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Abstract 
Phenylalanine is an important aromatic amino acid synthesized by higher 

plants, and is a major component of numerous specialized metabolites including 

structural components, pigments, and defense compounds. The last step in the 

synthesis of phenylalanine is catalyzed by an enzyme called AROGENATE 

DEHYDRATASE, of which there are six different isoenzymes encoded by the 

Arabidopsis genome. All six have specialized roles within the plant, and are 

differentially expressed during development and under stressful conditions. To 

deduce the potential specialized role of each ADT, unique patterns of regulatory 

motifs were identified for all six ADT promoters, as well as corresponding 

transcription factors with similar expression profiles to each enzyme. Seven stable 

transgenic Arabidopsis lines were also generated using ADT promoter-eGFP/GUS 

constructs to test expression in all tissues during development, and under stressful 

conditions.  
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1 INTRODUCTION 
This study focused on the analysis of the promoter sequences and 

transcriptional regulation of AROGENATE DEHYDRATASE (ADT) genes in 

Arabidopsis thaliana using two approaches. An in silico approach was used to 

characterize promoter sequences and identify regulatory motifs and transcription 

factors that may contribute to differential ADT regulation. Promoters were 

subsequently isolated and cloned, and used to generate stable transgenic 

Arabidopsis plants that will allow testing of differential expression in vivo.  

 

1.1 Secondary Metabolism and the Phenylpropanoid Pathway 

Plants are both dependent upon and hindered by the abiotic and biotic 

factors that shape their environment. On one hand, they depend heavily on light 

energy, adequate water, seed dispersers, and pollinators (Winkel-Shirley, 2001) to 

survive and reproduce. On the other hand, they can be threatened by high or low 

light intensity or temperature, flooding or drought, and pathogens or herbivores. 

Unless each of these variables is perfectly controlled, plants must find ways to 

adjust to their changing environments. To facilitate the positive interactions, and to 

reduce the effects of negative interactions, plants have evolved the ability to 

produce secondary metabolites. Secondary metabolites are considered to be 

anything not directly involved in protein or nucleotide metabolism, and can include 

protective structural components, antimicrobials, coloured pigments, and scent 

compounds (Vogt, 2010). The term “secondary” was coined by scientists when it 

was still unclear what roles these metabolites play in plants, and can be misleading 

because it implies that these compounds are not essential for plant survival. As a 

result, secondary metabolites are now more appropriately referred to as 

specialized metabolites (Pichersky and Lewinsohn, 2011) 

One of the most important specialized metabolic pathways in plants is the 

phenylpropanoid pathway. Depending on the plant species, and whether it is 

woody or herbaceous, up to 50% of the carbon assimilated from photosynthesis 

can be incorporated into phenylalanine (Phe)-derived metabolites (Corea et al., 

2012; van Heerden et al., 1996). Among the most important of these metabolites 
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are flavonoids and lignins. To better illustrate the importance of the 

phenylpropanoid pathway, these two examples of Phe-derived metabolites will be 

discussed in more detail.  

Flavonoids are the chemical compounds seen as red, blue and purple 

pigments in plants, and their major role is attracting pollinators and seed 

dispersers through bright floral and fruit displays and scents (Winkel-Shirley, 

2001). To date, more than 10 000 different types of flavonoids have been identified 

across higher plants (Zhao et al., 2017b), allowing the possibility for a much 

greater variety of needs for these compounds across plant species. Flavonoids 

also have roles in symbiotic signaling, and play a particularly important role in 

attracting rhizobia and other symbiotic soil microbes to roots of legumes under low 

nitrogen conditions (Liu and Murray, 2016). Some flavonoids are also cytotoxic, 

and can deter insect feeding and oviposition by preventing digestion or influencing 

skeletal muscle contractions, or reducing hatching success if eggs are laid on 

leaves or in surrounding soil (Mierziak et al., 2014). Furthermore, flavonoids are 

thought to act as plant “sunscreens”, and are synthesized in response to increased 

UV-B radiation. They accumulate in leaf epidermal cells, and reduce the effects of 

harmful free radicals and oxidative DNA damage (Landry et al., 1995; Winkel-

Shirley, 2001). Aside from these essential roles in plants, flavonoids also have 

benefits to humans. The antioxidant properties of deeply red and purple pigmented 

berries and grapes are thanks to flavonoids. Foods rich in flavonoids are thought to 

reduce inflammation, risk of cancer, and cardiovascular diseases in humans 

(Skrovankova et al., 2015). These brightly coloured pigments are also highly 

desirable features of ornamental plants, and these properties are often engineered 

to generate new varieties with different colours or patterns (Nishihara and 

Nakatsuka, 2011). In turn, flavonoids are major contributors to the almost $1.3 

billion in flower plant sales annually in Canada (Statistics Canada, 2015).  

