at 180V for 1 hr in a running buffer (25 mM Tris, 

190 mM glycine, 0.1% (w/v) SDS), then transferred to polyvinylidene fluoride 

membranes. Transfers were conducted at 4 oC at 100V for 2 hours. After transfer, 

membranes were blocked with 5% BSA in Tris-buffered saline and Tween-20 (TBST; 30 

mM Tris, 137 mM NaCl, 0.1% (v/v) Tween-20, pH 7.6) under steady agitation (300 rpm)  
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Table 2-1. Subunits of ETS complexes targeted by MitoProfile antibody cocktail 
(AbCam, ab6820). 
 

ETS Complex Subunit targeted 

Complex I NDUFB8 

Complex II Iron-sulfur protein (IP) subunit 

Complex III Core protein II 

Complex IV Subunit I 

Complex V Alpha subunit 
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for 2 hours and probed with the mouse MitoProfile primary antibody (Abcam, ab110413 

1:1000 dilution in TBST), which binds to one subunit of each ETS complex (Table 2-1), 

overnight at 4 oC. Membranes were then incubated with donkey polyclonal Secondary 

Antibody to Mouse IgG (Abcam, ab6820, 1:10,000 dilution in TBST) for 1 hr at room 

temperature under steady agitation. The membrane was washed four times for 15 min in 

TBST. Bands were visualized following the addition of Luminata Forte 

chemiluminescent substrate (Millipore) to membranes, using a VersaDoc MP5000 

imaging system (BioRad). Bands were quantified using the densitometry analysis tool in 

ImageLab 3.0 (BioRad) and standardized to total protein in each lane, determined by 

Amido Black staining of the same membranes. The total protein loaded (10 ng per well) 

corresponds with bands within the linear range of detection for all five ETS subunits, 

determined by a preliminary immunoblot with a dilution series of protein (data not 

shown).  

 

2.2.8 Statistical analysis 
All statistical analyses were conducted using R. One-tailed, unpaired t-tests were used to 

compare fluxes between torpor and IBE for each ETS complex in intact liver 

mitochondria. One-tailed, unpaired t-tests were used to compare maximal activity of each 

ETS complex between torpor and IBE for both isolated mitochondria and homogenized 

liver tissue. For immunoblots, two-tailed, unpaired t-tests were used to compare the 

content of each ETS protein between torpor and IBE. Differences were considered 

significant for p-values <0.05. 

 

 

2.3 Results 
I measured flux through the ETS in intact mitochondria by sequentially stimulating and 

inhibiting each complex, and compared rates between IBE and torpor (Figure 2-1). 

During torpor, flux through complexes I-IV was significantly suppressed by 40% 

(p=0.012) and flux through complexes II-IV was suppressed by 60% (p=0.002),  
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Figure 2-1. Flux through electron transport system (ETS) complexes in liver 
mitochondria isolated from torpid and IBE ground squirrels. State 3 (ADP-
phosphorylating) oxygen consumption rates were measured in liver mitochondrial 
isolated from animals sampled during torpor (n=9) and IBE (n=8), following sequential 
stimulation and inhibition of each ETS complex. Values represent means ± SE. Asterisks 
denote a significant difference (p≤0.05, one-tailed t-test) between torpor and IBE. 
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compared with IBE. Flux through complexes III-IV and IV did not differ significantly 

between torpor and IBE.  

 

I measured the maximal activity of each ETS complex using spectrophotometric assays 

for each complex in isolated mitochondria (Table 2-2) from the same samples used to 

measure ETS fluxes. In homogenized liver mitochondria, complexes I and II were each 

suppressed by 20% during torpor compared with IBE (p=0.005 and p=0.006, 

respectively). Complexes III, IV and V showed no significant difference between torpor 

and IBE.  

 

I also measured maximal activities of the five ETS complexes in homogenized liver 

tissue from the same animals, and found significant suppression of complexes I, II, III  

and V during torpor relative to IBE (Table 2-3). Complex I was suppressed by 14% 

(p=0.03), complex II by 30% (p<0.001), complex III by 10% (p=0.04), and complex V 

by 14% (p=0.03). There was no significant difference in complex IV activity between 

torpor and IBE. 

 

I conducted immunoblots to compare the protein content of each ETS complex between 

torpor and IBE (Figure 2-2). There was 30% more complex III protein present during 

torpor relative to IBE (p=0.049). There were no significant differences between torpor 

and IBE in the protein content of complexes I, II, IV, or V. 

 

 

2.4 Discussion 
To date, this is the most comprehensive study of the regulation of mitochondrial electron 

transport system proteins in a hibernator. My results show that the suppression of liver 

mitochondrial metabolism in 13-lined ground squirrels during torpor corresponds closely 

with suppression of ETS complexes I and II. Furthermore, my immunoblot data most 

likely rule out differences in transcription, translation or degradation as underlying causes 

of this suppression, as the content of these proteins did not differ between torpor and IBE.  
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Table 2-2. Maximal activity of ETS complexes in isolated liver mitochondria. 
Enzyme activities (µmol min-1 mg protein-1) were measured in homogenized 
mitochondria from animals sampled during torpor (n=8) and IBE (n=6). Asterisks 
indicate a significantly lower value in torpor compared with IBE. 
 

 Complex I Complex II Complex III Complex IV Complex V 

IBE 
Mean 83.5 181.9 392.7 1240.5 482.1 

SE 3.96 9.21 21.28 88.08 48.43 

Torpor 
Mean 67.98* 146.6* 379.1 1123.5 468.2 

SE 1.29 7.03 24.1 88.6 13.39 
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Table 2-3. Maximal activity of ETS complexes in liver tissue. Enzyme activities (µmol 
min-1 mg tissue-1) were measured in homogenized liver tissue from animals sampled 
during torpor (n=8) and IBE (n=6). Asterisks indicate a significantly lower value in 
torpor compared with IBE. 
 

 Complex I Complex II Complex III Complex IV Complex V 

IBE 
Mean 142.8 412.5 1661.0 5403.2 2460.3 

SE 7.52 16.90 88.20 292.20 120.34 

Torpor 
Mean 122.7* 285.0* 1476.0* 4946.7 2104.0* 

SE 6.63 19.77 63.05 339.08 139.64 
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Figure 2-2. Protein content of ETS complexes in liver mitochondria of torpid and 
IBE ground squirrels. Immunoblots (A) were performed on isolated mitochondria from 
animals sampled during torpor (n=4) and IBE (n=4). The subunits targeted by each 
antibody are shown in Table 2-1. Bands were quantified and standardized to total protein, 
then expressed relative to IBE (B). 
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In liver mitochondria, there was significant suppression of flux through complexes I and 

II during torpor (Figure 2-1). Flux through complexes I-IV was suppressed by 40% and 

flux through complexes II-IV was suppressed by 60%, comparable to previous studies 

(Muleme et al., 2006; Chung et al., 2011). There was no suppression in flux through 

complexes III-IV or complex IV. A recent study of liver mitochondrial metabolism 

during hibernation in the long-tailed ground squirrel also found significant suppression of  

complexes I and II during torpor (Komelina et al., 2015). In contrast to my results, this 

study found that complex I was suppressed to a greater degree than complex II, perhaps 

suggesting differences among species. My study agrees with Komelina et al., (2015) in 

concluding that a significant portion of the liver mitochondrial suppression occurs 

between complexes II and III. However, because I found no differences in flux through 

complex III-IV and complexes IV between torpor and IBE, I can further conclude that the 

most significant suppression occurs at complex II. 

 

I measured maximal activity (Vmax) of each ETS complex in the same liver mitochondria 

using spectrophotometric assays to determine the activity of each complex (Table 2-2). 

This approach allowed me to examine each complex individually rather than flux through 

multiple complexes, the rate of which depends not only on the maximal capacity of the 

initial enzyme, but also on the capacity of downstream enzymes to metabolize the 

products of upstream complexes. Complexes I and II both showed significantly lower 

Vmax during torpor relative to IBE. The maximal activities of complexes III, IV and V did 

not differ between torpor and IBE. These data parallel the pattern of flux measurements 

from intact mitochondria, further suggesting that suppression of complexes I and II is 

important for the observed reversible suppression seen in intact mitochondria.  

 

I also measured Vmax of each ETS complex in homogenized liver tissue from the same 

animals used for liver mitochondria isolation (Table 2-3). In homogenized liver tissue, 

the maximal activities of complexes I, II, III, and V were each significantly lower in 

torpor relative to IBE. Complex IV showed no difference in Vmax between torpor and 

IBE. It is unclear why complexes III and V would be suppressed during torpor in 

homogenized tissue but not in isolated mitochondria. It is likely not due to differences in 
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mitochondrial content, as previous work has shown that, in liver, mitochondrial content 

does not change between torpor and IBE (Mathers and Staples, 2015). It is worthwhile to 

note, however, that complexes I and II showed significant suppression during torpor 

whether measured in isolated mitochondria or whole liver tissue. 

 

Changes in Vmax and total flux through each mitochondrial complex could be due to 

changes in either enzyme active site turnover number (Kcat) or the amount of each 

protein, since Vmax is the product of Kcat and enzyme concentration. Immunoblots for the 

five ETS complexes allow a comparison of content of these proteins between torpor and 

IBE in isolated liver mitochondria (Figure 2-2). The complex III Core protein II was 

more abundant in torpor relative to IBE; but this does not correspond with changes in 

flux or Vmax. In fact, in liver tissue, Vmax of complex III is lower in torpor, so the 

significance of this increase in Core protein II remains unknown. There were no 

differences in the protein content of complexes I, II, IV, and V between torpor and IBE.  

 

Despite significant suppression of flux and Vmax during torpor for both complexes I and 

II, there is no difference in the content of either of these proteins. These results indicate 

that the reversible suppression that occurs during torpor is due to changes in the Kcat of 

these two proteins rather than changes in their overall expression. Given that the rapid 

reversible, temperature-sensitive pattern of suppression, and that the changes in activity 

of complexes I and II are not paralleled by changes in protein content, post-translational 

modification is a probable mechanism underlying these changes. Post-translational 

modification (PTM) is a powerful regulator of mitochondrial metabolism (Hofer and 

Wenz, 2014). Complex II in particular is a target for several post-translational 

modifications that alter its activity; Subunit A (SDHA) is a target for both deacetylation 

by SIRT3 (Cimen et al., 2010; Finley et al., 2011) and phosphorylation by Src kinases 

(Augereau et al., 2005; Salvi et al., 2005; Ogura et al., 2010). Complex I is also a target 

for both deacetylation (Ahn et al., 2008) and phosphorylation (Augereau et al., 2005; 

Ogura et al., 2010; Hébert-Chatelain et al., 2010). The effects of PTMs on mitochondrial 

metabolism is complex, with modifications having antagonistic effects on enzyme 

activity depending on the site that is modified (reviewed in Chapter 1.4.5).  
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The role of PTMs in regulating mitochondrial metabolism throughout torpor-arousal 

cycles remains largely unexplored. One study on liver tissue in 13-lined ground squirrels 

found few differences in total phosphorylation and acetylation between torpor and 

arousal (Hindle et al., 2014). This study used whole liver tissue, however, so subtle 

differences in PTMs of mitochondrial proteins might have been difficult to detect as 

mitochondrial proteins represent only a small fraction of total liver protein. Recent work 

from the Staples lab found no difference in total phosphorylation of liver mitochondrial 

proteins between torpor and IBE, although Chung et al. (2013) reported seasonal 

differences in phosphorylation of some ETS proteins. However, it is possible that the 

techniques used by Chung et al. (2013) lacked the resolution to detect subtle changes in 

phosphorylation of specific proteins. It is also possible that types of PTMs other than 

phosphorylation (e.g. acetylation) are involved in regulating mitochondrial during 

hibernation. 

 

 

2.5 Conclusions 
This study has helped narrow the search for the mechanisms that are responsible for 

reversible suppression of mitochondrial metabolism during hibernation. ETS complexes I 

and II are clearly altered between torpor and IBE. Since the activity of these proteins 

changes rapidly with no corresponding change in protein content, I propose that 

differential post-translational modification is responsible for their regulation. In the 

following chapters, I investigate the role of post-translational modifications in regulating 

liver mitochondrial metabolism between torpor and IBE. 
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CHAPTER 3 
 

3 Suppression of liver mitochondria during hibernation is 
reversed during saponin permeabilization 

 

A version of this chapter has been previously published in Biology Open2.  

 

3.1 Introduction 
 

Mitochondria transform chemical energy obtained from the environment into ATP that 

can be utilized by animal cells for development, growth, survival and reproduction. Many 

animals are periodically faced with environmental conditions that constrain the ability of 

mitochondria to fulfill this role. For example, seasonal changes in temperature, sunlight 

and water may limit the amount of energy available for animals. Reversible suppression 

of oxidative phosphorylation is a strategy used by many organisms to conserve energy 

under such natural environmental stresses. Understanding the mechanisms that underlie 

this mitochondrial metabolic suppression will offer insights into how these animals 

survive in extreme conditions, and this line of inquiry has been the focus of many recent 

studies (e.g., Galli and Richards, 2012). In addition, changes in mitochondrial 

metabolism contribute to many pathological conditions including myopathies (Kunz et 

al., 1993), neuropathies (Yao et al., 2009), and liver cirrhosis (Krähenbühl et al., 2000).  

For these reasons, accurate analysis of mitochondrial function is crucial for both basic 

and applied research. 
 

Since at least 1955, oxidative metabolism has been assessed using mitochondria isolated 

from tissues by homogenization and differential centrifugation (Chance and Williams, 

1955). For fibrous animal tissue (e.g. skeletal muscle), homogenization is often combined 

																																																								
2 Mathers, K.E. and Staples, J.F. (2015). Biology Open 4:858-864. 
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with mild proteolytic digestion (e.g., Chance and Williams, 1955). Density gradient 

centrifugation can further purify these “crude” mitochondrial fractions, removing extra-

mitochondrial components (Petit et al., 1990), improving resolution for techniques such 

as protein electrophoresis. These techniques have been helpful in characterizing many 

aspects of mitochondrial metabolism but, as pointed out by Kuznetsov et al. (2008) they 

have several limitations. Mitochondrial isolation involves mechanical homogenization, 

which may alter mitochondrial morphology and interactions with other cellular 

components (e.g., cytoskeleton, endoplasmic reticulum), and perhaps impact function. 

Some methods of mitochondrial isolation preferentially retain certain mitochondrial 

subpopulations (Krieger et al., 1980), potentially biasing results, especially when 

extrapolating conclusions to higher levels of organization. In addition, mitochondrial 

isolation requires substantial amounts of tissue, a costly refrigerated centrifuge and 

considerable amounts of time and skill. As a result of these limitations, many researchers 

(e.g. Kuznetsov et al., 2008) have opted recently to analyze mitochondrial function in 

permeabilized tissue slices. 

 

Prior to permeabilization, tissues are gently disrupted mechanically, either by slicing or 

separation using fine forceps. Subsequently, tissues are incubated with steroid-containing 

compounds such as saponin. Because of its high affinity for cholesterol, saponin binds to 

cholesterol within plasma membranes, causing it to aggregate, thereby creating pores in 

the membrane (Kuznetsov et al. 2008). These pores allow diffusion of relatively small 

molecules (e.g., pyruvate, succinate, ADP) from the incubation medium to the 

mitochondria within otherwise intact cells. Because mitochondrial membranes contain 

much less cholesterol than the plasma membrane (reviewed by Yeagle, 1985), brief 

treatment with saponin should not uncouple mitochondrial substrate oxidation from ADP 

phosphorylation. In fact, an early study found that oxidative phosphorylation in saponin-

permeabilized muscle fibers was almost identical to mitochondria isolated from the same 

tissue (Kunz et al., 1993). In addition, maximal respiration rates showed very good 

correspondence between the two techniques. 
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In recent years the use of saponin permeabilization has expanded greatly, and, in 

conjunction with high-resolution respirometry, has been used to analyze mitochondrial 

metabolism in skeletal (Casas et al., 2008) and cardiac muscle (Galli and Richards, 

2012), gastric mucosa (Gruno et al., 2008), and brain tissue (Benani et al., 2009; Clerc 

and Polster, 2012). It is particularly useful for small organisms such as Drosophila 

(Pichaud et al., 2010), and small biopsies from larger animals, including humans (Brands 

et al., 2011). However, while “mechanical permeabilization” has been used to assess 

mitochondrial function in liver biopsies (Kuznetsov et al., 2002), to my knowledge, no 

study has used saponin or similar compounds to permeabilize liver tissue for 

mitochondrial studies. Therefore, the first goal of this study was to assess the utility of 

saponin permeabilization for analysis of liver mitochondrial metabolism. Similar to other 

tissues, mammalian liver mitochondria contain little cholesterol relative to phospholipid, 

so I predicted that brief incubation with saponin would cause minimal uncoupling of 

mitochondrial oxidative phosphorylation. I employed a similar strategy to Kunz et al. 

