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Abstract 

This dissertation explores the ecology of caribou (Rangifer tarandus spp.) and muskoxen 

(Ovibos moschatus), and its relevance to human hunters on Banks Island, NWT, Canada, over 

the last 4000 years, primarily through the isotopic analysis of modern and archaeological faunal 

remains. 

First, we establish baseline carbon and nitrogen isotope relationships between modern 

vegetation and caribou and muskox bone collagen using Bayesian mixing models. The models 

indicate that dwarf shrub (Salix arctica) does not contribute significantly to bone collagen 

isotopic compositions in either species, while sedges and yellow lichen (Cetraria tilesii) do. 

These findings are ecologically significant considering that shrub phytomass is expected to 

increase across the Circumpolar Arctic, while lichen phytomass is expected to decrease. 

Second, we investigate the hypothesis that niche competition caused periodic declines in the 

caribou and muskox populations over the last 4000 years, using archaeological bone collagen 

δ13C and δ15N. After accounting for the possibility of different trophic discrimination factors 

in both species, the isotopic data suggest that caribou and muskoxen typically occupy the same 

niche, but tend towards niche expansion during cold or climatically-unstable periods. 

Third, we evaluate the potential of reconstructing seasonal movements and migrations in 

caribou and muskoxen by sequential measurements of tooth enamel δ18O on the micrometer-

scale. We conclude that seasonal variation in precipitation δ18O obscures geographic variation 

in δ18O in these tooth enamel samples. The intra-tooth patterns in δ18O are useful as 

paleoenvironmental proxies as they reflect changes in seasonality across time. 

 

 

 

 

 



 

ii 

 

Keywords 

Caribou, muskox, Banks Island, Canadian Arctic archaeology, isotopic baselines, 

zooarchaeology, isotopic niche, ecology, arctic herbivore ecology 



 

iii 

 

Dedication 

This work is dedicated to the memory of my grandfather, James Neil Kulpan. 



 

iv 

 

Acknowledgments 

First and foremost, I thank my two supervisors Lisa Hodgetts and Fred J. Longstaffe for their 

mentorship and substantial intellectual and financial investments in me over the last four years. 

Both were fully supportive of this project, encouraged me to pursue whatever interesting 

questions I could think of related to my research, and never hesitated to provide the tools or 

funds required for exploratory research or analysis. On many occasions, their confidence in me 

helped overcome bouts of serious self-doubt and find seemingly impossible solutions to 

methodological or analytical problems. Both embody the best attributes of academic scientists, 

and few graduate students are fortunate enough to have such excellent supervisors. I will truly 

miss our weekly meetings and encounters. 

I also thank my dissertation examination committee, Jean-Francois Millaire, Andrew Nelson, 

Tamara Varney, and Elizabeth Webb for their time, thoughtful comments, and excellent 

feedback. 

I am also indebted to Kim Law, Li Huang, and Grace Yau at the Laboratory for Stable Isotope 

Science for training me in many sample preparation and analytical techniques, for patiently 

answering innumerous questions over the last four years, and for sharing so much of their 

experiential lab wisdom with me (using a screwdriver to listen for the turbo pump wind-down 

stands out as one example). This project would not be possible without their patience, 

mentorship, advice, and encouragement. 

I thank Trevor Lucas for providing me with modern caribou and muskox bone samples, which 

enabled me to write Chapter 2, for sharing his knowledge of caribou and muskoxen with me, 

and for protecting us as Wildlife Monitor during the 2014 field season on Banks Island. I also 

thank John Lucas Jr. and David Haogak, who were also kind enough to share their knowledge 

with me, and encouraged me to pursue this project. 

Max Friesen graciously allowed me to sample archaeological caribou and muskox remains 

from the Nelson River collection at the University of Toronto. Ed Eastaugh assisted in 

sampling from the Nasogaluak/PgPw-3 collection and was always willing to answer questions 

related to GIS. Caron Olive, Laura Kelvin, and Beth Compton all collected forage plant 

samples on Banks Island in 2015, which greatly expanded that isotopic dataset. Alexis 



 

v 

 

Dolphin’s expert consultation on embedding and sectioning teeth made Chapter 3 possible. 

Farnoush Tahmasebi advised me on best practices for preparing and analyzing plant samples, 

particularly for δ15N-only analysis. I am thankful to Rachel Schwartz-Narbonne for many hours 

of fruitful discussion on mixing models and herbivore ecology at high latitudes, and tea. Brian 

Dalrymple at the UWO Physics Machine Shop saved significant amounts of time and money 

by quickly manufacturing a replacement gear for the micromill on very short notice. Many 

thanks to Diana Moreiras for her encouragement, help brainstorming in the lab, irrepressible 

optimism, and friendship over the last four years. 

Major funding for this project was provided through Lisa Hodgetts’ SSHRC Insight Grant (ID# 

435-2012-0367), Polar Continental Shelf Program Awards, and the Northern Scientific 

Training Program Awards, and through Fred J. Longstaffe’s NSERC Discovery Grant, Canada 

Foundation for Innovation Grant, Ontario Research Fund, and Canada Research Chairs. 

I am grateful for additional financial support provided to me by the Arctic Institute of North 

America’s Grant-in-Aid Program, and Western’s Faculty of Social Science Graduate Research 

Award. I am also thankful to Jean-Francois Millaire and Kim Clark for supplementary funding 

provided through an ancillary summer teaching assistantship, and to Jeannie Taylor for finding 

work for me around the department in summer 2017. 

My parents, Lee and Amy Munizzi, and parents-in law, John and Carmen McCarver, 

subsidized many of our living costs during the last four years. Without their generosity and 

encouragement, I would have been forced to abandon this research project. Many thanks as 

well to the Brozo, Mitchell/Pablo, and Salvador families for their kindness, for making Canada 

feel like home, and for all the great memories. 

Finally, to my “co-author in life” Kelly McCarver Munizzi: thank you for your editing skills, 

companionship, and especially your patience while I worked through three degrees. And to our 

son Miles: you’re the project of which I’m most proud, and your innate curiosity makes each 

day an adventure in discovery. 



 

vi 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Dedication .......................................................................................................................... iii 

Acknowledgments.............................................................................................................. iv 

Table of Contents ............................................................................................................... vi 

List of Tables ................................................................................................................... xiii 

List of Figures ................................................................................................................ xviii 

List of Appendices ......................................................................................................... xxix 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 Project Overview and Scope ................................................................................... 1 

1.2 Stable Isotope Analysis as a Tool in Ecological and Paleoecological Research .... 5 

1.2.1 Stable Isotope Systematics .......................................................................... 5 

1.2.2 Basic Skeletal Biology ................................................................................ 7 

1.2.3 Carbon and Nitrogen Isotope Compositions in Herbivore Bone and Dentin 

Collagen ...................................................................................................... 8 

1.2.4 Carbon and Oxygen Isotope Compositions in Mammalian Tooth Enamel

................................................................................................................... 11 

1.3 The Isotopic Ecology of Banks Island .................................................................. 15 

1.3.1 Carbon and Nitrogen Isotope Ecology of Arctic Plants ............................ 15 

1.3.2 Surface Hydrology and δ18O and δ2H in Surface and Plant Water ........... 19 

1.4 The Archaeology of Banks Island ......................................................................... 21 

1.5 Caribou and Muskox Diet on Banks Island and Physiological Considerations.... 34 

1.6 Organization of the Dissertation ........................................................................... 38 

1.7 References ............................................................................................................. 40 

Chapter 2 ........................................................................................................................... 75 



 

vii 

 

2 Do Caribou (Rangifer tarandus spp.) and Muskoxen (Ovibos moschatus) Utilize the 

Same Forage Sources? An Isotopic Approach to an Ecological Question on Banks 

Island, NWT, Canada ................................................................................................... 75 

2.1 Introduction ........................................................................................................... 75 

2.1.1 Caribou and Muskox Dietary Ecology ..................................................... 78 

2.1.2 Potential Issues with Existing Dietary Interpretations .............................. 81 

2.1.3 Stable Isotope Analysis in Terrestrial Herbivore Ecology ....................... 82 

2.2 Materials ............................................................................................................... 86 

2.2.1 Bone and Dentin Collagen ........................................................................ 86 

2.2.2 Forage Plants ............................................................................................. 92 

2.3 Methods................................................................................................................. 98 

2.3.1 Sample Preparation ................................................................................... 98 

2.3.2 Isotopic Analysis and Determination of Elemental Weight Percentage . 101 

2.3.3 Bayesian Dietary Mixing Models Using MixSIAR ................................ 104 

2.4 Results ................................................................................................................. 109 

2.4.1 Bone Collagen ......................................................................................... 109 

2.4.2 Variation in Forage Sample δ13C and δ15N ............................................. 112 

2.4.3 Geographic Variation in Forage Sample δ13C and δ15N ......................... 125 

2.4.4 Bayesian-Imputed Trophic Discrimination Factors (TDFs) ................... 127 

2.4.5 Estimates of Source Contributions to Caribou Bone Collagen Isotopic 

Compositions – Maximum Source Divisions ......................................... 127 

2.4.6 Estimates of Source Contributions to Caribou Bone Collagen Isotopic 

Compositions – Aggregated Source Divisions ....................................... 133 

2.4.7 Estimates of Source Contributions to Muskox Bone Collagen Isotopic 

Compositions – Maximum Source Divisions ......................................... 137 

2.4.8 Estimates of Source Contributions to Muskox Bone Collagen Isotopic 

Compositions – Aggregated Source Divisions ....................................... 142 

2.4.9 Dentin Collagen δ13C and δ15N Results .................................................. 146 

2.5 Discussion ........................................................................................................... 161 



 

viii 

 

2.5.1 Caribou Bone Collagen Isotopic Compositions and Diet on Banks Island

................................................................................................................. 161 

2.5.2 Muskox Bone Collagen Isotopic Compositions and Diet on Banks Island

................................................................................................................. 162 

2.5.3 Potential Confounding Factors ............................................................... 163 

2.5.4 Muskox Seasonal Dietary Variation Inferred from Dentin δ13C and δ15N

................................................................................................................. 168 

2.5.5 Caribou Seasonal Dietary Variation Inferred from Dentin δ13C and δ15N

................................................................................................................. 175 

2.5.6 Implications of Modern Bone and Dentin Collagen for Modern Caribou 

and Muskox Ecology on Banks Island.................................................... 177 

2.6 Conclusion .......................................................................................................... 178 

2.7 References ........................................................................................................... 181 

Chapter 3 ......................................................................................................................... 210 

3 Isotopic Evidence from Bone and Dentin Collagen for Variation in the Ecological 

Niches of Caribou (Rangifer tarandus spp.) and Muskoxen (Ovibos moschatus) on 

Banks Island, NWT, Canada Over the Last 4000 Years and Its Implications for 

Ancient Hunters ......................................................................................................... 210 

3.1 Introduction ......................................................................................................... 211 

3.1.1 Rationale ................................................................................................. 211 

3.1.2 The Archaeology and Zooarchaeology of Banks Island ......................... 214 

3.1.3 Archaeological Settlement-Subsistence Patterns on Banks Island ......... 220 

3.1.4 Isotopic and Ecological Niche ................................................................ 220 

3.1.5 Bone Collagen δ13C and δ15N ................................................................. 224 

3.1.6 Dentin Collagen δ13C and δ15N ............................................................... 224 

3.1.7 Tooth Development in Caribou and Muskoxen ...................................... 227 

3.2 Materials ............................................................................................................. 231 

3.2.1 Bone and Dentin Collagen ...................................................................... 231 

3.3 Methods............................................................................................................... 246 

3.3.1 Sample Preparation ................................................................................. 246 



 

ix 

 

3.3.2 Isotopic Analysis ..................................................................................... 250 

3.3.3 Convex Hulls and Layman Metrics ........................................................ 251 

3.3.4 Multivariate and Bayesian Ellipses ......................................................... 254 

3.4 Results ................................................................................................................. 255 

3.4.1 Bone Collagen δ13C and δ15N Results .................................................... 255 

3.4.2 Trophic Discrimination Factors and Niche Overlap ............................... 256 

3.4.3 Caribou and Muskox Layman and Ellipse Metrics................................. 265 

3.4.4 Overlap in Caribou and Muskox Ellipses Across Cultural Periods ........ 270 

3.4.5 Dentin Collagen δ13C and δ15N Results .................................................. 271 

3.4.6 Caribou versus Muskox Dentin Collagen δ13C and δ15N........................ 287 

3.5 Discussion ........................................................................................................... 287 

3.5.1 Isotopic Niche Dimensionality Derived from δ13Cbc and δ15Nbc ............ 288 

3.5.2 Isotopic Niche Dimensionality and Models of Caribou and Muskox Niche 

Relationships ........................................................................................... 290 

3.5.3 Integrating Isotopic Niche Dimensionality and Proximity/Overlap to 

Evaluate Ecological Niche Models ......................................................... 291 

3.5.4 Muskox Bone Collagen Isotopic Compositions as Indices of Ecological 

Change .................................................................................................... 297 

3.5.5 Caribou Dentin Collagen Isotopic Compositions and Seasonal Dietary 

Variation ................................................................................................. 300 

3.5.6 Muskox Dentin Collagen Isotopic Compositions and Seasonal Dietary 

Variation ................................................................................................. 302 

3.5.7 The Archaeological Significance of Caribou and Muskox Niche 

Relationships on Banks Island ................................................................ 305 

3.6 Conclusion .......................................................................................................... 309 

3.7 References ........................................................................................................... 312 

Chapter 4 ......................................................................................................................... 339 

4 Assessing the Potential of Enamel δ18O for the Reconstruction of Seasonal 

Movements in Caribou (Rangifer tarandus spp.) and Muskoxen (Ovibos moschatus) 

on Banks Island, NWT, Canada. A Test Using GIS, FTIR and LA-GC-IRMS ........ 339 



 

x 

 

4.1 Introduction ......................................................................................................... 340 

4.1.1 Rationale ................................................................................................. 343 

4.1.2 Tooth Enamel Formation ........................................................................ 345 

4.1.3 Stable Carbon and Oxygen Isotope Signals in Tooth Enamel ................ 350 

4.2 Materials ............................................................................................................. 352 

4.2.1 Meteoric Surface Water Samples............................................................ 352 

4.2.2 Tooth Enamel .......................................................................................... 355 

4.3 Methods............................................................................................................... 357 

4.3.1 Sample Preparation ................................................................................. 357 

4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) .................................. 359 

4.3.3 Micromilled Tooth Enamel for Structural Carbonate Isotopic Analysis 363 

4.3.4 Tooth Enamel Thick Sections for LA-GC-IRMS ................................... 363 

4.3.5 Isotopic Analysis ..................................................................................... 364 

4.3.6 Internal Enamel Standard ........................................................................ 368 

4.3.7 Spatial Analysis of Water Sample δ18O .................................................. 370 

4.4 Results ................................................................................................................. 371 

4.4.1 Surface Water δ18O and δ2H Results and δ18O Isoscape ........................ 371 

4.4.2 FTIR Results ........................................................................................... 377 

4.4.3 Tooth Enamel Structural Carbonate δ13C and δ18O (δ13Csc and δ18Osc) 

Results ..................................................................................................... 382 

4.4.4 Tooth Enamel Laser Ablation δ13C and δ18O (δ13CLA and δ18OLA) Results

................................................................................................................. 385 

4.4.5 Comparison of Structural Carbonate and Laser Ablation δ13C and δ18O 

(Δ13Csc-LA and Δ18Osc-LA) ......................................................................... 399 

4.5 Discussion ........................................................................................................... 405 

4.5.1 Caribou Tooth Enamel δ13C Derived via Laser Ablation (δ13CLA) ......... 405 

4.5.2 Muskox Tooth Enamel δ13C Derived via Laser Ablation (δ13CLA) ........ 407 



 

xi 

 

4.5.3 Δ13CLA-bc Spacings in Caribou and Muskox Teeth ................................. 408 

4.5.4 Tooth Enamel δ18O Derived via Laser Ablation (δ18OLA) ...................... 414 

4.6 Conclusion .......................................................................................................... 420 

4.7 References ........................................................................................................... 421 

Chapter 5 ......................................................................................................................... 446 

5 General Discussion and Conclusion .......................................................................... 446 

5.1 The Importance of Baseline Isotopic Data in Understanding Tissue Isotopic 

Compositions ...................................................................................................... 446 

5.2 Potential Disparities Between Ellipse Metrics and Mixing Models ................... 447 

5.3 Relationships Between Caribou, Muskoxen, and Ancient Hunters on Banks Island

............................................................................................................................. 448 

5.4 Contributions to Isotopic Baseline Development at Northern Latitudes ............ 449 

5.5 Further Research ................................................................................................. 450 

5.5.1 The Relationship Between Caribou and Muskox Niche Variation and 

Population Size ....................................................................................... 450 

5.5.2 Traditional Hunting Knowledge on Banks Island .................................. 450 

5.5.3 Systematic Study of Vegetation Isotopic Compositions on Banks Island

................................................................................................................. 451 

5.5.4 The Role of Glycine and Microflora in Caribou and Muskox Bone 

Collagen Isotopic Compositions ............................................................. 452 

5.5.5 Controlled Feeding Studies in Captive/Domesticated Caribou and 

Muskoxen ................................................................................................ 453 

5.5.6 Development of Matrix-Matched Tooth Enamel Standards for LA-GC-

IRMS ....................................................................................................... 453 

5.5.7 87Sr/86Sr as a Tool for Investigating Caribou and Muskox Movements on 

Banks Island ............................................................................................ 454 

5.6 Summary ............................................................................................................. 455 

5.7 References ........................................................................................................... 456 

Appendices ...................................................................................................................... 465 

Appendix A ................................................................................................................ 465 



 

xii 

 

Appendix B ................................................................................................................ 471 

Appendix C ................................................................................................................ 474 

Curriculum Vitae ............................................................................................................ 484 

  



 

xiii 

 

List of Tables 

Table 2.1. Isotopic, elemental, and percent collagen content data for caribou bulk bone 

collagen samples. .................................................................................................................... 87 

Table 2.2. Isotopic, elemental, and percent collagen content data for muskox bulk bone 

collagen samples. .................................................................................................................... 88 

Table 2.3. Isotopic, elemental, and percent collagen content data for crown dentin microbulk 

collagen samples from caribou. .............................................................................................. 89 

Table 2.4. Isotopic, elemental, and percent collagen content data for crown dentin microbulk 

collagen samples from muskoxen. .......................................................................................... 90 

Table 2.5. Taxonomic and collection site information for forage samples from Banks Island.

................................................................................................................................................. 93 

Table 2.6. Functional group classification scheme for forage samples. ................................. 97 

Table 2.7. Isotopic and elemental data for forage samples from Banks Island. Samples are 

ordered alphabetically by functional group. Subsamples are denoted by lowercase letters. 113 

Table 2.8. Mean C% and N% of forage samples from Banks Island, their mean atomic C:N 

ratios, and sample size. ......................................................................................................... 124 

Table 2.9. Results of Mann-Whitney U tests comparing isotopic compositions of forage 

samples from northern and southern sites. Moss samples were only collected at northern sites 

and were therefore not tested. ............................................................................................... 126 

Table 2.10. Mean and median values and 95% credible intervals of the posterior probability 

distributions of all forage sources, indicating the estimated proportional contribution of each 

forage source to caribou bone collagen isotopic compositions on Banks Island. Values 

correspond to the histograms in Figures 2.7 and 2.8. ........................................................... 132 

Table 2.11. Mean and median values and 95% credible intervals of the posterior probability 

distributions of aggregated forage sources, indicating the estimated proportional contribution 



 

xiv 

 

of each forage source to caribou bone collagen isotopic compositions on Banks Island. 

Values correspond to the histograms in Figure 2.10............................................................. 136 

Table 2.12. Mean and median values and 95% credible intervals of the posterior probability 

distributions of all forage sources, indicating the estimated proportional contribution of each 

forage source to muskox bone collagen isotopic compositions on Banks Island. Values 

correspond to the histograms in Figures 2.12 and 2.13. ....................................................... 141 

Table 2.13. Mean and median values and 95% credible intervals of the posterior probability 

distributions of aggregated forage sources, indicating the estimated proportional contribution 

of each forage source to muskox bone collagen isotopic compositions on Banks Island. 

Values correspond to the histograms in Figure 2.15............................................................. 145 

Table 2.14. Summary data for caribou dentin collagen δ13C, and dentin collagen-bone 

collagen δ13C offsets. ............................................................................................................ 154 

Table 2.15. Summary data for caribou dentin collagen δ15N, and dentin collagen-bone 

collagen δ15N offsets. ............................................................................................................ 155 

Table 2.16. Summary data for muskox dentin collagen δ13C, and dentin collagen-bone 

collagen δ13C offsets. ............................................................................................................ 157 

Table 2.17. Summary data for muskox dentin collagen δ15N, and dentin collagen-bone 

collagen δ15N offsets. ............................................................................................................ 159 

Table 3.1. Radiocarbon dates from archaeological sites on Banks Island. We used the 

IntCal13 calibration curve (Reimer et al. 2013) in the CALIB software program (version 

7.0.4) (Stuiver et al. 2017) to perform the calibrations. ........................................................ 218 

Table 3.2. Isotopic, elemental, and percent collagen content data for caribou and muskox 

bulk bone collagen samples from Banks Island. All modern bone collagen carbon isotope 

compositions are corrected by +1.7‰ for comparability with archaeological bone collagen 

data. ....................................................................................................................................... 232 

Table 3.3. Isotopic, elemental, and percent collagen content data for caribou sequential crown 

dentin collagen samples from Banks Island. All modern dentin collagen carbon isotope 



 

xv 

 

compositions are corrected by +1.7‰ for comparability with archaeological bone collagen 

data. ....................................................................................................................................... 241 

Table 3.4. Isotopic, elemental, and percent collagen content data for muskox sequential 

crown dentin collagen samples from Banks Island. All modern dentin collagen carbon 

isotope compositions are corrected by +1.7‰ for comparability with archaeological bone 

collagen data. ........................................................................................................................ 243 

Table 3.5. Descriptions of different Layman metrics presented in this chapter. .................. 253 

Table 3.6. Multivariate and Bayesian ellipse metrics for non-transposed and transposed 

caribou and muskox bone collagen isotopic data from Banks Island. .................................. 262 

Table 3.7. Summary and Layman metrics for non-transposed and transposed caribou and 

muskox bone collagen isotopic data from Banks Island. Modern δ13Cbc data are adjusted by 

+1.7‰ for comparability with archaeological bone collagen isotopic data. ........................ 263 

Table 3.8. Summary data for caribou dentin collagen δ13C, and dentin collagen-bone collagen 

δ13C offsets. All modern carbon isotope compositions are adjusted by +1.7‰ for 

comparability with archaeological collagen data. ................................................................. 279 

Table 3.9. Summary data for caribou dentin collagen δ15N, and dentin collagen-bone collagen 

δ15N offsets. .......................................................................................................................... 281 

Table 3.10. Summary data for muskox dentin collagen δ13C, and dentin collagen-bone 

collagen δ13C offsets. All modern carbon isotope compositions are adjusted by +1.7‰ for 

comparability with archaeological collagen data. ................................................................. 283 

Table 3.11. Summary data for muskox dentin collagen δ15N, and dentin collagen-bone 

collagen δ15N offsets. ............................................................................................................ 285 

Table 4.1. The division of archaeological periods on Banks Island. Note the large apparent 

occupational hiatuses preceding and following the Lagoon period. For further discussion, see 

Chapter 3. .............................................................................................................................. 342 



 

xvi 

 

Table 4.2. Oxygen and hydrogen isotope compositions of meteoric surface water samples 

collected from Banks Island in 2008, 2010, and 2014. ......................................................... 353 

Table 4.3. Caribou and muskox tooth sample information. .................................................. 356 

Table 4.4. FTIR indices used to evaluate enamel preservation in this study. Formula values 

are wavenumbers (in cm–1). .................................................................................................. 361 

Table 4.5. Wavenumbers at which the presence of absorbance peaks is commonly associated 

with chemical alteration or exogenous substances. .............................................................. 362 

Table 4.6. Results of FTIR analysis of tooth enamel samples. ............................................. 381 

Table 4.7. Structural carbonate carbon and oxygen isotope results for micromilled caribou 

tooth enamel microsamples. .................................................................................................. 383 

Table 4.8. Structural carbonate carbon and oxygen isotope results for micromilled muskox 

tooth enamel microsamples. .................................................................................................. 384 

Table 4.9. Values of δ13CLA and δ18OLA for caribou tooth enamel analyzed using LA-GC-

IRMS. .................................................................................................................................... 387 

Table 4.10. Values of δ13CLA and δ18OLA for muskox tooth enamel analyzed using LA-GC-

IRMS. .................................................................................................................................... 393 

Table 4.11. Offsets between the δ13C and δ18O (Δ13Csc-LA and Δ18Osc-LA) obtained from 

structural carbonate and laser ablation of caribou tooth enamel from corresponding areas on 

A- and B-sections. Where the area micromilled on the A-Section corresponds to multiple 

ablation spots on the B-section, Δ13Csc-LA and Δ18Osc-LA shown here reflect the averages of the 

ablation spots. ....................................................................................................................... 400 

Table 4.12. Offsets between the δ13C and δ18O (Δ13Csc-LA and Δ18Osc-LA) obtained from 

structural carbonate and laser ablation of muskox tooth enamel from corresponding areas on 

A- and B-sections. Where the area micromilled on the A-Section corresponds to multiple 

ablation spots on the B-section, Δ13Csc-LA and Δ18Osc-LA shown here reflect the averages of the 

ablation spots. ....................................................................................................................... 403 



 

xvii 

 

Table 4.13. Caribou intratooth-averaged δ13CLA (column A) vs. bulk bone collagen δ13C 

(δ13Cbc, see chapter 3) from the same individual (column B). The isotopic fractionation of 13C 

between tooth enamel and bulk bone collagen (Δ13CLA-bc, column C) is calculated by 

subtracting column B values from column A. Using Bayesian-derived estimates of isotopic 

fractionation of 13C between bulk bone collagen and diet (Δ13Cbc-diet, here +4.7‰), the total 

spacing between tooth enamel δ13C and dietary δ13C is estimated (column D). By simply 

subtracting column D from column A, the average δ13C of diet is estimated (column E). 

Finally, archaeological δ13Cdiet in column E can be compared to modern forage δ13C by 

subtracting 1.7‰ (column F). ............................................................................................... 410 

Table 4.14. Muskox intratooth-averaged δ13CLA (column A) vs. bulk bone collagen δ13C 

(δ13Cbc, see chapter 3) from the same individual (column B). The isotopic fractionation of 13C 

between tooth enamel and bulk bone collagen (Δ13CLA-bc, column C) is calculated by 

subtracting column B values from column A. Using Bayesian-derived estimates of isotopic 

fractionation of 13C between bulk bone collagen and diet (Δ13Cbc-diet, here +2.6‰), the total 

spacing between tooth enamel δ13C and dietary δ13C is estimated (column D). By simply 

subtracting column D from column A, the average δ13C of diet is estimated (column E). 

Finally, archaeological δ13Cdiet in column E can be compared to modern forage δ13C by 

subtracting 1.7‰ (column F). ............................................................................................... 412 

 



 

xviii 

 

List of Figures 

Figure 1.1. Banks Island and its location within North America (inset). ................................. 3 

Figure 1.2. Simplified model of fractionation of 13C between CO2 oxidized from food 

(δ13CCO2), blood bicarbonate (δ13CHCO3), and structural carbonate (δ13Csc) in mammalian 

bioapatites. In large ruminants, there is an additional enrichment of 13C between HCO3 and 

structural carbonate due to the loss of 13C-depleted methane. ................................................ 13 

Figure 1.3. Simplified model of fractionation of 18O between drinking water (δ18Odw), body 

water (δ18Obw), and structural carbonate (δ18Osc) and phosphate (δ18Op) in mammalian 

bioapatites. .............................................................................................................................. 14 

Figure 1.4. Relative difference in the δ13C of different plant biochemical compounds 

compared to the whole-plant average δ13C (here, set to 0‰). Figure is adapted from Deines 

(1980) and Boutton (1996)...................................................................................................... 16 

Figure 1.5. Timeline of archaeological human occupations in the Eastern Arctic overall (top), 

and on Banks Island (bottom) in calibrated radiocarbon years BP. ........................................ 22 

Figure 1.6. Muskox skeletal remains (white objects) scattered across the surface of the 

Umingmak (PjRa-2) site. Photo by author. ............................................................................. 24 

Figure 1.7. The Lagoon (OjRl-3) site (image courtesy of Lisa Hodgetts). ............................. 26 

Figure 1.8. The boulder-strewn surface of the Arviq (QaPv-5) site, with Mercy Bay visible in 

the background. Photo by author. ........................................................................................... 27 

Figure 1.9. The skeletal remains of muskoxen – many still partially-articulated – at the Head 

Hill (PlPx-1) site (image courtesy of Lisa Hodgetts). ............................................................. 30 

Figure 1.10. Portrait of the HMS Investigator trapped in pack ice at Mercy Bay, by Samuel 

Gurney Cresswell and William Simpson (image courtesy of Library and Archives Canada, C-

016105). The Investigator now lies at the bottom of Mercy Bay, partially buried in silt but 

largely intact............................................................................................................................ 32 



 

xix 

 

Figure 1.11. The remains of the HMS Investigator’s cache in 2014, with the pile of offloaded 

coal and many barrel staves visible (image courtesy of Lisa Hodgetts). ................................ 33 

Figure 2.1. Locations of forage sample collection sites on Banks Island (white circles) and 

the location of Banks Island within North America (inset). Exact coordinates and elevations 

of each sampling site are listed in Table 2.5. .......................................................................... 77 

Figure 2.2. Diagram of a typical hypsodont tooth crown. (a) buccolingual cross-section 

showing apical section obliterated through occlusal wear; (b) image of the dentinoenamel 

junction (DEJ) in a muskox M2, taken at 5x magnification using differential interference 

contrast (DIC) microscopy. “E” is enamel and “D” is dentin; small, near-horizontal lines 

(white bracket) are individual dentin tubules; (c) idealized illustration of diagram b, depicting 

sequentially-developed dentin cones (gray lines). Red arrows indicate the direction of 

successive dentin apposition away from the DEJ. .................................................................. 85 

Figure 2.3. The dentin collagen sampling process: (a) intact tooth after being removed, 

cleaned, and dried; (b) embedding in epoxy resin using silicone molds; (c) obtaining one of 

two thick sections from the epoxy block; the first section (the “A-section”) is used for 

obtaining dentin samples (red material is modeling clay used to position tooth during 

embedding); (d) an A-section marked for transverse sectioning; numbers correspond to 

sequential dentin sample IDs. Each section is approximately 5 mm in height with the 

sampling “grid” anchored at the root-enamel junction (REJ); (e) obtaining sequential dentin 

samples from an A-section using the second sectioning machine. ....................................... 100 

Figure 2.4. Bulk bone collagen δ15N vs. δ13C from modern caribou and muskox on Banks 

Island. .................................................................................................................................... 111 

Figure 2.5. The δ15N vs. δ13C of all tissue subsamples from different forage plants collected 

on Banks Island in 2014 and 2015. ....................................................................................... 123 

Figure 2.6. Average δ15N vs. δ13C and standard deviations of all forage sources, adjusted to 

the δ13Cbc and δ15Nbc of modern caribou bone collagen (teal triangles) using the SIDER-

imputed TDFs. ...................................................................................................................... 129 



 

xx 

 

Figure 2.7. Pairs plot for all forage sources in the caribou dietary mixing model. Posterior 

probability distributions for individual forage sources (in blue) are shown in the diagonal 

panes. Pairwise densities plots are shown in the upper right panes. Numerical correlation 

coefficients are shown in the lower left panes; font size is deliberately scaled to correlation 

size to draw the reader’s attention only to instances of high correlation between sources. . 130 

Figure 2.8. Posterior probability distributions of all forage sources to caribou bone collagen. 

Forage items are: Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern legumes (N 

Leg); northern non-leguminous forbs (N NLF); northern sedges (N Sed); northern willow (N 

Wil); rose/heath (RosHea); southern legumes (S Leg); southern non-leguminous forbs (S 

NLF); southern sedges (S Sed); southern willow (S Wil); and Thamnolia vermicularis 

(Tham). The figure suggests that Cetraria tilesii, southern sedges, and likely southern 

legumes are largest contributors to modern caribou bone collagen carbon and nitrogen 

isotope compositions. ............................................................................................................ 131 

Figure 2.9. Average δ15N vs. δ13C and standard deviations of aggregated forage sources, 

adjusted to the δ13Cbc and δ15Nbc of modern caribou (teal triangles) using the SIDER-imputed 

TDFs. .................................................................................................................................... 134 

Figure 2.10. Posterior probability distributions of aggregated forage sources to caribou bone 

collagen. Forage items are: Cetraria tilesii (Cetr); Thamnolia vermicularis (Tham); moss 

(Moss); legumes (Legu); non-leguminous forbs (NLFo); shrubs (Shrub); grasses (Gras); 

sedges (Sedg). The figure suggests that, with a posteriori source aggregation, the proportional 

contributions of legumes, shrubs, and non-leguminous forbs, respectively, to caribou bone 

collagen carbon and nitrogen isotope compositions increase. .............................................. 135 

Figure 2.11. Average δ15N vs. δ13C and standard deviations of all forage sources, adjusted to 

the δ13Cbc and δ15Nbc of modern muskox bone collagen (pink circles) using the SIDER-

imputed TDFs. ...................................................................................................................... 138 

Figure 2.12. Pairs plot for all forage sources in the muskox dietary mixing model. Posterior 

probability distributions for individual forage sources (in blue) are shown in the diagonal 

panes. Pairwise densities plots are shown in the upper right panes. Numerical correlation 



 

xxi 

 

coefficients are shown in the lower left panes; font size is deliberately scaled to correlation 

size to draw the reader’s attention only to instances of high correlation between sources. . 139 

Figure 2.13. Posterior probability distributions of all forage sources to muskox bone 

collagen. Forage items are: Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern 

legumes (N Leg); northern non-leguminous forbs (N NLF); northern sedges (N Sed); 

northern willow (N Wil); rose/heath (RosHea); southern legumes (S Leg); southern non-

leguminous forbs (S NLF); southern sedges (S Sed); southern willow (S Wil); and Thamnolia 

vermicularis (Tham). The figure suggests that Cetraria tilesii and southern sedges, are largest 

contributors to modern muskox bone collagen carbon and nitrogen isotope compositions. 140 

Figure 2.14. Average δ15N vs. δ13C and standard deviations of aggregated forage sources, 

adjusted to the δ13Cbc and δ15Nbc of modern muskox (pink circles) using the SIDER-imputed 

TDFs. .................................................................................................................................... 143 

Figure 2.15. Posterior probability distributions of aggregated forage sources to muskox bone 

collagen. Forage items are: Cetraria tilesii (Cetr); Thamnolia vermicularis (Tham); moss 

(Moss); legumes (Legu); non-leguminous forbs (NLFo); shrubs (Shrub); grasses (Gras); 

sedges (Sedg). The figure suggests that, even with a posteriori source aggregation, Cetraria 

tilesii and southern sedges, respectively, remain the largest contributors to modern muskox 

bone collagen carbon and nitrogen isotope compositions. ................................................... 144 

Figure 2.16. Values of δ13Cdc in teeth from two modern caribou: BIBS16-19 (unfilled orange 

squares) and BIBS15-67 (filled gray triangles). Teeth are displayed in approximate 

developmental order (dp4, M1, M2). The last dentin sequential sample of each crown is 

always taken from the 5 mm closest to the root-enamel junction (REJ). The δ13C of bulk 

bone collagen from both caribou are shown for comparison at far right. ............................. 148 

Figure 2.17. Values of δ15Ndc in teeth from two modern caribou: BIBS16-19 (unfilled orange 

squares) and BIBS15-67 (filled gray triangles). Teeth are displayed in approximate 

developmental order (dp4, M1, M2). The last dentin sequential sample of each crown is 

always taken from the 5 mm closest to the root-enamel junction (REJ). The δ15N of bulk 

bone collagen from both caribou are shown for comparison at far right. ............................. 149 



 

xxii 

 

Figure 2.18. Values of δ13Cdc in teeth from two modern muskoxen: BIBS14-169 (unfilled 

shapes) and BIBS14-445 (filled shapes). Teeth are displayed in approximate developmental 

order (M1, M2, M3 and P4). The last sequential sample of each tooth is always taken from 

the dentin closest to the junction of the crown and root. The δ13C of bulk bone collagen from 

both muskoxen are shown for comparison at far right. ........................................................ 150 

Figure 2.19. Values of δ15Ndc in teeth from two modern muskoxen: BIBS14-169 (unfilled 

shapes) and BIBS14-445 (filled shapes). Teeth are displayed in approximate developmental 

order (M1, M2, M3 and P4). The last sequential sample of each tooth is always taken from 

the dentin closest to the junction of the crown and root. The δ15N of bulk bone collagen from 

both muskoxen are shown for comparison at far right. ........................................................ 151 

Figure 2.20. Eruption sequence of permanent dentition in muskoxen. “I” = incisor, “C” = 

canine, “PM” = premolar, and “M” = molar. Data are from Tener (1965) and Henrichsen and 

Grue (1980). .......................................................................................................................... 171 

Figure 2.21. Eruption sequence of permanent dentition in barren ground caribou. “I” = 

incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are from Banfield (1954) 

and Miller (1974). ................................................................................................................. 176 

Figure 3.1. Locations of archaeological sites from which we collected caribou and muskox 

bones and teeth, and the location of Banks Island within North America (inset). (1) Nelson 

River (OhRh-1); (2) OjRk-1; (3) OjRl-2; (4) Lagoon (OjRl-3); (5) Agvik (OkRn-1); (6) Cape 

Kellett (OlRr-1); (7) Sunnguqpaaluk (PdRi-1); (8) Nasogaluak (PgPw-3)*; (9) Twin Lakes 

(PjPx-10); (10) Shoran Lake (PjRa-1); (11) Umingmak (PjRa-2); (12) PkPx-18; (13) Head 

Hill (PlPx-1); (14) Arviq (QaPv-5); (15) Back Point (QbPu-3). .......................................... 212 

Figure 3.2. (a) Timeline of archaeological human occupations in the Eastern Arctic overall, 

and on Banks Island. (b) Generalized illustration of variation in mean summer temperature 

on Banks Island over the last 4000 years cal. BP, relative to mean summer temperature at 0 

cal. BP (1950 AD) (dashed line). The figure is produced using data from Bradley (2000), 

Peros and Gajewski (2009), and Gajewski (2015b).............................................................. 213 



 

xxiii 

 

Figure 3.3. Calibrated radiocarbon ranges for bone samples listed in Table 3.1, obtained 

using the IntCal13 calibration curve (Reimer et al. 2013) in the CALIB software program 

(version 7.0.4) (Stuiver et al. 2017). ..................................................................................... 217 

Figure 3.4. Simplified illustration of isotopic niche relationships between two sympatric 

populations, as hypothesized by the “classical” Hutchinsonian niche model, and by the 

ecological displacement model. The x and y axes represent any two stable isotope systems 

(e.g. carbon, nitrogen, sulphur, hydrogen). ........................................................................... 223 

Figure 3.5. Diagram of a typical hypsodont tooth crown, reproduced from Chapter 2. (a) 

buccolingual cross-section showing apical section obliterated through occlusal wear; (b) 

image of the dentinoenamel junction (DEJ) in a muskox M2, taken at 5x magnification using 

differential interference contrast (DIC) microscopy. “E” is enamel and “D” is dentin; small, 

near-horizontal lines (white bracket) are individual dentin tubules; (c) idealized illustration of 

diagram b, depicting sequentially-developed dentin cones (gray lines). Red arrows indicate 

the direction of successive dentin apposition away from the DEJ........................................ 226 

Figure 3.6. Eruption sequence of permanent dentition in barren ground caribou, reproduced 

from Chapter 2. “I” = incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are 

from Banfield (1954) and Miller (1974). .............................................................................. 229 

Figure 3.7. Eruption sequence of permanent dentition in muskoxen, reproduced from Chapter 

2. “I” = incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are from Tener 

(1965) and Henrichsen and Grue (1980). ............................................................................. 230 

Figure 3.8. The dentin collagen sampling process, reproduced from Chapter 2: (a) intact tooth 

after being removed, cleaned, and dried; (b) embedding in epoxy resin using silicone 

cigarette cases as molds; (c) obtaining one of two thick sections from the epoxy block; the 

first section (the “A-section”) is used for obtaining dentin samples (red material is modeling 

clay used to position tooth during embedding); (d) an A-section marked for transverse 

sectioning; numbers correspond to sequential dentin sample IDs. Each section is 

approximately 5 mm in height with the sampling “grid” anchored at the root-enamel junction 

(REJ); (e) obtaining sequential dentin samples from an A-section using the second sectioning 

machine. ................................................................................................................................ 249 



 

xxiv 

 

Figure 3.9. Non-transposed bone collagen δ13C and δ15N, convex hulls and SEAc ellipses 

derived from caribou (turquoise) and muskoxen (coral) bone collagen isotopic compositions 

across cultural periods on Banks Island. (a) Pre-Dorset period; (b) Lagoon period; (c) Early 

Thule period; (d) Classic Thule period; (e) Inuit period; (f) modern period. Modern carbon 

isotope compositions have been adjusted by +1.7‰ for comparability with archaeological 

data. ....................................................................................................................................... 260 

Figure 3.10. TDF-transposed convex hulls and SEAc ellipses derived from caribou 

(turquoise) and muskoxen (coral) bone collagen isotopic compositions across cultural periods 

on Banks Island. (a) Pre-Dorset period; (b) Lagoon period; (c) Early Thule period; (d) 

Classic Thule period; (e) Inuit period; (f) modern period. Modern carbon isotope 

compositions have been adjusted by +1.7‰ for comparability with archaeological data. .. 261 

Figure 3.11. Credible intervals (at 104 iterations) for posterior probability distributions of (a) 

caribou and (b) muskox SEAB from each cultural period. Thinnest boxes = 95% CI; medium-

thick boxes = 75% CI; thickest boxes = 50% CI. “PD” = Pre-Dorset; “LN” = Lagoon; “ET” = 

Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. Red squares denote 

SEAc ellipse area estimates. Black circles denote the modal value of each SEAB ellipse area 

estimate. ................................................................................................................................ 264 

Figure 3.12. Layman metrics for caribou bone collagen plotted against sample size. (a) 

carbon range; (b) nitrogen range; (c) distance to centroid; (d) mean nearest neighbor distance; 

(e) standard deviation of nearest neighbor distance; (f) convex hull area. ........................... 268 

Figure 3.13. Layman metrics for muskox bone collagen plotted against sample size. (a) 

carbon range; (b) nitrogen range; (c) distance to centroid; (d) mean nearest neighbor distance; 

(e) standard deviation of nearest neighbor distance; (f) convex hull area. ........................... 269 

Figure 3.14. The δ13Cdc of caribou tooth crowns from the: (a) modern period; (b) Inuit period; 

and (c) Classic Thule period. Data are displayed in approximate order of tooth development 

(dp4, M1, M2, M3, P4). The last sequential sample of each tooth is always taken from the ~ 5 

mm of dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ13C of each 

caribou from which dentin is sampled is illustrated in the gray box at the far right. Modern 



 

xxv 

 

dentin collagen carbon isotope compositions have been corrected by +1.7‰ for 

comparability with archaeological data. ............................................................................... 275 

Figure 3.15. The δ15Ndc of caribou tooth crowns from the: (a) modern period; (b) Inuit period; 

and (c) Classic Thule period. Data are displayed in approximate order of tooth development 

(dp4, M1, M2, M3, P4). The last sequential sample of each tooth is always taken from the ~ 5 

mm of dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ15N of each 

caribou from which dentin collagen is sampled is illustrated in gray box at the far right. ... 276 

Figure 3.16. The δ13Cdc of muskox tooth crowns from the: (a) modern period; (b) Inuit 

period; (c) Classic Thule period; (d) Early Thule period; (e) Lagoon Period; and (f) the Pre-

Dorset period. The last sequential sample of each tooth is always taken from the ~ 5 mm of 

dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ13C of each 

muskox from which dentin is sampled is illustrated in the gray box at the far right. Modern 

dentin collagen carbon isotope compositions have been corrected by +1.7 for comparability 

with archaeological data. ...................................................................................................... 277 

Figure 3.17. The δ15Ndc of muskox tooth crowns from the: (a) modern period; (b) Inuit 

period; (c) Classic Thule period; (d) Early Thule period; (e) Lagoon Period; and (f) the Pre-

Dorset period. The last sequential sample of each tooth is always taken from the ~ 5 mm of 

dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ15N of each 

caribou from which dentin collagen is sampled is illustrated in the gray box at the far right.

............................................................................................................................................... 278 

Figure 3.18. Mean δ13Cbc for caribou (turquoise circles) and muskoxen (coral triangles) 

across cultural periods; linear regression equation and R2 value for caribou mean δ13Cbc 

values across time (top right corner), and linear regression equation and R2 value for muskox 

mean δ13Cbc across time (bottom left corner). “PD” = Pre-Dorset; “LN” = Lagoon; “ET” = 

Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. ................................... 289 

Figure 3.19. Mean δ15Nbc for caribou (turquoise circles) and muskoxen (coral triangles) 

across cultural periods; linear regression equation and R2 value for caribou mean δ15Nbc 

values across time (bottom right corner), and linear regression equation and R2 value for 



 

xxvi 

 

muskox mean δ15Nbc across time (top left corner). “PD” = Pre-Dorset; “LN” = Lagoon; “ET” 

= Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. ............................... 289 

Figure 3.20. Non-transposed caribou and muskox bone collagen δ13C and δ15N values from 

the Pre-Dorset period, divided by archaeological site, demonstrating the relative homogeneity 

of isotopic values across the entire Pre-Dorset period. ......................................................... 307 

Figure 4.1. Location of Banks Island within North America (inset), and the location of 

meteoric surface water sampling sites. ................................................................................. 341 

Figure 4.2. Eruption sequence of permanent dentition in barren ground caribou, reproduced 

from Chapter 2. “I” = incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are 

from Banfield (1954) and Miller (1974). .............................................................................. 347 

Figure 4.3. Eruption sequence of permanent dentition in muskoxen, reproduced from Chapter 

2. “I” = incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are from Tener 

(1965) and Henrichsen and Grue (1980). ............................................................................. 348 

Figure 4.4. (a) buccal view of an unworn muskox M2 crown showing enamel in different 

stages of the mineralization process in brackets: (1) fully mineralized enamel; (2) partially 

mineralized enamel; and (3) area of unmineralized, partially-deposited enamel matrix. (b) 

simplified model of enamel development in a transverse tooth crown section showing the 

successive deposition and mineralization of enamel layers. ................................................. 349 

Figure 4.5. Diagram of the fractionation of 18O between drinking water (δ18Odw), body water 

(δ18Obw), and tooth enamel structural carbonate (δ18Osc) and phosphate (δ18Op). The δ18O of 

carbonate and phosphate in bioapatite is determined by the δ18O of body water (δ18Obw), 

which is in turn determined by the δ18O of ingested water (Bryant et al. 1996). There is 

typically no fractionation of 18O during the ingestion of water (Luz et al. 1984; White et al. 

1985; Ayliffe and Chivas 1990; Bryant and Froelich 1995). Liberation of CO2 from apatite 

with phosphoric acid also causes a minor fractionation of 18O of +0.1 to +0.4‰ (the “acid 

fractionation factor”) (Bryant et al. 1996) although this is accounted for during the 

production of isotopic data.................................................................................................... 351 



 

xxvii 

 

Figure 4.6. Workflow for tooth enamel sample preparation: (a) liberated and cleaned tooth 

(note the substantial occlusal wear on the tooth crown compared to the tooth crown in Figure 

4.4a); (b) tooth being embedded in epoxy resin; (c) production of thick sections using low-

speed sectioning machine (red material is modeling clay used to position tooth during 

embedding); (d) corresponding “A” and “B” sections (note the sampled areas for FTIR and 

structural carbonate on A-section); (e) ablation pits on an enamel segment from a B-section 

(red arrow denotes the sequence of ablation and order of IDs in relevant tables). ............... 358 

Figure 4.7. Values of δ18O and δ2H for meteoric surface water samples collected on Banks 

Island in the summers of 2008, 2010, and 2014, split by type and compared to the Global 

Meteoric Water Line (“GMWL”, solid black line). .............................................................. 374 

Figure 4.8. Values of δ18O and δ2H for grouped meteoric surface water samples collected on 

Banks Island in the summers of 2008, 2010, and 2014, in comparison to precipitation δ18O 

and δ2H from the same coordinates and collection months, estimated using the Online 

Isotopes in Precipitation Calculator (OIPC) (IAEA/WMO 2017; Bowen 2017). The dashed 

line represents the Local Meteoric Water Line (LMWL) (actually a Local Evaporation Line 

[LEL]) created by water samples. The dotted line represents the Local Meteoric Water Line 

(LMWL) created by OIPC-estimated precipitation data. The solid line is the Global Meteoric 

Water Line. ........................................................................................................................... 375 

Figure 4.9. Isoscape of interpolated summer surface water δ18O (‰, VSMOW) on Banks 

Island. The isoscape is based on our water sample data and created using empirical Bayesian 

Kriging (EBK) in ArcGIS®. Pink dots correspond to sampling locations. The Prediction 

Standard Error Map at left provides a measure of uncertainty around interpolated surface 

water δ18O. ............................................................................................................................ 376 

Figure 4.10. Infrared absorption spectra from: (a) modern muskox M1 enamel samples; (b) 

caribou tooth enamel samples from the Classic Thule and Inuit periods; (c) muskox M1 

enamel samples from the Classic Thule and Inuit periods; (d) muskox M1 enamel samples 

from the Pre-Dorset and Lagoon periods. The red box in Figure 4.10d denotes small doublet-

peaks caused by atmospheric CO2 in the FTIR sample chamber. Due to scheduling we could 

not obtain FTIR spectra for all teeth analyzed in this study. ................................................ 380 



 

xxviii 

 

Figure 4.11. Values of δ13CLA for caribou tooth enamel from the: (a) modern, (b) Inuit; and 

(c) Classic Thule periods. Data are displayed in approximate order of tooth development 

(dp4, M1, M2, M3, P4). ........................................................................................................ 391 

Figure 4.12. Values of δ18OLA for caribou tooth enamel from the: (a) modern, (b) Inuit; and 

(c) Classic Thule periods. Data are displayed in approximate order of tooth development 

(dp4, M1, M2, M3, P4). ........................................................................................................ 392 

Figure 4.13. Values of δ13CLA for muskox tooth enamel from the: (a) modern, (b) Inuit, (c) 

Classic Thule (d) Early Thule, (e) Lagoon; and (f) Pre-Dorset periods. .............................. 397 

Figure 4.14. Values of δ18OLA for muskox tooth enamel from the: (a) modern, (b) Inuit, (c) 

Classic Thule, (d) Early Thule, (e) Lagoon; and (f) Pre-Dorset periods. ............................. 398 

Figure 4.15. Estimated δ18Odw/bw calculated from modern (a) caribou; and (b) muskox tooth 

enamel δ18OLA using Equation 4.2. ....................................................................................... 418 

Figure 4.16. Monthly-averaged δ18Opw calculated using the OIPC (Bowen 2017) and 

randomly-chosen coordinates near the northern, southern, and middle portions of Banks 

Island (closed shapes), and monthly-averaged δ18Opw measured at Mould Bay, NWT, Canada 

from 1989 to 1993 (green X’s) (IAEA/WMO 2017). ........................................................... 419 

 



 

xxix 

 

List of Appendices 

Appendix A ........................................................................................................................... 465 

Appendix B ........................................................................................................................... 471 

Appendix C ........................................................................................................................... 474 

 

 



 

1 

Chapter 1  

1 Introduction 

1.1 Project Overview and Scope 

Much of the arctic archaeological research conducted in the late 20th century (Dekin 1972; 

McGhee 1972; Fitzhugh 1972, 1976; Maxwell 1976; McGhee 1976) attempted to codify 

the relationship between regional environmental, ecological, and cultural changes in 

Eastern Arctic1 prehistory using theory from systems ecology and cultural ecology. These 

studies argue, for instance, that regional climatic variability over the last 4000 years 

resulted in human population expansions from, and contractions to, an area of ecological 

(and therefore demographic) stability around northern Hudson Bay. While these 

publications represent significant advances in the archaeology of the Eastern Arctic, 

subsequent work provides stronger evidence for distributed cultural development than for 

a single “core area” of cultural evolution (Helmer 1991; Fitzhugh 1997; Savelle and Dyke 

2014), and suggests that social factors may have been as important as environmental factors 

in driving cultural change in the Eastern Arctic (Hood 1998; Darwent 2004; Friesen 2007; 

Hartery 2010; Milne et al. 2012; Savelle et al. 2012; Hodgetts 2013). These studies reiterate 

earlier calls to understand local social practices and histories before reconstructing regional 

processes in Eastern Arctic prehistory (McGhee 1982; Helmer 1991). In line with this 

proposed shift in analytical scale, the Ikaahuk Archaeology Project (IAP), directed by Dr. 

Lisa Hodgetts, “aims to better understand the historical development of Banks Island’s 

cultural landscape from the earliest human occupation of the area to the present” (Hodgetts 

et al. 2013:1). 

Banks Island, located in the Northwest Territories of Canada (Figure 1.1) is ecologically 

significant within the Eastern Arctic because it is currently inhabited by major percentages 

of the world’s Peary caribou (Rangifer tarandus Pearyi) and muskox (Ovibos moschatus) 

                                                 

1
Following Maxwell (1985), McCartney (1990) and Hood (1998), we use the term “Eastern Arctic” to 

distinguish the Canadian Arctic and Greenland from Alaska and the Eurasian Arctic. 
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populations (COSEWIC 2004). Both species also played important roles in the diets, 

economies, and traditional beliefs of past peoples living on Banks Island, and are today 

sources of food and revenue for its residents. Inuvialuit traditional knowledge (Nagy 1999, 

2004), historical accounts from the last hundred years (Armstrong 1857; Hewitt 1921; 

Stefansson 1921) and demographic data from the last 50 years (Vincent and Gunn 1981; 

Gunn et al. 1991, 2000) suggest that caribou and muskoxen experience opposing cycles of 

growth and decline (“booms and busts”) with the muskox population reaching much 

greater numbers than the caribou population. Whether this demographic cycle is the result 

of forage competition, environmental variability, or a combination of both is a topic of 

current debate (Savelle and Dyke 2002; Gunn et al. 2003; Tyler 2010). Along with the 

overexploitation of muskoxen by prehistoric hunters, faunal population fluctuations may 

have played a role in periodic human occupational hiatuses on Banks Island and other 

locations in the Canadian Arctic Archipelago throughout the last 4000 years (Dyke and 

Savelle 2009; Dyke et al. 2011; Savelle and Dyke 2002, 2009). 
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Figure 1.1. Banks Island and its location within North America (inset). 
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Long-term linkages among caribou and muskox population dynamics, broader ecological 

and environmental factors, and the activities of human hunters, however, are poorly 

understood. Knowledge of caribou and muskox ecology does not extend back farther than 

the mid-1800s – an example of the “pre-1800 dilemma” often faced by conservation 

biologists (Szabó and Hédl 2011; Rick and Lockwood 2013) – and it is unclear whether 

booms and busts are a regular part of caribou-muskox population dynamics, are related to 

intermittent human hunting pressure, or are a recent phenomenon caused by changes in 

their ecological niches brought about by, for instance, anthropogenic change in the climate 

regimes and range conditions of the Circumpolar Arctic (Walker et al. 2006; Jia et al. 2009; 

Forbes et al. 2010; Cohen et al. 2012; Najafi et al. 2015). Likewise, changes in the seasonal 

movements and migratory routes of caribou and muskoxen are potentially significant – but 

currently unexplored – factors in the construction of Banks Island’s archaeological record. 

Both Peary caribou (Miller 1990; Miller et al. 2005) and muskoxen (Manning and 

MacPherson 1958; Nagy 1999) may travel across winter sea ice to the mainland and 

neighboring islands when local forage conditions are poor, and barren ground caribou (R. 

tarandus groenlandicus) may also occasionally migrate from the mainland to Banks Island 

(McGhee 1996). 

As a subproject of the Ikaahuk Archaeology Project, this dissertation investigates 

ecological relationships between caribou and muskoxen, their forage sources, and humans 

on Banks Island over the last 4000 years utilizing stable isotope analysis as the primary 

analytical tool. A number of scholars have recognized the potential contribution of 

traditional zooarchaeological research to archaeological and paleoecological questions like 

those discussed above (Wolverton and Lyman 2012; Braje and Rick 2013; Rick and 

Lockwood 2013). Several workers (Ervynck 1999; Lyman 2008; Humphries and 

Winemiller 2009), however, have raised concerns about the use of zooarchaeological data 

to make inferences about the relationship between faunal abundance and ecological 

changes because fauna represented at archaeological sites were first selected from the 

environment by humans. Consequently, the presence of remains from different taxa at 

archaeological sites does not necessarily reflect their natural abundances, though hunters 

are obviously limited by the availability of a given species. In this regard, the application 
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of stable isotope analysis to zooarchaeological remains has a significant advantage over 

traditional zooarchaeological analysis. The stable isotope compositions of an animal’s 

tissues index information about its relationship to its environment and other sympatric 

species (e.g. diet, niche competition, migration), and the environment itself (e.g. 

seasonality, paleoclimate, changes in phytomass diversity and availability) during its 

lifetime. This information is unaffected by human predation and the structure of the 

archaeological assemblage in which the animal’s remains end up. Within the 

archaeological context of the Eastern Arctic, it is therefore possible to compare the isotopic 

compositions of mere bone fragments from ephemeral, limited-use campsites with those 

from larger, semi-permanent dwellings, and with modern samples to provide otherwise 

unobtainable context about the deep ecological histories of caribou and muskoxen, and 

potentially, their relationships with ancient hunters. With this ultimate aim in mind, this 

dissertation investigates: 

1. The relationship between the carbon and nitrogen isotope compositions of modern 

caribou and muskox bone collagen and forage species on Banks Island; 

2. Whether caribou and muskoxen bone collagen carbon and nitrogen isotope 

compositions, as proxies for diet, have varied across the last 4000 years on Banks 

Island; 

3. Whether dietary variation (if present) correlates with increased niche overlap 

between caribou and muskoxen; and 

4. Whether tooth enamel oxygen isotope compositions can be used to investigate 

seasonal movements and migrations in caribou and muskoxen over the last 4000 

years. 

1.2 Stable Isotope Analysis as a Tool in Ecological and 
Paleoecological Research 

1.2.1 Stable Isotope Systematics 

Atoms of a given chemical element always contain the same number of protons in their 

nuclei, but may contain different numbers of neutrons. Atoms with the same number of 

protons and electrons, but different numbers of neutrons are called isotopes. Stable isotopes 
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are those that do not undergo radioactive decay, though the half-lives of some radioactive 

isotopes (e.g. 50V, 209Bi, 82Se, 76Ge, 128Te) are so long that they are essentially stable. 

Because their electron configurations are the same, the chemical properties of isotopes are 

nearly identical. However, the atomic masses of different isotopes, determined by the 

number of neutrons plus protons in their nuclei, will vary. Because of the minute 

differences in their atomic masses, isotopes of the same element – and isotopologues (i.e. 

compounds or molecules that differ only in their isotopic composition) – will interact 

differently during physical or chemical reactions, leading to the fractionation of “lighter” 

and “heavier” isotopes and isotopologues between different geological or biological 

constituents (Faure and Mensing 2005; Sharp 2007). 

A relevant example of this process is the photosynthetic fixation of atmospheric carbon by 

plants2. The nuclei of carbon atoms always contain six protons, but can contain between 

two and sixteen neutrons. Of these possible isotopic configurations, only carbon atoms with 

six (12C) or seven (13C) neutrons are stable. Plants that utilize the ribulose-1, 5-

bisphosphate carboxylase oxygenase (RuBisCo) enzyme to fix atmospheric carbon are 

referred to as C3 plants because the first non-intermediate molecule produced from fixation 

with this enzyme, C3H7O7P, contains three carbon atoms (Hayes 2001). The RuBisCo 

enzyme preferentially fixes 12CO2 over 13CO2 for the simple reason that “light” 

isotopologues of CO2 are more likely than heavy isotopologues to react and pass through 

the boundary layer of the leaf (Melander and Saunders 1979). This process is also an 

example of mass-dependent isotopic fractionation, though other factors, discussed below, 

also contribute to the stable isotopic compositions of plants and plant tissues. The variable 

ratios of heavy-to-light isotopes in primary producers are then passed up the food chain 

with generally predictable isotopic enrichments at each successive trophic level. 

The absolute ratio of heavy-to-light isotopes in most samples is too small to measure 

directly. Instead, the ratio of two stable isotopes in a sample is measured against that of 

                                                 

2
Where used, the term “plant” refers to all primary-producers (i.e. photosynthesizing vegetation), and 

includes lower plants such as mosses, as well as composite organisms such as lichens, which are not, in a 

phylogenetic sense, plants. 
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some certified standard (or surrogate standard) material (e.g. Vienna Pee Dee Belemnite 

(VPDB) for carbon, atmospheric N2 (AIR) for nitrogen, Vienna Standard Mean Ocean 

Water (VSMOW) for oxygen and hydrogen) for which the absolute isotopic ratio is known, 

or defined. To do this, the delta (δ) notation is used (McKinney et al. 1950) (Equation 1.1): 

𝛿 = [
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  

[Equation 1.1] 

where R is the ratio of heavy to light isotopes in the analyte. Delta values are 

reported in per mil (‰). 

1.2.2 Basic Skeletal Biology 

To investigate the research questions outlined above, we focus mainly on three faunal 

tissues: bone collagen, dentin collagen, and tooth enamel. The reason is simple: bone and 

teeth are typically the only faunal remains present at archaeological sites spanning all 

cultural periods on Banks Island. Additionally, each tissue type integrates different isotopic 

signals at different rates during life. 

Bone, dentin, and enamel are all composed of inorganic and organic components. The 

inorganic component is a biological apatite (i.e. bioapatite) with a chemical formula similar 

to the mineral hydroxylapatite [Ca10(PO4)6(OH)2] (Young 1975; LeGeros 1991; Hillson 

2000; Elliott 2002; Hughes and Rakovan 2002). Carbonate (CO3) ions also substitute for 

structural phosphate (PO4) and hydroxyl (OH–) moieties of bioapatite crystals (Penel et al. 

1998; Elliott 2002). By weight, bioapatite accounts for ~ 65-70% of bone, 75% of dentin, 

and 95% of enamel (LeGeros 1991; Wang and Cerling 1994; Hillson 2000). 

The organic component in bone and dentin – collagen – is primarily composed of essential 

and nonessential amino acids (eAAs and nAAs, respectively), among other components 

(Abelson and Hoering 1961; Macko et al. 1982; Hare et al. 1991; Ambrose 1993; Schwarcz 

2000; Harbeck and Grupe 2009; Wolf et al. 2009). By weight, collagen accounts for 25- 

30% of bone and dentin (LeGeros 1991; Hillson 2000). The organic portion of full-

mineralized enamel is small, only 1-2% by weight, and is composed of various proteins 
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(e.g. amelogenin, enamelin) and lipids (Lowenstam and Weiner 1989; Fincham and 

Simmer 1997; Hillson 2000; Veis 2003). 

Bone is also continuously remodeled through deposition and resorption (Currey 2002; 

Ortner 2003; Raggatt and Partridge 2010), and the isotopic compositions of both the 

inorganic and organic phases may therefore change incrementally during life based on the 

isotopic compositions of diet and drinking water consumed. Consequently, the isotopic 

composition of bone reflects average isotopic inputs over approximately the last decade of 

life (Libby et al. 1965; Tieszen et al. 1983; Ambrose and Norr 1993; Pate 1994). 

Conversely, dentin and enamel both develop incrementally, and within the tooth crown, do 

not remodel after deposition (Longinelli 1984; Luz et al. 1984; Lowenstam and Weiner 

1989; Carlson 1990; Hillson 2000). Dentin and enamel therefore record a time series of 

isotopic inputs during formation, which is useful for investigating seasonal or intra-annual 

variation in diet (Hobson and Sease 1998; Balasse et al. 2002; Zazzo et al. 2005, 2006; 

Feranec et al. 2009; Metcalfe et al. 2011), the duration of weaning (Chapter 2; Fricke and 

O’Neil 1996; Wright and Schwarcz 1998, 1999; Balasse et al. 2001; Dupras et al. 2001; 

Dupras and Tocheri 2007), and geographic movements (Hoppe et al. 1999; Balasse et al. 

2002; Pellegrini et al. 2008; Britton et al. 2009; Julien et al. 2012; Pilaar Birch et al. 2016) 

during the period the tooth crown developed. 

1.2.3 Carbon and Nitrogen Isotope Compositions in Herbivore 
Bone and Dentin Collagen 

We center our investigation of modern and archaeological caribou and muskox dietary 

ecology on bone collagen for several reasons. First, carbon and nitrogen are both abundant 

in well-preserved collagen, accounting for ~ 15-47% and ~ 5.5-17% of its weight, 

respectively (DeNiro 1985; Ambrose 1990; van Klinken 1999). As discussed below, the 

δ13C and δ15N of collagen both reflect different ecological parameters associated with diet. 

Collagen is also simple to extract from bone samples and relatively inexpensive to analyze. 

This is an important consideration because many statistical models used to make inferences 

about diet (Chapter 2) and ecological characteristics (Chapter 3) depend on adequate 

sample sizes. Finally, due to its gradual turnover, the isotopic compositions of bone 
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collagen are useful for making inferences about broad trends in ecological variation over 

long periods. 

Experimental studies (Ambrose and Norr 1993; Tieszen and Fagre 1993) demonstrate that 

the δ13C of collagen in bone and dentin from a wide range of animals largely reflects the 

δ13C of dietary protein sources, though in animals like caribou and muskoxen with very 

low-protein diets, dietary carbohydrate δ13C will contribute substantially to collagen δ13C 

(Krueger and Sullivan 1984; Ambrose and Norr 1993; Dewhurst et al. 2000; Atasoglu et 

al. 2004). This topic is considered in greater detail in Chapter 2. Multiple studies (van der 

Merwe and Vogel 1978; Sullivan and Krueger 1981; Tieszen et al. 1983; van der Merwe 

1989; Hare et al. 1991; Hobson and Clark 1992; Ambrose and Norr 1993; Tieszen and 

Fagre 1993; Bocherens 2000) also demonstrate an enrichment of +1‰ to +6‰ in 13C 

between diet and bone collagen (Δ13Ccollagen-diet) in a range of animals. With these general 

principles, the δ13C of bone collagen has been used to reconstruct diet in a wide number of 

species across space and time. 

As autotrophs, plants are able to synthesize both essential and nonessential amino acids de 

novo from basic elements during photosynthesis, but all vertebrates and most other 

organisms cannot, and must therefore obtain eAAs from dietary sources. Because they 

cannot be synthesized at higher trophic levels, eAAs are either broken down to be used in 

the synthesis of nAAs or are routed directly to organic tissues like collagen with little or 

no isotopic fractionation (Hare et al. 1991). The δ13C of bulk bone collagen from herbivores 

therefore represents the averaged δ13C of its component amino acids, which vary widely 

(Abelson and Hoering 1961; Benner et al. 1987; Hare et al. 1991) and the δ13C of herbivore 

bulk collagen may be biased towards specific amino acids assimilated from forage. Early 

work (Gannes 1997; Ben-David et al. 2001; Fogel and Tuross 2003) suggested that this 

bias is not an issue in ruminants like caribou and muskoxen because nutrient recycling 

during the rumination process itself metabolically homogenizes (i.e. “resets”) the δ13C of 

both eAAs and nAAs. Copley et al. (2004), however, observed varying contributions of 

the eAA leucine from C3 and C4 plants in the bone collagen of Nubian sheep/goats and 

cattle. Likewise, Honch et al. (2012) found that the difference in δ13C between glycine and 

phenylalanine (Δ13CGly-Phe) in several ruminant species resembles that of monogastric 
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humans from a variety of subsistence backgrounds, implying that an isotopic “reset” may 

not occur in the rumen. Consequently, although a Δ13Ccollagen-diet of +5‰ is commonly 

assumed for most large mammals (Sullivan and Krueger 1981; Krueger and Sullivan 1984; 

van der Merwe 1989; Koch 1998), the ruminant digestive system, along with other factors 

(see Chapter 2) introduces complexities that can make this assumption fraught. 

Likewise, it is often assumed that there is a relatively consistent enrichment in 15N of +2‰ 

to +5‰ at each trophic level due to fractionation of nitrogen isotopes as they enter the body 

nitrogen pool (Minagawa and Wada 1984; Ambrose and DeNiro 1986; Macko et al. 1986; 

Sealy et al. 1987; Fogel et al. 1997; Gannes et al. 1997, 1998), and from the preferential 

excretion of 14N (Peterson and Fry 1987). Evidence from field studies of herbivores, 

however, suggests that Δ15Ncollagen-diet increases as dietary protein content increases (DeNiro 

and Epstein 1981; Sponheimer et al. 2003a, b; Codron et al. 2008; Robbins et al. 2010; 

Codron et al. 2012), and is related to nitrogen balance in the body and urea recycling 

(Sponheimer et al. 2003a, b). While early work on trophic enrichment in 15N laid the 

groundwork for ecological studies using stable isotopes, these studies emphasize the 

complexities involved in the routing of nitrogen along the foodweb. The role of individual 

amino acids in determining the δ13C of bone collagen, and the significance of Δ13Ccollagen-

diet and Δ15Ncollagen-diet for reconstructing dietary contributions to bone collagen are 

discussed further in Chapter 2. 

Finally, the gradual depletion of 13C in atmospheric CO2 (i.e. the “Suess Effect”) (Keeling 

et al. 1979; Tans 1979; Friedli et al. 1986; Keeling et al. 1989; Bacastow et al. 1996) must 

be taken into account when attempting to reconstruct the δ13C of plants and organisms at 

higher trophic levels during the past. Prior to the Industrial Revolution, the global average 

δ13C of atmospheric CO2 was ~ –6.5‰ (Francey et al. 1999; Yakir 2011), which led to an 

average δ13C in C3 plants of –26.5‰. With the increasing emission of CO2 from fossil 

hydrocarbon fuel sources, the δ13C of which ranges from –40 to –25‰, global average 

atmospheric CO2 is becoming progressively depleted of 13C. Currently, the δ13C of 

atmospheric CO2 is ~ –8.4‰, and is decreasing by approximately –0.02‰ each year (Hoefs 

2009). The average δ13C of post-industrial C3 plants is between –27 and –28‰ (Hoefs 

2009; Cernusak et al. 2013). 
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1.2.4 Carbon and Oxygen Isotope Compositions in Mammalian 
Tooth Enamel 

Although structural carbonate (CO3) and phosphate (PO4) are commonly extracted from 

both bone and tooth enamel and analyzed for their carbon and oxygen isotope compositions 

(Kohn and Cerling 2002), we focus only on tooth enamel in this dissertation for several 

reasons. First, because tooth enamel develops incrementally and teeth grow sequentially, 

enamel sampled either serially from individual teeth, or in bulk from multiple teeth in a 

tooth row provide a level of temporal isotopic resolution more refined than that of bulk 

bone. Additionally, because fully mineralized enamel is much denser than bone it is much 

less susceptible to post-mortem chemical alteration (Kohn et al. 1999; Kohn and Cerling 

2002). 