Much like flavonoids, lignins are very important specialized metabolites that 

play multiple roles in plants. Lignin is one of the most abundant polymers on earth 

(Boerjan et al., 2003) and is thought to have played an essential role in the 

evolution of land plants. The transition from water to land posed new threats to 
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plants, including wind and mechanical damage, desiccation, and higher light 

intensity. A recent study by Renault et al. (2017) uncovered an essential 

developmental role in mosses for P450 oxygenase, which delineates the starting 

point of lignin metabolism in angiosperms. The first part of the lignin biosynthesis 

pathway is essential in forming a cuticle layer in moss that controls structural 

growth and water exchange (Renault et al., 2017). Therefore, it is thought that this 

early phenol-rich lignin precursor in mosses was the first example of lignin, and 

gave rise to its roles in many other processes including fungal and pathogen 

protection (Bhuiyan et al., 2009). It has been shown that lignin biosynthesis 

increases and accumulates around sites of fungal or insect penetration, reducing 

susceptibility to mechanical damage and infection (Bhuiyan et al., 2009; Thakur 

and Sohal, 2013). Like flavonoids, lignins are also relevant to humans. As lignins 

cannot be completely digested by humans, they are a component of dietary fibre 

(Slavin, 2013). Lignin also provides the rigidity and strength of hardwoods used in 

structural building foundations, furniture, and flooring. Additionally, lignin is a major 

by-product of paper production. Studies in renewable energy have suggested the 

use of this leftover lignin for biofuel production, making our understanding of lignin 

biosynthesis even more important (Slavin, 2013). 

 

1.2 Phenylalanine Biosynthesis 

The major precursor of the phenylpropanoid pathway is the aromatic amino 

acid Phe. Since plants, fungi, bacteria are the only organisms that can synthesize 

Phe (Herrmann and Weaver, 1999), it is essential for animals and must be 

obtained through their diet. In humans, this amino acid is required for protein 

synthesis, but also has many other roles, including in the generation of 

neurotransmitters and melanin (Fernstrom and Fernstrom, 2007). In addition, Phe 

deficiency is associated with several human diseases, such as vitiligo (loss of skin 

pigment in blotches), for which it can be used as a treatment (Cohen et al., 2015). 

Since it is a molecule of exceptional importance to plants, animals and humans, 

Phe biosynthesis is a topic of great interest across all areas of science. Hence, 

understanding the regulation of Phe biosynthesis is essential.  
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All aromatic amino acids are synthesized de novo through the shikimate 

pathway (Herrmann and Weaver, 1999). In higher plants, the last two steps of Phe 

synthesis can occur via two ways. In the prephenate pathway, prephenate is 

decarboxylated and dehydrated to form phenylpyruvate, which is then 

transaminated to form Phe (Figure 1). The prephenate pathway is more commonly 

used by bacteria and fungi, but has also been described in plants (Tzin and Galili, 

2010). In the arogenate pathway, prephenate is first transaminated to form 

arogenate, which is then decarboxylated and dehydrated by an enzyme called 

arogenate dehydratase (ADT) to form Phe (Figure 1)(Cho et al., 2007; Ehlting et 

al., 2005; Jung et al., 1986). The arogenate pathway is almost exclusively 

described in higher plants. However, our lab has previously shown that two 

Arabidopsis ADTs (ADT1 and ADT2) have retained the ability to accept 

prephenate as a substrate, and may act as ADT/PDTs under certain conditions 

(Bross et al., 2011). PDT activity was also found for some ADTs in petunia (Maeda 

et al., 2010) and rice (Yamada et al., 2008). As they catalyze the crucial last step 

in Phe synthesis, initiating the phenylpropanoid pathway, ADTs are the enzyme of 

interest in this study.  

 

1.3 Arogenate Dehydratases 

ADTs have been identified in every higher plant analyzed to date, and most 

encode several versions of ADT isoenzymes. For instance, petunia (Petunia 

hybrida) encodes three ADTs (Maeda et al., 2010), pine (Pinus taeda) encodes 

nine (El-Azaz et al., 2016) and Arabidopsis encodes six (Cho et al., 2007). All ADT 

proteins are localized within or around chloroplasts where Phe is synthesized 

(Bross et al., 2017; Jung et al., 1986; Rippert et al., 2009). It is still, as of yet, not 

fully understood why multiple ADTs are necessary, as most bacteria and yeast 

only encode one (Bross et al., 2011).  

In Arabidopsis, all 6 ADTs are similar in protein structure and amino acid 

sequence (Cho et al., 2007). Each protein has an N-terminal transit peptide  
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Figure 1. Last Two Steps of Phenylalanine Biosynthesis 
The last two steps of Phe biosynthesis can occur via two pathways. 

Top: The prephenate pathway. Prephenate is first decarboxylated and 

dehydrated by a prephenate dehydratase (PDT) to form phenylpyruvate. 

Phenylpyruvate is then transaminated by a phenylpyruvate 

aminotransferase (PPAT) to form Phe. This pathway is mainly described 

for bacteria and fungi.  

Bottom: The arogenate pathway. Prephenate is first transaminated by a 

prephenate aminotransferase (PAT) to form arogenate. Arogenate is 

then decarboxylated and dehydrated by an arogenate dehydratase 

(ADT). This pathway is predominantly used by higher plants.   

ADT: arogenate dehydratase, PAT: prephenate aminotransferase, PDT: 

prephenate dehydratase, PPAT: phenylpyruvate aminotransferase 
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domain, a catalytic domain, and a C-terminal ACT domain. Transit peptide 

sequences are quite variable, but the catalytic and ACT domains are conserved 

with approximately 80% similarity in amino acid sequence (Cho et al., 2007). 

Although Arabidopsis ADTs are all similar in sequence, and all six can 

decarboxylate and dehydrate arogenate, there is evidence that each ADT might 

have a more specialized role in Arabidopsis.  