(1993) and compared small liver slices, permeabilized using saponin, with mitochondria 

isolated from the remaining liver tissue of the same animals. 

 

A further goal of this study was to evaluate whether saponin permeabilization of liver is 

an appropriate technique for assessing mitochondrial metabolism during whole-animal 

metabolic states that are known to change the function of isolated mitochondria. Saponin 

permeabilization of rat brain has been used to assess mitochondrial function among some 

physiological conditions, such as fasting, that are known to alter whole-animal 

metabolism over fairly long time periods (Kuznetsov et al., 2008). However, this 

technique may not be appropriate for other tissues or conditions where metabolism 

changes acutely. For example, in cardiac muscle, the activities of some mitochondrial 

enzymes differ depending on whether they are assayed in isolated mitochondria or tissue 

biopsies (Phillips et al., 2012). Since hibernation involves acute metabolic changes, the 

mammalian hibernation model is well-suited to evaluate the utility of the saponin 

permeabilization technique for evaluating changes in liver mitochondrial metabolism. 
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Throughout the late autumn and winter, ground squirrels undergo bouts of torpor, 

characterized by low and constant body temperature (approximately 5 °C) and metabolic 

rate (<10% of euthermic rates) for several days. These bouts are spontaneously 

interrupted every 7-12 days by arousals, during which body temperature and metabolic 

rate rapidly increase over several hours. Once core body temperature reaches 

approximately 37 °C during an arousal, metabolic rate and body temperature stabilize for 

approximately 8 hours; a period referred to as interbout euthermia (IBE). IBE is followed 

by entrance into another bout of torpor when metabolic rate and body temperature decline 

again over a few hours. In 13-lined ground squirrels (Ictidomys tridecemlineatus), whole-

animal metabolic rate decreases by over 90% in the short time it takes to enter a bout of 

torpor. This drop in whole-animal metabolism corresponds with a ~70% suppression of 

succinate-fueled state 3 respiration of isolated liver mitochondria, even when assayed at a 

constant in vitro temperature (37 °C) (Brown et al., 2012). In Chapter 2 I demonstrated 

that this suppression corresponds with suppression of ETS complexes I and II during 

torpor, and suggest that the underlying regulatory mechanism is differential 

phosphorylation. This natural model of metabolic plasticity allowed us to investigate the 

effectiveness of the saponin permeabilization technique for evaluating acute changes in 

liver mitochondrial function. I predicted that the large decreases in respiration rates seen 

in isolated mitochondria during torpor would be paralleled by respiration rates measured 

in saponin-permeabilized liver tissue. 

	

 

3.2 Materials and Methods 

3.2.1 Animals 
Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) were live-trapped and 

housed as described in section 2.2.1. Body temperature was continuously monitored over 

the hibernation season using surgically implanted radiotelemeters (section 2.2.2), and 

animals were sampled during torpor and IBE (section 2.2.3). 
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3.2.2 Permeabilization of Liver Tissue 
My permeabilization technique incorporated saponin with a previously described 

mechanical disruption technique (Kuznetsov et al., 2002). Following euthanasia, a small 

(~100 mg) portion of the left liver lobe was transferred into ice cold isolation buffer (20 

mM taurine, 20 mM imidazole, 0.5 mM DTT, 10 mM Ca2+EGTA, 5.77 mM ATP, 6.56 

mM MgCl2, 57.5 mM K+-MES, pH 7.0), while the rest of the liver was reserved for 

mitochondrial isolation. This buffer was modified from that used for permeabilization of 

mammalian brain (Benani et al., 2009) and muscle (Kuznetsov et al., 2008) by omitting 

phosphocreatine, as liver does not express creatine kinase (Meffert et al., 2005). The 

outer serosal capsule of the liver was removed, and the inner portion of the liver tissue 

was sliced into smaller portions of approximately 10 mg (~1 mm across) using a single-

sided razor blade. 

 

Liver tissue slices were placed individually into wells of 12-well plates containing 3 ml 

of ice-cold isolation buffer, covered and gently agitated (30 RPM) on ice using a 

metabolic shaker. Following 5 min of agitation, 2.5 μl of freshly prepared saponin 

(Sigma) solution (5 mg/ml isolation buffer) was added to each well. Following the 

addition of saponin, agitation continued for an additional 20 min. The concentration of 

saponin and exposure time were empirically optimized in preliminary experiments to 

yield the highest respiratory control ratio (state 3/state 4), and were similar to those used 

in the preparation of mammalian brain (Benani et al., 2009), cardiac muscle (Galli and 

Richards, 2012), and skeletal muscle (Casas et al., 2008). Following incubation with 

saponin, tissue slices were gently transferred to 3 ml of ice-cold mitochondrial respiration 

buffer (0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM 

KH2PO4, 20 mM HEPES, 110 mM sucrose, 1 g/l fatty acid free BSA, pH 7.1; (Kuznetsov 

et al., 2008) and agitated for 5 min. This step was repeated twice more to remove any 

residual saponin. Tissue slices were then immediately used for assessment of 

mitochondrial respiration (see section 3.2.5).  
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3.2.3 Phosphatase/Deacetylase inhibitor incubations 
To assess the possibility that regulatory PTMs undergo changes during permeabilization, 

separate liver tissue slices from each animal were simultaneously incubated under 

standard conditions and in the presence of phosphatase and deacetylase inhibitors. 

Phosphatase inhibitors (PI) and deacetylase inhibitors (DI) were added to isolation buffer 

prior to incubation with the following treatments: 1) Control, without any added 

phosphatase or deacetylase inhibitors, 2) +PI, with the addition of 1% (v/v) Phosphatase 

Inhibitor Cocktail 3 (Sigma), 3) +DI, with the addition of 1% (v/v) Deacetylase Inhibitor 

Cocktail (Santa Cruz Biotechnologies), and 4) +PI+DI, with the addition of 1% (v/v) 

Phosphatase Inhibitor Cocktail 3 and 1% Deacetylase Inhibitor Cocktail. Following 

incubation with saponin, rinses and respiration measurements were conducted identically 

between treatments.  

 

3.2.4 Isolation of Mitochondria 
The remainder of the liver (approximately 4 g) was used immediately for mitochondrial 

isolation and purification as described in Chapter 2.2.2. Following isolation, 

mitochondria were used immediately for assessment of mitochondrial respiration. 

 

3.2.5 Respirometry 
The wet mass of permeabilized liver slices was determined, following blotting on filter 

paper, using a microbalance (MX5, Mettler Toledo). Liver tissue slices were then 

transferred to chambers of an Oxygraph-2K high-resolution respirometer (Oroboros 

Instruments, Austria) containing 2 ml of mitochondrial respiration medium under 

constant stirring (750 rpm) at 37 °C. As in other permeabilized tissue preparations 

(Kuznetsov et al., 2008), the medium was rendered slightly hyperoxic (approximately 

350 nmol/ml, 1.8-fold air saturation) to ensure adequate oxygen supply over the relatively 

large diffusion distances of tissue slices, compared with isolated mitochondria. 

Hyperoxygenation was achieved by injecting gaseous oxygen into the gas space above 

the medium within the chambers while stirring before the lids were closed, rendering the 

chambers airtight. Oxygen was replenished in the medium whenever the concentration 
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fell below approximately 200 nmol/ml to ensure that respiration was not limited by 

oxygen availability (Pesta and Gnaiger, 2012). 

 

Separate slices of tissue from the same liver were used to assess respiration with pyruvate 

(10 mM), glutamate (30 mM; both with 4 mM malate) and succinate (30 mM, with 0.5 

µM rotenone in ethanol) as oxidative substrates. Succinate (30 mM with 0.5 µM rotenone 

in ethanol) was used as an oxidative substrate to assess the effect of phosphatase and 

deacetylase inhibitors during permeabilization. These concentrations are similar to those 

used with other saponin-permeabilized tissue preparations (e.g., Benani et al., 2009) and 

yielded maximal rates in preliminary trials. Once a stable state 2 respiration was reached 

following substrate addition, ADP and Mg2+ (both 5 mM) were added to stimulate state 3 

respiration. This high concentration of ADP is required to maximize state 3 over the 

relatively large diffusion distances of permeabilized tissue preparations (Kuznetsov et al., 

2008). Such high ADP concentrations, along with the presence of ATPases in the 

permeabilized tissue preparations, preclude tissues from reaching true state 4 respiration; 

therefore, state 4 was estimated by the addition of oligomycin (160 µg/ml in 95% 

ethanol). Liver slice respiration rates were expressed relative to wet weight. 

 

Respiration of isolated liver mitochondria was determined at 37 °C in 2 ml of the 

mitochondrial respiration medium under constant stirring. The respiration medium was 

equilibrated with room air (approximately 190 nmol/ml) without hyperoxygenation. 

Respiration rates were determined with pyruvate (1 mM), glutamate (5 mM, both with 1 

mM malate) and succinate (6 mM, with 0.5 μM rotenone). State 3 was stimulated with 

0.2 mM ADP. State 4 was approximated by addition of oligomycin. Unless stated 

otherwise, all added compounds were dissolved in mitochondrial respiration buffer. 

Examples of respiration measurements in both isolated mitochondria and permeabilized 

liver tissue are shown in Figure 3-1. 
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Figure 3-1. Representative traces showing succinate oxidation in isolated liver 
mitochondria (A) and permeabilized liver tissue (B) from the same animal. After 
stable basal rates were established, rotenone (0.5 µM) and succinate (30 µM) were 
injected, causing brief injection artifacts. After steady state 2 respiration rates were 
established, ADP (5 µM) was added to stimulate state 3 respiration. Oligomycin (160 
µg/ml) was then added to estimate state 4 respiration.   
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3.2.8 Statistical analysis 
All statistical analyses were conducted using R. For both isolated mitochondria and 

permeabilized tissue, one-tailed, unpaired t-tests were used to compare protein- and wet 

weight-standardized respiration rates, respectively, between torpor and IBE. Two-way 

ANOVA was used to compare respiration rates following phosphatase and deacetylase 

incubations between torpor and IBE. Since there was a significant effect of hibernation 

state on state 3 respiration rates in the phosphatase and deacetylation incubation 

experiment, one-tailed, unpaired t-tests were used to compare torpor and IBE within each 

treatment group. Differences were considered significant for p-values ≤0.05. 

 
 

3.3 Results  
 

Permeabilized tissue and mitochondria isolated from IBE animals showed strong 

respiratory control, increasing respiration rate up to 6-fold upon addition of ADP when 

succinate was used as an oxidative substrate (Figure 3-1). The mass of tissue slices 

treated with saponin ranged from 4.0-12.1 mg, but mass-specific state 3 respiration rate 

was independent of tissue slice mass (Figure 3-2), indicating that the saponin treatment 

yielded similar effects across this mass range. 

 

Succinate-fueled state 3 respiration of isolated mitochondria in torpor was suppressed by 

65% when compared with IBE. This metabolic suppression was not reflected in saponin-

permeabilized tissue taken from the livers of the same animals (Figure 3-3). State 3 

respiration did not differ significantly between IBE and torpor in either permeabilized 

liver or isolated mitochondria when either glutamate or pyruvate was supplied as 

substrate (Table 3-1). There were no significant differences between state 4 rates during 

torpor and IBE for any of the substrates in either isolated mitochondria or permeabilized 

tissue (Table 3-1 and Figure 3-3). 
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Figure 3-2. Succinate oxidation of permeabilized liver slices is independent of slice 
wet weight. Open diamonds represent samples from IBE squirrels (n=14) and filled 
squares indicate samples from torpid squirrels (n=10).  
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Figure 3-3. Succinate oxidation by isolated liver mitochondria and permeabilized 
liver tissue. Liver was taken from squirrels during IBE (black bars) and torpor (white 
bars). Both state 3 and state 4 rates are shown. Respiration rates of isolated mitochondria 
were standardized to protein concentration, and for permeabilized tissue respiration were 
standardized to wet weight. Values represent means ± SE. Sample sizes for tissue slices 
are 5 (IBE) and 4 (torpor). Sample sizes for mitochondria are 5 (IBE) and 5 (torpor). 
Asterisk represents significant difference (p≤0.05). 
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Table 3-1. State 3 respiration rates of isolated mitochondria and permeabilized liver 
tissue. Respiration rates were measured in liver mitochondria and tissue from the same 
animals sampled during torpor and IBE. Rates were measured with glutamate and 
pyruvate as oxidative substrates, andwere standardized to protein concentration 
(mitochondria) and wet weight (tissue). Data are presented as mean ± SE. Sample sizes 
for tissue slices are 5 (IBE) and 4 (torpor). Sample sizes for mitochondria are 5 (IBE) and 
5 (torpor). 

 
    State 3 respiration  State 4 respiration  
    IBE T IBE T 

Mitochondria 
(nmol O2 min-1 mg 
protein -1) 

Glutamate 28.84 ± 6.73 22.87 ± 6.06 9.31 ± 2.43 16.67 ± 3.58 

Pyruvate 19.52 ± 4.23 15.24 ± 3.80 10.10 ± 2.52 16.63 ± 13.93 

Tissue 
(nmol O2 min-1 mg 
wet weight -1) 

Glutamate 1.55 ± 0.15 1.08 ± 0.13 0.93 ± 0.05 0.91 ± 0.11 

Pyruvate 1.37 ± 0.20 0.98 ± 0.10 0.96 ± 0.08 0.86 ± 0.08 
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To further investigate the effect of the permeabilization process on respiration, I 

compared respiration between tissue permeabilized in the presence and absence of 

phosphatase inhibitors and deacetylase inhibitors, either alone or in combination. While 

there was no difference in the succinate-fueled state 3 rate between torpor and IBE 

without these inhibitors, the respiration rates were significantly lower during torpor when 

tissue was incubated with phosphatase inhibitors (p=0.02) and phosphatase and 

deacetylase inhibitors together (p=0.05; Figure 3-4). The difference between respiration 

rates for torpor and IBE tissue incubated with deacetylase inhibitors alone was not 

statistically significant (p=0.08).  

 
	

3.4 Discussion 
 

This study provides novel evidence that phosphorylation is critical for suppression of 

mitochondrial metabolism during torpor and that this phosphorylation and its suppressive 

effects can be rapidly reversed during permeabilization.  

	

The first goal of this study was to assess how suitable saponin permeabilization is for 

studying mitochondrial metabolism in mammalian liver. In comparison with an earlier 

study using mechanically permeabilized pig liver (Kuznetsov et al., 2002), ground 

squirrel liver yielded state 3 respiration rates fueled by succinate that were slightly higher 

and respiratory control ratios (state 3/state 4) that were slightly lower. When supplied 

with oxidative substrates – especially succinate – permeabilized ground squirrel liver 

tissue displayed robust respiratory control, with rapid and substantial increases in oxygen 

consumption upon addition of ADP that were virtually eliminated upon addition of 

oligomycin (Figure 3-1B). I conclude, therefore, that permeabilization of liver tissue 

yields similar respiratory characteristics to isolated liver mitochondria.	
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Figure 3-4. State 3 respiration rates with succinate in permeabilized liver tissue 
incubated with phosphatase and deacetylase inhibitors. Liver slices from ground 
squirrels sampled during IBE (n=5) and torpor (n=5) were permeabilized using saponin. 
During permeabilization samples of liver from the same animals were incubated without 
added inhibitors (control), with phosphatase inhibitors (+PI), with deacetylase inhibitors 
(+DI), and with both phosphatase and deacetylase inhibitors (+PI+DI). Bars represent 
means ± SE. Within each treatment, asterisks indicate a significant difference (p≤0.05) 
between torpor and IBE.  
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The second goal of this study was to assess the utility of saponin permeabilization for 

evaluating mitochondrial metabolism in metabolic states that are known to change the 

metabolism of isolated mitochondria. Tissue permeabilization has previously been 

employed in rat brain tissue to assess mitochondrial function in relation to physiological 

conditions that affect whole-animal metabolism, such as fasting (Benani et al., 2009). In 

the current study, state 3 respiration rates, fueled by succinate, were 65% lower in 

mitochondria isolated from torpid animals compared with IBE. In permeabilized liver 

tissue from the same animal, there was no difference in respiration rate between torpor 

and IBE (Figure 3-3). 