The interpretation of δ13C from structural carbonate in mammalian bioapatites is perhaps 

more straightforward than in collagen. Unlike collagen, which is composed of both eAAs 

routed directly from assimilated food and nAAs produced de novo by the body, structural 

carbonate derives from CO2 dissolved in blood bicarbonate (HCO3) through a temperature-

dependent ~ +8‰ fractionation from CO2 to HCO3 and a +1‰ to +2‰ fractionation from 

HCO3 to structural carbonate (Hedges and van Klinken 2000; Koch 2007) (Figure 1.2). 

Since dietary inputs are the main source of CO2 incorporated into the blood bicarbonate 

pool, the δ13C of structural carbonate should reflect the average δ13C of all dietary 

contributions during the time of formation, plus +9 to +10‰. Structural carbonate δ13C is 

therefore a useful tool for investigating total diet (as opposed to dietary protein alone). 

In large ruminants, however, the enrichment in 13C between diet and structural carbonate 

(Δ13Csc-diet) is somewhat greater, between ~ +12 and 14‰ (Hedges and Van Klinken 2000; 

Balasse 2002; Hedges 2003; Passey et al. 2005). This additional enrichment in 13C occurs 

because the fermentation of forage by gut microbiota produces 13C-depleted methane 

(Metges et al. 1990) which is expelled from the body, leaving behind 13C-enriched CO2 

which then exchanges with blood bicarbonate. 

The bulk δ18O of tooth enamel is a composite of oxygen derived from phosphate (PO4), 

structural carbonate (CO3) substitutions, and hydroxyl (OH–) groups (LeGeros 1991; Penel 
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et al. 1998; Elliott 2002). The δ18O of these oxygen-bearing moieties is determined by 

temperature-dependent fractionations of 18O from the body water pool, the δ18O of which 

is determined by the δ18O of ingested water (Bryant et al. 1996). There is typically no 

fractionation of 18O during the ingestion and assimilation of water (Luz et al. 1984; White 

et al. 1985; Ayliffe and Chivas 1990; Bryant and Froelich 1995). In large mammals, 

catalysis of blood CO2 by the enzyme carbonic anhydrase results in a ~ +26‰ fractionation 

in 18O between body water and structural carbonate (Silverman 1982; Bryant et al. 1996) 

(Figure 1.3). Likewise, there is a ~ +17.5‰ fractionation of 18O between body water and 

bioapatite phosphate in most mammals (Longinelli and Nuti 1973; Kolodny et al. 1983; 

Bryant et al. 1996; Lécuyer et al. 1996). These fractionation pathways are depicted in 

Figure 1.3. Since the δ18O of water ultimately derived from precipitation varies 

geographically (Epstein and Mayeda 1953; Craig and Gordon 1965; Yurtsever and Gat 

1981; Rozanski et al. 2001; Bowen and Wilkinson 2002; Bowen and Revenaugh 2003) and 

seasonally (Gat 1981a, b; Yurtsever and Gat 1981; Horita and Wesoloski 1994; Gat et al. 

2001; Darling et al. 2005), and tooth enamel develops incrementally, the δ18O of 

sequentially-sampled enamel structural carbonate and phosphate can provide information 

about seasonality and migration during the time of formation.
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Figure 1.2. Simplified model of fractionation of 13C between CO2 oxidized from food 

(δ13CCO2), blood bicarbonate (δ13CHCO3), and structural carbonate (δ13Csc) in mammalian 

bioapatites. In large ruminants, there is an additional enrichment of 13C between HCO3 

and structural carbonate due to the loss of 13C-depleted methane.
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Figure 1.3. Simplified model of fractionation of 18O between drinking water (δ18Odw), 

body water (δ18Obw), and structural carbonate (δ18Osc) and phosphate (δ18Op) in 

mammalian bioapatites. 
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1.3 The Isotopic Ecology of Banks Island 

1.3.1 Carbon and Nitrogen Isotope Ecology of Arctic Plants 

Aside from the preferential fixation of isotopically “light” isotopologues of CO2 during 

photosynthesis (discussed above), several other factors determine the initial δ13C of C3 

vegetation. Multiple studies demonstrate that the leaves of forbs and shrubs are typically 

depleted of 13C relative to other plant organs. There are at least seven viable hypotheses for 

this variation in 13C, which all revolve around differences in one of two basic processes: 

differences in the way leaves and other tissues fix and respire CO2, or differences in the 

way isotopically variable molecules are routed to different plant tissues. These hypotheses 

are reviewed by Cernusak et al. (2009), Szpak et al. (2013), and Ghashghaie and Badeck 

(2014). Consequently, the δ13C of biochemical compounds that compose plant organs 

varies: lipids, lignin, and cellulose are all depleted of 13C relative to the whole-plant 

average, while soluble biochemical fractions (sugars, amino acids, hemicellulose, and 

pectin) are enriched in 13C relative to the plant average (Deines 1980; O’Leary 1981; 

Monson and Hayes 1982; Benner et al. 1987; Boutton 1996) (Figure 1.4). Variability in 

the δ13C of plant parts due to variable proportions of different biochemical compounds has 

significant implications for the seasonal patterning of δ13C in herbivore tissues. Caribou 

and muskoxen provide a relevant example: early in the growing season, both species take 

advantage of highly nutritious buds, shoots, and leaves enriched in 13C relative to other 

plant parts. As the summer continues, production and maintenance of aboveground 

phytomass ceases, and many forage species go dormant. Shoots and leaves become 

increasingly scarce due to continuous foraging, and woody stems therefore compose a 

greater proportion of ingested foods over winter (Larter and Nagy 1997, 2004). Thus, an 

overall shift towards lower tissue δ13C may occur in caribou and muskoxen during winter. 
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Figure 1.4. Relative difference in the δ13C of different plant biochemical compounds 

compared to the whole-plant average δ13C (here, set to 0‰). Figure is adapted from 

Deines (1980) and Boutton (1996). 
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Many of the environmental factors that further contribute to variation in the δ13C of plants 

in temperate areas (reviewed in Farquhar et al. 1989, and Szpak et al. 2013) are absent on 

Banks Island. All vegetation currently growing north of the treeline utilizes the C3 

photosynthetic pathway for carbon fixation (Teeri and Stowe 1976; Osborne and Beerling 

2006). There is no “canopy effect” (Vogel 1978; Ehleringer et al. 1986, 1987; van der 

Merwe 1989; van der Merwe and Medina 1989) because there are no trees and little 

layering of vegetation. Elevational gradients in plant δ13C (Körner and Diemer 1987; 

Körner et al. 1988; Vitousek et al. 1990; Körner et al. 1991; Sparks and Ehleringer 1997; 

Zhu et al. 2010) are possible on Banks Island, although most of the forage species utilized 

by caribou and muskoxen tend to grow in lower, wet sedge meadows, hummock tundra, 

graminoid/dwarf shrub tundra, and barren uplands, as opposed to the high, sparsely-

vegetated stony barrens (Ferguson 1991; Larter and Nagy 2001a), and the total change in 

elevation on Banks Island is less than 1000 meters (Usher 1965). Changes in soil moisture 

and humidity that cause seasonal variation in vegetation δ13C are limited because plants in 

the High Arctic only grow during the short summer (June to August) when soil moisture is 

abundant and relative humidity is high. The absence of these environmental factors, and 

the exclusive use of the C3 photosynthetic pathway in arctic vegetation should subsequently 

limit the amount of intra- and inter-species variation in δ13C. 

Factors that affect the nitrogen isotope compositions of plants in temperate regions are also 

absent or limited in boreal and tundra ecosystems. Low soil temperatures inhibit microbial 

decomposition, mineralization, and N2-fixation by cyanobacteria (van Cleve and 

Alexander 1981; van Cleve et al. 1991; Kielland 1994; Vitousek et al. 2002). The 

availability of soil-bound ammonium (NH4
+), nitrate (NO3

–), and N2 is therefore limited 

(Shaver and Chapin 1980; Chapin and Bledsoe 1992; Schulze et al. 1994; Shaver and 

Chapin 1995). Competition for scarce soil nitrogen is circumvented by arctic plants in 

several ways. Leguminous species like alpine milk vetch (Astragalus alpinus) and arctic 

oxytropes (Oxytropis spp.) utilize atmospheric nitrogen (N2) via associations with root-

borne bacterial (rhizobial) symbionts (Alexander et al. 1978; Zahran 1999; Vitousek et al. 

2002). Many non-leguminous plants must rely on associations with fungal (mycorrhizal) 

symbionts to acquire nitrogen from soil-bound proteins and amino acids (Abuzinadah and 
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Read 1986; Hodge et al. 1995; Kielland 1995; Michelsen et al. 1998; Lipson and Näsholm 

2001), though certain plant species can also directly assimilate soil-bound amino acids 

without any symbiotic associations (Chapin et al. 1988, 1993; Kielland 1994; Schimel and 

Chapin 1996). 

Different nitrogen sources also result in variable intraplant δ15N. In non-symbiotic species 

that rely on inorganic nitrogen, Evans et al. (1996) report significant intraplant δ15N 

variation when NO3
– is the primary nitrogen source (because it is assimilated via roots and 

shoots), and little intraplant δ15N variation when NH4
+ is the primary nitrogen source 

(because it is absorbed via the roots alone). Similarly, Michelsen et al. (1998) demonstrate 

depletion of 15N in the tissues of primary producers with mycorrhizal associations, relative 

to those with rhizobial or no symbiotic associations, presumably due to fractionations 

during fungal breakdown of soil-bound amino acids. The δ15N of soil-bound amino acids, 

however, varies widely depending on earlier soil conditions and biosynthetic reactions that 

occurred in the plant from which they originate (Ostle et al. 1999; Werner and Schmidt 

2002). These variations are passed on to different plant parts upon assimilation by living 

plants (Hofmann et al. 1997; Werner and Schmidt 2002). 

Variations in plant δ15N across the landscape are also complex. In their analysis of muskox 

forage in Greenland, Kristensen et al. (2011) observed lower δ15N in the leaves of 

leguminous forbs (~ –2.5 to –3‰) than graminoids (~ +1.5‰), and this relationship was 

the same across their collection area. The δ15N of catkins from dwarf willows (Salix 

arctica) collected from Salix-dominated areas, however, was significantly lower (~ –5.5‰) 

than catkins of S. arctica collected from graminoid-dominated areas (~ –3‰). Together, 

these findings emphasize the role of microenvironment in nitrogen uptake, and ultimately 

plant δ15N. Indeed, several researchers (Schulze et al. 1994; Nadelhoffer et al. 1996; 

McKane et al. 2002; Clemmensen et al. 2008) demonstrate that arctic plant communities 

reduce competition for the limited inorganic and organic nitrogen pools through chemical, 

temporal, and stratigraphic partitioning of nitrogen and other nutrients. For instance, 

McKane et al. (2002) found that on the Alaskan tundra, sedges of the genus Carex utilized 

NO3
– nearly exclusively, and did so early in the growing season, while cotton sedges 

(Eriophorum spp.) and dwarf cranberry (Vaccinium spp.) utilized both soil-bound glycine 
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and ammonium. Dwarf cranberry utilized these resources earlier in the season, and from a 

shallower depth than cotton sedge. Likewise, Labrador tea (Ledum spp.) and dwarf birch 

(Betula spp.) both utilized ammonium, but Labrador tea started earlier in the season, and 

avoided competition with dwarf cranberry by utilizing ammonium at deeper soil levels. 

The use of nitrogen resources from different soil depths can impart variation in plant δ15N. 

Soil δ15N typically increases with depth because 15N-enriched plant matter dominates the 

top of the soil profile whereas plant matter at depth has been exposed to mineralization and 

microbial degradation for longer periods (Högberg 1997; Martinelli et al. 1999). 

1.3.2 Surface Hydrology and δ18O and δ2H in Surface and Plant 
Water 

The hydrology of Banks Island is typical of islands in the Canadian Arctic Archipelago. 

Precipitation is minimal, averaging ~ 150 mm yearly (Usher 1965; Gray 1997). 

Approximately two thirds of this precipitation comes in the early winter and late spring in 

the form of fine snow (Usher 1965), which strong winds tend to sweep off ridges and hills 

and into valleys where it accumulates and mixes (Edlund 1986; Lechler and Niemi 2012). 

Although no such data exist for Banks Island, precipitation isotope data collected by the 

Global Network of Isotopes in Precipitation (GNIP) at Mould Bay (Northwest Territories, 

Canada)3 (IAEA/WMO 2017) confirm that variations of δ18O and δ2H in fall and spring 

snow relative to winter snow occur as air temperature oscillates, and as expected, the 

variations are much greater for δ2H than δ18O due to the mass-dependent nature of 

fractionation. Sublimation of snow occurs throughout the winter, leading to enrichment of 

18O and 2H in the remaining snowpack. As air temperatures begin rising in late spring, 

increasing evaporation causes further enrichment of 18O and 2H in the snowpack, and the 

δ18O and δ2H of melting snowpack is locally homogenized (MacPherson and Krause 1967; 

Judy et al. 1970). Consequently, snowmelt percolating into soil during the spring thaw 

                                                 

3
For several decades, the Global Network of Isotopes in Precipitation (GNIP) program, run jointly by the 

IAEA and WMO, has provided data on the δ18O and δ2H compositions of water from a worldwide network 

of precipitation monitoring and collection stations. The now-defunct Mould Bay station, located on Prince 

Patrick Island, was the collection station farthest west in the Canadian Arctic, and the closest to Banks 

Island in terms of longitude. 
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should represent the locally-homogenized isotopic compositions of fall, winter, and spring 

snows, as modified by any evaporative enrichment in 18O and 2H (Halevy 1970; Arnason 

1981; Gat 1981c). 

Lakes and ponds on Banks Island originated through glacial scouring or ice calving and 

kettle formation that occurred during the several Pleistocene glaciations experienced by the 

island (Mackay and Løken 1974; England et al. 2009; Lakeman and England 2012). They 

are therefore relatively shallow and are typically well-mixed biogeochemically (Vincent 

and Hobbie 2000). Because there is no groundwater system on Banks Island, all 

watercourses are predominantly recharged by meltwater and precipitation during the 

summer. Major rivers on Banks Island mainly drain the high southeastern and northern 

uplands (Usher 1965). In temperate zones, the δ18O and δ2H of runoff-dominated rivers 

should vary throughout the year, given that the δ18O and δ2H of summer precipitation, and 

subsequently, river water, are more enriched in 18O and 2H than winter precipitation 

(Dansgaard 1964; Fritz 1981; Yurtsever and Gat 1981; Gonfiatini 1986; Rozanski et al. 

2001; Darling et al. 2005). This is not the case on Banks Island or in other arctic locations 

lacking groundwater systems. By late summer, most small rivers have drained all of the 

meltwater from their watershed and have run or are close to running dry. In winter, the 

larger rivers freeze solid (Trevor Lucas 2014, personal communication) and precipitation 

is “locked” on land in the form of snow and ice. When the air temperature rises above 

freezing again, the rivers are rapidly recharged with meltwater from their watersheds. 

Snowmelt percolating into the soil from snowpack, lateral runoff, or flooding of the rivers 

comprises most of water absorbed by the roots of growing plants on Banks Island (Usher 

1965). Typically, no isotopic exchange occurs between water and soil during percolation 

(Gat 1981c, Dawson et al. 2002) or during uptake of soil water by plants (Wershaw et al. 

1966; Ehleringer et al. 2000; Yakir and da Silveira Lobo Sternberg 2000). The δ18O and 

δ2H of water in the root and stem tissues of plants early in the growing season should 

therefore directly reflect those of meltwater. Leaf water, however, is further enriched in 

18O and 2H because isotopologues of H2O that include 16O and 1H are preferentially 

transpired from the stomata (Gonfiatini et al. 1965; Epstein et al. 1977; Yakir and da 

Silveira Lobo Sternberg 2000). Experiments designed to measure the amount of 
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fractionation in leaf water during transpiration (Allison et al. 1985; Yakir et al. 1990) 

demonstrate that observed δ18O and δ2H are more positive than expected based on modified 

steady-state evaporation models from inorganic systems (Ferhi and Letolle 1977; Leaney 

et al. 1985). Yakir et al. (1990) propose that this discrepancy between expected and 

observed δ18O and δ2H is explained by the fact that leaf water is not composed of a single 

homogenized pool, but is made up of at least three different fractions. These leaf water 

pools include: (1) water in cells surrounding the stomata that exchange with the atmosphere 

(the transpiration pool); (2) water in the inner membrane of the cell wall (the symplast) that 

does not exchange with the atmosphere but may exchange with the transpiration pool; and 

(3) water in the veins of leaves, which does not exchange at all, and like the roots and stems 

of the plant, directly reflects the isotopic compositions of soil water (which directly reflects 

those of precipitation). The δ18O and δ2H of this mixed water pool will therefore be passed 

to caribou and muskoxen feeding on the aerial portions of plant matter during peak 

phytomass productivity. 

1.4 The Archaeology of Banks Island 

The earliest human inhabitants of the Eastern Arctic migrated from the Bering Strait region, 

and began moving east around 4500 cal. BP (Arundale 1981; McGhee 1982; Helmer 1994) 

(Figure 1.5). These people are often referred to as Sivullirmiut or Paleo-Inuit (formerly 

Paleoeskimo4) to distinguish them from the second major dispersal of humans into the 

Eastern Arctic by Thule Inuit (formerly called the Neoeskimo) that migrated from Alaska 

between 1100 and 800 cal. BP (Friesen and Arnold 2008; Raghavan et al. 2014) (Figure 

1.5). The Sivullirmiut brought with them to the Eastern Arctic lithic technology referred to 

as the Arctic Small Tool tradition (ASTt) (Irving 1962), which likely developed from the 

Denbigh Flint Complex of Northwestern Alaska (Collins 1953; Giddings 1964; Bielawski 

1988). This lithic technology centers on an array of small, finely-knapped stone tools, but 

also included bows and composite arrows, small antler harpoon heads, and bone needles 

and awls. 

                                                 

4
The -eskimo suffix, like the word Eskimo itself, was imposed by outsiders and is often considered 

derogatory (see Steckley (2008) for a general discussion of its etymology). 
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Figure 1.5. Timeline of archaeological human occupations in the Eastern Arctic overall (top), and on Banks Island (bottom) in 

calibrated radiocarbon years BP. 
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While there are several documented Pre-Dorset period sites on Banks Island, and likely 

many more that are undocumented (Müller-Beck 1977a, b; Stevenson 1993; Hodgetts et 

al. 2009), this archaeological period is perhaps best represented by the Shoran Lake (PjRa-

1) and Umingmak (PjRa-2) sites (Taylor 1967; Müller-Beck 1977a, b; Münzel 1987). 

Although both sites are presumed to date to ~ 3500 cal. BP (Wilmeth 1978; Arnold 1983), 

recent radiocarbon dates (Hodgetts, unpublished data; see also Chapter 3) suggest that 

Shoran Lake may be several hundred years older than Umingmak. The faunal assemblage 

at Umingmak indicates heavy reliance on muskoxen (Figure 1.6) and, to a smaller extent, 

caribou, snow goose, small mammals, and fish. The site was used during the summer 

months to process meat from muskox, bird, and fox hunts (Muller-Beck 1977b; Münzel 

1987) and in the fall and winter possibly as a basecamp from which to hunt muskoxen and 

caribou (Münzel 1987). Based on radiocarbon dates (Hodgetts, unpublished data), it is 

likely that the site represents several years, decades, or even centuries of use (Hahn 1977), 

and was reoccupied once again during the later Classic Thule and Inuit periods (Muller-

Beck 1977b; Münzel 1987). 
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Figure 1.6. Muskox skeletal remains (white objects) scattered across the surface of the Umingmak (PjRa-2) site. Photo by author. 
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The ASTt toolkit was used across large parts of the Eastern Arctic with minimal 

modification until around 2500 cal. BP. At this point, several changes appeared in the 

material cultures of ASTt groups that signify the emergence of the Dorset period: less 

emphasis on microblade tools, abandonment of bows and arrows, and a shift in harpoon 

morphology from open socket to closed socket forms (Maxwell 1984, 1985). During the 

Dorset period, items associated with an increased focus on winter hunting and dwellings, 

such as snowshoes and snow knives appear, and the remains of seals, walruses, and less 

frequently, whales also comprise larger parts of faunal record at sites. 

There are no known Dorset sites on Banks Island, but a transitional Paleo-Inuit cultural 

phase is represented at several sites. This phase, which has local expressions in a number 

of Arctic Regions, including Newfoundland where it is termed “Groswater” (Fitzhugh 

1972; Hodgetts et al. 2003; Renouf 2011; Wells 2011) falls temporally between Pre-Dorset 

and Dorset in a particular region and displays characteristics of both. In the Western Arctic, 

it is known as the Lagoon Phase, after the type site. The Lagoon (OjRl-3) site (Figure 1.7) 

is located on the south coast of Banks Island and dates to between ~ 2700 and 2100 cal. BP 

(Figure 1.5). Arnold (1980) suggests that it represents the in-situ development of Pre-

Dorset material culture influenced both by Dorset groups from the east, probably on 

Victoria Island, and by Alaskan groups known as Norton. 

The faunal material at the Lagoon site indicates an occupation in the early summer, 

possibly extending to fall, with a heavy reliance on geese, juvenile seals, and muskoxen 

(Arnold 1980). The Crane site (ObRv-1), located on the Bathurst Peninsula, displays many 

technological parallels with the Lagoon site (Le Blanc 1994), suggesting that the Lagoon 

Phase was a regional phenomenon encompassing Banks Island and the immediately-

adjacent mainland. Recent radiocarbon dates from the Arviq site (QaPv-5) (Figure 1.8) on 

the north coast of Banks Island and another site in Aulavik National Park (PkPx-18) 

indicate that they fall within the range of dates from the Lagoon site (Hodgetts and 

Eastaugh 2010; Hodgetts et al. 2013), extending the geographical range of the Lagoon 

Phase further north. Both sites display stone tools and raw materials similar to the Lagoon 

site.
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Figure 1.7. The Lagoon (OjRl-3) site (image courtesy of Lisa Hodgetts). 
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Figure 1.8. The boulder-strewn surface of the Arviq (QaPv-5) site, with Mercy Bay visible in the background. Photo by author. 
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Like the ASTt before it, the Dorset material culture endured for around 1500 years. Around 

1000 cal. BP however, the Dorset culture appears to have ended abruptly across most of 

the Eastern Arctic, around the same time that traces of Thule Inuit material culture begin 

to appear (Maxwell 1985; McGhee 1990; Friesen and Arnold 2008). Genetic evidence 

(Park 2014; Raghavan et al. 2014) indicates that this transition in material culture was the 

result of a new dispersal of humans rather than in-situ technological evolution. McGhee 

(1984) suggests that the Thule Inuit culture developed from the Birnirk culture in northern 

Alaska between ~ 1500 and 1100 cal. BP, but the motive for its subsequent expansion into 

the Eastern Arctic is poorly understood. Early work (McGhee 1972; McCartney 1977) 

explored the hypothesis that the Thule followed growing bowhead whale populations as 

they moved into the northern reaches of the Arctic Ocean during the Medieval Warm 

Period. Early archaeological work also supported the idea that the incoming Thule groups 

replaced Dorset groups, possibly by force, though reinterpretations of radiocarbon dates by 

Park (1993) and Friesen and Arnold (2008) reveal an interlude of several hundred years 

between the decline of the Dorset and the appearance of the Thule. Recent work (Harritt 

2004; Mason 2009; Friesen 2010) has also shifted from trying to identify environmental 

factors that may have brought about the Thule expansion into the Eastern Arctic towards 

identifying and characterizing its social context. 

The success of the Thule Inuit is reflected in the fact that they are the direct genetic 

ancestors of modern Inuit groups (Raghavan et al. 2014). Emphasizing an increasing 

reliance on maritime resources, mainly bowhead whales and ringed seals, Thule hunting 

technology centered on harpoons tipped with bone or antler harpoon heads. Lithics during 

this period also shifted from knapped to sharper ground forms more effective in hide and 

blubber processing (Maxwell 1985). The Nelson River (OhRh-1) site, located on the 

southwestern coast of Banks Island is currently the earliest-known Thule site in the Eastern 

Arctic, dating to ~ 950 cal. BP (Arnold 1986; Friesen and Arnold 2008). Excavation by 

Arnold (1986) at the site revealed a large, two-room house framed partially with driftwood 

poles, floored with small logs and wooden planks, and insulated by turf—construction 

methods similar to those employed by Birnirk people in Alaska around the same time 

(McGhee 1984). Artifacts from the site demonstrate the use of harpoons to hunt seals on 
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the open water and at breathing holes in the sea ice, bows and arrows to hunt muskoxen, 

caribou, and small birds, bola slings and gorges to hunt waterfowl, and leisters (multi-

pronged spears) to catch fish. The faunal remains at OhRh-1 also demonstrate that, of these 

resources, ringed seals and likely also bowhead whales were most important, followed by 

arctic fox and other small mammals, birds, caribou, and finally muskoxen which were only 

minimally utilized. 

Following their initial proliferation in the Eastern Arctic, the geographic range of the Thule 

appears to have contracted around 500 cal. BP. During this period, subsistence patterns 

also shifted away from bowhead whales towards seals, fish, and terrestrial resources 

(Schledermann 1979; Dumond 1984), potentially as a response to the end of the Medieval 

Warm Period, the onset of the Little Ice Age, and a subsequent reduction in bowhead 

availability (Maxwell 1985; Fitzhugh 1997). On Banks Island, Thule sites also begin to 

appear further inland during this period, and these sites contain greater frequencies of 

caribou and muskox remains. Although this period is sometimes referred to as the “Copper 

Inuit” (Jenness 1917, 1923; Hickey 1982; Will 1985) or “Inuinnait” (Collignon and Weber 

Müller-Wille 2006) period, we refer to it simply as the Inuit period, as these people are 

direct ancestors of Inuvialuit (i.e. Inuit Peoples of the Northwest Territories and the 

Northern Yukon) living on Banks Island today. During this time, family-based groups 

exploited both marine and terrestrial resources in an annual round (Hickey 1982; Hodgetts 

2013). Generally, throughout the summer, muskoxen, caribou, and other inland fauna were 

hunted in the northern interior of the island, often at existing Pre-Dorset sites (Hickey 1982; 

Hodgetts et al. 2009), while during the winter seals and polar bears were hunted on the sea 

ice. 

The intensive focus on terrestrial resources by the Inuit during summers is exemplified by 

the Head Hill site (PlPx-1) (Figure 1.9), where the crania and other skeletal elements of 

over 500 muskoxen, have accumulated from summer hunts (Wilkinson and Shank 1975; 

Hickey 1982). In many ways, the Head Hill site is at the core of academic hypotheses 

concerning faunal use (or overuse) by the people on Banks Island and the ecological 

relationships between caribou and muskoxen.
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Figure 1.9. The skeletal remains of muskoxen – many still partially-articulated – at the Head Hill (PlPx-1) site (image courtesy of 

Lisa Hodgetts). 
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Originally, Head Hill was thought to date to ~ 1855-1890 AD, when Kangiryuarmiut from 

Victoria Island visited Banks Island to salvage wood from the British ship HMS 

Investigator (Stefansson 1921). The Investigator, on its search for Sir John Franklin’s lost 

expedition to the Northwest Passage, was the first European ship to visit Banks Island, but 

became trapped in ice at Mercy Bay in 1851 (Figure 1.10). Ranging expeditions by the 

crew in the interior of Banks Island suggested that very few muskoxen – but many caribou 

– inhabited the island during this period (Skead 1849-1854; Armstrong 1857; Barr 1991). 

The Investigator was finally abandoned in 1853, but not before her crew offloaded several 

tons of coal, and a large cache of provisions and equipment on the western shore of Mercy 

Bay (Figure 1.11). To the Kangiryuarmiut and any other groups that visited, the cache 

provided a valuable supply of metal and wood useful for fashioning tools and sled-runners 

(Stefansson 1913, 1921; Hickey 1979, 1981; Barr 1991; Shank et al. 1994). 



 

32 

 

Figure 1.10. Portrait of the HMS Investigator trapped in pack ice at Mercy Bay, by Samuel Gurney Cresswell and William Simpson 

(image courtesy of Library and Archives Canada, C-016105). The Investigator now lies at the bottom of Mercy Bay, partially buried 

in silt but largely intact. 
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Figure 1.11. The remains of the HMS Investigator’s cache in 2014, with the pile of offloaded coal and many barrel staves visible 

(image courtesy of Lisa Hodgetts).
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When arctic explorer Vilhjalmur Stefansson visited the Head Hill site in 1915, he observed 

wood and metal scraps of clear European origin and theorized that, because muskoxen are 

easy to approach and kill, the Kangiryuarmiut had hunted them to the point of extirpation 

while traveling back and forth from the Investigator (Stefansson 1913; 1921), explaining 

why he, and the crew of the Investigator before him saw few muskoxen during their stays 

on Banks Island. However, radiocarbon dating by Shank et al. (1994) and Hodgetts 

(unpublished data) demonstrates that much of the Head Hill faunal assemblage 

accumulated prior to the arrival of the Investigator, sometime between 1650 and the early 

1800s cal. AD, and that the site was simply reused by Inuit groups during the Investigator 

period. 

Nevertheless, the Canadian government, motivated by Stefansson’s reports, instituted a 

ban on muskox hunting from 1917 to 1971 (Barr 1991). Sachs Harbour Elder Susie Tiktalik 

warned that this would lead to an explosion in the muskox population and the concomitant 

decline of the Peary caribou population, both of which later occurred (Nagy 1999). Oral 

history also records that at some point after the Investigator was abandoned, most of the 

muskoxen on Banks Island died of starvation after freezing spring rains. After this, there 

were few caribou or muskoxen on the island and during this time, fox trapping and fur 

trading became an important economic focus for “Bankslanders”, leading to the 

establishment of Sachs Harbour (Nagy 1999; Kelvin 2016). Management programs 

enacted with the input of the Inuvialuit during the 1970's returned the dwindling muskox 

population from ~ 4000 non-calf individuals in 1972 to ~ 47,000 non-calf individuals in 

2005 (Barr 1991; Gunn et al. 1991; Reynolds 1998; Nagy et al. 2009). Recent reports 

however, suggest that the muskox population is again declining (Kelvin 2016). 

1.5 Caribou and Muskox Diet on Banks Island and 
Physiological Considerations 

Because of the nutritional challenges imposed by the arctic winter, both muskoxen and 

caribou must achieve most of their dietary intake, and fat and protein accumulation, during 

the short summer. As a species, caribou are classified as selective intermediate (i.e. 

between browse and forage) feeders that nevertheless require feed with high nutritional 
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content and limited fiber (Hofmann 1989). In summer, when the aerial organs of plants 

(green stems, shoots, flowers, and catkins) are still growing, they feed as concentrate 

selectors. In winter, when plants have entered dormancy, they feed as near-grazers 

(Hofmann 1989, 2000). 

Studies of dietary variation by age and sex in caribou are limited, and no published studies 

exist for Peary caribou on Banks Island, probably because they move fast and frequently, 

and startle more easily than muskoxen. Several studies of monthly fecal compositions in 

caribou by Larter and Nagy (1997, 2004), however, found that dwarf willow comprised 

approximately sixty percent of summer diet, with sedges, legumes, and saxifrages making 

up the remaining forty percent of fecal content. In winter, dwarf willow content declined, 

and concentrations of legumes and rose/saxifrage increased, and throughout the year, sedge 

consumption accounted for ~ 25% of fecal content. Larter and Nagy (1997, 2004) suggest 

that lichen intake by caribou is minimal due to its limited availability. Personal observation 

in the 2014 field season, however, suggested that yellow lichen (Cetraria tilesii) and 

reindeer lichen (Cladina spp.) are abundant in both the northern and southern parts of the 

island. Further, community members from Sachs Harbour have remarked that lichen must 

be very healthy, because the caribou consume it in abundance throughout the year (Trevor 

Lucas 2014, personal communication). Given that lichens are fungi with cell walls 

composed of chitin, it may be that they are digested in such a way that their presence in 

diet is not reflected in the feces of ruminants. 

An experimental feeding trial with reindeer (Dearden et al. 1975) suggests that lichen is 

prone to underestimation in fecal samples, and El Seed et al. (2002) found that chitin is 

significantly more digestible than the fibrous biochemical fractions of plants. Determining 

whether Banks Island caribou ingest lichen is important for the interpretation of their δ13C 

and δ15N. Like all arctic plants, the green algae (Trebouxia spp.) that symbiotically 

associate with Cetraria and Cladina utilize the C3 (or Calvin) photosynthetic pathway 

(Teeri and Stowe 1976; Osborne and Beerling 2006). The absence of vascular systems in 

lichens, however, inhibits the diffusion of dissolved CO2 once it reaches their thalli, 

resulting in smaller isotopic fractionations and more positive δ13C (–21 to –18‰) relative 

to C3 plants (δ13C average: –26.5‰) (Park and Epstein 1960; Maguas and Brugnoli 1996; 
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Evans et al. 2009). Lichens are also depleted of 15N relative to many other terrestrial plants 

because they do not possess the ability to fix atmospheric N2 (Virginia and Delwiche 1982; 

France et al. 2007). We consider the potential role of lichens in the diets of caribou and 

muskoxen on Banks Island in Chapter 2. 

Forchhammer et al. (2002) classify muskoxen as generalist browsers, and Hofmann 

(2000:72, 78) argues that the digestive systems of muskoxen are “developed in accordance 

with that of a typical grazer or roughage feeder” and are “equipped with a very robust 

[grazer] digestive system.” Like most grazers, muskoxen have large, complex 

gastrointestinal tracts that allow them to extract energy from large volumes of high fiber, 

high protein forage. By observing muskoxen on Banks Island, Oakes et al. (1992) matched 

feces to individual muskoxen, and therefore differentiated fecal samples by age and sex. 

Contrary to the findings of Larter and Nagy (1997, 2004) discussed below, Oakes et al. 

(1992) found that shrub (S. arctica, Dryas integrifolia) consumption was relatively low 

across all categories of muskoxen, suggesting that non-woody vegetation is preferred when 

it is available during the summer. Adult female muskoxen had significantly greater 

proportions of forbs in their feces than adult males, who had a significantly greater 

proportion of sedges and rushes in their feces than adult females (Oakes et al. 1992). The 

feces of yearlings contained significantly greater proportions of shrubs than yearlings and 

adults of either sex (Oakes et al. 1992). When all non-adults were pooled, they had 

significantly greater proportions of shrub leaves (as opposed to other parts) in their feces 

than adults of both sexes (Oakes et al. 1992). 

In their analysis of monthly muskox fecal content, Larter and Nagy (1997) found that in 

both the summer and winter, muskoxen on Banks Island, pooled across age and sex 

categories, relied on a seasonally stable combination of sedge, representing 30-50% of their 

diet, and dwarf willow, representing the remaining 40% of their diet. In agreement with 

the findings of Oakes et al. (1992), Larter and Nagy (1997) also found that sedges and 

grasses composed the majority of the adult male diet, while sedges and forbs composed the 

majority of diet in nonlactating adult females, subadults, and calves. Contrary to nutritional 

expectations, the diets of lactating adult females were similar to adult males, with sedges 
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and grasses making up the majority of their diets. Yearlings primarily consumed forbs and 

grasses, though they also consumed the most shrubs of any of the groups. 

Despite the ability of the ruminant digestive system to extract nutrients from plant matter, 

the different biochemical fractions composing plant tissues are not all equally digestible. 

Several physiological studies demonstrate that ruminants are unable to digest the lignin 

fraction of plant matter effectively, if at all (Elsden and Phillipson 1948; Larter and Nagy 

2001b). Several studies (Gill et al. 1983; Holechek and Valdez 1985; Bartolomé et al. 1995; 

Hwang et al. 2007) have also established that fecal content analysis may overestimate 

indigestible forage types while also underestimating highly digestible forage. Isotopic 

analysis may therefore provide a more accurate portrayal of diet: as Hedges and van 

Klinken (2000:224) note, “[isotopic fractionation] during metabolism will only apply to 

food that has been digested,” not merely food that has been eaten. Still, if some plant tissues 

are more readily digested than others, and their carbon isotope compositions all vary based 

on the proportions of different biochemical compounds (Deines et al. 1980; Benner et al. 

1987), then the δ13C of bone collagen from herbivores may not reflect all forage sources, 

or their biochemical fractions, equally. The presence of lignin in the diets of ruminants may 

also affect the δ15N of body tissues in a complex system of digestive feedbacks. Work by 

McAnally and Phillipson (1944) and Van Soest (1963) determined that the presence of 

lignin in the rumen reduces cellulose digestibility and subsequent protein assimilation. 

Therefore, the ingestion of plants with high lignin content should result in 15N-depleted 

body tissues. Additionally, the proportion of lignin to cellulose in plants increases 

throughout the growing season and remains high during dormancy (Larter and Nagy 

2001b). Larter and Nagy (2001b) found that dicots, especially shrubs (S. arctica, D. 

integrifolia, and Cassiope tetragona), have the highest lignin content of all plants eaten by 

caribou and muskoxen. Therefore, consumption of these plants during the summer feeding 

period, and consumption of old plant material during the winter should both be associated 

with decreased body protein and subsequently decreased δ15N in body tissues. The amount 

of crude protein in the diet also affects the digestibility of cellulose in ruminants. Mitchell 

et al. (1940) found that cellulose was digested more effectively when the protein percentage 

of the ingested plant material was low rather than high, though Harris and Mitchell (1941) 

demonstrate that some protein is necessary to contribute nitrogen to cellulose-digesting 
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microflora. These issues, and their implications for biases in mixing models, are considered 

at length in Chapter 2. 

1.6 Organization of the Dissertation 

The body of this dissertation is divided into three chapters. In Chapter 2, we use a mixing 

model to infer the relative contributions of different forage sources to the bone collagen 

δ13C and δ15N of modern caribou and muskoxen from Banks Island. These data provide 

insight into the relationship among bone collagen isotopic compositions and diet in caribou 

and muskoxen, which is essential for interpreting archaeological isotope data. We also 

investigate differences in weaning, and seasonal variation in diet using δ13C and δ15N of 

sequentially sampled dentin collagen from modern caribou and muskox teeth. Overall, 

these data suggest that muskoxen have a reproductive advantage over caribou in periods of 

poor forage availability, but that recent changes in phytomass composition on Banks Island 

may favor caribou in the future. 

In Chapter 3, we apply multivariate and Bayesian ellipse metrics to caribou and muskox 

bone collagen δ13C and δ15N spanning the last 4000 years to investigate potential changes 

in diet and niche relationships between caribou and muskoxen. This chapter represents a 

considerable advancement in our understanding of caribou and muskox ecology during the 

Holocene, and demonstrates that caribou and muskoxen are flexible intermediate feeders 

that mitigate niche competition during periods of reduced forage availability by using 

different resources. The shift from forb- to graminoid-dominated tundra around 3000 years 

ago, however, may have imparted muskoxen with a dietary advantage over caribou until 

recently, when dwarf willow phytomass started to increase in the Arctic (Walker et al. 

2006; Forbes et al. 2009; Jia et al. 2009). In any case, interspecific forage competition, and 

overexploitation by humans are probably not significant factors in the periodic 

abandonment of Banks Island during the last 4000 years. 

In Chapter 4, we use laser ablation-GC-IRMS to evaluate the potential of sequential tooth 

enamel δ18O for reconstructing seasonal movement patterns in caribou and muskoxen. Our 

results suggest that enamel δ18O captures seasonal variability in precipitation, rather than 

geographical variation in surface waters taken up by vegetation. At greater sample sizes 
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however, these data would be useful for investigating broad scale changes in seasonality 

on Banks Island over the last 4000 years. 

In Chapter 5, we discuss the potential implications of this project for understanding tissue-

diet isotope relationships and differences between two statistical models used to evaluate 

stable isotope data. We also consider its contribution to research regarding archaeological 

relationships between human hunters and caribou and muskoxen on Banks Island, and the 

use of isotopic data presented here in future ecological research at high latitudes. Finally, 

we suggest several avenues of research which could be explored based on findings 

presented here. 
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Chapter 2  

2 Do Caribou (Rangifer tarandus spp.) and Muskoxen 
(Ovibos moschatus) Utilize the Same Forage Sources? 
An Isotopic Approach to an Ecological Question on 
Banks Island, NWT, Canada 

In this chapter, we investigate average and seasonal dietary compositions of modern 

caribou (Rangifer tarandus spp.) and muskoxen (Ovibos moschatus) on Banks Island, 

NWT, Canada. We use Bayesian mixing models to evaluate the contribution of different 

forage items to the δ13C and δ15N of bulk bone collagen. Then, we investigate seasonal 

dietary variation using sequentially-sampled crown dentin collagen δ13C and δ15N. 

Contrary to previous ideas, the dietary mixing models suggest that yellow lichen (Cetraria 

tilesii), sedges (Cyperaceae spp.), and forbs (Astragalus alpinus, Oxytropis spp., Saxifraga 

spp.) are dominant forage items for both caribou and muskoxen. Shrubs like dwarf willow 

(Salix arctica) do not appear to contribute significantly to bone collagen isotopic 

compositions. Dentin collagen δ13C (δ13Cdc) in both species suggests that dietary overlap 

does occur in winter, probably in the consumption of yellow lichen and sedge. Conversely, 

dentin collagen δ15N (δ15Ndc) in both species reflects differences in the duration of nursing. 

Caribou δ15Ndc indicates that the individuals whose teeth we sampled weaned within the 

first year of life, in line with existing research on caribou weaning times. Muskox δ15Ndc, 

however, suggests that the individuals whose teeth we sampled continued to nurse into at 

least the second year of life, which is longer than expected. This may reflect recent 

reductions in the fecundity of the Banks Island muskox population. Overall, the high degree 

of apparent lichen consumption by both caribou and muskoxen may negatively affect the 

winter survivability of both species in the future, which could have significant impacts on 

the health and economy of people living on Banks Island. 

2.1 Introduction 

Analysis of rumen and fecal content indicates dietary overlap and the potential for forage 

competition between caribou (Rangifer tarandus spp.) and muskoxen (Ovibos moschatus) 

on Banks Island, NWT, Canada. Our primary purpose in this paper is to further investigate 
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dietary similarities between caribou and muskoxen on Banks Island using the stable carbon 

and nitrogen isotope compositions of bone and crown dentin collagen. Because hard tissue 

isotopic compositions reflect assimilated dietary items, this research complements fecal 

and rumen content data, which may be biased towards undigested forage. As a secondary 

benefit, the creation of modern isotopic baselines for caribou and muskoxen allows us to 

make more nuanced interpretations about archaeological caribou and muskox ecology and 

its potential impact on the past inhabitants of Banks Island (discussed in Chapter 3). 

Banks Island, located in the Northwest Territories of Canada (Figure 2.1) is unique within 

the Canadian Arctic Archipelago in that it is inhabited by substantial portions of the global 

muskox and Peary caribou populations. Additionally, barren-ground and Dolphin-Union 

caribou (R. tarandus groenlandicus) occasionally migrate to Banks Island (Manning and 

MacPherson 1958; Manning 1960; McGhee 1996)5. Because of their significance to 

Indigenous heritage and identity, northern economies, and Arctic biodiversity, both species 

are of considerable interest to the Inuvialuit (the Inuit Peoples of the Northwest Territories 

and the Northern Yukon) and wildlife biologists. Arctic archaeologists also recognize long-

standing relationships among caribou, muskoxen, and humans and are interested in how 

their interactions shaped the archaeological record of the North American Arctic. 

                                                 

5
To account for possible admixture of caribou subspecies on Banks Island, we use the generalized 

taxonomic identifiers “Rangifer tarandus spp.” and “caribou” in this paper, unless referring to studies 

specific to Peary caribou. 
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Figure 2.1. Locations of forage sample collection sites on Banks Island (white circles) 

and the location of Banks Island within North America (inset). Exact coordinates and 

elevations of each sampling site are listed in Table 2.5.
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Traditional ecological knowledge (Nagy 1999; Kelvin 2016) and demographic studies 

(Latour 1987; Gunn et al. 1991; Jenkins et al. 2011) indicate that the caribou and muskox 

populations of Banks Island undergo opposing cycles of growth and decline, where the 

muskox population experiences an explosive increase (i.e. “booms”) followed by a rapid 

decline in size (i.e. “busts”). During muskox population “booms”, the caribou population 

size is depressed, but appears to increase simultaneously with muskox “busts”. In some 

cases, catastrophic “busts” in the muskox population are clearly the result of mass 

starvations due to heavy snow or ice crusts that make forage6 inaccessible (Gunn 1991; 

Larter and Nagy 1997; Grayhound Information Services 1997). However, there are also 

longstanding questions about the role of forage competition in caribou and muskox 

demographic cycles on Banks Island. Some people in Sachs Harbour believe that 

muskoxen outcompete caribou for forage either directly, or by driving them away with 

their scent (Nagy 1999), and these ideas are also shared by some members of Tetlit 

Gwich’in First Nation in Fort McPherson (Wishart 2004). Field observations (Gray 1973; 

Wilkinson et al. 1976; Hickey 1982) also suggest that caribou generally avoid muskoxen 

on Banks Island, potentially because of antagonistic behaviors (i.e. gland rubbing, 

stamping) directed towards the caribou (Gray 1973). It is conceivable then, that during 

winter when forage availability is limited and travel is metabolically costly, large numbers 

of muskoxen occupying feeding areas impart nutritional disadvantages on caribou simply 

by their presence. 

2.1.1 Caribou and Muskox Dietary Ecology 

Though caribou and muskoxen are adapted to distinct forage types (Hofmann 2000), both 

species are relatively flexible in their nutritional requirements, and their diets depend 

largely on forage available at individual locations. However, research offers conflicting 

evidence for forage competition between caribou and muskoxen. Gunn et al. (1991) 

                                                 

6
We use the term “forage” to refer to all photosynthetic vegetation potentially consumed by caribou and 

muskoxen on Banks Island, including vascular plants, mosses (non-vascular plants), and lichens (organisms 

composed of symbiotic fungi and algae or cyanobacteria). 
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suggest that the different physiological adaptations of muskoxen and caribou probably 

prevent the two species from utilizing the same forage types. Conversely, fecal and rumen 

content analyses (see below) suggests considerable seasonal overlap in the diets of both 

species on Banks Island (Larter and Nagy 1997, 2004). Here, we review current research 

on caribou and muskox diet on Banks Island in greater detail. 

Ruminant species are commonly differentiated by their stomach anatomies and dietary 

preferences. In the simplest terms, browsers are classified as those ruminants who rely on 

concentrated diets of leaves and inflorescences from herbaceous dicots such as forbs and 

shrubs, and are characterized by small, simple stomach chambers (Hofmann and Stewart 

1972; Gordon and Illius 1994). Grazers are classified as those ruminants that rely on a bulk 

diet primarily composed of grasses, and are characterized by larger, more complex stomach 

chambers (Gordon and Illius 1994). Intermediate feeders are those ruminants that rely on 

a mixture of both browse and graze. 

As a species, caribou are often classified as intermediate feeders that nevertheless require 

feed with high nutritional content and limited fiber (Hofmann 1989). In summer, when 

forage plants are still metabolically active, caribou feed almost exclusively on the aerial 

organs of vascular plants (e.g. shoots, flowers, catkins), and avoiding stems and grasses. In 

winter, when vascular plants enter dormancy and above-ground phytomass lignifies, 

caribou transition to a diet composed largely of sedges and graminoids with lower lignin 

content (Hofmann 1989, 2000). Barren-ground caribou (Rangifer tarandus groenlandicus) 

migrate extensively to exploit different food resources in summer and winter, while other 

subspecies of Rangifer, such as Peary caribou on Banks Island are less wide-ranging and 

have limited feeding options during winter. 

Unlike for muskoxen, there are few studies of dietary variation by age and sex in caribou, 

and no published studies exist for caribou on Banks Island. Analysis of rumen content in 

Peary caribou on Banks Island (Shank et al. 1978) indicated that sedges (Carex spp., 

Eriophorum spp.) and other grasses (Gramineae spp.) accounted for 50-70% of rumen 

content throughout the year, with highest percentages during the early and late winter. 

Forbs, particularly Astragalus alpinus, accounted for only ~ 15% of rumen content, except 
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in late November, when proportions of Astragalus alpinus and Dryas integrifolia both 

increased (Shank et al. 1978). Studies of fecal pellet content in Peary caribou on Banks 

Island by Larter and Nagy (1997, 2004) suggested somewhat different dietary 

compositions. Dwarf willow (Salix arctica) comprised approximately sixty percent of 

feces content during summer, with sedges, legumes (Astragalus alpinus, Oxytropis spp.) 

and non-leguminous forbs making up the remaining forty percent. In winter, willow tissue 

content in feces decreased, and the proportions of legumes and saxifrages increased. 

Averaged across all months, sedges accounted for approximately 25% of fecal content. 

Larter and Nagy (1997) suggest that lichen intake by Peary caribou on Banks Island is 

minimal due to its limited availability. Personal observations in 2014, however, suggest 

that yellow lichen (Cetraria tilesii) is abundant in both the northern and southern parts of 

the island. Further, Trevor Lucas, one of our research partners in Sachs Harbour, and a 

professional hunting guide on Banks Island suggests that caribou consume yellow lichen 

in abundance throughout the year (Trevor Lucas 2014, personal communication). 

Forchhammer et al. (2002) classify muskoxen as generalist browsers, though Hofmann 

(2000:72,78) stated previously that the digestive system of muskoxen “developed in 

accordance with that of a typical grazer or roughage feeder” and the species is “equipped 

with a very robust [grazer] digestive system”. Like most grazers, muskoxen have large, 

complex gastrointestinal tracts that allow them to extract energy from large volumes of 

high fiber, high protein forage. Oakes et al. (1992) matched feces to individual muskoxen 

on Banks Island, and were therefore able to differentiate fecal samples by age and sex. 

Contrary to the results of Larter and Nagy (1997) discussed below, Oakes et al. (1992) 

found that shrub (Salix arctica, Dryas integrifolia) content in muskox feces was relatively 

low regardless of age or sex. Oakes et al. (1992) also found that adult female muskoxen 

had significantly greater proportions of forbs in their feces than adult males, who had 

significantly greater proportion of sedges and rushes in their feces than adult females. The 

feces of yearlings contained significantly greater proportions of shrubs than subadults and 

adults of either sex (Oakes et al. 1992:610). When all non-adults were pooled, they had a 

significantly greater proportion of shrub leaves (as opposed to other parts) in their feces 

than adults of both sexes (Oakes et al. 1992:610). 
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Larter and Nagy (1997, 2004) found that across months, sedges comprised about 30-50% 

of fecal content, while dwarf willow accounted for the remaining ~ 40%. In agreement with 

Oakes et al. (1992), Larter and Nagy (1997) also found that sedges and grasses accounted 

for most of the adult male diet, while sedges and forbs dominated the diet in non-lactating 

adult females, subadults, and calves. Contrary to nutritional expectations, the diets of 

lactating adult females were similar to adult males, with sedges and grasses making up the 

majority of their diets. Yearlings primarily consumed forbs and grasses, though they also 

consumed the most shrubs of any group. 

Based on the available data, there is clearly potential for dietary overlap between caribou 

and muskoxen, particularly in the consumption of sedges and dwarf willow. Although 

sedges are abundant on Banks Island (Larter and Nagy 2001a), Larter and Nagy (1997) 

also noted that as winters on Banks Island have become warmer, snowfall and 

thaw/refreeze events both increased. In low, wet areas where sedges are abundant, ice 

crusts formed from refrozen snowmelt can limit access to vegetation, potentially forcing 

muskoxen onto hillsides to feed on dormant willow. Larter and Nagy (1997) hypothesized 

that increased consumption of dormant willow by the growing muskox population may 

subsequently limit the ability of the plant to flower in the following summer, therefore 

increasing competition for aerial tissues during summers. 

2.1.2 Potential Issues with Existing Dietary Interpretations 

Research based on fecal and rumen content has been invaluable for understanding modern 

caribou and muskox dietary ecology. There are potential drawbacks to both approaches, 

however. Several studies (Gill et al. 1983; Holechek and Valdez 1985; Bartolomé et al. 

1995) indicate that certain forage types can be under- and over-represented in herbivore 

fecal material, and rumen contents may vary based on the digestibility of different forages. 

Based on analysis of rumen content, Thing et al. (1987) found that graminoids are typically 

underrepresented in the feces of muskoxen due to their high digestibility. Additionally, 

several lines of evidence suggest that the ruminant digestive process itself skews the 

isotopic compositions of tissue and waste such that they may not accurately reflect dietary 

composition. Several studies have shown that ruminants are unable to digest the lignin 

portion of forage material effectively, if at all (Eldsen and Phillipson 1948; Gill et al. 1983). 
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Because of its low digestibility, lignin or forage with high lignin content may be 

overrepresented in feces or the rumen. 

Additionally, although fecal and rumen studies are useful for making inferences about 

modern caribou and muskox diet, we have no archaeological fecal samples with which to 

investigate whether and how caribou and muskox diets have varied over time. As we argue 

in Chapter 3, the boom-and-bust demographic cycles experienced by caribou and 

muskoxen may have a relatively recent origin, which has implications for archaeological 

interpretations about Banks Island. To develop an understanding of caribou and muskox 

ecology over the longue durée (Balée 1998, 2006; Crumley 2007), we need an analytical 

approach that can be applied to modern and archaeological caribou and muskoxen alike. 

2.1.3 Stable Isotope Analysis in Terrestrial Herbivore Ecology 

In this paper, we use stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of forage 

species, bone collagen, and crown dentin collagen to reconstruct the diets of modern 

caribou and muskoxen from Banks Island. Specifically, we address two research questions: 

(1) Is there overlap in specific forage items consumed by modern caribou and muskoxen 

on Banks Island? (2) If so, does dietary overlap occur only seasonally, or throughout the 

year? 

Stable isotope analysis is an established method of reconstructing diet and environmental 

conditions during an animal’s life. The δ13C and δ15N of different forage species varies 

with photosynthetic fixation of CO2 and source nitrogen, respectively, and these 

differences are passed up the food chain. It is generally accepted that the carbon in dietary 

protein is preferentially routed to proteinaceous tissues like bone collagen, while for 

instance, bone structural carbonate δ13C represents the δ13C of CO2 derived from all dietary 

macronutrients (protein, carbohydrates, and lipids) (Gannes et al. 1998; Hedges and van 

Klinken 2000; Koch 2007). Consequently, lower protein dietary items should only 

minimally influence the isotopic compositions of proteinaceous tissues like bone collagen. 

Preferential representation of dietary protein in bone collagen δ13C does occur in carnivores 

and omnivores, where dietary protein is generally so abundant that it can be utilized 
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exclusively for tissue growth and maintenance (Krueger and Sullivan 1984; Lee-Thorp et 

al. 1989; Ambrose and Norr 1993; Tieszen and Fagre 1993). In this case, dietary essential 

and nonessential amino acids are routed directly to proteinaceous body tissues, or are 

deaminated to synthesize nonessential amino acids (Hare et al. 1991; Tieszen and Fagre 

1993). The tissues of vegetation, however, are composed almost entirely of carbohydrates, 

and generally contain low amounts of protein. Krueger and Sullivan (1984) suggest that 

many of the amino acids that compose vegetative protein are not useful for faunal tissue 

growth or maintenance. Herbivores must therefore either synthesize amino acids necessary 

for tissue development de novo from carbohydrates (Krueger and Sullivan 1984; Ambrose 

and Norr 1993; Dewhurst et al. 2000; Atasoglu et al. 2004) or employ other macronutrient-

maximizing strategies like coprophagy (Hörnicke and Björnhag 1980; Peterson and 

Wunder 1997; van Geel et al. 2011). In ruminant herbivores, synthesis of both nonessential 

and essential amino acids from carbohydrates is accomplished through microbial 

fermentation in the rumen. Here, cellulose is converted by microflora into both volatile 

fatty acids (VFAs) for energy, and amino acids for protein synthesis (Hungate 1966; Batzli 

et al. 1981; Sørmo et al. 1997; Mathiesen et al. 2000). The stable isotopic composition of 

bone collagen in herbivores like caribou and muskoxen should therefore reflect all 

assimilated forage sources, not just those with high crude protein contents. 

An isotopic approach to caribou and muskox dietary ecology has several advantages. 

Collagen is probably the most commonly studied tissue in faunal stable isotope ecology 

and its extraction and analysis is simple and relatively inexpensive. This opens the door to 

future long-term caribou and muskox monitoring projects in the Arctic using stable isotope 

analysis. The rate of tissue turnover in bone collagen is also much slower than blood, hair, 

or muscle (Tieszen et al. 1983). Consequently, isotopic compositions of bulk bone collagen 

can be used to make inferences about ecological trends over longer periods, which are 

complimentary to, and potentially more informative than data from fecal and rumen content 

studies. 

Dentin develops from the dentinoenamel junction (DEJ) in sequential, cone-like layers that 

extend from the apex of the tooth crown towards the roots (Carlson 1990; Hillson 2000; 

Zazzo et al. 2006) (Figure 2.2). Unlike dentin from tooth roots, primary dentin (i.e. dentin 
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apposited during tooth crown development) is not resorbed or remodeled after apposition 

(Gage et al. 1989; Lowenstam and Weiner 1989; Balasse 2003). The δ13C and δ15N of 

crown dentin collagen (δ13Cdc, δ15Ndc) therefore provides a level of temporal isotopic 

resolution that is more refined than – but still directly comparable to – bulk bone collagen 

δ13C and δ15N, and has the potential to reveal seasonal, or at least intra-annual, variation in 

diet. Bone and teeth are also generally resistant to chemical alteration, and as we 

demonstrate in Chapter 3, preservation of hard tissues from Arctic archaeological sites is 

excellent. In that chapter, we also demonstrate that the isotopic compositions of bones and 

teeth from the earliest, most ephemeral sites on Banks Island can be compared with those 

from later assemblages, as well as modern bone and tooth samples from this chapter, to 

provide otherwise unobtainable information about the deep ecological histories of these 

species. 
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Figure 2.2. Diagram of a typical hypsodont tooth crown. (a) buccolingual cross-section showing apical section obliterated through 

occlusal wear; (b) image of the dentinoenamel junction (DEJ) in a muskox M2, taken at 5x magnification using differential 

interference contrast (DIC) microscopy. “E” is enamel and “D” is dentin; small, near-horizontal lines (white bracket) are individual 

dentin tubules; (c) idealized illustration of diagram b, depicting sequentially-developed dentin cones (gray lines). Red arrows indicate 

the direction of successive dentin apposition away from the DEJ. 
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2.2 Materials 

2.2.1 Bone and Dentin Collagen 

Skeletal remains of muskoxen that died relatively recently – as evidenced by the presence 

of hair or soft tissue on the bones – were present at several archaeological sites we visited 

in 2014. We collected bone and tooth samples from these remains when possible and 

include them in our modern bone dataset. Additionally, skeletal samples from adult caribou 

and muskoxen harvested in the spring and fall of 2015 and 2016 by Trevor Lucas, our 

research associate in Sachs Harbour, were shipped frozen from Banks Island. 

Included in our analysis are isotopic and elemental data for modern caribou and muskox 

bone collagen from a pilot project on Banks Island (Masoner, White, Hodgetts and 

Longstaffe, unpublished data). These bone samples were obtained in 2010 and their 

collagen was prepared and analyzed in the same manner as bone samples from 2014, 2015, 

and 2016. We also include bone collagen carbon and nitrogen isotope data for five Peary 

caribou published by Drucker et al. (2012). These caribou were harvested on Banks Island 

in 1970 and 1975, and their reported δ13Cbc are corrected to those of our modern caribou 

by –1.43‰ and –1.32‰, respectively, using equations from Verburg (2007). Bone sample 

information is listed in Tables 2.1 and 2.2. Tooth sample information is listed in Tables 2.3 

and 2.4. 
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Table 2.1. Isotopic, elemental, and percent collagen content data for caribou bulk bone collagen samples. 

Sample ID 
Harvest 

Date 
Taxon Element 

δ13C          
(‰, VPDB) 

δ15N            
(‰, AIR) 

C% N% 
Atomic 

C:N Ratio 
Wt% 
Coll 

BKS-001† 2010 Caribou Cranium –21.9 +2.9 42.8 16.1 3.1  

BIBS15-67§ 2015 Caribou Cranium –22.1 +4.1 45.2 16.5 3.2 20.2 

BIBS15-68 2015 Caribou Cranium –21.8 +3.2 45.3 16.8 3.2 19.1 

BIBS16-19§ 2016 Caribou Mandible –21.5 +4.5 44.7 16.3 3.2 21.6 

BIBS16-20 2016 Caribou Rib –21.9 +3.7 44.4 16.3 3.2 21.7 

BIBS16-40 2016 Caribou Rib –22.0 +3.6 45.9 16.8 2.4 22.0 

BIBS16-41 2016 Caribou Mandible –21.7 +3.0 44.3 16.3 2.7 18.9 

BIBS16-42 2016 Caribou Humerus –22.1 +3.4 45.6 16.7 3.5 15.3 

BIBS16-43 2016 Caribou Rib –22.3 +5.0 44.6 16.4 2.3 22.2 

BIBS16-44 2016 Caribou Rib –22.7 +5.5 44.5 16.4 2.4 21.6 

BNK-7* 1970 Caribou Mandible –21.6 +3.2     

BNK-18* 1970 Caribou Mandible –21.6 +3.5     

BNK-4** 1975 Caribou Mandible –22.0 +3.7     

BNK-11** 1975 Caribou Mandible –22.3 +3.1     

BNK-15** 1975 Caribou Mandible –22.4 +3.6         
          

† From pilot study    

* Data from Drucker et al. (2012); δ13C has been corrected by –1.43‰    

** Data from Drucker et al. (2012); δ13C has been corrected by –1.32‰    

§ Dentin collagen sampled from tooth belonging to this individual    
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Table 2.2. Isotopic, elemental, and percent collagen content data for muskox bulk bone collagen samples. 

Sample ID 
Harvest 

Date 
Taxon Element 

δ13C          
(‰, VPDB) 

δ15N            
(‰, AIR) 

C% N% 
Atomic 

C:N Ratio 
Wt% 
Coll 

BKS-0190† 2010 Muskox Mandible –22.6 +4.5 42.9 16.3 3.1  

BKS-0191† 2010 Muskox Cranium –22.3 +3.7 40.4 15.1 3.1  

BIBS14-168‡  Muskox Tibia –22.1 +3.9 44.1 16.0 3.2 18.0 

BIBS14-169‡§  Muskox Mandible –23.4 +4.0 43.4 15.8 3.2 20.8 

BIBS14-445‡§  Muskox Mandible –22.7 +5.4 46.1 16.9 3.2 21.1 

BIBS16-9 2016 Muskox Mandible –22.9 +4.8 43.3 15.9 3.2 25.7 

BIBS16-10 2016 Muskox Mandible –22.8 +4.4 43.3 15.9 3.2 23.5 

BIBS16-11 2016 Muskox Mandible –22.7 +3.9 43.4 16.0 3.2 22.5 

BIBS16-12 2016 Muskox Mandible –22.5 +4.6 43.5 16.0 3.2 24.1 

BIBS16-13 2016 Muskox Mandible –22.7 +4.0 43.5 16.0 3.2 23.1 

BIBS16-14 2016 Muskox Mandible –22.3 +4.0 44.0 16.2 3.2 23.8 

BIBS16-15 2016 Muskox Mandible –22.7 +4.6 44.6 16.5 3.2 22.2 

BIBS16-16 2016 Muskox Mandible –23.0 +4.0 44.6 16.5 3.2 23.2 

BIBS16-17 2016 Muskox Mandible –22.3 +4.3 43.8 16.1 3.2 22.8 

BIBS16-18 2016 Muskox Mandible –22.2 +5.1 44.4 16.4 3.2 25.9 

          

† From pilot study     

‡ Recently deceased individual collected at or near archaeological site     

§ Dentin collagen sampled from tooth belonging to this individual 
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Table 2.3. Isotopic, elemental, and percent collagen content data for crown dentin microbulk collagen samples from caribou. 

Sample ID Taxon 
Microbulk 

Sample 
δ13C          

(‰, VPDB) 
δ15N            

(‰, AIR) 
C% N% 

Atomic 
C:N Ratio 

Wt% 
Coll 

BIBS15-67 M2 Caribou 
DC1 –21.0 +4.0 43.2 15.5 3.3 8.7 

DC2 –21.1 +4.5 44.9 16.3 3.2 14.0 
         

BIBS16-19 dp4 Caribou BULK –21.1 +6.2 42.5 15.3 3.2 12.3 
         

BIBS16-19 M1 Caribou 

DC1 –21.3 +6.2 42.7 15.3 3.3 5.4 

DC2 –21.5 +6.1 42.7 15.4 3.2 11.4 

DC3 –21.2 +6.2 43.8 15.9 3.2 14.6 
         

BIBS16-19 M2 Caribou 
DC1 –21.9 +6.0 43.1 15.7 3.2 5.6 

DC2 –21.3 +5.7 43.3 15.5 3.3 8.3 
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Table 2.4. Isotopic, elemental, and percent collagen content data for crown dentin microbulk collagen samples from muskoxen. 

Sample ID Taxon 
Microbulk 

Sample 
δ13C          

(‰, VPDB) 
δ15N            

(‰, AIR) 
C% N% 

Atomic 
C:N Ratio 

Wt% 
Coll 

BIBS14-169 M1 Muskox 

DC1 –22.9 +7.9 42.8 15.6 3.2 14.5 

DC2 –22.6 +7.7 44.8 16.3 3.2 14.4 

DC3 –22.8 +8.0 44.9 16.4 3.2 14.5 

DC4 –22.5 +7.9 45.3 16.5 3.2 16.0 
         

BIBS14-169 M2 Muskox 

DC1 –22.8 +7.9 42.2 15.3 3.2 14.3 

DC2 –23.0 +7.8 44.5 16.2 3.2 14.0 

DC3 –23.0 +7.5 45.1 16.4 3.2 14.3 

DC4 –23.3 +7.6 45.5 16.6 3.2 14.4 

DC5 –22.3 +7.6 45.7 16.5 3.2 18.1 
         

BIBS14-169 M3 Muskox 

DC1 –22.8 +7.5 41.8 15.0 3.3 14.7 

DC2 –22.5 +7.5 44.2 16.1 3.2 13.6 

DC3 –22.7 +7.5 43.1 15.6 3.2 12.6 

DC4 –23.2 +7.5 44.3 16.2 3.2 13.5 

DC5 –22.8 +7.5 45.4 16.5 3.2 12.5 

DC6 –23.6 +7.4 44.6 16.1 3.2 14.2 

DC7 –23.6 +7.5 45.6 16.5 3.2 17.0 
         

BIBS14-169 P4 Muskox 

DC1 –22.5 +7.5 39.9 14.4 3.2 9.1 

DC2 –22.9 +7.5 44.7 16.1 3.2 12.0 

DC3 –22.9 +7.5 44.6 16.3 3.2 12.0 
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DC4 –23.4 +7.6 45.3 16.4 3.2 14.1 

DC5 –23.8 +7.5 44.5 16.3 3.2 16.6 

DC6 –23.1 +6.8 45.9 16.6 3.2 18.9 
         

BIBS14-445 M1 Muskox 

DC1 –22.3 +7.2 42.2 15.4 3.2 11.0 

DC2 –22.4 +7.3 43.8 15.9 3.2 14.3 

DC3 –22.0 +7.4 44.9 16.3 3.2 15.2 

DC4 –22.1 +7.5 44.7 16.3 3.2 16.8 

DC5 –21.7 +7.2 44.7 16.4 3.2 18.7 
         

BIBS14-445 M2 Muskox 

DC1 –22.1 +6.9 41.8 15.0 3.2 13.9 

DC2 –21.9 +6.9 43.4 15.8 3.2 12.8 

DC3 –21.9 +6.9 43.3 15.8 3.2 6.4 

DC4 –22.5 +6.7 43.5 15.8 3.2 14.0 

DC5 –21.2 +6.6 44.8 16.4 3.2 13.3 

DC6 –21.5 +7.6 45.4 16.5 3.2 17.2 
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2.2.2 Forage Plants 

We collected 49 samples of important forage species from 18 genera at 13 different sites 

on Banks Island (Figure 2.1, Table 2.5) during June 2014 and May to July 2015. We used 

illustrated volumes by Porsild (1957) and Polunin (1959) as well as the “Flora of the 

Canadian Arctic Archipelago” interactive key for the DELTA Intkey program (http://delta-

intkey.com) to make taxonomic identifications. Forage functional group classifications 

follow the scheme outlined in Table 2.6. To abate microbial degradation, forage samples 

were stored in a ventilated field tent and allowed to air-dry for at least two weeks before 

shipment to the University of Western Ontario in paper bags. These forage samples were 

supplemented by isotopic and elemental data from 25 forage samples collected in 2010 as 

part of the pilot project. 
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Table 2.5. Taxonomic and collection site information for forage samples from Banks Island. 