 

1.3.1 Alternative Roles and Differential Expression 

In Arabidopsis, it has been shown that the activity of certain ADTs is more 

important for certain branches of the phenylpropanoid pathway. For instance, it 

was demonstrated that ADT5 and possibly ADT4 play a more pronounced role 

channeling Phe into lignin biosynthesis than the other ADTs (Corea et al., 2012). In 

this study, Arabidopsis adt4/5 and adt5 knockout lines showed severely low lignin 

(wilted) phenotypes compared to other single and double adt knockouts. Research 

also indicates more specific roles for ADT1 and ADT3 in regulating biosynthesis of 

anthocyanins, which are flavonoid-derived pigments (Chen et al., 2016b), as 

mutants with a non-functional adt1 or adt3 only produced around half of the wild 

type levels of anthocyanins. There is also evidence that ADT3 plays a role in 

reactive oxygen species (ROS) homeostasis through synthesis of photo-protective 

flavonoid compounds and epicuticular waxes (Para et al., 2016).  

 ADT2 and ADT5 might also have non-enzymatic roles within the cell in 

addition to their enzymatic roles (Bross et al., 2017). ADT2 is thought to have a 

role in chloroplast division, and forms a ring around chloroplast equatorial planes 

similar to the well-known chloroplast division protein FtsZ, a structural homolog of 

tubulin (Vitha et al., 2001). ADT5 is localized to the nucleus as well as 

chloroplasts, and is thought to have a second role as a transcription factor (Bross 

et al., 2017). Since they both have an enzymatic role in chloroplasts, and appear to 

have a second non-enzymatic function, both ADT2 and ADT5 are considered 

moonlighting proteins. Moonlighting proteins are defined as having multiple 

functions that are not a result of splicing, gene fusion or dimerization, or due to 

pleiotropic effects (Jeffery, 2015). Furthermore, ADTs are differentially expressed 
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in different tissues, at different developmental stages, and under different 

environmental conditions (Figure 2; Corea et al., 2012). Each ADT has a unique 

expression pattern under different conditions (Figure 2). Higher expression levels 

are seen for ADT1, ADT2, ADT4 and ADT6 during heat shock (Figure 2A), while 

ADT3, ADT4 and ADT6 are more highly expressed during cold shock (Figure 2B). 

Other data from previous students in our lab also indicate different expression 

patterns in various tissues (Hood, 2008), and the Bio-analytic Resource for Plant 

Biology (BAR) database also contains expression data for developmental stages 

(Austin et al., 2016). As an example, the heat map in Figure 3 shows the different 

levels of expression in leaves at each developmental stage from week one through 

twelve. Since all ADTs catalyze the same reaction in the same area of the cell, but 

are differentially expressed, there is a strong indication that they are regulated at 

the level of transcription.  

 

1.4 Transcriptional Regulation in Eukaryotes 

At any given time, DNA that is not expressed is wrapped tightly around 

histone proteins to prevent transcription, degradation of DNA, or excessive energy 

expenditure (Kornberg, 2007; Larch et al., 1987). This is the case for most genes 

that are only expressed under certain conditions, such as stress response. To 

initiate transcription of a gene for any purpose, histone proteins need to be shifted 

from the promoter sequence to unfold the DNA from the nucleosome and make it 

accessible to other proteins (Boeger et al., 2003). For this reason, the promoter 

sequence is essential for transcription to occur.  

Promoters are non-coding DNA sequences usually found immediately 

upstream of a gene (Danino et al., 2015; Novina and Roy, 1996; Roy and Singer, 

2015) and their role is essentially to initiate and regulate transcription (Kadonaga, 

2012). Proximal promoters are considered to be the region approximately 500 to 

1000 bp upstream from the transcriptional start site (TSS), and distal promoters 

are found much further upstream, and include enhancer regions (Korku et al., 

2014; Kristiansson et al., 2009). The transcription factors responsible for initiating 

basal levels of transcription recognize what is known as the core promoter, often  
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Figure 2. ADT RNA Expression Under Temperature Stress 

RT-PCR data showing relative expression of ADTs to the UBIQUITIN10 

gene as an internal control under standard conditions. Template RNA 

was isolated from plants that were exposed to their respective conditions 

under 16 h light and 8 h dark. Each ADT is differentially expressed under 

these conditions, suggesting that ADTs have varying roles during 

temperature stress.  

A. Heat shock (38°C) for 24 h 

B. Cold shock (6°C) for 24 h 

 

Adapted from Hood, 2008.   
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Figure 3. Heat Maps of Leaf-specific ADT Expression Over Time. 

Heat map representations of ADT RNA levels in Arabidopsis leaves over 

time from week one of development to senescence. Heat maps were 

generated using the BAR database Arabidopsis eFP Browser (Winter et 

al., 2007) and are based on published microarray data. The scale 

represents the absolute expression level of a given ADT.  

 

Continuous scale from yellow (low expression) to red (high expression).  

Number below each leaf represents the number of weeks since 

germination. 

 

C: cauline, S: senescent 
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located within the first 50 bp upstream from the TSS (Molina and Grotewold, 2005; 

Novina and Roy, 1996). The core promoter contains very specific sequence motifs, 

of which one of the most well-characterized is the TATA box. Although not all core 

promoters contain actual TATA boxes, the core promoter sequence is usually very 

A/T-rich, creating a hydrophobic surface for the TATA-binding protein (TBP) to 

recognize and bind to (Sainsbury et al., 2015). There are 6 general transcription 

factors that form a complex required for RNA Polymerase II recruitment and 

initiation of transcription: Transcription Factor RNA Polymerase II A (TFIIA), TFIIB, 

TFIID, TFIIE, TFIIF and TFIIH (Kadonaga, 2012; Kornberg, 2007; Sainsbury et al., 

2015). The entire complex is referred to as the pre-initiation complex (PIC), and 

this is widely accepted to be the most basic machinery of transcription initiation, or 

the “on/off switch” (Kadonaga, 2012).  