 

It is possible that these observed differences between isolated mitochondria and 

permeabilized tissue are due to changes that occur to mitochondria during the isolation 

process. A study comparing respiration between isolated mitochondria and permeabilized 

myofibers found that mitochondrial isolation causes dramatic changes in mitochondrial 

morphology and respiratory characteristics (Picard et al., 2011). Compared to 

permeabilized myofibers, isolated mitochondria showed a significantly higher respiration 

rates when complex IV was stimulated directly, suggesting that mitochondrial isolation 

leads to a loss of regulatory control of complex IV. When flux through complexes I-IV 

and II-IV was measured, however, maximal respiration rates were similar between the 

two methods. Since there is no evidence that mitochondrial isolation affects complex I 

and II activity, potential changes in mitochondrial morphology and regulatory properties 

during the isolation process are unlikely to explain the differences between isolated 

mitochondria and permeabilized tissue observed in the present study. Further, any 

morphological changes that may occur during mitochondrial isolation would likely have 

the same effect on mitochondria from torpid and IBE animals.  

 

It is possible that that the observed differences between isolated mitochondria and 

permeabilized tissue were due to a reversal of regulatory mechanisms during the 

permeabilization process. Specifically, the lack of difference between torpor and IBE in 

permeabilized tissue may be due to a reversal of regulatory post-translational 

modifications. Post-translational modification (PTM) of proteins can be a powerful 
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regulator of mitochondrial metabolism (Hofer and Wenz, 2014), though its role in 

regulating mitochondrial metabolism during hibernation remains largely unexplored. My 

previous work suggests that PTMs may regulate changes in mitochondrial metabolism as 

ground squirrels transition between torpor and IBE, since the activities of complexes I 

and II rapidly change with no corresponding changes in protein content (Chapter 2).  

 

To test the possibility that regulatory PTMs are reversed during the permeabilization 

process, I repeated the experiment, including treatments with phosphatase and 

deacetylase inhibitors during permeabilization in an attempt to preserve the 

phosphorylation and acetylation state of the mitochondrial proteins in question. In 

contrast to the treatment with no added inhibitors where there was no difference in state 3 

respiration between torpor and IBE, permeabilization in the presence of phosphatase 

inhibitors yielded significant suppression during torpor compared to IBE (Figure 3-4), 

though to a slightly lesser degree (50% vs. 65%).  The lower suppression in the 

permeabilized tissue may be due to kinases that were active during permeabilization, 

phosphorylating previously unphosphorylated proteins. It is also possible that regulatory 

mechanisms other than phosphorylation and acetylation are necessary for preserving the 

metabolic suppression in mitochondria from torpid animals.  

 

These results suggest that phosphorylation is critical for the suppression of liver 

mitochondrial metabolism during torpor. It appears that during the standard 

permeabilization protocol, phosphorylation in mitochondria from torpid animals is 

reversed, diminishing the metabolic differences between torpor and IBE. In isolated 

mitochondria, these effects were observed when succinate was used a respiratory fuel, 

suggesting that the point of regulation is likely at ETS complex II, confirming results 

reported in Chapter 2. In human cells treated with phosphatases, complex II activity 

increased following the dephosphorylation of the flavoprotein subunit (Tomitsuka et al., 

2009). Treatment with kinases caused phosphorylation of the flavoprotein subunit and a 

decrease in complex II activity, with evidence that the phosphorylated form of the 

enzyme catalyzes the reverse reaction (converting fumarate to succinate) (Tomitsuka et 

al., 2009). Given that phosphorylation of complex II is associated with suppression of its 
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activity, phosphorylation is a potential mechanism for regulating metabolic suppression 

during torpor.  

 

It is possible that during the permeabilization process, since the mitochondria remain in a 

mostly intact cellular environment, extramitochondrial proteins and signaling pathways 

may influence changes in the phosphorylation state of mitochondrial proteins. Although 

mitochondrial isolation is a longer process than tissue permeabilization overall, 

mitochondria are quickly separated from other cellular components early in the process 

by homogenization and centrifugation. Since the regulation of mitochondrial 

phosphatases is not well understood, it is difficult to speculate how mitochondrial 

proteins may have been dephosphorylated in the permeabilized tissue from torpid 

animals. However, it is possible that the redox status would differ between isolated 

mitochondria and permeabilized tissue, a mechanism by which some phosphatases are 

regulated. For example, pyruvate dehydrogenase phosphatase is inhibited by high 

NADH/NAD+ ratios (Pettit et al., 1975). Other cytosolic changes, such as ATP/ADP 

ratios, free calcium, and pH, could feasibly change during the permeabilization process 

and influence the activity of mitochondrial phosphatases. 

 

3.5 Summary 
In summary, I found that saponin permeabilization of liver slices can result in 

preparations with robust mitochondrial respiratory control. On the other hand, when 

standard protocols are used, the metabolic suppression during torpor, seen in isolated 

liver mitochondria, is reversed during the permeabilization process. It is possible to 

preserve this suppression phenotype by including phosphatase inhibitors during 

permeabilization. I advise caution to researchers considering the use of tissue 

permeabilization for assessment of mitochondrial function, as my data show that 

appropriate inhibitors are necessary to preserve metabolic state when post-translational 

modifications are involved in regulation. This study has given unique insight into the 

regulatory mechanisms of liver mitochondrial suppression during hibernation, and in the 

next chapters, I will examine PTMs in liver mitochondria and their metabolic effects.  
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CHAPTER 4 
 

4  Post-translational modification of liver mitochondrial 
proteins during hibernation 

 

 

4.1 Introduction 
During hibernation, an animal’s body temperature and metabolic rate are actively 

suppressed to conserve energy from late autumn to spring, when cold ambient 

temperatures and low food availability present a potential metabolic stress. In animals 

such as the 13-lined ground squirrel (Ictidomys tridecemlineatus), hibernation is 

characterized by a cycle between torpor and interbout euthermia (IBE; described in detail 

in section 1.2.2). Much of the whole-animal metabolic suppression involves reducing 

thermogenic metabolism through a decrease in the lower level of the thermoneutral zone 

(Snapp and Heller, 1981). Metabolism in non-thermogenic tissues (e.g. liver) is also 

suppressed actively, rather than through passive thermal effects, and whole-animal 

metabolism declines before body temperature falls during entrance into torpor. The 

mechanisms underlying this suppression are not fully understood, but the speed at which 

the transitions between torpor and IBE occur (4-6 hours), the large change in body 

temperature between the two states (approximately 4 °C and 37 °C, respectively), and the 

pattern of change in mitochondrial metabolism in relation to body temperature offers 

some clues. 

 

Mitochondria are key for understanding metabolic suppression as they are responsible for 

the majority of aerobic ATP generation. In 13-lined ground squirrels, respiration in liver 

mitochondria (phosphorylating “state 3” respiration measured at 37 °C with succinate as 

a substrate) has consistently been shown to be suppressed by up to 70% during torpor 

(Muleme et al., 2006; Armstrong and Staples, 2010; Brown et al., 2012). This effect is 

also seen in other hibernating ground squirrels (Barger et al., 2003) as well as hamsters 
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(Mesocricetus auratus) (Roberts and Chaffee, 1972). In 13-lined ground squirrels, 

maximal suppression of liver mitochondrial respiration occurs before body temperature 

decreases as squirrels enter torpor (Chung et al., 2011). In Chapter 2, I demonstrated that 

suppression of liver mitochondrial metabolism corresponds with suppression of flux 

through ETS complexes I-IV and II-IV, as well as a reduction in the maximal activity of 

both complexes I and II. That these changes occur when body temperature is fairly high 

and are independent of changes in protein content suggests that enzyme-catalyzed post-

translational modification is a likely a regulatory factor. In Chapter 3 I provided evidence 

that phosphorylation is important for maintaining metabolic suppression during torpor. 

 

Protein phosphorylation mediates important metabolic changes associated with 

hibernation, especially regulating a shift of fuel use away from carbohydrate and toward 

lipid. For example, phosphorylation of pyruvate dehydrogenase during hibernation 

renders the enzyme 96% inactive, a likely mechanism for reducing the rate of glycolysis 

(Brooks and Storey, 1992). Little is known about post-translation modification of other 

mitochondrial proteins in hibernators. Several types of post-translational modification, 

including phosphorylation, acetylation, and succinylation, can play a complex role in 

regulating mitochondrial metabolism (reviewed by Hofer and Wenz, 2014). For example, 

several phosphorylation sites have been identified on complex I; some are associated with 

increased activity of the enzyme (Papa et al., 1996; Augereau et al., 2005; Ogura et al., 

2012), whereas other sites are associated with decreased activity (Hébert-Chatelain et al., 

2011). Though many seasonal differences have been documented, the role of post-

translational modification in regulating the metabolic changes between torpor and IBE 

has only recently been explored. 

 

A large-scale study of the liver proteome in 13-lined ground squirrels found few 

differences in levels of metabolic proteins and minimal differences in phosphorylation 

and acetylation between torpor and IBE (Hindle et al., 2014). This study examined the 

proteome of the whole liver tissue however, so it is possible that the proteomics methods 

lacked the resolution required to detect subtle changes in mitochondrial proteins that 

account for only a small fraction of total liver protein. In rat hepatocytes, mitochondria 
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account for only 7-19% of total cell volume (Quinlan et al., 1983), though, to my 

knowledge the proportion of cellular protein accounted for by mitochondrial proteins is 

not known 

 

In this Chapter I investigated changes in the liver mitochondrial proteome between torpor 

and IBE to identify possible sites of metabolic regulation. I used two-dimensional 

differential gel electrophoresis (2D-DiGE), a powerful technique that allows the 

identification of proteins that differ in abundance or isoelectric point (an indicator of 

PTM) between two conditions. I used subsequent staining and immunoblots to identify 

proteins that differed in phosphorylation or acetylation state between torpor and IBE. I 

also used Blue-Native polyacrylamide gel electrophoresis (BN-PAGE), to examine ETS 

proteins that differed in phosphorylation or acetylation state between torpor and IBE. 

 

 

4.2 Materials and Methods 
 

4.2.1 Animals 
13-lined ground squirrels were live-trapped, housed, and euthanized as described in 

Chapter 2.2.1. For this study, animals were sampled either during torpor (a stable body 

temperature of ~5 °C for 3-5 days) or during IBE (a stable body temperature of ~37 °C 

for 4-6 hours following spontaneous arousal). 

 

4.2.2 Mitochondrial isolation 
Liver mitochondria were isolated by differential centrifugation and purified via Percoll 

gradient centrifugation as described in Chapter 2.2.2. Following isolation, mitochondrial 

protein was quantified for each preparation via Bradford assay using BSA dissolved in 

homogenization buffer as standards. Aliquots containing 0.5 mg mitochondrial protein 

were centrifuged at 10,000 g for 10 min and stored at -80 °C until used in gel 

electrophoresis.  
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4.2.3 Purification and solubilization of mitochondrial proteins  
Mitochondrial protein was precipitated via a trichloroacetic acid (TCA)/acetone cleanup 

protocol to remove contaminants such as salts, nucleic acids, and lipids, which can 

interfere with 2D electrophoresis (Jiang et al., 2004). Mitochondrial pellets (0.5 mg 

protein) were solubilized in 500 µl lysis buffer (7 M urea, 2 M thiourea, 30 mM Tris, 4% 

(w/v) CHAPS). One volume (500 µl) of 40% (v/v) TCA was added and samples were 

incubated at -20 °C for 30 min. Samples were centrifuged at 10,000 g for 10 min at 4 °C. 

Following centrifugation, the supernatant was discarded, and pellets were resuspended in 

750 µl ice-cold acetone. The centrifugation and acetone wash step was repeated two more 

times to remove residual TCA from protein samples. Acetone was then removed by 

aspiration and protein pellets were air-dried at room temperature for 3 min. Lysis buffer 

(100 µl) was added to each protein pellet, and samples were incubated on ice for 10 min 

following vortexing. Samples were centrifuged at 13,000 g for 10 min, and the 

supernatant (containing solubilized protein) was collected. Protein was quantified using a 

detergent compatible (DC) protein assay (Bio-Rad) using BSA dissolved in lysis buffer 

as protein standards and, following quantification, samples were diluted to a 

concentration of 2 mg/ml in lysis buffer for use in two-dimensional electrophoresis. 

 

4.2.4 Two-dimensional differential gel electrophoresis (2D DiGE) 
Two-dimensional electrophoresis (2DE) involves separating proteins first by isoelectric 

point (the first dimension), then by molecular mass (the second dimension). This allows 

better separation of individual peptides than traditional SDS-PAGE, which separates 

proteins solely by molecular mass. In 2D differential gel electrophoresis (DiGE), lysine 

groups on proteins are labeled with covalently linked cyanine fluorescent dyes (Cy dyes) 

prior to 2D electrophoresis. From the two experimental conditions being compared equal 

amounts of protein are labeled with Cy3 and Cy5 dyes, which fluoresce at 

excitation/emission wavelengths of 550/570 and 650/670 nm, respectively. A separate 

dye, Cy2, which fluoresces at 492/510 nm, is used to label an internal standard consisting 

of a pooled sample made of equal amounts of protein from all experimental animals. The 
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three labeled protein samples are then electrophoresed together on one gel. Including the 

same internal standard in each gel allows quantitative comparisons of all proteins within 

a single gel as well as comparisons of individual proteins among gels. A summary of the 

methods used for 2D DiGE experiments and subsequent protein identification is shown in 

Figure 4-1. 

  

4.2.4.1 Labelling with CyDyes 

Solubilized liver mitochondrial protein (as described in section 4.2.3) were labeled with 

CyDye DiGE Fluor minimal dyes according to manufacturer specifications (GE 

Healthcare). Torpor and IBE protein samples were randomly selected and paired for each 

DiGE gel. Subsequently, 50 µg of each protein sample was labeled separately with 200 

pmol of CyDye (Cy3 or Cy5) dissolved in 99.8% dimethylformamide and incubated at 0 

°C in the dark for 30 min. To preclude any possible dye binding bias, Cy3 and Cy5 were 

alternated between torpor and IBE protein samples. Internal standards, comprised of an 

equal mixture of all protein samples, were labelled with Cy2. The labelling reaction was 

stopped by the addition of 1 µl of 10 mM L-lysine and incubated on ice for 10 min. After 

labeling, equal amounts of protein from one torpor sample, one IBE sample, and the 

internal standard were combined, and 100 µg of total protein was electrophoresed 

together in a single 2D DiGE procedure. 

 

4.2.4.2 Two-dimensional electrophoresis (2DE) 

Combined mitochondrial samples labelled with CyDyes were added to rehydration buffer 

(7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.002% (w/v) bromophenol blue), 2.5 µl 

dithiothreitol (DTT), 1.5 µl IPG amopholyte, and 1.5 µl DeStreak (GE Healthcare) to a 

volume of 125 µl and applied to immobilized pH gradient (IPG) strips (7 cm, pH 3-10, 

Bio-Rad). Strips were passively (i.e. with no electrical current) rehydrated at room 

temperature overnight before isoelectric focusing (IEF). IEF was performed using a GE 

Ettan IPGphor 3 system (GE Healthcare) at 20°C with the following protocol: 500 V for 

1 hr, 1000 V for 1 hr, 6000 V for 2 hr, then 6000 V for 7700 Vhr. Following IEF, IPG 

strips were transferred to equilibration buffer (50 mM Tris, 6 M urea, 40% (v/v) glycerol, 

2% (w/v) SDS, 0.001% bromophenol blue, pH 8.0) first with 10 mM DTT for 15 min  
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Figure 4-1. A summary of two-dimensional differential gel electrophoresis (2D 
DiGE) experimental methods. 2D DiGE was used to assess differences in the liver 
mitochondrial proteome between torpor and IBE (A), and subsequently, proteins that 
differed between the two states were identified by MALDI mass spectrometry (B). 
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then with 55 mM iodoacetamide for a further 15 min at room temperature. Strips were 

then placed horizontally on top of a 10% polyacrylamide resolving gel and sealed into 

place using warm agarose (1% wt/vol). Gels were electrophoresed at 100V for 2 hr in 

SDS-PAGE running buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS).  