Sample ID Scientific Name Common Name Functional Group 

Collection Site 

Northing Westing Elev 
(m) 

(WGS 84) (WGS 84) 

OjRk-1 

14VS-1 Oxytropis arctobia   Leguminous Forb 

71.52539 123.66239 80 

14VS-2 Dryas integrifolia Mountain Avens Rose/Heath 

14VS-4 Salix arctica Arctic Willow Willow 

14VS-5 Saxifraga eschscholtzii Cushion Saxifrage Non-leguminous Forb 

14VS-6 Eriophorum callitrix Cottongrass Sedge 

14VS-7 Salix arctica Arctic Willow Willow 

14VS-8 Saxifraga eschscholtzii Cushion Saxifrage Non-leguminous Forb 

Agvik (OkRn-1) 

14VS-19 Dryas integrifolia Mountain Avens Rose/Heath 71.80317 124.64729 12 

Emegak Lake Area 

14VS-10 Eriophorum latifolium Broad-leaved Cottongrass Sedge 

71.80383 124.61708 31 

14-VS-11 Dupontia spp. Tundragrass Grass 

14VS-12 Salix arctica Arctic Willow Willow 

14VS-13-1 Cetraria tilesii Yellow Lichen Lichen 

14VS-13-2 Thamnolia vermicularis Worm Lichen Lichen 

14VS-14 Petasites frigidus Frigid Colt's foot Non-leguminous Forb 

14VS-15 Eriophorum latifolium Broad-leaved Cottongrass Sedge 

14VS-16 Carex aquatilis stans Water Sedge Sedge 
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14VS-17 Oxytropis arctobia  Leguminous Forb 

14VS-18 Alopecurus magellanicus Alpine Foxtail Grass 

Area ~ 4 km east of Kellett Point 

15VS-2BC Salix arctica Arctic Willow Willow 

71.96114 125.72725 16 

15VS-4BC Dryas octopetala Mountain Avens Rose/Heath 

15VS-3BC Thamnolia vermicularis Worm Lichen Lichen 

15VS-1BC Saxifraga oppositifolia  Non-leguminous Forb 

15VS-5BC Dryas octopetala Mountain Avens Rose/Heath 

Mary Sachs Lake Area 

15VS-1LK Eriophorum angustifolium Cottongrass Sedge 

71.97276 125.57301  

15VS-3LK-1 Cetraria tilesii Yellow Lichen Lichen 

15VS-3LK-2 Thamnolia vermicularis Worm Lichen Lichen 

15VS-4LK Salix arctica Arctic Willow Willow 

15VS-5LK Cassiope tetragona Arctic White Heather Rose/Heath 

Green Cabin Area 

15VS-205 Saxifraga eschscholtzii Cushion Saxifrage Non-leguminous Forb 73.22864 119.53942  

15VS-204 Oxytropis arctica  Leguminous Forb 73.22875 119.54522  

15VS-206 Dryas integrifolia Mountain Avens Rose/Heath 
73.22878 119.53958 37 

15VS-207 Salix arctica Arctic Willow Willow 

15VS-208 Carex aquatilis stans Water Sedge Sedge 73.23094 119.54769 50 

15VS-209-1 Thamnolia vermicularis Worm Lichen Lichen 
73.23094 119.54586 48 

15VS-209-2 Sphagnum squarrosum Sphagnum Moss Moss 

15VS-210 Oxytropis arctobia  Leguminous Forb 73.23167 119.54661 45 
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15VS-203-1 Cetraria tilesii Yellow Lichen Lichen 
73.38419 119.91361 41 

15VS-203-2 Thamnolia vermicularis Worm Lichen Lichen 

15VS-202 Cetraria tilesii Yellow Lichen Lichen 73.38503 119.91361 41 

15VS-201 Eriophorum callitrix Cottongrass Sedge 73.38531 119.91361 44 

Char Lake (PjPx-2) 

14VS-9 Poaceae spp. Grass Grass 73.65775 119.93520 16 

Head Hill (PlPx-1) Area 

15VS-215 Oxytropis spp.  Leguminous Forb 73.83658 119.98372 57 

15VS-216 Astragalus alpinus Alpine Milk Vetch Leguminous Forb 73.83719 119.98742 73 

15VS-214-1 Cetraria tilesii Yellow Lichen Lichen 

73.83761 119.98550 70 15VS-214-2 Thamnolia vermicularis Worm Lichen Lichen 

15VS-214-3 Sphagnum squarrosum Sphagnum Moss Moss 

15VS-211 Salix arctica Arctic Willow Willow 

73.83906 119.98936 77 15VS-213 Carex aquatilis stans Water Sedge Sedge 

15VS-213-2 Sphagnum squarrosum Sphagnum Moss Moss 

Mercy Bay Area 

15VS-219-1 Cetraria tilesii Yellow Lichen Lichen 

74.10558 119.05497 9 15VS-219-2 Thamnolia vermicularis Worm Lichen Lichen 

15VS-219-3 Sphagnum squarrosum Sphagnum Moss Moss 

15VS-218 Carex aquatilis stans Water Sedge Sedge 

74.10561 119.05419 8 
15VS-220 Saxifraga cernua Bulblet Saxifrage Non-leguminous Forb 

15VS-220-2 Sphagnum squarrosum Sphagnum Moss Moss 

15VS-221 Astragalus alpinus Alpine Milk Vetch Leguminous Forb 
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15VS-217 Thamnolia vermicularis Worm Lichen Lichen 74.10650 119.05169 2 

HMS Investigator Cache Area 

P1† Dryas octopetala Mountain Avens Rose/Heath 

74.18798 119.08961  

P10† Pedicularis lanata Wooly Lousewort Non-leguminous Forb 

P11A† Papaver radicatum Arctic Poppy Non-leguminous Forb 

P12† Poaceae spp. Grass Grass 

P13† Saxifraga cernua Bulblet Saxifrage Non-leguminous Forb 

P14† Leymus arenarius Lyme Grass  Grass 

P15† Cassiope tetragona Arctic White Heather Rose/Heath 

P2A† Saxifraga hirculus Marsh Saxifrage Non-leguminous Forb 

P3† Salix arctica Arctic Willow Willow 

P4† Oxyria digyna Mountain Sorrel Non-leguminous Forb 

P5† Thamnolia vermicularis Worm Lichen Lichen 

P6† Oxytropis arctica Arctic Oxytrope Leguminous Forb 

P8† Poaceae spp. Grass Grass 

P9† Saxifraga oppositifolia Purple Saxifrage Non-leguminous Forb 
       

† From pilot study   
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Table 2.6. Functional group classification scheme for forage samples. 

Herbs Shrubs Mosses Lichens 
(Non-woody Vascular Plants) (Woody Vascular Plants) (Non-vascular Plants) (Composite Organisms) 

Monocotyledonous Dicotyledonous    
Graminoids Forbs 

True Grasses 
(Gramineae) 

Non-leguminous Dwarf Willow Sphagnum Moss Lichens 

Sedges 
(Cyperaceae) 

Leguminous                    
(Fabaceae) 

Rose/Heath       
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2.3 Methods 

2.3.1 Sample Preparation 

After shipment to the University of Western Ontario, frozen bone samples were thawed 

and soft tissue was removed with a scalpel. Defleshed bone samples were immediately 

placed in a 60°C oven with several beakers of fresh desiccant and allowed to desiccate for 

approximately 24 hours. After drying, ~ 1 g of bone was removed from each sample using 

a Dremel® rotary tool. Whenever possible, we selected only cortical bone for analysis 

because the rate of tissue turnover is slightly slower than in trabecular bone (Cox and Sealy 

1997; Hill and Orth 1998; Hedges et al. 2007). An additional subsample was removed for 

DNA analysis (Rodrigues et al. forthcoming). Because fresh bone contains substantial 

amounts of oils and fats, samples were rinsed three times in 2:1 chloroform-methanol prior 

to crushing. After drying overnight in a fumehood, samples were crushed to <0.85mm, and 

bulk collagen was extracted using a modified version of the protocol described by Longin 

(1971). Briefly, this process involves the removal of lipids and any residual soft-tissue with 

three rinses in 2:1 chloroform-methanol, demineralization in 0.50 M HCl, removal of 

humic and fulvic acids in 0.1 M NaOH, solubilization in weak acid (10–3 M HCl), and 

evaporation of water to yield dry collagen. The second set of rinses in 2:1 chloroform-

methanol was included to remove any residual lipids. Additionally, although there should 

be no humic or fulvic acids in fresh bone, we included the NaOH treatment for 

comparability with archaeological bone samples (Chapter 3). 

Sequential dentin “microbulk”7 collagen samples were obtained from tooth crowns using 

the following method. First, selected teeth were extracted from mandibles or maxillae, 

cleaned of dust, debris, and residual cementum using ultrapure water, a toothbrush, and a 

dental scaler, and allowed to dry under continuous air flow in a fume hood. The size of the 

                                                 

7
Since it is not possible to obtain collagen from individual dentin appositional layers with the sampling 

methodology we employ here, the isotopic compositions of each sequential dentin sample reflect the 

averaged isotopic compositions of multiple, cross-cut dentin appositional layers. We use the term 

“microbulk” to distinguish from studies where whole-tooth, homogenized dentin samples are analyzed. See 

Section 2.4.9 for further discussion. 
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muskox teeth exceeded all commercially-available embedding molds, and we instead 

employed inexpensive silicone cigarette cases purchased from a variety store as reusable 

embedding molds with excellent results. The teeth were fully embedded in epoxy resin 

(Struers EpoFix®) (Figure 2.3b) and the resultant epoxy “blocks” were allowed to harden 

for at least a week. After curing, we used a Buehler® IsoMet™ low-speed saw to produce 

two 250 μm-thick buccolingual thick sections (henceforth the “A-section” and “B-

section”) through the highest point of the least worn tooth loph (Figure 2.3c). After 

microsampling enamel from each A-section for related research (see Chapter 4; B-sections 

were used exclusively for the analysis of tooth enamel δ13C and δ18O in that chapter as 

well), we used a second, smaller sectioning machine to divide each tooth crown into ~ 5 

mm transverse “slices” (Figure 2.3d, e). Because the degree of occlusal wear in each tooth 

varies, the root-enamel junction (REJ) (i.e. the cervix) of each tooth crown was used as a 

common “anchor point” for each sampling “grid” of 5 mm transverse sections.
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Figure 2.3. The dentin collagen sampling process: (a) intact tooth after being removed, cleaned, and dried; (b) embedding in epoxy 

resin using silicone molds; (c) obtaining one of two thick sections from the epoxy block; the first section (the “A-section”) is used for 

obtaining dentin samples (red material is modeling clay used to position tooth during embedding); (d) an A-section marked for 

transverse sectioning; numbers correspond to sequential dentin sample IDs. Each section is approximately 5 mm in height with the 

sampling “grid” anchored at the root-enamel junction (REJ); (e) obtaining sequential dentin samples from an A-section using the 

second sectioning machine. 
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Large fragments of enamel and epoxy were mechanically removed from each transverse 

slice, and collagen was extracted from each sequential dentin sample following the same 

methods used for bone collagen extraction, with one notable exception. We did not crush 

the dentin samples to a uniform size as we did for bone samples because: (1) samples were 

very small and crushing inevitably results in the loss of small amounts of sample material; 

and (2) allowing the dentin samples to demineralize as small chunks ensured that residual 

epoxy could be removed from samples with tweezers later in the collagen extraction 

process. Like the modern bone samples, dentin samples were rinsed in three rounds of 2:1 

chloroform-methanol prior to obtaining dry weights and beginning the collagen extraction 

process. However, whereas with modern bone samples the purpose of these pre-rinses was 

to remove excess oil, fat, and marrow, they were applied to dentin collagen samples to 

dissolve residual epoxy. 

Following Szpak et al. (2013) and Tahmasebi (2015), we subdivided forage samples by 

tissue types (e.g. roots, root crowns, stems, leaves, inflorescences). We then rinsed the 

samples of soil and other exogenous materials with distilled water and dried them at 90°C 

for ~ 24 hours. Samples were then ground to a homogenous size using a Wig-L-Bug® 

grinding mill. Because forage samples were not subjected to additional treatments after 

drying and grinding, we did not create methodological duplicates. Forage samples from the 

pilot project were prepared and analyzed in the same manner as samples collected in 2014 

and 2015. 

2.3.2 Isotopic Analysis and Determination of Elemental Weight 
Percentage 

All isotopic analyses, including those from the pilot project, were performed at the 

Laboratory for Stable Isotope Science (LSIS) at the University of Western Ontario using a 

Costech™ Elemental Combustion System interfaced with either a Thermo Scientific™ 

DELTAplus XL® or Thermo Scientific™ DELTA V Plus® isotope ratio mass spectrometer 

operating in continuous flow mode. All isotopic compositions are reported in per mil (‰) 

using delta notation (δ) (Equation 2.1): 
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𝛿 = [
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  

[Equation 2.1] 

where R is the ratio of heavy to light isotopes in the analyte. Carbon isotope 

compositions are calibrated to Vienna Pee Dee Belemnite (VPDB) and nitrogen isotope 

compositions are calibrated to atmospheric N2 (AIR) using USGS40 (ʟ-glutamic acid; 

accepted δ13C and δ15N –26.39‰ and –4.52‰, respectively) and USGS41 (ʟ-glutamic 

acid; accepted δ13C and δ15N +37.63‰ and +47.57‰, respectively) as reference standards 

(Qi et al. 2004). For forage, bone collagen, and dentin collagen analyses, an internal keratin 

standard (MP Biomedicals Inc., Cat No. 90211, Lot No. 9966H), and an international 

standard (IAEA-CH-6) were used to measure analytical accuracy. For nitrogen-only 

isotope analyses of forage tissues, the internal keratin standard, and an international 

standard (NIST-1547) were used to measure analytical accuracy. 

For each sample, weight percent carbon (C%) and nitrogen (N%) were not measured 

directly but were calculated using Equation 2.2: 

%𝐸𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ∗  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒

𝐴𝑚𝑜𝑢𝑛𝑡𝑆𝑎𝑚𝑝𝑙𝑒

𝐾– 𝐹𝑎𝑐𝑡𝑜𝑟
 

[Equation 2.2] 

where “%EStandard” equals the accepted elemental (C or N) weight percentage of the 

reference standard (here, either USGS-40 or USGS-41), “AmplitudeSample” equals the 

amplitude of ions with a mass-to-charge (m/z) ratio of 44 (for carbon) or 28 (for nitrogen) 

measured in the sample, and “AmountSample” equals the sample weight (in mg). The “K-

factor”, used to correct for instrumental mass discrimination, and is derived from Equation 

2.3: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑚𝑜𝑢𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 

[Equation 2.3] 

where “Average AmplitudeStandard” equals the average amplitude of ions with a 

mass-to-charge (m/z) ratio of 44 (for carbon) or 28 (for nitrogen) measured in all analyses 

of a reference standard (here, either USGS-40 or USGS-41) during the analytical session, 

and “Average AmountStandard” equals the average weight (in mg) of all reference standards 

(again, either USGS-40 or USGS-41) analyzed during the analytical session. 

For each batch of bone and dentin collagen samples (typically 20 to 24 samples each), we 

created two method duplicates to assess the effect of the collagen extraction process on the 

reproducibility of sample isotopic and elemental values. Because forage plant samples 

were not processed prior to analysis aside from washing and drying, no forage sample 

method duplicates were created. For all analyses (including forage samples) we also 

analyzed duplicate samples (i.e. instrumental duplicates) at regular intervals during each 

analytical session to monitor instrument precision. The standard deviation of method 

duplicates and instrumental duplicates reported here reflect the differences between the 

average value (δ13C, δ15N, C%, N%) of all method or instrumental duplicates, and the 

average value (δ13C, δ15N, C%, N%) of their parent samples. 

Unlike in bone collagen, the proportion of carbon in wild vegetation is generally much 

higher than the proportion of nitrogen. Because of this, accurate δ13C and δ15N for forage 

samples cannot typically be obtained in a single analytical session. Instead, forage samples 

are first analyzed for their carbon isotope compositions under normal EA-CF-IRMS 

operating conditions. The mass 28 amplitudes, however, are too low to produce accurate 

δ15N and are ignored, but the calculated N% data are used to determine, on a sample-by-

sample basis, the quantity of sample necessary to obtain reproducible nitrogen isotope data. 

Forage samples are then reweighed to match this typically much larger target weight, and 

a Mg(ClO4)2 trap is installed on the capillary running from the EA to the IRMS to trap CO2 

from the combusted sample. The combination of a higher sample weight and CO2 trap 
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permits an appropriate volume of NOx to be combusted from the sample and converted to 

N2 without oversaturating the detector with large amounts of combusted CO2 sample gas. 

2.3.3 Bayesian Dietary Mixing Models Using MixSIAR 

Over the last several decades, the study of dietary niche using stable isotope data has 

matured rapidly, and there is a broad constellation of linear and Bayesian mixing models 

available with which to estimate the proportional contributions of multiple sources to a 

mixture. Here, sources correspond to forage isotopic compositions and mixtures 

correspond to bone collagen isotopic compositions, though mixing models have a wide 

range of applications (Stock and Semmens 2013). Each mixing model has specific 

advantages and disadvantages (see Phillips et al. 2014 for a broad review of recent 

advances). We use the MixSIAR package (version 3.1) (Semmens et al. 2013) for R 

(version 3.3.2) (R Development Core Team 2009) to develop Bayesian dietary mixing 

models. MixSIAR is based on the MixSIR mixing model (Moore and Semmens 2008) and 

the SIAR package for R (Parnell et al. 2010). MixSIAR utilizes the Markov chain Monte 

Carlo (MCMC) algorithm to estimate the probability of different source contributions 

(here, forage isotopic and elemental compositions) to a mixture (here, bone collagen 

isotopic and elemental compositions) and propagate uncertainty around that estimate. The 

major advantage of MixSIAR is that it integrates many of the significant contributions from 

recent mixing models into a single, adaptable framework (Semmens et al. 2013). MixSIAR 

requires three inputs: consumer isotopic data, source isotopic (and if desired, elemental) 

data, and trophic discrimination factors (TDFs) (sometimes also referred to as “trophic 

enrichment factor” (TEF) or “trophic fractionation factor” (TFF). 

While it represents a significant advancement in the access to, and ease-of-use of dietary 

mixing models, MixSIAR will generally fit a model even if input data are nonsensical, and 

there is considerable room for error caused by incorrect model parameters (Inger et al. no 

date; Phillips et al. 2014). MixSIAR is sensitive to similarities in source isotopic 

compositions, and uncertainty in the mixing model increases when source groups include 

less than twenty samples. These issues are relevant because our source isotopic data come 

from terrestrial forage species that utilize the C3 photosynthetic pathway. Phillips et al. 

(2014) suggest determining whether source data should be aggregated prior to analysis, 
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though a posteriori source aggregation of source chains is also possible in R (Stock and 

Semmens 2013). Generally, a K nearest-neighbors randomization test (kNN) with various 

post hoc adjustments (Ben-David et al. 1997; Rosing et al. 1998; Drever et al. 2000; Kadye 

and Booth 2012; Matsubayashi et al. 2014) is used to test for significant difference in 

multiple isotopic tracers between sources (but see Lubetkin and Simenstad (2004) for a 

squared nearest neighbor difference (NND2) approach). Geange et al. (2011) also discuss 

methods for transforming ratio and percentage data (such as C% or N%) into continuous 

variables for statistical analysis. 

Because we obtained forage samples from both the southern and northern parts of Banks 

Island (Figure 2.1), we used Mann-Whitney U tests (Ben-David et al. 1998) to evaluate 

whether there were statistically significant geographic differences in the δ13C and δ15N of 

the same forage species or functional groups. Although the Mann-Whitney U test can only 

be used to test for significant differences in a single factor between two groups (here, a 

single isotope tracer), simple coding in R permits the δ13C and δ15N of multiple groups in 

the same dataset to be quickly evaluated with multiple, separate Mann-Whitney U tests. 

We applied this method to test for north-south variation in Cetraria, Thamnolia, pooled 

lichens, sedges, grasses, pooled sedges and grasses (graminoids), willow, rose/heath, and 

pooled willow and rose/heath (shrubs), legumes, non-leguminous forbs, and pooled 

legumes and non-leguminous forbs (forbs). Although Phillips et al. (2014) note that the 

ability of mixing models to discriminate between sources begins to decline with more than 

six or seven sources, we ran the mixing model simulations with maximum source divisions, 

and aggregated some sources afterwards. 

The largest source of uncertainty and potential error in dietary mixing models is the trophic 

discrimination factor (TDF). Early work documented persistent but variable shifts in δ13C 

and δ15N between consumers and dietary sources (DeNiro and Epstein 1981; Sullivan and 

Krueger 1981; Krueger and Sullivan 1984; Minigawa and Wada 1984; van der Merwe 

1989; Ambrose and Norr 1993). In larger mammals, the trophic enrichment in 13C between 

bone collagen and diet (Δ13Ccoll-diet) generally falls between +4-6‰, while the enrichment 

in 15N between bone collagen and diet (Δ15Ncoll-diet) falls between +3-5‰ (Sullivan and 

Krueger 1981; Krueger and Sullivan 1984; van der Merwe 1989; Koch 1998). Recent 
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research demonstrates, however, that TDFs vary significantly with phylogeny (Vanderklift 

and Ponsard 2003; Caut et al. 2009; Cherel et al. 2014). Further, TDF estimates derived 

from controlled feeding experiments may not be applicable to wild populations because 

TDFs, especially for nitrogen, vary with the quality of dietary protein (Fantle et al. 1999; 

Oelbermann and Scheu 2002; Robbins et al. 2005, 2010; Greer et al. 2015). Bond and 

Diamond (2011) find that Bayesian mixing models are highly sensitive to the TDFs used, 

which means that mixing models may produce misleading mixing solutions with inaccurate 

TDFs (Caut et al. 2008). This leaves researchers with two options: (1) use published, 

experimentally-derived TDFs for the same or similar species, with knowledge that they 

may not reflect “wild” TDFs, or: (2) perform a meta-analysis of relevant, published 

consumer and source isotopic data and attempt to create TDF estimates from these data. 

Recently, Healy et al. (2016) developed the Stable Isotope Discrimination Estimation in R 

(SIDER) package for R (https://github.com/healyke/SIDER). SIDER provides a TDF 

estimate for a given species by utilizing a generalized linear mixed model (GLMM) to 

incorporate variation based on phylogeny, physiology, and ecology in a large meta-dataset 

of published isotopic data included in the package. The MCMC algorithm is then used to 

propagate uncertainty around the TDF estimate. The mean and standard deviation of the 

probability distribution for the imputed TDF estimate can then be incorporated into mixing 

models. Healy et al. (2016) demonstrate that SIDER-imputed TDF estimates are within 

0.2‰ of experimentally-derived TDFs. A Bayesian approach to TDF estimation is 

especially attractive in the study of caribou and muskoxen. Both species likely have unique 

physiological adaptations to the Arctic environment that may result in actual TDFs distinct 

from large-bodied ruminants from temperate regions. We used SIDER (version 0.9) in R 

(version 3.3) for TDF imputations. Three Markov chains, each with a length of three 

million iterations, were constructed from the GLMM-derived TDF estimate. We discarded 
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(i.e. “burned”)8 the first 1,500,000 iterations in each chain, and saved only every 500th 

iteration9 after the burn-in period. 

We used two criteria included in the SIDER package to assess the Markov chains: effective 

sample size (ESS) (Kong 1992; Liu 1996), and the Gelman-Rubin convergence diagnostic 

(Gelman and Rubin 1992a, 1992b; Gelman et al. 2013). ESS simply evaluates whether, 

after accounting for burn-in and thinning, the number of remaining iterations in the chain 

is sufficient to estimate the target posterior distribution (Lanfear et al. 2016; Martino et al. 

2017). An ESS of 200 is generally accepted as the minimum necessary to measure model 

efficiency, and an ESS of >10000 is considered ideal (Lanfear et al. 2016). The simplest 

way to ensure sufficient ESS is to increase chain length. Under the model parameters listed 

above, each chain has an ESS of 18000. The Gelman-Rubin diagnostic detects the failure 

of chains to converge on the target distribution (Brooks and Gelman 1998). The Gelman-

Rubin diagnostic (R̂) approaches one (1) from above (i.e. decreases to 1) when the pooled 

within-chain variance is greater than between-chain variance. A high R̂ value therefore 

suggests that within-chain variance could be further reduced through continued simulation 

(i.e. longer chain length). Following Gelman et al. (2013) and Stock and Semmens (2016), 

we rejected chains whose R̂ values exceed 1.1. Additionally, because SIDER runs were 

relatively inexpensive in terms of computational time, averaging ~ 40 minutes to execute, 

we repeated each of the four TDF runs four times to test for significant differences in the 

imputed TDF estimates. 

                                                 

8
“Burn-in” is an informal term for the common practice of discarding a subjective number of iterations at 

the start of a Markov chain. Because the MCMC algorithm randomly “walks” around a distribution, it is 

always possible that the chain will start in low-probability regions before wandering towards high 

probability regions representative of the sample distribution. In relatively short Markov chains, initial 

iterations will subsequently bias the estimated posterior probability distribution. Nevertheless, there is no 

mathematical or theoretical motivation for burn-in, and Geyer (2011) for instance, advocates for simply 

running longer Markov chains instead, where the effect of initial iterations on the probability distribution 

becomes negligible. 

9
“Thinning” describes the process of discarding all but every kth iteration in a Markov chain to avoid 

autocorrelation between model parameters (SAS Institute Inc. 2011) and to reduce processing time 

(Gelman and Shirley 2011). Although Geyer (1992), MacEachern and Berliner (1994), and Link and Eaton 

(2012) suggest that thinning is counter-productive, we observed no difference between test mixing model 

runs with and without thinning, except that the non-thinned run cost about an extra day of processing time.  
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We fit the dietary mixing model in using individual source (forage) isotopic and elemental 

data (as opposed to averages and SD values) and SIDER-derived TDFs. For all mixing 

model simulations, three Markov chains, each with a length of three million iterations, were 

constructed from the data. As with our SIDER imputations, we discarded the first 1.5 

million iterations in each chain, as well as every 500th iteration after the burn-in period10. 

As suggested by Stock and Semmens (2016), we used a multiplicative error structure in 

the model, which takes into account variability in consumer isotope data due to sampling 

(i.e. “process error”) and interindividual differences in inherent processes like digestibility, 

assimilation, and metabolism (i.e. “residual error”) in consumers (Jackson et al. 2009; 

Semmens et al. 2009; Stock and Semmens 2016). Although it is common practice to 

perform multiple independent runs of a Bayesian simulation to check for appropriate 

convergence and mixing, the computational expense to run each mixing model was 

significant. Using the run parameters described above, a dedicated computer (Microsoft® 

Windows® 7 64-bit, Intel® Core™ i3 2.2GHz, 16GB RAM) required between 72 and 84 

hours to run each mixing model. 

We assessed whether the model failed to approach convergence using the Gelman-Rubin 

diagnostic (Gelman and Rubin 1992a, 1992b; Gelman et al. 2013), as well as the Geweke 

diagnostic (Geweke 1992). The Geweke diagnostic provides evidence against efficient 

convergence by comparing the mean and asymptotic variance of spectral density in non-

overlapping segments or “windows” (usually the first 10 percent (after burn-in) and last 50 

percent) of the chain for each variable. In chains that approach convergence early in the 

run, the variance in spectral density should be low and the means of the two chain windows 

should not differ significantly. The Geweke test statistic, the Z-score, is a measure of 

standard deviation, and Z-score values at the extremes of the normal distribution (greater 

than two standard deviations) suggest that for the given variable, the chain did not approach 

convergence early in the post-burn-in period. Following Stock and Semmens (2013), we 

                                                 

10
Experimental mixing model runs with longer Markov chains (five million iterations), and a longer burn-

in period (1.75 million iterations) with a different computer (Microsoft® Windows® 7 64-bit, Intel® Core™ 

i5 2GHz, 8GB RAM) did not produce significantly different posterior probability distributions. 
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rejected the chain if more than five percent of the chain variables had absolute Z-scores 

higher than 1.96. 

2.4 Results 

2.4.1 Bone Collagen 

Modern bone samples were analyzed alongside archaeological bone collagen samples in 

ten analytical sessions. Across 72 analyses of the internal keratin standard, δ13C was –

24.10±0.16‰ (accepted value = –24.04‰); and δ15N was +6.40±0.13‰ (accepted value = 

+6.36‰). Across 28 analyses of IAEA-CH-6 δ13C was –10.44±0.07‰ (accepted δ13C = –

10.45‰; Hut 1987). Including data from the pilot study, the standard deviation of bone 

collagen samples analyzed as instrumental duplicates (n = 3) was δ13C = ±0.0‰, δ15N = 

±0.1‰, C% = ±0.1, and N% = ±0.1. The standard deviation of bone collagen samples 

analyzed as method duplicates (n = 3) was δ13C = ±0.0‰, δ15N = ±0.1‰, C% = ±0.1, and 

N% = ±0.1. 

The collagen content, as a percentage of sample weight (“wt% coll”) for bones from 

recently (estimate <15 years) deceased muskoxen (n = 3) averaged 20.0% (min = 18.0%; 

max = 21.1%). Percent collagen content for fresh caribou and muskox bone (n = 16) 

averaged 22.9% (min = 19.1%; max = 25.9%). Percent collagen content for the pilot project 

samples (n = 2) were not available; we assume that they are comparable to fresh bone 

samples. These collagen weight percent values are typical of the range observed in modern 

bone (wt% coll = ~ 20 to 30%) (Schoeninger et al. 1989; Ambrose 1990; Ambrose and 

Norr 1993; van Klinken 1999; Jørkov et al. 2007). Elemental abundances of carbon (C%) 

and nitrogen (N%) in all bone samples averaged 44.0% (min = 40.4%, max = 46.1%) and 

16.2% (min = 15.1%, max = 16.9%), respectively. Atomic C:N ratios averaged 3.2 (min = 

3.1; max = 3.2). Elemental abundances and atomic C:N ratios are both within commonly 

accepted ranges for isotopically unaltered bone collagen (C% = 15.3 to 47.0%; N% = 5.5 

to 17.3%; atomic C:N = 2.9 to 3.6) (DeNiro 1985; Ambrose 1990; van Klinken 1999). 

The δ13Cbc and δ15Nbc of modern caribou and muskoxen from Banks Island are listed in 

Tables 2.1 and 2.2, and illustrated in Figure 2.4. Including data from Drucker et al. (2012), 

δ13C averaged –22.0‰ (min = –22.7‰, max = –21.5‰) for caribou and –22.6‰ (min = –
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23.4‰, max = –22.1‰) for muskoxen. The δ15N of modern bone collagen samples 

averaged +3.7‰ (min = +2.9‰, max = +5.5‰) for caribou, and +4.4‰ (min = +3.7‰, 

max = +5.4‰) for muskoxen. 



 

111 

 

Figure 2.4. Bulk bone collagen δ15N vs. δ13C from modern caribou and muskox on 

Banks Island.
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2.4.2 Variation in Forage Sample δ13C and δ15N 

Forage sample were analyzed for their δ13C and δ15N in six analytical sessions each. Across 

34 analyses of the internal keratin standard (accepted δ13C and δ15N = –24.04‰ and 

+6.36‰, respectively) in carbon-only analytical sessions, δ13C was –24.06±0.06‰. Across 

38 analyses of the internal keratin standard in nitrogen-only analytical sessions, δ15N was 

+6.46±0.14‰. Across 21 analyses of IAEA-CH-6 (accepted δ13C = –10.45‰; Hut 1987)), 

δ13C was –10.45±0.09‰. Across 25 analyses of NIST-1547 (accepted δ15N = +1.98‰), 

δ15N was +1.96±0.15‰. Including data from the pilot study, the standard deviation of 

forage samples analyzed as instrumental duplicates (n = 20) is δ13C = ±0.1‰, δ15N = 

±0.2‰, C% = ±0.2, and N% = ±0.2. 

Carbon and nitrogen isotopic and elemental data for all forage sample tissues are listed in 

Table 2.7 and their δ13C and δ15N are illustrated in Figure 2.5. Even though the forage 

species in our analysis all utilize the C3 photosynthetic pathway, forage δ13C ranges from 

–31.5 to –23.1‰. Likewise, forage δ15N ranges from –8.7 to +9.4‰. When averaged, 

carbon (C%) and especially nitrogen (C%) contents vary markedly by forage species and 

functional group (Table 2.8). Lichens tend to have the lowest average N content by weight 

(0.4%), and consequently the highest average atomic C:N ratio (average = 101.7), while 

forbs (particularly leguminous forbs) have the highest average N content by weight (3.0%) 

and therefore the lowest atomic C:N ratio (average = 21.6). 
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Table 2.7. Isotopic and elemental data for forage samples from Banks Island. Samples are ordered alphabetically by functional group. 

Subsamples are denoted by lowercase letters. 

Sample ID Scientific Name Tissue 
δ13C δ15N 

C% N% 
Atomic 

C:N 
Ratio 

(‰, VPDB) (‰, AIR) 

Grass 

14VS-18a 
Alopecurus magellanicus 

Stems –25.2 +4.8 42.1 1.9 25.8 

14VS-18b Inflorescences –24.8 +6.2 41.7 2.7 18.1 
        

14-VS-11a 

Dupontia spp. 

Roots –25.6 +6.3 41.0 2.2 21.3 

14-VS-11b Root crowns –26.5 +6.5 43.4 2.1 24.0 

14-VS-11c Stems/blades –25.2 +7.4 40.8 2.7 17.4 

14VS-11d Spikelets –27.6 –3.2 42.8 0.9 57.1 
        

P14† Leymus arenarius Whole –27.0 –2.8 42.8 1.3 37.4 
        

14VS-9a 

Poaceae spp. 

Roots –27.4 –3.3 37.1 0.9 48.4 

14VS-9b Root crowns –28.7 –2.7 41.5 0.9 52.1 

14VS-9c Stems –27.3 –2.6 41.8 0.8 60.4 

14VS-9d Spikelets –26.7 +8.4 44.1 3.0 16.9 

14VS-9e Green stems –28.2 –4.3 41.7 2.4 20.0 
        

P12† Poaceae spp. Whole –27.2 +1.5 41.5 1.9 26.0 
        

P8† Poaceae spp. Whole –27.0 +3.1 41.8 1.4 33.8 

Leguminous Forb 

15VS-216a Astragalus alpinus Roots –31.0 –1.4 44.0 2.6 19.6 
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15VS-216b Stems –29.0 –2.0 44.4 2.4 21.8 

15VS-216c Leaves –30.3 –1.0 40.2 4.2 11.1 

15VS-216d Flowers –28.6 –1.1 44.2 3.3 15.8 
        

15VS-221a 

Astragalus alpinus 

Roots –29.8 –1.4 44.6 3.3 15.5 

15VS-221b Stems –28.1 –1.5 43.8 2.8 18.3 

15VS-221c Leaves –30.2 –1.0 41.5 3.8 12.8 

15VS-221d Flowers –29.1 –0.5 44.0 3.6 14.3 
        

15VS-204a 

Oxytropis arctica 

Roots –30.3 –1.7 49.3 0.8 67.7 

15VS-204b Stems –29.1 –1.7 44.5 2.7 18.9 

15VS-204c Leaves –29.9 –1.4 43.0 3.7 13.5 

15VS-204d Flowers –27.1 –1.2 34.6 2.8 14.4 
        

P6a† 

Oxytropis arctica 

Stems –27.1 –1.6 40.4 2.5 19.1 

P6b† Leaves –28.7 –0.9 35.8 4.4 9.4 

P6c† Seedpod –25.7 –0.6 42.0 4.7 10.5 
        

14VS-17a 

Oxytropis arctobia 

Branches –28.1 –0.7 38.7 2.2 20.8 

14VS-17b Leaves –27.4 –1.6 38.3 1.6 27.1 

14VS-17c Stems –26.9 –1.8 40.6 1.3 37.5 

14VS-17d Seed pods –26.9 +0.5 41.2 1.7 28.5 
        

14VS-1a 

Oxytropis arctobia 

Roots –25.8 –1.2 45.0 3.1 16.9 

14VS-1b Stems –25.8 –1.0 43.4 3.5 14.5 

14VS-1c Leaves –26.2 –0.7 44.0 4.2 12.1 

14VS-1d Flowers –25.1 –0.4 44.8 4.0 13.0 
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15VS-210a 

Oxytropis arctobia 

Roots –28.8 –0.9 46.0 2.7 19.8 

15VS-210b Branches –29.4 –1.8 45.2 1.7 30.4 

15VS-210c Leaves –29.4 –1.2 42.2 2.4 20.2 

15VS-210d Aerial stems –28.6 –2.0 43.6 1.5 35.0 

15VS-210e Seed pods –28.2 –0.3 44.1 4.1 12.4 
        

15VS-215a 

Oxytropis spp. 

Root crowns –28.3 –0.9 44.6 2.8 18.6 

15VS-215b Stems –27.6 –1.5 44.2 2.1 24.1 

15VS-215c Leaves –29.3 +0.3 43.9 4.8 10.6 

15VS-215d Seed pods –28.1 +0.6 41.8 4.3 11.5 

15VS-215e Seed pods –26.2 +1.0 43.4 4.1 12.2 

Lichen 

14VS-13-1 Cetraria tilesii Whole –23.1 –6.0 38.4 0.4 110.3 
        

15VS-202 Cetraria tilesii Whole –24.5 –8.3 35.9 0.5 83.3 
        

15VS-203-1 Cetraria tilesii Whole –24.7 –6.1 36.4 0.3 131.8 
        

15VS-214-1 Cetraria tilesii Whole –25.6 –7.6 40.3 0.4 123.2 
        

15VS-219-1 Cetraria tilesii Whole –25.4 –8.1 38.2 0.4 114.6 
        

15VS-3LK-1 Cetraria tilesii Whole –24.6 –7.9 40.5 0.3 161.1 
        

14VS-13-2 Thamnolia vermicularis Whole –27.6 –2.4 38.2 0.6 77.9 
        

15VS-203-2 Thamnolia vermicularis Whole –27.3 –7.0 40.6 0.4 108.6 
        

15VS-209-1 Thamnolia vermicularis Whole –27.8 –5.5 40.0 0.5 101.0 
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15VS-214-2 Thamnolia vermicularis Whole –27.3 –4.9 37.3 0.6 78.2 
        

15VS-217 Thamnolia vermicularis Whole –27.6 –7.1 35.6 0.5 86.5 
        

15VS-219-2 Thamnolia vermicularis Whole –28.0 –7.0 40.2 0.6 78.9 
        

15VS-3BC Thamnolia vermicularis Whole –26.9 –7.4 39.4 0.4 102.9 
        

15VS-3LK-2 Thamnolia vermicularis Whole –28.3 –3.7 42.5 0.5 97.5 
        

P5† Thamnolia vermicularis Whole –27.8 –8.7 42.2 0.5 92.0 

Moss 

15VS-209-2 Sphagnum squarrosum Whole –30.2 –2.6 30.2 0.7 49.6 
        

15VS-213-2 Sphagnum squarrosum Whole –29.2 +0.5 37.8 0.9 46.9 
        

15VS-214-3 Sphagnum squarrosum Whole –29.9 –4.1 28.3 0.7 44.0 
        

15VS-219-3 Sphagnum squarrosum Whole –29.1 –3.9 29.9 0.9 38.6 
        

15VS-220-2 Sphagnum squarrosum Whole –30.5 +5.1 35.9 2.0 21.0 

Non-leguminous Forb 

P4c† Oxyria digyna Flowers –28.1 +1.7 43.2 3.2 15.6 
        

P11a† 

Papaver radicatum 

Stems –29.6 +2.7 40.5 1.6 30.3 

P11b† Leaves –29.4 +5.6 40.0 2.6 18.2 

P11c† Flowers –29.6 +4.3 44.0 3.6 14.2 
        

P10† Pedicularis lanata Whole –29.8 –2.4 42.5 1.0 48.3 
        

14VS-14a 
Petasites frigidus 

Stems –26.5 +1.8 40.1 1.0 46.0 

14VS-14b Leaves –28.4 +2.4 40.1 2.3 20.5 
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14VS-14c Inflorescences –26.1 +2.5 44.9 2.0 26.3 
        

15VS-220a 

Saxifraga cernua 

Roots –29.8 –1.5 41.7 2.1 23.7 

15VS-220b Bulbils –29.3 –1.9 41.9 1.1 43.6 

15VS-220c Stems –29.5 +0.2 42.9 0.4 130.5 

15VS-220d Leaves –30.5 +1.0 37.7 0.9 46.4 

15VS-220e Flowers –28.7 +5.5 40.6 1.1 43.6 
        

P13a† 

Saxifraga cernua 

Stems –27.6 –2.6 40.8 0.4 129.6 

P13b† Leaves –29.7 –2.5 38.2 1.0 44.3 

P13d† Seeds –28.4 –1.8 40.3 1.6 29.3 
        

14VS-5a 

Saxifraga eschscholtzii 

Leaves –29.7 +1.8 37.3 1.2 35.5 

14VS-5b Stems –26.6 +2.1 41.8 1.7 28.6 

14VS-5c Flowers –29.2 +4.1 43.4 3.2 15.6 
        

14VS-8a 

Saxifraga eschscholtzii 

Leaves –29.4 –1.8 44.8 0.9 56.1 

14VS-8b Basal buds –27.1 +1.4 36.1 1.1 38.6 

14VS-8c Dead leaves –30.1 –1.8 41.0 1.0 45.9 

14VS-8d Flowers –26.2 +3.3 43.5 2.4 21.5 
        

15VS-205a 

Saxifraga eschscholtzii 

Leaves –30.3 –1.3 51.2 1.1 53.6 

15VS-205b Leaves –29.9 –1.3 44.7 1.1 46.3 

15VS-205c Leaves –30.3 –0.7 43.6 1.3 38.4 

15VS-205d Leaves –29.7 –0.9 40.4 1.3 37.0 
        

P2a† Saxifraga hirculus Stems –25.9 –1.1 43.0 1.2 43.3 
        

15VS-1BC Saxifraga oppositifolia Whole –27.9 –1.4 32.1 0.9 43.5 
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P9† Saxifraga oppositifolia Whole –30.1 –0.5 42.5 1.3 37.8 

Rose/Heath 

15VS-5LKa 
Cassiope tetragona 

Stems –29.3 –6.8 48.9 0.7 78.1 

15VS-5LKb Leaves –28.9 –5.4 48.8 0.8 67.1 
        

P15† Cassiope tetragona Whole –31.1 –3.6 47.2 0.8 73.3 
        

14VS-19a 

Dryas integrifolia 

Roots –30.1 +1.9 47.1 1.0 52.8 

14VS-19b Stems –30.7 +1.3 48.7 0.9 63.0 

14VS-19c Green leaves –31.5 +1.1 47.0 2.1 26.7 

14VS-19d Brown leaves –31.5 +0.9 46.2 1.1 50.1 
        

14VS-2a 
Dryas integrifolia 

Stems –29.5 –2.6 48.8 0.8 70.9 

14VS-2b Leaves –30.3 –4.6 46.2 1.8 30.5 
        

15VS-206a 

Dryas integrifolia 

Branches –31.0 –1.1 46.2 0.9 57.8 

15VS-206b Leaves –30.8 –2.2 44.4 1.6 31.6 

15VS-206c Aerial stems –28.9 –1.9 44.2 2.4 21.9 

15VS-206d Flowers –28.3 –0.9 30.7 1.9 19.2 
        

15VS-4BCa 

Dryas octopetala 

Branches –29.1 –4.0 45.2 0.9 58.5 

15VS-4BCb Stems –27.9 –6.0 45.8 0.8 68.5 

15VS-4BCc Leaves –30.3 –6.0 49.2 2.3 24.6 

15VS-4BCd Flowers –30.0 –5.3 47.4 2.7 20.5 
        

15VS-5BCa 
Dryas octopetala 

Branches –30.1 –0.7 48.2 0.8 66.2 

15VS-5BCb Stems –28.6 –1.7 44.9 1.2 43.2 
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15VS-5BCc Leaves –30.0 –1.4 47.8 2.5 22.5 

15VS-5BCd Flowers –29.0 –1.1 40.5 2.2 21.8 
        

P1a† 

Dryas octopetala 

Stems –30.2 –2.9 43.4 1.1 47.7 

P1b† Flowers –30.2 –2.8 45.7 1.3 40.1 

P1c† Leaves –30.8 –2.9 46.7 1.8 29.5 

P1f† Flowers –29.7 –2.1 57.5 2.3 29.2 

Sedge 

14VS-16a 

Carex aquatilis stans 

Roots –24.8 +5.0 44.8 0.9 60.3 

14VS-16b Root crowns –26.4 +5.0 44.7 1.3 39.9 

14VS-16c Stems –26.4 +5.2 43.6 2.5 20.1 

14VS-16d Inflorescences –26.1 +5.0 44.9 2.0 25.6 
        

15VS-208a 

Carex aquatilis stans 

Roots –27.9 +2.5 37.7 1.3 33.0 

15VS-208b Root crowns –27.5 +2.0 40.5 0.9 50.5 

15VS-208c Leaves –28.0 +0.4 45.0 3.0 17.7 

15VS-208d Stems –26.3 +2.3 43.8 2.2 23.4 

15VS-208e Inflorescences –26.5 +3.0 44.9 2.1 24.8 
        

15VS-213a 

Carex aquatilis stans 

Roots –26.8 +1.6 45.3 0.7 72.9 

15VS-213b Root crowns –26.8 +0.9 46.9 0.9 60.4 

15VS-213c Leaves –28.2 +0.5 46.7 2.6 21.2 

15VS-213d Stems –25.0 +0.1 45.6 1.3 40.8 

15VS-213e Inflorescences –26.0 +0.8 45.4 1.7 31.9 
        

15VS-218a Carex aquatilis stans Root crowns –27.8 –2.8 38.5 0.9 49.0 
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15VS-218b Leaves –28.0 –3.2 42.4 1.8 26.9 

15VS-218c Stems –26.4 –3.8 43.3 1.3 39.5 

15VS-218d Inflorescences –27.4 –1.8 42.3 1.9 26.2 
        

15VS-1LKa 
Eriophorum angustifolium 

Stems –27.4 +3.7 43.3 0.3 146.1 

15VS-1LKb Bolls –27.0 +6.1 42.9 1.5 32.6 
        

14VS-6b Eriophorum callitrix Bolls –25.5 +6.8 42.2 3.1 15.8 
        

15VS-201a 

Eriophorum callitrix 

Roots –26.9 +3.9 41.5 0.6 83.6 

15VS-201b Root crowns –27.1 +4.5 43.0 0.5 105.2 

15VS-201c Leaves –26.8 +4.7 44.5 0.6 85.4 

15VS-201d Stems –26.9 +4.1 44.4 0.7 78.5 

15VS-201e Bolls –26.0 +4.7 43.8 1.9 26.4 
        

14VS-10a 
Eriophorum latifolium 

Stems –24.4 +2.9 42.8 1.3 39.9 

14VS-10b Bolls –24.6 +4.3 43.2 2.0 25.7 
        

14VS-15a 
Eriophorum latifolium 

Stems –25.1 +6.7 44.0 1.5 33.1 

14VS-15b Bolls –23.9 +8.4 45.0 2.3 23.0 

Willow 

14VS-12a 

Salix arctica 

Roots –29.4 +0.5 47.1 0.7 73.6 

14VS-12b Branches –29.7 –0.7 47.7 0.6 90.0 

14VS-12c Catkins –26.8 –0.3 45.2 1.3 41.9 

14VS-12d Leaves –30.6 –1.4 43.4 3.2 15.7 
        

14VS-4a 
Salix arctica 

Stems –28.6 –0.6 48.1 1.0 58.6 

14VS-4b Leaves –27.8 +0.4 47.5 2.8 19.8 
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14VS-4c Catkins –26.7 +0.4 45.3 1.8 29.7 

14VS-4d Branches –27.6 +0.6 48.1 0.7 75.6 
        

14VS-7a 

Salix arctica 

Stems –27.8 +1.2 47.3 0.7 77.2 

14VS-7b Leaves –27.9 +1.6 48.3 3.4 16.8 

14VS-7c Catkins –26.0 +2.4 43.6 3.1 16.3 
        

15VS-207a 

Salix arctica 

Roots –29.0 –2.5 45.6 0.8 70.2 

15VS-207b Branches –28.8 –3.4 47.4 1.0 53.2 

15VS-207c Leaves –28.9 –2.7 45.4 3.2 16.6 

15VS-207d Catkins –28.1 –3.0 38.8 1.7 27.4 
        

15VS-211a 

Salix arctica 

Roots –29.5 –3.7 47.6 1.2 48.0 

15VS-211b Branches –28.9 –5.2 50.5 0.7 80.8 

15VS-211c Leaves –29.9 –4.6 45.5 2.6 20.3 

15VS-211d Catkins –30.4 –4.4 48.3 0.9 64.1 
        

15VS-2BCa 

Salix arctica 

Roots –27.6 –0.8 43.3 1.0 50.6 

15VS-2BCb Branches –29.9 –1.0 49.2 0.7 80.0 

15VS-2BCc Green branches –28.5 –1.5 50.6 1.0 58.7 

15VS-2BCd Leaves –27.9 –0.9 48.4 3.6 15.6 

15VS-2BCe Catkins –27.7 0.0 44.7 3.4 15.5 
        

15VS-4LKa 

Salix arctica 

Roots –27.9 –1.3 46.0 0.8 68.0 

15VS-4LKb Branches –26.9 –1.9 46.5 0.3 164.2 

15VS-4LKc Green branches –28.0 –3.5 48.8 0.9 61.6 
        

P3a† Salix arctica Stems –28.5 –3.1 46.8 1.1 50.1 
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P3b† Leaves –28.3 –2.3 48.0 1.2 47.6 

P3c† Flowers –27.1 –2.5 39.8 1.7 28.0 
        

† From pilot study     
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Figure 2.5. The δ15N vs. δ13C of all tissue subsamples from different forage plants 

collected on Banks Island in 2014 and 2015.
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Table 2.8. Mean C% and N% of forage samples from Banks Island, their mean atomic 

C:N ratios, and sample size. 

Functional Group 
Mean 
C% 

Mean 
N% 

Mean 
Atomic 

C:N 
n 

Cetraria tilesii 38.3 0.4 116.8 6 

Thamnolia vermicularis 39.6 0.5 90.4 9 

All Lichen 38.9 0.4 101.7 15 
     

Moss 32.4 1.1 35.7 5 
     

Non-leguminous Forbs 41.5 1.5 31.8 30 

Leguminous Forbs 42.8 3.0 16.5 33 

All Forbs 42.1 2.3 21.6 63 
     

Grass 42.1 1.8 27.1 15 

Sedge 43.6 1.5 32.9 30 

All Graminoids 42.9 1.7 29.7 45 
     

Rose/Heath 45.9 1.5 36.5 25 

Dwarf Willow 46.4 1.6 34.6 30 

All Shrubs 46.2 1.5 35.5 55 
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2.4.3 Geographic Variation in Forage Sample δ13C and δ15N 

The results of Mann-Whitney U tests for geographic differences in forage δ13C and δ15N 

(Table 2.9) suggest that there are statistically significant (p < 0.05) variations in both the 

δ13C and δ15N of sedges, graminoids, and willow between southern and northern parts of 

Banks Island. The δ13C of legumes, non-leguminous forbs, and forbs is significantly 

different between the southern and northern parts of the island (p = 0.00, 0.01, 0.00, 

respectively), and when willow and rose/heath are aggregated, there is a statistically 

significant difference in δ15N (p = 0.01). Conversely, lichen δ13C and δ15N does not vary 

geographically on Banks Island. In all cases where there is significant geographic variation 

in isotopic compositions, the trend is towards lower δ13C and/or δ15N at higher latitudes. 

This is probably related to the difference in climatic regimes between the southern and 

northern parts of the island (Chapter 4), and enrichments in both 13C and 15N associated 

with water use efficiency and reduced water availability in forage in colder, more arid 

locales (Farquhar et al. 1982, 1989; Handley and Raven 1992; Handley et al. 1999; Barbour 

and Farquhar 2000). Subsequently, forage sources were divided into 13 categories for the 

initial dietary mixing model analyses: Cetraria tilesii; grass; moss; northern legume; 

northern non-leguminous forb; northern sedge; northern willow, rose/heath; southern 

legume; southern non-leguminous forb; southern sedge; southern willow; and Thamnolia 

vermicularis. 
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Table 2.9. Results of Mann-Whitney U tests comparing isotopic compositions of forage 

samples from northern and southern sites. Moss samples were only collected at northern 

sites and were therefore not tested. 

Functional Group 
p-values 

δ13C δ15N 

Cetraria tilesii 0.27 0.53 

Thamnolia vermicularis 0.90 0.30 

All Lichen 0.67 0.22 
   

Non-leguminous Forb 0.01* 0.20 

Leguminous Forb 0.00* 0.59 

All Forb 0.00* 0.07 
   

Grass 0.23 0.23 

Sedge 0.00* 0.00* 

All Graminoid 0.00* 0.00* 
   

Rose/Heath 0.66 0.66 

Dwarf Willow 0.03* 0.00* 

All Shrub 0.20 0.01* 
   

* Denotes a statistically significant difference in the isotopic 
compositions of samples from northern and southern 
collection sites at the 0.05 significance level. 
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2.4.4 Bayesian-Imputed Trophic Discrimination Factors (TDFs) 

In all four SIDER runs (caribou Δ13Ccoll-diet, muskox Δ13Ccoll-diet, caribou Δ15Ncoll-diet, and 

muskox Δ15Ncoll-diet), Gelman-Rubin values for all levels were <1.1 and each chain had an 

effective sample size of 18000. 

Based on the SIDER model parameters used, we obtained Δ13Ccoll-diet and Δ15Ncoll-diet of 

+4.7 ±1.5‰ and +3.3 ±1.1‰, respectively, for caribou and Δ13Ccoll-diet and Δ15Ncoll-diet 

estimates of +2.6 ±1.8‰ and +3.7 ±1.3‰, respectively, for muskoxen. Additionally, these 

TDF estimates varied by less than 0.03‰ across repeated SIDER runs, further suggesting 

that the chains approached convergence and were adequately mixed. We also experimented 

with MixSIAR models utilizing other carbon and nitrogen TDFs (Szpak et al. 2012; 

Appendix A, Supplemental Table A1 and A2). We consider species-specific TDF values 

imputed by SIDER, however, to provide a more effective measure of uncertainty 

surrounding TDF estimates than generalized TDF parameters obtained through the meta-

analysis of TDFs from taxa from other habitats and trophic levels (e.g. Szpak et al. 2012). 

Our discussion that follows will therefore refer to the mixing model solutions that used 

Bayesian-derived rather than generalized TDFs. 

2.4.5 Estimates of Source Contributions to Caribou Bone Collagen 
Isotopic Compositions – Maximum Source Divisions 

Model diagnostics suggest that the Markov chains approached convergence. All 29 

variables in the caribou dietary mixing model had Gelman-Rubin values of <1.01, and only 

a single variable had an absolute Z-score higher than 1.96 (residual proportion, chain 2, Z 

= -2.510). Figure 2.6 presents the average δ13C and δ15N and standard deviations of all 

forage sources, adjusted to the δ13Cbc and δ15Nbc of modern caribou collagen using the 

SIDER TDFs. The pairs plot (Figure 2.7) displays the posterior probability distributions of 

each forage source (diagonal panes), pairwise densities (upper right panes), and pairwise 

numerical correlation coefficients (lower left panes) for each forage source. Larger 

correlation coefficients (in larger font) indicate that the mixing model struggles to 

differentiate between the source pairs (Inger et al. no date), and that if possible, the two 

sources should be aggregated. Figure 2.7 demonstrates that the only significant correlation 
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is between southern legumes (SLegume) and yellow lichens (Cetraria), which have a 

moderate-to-strong negative correlation (r = -0.66). The pairwise density plot for this 

source pair, however, demonstrates that although a negative correlation exists, the 

relationship is not strongly linear. For this reason, and because legumes and lichens are 

distant both phylogenetically as well as isotopically, we did not aggregate them. 

Estimates of the proportional contribution of each forage source to caribou bone collagen 

are presented in Figure 2.8 and Table 2.10. For clarity, the posterior probability 

distributions in Figure 2.8 are rescaled to equal one. Figure 2.8 and Table 2.10 both suggest 

that Cetraria and southern sedges make the largest contributions to caribou bone collagen 

(median dietary proportions = 19% and 18%, respectively), while southern legumes and 

northern sedges have smaller median dietary proportions (9% and 7%, respectively). All 

other sources have median values of 5% percent or less. As anticipated, the probability 

distributions of all but a few forage resources (rose/heath, moss, and northern non-

leguminous forbs, willows and legumes) are large when no source aggregation is used. 
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Figure 2.6. Average δ15N vs. δ13C and standard deviations of all forage sources, adjusted 

to the δ13Cbc and δ15Nbc of modern caribou bone collagen (teal triangles) using the 

SIDER-imputed TDFs. 
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Figure 2.7. Pairs plot for all forage sources in the caribou dietary mixing model. 

Posterior probability distributions for individual forage sources (in blue) are shown in the 

diagonal panes. Pairwise densities plots are shown in the upper right panes. Numerical 

correlation coefficients are shown in the lower left panes; font size is deliberately scaled 

to correlation size to draw the reader’s attention only to instances of high correlation 

between sources.
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Figure 2.8. Posterior probability distributions of all forage sources to caribou bone 

collagen. Forage items are: Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern 

legumes (N Leg); northern non-leguminous forbs (N NLF); northern sedges (N Sed); 

northern willow (N Wil); rose/heath (RosHea); southern legumes (S Leg); southern non-

leguminous forbs (S NLF); southern sedges (S Sed); southern willow (S Wil); and 

Thamnolia vermicularis (Tham). The figure suggests that Cetraria tilesii, southern 

sedges, and likely southern legumes are largest contributors to modern caribou bone 

collagen carbon and nitrogen isotope compositions.



 

132 

Table 2.10. Mean and median values and 95% credible intervals of the posterior 

probability distributions of all forage sources, indicating the estimated proportional 

contribution of each forage source to caribou bone collagen isotopic compositions on 

Banks Island. Values correspond to the histograms in Figures 2.7 and 2.8. 

Forage Source Median (%) Mean (%) 95% CI 

Rose/Heath 0.03 0.03 0.00 – 0.11 

Moss 0.03 0.04 0.00 – 0.13 

Northern Non-leguminous Forb 0.03 0.04 0.00 – 0.14 

Northern Dwarf Willow 0.03 0.04 0.00 – 0.14 

Northern Leguminous Forb 0.04 0.04 0.00 – 0.15 

Southern Dwarf Willow 0.04 0.05 0.00 – 0.18 

Grass 0.05 0.06 0.00 – 0.18 

Southern Non-leguminous Forb 0.05 0.06 0.00 – 0.19 

Thamnolia vermicularis 0.05 0.06 0.00 – 0.21 

Northern Sedge 0.07 0.08 0.00 – 0.25 

Southern Legume 0.09 0.12 0.00 – 0.33 

Southern Sedge 0.18 0.18 0.06 – 0.29 

Cetraria tilesii 0.19 0.19 0.03 – 0.33 
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2.4.6 Estimates of Source Contributions to Caribou Bone Collagen 
Isotopic Compositions – Aggregated Source Divisions 

Following DeVries et al. (2016) we aggregated the original 13 posterior probability 

distributions into eight categories: moss, grass, Thamnolia vermicularis, non-leguminous 

forbs, shrubs, legumes, Cetraria tilesii, and sedge. Other aggregations are either 

nonsensical because they group clearly distinct forage types (as is case with Cetraria and 

Thamnolia), or did not reduce the probability distribution ranges. Figure 2.9 presents the 

average δ13C and δ15N and standard deviations of aggregated forage sources, adjusted to 

the δ13Cbc and δ15Nbc of modern caribou collagen using the SIDER TDFs. 

Estimates of the proportional contribution of aggregated forage types to caribou bone 

collagen are presented in Figure 2.10 and Table 2.11. When aggregated, the median dietary 

proportion of sedge increases to 26%, while the proportional estimate for Cetraria tilesii, 

which is not aggregated with any other forage source, remains the same (19%). The median 

dietary proportions of legumes, shrubs, and non-leguminous forbs all increase. Probability 

distribution ranges for all aggregated forage sources except sedges remain large, even at 

relatively large sample sizes, as with shrubs. Large probability distribution ranges are 

probably unavoidable given that caribou and muskoxen feed from a single trophic level, 

the forage sources we include share a common photosynthetic pathway, and only two 

isotope systems are used. 
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Figure 2.9. Average δ15N vs. δ13C and standard deviations of aggregated forage sources, 

adjusted to the δ13Cbc and δ15Nbc of modern caribou (teal triangles) using the SIDER-

imputed TDFs.
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Figure 2.10. Posterior probability distributions of aggregated forage sources to caribou 

bone collagen. Forage items are: Cetraria tilesii (Cetr); Thamnolia vermicularis (Tham); 

moss (Moss); legumes (Legu); non-leguminous forbs (NLFo); shrubs (Shrub); grasses 

(Gras); sedges (Sedg). The figure suggests that, with a posteriori source aggregation, the 

proportional contributions of legumes, shrubs, and non-leguminous forbs, respectively, to 

caribou bone collagen carbon and nitrogen isotope compositions increase. 
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Table 2.11. Mean and median values and 95% credible intervals of the posterior 

probability distributions of aggregated forage sources, indicating the estimated 

proportional contribution of each forage source to caribou bone collagen isotopic 

compositions on Banks Island. Values correspond to the histograms in Figure 2.10. 

Forage Source Median (%) Mean (%) 95% CI 

Moss 0.03 0.04 0.00 – 0.13 

Grass 0.05 0.06 0.00 – 0.18 

Thamnolia vermicularis 0.05 0.06 0.00 – 0.21 

Non-leguminous Forb 0.09 0.10 0.01 – 0.24 

Shrub 0.12 0.13 0.03 – 0.26 

Leguminous Forb 0.15 0.16 0.02 – 0.38 

Cetraria tilesii 0.19 0.19 0.03 – 0.33 

Sedge 0.26 0.26 0.13 – 0.41 
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2.4.7 Estimates of Source Contributions to Muskox Bone Collagen 
Isotopic Compositions – Maximum Source Divisions 

Model diagnostics for the muskox dietary mixing model also suggest that all Markov 

chains approached convergence. All 29 variables have Gelman-Rubin values of <1.05, and 

only two variables in two chains have absolute Z-scores higher than 1.96 (northern sedge, 

chain 1, Z = 3.270; moss, chain 2, Z = -2.414). 

The average δ13C and δ15N and standard deviations of all forage sources, adjusted to the 

δ13Cbc and δ15Nbc of modern muskoxen collagen using the SIDER TDFs are displayed in 

Figure 2.11. The pairs plot for muskoxen (Figure 2.12) reveals moderate negative 

correlation coefficients between southern legumes and Cetraria tilesii (r = -0.54), and 

between grass and southern sedges (r = -0.54). The pairwise density plots for these forage 

sources indicate that neither negative correlation is strongly linear, and again we did not 

aggregate legumes and Cetraria tilesii. We did, however, aggregate grass with southern 

and northern sedges. 

Estimates of the proportional contribution of each forage source to muskox bone collagen 

are presented in Figure 2.13 and Table 2.12. Again, the posterior probability distributions 

in Figure 2.13 have been rescaled to 1 for clarity. The mixing model suggests that Cetraria 

tilesii makes the largest contribution to muskox bone collagen (median dietary proportion 

= 41%), followed by southern sedges (median dietary proportion = 21%). All other forage 

sources have median source contributions of less than 5%. As with caribou, however, the 

range of posterior probabilities for many of the forage sources (especially Cetraria tilesii) 

is very large. 
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Figure 2.11. Average δ15N vs. δ13C and standard deviations of all forage sources, 

adjusted to the δ13Cbc and δ15Nbc of modern muskox bone collagen (pink circles) using 

the SIDER-imputed TDFs.
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Figure 2.12. Pairs plot for all forage sources in the muskox dietary mixing model. 

Posterior probability distributions for individual forage sources (in blue) are shown in the 

diagonal panes. Pairwise densities plots are shown in the upper right panes. Numerical 

correlation coefficients are shown in the lower left panes; font size is deliberately scaled 

to correlation size to draw the reader’s attention only to instances of high correlation 

between sources. 
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Figure 2.13. Posterior probability distributions of all forage sources to muskox bone 

collagen. Forage items are: Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern 

legumes (N Leg); northern non-leguminous forbs (N NLF); northern sedges (N Sed); 

northern willow (N Wil); rose/heath (RosHea); southern legumes (S Leg); southern non-

leguminous forbs (S NLF); southern sedges (S Sed); southern willow (S Wil); and 

Thamnolia vermicularis (Tham). The figure suggests that Cetraria tilesii and southern 

sedges, are largest contributors to modern muskox bone collagen carbon and nitrogen 

isotope compositions.
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Table 2.12. Mean and median values and 95% credible intervals of the posterior 

probability distributions of all forage sources, indicating the estimated proportional 

contribution of each forage source to muskox bone collagen isotopic compositions on 

Banks Island. Values correspond to the histograms in Figures 2.12 and 2.13. 

Forage Source Median (%) Mean (%) 95% CI 

Rose/Heath 0.01 0.02 0.00 – 0.07 

Northern Dwarf Willow 0.02 0.02 0.00 – 0.09 

Northern Non-leguminous Forb 0.02 0.03 0.00 – 0.10 

Northern Leguminous Forb 0.02 0.03 0.00 – 0.09 

Moss 0.02 0.03 0.00 – 0.10 

Southern Dwarf Willow 0.02 0.03 0.00 – 0.11 

Thamnolia vermicularis 0.03 0.03 0.00 – 0.12 

Southern Non-leguminous Forb 0.03 0.04 0.00 – 0.15 

Northern Sedge 0.03 0.05 0.00 – 0.17 

Grass 0.04 0.05 0.00 – 0.18 

Southern Legume 0.04 0.06 0.00 – 0.23 

Southern Sedge 0.21 0.21 0.09 – 0.30 

Cetraria tilesii 0.41 0.40 0.15 – 0.55 
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2.4.8 Estimates of Source Contributions to Muskox Bone Collagen 
Isotopic Compositions – Aggregated Source Divisions 

The posterior probability distributions of forage sources were aggregated into the same 

groups as in caribou. Figure 2.14 displays the average δ13C and δ15N and standard 

deviations of aggregated forage sources, adjusted to the δ13Cbc and δ15Nbc of modern 

muskoxen using the SIDER TDFs. Estimates of the proportional contribution of aggregated 

forage types to muskox bone collagen are presented in Figure 2.15 and Table 2.13. Again, 

the median dietary proportion of Cetraria tilesii remains the same, while the median dietary 

proportion of sedge increases slightly to 26%. The median dietary proportions of all other 

aggregated forage sources remain below 10% (though 95% credible intervals range as high 

as 26% for legumes). 
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Figure 2.14. Average δ15N vs. δ13C and standard deviations of aggregated forage sources, 

adjusted to the δ13Cbc and δ15Nbc of modern muskox (pink circles) using the SIDER-

imputed TDFs. 
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Figure 2.15. Posterior probability distributions of aggregated forage sources to muskox 

bone collagen. Forage items are: Cetraria tilesii (Cetr); Thamnolia vermicularis (Tham); 

moss (Moss); legumes (Legu); non-leguminous forbs (NLFo); shrubs (Shrub); grasses 

(Gras); sedges (Sedg). The figure suggests that, even with a posteriori source 

aggregation, Cetraria tilesii and southern sedges, respectively, remain the largest 

contributors to modern muskox bone collagen carbon and nitrogen isotope compositions. 
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Table 2.13. Mean and median values and 95% credible intervals of the posterior 

probability distributions of aggregated forage sources, indicating the estimated 

proportional contribution of each forage source to muskox bone collagen isotopic 

compositions on Banks Island. Values correspond to the histograms in Figure 2.15. 

Forage Source Median (%) Mean (%) 95% CI 

Moss 0.02 0.03 0.00 – 0.10 

Thamnolia vermicularis 0.03 0.03 0.00 – 0.12 

Grass 0.04 0.05 0.00 – 0.18 

Non-leguminous Forb 0.06 0.07 0.01 – 0.19 

Shrub 0.07 0.07 0.01 – 0.18 

Leguminous Forb 0.07 0.09 0.01 – 0.26 

Sedge 0.26 0.26 0.13 – 0.37 

Cetraria tilesii 0.41 0.40 0.15 – 0.55 
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2.4.9 Dentin Collagen δ13C and δ15N Results 

Modern dentin collagen samples were analyzed with archaeological dentin collagen 

samples in two analytical sessions. Across 29 analyses of the internal keratin standard 

(accepted δ13C and δ15N = –24.04‰ and +6.36‰, respectively) δ13C was –24.03±0.3‰ 

and δ15N was 6.37±0.1‰. Across eight analyses of IAEA-CH-6 (accepted δ13C = –

10.45‰; Hut 1987), δ13C was –10.88±0.4‰. The standard deviation of modern dentin 

collagen samples analyzed as instrumental duplicates (n = 4) is δ13C = ±0.0‰, δ15N = 

±0.1‰, C% = ±0.1, and N% = ±0.0. The standard deviation of dentin collagen samples 

analyzed as method duplicates (n = 3) is δ13C = ±0.1‰, δ15N = ±0.4‰, C% = ±0.5, and 

N% = ±0.2. 

The percent collagen content of dentin from recently deceased muskoxen (n = 33 microbulk 

samples from 6 teeth) averaged 14.2% (min = 6.4%; max = 18.9%) (Table 2.4). Teeth from 

muskoxen harvested in 2016 were not sampled due to scheduling constraints. Percent 

collagen content for dentin from caribou harvested in 2015 and 2016 (n = 8 microbulk 

samples from 4 teeth) averaged 10.0% (min = 5.4%; max = 14.6%) (Table 2.3). Relative 

to bone samples, the percent collagen content of dentin samples is relatively low. We 

suggest that these values do not reflect poor collagen quality, but rather, are the result of 

the sample preparation method. Before obtaining starting weights for dentin collagen 

microbulk samples, we mechanically removed as much enamel as possible, and rinsed each 

transverse crown section in 2:1 chloroform-methanol to remove the epoxy used to stabilize 

the sample for sectioning. Nevertheless, some enamel and epoxy remained affixed to the 

samples when they were weighed. Residual epoxy was debrided during the second round 

of rinses in 2:1 chloroform-methanol by replacing normal vial caps with glue-free, PTFE-

faced screw caps11 and agitating vigorously with a vortex mixer. Any epoxy remaining 

after this step was removed during the demineralization stage, using clean tweezers to 

remove epoxy fragments from the softened dentin. All residual enamel was dissolved 

                                                 

11
Chloroform-methanol will dissolve the glue affixing the cap-liner to normal vial caps, contaminating the 

sample. 
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during demineralization. In short, the measured dentin contents are probably inaccurate 

because starting sample weights were too high because of epoxy and enamel that were 

subsequently removed during the collagen extraction process. In addition, because we did 

not crush transverse crown samples to a uniform size prior to collagen extraction, the 

starting weights of methodological duplicates were somewhat different than those of the 

sample from which they derived. 

Evidence of dentin collagen quality comes from carbon and nitrogen abundances, and their 

associated atomic C:N ratios (Tables 2.3 and 2.4). Abundances of carbon (C%) and 

nitrogen (N%) across all dentin samples averaged 43.9% (min = 38.5%, max = 45.9%) and 

15.9% (min = 13.7%, max = 16.7%), respectively. Atomic C:N ratios across all dentin 

samples averaged 3.2 (min = 3.2; max = 3.3). As with our bone collagen samples, these 

abundances and atomic C:N ratios for dentin collagen are both within commonly accepted 

ranges for isotopically unaltered bone collagen (C% = 15.3 to 47.0%; N% = 5.5 to 17.3%; 

atomic C:N = 2.9 to 3.6) (DeNiro 1985; Ambrose 1990; van Klinken 1999). 

The carbon and nitrogen isotope compositions, respectively, of caribou and muskox 

sequential microbulk dentin collagen samples are presented alongside summary data 

discussed above in Tables 2.3 and 2.4, and are illustrated in Figures 2.16 and 2.17. 

Microbulk sample IDs follow the major axis of crown development. Although the isotopic 

data are arranged in order of gross tooth development (dp4, M1, M2, M3, P4) we 

emphasize that, because of occlusal wear and potential overlap in development, the pattern 

of isotopic variation is not continuous between teeth. Teeth that were too small or too worn 

to obtain more than a single dentin sample, as in caribou teeth, are designated “bulk”.
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Figure 2.16. Values of δ13Cdc in teeth from two modern caribou: BIBS16-19 (unfilled orange squares) and BIBS15-67 (filled gray 

triangles). Teeth are displayed in approximate developmental order (dp4, M1, M2). The last dentin sequential sample of each crown is 

always taken from the 5 mm closest to the root-enamel junction (REJ). The δ13C of bulk bone collagen from both caribou are shown 

for comparison at far right. 
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Figure 2.17. Values of δ15Ndc in teeth from two modern caribou: BIBS16-19 (unfilled orange squares) and BIBS15-67 (filled gray 

triangles). Teeth are displayed in approximate developmental order (dp4, M1, M2). The last dentin sequential sample of each crown is 

always taken from the 5 mm closest to the root-enamel junction (REJ). The δ15N of bulk bone collagen from both caribou are shown 

for comparison at far right. 
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Figure 2.18. Values of δ13Cdc in teeth from two modern muskoxen: BIBS14-169 (unfilled shapes) and BIBS14-445 (filled shapes). 

Teeth are displayed in approximate developmental order (M1, M2, M3 and P4). The last sequential sample of each tooth is always 

taken from the dentin closest to the junction of the crown and root. The δ13C of bulk bone collagen from both muskoxen are shown for 

comparison at far right. 
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Figure 2.19. Values of δ15Ndc in teeth from two modern muskoxen: BIBS14-169 (unfilled shapes) and BIBS14-445 (filled shapes). 