In mammalian promoters, there are two major core sequence element 

types: the TATA box and the CpG island. TATA boxes are often present in 

environmentally-responsive genes, and CpG islands are more common in 

housekeeping genes (Molina and Grotewold, 2005; Yamamoto et al., 2009, 2011). 

In plants, core promoter types are more variable, and do not contain known CpG 

islands. Instead, the main core types in plants are TATA boxes, Y patches (or 

pyrimidine patches), GA elements, and the less common CA elements (Yamamoto 

et al., 2009). Promoters that do not contain any known elements are referred to as 

coreless promoters, although they may have some sequence characteristics 

similar to one or more core types. 

TATA boxes are seen as highly responsive, high expression specialists in 

plants and vertebrates (Yamamoto et al., 2009, 2011). TATA box-containing 

promoters tend to be longer than other promoters. This suggests that promoters 

controlling gene expression through environmentally-responsive signaling 

pathways are longer to accommodate more regulatory motifs, and to ensure the 

complicated network of internal and external cues can precisely control 

transcription (Kristiansson et al., 2009; Yamamoto et al., 2011). This is in contrast 

with housekeeping genes having a short promoter sequence, as their expression is 

not quite as dependent on intricate networks of responses, and sharp peaking 
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levels of expression are not characteristic of ubiquitously present proteins such as 

tubulin.  

Though CpG islands are thought to control housekeeping gene expression 

in mammals, there are no known core types in plants that are specifically thought 

to regulate housekeeping gene expression. In fact, the other core types in plants, 

aside from TATA boxes, do not have any significant associations, other than 

coreless promoters having generally lower expression (Yamamoto et al., 2011). 

Although Y-patches are fairly common and sometimes thought to be the CpG 

equivalent in plants, they are still poorly understood in terms of function. This 

suggests that aside from the TATA box, plants and vertebrates differ considerably 

in core promoter type (Gagniuc and Ionescu-Tirgoviste, 2012; Yamamoto et al., 

2009, 2011).  

 
1.5 Promoter Organization 

Core promoters only make up one part of eukaryotic promoters (Figure 4). 

The core promoter, usually located within 50 bp upstream of the TSS, is the region 

containing motifs recognized by the PIC and RNA Polymerase II (the on/off switch) 

(Molina and Grotewold, 2005; Novina and Roy, 1996). The proximal promoter then 

extends up to 1000 bp upstream from the TSS (Korku et al., 2014; Kristiansson et 

al., 2009). This 1000 bp stretch contains a number of short nucleotide sequences, 

usually anywhere between 5 and 49 nucleotides long, called cis regulatory 

elements (CREs), or regulatory motifs. These motifs can be recognized by 

transcription factors, and in turn, regulate transcription (Figure 4) (Korku et al., 

2014; Kornberg, 2007). Since a promoter sequence controls transcription of both 

the forward and reverse DNA strands, motifs can be found on either strand. 

However, the same motif does not necessarily need to be in the same area on 

both strands, as many transcription factors’ jobs are ultimately to assist in the 

unwinding of promoter DNA (Kornberg, 2007; Larch et al., 1987).  

In a eukaryote, cells require different genes to be activated or turned off at 

different times, and as all genes cannot be expressed all at once, there is cell type-

specific transcriptional regulation. Aside from the core promoter, there are  
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Figure 4. Schematic of Eukaryotic Gene Promoter Region. 
Top: The proximal gene promoter region is immediately upstream of a 

given coding sequence (purple arrows) and can extend up to 1 Kb from 

the transcriptional start site (TSS), spanning any untranslated regions 

(UTRs) and intergenic regions between one gene and the next upstream 

gene. Aside from the core promoter, there are multiple short sequence 

motifs, usually 5 to 49 bp long that are scattered on both strands in this 1 

Kb region. Motifs are shown as small boxes in various colours, where 

each colour represents a binding site for a specific corresponding 

transcription factor (TF) and therefore a different function. There are also 

distal enhancer regions that can be several Kb away from the TSS.  

 

Bottom: Enhancer regions contain regulatory motifs that transcription 

factors bind to and cause folding of the DNA to reach the promoter. 

Transcription levels are then influenced by these transcription factors.  

 

TrSS: translational start site 
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cis-acting motifs throughout the promoter region and in distal enhancer regions 

that are recognized by cell-specific transcription factors, which result in either 

increased or decreased transcription (Korku et al., 2014). If the core promoter is 

the on/off switch, proximal regulatory motifs and cell type-specific or 

environmentally-responsive transcription factors can be considered the volume 

control of gene expression. There are two steps in this process: 1) a motif is 

recognized by a transcription factor, and binding of the transcription factor can 

inhibit or enhance transcription of that gene by 2) causing alterations to the DNA 

structure, or recruiting other complexes of transcription factors (D’haeseleer, 2006; 

Zhu et al., 2015). Through a variety of signaling pathways, transcription factors 

integrate environmental cues and internal signals to provide an organism with the 

appropriate tools to facilitate a proper interaction with its environment (Babbitt et 

al., 2017). They therefore govern every aspect of survival, from biochemical 

pathways, to DNA repair, to stress responses to ensure survival.  