 

4.2.4.3 Image acquisition and analysis 

Following 2D electrophoresis, DiGE gels were immediately scanned using VersaDoc 

MP5000 Molecular Imager (Bio-Rad). Each gel gave three images, one corresponding to 

each CyDye. Cy2 images were collected using a Blue LED light source with a 530BP28 

filter and excitation/emission wavelengths of 492/510 nm. Cy3 images were collected 

using Green LED light source with a 605BP35 filter and excitation/emission wavelengths 

of 550/570 nm. Cy5 images were collected using a Red LED light source with a 695BP55 

filter and excitation/emission wavelengths of 650/670 nm. Images were exported for 

subsequent analysis with DeCyder Differential Analysis software (Amersham 

Biosciences, version 5.0). This software contains two modules: a differential in-gel 

analysis (DIA) module and a biological variance analysis (BVA) module. The DIA 

module is used to detect spots and calculate abundances for the three dyes (Cy2, Cy3, and 

Cy5) within one gel, and normalizes spots to the internal standard to allow comparison 

among gels. The BVA module aligns and matches spots across all gel images, which 

allows statistical analysis of changes in intensity of individual spots between samples. 

Protein spots localized at the same position in different gels were matched, and a total of 

107 protein spots were matched across all gels, indicating that they were present in all 

samples. A two-tailed Student’s t-test was used to compare average standardized intensity 

of each matched protein spot between torpor and IBE. Spots that showed significant 

differences were selected as spots of interest for protein identification if they differed by 

at least 1.4-fold. Other selected spots that showed visual reciprocal abundance patterns 

were also included for protein identification.  

 

4.2.5 Spot excision and digestion 
In parallel with each 2D DiGE gel, I also ran four identical preparative 2D gels for the 

purpose of spot excision for subsequent protein identification. For these gels, equal 
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amounts of liver mitochondrial protein from torpor and IBE individuals were pooled (100 

µg total) and run together on each gel, using the same methods as described in section 

4.2.4.2, but without labelling with CyDyes. Following electrophoresis, proteins within the 

gels were stained with Coomassie Blue R-250. Individual spots on these preparative gels 

were matched to the spots of interest identified from DiGE gels (section 4.2.4.3). Spots of 

interest were excised using an Ettan spot picker (GE Healthcare), with individual spots 

excised from each of the four preparative gels and pooled in order to maximize protein 

yield. In-gel digestion was performed as outlined by (Rosenfeld et al., 1992). Spot 

excision and in-gel digestion were performed at the UWO Functional Proteomics Facility 

(London, ON). I performed the spot picking myself, and the in-gel digestion was 

performed by the UWO Functional Proteomics Facility.  

 

Gel pieces from picked protein spots were washed with 50% (v/v) acetonitrile and 

rehydrated with 100 mM NH4HCO3. Following washing, samples were treated with 50 

mM DTT at 56 °C for 45 min in the dark to reduce cysteine residues, followed by 

treatment with 200 mM iodoacetamide at 25 °C for 30 min in the dark to alkylate 

proteins. Samples were washed again with 50% (v/v) acetonitrile and rehydrated with 

100 mM NH4HCO3. Proteins were digested overnight at 37 °C with trypsin (12.5 ng/µl, 

Promega) in digestion buffer (25 mM NH4HCO3 pH 7.8, 2.5 mM NaCl2). Following 

digestion, samples were washed first with 50% (v/v) acetonitrile, then 25 mM NH4HCO3, 

and finally a 50% (v/v) acetonitrile, 5% (v/v) formic acid solution, with extraction of 

supernatant following each wash. Prior to mass spectrometry, digested peptide samples 

were dissolved in a solution of 10% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid. 

 

4.2.6 Protein identification by MALDI mass spectrometry 
Following digestion, protein samples were submitted for matrix-assisted laser 

desorption/ionization-time of flight time of flight mass spectrometry (MALDI-TOF/TOF 

MS) analysis of peptide sequences by the UWO Functional Proteomics Lab (London, 

ON). Mass spectrometry was performed using a 4700 Proteomics Analyzer (Applied 

Biosystems) equipped with a 355 nm Nd:YAG laser with a laser rate of 200 Hz. Peptide 

sequences obtained from MALDI –TOF/TOF MS analysis were submitted to the NCBI 
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database from comparison with known protein sequences. For each peptide sequence, the 

alignment between sample peptides and known peptides was used to assign a protein 

score confidence interval, with a higher value indicating greater alignment.  

 

4.2.7 Phosphoprotein staining of 2D gels 
I also used 2D gels to identify any differences in phosphorylation of mitochondrial 

proteins between torpor and IBE. The fluorescent Pro-Q Diamond Phosphoprotein Gel 

Stain (Thermofisher Scientific) binds to phosphate groups attached to serine, threonine, 

and tyrosine residues with a detection limit of 1-15 ng of phosphoprotein. A summary of 

the experimental methods used for determination of total phosphorylated protein is 

shown in Figure 4-2.  

 

4.2.7.1 2D Electrophoresis 

Following solubilization, samples of liver mitochondrial protein (100 µg) were used for 

2D electrophoresis. In contrast to DiGE, in which protein samples from torpor and IBE 

individuals were labelled with CyDyes and run together on the same gel, only one sample 

was run per gel and protein was not labelled prior to electrophoresis. 2D electrophoresis 

was performed as described in section 4.2.4.2. As a positive control for phosphorylation, 

7 µl of PeppermintStick phosphoprotein molecular weight standards (ThermoFisher 

Scientific), blotted on a small piece of filter paper, was included in the second dimension. 

 

4.2.7.2 Phosphoprotein stain 

Following 2D electrophoresis, gels were incubated overnight in a fixing solution (50% 

(v/v) methanol then washed with doubly distilled water three times for 10 min under 

gentle agitation. Gels were then stained with 60 ml Pro-Q Diamond Phosphoprotein Gel 

Stain (ThermoFisher Scientific) for exactly 90 minutes under gentle agitation in the dark. 

Following staining, gels were incubated with a destaining solution (20% acetonitrile, 50 

mM sodium acetate, pH 4.0) for 90 mins. Gels were washed three times with doubly 

distilled water prior to imaging. 
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Figure 4-2. A summary of experimental methods used to determine total 
phosphorylation and acetylation of liver mitochondrial protein separated by 2D 
electrophoresis.  
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4.2.7.3 Sypro Ruby staining for total protein  

Following phosphoprotein staining and imaging (described below), 2D gels were stained 

with Sypro Ruby Protein Gel Stain (ThermoFisher Scientific) to quantify total protein. 

Gels were incubated with 60 ml Sypro Ruby overnight under gentle agitation. Following 

staining, gels were incubating in a washing solution (10% methanol, 7% acetic acid) for 

30 min and washed three times with doubly distilled water prior to imaging. 

 

4.2.7.4 Image acquisition and analysis 

Images of phosphopostained gels were acquired using a VersaDoc MP5000 imaging 

system. Images were scanned at the excitation and emission wavelengths for ProQ 

Diamond (530 and 575 nm, respectively) using green LED as a light source with a 

605BP35 filter. Total loaded protein, as quantified by staining with Sypro Ruby (imaged 

using a trans UV light source with a 605BP35 filter at 302/470 nm), did not differ 

significantly (p>0.05) among gels. Differences in phosphorylation of individual protein 

spots between torpor and IBE were analyzed using DeCyder software. The biological 

variance module (BVA) was used to align spots across all gel images and analyze 

changes in intensity of individual spots between samples. A two-tailed Student’s t-test 

was used to compare average standardized intensity of each matched protein spot 

between torpor and IBE. Spots that showed significant differences were selected as spots 

of interest for protein identification if they differed by at least 1.4-fold.  

 

  

4.2.8 Immunoblots for acetylated lysine	
Immunoblots were conducted following 2D electrophoresis to assess any differences in 

acetylation of liver mitochondrial proteins between torpor and IBE. A summary of the 

experimental methods used for determination of total acetylated protein is shown in 

Figure 4-2. 
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4.2.8.1 2D Electrophoresis 

2D electrophoresis was conducted as described in section 4.2.4.2 with one liver 

mitochondrial protein sample (100 µg) per gel. 7 µl of protein molecular weight standard 

(PrecisionPlus Protein Dual Color Standards, Bio-Rad) was added to a small piece of 

filter paper and included in the second dimension. 

	

4.2.8.2 Protein transfer and immunodetection 

Following 2D electrophoresis, proteins were transferred to polyvinylidene fluoride 

(PVDF) membranes (0.2 µm pore diameter, Bio-Rad) using a Mini-PROTEAN Tetra 

Cell system (Bio-Rad). Proteins were transferred under constant voltage (100V) at 4 °C 

for 1 hr in transfer buffer (25 mM tris, 192 mM glycine, 20% (v/v) methanol). Following 

transfer, membranes were blocked for 2 hr with 5% (w/v) BSA in tris-buffered saline 

with Tween 20 (TBST; 20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween 20). 

Membranes were probed with Acetylated-Lysine primary antibody (Cell Signalling 

Technologies, #9441; rabbit) diluted to 1:1000 in TBST with 5% (w/v) BSA. Membranes 

were incubated with the primary antibody overnight at 4 °C on an orbital shaker at 300 

rpm. After four 10 min washes with TBST, membranes were incubated with a goat anti-

rabbit secondary antibody (Cell Signalling Technologies, #7074) diluted to 1:2000 in 

TBST. Membranes were incubated with the secondary antibody for 1 hr under constant 

agitation, and rinsed with TBST prior to image acquisition. 

 

4.2.8.3 Image acquisition and analysis 

2D immunoblots were visualized via Luminata Forte Western Horseradish Peroxidase 

(HRP) substrate (Millipore) using a VersaDoc MP5000 imaging system (Bio-Rad). Total 

loaded protein, as quantified by staining with Coomassie Blue, did not differ significantly 

(p>0.05) among gels. Differences in protein acetylation between torpor and IBE were 

analyzed using DeCyder software. The biological variance module (BVA) was used to 

align spots across all gel images and analyze changes in intensity of individual spots 

between samples. A two-tailed Student’s t-test was used to compare average standardized 

intensity of each matched protein spot between torpor and IBE. Spots that showed 
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significant differences were selected as spots of interest for protein identification if they 

differed by at least 1.4-fold. 

 

4.2.9 2D Blue-native PAGE 
While conventional 2D electrophoresis is suitable for resolving most mitochondrial 

proteins, it is poor at resolving membrane-bound proteins such as the mitochondrial ETS 

complexes. Since many of these proteins contain hydrophobic regions, they tend to 

aggregate and precipitate at the basic end of the IPG strip leading to poor resolution 

(Bailey et al., 2005). To overcome this technical constraint, I used Blue-Native PAGE to 

analyze the ETS subproteome within liver mitochondria from torpid and IBE ground 

squirrels. In this technique, first described by Schägger and von Jagow (1991), 

Coomassie Blue dye is used as a charge-shift molecule instead of SDS, which allows 

separation of protein complexes in their native state. Following native separation, 

proteins can be further resolved in a second denaturing dimension, separating individual 

peptides based on molecular weight. A summary of the Blue-Native PAGE experimental 

methods is shown in Figure 4-3.   

	

4.2.9.1 Protein solubilization 

Mitochondrial pellets (0.5 mg) were solubilized in 50 µl mitochondrial extraction buffer 

(0.75 M aminocaproic acid, 50 mM bis-tris, pH 7.0) with 25 µl 10% (w/v) lauryl 

maltoside and incubated on ice under gentle shaking for 30 min. Samples were then 

centrifuged at 21,000 g for 20 min at 4 °C and combined with BN-PAGE sample buffer 

(200 mM bis-tris, 40% (v/v) glycerol, 200 mM NaCl, pH 7.2) and 12.6 µl Coomassie 

brilliant blue G-250 (5% (w/v) in 0.75 M aminocaproic acid).   

	

4.2.9.2 Native electrophoresis and SDS-PAGE 

Mitochondrial protein (150 µg) was loaded into a 4-16% (w/v) bis-acrylamide precast 

gradient gel (Invitrogen, Carlsbad CA) beside 7 µl of NativeMark unstained protein 

standard. Electrophoresis was performed using an XCell Surelock Mini-Cell (Invitrogen, 

Carlsbad CA) at 4 °C under a constant current of 12 mA for 2 hr. The buffer system  
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Figure 4-3. A summary of Blue-Native (BN) PAGE experimental methods. BN-
PAGE was used to assess differences in liver electron transport system proteins between 
torpor and IBE, with subsequent analysis of differences in phosphorylation and 
acetylation of these proteins between the two hibernation states (A). Proteins that differed 
in phosphorylation or acetylation between the two states were identified by MALDI mass 
spectrometry (B). 
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consisted of an anode buffer (50 mM bis-tris, 50 mM tricine, pH 7.0) and a cathode 

buffer (50 mM bis-tris, 50 mM tricine, 0.002% (w/v) Coomassie brilliant blue G-250). 

Following electrophoresis, vertical lanes corresponding with separated native protein 

complexes from individual mitochondrial samples were excised and incubated in a 

denaturing solution (1% (v/v) β-mercaptoethanol, 1% (w/v) SDS) for 15 min at 25 °C and 

for 3 min at 50 °C. Strips were rinsed with SDS-PAGE running buffer and laid 

horizontally on 10% polyacrylamide resolving gels. Gels were electrophoresed at 100 V 

for 2 hr in SDS-PAGE running buffer. 

 

4.2.9.3 Confirming the presence of ETC complexes following 2D BN-PAGE 

In order to confirm that all ETS complexes were present following 2D BN-PAGE, I 

performed immunoblots of gels using the MitoProfile antibody cocktail (which contains 

antibodies for one subunit of each ETS complex) as described in Chapter 2.2.5. Figure 4-

4 shows a representative immunoblot image. 

  

4.2.9.4 Phosphoprotein staining of BN-PAGE gels 

Following 2D BN-PAGE, gels were stained with ProQ diamond phosphoprotein stain 

using the same methods described in section 4.2.7.2. Gels images were acquired and 

analyzed using the same methods described in section 4.2.7.4. Total loaded protein, as 

quantified by staining with Sypro Ruby (as described in section 4.2.7.3) did not differ 

significantly (p>0.05) among gels. Protein spots that differed significantly in 

phosphorylation between torpor and IBE were selected for identification by quadruple 

time-of-flight (Q-TOF) liquid chromatography-mass spectrometry (LC/MS; see section 

4.2.10). 

 

4.2.9.5 Acetylation immunoblots from BN-PAGE gels 

Following 2D BN-PAGE, immunoblots for total acetylated lysine were performed using 

the same methods described in section 4.2.8.2. Gel images were acquired and analyzed 

using the same methods described in section 4.2.8.3. Total loaded protein, as quantified 

by staining with Coomassie Blue, did not differ significantly (p>0.05) among gels.  
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Figure 4-4. Immunoblot of five ETS subunits in liver mitochondrial protein 
separated by BN-PAGE. Liver mitochondria protein was isolated from one 13-lined 
ground squirrel. Protein was separated in the first dimension by molecular mass (A; 
horizontal) under non-denaturing conditions. Protein was then separated by molecular 
mass again in a second dimension under denaturing conditions (vertical) using SDS-
PAGE (B). Immunoblots using the rodent Mitoprofile antibody cocktail confirm the 
presence of the following ETS subunits: Complex I (CI), NDUFB8 (22 kDa); Complex II 
(CII), Iron-sulfur protein subunit (30 kDa); Complex III (CIII), core protein II (48 kDa); 
Complex IV (CIV), subunit I (40 kDa); Complex V (CV), alpha subunit (55 kDa).  
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Protein spots that differed significantly in acetylation between torpor and IBE were 

selected for identification by Q-TOF LC/MS.  

 

4.2.10 Q-TOF LC/MS 
Four preparative BN-PAGE gels were run for both torpor and IBE and stained with 

Coomassie R-250 for spot picking. Spots were excised by myself at the UWO Functional 

Proteomics Lab (London, ON) and digested as described in Section 4.2.5. Following 

digestion, protein samples were submitted Q-TOF LC/MS for analysis of peptide 

sequence at the UWO Biological Mass Spectrometry Lab (London, ON). Mass 

spectrometry was performed on a QTof Ultima Global mass spectrometer (Waters) 

equipped with a Z-spray source and run in positive ion mode with an Agilent 1100 HPLC 

used for LC gradient diversity. Peptide sequences obtained from MALDI –TOF/TOF MS 

analysis were submitted to the NCBI database from comparison with known protein 

sequences. For each peptide sequence, the alignment between sample peptides and 

known peptides was used to assign a protein score confidence interval, with a higher 

value indicating greater alignment. 
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4.3 Results 
 

4.3.1 2D-DiGE analysis of liver mitochondrial proteins in torpor and 
IBE 
	

I used two-dimensional differential gel electrophoresis (2D-DiGE) to assess global 

changes in liver mitochondrial proteins between torpor and IBE. Equal amounts of liver 

mitochondrial protein from animals sampled during torpor and IBE were labeled with 

cyanine dyes and electrophoresed together with an internal protein standard. Within the 

representative gel image (Figure 4-5), protein spots that appear yellow fully overlap 

between the two hibernation states and therefore do not differ in abundance. Single 

protein spots that are visibly red or green are more abundant in either IBE or torpor, 

respectively. A pair of red and green spots in close proximity at the same molecular 

weight (a reciprocal abundance pattern) indicates a shift in isoelectric point between 

torpor and IBE.  