Teeth are displayed in approximate developmental order (M1, M2, M3 and P4). The last sequential sample of each tooth is always 

taken from the dentin closest to the junction of the crown and root. The δ15N of bulk bone collagen from both muskoxen are shown for 

comparison at far right. 
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The intra-tooth average δ13Cdc of all caribou dentin microbulk samples is nearly uniform 

(average = –21.3‰, min = –21.9‰, max = –21.0‰), although the intra-tooth average 

δ13Cdc of BIBS16-19 M2 is slightly lower than that of BIBS15-67 M2 (Figure 2.16, Table 

2.14). Intra-tooth average δ15Ndc is also relatively invariable: across the three teeth sampled 

from BIBS16-19, intra-tooth average δ15Ndc is +6.1‰ (min = +5.7‰, max = +6.2‰) 

(Figure 2.17, Table 2.15). Conversely, the intra-tooth average δ15Ndc of BIBS15-67 M2 

(+4.3‰) is nearly two per mil lower than that of BIBS16-19 M2 (+5.9‰) (Table 2.15). In 

all, caribou crown dentin collagen isotopic data are relatively uninformative of seasonal 

dietary changes. This is due largely to the sampling approach we used: caribou teeth, even 

molars, are relatively small and it was not possible to extract more than two microbulk 

samples from each tooth. Additionally, Figure 2.2b demonstrates that the sequential dentin 

“cones” (Balasse et al. 2001) are nearly vertical in caribou and muskox teeth. 

Consequently, our method of dividing the tooth crown into 5 mm segments perpendicular 

to the tooth major axis cuts across multiple dentin appositional layers, significantly 

attenuating any seasonal isotopic variability recorded in the dentin. 

Caribou dentin collagen samples do provide useful information about inter-tooth isotopic 

variation, and isotopic differences between dentin and bone collagen. Isotopically-

attenuated dentin collagen should reflect averaged dietary δ13C and δ15N over the months 

or possibly years when the tooth crown developed. Conversely, the isotopic compositions 

of bone collagen should reflect average dietary isotopic compositions during 

approximately the last decade of life (Tieszen et al. 1983; Pate 1994). Since dentin collagen 

should have the same tissue-diet spacing as bone collagen (Koch 2007), tooth-averaged 

δ13Cdc and δ15Ndc can be compared to bone collagen δ13C and δ15N to make inferences about 

dietary changes between early and adult life. 

Offsets between caribou dentin and bone collagen isotopic compositions (Δ13Cdc-bc and 

Δ15Ndc-bc) are presented in Tables 2.14 and 2.15. In BIBS16-19 dp4, the Δ13Cdc-bc is 0.4‰ 

and this offset decreases by half in the M1 (0.2‰) and half again in the M2 (0.1‰). This 

is not the case for BIBS15-67 M2: tooth-averaged δ13Cdc is 1.1‰ higher than δ13Cbc from 

the same individual, even though, using BIBS16-19 as an example, we might expect only 
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a minimal Δ13Cdc-bc offset in an M2. This pattern is reversed for nitrogen. The Δ15Ndc-bc for 

BIBS16-19 is 1.7‰ in both the dp4 and M1, and declines to 1.3‰ in the M2, while the 

Δ15Ndc-bc for BIBS15-67 M2 is only 0.2‰. 
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Table 2.14. Summary data for caribou dentin collagen δ13C, and dentin collagen-bone collagen δ13C offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ13Cdc          

(‰, VPDB) 

Intra-tooth 
Average 
δ13Cdc 

δ13Cbc          

(‰, VPDB) 

Δ13Cdc-bc 

(‰, VPDB) dp4 M1 M2 

BIBS15-67 M2 Caribou 
DC1 –21.0 

–21.0 –22.1 

  

+1.1 
DC2 –21.1   

         

BIBS16-19 dp4 Caribou BULK –21.1 –21.1 

–21.5 

+0.4   

        

BIBS16-19 M1 Caribou 

DC1 –21.3 

–21.3 

 

+0.2 

 

DC2 –21.5   

DC3 –21.2   

        

BIBS16-19 M2 Caribou 
DC1 –21.9 

–21.6 

  

+0.1 
DC2 –21.3     
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Table 2.15. Summary data for caribou dentin collagen δ15N, and dentin collagen-bone collagen δ15N offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ15Ndc         

(‰, AIR) 

Intra-tooth 
Average 
δ15Ndc 

δ15Nbc       
(‰, AIR) 

Δ15Ndc-bc 

(‰, AIR) dp4 M1 M2 

BIBS15-67 M2 
Caribou DC1 +4.0 

+4.3 +4.1 

  

+0.2 
Caribou DC2 +4.5   

         

BIBS16-19 dp4 Caribou BULK +6.2 +6.2 

+4.5 

+1.7   

        

BIBS16-19 M1 

Caribou DC1 +6.2 

+6.2 

 

+1.7 

 

Caribou DC2 +6.1   

Caribou DC3 +6.2   

        

BIBS16-19 M2 
Caribou DC1 +6.0 

+5.9 

  

+1.3 
Caribou DC2 +5.7     
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Intra-tooth variation in δ13Cdc is limited in all muskox teeth (average = –22.6‰, min = –

23.8‰, max = –21.2‰) (Figure 2.18, Table 2.16). The M1s and M2s from BIBS14-169 

and BIBS14-445 display similar patterning in δ13Cdc with a ~ 0.5‰ offset between them. 

Intra-tooth variation in dentin δ13C is greatest in BIBS169 P4, where δ13Cdc declines from 

–22.5‰ to –23.8‰ before increasing to –23.1‰. Given that BIBS14-169 was collected at 

Umingmak (PjRa-2), in the northern part of the island and BIBS14-445 was collected 

farther south at Sunnguqpaaluk (PdRi-1), and that the δ13C of some forage guilds/species 

varies geographically, the δ13Cdc of teeth from both individuals could represent the same 

seasonal variation with a geographic offset. Intra-tooth average δ15Ndc across all muskox 

teeth is +7.4‰ (min = +6.6‰, max = +8.0‰) with very little intra-tooth variation (Figure 

2.19, Table 2.17). In both muskoxen, δ15Ndc is nearly uniform across teeth except for a 

0.7‰ decline between the last two microbulk collagen samples of BIBS14-169 P4, and a 

+1‰ increase between the last two microbulk collagen samples of BIBS14-445 M2. The 

very slight decline in δ15Ndc is shared in the M2s of both muskoxen, though the intra-tooth 

average δ15Ndc of BIBS14-169 M2 is ~ 1‰ higher than that of BIBS14-445 M2 (Table 

2.17). 

Offsets between muskox crown dentin collagen and bone collagen isotopic compositions 

(Δ13Cdc-bc and Δ15Ndc-bc) are presented in Tables 2.16 and 2.17. In BIBS14-169 M1, the 

Δ13Cdc-bc is +0.7‰, and declines to +0.5‰ in the M2 and +0.3‰ in the P4 (the difference 

between the Δ13Cdc-bc of the M2 and M3 is within the range of instrument error) (Table 

2.16). The Δ13Cdc-bc of BIBS14-445 M1 and M2 are +0.6‰ and +0.8‰, respectively. 

Similarly, there is a decline in the Δ15Ndc-bc across the teeth of BIBS14-169 from +3.9‰ in 

the M1 to +3.4 in the P4 (Table 2.17). There is also a decline in Δ15Ndc-bc in the teeth of 

BIBS14-445 from +1.9‰ in the M1 to +1.5‰ in the M2. 
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Table 2.16. Summary data for muskox dentin collagen δ13C, and dentin collagen-bone collagen δ13C offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ13Cdc          

(‰, VPDB) 

Intra-tooth 
Average 
δ13Cdc 

δ13Cbc          

(‰, VPDB) 

Δ13Cdc-bc 

(‰, VPDB) M1 M2 M3 P4 

BIBS14-169 M1 Muskox 

DC1 –22.9 

–22.7 

–23.4 

+0.7 

   

DC2 –22.6    

DC3 –22.8    

DC4 –22.5    

         

BIBS14-169 M2 Muskox 

DC1 –22.8 

–22.9 

 

+0.5 

  

DC2 –23.0    

DC3 –23.0    

DC4 –23.3    

DC5 –22.3    

         

BIBS14-169 M3 Muskox 

DC1 –22.8 

–23.0 

  

+0.4 

 

DC2 –22.5    

DC3 –22.7    

DC4 –23.2    

DC5 –22.8    

DC6 –23.6    

DC7 –23.6    

         

BIBS14-169 P4 Muskox 
DC1 –22.5 

–23.1 

   

+0.3 
DC2 –22.9    
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DC3 –22.9    

DC4 –23.4    

DC5 –23.8    

DC6 –23.1    

          

BIBS14-445 M1 Muskox 

DC1 –22.3 

–22.1 

–22.7 

+0.6 

   

DC2 –22.4    

DC3 –22.0    

DC4 –22.1    

DC5 –21.7    

         

BIBS14-445 M2 Muskox 

DC1 –22.1 

–21.9 

 

+0.8 

  

DC2 –21.9    

DC3 –21.9    

DC4 –22.5    

DC5 –21.2    

DC6 –21.5       
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Table 2.17. Summary data for muskox dentin collagen δ15N, and dentin collagen-bone collagen δ15N offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ15Ndc         

(‰, AIR) 

Intra-tooth 
Average 
δ15Ndc 

δ15Nbc       
(‰, AIR) 

Δ15Ndc-bc 

(‰, AIR) M1 M2 M3 P4 

BIBS14-169 M1 Muskox 

DC1 +7.9 

+7.9 

+4.0 

+3.9 

   

DC2 +7.7    

DC3 +8.0    

DC4 +7.9    

         

BIBS14-169 M2 Muskox 

DC1 +7.9 

+7.7 

 

+3.7 

  

DC2 +7.8    

DC3 +7.5    

DC4 +7.6    

DC5 +7.6    

         

BIBS14-169 M3 Muskox 

DC1 +7.5 

+7.5 

  

+3.5 

 

DC2 +7.5    

DC3 +7.5    

DC4 +7.5    

DC5 +7.5    

DC6 +7.4    

DC7 +7.5    

         

BIBS14-169 P4 Muskox 
DC1 +7.5 

+7.4 

   

+3.4 
DC2 +7.5    
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DC3 +7.5    

DC4 +7.6    

DC5 +7.5    

DC6 +6.8    

          

BIBS14-445 M1 Muskox 

DC1 +7.2 

+7.3 

+5.4 

+1.9 

   

DC2 +7.3    

DC3 +7.4    

DC4 +7.5    

DC5 +7.2    

         

BIBS14-445 M2 Muskox 

DC1 +6.9 

+6.9 

 

1.5 

  

DC2 +6.9    

DC3 +6.9    

DC4 +6.7    

DC5 +6.6    

DC6 +7.6       
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2.5 Discussion 

2.5.1 Caribou Bone Collagen Isotopic Compositions and Diet on 
Banks Island 

The proportional density estimates of sedges and forbs in Figure 2.8 and Table 2.10 agree 

with both caribou fecal pellet (Larter and Nagy 1997, 2004) and rumen content (Shank et 

al. (1978) studies on Banks Island. Unlike the isotopically-derived proportional density 

estimates, however, fecal and rumen analyses also suggest that shrubs are a primary 

component of caribou diet on Banks Island during the summer. Given the relatively high 

protein content of shrubs during the growing season (Larter and Nagy 2001b, 2002), even 

seasonal consumption should lead to some representation in bone collagen isotopic 

composition. 

Contrary to the isotopically-derived proportional density estimates, fecal and rumen studies 

also suggest minimal lichen consumption by caribou on Banks Island; Larter and Nagy 

(1997, 2001b, 2004) and other researchers (Klein 1992; Miller and Gunn 2003) argue that 

lichen phytomass in the Canadian Arctic Archipelago is too low to support significant 

browsing. Such consumption, however, is not unprecedented in other regions. Kelsall 

(1968) and Skoog (1968) both suggest that the incisors of caribou are probably not 

morphologically adapted for cutting through the tissues of woody plants, and are better 

suited for plucking lichens and sedges from the ground surface. Traditional ecological 

knowledge from Banks Island also strongly suggests that caribou forage on yellow lichen 

year-round (Trevor Lucas, personal communication). Both the migratory mainland caribou 

herds of Canada (Klein 1991), and Scandinavian reindeer (Gaare and Skogland 1975; 

Staaland and Sæbø 1987; Mathiesen et al. 2000) forage heavily on lichens during the 

winter. Thomas et al. (1999) also note that caribou on nearby Melville Island consume 

lichen throughout the year. 

Although lichen phytomass on Banks Island is apparently low, Larter and Nagy (2001a) 

found that lichens were among the most frequently occurring forage in the southern region 

of Banks Island, especially in upland and stony barrens, where caribou tend to range 
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(Parker 1978; Vincent and Gunn 1981). In any case, limited lichen phytomass may not be 

an issue for caribou, who tend to move quickly between feeding areas. 

2.5.2 Muskox Bone Collagen Isotopic Compositions and Diet on 
Banks Island 

The relatively high proportional estimate of Cetraria tilesii in muskox diet (Figure 2.13 

and Table 2.12) is also unexpected. Traditional ecological knowledge on Banks Island 

suggests that muskoxen mainly forage on sedges and other graminoids, and do not eat 

lichen (Nagy 1999; Trevor Lucas, personal communication), and almost all other data on 

muskox diet agree with this view. Again, Oakes et al. (1992) suggested that, of the vascular 

plant content in muskox feces on Banks Island during the late spring and summer of 1987, 

sedges and rushes accounted for nearly half of the vascular plant content, grasses and forbs 

accounted for another ~ 30% and 20%, respectively. Likewise, fecal content analyses 

(Larter and Nagy 1997, 2001c, 2004) suggest that muskox diet on Banks Island consists of 

a 60-40% mix of sedges and willow year-round, with minor contributions from legumes 

during the summer. As with caribou, lichen fragments were not found in any muskox fecal 

pellets analyzed by Larter and Nagy (1997, 2004) or Oakes et al. (1992). 

There is physiological precedent for limited yellow lichen consumption by muskoxen: 

Fruticose lichens contain high levels of plant secondary substances (Rundel 1978; Hidalgo 

2005; Sundset et al. 2010), particularly usnic acid (Culberson 1977; Palo 1993; Bjerke and 

Dahl 2002) that are typically poisonous to animals. Because of the presence of these 

substances, few other animals besides caribou and reindeer consume such lichens. Recent 

work (Sundset et al. 2008, 2010; Glad et al. 2014) demonstrates that the caribou gut 

microbiome is not only capable of neutralizing usnic acid, but may be able to metabolize 

it. Salgado-Flores et al. (2016), however, have recently established that the bacterial and 

archaeal microflora of the muskox rumen are more closely related to those of caribou than 

to those of other ruminant herbivores. This similarity in rumen microfloral profiles suggests 

that muskoxen may be able to process lichen in the same way as caribou. Muskoxen in 

Alaska are known to consume lichen regularly (Palmer 1944; Thing et al. 1987; Ihl and 

Klein 2001; Gustine et al. 2011; Ihl, unpublished data) apparently without adverse effects. 



 

163 

2.5.3 Potential Confounding Factors 

The high proportional estimates of lichen contribution to caribou and muskox bone 

collagen challenge the results of many dietary studies specific to caribou and muskoxen on 

Banks Island. Consideration of other potential factors is therefore warranted before 

exploring the implications of lichen consumption further. As detailed in Section 2.4.7, 

several diagnostic tests affirm the performance of the Markov chains used in the mixing 

models, and multiple runs on different computers, and with different run parameters all 

produced essentially the same mixing model results. 

One possible biasing factor is that our muskox bone samples were taken from animals 

harvested in the southwestern part of Banks Island. The seasonal movements of muskoxen 

are presumably limited (Nagy 1999; Tener 1965) and forage isotopic compositions on 

Banks Island vary geographically (Section 2.4.3). Muskoxen from the northern parts of 

Banks Island could have diets and bone collagen stable isotopic compositions different 

from the southwestern muskoxen, and therefore also the caribou in this study. 

Initially, we suspected that isotopically-distinct but protein-poor lichen species could be 

biasing the mixing models, but this is accounted for when C and N abundances are included 

in the model. Although lichens contain almost no crude protein (Table 2.8; Spencer and 

Krumboltz 1929; Scotter 1972; White 1983; Larter and Nagy 2001b, 2002), they are rich 

in glucose and other fermentable carbohydrates (Skogland 1990; Svihus and Holand 2000; 

Sundset et al. 2010). Since the δ13C of herbivore bone collagen should reflect the δ13C of 

all forage sources, including those with little crude protein, there is no methodological issue 

with using bulk bone collagen and bulk forage isotopic data in the mixing model. 

Another possibility is that the models are underdetermined due to the number of forage 

source divisions and low isotopic variability between them (Parnell et al. 2010). Pairwise 

correlations (Section 2.4.7) suggest that with Markov chains of sufficient length, the 

mixing models can distinguish sources from one another. The large posterior probability 

ranges for many of the forage sources, however, demonstrate that many potential mixing 

solutions are possible. Given that herbivores only feed from a single trophic level, and all 

forage sources we sampled utilize the C3 photosynthetic pathway, this is difficult to avoid. 
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Still, a posteriori aggregation does not drastically change estimated proportional forage 

contributions to caribou or muskox bone collagen. In some cases (e.g. northern and 

southern non-leguminous forbs), aggregation increases uncertainty by combining 

isotopically-distinct forage types. 

Although we sampled from as broad a range of potential forage species as possible, it may 

be that the exclusion of some forage types significantly affects the mixing models. For 

instance, we did not sample any rush (Luzula spp.) or horsetail (Equisetum spp.) species. 

As monocots, we expect that the stable isotopic compositions of rushes are within the range 

of graminoids and sedges. Likewise, although the unique phylogenetic position and 

physiology of Equisetum spp. relative to other vascular plants suggest it may have distinct 

carbon and nitrogen isotope compositions. 

As discussed above, the strongest candidate for methodological error in our models, and 

Bayesian mixing models in general, are the trophic discrimination factors we used. We 

have no way of determining whether the SIDER-imputed TDFs reflect “real” caribou and 

muskox TDFs, although they are within the ranges of published TDFs for large herbivores 

(Sullivan and Krueger 1981; Krueger and Sullivan 1984; van der Merwe 1989; Koch 

1998). In addition, model diagnostics suggest that, at the least, the Bayesian imputations 

used to obtain TDF estimates performed well. Finally, when generalized TDFs (Szpak et 

al. 2012) are applied, the estimated dietary proportions of forage source remain about the 

same (Appendix A, Supplemental Figures A1 and A2 and Supplemental Tables A1 and 

A2). 

The diets of male and female, and adult and juvenile muskoxen on Banks Island differ 

somewhat (Oakes et al. 1992) and the same is probably true for caribou (Skogland 1989, 

1990; Parker et al. 2005). Likewise, the δ13Cbc and δ15Nbc of actively-nursing caribou and 

muskoxen, as with most mammals, is influenced by the consumption of milk (Fogel et al. 

1989; Jenkins et al. 2001; Polischuk et al. 2001; Fuller et al. 2003). A strong sex bias in the 

samples, or a mix of adult and juvenile bone collagen isotopic data could produce 

misleading mixing model results. Since the modern caribou and muskox bone collagen 
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samples include a mix of adult males and females, however, sex bias and ontogenetic 

differences in bone collagen isotopic composition are not a concern. 

Although the proportional contributions of all dietary items can in theory be inferred from 

the δ13Cbc and δ15Nbc of herbivores, other metabolic processes unique to Arctic ruminants 

may affect the isotopic compositions of body tissues. These processes may offer alternative 

explanations for the unexpectedly large proportional estimates of yellow lichen 

consumption based on both caribou and muskox bone collagen isotopic compositions. 

In a broad range of cervids, including caribou, metabolism and appetite decline in winter 

(Ryg and Jacobsen 1982; Larsen et al. 1985; Tyler and Blix 1990). The same declines 

apparently occur in muskoxen as well (Tener 1965; Hudson and Christopherson 1985; 

Tyler and Blix 1990). Variable metabolic rate probably does not directly affect tissue stable 

isotopic compositions (Carleton and Martínez del Rio 2005; Smith et al. 2010). If 

metabolism is lowered to the point where tissue growth or turnover ceases, however, winter 

dietary isotopic signals will be underrepresented in bone collagen. There is some evidence 

for winter growth cessation in wild caribou (McEwan 1968; Ryg and Jacobsen 1982) but 

it is based largely on plateau in body weight. Caribou and muskoxen both build up fat 

stores during summer and fall which they then use during winter to avoid catabolizing body 

protein (Larsen et al. 1985; Adamczewski et al. 1987; Tyler and Blix 1990; Adamczewski 

1992; Adamczewski et al. 1997; Hofmann 2000). Because of their highly efficient 

digestive system and low basal metabolic rate (Hudson and Christopherson 1985; Tyler 

and Blix 1990), muskoxen are often able to maintain their fat stores through the winter 

(Thing et al. 1987; Adamczewski et al. 1994). Most of the weight loss during winter is 

accounted for by utilization of fat reserves, though some protein loss does occur in both 

species, even when fat stores or high-quality forage is available (Adamczewski et al. 1987, 

1988, 1993; Tyler and Blix 1990). Dental eruption indices for caribou (Kelsall 1968; Miller 

1974) and muskoxen (Tener 1965; Henrichsen and Grue 1980) demonstrate continuous 

eruption (and subsequently, developmental) rates in both species, suggesting continuous 

growth throughout the winter. 
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Whether seasonal fat or protein catabolism in caribou and muskoxen results in 15N 

enrichment (Hobson et al. 1993; Fuller et al. 2005; Drucker et al. 2012) probably depends 

on the severity of range conditions in an individual winter. Kempster et al. (2007) suggest 

that metabolic stress may need to reach a certain threshold before 15N enrichment is 

induced in tissues, and given their evolutionary history, this threshold is probably high in 

both caribou and muskoxen. As Tyler and Blix (1990:221) argue, many Arctic species 

experience weight loss during winter, and “survive perfectly well” and “slowed growth and 

even weight loss are not necessarily consequences of undernutrition.” 

Caribou and muskoxen both recycle urea to mitigate protein loss during winter (Tener 

1965; Klein and Schønheyder 1970; Batzli et al. 1981; Barboza and Parker 2008). In 

caribou, the specific mechanism of nitrogen retention involves cycling urea-rich saliva to 

the rumen, which are used to sustain gut protein synthesis (Hungate 1966; Hove and 

Jacobsen 1975; Wales et al. 1975). This specific cycling pathway is probably the same in 

muskoxen, as it is present in sheep, which are also members of the subfamily Caprinae 

(Denton 1957; Lyttleton 1960; Hungate 1966). Batzli et al. (1981:362) state that urea 

conservation “requires…a readily fermentable supply of carbohydrate…to supply energy 

and carbon for microbial protein synthesis.” Because lichens are glucose- and 

carbohydrate-rich, and Cetraria tilesii is highly digestible (Thomas and Kroeger 1980; 

Côté 1998; Storeheier et al. 2002), caribou and muskoxen may both consume significant 

quantities of yellow lichen during the winter to satisfy maintenance energy demands and 

maintain the normal function of gut microflora. Indeed, Mathiesen et al. (1999; 2000) 

found that energy provided by lichen promoted the digestion of other winter forage in 

caribou. Glucose is also important in lactating ruminants (Annison and Linzell 1964; 

Linzell 1967; Annison et al. 1968; White and Luick 1976). In addition, Cetraria tilesii 

tends to grow on ridges and hilltops (Larter and Nagy 2001a), which are blown free of 

snow during the winter (Larter and Nagy 2001d). This means that less digging, and 

consequently less energy, is required to obtain this significant carbohydrate source. 

Although caribou are probably not able to survive on lichen alone (McEwan and Whitehead 

1970; Nieminen 1980), a winter diet of sedges and lichen could provide enough crude 

protein, essential amino acids, and fermentable carbohydrates to maintain microbial 

synthesis (Ørskov 1992; Storeheier et al. 2002). 
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Having established that there are dietary and metabolic advantages to the consumption of 

yellow lichen during the winter, we argue that a suite of ecological and physiological 

factors favors its strong representation in bone collagen. Kielland (1997) found that 

Cetraria richardsonii readily absorbs glycine, a non-essential but proteinogenic amino acid 

that is abundant in tundra soils (Stevenson 1982; Kielland 1995). Hare et al. (1991) 

demonstrate that glycine is enriched in 13C relative to other amino acids, which may in part 

explain why the δ13C of Cetraria tilesii is higher than all other forage sources in our sample. 

Earlier work with isotopically-labeled glycine in ruminants (Wright and Hungate 1967) 

demonstrates that rumen microflora readily metabolize it to produce CO2 and ammonia. 

Significantly, Wright and Hungate (1967) also found that glycine is not deaminated during 

fermentation by rumen microflora. Since glycine is routed almost directly into bone 

collagen (Hare et al. 1991), and accounts for about one third of its total amino acid content 

(Brown 1975; Krueger Sullivan 1984; Harrison and Katzenberg 2003), the δ13Cbc in 

caribou and muskoxen consuming yellow lichen is potentially weighted towards the δ13C 

of glycine routed almost directly from the lichen. 

One other possibility is that rumen microflora themselves, not just their byproducts, 

constitute a significant protein source for caribou and muskoxen (Sillen et al. 1989; 

Bocherens et al. 1996; Atasoglu et al. 2004) and therefore represent a missing source in 

our mixing models. Sponheimer et al. (2003) point out that foregut fermenters like caribou 

and muskoxen can digest significant amounts of their rumen microflora due to the forward 

location of the rumen in the GI tract. Likewise, Dewhurst et al. (2000:1-2) note that “over 

half of the amino acids absorbed by ruminants, and often two-thirds to three-quarters, 

derive from microbial protein…[therefore] microbial protein must be considered as an 

important protein resource.” Reindeer are known to digest nitrogen-rich rumen flora (Klein 

and Schønheyder 1970), and although there are fewer data on similar functions in 

muskoxen, similar abilities exist in sheep and other caprines like muskoxen (Blackburn 

and Hobson 1960). Research on the carbon isotope compositions of bacteria and protozoa 

is largely focused on freshwater detritus-based foodwebs (Hall and Meyer 1998; Nichols 

and Garling 2000) and is not an appropriate analog for the ruminant digestive system. The 
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isotopic analysis of rumen microflora constitutes an interesting avenue for further research, 

especially within the realm of herbivore isotope biochemistry. 

If Cetraria does play a significant role in the annual diets of caribou and muskoxen on 

Banks Island, as we argue above, why is it consistently underrepresented in fecal and 

particularly rumen analyses? Although these studies represent important advances in our 

understanding of caribou and muskox ecology, Dearden et al. (1975) found that the 

microhistological approach to fecal and rumen content analyses can underestimate some 

forage types like lichen. Microhistological analysis of forage fragments by Parker (1978) 

recorded no lichen in rumen samples from High Arctic caribou, even though Thomas and 

Edmonds (1983) visually identified significant amounts of lichen in the same rumen 

samples. In addition, the proportional estimates of Salix arctica produced by Parker (1978) 

are also higher than those from Thomas and Edmonds (1983). As discussed above, Cetraria 

is also highly digestible, and its turnover time in the rumen is low (Thomas and Kroeger 

1980; Côté 1998; Storeheier et al. 2002). Since the rumen microflora of caribou, and 

probably muskoxen, are uniquely adapted to neutralizing lichen secondary metabolites, it 

is conceivable that yellow lichen is rapidly digested in both animals and is therefore 

underrepresented in both rumen and fecal studies. It is usually obvious when caribou or 

muskoxen have foraged on vascular plants like shrubs or grasses because they leave behind 

stripped branches and root crowns (Wilkinson et al. 1976; Trudell and White 1981; Klein 

and Bay 1990). Unlike vascular plants, however, lichens have no roots, and Trudell and 

White (1981) found that caribou can pluck lichens from the moss layer using only the 

movement of their lips. Consequently, it may not be apparent in observational studies of 

forage plots that lichens were consumed or even present. 

2.5.4 Muskox Seasonal Dietary Variation Inferred from Dentin 
δ13C and δ15N 

As discussed in Section 2.4.9, the pattern of dentinogenesis in hypsodont/selenodont teeth, 

in combination with the crown dentin sampling methodology we used, results in each 

sequential microbulk dentin sample cross-cutting multiple dentin appositional layers. As a 

result, integrated isotopic signals in crown dentin collagen are likely significantly 

attenuated (Balasse and Tresset 2002; Balasse 2003). Muskox molars and permanent 
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premolars are large enough that, despite this attenuation, isotopic variation is apparent in 

their dentin sequential samples. The M1s and M2s of both modern muskoxen we sampled 

also show the same general patterns in δ13Cdc and δ15Ndc, which suggests that the variation 

reflects real phenomena and is not just heavily-attenuated isotopic “noise”. Caribou teeth, 

however, are too small to obtain adequate sequences of isotopic compositions using this 

method. We therefore discuss the muskox dentin collagen isotopic data first, and then 

interpret the caribou dentin collagen isotopic data in light of it. Overall, we find that 

seasonal dietary changes inferred from the intra-tooth dentin collagen isotope data, after 

accounting for developmental history, correspond well with the tooth eruption indices. 

Tooth eruption indices (Tener 1965; Henrichsen and Grue 1980) demonstrate that in 

muskoxen, M1s start developing in utero, longitudinally from the apex of the crown, and 

begin erupting from the gumline in the first month or two after birth, and continue erupting 

(and hence, developing) throughout at least the first year of life (Figure 2.20). The apical 

portions of M1 crowns that developed prenatally, and that would therefore reflect maternal 

isotopic compositions (Fogel et al. 1989; Katzenberg et al. 1996), and during the first 

several months of life, are obliterated by occlusal wear in adulthood (Figure 2.2), as is the 

case in both modern muskox tooth samples (Appendix A, Supplemental Figure A3). 

Accounting for occlusal wear, and based on forage sample δ13C presented here, we 

associate the minor, gradual increases in δ13Cdc along M1 crowns of both muskoxen with 

shifts from forage with lower δ13C in the first fall of life, to forage with higher δ13C during 

the first winter. 

Although there is no published information regarding their development in muskoxen, 

tooth eruption data (Tener 1965; Henrichsen and Grue 1980) also demonstrate that M2s 

begin erupting during the second summer of life, and continue to develop and erupt through 

at least the third summer of life (Figure 2.20). The M2 crowns in both muskoxen reflect a 

general trend towards decreasing δ13Cdc followed by a sharp +1‰ increase in the δ13C of 

the last (BIBS14-169 M2 DC5) and last two (BIBS14-445 M2 DC5, DC6) dentin 

sequential samples (Figure 2.18, Table 2.4). As in the M1 crowns, low δ13Cdc in the fourth 

sequential sample of both M2s (Figure 2.18) probably reflects diet during the second 

summer of life, while the highest δ13Cdc in both M2 crowns represents dietary compositions 
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in the second winter. Occlusal wear on the M2 of BIBS14-445 was less severe than on the 

M2 of BIBS14-169 (Appendix A, Supplemental Figure A3), and in BIBS14-445, the δ13C 

and δ15N of the last two microbulk dentin samples from the M1 overlaps with those of the 

first two microbulk dentin samples from the M2 (Figures 2.17a and 2.17b, Table 2.4). This 

isotopic overlap between teeth supports the tooth eruption data (Tener 1965; Henrichsen 

and Grue 1980), which suggest that the crown of the M2 begins developing well before the 

first winter of life, overlapping with the development of the M1 (Figure 2.20). 

Muskox M3s probably start developing during the second fall or winter of life, and 

continue growing and erupting through at least the third year of life (Tener 1965; 

Henrichsen and Grue 1980) (Figure 2.20). The development of muskox P4s presumably 

overlaps with that of the M3 (Figure 2.20; Tener 1965; Henrichsen and Grue 1980), though 

given its small size relative to the M3, its development probably starts later, perhaps during 

the third winter of life. We associate the gradual decline in δ13Cdc across crown dentin 

microbulk samples in BIBS14-169 M3 with dietary signals across the second winter, third 

summer and winter, and fourth summer. The P4, which erupts with, and probably develops 

during the same time as the M3, reflects dietary variation across the third winter, fourth 

summer, and fourth fall and winter. 
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Figure 2.20. Eruption sequence of permanent dentition in muskoxen. “I” = incisor, “C” = canine, “PM” = premolar, and “M” = molar. 

Data are from Tener (1965) and Henrichsen and Grue (1980). 
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In the tooth crowns of both muskoxen, the inter-tooth pattern in tooth-averaged δ13Cdc and 

δ15Ndc is toward gradual depletion of both 13C and 15N (Tables 2.16 and 2.17). The most 

likely explanation for these patterns is the influence of milk proteins on dentin collagen 

isotopic compositions during the first two or three years of life. Similar patterns in δ13C 

and δ15N are observed in incrementally-growing tissues in many other mammalian species 

(Fogel et al. 1989; Bocherens et al. 1994, 1996; Hobson and Sease 1998; Balasse et al. 

2001; Jenkins et al. 2001; Polischuk et al. 2001; Fuller et al. 2003), and no other processes 

readily account for these isotopic patterns while explaining the large offset in δ15N between 

crown dentin and bulk bone collagen (Δ15Ndc-bc) (Table 2.17). For instance, seasonal 

catabolysis of body tissues could potentially enrich dentin collagen in 15N, but if it occurs 

in multiple winters over the course of life, we should expect it to also influence the δ15N of 

continuously-remodeled bone collagen. As a result, δ15Nbc should to be equal to, or even 

higher than δ15Ndc, which only integrates isotopic variation during early life. Catabolic 

enrichment in 15N would also not explain why tooth-averaged δ13Cdc and δ15Ndc decline 

across the teeth of both muskoxen. If catabolysis recurred each winter, we would expect 

Δ13Cdc-bc and Δ15Ndc-bc offsets to be nearly identical across teeth, or to vary randomly with 

the degree of catabolic activity in individual winters. The Δ15Ndc-bc offsets in muskox teeth 

are also greater than in caribou teeth (Table 2.15). Based on differences in seasonal weight 

loss in caribou and muskoxen (Section 2.5.3), we might expect greater catabolic activity in 

caribou, resulting in greater Δ15Ndc-bc offsets than in muskoxen. Finally, given that caribou 

and muskoxen have adapted to the tundra environment over millions of years, the threshold 

for catabolic enrichment in 15N, if it occurs at all, should be very high in both species. We 

also considered seasonal assimilation of gut microflora (Section 2.5.3) as a potential 

explanation for the Δ15Ndc-bc offsets in muskox teeth. It seems likely, however, that 

microfloral assimilation would result in Δ13Cdc-bc offsets larger than those we observe in 

the teeth of both muskoxen. Finally, if microfloral assimilation occurs seasonally 

throughout life, we would again expect that bulk bone and microbulk dentin collagen δ13C 

and δ15N would be nearly identical. 

Extended nursing also explains why: (1) there are large Δ15Ndc-bc offsets in the tooth crowns 

of both muskoxen despite only limited intra-tooth variation in δ15Ndc, and, (2) why there is 
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more intra-tooth variation in dentin δ13C than in δ15N. Since milk is synthesized out of the 

mother’s protein pool (Minson et al. 1975; DeNiro and Epstein 1978; Boutton et al. 1988; 

Schurr 1998; Schoeller 1999), its δ13C will ultimately reflect the δ13C of assimilated forage. 

Conversely, the δ15N of milk will largely reflect the mother’s trophic position, plus some 

degree of trophic enrichment, and should not vary significantly with the δ15N of the 

mother’s diet (Fogel et al. 1989; Newsome et al. 2006). In ruminants, consumed milk is 

not fermented in the rumen and is instead shunted directly to the omasum for assimilation 

(Hungate 1975; Van Soest 1982). We assume that in a ruminant herbivore receiving a 

comparatively high-protein supplement like milk, any consumed forage will be used almost 

exclusively for energy while assimilated milk proteins will be routed directly to 

proteinaceous tissues like collagen. In other words, the carbon and nitrogen of ingested 

milk protein are routed, not “scrambled” (Ambrose and Norr 1993) in the tissues of nursing 

ruminants, and should therefore dominate tissue isotopic signals during the period of 

supplementation. 

That intra-tooth δ13Cdc is higher than bone collagen δ13C, but declines across teeth also 

suggests that milk lipids, which are depleted of 13C (DeNiro and Epstein 1978), are used 

for energy or fat accumulation rather than tissue synthesis in muskoxen. The intra-tooth 

δ13Cdc of teeth developing while a muskox nurses therefore reflects dietary δ13C variation 

in its cow, plus a minor trophic level enrichment in 13C. Conversely, the intra-tooth δ15Ndc 

of the same teeth will uniformly reflect the nursling’s temporarily-carnivorous trophic 

position as it consumes the cow’s milk, and will all be significantly enriched in 15N relative 

to bulk bone collagen δ15N. Since primary dentin in the tooth crown does not undergo 

extensive remodeling throughout life (Gage et al. 1989; Lowenstam and Weiner 1989; 

Balasse 2003), the influence of milk is preserved in crown dentin collagen isotopic signals, 

while in bone collagen, the milk signal is “overwritten” by continuous remodeling (Libby 

et al. 1964; Tieszen et al. 1983; Pate 1994). 

The isotopic relationships between maternal diet and milk, and the δ13C and δ15N of a 

nursling’s tissues have been established in ruminant and non-ruminant species in both 

observational and experimental studies. Minson et al. (1975), Boutton et al. (1988), Knobbe 

et al. (2006) and Hillal et al. (2015) all demonstrated that the δ13C of continuously-sampled 
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milk in dairy cows reflects transitions from C3- to C4-based feed, while Knobbe et al. 

(2006) found no significant change in milk δ15N between feed types. The same isotopic 

patterns have been observed in dentin collagen from steers (Balasse et al. 2001), humans 

(Fuller et al. 2003) and pinnipeds (Newsome et al. 2006), and in the blood of seal pups 

(Ducatez et al. 2008; Cherel et al. 2015). 

In summary, intra-tooth δ13Cdc largely reflects seasonal dietary variation not of the 

muskoxen themselves, but the cows that nursed them. Lower δ13Cdc reflects greater 

proportions of the cows’ forage with lower δ13C, such as forbs, during the summer. Higher 

δ13Cdc reflects greater proportions of forage with higher δ13C such as sedges and lichens 

during winter. We base this conclusion on forage δ13C and the results of our dietary mixing 

models. Geographic variation in forage δ13C (Section 2.4.3) can also amplify or attenuate 

oscillations in intra-tooth δ13Cdc. The gradual inter-tooth decline in δ13Cdc and δ15Ndc is the 

result of declining dietary supplementation with milk. In BIBS14-169, the near-absence of 

variation in intra-tooth δ15Ndc, coupled with the large Δ15Ndc-bc offsets in each tooth 

suggests that nursing continued through the third winter of life. The Δ15Ndc-bc offset 

declines slightly with the developmental order of the teeth. This suggests that the weaning 

process continued throughout the development of the M1, M2, M3, and P4. The abrupt ~ 

1‰ decrease in δ15Ndc between the last two sequential samples of the P4 indicates that milk 

supplementation stopped completely around the fourth summer of life. 

Although prolonged nursing is not commonly observed in wild muskoxen (Tener 1965; 

Parker et al. 1990; Adamczewski et al. 1997), its cost in terms of maternal health, fecundity, 

and ultimately, demography is not clear. White et al. (1989) point out that the lactation 

curves (i.e. milk production intervals) of many ungulate species are relatively flexible. 

Their results, and those of White et al. (1997), also demonstrate that in muskoxen, lactation 

does not automatically trigger anestrum, so prolonged lactation is not necessarily an 

indicator of reduced fecundity. Still, milk production in muskoxen is costly in terms of 

maternal fat and protein stores (Adamczewski et al. 1997; Rombach et al. 2002). The 

captive muskox dams studied by White et al. (1989) received hay and protein supplements 

ad libitum and always exceeded the minimum body weight necessary for conception. It is 

unlikely that in the wild, a female muskox can afford to continue nursing a calf while 
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pregnant without significant metabolic costs to herself and the developing fetus. White et 

al. (1997) found that, of captive female muskoxen on a low-nutrition diet, only dams that 

could regain the body fat stores required to mate in the following autumn weaned their calf 

during the first winter of its life. Females that did not recover body fat stores by the spring 

following parturition did not mate in the following autumn, and instead continued to nurse 

the yearling through the next summer. Consequently, prolonged nursing in wild muskoxen, 

as indicated by the δ15Ndc of crown dentin microbulk samples and accompanying Δ15Ndc-bc 

offsets, potentially indicates reduced fecundity linked to decreased forage availability. 

2.5.5 Caribou Seasonal Dietary Variation Inferred from Dentin 
δ13C and δ15N 

Although the small size of caribou tooth crowns (Appendix A, Supplemental Figure A4) 

limited our ability to obtain an adequate series of sequential microbulk dentin collagen 

samples, patterns of δ13Cdc and δ15Ndc across the teeth from BIBS16-19 resemble those 

from muskox teeth. Specifically, intra-tooth-averaged δ13Cdc declines towards bulk bone 

δ13C across teeth (Figure 2.16, Table 2.14), while intra-tooth-averaged δ15Ndc remains 

nearly uniform (Figure 2.17, Table 2.15). In barren ground caribou, the M2 is fully erupted 

and in-wear by the end of the second summer of life (Figure 2.21; Kelsall 1968; Miller 

1974), and the limited intra-and inter-tooth variation in δ15Ndc from BIBS16-19 M1 and 

M2 suggests that this caribou continued nursing through at least the first winter of life. 

Conversely, the δ15N of microbulk dentin collagen samples from BIBS15-57 M2 is ~ 2‰ 

lower, and their Δ15Ndc-bc offsets are smaller (0.2‰) than those from BIBS16-19 M2, 

suggesting that this caribou was probably weaned during the first summer or fall of life. 

This weaning estimate agrees with published data for weaning times in caribou (Tener 

1965; Kelsall 1968; Skoog 1968; White and Luick 1976; White 1983; Parker et al. 1990).
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Figure 2.21. Eruption sequence of permanent dentition in barren ground caribou. “I” = 

incisor, “C” = canine, “PM” = premolar, and “M” = molar. Data are from Banfield (1954) 

and Miller (1974).  
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2.5.6 Implications of Modern Bone and Dentin Collagen for 
Modern Caribou and Muskox Ecology on Banks Island 

The isotopic evidence presented here suggests that the inter-annual and possibly seasonal 

diets of caribou and muskoxen share a significant amount of overlap. Based on Bayesian 

dietary mixing models and our δ13Cdc dataset, this overlap likely hinges on the consumption 

by both species of yellow lichen (Cetraria tilesii) and sedges (Cyperaceae spp.), 

particularly from the southern part of the island, throughout the winter. The isotopic data 

presented here may reflect dietary fluctuations related to reported declines in the muskox 

population, and increases in the caribou population on Banks Island during the last several 

years (Kelvin 2016). The evidence for prolonged nursing in the crown dentin collagen 

isotopic data hints at reduced fecundity in muskoxen, and it may be that when the muskox 

population begins to decline, caribou take advantage of areas or forage such as sedges 

normally utilized (or over-utilized) by muskoxen. Smith (1996) found that in summer 

ranges of muskoxen on Banks Island, heavy grazing increases the above-ground phytomass 

of Eriophorum triste. Likewise, fecal deposition by muskoxen appears to be positively 

correlated with above-ground phytomass and nutritional content (Smith 1996). 

Again, although there is little existing evidence for outright forage competition between 

caribou and muskoxen, traditional knowledge and observation suggest that caribou avoid 

muskoxen when possible. A sudden decline in the muskox population might open well-

fertilized sedge meadows not normally available to caribou. Similarly, caribou diet, like 

that of muskoxen (Oakes et al. 1992; Larter and Nagy 1997; 2004) may depend on 

population density. Consequently, large proportional contributions of sedges to caribou 

bone collagen may reflect the broadening of the caribou dietary niche to reduce inter-

individual forage competition. 

Even without outright forage competition, the large proportions of yellow lichen in the 

winter diets of both caribou and muskoxen are potentially unsustainable. Again, though 

yellow lichens are abundant, lichen phytomass is relatively low (Larter and Nagy 2001a) 

and lichens regrow much more slowly than vascular plants (Miller 1973; Henry and Gunn 

1990; Klein 1987, 1992; Larter and Nagy 1997; Griller 2001; Joly et al. 2008). Lichen 

phytomass is also expected to decrease as the Arctic warms and shrub phytomass increases 
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(Chapin et al. 1995; Cornelissen et al. 2001; Walker et al. 2006; Tape et al. 2012; Tremblay 

et al. 2012; Thompson and Barboza 2014). Given that shrubs do not appear to account for 

significant proportions of annual diet in either caribou or muskoxen and are only digestible 

for very short periods, increased shrub phytomass may not make up for the decrease in 

lichen phytomass. This potentially places both species at increased risk for nutritional and 

metabolic stress during the winter, in addition to other factors such as increased disease 

and parasite load (Kutz et al. 2001, 2004, 2005, 2008; Hughes et al. 2009), ice-crusts caused 

by rapid thaw-freeze events (Klein 1999; Gunn et al. 2000; Larter and Nagy 2001d; Tyler 

2010; Descamps et al. 2017), and in muskoxen, low genetic diversity (Holm et al. 1999; 

MacPhee et al. 2005; Rodrigues et al. forthcoming). Since the decline of fox-trapping in 

the 1970’s (Usher 1965; Nagy 1999; Kelvin 2016) caribou and muskoxen have become 

important parts of the sport-hunting and craft industries on Banks Island (Joint Secretariat 

2015; Kelvin 2016). Similarly, the Canadian government has emphasized the health 

benefits of traditional foods in the north as a means to combat rising rates of obesity and 

diabetes (Furgal and Seguin 2006; Northwest Territories Environment and Natural 

Resources 2008; Public Health Agency of Canada 2012). Muskoxen – and to a lesser extent 

caribou – are important dietary staples on Banks Island (Nagy 1999; Kelvin 2016). 

Consequently, a simultaneous decline in the caribou and muskox populations on Banks 

Island could negatively impact both the economy and food security for community 

members in Sachs Harbour. 

2.6 Conclusion 

The δ13C and δ15N of forage samples, and bulk bone collagen and sequentially sampled 

crown dentin collagen, sheds light on the dietary ecology of modern caribou and muskoxen 

on Banks Island. The results demonstrate that the isotopic compositions of hard tissues can 

be mined for information about multiple ecological and environmental phenomena. 

Bayesian dietary mixing models suggest that yellow lichens (Cetraria tilesii) and sedges 

(Cyperaceae spp.), make significant contributions to δ13Cbc and δ15Nbc in both caribou and 

muskoxen. Forbs are also a significant forage item for caribou. Conversely, dwarf willow 

and other shrub species do not appear to make significant contributions to bone collagen 

in either caribou or muskoxen. The high proportions of yellow lichen, and the very low 
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proportions of dwarf willow inferred from the mixing models, run contrary to existing 

interpretations of caribou and muskox diet on Banks Island, and we acknowledge that our 

dietary mixing models may be flawed in some fundamental way. Still, we have attempted 

to account for obvious sources of error, and the putative contribution of yellow lichen to 

the bone collagen isotopic compositions of both species persists even when generalized 

TDF estimates are used. We suggest that the high digestibility of yellow lichen results in 

its underrepresentation in the rumen and in feces, while the higher lignin content of shrubs 

results in lower digestibility and higher representation in both the rumen and fecal matter. 

Additionally, although yellow lichen is not viewed as a significant forage item for caribou, 

and especially muskoxen, on Banks Island, its high carbohydrate content may play a vital 

role in providing energy and maintaining the urea cycling functions of rumen microflora 

during the long winters, when higher quality forage is not available. Previous research also 

demonstrates that the uptake of glycine by Cetraria is high, and that glycine is readily 

absorbed without deamination by rumen microflora. Glycine also makes up a significant 

proportion of the amino acids in bone collagen. Because of this, consumption of yellow 

lichen may significantly influence the δ13C of bulk bone collagen, while δ15Nbc is balanced 

by nitrogen from other forage sources. 

Sequentially sampled crown dentin collagen δ13C and δ15N (δ13Cdc and δ15Ndc) provides 

some insight into seasonal dietary variation in muskox. Conversely, δ13Cdc and δ15Ndc is 

less informative of seasonal dietary variability due to the small size of caribou teeth. Future 

research, however, may derive higher-resolution dentin collagen isotopic data from caribou 

teeth by employing other tooth microsampling techniques described in the literature 

(Wurster et al. 1999; Balasse and Tresset 2002; Zazzo et al. 2005, 2006). Muskox δ13Cdc 

reflects maternal seasonal dietary variations between forage with lower δ13C during 

summer and forage with higher δ13C during winter. Based on the Bayesian mixing model 

results, we suggest that lower δ13Cdc during the summer corresponds to higher consumption 

of forbs, while higher δ13Cdc during the winter corresponds to higher consumption of 

lichens and sedges. Conversely, δ15Ndc is nearly uniform within and between teeth, 

indicating that both muskoxen continued nursing well into the second year of life. 
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The influence of prolonged nursing in muskox dentin collagen isotopic compositions 

observed here also emphasizes the point that isotopic data from dentin, even in late-

growing permanent dentition, are not necessarily accurate indicators of adult diet 

(Bocherens et al. 1994). Based on research linking prolonged lactation to poorer forage 

conditions and decreased fecundity in wild muskoxen, the prolonged nursing signal in the 

teeth of the muskoxen may explain recently reported declines in the muskox population on 

Banks Island. Although sedge phytomass on Banks Island is high enough to support both 

caribou and muskoxen, heavy grazing by both species may rapidly deplete yellow lichen 

phytomass. Lichens also grow more slowly than vascular plants, and are expected to be 

outcompeted by shrubs as the Arctic warms. Overgrazing of yellow lichens may have 

significant impacts on the ability of both species to meet their maintenance energy and 

nutritional demands during winter. If our results and their implications are accurate, the 

potential reduction in population size of both caribou and muskoxen could affect both the 

health and economy of people in Sachs Harbour.  
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Chapter 3  

3 Isotopic Evidence from Bone and Dentin Collagen for 
Variation in the Ecological Niches of Caribou (Rangifer 
tarandus spp.) and Muskoxen (Ovibos moschatus) on 
Banks Island, NWT, Canada Over the Last 4000 Years 
and Its Implications for Ancient Hunters 

Researchers have suggested that large gaps in the archaeological record of Banks Island, 

located in the Northwest Territories of Canada, reflect caribou or muskox population 

crashes resulting from ecological variation and/or human overexploitation. Here, we use 

shaped-based metrics derived from stable carbon (δ13C) and nitrogen (δ15N) isotope 

compositions of archaeological bulk bone collagen to investigate caribou and muskox 

ecology on Banks Island over the last 4000 years. Results indicate that, following the 

competitive exclusion principle, the isotopic niches of caribou and muskoxen are typically 

distinct, but that during some cultural periods isotopic niche areas and isotopic niche 

overlap increase significantly. When the differential carbon and nitrogen trophic 

discrimination factors (TDFs) of caribou and muskoxen are taken into account, the isotopic 

data indicate that caribou and muskox ecological niches are highly dynamic. Transposed 

isotopic niches prior to the Classic Thule period (~ 650-500 cal. BP) follow the 

expectations of the Ecological Displacement model, but appear to come under the control 

of competitive specialization afterwards. This change in niche dynamics probably relates 

to the ability of muskoxen to exploit increased graminoid availability. We also analyze the 

δ13C and δ15N of sequentially sampled crown dentin collagen samples from archaeological 

caribou and muskox teeth to investigate seasonal partitioning of forage across time. Dentin 

collagen isotopic data support the hypothesis that competitive specialization after ~ 500 

cal. BP negatively affected caribou productivity. We then discuss the implications of these 

findings on the potential relationships between human hunters and caribou and muskoxen 

on Banks Island over the last 4000 years. 

 

 



 

211 

3.1 Introduction 

3.1.1 Rationale 

Banks Island is the westernmost island in the Canadian Arctic Archipelago (Figure 3.1), 

and is archaeologically significant in that it is the probable entry point into the Eastern 

Arctic (i.e. the North American Arctic and Greenland) for both people of the Arctic Small 

Tool Tradition (ASTt) some 4000 years ago (Arundale 1981; McGhee 1982; Helmer 1994), 

and again for Thule Inuit groups approximately 1000 years ago (Friesen and Arnold 2008; 

Raghavan et al. 2014). The island is inhabited by major portions of both the global muskox 

(Ovibos moschatus) and Peary caribou (Rangifer tarandus Pearyi) populations 

(COSEWIC 2004), and as discussed below, its archaeological record indicates a long 

history of interactions between humans and these two large-bodied herbivores. The 

geographical proximity to the parent cultures of both the ASTt and Thule Inuit groups in 

Alaska and the Bering Strait region (Collins 1953, Giddings 1964, Arnold 1986; Bielawski 

1988), and the general – but at times variable – abundance of caribou and muskoxen placed 

Banks Island on a unique archaeological trajectory relative to areas farther east (Figure 

3.2a). 

In this chapter, we: (1) use bulk bone collagen carbon and nitrogen isotope compositions 

to investigate changes in the ecological niches and niche relationships of caribou and 

muskoxen over the last 4000 years on Banks Island; and (2) use sequential dentin collagen 

carbon and nitrogen isotope compositions to investigate both seasonal dietary variation 

over time and potential relationships between the length of weaning and reduced fecundity 

in both species. 
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Figure 3.1. Locations of archaeological sites from which we collected caribou and 

muskox bones and teeth, and the location of Banks Island within North America (inset). 

(1) Nelson River (OhRh-1); (2) OjRk-1; (3) OjRl-2; (4) Lagoon (OjRl-3); (5) Agvik 

(OkRn-1); (6) Cape Kellett (OlRr-1); (7) Sunnguqpaaluk (PdRi-1); (8) Nasogaluak 

(PgPw-3)*; (9) Twin Lakes (PjPx-10); (10) Shoran Lake (PjRa-1); (11) Umingmak 

(PjRa-2); (12) PkPx-18; (13) Head Hill (PlPx-1); (14) Arviq (QaPv-5); (15) Back Point 

(QbPu-3). 
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Figure 3.2. (a) Timeline of archaeological human occupations in the Eastern Arctic overall, and on Banks Island. (b) Generalized 

illustration of variation in mean summer temperature on Banks Island over the last 4000 years cal. BP, relative to mean summer 

temperature at 0 cal. BP (1950 AD) (dashed line). The figure is produced using data from Bradley (2000), Peros and Gajewski (2009), 

and Gajewski (2015b). 
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3.1.2 The Archaeology and Zooarchaeology of Banks Island 

The archaeological record of Banks Island (reviewed in Chapter 1; see also Toews 1998; 

Hodgetts 2013; Hodgetts et al. 2015) reflects changing patterns of human interaction with 

animals over time. In the Canadian Arctic, the early phase of the ASTt occupation is 

classically referred to as the “Pre-Dorset” period to distinguish it from both the later, 

widespread “Dorset” period, and from other regional variants of the early ASTt period like 

the Saqqaq and Independence I cultures of Greenland (Knuth 1965; McGhee 1976; 

Maxwell 1985; Møbjerg 1999). During the Pre-Dorset period, most archaeological sites in 

the Canadian Arctic reveal a subsistence focus on terrestrial faunal resources (Knuth 1967; 

Maxwell 1984, 1985). Groups immediately east and farther south specialized in caribou 

hunting during this time (Harp 1958; Wilmeth 1979; Arnold 1983), whereas Pre-Dorset 

sites concentrated in the interior of Banks Island indicate heavy reliance on muskoxen 

(Taylor 1967; Müller-Beck 1977; Münzel 1987). After ~ 3400 cal. BP, however (Figure 

3.2a, Figure 3.3, Table 3.1), Pre-Dorset groups apparently abandoned Banks Island. 

Current archaeological evidence suggests there was never a major Dorset cultural presence 

on Banks Island. Caribou and muskox bones from the Lagoon site (OjRl-3), located on the 

southern coast, however, produce dates between ~ 2700 and 2100 cal. BP (Figure 3.3, 

Table 3.1), overlapping in time with the Early Dorset period farther east. Artifacts from the 

Lagoon site also exhibit a unique blend of influences from both ASTt groups farther east 

and people of the Norton Tradition (~ 3000-1150 cal. BP) in Alaska, who are generally 

thought to have had little or no contact with the Eastern Arctic (Giddings 1964; Arnold 

1980; Maxwell 1985). In contrast to Pre-Dorset sites, the Lagoon site faunal assemblage is 

smaller and is characterized by juvenile ringed seal (Phoca hispida), goose (Chen spp. and 

Branta spp.), ptarmigan (Lagopus spp.), and muskoxen, with very few caribou skeletal 

elements (Arnold 1980). Recent radiocarbon dates from the Arviq (QaPv-5) site, located 

on the northeast coast of Banks Island, and PkPx-18, a small camp site in the northern 

interior of the island (Figure 3.1), also coincide with those from the Lagoon site (Figure 

3.3, Table 3.1; Hodgetts and Eastaugh 2010; Hodgetts et al. 2013). 
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Radiocarbon dates from the Nelson River site (Figure 3.1) indicate that the Thule Inuit re-

occupied Banks Island following the Lagoon phase around 950 cal. BP (Figure 3.3) 

(Arnold 1986; Friesen and Arnold 2008). Radiocarbon dates from another site on the south 

coast of Banks Island, Cape Kellett (OlRr-1) indicate that it was occupied around the same 

time (Hodgetts, unpublished data). Nelson River is the earliest-known Thule Inuit site in 

the Eastern Arctic (Friesen and Arnold 2008), and reveals close material ties with the 

concurrent Birnirk culture of Alaska (McGhee 1984), such as harpoon head types and the 

use of driftwood for the structure of winter houses (Arnold 1986). Faunal remains from 

excavations at Nelson River indicate that ringed seals and bowhead whales (Balaena 

mysticetus) were probably the most important food resources, followed by ptarmigan and 

arctic hare (Lepus arcticus). As at the Lagoon site, faunal skeletal evidence from Early 

Thule sites indicates limited caribou hunting. 

Radiocarbon dates (Figure 3.3, Table 3.1) also suggest that the Thule Inuit have probably 

inhabited Banks Island continuously since their arrival at Nelson River. Although most of 

the known Middle or “Classic” (Friesen and Arnold 2008) Thule sites on Banks Island are 

located along the southern coast, radiocarbon dates from a small campsite at the mouth of 

Mercy Bay (QbPu-3, Figure 3.1), and qarmats (i.e. a skin-roofed sod structures) at PjRa-2, 

and PkPx-18 demonstrate that the Thule were also active in the northern part of the island, 

often reusing Pre-Dorset camp and hunting sites (Hickey 1982; Hodgetts et al. 2009; 

Hodgetts and Eastaugh 2010; Hodgetts 2013; Hodgetts and Munizzi 2015). Throughout 

the Early and Classic Thule periods on Banks Island, faunal usage continued to revolve 

around marine and coastal resources, with few caribou, then muskox, remains appearing at 

archaeological sites. 

Around 450 cal. BP, however, Inuit campsites, meat processing stations, and caches also 

begin to appear further inland in greater frequencies, and these sites contain greater 

quantities of caribou and muskox remains. Although this period is sometimes referred to 

as the Copper Inuit (Jenness 1917, 1923; Hickey 1982; Will 1985) or Inuinnait (Collignon 

and Weber Müller-Wille 2006) period, we refer to it simply as the Inuit period. During this 

time, family-based groups exploited both marine and terrestrial resources in a yearly round 

(Hickey 1982; Hodgetts 2013). Throughout the summer, muskoxen, caribou, and other 
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inland fauna were hunted in the northern interior of the island, often at existing Pre-Dorset 

sites (Hickey 1982; Hodgetts et al. 2009), while during the winter seals and polar bears 

were hunted on the sea ice. This seasonal pattern continued into the 19th century, when oral 

histories (Nagy 1999) record that significant numbers of the caribou and muskoxen 

perished after freezing spring rains. After this, economic attention turned to fox trapping 

and fur trading (Nagy 1999; Kelvin 2016).
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Figure 3.3. Calibrated radiocarbon ranges for bone samples listed in Table 3.1, obtained 

using the IntCal13 calibration curve (Reimer et al. 2013) in the CALIB software program 

(version 7.0.4) (Stuiver et al. 2017). 
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Table 3.1. Radiocarbon dates from archaeological sites on Banks Island. We used the IntCal13 calibration curve (Reimer et al. 2013) 

in the CALIB software program (version 7.0.4) (Stuiver et al. 2017) to perform the calibrations. 

Sample 
ID 

Site Name Borden Taxon Element Lab ID 

14C BP Calibrated 14C BP (2σ error) 

(1σ error) Range 1 Range 2 Range 3 

Pre-Dorset 

BIBS-444 Shoran Lake PjRa-1 Muskox Femur D-AMS 012664 3711 ± 29 4102 – 3976 4148 – 4109  

BIBS-460 Shoran Lake PjRa-1 Muskox Radioulna D-AMS 012667 3613 ± 28 3984 – 3842   

BIBS-432 Twin Lakes PjPx-10 Muskox Long bone D-AMS 012663 3605 ± 29 3979 – 3840   

BIBS-431 Twin Lakes PjPx-10 Muskox Humerus D-AMS 012662 3556 ± 29 3797 – 3724 3926 – 3817 3960 – 3950 

BIBS-150 Umingmak PjRa-2 Muskox Femur D-AMS 012646 3259 ± 28 3428 – 3404 3564 – 3443  

BIBS-134 Twin Lakes PjPx-10 Muskox Femur D-AMS 012644 3224 ± 29 3495 – 3377 3508 – 3506 3554 – 3532 

BIBS-151 Umingmak PjRa-2 Caribou Metatarsus D-AMS 012647 3211 ± 28 3479 – 3373   

Lagoon 

BIBS-141 Lagoon OjRl-3 Muskox Cranium D-AMS 012645 2628 ± 25 2777 – 2738   

BIBS-414 Lagoon OjRl-3 Muskox Cranium D-AMS 012658 2530 ± 28 2598 – 2495 2639 – 2610 2744 – 2682 

 Lagoon OjRl-3 Muskox Scapula RL-767† 2390 ± 110 2260 – 2158 2743 – 2298  

 Lagoon OjRl-3 Muskox Scapula RL-766† 2290 ± 120 2024 – 2007 2622 – 2038 2707 – 2627 

 Lagoon OjRl-3 Muskox Scapula RL-765† 2320 ± 120 2091 – 2061 2724 – 2098  

BIBS-246  PkPx-18 Caribou Radioulna D-AMS 012652 2321 ± 29 2192 – 2187 2231 – 2203 2367 – 2306 

BIBS-428  PkPx-18 Muskox Horn core D-AMS 012661 2186 ± 33 2313 – 2118   
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Early Thule 

BIBS-108  PkPx-18 Muskox Innominate D-AMS 012643 927 ± 28 921 – 786   

BIBS-106 Umingmak PjRa-2 Muskox Mandible D-AMS 012642 864 ± 28 800 – 699 826 – 813 901 – 865 

BIBS-372 Cape Kellett OlRr-1 Caribou Mandible D-AMS 012657 729 ± 30 711 – 652 725 – 714  

Classic Thule 

BIBS-493 Agvik OkRn-1 Caribou Mandible D-AMS 012669 718 ± 28 582 – 569 696 – 650  

BIBS-495 Agvik OkRn-1 Caribou Metatarsus D-AMS 012671 651 ± 27 604 – 557 669 – 627  

BIBS-492 Agvik OkRn-1 Caribou Humerus D-AMS 012668 635 ± 23 607 – 555 662 – 624  

BIBS-329 Cape Kellett OlRr-1 Caribou Radioulna D-AMS 012655 586 ± 25 568 – 538 648 – 584  

BIBS-494 Agvik OkRn-1 Caribou Mandible D-AMS 012670 499 ± 25 543 – 506   

Inuit 

BIBS-182  OjRk-1 Caribou Tibia D-AMS 012649 343 ± 29 481 – 313   

BIBS-420 Sunnguqpaaluk PdRi-1 Caribou Radioulna D-AMS 012660 276 ± 27 164 – 156 332 – 285 433 – 355 

BIBS-416  OjRl-2 Muskox Cranium D-AMS 012659 257 ± 25 170 – 153 321 – 280 427 – 389 

BIBS-165 Head Hill PlPx-1 Muskox Mandible D-AMS 012648 214 ± 26 191 – 146 213 – 194 304 – 269 

BIBS-456 Head Hill PlPx-1 Muskox Mandible D-AMS 012666 210 ± 23 190 – 147 213 – 196 302 – 270 

BIBS-362 Head Hill PlPx-1 Muskox Mandible D-AMS 012656 207 ± 21 189 – 147 212 – 196 300 – 270 

BIBS-449 Head Hill PlPx-1 Muskox Mandible D-AMS 012665 173 ± 25 99 – 83 224 – 136 289 – 255 

BIBS-255 Twin Lakes PjPx-10 Caribou Tibia D-AMS 012653 167 ± 32 117 – 69 230 – 129 290 – 247 

BIBS-291 Head Hill PlPx-1 Muskox Mandible D-AMS 012654 152 ± 25 118 – 66 231 – 166 283 – 245 

BIBS-214 Sunnguqpaaluk PdRi-1 Caribou Maxilla D-AMS 012651 147 ± 27 122 – 62 233 – 168 281 – 242 
          

† From Arnold (1980); not shown in Figure 3.3.     



 

220 

3.1.3 Archaeological Settlement-Subsistence Patterns on Banks 
Island 

Researchers have suggested that the long occupational hiatuses on Banks Island following 

the Pre-Dorset period and Lagoon period, and the limited representation of caribou or 

muskoxen at archaeological sites between ~ 3400 and 400 cal. BP are the results of periods 

of decreased availability or caribou or muskoxen over the last 4000 years. These putative 

population crashes are attributed to overhunting by humans, climatic variation, forage 

competition, or a combination of these factors (Stefansson 1921; Barr 1991; Reynolds 

1998; Klein 1999; Dyke and Savelle 2009; Savelle and Dyke 2002, 2009; Tyler 2010; Dyke 

et al. 2011). These ideas all represent hypotheses that are potentially testable using 

zooarchaeological material. Several researchers (Grayson 1981; Ervynck 1999; Lyman 

2008; Humphries and Winemiller 2009), however, have raised concerns about the use of 

zooarchaeological data for ecological reconstructions because species representations at 

archaeological sites reflect selection by human hunters, not natural abundances. In this 

regard, the application of stable isotope analysis to zooarchaeological remains is 

advantageous because the isotopic compositions of an animal’s tissues record information 

about its relationship to the environment and the environment itself, and this information 

is independent of the structure of the zooarchaeological assemblage. This means that we 

can compare the isotopic compositions of bone fragments from the earliest, most ephemeral 

sites on Banks Island with faunal remains from later, more complex sites, and from modern 

bone samples to reconstruct caribou and muskox ecology on the island. 

3.1.4 Isotopic and Ecological Niche 

Stable isotope analysis is a methodology frequently used to reconstruct trophic 

relationships in ecological or paleoecological communities. In this application, the most 

commonly-measured stable isotope ratios are 13C/12C and 15N/14N, (notated as δ13C and 

δ15N, respectively), both because carbon and nitrogen are abundant in organic tissues, and 

because both stable isotope systems reflect the routing of energy in foodwebs. For instance, 

the δ13C and δ15N of terrestrial herbivore tissues reflects the δ13C and δ15N of assimilated 
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forage12 macromolecules. The δ13C and δ15N of those macromolecules is ultimately 

determined by the photosynthetic pathway and nitrogen sources, respectively, utilized by 

the plant or primary producer, as well as equilibrium and kinetic reactions that occur within 

the primary producer following fixation. Isotopic variation in forage is then passed through 

successive trophic levels in the food chain. 

Carbon and nitrogen isotope compositions are typically presented in a biplot. Though this 

biplot simply describes the bivariate coordinates of carbon and nitrogen isotope 

compositions, it has come to represent an ecological space – what Newsome et al. (2007) 

call “δ-space” – where δ13C and δ15N correspond to bionomic (resource-related) and 

scenopoetic (environmental) variables (Hutchinson 1978; Soberón 2007). As Newsome et 

al. (2007) also point out, the δ-space model parallels Hutchinson’s (1957:416) concept of 

fundamental ecological niche, which he defines as “an n-dimensional hypervolume…every 

point in which corresponds to a state of the environment which would permit the 

species…to exist indefinitely.” In Hutchinson’s conception, the fundamental ecological 

niche exists only in abstract space and is never completely quantifiable. Because isotopic 

data encode information about multiple bionomic and scenopoetic axes that are not 

otherwise easily measured, however, the “isotopic niche” of an individual, population, or 

species in δ-space is a useful approximation of their fundamental ecological niche. 

The Hutchinsonian niche model also follows Gause’s (1936) law of competitive exclusion: 

a species will maximize its ecological niche whenever possible, but no two species can 

occupy the same ecological niche without either the expulsion of one species from the 

niche, or a decrease in fitness. Subsequently, sympatric species like caribou and muskoxen 

should exhibit larger ecological, and by extension, isotopic, niches when inter-specific 

competition is low (Figure 3.4a), and smaller ecological and isotopic niches when inter-

specific competition is high (Figure 3.4b). As Jackson et al. (2012) point out, however, 

recent work (Bolnick 2001; Bolnick et al. 2003; Svanbäck and Bolnick 2007) drawing on 

                                                 

12
As in Chapter 2, we use the term “forage” to refer to all photosynthetic vegetation potentially consumed 

by caribou and muskoxen on Banks Island, including vascular plants, mosses (non-vascular plants), and 

lichens (organisms composed of symbiotic fungi and algae or cyanobacteria). 
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the Ecological Character Displacement model (Grant 1972; Dayan and Simberloff 2005) 

suggests that when intra- or inter-specific niche competition is high, a species’ total niche 

area will expand, as individuals are forced to seek alternatives to their preferred forage 

types. Consequently, smaller isotopic niches correspond to reduced competition (Figure 

3.4c), while larger isotopic niches correspond to competitive diversification (Figure 3.4d). 

By attempting to establish which niche model better accounts from observed trends in 

caribou and muskox bone collagen carbon and nitrogen isotope compositions across 

cultural periods on Banks Island, we can make inferences about potential niche variation 

and forage competition that may have reduced their availability to ancient hunters. 
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Figure 3.4. Simplified illustration of isotopic niche relationships between two sympatric populations, as hypothesized by the 

“classical” Hutchinsonian niche model, and by the ecological displacement model. The x and y axes represent any two stable isotope 

systems (e.g. carbon, nitrogen, sulphur, hydrogen). 
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3.1.5 Bone Collagen δ13C and δ15N 

Bone is a common analyte in stable isotope paleoecology because bones are commonly the 

only faunal tissues remaining at paleontological or archaeological sites. The collagen 

component of bone has properties ideal for this application. Collagen is abundant in fresh 

or well-preserved bone, accounting for ~ 25% of bone by weight (Schoeninger et al. 1989; 

Ambrose 1990; Ambrose and Norr 1993; van Klinken 1999; Jørkov et al. 2007), and is 

simple and relatively inexpensive to extract and analyze. 

The δ13C and δ15N of bone collagen in carnivores and omnivores are typically dominated 

by those of dietary protein sources because dietary amino acids can be routed directly to 

proteinaceous body tissues, or used to synthesize nonessential amino acids (Hare et al. 