On the 5’ and 3’ ends of transcribed RNA sequences are untranslated 

regions (UTRs) (Figure 4). UTRs are transcribed but are not part of the translated 

protein, but the DNA encoding these UTRs contains regulatory motifs, meaning 

they can also have roles in transcriptional regulation (Baxter et al., 2012; van der 

Velden and Thomas, 1999). Additionally, regulatory motifs can be found in introns 

of genes, and even several thousand base pairs away in enhancer regions (Figure 

4). It has been shown in multiple studies that the presence of introns in coding 

sequences has a positive effect on gene expression (Gallegos and Rose, 2015; 

Rose et al., 2016). This phenomenon is referred to as intron-mediated 

enhancement (IME), and is still poorly understood, but is thought to be due to the 

regulatory motifs present within these intron sequences. Enhancer regions are 

located far away from a given TSS (Figure 4), and are especially important for cell 

type-specific regulation (Hnisz et al., 2016). Enhancers often control gene 

expression by interacting with transcription factors, and then bringing them into the 

proximity of the promoter sequence through DNA folding and looping (Figure 4; 

Hnisz et al., 2016; Sainsbury et al., 2015). The interactions between the promoter 
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sequence and transcription factors in the loop can contribute to the further 

unwinding of promoter DNA to initiate transcription at that site. 

 
1.6 Duplications and Gene Family Evolution 

Gene families are groups of related genes, usually with similar functions, 

that arise most often from duplication events, and are observed in almost all 

eukaryotes, especially plants. In fact, no other group of organisms has a greater 

incidence of polyploidy or duplicated DNA than plants (Wendel et al., 2009). It is 

thought that whole genome duplications (WGDs) were a driving force of the rapid 

diversification and world dominance of angiosperms (Airoldi and Davies, 2012). 

Once duplicated, a gene can have one of three fates: neo-functionalization, sub-

functionalization, or loss (Figure 5). The most common fate is the loss of a gene, 

as it can be energetically costly to synthesize multiple redundant copies of a gene 

that all perform the same function. However, if a WGD occurs, the multiple copies 

of genes that are involved in complex networks, including transcription factors or 

signal transduction components, are often retained. It is believed that this happens 

because their function relies more on the balance of components of the complex 

relative to each other rather than the numbers of each one. So, if everything is 

duplicated and the balance is preserved, this is not an issue, but if one or two 

components are lost, it can be detrimental to the cell (Edger and Pires, 2009). 

Additionally, if all copies are retained, as long as one of them can still perform the 

original network function, there is flexibility for the other copies to adopt a new 

function (neo-functionalization) through mutation or interaction, where they either 

only perform the new function (Figure 5B), or they keep the old function and the 

new function (Figure 5C; Airoldi and Davies, 2012). Sometimes the role of the 

duplicated gene can be partitioned between two copies so that both copies must 

be present for the complete function (Figure 5D). These copies can also be 

regulated differently during certain conditions, and ultimately provide more 

complexity for the cell (Airoldi and Davies, 2012; Lynch and Conery, 2000).  
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Figure 5. The Fate of Duplicated Genes.  
Following a gene duplication event, the extra copy of a gene may be 

lost, adopt a new function, or have its function partitioned into two parts.  

 

A. In most cases, extra copies become dysfunctional and are lost. 

 

There are two options for neo-functionalization:  

B. The new copy can adopt a new function and lose the original function  

C. The new copy can retain its original function and also adopt a new 

function, so it is able to perform two functions (middle right).  

 

D. A duplicated gene may also be partitioned into two parts (sub-

functionalization). Since there are two copies, it might be more 

efficient for a plant to encode two parts of the protein so it can 

differentially regulate both parts, providing the plant with more 

functional options.  
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Since plants can sustain WGD better than any other organism (Airoldi and 

Davies, 2012), gene family diversification is well-described in plants. It is common 

for a plant to encode hundreds of members of a gene family that may have some 

overlapping functions, but can still carry out distinct roles in the cell (Airoldi and 

Davies, 2012). For example, as a result of numerous WGD events, the MADS 

family of transcription factors in Arabidopsis contains more than 100 members with 

various roles in floral development and embryogenesis (Becker and Theissen, 

2003). For instance, AGL15-like MADS box proteins are all involved in 

development. However, AGL15 is expressed in embryos of developing seeds, but 

not in endosperm, whereas AGL18 is expressed in endosperm but not in any stage 

of embryo development (Becker and Theissen, 2003). Given the preference for 

plants to retain proteins such as transcription factors after a WGD event, it is not 

surprising that the MADS family has grown so large over time. As ADTs are also 

involved in a complex network of metabolic signaling and activity, they may have 

been preferentially retained rather than lost by higher plants, which allowed neo-

functionalization. One important point to keep in mind is that WGDs duplicate not 

only the coding sequences themselves, but also all non-coding DNA (Lynch and 

Conery, 2000; Wendel et al., 2009). The combination of having multiple copies of a 

gene, each with their own regulatory sequence that can sustain any number of 

substitutions, presents a good opportunity for neo-functionalization. Promoter 

sequences can sustain much higher variation than coding sequences can (Vedel 

and Scotti, 2011), and this variation can affect the level of expression of each gene 

copy at any given time. Therefore, promoter sequences can harbour a wealth of 

knowledge about the neo-functionalization of different gene family members, 

including ADTs.  

 

1.7 A Data Mining Approach to Gene Family Analysis 

Since promoters control transcription, and transcription is responsive to 

internal and external environmental cues via signaling pathways, it is possible to 

make predictions about gene function based on experimentally determined 

promoter motifs. The PLACE (Plant cis-Acting Regulatory DNA Elements) 
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database (Higo et al., 1999) contains information, based on primary literature, on 

numerous cis regulatory motifs and their functions in planta. This database is one 

of the largest and most comprehensive of its kind, and is therefore an excellent 

tool for determining the putative motif composition of a given plant gene promoter, 

ultimately providing an idea as to which pathways a gene may be involved in. An 

analysis of these elements can not only help make predictions about gene 

function, but also identify candidate transcription factors for further study.  