 

The normalized ratio of the expression relative to the internal standard was quantified for 

each spot. Preliminary analysis identified 14 spots of interest that appeared to differ, but 

subsequent analysis revealed that there were only 7 significantly different spots (p≤0.05) 

between torpor and IBE (Table 4-1). Among these were proteins involved in the TCA 

cycle (succinyl-CoA ligase; spots 5 and 6, fumarase; spot 12), leucine catabolism 

(isovaleryl-CoA dehydrogenase; spots 9 and 10), β-oxidation (Delta(3,5)-Delta(2,4)-

dienoyl-CoA isomerase; spot 14), and ROS detoxification (catalase; spots 3 and 4). All 

proteins but fumarase showed distinct patterns of reciprocal abundance, indicating a shift 

in isoelectric point of each protein between torpor and IBE rather than a change in 

abundance. 
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Figure 4-5. Ground squirrel liver mitochondrial proteins compared between torpor 
and IBE by 2D-DiGE. This representative image shows liver mitochondrial protein 
spots from one torpid (Cy3, labelled green) and one IBE (Cy5, labelled red) animal. 
Proteins were separated by isoelectric point (pI; horizontal dimension), then by molecular 
mass (vertical dimension). Arrows indicate proteins of interest, summarized in Table 4-1. 
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Table 4-1. Proteins identified by MALDI mass spectrometry from spots of interest in 2D-DiGE analysis comparing IBE and 
torpor.  

Spot numbers correspond with spots shown in Figure 4-5. Protein score, which indicates alignment between sample peptides and 
known peptide, is -10*Log(P), where P is the probability that the protein match is random. Protein scores greater that 72 are 
considered significant (p≤0.05). Fold change from torpor to IBE and associated p-value were calculated from quantitative analysis of 
spot density (n=5), and a significant difference between torpor and IBE is denoted by an asterisk.  

Spot 
number  

Protein ID Protein 
score  

Pathway Fold 
change 
in IBE 

p-
value 

1 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial 

176 Gluconeogenesis  0.469 

2 Phosphoenolpyruvate carboxykinase [GTP], 
mitochondrial 

208 Gluconeogenesis  0.345 

3 Catalase 250 ROS detoxification +1.4 0.039* 
4 Catalase 83 ROS detoxification -1.3 0.033* 
5 Succinyl-CoA ligase [GDP-forming] subunit 

beta, mitochondrial 
91 TCA cycle +1.5 0.010* 

6 Succinyl-CoA ligase [GDP-forming] subunit 
beta, mitochondrial 

100 TCA cycle -1.7 0.050* 

7 Peroxisomal acyl-coenzyme A oxidase 1 
isoform X2 

90 β-Oxidation  0.342 

8 Peroxisomal acyl-coenzyme A oxidase 1 
isoform X2 

97 β-Oxidation  0.367 

9 Isovaleryl-CoA dehydrogenase 127 Leucine catabolism +2.6 <0.001* 
10 Isovaleryl-CoA dehydrogenase 103 Leucine catabolism -1.8 0.004* 
11 Short-chain specific acyl-CoA dehydrogenase 107 β-Oxidation  0.435 
12 Fumarase 79 TCA cycle +1.7 0.047* 
13 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, 

mitochondrial 
77 β-Oxidation -1.1 0.035* 

14 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, 
mitochondrial 

72 β-Oxidation +1.6 0.040* 
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4.3.2 Phosphorylation and acetylation of liver mitochondrial proteins 
during torpor and IBE 
	

The patterns of reciprocal abundance indicated by DiGE analysis for four liver 

mitochondrial proteins indicates a difference in isoelectric point between torpor and IBE,  

which is likely a consequence of differential post-translational modification. I conducted 

2D electrophoresis with subsequent phosphoprotein staining to determine whether any of 

the proteins identified by DiGE as differing in isoelectric point between torpor and IBE 

were differentially phosphorylated (representative gels from IBE and torpor shown in 

Figure 4-6). Using densitometry analysis, I measured the intensity of ProQ staining of 

individual protein spots, which corresponds with protein phosphorylation. Three protein 

spots differed significantly between torpor and IBE (summarized in Table 4-2). Two of 

these spots aligned with spots 5 and 6 in Figure 4-5 and were identified as succinyl-CoA 

ligase [GDP-forming], each spot corresponding with a different isoelectric point. These 

spots showed significantly greater phosphorylation in IBE than torpor. A third spot (17) 

with a molecular weight of approximately 50 kDa did not align with any protein from 2D 

DiGE gels, but showed more phosphorylation during torpor. These patterns were found in 

each of the four 2D gels analyzed for each of torpor and IBE. 

 

Using immunoblots following 2D electrophoresis of liver mitochondrial protein, I found 

3 spots that differed significantly in degree of total acetylated lysine between torpor and 

IBE (Figure 4-7). One of these spots (spot 19) aligned with succinyl-CoA ligase [GDP-

forming], from Figure 4-5, and showed less acetylation during IBE compared with torpor. 

Two other protein spots (18 and 20) showed significantly lower acetylation during IBE, 

but these proteins do not correspond with any of the spots identified from DiGE gels, and 

so remain unidentified. The molecular weights of these unknown proteins are 

approximately 60 kDa and 40 kDa, respectively. These patterns of differential acetylation 

were found in all four gels used for each of torpor and IBE.
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Figure 4-6. Total phosphorylation of liver mitochondrial protein from IBE and torpid ground squirrels. Representative gels 
from one IBE animal (A) and one torpid animal (B). In each gel proteins were separated by 2D electrophoresis and stained with ProQ 
Diamond Phosphoprotein Stain. Arrows indicate proteins that differed in phosphorylation between torpor and IBE (torpor: n=4; IBE: 
n=4), with corresponding spots indicated by the same number on each gel. Data for all gels are summarized in Table 4-2.   
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Figure 4-7. Total lysine acetylation in liver mitochondrial protein from IBE (A) and torpid (B) ground squirrels. Representative 
gels from one IBE animal (A) and one torpid animal (B). Proteins were separated by 2D electrophoresis and immunoblotted for total 
acetylated lysine. Arrows indicate proteins that differed in amount of acetylation between torpor and IBE (torpor: n=4; IBE: n=4), 
with corresponding spots indicated by the same number on each gel. Data from all gels are summarized in Table 4-2.   
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Table 4-2. Liver mitochondrial proteins, resolved by 2D electrophoresis, differing in 
phosphorylation and acetylation between IBE and torpor. Spot numbers correspond 
with spots shown in Figure 4-6 and Figure 4-7. Fold change and associated p-value were 
calculated from quantitative analysis of spot density, and a significant difference between 
torpor and IBE is denoted by an asterisk. 

 

Spot  Modification Fold change 
in IBE 

p-value Protein ID 

15 Phosphorylation +2.3 0.03* Succinyl-CoA ligase [GDP-forming] 
subunit beta, mitochondrial 

16 Phosphorylation +3.4 <0.001* Succinyl-CoA ligase [GDP-forming] 
subunit beta, mitochondrial 

17 Phosphorylation -2.5 0.05* Protein unknown 

18 Acetylation -3.9 0.05* Protein unknown 
 

19 Acetylation -2.8 0.03* Succinyl-CoA ligase [GDP-forming] 
subunit beta, mitochondrial 

20 Acetylation -4.7 0.002* Protein unknown 
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4.3.3 Analysis of ETS proteins by BN-PAGE 
 

I used blue-native polyacrylamide gel electrophoresis (BN-PAGE) to examine liver 

mitochondrial ETS complexes specifically. In this technique, the five ETS complexes are 

separated first by molecular mass in their native state (i.e. under non-denaturing 

conditions). Each complex is then further separated into individual polypeptides, again 

based on molecular mass but under denaturing conditions (a representative gel image is 

shown in Figure 4-8).  

 

Following BN-PAGE with liver mitochondrial protein, I used a phosphoprotein stain to 

assess differences in phosphorylation of ETS complex proteins between torpor and IBE 

(Figure 4-9). Densitometry analysis revealed a consistent pattern in all gels, with two 

spots that differed significantly in phosphorylation (summarized in Table 4-3). I excised 

these spots and used Q-TOF LC/MS to identify them. A protein identified as the 75 kDa 

subunit of complex I (37 matched peptides with 63% sequence coverage) showed a 1.5-

fold increase in phosphorylation during torpor (spot 21; p=0.011). A protein identified as 

the flavoprotein subunit of complex II (6 matched peptides with 9% sequence coverage) 

showed a 4.6-fold increase in phosphorylation during IBE relative to torpor (spot 22; 

p<0.001).  

 

I conducted immunoblots for total acetylated lysine following BN-PAGE to assess 

change in acetylation of ETS proteins between torpor and IBE (Figure 4-10). One protein 

consistently showed a significant difference in acetylation (summarized in Table 4-3): it 

was identified as subunit 1 of complex IV (32 matched peptides with 29% sequence 

coverage) showed 2.4-fold more acetylation during torpor compared to IBE (p=0.050, 

spot 23). 
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Figure 4-8. 2D Blue-Native PAGE of liver mitochondrial protein from a ground 
squirrel in IBE. Intact ETS complexes were separated under non-denaturing conditions 
and were identified by molecular mass on a 4-16% gradient gel following Coomassie 
staining (A). Subunits of the native complexes were denatured and separated by SDS-
PAGE on a 10% (w/v) polyacrylamide gel (B).  
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Figure 4-9. Total protein phosphorylation in liver mitochondria from IBE (A) and torpid (B) ground squirrels following 
separation by 2D BN-PAGE. Representative gels from one IBE animal (A) and one torpid animal (B). Arrows indicate proteins that 
differed significantly in phosphorylation between torpor and IBE (torpor: n=4; IBE: n=4), with corresponding spots indicated by the 
same number on each gel. Spot 22, present in IBE (A) is absent from torpor (B), with an arrow indicating where the spot would be if 
present. Data from all gels are summarized in Table 4-3.   
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Figure 4-10. Total protein acetylation in liver mitochondria from IBE (A) and torpid (B) ground squirrels following separation 
by 2D BN-PAGE. Representative gels from one IBE animal (A) and one torpid animal (B). Arrows indicate proteins that differ 
significantly in acetylation between torpor and IBE (torpor: n=4; IBE: n=4), with corresponding spots indicated each gel. Data from 
all gels are summarized in Table 4-3.   
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Table 4-3. Electron transport system proteins, resolved by BN-PAGE, differing in 
phosphorylation and acetylation between IBE and torpor.
 Spot numbers correspond with spots shown in Figure 4-9 and Figure 4-10. Fold change 
and associated p-value were calculated from quantitative analysis of spot density, and a 
significant difference between torpor and IBE is denoted by an asterisk. Protein score, 
which indicates alignment between sample peptides and known peptide, is -10*Log(P), 
where P is the probability that the protein match is random. Protein scores greater that 72 
are considered significant (p≤0.05). 

 

  

Spot  Modification Fold 
change 
in IBE 

p-value Protein ID Protein score 

21 Phosphorylation -1.5 0.011 NADH dehydrogenase, 
75 kDa subunit 
 

275.64 

22 Phosphorylation +4.6 <0.001 Succinate 
dehydrogenase, 
flavoprotein subunit 

110.76 

23 Acetylation -2.4 0.050 Cytochrome c oxidase, 
subunit 1 

197.31 
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4.4 Discussion 
 

In this study I found convincing, consistent evidence of several liver mitochondrial 

proteins that show differential post-translational modification within a torpor-arousal 

cycle. Most significant among these findings is that ETS complexes I and II are 

differentially phosphorylated between torpor and IBE, providing a potential mechanism 

for the metabolic changes that occur during hibernation. 

 

 

4.4.1 Differences in liver mitochondrial proteins between torpor and 
IBE identified following 2D-DiGE 
 
The use of 2D-DiGE allowed me to directly compare all liver mitochondrial proteins 

between torpor and IBE. When linking functional changes to mechanisms, the proteome 

is, arguably, the most relevant level of biological organization to investigate as it 

represents the culmination of changes in transcription, translation, and regulation. 2D 

electrophoresis is an especially useful technique as it can identify proteins that differ not 

only in expression between two conditions, but also shifts in isoelectric point, indicative 

of post-translational modification (PTM) or isoform switching. I identified five liver 

mitochondrial proteins with significantly altered abundance between torpor and IBE. 

Four of these proteins presented distinct reciprocal abundance patterns, indicating shifts 

in PTM or protein isoform between the two hibernation states rather than up- or down-

regulation within one state.  

 

Two enzymes involved in the tricarboxylic acid (TCA) cycle showed differences between 

torpor and IBE. Succinyl-CoA ligase (SCL; Figure 4-5, spots 5 and 6) presented as a pair 

of spots with reciprocal abundance in torpor and IBE. This shift in isoelectric point 

corresponds with increased phosphorylation of SCL during IBE (Figure 4-6, spots 15-16) 

and increased acetylation during torpor (Figure 4-7, spot 19). Succinyl-CoA ligase (SCL) 

catalyzes the conversion of succinyl-CoA to succinate, coupling the reaction with the 

formation of either GTP or ATP. SCL is the only mitochondrial enzyme capable of 
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producing ATP (or GTP) by substrate-level phosphorylation in the absence of oxygen 

(Kaufman et al., 1953). As a critical step in the TCA cycle, SCL is a potential site of 

mitochondrial metabolic regulation. In pig heart mitochondria, the activity of SCL 

increases more than 2-fold when phosphorylated (Phillips et al., 2009). This 

phosphorylation is not enzyme-catalyzed and apparently involves non-covalent bonds, 

which may represent a way by which mitochondrial metabolism can be regulated in 

response to intramitochondrial energy status since free phosphate levels increase as ATP 

is consumed. Since SCL is less phosphorylated (and therefore likely to have lower 

activity) during torpor, dephosphorylation of this enzyme during torpor could be an 

important regulatory mechanism for limiting flux through the TCA cycle as animals enter 

torpor. I also found that SCL showed greater acetylation in torpor compared to IBE. No 

known acetylation sites have been documented on SCL, so the functional consequences 

of this modification remain unknown. Acetylation during torpor could contribute to 

inhibition of SCL activity which would be a novel mechanism of regulation. Protein 

levels of fumarase (Figure 4-5, spot 12), which catalyzes the conversion of fumarate to 

malate in the TCA cycle, decreased by 1.7-fold in torpor compared to IBE with no 

apparent change in isoelectric point. Together, decreased protein levels of fumarase and 

decreased activity of SCL by dephosphorylation could contribute to the suppression of 

mitochondrial metabolism during torpor by limiting the amount of reducing equivalents 

(NADH, FADH2) available to enter the ETS.  

 

Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase (ECH1; Figure 4-5, spots 13-14), involved 

in β-oxidation, also showed a shift in isoelectric point between torpor and IBE. This shift 

does not correspond with any changes in phosphorylation or acetylation of ECH1, so it is 

likely that another PTM differs between the two hibernation states. For example, 

modifications such as succinylation, S-nitrosylation, and O-GlcNAcylation have all been 

shown to alter the activity of mitochondrial proteins (Stram and Payne, 2016). It is 

possible that a yet unknown PTM inhibits ECH1 during torpor, which could contribute to 

overall mitochondrial suppression by limiting the supply of acetyl-CoA to the TCA cycle. 

Indeed, fatty acid-fueled state 3 respiration rates in isolated liver mitochondria are 

reduced by 50% in torpor compared to IBE (Mathers and Staples, unpublished data). 
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Since hibernators rely primarily on lipid metabolism during the hibernation season 

(reviewed by Dark, 2005) beta-oxidation represents another important site of metabolic 

regulation. Together, suppression of both β-oxidation and the TCA cycle likely contribute 

to the suppression of respiration that occurs in liver mitochondria. Isovaleryl-CoA 

dehydrogenase (Figure 4-5, spots 9-10) is involved in leucine catabolism, also shows a 

shift in isoelectric point between torpor and IBE. I know of no PTMs that regulate 

activity of this enzyme, nor are there data about how leucine catabolism might differ 

among phases of a torpor bout. 