1991; Tieszen and Fagre 1993). Vegetation, however, is generally protein-poor, being 

composed almost entirely of carbohydrates. Many herbivores must therefore synthesize 

amino acids necessary for tissue development de novo from carbohydrates (Krueger and 

Sullivan 1984; Ambrose and Norr 1993; Dewhurst et al. 2000; Atasoglu et al. 2004). The 

stable isotopic compositions of herbivore bone collagen should therefore exhibit less of a 

bias towards dietary sources with high crude protein contents. 

Because bone remodels slowly (Tieszen et al. 1983; Ambrose and Norr 1993), bulk bone 

collagen δ13C and δ15N (hereafter, δ13Cbc and δ15Nbc, respectively) should provide the 

signature of the averaged δ13C and δ15N of dietary sources assimilated during 

approximately the last decade of life. Consequently, caribou and muskox δ13Cbc and δ15Nbc, 

compared across cultural periods on Bank Island, can reveal: (1) whether caribou and 

muskox dietary compositions varied over time; and (2) whether there were periods of 

dietary convergence, and potential dietary competition, that may have resulted in 

population declines and decreased availability to hunters. 

3.1.6 Dentin Collagen δ13C and δ15N 

Dentin development, and the information recorded by dentin collagen δ13C and δ15N 

(hereafter, δ13Cdc and δ15Ndc, respectively), is considerably different than in bone. In most 

mammals, tooth formation begins at the apex of the tooth crown and proceeds towards the 
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roots (Figure 3.5a), with dentin and enamel both developing outwards and downwards from 

the dentinoenamel junction (DEJ) (Figure 3.5b, c). The formation of dentin precedes that 

of enamel and is completed in two main phases: the secretion of an organic collagen-rich 

matrix by odontoblasts, and the “seeding” (Hillson 2000:185) of this matrix with inorganic 

crystallites, which immediately develop outwards in all directions to mineralize the organic 

matrix (Linde and Goldberg 1993). Dentin in the tooth crown is formed in sequential, cone-

like layers (Figure 3.5c) (Carlson 1990; Hillson 2000; Zazzo et al. 2006) and is not resorbed 

or remodeled after apposition (Gage et al. 1989; Lowenstam and Weiner 1989; Balasse 

2003). As a result, the δ13C and δ15N of dentin collagen from the tooth crown may 

permanently record dietary variation during the months or years in which the tooth crown 

develops. As in bone collagen, there are trophic enrichments in 13C and 15N between dietary 

items and dentin collagen, and these trophic enrichments are presumably the same in both 

structures (LeGeros 1991; Koch 2007). Consequently, the temporal resolution of dentin 

collagen δ13C and δ15N is more fine-grained than – but still comparable to – bulk bone 

collagen δ13C and δ15N. Since the diets of caribou and muskoxen should vary considerably 

between seasons, the δ13C and δ15N of sequentially-sampled crown dentin collagen samples 

are potentially useful for determining whether overlap in bulk bone collagen isotopic 

compositions during certain cultural periods corresponds to overlap in summer diets, 

winter diets, or both, or if there are seasonal trade-offs in forage resources between caribou 

and muskoxen.
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Figure 3.5. Diagram of a typical hypsodont tooth crown, reproduced from Chapter 2. (a) buccolingual cross-section showing apical 

section obliterated through occlusal wear; (b) image of the dentinoenamel junction (DEJ) in a muskox M2, taken at 5x magnification 

using differential interference contrast (DIC) microscopy. “E” is enamel and “D” is dentin; small, near-horizontal lines (white bracket) 

are individual dentin tubules; (c) idealized illustration of diagram b, depicting sequentially-developed dentin cones (gray lines). Red 

arrows indicate the direction of successive dentin apposition away from the DEJ. 
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3.1.7 Tooth Development in Caribou and Muskoxen 

There are no published studies of the tooth development sequence in caribou or muskoxen. 

Several researchers (Tener 1965; Miller 1974; Henrichsen and Grue 1980), however, have 

documented the tooth eruption sequences of both species (Figures 3.6 and 3.7) and since 

formation necessarily precedes eruption, it is possible to infer the approximate period of 

formation in each tooth. In both caribou and muskoxen, first molar (M1) eruption begins 

shortly after birth and continues over the first year of life. In caribou, second molar (M2) 

eruption begins late in the first year of life and continues into the second fall or winter of 

life, while in muskoxen, M2 eruption begins around the second summer of life and 

continues into the third winter of life. In caribou, the third molar (M3) eruption begins 

around the second summer of life and continues into the third winter of life, while the adult 

fourth premolar (P4) erupts between the third summer and winter of life. In muskoxen, the 

M3 erupts between the third summer and fifth winter of life, and the P4 erupts between the 

fourth and fifth summers of life. Anatomical (Knott et al. 2004, 2005) and observational 

studies (Tener 1965; Kelsall 1968; Skoog 1968) suggest that caribou and muskoxen are 

capable of transitioning from milk to forage within the first several weeks of life. 

Observational studies, however, also suggest that caribou and muskox calves may both 

prolong suckling when adequate forage is not available during the first fall and winter 

(Banfield 1954; Kelsall 1968; Parker et al. 1990; Knott et al. 2005). 

Published research on the link between nursing and maternal health (Parker et al. 1990; 

White et al. 1997) suggests that, unlike muskoxen, caribou experience lactational anestrus. 

Caribou cows therefore have a strong physiological motivation to completely wean their 

calves as soon as possible, while, if forage conditions are appropriate, muskox cows may 

continue nursing a yearling while pregnant. Because milk is synthesized from fat and 

protein stores, a nursing mammal sits one trophic level above the animal nursing it, and its 

tissues will experience a trophic enrichment in 15N of +2 to 3‰ (Fogel et al. 1989; Jenkins 

et al. 2001; Balasse and Tresset 2002). In Chapter 2, we demonstrate that the enrichment 

in 15N, and the subsequent shift towards lower δ15N at the completion of weaning, is 

recorded in the δ15Ndc of adult teeth from modern caribou and muskoxen. If the duration of 

the weaning process in caribou and muskoxen is largely dependent on forage conditions, 
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as we argue in Chapter 2, the δ15Ndc of archaeological caribou and muskox teeth may also 

provide further information about links between climatically-induced changes in forage 

and range conditions, forage competition, and demography on Banks Island over the last 

4000 years. 
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Figure 3.6. Eruption sequence of permanent dentition in barren ground caribou, reproduced from Chapter 2. “I” = incisor, “C” = 

canine, “PM” = premolar, and “M” = molar. Data are from Banfield (1954) and Miller (1974).
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Figure 3.7. Eruption sequence of permanent dentition in muskoxen, reproduced from Chapter 2. “I” = incisor, “C” = canine, “PM” = 

premolar, and “M” = molar. Data are from Tener (1965) and Henrichsen and Grue (1980). 
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3.2 Materials 

3.2.1 Bone and Dentin Collagen 

In 2014, we visited fourteen archaeological sites on Banks Island (Figure 3.1) by helicopter 

and surface-collected caribou and muskox skeletal elements. These archaeological sites 

span all documented human occupational periods on Banks Island. We prioritized the 

collection of mandibles and maxillae because they allow rapid taxonomic identifications 

in the field, and provide both bone and teeth for sampling. In many cases, particularly at 

small Pre-Dorset and Lagoon period camp sites, surficial faunal remains were limited to 

bone fragments. Forthcoming DNA analysis (Rodrigues, Yang, and Hodgetts, unpublished 

data) resolved the taxonomic assignments of many of the fragmentary bone samples, but 

where DNA amplification failed and no definitive taxonomic assignment could be made 

with reference specimens, samples were omitted from further analysis. 

We also include isotopic and elemental data for modern and archaeological bone collagen 

samples prepared and analyzed as part of a pilot project on caribou and muskoxen from 

Banks Island (Masoner, Hodgetts, White, and Longstaffe, unpublished data). Bone 

collagen from these pilot project samples was extracted and analyzed in the same manner 

as described below. The Pre-Dorset dataset includes published δ13Cbc and δ15Nbc data from 

adult (i.e. ≥ 2.5 years) caribou and muskoxen excavated at the Umingmak site (PjRa-2) 

(Bocherens et al. 2016). Finally, we compare archaeological bone and dentin collagen 

isotopic compositions with those of modern caribou and muskox from Banks Island, as 

described in Chapter 2. Bone collagen isotopic data are listed by cultural period in Table 

3.2. Data for sequential microbulk dentin collagen samples from caribou and muskox tooth 

crowns are presented in Tables 3.3 and 3.4, respectively.
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Table 3.2. Isotopic, elemental, and percent collagen content data for caribou and muskox bulk bone collagen samples from Banks 

Island. All modern bone collagen carbon isotope compositions are corrected by +1.7‰ for comparability with archaeological bone 

collagen data. 

Sample ID Site Name Borden Taxon Element 
δ13C δ15N 

C% N% 
Atomic 

C:N 
Ratio 

Wt% 
Coll (‰, VPDB) (‰, AIR) 

Pre-Dorset 

BIBS14-430 Twin Lakes PjPx-10 Caribou Metapodial –19.2 +2.5 46.2 16.7 3.2 16.7 

BIBS14-435 Twin Lakes PjPx-10 Caribou Metapodial –19.8 +2.1 44.7 16.3 2.9 18.2 

BIBS14-463 Shoran Lake PjRa-1 Caribou Tibia –18.8 +3.3 45.4 16.5 3.2 17.2 

PjRa1-1† Shoran Lake PjRa-1 Caribou Radioulna –19.3 +1.9 41.6 15.5 3.1  

PjRa1-4† Shoran Lake PjRa-1 Caribou Metatarsus –19.4 +2.5 44.0 16.4 3.1  

PjRa1-5† Shoran Lake PjRa-1 Caribou Metatarsus –19.3 +2.9 43.9 16.4 3.1  

BIBS14-151 Umingmak PjRa-2 Caribou Metatarsus –19.2 +2.0 44.7 16.1 3.2 19.6 

PjRa2-U83B† Umingmak PjRa-2 Caribou Radioulna –18.9 +2.2 44.8 16.7 3.1  

UMK-14* Umingmak PjRa-2 Caribou Metatarsus –19.2 +1.4 42.9 15.1 3.3  

UMK-15* Umingmak PjRa-2 Caribou Metatarsus –18.8 +2.9 41.7 14.9 3.3  

UMK-16* Umingmak PjRa-2 Caribou Metatarsus –18.8 +3.6 40.5 14.5 3.3  

UMK-17* Umingmak PjRa-2 Caribou Metatarsus –18.3 +1.8 40.5 14.6 3.2  

UMK-18* Umingmak PjRa-2 Caribou Metatarsus –19.3 +2.5 42.8 15.1 3.3  

BIBS14-134 Twin Lakes PjPx-10 Muskox Femur –20.7 +3.7 45.5 16.4 3.2 15.2 

BIBS14-431 Twin Lakes PjPx-10 Muskox Humerus –20.6 +3.2 46.5 16.9 3.2 12.3 

BIBS14-432 Twin Lakes PjPx-10 Muskox Long bone –20.8 +3.0 46.6 16.8 3.2 16.4 

BIBS14-407§ Shoran Lake PjRa-1 Muskox Mandible –20.3 +0.9 45.6 16.3 3.3 20.4 
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BIBS14-424 Shoran Lake PjRa-1 Muskox Metacarpus –21.1 +3.4 45.3 16.5 3.2 16.2 

BIBS14-444 Shoran Lake PjRa-1 Muskox Femur –20.9 +3.7 45.5 16.5 3.2 15.0 

PjRa1-2† Shoran Lake PjRa-1 Muskox Metatarsus –21.0 +2.3 41.8 15.7 3.1  

PjRa1-3† Shoran Lake PjRa-1 Muskox Metacarpus –20.9 +2.8 44.0 16.5 3.1  

PjRa1-6† Shoran Lake PjRa-1 Muskox Metatarsus –21.5 +2.9 43.9 16.4 3.1  

PjRa1-7† Shoran Lake PjRa-1 Muskox Metatarsus –21.5 +3.1 44.5 16.7 3.1  

PjRa1-8† Shoran Lake PjRa-1 Muskox Mandible –21.5 +3.0 44.5 16.7 3.1  

BIBS15-51 Umingmak PjRa-2 Muskox Metacarpus –21.1 +3.0 42.5 16.0 3.1  

BIBS14-409§ Umingmak PjRa-2 Muskox Mandible –20.9 +4.1 45.9 16.4 3.3 19.9 

BIBS14-413 Umingmak PjRa-2 Muskox Maxilla –20.9 +3.5 45.7 16.5 3.2 19.8 

BIBS15-52 Umingmak PjRa-2 Muskox Astragalus –21.2 +2.6 45.0 16.4 3.2 19.4 

BIBS15-54 Umingmak PjRa-2 Muskox Astragalus –21.2 +2.2 45.5 16.5 3.2 21.2 

PjRa2-1† Umingmak PjRa-2 Muskox Astragalus –21.0 +3.8 44.1 16.6 3.1  

PjRa2-2† Umingmak PjRa-2 Muskox Astragalus –20.8 +3.1 44.5 16.8 3.1  

PjRa2-3† Umingmak PjRa-2 Muskox Astragalus –21.0 +2.5 44.3 16.8 3.1  

PjRa2-4† Umingmak PjRa-2 Muskox Calcaneus –21.1 +3.4 44.0 16.6 3.1  

PjRa2-5† Umingmak PjRa-2 Muskox Calcaneus –21.2 +2.7 43.7 16.2 3.1  

PjRa2-6† Umingmak PjRa-2 Muskox Phalanx –21.1 +3.0 40.2 15.2 3.1  

PjRa2-7† Umingmak PjRa-2 Muskox Phalanx –20.8 +2.4 43.4 16.3 3.1  

PjRa2-8† Umingmak PjRa-2 Muskox Phalanx –20.7 +3.0 42.1 15.8 3.1  

PjRa2-9† Umingmak PjRa-2 Muskox Metatarsus –21.1 +2.9 42.5 16.0 3.1  

PjRa2-u9d† Umingmak PjRa-2 Muskox Humerus –20.8 +3.4 42.9 16.1 3.1  

UMK-11* Umingmak PjRa-2 Muskox Mandible –20.9 +3.9 44.2 16.0 3.2  

UMK-12* Umingmak PjRa-2 Muskox Mandible –20.9 +3.2 43.3 15.3 3.3  
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UMK-13* Umingmak PjRa-2 Muskox Mandible –20.5 +3.8 44.6 15.9 3.3  

UMK-5* Umingmak PjRa-2 Muskox Mandible –21.1 +2.6 42.7 15.1 3.3  

UMK-6* Umingmak PjRa-2 Muskox Mandible –20.4 +2.2 42.4 15.1 3.3  

UMK-7* Umingmak PjRa-2 Muskox Mandible –20.8 +2.8 43.1 15.4 3.3  

Lagoon 

BIBS14-199 Lagoon OjRl-3 Caribou Scapula –21.3 +5.7 44.3 15.9 3.2 20.4 

BIBS14-218 Lagoon OjRl-3 Caribou Tibia –19.3 +2.4 44.5 16.2 2.5 20.9 

BIBS14-234 Arviq QaPv-5 Caribou Cranium –19.4 +2.7 44.7 15.8 3.3 21.2 

BIBS14-109  PkPx-18 Caribou Scapula –20.2 +3.8 44.2 15.9 3.2 18.4 

BIBS14-246  PkPx-18 Caribou Radioulna –20.7 +3.9 45.9 16.7 3.2 17.2 

BIBS14-141 Lagoon OjRl-3 Muskox Occipital –21.1 +2.0 44.5 16.0 3.3 20.7 

BIBS14-162§ Arviq QaPv-5 Muskox Mandible –20.4 +3.2 43.4 15.6 3.3 22.9 

BIBS14-208 Arviq QaPv-5 Muskox Mandible –21.1 +4.0 45.3 16.4 3.2 22.1 

BIBS14-209§ Arviq QaPv-5 Muskox Mandible –20.8 +4.2 45.0 16.5 3.2 20.2 

BIBS14-231 Arviq QaPv-5 Muskox Mandible –21.5 +5.4 44.7 15.8 3.3 16.4 

BIBS14-323 Arviq QaPv-5 Muskox Maxilla –21.8 +3.8 45.3 16.3 3.2 19.7 

BIBS14-324 Lagoon OjRl-3 Muskox Scapula –21.0 +4.5 39.2 14.2 3.2 19.3 

BIBS14-340 Lagoon OjRl-3 Muskox Rib –20.7 +1.8 45.0 16.4 3.2 21.7 

BIBS14-341 Lagoon OjRl-3 Muskox Rib –21.1 +3.6 45.3 16.5 3.2 15.6 

BIBS14-414 Lagoon OjRl-3 Muskox Cranium –20.8 +2.5 43.3 15.8 2.4 20.7 

BIBS14-117  PkPx-18 Muskox Vertebra –20.9 +3.5 44.2 15.9 3.2 23.9 

BIBS14-428  PkPx-18 Muskox Horn core –20.9 +3.8 44.8 15.7 3.3 20.6 
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Early Thule 

BIBS15-58 Nelson River OhRh-1 Caribou Rib –21.0 +3.2 44.2 16.2 3.2 19.5 

BIBS15-61 Nelson River OhRh-1 Caribou Humerus –20.4 +5.5 45.1 16.6 3.2 18.0 

BIBS15-63 Nelson River OhRh-1 Caribou Mandible –20.8 +4.7 45.1 16.4 3.2 15.7 

BIBS15-65 Nelson River OhRh-1 Caribou Radioulna –18.8 +2.2 39.9 14.5 3.2  

BIBS16-22 Nelson River OhRh-1 Caribou Metacarpus –18.7 +3.7 45.4 16.7 3.2 21.0 

BIBS16-28 Nelson River OhRh-1 Caribou Vertebra –19.2 +2.9 45.0 16.4 3.2 20.2 

BIBS16-38 Nelson River OhRh-1 Caribou Metatarsus –18.5 +2.2 42.2 15.4 3.2 21.8 

BIBS16-39 Nelson River OhRh-1 Caribou Scapula –21.6 +4.2 44.8 16.2 3.2 25.7 

BIBS14-372 Cape Kellett OlRr-1 Caribou Mandible –19.5 +2.9 44.6 16.2 3.2 17.4 

BIBS15-62 Nelson River OhRh-1 Muskox Humerus –20.5 +4.3 45.5 16.8 3.2 16.4 

BIBS15-66 Nelson River OhRh-1 Muskox Maxilla –21.3 +2.0 45.6 16.7 3.2 15.0 

BIBS16-21 Nelson River OhRh-1 Muskox Femur –20.4 +4.8 44.7 16.4 3.2 18.3 

BIBS16-23 Nelson River OhRh-1 Muskox Femur –20.5 +6.7 45.3 16.4 3.2 21.0 

BIBS16-24 Nelson River OhRh-1 Muskox Mandible –20.0 +2.5 44.0 15.9 3.2 22.5 

BIBS16-25 Nelson River OhRh-1 Muskox Mandible –19.9 +3.0 43.7 15.8 3.2 20.5 

BIBS16-26 Nelson River OhRh-1 Muskox Femur –21.0 +4.7 45.8 16.7 3.2 17.9 

BIBS16-27 Nelson River OhRh-1 Muskox Femur –20.6 +4.0 45.9 16.8 3.2 18.5 

BIBS16-29 Nelson River OhRh-1 Muskox Femur –20.6 +2.5 45.2 16.4 3.2 11.4 

BIBS16-30 Nelson River OhRh-1 Muskox Mandible –20.5 +2.5 44.2 16.0 3.2 24.4 

BIBS16-31§ Nelson River OhRh-1 Muskox Mandible –19.8 +3.1 44.4 16.0 3.2 18.4 

BIBS16-32 Nelson River OhRh-1 Muskox Metacarpus –20.7 +4.4 43.9 16.1 3.2 22.4 

BIBS16-33 Nelson River OhRh-1 Muskox Metacarpus –20.6 +3.7 45.2 16.5 3.2 21.7 
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BIBS16-34 Nelson River OhRh-1 Muskox Metacarpus –20.8 +4.4 45.9 16.8 3.2 20.7 

BIBS16-35 Nelson River OhRh-1 Muskox Metacarpus –21.2 +3.7 44.4 16.2 3.2 21.0 

BIBS16-36 Nelson River OhRh-1 Muskox Metacarpus –21.1 +2.8 45.7 16.7 3.2 21.4 

BIBS16-37 Nelson River OhRh-1 Muskox Metacarpus –20.4 +3.8 45.6 16.7 3.2 22.0 

OhRh1-1† Nelson River OhRh-1 Muskox Calcaneus –20.9 +4.2 43.3 16.4 3.1  

BIBS14-106 Umingmak PjRa-2 Muskox Mandible –20.3 +5.0 44.3 16.0 3.2 19.1 

BIBS14-108  PkPx-18 Muskox Ischium –21.3 +3.6 44.1 15.9 3.2 20.6 

Classic Thule 

BIBS14-494§ Agvik OkRn-1 Caribou Mandible –19.3 +2.6 45.4 16.6 3.2 12.5 

BIBS14-496 Agvik OkRn-1 Caribou Mandible –19.7 +3.0 46.0 16.8 3.2 13.0 

BIBS14-502§ Agvik OkRn-1 Caribou Mandible –19.2 +2.9 46.2 16.8 3.2 13.9 

BIBS16-8 Agvik OkRn-1 Caribou Femur –19.8 +2.4 45.3 16.8 3.1 16.6 

OkRn1-137† Agvik OkRn-1 Caribou Metatarsus –20.2 +2.5 44.5 16.8 3.1  

OkRn1-164† Agvik OkRn-1 Caribou Humerus –19.4 +3.3 44.6 16.7 3.1  

OkRn1-167† Agvik OkRn-1 Caribou Maxilla –19.4 +2.8 41.2 15.7 3.1  

OkRn1-266† Agvik OkRn-1 Caribou Metatarsus –19.3 +3.5 43.5 16.2 3.1  

OkRn1-60† Agvik OkRn-1 Caribou Radioulna –19.4 +2.8 42.8 16.3 3.1  

OkRn1-88† Agvik OkRn-1 Caribou Metatarsus –19.6 +3.1 45.3 17.1 3.1  

OkRn1-89† Agvik OkRn-1 Caribou Metatarsus –19.2 +2.2 41.6 15.8 3.1  

BIBS14-261 Cape Kellett OlRr-1 Caribou Mandible –19.0 +4.4 45.5 16.4 3.2 16.8 

BIBS14-298§ Cape Kellett OlRr-1 Caribou Mandible –18.9 +2.7 45.3 16.1 3.3 15.3 

BIBS14-329 Cape Kellett OlRr-1 Caribou Radioulna –18.5 +2.7 45.3 16.6 3.2 18.1 

BIBS14-354 Cape Kellett OlRr-1 Caribou Scapula –20.7 +3.4 45.1 16.5 3.2 20.7 
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BIBS14-355 Cape Kellett OlRr-1 Caribou Scapula –19.4 +3.0 45.0 16.5 3.2 18.1 

BIBS14-260 Cape Kellett OlRr-1 Muskox Tibia –21.5 +5.4 45.1 16.5 3.2 20.3 

BIBS14-297 Cape Kellett OlRr-1 Muskox Rib –21.6 +3.5 43.9 16.0 3.2 20.2 

BIBS14-330 Cape Kellett OlRr-1 Muskox Sternum –21.4 +5.1 44.2 16.1 3.2 23.7 

BIBS14-353 Cape Kellett OlRr-1 Muskox Tibia –21.5 +4.9 43.9 16.0 3.2 18.8 

BIBS14-356 Cape Kellett OlRr-1 Muskox Radioulna –21.5 +5.2 45.5 16.5 3.2 20.0 

BIBS14-474§ Back Point QbPu-3 Muskox Mandible –21.0 +3.6 45.2 16.7 3.2 17.6 

BIBS14-485 Back Point QbPu-3 Muskox Mandible –21.3 +4.1 45.1 16.4 3.2 19.8 

Inuit 

BIBS14-182  OjRk-1 Caribou Tibia –19.8 +3.2 46.7 17.0 3.2 13.7 

BIBS14-125  OjRl-2 Caribou Vertebra –20.3 +3.3 45.0 16.2 3.2 16.3 

BIBS14-127  OjRl-2 Caribou Phalanx –19.9 +2.5 45.7 16.9 3.2 19.1 

BIBS14-132  OjRl-2 Caribou Maxilla –19.8 +2.0 44.5 16.0 3.2 22.8 

BIBS14-189  OjRl-2 Caribou Mandible –19.8 +3.1 45.0 16.3 3.2 18.6 

BIBS14-191  OjRl-2 Caribou Maxilla –20.0 +2.6 45.3 16.5 3.2 18.7 

BIBS14-214§ Sunnguqpaaluk PdRi-1 Caribou Maxilla –20.2 +2.6 45.7 16.7 3.2 17.7 

BIBS14-418 Sunnguqpaaluk PdRi-1 Caribou Scapula –19.7 +2.4 45.8 16.6 3.2 20.3 

BIBS15-21 Nasogaluak PgPw-3 Caribou Metacarpus –20.7 +2.8 45.5 16.6 3.2 16.3 

BIBS15-22 Nasogaluak PgPw-3 Caribou Metatarsus –19.2 +4.9 45.3 16.3 3.3 20.4 

PgPw3-B† Nasogaluak PgPw-3 Caribou Metatarsus –20.4 +3.1 42.9 16.0 3.1  

BIBS14-360§ Head Hill PlPx-1 Caribou Mandible –19.3 +4.5 45.1 16.3 3.2 16.0 

BIBS14-416  OjRl-2 Muskox Cranium –21.1 +4.3 44.7 16.4 3.2 20.5 

BIBS14-419 Sunnguqpaaluk PdRi-1 Muskox Atlas –21.6 +5.9 45.6 16.4 3.2 24.1 
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PgPw3-1† Nasogaluak PgPw-3 Muskox Mandible –21.4 +4.8 42.9 15.9 3.1  

PgPw3-1053† Nasogaluak PgPw-3 Muskox Mandible –21.4 +3.8 41.9 15.7 3.1  

PgPw3-1069† Nasogaluak PgPw-3 Muskox Mandible –21.3 +4.1 42.8 16.0 3.1  

PgPw3-1099† Nasogaluak PgPw-3 Muskox Maxilla –21.7 +4.4 43.4 16.4 3.1  

PgPw3-1618† Nasogaluak PgPw-3 Muskox Mandible –21.2 +4.6 43.4 16.5 3.1  

PgPw3-2† Nasogaluak PgPw-3 Muskox Mandible –21.5 +4.1 41.9 15.5 3.2  

PgPw3-3† Nasogaluak PgPw-3 Muskox Mandible –21.2 +4.4 42.6 15.9 3.1  

PgPw3-4† Nasogaluak PgPw-3 Muskox Mandible –21.4 +3.9 42.5 15.9 3.1  

PgPw3-5† Nasogaluak PgPw-3 Muskox Mandible –21.9 +4.4 42.0 15.7 3.1  

PgPw3-6† Nasogaluak PgPw-3 Muskox Mandible –21.5 +6.8 44.0 16.6 3.1  

PgPw3-6148† Nasogaluak PgPw-3 Muskox Mandible –21.1 +4.0 42.3 15.7 3.1  

PgPw3-6149† Nasogaluak PgPw-3 Muskox Mandible –21.4 +3.8 43.4 16.3 3.1  

PgPw3-7† Nasogaluak PgPw-3 Muskox Mandible –21.1 +4.7 42.6 15.8 3.2  

BIBS14-165 Head Hill PlPx-1 Muskox Mandible –22.5 +4.3 44.5 16.1 3.2 22.4 

BIBS14-287 Head Hill PlPx-1 Muskox Mandible –22.0 +6.1 44.9 16.3 3.2 21.8 

BIBS14-288 Head Hill PlPx-1 Muskox Mandible –21.8 +5.7 45.6 16.4 3.2 20.4 

BIBS14-289 Head Hill PlPx-1 Muskox Mandible –22.1 +6.2 44.7 15.9 3.3 23.1 

BIBS14-291 Head Hill PlPx-1 Muskox Mandible –21.4 +5.3 46.4 17.0 3.2 20.3 

BIBS14-361 Head Hill PlPx-1 Muskox Mandible –21.4 +3.6 45.7 16.4 3.2 19.1 

BIBS14-362 Head Hill PlPx-1 Muskox Mandible –21.7 +5.1 45.8 16.7 3.2 23.3 

BIBS14-364 Head Hill PlPx-1 Muskox Mandible –21.7 +4.9 44.6 16.1 3.2 24.5 

BIBS14-447 Head Hill PlPx-1 Muskox Mandible –22.2 +4.5 46.5 17.0 3.2 20.2 

BIBS14-449 Head Hill PlPx-1 Muskox Mandible –21.8 +5.0 46.4 17.0 3.2 22.5 

BIBS14-454 Head Hill PlPx-1 Muskox Mandible –22.1 +3.9 44.7 16.1 3.2 22.0 
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BIBS14-456§ Head Hill PlPx-1 Muskox Mandible –21.8 +4.8 46.7 17.1 3.2 20.5 

BIBS14-457 Head Hill PlPx-1 Muskox Mandible –21.8 +4.4 45.3 16.4 3.2 20.3 

Modern 

BKS-001†   Caribou Cranium –20.2 +2.9 42.8 16.1 3.1  

BIBS15-67§   Caribou Cranium –20.4 +4.1 45.2 16.5 3.2 20.2 

BIBS15-68   Caribou Cranium –20.1 +3.2 45.3 16.8 3.2 19.1 

BIBS16-19§   Caribou Mandible –19.8 +4.5 44.7 16.3 3.2 21.6 

BIBS16-20   Caribou Rib –20.2 +3.7 44.4 16.3 3.2 21.7 

BIBS16-40   Caribou Rib –20.3 +3.6 45.9 16.8 2.4 22.0 

BIBS16-41   Caribou Mandible –20.0 +3.0 44.3 16.3 2.7 18.9 

BIBS16-42   Caribou Humerus –20.4 +3.4 45.6 16.7 3.5 15.3 

BIBS16-43   Caribou Rib –20.6 +5.0 44.6 16.4 2.3 22.2 

BIBS16-44   Caribou Rib –21.0 +5.5 44.5 16.4 2.4 21.6 

BNK-7**   Caribou Mandible –19.9 +3.2     

BNK-18**   Caribou Mandible –19.9 +3.5     

BNK-4***   Caribou Mandible –20.3 +3.7     

BNK-11***   Caribou Mandible –20.6 +3.1     

BNK-15***   Caribou Mandible –20.7 +3.6     

BKS-0190†   Muskox Mandible –20.9 +4.5 42.9 16.3 3.1  

BKS-0191†   Muskox Cranium –20.6 +3.7 40.4 15.1 3.1  

BIBS14-168‡   Muskox Tibia –20.4 +3.9 44.1 16.0 3.2 18.0 

BIBS14-169‡§   Muskox Mandible –21.7 +4.0 43.4 15.8 3.2 20.8 

BIBS14-445‡§   Muskox Mandible –21.0 +5.4 46.1 16.9 3.2 21.1 
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BIBS16-9   Muskox Mandible –21.2 +4.8 43.3 15.9 3.2 25.7 

BIBS16-10   Muskox Mandible –21.1 +4.4 43.3 15.9 3.2 23.5 

BIBS16-11   Muskox Mandible –21.0 +3.9 43.4 16.0 3.2 22.5 

BIBS16-12   Muskox Mandible –20.8 +4.6 43.5 16.0 3.2 24.1 

BIBS16-13   Muskox Mandible –21.0 +4.0 43.5 16.0 3.2 23.1 

BIBS16-14   Muskox Mandible –20.6 +4.0 44.0 16.2 3.2 23.8 

BIBS16-15   Muskox Mandible –21.0 +4.6 44.6 16.5 3.2 22.2 

BIBS16-16   Muskox Mandible –21.3 +4.0 44.6 16.5 3.2 23.2 

BIBS16-17   Muskox Mandible –20.6 +4.3 43.8 16.1 3.2 22.8 

BIBS16-18     Muskox Mandible –20.5 +5.1 44.4 16.4 3.2 25.9 
           

† From pilot study   
    

*Data from Bocherens et al. (2016)       

** Data from Drucker et al. (2012); δ13C has been corrected by –1.43‰  
    

*** Data from Drucker et al. (2012); δ13C has been corrected by –1.32‰  
    

§ Dentin collagen sampled from tooth belonging to this individual      

‡ Recently deceased individual collected at or near archaeological site  
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Table 3.3. Isotopic, elemental, and percent collagen content data for caribou sequential crown dentin collagen samples from Banks 

Island. All modern dentin collagen carbon isotope compositions are corrected by +1.7‰ for comparability with archaeological bone 

collagen data. 

Sample ID Site Name Borden Taxon 
Microbulk 

Sample 

δ13C δ15N 
C% N% 

Atomic 
C:N 

Ratio 

Wt% 
Coll (‰, VPDB) (‰, AIR) 

Classic Thule 

BIBS14-298 M1 Cape Kellett OlRr-1 Caribou BULK –18.8 +5.7 44.4 16.2 3.2 8.0 
           

BIBS14-298 M2 Cape Kellett OlRr-1 Caribou 
DC1 –19.0 +5.5 42.9 15.5 3.2 6.2 

DC2 –18.5 +5.1 44.3 16.1 3.2 10.6 
           

BIBS14-298 M3 Cape Kellett OlRr-1 Caribou 
DC1 –18.0 +4.4 43.4 15.4 3.3 5.2 

DC2 –18.0 +4.3 44.9 16.2 3.2 11.2 
           

BIBS14-494 M1 Agvik OkRn-1 Caribou BULK –18.9 +5.4 45.4 16.1 3.3 12.3 
           

BIBS14-502 M1 Agvik OkRn-1 Caribou BULK –18.9 +5.2 45.1 16.3 3.2 11.4 

Inuit 

BIBS14-214 M1 Sunnguqpaaluk PdRi-1 Caribou BULK –19.5 +5.4 44.8 16.3 3.2 14.2 
           

BIBS14-214 M2 Sunnguqpaaluk PdRi-1 Caribou BULK –19.8 +5.0 45.4 16.5 3.2 12.6 
           

BIBS14-214 M3 Sunnguqpaaluk PdRi-1 Caribou BULK –20.1 +5.1 46.2 16.7 3.2 11.9 
           

BIBS14-214 P4 Sunnguqpaaluk PdRi-1 Caribou BULK –19.8 +4.9 45.0 16.3 3.2 12.5 
           

BIBS14-360 M1 Head Hill PlPx-1 Caribou BULK –19.0 +6.4 45.5 16.6 3.2 11.3 

 



 

242 

Modern 

BIBS15-67 M2     Caribou 
DC1 –19.3 +4.0 43.2 15.5 3.3 8.7 

DC2 –19.4 +4.5 44.9 16.3 3.2 14.0 
           

BIBS16-19 dp4   Caribou BULK –19.4 +6.2 42.5 15.3 3.2 12.3 
           

BIBS16-19 M1   Caribou 

DC1 –19.6 +6.2 42.7 15.3 3.3 5.4 

DC2 –19.8 +6.1 42.7 15.4 3.2 11.4 

DC3 –19.5 +6.2 43.8 15.9 3.2 14.6 
           

BIBS16-19 M2   Caribou 
DC1 –20.2 +6.0 43.1 15.7 3.2 5.6 

DC2 –19.6 +5.7 43.3 15.5 3.3 8.3 
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Table 3.4. Isotopic, elemental, and percent collagen content data for muskox sequential crown dentin collagen samples from Banks 

Island. All modern dentin collagen carbon isotope compositions are corrected by +1.7‰ for comparability with archaeological bone 

collagen data. 

Sample ID Site Name Borden Taxon 
Microbulk 

Sample 

δ13C δ15N 
C% N% 

Atomic 
C:N 

Ratio 

Wt% 
Coll (‰, VPDB) (‰, AIR) 

Pre-Dorset 

BIBS14-407 M1 Shoran Lake PjRa-1 Muskox 

DC1 –20.9 +5.0 43.9 16.0 3.2 9.7 

DC2 –20.7 +5.2 44.4 16.3 3.2 10.7 

DC3 –20.8 +4.8 44.6 16.4 3.2 11.2 

DC4 –20.7 +5.1 45.3 16.6 3.2 12.0 

DC5 –20.4 +5.3 45.4 16.7 3.2 15.6 
           

BIBS14-409 M1 Umingmak PjRa-2 Muskox 

DC1 –21.3 +6.6 42.2 15.5 3.2 13.5 

DC2 –20.7 +6.7 44.3 16.2 3.2 13.1 

DC3 –20.8 +6.7 44.8 16.5 3.2 11.5 

DC4 –20.8 +6.7 43.3 16.0 3.2 13.3 

DC5 –20.7 +6.5 46.1 17.1 3.1 16.9 

Lagoon 

BIBS14-162 M1  QaPv-5 Muskox BULK –19.8 +6.2 44.7 16.1 3.2 13.5 
           

BIBS14-209 M1  QaPv-5 Muskox 

DC1 –21.0 +7.6 43.0 15.4 3.3 8.5 

DC2 –20.8 +7.4 44.7 16.2 3.2 12.2 

DC3 –20.9 +7.4 44.8 16.3 3.2 13.5 

DC4 –21.0 +7.2 45.7 16.7 3.2 16.8 
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Early Thule 

BIBS16-30 M1 Nelson River OhRh-1 Muskox 

DC1 –20.5 +7.0 38.1 13.6 3.3 8.4 

DC2 –20.4 +7.1 43.9 15.7 3.3 10.7 

DC3 –20.5 +7.3 43.8 15.6 3.3 11.9 

DC4 –20.6 +7.1 43.8 15.6 3.3 12.8 

DC5 –20.2 +6.9 44.9 16.1 3.2 14.6 

Classic Thule 

BIBS14-474 M1 Back Point QbPu-1 Muskox 

DC1 –21.3 +5.1 43.3 15.7 3.2 12.6 

DC2 –19.9 +5.4 44.1 16.0 3.2 14.2 

DC3 –19.9 +5.7 44.1 15.8 3.2 15.6 

Inuit 

BIBS14-456 M1 Head Hill PlPx-1 Muskox 

DC1 –21.6 +7.6 43.5 15.8 3.2 9.4 

DC2 –21.9 +7.5 44.2 16.1 3.2 10.3 

DC3 –21.9 +7.3 43.9 15.8 3.2 10.1 

DC4 –21.8 +7.2 44.5 16.2 3.2 12.0 

DC5 –21.9 +7.1 43.4 15.7 3.2 14.1 

DC6 –21.6 +7.4 44.7 16.2 3.2 14.9 

DC7 –21.5 +6.9 44.1 16.0 3.2 15.8 

Modern 

BIBS14-169 M1     Muskox 

DC1 –21.2 +7.9 42.8 15.6 3.2 14.5 

DC2 –20.9 +7.7 44.8 16.3 3.2 14.4 

DC3 –21.1 +8.0 44.9 16.4 3.2 14.5 

DC4 –20.8 +7.9 45.3 16.5 3.2 16.0 
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BIBS14-445 M1   Muskox 

DC1 –20.6 +7.2 42.2 15.4 3.2 11.0 

DC2 –20.7 +7.3 43.8 15.9 3.2 14.3 

DC3 –20.3 +7.4 44.9 16.3 3.2 15.2 

DC4 –20.4 +7.5 44.7 16.3 3.2 16.8 

DC5 –20.0 +7.2 44.7 16.4 3.2 18.7 
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3.3 Methods 

3.3.1 Sample Preparation 

Approximately 1 g of material was removed from each bone sample using a Dremel® rotary 

tool. Where possible, we favored cortical bone for isotopic analysis because the turnover 

rate is slightly slower than in trabecular bone, and is therefore less affected by short periods 

of dietary fluctuation (Cox and Sealy 1997; Hill and Orth 1998; Hedges et al. 2007). 

Similarly, we avoided unfused skeletal elements and mandibles or maxillae with less than 

two erupted permanent molars. Because nitrogen isotope compositions, and to a smaller 

extent, carbon isotope compositions are influenced by the consumption of milk (Fogel et 

al. 1989; Jenkins et al. 2001) the inclusion of bone samples from young individuals, who 

were still nursing, in our analysis could affect shape-based metrics based on isotopic 

compositions. 

We also sampled 2-3 g of bone from each element for radiocarbon dating, and a further 2-

3 g of bone for ancient DNA analysis (Rodrigues et al. forthcoming). Where present, 

crustose lichen was removed from bone surfaces with a dental scaler, and soil and dust 

were removed via ultrasonication for several minutes in distilled water. Bone samples were 

then dried at low temperature (~ 60°C) and crushed to grain sizes between 0.18 and 0.84 

mm. Bulk collagen was extracted using a modified version of the protocol described by 

Longin (1971). This process involves removal of lipids and any residual soft-tissue with 

three rinses in 2:1 chloroform-methanol, demineralization in 0.50 M HCl, removal of 

humic and fulvic acids in 0.1 M NaOH, solubilization in weak acid (10–3 M HCl), and 

evaporation of water to yield dry collagen. In all cases, the demineralization process took 

less than two weeks. 

We selected only M1s from archaeological muskoxen, while in caribou we selected all 

available molars in a single tooth row. The difference in tooth sampling strategies is due to 

the size disparity between caribou and muskox teeth. The molars and adult premolars of 

muskoxen are much larger than those of caribou. Hence, while it is possible to obtain a 

sequence of microbulk dentin samples from muskox molar and adult premolar crowns, we 

were often required to sample all crown dentin in a caribou molar to obtain the minimum 
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amount of collagen required for analysis. We also hypothesized that due to their size, 

formation schedule (Figure 3.7), and the supposedly rapid weaning process in muskoxen 

(Tener 1965; Kelsall 1968), the isotopic compositions of sequential dentin collagen 

samples from muskox M1s would capture the transition from nursing to adult diet. 

Additionally, the focus of Chapter 4 is the reconstruction of the movements of caribou and 

muskoxen using oxygen isotope compositions of enamel structural carbonate in tooth 

crowns. For caribou, we therefore sampled as many teeth in a tooth row as possible to 

reconstruct potential seasonal movements over the course of an individual’s life. 

Sequential dentin “microbulk”13 collagen samples were obtained from tooth crowns and 

prepared in the same fashion as in Chapter 2, and follow the same collagen extraction 

methods used for bone collagen samples. Briefly described, selected teeth were extracted 

from mandibles or maxillae, cleaned of dust, debris, and residual cementum using ultrapure 

water, a toothbrush, and a dental scaler, and allowed to dry under continuous air flow in a 

fume hood (Figure 3.8a). Because the size of the muskox teeth exceeded all commercially-

available embedding molds, we instead employed inexpensive silicone cigarette cases 

purchased from a variety store as reusable embedding molds. Teeth were fully embedded 

in epoxy resin (Struers EpoFix®) (Figure 3.8b) and each epoxy “block” cured at room 

temperature for at least a week. After curing, we used a Buehler® IsoMet™ low-speed saw 

to produce two 250 μm-thick buccolingual thick sections (henceforth the “A-section” and 

“B-section”) through the highest point of the least worn tooth loph (Figure 3.8c). After 

microsampling enamel from each A-section for related research (see Chapter 4; B-sections 

were used exclusively for the analysis of tooth enamel δ13C and δ18O in that chapter as 

well), we used a second, smaller sectioning machine to divide each tooth crown into ~ 5 

mm transverse “slices” (Figure 3.8d, e). Because the degree of occlusal wear in each tooth 

varies (Appendix B, Supplemental Figures B1 and B2), the root-enamel junction (REJ) of 

                                                 

13
Since it is not possible to obtain collagen from individual dentin appositional layers with the sampling 

methodology we employ here, the isotopic compositions of each sequential dentin sample reflect the 

averaged isotopic compositions of multiple, cross-cut dentin appositional layers. We use the term 

“microbulk” to distinguish from studies where whole-tooth, homogenized dentin samples are analyzed. 
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each tooth crown was used as a common “anchor point” for each sampling “grid” of 5 mm 

transverse sections. 

As with modern tooth samples (Chapter 2), archaeological microbulk dentin collagen 

samples were not crushed to uniform grain sizes prior to demineralization. This procedural 

change was made to minimize sample loss during grinding and facilitate the removal of 

residual embedding epoxy. All microbulk dentin collagen samples were rinsed three times 

in 2:1 chloroform-methanol prior to the collagen extraction process to dissolve as much 

adhering epoxy as possible. 
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Figure 3.8. The dentin collagen sampling process, reproduced from Chapter 2: (a) intact tooth after being removed, cleaned, and 

dried; (b) embedding in epoxy resin using silicone cigarette cases as molds; (c) obtaining one of two thick sections from the epoxy 

block; the first section (the “A-section”) is used for obtaining dentin samples (red material is modeling clay used to position tooth 

during embedding); (d) an A-section marked for transverse sectioning; numbers correspond to sequential dentin sample IDs. Each 

section is approximately 5 mm in height with the sampling “grid” anchored at the root-enamel junction (REJ); (e) obtaining sequential 

dentin samples from an A-section using the second sectioning machine.
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3.3.2 Isotopic Analysis 

All isotopic analyses, including those from the pilot project, were performed at the 

Laboratory for Stable Isotope Science (LSIS) at the University of Western Ontario, 

London, Ontario, Canada using a Costech™ 4010 Elemental Combustion System 

interfaced with either a Thermo Scientific™ DELTAplus XL® or Thermo Scientific™ 

DELTA V Plus® isotope ratio mass spectrometer (IRMS) operating in continuous flow 

(CF) mode. All isotopic compositions are reported in per mil (‰) using delta notation (δ) 

(Equation 3.1): 

𝛿 = [
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  

[Equation 3.1] 

where R is the ratio of heavy to light isotopes in the analyte. Carbon isotope 

compositions are calibrated to Vienna Pee Dee Belemnite (VPDB) (δ13C = 0‰) and 

nitrogen isotope compositions are calibrated to atmospheric N2 (AIR) (δ15N = 0‰) using 

USGS40 (ʟ-glutamic acid; accepted δ13C and δ15N = –26.39‰ and –4.52‰, respectively) 

and USGS41 (ʟ-glutamic acid; accepted δ13C and δ15N = +37.63‰ and +47.57‰, 

respectively) (Qi et al. 2004). An internal keratin standard (MP Biomedicals Inc., Cat No. 

90211, Lot No. 9966H), and an international standard (IAEA-CH-6) were used to measure 

instrument analytical accuracy throughout each analytical session. 

For all samples, weight percent carbon (C%) and nitrogen (N%) were not measured directly 

but were calculated using Equation 2.2: 

%𝐸𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ∗  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑎𝑚𝑝𝑙𝑒

𝐴𝑚𝑜𝑢𝑛𝑡𝑆𝑎𝑚𝑝𝑙𝑒

𝐾– 𝐹𝑎𝑐𝑡𝑜𝑟
 

[Equation 3.2] 
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where “%EStandard” equals the accepted elemental (C or N) weight percentage of the 

reference standard (here, either USGS-40 or USGS-41), “AmplitudeSample” equals the 

amplitude of ions with a mass-to-charge (m/z) ratio of 44 (for carbon) or 28 (for nitrogen) 

measured in the sample, and “AmountSample” equals the sample weight (in mg). The “K-

factor”, used to correct for instrumental mass discrimination, and is derived from Equation 

2.3: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑚𝑜𝑢𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 

[Equation 3.3] 

where “Average AmplitudeStandard” equals the average amplitude of ions with a 

mass-to-charge (m/z) ratio of 44 (for carbon) or 28 (for nitrogen) measured in all analyses 

of a reference standard (here, either USGS-40 or USGS-41) during the analytical session, 

and “Average AmountStandard” equals the average weight (in mg) of all reference standards 

(again, either USGS-40 or USGS-41) analyzed during the analytical session. 

For every ~ 20 bone or dentin collagen samples selected, we created two method duplicates 

to assess the effect of the collagen extraction process on the reproducibility of isotopic and 

elemental data. We also analyzed duplicate bone and dentin samples (i.e. instrumental 

duplicates) at regular intervals to assess instrumental precision. The standard deviation of 

method duplicates and instrumental duplicates reported here reflect the differences 

between the average value (δ13C, δ15N, C%, N%) of all method or instrumental duplicates, 

and the average value (δ13C, δ15N, C%, N%) of their parent samples. 

3.3.3 Convex Hulls and Layman Metrics 

Several quantitative methods are available for evaluating isotopic niche position and 

overlap in species. The most straightforward is the convex hull approach (Layman et al. 

2007a, 2007b, 2012). Here, the outermost isotopic values (in δ-space) for a given species 

delineate its isotopic niche, and different metrics (i.e. “Layman” metrics, after Layman et 

al. (2007a, 2007b)), such as the range of carbon and nitrogen isotope compositions (CR 



 

252 

and NR, respectively), the total area encapsulated by the convex hull (CHA, but often 

referred to as “total area” or “TA”), and the “packing” of the data points inside each hull 

(Table 3.5). As several researchers (Jackson et al. 2011, 2012; Syväranta et al. 2013) point 

out, however, convex hulls and Layman metrics, as measures of extreme value (i.e. the 

outermost isotopic values for a given sample population) are prone to exaggerating isotopic 

niche area (see also Hoeinghaus and Zeug 2008). Additionally, the area of a convex hull, 

and therefore other Layman metrics, can change substantively with the addition of new 

data. Through simulation, Jackson et al. (2011) demonstrated that TA will increase 

indefinitely with the addition of more data. This makes valid comparisons of estimated 

isotopic niche areas from datasets difficult, though other Layman metrics may provide 

useful information about niche characteristics. 
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Table 3.5. Descriptions of different Layman metrics presented in this chapter.14 

Layman Metric Description 

Carbon range (CR) 
Difference (in ‰) between the maximum and minimum values of δ13C in the 

sample dataset; provides a measure of forage resource diversity 

  

Nitrogen range (NR) 
Difference (in ‰) between the largest and smallest values of δ15N in the 

sample dataset; provides a measure of forage resource diversity 

  

Mean distance to centroid (CD) 
Average distance (in ‰2) between each data point in Cartesian space, and the 

centroid of the convex hull; provides a measure of intra-species isotopic 
diversity (i.e. "packing"). 

  

Mean Nearest Neighbor Distance (MNND) 
Average of the distances () to each data point's nearest neighbor in Cartesian 
space; provides a measure of intra-species isotopic diversity (i.e. "packing"). 

  

Standard Deviation of Nearest Neighbor Distance 
(SDNND) 

A measure of the "evenness" in the packing of δ13C and δ15N, which provides 
additional information about intra-species isotopic diversity 

  

Convex Hull Area (CHA) 
Smallest area encompassed by all δ13C and δ15N in a sample dataset; provides 

a measure of total niche space occupied 

                                                 

14
Although isotopic data expressed in ‰ are dimensionless, where used, “‰2” expresses the area of a two-dimensional shape in Cartesian space created by the 

δ13C and δ15N of a sample or samples. 
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3.3.4 Multivariate and Bayesian Ellipses 

Multivariate ellipse-based metrics are now commonly used alongside, or as an alternative 

to convex hulls. We use the “Stable Isotope Bayesian Ellipses in R” (SIBER) function 

inside the “Stable Isotopes in R” (SIAR) package (version 4.2) for the R open source 

software environment (version 3.2.4) (R Development Core Team 2009)15. Developed by 

Jackson et al. (2011), SIBER allows users to create estimates of consumer isotopic niche 

widths that are, unlike convex hulls, nearly independent of sample size. Because 

multivariate ellipses describe the central tendencies of a dataset, rather than its extreme 

values, and because the multivariate ellipse always contains ~ 40% of the data irrespective 

of sample size (Batschelet 1981, Jackson et al. 2011), they integrate more uncertainty into 

the isotopic niche estimate than convex hulls (Jackson et al. 2011). 

The mathematics of multivariate ellipses are described in detail by Batschelet (1981), 

Ricklefs and Nealen (1998), and Jackson et al. (2011) and summarized in plain language 

here. For a given set of data x and y (in this context, δ13Cbc and δ15Nbc, respectively), the 

centroid of the ellipse drawn in two-dimensional space is located at the mean values of x 

and y. The size and orientation of the ellipse is determined by first calculating the 

covariance of the x and y data [σ(x,y)], which is summarized in a covariance matrix. This 

covariance matrix describes the spread and orientation of the x-y point cloud in Cartesian 

space. The semi-major (a) and semi-minor axes (b) of the ellipse correspond to the largest 

and second largest eigenvectors, respectively, of the covariance matrix, which reflect the 

largest and second largest variances in the data. The magnitudes (i.e. the lengths) of the 

axes correspond to the square roots of the largest and second largest eigenvalues, and the 

shape of the ellipse is determined by the square root of the ratio of the largest eigenvalue 

to the second eigenvalue (i.e. the square root of the ratio of the semi-major to semi-minor 

                                                 

15
At the time of our data analysis, SIBER existed as a function inside the “Stable Isotope Analysis in R” 

(SIAR) package. SIBER is now offered as a standalone R package (https://cran.r-

project.org/web/packages/SIBER). 
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axis length). The area of the ellipse, or “Standard Ellipse Area” (SEA) is then given by 

πab. 

In practice, ellipses are plotted and their metrics calculated automatically using the code 

within SIBER. Jackson et al. (2011) demonstrate that above a sample size of n = 30, 

estimated SEA does not change as it does with convex hull area. Realistically however, 

sample sizes for isotopic data sets are often much smaller than n = 30, and so an SEA 

estimate corrected for small sample sizes, SEAc, is also available. In simulation, Jackson 

et al. (2011) demonstrate that ellipse area estimates provided by the SEAc metric change 

little over the minimum sample size of n = 3 (but see Syväranta et al. 2013). Finally, a 

Bayesian ellipse area estimate (SEAB) can be produced by using Markov Chain Monte 

Carlo (MCMC) (Parnell et al. 2010; Jackson et al. 2011), and different ellipse-based 

metrics can be calculated. 

3.4 Results 

3.4.1 Bone Collagen δ13C and δ15N Results 

Archaeological bone collagen carbon and nitrogen isotope and elemental compositions 

were measured in ten analytical sessions, including those that produced the pilot project 

data. The modern bone collagen samples considered in this chapter but discussed in detail 

in Chapter 2 were also analyzed in these sessions. Across 72 analyses of the internal keratin 

standard (mean δ13C and δ15N = –24.04‰ and +6.36‰, respectively), δ13C was –

24.10±0.16‰ and δ15N was +6.40±0.13‰. Across 28 analyses of IAEA-CH-6 (accepted 

δ13C = –10.45‰ (Hut 1987)), δ13C was –10.44±0.07‰. The standard deviation of bone 

collagen samples analyzed as instrumental duplicates (n = 14) is δ13C = ±0.0‰, δ15N = 

±0.1‰, C% = ±0.1, and N% = ±0.1. The standard deviation of bone collagen samples 

analyzed as methodological duplicates (n = 14) is δ13C = ±0.0‰, δ15N = ±0.1‰, C% = 

±0.1, and N% = ±0.1. 

The collagen content, as a percentage of sample weight (“wt% coll”) for archaeological 

bone samples averages 19.8% (min = 11.4%; max = 25.9%), with no significant differences 

across cultural periods. Percent collagen content data from the pilot project samples are not 

available to us, but based on their calculated percent carbon (C%) and nitrogen (N%) 
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contents, and the percent collagen content of bone samples from concurrent cultural 

periods, we assume that they are of comparable preservation. These collagen percentages 

are typical of those observed in modern or well-preserved bone collagen (wt% coll = ~ 20-

30%) (Schoeninger et al. 1989; Ambrose 1990; Ambrose and Norr 1993; van Klinken 

1999; Jørkov et al. 2007). Including the pilot project samples, C% and N% average 44.3% 

(min = 39.2%, max = 46.7%) and 16.2% (min = 14.2%, max = 17.1%), respectively. 

Atomic C:N ratios average 3.2 (min = 3.1; max = 3.3). Elemental abundances and atomic 

C:N ratios from all archaeological bone collagen samples are both within commonly 

accepted ranges for isotopically-unaltered bone collagen (C% = 15.3 to 47.0%; N% = 5.5 

to 17.3%; atomic C:N = 2.9 to 3.6) (DeNiro 1985; Ambrose 1990; van Klinken 1999). 

Reproducibility and preservation data for modern bone collagen samples included here are 

likewise good, as discussed fully in Chapter 2. 

The δ13Cbc and δ15Nbc of caribou and muskoxen from all cultural periods are listed in Table 

3.2. Modern bone collagen carbon isotope compositions from Chapter 2 are corrected here 

by +1.7‰ to achieve comparability with the archaeological data. This difference is the 

result of gradual depletion of 13C in atmospheric CO2 (i.e. the “Suess Effect”) over the last 

~ 150 years due to the anthropogenic combustion of 13C-depleted fossil fuels (Keeling et 

al. 1979; Tans 1979; Friedli et al. 1986). 

3.4.2 Trophic Discrimination Factors and Niche Overlap 

In terms of multivariate ellipse metrics, our primary interests are the relative locations of 

caribou and muskox ellipses in δ-space, and the degree of caribou-muskox ellipse overlap 

across cultural periods. The use of multivariate ellipse overlap as a proxy for ecological 

niche overlap, however, depends in part on the isotopic trophic discrimination factors 

(TDFs) of the species under comparison. If the TDFs for the analyzed isotopic systems are 

the same in both species then the isotopic compositions of the analyzed tissues, and their 

associated multivariate ellipse metrics, are directly comparable in δ-space. Consequently, 

significant overlap of multivariate ellipses in this scenario could point towards dietary or 

ecological niche overlap. This, however, is not necessarily the case if the TDFs for the 

species in question are markedly different. 
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In Chapter 2, we used the Stable Isotope Discrimination Estimation in R (SIDER) package 

for R (https://github.com/healyke/SIDER) to obtain carbon and nitrogen TDF estimates 

(Δ13Ccoll-diet and Δ15Ncoll-diet, respectively) plus associated measures of uncertainty, for 

modern caribou and muskoxen. The use of SIDER-derived TDFs in Bayesian dietary 

mixing models is advantageous because SIDER also provides and error range around TDF 

estimate (Healy et al. 2016). Consequently, the probability distributions for different source 

contributions, when calculated by MixSIAR, incorporate a greater degree of uncertainty 

than if generalized TDFs and SD values are used. The SIDER-derived Δ13Ccoll-diet estimate 

for caribou is 4.7‰ (SD = 1.5‰), while the Δ13Ccoll-diet estimate for muskoxen is 2.6‰ (SD 

= 1.9‰). Turning to nitrogen, the Δ15Ncoll-diet estimate for caribou is 3.3‰ (SD = 1.1‰), 

and that for muskoxen is 3.7‰ (SD = 1.3‰). In order to compare caribou and muskox 

δ13Cbc and δ15Nbc across cultural periods, and hence to evaluate the evidence for niche 

overlap, we must first account for the different Δ13Ccoll-diet and Δ15Ncoll-diet of each species. 

Otherwise, there is an obvious disjuncture between our interpretation of modern caribou 

and muskox diet, which is derived from mixing models utilizing Bayesian TDFs, and 

interpretations of archaeological caribou and muskox isotopic niche variation derived from 

non-transposed bone collagen isotopic data and their shape-based metrics (i.e. ellipse and 

convex hull metrics) (Newsome et al. 2012). 

While workers in wildlife and applied ecology have recognized the significance of taxon-

specific variation in trophic discrimination factors (Bearhop et al. 1999; Bocherens and 

Drucker 2003; Caut et al. 2009; Halley et al. 2010; Kelly et al. 2012; Derbridge et al. 2015; 

Holá et al. 2015; Dionne et al. 2016; Healy et al. 2016; Matley et al. 2017), we know of no 

published studies at the time of writing that have attempted to rationalize the assumptions 

of overlap in shape-based metrics with the possibility that members of the same trophic 

level in paleoecological communities may have had different carbon and nitrogen TDFs. 

Indeed, investigations into paleoecological niche relationships, particularly those dealing 

with sympatric ungulate species, typically assume either implicitly or explicitly that 

consumer isotopic compositions directly reflect niche relationships (Iacumin et al. 2000; 

Ben-David et al. 2001; Drucker et al. 2003; Feranec 2007; Feranec and MacFadden 2006; 

France et al. 2007; Fox-Dobbs et al. 2008; Mann et al. 2013; Bocherens et al. 2015a, b), 

and that shape-based metrics can be used as direct measures of niche overlap or 
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partitioning. Because this dissertation takes as its study subjects both modern and 

comparatively-recent Holocene archaeological caribou and muskoxen, we are uniquely-

positioned to consider this problem. 

Several factors complicate the use of Bayesian mixing models to formally investigate the 

proportional contributions of different forage sources to archaeological bone collagen 

isotopic compositions. Most obviously, we have no archaeological source (i.e. forage) 

isotopic data. The use of modern forage isotopic data in the mixing model is also 

inappropriate, as we do not know whether or how the δ13C and δ15N of different forage 

species on Banks Island have varied across time. Overall, phytodiversity in the Canadian 

Arctic has remained the same since deglaciation, but the aboveground productivity (i.e. 

phytomass) of different forage species has varied (Gajewski et al. 2000; Gajewski 2015a). 

Consequently, some forage sources consumed by caribou and muskoxen today may have 

been unavailable at certain times in the past and vice versa. Finally, it is not clear whether 

carbon and particularly nitrogen TDFs for caribou and muskoxen have varied through time 

with factors such as dietary protein content (Fantle et al. 1999; Oelbermann and Scheu 

2002; Martinez del Rio and Wolf 2005; Robbins et al. 2005, 2010; Greer et al. 2015). 

In light of these complexities, we attempt to model actual niche overlap between caribou 

and muskoxen as follows. Figure 3.9 presents the δ13Cbc and δ15Nbc of caribou and 

muskoxen from each cultural period, along with convex hulls and SEAc ellipses (again 

with modern δ13Cbc corrected by +1.7‰ for comparability with archaeological bone 

collagen data). In Figure 3.10, we then replot these data, along with convex hulls and SEAc 

ellipses, transposed into what we refer to as “quasi-IsoSpace” (after Newsome et al. 2012), 

using the mean values of the respective SIDER-derived Δ13Ccoll-diet and Δ15Ncoll-diet 

estimates for caribou and muskoxen. There are some drawbacks to this approach: it 

introduces potential error into the ellipse overlap calculation, due to the possibility that the 

SIDER-derived TDFs may be incorrect, and it ignores uncertainty around each SIDER-

derived TDF estimate. Nonetheless, it more accurately reflects the relationships between 

caribou and muskox isotopic compositions and their probable dietary niches than isotopic 

data not adjusted for the potentially unique TDFs of caribou versus muskoxen. Multivariate 

and Bayesian ellipse metrics for non-transposed and transposed data are presented in Table 
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3.6 and summary and Layman metrics are presented in Table 3.7. The 95% credible 

intervals for SEAB ellipse estimates in each cultural period, at 104 iterations, are shown in 

Figure 3.11. Intra-specific, shape-based metrics (e.g. change in mean δ13Cbc and δ15Nbc 

across time, CR, NR, CHA, SEAc, SEAB) do not change regardless of any data 

transpositions. 
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Figure 3.9. Non-transposed bone collagen δ13C and δ15N, convex hulls and SEAc ellipses derived from caribou (turquoise) and 

muskoxen (coral) bone collagen isotopic compositions across cultural periods on Banks Island. (a) Pre-Dorset period; (b) Lagoon 

period; (c) Early Thule period; (d) Classic Thule period; (e) Inuit period; (f) modern period. Modern carbon isotope compositions have 

been adjusted by +1.7‰ for comparability with archaeological data.
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Figure 3.10. TDF-transposed convex hulls and SEAc ellipses derived from caribou (turquoise) and muskoxen (coral) bone collagen 

isotopic compositions across cultural periods on Banks Island. (a) Pre-Dorset period; (b) Lagoon period; (c) Early Thule period; (d) 

Classic Thule period; (e) Inuit period; (f) modern period. Modern carbon isotope compositions have been adjusted by +1.7‰ for 

comparability with archaeological data.
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Table 3.6. Multivariate and Bayesian ellipse metrics for non-transposed and transposed caribou and muskox bone collagen isotopic 

data from Banks Island. 

Taxon 

Ellipses Area Comparisons (‰2)   Ellipse Metrics 

SEA SEAc 
SEAB          
(104) 

SEAB          
(105) 

SEAB          
(106) 

 SEAB(C>M)  SEAc(O) 
%SEAc(O) 

 Transposed 
SEAc(O) Transposed 

%SEAc(O) 
  (%)   (‰2)   (‰2) 

Pre-Dorset 

Caribou 0.7 0.8 1.1 1.1 1.1  

0.04 

 

0.00 
0.00  

0.32 
0.41 

Muskox 0.5 0.5 0.7 0.7 0.7   0.00  0.66 

Lagoon 

Caribou 0.9 1.2 2.4 2.3 2.4  

0.14 

 

0.00 
0.00  

0.00 
0.00 

Muskox 1.1 1.2 1.6 1.6 1.6   0.00  0.00 

Early Thule 

Caribou 3.1 3.5 3.0 3.0 3.0  

0.06 

 

1.05 
0.30  

0.26 
0.07 

Muskox 1.5 1.6 1.8 1.8 1.8   0.66  0.16 

Classic Thule 

Caribou 0.8 0.9 1.1 1.1 1.1  

0.78 

 

0.00 
0.00  

0.04 
0.04 

Muskox 0.5 0.5 1.4 1.4 1.4   0.00  0.07 

Inuit 

Caribou 1.0 1.1 1.4 1.4 1.4  

0.19 

 

0.00 
0.00  

0.09 
0.08 

Muskox 0.9 0.9 1.1 1.1 1.1   0.00  0.09 

Modern 

Caribou 0.7 0.7 1.1 1.1 1.1  

0.24 

 

0.02 
0.03  

0.00 
0.00 

Muskox 0.5 0.6 0.9 0.9 0.9     0.04   0.00 
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Table 3.7. Summary and Layman metrics for non-transposed and transposed caribou and muskox bone collagen isotopic data from 

Banks Island. Modern δ13Cbc data are adjusted by +1.7‰ for comparability with archaeological bone collagen isotopic data. 

Taxon n 

Mean 
δ13Cbc 

Mean 
δ15Nbc CR NR CD MNND SDNND 

CHA 
(TA) CHA(C>M) CHA(o) %CHA(O) 

Transposed 
CHA(o) Transposed 

%CHA(O) (‰, 
VPDB) 

(‰, 
AIR) 

(‰) (‰) (‰2) (‰2) (‰2) (‰2) (%) (‰2) (‰2) 

Pre-Dorset 

Caribou 13 –19.1 +2.4 1.5 2.2 0.6 0.3 0.2 1.7 
0.00 0.00 

0.00 
1.23 

0.71 

Muskox 32 –20.9 +3.0 1.2 2.2 0.5 0.1 0.1 1.7 0.00 0.72 

Lagoon 

Caribou 5 –20.2 +3.7 2.0 3.3 1.2 0.7 0.7 0.9 
0.00 0.00 

0.00 
0.03 

0.03 

Muskox 12 –21.0 +3.5 1.4 3.6 0.9 0.5 0.2 2.7 0.00 0.01 

Early Thule 

Caribou 9 –19.8 +3.5 3.1 3.3 1.4 0.7 0.4 5.4 
0.46 2.51 

0.46 
0.87 

0.16 

Muskox 20 –20.6 +3.8 1.5 4.7 1.0 0.3 0.4 4.1 0.62 0.21 

Classic Thule 

Caribou 16 –19.4 +3.0 2.2 2.2 0.6 0.3 0.3 2.9 
0.00 0.00 

0.00 
0.47 

0.16 

Muskox 7 –21.4 +4.5 0.6 1.9 0.7 0.4 0.2 0.6 0.00 0.81 

Inuit 

Caribou 12 –19.9 +3.1 1.5 2.9 0.7 0.3 0.1 1.6 
0.00 0.00 

0.00 
0.55 

0.35 

Muskox 28 –21.6 +4.7 1.4 3.2 0.8 0.2 0.2 2.9 0.00 0.19 

Modern 

Caribou 15 –20.3 +3.7 1.2 2.6 0.6 0.3 0.2 1.8 
0.32 0.58 

0.32 
0.00 

0.00 

Muskox 15 –20.9 +4.3 1.3 1.7 0.5 0.3 0.2 1.4 0.42 0.00 
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Figure 3.11. Credible intervals (at 104 iterations) for posterior probability distributions of (a) caribou and (b) muskox SEAB from each 

cultural period. Thinnest boxes = 95% CI; medium-thick boxes = 75% CI; thickest boxes = 50% CI. “PD” = Pre-Dorset; “LN” = 

Lagoon; “ET” = Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. Red squares denote SEAc ellipse area estimates. 

Black circles denote the modal value of each SEAB ellipse area estimate. 
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3.4.3 Caribou and Muskox Layman and Ellipse Metrics 

Although we provide the full suite of common Layman metrics in Figures 3.12 and 3.13, 

and Table 3.7, some are too strongly influenced by sample size to produce useful 

interpretations of isotopic niche variation over time. For instance, it might be useful to 

compare the densities of isotopic data in different cultural periods using mean nearest 

neighbor distance (MNND) to make inferences about niche specialization. MNND, 

however, should always be strongly negatively correlated with sample size because the 

distance between δ-values in a dataset will necessarily decrease as more data are added. 

Simple linear regression modeling suggests that there are indeed strong negative 

correlations between sample size and MNND in our datasets: MNNDcaribou = -0.0(sample 

size) +0.9, adjusted R2 = 0.7 (Figure 3.12d); and MNNDmuskox = -0.0(sample size) + 0.5, R2 

= 0.7 (Figure 3.13d). Consequently, MNND is not useful for making inferences about the 

density of caribou and muskox isotopic compositions in δ-space across time. 

All variables being equal, convex hull area (CHA), carbon isotope range (CR), and nitrogen 

isotope range (NR) should have positive linear relationships with sample size, again 

because these metrics can only increase or remain the same, but not decrease, with sample 

size (Jackson et al. 2011). Likewise, distance-to-centroid (CD) should decrease, then 

plateau, with the addition of more data (Anderson and Santana-Garcon 2015). Caribou CR 

is weakly negatively correlated, and caribou NR is moderately-to-strongly negatively 

correlated with sample size (Figure 3.12a, b). Only caribou CHA has a positive correlation 

with sample size, but this correlation is weak (Figure 3.12f). Conversely, for the muskox 

dataset, CHA, CR, and NR all have non-significant correlations with sample size, as 

expected (Figure 3.13). In short, Layman metrics suggests that there are variations in 

caribou, but not necessarily muskox, isotopic niche over time that are strong enough to 

escape sample size dependence. 

Caribou and muskox CHA values are both highest during the Early Thule period (CHA = 

5.4‰2 and 4.1‰2, respectively) (Table 3.7), and the sample sizes for both species during 

this period are neither the largest nor the smallest of all datasets (n = 9 and 20, respectively). 

This suggests that some significant change in isotopic niche width, independent of sample 
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size, occurred during this period. Caribou CR gradually increases over time until the Early 

Thule period, then gradually returns to Pre-Dorset levels during the Inuit and modern 

periods. Muskox CR remains between 1.0‰ and 1.5‰ across time except during the 

Classic Thule period, when it decreases to 0.6‰, but this is probably an artifact of small 

sample size. 