Though the basic functions of ADTs are established (Bross et al., 2011, 

2017; Cho et al., 2007), their roles in preferential supply of Phe to the 

phenylpropanoid pathway are still poorly understood (Bross et al., 2017; Corea et 

al., 2012; Para et al., 2016). Previous studies have used the PLACE and other 

motif databases to gain relevant insight about specific gene function and regulation 

in newly discovered and poorly characterized gene families. However, these 

studies either characterize one gene promoter in silico accompanied by an in 

planta analysis (Kumar et al., 2015; Sohrabi et al., 2015; Srivastava et al., 2014) or 

characterize multiple promoters in silico without an in planta analysis (Song et al., 

2011a). For instance, Srivastava et al. (2011) characterized the promoter of the 

SIEVE ELEMENT OCCLUSION (SEOF1) gene from Pisum sativum using the 

PLACE database, and found a number of stress-related motifs. Transient 

expression of the GUS reporter gene and quantitative analysis of expression 

changes under different stressful conditions then supported the in silico prediction. 

Though this analysis is an important step in understanding the multiple roles of 

PsSEOF1 in stress response, it is only one promoter and does not differentiate 

between promoters of a gene family. There are also multiple in silico studies that 

characterize promoter structure across an entire genome (Molina and Grotewold, 

2005; Yamamoto et al., 2009, 2011; Zhu et al., 2015), but this information does not 

specifically pertain to a given gene and often only focuses on core promoters 

rather than specific regulatory motifs. There are only few studies where a 

comparative analysis of all promoters of a gene family are analyzed both in silico 

and in vivo.  
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1.8 Research Questions, Experimental Design and Objectives 

All six ADT enzymes in Arabidopsis are capable of catalyzing the same 

reaction in Phe biosynthesis, but they are differentially expressed, suggesting that 

they can channel Phe into different branches of the phenylpropanoid pathway 

depending on the needs of the plant. It is hypothesized that each ADT promoter 

sequence has a unique motif pattern that is recognized by transcription factors 

which are tailored to that ADT’s role in Arabidopsis. There are two main objectives 

of this thesis.  

The first objective is an in silico analysis of each ADT promoter region to 

identify putative regulatory motifs that might contribute to differential expression of 

each ADT. The motif sequence analysis will be complimented by a meta-analysis 

of existing expression data to identify any transcription factors that can validate the 

motifs identified. If the same transcription factor is identified in both analyses, it is a 

candidate gene for further study where transcription factor expression or motif 

presence can be modified. 

The second objective is an in planta analysis, where promoter sequences of 

each ADT will be cloned 5’ to reporter genes, whose expression can be monitored 

as a proxy for ADT gene expression. Promoter-reporter constructs will then be 

used for two types of plant transformations. Transient expression analyses in N. 

benthamiana will be performed first to check that promoters are able to generate 

reporter expression in planta. Stable Arabidopsis transformants will also be 

generated so expression can be viewed in all tissues at different developmental 

stages, and under different stressful conditions. Subcellular localization patterns 

can also be determined under these varying conditions.  
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2 MATERIALS AND METHODS 
2.1 Media, Solutions and Buffers 

2.1.1 Media 

All media were autoclaved to sterilize unless stated otherwise. 

Gamborg’s Solution 

For 100 mL: 0.32 g Gamborg’s solution powder with B5 + vitamins, 2.0 g of  

20 g/L sucrose, 1.0 mL of 1 M stock MES (pH 5.6), 100 µL of 200 mM 

acetosyringone. 

Lysogeny Broth (LB) 

For 1 L: 950 mL ddH2O, 10 g tryptone, 10 g NaCl, 5 g yeast extract. For solid 

medium add 15 g agar per L before autoclaving.  

Murashige & Skoog (MS) Medium 

For 1 L: 4.3 g Murashige & Skoog salts, 10 g sucrose, 0.5 g MES. For solid 

medium add 8 g agar per L. If plating seeds, add 1 mL of 100 mg/L-1 carbenicillin 

and 5 mL Plant Preservative Mixture (PPM) after autoclaving and cooling. 

Super Optimal Broth with Catabolite Repression (SOC) 

For 1 L: 970 mL ddH2O, 0.5 g NaCl, 0.186 g KCl, 20 g tryptone, 5 g yeast extract. 

After autoclaving and cooling, add 10 mL of 1 M MgCl2 and 3.6 g glucose. 

 

2.1.2 Solutions 

0.7% Agarose Gel 

0.21 g agarose, 30 mL 1X TAE buffer, heat 1 min to dissolve.   

Antibiotic Solutions 

100 mg/mL ampicillin, 100 mg/mL carbenicillin, 50 mg/mL gentamycin, 60 mg/mL 

kanamycin, 100 mg/mL spectinomycin were dissolved in ddH2O and filter sterilized 

to prepare stock solutions.  