 

Catalase facilitates the conversion of hydrogen peroxide to water and oxygen, and as such 

plays an important role in mitigating oxidative damage. I found that catalase undergoes a 

shift in isoelectric point between torpor and IBE (Figure 4-5, spots 3-4), which likely 

indicates differential PTM between the two hibernation states. Though catalase is 

regulated by phosphorylation (Cao et al., 2003), the shift in PTM that I found does not 

correspond with differential phosphorylation or acetylation as measured by 

phosphoprotein staining and immunoblots. It is possible that catalase is modified by a yet 

unknown PTM that alters its activity to mitigate oxidative damage that occurs during 

torpor or IBE. Hibernators may upregulate antioxidant defences to protect tissues from 

potential ischemia-reperfusion injury (IRI) during transitions between torpor and IBE 

(Carey et al., 2003). IRI occurs when blood flow returns to a tissue after a period of 

restriction, a condition that may be especially important for hibernators, who experience 

rapid changes in heart rate and therefore the amount of oxygenated blood that reaches 

tissues. Reperfusion is associated with oxidative damage, as reintroduction of oxygen 

causes greater production of reactive oxygen species (ROS) including hydrogen peroxide 

(Slezak et al., 1995). Hibernators do show some enhanced resistance to oxidative stress in 

tissues such as liver (Lindell et al., 2005), however other evidence suggests that 

hibernators experience increased oxidative damage during torpor. In 13-lined ground 

squirrels, free radical release from liver mitochondria is higher in torpor than IBE (Brown 

et al., 2012) and in intestinal mucosa lipid peroxide metabolites are higher during early 

torpor than IBE (Carey et al., 2000). Catalase activity in liver is lower during torpor 
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compared to summer (Page et al., 2009), but a comparison between torpor and IBE has 

not yet been made, to my knowledge.  

	
	
4.4.2 Differences in ETS proteins in liver mitochondria between torpor 
and IBE identified following BN-PAGE 
	

I used Blue-Native PAGE to analyze the ETS subproteome within liver mitochondria 

from torpid and IBE ground squirrels, and used phosphostaining and immunoblots to 

identify any differences in phosphorylation and acetylation in ETS proteins between 

torpor and IBE. 

	

The flavoprotein subunit of complex II showed greater phosphorylation in IBE, 

increasing by 4.6-fold compared with torpor (Figure 4-9, spot 22). This observation is 

quite significant since the patterns of phosphorylation parallel the suppression of complex 

II activity during torpor as well suppression of mitochondrial respiration with fuels enter 

the ETS at complex II (Chapter 2). It is possible, therefore, that this phosphorylation 

mediates the observed changes in enzyme activity and mitochondrial metabolism over a 

torpor-IBE cycle. Phosphorylation of the flavoprotein subunit of complex II has been 

previously demonstrated, with phosphorylation of the tyrosine 604 residue by Fgr kinase 

associated with increased enzyme activity (Acín-Pérez et al. 2014). Complex II is also the 

target for phosphorylation by cAMP-dependent protein kinase A (PKA), with 

phosphorylation of an as yet unidentified serine or threonine residue on the flavoprotein 

subunit associated with a decrease in enzyme activity (Tomitsuka et al., 1999). It is clear 

that phosphorylation of different sites can have dramatically different effects on the 

activity of complex II, so future work should characterize the specific residues that are 

differentially phosphorylated between torpor and IBE.  

 

The 75 kDa subunit of complex I showed significantly increased phosphorylation in 

torpor relative to IBE (Figure 4-9, spot 21). This change in phosphorylation corresponds 

with a change in protein activity, with complex I showing both a reduction in Vmax and 

contributing to a reduction in flux through the ETS (Chapter 2). Phosphorylation of 
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complex I has been described in mammals, with several phosphorylation sites identified, 

including on the 39kDa subunit (Augereau et al., 2005). To my knowledge, no 

phosphorylation sites have yet been identified on the 75 kDa subunit, so my finding is 

completely novel. Though the functional consequences of phosphorylation at specific 

sites remain largely unknown, the stimulation of phosphorylation pathways has led to 

some opposing results. For example, phosphorylation of complex I by PKA activates the 

enzyme (Papa et al., 1996), but phosphorylation by an Src kinase led to a decrease in 

enzyme activity (Hébert-Chatelain et al., 2010).  

 

A previous study using similar techniques found no differences in phosphorylation of any 

ETS proteins between torpor and IBE (Chung et al., 2013). It is unclear why these studies 

have conflicting results. In the present study I used a phosphostain, which binds to any 

phosphorylated residues, whereas the previous study (Chung et al., 2013) used separate 

immunoblots for phosphorylation of tyrosine, threonine, and serine residues. It is also 

possible that multiple residues are phosphorylated on these proteins, and that my 

technique could detect such changes. It is also possible that the 2D-BN-PAGE methods I 

used allowed greater resolution of individual ETS subunits.  

 

Complex IV, as the terminal step of the ETS, is an important regulatory site of oxidative 

phosphorylation. Immunoblots of ETS complexes separated by BN-PAGE revealed 

differential acetylation of the COX-1 subunit, with 2.4-fold more acetylation in torpor 

compared to IBE (Figure 4-10, spot 23). This difference in acetylation does not 

correspond with functional changes in liver mitochondria, as I previously found no 

difference in flux through complex IV in intact mitochondria, as well as no difference in 

maximal activity of complex IV is isolated liver mitochondria or in homogenized liver 

tissue (Chapter 2). It is possible that acetylation does in fact change enzyme’s function, 

but that the fluxes and Vmax values measured in isolated mitochondria and homogenized 

tissue do not accurately represent the enzyme’s in vivo function. 

 

Since acetylation of mitochondrial proteins is usually associated with decreased enzyme 

activity (Baeza et al., 2016), complex IV acetylation could contribute to suppression of 
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mitochondrial metabolism during torpor. The acetylation state of many mitochondrial 

proteins is regulated by Sirtuin 3 (Sirt3), a NAD-dependent deacetylase, which regulates 

mitochondrial metabolism by deacetylating proteins when NAD+ levels are high. A 

knockdown of Sirt3 in mice led to increased acetylation of ETS proteins and a 

corresponding 50% decrease in liver ATP content (Ahn et al., 2008). In 13-lined ground 

squirrels, there is significantly less liver Sirt3 protein during the winter hibernation 

season compared to the summer. This change corresponds with higher overall protein 

acetylation in the winter (Hindle et al., 2014). Since NAD+ activates Sirtuins, changes in 

tissue NAD+ levels can facilitate deacetylation and activation of mitochondrial proteins. 

If changes in NAD+ mediate the observed changes in acetylation of complex IV between 

torpor and IBE, I predict that NAD+ levels in the liver would increase immediately before 

arousal. While liver metabolites have been measured in hibernators, with higher NAD+ 

during entrance into torpor compared to late torpor (Epperson et al., 2011), a comparison 

has not been made with early arousal or IBE. Moreover whole-tissue metabolomics data 

may not accurately represent changes in intramitochondrial metabolites. Future work 

should investigate NAD+ levels at all stages of a torpor-arousal cycle, especially in 

mitochondria, as it is a very plausible mechanism for triggering changes in acetylation 

and thus mitochondrial protein function. 

 

 

4.5 Summary 
This study identified several proteins likely involved in regulating the metabolic changes 

that occur in liver mitochondria between torpor and IBE. I identified differences in PTMs 

of two key mitochondrial ETS proteins which correspond with suppression of their 

maximal activities, a potentially novel mechanism for metabolic suppression. In the next 

chapter I attempt to manipulate liver mitochondrial metabolism in hibernators by altering 

the phosphorylation state of mitochondrial proteins. 
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CHAPTER 5 
 

5 Manipulating metabolism in liver mitochondria of 
hibernators 

 

5.1 Introduction 
 

Hibernation, characterized by a seasonal suppression of metabolic rate and body 

temperature, is an excellent natural model of metabolic suppression. Small mammals 

such as the 13-lined ground squirrel spend most of the hibernation season in torpor, 

during which body temperature and metabolic rate are actively suppressed by 

approximately 95% (reviewed in Chapter 1.2.2). Bouts of torpor, lasting up to 2 weeks, 

are periodically interrupted by spontaneous arousal into interbout euthermia (IBE), 

during which body temperature and metabolic rate rapidly increase to euthermic levels 

and are maintained for 8-12 hours. Despite experiencing an extreme reduction in body 

temperature, metabolism, and blood flow followed by rapid rewarming, hibernators 

appear to suffer no damage to organs and tissues (e.g., Zancanaro et al., 1999), an 

intriguing phenomenon for both biological and medical research. 

 

The ability to induce metabolic suppression in non-hibernators (including humans) would 

have diverse medical applications, such as limiting organ damage during organ 

transplantation, cardiac arrest, and surgery. At the whole animal level several 

pharmacological compounds, including hydrogen sulfide, 5’-adenosine monophosphate, 

and thyroid hormones, have been investigated for their potential in inducing a torpor-like 

state in non-hibernators (reviewed by Bouma et al., 2012). Some of these compounds 

appear to reduce metabolic rate and body temperature in some mammals, but not in 

others (see section 1.7). Further, the functional significance of these compounds is 

unclear since the underlying mechanisms responsible for metabolic suppression during 

hibernation are largely unknown.  
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Mitochondria, responsible for the vast majority of aerobic ATP generation, are critical to 

a mechanistic understanding of the rapid metabolic changes that occur during 

hibernation. In 13-lined ground squirrels, isolated liver mitochondrial metabolism is 

suppressed by as much as 70% during torpor, with maximal suppression occurring early 

during entrance into a torpor bout, prior to large decreases in body temperature (Chung et 

al., 2011). This suppression corresponds with a reduction in flux through electron 

transport system (ETS) complexes I and II in intact mitochondria, as well as a reduction 

in the maximal enzymatic activity of both complexes (Chapter 2). In addition, the 

suppression in the activity of complexes I and II is paralleled by changes in their 

phosphorylation state between torpor and IBE; phosphorylation of the 75 kDa subunit of 

complex I increases during torpor, compared with IBE, whereas phosphorylation of the 

complex II flavoprotein subunit decreases (Chapter 4). In this study, I investigate the 

hypothesis that phosphorylation mediates the regulation of these enzymes and 

mitochondrial respiration during torpor-IBE cycles. 

 

Phosphorylation of mitochondrial proteins is an active area of research, and is proposed 

to be a critical regulator of mitochondrial metabolism (Thomson, 2002; Hopper et al., 

2006; Pagliarini and Dixon, 2006), but little is known about mitochondrial kinases and 

phosphatases that likely regulate these modifications. The mitochondrial cyclic AMP-

dependent protein kinase (PKA) has been well studied recently as a regulator of acute 

changes to mitochondrial metabolism, but its role is controversial. Acín-Pérez et al. first 

demonstrated a complete intra-mitochondrial PKA signaling cascade linking nutrient 

sensing with functional changes in mitochondrial metabolism (Acín-Pérez et al., 2009). 

In this pathway, bicarbonate (HCO3
-), derived from the TCA cycle, activates 

intramitochondrial soluble adenylate cyclase (sAC) which generates cyclic AMP, in turn 

activating PKA. The authors manipulated this pathway in rat liver by incubating isolated 

mitochondria with 8Br-cAMP (a membrane-permeable cAMP analog) and HCO3
-. Both 

treatments increased State 3 respiration rate, and the effect was interpreted as an increase 

in ETS complex activity following phosphorylation by PKA. These functional changes 

were indeed paralleled by changes in the phosphorylation state of several ETS complex 

proteins, including subunits 1 and 4-2 of complex IV. 
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Following evidence from Acín-Pérez et al. (2009) that stimulation of the mitochondrial 

PKA pathway increases mitochondrial respiration, subsequent studies have found 

contradictory results. In permeabilized rat heart fibers, addition of a membrane-

permeable cAMP analog actually decreased mitochondrial respiration (Rosca et al., 

2011). A study investigating the PKA pathway found no effect of 8Br-cAMP on pig heart 

mitochondrial respiration, and furthermore, no effect of 8Br-cAMP nor H89 (a specific 

inhibitor of PKA) on any post-translational modifications of mitochondrial proteins 

(Covian et al., 2014). These contradictory results were found using heart tissue, however, 

which likely undergoes differential mitochondrial regulation than liver, the tissue in 

which PKA pathway activation was initially demonstrated. Given the acute changes in 

liver mitochondrial metabolism between torpor and IBE, ground squirrel liver 

mitochondria are an excellent model in which to investigate the potential roles of the 

PKA pathway and post-translational modifications for mediating metabolic changes. 

	

The first objective of this study was to alter respiration in intact isolated mitochondria by 

manipulating the PKA pathway. If PKA-mediated phosphorylation of mitochondrial 

proteins is responsible for the changes in liver mitochondria metabolism between torpor 

and IBE, then activators of the PKA pathway would have different effects on 

mitochondria from torpid and IBE animals. Since complex II is dephosphorylated during 

torpor, I predicted that activation of the PKA pathway would increase state 3 respiration 

in mitochondrial isolated from animals in torpor.  

 

The second goal of this study was to manipulate the phosphorylation state of complexes I 

and II directly (i.e. not in intact mitochondria) and compare the effects on maximal 

activity between torpor and IBE. If phosphorylation of complex I is responsible for 

suppression of its maximal activity during torpor, I predicted that removal of phosphate 

groups (via treatment with phosphatases) should increase the Vmax of complex I of from 

mitochondria of torpid animals. Likewise, phosphorylation of complex I (via treatment 

with ATP and kinases) should reduce Vmax in mitochondria from IBE animals. If 

phosphorylation of complex II regulates the increase in its activity during IBE, 

phosphatase treatment should decrease its Vmax in mitochondria from IBE animals, and 
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phosphorylation should increase its Vmax in mitochondria from torpid animals. I tested 

these hypotheses using the same mitochondria used for respiration and proteomics 

experiments presented in Chapters 3 and 4. 

 

	

5.2 Materials and Methods 

 

5.2.1 Animals 
Ground squirrels were live trapped in Carman, MB, Canada and housed as described in 

Chapter 2 (Section 2.2.1). This study compared ground squirrels sampled during torpor (a 

stable body temperature near 5 °C for 3-5 days) and IBE (A stable body temperature near 

37°C for 3-4 hours following spontaneous arousal).  

 

5.2.2 Mitochondrial isolation 
Liver tissue was dissected from ground squirrels immediately following euthanasia. Liver 

mitochondria were isolated via differential centrifugation and purified via Percoll 

gradient as described in Chapter 2 (Section 2.2.2). Purified mitochondria were suspended 

in 1 ml of homogenization buffer (250 mM sucrose, 10 mM HEPES, 1 mM EGTA, pH 

7.4) and used immediately for assessment of mitochondrial respiration. The protein 

content of each mitochondrial sample was determined with protein assay dye (Bio-Rad) 

using BSA dissolved in homogenization buffer as protein standards. Aliquots containing 

0.5 mg protein were centrifuged for 10 min at 10,000 g, and the resulting mitochondrial 

pellets were flash frozen and stored at -80°C for subsequent enzyme assays. 

 

5.2.3 Mitochondrial respiration 
Mitochondrial oxygen consumption was measured using an Oxygraph-2K high-resolution 

respirometer (Oroboros Instruments, Austria) as described in Chapter 2 (Section 2.2.3). 

Mitochondria (10 µl, ~150 µg protein) were transferred to respiration chambers 

containing 2 ml of mitochondrial respiration medium (0.5 mM EGTA, 3 mM MgCl2, 60 
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mM L-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 

1 g/l fatty acid free BSA, pH 7.1; (Kuznetsov et al., 2008) under constant stirring (750 

rpm) at 37 °C. 
 

Various activators of the PKA pathway were added in attempts to stimulate endogenous 

PKA, and the resulting respiration rates were compared between torpor and IBE. For 

each treatment, parallel respiration measurements were conducted with and without the 

addition of 1 µM H89, an inhibitor of PKA. The following treatments were used: 1) 

Control (no addition of activators), 2) addition of 1 mM 8-Bromoadenosine 3’,5’-cyclic 

monophosphate (8Br-cAMP), 3) addition of 0.8 mM CaCl2 (corresponding with 0.95 µM 

free Ca2+), and 4) addition of 1 mM 8Br-cAMP and 0.95 µM Ca2+ together. After a 10 

min incubation with each treatment, 6 mM succinate and 0.5 µM rotenone were added to 

the respiratory chambers, followed 5 min later by 0.2 mM ADP to induce State 3. 