Nitrogen range metrics are more equivocal: caribou NR exhibits no clear pattern except 

that it is highest during the Lagoon and Early Thule periods (3.3‰ and 3.3‰, respectively), 

and nearly as high (2.9‰) during the Inuit period. Muskox NR increases to 4.7‰ during 

the Early Thule period, but this NR value is skewed by a single sample with a δ15Nbc of 

+6.7‰. If this sample is omitted, Early Thule NR decreases to 3.0‰16, which is in line 

with the NR values of all other periods except the Classic Thule and modern periods. The 

pattern of caribou NR over time mimics the pattern of muskox CR over time. Caribou CD 

increases from 0.6‰2 in the Pre-Dorset period, to 1.4‰2 in the Early Thule period, then 

returns to Pre-Dorset levels during the Classic Thule period and remains near this value up 

to the present. Muskox CD follows the same pattern, although the variations in CD are 

much smaller across time periods than they are for caribou. 

As presented in Table 3.6, increasing the number of posterior draws from 104 to 105 or 106 

changes SEAB estimates shown in Figure 3.11 very little, if at all, even at very small sample 

sizes (e.g. Lagoon period caribou and Classic Thule period muskoxen). We therefore refer 

to SEAB estimates utilizing 104 posterior draws in the following sections. 

The degree of similarity in caribou and muskox SEAB estimates is given by SEAB(C>M), 

which is calculated in this case by comparing the proportion of SEAB estimates for caribou 

that are greater than those of muskoxen (Jackson 2017). SEAB(C>M) values closer to 0 or 1 

indicate greater dissimilarity in ellipse areas, while an SEAB(C>M) value of 0.5 indicates 

complete similarity (Szpak et al. 2014:120; Jackson 2017). Table 3.6 demonstrates that 

                                                 

16
The inclusion or exclusion of this same data point does not significantly change the size or position of the 

Early Thule muskox ellipse, or its degree of overlap with the Early Thule caribou ellipse. For this reason, it 

is included in ellipse estimations. 
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SEAB(C>M) values in all periods are closer to 0 or 1 than to 0.5, which suggests that 

Bayesian-estimated caribou and muskox isotopic niche areas are different from one another 

throughout time. 

Sample size notwithstanding, there are significant intra-specific variations in SEAB values, 

which should be the most conservative estimate of fundamental isotopic niche area, across 

cultural periods (Table 3.6). Muskox SEAB doubles from 0.7‰2 during the Pre-Dorset to 

1.6‰2 during the Lagoon period, and remains above 1.0‰2 until the modern period. 

Similarly, caribou SEAB values double from 1.1‰2 during the Pre-Dorset to 2.4‰2 during 

the Lagoon period and 2.7‰2 during the Early Thule period. Caribou SEAB values then 

decrease to near-Pre-Dorset levels during the Classic Thule period and remain low until 

present. 
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Figure 3.12. Layman metrics for caribou bone collagen plotted against sample size. (a) carbon range; (b) nitrogen range; (c) distance 

to centroid; (d) mean nearest neighbor distance; (e) standard deviation of nearest neighbor distance; (f) convex hull area.
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Figure 3.13. Layman metrics for muskox bone collagen plotted against sample size. (a) carbon range; (b) nitrogen range; (c) distance 

to centroid; (d) mean nearest neighbor distance; (e) standard deviation of nearest neighbor distance; (f) convex hull area. 
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3.4.4 Overlap in Caribou and Muskox Ellipses Across Cultural 
Periods 

The area of overlap in non-transposed caribou and muskox SEAc ellipses (in ‰2) is given 

by SEAc(O) in Table 3.6. A more intuitive metric for our purposes, however, is the 

percentage of ellipse overlap, which we call %SEAc(O). As an example, it is clear in Figure 

3.9 that there is total separation of caribou and muskox SEAc ellipses in δ-space during the 

Pre-Dorset, Classic Thule, and Inuit periods, while there is significant overlap during the 

Early Thule period. The area of overlap in Early Thule SEAc ellipses is 1.05‰2, which is 

not especially informative, but Table 3.6 demonstrates that in the Early Thule period, the 

muskox SEAc ellipse overlaps 30% of the caribou SEAc ellipse, while the caribou SEAc 

ellipse overlaps 66% of the muskox SEAc ellipse. Based on Schoener’s (1968) criterion for 

dietary overlap, Matley et al. (2017) consider ellipse overlap greater than 60% to be 

significant. The proximity of the SEAc ellipses during the Lagoon period, in addition to the 

small caribou sample size, suggests that with additional data, isotopic overlap during this 

period is likely. Although we establish in the section above that CHA is not a reliable metric 

of fundamental isotopic niche, even with the bias toward outlying isotopic compositions, 

overlap in convex hulls (CHA(o)) (Table 3.7) only occurs in the Early Thule and modern 

datasets. 

When the different carbon and nitrogen TDFs for caribou and muskoxen are applied, the 

relative positions of their SEAc ellipses change dramatically. Transposed δ13Cbc and δ15Nbc 

and associated convex hulls and ellipses are presented in Figure 3.10. SEAc(O) and 

%SEAc(O) values for transposed isotopic data are also presented in Table 3.6. When 

transposed, only the %SEAc(O) values for Pre-Dorset period is significant (66% of the 

muskox ellipse is overlapped by the caribou ellipse), while there is only minor ellipse 

overlap during the Early Thule, Classic Thule, and Inuit periods. As we argue in our 

discussion, transposed δ13Cbc and δ15Nbc and associated convex hulls and ellipses presented 

in Figure 3.10 are likely more useful for making interpretations about ecological niche 

overlap. 
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3.4.5 Dentin Collagen δ13C and δ15N Results 

Modern and archaeological dentin collagen samples were analyzed together in two 

analytical sessions. Again, an internal keratin standard (MP Biomedicals Inc., Cat No. 

90211, Lot No. 9966H), and an international standard (IAEA-CH-6) were used to measure 

instrument analytical drift throughout the analytical sessions. Across 29 analyses of the 

internal keratin standard (accepted δ13C and δ15N = –24.04‰ and +6.36‰, respectively) 

δ13C was –24.03±0.3‰ and δ15N was 6.37±0.1‰. Across eight analyses of IAEA-CH-6 

(accepted δ13C = –10.45‰; Hut 1987), δ13C was –10.88±0.4‰. The standard deviation of 

archaeological dentin collagen samples analyzed as instrumental duplicates (n = 6) is δ13C 

= ±0.2‰, δ15N = ±0.4‰, C% = ±0.3, and N% = ±0.2. The standard deviation of dentin 

collagen samples analyzed as method duplicates (n = 4) is δ13C = ±0.0‰, δ15N = ±0.7‰, 

C% = ±1.1, and N% = ±0.4. 

Percent collagen content for archaeological dentin averages 12.5% (min = 5.2%; max = 

18.9%), with no significant differences across time periods. As in Chapter 2, we attribute 

the generally low and variable collagen percentages in microbulk dentin samples to the 

presence of epoxy and enamel in the dentin samples when they were initially weighed. All 

residual epoxy and enamel was subsequently removed during the demineralization process. 

Calculated percent carbon (C%) and nitrogen (N%) in archaeological dentin samples 

averages 44.2% (min = 38.1%, max = 46.2%) and 16.0% (min = 13.6%, max = 17.1%), 

respectively. Atomic C:N ratios average 3.2 (min = 3.1; max = 3.3), indicating that 

archaeological microbulk dentin samples and their original isotopic compositions are 

probably well-preserved. 

The carbon and nitrogen isotope compositions of sequential microbulk dentin collagen 

samples from caribou tooth crowns are presented in Figures 3.14 and 3.15, respectively 

and Table 3.3. The carbon and nitrogen isotope compositions of sequential microbulk 

dentin collagen samples from muskox M1 tooth crowns are presented in Figures 3.16 and 

3.17, respectively, and Table 3.4. As with non-transposed bone collagen, modern δ13Cdc is 

corrected by +1.7‰ for comparability to archaeological samples. Sequential microbulk 

dentin sample numbers follow the major axis of crown development. Where dentin was 

sampled from multiple tooth crowns in a single individual, dentin collagen isotopic 
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compositions are arranged in order of gross tooth development (e.g. dp4, M1, M2, M3, 

P4). Intra-tooth isotopic patterns, however, are not necessarily continuous between teeth 

because of developmental overlap and occlusal wear. Teeth that were too small or too-

worn occlusally to obtain a sequence of microbulk dentin samples are designated “bulk”. 

As in Chapter 2, we note that the “true” isotopic signals recorded in dentin collagen, 

especially in caribou teeth, are likely attenuated by our dentin sampling technique. 

In caribou, the average of all δ13Cdc across the Classic Thule, Inuit, and modern cultural 

periods is –19.2‰ (min = –20.2‰, max = –18.0‰) and the mean of all δ15Ndc across 

cultural periods is +5.4‰ (min = +4.0‰, max = +6.4‰). Because of the small size of 

caribou teeth, we were mostly limited to bulk dentin sampling, and caribou dentin collagen 

samples are therefore uninformative of seasonal variation in δ13C or δ15N. Where we 

sampled multiple teeth from the same individual, inter-tooth δ13Cdc shows some minor 

variation. In BIBS16-19, mean inter-tooth δ13Cdc gradually decreases across the dp4, M1, 

and M2 (Figure 3.14a). In BIBS14-214, mean inter-tooth δ13Cdc increases between the dp4 

and M1, and then decreases across the M1, M2, and M3 (Figure 3.14b). In BIBS14-298, 

mean inter-tooth δ13Cdc increases across the M1, M2, and M3 (Figure 3.14c). Likewise, 

mean inter-tooth δ15Ndc in BIBS16-19 is the same (+6.2‰) in the dp4 and M1, and then 

decreases slightly to +5.8‰ (Figure 3.15a). In BIBS14-214, mean inter-tooth δ15Ndc 

increases between the dp4 and M1, decreases between the M1 and M2, and then remains 

the same between the M2 and M3 (Figure 3.15b). In BIBS14-298, inter-tooth δ15Ndc 

decreases from +5.7 to +4.4‰ across the M1, M2 and M3 (Figure 3.15c). 

As we establish in Chapter 2, the spacing or offset between dentin and bulk bone collagen 

δ13C and δ15N (Δ13Cdc-bc and Δ15Ndc-bc, respectively) is useful for making inferences about 

the duration of nursing. As we argue in that chapter, tooth-averaged δ13Cdc and δ15Ndc 

should reflect average dietary inputs during the period when the tooth developed, while 

bulk bone collagen δ13C and δ15N reflect average dietary inputs over the last decade or so 

of life. Again, we expect, based on observational data and tooth eruption schedules that 

caribou and muskoxen both normally complete the weaning process within the first-year 

post-partum. If this is the case, then enrichments in 13C and 15N associated with nursing, 

and their associated dentin collagen-bone collagen isotopic offsets, should be greatest in 



 

273 

the M1s of both species, and then decline rapidly across M2s and M3s. Where sampled, 

fourth deciduous premolars (dp4s), which develop during the peripartum period (Banfield 

1954; Kelsall 1968; Miller 1974), should have carbon and nitrogen isotope compositions 

similar to M1s, depending on the duration of the weaning process. 

Caribou Δ13Cdc-bc and Δ15Ndc-bc offsets are listed in Tables 3.8 and 3.9, respectively. M1s, 

which are our primary focus in caribou, all display positive Δ13Cdc-bc and Δ15Ndc-bc offsets 

that range between +0.1 and +0.7‰ for carbon, and +1.7 and +3.0‰ for nitrogen. Of the 

three caribou in which multiple teeth were sampled, BIBS16-19 and BIBS14-214 display 

the expected patterns of decreasing Δ13Cdc-bc and Δ15Ndc-bc across teeth. In BIBS14-298, the 

Δ13Cdc-bc offset is negligible in the M1 and M2 (+0.1‰ and +0.2‰, respectively) but 

increases to 0.9‰ in the M3. Conversely, the Δ15Ndc-bc in the M1 of BIBS14-298 is the 

highest for all teeth sampled (3.0‰) but decreases as we would expect in the M2 and M3. 

In muskox tooth samples, the average of all δ13Cdc across time periods is –21.0‰ (min = –

22.1‰, max = –19.8‰) and the mean of all δ15Ndc across time periods is +7.0‰ (min = 

+4.8‰, max = +8.0‰). Because muskox teeth are much larger than caribou teeth, it was 

possible to obtain at least four sequential dentin samples in all but two teeth, BIBS14-474 

M1 and BIBS14-162 M1, where occlusal wear was considerable. The M1s of BIBS14-407, 

-409, -209, -456, -169, and -445 and BIBS16-30 all exhibit a similar skewed, sawtooth 

pattern in their intra-tooth δ13Cdc (but do not necessarily have similar values of δ13Cdc). This 

pattern is best exemplified in the intra-tooth δ13Cdc of BIBS14-445 M1 (Figure 3.16a). The 

two M1s in which this pattern is absent are BIBS14-162, which is a single bulk dentin 

sample, and BIBS14-474. Although BIBS14-474 M1 only produced three sequential 

samples, the pattern of intra-tooth δ13Cdc is distinct. While intra-tooth variation in δ13Cdc is 

no greater than 0.7‰ in all other teeth, there is a +1.4‰ difference in the δ13Cdc of the first 

two sequential samples of BIBS14-474 (Figure 3.16c). In contrast, intra-tooth patterns in 

δ15Ndc vary considerably between M1s, though again, in no case does intra-tooth variation 

in δ15Ndc exceed 0.7‰ (Figure 3.17). 

As in caribou teeth, there are Δ13Cdc-bc and Δ15Ndc-bc offsets in nearly every muskox tooth 

sampled (Tables 3.10 and 3.11, respectively). In M1s, Δ13Cdc-bc is highest (+0.6‰ or 
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+0.7‰) in samples from during the Early Thule, Classic Thule, and modern periods, and 

are otherwise relatively small (0.0‰, +0.1‰, or +0.4‰). Conversely, Δ15Ndc-bc offsets are 

highest in BIBS16-30 (+4.6‰), from the Early Thule period, and BIBS14-169 (+3.9‰) 

from the modern period. The lowest Δ15Ndc-bc (+1.8‰) is measured for BIBS14-474, from 

the Classic Thule period, and all other M1s have Δ15Ndc-bc offsets between +2.5 and +3.2‰. 
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Figure 3.14. The δ13Cdc of caribou tooth crowns from the: (a) modern period; (b) Inuit 

period; and (c) Classic Thule period. Data are displayed in approximate order of tooth 

development (dp4, M1, M2, M3, P4). The last sequential sample of each tooth is always 

taken from the ~ 5 mm of dentin closest to the root-enamel junction (REJ). The bulk bone 

collagen δ13C of each caribou from which dentin is sampled is illustrated in the gray box 

at the far right. Modern dentin collagen carbon isotope compositions have been corrected 

by +1.7‰ for comparability with archaeological data.
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Figure 3.15. The δ15Ndc of caribou tooth crowns from the: (a) modern period; (b) Inuit 

period; and (c) Classic Thule period. Data are displayed in approximate order of tooth 

development (dp4, M1, M2, M3, P4). The last sequential sample of each tooth is always 

taken from the ~ 5 mm of dentin closest to the root-enamel junction (REJ). The bulk bone 

collagen δ15N of each caribou from which dentin collagen is sampled is illustrated in gray 

box at the far right.
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Figure 3.16. The δ13Cdc of muskox tooth crowns from the: (a) modern period; (b) Inuit 

period; (c) Classic Thule period; (d) Early Thule period; (e) Lagoon Period; and (f) the 

Pre-Dorset period. The last sequential sample of each tooth is always taken from the ~ 5 

mm of dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ13C of 

each muskox from which dentin is sampled is illustrated in the gray box at the far right. 

Modern dentin collagen carbon isotope compositions have been corrected by +1.7 for 

comparability with archaeological data. 
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Figure 3.17. The δ15Ndc of muskox tooth crowns from the: (a) modern period; (b) Inuit 

period; (c) Classic Thule period; (d) Early Thule period; (e) Lagoon Period; and (f) the 

Pre-Dorset period. The last sequential sample of each tooth is always taken from the ~ 5 

mm of dentin closest to the root-enamel junction (REJ). The bulk bone collagen δ15N of 

each caribou from which dentin collagen is sampled is illustrated in the gray box at the 

far right. 
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Table 3.8. Summary data for caribou dentin collagen δ13C, and dentin collagen-bone collagen δ13C offsets. All modern carbon isotope 

compositions are adjusted by +1.7‰ for comparability with archaeological collagen data. 

Sample ID Taxon 
Microbulk 

Sample 
δ13Cdc          

(‰, VPDB) 

Intra-tooth 
Average 
δ13Cdc 

δ13Cbc          

(‰, VPDB) 

Δ13Cdc-bc 

(‰, VPDB) dp4 M1 M2 M3 P4 

Classic Thule 

BIBS14-298 M1 Caribou BULK –18.8 –18.8 

–18.9 

 +0.1    

          

BIBS14-298 M2 Caribou 
DC1 –19.0 

–18.7 

  

+0.2 

  

DC2 –18.5     

          

BIBS14-298 M3 Caribou 
DC1 –18.0 

–18.0 

   

+0.9 

 

DC2 –18.0     

           

BIBS14-494 M1 Caribou BULK –18.9 –18.9 –19.3  +0.4    

           

BIBS14-502 M1 Caribou BULK –18.9 –18.9 –19.2  +0.3    

Inuit 

BIBS14-214 M1 Caribou BULK –19.5 –19.5 

–20.2 

 +0.7    

          

BIBS14-214 M2 Caribou BULK –19.8 –19.8   +0.4   

          

BIBS14-214 M3 Caribou BULK –20.1 –20.1    +0.1  
          

BIBS14-214 P4 Caribou BULK –19.8 –19.8     +0.4 
           

BIBS14-360 M1 Caribou BULK –19.0 –19.0 –19.3  +0.3    
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Modern 

BIBS15-67 M2 Caribou 
DC1 –19.3 

–19.3 –20.4 

  

+1.1 

  

DC2 –19.4     

           

BIBS16-19 dp4 Caribou BULK –19.4 –19.4 

–19.8 

+0.4     

          

BIBS16-19 M1 Caribou 

DC1 –19.6 

–19.6 

 

+0.2 

   

DC2 –19.8     

DC3 –19.5     

          

BIBS16-19 M2 Caribou 
DC1 –20.2 

–19.9 

  

+0.1 

  

DC2 –19.6         
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Table 3.9. Summary data for caribou dentin collagen δ15N, and dentin collagen-bone collagen δ15N offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ15Ndc         

(‰, AIR) 

Intra-tooth 
Average 
δ15Ndc 

δ15Nbc       
(‰, AIR) 

Δ15Ndc-bc 

(‰, AIR) dp4 M1 M2 M3 P4 

Classic Thule 

BIBS14-298 M1 Caribou BULK +5.7 +5.7 

+2.7 

 +3.0    

          

BIBS14-298 M2 Caribou 
DC1 +5.5 

+5.3 

  

+2.6 

  

DC2 +5.1     

          

BIBS14-298 M3 Caribou 
DC1 +4.4 

+4.3 

   

+1.6 

 

DC2 +4.3     

           

BIBS14-494 M1 Caribou BULK +5.4 +5.4 +2.6  +2.8    

           

BIBS14-502 M1 Caribou BULK +5.2 +5.2 +2.9  +2.3    

Inuit 

BIBS14-214 M1 Caribou BULK +5.4 +5.4 

+2.6 

 +2.8    

          

BIBS14-214 M2 Caribou BULK +5.0 +5.0   +2.4   

          

BIBS14-214 M3 Caribou BULK +5.1 +5.1    +2.5  
          

BIBS14-214 P4 Caribou BULK +4.9 +4.9     +2.3 
           

BIBS14-360 M1 Caribou BULK +6.4 +6.4 +4.5  +1.9    
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Modern 

BIBS15-67 M2 Caribou 
DC1 +4.0 

+4.3 +4.1 

  

+0.2 

  

DC2 +4.5     

           

BIBS16-19 dp4 Caribou BULK +6.2 +6.2 

+4.5 

+1.7     

          

BIBS16-19 M1 Caribou 

DC1 +6.2 

+6.2 

 

+1.7 

   

DC2 +6.1     

DC3 +6.2     

          

BIBS16-19 M2 Caribou 
DC1 +6.0 

+5.8 

  

+1.3 

  

DC2 +5.7         
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Table 3.10. Summary data for muskox dentin collagen δ13C, and dentin collagen-bone 

collagen δ13C offsets. All modern carbon isotope compositions are adjusted by +1.7‰ for 

comparability with archaeological collagen data. 

Sample ID Taxon 
Microbulk 

Sample 
δ13Cdc          

(‰, VPDB) 

Intra-tooth 
Average 
δ13Cdc 

δ13Cbc          

(‰, VPDB) 

Δ13Cdc-bc 

(‰, VPDB) M1 

Pre-Dorset 

BIBS14-407 M1 Muskox 

DC1 –20.9 

–20.7 –20.3 +0.4 

DC2 –20.7 

DC3 –20.8 

DC4 –20.7 

DC5 –20.4 
       

BIBS14-409 M1 Muskox 

DC1 –21.3 

–20.9 –20.9 0.0 

DC2 –20.7 

DC3 –20.8 

DC4 –20.8 

DC5 –20.7 

Lagoon 

BIBS14-162 M1 Muskox BULK –19.8 –19.8 –20.4 +0.6 
       

BIBS14-209 M1 Muskox 

DC1 –21.0 

–20.9 –20.8 +0.1 
DC2 –20.8 

DC3 –20.9 

DC4 –21.0 

Early Thule 

BIBS16-30 M1 Muskox 

DC1 –20.5 

–20.4 –20.5 +0.1 

DC2 –20.4 

DC3 –20.5 

DC4 –20.6 

DC5 –20.2 

Classic Thule 

BIBS14-474 M1 Muskox 

DC1 –21.3 

–20.4 –21.0 +0.6 DC2 –19.9 

DC3 –19.9 
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Inuit 

BIBS14-456 M1 Muskox 

DC1 –21.6 

–21.7 –21.8 +0.1 

DC2 –21.9 

DC3 –21.9 

DC4 –21.8 

DC5 –21.9 

DC6 –21.6 

DC7 –21.5 

Modern 

BIBS14-169 M1 Muskox 

DC1 –21.2 

–21.0 –21.7 +0.7 
DC2 –20.9 

DC3 –21.1 

DC4 –20.8 
       

BIBS14-445 M1 Muskox 

DC1 –20.6 

–20.4 –21.0 +0.6 

DC2 –20.7 

DC3 –20.3 

DC4 –20.4 

DC5 –20.0 
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Table 3.11. Summary data for muskox dentin collagen δ15N, and dentin collagen-bone 

collagen δ15N offsets. 

Sample ID Taxon 
Microbulk 

Sample 
δ15Ndc         

(‰, AIR) 

Intra-tooth 
Average 
δ15Ndc 

δ15Nbc       
(‰, AIR) 

Δ15Ndc-bc 

(‰, AIR) M1 

Pre-Dorset 

BIBS14-407 M1 Muskox 

DC1 +5.0 

+5.1 +1.9 +3.2 

DC2 +5.2 

DC3 +4.8 

DC4 +5.1 

DC5 +5.3 
       

BIBS14-409 M1 Muskox 

DC1 +6.6 

+6.6 +4.1 +2.5 

DC2 +6.7 

DC3 +6.7 

DC4 +6.7 

DC5 +6.5 

Lagoon 

BIBS14-162 M1 Muskox BULK +6.2 +6.2 +3.2 +3.0 
       

BIBS14-209 M1 Muskox 

DC1 +7.6 

+7.4 +4.2 +3.2 
DC2 +7.4 

DC3 +7.4 

DC4 +7.2 

Early Thule 

BIBS16-30 M1 Muskox 

DC1 +7.0 

+7.1 +2.5 +4.6 

DC2 +7.1 

DC3 +7.3 

DC4 +7.1 

DC5 +6.9 

Classic Thule 

BIBS14-474 M1 Muskox 

DC1 +5.1 

+5.4 +3.6 +1.8 DC2 +5.4 

DC3 +5.7 

 

 



 

286 

Inuit 

BIBS14-456 M1 Muskox 

DC1 +7.6 

+7.3 +4.8 +2.5 

DC2 +7.5 

DC3 +7.3 

DC4 +7.2 

DC5 +7.1 

DC6 +7.4 

DC7 +6.9 

Modern 

BIBS14-169 M1 Muskox 

DC1 +7.9 

+7.9 +4.0 +3.9 
DC2 +7.7 

DC3 +8.0 

DC4 +7.9 
       

BIBS14-445 M1 Muskox 

DC1 +7.2 

+7.3 +5.4 +1.9 

DC2 +7.3 

DC3 +7.4 

DC4 +7.5 

DC5 +7.2 
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3.4.6 Caribou versus Muskox Dentin Collagen δ13C and δ15N 

Because we were only able to obtain caribou teeth from Classic Thule and Inuit 

archaeological sites, we can only make comparisons between the δ13Cdc and δ15Ndc of 

caribou and muskoxen during these two periods. Additionally, because we were only able 

to sample bulk dentin from caribou teeth, we are limited to comparisons of tooth-averaged 

δ13Cdc and δ15Ndc between caribou and muskoxen. Although there is only a single muskox 

M1 from the Classic Thule period (BIBS14-474 M1), its tooth-averaged δ13Cdc (–20.4‰) 

is ~ 1‰ lower than any of the tooth-averaged δ13Cdc (~ –18.9‰) in the three caribou M1s 

from the Classic Thule period. A comparison of tooth-averaged δ15Ndc between Classic 

Thule caribou (Table 3.9) and muskoxen (Table 3.11) demonstrates that the tooth-averaged 

δ15Ndc of BIBS14-474 M1 (+5.4‰) is within the same range as the tooth-averaged δ15Ndc 

from all three caribou. As we establish above, however, BIBS14-474 M1 appears to be an 

outlier in terms of its intra-tooth δ13Cdc and δ15Ndc, and its bulk bone collagen δ15N is one 

of the lowest of the Classic Thule muskoxen. In short, the differences between caribou and 

muskox dentin collagen isotopic compositions during the Classic Thule period mimic those 

of bone collagen isotopic compositions during the Classic Thule period (Figure 3.9d). The 

tooth-averaged δ13Cdc from the single Inuit period muskox M1 (BIBS14-456 M1, –21.7‰) 

is ~ 2.5‰ lower than the tooth-averaged δ13Cdc of the two caribou M1s from the Inuit 

period, while its tooth-averaged δ15Ndc (+7.3‰) is about 2‰ higher. This pattern mimics 

that of non-transposed caribou and muskox bone collagen isotopic compositions during the 

Inuit period (Figure 3.9e). 

3.5 Discussion 

Metrics derived from bone collagen δ13C and δ15N indicate that the isotopic niches of 

caribou and muskoxen on Banks Island have varied considerably over the last 4000 years. 

The significance of this isotopic variation can be explored along two axes: niche 

dimensionality and niche proximity or overlap. Measures of niche dimensionality remain 

the same regardless of data transpositions and are themselves influenced by competition, 

while the niche proximity/overlap depends on parameters that are currently poorly-
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constrained, like trophic discrimination factors and isotopic variability in forage sources 

over time. 

3.5.1 Isotopic Niche Dimensionality Derived from δ13Cbc and δ15Nbc 

SEAB values (Table 3.6) suggest that caribou isotopic niche area tripled in size between 

the Pre-Dorset and Early Thule period, but decreased to Pre-Dorset levels during the 

Classic Thule period, and has remained at that low level into the present. Likewise, muskox 

SEAB values nearly tripled between the Pre-Dorset and Early Thule periods. Unlike caribou 

SEAB, which contracted rapidly to a small, stable value in the centuries following the Early 

Thule period, however, muskox SEAB has only gradually decreased over the last several 

centuries. Although significantly influenced by sample size, CHA and CD values across 

cultural periods (Table 3.7) also point towards niche expansion in both species, followed 

by rapid niche contraction in caribou, and slower niche contraction in muskoxen. 

Additionally, there are only weakly negative trends in caribou and muskox mean δ13Cbc 

across cultural periods: δ13Cbc(caribou) = -0.13(cultural period) – 19.3, R2 = 0.3; δ13Cbc(muskox) 

= -0.07(cultural period) – 20.8, R2 = 0.1 (Figure 3.18). Conversely, there is a small but 

moderately-to-strongly significant positive trend in muskox, but not caribou, mean δ15Nbc 

across cultural periods: δ15Nbc(caribou) = 0.17(cultural period) + 2.8, R2 = 0.2; δ15Nbc(muskox) = 

0.31(cultural period) + 2.9, R2 = 0.8 (Figure 3.19). Taken together, the ellipse and Layman 

metrics suggest that: (1) caribou and muskoxen both experienced significant expansion of 

their isotopic niches on Banks Island during the Lagoon and Early Thule periods; (2) in 

both species, niche expansion in δ-space was largely along single, opposite axes; and (3) 

isotopic niche contraction after the Thule period occurred rapidly in caribou, but only 

gradually in muskoxen. 
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Figure 3.18. Mean δ13Cbc for caribou (turquoise circles) and muskoxen (coral triangles) 

across cultural periods; linear regression equation and R2 value for caribou mean δ13Cbc 

values across time (top right corner), and linear regression equation and R2 value for 

muskox mean δ13Cbc across time (bottom left corner). “PD” = Pre-Dorset; “LN” = 

Lagoon; “ET” = Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. 

 

 

Figure 3.19. Mean δ15Nbc for caribou (turquoise circles) and muskoxen (coral triangles) 

across cultural periods; linear regression equation and R2 value for caribou mean δ15Nbc 

values across time (bottom right corner), and linear regression equation and R2 value for 

muskox mean δ15Nbc across time (top left corner). “PD” = Pre-Dorset; “LN” = Lagoon; 

“ET” = Early Thule; “CT” = Classic Thule; “IT” = Inuit; “Mod” = modern. 
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3.5.2 Isotopic Niche Dimensionality and Models of Caribou and 
Muskox Niche Relationships 

Evaluating only niche dimensionality, not relative niche position in δ-space, the classical 

framework of niche partitioning (Grinnell 1917; Gause 1936; Hutchinson 1957, 1978), 

would equate the small isotopic niche areas of Pre-Dorset caribou and muskoxen, given by 

their SEAc and SEAB values, with some degree of competitive niche specialization. 

Conversely, isotopic niche dimensionality during the Early Thule period – and with more 

data, probably the Lagoon period – suggests that radical changes occurred to the niche 

relationship between caribou and muskoxen. Again, the classical view of niche 

dimensionality suggests that a species’ niche will expand as inter-specific competition 

decreases. Accordingly, the greater SEAc and SEAB values for caribou and muskoxen 

during the Lagoon and Early Thule periods would suggest that inter-specific forage 

competition was low, and the return to smaller isotopic niches areas in the Classic Thule, 

Inuit, and modern periods would indicate that competitive pressure to specialize resumed 

after the Early Thule period. 

Within the ecological displacement model, variations in caribou and muskox isotopic niche 

dimensionality indicate a different pattern of potential competition across cultural periods. 

Again, within this framework, smaller niche area corresponds to lower intra-specific 

dietary variation, which in turn corresponds to decreased intra- or inter-specific dietary 

competition. Accordingly, small ellipse areas for Pre-Dorset caribou and muskoxen would 

suggest that niche competition between caribou and muskoxen during this cultural period 

was limited. The pattern of isotopic niche expansion during the Lagoon and Early Thule 

periods would also suggest that competitive niche diversification increased significantly 

during these two periods. The driving force for niche diversification could be either intra-

specific or inter-specific forage competition, though at present, we have no independent 

methods for making inferences about past caribou and muskox population dynamics. 

Ancient DNA analysis of archaeological caribou and muskox bone samples used in this 

study (Rodrigues et al. forthcoming) will be useful for contextualizing this important aspect 

of caribou and muskox paleoecology on Banks Island. In any case, within the ecological 
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displacement model, a return to smaller isotopic niche areas in the Classic Thule, Inuit, and 

modern periods would equate with a decrease in forage competition. 

3.5.3 Integrating Isotopic Niche Dimensionality and 
Proximity/Overlap to Evaluate Ecological Niche Models 

With the assumption that Bayesian-derived TDFs are accurate, and that real TDFs varied 

only minimally across the last 4000 years, the transposition of δ13Cbc and δ15Nbc to quasi-

IsoSpace should more accurately represent the actual spatial relationships of caribou and 

muskox isotopic niches than when presented in collagen δ-space. Accordingly, in this 

section, we evaluate niche dimensionality alongside niche proximity/overlap in quasi-

IsoSpace, but not δ-space, in this section. We argue that caribou and muskox niche 

relationships conform to the expectations of the ecological displacement model until the 

Classic Thule period. During that period, changing forage conditions potentially altered the 

ecological relationship of caribou and muskoxen such that competitive specialization 

predicted by the Hutchinsonian niche framework developed. 

The Pre-Dorset period on Banks Island occurred towards the end of the long, climatically-

stable Holocene thermal maximum (HTM) (Figure 3.2b) (Overpeck et al. 1997; Fortin and 

Gajewski 2010; Peros 2010; Gajewski 2015b). In the Eastern Arctic, this period is 

characterized by high overall phytomass productivity and shrub/heath/forb-dominated 

tundra (Edlund 1986; Gajewski 1995; Gajewski et al. 2000; Gajewski 2015a). It is therefore 

reasonable to assume that forage conditions during this period were stable and likely 

optimal for both caribou and muskoxen. This assumption is supported by the large 

concentration of muskox and caribou skeletal remains at the Pre-Dorset Umingmak (PjRa-

2) site on Banks Island (Müller-Beck 1977; Münzel 1987), and at ASTt sites spanning 

much of the Eastern Arctic during this time (Knuth 1967; Maxwell 1984, 1985; Bielawski 

1988; Jensen 1998; Darwent 2004). 

Radiocarbon dates (Figure 3.3, Table 3.1) demonstrate that the Pre-Dorset period on Banks 

Island lasted for at least 500 years, and so we might expect some climatic and ecological 

variability during these centuries. Because Pre-Dorset sites from which we sampled bone 

are relatively evenly-spaced across those 500 years, bone isotopic compositions should 
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index any significant ecological variability during the Pre-Dorset period. Instead, caribou 

and muskox isotopic niches from the Pre-Dorset period, measured by SEAc and SEAB 

values, are about as small as those from our modern dataset, which consists primarily of 

caribou and muskoxen harvested in a single year. In short, the intra-specific homogeneity 

of caribou and muskox δ13Cbc and δ15Nbc from the Pre-Dorset period strongly suggests a 

high degree of ecosystem and niche stability across the entire cultural period. 

When considered inside a broader archaeological and paleoecological context, the classical 

framework of competition and niche partitioning cannot easily account for the small but 

considerably-overlapping SEAc ellipses of Pre-Dorset caribou and muskoxen in quasi-

IsoSpace (Figure 3.10a). The small isotopic niche areas for Pre-Dorset caribou and 

muskoxen, by themselves, would suggest greater inter-specific forage competition, but in 

the Hutchinsonian niche framework, the force driving sympatric species towards smaller 

niche areas is competitive specialization or exclusion (Grinnell 1917; Hardin 1960). 

Accordingly, niche segregation should always accompany small niche area, and this is 

clearly not the case when Pre-Dorset δ13Cbc and δ15Nbc are transposed to quasi-IsoSpace. 

A possible explanation for the small but significantly overlapping isotopic niches of 

caribou and muskoxen during the Pre-Dorset period is that dietary overlap was offset by 

differences along other ecological niche axes. Pianka (1974) states that sympatric species 

avoid inter-specific dietary competition through any combination of three strategies: they 

use different forage, different activity intervals, and different foraging spaces. Relative to 

omnivores, carnivores, and herbivores in temperate regions, caribou and muskoxen on 

Banks Island are limited in their ability to diversify their diet while meeting seasonal 

metabolic and nutritional requirements. In addition, the isotopic data, when accounting for 

TDFs, suggest that the diets of Pre-Dorset caribou and muskoxen are nearly identical. 

Caribou and muskoxen also follow the same seasonal activity patterns, and there is no 

division of daily activity periods that might allow them to utilize the same range without 

competition, as in many other sympatric species (Kronfeld-Schor and Dayan 2003). 

There is, however, evidence for an elevational partitioning of microhabitat between 

species, with caribou spending more time on hillsides and uplands, and muskoxen foraging 
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in lower wet sedge meadows and hummock tundra (Wilkinson and Shank 1975; Wilkinson 

et al. 1976; Ferguson 1991), though their ranges do overlap significantly. It is conceivable 

that the segregation of caribou and muskox micro- or macrohabitats during the Pre-Dorset 

period was great enough that, although they utilized the same forage sources, no inter-

specific forage competition occurred. Caribou also travel more than muskoxen, and can 

therefore exploit forage resources across a greater area of the landscape than muskoxen. 

Additionally, the warm, stable climatic regime of the Pre-Dorset period probably permitted 

forage species on Banks Island to colonize greater portions of the landscape than in cooler 

periods. The differential use of landscape by caribou and muskoxen during the Pre-Dorset 

period is a testable hypothesis that would provide further insight into their unique niche 

relationship during this period. In Chapter 4, we explore the use of enamel oxygen isotope 

compositions from archaeological caribou and muskox teeth to reconstruct faunal 

movements on Banks Island across time. Our dataset, however, does not include any 

caribou teeth dated to the Pre-Dorset period, and we find in that chapter that tooth enamel 

δ18O in both species is dominated by seasonal precipitation signals. 

Contrary to the Hutchinsonian framework, an interpretation of Pre-Dorset isotopic niche 

based on the ecological displacement model is relatively straightforward. Because smaller 

niche areas are associated with less competition, the combination of small but significantly-

overlapping ellipses during the Pre-Dorset period suggests that either the caribou and 

muskox populations were small enough that neither intra-specific nor inter-specific forage 

competition regulated niche size, or that preferred forage was so abundant that caribou and 

muskoxen could both maintain sizeable populations in a single ecological niche. The 

former explanation seems more likely since the carrying capacity of the tundra should 

increase with warmer temperatures and greater phytomass. 

In Hutchinson’s (1957, 1978) original conception, only a single species can occupy a 

fundamental ecological niche without competitive exclusion occurring (Soberón 2007). 

More recent work, however, suggests that species redundancy – that is, the existence of 

two species in the same niche, and which fulfill the same ecological functions – not only 

occurs in, but is an important aspect of some ecosystems (Lawton and Brown 1993; Naeem 

1998; Rosenfeld 2002). Although it is possible that Pre-Dorset caribou and muskoxen 
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differed along other niche axes not indexed by δ13Cbc and δ15Nbc such as landscape use, the 

idea of species redundancy allows for the theoretical existence of multiples species in a 

single ecological niche. We argue that the warm, stable environmental conditions of the 

Pre-Dorset period permitted both caribou and muskoxen to persist in the same dietary – if 

not ecological – niche for the entirety of the Pre-Dorset period. 

Larger but minimally-overlapping isotopic niches during the Lagoon and Early Thule 

periods (Figure 3.10b, c) closely follow the expectations for greater forage competition 

under the ecological displacement model. Because mean summer air temperatures in the 

Western Arctic were generally lower between ~ 3000 and ~ 1000 BP than today (Bradley 

2000; Kaufman et al. 2004; Fortin and Gajewski 2010; Gajewski 2015b), overall 

phytomass productivity was depressed for much of the Lagoon phase. Dwarf willow (Salix 

arctica) appears to be an important spring and summer forage resource for modern caribou 

and muskoxen, although it either does not contribute largely to, or is not largely reflected 

in bulk bone collagen δ13C and δ15N (Chapter 2). Bayesian dietary mixing models in 

Chapter 2 also suggest that legumes (Astragalus spp., Oxytropis spp.) play a significant 

role in modern caribou diet on Banks Island. Neither dwarf willow nor legumes are cold-

tolerant (Edlund 1986) and palynological evidence suggests that Salix productivity began 

declining in the Canadian Arctic between 3500 and 2500 years ago, and remained low until 

the 20th century (Gajewski 1995). Although dwarf birch (Betula nana) is poorly 

represented on Banks Island today (Edlund 1986; Dyke 2005), it is a staple of caribou and 

muskox diet elsewhere and palynological data also show that Betula pollen productivity on 

Banks Island was high until ~ 3000 years ago (Gajewski et al. 2000). 

Bayesian dietary mixing models (Chapter 2) also suggest that yellow lichen (Cetraria 

tilesii) contributes significantly to modern caribou and muskox bone collagen isotopic 

compositions. We argue in Chapter 2 that Cetraria is an important source of carbohydrates 

and non-essential amino acids for both species during the winter. Assuming the δ13C and 

δ15N of lichens has remained the same across time, the pattern of high δ13Cbc and low δ15Nbc 

in Pre-Dorset caribou and muskoxen may also indicate that lichens were an important 

dietary resource during that period as well. 
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As cryptogams, lichens do not produce pollen, and so there are few direct indicators of 

lichen productivity in the Arctic prior to the late 20th century. It is possible that between 

the Pre-Dorset and Lagoon period, however, lichen phytomass was significantly reduced 

by the presence of multiyear snow cover. Several researchers (Locke and Locke 1977; 

Dyke 1978; Lévesque and Svoboda 1999) have posited that lichen-free zones in several 

Eastern Arctic locations are evidence that lichen phytomass was reduced by perpetual 

snowbanks during recent cold periods. Although lichens are more cold-tolerant than 

vascular plants, and can maintain photosynthetic and metabolic activity throughout the 

winter (Kappen 1993), they are slow-growing (Miller 1973; Henry and Gunn 1990; Klein 

1987, 1992; Larter and Nagy 1997; Griller 2001; Joly et al. 2008). The dietary challenge 

presented to caribou and muskoxen by reduced lichen availability during winter might also 

explain why the SEAc ellipses of Lagoon and Early Thule caribou and muskoxen exhibit 

greater eccentricity towards high δ15N. 

The Early Thule period also coincides with the end of the Medieval Warm Period (MWP) 

which lasted from ~ 1100 cal. BP to ~ 900 cal. BP (McGhee 1983; Podritske and Gajewski 

2007; Trouet et al. 2009; D’Andrea et al. 2011), and the large isotopic niches of caribou 

and muskoxen during this period may reflect ecological turmoil caused by relatively rapid 

oscillations from colder, to warmer, to colder climatic regimes preceding and following the 

MWP. Consequently, we expect the apparent niche diversification during the Lagoon and 

Early Thule periods to reflect competitive niche expansion due to the reduced availability 

of preferred forage types, potentially including shrubs, legumes, and lichens as a result of 

climatic instability. 

As to alternative forage sources utilized by caribou and muskoxen during colder periods, 

the Lagoon and Early Thule periods both coincide with the beginning of an increase in 

graminoid productivity in the Western Canadian Arctic (Gajewski et al. 2000; Gajewski 

and MacDonald 2004; Peros and Gajewski 2009). Non-leguminous forbs, specifically 

Saxifragaceae, also briefly increased in productivity around the time of the Early Thule 

period (Gajewski and MacDonald 2004). Along with potentially lower lichen availability, 

the increase in both caribou and muskox δ15Nbc during the Lagoon and Early Thule period 
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may reflect increasing utilization of non-leguminous forbs and sedges, respectively, by 

caribou and muskoxen. 

Lagoon and Early Thule bone collagen isotopic compositions, transposed into quasi-

IsoSpace, fail to meet the expectations of competitive niche specialization outlined by the 

classical ecological niche framework. A Hutchinsonian interpretation of the large isotopic 

niches of Lagoon and Early Thule caribou and muskoxen would suggest that competitive 

drive towards dietary specialization relaxed during these periods. Given the decline in 

average annual air temperature during these periods, this interpretation seems unlikely. 

The apparent partition of caribou δ13Cbc into two relatively distinct clusters during the Early 

Thule period (most apparent in Figure 3.10c) may have additional ecological significance. 

Though potentially an artifact of a relatively small sample size, this clustering may 

represent a resource polymorphism (Smith and Skúlason 1996; Matthews and Mazumder 

2004), where members of a single species begin utilizing two distinct dietary resource 

pools. Intra-specific resource polymorphisms often occur with genetic divergence, but in 

this context, it may indicate that non-indigenous caribou herds with different forage bases, 

such as barren ground caribou, were present on Banks Island in greater numbers during the 

Early Thule period. It is also possible that forage conditions on Banks Island were so poor 

during the Early Thule period that greater numbers of Peary caribou from Banks Island 

foraged elsewhere before returning and being harvested by hunters. Again, oxygen isotopic 

analysis of tooth enamel is well-suited for testing these hypotheses, but we did not recover 

any caribou teeth from Early Thule sites on Banks Island. 

Finally, it is possible that the two clusters of caribou bone collagen isotopic compositions 

represent a dietary transition between two distinct Early Thule occupational events. All but 

one of the Early Thule caribou bone samples originate from the OhRh-1 site at Nelson 

River on Banks Island (Figure 3.1), and current research (Arnold 1986; Friesen and Arnold 

2008) suggests that the entire Nelson River site was only inhabited for a few decades. Still, 

given the probable ecological instability during the Early Thule period, caribou diets may 

have varied significantly from year-to-year. 
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The transition to smaller but minimally-overlapping isotopic niches during the Classic 

Thule and Inuit periods suggests that some fundamental decoupling of caribou and muskox 

niche dynamics occurred during these cultural periods. Most notably, caribou appear to 

return to the same approximate position in quasi-IsoSpace as during the Pre-Dorset period, 

while the mean δ15Nbc for muskoxen continues to increase. This small but strongly linear 

increase in muskox mean δ15Nbc (Figure 3.19) warrants consideration and has several 

potential causes. 

A common explanation for increased tissue δ15N is the catabolic utilization of body tissues 

due to increased dietary stress (Hobson et al. 1993; Fuller et al. 2005; Drucker et al. 2012). 

We argue in Chapter 2 that because of evolved physiological adaptations to the Arctic 

environment, catabolic enrichment of tissue δ15N probably does not occur in muskoxen or 

caribou. Instead, the simplest explanation for higher δ15Nbc during the Classic Thule, and 

especially Inuit period, is that muskoxen increasingly utilized forage resources with higher 

δ15N. Although we cannot currently quantify forage δ13C and δ15N in the past, isotopic 

analysis of modern forage samples from Banks Island (Chapter 2) demonstrates that 

graminoids, and specifically sedges, have higher δ15N than other forage samples we 

collected. Palynological data (Gajewski et al. 2000; Gajewski and MacDonald 2004; Peros 

and Gajewski 2009) also suggest that grass and sedge productivity in the Western Canadian 

Arctic also began increasing after ~ 3000 BP. Given their general morphological and 

physiological adaptations towards the efficient digestion of low quality forage like grasses 

(Hofmann 2000), muskoxen may have capitalized on increasing graminoid availability 

during the colder centuries to avoid forage competition with caribou while still meeting 

their nutritional and metabolic needs. 

3.5.4 Muskox Bone Collagen Isotopic Compositions as Indices of 
Ecological Change 

The increase in the mean δ15Nbc of muskoxen between the Pre-Dorset and Inuit periods 

may also indicate that muskoxen, due to their limited ranges and forage preferences, 

integrate signals from ecological changes like terrestrial nitrogen cycle “openness” (Austin 

and Vitousek 1998) more closely than caribou. Biotic factors that affect terrestrial nitrogen 

balance, and subsequently ecosystem δ15N, include increased or decreased trampling and 
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grazing by herbivores (Schlesinger et al. 1990; Smith 1996; Welker et al. 2004; Pajunen et 

al. 2008; Olofsson et al. 2009; Post 2013; Falk et al. 2015; Koch and Fox 2017), and 

increased or decreased nitrogenous input from animal waste (Ambrose 1991; Smith 1996; 

Frank and Evans 1997; Tozer et al. 2005). Given that the muskox population on Banks 

Island can expand to significant numbers, muskox grazing, trampling, and waste inputs 

have probably influenced the nitrogen cycling significantly during certain periods over the 

last 4000 years. At present, however, we can only speculate about muskox 

paleodemography on Banks Island, and it is unclear at what population density level these 

processes begin to impart significant effects on overall terrestrial nitrogen balance. The 

cycling of terrestrial and marine nitrogen sources by lesser snow geese (Chen 

caerulescens), which maintain large colonies on Banks Island (Kerbes et al. 1999; Samuel 

et al. 1999), and seabirds, respectively, is also probably significant to the nitrogen balance 

of Banks Island. Again, however, we know little about the paleodemography of different 

bird species on Banks Island, and so it is unclear whether avian nutrient inputs have 

increased or decreased over time. 

In any case, abiotic factors that affect the openness of the terrestrial nitrogen system should 

be the most important in dictating long-term trends in ecosystem-wide nitrogen availability 

and δ15N trends on the tundra. In a “closed” nitrogen system, nitrogen inputs and outputs 

are balanced, and little or no nitrogen is lost from the system. As a result, soil and plant 

δ15N remains low over time (Handley et al. 1999; Stevens et al. 2008). In more “open” 

nitrogen systems, inputs and outputs are disproportionate from one another and soil and 

plant δ15N will change depending on the input or output processes occurring (Austin and 

Vitousek 1998; Handley et al. 1999). Nitrogen cycle “openness” is typically associated 

with ecosystem 15N-enrichment because 14N is preferentially fractionated in “nearly all 

nitrogen transformation processes” (Austin Vitousek 1998:520). In reality, the terrestrial 

nitrogen cycles of few ecosystems are completely closed, given that outflow (i.e. demand) 

for nitrogen generally exceeds inputs (Amundson et al. 2003; Marshall et al. 2007). 

Consequently, at steady state over long periods of time, nitrogen losses will approach or 

exceed input rates and ecosystem-wide δ15N will increase (Handley and Raven 1992; 

Austin Vitousek 1998; Amundson et al. 2003). 
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In general, plants can acquire nitrogen from three sources: (1) soil-bound ammonium 

(NH4
+), nitrate (NO3

–), and natural monomers (i.e. proteins and amino acids) via 

associations with fungal (mycorrhizal) symbionts (Read 1991; Jones et al. 2005; Hobbie 

and Hobbie 2006); (2) N2-fixation via associations with root-borne bacterial (rhizobial) 

symbionts (Alexander et al. 1978; Zahran 1999; Vitousek et al. 2002); and (3) directly from 

soil-bound natural monomers (Schimel and Chapin 1996; Schimel and Bennett 2004; 

Farrell et al 2011). The availability of NH4
+ and NO3

– is generally limited in tundra 

ecosystems. Even at present, when average annual air temperatures in the Arctic are 

relatively high (Navarro et al. 2016; Lecavalier et al. 2017), the perennially cold, nearly 

anaerobic soils of the Arctic limit microbial decomposition of organic polymers and 

mineralization of nitrogen into ammonium and nitrate (Van Cleve and Alexander 1981; 

Kielland 1994; Hicks Pries et al. 2012). Consequently, soil concentrations of NH4
+ and 

NO3
– tend to be small, and most soil-bound nitrogen will occur in the form of labile proteins 

and amino acids (Kielland 1995; Lipson and Näsholm 2001), which are cycled 

continuously between living and dead organic pools (Stevens and Hedges 2004:983). 

The major source of new nitrogen entering tundra ecosystems is N2-fixation by free-living 

soil cyanobacteria (Alexander and Schell 1973; Stutz 1977; Henry and Svoboda 1986; 

Solheim et al. 1994; Chapin et al. 1991; Liengen and Olsen 1997; Vitousek et al. 2002). 

Since N2-fixation by free-living soil cyanobacteria is inhibited by increased aridity and 

lower temperature (Alexander et al. 1978; Chapin 1991; Chapin and Bledsoe 1992), and 

the availability of inorganic nitrogen on the tundra is low in general, the demand for 

monomeric soil nitrogen sources by primary producers likely intensified during the cooler 

period from ~ 3000 BP to 1500 cal. BP. As the imbalance between nitrogen inputs and 

outputs increased, proteins and amino acids recycled back into the soil nitrogen pool would 

have increasingly higher δ15N. 

Significantly, recent research demonstrates that the sedges from the genera Carex and 

Eriophorum are flexible in their nitrogen uptake strategies, and when necessitated by low 

inorganic nitrogen availability, can forgo symbiotic mycorrhizal associations and directly 

assimilate organic soil nitrogen sources like labile soil amino acids (Chapin et al. 1988, 

1993; Kielland 1994; Schimel and Chapin 1996). The ability of sedges to directly 
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assimilate organic soil nitrogen sources allows them to “short-circuit” (Kielland 

1994:2381) the inorganic mineralization process. Additionally, direct uptake of organic 

nitrogen sources by sedges reduces competition with plant genera like Salix, Dryas, and 

Cassiope (Michelsen et al. 1998), which may only obtain nitrogen from inorganic sources 

via mycorrhizal associations. We argue then, that sedges, because of their ability to uptake 

organic nitrogen directly from the soil, will track increasing ecosystem δ15N, while in 

mycorrhizally-associating plants, the ecosystem δ15N signal is obscured by multiple 

fractionating processes involved with uptake of inorganic nitrogen (Högberg 1997; Evans 

2001; Robinson 2001). 

Along with studies of fecal (Oakes et al. 1992; Larter and Nagy 1997, 2004) and rumen 

(Thing et al. 1987) content, we demonstrate in Chapter 2 that sedges are a significant 

dietary resource for muskoxen. Although sedges also appear to be an important part of 

modern caribou diet on Banks Island, caribou SEAc ellipses in Figure 3.9f suggest that 

mean caribou δ15Nbc is higher today than at any time after the Early Thule period. This 

implies that the utilization of sedges by modern caribou is greater than that of caribou 

during the Classic Thule and Inuit periods. Dietary mixing models in Chapter 2 also 

demonstrate that legumes may be an important forage source for caribou. Because arctic 

legumes can utilize atmospheric N2 via associations with root-borne bacterial (rhizobial) 

symbionts (Alexander et al. 1978; Prévost et al. 1987; Prévost et al. 1990), their δ15N should 

remain close to 0‰ regardless of changes in the terrestrial nitrogen cycle. It is possible 

then, that the increase in mean muskox δ15Nbc, particularly during the Classic Thule and 

Inuit periods, represents increasing utilization of sedges, the δ15N of which were steadily 

driven upwards by the opening of the terrestrial nitrogen cycle. In short, caribou δ15Nbc 

from the Classic Thule and Inuit periods may not reflect increasing ecosystem δ15N because 

of greater legume consumption, and lower sedge consumption, relative to muskoxen. 

3.5.5 Caribou Dentin Collagen Isotopic Compositions and 
Seasonal Dietary Variation 

Aside from the M1 of BIBS14-214, tooth-averaged δ13Cdc in the M1s of Thule and Inuit 

caribou is about 0.5‰ higher than the δ13C-corrected, tooth-averaged δ13Cdc of the modern 

caribou M1 (BIBS16-19 M1) (Table 3.8). Likewise, tooth-averaged δ15Ndc in all 
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archaeological caribou M1s except for BIBS14-360 is ~ 0.5‰ lower than the tooth-

averaged δ15Ndc of BIBS16-19 M1 (Table 3.9). In terms of its bulk bone collagen δ15Nbc 

(+4.5‰, Table 3.2), BIBS14-360 appears to be an outlier compared to other Inuit period 

caribou. Overall then, tooth-averaged δ13Cdc and δ15Ndc from caribou M1s reflects the same 

pattern as in bone collagen of decreasing δ13C and increasing δ15N across the Classic Thule, 

Inuit, and modern periods. Potential seasonal variation in δ13Cdc and δ15Ndc in caribou M1s 

is obscured by our bulk dentin sampling method. Still, the similarity of bone and dentin 

collagen isotopic signals suggests that changes in caribou isotopic niche over the last ~ 700 

years are not due to seasonal dietary variation alone, but are also in part the result of change 

in overall diet. 

Except for BIBS14-360, high Δ15Ndc-bc offsets in most of the archaeological caribou M1s 

are explained by low bone collagen δ15N (i.e. less than +3.0‰), rather than particularly 

high δ15Ndc. A pattern of higher Δ15Ndc-bc offsets due to lower δ15Nbc is what we would 

expect if calves were supplementing their diets by nursing while the diets of their cows 

consisted of forage with low δ15N. Accounting for the disparity between tooth formation 

and eruption, the 1‰ decrease in the Δ15Ndc-bc offsets of BIBS14-298 M2 and M3 (Table 

3.9) suggests that weaning began sometime within the second summer of life. Conversely, 

in BIBS14-214 the Δ15Ndc-bc offset remains above 2‰ in all teeth. Based on our discussion 

of caribou tooth eruption times, nursing and dentin collagen isotopic compositions in 

Chapter 2, high Δ15Ndc-bc offsets in multiple permanent teeth indicate that this caribou 

probably continued nursing into the third winter of life. Again, because of lactational 

anestrus in caribou, under normal conditions we should expect small or absent Δ15Ndc-bc 

offsets in teeth developing after birth. Where Δ15Ndc-bc offsets in caribou molars and 

permanent premolars are high, there is some indication that nutritional conditions were 

poor enough that caribou cows were compelled to sacrifice reproductive potential to ensure 

the survival of existing calves by continuing nursing. 

The potential link between caribou Δ15Ndc-bc and demographic variation provides additional 

insight into the overall niche dynamics of caribou and muskoxen during the Classic Thule, 

Inuit, and modern periods. Again, Bayesian dietary mixing models (Chapter 2) suggest that 

sedges contribute significantly to modern caribou bone collagen isotopic compositions. In 
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Chapter 2, we also suggest that the high proportional contribution of sedges to modern 

caribou bone collagen is the result of caribou moving into the muskox ecological niche 

after very recent declines in the muskox population (Kelvin 2016). The higher δ15Nbc in 

modern caribou relative to caribou from the Classic Thule and Inuit periods also supports 

the idea of a recent shift towards greater sedge consumption. That the Δ15Ndc-bc offset in 

the modern caribou M1 (Δ15Ndc-bc = +1.7‰) is also lower than the Δ15Ndc-bc offsets in 

caribou M1s from the Classic Thule (Δ15Ndc-bc = +3.0‰, +2.8‰, and +2.3‰) and one of 

the two caribou M1s from the Inuit period (Δ15Ndc-bc = +2.8‰) (Table 3.9) also suggest a 

causal relationship between access to sedges, shorter weaning times, and increases in the 

caribou population size. 

3.5.6 Muskox Dentin Collagen Isotopic Compositions and 
Seasonal Dietary Variation 

As with caribou, δ13Cdc and δ15Ndc in muskox M1s largely mirrors changes in bone collagen 

δ13C and δ15N across cultural periods. For instance, Figure 3.18 demonstrates that mean 

δ13Cbc for muskoxen is lowest during the Inuit and Classic Thule periods, respectively. In 

Figure 3.16a, the intra-tooth δ13Cdc of BIBS14-456 M1, which is directly dated to the Inuit 

period (302-147 cal. BP, Figure 3.3, Table 3.1), is noticeably lower than those of other 

muskox M1s. BIBS14-474 M1, which dates to the Classic Thule period, should also have 

low intra-tooth δ13Cdc, but Figure 3.16c demonstrates that this not the case. Instead, the 

δ13Cdc of the first microbulk dentin sample from BIB14-474 M1 is relatively low compared 

to other dentin collagen samples, but in the next microbulk dentin sample, δ13Cdc increases 

by more than 1‰. Following the argument that occlusally-worn muskox M1s largely track 

dietary shifts between the middle of the first summer and first winter of life, the intra-tooth 

δ13Cdc from the M1 of BIBS14-474 suggests that this muskox switched relatively rapidly 

from a lower-δ13C diet in summer to a higher-δ13C diet during winter. Based on modern 

forage isotopic compositions, and patterns in modern muskox crown dentin collagen 

(Chapter 2), however, we expect an increase in intra-tooth δ13Cdc to correspond with a 

decrease in intra-tooth δ15Ndc. Instead, δ15N increases across sequential microbulk dentin 

samples from the M1 of BIBS14-474 (Figure 3.17c), and this pattern is only observed in 

one other muskox M1 (BIBS14-407). Given that the M1 from BIBS14-474 has the lowest 
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tooth-averaged Δ15Ndc-bc offset of all M1s (1.8‰), it may be that this muskox was weaned 

earlier than most of the other muskoxen from which we sampled teeth. Consequently, the 

intra-tooth δ13Cdc of BIBS14-474 M1 tracks changes in forage δ13C, while its δ15Ndc 

integrates a rapid seasonal shift in climatic conditions, such as aridity. Additionally, the 

bones and teeth of BIBS14-474 were collected at QbPu-3, at the northern edge of Mercy 

Bay (Figure 3.1), and it is possible that this muskox migrated across sea ice from another 

island such as Melville Island or the northern part of Victoria Island, during its first winter 

of life. The unique dentin collagen isotopic compositions from BIBS14-474 may therefore 

reflect geographic variation in forage δ13C and δ15N. 

Based on published accounts of weaning times (Tener 1965; Parker et al. 1990; 

Adamczewski et al. 1997) and tooth eruption patterns (Tener 1965; Henrichsen and Grue 

1980) in muskoxen, we hypothesize in Chapter 2 that the isotopic compositions of crown 

dentin collagen in muskox M1s should capture the transition from nursing to full herbivory 

in muskoxen during the first year or so of life. Accordingly, we expected to observe 

significant decreases in δ15N across sequential crown dentin samples in each archaeological 

muskox M1. Such a pattern would have reflected a decrease in milk supplementation as 

the tooth developed, particularly in warmer periods when phytomass productivity was 

higher. Instead, the absence of major decreases in δ15Ndc in each tooth, and relatively large 

Δ15Ndc-bc offsets (i.e. greater than 2‰) in all but one M1 (BIBS14-474 M1), suggest that 

none of the muskoxen from which we sampled teeth weaned during the time when the 

crowns of their M1s developed. That the two Pre-Dorset muskoxen (BIBS14-407 and -

409) have relatively high Δ15Ndc-bc offsets (3.2‰ and 2.5‰, respectively) is especially 

surprising, given the higher average annual air temperature, and presumably greater 

phytomass productivity during this period. The relatively homogenous intra-tooth δ15Ndc 

of BIBS14-409 M1 suggests that this muskox was still nursing during most of the time that 

the M1 was developing. Conversely, the intra-tooth variability in δ15Ndc in the M1 of 

BIBS14-407 would suggest that this muskox was weaned early, and hence that the intra-

tooth δ15Ndc of its M1 reflects forage δ15N variation. The Δ15Ndc-bc offset is greater in the 

M1 of BIBS14-407 than in the M1 of BIBS14-409, however, in part because the inter-tooth 

averaged δ15Ndc for BIBS14-409 M1 (+6.6‰) is 1.5‰ greater than the inter-tooth averaged 

δ15Ndc for BIBS14-407 M1 (+5.1‰), and in part because the bone collagen δ15N of 



 

304 

BIBS14-409 (+4.1‰) is 2.2‰ higher than the bone collagen δ15N of BIBS14-407 

(+1.9‰). The bone collagen δ15N of BIBS14-407 and BIBS14-409 are the lowest and 

highest, respectively, of the thirty-six Pre-Dorset muskox bone collagen samples we 

analyzed, though they are not necessarily outliers. 

In Chapter 2, we discuss other potential explanations for large Δ15Ndc-bc offsets in modern 

muskox teeth, including seasonal catabolism and the assimilation of dead gut microflora. 

Neither of these explanations are satisfactory, since both processes should recur throughout 

life and should therefore affect the δ15N of bone collagen as well. We also considered 

whether persistent Δ15Ndc-bc offsets in the muskox M1s are due to dietary differences 

between earlier and later life. Oakes et al. (1992) suggest that in spring and summer, 

muskox calves consume more sedges, rushes and forbs, yearlings consume more forbs and 

grasses, and adult muskoxen mostly sedges, rushes and grasses. Even though we have no 

isotopic data for rushes, a lack of isotopic data from rushes still fails to explain the Δ15Ndc-

bc offsets because modern forbs have lower δ15N than modern sedges or grasses. If forb 

consumption declined significantly in adulthood, we would expect bone collagen to be 

enriched in 15N relative to crown dentin collagen. Instead, we observe the opposite in both 

modern and archaeological muskox teeth. Consequently, we suggest that: (1) either our 

model of muskox tooth development, which is based only on eruption schedules, is 

incorrect and M1s begin to develop well before parturition, or (2) muskox cows nurse into 

at least the second spring or summer of life as a matter of course. Henrichsen and Grue 

(1980:9) report that at birth, the muskox M1 is found “as loose parts in the alveolus” and 

from personal observations, these “loose parts” are the small (~ 10 mm), apical-most 

portions of the cusps. The δ13Cdc and δ15Ndc of these portions of the tooth cusps should 

capture prenatal, maternal dietary signals. Since significant portions of the tooth crown, 

including the entire cusp, are obliterated by occlusal wear in adulthood, however, the 

remaining portions of the M1 must have developed sometime between birth and the second 

summer of life. If muskoxen nurse into the second year of life in general, this also suggests 

that, contrary to traditional knowledge (Nagy 1999) and some observational data (Latour 

1987; Gunn et al. 1991), muskoxen are historically more likely to calve every other year 

than on a yearly basis. 
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3.5.7 The Archaeological Significance of Caribou and Muskox 
Niche Relationships on Banks Island 

The intra- and inter-specific homogeneity of Pre-Dorset caribou and muskox δ13Cbc and 

δ15Nbc, when transformed into quasi-IsoSpace, suggests that the Pre-Dorset occupation on 

Banks Island ended abruptly. If the utilization of caribou and muskoxen during the Pre-

Dorset decreased gradually as temperatures slowly declined and ecological conditions 

deteriorated, we might expect relatively large ellipses, that if theoretically subdivided in 

time, would resolve into multiple niche positions. That is, if there were enough bone 

samples and radiocarbon dates to arrange Pre-Dorset caribou and muskox δ13Cbc and δ15Nbc 

into a temporal sequence, we might expect to see a gradual expansion of niche widths, 

reflecting decreasing forage availability and greater intra-specific dietary variability. 

The Pre-Dorset bone collagen dataset is not large enough to formally test this hypothesis, 

but available radiocarbon dates (Figure 3.3, Table 3.1) suggest that the Shoran Lake site 

(PjRa-1) may have been used several hundred years earlier in the Pre-Dorset period than 

Umingmak (PjRa-2). Radiocarbon dates from the Twin Lakes site (PjPx-10) seem to span 

the entire Pre-Dorset period. Arnold (1983), however, suggests that Shoran Lake and 

Umingmak were inhabited simultaneously. Consequently, the apparent temporal 

stratification of Pre-Dorset sites may be the result of a small radiocarbon dataset. 

Nevertheless, Figure 3.20 demonstrates no obvious variation in Pre-Dorset caribou and 

muskox δ13Cbc and δ15Nbc by site. The seemingly tighter “packing” of the muskox isotopic 

data from PjRa-2, relative to those of PjRa-1, which could be construed as a change in 

dietary specialization related to increased competition later in the Pre-Dorset period, is 

probably related to the smaller muskox sample size from PjRa-1 relative to PjRa-2. In 

short, even if the Pre-Dorset can be sub-divided temporally by archaeological site, the 

homogeneity of isotopic compositions at all three sites emphasizes the overall low dietary 

variation across the entire period. 

It therefore seems unlikely that a combination of declining ecological conditions and 

overexploitation by humans drove caribou or muskoxen to the point of extirpation at the 

end of the Pre-Dorset period. Given the evidence for the relatively swift onset of cooler 
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temperatures across the North American Arctic around 3500 cal. BP (Kaufman et al. 2004; 

D’Andrea et al. 2011; Gajewski 2015b), groups on Banks Island who were culturally 

adapted towards terrestrial resource utilization probably rapidly abandoned the Shoran 

Lake complex (i.e. the PjRa-1 and PjRa-2 sites) and PjPx-10 because of new challenges to 

the ASTt lifeway brought on by declining temperatures. 
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Figure 3.20. Non-transposed caribou and muskox bone collagen δ13C and δ15N values 

from the Pre-Dorset period, divided by archaeological site, demonstrating the relative 

homogeneity of isotopic values across the entire Pre-Dorset period. 
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Given the seasonal nutritional and metabolic challenges caribou and muskoxen face in 

general, the competitive expansion of caribou niche during the Lagoon and Early Thule 

periods was likely fitness-reducing, and may be responsible for the generally poorer 

representation of caribou relative to muskoxen at Lagoon and Early Thule period sites on 

Banks Island. Although cultural factors may also have been at play, if larger isotopic niche 

areas during the Lagoon and Early Thule periods do correspond to poorer forage conditions 

and lower calf productivity, it could be that people encountered fewer caribou or 

muskoxen, in poorer body condition, less often during the season(s) in which sites were 

inhabited. Consequently, hunting them for food may not have been “worth the effort”: Lent 

(1999) notes that caribou and muskoxen in poor physical condition often have unpalatable 

meat. Since bowhead whales and ringed seal utilize marine resources, and geese migrate, 

these species were probably unaffected by terrestrial ecological changes on Banks Island, 

and were presumably abundant. Additionally, geese and ringed seal are relatively easy to 

hunt, provide high caloric returns. the amount of meat and fat provided by bowhead whales 

relative to the effort required to harvest them is also significant. Consequently, caribou and 

muskox hunting may have only occurred on a supplemental basis, or when animals were 

passively encountered during these periods. 

The abundance of Inuit period sites on Banks Island, and the high representation of 

muskoxen in particular at those sites, suggest that muskoxen were abundant during this 

time. As we argue above, this productivity may be the result of increased graminoid 

availability, reflected in part by high δ15Nbc. The generally poor representation of caribou 

at Inuit period sites, and limited evidence of prolonged nursing given by the intra-tooth 

δ15Ndc of a single caribou (BIBS14-214) may indicate that caribou were not as productive 

as muskoxen during the Inuit period. A hypothesis for future research is whether Inuit 

period groups actively managed the muskox population on Banks Island. In particular, the 

Head Hill (PlPx-1) site contains the skeletal remains of more than 500 muskoxen, many of 

which are still articulated (Wilkinson and Shank 1975; Hickey 1982; Shank et al. 1994). 

Radiocarbon dates (Figure 3.3, Table 3.1; Shank et al. (1994) also suggest that Head Hill 

was probably used for more than a century around 250 cal. BP. Elders from Sachs Harbour 

who visited Head Hill have described the abundance of muskox remains as “wasteful” 
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(Lisa Hodgetts, personal communication, 2016). People on Banks Island historically 

preferred the taste of caribou to muskoxen (Nagy 1999; Kelvin 2016), and traditional 

ecological knowledge records that the muskox population, left unchecked, will increase 

rapidly (Nagy 1999). As we discuss in Chapter 2, some people on Banks Island also believe 

that the behavior or odor of muskoxen drives caribou away (Nagy 1999; Kelvin 2016). 

Collected oral accounts (Nagy 1999) document that prior to the mid-twentieth century, 

people on Banks Island did cull muskoxen to keep them from driving the caribou away. 

Sachs Harbour resident Sam Lennie, recorded by Muriel Nagy in the 1990s recalls that in 

the past, “[Elder] Susie Tiktalik told hunters and trappers, “if anyway you fellows could 

destroy all them muskox, do it” (Nagy 1999:154)17. Given the probable cultural continuity 

across the Inuit period on Banks Island, it is conceivable that muskox culling was also 

practiced, or started, during this period as a response to a rapid population boom. 

That the transposed SEAc ellipses of modern caribou and muskoxen do not overlap, despite 

mean summer temperatures being comparable to those of the Pre-Dorset period, suggests 

that changes to phytomass composition on Banks Island during cooler periods 

fundamentally altered the niche dynamics of caribou and muskoxen, such that they now 

utilize distinct ecological niches. It is also possible that the modern caribou and muskox 

isotopic datasets, drawing largely from a single year of harvests, capture only transitory 

niche conditions associated with the recent decline of the muskox population, and the 

increase in the caribou population (Kelvin 2016). 