GUS Staining Solution 

For 1 mL: 830 µL ddH2O, 100 µL of 1 M NaPO4 (pH 7.0), 20 µL of 0.5 M EDTA (pH 

8.0), 10 µL of 10% Triton X-100, 20 µL of 50 mM K3Fe(CN)6, 20 µL of 0.1 M X-

Gluc (50 mg/mL) dissolved in dimethylformamide.  
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Mini Prep Solution I (A) 

For 100 mL: 5 mL of 50 mM glucose, 2.5 mL of 25 mM Tris (pH 8.0), 0.2 mL of 10 

mM EDTA (pH 8.0), 92.3 mL ddH2O 

Mini Prep Solution II  

For 10 mL: 1 mL of 1% (w:v) SDS, 0.4 mL of 0.2 NaOH, 8.6 mL ddH2O 

Mini Prep Solution III (B) 

For 100 mL: 60 mL of 3 M K-acetate, 11.5 mL glacial acetic acid, 28.5 mL ddH2O 

Seed Sterilization Solution 

For 1 mL: 500 µL undiluted bleach, 500 µL ddH2O, 50 µL PBS Tween 

 

2.1.3 Buffers 

50X TAE Buffer  

For 1 L: 242 g Tris, 57.1 mL glacial acetic acid, 100 mL 0.5 M EDTA (pH 8.0). 

PBS Tween 

For 1 L: 800 mL ddH2O, 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, 2  

mL Tween-20. Adjust volume to 1 L and pH to 7.2. 

Quick DNA Extraction Buffer 

For 100 mL: 20 mL 1M Tris (pH 7.5), 1.46 g NaCl, 5 mL 0.5 M EDTA, 5 mL 10% 

SDS.  

 

2.2 Bacterial Strains and Plasmids 

2.2.1 Bacterial Strains and Growth Conditions 

The Escherichia coli bacterial strain used for plasmid maintenance and 

gateway cloning reactions was DH5α. All cells were grown in liquid LB or SOC 

media in a shaker incubator at 220 RPM at 37°C.  

The Agrobacterium tumefaciens bacterial strain used for all floral dip 

transformations was GV3101. This strain carries the helper plasmid pMP90. All 

cells were grown in liquid LB or SOC media at 220 RPM at 30°C.   

Bacteria containing plasmids were grown in media supplemented with 

appropriate antibiotics, and all stocks were stored at -80°C in 25% glycerol. 
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2.2.2 Plasmids 

The pDONR™221 (Invitrogen) vector (see Table 1 for details of all 

plasmids) was used as the donor vector for all Gateway® reactions. This vector 

carries a kanamycin resistance selectable marker for E. coli. The pKGWFS7 

(Invitrogen) vector was used as the destination vector for all Gateway™ reactions. 

This vector carries two selectable markers conferring resistance to spectinomycin 

in bacteria, and kanamycin for plants (Table 1). This vector also contains the 

coding sequences for eGFP and GUS being expressed as fusion reporter proteins 

to allow determination of expression patterns generated by cloned promoter 

sequences in plants. Both the donor vector and the expression vector contain 

the ccdb gene between att sites, which is lethal to DH5α E. coli. Presence of 

this gene prevents growth of unsuccessful recombinants. 

The pMP90 helper plasmid carries a selectable marker that confers 

gentamycin resistance for selection in A. tumefaciens (Hellens et al., 2000).  

The p19 vector encodes a 19 kDa tomato bushy stunt virus protein, which is 

a suppressor of post-translational gene silencing in plants (Silhavy et al., 2002). It 

was used in this study to prevent silencing of reporter genes in transient in planta 

expression experiments. This vector carries a selectable marker that confers 

resistance to kanamycin.  

The 1.2 kb ADT4 promoter sequence was ordered and is integrated in the 

pUC57 vector (Bio Basic Inc. J508021-0001) which carries an ampicillin resistance 

gene for selection in E. coli.  

 

2.3 Plant Material and Standard Growth Conditions 

Arabidopsis Columbia-0 (Col-0) wild type seeds (stock number CS1092) 

were obtained from the Arabidopsis Biological Resource Centre (ABRC). All 

Arabidopsis seeds were planted in water-saturated soil, covered with plastic wrap, 

and placed at 4°C to vernalize. After 3 days of vernalization, pots were moved to a 

Conviron growth chamber and incubated at 22°C with 16 h light and 8 h dark (long  
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    Table 1: Plasmids used in this Study 

 
 
  

Plasmid Selectable Marker Reference 

 

pDONR™221 

pKGWFS7 

pMP90 

p19 

pUC57 

Bacteria 
Kanamycin 

Spectinomycin 

Gentamycin 

Kanamycin 

Ampicillin 

Plants 
-- 

Kanamycin 

-- 

-- 

-- 

 

(Invitrogen) 

(Invitrogen) 

(Hellens et al., 2000) 

(Silhavy et al., 2002) 

(Bio Basic Inc.) 
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day) photoperiod, and 120 µmol•m2s1 light. These conditions were also used for 

screening of primary transformants on MS selective media plates.   

Nicotiana benthamiana wild type seeds were generously provided by Dr. 

Rima Menassa and Hong Zhu (Agriculture and Agri-Food Canada, London, 

Ontario). All N. benthamiana seeds were planted in water-saturated soil, covered 

with plastic wrap and grown in the same conditions as described for Arabidopsis.  

Plastic wrap was used to cover all pots and maintain high humidity while 

seeds germinated, and removed after approximately one week once small 

seedlings appeared.  

 
2.4 DNA Isolation 

2.4.1 Plasmid DNA Isolation from Bacteria 

Plasmid DNA for PCR amplification, sequencing and cloning was isolated 

using a Geneaid Presto™ Mini Plasmid Kit (FroggaBio PDH300) following the 

manufacturer’s instructions.  