Respiration rates were expressed relative to total mitochondrial protein.  

 

5.2.4 Treatment of mitochondrial homogenates with exogenous 
kinases and phosphatases 
	

Mitochondrial homogenates were prepared by thawing mitochondrial pellets on ice and 

resuspended in either Protein Kinase Buffer (50 mM Tris, 10 mM MgCl2, 0.1 mM 

EDTA, 2 mM DTT, 0.01% (w/v) Brij 35, pH 7.5) or Protein Phosphatase Buffer (50 mM 

HEPES, 1 mM MnCl2, 100 mM NaCl, 2 mM DTT, 0.01% (w/v) Brij 35, pH 7.5). 

Mitochondrial homogenates were prepared from previously frozen mitochondrial pellets. 

These samples were subjected to three cycles of freezing in liquid nitrogen and thawing 

on ice prior to incubation with kinases/phosphatases. Separate buffers were used for 

kinase and phosphatase treatments, following manufacturer specifications, to provide 

optimal reaction conditions for each enzyme. 

 

For treatment with a protein kinase, mitochondrial homogenates (0.25 mg protein in 

Protein Kinase Buffer) were incubated with 2500 U cAMP-dependent Protein Kinase, 

Catalytic Subunit (PKA; New England BioLabs) and 200 µM ATP at 37 °C for 30 min. I 
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also conducted parallel incubations with no additions, to serve as a negative control.  For 

treatment with a protein phosphatase, mitochondrial homogenates (0.25 mg in Protein 

Phosphatase Buffer) were incubated with 400 U Lambda Protein Phosphatase (LPP; New 

England BioLabs) at 37 °C for 30 min. I conducted a control incubation in parallel 

without any additions.  

 

5.2.4 Enzyme assays 
Following the incubations described above, I performed assays for maximal activity of 

both complex I and II, as described by (Kirby et al., 2007), using a Spectromax plate 

spectrophotometer (Molecular Devices, Sunnyvale, CA) at 37 °C. For each sample from 

an individual animal, assays were run in triplicate, and Vmax values were calculated from 

the mean of triplicates. Complex I activity was measured following the addition of 5 µl of 

mitochondrial homogenate (corresponding to 5 µg protein) to 295 µl of assay mixture 

containing 25 mM K2HPO4 (pH 7.4), 2 µg/ml antimycin A, 2 mM KCN, 2.5 mg/ml BSA, 

and 0.2 mM NADH. Absorbance values (340 nm) were collected for 3-5 mins. Complex 

II activity was measured following the addition of 2.5 µl of mitochondrial homogenate 

(corresponding to 2.5 µg protein) to 296.5 µl of assay mixture containing 25 mM 

K2HPO4 (pH 7.4), 2 µg/ml rotenone, 2 µg/ml antimycin A, 2 mM KCN, 20 mM 

succinate, and 50 µM dichlorophenolindophenol (DCPIP). The reaction was started with 

1 µl of 10 µM ubiquinone1, and absorbance values (600 nm) were collected for 3-5 min. 

 

5.2.6 Statistical analysis 
All statistical analyses were conducted using R. The effects of treatment with PKA 

activators and H89 on respiration in isolated mitochondria were assessed using repeated 

measures two-factor ANOVA and Student-Newman-Keuls post-hoc tests, with 

hibernation state (torpor or IBE) as the first factor and PKA activator/inhibitor treatment 

as the second factor. The effects of kinases and phosphatase treatment on maximal 

activity of both ETS complexes I and II were assessed using two-factor repeated 

measures ANOVA and Student-Newman-Keuls post-hoc tests, with hibernation state 
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(torpor or IBE) as the first factor and treatment (Control or kinase/phosphatase) as the 

second factor. Differences were considered significant for p-values ≤ 0.05. 

 

 

5.3 Results 
 

I compared respiration rates in isolated liver mitochondria from torpid and IBE ground 

squirrels following incubation with various activators and an inhibitor of the 

mitochondrial PKA pathway. Under control conditions (no activators or inhibitors), 

succinate-fueled state 3 respiration was suppressed by 70% during torpor relative to IBE 

(p<0.001), consistent with previous results from our lab (Muleme et al., 2006; Chung et 

al., 2011; Brown et al., 2012). Incubation with H89, a specific inhibitor of PKA, had no 

effect on respiration in mitochondria from IBE (p=0.994) or torpid (p=0.726) animals 

(Figure 5-1). 

 

While assessing the effects of PKA activators on mitochondrial respiration, I conducted 

parallel respiratory measurements with and without the addition of H89 as a control for 

the effect of PKA activation since H89 is a specific inhibitor of PKA. I predicted a 

greater proportional change in torpor than IBE so I expressed respiration rates relative to 

control state 3 rates (measured with no additions) for each mitochondrial sample. This 

analysis allows assessment of any differences between hibernation states in the degree 

that respiration changes relative to a common baseline. Absolute values for these 

measurements are presented in Table 5-1.  

 

I used two-factor repeated measures ANOVA to analyze of the effects of hibernation 

state (torpor or IBE) and the effects of H89 inclusion for each PKA pathway activator. 

When mitochondria were incubated with 8Br-cAMP, there was no effect of hibernation 

state or inclusion of H89 on the relative respiration rate (p=0.867 and p=0.793, 

respectively; Figure 5-2A), and no interaction between the two factors (p=0.764). Upon 

incubation with Ca2+ there was also no effect of hibernation state or H89 inclusion on 

relative respiration rate (p=0.148 and p=0.723, respectively; Figure 5-2B), and no  
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Figure 5-1. Succinate-fueled state 3 respiration in liver mitochondria in control 
conditions and following incubation with H89. Respiration was measured at 37 °C in 
mitochondria isolated from ground squirrels sampled during IBE (n=5) and torpor (n=5). 
Bars represent mean + SE. Asterisks indicate a significant difference between torpor and 
IBE within each treatment (p≤0.05). 
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Table 5-1. Succinate-fueled respiration in liver mitochondrial following incubation with activators of the PKA pathway. 
Respiration rates (nmol O2 min-1 mg protein-1) were measured in liver mitochondria isolated from 13-lined ground squirrels in torpor 
(n=5) or IBE (n=5). An asterisk indicates a significant difference between torpor and IBE within a particular treatment. 

 

    Control H89 
8Br-
cAMP 

8Br-
cAMP+H89 Ca2+ Ca2++H89 

8Br-
cAMP+ 
Ca2+ 

8Br-cAMP 
+Ca2++H89 

IBE 
Mean 211.63* 211.93* 199.57* 223.96* 327.26* 310.97* 284.47* 227.35* 
SE 30.29 28.25 36.99 30.54 48.67 45.58 45.82 43.13 

Torpor 
Mean 66.91 81.98 63.94 58.03 71.99 73.83 52.75 63.24 
SE 12.71 5.23 14.01 13.35 15.21 19.75 2.74 14.20 
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Figure 5-2. Relative succinate-fueled respiration in liver mitochondrial following incubation with activators of the PKA 
pathway. Mitochondria were isolated from animals sampled during IBE (n=5) and torpor (n=5). Respiration rates are expressed 
relative to the control state 3 rate for each treatment. Bars represent mean + SE. Asterisk indicate a significant difference between 
torpor and IBE within a treatment (p≤0.05). 
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interaction between the two factors (p=0.327). Following the addition of 8Br-cAMP and 

calcium together, there was a significant effect of hibernation state (p=0.011), with IBE 

showing a 30% increase relative to control and torpor showing a 30% decrease (Figure 5-

2C). There was no significant effect of H89 inclusion overall (p=0.142), but a significant 

interaction between hibernation state and H89 inclusion. Post-hoc pairwise comparisons 

revealed a significant difference in response between torpor and IBE without H89 

(p=0.006), but no difference between torpor and IBE with H89 inclusion (p=0.151). 

 

I measured the maximal activities of ETS complexes I and II in homogenized liver 

mitochondria following incubation with exogenous kinases and phosphatases, and 

compared rates between torpor and IBE. I used two-factor repeated measures ANOVA to 

assess the effects of hibernation state and incubation of PKA or LPP on the maximal 

activities of each complex.  

 

There was no significant effect of hibernation state nor PKA incubation on the Vmax of 

complex I (p=0.150 and p=0.225, respectively; Figure 5-3A), and no significant 

interaction between hibernation state and PKA incubation (p=0.340). Following LPP 

incubation, there was a significant interaction effect between hibernation state and 

incubation on the Vmax of complex I (p=0.003). In the control treatment (no addition of 

LPP), complex I Vmax was 20% higher in IBE compared to torpor (p=0.038; Figure 5-

3B). Incubation with LPP significantly increased the Vmax of complex I in mitochondria 

from torpid animals (p=0.009), but had no effect on the complex I from IBE animals 

(p=0.247). Following LPP incubation, there was no difference in Vmax of complex I 

between IBE and torpor (p=0.919). 

 

There was a significant interaction effect between hibernation state and PKA incubation 

on the Vmax of complex II (p=0.042). Within the control treatment, the Vmax of complex II 

was 60% higher in liver mitochondrial from IBE animals compared to torpor (p<0.001; 

Figure 5-4A). There was no significant effect of PKA incubation on complex II Vmax in 

the torpor or IBE group (p=0.096 and p=0.344, respectively). Following incubation with 

PKA, the difference in Vmax between torpor and IBE was diminished, but still  
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Figure 5-3. Maximal activity of ETS Complex I in isolated liver mitochondria 
following incubation with protein kinase A (PKA; Panel A) and protein phosphatase 
(PP; Panel B). Homogenates were prepared from mitochondria isolated from animals 
sampled during torpor (n=6) and IBE (n=6). A separate control is included for each 
treatment since the incubations were conducted in different buffers. Asterisks indicate a 
significant difference between torpor and IBE within a treatment, and a significant effect 
of treatment within either torpor or IBE is indicated by “#” (p≤0.05).  
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Figure 5-4. Maximal activity of ETS Complex II in isolated liver mitochondria 
following incubation with protein kinase A (PKA; Panel A) and protein phosphatase 
(PP; Panel B). Homogenates were prepared from mitochondria isolated from animals 
sampled during torpor (n=6) and IBE (n=6). A separate control is included for each 
treatment since the incubations were conducted in different buffers. Asterisks indicate a 
significant difference between torpor and IBE within a treatment, and a significant effect 
of treatment within either torpor or IBE is indicated by “#” (p≤0.05). 
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significantly different (p=0.012). There was also a significant interaction effect between 

hibernation state and LPP incubation on the Vmax of complex II (p=0.033). Incubation 

with LPP significantly decreased the Vmax of complex II in mitochondria from IBE 

animals (p=0.015; Figure 5-4B), but had no effect on complex II from torpid animals 

(0.983). Following LPP incubation, there was no difference in the Vmax of complex II 

between IBE and torpor (p=0.256). 

 

5.4 Discussion 

 
This study demonstrates that post-translational modification by phosphorylation is likely 

involved in regulating the activity of complexes I and II during hibernation. I successfully 

manipulated the maximal activity of both complexes I and II by incubating liver 

mitochondrial homogenates with exogenous kinases and phosphatases, which suggests 

the role of phosphorylation in regulating the activity of these enzymes.  

 

I first attempted to manipulate the endogenous PKA pathway in liver mitochondria 

isolated from ground squirrels. I predicted that successful activation of PKA would cause 

a greater increase in respiration in mitochondria isolated from torpid animals, with PKA-

mediated phosphorylation activating complex II. A possible corollary of this prediction is 

that inhibition of PKA, using the specific inhibitor H89, would decrease complex II 

phosphorylation in IBE, resulting in a suppression of liver mitochondrial respiration. 

Indeed, recent research with rat liver mitochondria found a 50% suppression in state 3 

respiration following H89 incubation (Acín-Pérez et al., 2009). In my experiment, 

however, incubation with H89 had no effect on respiration in mitochondria from either 

torpid or IBE squirrels (Figure 5-1), indicating either that there is no immediate effect of 

inhibiting the PKA pathway in either hibernation state, or that in my experiments, H89 

was not able to enter the mitochondrial matrix.  

 

I subsequently attempted to activate intramitochondrial PKA directly by incubating intact 

isolated mitochondria with 8Br-cAMP, a cAMP analog that has been shown to activate 
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the PKA pathway in rat liver mitochondria (Acín-Pérez et al., 2009). In my experiments, 

incubation with 8Br-cAMP had no effect on respiration in either hibernation state (Figure 

5-2A), which suggests that either 8Br-cAMP was not able to enter the mitochondria, or 

that subsequent PKA activation has no effect on mitochondrial respiration. In addition to 

the 30 min incubations with 1 mM 8Br-cAMP, I also performed preliminary experiments 

using an incubation time of up to 60 minutes, conditions in which 8Br-cAMP has been 

shown to reach the mitochondrial matrix in cardiomyocytes (Di Benedetto et al., 2013). 

Even with such extended incubations, respiration rates were not affected (data not 

shown). Covian et al. (2014) found a similar insensitivity of isolated pig heart 

mitochondria to 8Br-cAMP, and in addition found no effect of db-cAMP, a cAMP analog 

that is 10-fold more lipophilic. From these results I conclude that liver mitochondria of 

13-lined ground squirrels are insensitive to 8Br-cAMP. It is unclear why ground squirrel 

mitochondria would be insensitive to conditions shown to increase respiration in rat liver, 

but perhaps the PKA pathway does not play an important regulatory role in liver 

mitochondria during hibernation. 

 

I next attempted to stimulate PKA indirectly by incubating mitochondria with Ca2+, 

which has been shown to activate mitochondrial sAC (Litvin et al., 2003). Calcium did 

appear to increase respiration relative to control, at least in IBE, but the difference in 

response between torpor and IBE was not significant. Moreover, inclusion of H89 did not 

change the effect of Ca2+, which indicates that any Ca2+ effect is not mediated through 

PKA activation. Interestingly, incubation with 8Br-cAMP and calcium together had a 

different effect on mitochondria from torpor and IBE animals; in IBE, respiration 

increased by 40% relative to the control rate, and in torpor respiration decreased by 40% 

(Figure 5-2C). This suggests an effect of PKA pathway activation, as the parallel 

incubation with H89 led to no difference between torpor and IBE. It is unclear why 8Br-

cAMP and calcium together affected mitochondrial respiration when either activator 

alone had no effect. This result is also contrary to my prediction that phosphorylation via 

PKA would lead to an increase in respiration in mitochondria from torpid animals. It is 

possible that my experimental treatments did not successfully activate the endogenous 
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mitochondrial PKA pathway, and it is also possible that the PKA pathway is not 

responsible for the changes in phosphorylation between torpor and IBE.  

 

Following unsuccessful attempts to stimulate the PKA pathway within intact 

mitochondria, I investigated the effect of phosphorylation on ETS enzyme activity 

directly. I focused on complexes I and II since I have shown that their maximal activities 

are suppressed during torpor relative to IBE (Chapter 2) and both enzymes show 

differential phosphorylation between torpor and IBE (Chapter 4). I measured Vmax of 

each complex following incubation of mitochondrial homogenates with both exogenous 

PKA (with ATP) and an exogenous phosphatase to stimulate phosphorylation and 

dephosphorylation, respectively. Treatment with exogenous phosphatases significantly 

increased complex I activity in liver mitochondria from torpid animals but had no effect 

on mitochondria from IBE animals (Figure 5-4), suggesting that phosphorylation is 

necessary for the suppression of complex I during torpor, since removal of phosphate 

groups resulted in a complete reversal of suppression. These data fit with my previous 

findings that the 75 kDa subunit of complex I is phosphorylated to a greater degree 

during torpor compared to IBE (Chapter 4). Phosphorylation of complex I has been well 

described, though the underlying signaling mechanisms and the effects of 

phosphorylation on the activity of the enzyme are less understood. In rat brain, the 39 

kDa subunit of complex I can be phosphorylated (Augereau et al., 2005), though to my 

knowledge, no phosphorylation sites have been identified on the 75 kDa subunit. In 

mitochondria isolated from bovine heart, phosphorylation of complex I by mitochondrial 

PKA is associated with activation of the enzyme (Papa et al., 1996). Other studies have 

demonstrated that complex I can be phosphorylated by Src kinases. Reports about the 

effects of phosphorylation of complex I by this pathway vary, however, with some 

showing decreased activity associated with loss of phosphorylation (Hébert-Chatelain et 

al., 2012; Ogura et al., 2012), but others showing that increased phosphorylation results 

in lower complex I, activity (Hébert-Chatelain et al., 2011). 