3.6 Conclusion 

Isotopic approaches to ecological niche estimation have developed rapidly over the past 

decade. Statistical packages like SIBER now permit researchers to quantify the niche 

metrics of individuals in ecological communities, while mixing models can be used to 

estimate the proportional contributions of different source data to consumer tissues. The 

                                                 

17
The ecological rationale behind this management strategy, and the negative consequences of a muskox 

hunting ban imposed by the Canadian government from 1917 to 1971, are discussed by Barr (1991) and 

Nagy (1999). 
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thread linking these methods is the trophic discrimination factor, and until recently, TDFs 

have been sufficiently poorly-constrained that researchers have used the same TDFs across 

a single trophic level. As empirical data from controlled feeding studies and alternative 

approaches to TDF estimation like SIDER advance our understanding of TDF variation 

within trophic levels, we predict that the concept of “isotopic niche” will increasingly be 

called into question, and with it, some existing interpretations of sympatric niche 

relationships. We agree with Newsome et al. (2007, 2012) that researchers should present 

consumer isotopic data in “IsoSpace” or “DietSpace” whenever possible to more accurately 

describe dietary relationships. This presents serious problems for workers in paleoecology, 

however, where trophic discrimination factors and source isotopic compositions are 

unknown and perhaps unknowable. Bayesian approaches to TDF estimation present a 

partial solution to this problem by allowing researchers to transform consumer isotopic 

compositions into what we call “quasi-IsoSpace”. This transformation of the isotopic data 

is particularly important when investigating potential niche competition between sympatric 

species with strict seasonal nutritional and metabolic requirements like caribou and 

muskoxen. Because there may be differences in trophic discrimination factors between 

species, the comparison of their tissue isotopic compositions can provide a misleading 

picture of niche overlap. Finally, we suggest that researchers wishing to explore seasonal 

variation in muskox diet should focus on M2s or M3s, since the δ13Cdc and δ15Ndc of these 

teeth is more likely to capture the weaning process. Likewise, our understanding of nursing 

in archaeological caribou would benefit significantly from the isotopic analysis of crown 

dentin collagen from additional M2s and M3s, since nursing potentially continues after the 

development of the M1. 

This chapter demonstrates that when different TDFs are applied to sympatric species, their 

apparent isotopic niche relationships can change dramatically. Transposed δ13Cbc and 

δ15Nbc from archaeological caribou and muskoxen suggests that caribou and muskoxen on 

Banks Island do not necessarily exert competitive pressure on one another. Instead, both 

species have persisted on Banks Island at different times and under variable ecological 

conditions by capitalizing on their relative dietary flexibility to avoid forage competition. 

Still, nutritional stress related to decreased phytomass during the Lagoon and Early Thule 

periods probably coincided with greater mortality and lower productivity in both species. 
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Given the abundance of other faunal resources, human hunters during these periods may 

have only harvested caribou or muskoxen opportunistically. The morphological and 

physiological adaptations of muskoxen, which allow them to extract the maximum amount 

of nutritive value from lower-quality forage like grass, and the ability of muskox cows to 

remain fertile while nursing yearlings, may have also provided demographic advantages 

over caribou during the Inuit period.  
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Chapter 4  

4 Assessing the Potential of Enamel δ18O for the 
Reconstruction of Seasonal Movements in Caribou 
(Rangifer tarandus spp.) and Muskoxen (Ovibos 
moschatus) on Banks Island, NWT, Canada. A Test 
Using GIS, FTIR and LA-GC-IRMS 

The δ18O of incrementally-forming tissues like tooth enamel are commonly used as 

paleoenvironmental proxies. Under certain conditions, enamel δ18O also provides 

information about geographic movements during tooth formation. Caribou (Rangifer 

tarandus spp.) and muskoxen (Ovibos moschatus) have limited water intake requirements, 

and may obtain most or all their required water from forage. If this is the case, the δ18O of 

incrementally growing tooth enamel in both species should reflect geographic variation in 

forage δ18O during the brief Arctic summer. Consequently, tooth enamel δ18O will be 

useful for reconstructing ancient faunal movements, and will potentially enhance our 

understanding of the relationship between the seasonal movements of caribou and 

muskoxen and their interactions with ancient hunters on Banks Island. Using laser ablation-

GC-IRMS, we test the hypothesis that enamel δ18O records seasonal movements using the 

δ18O of modern surface water samples collected during summer and tooth enamel from 

modern and archaeological caribou and muskoxen from Banks Island, NWT, Canada. 

Our results suggest that there is a latitudinal gradient of ~ 5‰ in the δ18O of meteoric 

surface waters on Banks Island during summer (June-August). Our hypothesis that the δ18O 

of sequentially sampled enamel from caribou and muskox teeth reflects seasonal 

movements, however, is not supported. Instead, intra-tooth variation in enamel δ18O in both 

species appears to correspond to seasonal variation in precipitation δ18O. This suggests that 

snow or ice is regularly consumed during the winter by caribou and muskoxen. Despite its 

utility in reconstructing mobility in other contexts, this approach is therefore not useful for 

reconstructing seasonal movements in caribou and muskoxen on Banks Island. Sequences 

of δ13C in tooth enamel analyzed via laser ablation also agree with sequential crown dentin 

collagen δ13C results from Chapters 2 and 3, which suggest that caribou and muskoxen 
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both alternate between forage with lower δ13C during the summer and forage with higher 

δ13C during winter. 

4.1 Introduction 

Caribou (Rangifer tarandus spp.) and muskoxen (Ovibos moschatus) are the only large-

bodied ungulates to have inhabited the High Arctic of Canada and Greenland during the 

Holocene. Today, large portions of the global Peary caribou (Rangifer tarandus Pearyi)18 

and muskox populations inhabit Banks Island (COSEWIC 2004), which is located in the 

Northwest Territories of Canada (Figure 4.1, inset). Traditional ecological knowledge 

(Nagy 1999; Kelvin 2016, personal communication) and observational data (Usher 1965; 

Kelsall 1968; Nieminen 1980; Lent 1999; Hummel and Ray 2008) suggest that both species 

spend springs and summers in the northern part of the island, and move south during the 

winter. Further, oral accounts suggest that landscape use by caribou and muskoxen on 

Banks Island changes as the muskox population fluctuates in size (Nagy 1999; Kelvin 

2016). Researchers have also suggested that while muskoxen do not leave the island, Peary 

caribou may travel across ice to the mainland when forage conditions are poor (Manning 

and MacPherson 1958; Miller 1990; Miller et al. 2005). Consequently, the relationship 

between range conditions, muskox demography, and caribou and muskox landscape use 

may have affected the availability of both species to ancient hunters across archaeological 

periods on Banks Island (Table 4.1).

                                                 

18
To account for possible admixture of caribou subspecies on Banks Island, we use the generalized 

taxonomic identifiers “Rangifer tarandus spp.” and “caribou” in this paper, unless referring to studies 

specific to Peary caribou. 
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Figure 4.1. Location of Banks Island within North America (inset), and the location of 

meteoric surface water sampling sites. 
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Table 4.1. The division of archaeological periods on Banks Island. Note the large 

apparent occupational hiatuses preceding and following the Lagoon period. For further 

discussion, see Chapter 3. 

Cultural Period Approximate Duration (cal. 14C BP) 

Pre-Dorset 4000 – 3400 

Lagoon 2700 – 2100 

Early Thule 950 – 700 

Classic Thule 700 – 500 

Inuit 500 – 100 
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In this chapter, we test the hypothesis that oxygen isotope (δ18O) compositions of 

sequentially-sampled tooth enamel, obtained using laser ablation-gas chromatography-

isotope ratio mass spectrometry (LA-GC-IRMS) can be used to investigate the seasonal 

movements of caribou and muskoxen on and off Banks Island over the last 4000 years. 

Additionally, we hypothesize that the stable carbon isotope (δ13C) composition of the 

structural carbonate component of tooth enamel, which is obtained simultaneously during 

LA-GC-IRMS analysis, can provide information about seasonal dietary variation during 

the time of enamel formation. 

4.1.1 Rationale 

The inorganic phase of mammalian bone and tooth enamel is composed of a calcium 

phosphate biomineral similar in structure to hydroxylapatite [Ca10(PO4)6(OH)2] (Young 

1975; LeGeros 1991; Elliott 2002; Hughes and Rakovan 2002). The reconstruction of 

human or faunal movements using bioapatite (i.e. biological apatite) δ18O is predicated on 

the relationship between the δ18O of the oxygen-bearing moieties in bioapatite, body water, 

and sources of ingested water (Longinelli 1984; Luz et al. 1984, 1990). 

Nearly all drinking water sources (e.g. surface, phreatic, and plant water) ultimately derive 

from meteoric precipitation, the δ18O of which varies spatially (Epstein and Mayeda 1953; 

Craig and Gordon 1965; Yurtsever and Gat 1981; Rozanski et al. 2001; Bowen and 

Wilkinson 2002; Bowen and Revenaugh 2003) and seasonally (Dansgaard 1964; Gat 

1981a, b; Yurtsever and Gat 1981; Horita and Wesoloski 1994; Gat et al. 2001; Darling et 

al. 2005). In temperate regions, seasonal variation in meteoric precipitation will therefore 

dominate the δ18O of incrementally growing tissues in obligate drinkers (i.e. those animals 

who obtain most of their water from meteorically-derived water sources) (Kohn 1996; 

Kohn et al. 1998; Kohn and Cerling 2002; Kohn 2004). 

Many herbivores living in arid regions, however, nearly or entirely satisfy their water 

requirements with vegetation alone (Ayliffe and Chivas 1990; Huertas et al. 1995; 

Sponheimer and Lee-Thorp 1999). Tundra environments, particularly during winter, are 

comparable in some ecological respects to arid and semi-arid ecosystems (Bliss et al. 1973; 
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Caughley and Gunn 1993; Gray 1997a; Behnke 2000; Miller and Gunn 2003). 

Accordingly, several researchers (Gray 1973; Bocherens et al. 1996; Britton et al. 2009) 

have suggested that caribou and muskoxen probably obtain most of their water from forage, 

with only occasional inputs from surface waters during the brief summer. In the Arctic, 

vascular plants are only metabolically active for two to three months (Allessio and Tieszen 

1975; Gray 1997b; Larter and Nagy 2001) and during this period, most water is available 

to plants in the form of shallow soil meltwater derived from winter precipitation, which is 

further enriched in 18O through sublimation and evaporation (Halevy 1970; Arnason 1981; 

Cooper et al. 1993; Gibson 2002; Gibson and Edwards 2002; Gibson et al. 2010; Lechler 

and Niemi 2012). 

Typically, no isotopic exchange occurs between meltwater and soil during percolation (Gat 

1981c) or during uptake of soil water by plant roots (White et al. 1985; Ehleringer et al. 

2000; Yakir and Sternberg 2000). Hence, the δ18O of water in the roots, stems, and other 

non-photosynthesizing plant tissues (xylem water) should correspond closely to that of soil 

water. Leaf water, however, is enriched in 18O relative to xylem water because water 

isotopologues containing 16O have a faster rate of diffusion and higher vapor pressure and 

are therefore preferentially transpired from leaf stomata (Gonfiatini et al. 1965; Dongmann 

et al. 1974; Epstein et al. 1977; Yakir et al. 1990; Flanagan 1993; Yakir and Sternberg 

2000; Cuntz et al. 2007; Sullivan and Welker 2007). During the summer, and especially at 

coastal sites, fog (which is either enriched in, or depleted of 18O depending on the 

geographic origin of the parent cloud system; see Ingraham and Matthews 1988, 1990; 

Dawson 1998) may also constitute a source of water for vegetation (Sullivan and Welker 

2007; Eller et al. 2013). Still, because soil water is the dominant water source during the 

growing season, its δ18O should ultimately control the baseline δ18O of plant material 

(Alstad et al. 1999; Yakir and Sternberg 2000; Welker et al. 2005). If there is significant 

geographic variation in the δ18O of plant source water during the growing season, then the 

δ18O of dormant or frozen forage tissues may partially reflect this variation (plus some 

degree of enrichment in 18O due to transpiration) throughout the remainder of the year. As 

a result, the δ18O of incrementally-growing tissues like tooth enamel in caribou and 

muskoxen may record geographic variation in ingested plant δ18O. 
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We hypothesize that if: (1) caribou and muskoxen derive most of their body water from 

vegetation; (2) there is significant geographic variation in summer meltwater δ18O on 

Banks Island; and (3) frozen vegetation reflects or is influenced by its growing season δ18O 

throughout the rest of the year, the δ18O of incrementally growing tissues like tooth enamel 

can be used to investigate migration or seasonal movements. 

4.1.2 Tooth Enamel Formation 

Although we know of no published studies of tooth development in caribou or muskoxen, 

several researchers have documented the tooth eruption process in both species (Banfield 

1954; Tener 1965; Miller 1974; Henrichsen and Grue 1980). These data are plotted as 

figures in this chapter (Figures 4.2 and 4.3). The temporal relationship among tooth growth, 

enamel mineralization, and eruption, however, is complex and varies significantly across 

species (Balasse 2002; Hoppe et al. 2004; Kohn 2004). In most mammals, gross tooth 

development proceeds from the apex of the tooth crown towards the roots (Figure 4.4a; 

Hillson 2000). Enamel formation begins with the secretion of “mineral-poor, protein-rich 

hydrated matrix” (Passey and Cerling 2002:3225) by ameloblasts, proceeding outwards 

from the dentinoenamel junction (DEJ) (Figure 4.4b; Arsenault and Robinson 1989). The 

innermost enamel layer is rapidly and almost entirely mineralized during this first stage 

(Suga et al. 1979; Suga 1983). The completion of the matrix deposition stage is followed 

by its rapid but discontinuous mineralization, which starts from the outer enamel surface 

and moves back towards the DEJ. During this first phase of mineralization, most of the 

mineral content composing the tooth enamel is deposited (Suga et al. 1970, 1983). 

Additional mineral content is then deposited in smaller amounts sweeping from the DEJ 

back to the tooth surface (Suga 1982).  

Significantly, tooth enamel does not remodel after mineralization is complete (Longinelli 

1984; Luz et al. 1984; Lowenstam and Weiner 1989; Hillson 2000), which means that its 

isotopic compositions will remain intact throughout life and, barring chemical alteration in 

the depositional environment, after death. Isotopic signal attenuation (i.e. the averaging or 

dampening of an isotopic signal) in tooth enamel is directly proportional to the duration of 

the mineralization process. Isotopic (Fricke et al. 1998; Kohn et al. 1998; Bocherens et al. 

2001; Balasse et al. 2002, 2003) and fluorochrome labeling (Kierdorf et al. 2013) studies 
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suggest that in caprines like muskoxen, enamel mineralization is completed in a month or 

less. Consequently, there should be minimal inherent attenuation of environmental isotopic 

signals in muskox tooth enamel. Conversely, Fricke et al. (1998) suggest that the enamel 

mineralization process in cervids takes closer to six months, although their analysis is 

limited to elk (Cervus canadensis), and enamel mineralization in diminutive Peary caribou 

may require less time. 

Assuming that enamel is completely mineralized shortly following the apposition of the 

enamel matrix, and accounting for occlusal wear in the tooth crown, the seasonal isotopic 

patterns integrated by tooth enamel in caribou and muskoxen should correspond roughly 

to the eruption schedules reproduced in Figures 4.1a and b. In caribou, first molars (M1s) 

should integrate isotopic signals between birth and the end of the first winter, second 

molars (M2s) should integrate isotopic signals between the first winter and the end of the 

second summer, and fourth permanent premolars (P4s) and third molars (M3s) should 

integrate isotopic signals between the second summer and third summer. Likewise, the 

tooth enamel of muskox M1s should integrate isotopic signals between birth and the second 

summer of life. 
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Figure 4.2. Eruption sequence of permanent dentition in barren ground caribou, reproduced from Chapter 2. “I” = incisor, “C” = 

canine, “PM” = premolar, and “M” = molar. Data are from Banfield (1954) and Miller (1974). 
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Figure 4.3. Eruption sequence of permanent dentition in muskoxen, reproduced from Chapter 2. “I” = incisor, “C” = canine, “PM” = 

premolar, and “M” = molar. Data are from Tener (1965) and Henrichsen and Grue (1980). 
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Figure 4.4. (a) buccal view of an unworn muskox M2 crown showing enamel in different 

stages of the mineralization process in brackets: (1) fully mineralized enamel; (2) 

partially mineralized enamel; and (3) area of unmineralized, partially-deposited enamel 

matrix. (b) simplified model of enamel development in a transverse tooth crown section 

showing the successive deposition and mineralization of enamel layers. 
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4.1.3 Stable Carbon and Oxygen Isotope Signals in Tooth Enamel 

Of the oxygen-bearing moieties in the bioapatite phase in enamel, phosphate (PO4) 

accounts for ~ 90% by weight, while structural carbonate (CO3) substitutions account for 

4-6% by weight, and hydroxyl groups (OH–) account for ~ 3% by weight (LeGeros 1991; 

Penel et al. 1998; Elliott 2002). The relationships among the δ18O of drinking water, body 

water, bioapatite phosphate, and bioapatite structural carbonate are represented graphically 

in Figure 4.5. In mammals, there is a ~ +17.5‰ fractionation of 18O between body water 

and bioapatite phosphate (Longinelli and Nuti 1973; Kolodny et al. 1983; Bryant et al. 

1996; Lécuyer et al. 1996). Likewise, catalysis of blood CO2 by the enzyme carbonic 

anhydrase results in a ~ +26‰ fractionation in 18O between body water and structural 

carbonate in large mammals (Silverman 1982; Bryant et al. 1996).
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Figure 4.5. Diagram of the fractionation of 18O between drinking water (δ18Odw), body 

water (δ18Obw), and tooth enamel structural carbonate (δ18Osc) and phosphate (δ18Op). The 

δ18O of carbonate and phosphate in bioapatite is determined by the δ18O of body water 

(δ18Obw), which is in turn determined by the δ18O of ingested water (Bryant et al. 1996). 

There is typically no fractionation of 18O during the ingestion of water (Luz et al. 1984; 

White et al. 1985; Ayliffe and Chivas 1990; Bryant and Froelich 1995). Liberation of 

CO2 from apatite with phosphoric acid also causes a minor fractionation of 18O of +0.1 to 

+0.4‰ (the “acid fractionation factor”) (Bryant et al. 1996) although this is accounted for 

during the production of isotopic data. 
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The carbon in structural carbonate derives from CO2 dissolved in blood bicarbonate 

(HCO3
–) through a temperature-dependent +8-12‰ fractionation (at normal mammalian 

body temperature, ~ 37°C) and a +1-2‰ fractionation between HCO3
– and structural 

carbonate (Bryant et al. 1996; Cerling and Harris 1999; Hedges and van Klinken 2000; 

Passey et al. 2005). Since dietary inputs are the main source of CO2 incorporated into the 

blood bicarbonate pool, the δ13C of structural carbonate should reflect the average δ13C of 

all dietary contributions during the time of formation, plus 9-14‰. Controlled experiments 

(Hedges and Van Klinken 2000; Balasse 2002; Hedges 2003; Passey et al. 2005) suggest 

that the enrichment in 13C between structural carbonate and diet (Δ13Csc-diet) in large 

ruminant herbivores is consistently near the higher end (~ +14‰) of this range. This 

additional enrichment in 13C occurs because the fermentation of forage by gut microbes in 

ruminants produces 13C-depleted methane (Metges et al. 1990), which is expelled from the 

body, and leaves behind 13C-enriched CO2 which then exchanges with blood bicarbonate. 

4.2 Materials 

4.2.1 Meteoric Surface Water Samples 

Twenty water samples were collected from fresh water bodies (ponds and lakes) and water 

courses (rivers and meltwater streams) during helicopter visits across Banks Island in July 

2014 (Figure 4.1). Water samples were collected in 8 mL Nalgene® HDPE bottles and their 

lids were wrapped with Parafilm® upon sealing, kept cool in transit, and kept refrigerated 

upon their arrival at the University of Western Ontario. The 2014 water samples were 

supplemented by eleven samples collected in June and July of 2008 and eight samples 

collected in July and August of 2010 as part of a pilot project (Hodgetts and Longstaffe, 

unpublished data). Collection site information for all water samples is listed in Table 4.2. 
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Table 4.2. Oxygen and hydrogen isotope compositions of meteoric surface water samples collected from Banks Island in 2008, 2010, 

and 2014. 

Sample ID Collection Date Type Site Name 
Northing Westing Elev 

(m) 

δ18O δ2H 

(NAD83, DDD) (NAD83, DDD) (‰, VSMOW) (‰, VSMOW) 

08WS-1 June 27, 2008 Stream 
Painted Sands 

Creek 
73.2108 119.48338 35 –21.7 –173 

08WS-2 July 9, 2008 Pond  73.2286 119.54795 37 –10.9 –111 

08WS-3 July 16, 2008 River Thomsen River 73.23017 119.53855 32 –19.3 –156 

08WS-4 July 18, 2008 Lake Nangmagvik Lake 74.13798 119.99563 16 –21.1 –166 

08WS-5 July 18, 2008 Lake Twin Lakes 73.78485 119.53173 59 –19.6 –156 

08WS-6 July 19, 2008 Stream Dissection Creek 73.27522 119.57112 37 –18.4 –158 

08WS-7 July 19, 2008 Pond  73.28178 119.63098 59 –15.3 –132 

08WS-8 July 1, 2008 Pond  72.3927 125.17542 30 –14.4 –121 

08WS-9 July 1, 2008 Lake  72.39307 125.09978 50 –14.6 –121 

08WS-10 July 1, 2008 Stream  72.3854 125.15588 30 –15.0 –130 

08WS-11 July 1, 2008 Stream  72.39753 125.26372 10 –19.4 –154 

10WS-1 July 22, 2010 Lake  74.10065 119.0858 25 –19.9 –158 

10WS-2 July 22, 2010 Lake Nangmagvik Lake 74.13507 120.01413 14 –21.1 –165 

10WS-3 July 28, 2010 Stream  73.99437 118.90913 91 –18.0 –142 

10WS-4 August 4, 2010 River Desert River 74.14012 119.93952 19 –17.5 –141 

10WS-5 August 11, 2010 Stream  73.4718 119.89092 15 –19.4 –153 

10WS-6 July 12, 2010 Lake Joe Lake 73.63795 120.0245 15 –20.3 –161 

10WS-7 July 13, 2010 Stream  73.76717 119.1423 295 –15.4 –123 

10WS-8 August 12, 2010 Stream Dissection Creek 73.26337 119.59688 35 –21.4 –171 
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14WS-1 July 1, 2014 Lake  71.52546 123.66863 80 –12.6 –102 

14WS-2 July 1, 2014 Pond  71.52678 123.76323 80 –9.7 –90 

14WS-3 July 3, 2014 Lake Shoran Lake 73.51107 120.29798 31 –16.5 –149 

14WS-4 July 3, 2014 Pond  73.50518 120.31715 73 –19.7 –157 

14WS-5 July 3, 2014 River Shoran River 73.50534 120.31846 69 –18.9 –156 

14WS-6 July 3, 2014 Lake  73.50518 120.31715 73 –19.2 –151 

14WS-7 July 3, 2014 Lake Twin Lakes 73.38406 119.42425  –21.7 –164 

14WS-8 July 3, 2014 Lake Char Lake 73.39268 119.56048 30 –21.0 –165 

14WS-9 July 3, 2014 River Thomsen River 73.23099 119.53828 34 –21.1 –168 

14WS-10 July 4, 2014 Lake  73.23111 119.54727 46 –16.5 –144 

14WS-11 July 4, 2014 Stream  74.20025 118.78678 14 –22.3 –171 

14WS-12 July 4, 2014 River Bernard River 72.64622 122.17793  –18.2 –144 

14WS-13 July 4, 2014 Lake  72.64634 122.16920  –18.4 –142 

14WS-14 July 4, 2014 River Big River 72.49654 122.99009 59 –18.4 –136 

14WS-15 July 5, 2014 River Sachs River 71.88650 124.61675 11 –21.1 –156 

14WS-16 July 5, 2014 Pond  71.96143 125.82905 -6 –8.4 –69 

14WS-17 July 5, 2014 River Masik River 71.56788 123.66692  –18.3 –128 

14WS-18 July 5, 2014 Pond  71.51907 123.72367 4 –12.8 –103 

14WS-19 July 30, 2014 Lake  71.80630 124.61629 -17 –10.6 –93 

14WS-20 July 30, 2014 Lake Emegak Lake 71.80521 124.61201 22 –12.7 –110 
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4.2.2 Tooth Enamel 

For caribou, we sampled as many teeth from single tooth rows as possible to increase the 

likelihood of tracking multiple movements or migrations over the first several years of life. 

For muskoxen, we sampled only M1s under the assumption that interannual variability in 

seasonal movements is limited and enamel mineralizes rapidly. Modern caribou tooth 

samples originate from caribou harvested in 2015 and 2016, and modern muskox teeth 

come from two recently-deceased muskoxen found near archaeological sites visited in 

2014. We also collected ancient caribou and muskox teeth from radiocarbon-dated 

archaeological sites on Banks Island in 2014. 

Our caribou tooth dataset is limited to teeth from two modern caribou, two Inuit period 

caribou, and three Classic Thule period caribou (Table 4.3). The muskox tooth dataset is 

limited to M1s from: two recently-deceased muskoxen, one Inuit period muskox, one 

Classic Thule period muskox, one Early Thule period muskoxen; two Lagoon period 

muskoxen, and two Pre-Dorset period muskoxen (Table 4.3). Because of the small sample 

sizes, we cannot adequately assess intra-herd variability in isotopic compositions across 

cultural periods (Hoppe 2006; Britton et al. 2009; Pearson and Grove 2013).
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Table 4.3. Caribou and muskox tooth sample information. 

Sample ID Borden Site Name Taxon Tooth 

Pre-Dorset 

BIBS14-407 PjRa-1 Shoran Lake Muskox M1 
     

BIBS14-409 PjRa-2 Umingmak Muskox M1 

Lagoon 

BIBS14-162 QaPv-5  Muskox M1 
     

BIBS16-209 QaPv-5  Muskox M1 

Early Thule 

BIBS16-30 OhRh-1 Nelson River Muskox M1 

Classic Thule 

BIBS14-298 OlRr-1 Cape Kellett Caribou 

M1 

M2 

M3 
     

BIBS14-494 OkRn-1 Agvik Caribou M1 
     

BIBS14-502 OkRn-1 Agvik Caribou M1 
     

BIBS14-474 QbPu-1 Back Point Muskox M1 

Inuit 

BIBS14-214 PdRi-1 Sunnguqpaaluk Caribou 

M1 

M2 

M3 

P4 
     

BIBS14-360 PlPx-1 Head Hill Caribou M1 
     

BIBS14-456 PlPx-1 Head Hill Muskox M1 

Modern 

BIBS15-67   Caribou M2 
     

BIBS16-19   Caribou 

dp4 

M1 

M2 
     

BIBS14-169   Muskox M1 
     

BIBS14-445     Muskox M1 
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4.3 Methods 

Tooth thick sections were produced at the Zooarchaeology Laboratory at the University of 

Western Ontario, London, Ontario, Canada. All micromilling, spectroscopic and isotopic 

analyses were performed at the Laboratory for Stable Isotope Science (LSIS) at the 

University of Western Ontario, London, Ontario, Canada. 

4.3.1 Sample Preparation 

No pH balancing (Mills and Urey 1940), filtration, or other treatments were applied to 

water samples prior to isotopic analysis. See Section 4.3.5 (below) for methods used in 

oxygen and hydrogen isotope GC-IRMS analysis of the water samples. 

Selected teeth were cleaned of soil, debris, and cementum with a soft-bristle toothbrush 

and dental scaler and rinsed with ultrapure water (Figure 4.6a). After drying under constant 

airflow in a fume hood, whole teeth were embedded under vacuum in clear epoxy resin 

(Struers EpoFix®) (Figure 4.6b) and each epoxy “block” was allowed to cure at room 

temperature for at least seven days. After curing, we used a Buehler® IsoMet™ low-speed 

saw to produce two 250 μm-thick buccolingual thick sections (henceforth the “A-section” 

and “B-section”) through the highest point of the least worn tooth loph (Figure 4.6c). 
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Figure 4.6. Workflow for tooth enamel sample preparation: (a) liberated and cleaned tooth (note the substantial occlusal wear on the 

tooth crown compared to the tooth crown in Figure 4.4a); (b) tooth being embedded in epoxy resin; (c) production of thick sections 

using low-speed sectioning machine (red material is modeling clay used to position tooth during embedding); (d) corresponding “A” 

and “B” sections (note the sampled areas for FTIR and structural carbonate on A-section); (e) ablation pits on an enamel segment from 

a B-section (red arrow denotes the sequence of ablation and order of IDs in relevant tables). 
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4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is commonly used to rapidly assess 

archaeological bone, dentin, and enamel samples for chemical alteration or the presence of 

exogenous organic and inorganic substances. We used a Merchantek/New-Wave™ 

micromill to remove several milligrams of enamel near the middle of each A-section. Due 

to scheduling constraints and the considerable amount of time required to produce the 

requisite amount of enamel for FTIR, we micromilled from M1s exclusively. As it was 

milled, enamel powder was collected using a purpose-built vacuum-collection system 

developed by Sakai and Kodan (2011). After collection, 2 mg of enamel powder was mixed 

with 200 mg of fresh IR spectroscopic-grade KBr powder, allowed to dry in an oven at 

90°C overnight, and then pressed into a 12-mm pellet with a hydraulic press at 11 tons for 

10 minutes. FTIR absorbance spectra were obtained using a Bruker™ Vector 22® IR 

spectrometer. Each pellet was scanned 16 times from wavenumbers between 400 and 4000 

cm–1, with a spectral resolution of 4 cm–1. No deconvolution/decomposition (Kauppinen et 

al. 1981; Metcalfe et al. 2009; Roche et al. 2010) was applied to FTIR spectra after 

integration. 

We calculated five common indices of preservation/alteration in bioapatites: (1) 

crystallinity index (CI); (2) carbonate-to-phosphate (CO3/PO4) index; (3) carbonyl-to-

carbonate (CO/CO3) ratio; (4) B-site carbonate on phosphate (BPI); and (5) weight percent 

carbonate (wt% CO3). The formulas for each index are listed in Table 4.4. The crystallinity 

index assesses whether postmortem recrystallization of bioapatite is likely to have occurred 

(Weiner and Bar-Yosef 1990; Hedges and Millard 1995; Hedges et al. 1995; Person et al. 

1996; Wright and Schwarcz 1996; Surovell and Stiner 2001) though tooth enamel should 

be less susceptible to this process than bone (LeGeros 1981; LeGeros and LeGeros 1984; 

Kohn and Cerling 2002). The B-site carbonate-to-phosphate (C/P) index should indicate 

whether carbonate has been gained or lost in the depositional environment (Wright and 

Schwarcz 1996; Smith et al. 2007). More recently, Pucèat et al. (2004) proposed a CO3/PO4 

index that also incorporates B-type carbonate substitutions at ~ 1415 and ~ 1450 cm–1 

alongside phosphate and carbonate peaks at ~ 1033 and ~ 1425 cm–1, respectively, used in 

the B-site carbonate-to-phosphate index. The CO3/PO4 index should therefore provide a 
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more accurate assessment of the overall carbonate-to-phosphate ratio in the sample than 

the B-site C/P ratio. Carbonyl-to-carbonate ratio has been used to evaluate changes in the 

organic content of bioapatite associated with high temperatures (Thompson et al. 2009; 

Scorrano et al. 2016). BPI provides an estimate of B-site carbonate content, and can 

subsequently be used to calculate wt% CO3 (LeGeros 1991). Additionally, we examined 

each absorbance spectrum for anomalous peaks located at ~ 710, ~ 1096, ~ 1655, and ~ 

3564 cm–1 wavenumbers which are known to be associated with chemical alteration or the 

presence of exogenous substances (Table 4.5). 
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Table 4.4. FTIR indices used to evaluate enamel preservation in this study. Formula values are wavenumbers (in cm–1). 

Index Abbreviation Formula  References 

Crystallinity Index CI 

 
*(605 + 565) 

 

Shemesh 1990; Rey et al. 1990; Weiner and Bar-Yosef 1990 
 V(590)  

Carbonate-to-phosphate index CO3/PO4 

 
(1450) + (1415) 

 

Pucéat et al. 2004; Roche et al. 2010 
 (605) + (565)  

Carbonyl-to-carbonate ratio CO/CO3 

 
(1450) + (1425) 

 

Thompson et al. 2009 
 (1425)  

β-site carbonate on phosphate BPI 

 
(1415) 

 

LeGeros 1991; Roche et al. (2010) 
 (605)  

Calculated weight percent 
carbonate 

wt% CO3 

 

(10*BPI) + 0.7 

 

LeGeros 1991; Roche et al. (2010) 
    

*"V" refers to valley at wavenumber     
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Table 4.5. Wavenumbers at which the presence of absorbance peaks is commonly associated with chemical alteration or exogenous 

substances. 

Peak Wavenumber 
(cm–1) 

Indication Source(s) 

710 Presence of exogenous calcite Lee-Thorp and van der Merwe 1991 

1096 
Exogenous fluorapatite substitutions for structural 

carbonate 
Shemesh 1990; Wright and Schwarcz 1996 

~ 1655 Exogenous organic material Boyar et al. (2004); Metcalfe et al. (2009) 

3565 Recrystallization of apatite 
Rey et al. (1995); Pasteris et al. (2004); 

Metcalfe et al. (2009) 
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4.3.3 Micromilled Tooth Enamel for Structural Carbonate Isotopic 
Analysis 

After obtaining enamel samples for FTIR, we milled ~ 1 mg of enamel from several spots 

on each A-section (Figure 4.6d). These milled enamel samples were analyzed for their 

structural carbonate carbon and oxygen isotope compositions (δ13Csc and δ18Osc, 

respectively) via the conventional H3PO4 method (Land et al. 1980; McArthur et al. 1980) 

for comparison with enamel δ13C and δ18O obtained via laser ablation (δ13CLA and δ18OLA, 

respectively) at corresponding locations on the B-sections (Figure 4.6e). The milled enamel 

samples were too small (<1.5 mg) to treat for removal of organic material or potential 

adsorbed carbonates (Lee-Thorp and van der Merwe 1987, 1991; Lee-Thorp et al. 1989, 

Wright and Schwarcz 1996; Koch et al. 1997; Iacumin and Longinelli 2002). Recent work 

(Garvie-Lok et al. 2004; Grimes and Pellegrini 2013; Snoeck and Pellegrini 2015; 

Pellegrini and Snoeck 2016), however, indicates that depending on the reactants used, 

traditional treatment processes intended to remove organic matter and secondary 

carbonates from primary bioapatite can adversely affect the original isotopic composition 

of enamel by degrading the structural carbonate or introducing exogenous carbonates to 

the sample. 

4.3.4 Tooth Enamel Thick Sections for LA-GC-IRMS 

Passey and Cerling (2006:241) found that whole teeth are unsuitable for LA-GC-IRMS 

because the amount of CO2 naturally outgassed by large samples is often “as much or 

more…than is generated during a typical laser-ablation event…even after overnight 

purging” with helium. We therefore used a second, smaller sectioning machine to remove 

the entire length of crown enamel from one side of each B-section (Figure 4.6e). After 

rinsing with ultrapure water, these enamel sections were stored in a vacuum oven at ~ 

90°C/~ 25 mTorr until being placed in the laser ablation chamber. Cerling and Sharp (1996) 

report that enamel samples treated with NaClO to remove organics produced erratic 

isotopic data during laser ablation, despite thorough previous rinsing with distilled water 

and ethanol. Consequently, we also chose to forego any treatment of the enamel section 

surfaces used for laser ablation. 
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Aside from limiting contamination from outgassing, there are several advantages to 

ablating an enamel section or slice as opposed to an intact tooth or large piece of intact 

enamel. First, no refocusing of the laser is required when moving across the surface of a 

uniformly-thick section. Sharp and Cerling (1996) and Cerling and Sharp (1996) 

demonstrate that focal distance (i.e. the distance between the laser aperture and the sample 

surface) affects the δ13C and δ18O values produced by laser ablation, and it is difficult to 

maintain a uniform focal distance “on the fly” using an intact tooth with variable surface 

geometry. Second, for fauna with relatively thin tooth enamel, as is the case here, ablation 

of the outer enamel surface may cause the laser to penetrate into underlying dentin. Because 

of its thickness (~ 250 μm), overpenetration of the mesiodistal enamel surface on a 

buccolingual thick section is improbable, and because the thick section sits flat on the floor 

of the non-reactive nickel sample chamber, there is no effect on produced sample gas 

should overpenetration occur. 

4.3.5 Isotopic Analysis 

All isotopic compositions are reported in per mil (‰) using delta notation (δ) (Equation 

4.1): 

𝛿 = [
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  

[Equation 4.1] 

 where R is the ratio of heavy to light isotopes in the analyte. 

The δ18O and δ2H of surface water samples collected in 2008 and 2010 were obtained 

simultaneously in two analytical sessions using a Picarro™ L1102-i cavity ring-down 

spectrometer. Cavity ring-down spectroscopy (CRDS) capitalizes on the ability of 

molecules to absorb light, measuring the rate of absorption over time (Berden et al. 2000). 

In practice, the Picarro introduces tuned pulses of infrared laser light from a source into a 

cavity in which three high-reflectivity mirrors sit. In an empty cavity, the light will continue 

traveling between the mirrors for several microseconds until all of the energy is transmitted 

through the mirrors, which are only 99.999% reflective. The absorptive decay of the light 
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intensity over time (“ring-down”) is measured by a photodetector. When a gas (in this case, 

a vaporized water sample) is introduced into the cavity, the absorption increases and the 

ring-down time decreases further. By calculating the relationship between ring-down time 

and the laser frequency, a CRDS spectrum is obtained for the sample (O’Keefe and Deacon 

1988; Wheeler et al. 1998). Given the CRDS spectrum and the ring-down time, the 

quantitative concentrations of oxygen and stable hydrogen isotopes in the sample are 

determined. 

The δ18O and δ2H of water samples collected in 2014 were obtained in separate analytical 

sessions using a Thermo Scientific™ GasBench II® device interfaced with a Thermo 

Scientific™ DELTAplus XL® isotope ratio mass spectrometer (IRMS) operating in 

continuous-flow (CF) mode. 

Oxygen isotope compositions of water samples were obtained by equilibration with high 

purity CO2 (Epstein and Mayeda 1953). Briefly, 1 mL of each water sample is pipetted into 

individual glass Labco™ Exetainer® vials with gas-tight rubber septa, and the vials are 

placed in a heating block at 30°C. A robotic autosampler then pumps away atmosphere in 

the headspace of each Exetainer® vial and fills it with a mixture of 0.3% CO2 and high 

purity helium. The samples equilibrate for ~ 20 hours, and the equilibrated CO2 in each 

vial headspace is pumped through a Nafion® water trap to a Chrompack PoraPlot Q® fused 

silica GC column inside the GasBench II® to separate residual N2 and CO2. The gas from 

each water sample is then passed through a second Nafion® water trap and then to the 

IRMS via open split without dilution for isotopic measurement. 

Hydrogen isotope compositions of water samples were obtained using the H2-equilibration 

method (Horita 1988; Coplen et al. 1991). The benefits of this method over zinc (Friedman 

1953; Kendall and Coplen 1985) or uranium (Bigeleisen et al. 1952; Godfrey 1962) 

reaction methods are that it is safer, faster, and can be largely carried out with a robotic 

autosampler. In this procedure, 1 mL of each water sample is pipetted into individual glass 

Exetainer® vials and a small stick of styrene-divinylbenzene (SDB) copolymer doped with 

3 wt% platinum is added. The sealed Exetainer® vials are then placed in a heating block at 

30°C and the autosampler is used to pump a mixture of 2% H2 and high purity helium into 
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each Exetainer® vial, which is then allowed to equilibrate for ~ 2 hours. The SDB-platinum 

stick reacts with both the H2 gas and hydrogen in the water sample, promoting equilibration 

between the two (Kirshenbaum 1951; Horita 1988). The equilibrated gas from each water 

sample is then passed to the Gasbench II® for the separation of gas species and on to the 

IRMS for isotopic measurement in the same manner as above. 

The oxygen and hydrogen isotope compositions of water samples analyzed via both CRDS 

and GC-IRMS were calibrated to Vienna Standard Mean Ocean Water (VSMOW) (δ18O 

and δ2H = 0‰) using two internal standards: “LSD” (average δ18O and δ2H –22.57‰ and 

–161.8‰, respectively) and “Heaven” (average δ18O and δ2H –0.27‰ and +88.7‰, 

respectively). Two other internal standards, “MID” (average δ18O and δ2H –13.08‰ and –

108.1‰, respectively) and “EDT” (average δ18O and δ2H –7.27‰ and –56.0‰, 

respectively) were used to evaluate the accuracy of the calibration curve for each analytical 

session. 

Micromilled enamel samples were analyzed for their structural carbonate δ13C and δ18O 

using an VG Micromass™ Optima® Dual Inlet (DI) IRMS equipped with a VG 

Micromass™ Multiprep® carbonate preparation module and Gilson™ autosampler. All 

samples and standards were reacted with orthophosphoric acid (H3PO4) for 25 minutes at 

90°C to produce CO2 gas that was then passed to the IRMS for measurement after 

cryogenic purification. 

The stable carbon isotope compositions measured via DI-IRMS were calibrated to Vienna 

Pee Dee Belemnite (VPDB) (δ13C = 0‰) using NBS-19 (calcite; accepted δ13C +1.95‰) 

and an international lithium carbonate standard (LSVEC, NIST RM 8545; accepted δ13C –

46.60‰) (Coplen et al. 2006). Oxygen isotope compositions were calibrated to VSMOW 

using NBS-19 (calcite; accepted δ18O +28.65‰) and NBS-18 (carbonatite; accepted δ18O 

+7.20‰). Suprapur (marble; accepted δ13C –35.28‰), NBS-18 (carbonatite; accepted δ13C 

–5.00), and an internal calcite standard (WS-1; average δ13C +0.76‰) were used to 

evaluate the accuracy of carbon isotope measurements. Suprapur (accepted δ18O +13.30) 

and WS-1 (average δ18O +26.23‰) were used to evaluate the accuracy of oxygen isotope 

measurements. 
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The LA-GC-IRMS system used in this study is described in detail by Larson and 

Longstaffe (2007) and is adapted from Sharp and Cerling (1996) and Cerling and Sharp 

(1996). The system works as follows: one or two enamel sections, plus an internal enamel 

standard (see below) and a small piece of the WS-1 internal calcite standard, are placed 

inside a small vacuum-sealable metal chamber (interior diameter = 2.5 cm) fitted with a 

KCl window and equipped with inflow and outflow tubing for ultra-high purity helium 

carrier gas. The chamber is then sealed, wrapped in heating tape set to 70°C, and flushed 

with helium for a minimum of three hours to promote outgassing of labile CO2 from the 

sample and removal of water vapor from the sample or sample chamber. The background 

scan function in the ISODAT™ software that controls the LA-GC-IRMS system can also 

be used to monitor the mass 44 background, which provides some measure of outgassing 

progress. 

Samples are ablated using a 25-watt New-Wave™ MIR 10® CO2 gas source IR laser 

operating at a wavelength of 10.66 μm. The laser pulse (or pulses) pass through the KCl 

window, which absorbs only ~ 10% of the laser energy, producing a ~ 180 μm pit in the 

sample surface. Volatilized sample gas produced by the ablation event is passed along with 

the helium carrier gas to a liquid nitrogen (LN2) trap, where it is cryofocused for several 

minutes. The focused pulse of sample gas is then passed through a Nafion® water trap to a 

Chrompack PoraPlot Q® fused silica GC column inside a Gasbench II® device where CO2 

is separated from the helium as well as other gases such as SO2 produced by the ablation 

event (Sharp and Cerling 1996). The CO2 sample gas is passed through a second Nafion® 

water trap and then sent through an open split without dilution to a Thermo Scientific™ 

DELTAplus XL® IRMS operating in dual-inlet (DI) mode for analysis. Cycle time is less 

than 10 minutes, and primary consumables are limited to LN2, and carrier and reference 

gas, enabling the relatively rapid and inexpensive (per data point) acquisition of large 

datasets. 

In each analytical session, we only proceeded with the ablation of standards and samples 

when the mass 44 background stabilized at 0 mV, and the mass 44 amplitudes of several 

analytical blanks were less than 50 mV. We then obtained a sequence of enamel δ13C and 

δ18O at ~ 1 mm intervals along the major axis of each enamel slice from the B-section, 
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moving towards the root-enamel junction (REJ) (Figure 4.6e). At each sampling spot, we 

fired the laser four times with two second spacings, at 15.5% laser power, a pulse width of 

60 milliseconds, a spot size of 180 μm, and a focal length of ~ 19 cm, producing an average 

mass 44 peak intensity of 1520 mV. This peak intensity was just above the minimum 

amplitude necessary for accurate δ13CLA and δ18OLA measurements (Larson and Longstaffe 

2007). 

Because all three oxygen-bearing moieties in tooth enamel (phosphate, structural 

carbonate, hydroxyl groups) are volatilized by the IR laser, the δ18O measured from a single 

spot represents a “bulk” enamel δ18O profile dominated by phosphate (Cerling and Sharp 

1996; Sharp and Cerling 1996; Kohn and Cerling 2002; Larson and Longstaffe 2007). On 

the contrary, neither phosphate nor hydroxyl groups contain carbon atoms, and carbon-

bearing organic material constitutes only 1-2% of enamel (Lowenstam and Weiner 1989; 

Hillson 2000; Kohn and Cerling 2002). Consequently, enamel δ13C (but not bone δ13C, see 

Brady et al. 2008) measured via LA-GC-IRMS is typically as accurate as that obtained 

from structural carbonate using the conventional H3PO4 method of analysis (Passey and 

Cerling 2006). 

4.3.6 Internal Enamel Standard 

In this study, the carbon and oxygen isotope compositions of microbulk enamel measured 

via LA-GC-IRMS were calibrated to VPDB and VSMOW, respectively, with the 

assistance of an internal enamel standard (164 P4, accepted δ13CLA and δ18OLA –13.6‰ and 

+6.3‰, respectively). Typically, standards used in isotopic analysis are of similar – but not 

always exact – physical and chemical composition to the samples. In standard gas-source 

IRMS analyses, this is not a major issue because samples and standards are similar enough 

in their physical and chemical compositions that combustion or chemical reaction produces 

gas from analytes in essentially the same manner. The incorporation of an optical 

component (the laser) into the analytical system, however, introduces additional 

complexity. Absorptive and reflective interactions between the laser beam and the sample 

surface depend on the structural composition of the sample, and the degree of absorption 

of the laser directly affects the isotopic compositions derived from the ablation event(s) 

(Cerling and Sharp 1996; Larson and Longstaffe 2007). Thus, the use of inorganic 
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carbonate standards alone to calibrate the isotopic compositions of tooth enamel, a 

prismatic tissue composed of both inorganic and organic phases, may not be appropriate 

because their physical compositions (i.e. structural matrices) are considerably different and 

the laser ablates them with variable efficiency. Although international reference materials 

exist (NIST SRM 1400; IAEA-A-12) or are in development (USGS MAPS-4 and MAPS-

5) for bone, we know of no widely-used, matrix-matched standard for tooth enamel. 

We first attempted to develop an internal enamel standard from the enamel of a modern 

muskox third molar (M3) for which we obtained infrared absorbance spectra, and 

phosphate and structural carbonate carbon and oxygen isotope compositions. Using a 

Dremel® rotary tool fitted with a diamond wheel point bit, we milled enamel from the outer 

surface of the tooth. The enamel powder was crushed to <63 μm, and we then used a 

hydraulic press to compress the powder at 13 tons of pressure for 20 minutes to produce a 

12-mm pellet. The pellet was permitted to outgas in a vacuum oven at ~ 90°C/30 mTorr 

for one week, then transported in a desiccator filled with fresh desiccant directly to the 

laser sample chamber and allowed to outgas under the flow of helium for 36 hours. 

This approach circumvents issues associated with using intact enamel as a standard, in 

particular, isotopic heterogeneity due to changing conditions during enamel formation. The 

enamel pellet, however, is not matrix-matched since it is composed of compressed 

powdered enamel rather than intact prismatic enamel. Additionally, while we were able to 

outgas the enamel pellet enough to produce analytical blanks with mass 44 amplitudes <50 

mV, analytical tests demonstrated that the presence of the enamel pellet inside the chamber 

resulted in a gradual but significant (3.1‰) depletion of 13C in gas evolved from the block 

of WS-1 calcite standard. Additionally, although we obtained consistent δ13C data for the 

pellet (–11.1 ±0.3‰), intra-session variability in δ18O exceeded ±2‰. We suspect that the 

decrease in measured δ13C of WS-1 block arose from cross-contamination with spall from 

the ablated enamel pellet. Regardless of the cause, we chose not to use the pellet as a 

standard for our analyses. 

A spare enamel section from a modern muskox 4th premolar (BIBS14-169 P4) that we used 

to optimize the laser settings for the ablation of tooth enamel proved to have relatively 
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homogenous carbon and oxygen isotope compositions along its major axis. This 

consistency is likely due to the small size and rapid development of permanent premolars 

in muskoxen (Figure 4.3). We measured enamel δ13Csc and δ18Osc for this tooth using the 

conventional H3PO4 method. We also measured its enamel phosphate δ18O (δ18Op) 

following procedures and using instrumentation described in Matthews et al. (2016). These 

isotopic data allowed us to determine an accepted value of δ13CLA (–13.6‰), and by making 

a simple calculation based on the relative contributions of structural carbonate and 

phosphate oxygen to mammalian enamel, we also obtained an accepted value of δ18OLA 

(+6.3‰), for the 169 P4 enamel standard. We then produced additional enamel sections 

from this tooth and used them alongside a block of WS-1 as calibration checks during each 

analytical session. 

We developed a calibration curve for laser isotopic data with the same standards used in 

the DI-IRMS analysis of structural carbonate. NBS-19 (calcite; accepted δ13C +1.95‰) 

and Suprapur (marble; accepted δ13C –35.28‰) were used to calibrate measured δ13C to 

VPDB, and NBS-18 (carbonatite; accepted δ18O +7.20‰) and NBS-19 (accepted δ18O 

+28.65‰) were used to calibrate measured δ18O to VSMOW/SLAP. The internal WS-1 

calcite standard was then used as a check on both the carbon and oxygen calibration curves. 

To adapt this calibration system to bioapatite samples, we used the offsets between 

accepted δ13C and δ18O for the 169 P4 enamel standard and δ13C and δ18O measured in 

each analytical session to correct for matrix effects. 

4.3.7 Spatial Analysis of Water Sample δ18O  

We created a map of spatial variation (i.e. an “isoscape”) of meteoric surface water δ18O 

(δ18Omw) in ArcGIS® ArcMap™ (version 10.4.1) using empirical Bayesian Kriging (EBK) 

(Pilz and Spöck 2008; Krivoruchko 2012). We chose this interpolation method because we 

were only able to sample surface waters along a relatively narrow north-south transect, 

with low sample coverage in the middle of the island, and other approaches to spatial 

prediction struggle when sample coverage is irregular (Christensen 1991; Dutton et al. 

2005). EBK also expedites the modeling process by using a restricted maximum likelihood 

function to automatically calculate optimal model parameters through iterative simulation 

(ESRI 2016). Semivariogram cross-validation in ArcGIS® also demonstrated that 
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predictive parameters (Johnston et al. 2003) were significantly closer to their target values 

using EBK than other Kriging types (e.g. simple, ordinary, universal) or deterministic 

approaches to interpolation (e.g. Triangulated Irregular Network, Inverse Distance 

Weighting). 

4.4 Results 

4.4.1 Surface Water δ18O and δ2H Results and δ18O Isoscape 

Across three CRDS analyses of the LSD internal water standard (accepted VSMOW/SLAP 

calibrated δ18O and δ2H = –22.57‰ and –161.80‰, respectively), which is one anchor of 

the calibration curve, reproducibility was ±0.03‰ for δ18O and ±0.54‰ for δ2H. Across 

six CRDS analyses of the Heaven internal water standard (accepted VSMOW/SLAP 

calibrated δ18O and δ2H –0.27‰ and +88.7‰, respectively), the other anchor of the 

calibration curve, reproducibility was ±0.07‰ for δ18O and ±0.59‰ for δ2H. Across three 

CRDS analyses of the MID internal water standard (accepted VSMOW/SLAP calibrated 

δ18O and δ2H = –13.08‰ and –108.10‰, respectively), δ18O was –13.09±0.02‰ and δ2H 

was –107.09±0.22‰. Across eleven CRDS analyses of the EDT internal water standard 

(accepted VSMOW/SLAP calibrated δ18O and δ2H = –7.27‰ and –56.0‰, respectively), 

δ18O was –7.32±0.05 and δ2H was –54.44±0.54. The standard deviation of water samples 

analyzed via CRDS as instrumental duplicates (n = 3) was δ18O = ±0.1‰ and δ2H = ±0.2‰ 

indicating high reproducibility. 

Across three GasBench II®-IRMS analyses of the LSD internal water standard, δ18O was 

±0.03‰ and δ2H was ±0.54‰. Across three analyses of the Heaven internal water standard, 

δ18O was ±0.07‰ and δ2H was ±0.59‰. Across three analyses of the MID internal water 

standard, δ18O was –13.09±0.10‰ and δ2H was –103.65±0.43‰. Across 11 analyses of 

the EDT internal water standard, δ18O was –7.40±0.08‰ and δ2H was –55.60±0.46‰. The 

standard deviation of duplicate water sample analyses (n = 2) was δ18O = ±0.0‰ and δ2H 

= ±1.1‰ again indicating high reproducibility in the oxygen isotope data. 

Although for this study we focus mainly on the oxygen isotope data, oxygen and hydrogen 

isotope compositions of all water samples are presented in Table 4.2. In Figure 4.7, the 

δ18O and δ2H of water samples are plotted by type (lake, pond, river, stream). In Figure 
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4.8, all surface water samples from Banks Island are plotted against precipitation δ2H and 

δ18O at the same coordinates, as calculated using the Online Isotopes in Precipitation 

Calculator (OIPC) (Bowen et al. 2005; IAEA/WMO 2017; Bowen 2017), and the Global 

Meteoric Water Line (GMWL). 

The mean δ18O of all “summer” meteoric surface water samples is –17.5‰ (min = –22.3‰, 

max = –8.4‰. The mean δ2H of all “summer” meteoric surface water samples is –141‰ 

(min = –174‰, max = –69‰). Figure 4.7 demonstrates some difference in oxygen and 

hydrogen isotope compositions in different water sample types, which may be related to 

their evaporative potential. Water samples from ponds have the highest δ18O and δ2H, and 

plot farther from the GMWL, indicative of their greater surface area relative to water 

volume, which can accentuate the isotopic effects of evaporation. Conversely, the δ18O and 

δ2H of rivers and streams are lower and cluster closer to the GMWL, as would be expected 

from well-mixed reservoirs receiving meltwater or rainwater drained from large 

watersheds in a setting where water residence times are short and evaporative effects on 

isotopic compositions much more attenuated. Figure 4.8 further indicates that the δ18O and 

δ2H of ‘summer’ meteoric surface water samples collected on Banks Island define a local 

meteoric water line (technically, a local evaporation line (LEL)) that falls to the right of 

the Global Meteoric Water Line (GMWL), typical of surface waters in northern Canada 

(Bursey et al. 1990; Gibson et al. 1993, 2002; Gibson 2001, 2002; Yi et al. 2012). Gibson 

et al. (1993, 2005) also demonstrate that the intersection of local evaporation lines and the 

GMWL tends to approximate the mean δ18O and δ2H of precipitation in the entire 

catchment area. In this case, the intersection of the Banks Island LEL and GMWL is δ18O 

= –27.6‰ and δ2H = –211‰, which is consistent with existing estimates for mean 

precipitation δ18O and δ2H in this area (Rozanski et al. 1993; Bowen and Wilkinson 2002; 

Bowen and Revenaugh 2003; Bowen et al. 2005; Bowen 2008).  

The interpolated oxygen isoscape presented in Figure 4.9 suggests that there is a north-

south gradient of approximately 5‰ in the δ18O of meteoric surface water on Banks Island 

during the growing season. This north-south isotopic gradient is in line with climatic 

(Usher 1965; Maxwell 1980; Edlund 1986; Gray 1997a) and bioclimatic (Walker 2000; 

Gould et al. 2003) data demonstrating a steep northward decline in temperature and 



 

373 

moisture on Banks Island. Due to the absence of any water samples, however, the accuracy 

of the predicted δ18O rapidly decreases to the northwest and southeast of the sampling 

transect (see map of standard error; Figure 4.9, inset). 
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Figure 4.7. Values of δ18O and δ2H for meteoric surface water samples collected on Banks Island in the summers of 2008, 2010, and 

2014, split by type and compared to the Global Meteoric Water Line (“GMWL”, solid black line). 
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Figure 4.8. Values of δ18O and δ2H for grouped meteoric surface water samples collected on Banks Island in the summers of 2008, 

2010, and 2014, in comparison to precipitation δ18O and δ2H from the same coordinates and collection months, estimated using the 

Online Isotopes in Precipitation Calculator (OIPC) (IAEA/WMO 2017; Bowen 2017). The dashed line represents the Local Meteoric 

Water Line (LMWL) (actually a Local Evaporation Line [LEL]) created by water samples. The dotted line represents the Local 

Meteoric Water Line (LMWL) created by OIPC-estimated precipitation data. The solid line is the Global Meteoric Water Line. 
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Figure 4.9. Isoscape of interpolated summer surface water δ18O (‰, VSMOW) on Banks Island. The isoscape is based on our water 

sample data and created using empirical Bayesian Kriging (EBK) in ArcGIS®. Pink dots correspond to sampling locations. The 

Prediction Standard Error Map at left provides a measure of uncertainty around interpolated surface water δ18O. 



 

377 

4.4.2 FTIR Results 

The infrared absorption spectra of tooth enamel samples are shown in Figure 4.10, and 

results for FTIR indices discussed in the following sections are presented in Table 4.6. 

The crystallinity indices of modern and archaeological tooth samples were calculated 

following Weiner and Bar-Yosef (1990) (Table 4.4). The average CI of all enamel samples 

is 2.8 (min = 2.7, max = 3.0), with no statistically-significant difference in CI between teeth 

from different cultural periods. The FTIR crystallinity index of fresh bone bioapatite is 

typically between 2.5 and 3.3 (Weiner and Bar-Yosef 1990; Surovell and Stiner 2001; 

Webb et al. 2014). Reyes-Gasga et al. (2013) however, found that the CI of modern human 

tooth enamel not subjected to heating was 3.2±0.02, and decreased with heating; in fact, 

enamel heated to 400°C had CI values around 2.8. This discrepancy in enamel CI values is 

likely due to differences in the prism sizes of human and ungulate tooth enamel (e.g. Figure 

13 in Tafforeau et al. 2007). One other possibility, however, is that the micromilled enamel 

powders used for FTIR were either not appropriately homogenized, or were smaller than 

the desired grain size (45-63 μm). Surovell and Stiner (2001) demonstrate that CI varies 

with grainsize and that smaller grain size is associated with lower CI values. We were not 

able to grind the enamel samples used for FTIR to a homogenous grain size because of 

their very small (~ 2 mg) weights and the potential for sample loss during sieving. 

Nevertheless, given their small range across modern and archaeological tooth enamel 

samples, their agreement with CI values for intact bone bioapatite, and the generally well-

crystallized nature of tooth enamel (LeGeros 1991; Pucèat et al. 2004), the CI values of 

our tooth enamel samples indicate good preservation of the enamel apatite. 

CO3/PO4 ratios average 0.5 (min = 0.4, max = 0.5) (Table 4.6). These CO3/PO4 ratios are 

higher than CO3/PO4 ratios for both modern suids, bovids, and camelids (average = 0.3, 

min = 0.2, max = 0.4) and archaeological mammals (average = 0.3, min = 0.2, max = 0.4) 

reported by Roche et al. (2010). This difference may be due to the fact that we observed 

only a single peak located at ~ 1418 cm–1, rather than two carbonate peaks located at ~ 

1415 and ~ 1425 cm–1, as Roche et al. (2010) did, and we use this single peak in the 
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CO3/PO4 calculation. Additionally, the carbonyl peak expected at 1450 cm–1 is shifted 

closer to ~ 1457.5 cm–1 in our tooth enamel samples. 

The CO/CO3 ratio in all enamel samples is 2.1 (Table 4.6). Scorrano et al. (2016) suggest 

that CO/CO3 ratios higher than 1.2 indicate that bone has been exposed to high 

temperatures. Given the significantly smaller fraction of organic content in enamel relative 

to bone, however, it is not surprising that the CO/CO3 ratios of our enamel samples are 

significantly higher than those of bone. Further research is required to (1) establish 

expected CO/CO3 ratios for well-preserved tooth enamel, and (2) determine whether 

sample grainsize also affects CO/CO3 ratios in the same manner as the CI index. 

BPI ratios of the samples average 0.5 (min = 0.4, max = 0.5) (Table 4.6). BPI and CO/CO3 

ratios are nearly identical (SD = 0.02), which is unsurprising given that both indices 

incorporate peaks at ~ 605 and ~ 1415 cm–1, BPI indices reported by Sponheimer and Lee-

Thorp (1999), Botha et al. (2004) and Roche et al. (2010) for extant and fossil mammals 

are lower on average than BPI values reported here. In fact, the BPI ratios of our enamel 

samples fall within the range of crocodile tooth enamel BPI ratios reported by both Botha 

et al. (2004) and Roche et al. (2010). Again, this discrepancy may have to do with the use 

of the carbonate peak located at ~ 1418 cm–1 in the BPI calculation, or the grainsize of the 

enamel powder created with the micromill. The inclusion of trace dentin in enamel samples 

analyzed via FTIR can also result in higher BPI ratios (Botha et al. 2004), although we 

were careful to avoid the DEJ while milling enamel, and BPI values are also high in 

samples where the milling area is well within the enamel. Additionally, if trace dentin was 

present in the FTIR enamel samples, this should have resulted in lower – not higher – 

CO/CO3 ratios. Enamel structural carbonate contents (wt% CO3) calculated using BPI 

(Table 4.6) average 5.4 (min = 4.7, max = 5.9), with no differences across cultural periods. 

These values fall within the expected range (~ 3-6%) of CO3 in mammalian enamel 

(LeGeros 1991; Elliot 1997). 

None of the enamel FTIR samples contain anomalous peaks associated with post-mortem 

chemical alteration, though two archaeological enamel samples (BIBS14-209 M1 and -409 

M1) display small doublet peaks near 2350 cm–1 (red box, Figure 4.10d). Doublet peaks in 
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this wavenumber region are common in IR spectroscopy and can result from atmospheric 

CO2 in FTIR spectrometers with unsealed sample chambers like the one used in this study 

(usually when some period of time has elapsed between acquisition of the baseline 

spectrum and the sample spectrum) (Sanati and Andersson 1993), or from vibrational 

overtones (“Fermi Resonance”) in other wavenumber regions (Chang and Tanaka 2002; 

Sathyanarayana 2004; Figueiredo et al. 2012). 

Although all the FTIR indices of both our modern and archaeological tooth enamel samples 

differ from data on other species reported in the literature, the lack of anomalous peaks, as 

well as the similarity between modern and archaeological FTIR indices suggests that, 

irrespective of effects due to sample collection and processing, the archaeological tooth 

enamel samples are unlikely to have experienced post-mortem chemical alteration. 
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Figure 4.10. Infrared absorption spectra from: (a) modern muskox M1 enamel samples; (b) caribou tooth enamel samples from the 

Classic Thule and Inuit periods; (c) muskox M1 enamel samples from the Classic Thule and Inuit periods; (d) muskox M1 enamel 

samples from the Pre-Dorset and Lagoon periods. The red box in Figure 4.10d denotes small doublet-peaks caused by atmospheric 

CO2 in the FTIR sample chamber. Due to scheduling we could not obtain FTIR spectra for all teeth analyzed in this study.
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Table 4.6. Results of FTIR analysis of tooth enamel samples. 

Sample ID 
Cultural 
Period 

Taxon CI 
CO3/PO4 

Index 
CO/CO3 

Ratio 
BPI  wt% CO3 

BIBS14-298 M1 Classic Thule Caribou 2.9 0.5 2.1 0.5 5.5 

BIBS14-494 M1 Classic Thule Caribou 2.9 0.4 2.1 0.4 5.0 

BIBS14-502 M1 Classic Thule Caribou 2.7 0.4 2.1 0.4 5.1 

BIBS14-214 M1 Inuit Caribou 2.8 0.5 2.1 0.5 5.4 

BIBS14-360 M1 Inuit Caribou 3.0 0.4 2.1 0.4 4.7 

BIBS14-407 M1 Pre-Dorset Muskox 2.7 0.5 2.1 0.5 5.6 

BIBS14-409 M1 Pre-Dorset Muskox 2.7 0.5 2.1 0.5 5.6 

BIBS14-162 M1 Lagoon Muskox 2.7 0.5 2.1 0.5 5.9 

BIBS14-209 M1 Lagoon Muskox 2.9 0.4 2.1 0.5 5.3 

BIBS14-474 M1 Classic Thule Muskox 2.8 0.4 2.1 0.4 5.0 

BIBS14-456 M1 Inuit Muskox 2.7 0.5 2.1 0.5 5.9 

BIBS14-169 M1 Modern Muskox 2.8 0.5 2.1 0.5 5.8 

BIBS14-445 M1 Modern Muskox 2.7 0.5 2.1 0.5 5.6 
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4.4.3 Tooth Enamel Structural Carbonate δ13C and δ18O (δ13Csc 
and δ18Osc) Results 

Across five analyses of NIST RM 8545 (accepted δ13C and δ18O –46.60‰ and –26.70‰, 

respectively), δ13C was –46.60±0.06‰ and δ18O was 4.02±0.11‰. Across nine analyses 

of WS-1 (mean δ13C and δ18O +0.76‰ and +26.23‰, respectively), δ13C was +0.66‰ 

±0.18 and δ18O was 26.09‰ ±0.43. Because we did not treat enamel samples prior to 

analysis, and because tooth enamel microsamples are spatially-dependent, we did not 

produce methodological duplicates. The standard deviation of enamel samples analyzed as 

instrumental duplicates is δ13Csc = ±0.0‰ and δ18Osc = ±0.0‰. 

Caribou δ13Csc and δ18Osc are presented in Table 4.7 and their sampling locations on each 

tooth thick section are shown in Appendix C, Supplemental Figure C1. Across four 

microsamples, the δ13Csc of modern caribou tooth enamel averaged –12.6‰ (min = –

14.3‰, max = –11.7‰) and across 20 microsamples, the δ13Csc of archaeological caribou 

tooth enamel averaged –10.7‰ (min = –12.4‰, max = –8.5‰). The δ18Osc of all caribou 

tooth enamel samples averaged +14.5‰ (min = +12.2‰, max = +17.3‰). 

Muskox δ13Csc and δ18Osc are presented in Table 4.8 and their sampling locations on each 

tooth thick section are shown in Appendix C, Supplemental Figure C2. Across three 

microsamples, the δ13Csc of modern muskox M1 enamel averaged –14.0‰ (min = –14.8‰, 

max = –13.3‰) and across thirteen microsamples, the δ13Csc of archaeological muskox M1 

enamel averaged –12.4‰ (min = –14.2‰, max = –11.5‰). The δ18Osc of all muskox M1 

enamel samples averaged +12.4‰ (min = +9.5‰, max = +15.5‰). 
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Table 4.7. Structural carbonate carbon and oxygen isotope results for micromilled 

caribou tooth enamel microsamples. 

Sample ID Taxon 
Microbulk 

Sample 

δ13Csc δ18Osc 

(‰, VPDB) (‰, VSMOW) 

Classic Thule 

BIBS14-298 M1 Caribou 
MB1 –11.0 +16.1 

MB2 –9.5 +15.9 
     

BIBS14-298 M2 Caribou 
MB1 –8.8 +15.1 

MB2 –8.5 +13.9 
     

BIBS14-298 M3 Caribou 
MB1 –8.8 +13.4 

MB2 –9.4 +13.3 
     

BIBS14-494 M1 Caribou 
MB1 –12.4 +14.6 

MB2 –11.4 +14.5 
     

BIBS14-502 M1 Caribou 
MB1 –12.0 +17.3 

MB2 –10.9 +16.0 

Inuit 

BIBS14-214 M1 Caribou 
MB1 –11.8 +16.0 

MB2 –12.0 +15.5 
     

BIBS14-214 M2 Caribou 
MB1 –10.0 +13.5 

MB2 –10.2 +12.8 
     

BIBS14-214 M3 Caribou 
MB1 –10.8 +13.8 

MB2 –11.3 +14.3 
     

BIBS14-214 P4 Caribou 
MB1 –10.7 +13.3 

MB2 –10.5 +12.2 
     

BIBS14-360 M1 Caribou 
MB1 –12.3 +13.5 

MB2 –10.9 +13.3 

Modern 

BIBS15-67 M2 Caribou 
MB1 –11.7 +13.9 

MB2 –12.0 +14.4 
     

BIBS16-19 M1 Caribou MB1 –14.3 +16.2 
     

BIBS16-19 M2 Caribou MB2 –12.3 +15.0 
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Table 4.8. Structural carbonate carbon and oxygen isotope results for micromilled 

muskox tooth enamel microsamples. 

Sample ID Taxon 
Microbulk 

Sample 

δ13Csc δ18Osc 

(‰, VPDB) (‰, VSMOW) 

Pre-Dorset 

BIBS14-407 M1 Muskox 
MB1 –11.8 +13.4 

MB2 –11.5 +11.4 
     

BIBS14-409 M1 Muskox 
MB1 –12.0 +15.2 

MB2 –11.5 +12.5 

Lagoon 

BIBS14-162 M1 Muskox 
MB1 –11.7 +11.2 

MB2 –11.5 +10.7 
     

BIBS14-209 M1 Muskox MB1 –11.8 +12.3 

Early Thule 

BIBS16-30 M1 Muskox 
MB1 –13.8 +10.7 

MB2 –12.9 +9.5 

Classic Thule 

BIBS14-474 M1 Muskox 
MB1 –13.6 +12.0 

MB2 –12.5 +9.9 

Inuit 

BIBS14-456 M1 Muskox 
MB1 –14.2 +14.7 

MB2 –12.4 +10.7 

Modern 

BIBS14-169 M1 
Muskox MB1 –14.8 +15.5 

Muskox MB2 –13.9 +14.4 
     

BIBS14-445 M1 Muskox MB1 –13.3 +14.2 
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4.4.4 Tooth Enamel Laser Ablation δ13C and δ18O (δ13CLA and 
δ18OLA) Results 

Isotopic results for ablation events where dentin adjacent to enamel was inadvertently 

contacted by the laser are excluded from this chapter. In some cases, a sample spot 

produced an abnormal19 δ13CLA value, but a δ18OLA value similar to preceding and following 

sampling spots, and vice versa. In these cases, we have retained the acceptable isotopic 

data from the ablation event, but omit the abnormal results from all figures, tables, and 

calculations. Because the degree of occlusal wear in each tooth varies, the ablation spot 

closest to the root-enamel junction (REJ) of each enamel section is used as a common 

“anchor point” in all figures. 

Caribou tooth enamel δ13CLA and δ18OLA data are presented in Table 4.9 and are represented 

graphically in Figures 4.11 and 4.12. Corresponding ablation spot locations on each tooth 

thick section are shown in Appendix C, Supplemental Figure C3. Intra-tooth variability in 

δ13CLA among the six caribou M1s averaged 1.5‰, with the highest intra-tooth variation 

(2.1‰) measured in BIBS14-502 M1. In the four caribou M2s analyzed, intra-tooth 

variability in δ13CLA averaged 0.9‰, with the highest intra-tooth variability (2.2‰) 

occurring in BIBS16-19 M2. Of the two caribou M3s analyzed, intra-tooth variability in 

δ13CLA in BIBS14-298 M3 was 1.6‰, while intra-tooth variability in δ13CLA in BIBS14-

214 M3 was 0.5‰. 

Intra-tooth variability in δ18OLA among the six caribou M1s averaged 1.4‰, with the 

highest intra-tooth variation (2.2‰) again occurring in BIBS14-502 M1. In the four 

caribou M2s, intra-tooth variability in δ18OLA averaged 1.8‰, with the highest intra-tooth 

variability (3.3‰) in BIBS14-298 M1. Of the two caribou M3s analyzed, intra-tooth 

variability in δ18OLA in BIBS14-298 M3 was 1.3‰, while intra-tooth variability in δ18OLA 

in BIBS14-214 M3 was 0.7‰. Tooth-averaged δ18OLA decreased across caribou molars 

(Figure 4.12) from +7.7‰ in M1s to +7.0‰ in M2s, to +6.3‰ in M3s. 

                                                 

19
Although “abnormal” values were identified subjectively, they typically appeared as out-of-trend 

“spikes” exceeding ±1.5‰ of the δ13C or δ18O from preceding and following ablation spots. 
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The δ13CLA and δ18OLA of tooth enamel from muskox M1s are presented in Table 4.10 and 

are illustrated in Figures 4.13 and 4.14. Corresponding ablation spot locations on each tooth 

thick section are shown in Appendix C, Supplemental Figure C4. Overall, intra-tooth 

δ13CLA increases across the sample sequence in most of the muskox M1s. Intra-tooth 

variability in δ13CLA among the nine muskox M1s averaged 1.3‰, with the lowest intra-

tooth variation (0.4‰) in BIBS14-209, and the highest (2.1‰) in both BIBS14-456 M1 

and BIBS14-409 M1. Among archaeological muskox M1s, tooth-averaged δ13CLA was 

lowest in BIBS14-474 (–12.6‰) and BIBS14-456 M1 (–12.8‰), and highest in BIBS14-

209 M1 (–10.8‰). Intra-tooth δ18OLA decreased across the sample sequence in most of the 

muskox M1s. Intra-tooth variability in δ18OLA among the nine muskox M1s averaged 2.1‰, 

with lowest intra-tooth variation (0.6‰) in BIBS14-162, and highest (4.5‰) in BIBS14-

456. 
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Table 4.9. Values of δ13CLA and δ18OLA for caribou tooth enamel analyzed using LA-GC-

IRMS. 

Sample ID Taxon Spot 
δ13CLA δ18OLA 

(‰, VPDB) (‰, VSMOW) 

Classic Thule 

BIBS14-298 M1 Caribou 

1 –10.2 +8.1 

2 –10.4 +8.0 

3 –10.4 +9.0 

5 –10.4 +7.2 

6 –10.9 +7.7 

7 –10.3 +7.3 

8 –9.4 +8.1 
     

BIBS14-298 M2 Caribou 

1 –8.4 +8.3 

2 –8.5 +8.3 

3 –8.2 +8.1 

4 –8.2 +7.9 

5 –8.2 +7.9 

6 –8.2 +7.5 

7 –8.5 +6.3 

8 –8.6 +5.0 

9 –8.4 +6.7 

10 –8.4 +5.7 
     

BIBS14-298 M3 Caribou 

1 –8.8 +6.7 

2 –9.3 +7.3 

3 –9.6 +6.9 

4 –9.5 +6.6 

5 –9.4 +6.7 

6 –9.3 +6.6 

7 –9.5 +6.9 

8 –9.7 +6.4 

9 –9.3 +6.4 

10 –9.8 +6.0 

11 –10.2 +6.1 

12 –10.4 +6.1 
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BIBS14-494 M1 Caribou 

1 –11.5 +7.2 

2 –12.1 +7.4 

3 –11.5 +7.4 

4 –12.7 +6.4 

5 –11.6 +6.7 
     

BIBS14-502 M1 Caribou 

1 –11.7 +9.8 

2 –13.2 +9.5 

3 –12.0 +9.2 

4 –11.8 +8.9 

5 –11.6 +8.2 

6 –11.4 +7.8 

7 –11.1 +7.6 

Inuit 

BIBS14-214 M1 Caribou 

1 –11.6 +7.6 

2 –10.8 +7.4 

3 –11.0 +6.9 
     

BIBS14-214 M2 Caribou 

1 –9.0 +4.9 

2 –9.2 +4.9 

3 –9.3 +4.6 

4 –9.0 +4.9 

5 –9.7 +5.0 

6  +4.7 
     

BIBS14-214 M3 Caribou 

1 –10.9 +6.3 

2 –10.8 +5.8 

3 –11 +6.0 

4 –11.2 +5.7 

5 –10.9 +5.6 

6 –10.7 +6.1 
     

BIBS14-214 P4 Caribou 

1 –11.0 +5.1 

2 –10.4 +4.5 

3 –10.6 +4.1 

4 –10.4 +4.3 

5 –10.4 +4.0 

6 –10.2 +4.0 
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7 –10.2 +3.6 
     

BIBS14-360 M1 Caribou 

1 –11.4 +5.8 

2 –12.2 +6.6 

3 –12.3 +6.5 

4 –11.7 +6.5 

5 –11.4 +6.5 

6 –11.5 +6.4 

7 –11.3 +5.9 

8 –10.7 +5.9 

9 –10.7 +5.5 

10 –11.4 +5.2 

Modern 

BIBS15-67 M2 Caribou 

1 –11.2 +6.8 

2 –11.1 +6.8 

3 –11.3 +6.9 

4 –11.7 +7.3 
     

BIBS16-19 dp4 Caribou 

1 –12.5 +6.2 

2 –14.0 +6.5 

3 –14.8 +6.4 
     

BIBS16-19 M1 Caribou 

1 –14.4 +8.3 

2 –15.0 +9.3 

3 –14.7 +9.3 

4 –14.5 +8.9 

5 –14.4 +9.3 

6 –13.9 +9.4 

7 –13.4 +9.2 

8 –13.4 +8.7 
     

BIBS16-19 M2 Caribou 

1 –12.9 +9.7 

2 –12.7 +9.0 

3 –12.1 +9.0 

4 –11.9 +7.9 

5 –12.4 +8.1 

6 –12.9 +7.9 

7 –13.8 +7.4 
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8 –14.1 +7.0 

9   +6.9 

 



 

391 

 

Figure 4.11. Values of δ13CLA for caribou tooth enamel from the: (a) modern, (b) Inuit; 

and (c) Classic Thule periods. Data are displayed in approximate order of tooth 

development (dp4, M1, M2, M3, P4). 
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Figure 4.12. Values of δ18OLA for caribou tooth enamel from the: (a) modern, (b) Inuit; 

and (c) Classic Thule periods. Data are displayed in approximate order of tooth 

development (dp4, M1, M2, M3, P4). 
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Table 4.10. Values of δ13CLA and δ18OLA for muskox tooth enamel analyzed using LA-

GC-IRMS. 

Sample ID Taxon Spot 
δ13CLA δ18OLA 

(‰, VPDB) (‰, VSMOW) 

Pre-Dorset 

BIBS14-407 M1 Muskox 

1 –11.6 +5.6 

2 –11.6 +5.2 

3 –11.3 +5.2 

4 –11.9 +4.8 

5 –11.7 +4.9 

6 –11.4 +4.8 

7 –11.5 +4.5 

8 –12.1 +5.1 

9 –11.6 +4.7 

10 –11.5 +4.8 

11 –11.2 +4.5 

12 –11.1 +4.2 

13 –11.4 +3.6 

14 –11.3 +3.7 

15 –11.2 +3.8 

16 –11.6 +3.4 
     

BIBS14-409 M1 Muskox 

1 –12.4 +9.6 

2 –12.7 +9.4 

3 –12.8 +9.1 

4 –13.8 +9.0 

5  +7.9 

6 –12.3 +7.6 

7 –12.0 +7.7 

8 –12.1 +7.6 

9 –12.2 +7.4 

10 –12.0 +7.2 

11 –12.0 +7.5 

12 –11.7 +7.1 

13 –11.8 +7.1 

14 –12.0 +6.8 
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15 –12.0 +6.4 

16 –12.1 +7.2 

Lagoon 

BIBS14-162 M1 Muskox 

1 –11.1 +3.1 

2 –11.1 +2.6 

3 –10.9 +2.7 

4 –10.9 +2.8 

5 –11.5 +3.1 

6 –10.9 +3.2 
     

BIBS14-209 M1 Muskox 

1 –10.8 +4.7 

2 –10.7 +4.5 

3 –10.6 +4.4 

4 –10.6 +4.4 

5 –10.7 +4.1 

6 –10.5 +3.9 

7 –10.8 +3.8 

8 –10.8 +3.9 

9 –10.9 +3.9 

10 –10.9 +3.9 

11 –10.9 +3.7 

Early Thule 

BIBS16-30 M1 Muskox 

1 –12.5 +5.6 

2 –12.7 +5.2 

3 –12.4 +5.2 

4 –13.1 +4.7 

5 –12.2 +5.0 

6 –12.0 +5.1 

7 –12.1 +5.0 

8 –12.0 +5.0 

9 –12.2 +4.8 

10 –13.5 +4.4 

11 –11.9 +5.0 

12 –12.0 +4.7 

13 –11.7 +4.4 



 

395 

14 –12.0 +4.9 

15 –12.1 +4.9 

Classic Thule 

BIBS14-474 M1 Muskox 

1 –13.6 +6.3 

2 –12.5 +5.2 

3 –12.8 +5.1 

5 –12.5 +4.0 

6 –12.4 +3.9 

7 –12.1 +3.7 

8 –12.4 +3.7 

9 –12.6 +3.5 

10 –12.5 +3.8 

Inuit 

BIBS14-456 M1 Muskox 

1 –14.1 +8.2 

2 –14.2 +8.1 

3 –13.3 +7.7 

4 –13.3 +7.3 

5 –13.2 +7.1 

6 –13.0 +6.8 

7 –13.0 +6.5 

8 –13.1 +6.5 

9 –12.9 +6.5 

10 –12.9 +6.4 

11 –12.9 +6.4 

12 –13.0 +6.1 

13 –12.6 +5.4 

14 –12.9 +5.6 

15 –12.8 +5.3 

16 –12.9 +5.2 

17 –12.8 +5.0 

18 –12.3 +5.0 

19 –12.3 +4.9 

20 –12.4 +4.6 

21 –12.4 +4.6 
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22 –12.3 +4.7 

23 –12.1 +4.4 

24 –12.3 +4.1 

25 –12.2 +3.7 

26 –12.4 +4.3 

Modern 

BIBS14-169 M1 Muskox 

1 –14.5 +6.2 

2 –14.5 +6.3 

3 –13.8 +6.5 

4 –13.8 +6.1 

5 –13.7 +6.1 

6 –13.6 +6.6 

7 –13.6 +6.5 

8 –13.7 +6.2 

9 –13.6 +5.6 

10 –13.2 +6.0 

11 –13.4 +6.2 

12 –13.3 +6.6 
     

BIBS14-445 M1 Muskox 

1 –13.3  

2 –13.5 +8.2 

3 –13.3 +8.1 

4 –13.6 +7.8 

5 –13.4 +7.7 

6 –13.3 +7.1 

7 –14.4  

10 –13.6 +6.2 

11 –13.9 +6.7 

12 –13.7 +6.5 

13 –13.5 +6.3 

14 –13.2 +5.6 
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Figure 4.13. Values of δ13CLA for muskox tooth enamel from the: (a) modern, (b) Inuit, 

(c) Classic Thule (d) Early Thule, (e) Lagoon; and (f) Pre-Dorset periods. 
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Figure 4.14. Values of δ18OLA for muskox tooth enamel from the: (a) modern, (b) Inuit, 

(c) Classic Thule, (d) Early Thule, (e) Lagoon; and (f) Pre-Dorset periods. 
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4.4.5 Comparison of Structural Carbonate and Laser Ablation δ13C 
and δ18O (Δ13Csc-LA and Δ18Osc-LA) 

Offsets between caribou and muskox tooth enamel δ13C and δ18O derived from structural 

carbonate and laser ablation of corresponding areas on A- and B-sections (Δ13Csc-LA and 

Δ18Osc-LA) are listed in Tables 4.11 and 4.12, respectively. Out of 24 enamel microsamples 

from caribou A-sections, the δ13Csc of 12 were within ±0.4‰ of the δ13CLA from the same 

area on corresponding B-sections. Of the 16 enamel microsamples from muskox A-

sections, the δ13Csc of 10 were within ±0.4‰ of the δ13CLA from the same area on the 

corresponding B-section. Instances where the Δ13Csc-LA offset was greater than ±0.4‰ are 

probably due to either differences in the sampling area, or the mixing of enamel from 

multiple micromilling locations to produce enough enamel powder. 

Most of the structural carbonate δ13C measurements from both species are slightly lower 

than those obtained by laser ablation from the same area on the corresponding thick section. 

This negative offset is contrary to expectation: the H3PO4 method should only produce CO2 

from the structural carbonate component of enamel, whereas laser ablation generates CO2 

from structural carbonate as well as the small organic component in enamel (LeGeros 

1991), which is depleted of 13C relative to structural carbonate. The negative δ13C offset 

between most of the enamel structural carbonate δ13C relative to laser ablation δ13C may 

be the result of using only a constant (single-point) matrix correction for the laser ablation 

data. We found, for instance, that when the WS-1 calcite standard was used to perform a 

calibration correction for the laser data, Δ13Csc-LA offsets are larger, but the structural 

carbonate δ13C was higher than laser ablation δ13C, as might have been expected. 

In caribou tooth enamel samples, the mean offset between structural carbonate δ18O and 

laser ablation δ18O (Δ18Osc-LA) from corresponding areas of the A- and B-sections is 7.8‰ 

(min = 6.7‰, max = 8.8‰) (Table 4.11). Similarly, the mean Δ18Osc-LA offset for muskox 

tooth enamel samples is 6.9‰ (min = 4.6‰, max = 9.3‰) (Table 4.12). The mean Δ18Osc-

LA for both species are in line with the Δ18Osc-LA of our internal enamel standard (7.2‰), 

and Cerling and Sharp (1996), who arrived at a Δ18Osc-LA of 7.1‰ for tooth enamel from 

multiple taxa. 
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Table 4.11. Offsets between the δ13C and δ18O (Δ13Csc-LA and Δ18Osc-LA) obtained from structural carbonate and laser ablation of 

caribou tooth enamel from corresponding areas on A- and B-sections. Where the area micromilled on the A-Section corresponds to 

multiple ablation spots on the B-section, Δ13Csc-LA and Δ18Osc-LA shown here reflect the averages of the ablation spots. 

Sample ID Taxon 
Microbulk 

Sample 

δ13Csc δ18Osc 
Ablation 

Spot 

δ13CLA δ18OLA Δ13Csc-LA Δ18Osc-LA 

(‰, VPDB) 
(‰, 

VSMOW) 
(‰, VPDB) 

(‰, 
VSMOW) 

(‰, VPDB) 
(‰, 

VSMOW) 

Classic Thule 

BIBS14-298 M1 Caribou 
MB1 –11.0 +16.1 

1 –10.2 +8.1 
–0.7 +8.0 

2 –10.4 +8.0 

MB2 –9.5 +15.9 8 –9.4 +7.7 –0.1 +8.6 
          

BIBS14-298 M2 Caribou 

MB1 –8.8 +15.1 
1 –8.4 +8.3 

–0.4 +6.8 
2 –8.5 +8.3 

MB2 –8.5 +13.9 
9 –8.4 +6.7 

–0.1 +7.2 
10 –8.4 +5.7 

          

BIBS14-298 M3 Caribou 

MB1 –8.8 +13.4 
1 –8.8 +6.7 

+0.3 +6.7 
2 –9.3 +7.3 

MB2 –9.4 +13.3 

10 –9.8 +6.0 

+0.7 +7.3 11 –10.2 +6.1 

12 –10.4 +6.1 
          

BIBS14-494 M1 Caribou 

MB1 –12.4 +14.6 2 –12.1 +7.4 –0.3 +7.2 

MB2 –11.4 +14.5 

3 –11.5 +7.4 

+0.5 +7.1 4 –12.7 +6.4 

5 –11.6 +6.7 
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BIBS14-502 M1 Caribou 
MB1 –12.0 +17.3 

1 –11.7 +9.8 
+0.4 +7.5 

2 –13.2 +9.5 

MB2 –10.9 +16 7 –11.1 +7.6 +0.2 +8.4 

Inuit 

BIBS14-214 M1 Caribou 
MB1 –11.8 +16.0 1 –11.6 +7.6 –0.2 +8.4 

MB2 –12.0 +15.5 3 –11.0 +6.9 –1.0 +8.6 
          

BIBS14-214 M2 Caribou 

MB1 –10.0 +13.5 1 –9.0 +4.9 –1.0 +8.6 

MB2 –10.2 +12.8 
4 –9.0 +4.9 

–0.9 +7.9 
5 –9.7 +5.0 

          

BIBS14-214 M3 Caribou 

MB1 –10.8 +13.8 
1 –10.9 +6.3 

+0.1 +7.5 
2 –10.8 +5.8 

MB2 –11.3 +14.3 
5 –10.9 +5.6 

–0.5 +8.7 
6 –10.7 +6.1 

          

BIBS14-214 P4 Caribou 

MB1 –10.7 +13.3 2 –10.4 +4.5 –0.3 +8.8 

MB2 –10.5 +12.2 
6 –10.2 +4.0 

–0.3 +8.2 
7 –10.2 +3.6 

          

BIBS14-360 M1 Caribou 
MB1 –12.3 +13.5 

1 –11.4 +5.8 
–0.5 +7.7 

2 –12.2 +6.6 

MB2 –10.9 +13.3 10 –11.4 +5.2 +0.5 +8.1 

Modern 

BIBS15-67 M2 Caribou MB1 –11.7 +13.9 
1 –11.2 +6.8 

–0.6 +7.1 
2 –11.1 +6.8 
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MB2 –12.0 +14.4 
3 –11.3 +6.9 

–0.5 +7.5 
4 –11.7 +7.3 

          

BIBS16-19 M1 Caribou MB1 –14.3 +16.2 
1 –14.4 +8.3 

+0.4 +7.9 
2 –15.0 +9.3 

          

BIBS16-19 M2 Caribou MB2 –12.3 +15.0 8 –14.1 +7.0 +1.8 +8.0 
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Table 4.12. Offsets between the δ13C and δ18O (Δ13Csc-LA and Δ18Osc-LA) obtained from structural carbonate and laser ablation of 

muskox tooth enamel from corresponding areas on A- and B-sections. Where the area micromilled on the A-Section corresponds to 

multiple ablation spots on the B-section, Δ13Csc-LA and Δ18Osc-LA shown here reflect the averages of the ablation spots. 

Sample ID Taxon 
Microbulk 

Sample 

δ13Csc δ18Osc 
Ablation 

Spot 

δ13CLA δ18OLA Δ13Csc-LA Δ18Osc-LA 

(‰, VPDB) 
(‰, 

VSMOW) 
(‰, VPDB) 

(‰, 
VSMOW) 

(‰, VPDB) 
(‰, 

VSMOW) 

Pre-Dorset 

BIBS14-407 M1 Muskox 

MB1 –11.8 +13.4 1 –11.6 +5.6 –0.2 +7.8 

MB2 –11.5 +11.4 

14 –11.3 +3.7 

–0.2 +7.7 15 –11.2 +3.8 

16 –11.6 +3.4 
          

BIBS14-409 M1 Muskox 
MB1 –12.0 +15.2 1 –12.4 +9.6 +0.4 +5.6 

MB2 –11.5 +12.5 15 –12.0 +6.4 +0.5 +6.1 

Lagoon 

BIBS14-162 M1 Muskox 

MB1 –11.7 +11.2 
1 –11.1 +3.1 

–0.6 +8.4 
2 –11.1 +2.6 

MB2 –11.5 +10.7 
5 –11.5 +3.1 

–0.3 +7.5 
6 –10.9 +3.2 

          

BIBS14-209 M1 Muskox MB1 –11.8 +12.3 
2 –10.7 +4.5 

–1.1 +7.8 
3 –10.6 +4.4 

Early Thule 

BIBS16-30 M1 Muskox 
MB1 –13.8 +10.7 1 –12.5 +5.6 –1.3 +5.1 

MB2 –12.9 +9.5 15 –12.1 +4.9 –0.8 +4.6 
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Classic Thule 

BIBS14-474 M1 Muskox 

MB1 –13.6 +12.0 1 –13.6 +6.3 0.0 +5.7 

MB2 –12.5 +9.9 
9 –12.6 +3.5 

+0.1 +6.3 
10 –12.5 +3.8 

Inuit 

BIBS14-456 M1 Muskox 

MB1 –15.9 +14.7 1 –14.1 +8.2 –0.1 +6.5 

MB2 –14.1 +10.7 

12 –12.3 +4.1 

–0.1 +6.7 13 –12.2 +3.7 

14 –12.4 +4.3 

Modern 

BIBS14-169 M1 Muskox 

MB1 –14.8 +15.5 1 –14.5 +6.2 –0.3 +9.3 

MB2 –13.9 +14.4 
11 –13.4 +6.2 

–0.5 +8.0 
12 –13.3 +6.6 

          

BIBS14-445 M1 Muskox MB1 –13.3 +14.2 
1 –13.3 +6.1 

+0.1 +7.1 
2 –13.5 +8.2 
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4.5 Discussion 

4.5.1 Caribou Tooth Enamel δ13C Derived via Laser Ablation 
(δ13CLA)  

When compared to sequential dentin collagen δ13C from the same caribou teeth (Chapter 

3), the spatial resolution of δ13C data obtain from tooth enamel using laser ablation is much 

higher. This affords greater insight into the relationship between the eruption schedule for 

caribou teeth (Figure 4.2) and their development. Sequential δ13CLA from the teeth of the 

modern caribou, BIBS16-19, (Figure 4.11a) provide a useful example of this relationship. 

Because the fourth deciduous premolar (dp4) in caribou is present and erupting upon birth 

(Banfield 1954; Miller 1974), its isotopic composition reflects variation in maternal diet, 

which is passed on to the developing calf in utero. Consequently, the ~ 2‰ decrease in 

δ13CLA from –12.5 to –14.8‰ across ablation spots of BIBS16-19 dp4 likely corresponds 

to a shift from maternal dietary signals from late winter forage (with higher δ13C) passed 

on to the calf in utero to summer forage (with lower δ13C) during the period of enamel 

mineralization. Intra-tooth variation in δ13CLA in BIBS16-19 M1 reflects a shift from 

summer forage with lower δ13C to winter forage with higher δ13C, which corresponds with 

the approximate period of formation and eruption in this tooth (Figure 4.2). Likewise, intra-

tooth variation in δ13CLA in BIBS16-19 M2 probably records a shift towards forage with 

higher δ13C during the first winter of life, and the subsequent shift towards forage with 

lower δ13C during the second summer of life (Figure 4.2). In short, the intra-tooth sequence 

of δ13CLA from the dp4, M1 and M2 of BIBS16-19 describe a near-continuous sequence of 

dietary variation starting at the winter or spring prior to birth and ending near the second 

summer of life. 

The ~ 2‰ variation in intra-tooth δ13CLA in BIBS16-19 suggests that this caribou probably 

switched to a different forage resource with higher δ13C in winter, rather than simply eating 

desiccated or lignified tissues from typical summer forage species. If the latter was the 
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case, we would expect δ13CLA, which essentially represents structural carbonate δ13C, to 

decrease during the winter due to the greater proportion of 13C-depleted lignin in diet20. 

Dentin collagen δ13C, and its slightly positive offset relative to bulk bone collagen δ13C 

(Chapter 2 and 3) also suggests that milk proteins, rather than lipids, influence dentin 

collagen carbon isotope compositions. The strong intra-tooth variation in δ13CLA in the teeth 

of the modern caribou BIBS16-19, however, suggest that any influence on δ13CLA due to 

milk consumption is probably offset by other forage sources. If milk was the dominant 

dietary input during the period in which the teeth of this caribou formed, we would expect 

relatively homogenous intra-tooth δ13CLA. The δ13CLA of teeth from BIBS16-19 therefore 

support our conclusion in Chapter 2 that this caribou started and completed the weaning 

process relatively early. 

Although the tooth sample dataset is limited, where we obtained data from more than one 

caribou in a single cultural period, sequential carbon isotope compositions tend to fall 

within a similar range, or trend in a similar direction. Consequently, the δ13CLA of caribou 

teeth across cultural periods (Figure 4.11) may provide some information about variability 

in seasonal diet over the last several hundred years. For instance, the intra-tooth pattern of 

δ13CLA from the M1 of BIBS14-360, from the Inuit period, resembles that of the modern 

caribou (BIBS16-19), with a small decrease early in the sequence followed by gradually 

increasing δ13CLA. As discussed above, this quasi-sinusoidal pattern is consistent with a 

shift toward summer forage with lower δ13C, followed by a gradual change towards winter 

forage with higher δ13C. Conversely, the relatively steep decrease from –11.7‰ to –13.2‰, 

and then an increase to –12.0‰ in the first three ablation spots of BIBS14-502 M1 (Classic 

Thule period, red diamonds in Figure 4.11c) may suggest that summer forage availability 

was comparatively brief. Likewise, there is no strong decrease apparent in intra-tooth 

δ13CLA from the M1 of BIBS14-298 (Classic Thule period, yellow X’s in Figure 4.11c), 

                                                 

20
Tahmasebi (2015) for instance, found either no changes or slight decreases in δ13C in modern grass 

samples from the Yukon allowed to decompose in experimental treatments replicating surface conditions. 

The δ13C of one sample of Cyclamen purpurascens, however, increased by ~ 2.5‰ in the first 150 days, 

and then remained the same. 
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and hence no indication of a shift towards summer forage. The intra-tooth sequence of 

δ13CLA in the M2 of BIBS14-298 is also relatively flat, which suggests that the first winter 

of life was relatively long, in agreement with archaeological caribou dentin collagen δ13C 

from the Inuit and Classic Thule periods (Chapter 3). 

4.5.2 Muskox Tooth Enamel δ13C Derived via Laser Ablation 
(δ13CLA) 

Unlike those of caribou teeth, the intra-tooth sequences of δ13CLA from muskox M1s 

(Figure 4.13) lack any strong sinusoidal patterning that might relate to large seasonal 

variations in forage items. Most of the muskox M1s we analyzed display a ~ 1‰ increase 

in 13C across ablation spots. We suggest, based on eruption indices (Tener 1965; 

Henrichsen and Grue 1980), that this change corresponds to a shift from mid-summer to 

winter diet. We also observe increases in 13C across sequential crown dentin collagen 

samples (Chapter 3) in the teeth discussed here, which suggests that, although significantly 

taller than those of caribou, the tooth enamel of muskox M1s mineralizes relatively quickly, 

such that there is limited lag between the isotopic signals integrated into dentin and enamel. 

Though the intra-tooth variability in δ13CLA of muskox M1s across cultural periods is more 

limited than in caribou, it is notable that the two teeth dating to the Lagoon period (~ 2700-

2100 calibrated 14C BP), BIBS14-162 M1 and -209 M1, have the highest tooth-averaged 

δ13CLA of all archaeological muskox M1s (intra-tooth average δ13CLA = –11.0‰ and –

10.8‰, respectively) (Figure 4.13e, Table 4.10). During the Lagoon period, average annual 

air temperature in the Canadian Arctic was considerably lower than today (Kaufman et al. 

2004; Gajewski 2015; Navarro et al. 2016; Lecavalier et al. 2017). The higher δ13CLA in 

tooth enamel from both Lagoon period muskoxen, and the homogeneity of intra-tooth 

δ13CLA in BIBS14-209 M1, suggests that phytomass diversity may have been reduced 

during this period, limiting seasonal dietary variation. This interpretation is consistent with 

palynological evidence (Gajewski 1995; Gajewski et al. 2000; Gajewski and MacDonald 

2004; Peros and Gajewski 2009), which suggests that around 3000 BP, shrub phytomass 

in the Canadian Arctic started declining while sedge and grass phytomass productivity 

increased. Given that sedges compose a significant portion of muskox diet year-round 

(Oakes et al. 1992; Larter and Nagy 1997, 2004), muskoxen may have had a nutritional 
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advantage over caribou during these cold centuries. This relationship between diet, 

phytomass productivity, and faunal productivity may also explain why caribou remains 

appear less frequently than muskoxen at Lagoon period sites on Banks Island. 

4.5.3 Δ13CLA-bc Spacings in Caribou and Muskox Teeth 

Spacings between tooth-averaged δ13CLA and bulk bone collagen δ13C (Δ13CLA-bc) for 

caribou and muskoxen are presented in Tables 4.13 and 4.14, respectively. The average 

Δ13CLA-bc spacings across archaeological and modern caribou (+9.0‰ and +8.6‰, 

respectively), and archaeological and modern muskoxen (+8.9‰ and +9.4‰, respectively) 

are all typical of enamel structural carbonate-bulk bone collagen δ13C spacings in large-

bodied herbivores (Krueger and Sullivan 1984; Lee-Thorp et al. 1989). We can go further 

and combine the respective Δ13CLA-bc spacings for caribou and muskoxen with their 

respective Bayesian-derived bone collagen-diet trophic discrimination factors (Δ13Ccoll-diet; 

Chapter 2) to estimate the total structural carbonate-diet spacings (Δ13CLA-diet). Doing so 

results in average Δ13CLA-diet spacings of +13.7‰ and +13.3‰ for archaeological and 

modern caribou, respectively (Table 4.13), and +11.5‰ and +12.0‰ for archaeological 

and modern muskoxen, respectively (Table 4.14). 

In modern caribou and muskoxen, these Δ13CLA-diet spacings yield dietary δ13C estimates of 

–26.4‰ and –25.7‰, respectively, which are in line with mean dietary δ13C estimates for 

modern caribou and muskoxen on Banks Island (Chapter 2). When corrected by –1.7‰ to 

account for the depletion of 13C in atmospheric CO2 over the last ~ 150 years (i.e. the 

“Suess Effect”) (Keeling et al. 1979, 2005; Francey et al. 1999; Long et al. 2005; Verburg 

2007), the δ13Cdiet estimates for archaeological caribou and muskoxen yield modern dietary 

δ13C estimates of –25.9‰ and –25.1‰, respectively (Table 4.13 and 4.14, respectively), 

which is in line with the average dietary δ13C for modern caribou and muskoxen on Banks 

Island. 

Although the Δ13CLA-diet of both species falls within the range expected from highly 

methanogenic animals feeding exclusively on C3 plants (+12 to 14‰, Cerling and Harris 

1999), we might predict based solely on rumen size (Staaland and Thing 1991) that 

methanogenic activity, and hence Δ13CLA-diet spacings, would be higher in muskoxen than 
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caribou. Data on methanogenic activity in caribou and muskoxen (Hackstein and van Alen 

1996), however, suggests that caribou produce more than double the amount of methane 

per hour than muskoxen, and that the passage time for ingesta is relatively slow in 

muskoxen (Adamczewski et al. 1994). Additionally, data from Cerling and Harris (1999) 

indicates that, of ruminants feeding on C3 plants, those with more dicots (e.g. legumes, 

shrubs, and non-leguminous forbs) in their diet will have slightly higher Δ13CLA-diet 

spacings, and Bayesian mixing models (Chapter 2) suggest that modern caribou consume 

significantly greater quantities of dicots than muskoxen on Banks Island. In short, the 

respective Δ13CLA-diet spacings for caribou and muskoxen make sense given the differences 

both in their typical diets and methanogenic activity, and support the Bayesian-derived 

trophic discrimination factors used in Chapters 2 and 3. 
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Table 4.13. Caribou intratooth-averaged δ13CLA (column A) vs. bulk bone collagen δ13C (δ13Cbc, see chapter 3) from the same 

individual (column B). The isotopic fractionation of 13C between tooth enamel and bulk bone collagen (Δ13CLA-bc, column C) is 

calculated by subtracting column B values from column A. Using Bayesian-derived estimates of isotopic fractionation of 13C between 

bulk bone collagen and diet (Δ13Cbc-diet, here +4.7‰), the total spacing between tooth enamel δ13C and dietary δ13C is estimated 

(column D). By simply subtracting column D from column A, the average δ13C of diet is estimated (column E). Finally, 

archaeological δ13Cdiet in column E can be compared to modern forage δ13C by subtracting 1.7‰ (column F). 

Lab Sample ID Taxon Tooth 

A B C D E F 

Intratooth 
Average 
δ13CLA 

δ13Cbc 
Δ13CLA-bc 
Spacing 

Δ13CLA-diet 
Spacing 

Inferred 
δ13Cdiet 

Inferred 
Modern 
δ13Cdiet 

(‰, VPDB) (‰, VPDB) (A – B) (C + 4.7) (A – D) (E – 1.7) 

Classic Thule 

BIBS14-298 Caribou 

M1 –10.3 

–18.9 

+8.6 +13.3 –23.6 –25.3 

M2 –8.4 +10.5 +15.2 –23.6 –25.3 

M3 –9.6 +9.3 +14.0 –23.6 –25.3 
         

BIBS14-494 Caribou M1 –11.9 –19.3 +7.4 +12.1 –24.0 –25.7 
         

BIBS14-502 Caribou M1 –11.8 –19.2 +7.4 +12.1 –23.9 –25.6 

Inuit 

BIBS14-214 Caribou 

M1 –11.1 

–20.2 

+9.1 +13.8 –24.9 –26.6 

M2 –9.2 +11.0 +15.7 –24.9 –26.6 

M3 –10.9 +9.3 +14.0 –24.9 –26.6 

P4 –10.5 +9.7 +14.4 –24.9 –26.6 
         

BIBS14-360 Caribou M1 –11.5 –19.3 +7.8 +12.5 –24.0 –25.7 

 Mean –10.5 –19.4 +9.0 +13.7 –24.2 –25.9 
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Modern  

BIBS15-67 Caribou M2 –11.3 –22.1 +10.8 +15.5 –26.8 

 

        

BIBS16-19 Caribou 

dp4 –13.8 

–21.5 

+7.7 +12.4 –26.2 

M1 –14.2 +7.3 +12.0 –26.2 

M2 –12.8 +8.7 +13.4 –26.2 

 Mean –13.0 –21.8 +8.6 +13.3 –26.4  
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Table 4.14. Muskox intratooth-averaged δ13CLA (column A) vs. bulk bone collagen δ13C (δ13Cbc, see chapter 3) from the same 

individual (column B). The isotopic fractionation of 13C between tooth enamel and bulk bone collagen (Δ13CLA-bc, column C) is 

calculated by subtracting column B values from column A. Using Bayesian-derived estimates of isotopic fractionation of 13C between 

bulk bone collagen and diet (Δ13Cbc-diet, here +2.6‰), the total spacing between tooth enamel δ13C and dietary δ13C is estimated 

(column D). By simply subtracting column D from column A, the average δ13C of diet is estimated (column E). Finally, 

archaeological δ13Cdiet in column E can be compared to modern forage δ13C by subtracting 1.7‰ (column F). 

Lab Sample ID Taxon Tooth 

A B C D E F 

Intratooth 
Average 
δ13CLA 

δ13Cbc 
Δ13CLA-bc 

Spacing 

Δ13CLA-diet 
Spacing 

Inferred 
δ13Cdiet 

Inferred 
Modern 
δ13Cdiet 

(‰, VPDB) (‰, VPDB) (A – B) (C + 2.6) (A – D) (E – 1.7) 

Pre-Dorset 

BIBS14-407 Muskox M1 –11.5 –20.3 +8.8 +11.4 –22.9 –24.6 
         

BIBS14-409 Muskox M1 –12.3 –20.9 +8.6 +11.2 –23.5 –25.2 

Lagoon 

BIBS14-162 Muskox M1 –11.0 –20.4 +9.4 +12.0 –23.0 –24.7 
         

BIBS14-209 Muskox M1 –10.8 –20.8 +10.0 +12.6 –23.4 –25.1 

Early Thule 

BIBS16-30 Muskox M1 –12.3 –20.5 +8.2 +10.8 –23.1 –24.8 

Classic Thule 

BIBS14-474 Muskox M1 –12.6 –21 +8.4 +11.0 –23.6 –25.3 

Inuit 

BIBS14-456 Muskox M1 –12.8 –21.8 +9.0 +11.6 –24.4 –26.1 

 Mean –11.9 –20.8 +8.9 +11.5 –23.4 –25.1 
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Modern 

 
BIBS14-169 Muskox M1 –13.7 –23.4 +9.7 +12.3 –26.0 

        

BIBS14-445 Muskox M1 –13.6 –22.7 +9.1 +11.7 –25.3 

 Mean –13.7 –23.1 +9.4 +12.0 –25.7 
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4.5.4 Tooth Enamel δ18O Derived via Laser Ablation (δ18OLA) 

In both caribou and muskoxen, seasonal climatic variation, rather than geographic variation 

in growing-season plant water δ18O, appears to dominate tooth enamel δ18OLA. For instance, 

we conclude based on eruption indices and intra-tooth δ13CLA that – in caribou – enamel 

from the first molar reflects isotopic signals between birth (and/or the first summer of life 

depending on occlusal wear) and the first fall of life, while the second molar reflects 

isotopic signals from the first fall of life (again depending on occlusal wear) to the second 

spring of life. All but one of the caribou M1s we analyzed also depict quasi-sinusoidal 

patterns in intra-tooth δ18OLA (Figure 4.12), with higher δ18OLA earlier in the sequence and 

lower δ18OLA later in the sequence. Likewise, sequential δ18OLA from muskox M1s appears 

to capture seasonal climatic signals between the first summer and mid-winter of life. All 

but three of the muskox M1s we analyzed display declines in δ18OLA across the sample 

sequence on the order of ~ 3‰ (Figure 4.14). 

Of the four caribou M2s we analyzed, two also display declines in δ18OLA across the 

sequence consistent with a continued decline in temperature, and consequently 

precipitation δ18O, through the winter and spring. Of the other two M2s, one (BIBS14-214 

M2) has very low δ18OLA across the entire sampling sequence (Figure 4.12b), potentially 

indicating a long and cold winter. The other (BIBS15-67 M2) is a modern tooth, and shows 

a ~ 1‰ increase in δ18OLA across the relatively short sequence (Figure 4.12a), potentially 

indicating an early summer during the year the tooth developed, consistent with recent 

temperature trends on Banks Island (Trevor Lucas 2016, personal communication). In both 

cases, variation in δ18OLA along the sample sequence conforms to expected seasonal 

variation in precipitation δ18O (Fricke and O’Neil 1996; Fricke et al. 1998), where higher 

δ18OLA corresponds to warmer air temperatures and vice versa. If δ18OLA was dominated by 

geographic variation, we would expect the opposite, particularly in caribou: lower δ18O in 

enamel corresponding to summers spent in northern calving grounds, and higher δ18O in 

enamel corresponding to winters spent farther south, either on Banks Island or elsewhere. 

It is also unlikely that we have simply misinterpreted the enamel developmental schedule 

in the teeth, such that we are relating tooth development, and consequently, intra-tooth 
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δ18OLA, to the wrong parts of the year. Since oxygen isotope measurements obtained via 

laser ablation are ~ 1.2‰ higher than phosphate δ18O (Cerling and Sharp 1996) due to the 

influence of structural carbonate δ18O, we can adjust our δ18OLA by –1.2‰, then use 

Equation 4.2 (Huertas et al. 1995) to approximate the δ18O of water ingested during enamel 

mineralization: 

𝛿18O𝑏𝑤/𝑑𝑤 =  
𝛿18O𝑝 − 24.1

0.88
 

[Equation 4.2] 

where δ18Obw/dw represents the oxygen isotope composition of drinking or body 

water, and δ18Op represents the δ18O of tooth enamel phosphate. 

As demonstrated in Figure 4.15, δ18Obw/dw estimates from modern caribou and muskox 

δ18OLA, respectively, have maxima near ~ –18.5‰ and minima near –22‰. Maximum 

δ18Obw/dw estimates are within the range of month-averaged precipitation δ18O (δ18Opw) in 

late summer and early fall on Banks Island calculated using the OIPC (Bowen 2017) 

(Figure 4.16). They likewise align with long-term records of monthly variation in δ18Opw 

in late summer and early fall recorded at Mould Bay, Northwest Territories, Canada, which 

is the GNIP station nearest Banks Island (IAEA/WMO 2017) (Figure 4.16). The minimum 

δ18Obw/dw estimates are between 7‰ and 10‰ higher than month-averaged δ18Opw data 

from the OIPC and GNIP datasets. This discrepancy could be due to isotopic signal 

attenuation during the enamel mineralization process, but another likely possibility is that 

higher-than-expected δ18Obw/dw estimates corresponding to winter reflect the influence of 

ingested water from plant tissues enriched in 18O due to transpiration during the growing 

season, or evaporative enrichment in 18O during freezing. 

Still, transpiration is known to cause enrichment in leaf water 18O on the order of 15-27‰ 

depending on factors such as air temperature and relative humidity (Sternberg and DeNiro 

1983; Sternberg 1988; Yakir and DeNiro 1990; Flanagan and Ehleringer 1991; Flanagan 

1993; Yakir et al. 1993; Barbour and Farquhar 2000; Cernusak et al. 2003; Barbour et al. 

2007), and the fact that δ18Obw/dw estimates obtained using phosphate-corrected δ18OLA are 



 

416 

only 7-10‰ higher than precipitation data therefore suggests that either the enrichment of 

18O in leaves is not particularly extreme on Banks Island, or that the contribution of plant 

water to caribou and muskox body water is limited. The strong precipitation signal in the 

caribou and muskox enamel δ18OLA data further suggests that both species may consume 

water, as liquid during summer and snow or ice during winter, with greater frequency than 

we and other researchers (e.g. Gray 1973; Bocherens et al. 1996; Britton et al. 2009) have 

hypothesized. It is also likely that some amount of snow or ice is inadvertently consumed 

along with forage during the winter, which may be enough to dominate body water δ18O 

compositions. 

Finally, we must consider the potential role of lichens in determining the δ18O of caribou 

and muskox tooth enamel. Based on dietary mixing model results and sequential dentin 

collagen δ13C, we suggest in Chapter 2 that yellow lichen (Cetraria tilesii) is an important 

forage resource for both caribou and muskoxen on Banks Island, with particular importance 

during the winter. Lichens, unlike vascular plants, cannot utilize soil moisture because they 

have no roots and instead rely on precipitation and atmospheric water vapor for their water 

requirements. Further, because they lack vasculature and stomata, the water status of green 

foliose/fruticose lichens like C. tilesii varies with environmental conditions (Lange et al. 

1988; Máguas et al. 1993). A set of experiments by Lakatos et al. (2007) and Hartard et al. 

(2008, 2009) demonstrate that because lichen cannot control water loss via stomatal 

closure, the water in their thalli is constantly equilibrating isotopically with atmospheric 

water vapor. Therefore, the δ18O of lichens during summer should reflect the δ18O of 

atmospheric water vapor. 

Experimental work (Lakatos et al. 2007; Hartard et al. 2008, 2009) demonstrates that 

desiccating lichens experience an enrichment in 18O of ~ 7‰, and it is conceivable that 

lichens on high, snow-free ridges experience such enrichment in 18O via sublimation during 

winter. The δ18O of lichens during winter would therefore be higher than the δ18O of winter 

precipitation, and their consumption by caribou and muskoxen might drive δ18OLA 

corresponding to winter upwards. This topic, however, deserves further consideration, and 

growth chamber experiments replicating winter field conditions may yield useful 
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information on the metabolic and water status of foliose/fruticose lichens in the Arctic, and 

seasonal variation in their δ18O.
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Figure 4.15. Estimated δ18Odw/bw calculated from modern (a) caribou; and (b) muskox 

tooth enamel δ18OLA using Equation 4.2.



 

419 

 

Figure 4.16. Monthly-averaged δ18Opw calculated using the OIPC (Bowen 2017) and 

randomly-chosen coordinates near the northern, southern, and middle portions of Banks 

Island (closed shapes), and monthly-averaged δ18Opw measured at Mould Bay, NWT, 

Canada from 1989 to 1993 (green X’s) (IAEA/WMO 2017). 
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4.6 Conclusion 

In both caribou and muskoxen, sequential tooth enamel δ13CLA predominately reflects shifts 

between summer forage with lower δ13C and winter forage with higher δ13C. As with 

enamel δ18OLA, there are also temporal variations in the patterning of intra- and inter-tooth 

δ13CLA consistent with shorter, cooler summers during the Lagoon, Early Thule, and Classic 

Thule periods on Banks Island. The Δ13CLA-diet spacings that integrate Bayesian-derived 

Δ13Ccoll-diet spacings for caribou and muskoxen (Chapter 2 and 3) conform with expectations 

from published data on Δ13CLA-diet spacings in large ungulate herbivores with dicot/grass-, 

and grass-dominated diets, respectively. 

Our FTIR results demonstrate that enamel preservation in the Arctic is very good, even for 

relatively ancient teeth. Our hypothesis that the δ18OLA of caribou and muskox teeth are 

dominated by geographic variation in plant water δ18O, however, is not supported. This 

study suggests that tooth enamel δ18O is not ideal – by itself – as a tracer for the seasonal 

movements of caribou and muskoxen on Banks Island. Instead, sequential δ18OLA appears 

to closely track seasonal variation in precipitation δ18O. Given that caribou and muskoxen 

are commonly the only species represented at smaller, ancient campsites found in the 

Canadian Arctic, the δ18O of caribou and muskox tooth enamel, at larger sample sizes, 

should prove useful as proxies for annual or sub-annual paleoclimatic variation during the 

middle and late Holocene.  
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Chapter 5  

5 General Discussion and Conclusion 

5.1 The Importance of Baseline Isotopic Data in 
Understanding Tissue Isotopic Compositions 

One of the primary goals of this dissertation was to investigate how shifts in caribou and 

muskox ecology may have influenced the subsistence choices of hunters on Banks Island 

over the last 4000 years, primarily using bone collagen as the analyte. Small bone 

fragments are often the only zooarchaeological remains present at archaeological sites on 

Banks Island, and bone collagen carbon and nitrogen isotope compositions (δ13C and δ15N, 

respectively) record information about resource and environment variables during life. 

Given the number of ecological and physiological factors that influence bulk bone collagen 

δ13C and δ15N, these data, on their own, are typically inadequate to answer specific research 

questions, except where there are large differences in the isotopic compositions and/or 

trophic positions of relatively few dietary sources. In all other cases, we can make only 

general inferences about ecological questions of interest based on basic stable isotopic 

theory. Caribou and muskoxen on Banks Island provide a useful example: both species are 

large-bodied ruminants whose diets consist exclusively of C3 plants. We can estimate their 

bone collagen δ13C based on general knowledge of the δ13C of modern C3 plants as a group 

(typically ~ –27 to –28‰, Park and Epstein 1960; Smith and Epstein 1971; Deines 1981; 

O’Leary 1981, 1988), and their bone collagen δ15N based on the trophic relationships 

among terrestrial nitrogen sources, primary producers, and herbivores (Hoering and Ford 

1960; DeNiro and Epstein 1981; Virginia and Delwiche 1982; Minagawa and Wada 1984; 

Schoeninger and DeNiro 1984). Aside from this relatively basic information, however, we 

can say very little without knowing the actual isotopic compositions of forage vegetation. 

Likewise, dietary mixing models, which are increasingly utilized to make inferences about 

dietary compositions and ecological niche relationships, require specific source (i.e. 

dietary) isotopic data. On Banks Island, as in many cases, it is not possible to obtain 

archaeological vegetation samples in any significant quantities, and microbial activity may 

alter the isotopic compositions of any archaeological plant samples that are obtained 
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(Macko and Estep 1984; DeNiro and Hastorf 1985; Macko et al. 1987; Lehmann et al. 

2002; Tahmasebi 2015). One partial solution, which we employ here, is to quantify 

relationships between modern consumer tissues and their dietary sources using a dietary 

mixing model, and then use this information to make interpretations about the significance 

of archaeological tissue isotope compositions. This approach is less useful, however, where 

environmental isotopic baselines have shifted significantly due, for example, to the effects 

of artificial fertilization, or where the diets of consumers have changed significantly (e.g. 

a shift from herbivory to omnivory, or the introduction of dietary items with unique isotopic 

compositions). As mixing models increase in availability and sophistication, researchers 

will be able to explore increasingly specific research questions. Without high-quality 

baseline data, however, these mixing models provide misleading results that are obscured 

by – or overlooked because of – their mathematical complexity. Unless they already exist 

at site- or region-specific scales, researchers should plan to collect and incorporate baseline 

data into any project where mixing models are used. The plant isotopic data presented here 

will be useful for researchers tracking future changes in the terrestrial carbon and nitrogen 

cycles of the Western North American Arctic, as well as future studies of niche 

relationships between caribou and muskoxen on Banks Island. 

5.2 Potential Disparities Between Ellipse Metrics and 
Mixing Models 

Our investigation of caribou and muskox niche relationships on Banks Island over the last 

4000 years (Chapter 3) also highlights a potential methodological, and therefore 

interpretive, disjunction between paleoecological and ecological research. Most mixing 

models, including the one we use in Chapter 2 (“MixSIAR”, see Semmens et al. 2013; 

Stock and Semmens 2013) require an additional input besides source (dietary) and 

consumer (tissue) isotopic data: the enrichments in 13C and 15N between the source and 

consumer trophic levels, which we refer to as the “trophic discrimination factor” or “TDF”. 

If the TDFs for two species under comparison are the same, then overlap or separation in 

their tissue isotope compositions will directly reflect overlap or separation in their dietary 

resources. If, however, the TDFs of the species under comparison are different, then their 

tissue isotope compositions alone will mischaracterize their ecological relationships. This 
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difference must also be accounted for when using “shape-based metrics” (Newsome et al. 

2012) such as multivariate ellipses to quantify the overlap in “isotopic niche” between two 

species. Again, caribou and muskoxen from Banks Island provide a salient example. 

Because no controlled feeding studies have been performed on either species, we employ 

a mathematical model (“SIDER”, see Healy et al. 2016) in Chapter 2 to estimate carbon 

and nitrogen TDFs. Significantly, the SIDER model suggests that the carbon TDF for 

caribou is nearly twice as large as that of muskoxen. When caribou and muskox bone 

collagen δ13C and δ15N from each archaeological period on Banks Island are plotted, they 

suggest that the isotopic niches of caribou and muskoxen are typically separated, but 

overlap strongly during periods associated with climatic instability. When the difference 

in carbon isotope TDFs is accounted for, however, the isotopic data instead suggest that 

caribou and muskoxen tend towards niche expansion with separation during cold or 

climatically-unstable periods. 

Where specific source isotopic data can be obtained, we agree with Newsome et al. (2007, 

2012) that consumer isotopic data should be presented in “DietSpace” (i.e. as source 

posterior probability distributions; see for instance Figure 2.15 in Chapter 2). 

Paleoecologists face a greater challenge because source isotopic data are generally not 

available and controlled feeding studies cannot be performed on extinct species. In this 

case, statistical approaches to TDF estimation like SIDER should be used and developed 

further. 

5.3 Relationships Between Caribou, Muskoxen, and 
Ancient Hunters on Banks Island 

One of the original questions motivating this project is the extent to which human 

occupational hiatuses on Banks Island over the last 4000 years were related to declines in 

the availability of caribou and particularly muskoxen, which were brought about by 

overexploitation from hunters, de facto niche competition, or niche competition caused by 

ecological changes. Although we cannot explore the motivations of ancient hunters with 

faunal stable isotope compositions alone, these data demonstrate two important points. 

First, as evidenced by bone collagen isotopic data from the Pre-Dorset period, caribou and 

muskoxen, under certain ecological conditions, are able to persist in the same ecological 
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niche. The number of muskox remains at the Umingmak (PjRa-2) site during the Pre-

Dorset period also suggests that muskoxen were abundant during this period. Second, there 

appears to be a strong positive correlation between the proportion of muskox and caribou 

remains present at archaeological sites during an archaeological period, the proximity of 

caribou and muskox niches, and average annual air temperature. 

These findings suggest that niche overlap in caribou and muskoxen on Banks Island 

probably does not relate to population declines in either species. Further, that the ecological 

niches of caribou and muskoxen appear to expand and separate during climatically-

unstable periods (e.g. the Lagoon and Early Thule periods, see Figure 3.9 in Chapter 3) 

suggests that decreased availability of preferred forage, rather than increased forage 

competition may cause demographic declines, particularly in caribou, which have 

nutritional requirements more specific than those of muskoxen. Still, the significant shifts 

in muskox niche characteristics during the Lagoon and Early Thule periods, and the 

decreased presence of muskox remains relative to marine resources at Lagoon and Early 

Thule sites suggests that there is a relationship between the ecological status of muskoxen 

and the level of utilization by human hunters. 

5.4 Contributions to Isotopic Baseline Development at 
Northern Latitudes 

Independent of our interpretations, the isotopic data presented in this dissertation will also 

be useful for other researchers working at high northern latitudes. Although there is a 

growing body of vegetation isotopic data from Alaska (Barnett 1994; Ben-David et al. 

2001; Baltensperger et al. 2015), data from the Canadian High Arctic is limited (Blake 

1991). Our vegetation dataset includes δ13C and δ15N for individual plant tissues from 49 

samples of 18 genera collected across Banks Island in 2014 and 2015. This is currently the 

largest published dataset of this kind, from this region, of which we know. Similarly, 

isotopic data from Holocene caribou and muskoxen, both archaeological and modern, are 

limited (Bocherens et al. 1996; Coltrain et al. 2004; Drucker et al. 2012; Bocherens et al. 

2016), even though both species represent a unique ecological link between the Pleistocene 

mammoth steppe and the modern Arctic tundra ecosystem. Our bone collagen dataset 

expands the number of data points significantly, and among other topics, will be useful for 
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investigating relationships between primary producers, herbivores, and consumers at 

higher trophic levels. Finally, our meteoric surface water dataset extends the reach of 

existing surface water isotopic data from northern Canada (Gibson 2002; Gibson and 

Edwards 2002; Gibson et al. 2005; Yi et al. 2012), complementing the valuable but 

relatively limited set of precipitation isotope data from GNIP collection stations across the 

North American Arctic. 

5.5 Further Research 

Although this dissertation addresses several longstanding hypotheses concerning caribou 

and muskox ecology on Banks Island, it also generates several other questions that could 

be addressed through future isotopic investigations. 

5.5.1 The Relationship Between Caribou and Muskox Niche 
Variation and Population Size 

An important goal moving forward will be determining the relationship between the 

presence of caribou and muskoxen at archaeological sites on Banks Island, their niche 

characteristics, and genetic diversity in each species. Mitochondrial DNA analysis of many 

bone samples used in this project is currently underway (Rodrigues, Yang, and Hodgetts, 

unpublished data). When this research is complete, it will provide additional evidence with 

which to evaluate the relationship between dietary changes observed through time via 

stable isotope analyses and variation in caribou and muskox population size. 

5.5.2 Traditional Hunting Knowledge on Banks Island 

Several researchers (Nagy 1999; Kelvin 2016) have worked with the community of Sachs 

Harbour to document traditional knowledge of Banks Island’s history and cultural 

practices. Although knowledge about caribou and muskoxen is an important part of these 

documents, future work can and should focus specifically on canvassing hunters for their 

experiential knowledge of caribou and muskox diet and behavior. This knowledge base 

will supplement the growing body of observational and experimental data specific to Banks 

Island. 
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5.5.3 Systematic Study of Vegetation Isotopic Compositions on 
Banks Island 

The posterior probability distributions of some forage sources in our dietary mixing models 

are relatively large and overlapping, even when the source data are aggregated to reduce 

the total number of source divisions. Large, overlapping posterior probability distributions 

are less informative because there are a broad number of possible dietary contributions 

(Phillips et al. 2014). It is not yet clear, however, whether the mixing models produce such 

large posterior probability distributions because of the limited isotopic variability of arctic 

vegetation species, which all utilize the C3 photosynthetic pathway, or because the source 

dataset is inadequate in size. The former issue is intractable, but the latter is simply a matter 

of collecting and analyzing more vegetation samples. Relatively speaking, the isotopic 

analysis of bulk vegetation samples is inexpensive, and additional samples could be 

collected opportunistically by Parks Canada researchers visiting Banks Island for other 

purposes. 

Non-isotopic studies of plant species distributions in the Eastern Arctic (e.g. Ferguson 

1991; Oakes et al. 1992; Larter and Nagy 2001) generally divide the landscape into 

different habitats (e.g. “upland barren”, “hummock tundra”, “wet sedge meadow”) and 

obtain vegetation samples from each. Kristensen et al. (2011) also sampled vegetation from 

different habitats in Greenland, and incorporated differences in the δ13C and δ15N of each 

functional group (e.g. graminoids, willow, and forbs) between habitats to provide 

additional structure in their dietary mixing model. Although our research demonstrates 

statistically significant geographic variation in the δ13C and δ15N of certain forage species 

or functional groups collected on Banks Island, helicopter travel is extremely expensive, 

and our time at each collection area was generally limited. Further research may benefit 

from structured, systematic studies of isotopic variation in vegetation from different 

habitats on Banks Island. While tooth enamel δ18O appears not to be informative of 

seasonal movements in caribou or muskoxen, a vegetation “isoscape” of sufficient 

resolution may prove useful for this purpose. 
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5.5.4 The Role of Glycine and Microflora in Caribou and Muskox 
Bone Collagen Isotopic Compositions 

Contrary to most existing research (Oakes et al. 1992; Larter and Nagy 1997, 2004), our 

mixing models suggest that yellow lichen (Cetraria tilesii) may be an important dietary 

resource for muskoxen on Banks Island. As discussed above, this finding may be an artifact 

of low sample size or limited isotopic variation in vegetation samples, though existing 

studies of muskox diet on Banks Island are based on analyses of rumen and fecal content. 

Multiple studies (Gill et al. 1983; Holechek and Valdez 1985; Thing et al. 1987; Bartolomé 

et al. 1995) demonstrate that, while useful, both approaches to dietary reconstruction tend 

to be biased towards poorly-digestible forage. The possibility also exists, however, that 

bulk bone collagen carbon isotope compositions are influenced by those of glycine routed 

without deamination from comparatively small amounts of ingested yellow lichen. The 

most straightforward approach for evaluating this “lichen hypothesis” is to simply compare 

the δ13C of glycine extracted from yellow lichen and muskox bone collagen samples using 

a compound-specific approach. 

Another possibility is that gut microflora constitute a significant protein source for 

ruminants exposed to seasonal declines in forage availability. Consequently, the isotopic 

compositions of gut microflora may also influence consumer tissue isotopic composition. 

To our knowledge, there is little published research in this area (but see Schwartz-

Narbonne 2016) though many researchers (Sillen et al. 1989; Bocherens et al. 1996; 

Dewhurst et al. 2001; Sponheimer et al. 2003; Atasoglu et al. 2004) have discussed the 

topic. Approaching this problem would be challenging: obtaining rumen microfloral 

samples from harvested muskoxen is not feasible because of the rapid decomposition of 

digestive contents (Cuthbert 1857; Peary 1910; Tener 1965; Lent 1999). Likewise, there 

are methodological, and certainly ethical, impediments to field-sampling rumen microflora 

from wild muskoxen. One potential approach is to obtain rumen microfloral samples from 

muskoxen kept at research stations and temporarily placed on deprivation diets, which 

would then be preserved and prepared using established methods (Adamczewski et al. 

1988), and analyzed for their isotopic compositions, again using GC-C-IRMS (Boschker 

and Middelburg 2002) or similar systems (Eek et al. 2007). 
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5.5.5 Controlled Feeding Studies in Captive/Domesticated Caribou 
and Muskoxen 

Another point of significant uncertainty in our dietary mixing models, and in our 

interpretation of archaeological caribou and muskox δ13Cbc and δ15Nbc, are their trophic 

discrimination factors (TDFs). As discussed in Chapters 2 and 3, researchers typically 

either utilize TDFs from published data, or derive TDFs from controlled feeding studies. 

Although our Bayesian-derived TDFs are reasonable for large-bodied ruminants, they 

could be partially “ground-truthed” by placing captive or domesticated caribou and 

muskoxen on controlled diets (but see Chapter 2 for a discussion of difficulties associated 

with this approach), and then sampling different tissues for isotopic analysis after the 

animals are harvested. Given their environment and unique evolutionary trajectories, both 

species likely possess physiological adaptations unique from ruminants that dwell in 

temperate or arid environments. Such a study could consequently provide unique insight 

into our general understanding of the relationships among diet, physiology, and tissue 

isotopic compositions. 

5.5.6 Development of Matrix-Matched Tooth Enamel Standards for 
LA-GC-IRMS 

The development of the laser ablation-GC-IRMS method represents a major advancement 

in the isotopic analysis of inorganic and biogenic carbonates and phosphates. For the 

sequential sampling and analysis of microbulk tooth enamel, cycle time per sample is 

approximately 10 minutes – several orders of magnitude shorter than the traditional 

approach of offline sampling and preparation – and analysis for structural carbonate and 

phosphate isotopic compositions. Currently, the quality of tooth enamel isotopic data 

obtained via LA-GC-IRMS is limited by the lack of matrix-matched reference and check 

standards. Our solution in Chapter 4 is to use intact enamel segments from a single muskox 

4th premolar (P4) that exhibited limited intratooth isotopic variability, and for which 

structural carbonate δ13C and δ18O, and phosphate δ18O were independently determined, as 

a reference standard. As we discuss in Chapter 4, this single enamel standard provides 

better calibration of the data than an internal inorganic carbonate standard (WS-4). Still, 

because only a single reference standard is used, and the isotopic composition of this 
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internal standard is similar to those of our samples, the sample isotopic data are susceptible 

to scale contraction (Meijer et al. 2000; Sharp 2007). Ideally, at least two matrix-matched 

standards should be developed with carbon and oxygen isotope compositions at extreme 

ends of the VPDB and VSMOW scales. While there would be ethical challenges to 

negotiate, these standards could conceivably be developed by providing small laboratory 

animals with isotopically-labeled food and water, and then harvesting them for their teeth. 

Such standards would be of considerable value to researchers applying LA-GC-IRMS to 

the isotopic analysis of teeth. 

5.5.7 87Sr/86Sr as a Tool for Investigating Caribou and Muskox 
Movements on Banks Island 

Our hypothesis that tooth enamel δ18O could be used to investigate seasonal movements in 

caribou and muskoxen was not supported. This is unfortunate because changes in seasonal 

movement patterns, and in the case of caribou, temporary migrations to other islands or the 

mainland could play an important role in the subsistence choices of hunters on Banks Island 

over the last 4000 years. Elsewhere, researchers have applied radiogenic strontium isotope 

(87Sr/86Sr) analysis to tooth enamel to investigate seasonal movements (Hoppe et al. 1999; 

Balasse et al. 2002; Price et al. 2002; Schweissing and Grupe 2003; Copeland et al. 2008; 

Britton et al. 2009, 2011). Radiogenic strontium isotope analysis, as applied to herbivore 

movements, rests on differences in the 87Sr/86Sr ratio of ions from soil and water taken up 

by vegetation (Sillen and Kavanagh 1982; Graustein 1989; Slovak and Paytan 2011), which 

are in turn influenced by the age of the parent material (Dasch 1969; Faure and Powell 

1972). Since 87Sr is produced by the radioactive decay of rubidium, older geologic 

formations will have higher 87Sr contents than younger ones. Given that Banks Island’s 

tectonic assemblage is composed of Proterozoic, Devonian, Mesozoic, and Cenozoic 

formations (Tedrow and Douglas 1964; Miall 1976, 1979; Fyles et al. 1994), there is some 

potential for geographic variation in the 87Sr/86Sr of forage plants. Still, such a project 

would require some idea of variation in the 87Sr/86Sr of plants, surface soils, and surface 

waters on Banks Island, and to our knowledge these data, the collection of which would 

constitute a major project within itself, do not yet exist. 
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5.6 Summary 

The papers in this dissertation utilize stable isotope analysis to investigate the Holocene 

ecology of caribou and muskoxen on Banks Island, NWT, Canada, with the aim of 

contextualizing both ecological and archaeological research in the Western Canadian 

Arctic. Specifically, we characterize modern caribou and muskox dietary ecology in 

Chapter 2, and use this information to interpret caribou and muskox niche relationships 

over the last 4000 years on Banks Island in Chapter 3. Finally, we explore the potential of 

caribou and muskox tooth enamel as indices of seasonal movements and migrations in 

Chapter 4. Our research highlights several important themes including potential ecological 

changes which may have affected the use of caribou and muskoxen by people on Banks 

Island over time, and issues related to the use of isotopic data for reconstructing modern 

and ancient faunal ecology. Additionally, this project has generated novel baseline isotopic 

data that will be useful for other research focused on wildlife biology and terrestrial 

ecology at high latitudes. 
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Appendices 

Appendix A 

Table A1. Mean and median, and 95% credible intervals of the posterior probability 

distributions of all forage sources to caribou bone collagen from Banks Island using 

carbon and nitrogen TDFs from Szpak et al. (2012): Δ13Cbc-diet = 3.7±1.6; Δ15Nbc-diet = 

3.6±1.3. Values correspond to the histograms in Figure A1. 

Forage Source Median (%) Mean (%) 95% CI (%) 

Rose/Heath 0.01 0.02 0.00 – 0.07 

Northern Dwarf Willow 0.02 0.03 0.00 – 0.09 

Northern Non-leguminous Forb 0.02 0.03 0.00 – 0.10 

Moss 0.02 0.03 0.00 – 0.10 

Northern Leguminous Forb 0.02 0.03 0.00 – 0.11 

Southern Dwarf Willow 0.02 0.03 0.00 – 0.12 

Thamnolia vermicularis 0.03 0.04 0.00 – 0.14 

Southern Non-leguminous Forb 0.03 0.04 0.00 – 0.15 

Grass 0.04 0.05 0.00 – 0.16 

Northern Sedge 0.04 0.05 0.00 – 0.18 

Southern Legume 0.06 0.08 0.00 – 0.30 

Southern Sedge 0.17 0.16 0.06 – 0.26 

Cetraria tilesii 0.41 0.40 0.20 – 0.53 
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Table A2. Mean and median, and 95% credible intervals of the posterior probability 

distributions of all forage sources to muskox bone collagen from Banks Island using 

carbon and nitrogen TDFs from Szpak et al. (2012): Δ13Cbc-diet = 3.7±1.6; Δ15Nbc-diet = 

3.6±1.3. Values correspond to the histograms in Figure A2. 

Forage Source Median (%) Mean (%) 95% CI (%) 

Rose/Heath 0.02 0.03 0.00 – 0.09 

Moss 0.02 0.03 0.00 – 0.11 

Northern Dwarf Willow 0.02 0.03 0.00 – 0.11 

Northern Non-leguminous Forb 0.02 0.03 0.00 – 0.11 

Northern Leguminous Forb 0.03 0.04 0.00 – 0.12 

Southern Dwarf Willow 0.03 0.04 0.00 – 0.14 

Southern Non-leguminous Forb 0.04 0.05 0.00 – 0.17 

Thamnolia vermicularis 0.04 0.05 0.00 – 0.17 

Grass 0.05 0.07 0.00 – 0.21 

Northern Sedge 0.05 0.07 0.00 – 0.23 

Southern Legume 0.07 0.09 0.00 – 0.28 

Southern Sedge 0.22 0.22 0.10 – 0.32 

Cetraria tilesii 0.25 0.25 0.08 – 0.37 
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Figure A1. Posterior probability distributions of all forage sources to caribou bone 

collagen using carbon and nitrogen TDFs from Szpak et al. (2012). Forage items are: 

Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern legumes (N Leg); northern 

non-leguminous forbs (N NLF); northern sedges (N Sed); northern willow (N Wil); 

rose/heath (RosHea); southern legumes (S Leg); southern non-leguminous forbs (S NLF); 

southern sedges (S Sed); southern willow (S Wil); and Thamnolia vermicularis (Tham). 

Posterior probability distributions change significantly compared to those in Figure 2.8 

(Chapter 2), but only in the sense that Cetraria has a higher proportional contribution. 

That is, there is no significant change in the proportional contributions of other forage 

types, such as willow. 
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Figure A2. Posterior probability distributions of all forage sources to muskox bone 

collagen using carbon and nitrogen TDFs from Szpak et al. (2012). Forage items are: 

Cetraria tilesii (Cetr); grasses (Gras); moss (Moss); northern legumes (N Leg); northern 

non-leguminous forbs (N NLF); northern sedges (N Sed); northern willow (N Wil); 

rose/heath (RosHea); southern legumes (S Leg); southern non-leguminous forbs (S NLF); 

southern sedges (S Sed); southern willow (S Wil); and Thamnolia vermicularis (Tham). 

In comparison to Figure 2.13 (Chapter 2), posterior probability distributions do change 

when different TDFs are used: Cetraria and southern sedge make smaller proportional 

contributions to muskox bone collagen, and southern legumes make a slightly larger 

proportional contribution. Still, there’s no significant increase in the proportional 

contributions of willow or forbs.



 

469 

 

Figure A3. Buccolingual thick sections taken from modern caribou teeth, showing each ~ 5 mm tall microbulk sample ID (e.g. “1”, 

“2”). The image for tooth sample BIBS16-19 M1 was inadvertently deleted. Micromilled spots on the enamel, used for enamel 

structural carbonate δ13C and δ18O analysis (Chapter 4), are visible on each thick section.
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Figure A4. Buccolingual thick sections taken from modern muskox teeth, showing each 

~ 5 mm tall microbulk sample ID (e.g. “1”, “2”, “3”, “4”).  
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Appendix B 

 

 

Figure B1. Buccolingual thick sections taken from archaeological caribou teeth, showing 

each ~ 5 mm tall microbulk sample ID (e.g. “1”, “2”). Micromilled spots on the enamel, 

used for enamel structural carbonate δ13C and δ18O analysis (Chapter 4), are visible on 

each thick section. 
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Figure B1 continued.
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Figure B2. Buccolingual thick sections taken from archaeological muskox M1s, showing 

each ~ 5 mm tall microbulk sample ID (e.g. “1”, “2”, “3”, “4”).  
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Appendix C 

 

 

Figure C1. Buccolingual thick sections taken from modern and archaeological caribou 

teeth, showing micromilled spots on the enamel used for FTIR and structural carbonate 

δ13C and δ18O analysis. 
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Figure C1 continued.
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Figure C2. Buccolingual thick sections taken from modern and archaeological muskox 

M1s, showing micromilled spots on the enamel used for FTIR and structural carbonate 

δ13C and δ18O analysis.
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Figure C2 continued.
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Figure C3. Enamel slices from modern and archaeological caribou buccolingual tooth 

thick sections, showing ablation spots. Spots were ablated starting at the apex/occlusal 

surface and moving towards the cervix/root-enamel junction (REJ).
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Figure C3 continued.
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Figure C3 continued.
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Figure C4. Enamel slices from modern and archaeological muskox buccolingual M1 

thick sections, showing ablation spots. Spots were ablated starting at the apex/occlusal 

surface and moving towards the cervix/root-enamel junction (REJ). 
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Figure C4 continued.
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Figure C4 continued. 
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