 

Treatment with an exogenous phosphatase substantially reduced the Vmax of complex II 

in mitochondria from IBE animals but had no effect of mitochondria from torpid animals 
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(Figure 5-4B). These results provide strong evidence that dephosphorylation of complex 

II during entrance into torpor contributes to the suppression of mitochondrial respiration 

in torpor, which parallel the proteomics data from Chapter 4 in which I demonstrated that 

phosphorylation of the flavoprotein subunit of complex II is greater in IBE compared to 

torpor. Incubation with PKA had no significant effect on complex II activity in 

mitochondria from either torpor or IBE animals (Figure 5-4A), which suggests that the 

differences in phosphorylation between torpor and IBE are mediated by a kinase other 

than PKA. In support of this theory, a recent study found that phosphorylation of the 

flavoprotein subunit increased complex II activity (Acín-Pérez et al. 2014). The 

regulatory phosphorylation site was identified as Y604, phosphorylation of this site was 

mediated by Fgr kinase, a member of the Src kinase family.    

 

PKA phosphorylates serine and threonine residues specifically, but LPP 

dephosphorylates any phosphorylated residue (serine, threonine, and tyrosine). Since 

there were significant effects of the phosphatase but not PKA, the regulatory 

phosphorylation sites are likely tyrosine residues. My data suggest that a pathway other 

than PKA may be responsible for the regulatory phosphorylation events during 

hibernation. Src kinases, which specifically phosphorylate tyrosine residues and have 

been well described in rat brain mitochondria (Salvi et al., 2002), are likely candidates for 

mediating this phosphorylation in vivo. Src kinases can be regulated directly by cellular 

conditions; for example, Fgr kinase activity is stimulated by increased H2O2 

concentration, resulting in phosphorylation and increased activity of complex II (Acín-

Pérez et al., 2014). Such a mechanism could underlie regulation of complexes I and II in 

hibernators, since there is evidence of changes in reactive oxygen species (ROS) 

production by liver mitochondria during hibernation (Brown et al., 2012). Src kinases are 

also regulated by their own phosphorylation state, which is in turn regulated by upstream 

kinases and phosphatases (Roskoski, 2005), though little is known about how these 

upstream kinases and phosphatases are regulated. Protein tyrosine phosphatase, 

mitochondrial 1 (PTPMT1) is a tyrosine-specific phosphatase that is involved in 

desphosphorylating mitochondrial Src kinases as well as other target proteins. PTPMT1 

can also directly dephosphorylate complex II, and inhibition of PTPMT1 results in 
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increased complex II phosphorylation with a corresponding increase in its activity (Nath 

et al., 2015).  

 

Future work should investigate the residues that are differentially phosphorylated on 

complexes I and II, since the phosphorylation sites themselves will offer clues about the 

mechanisms that underlie the differential phosphorylation. If the phosphorylation sites 

are tyrosine residues, then Src kinases are a likely regulatory mechanism. If Src kinases 

are responsible for differential phosphorylation, if would be useful to gain a better 

understanding of ROS production (using recently-developed techniques that can 

simultaneously measure O2 consumption and ROS production) as well as redox status in 

liver mitochondria over a torpor-IBE cycle. 

 

 

5.5 Summary  
Phosphorylation is an important regulator of enzyme activity and, likely, mitochondrial 

metabolism during hibernation. Manipulation of phosphorylation state at the enzymatic 

level had significant effects on maximal activities of complexes I and II, that correspond 

at least partially with the pattern of respiration seen in intact mitochondria. However, my 

attempts to stimulate of an intramitochondrial kinase, PKA, did not significantly alter 

respiration rates. Future work investigating the endogenous regulatory pathways (e.g. 

kinases and phosphatases) responsible for these phosphorylation events is necessary for 

before manipulation of metabolism at higher biological levels can occur. 
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CHAPTER 6 
 

6 General Discussion  
 

Metabolic suppression is a remarkable adaptation that allows animals to maintain energy 

homeostasis in conditions where the ability to obtain or transform energy from the 

environment is constrained. There has long been a search for the mechanisms that 

underlie the metabolic suppression that occurs during hibernation, and in particular, those 

related to the rapid transitions between torpor and interbout euthermia (IBE). In my 

thesis, I have demonstrated a mechanistic explanation for the reversible suppression of 

mitochondrial proteins during torpor that may underlie changes in mitochondrial 

metabolism between torpor and IBE. In this chapter I aim to integrate the results from the 

four experimental chapters in this thesis to propose a model by which mitochondrial 

metabolism is reversibly suppressed during torpor. I will also relate my results to a 

broader context of whole animal effects as well as describe how these findings will 

inform future directions for mechanistic research into metabolic suppression during 

hibernation. 

 

 

6.1 A model for mitochondrial metabolic suppression during 
torpor 
 
The most significant findings from my thesis work are that electron transport system 

(ETS) complexes I and II are differentially phosphorylated between torpor and IBE in 

liver mitochondria. These changes in phosphorylation parallel the suppression of liver 

mitochondrial metabolism that occurs during torpor along with suppression of the 

maximal enzymatic activity of complexes I and II.  

 

With these novel results, I propose a model by which mitochondrial metabolism is 

reversibly suppressed during torpor. In this model, summarized in Figure 6-1, as 13-lined  
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Figure 6-1. A model of potential mechanisms underlying reversible suppression of 
mitochondrial metabolism during entrance into torpor. This model integrates my 
findings to illustrate the significant changes to metabolic proteins that occur between 
torpor and IBE in liver mitochondria. In the TCA cycle, succinyl-CoA ligase (SCL) is 
dephosphorylated and fumarase protein content decreases. Complex II, involved in both 
the electron transport system and the TCA cycle, is desphosphorylated. In the electron 
transport system, complex I is phosphorylated (P) and complex IV is acetylated. These 
changes in phosphorylation are potentially mediated by tyrosine kinases (Fgr and Src) 
and phosphatases (PTPMT1) within liver mitochondria, which may respond to 
intramitochondrial signals such as reactive oxygen species (ROS). The activity of 
mitochondrial NAD-dependent deacetylase sirtuin-3 (Sirt3) potentially decreases to result 
in increased acetylation.    
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ground squirrels enter torpor, complex I undergoes increased phosphorylation, complex II 

undergoes increased dephosphorylation, and complex IV undergoes increased 

acetylation. Since my results indicate that the regulatory phosphorylation sites on 

complexes I and II are likely tyrosine residues, the changes in phosphorylation state of 

these enzymes are therefore likely mediated by mitochondrial tyrosine-specific kinase 

and phosphatases. Since overall phosphorylation appears to have contrasting effects on 

the activity of complexes I and II (with an inhibitory effect on complex I and an 

activating effect on complex II), the phosphorylation states of complexes I and II are 

likely mediated by different kinases and phosphatases (illustrated in detail in Figure 6-2). 

For the sake of simplicity I have designated these “kinase I” and “phosphatase I” for 

complex I, and “kinase II” and “phosphatase II” for complex II in my model. Figure 6-2 

illustrates at a more detailed level how these kinase and phosphatases likely mediate 

changes in the phosphorylation states of complexes I and II in liver mitochondria as 

animals transition between torpor and IBE. 

 

As suppression of complex I activity corresponds with increased phosphorylation during 

torpor, I propose that kinase I is activated and phosphatase I is inhibited during torpor. 

Possible candidate kinases are those within the Src kinase family, including Fyn, Src, 

Lyn, and Fgr kinases, which have been found within mitochondria (Salvi et al., 2002; 

Acín-Pérez et al., 2014). Activation of Src in particular corresponds with increased 

phosphorylation and decreased enzymatic activity of complex I (Hébert-Chatelain et al., 

2011), so it is possible that Src kinase activation during torpor could underlie suppression 

of complex I activity in hibernators. Dephosphorylation of complex I during IBE may be 

mediated by a mitochondrial tyrosine-specific phosphatase. Several tyrosine 

phosphatases have been found within mitochondria, including PTPD1, PTP1B, and 

PTPMT1 (Lim et al., 2016), though no tyrosine phosphatases are currently known to 

directly dephosphorylate complex I. 

 

As suppression of complex II activity corresponds with decreased phosphorylation during 

torpor, I propose that kinase II is inhibited and phosphatase II is activated during torpor.
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Figure 6-2. A model of potential changes in PTMs of mitochondrial electron transport system (ETS) proteins between IBE and 
torpor. During torpor, increased phosphorylation (P) of complex I by a potential “kinase I” corresponds with a decrease in enzymatic 
activity. Decreased phosphorylation of complex II, facilitated by a potential “phosphatase II” corresponds with a decrease in complex 
II activity. Increased acetylation (Ac) of complex IV potentially results from a decrease in the activity of NAD-dependent deacetylase 
sirtuin-3 (Sirt3).  
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Members of the Src kinase family are also potential candidates for the regulation of the 

phosphorylation state of complex II. Fgr kinase in particular is a potential regulator, since 

phosphorylation of complex II by Fgr kinase results in an increase in complex II activity 

(Acín-Pérez et al., 2014). Inhibition of such a kinase during torpor (and conversely, 

activation during IBE) could regulate the changes in phosphorylation state and activity of 

complex II that I demonstrated between torpor and IBE. Dephosphorylation of complex 

II during torpor may be mediated by a mitochondrial tyrosine-specific phosphatase. 

PTPMT1 is a likely candidate, since it has been shown to directly dephosphorylate 

complex II (Nath et al., 2015). Though little is known about regulation of PTPMT1 in 

vivo, pharmacological inhibition results in increased phosphorylation of complex II and a 

corresponding increase in complex II activity (Nath et al., 2015). It is possible, then, that 

PTPMT1 is activated during entrance into torpor, resulting in dephosphorylation of 

complex II and suppression of its activity. 

 

Complex IV showed increased acetylation during torpor, though this did not correspond 

with any functional changes in enzyme activity. It is possible that, though no functional 

changes were apparent at the mitochondrial and tissue level, increased acetylation of 

complex IV during torpor contributes to mitochondrial metabolic suppression in vivo. 

Changes in acetylation of many mitochondrial proteins are regulated by Sirtuin 3 (Sirt3), 

which deacetylates proteins when intramitochondrial NAD+ concentration is high. 

Increased Sirt3 activity, mediated by and increased NAD+ concentration, could 

potentially regulate changes in acetylation of complex IV between torpor and IBE.  

 

Decreased flux through the TCA cycle during torpor also likely contributes to liver 

mitochondrial metabolic suppression by limiting the availability of reducing equivalents 

to enter the ETS. Complex II, which is involved in both the ETS and the TCA cycle, is an 

important site of TCA cycle regulation. Succinyl-CoA ligase (SCL), which is 

significantly more phosphorylated in IBE than torpor, is another potential site of TCA 

cycle regulation. Increased phosphorylation of SCL is associated with increased activity; 

this phosphorylation occurs in a non-enzymatic manner, with increased phosphorylation 

resulting from increased free phosphate concentration (Phillips et al., 2009). Increased 
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phosphorylation of SCL during IBE could potentially result from an increase in matrix 

phosphate levels due to a decreased ATP/ADP ratio. Changes in phosphorylation could 

also result from increased dephosphorylation during torpor, potentially mediated by a 

mitochondrial phosphatase. There are currently no known phosphatases that target SCL 

however, and the regulatory phosphorylation sites are also unknown. Together, decreased 

SCL activity, decreased fumarase protein content, and decreased complex II activity 

could cause a substantial decrease in flux through the TCA cycle during torpor. Future 

work should investigate potential changes in enzymatic activity of SCL and fumarase 

between torpor and IBE to determine their contribution to mitochondrial suppression 

during torpor. 

 

The signals that ultimately result in changes in PTMs of mitochondrial proteins may 

either originate within the mitochondria or involve secondary cellular messengers. It is 

possible that the mechanism responsible for activation and inhibition of regulatory 

kinases and phosphatases involves a yet unknown central signal; such a “hibernation 

induction trigger” originating in the blood could trigger the changes in regulatory PTMs 

that correspond with mitochondrial metabolic suppression. It is also possible that this 

signaling mechanism involves molecules originating within mitochondria. For example, 

Fgr kinase, which alters complex II activity by phosphorylation, is activated by increased 

mitochondrial H2O2 concentrations (Acín-Pérez et al., 2014). Since there is evidence of 

changes in ROS production by liver mitochondria during a torpor-IBE cycle (Brown et 

al., 2012), H2O2 could be a potential intramitochondrial signaling mechanism. For 

example, a potential increase in H2O2 concentration during arousal into IBE could 

activate Fgr kinase, leading to phosphorylation and subsequent activation of complex II. 

 

 

6.2 The role of liver mitochondrial suppression in whole-
animal metabolic suppression 
	

Suppressing flux through complexes I and II likely represents an important mechanism 

for regulating metabolic changes in vivo. Since complexes and I and II are the main sites 
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for reducing equivalents (NADH, FADH2, respectively) to enter the ETS, suppression of 

their activities would greatly supress the entire oxidative phosphorylation pathway and 

thus ATP production. Suppression of complex II in particular represents a significant site 

of regulation, since suppression of complex II activity would also contribute to reduced 

TCA cycle flux. After exploring regulatory mechanisms of liver mitochondrial 

suppression, it is worthwhile considering their role in the context of whole-animal 

metabolic suppression. While the 70% suppression that occurs in liver mitochondria 

during torpor may be largely explained by phosphorylation-mediated decreases in the 

enzymatic activities of ETS complexes I and II, whole-animal metabolism is suppressed 

by upwards of 95%. How much, then, can regulated suppression of mitochondrial 

metabolism contribute to the overall metabolic suppression that occurs during 

hibernation? 

 

The metabolic suppression that occurs as an animal enters torpor is the summation of 

three separate components: 1) decreased thermogenic metabolism mediated by a shift in 

thermoregulatory set point, 2) active suppression of metabolism in non-thermogenic 

tissues, and 3) passive thermal effects. A large portion of the decrease in thermogenic 

metabolism is likely mediated by decreased thermogenesis in brown adipose tissue, as 

brown adipose tissue mitochondrial respiration is suppressed by up to 60% in torpor 

compared to IBE (McFarlane et al., 2017).  

 

Active suppression of mitochondrial metabolism would be most important before body 

temperature decreases, and thus, along with adjusting the thermoregulatory set point, 

likely plays an important role in initiating the reduction in metabolic rate before passive 

thermal effects become significant. Liver is responsible for roughly 12% of basal 

metabolic rate (BMR) in small rodents (Martin and Fuhrman, 1955), and mitochondrial 

respiration has been estimated to account for as much as 90% of BMR (Rolfe and Brown, 

1997). Active suppression in liver mitochondria alone can therefore explain roughly 7.5% 

of the total metabolic suppression that occurs in 13-lined ground squirrels, even with no 

change in body temperature. Active suppression of mitochondrial metabolism in other 

tissues can explain more of the whole animal metabolic suppression. Suppression of 
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skeletal muscle mitochondria can explain roughly 9% of whole-animal metabolic 

suppression, as skeletal muscle contributes approximately 34% of BMR (Martin and 

Fuhrman, 1955) and muscle mitochondria are suppressed by 30% in torpor (Brown et al., 

2012). It would be useful to measure mitochondrial respiration in other metabolically 

active tissues such as the gut and kidneys, which make up an additional 20% of BMR and 

could thus contribute significantly to metabolic suppression.  

	

Although the liver is a metabolically important organ, the suppression that occurs in liver 

mitochondria seems disproportionately high compared to other tissues. Recent work 

suggests that the liver may also be important to thermogenesis in 13-lined ground 

squirrels since uncoupling proteins UCP2 and UCP3 are upregulated in the winter (K.E. 

Mathers, L.I. Hayward and J.F. Staples, in preparation). If the liver is indeed involved in 

thermogenesis in hibernators, rapid suppression of mitochondrial metabolism during 

torpor (and reversal during IBE) could provide a much more significant contribution to 

the changes in body temperature that occur over a torpor-IBE cycle. 

 

 

6.3 Conclusions 
 

In my thesis, I have demonstrated that differential phosphorylation of ETS complexes I 

and II underlies significant changes in their activities as well as metabolism of intact 

mitochondria between torpor and IBE. It will be useful to characterize the exact sites of 

the proteins that are differentially phosphorylated, as such information will offer more 

insights into how these changes occur and suggest targets for manipulation. Src kinases 

and PTPMT1 may play an important role in regulating the changes in phosphorylation 

that occur between torpor and IBE. Future work should characterize these pathways and 

their targets in liver mitochondria of hibernators and attempt to manipulate them. 
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