 

2.4.2 Plant Genomic DNA Isolation 

One to two Arabidopsis leaves were placed in a 1.5 mL Eppendorf tube 

with 200 µ L of prepared quick DNA extraction buffer and mashed using a pestle. 

Another 200 µL extraction buffer was added and the solution was vortexed to mix 

before centrifugation at 14 000 RPM for 5 min. 300 µ L of the supernatant was 

transferred to a new Eppendorf tube and 300 µ L of room temperature isopropanol 

was added before vortexing and centrifugation at 14 000 RPM for 10 min. 

Supernatant was removed and pellet was air-dried for 5 min before being 

dissolved in 100 µ L of 10 mM Tris. Isolated DNA was stored at -20°C.  

 

2.5 PCR Amplification and Purification of ADT Promoter Regions 

Wild type Arabidopsis gDNA was used to amplify ADT promoter sequences.  

All primers (Table 2) used for amplification of promoters were designed with att 

sites so that the final PCR products had the necessary att sites for Gateway® 

cloning at 5’ and 3’ ends. Primer pairs were also designed to have a Tm of no more  
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Table 2. Primers used in this Study 

Primer Name Sequence (5’ to 3’) 
Tm 

(°C) 
Length 

(bp) 

proattB1ADT1F GGGGACAAGTTTGTACAAAAAAGCAGGCTTACCTTTAGAACATATGG 64.8 47 

proattB2ADT1R GGGGACCACTTTGTACAAGAAAGCTGGGTCCATAGCAAAGCAGGGAG 69.6 47 

proattB2ADT1Rint GGGGACCACTTTGTACAAGAAAGCTGGGTGACTGTTTGCAGTTAGCGG 69.6 48 

proattB1ADT2F GGGGACAAGTTTGTACAAAAAAGCAGGCTACCTTTTCGATTCTAATTCC 65.5 49 

proattB2ADT2R GGGGACCACTTTGTACAAGAAAGCTGGGTTGATGTTGTTTTGACGGC 68.6 47 

proattB2ADT2Rint GGGGACCACTTTGTACAAGAAAGCTGGGTGGTTCGATGATAACGGC 69.0 46 

ADT3P—F_925 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTCTGACAGTGAGACTGC 68.8 48 

ADT3P—R_35 GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGCCGGAGTATGGGAAGG 70.8 49 

ADT4P—F_1179 GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCAGCTGATGTGTCAGAGC 67.2 49 

ADT4P—R_1 GGGGACCACTTTGTACAAGAAAGCTGGGTGGTTTGGTAATGATGGTAAG 67.7 49 

proattB1ADT6F GGGGACAAGTTTGTACAAAAAAGCAGGCTTTTGCGGCGATTATAAATTACG 66.6 51 

proattB2ADT6R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTTTAGCAATGGCGTC 68.6 46 
1F indicates forward, R indicates reverse, int indicates intron.  
2The four guanines at the beginning of each sequence are recommended by the Gateway™ manual. Underlined 
sequences are att sites, bolded sequences are ADT promoter primer sequences.  
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than 5°C apart from each other, and were analyzed using the Integrated DNA 

Technologies Oligo Analyzer 3.1 tool to check for the possibility of primer dimers. 

Sequences the primers were designed to be complimentary to were searched in 

NCBI to ensure they were unique.  

 

2.5.1 Primer Design and Sequence Amplification 

For all promoter sequences except ADT4, the PCR protocol used was: 1 

cycle of 30 s at 95°C, 35 cycles of 20 s at 95°C, 45 s at 58°C, 1 min at 68°C, and a 

final extension of 72°C for 5 min before a final hold at 4°C.  

Due to the high AT content, amplification of the ADT4 promoter sequence 

was unsuccessful with several different sets of primers. Therefore, a vector 

containing the sequence of the 1.2 kb region upstream of the ADT4 TrSS was 

obtained from Bio Basic Inc. The original primers (Table 2) were then used to 

amplify the region with a modified PCR protocol consisting of: 1 cycle of 2 min at 

94°C, 30 cycles of 20 s at 94°C, 10 s at 52°C, 10 s at 48°C, 8 min at 65°C, and a 

final hold at 4°C. 

 

2.5.2 Gel Electrophoresis of PCR Products and DNA Extraction 

PCR fragments were size-separated on a 0.7% agarose gel in 1 X TAE 

buffer. For visualization under UV light, RedSafe™ Nucleic Acid Staining Solution 

(FroggaBio Cat. No. 21141) was used to stain the DNA fragments. PCR fragments 

of the predicted size were excised from the gel and purified using the 

GenepHlow™ Gel/PCR Kit (FroggaBio Cat. No. DFH300). Purified DNA was 

resuspended in 30 µL ddH2O and the concentration was determined using a 

Nanodrop™ 1000 Spectrophotometer. If the concentration was at least 20 ng/µL 

and the 260/280 value was at least 1.7, the DNA quality was considered 

acceptable.   

 

2.6 Gateway Cloning Procedure 

Purified PCR fragments were first recombined into the pDONR221™ vector 

(Invitrogen) using Gateway® BP Clonase™ II Enzyme mix (Invitrogen 11789020) 
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(Figure 6). Insert DNA was sequenced after cloning to ensure that a correct known 

ADT promoter sequence was present. Inserts were then recombined into the 

compatible destination vector pKGWFS7 (Invitrogen) using Gateway® LR 

Clonase™ II Enzyme mix (Invitrogen 11791020). All Gateway™ reactions and 

vectors were performed and maintained in E.coli (Invitrogen, 2003). Figure 6 

outlines this procedure in detail.  

 

2.7 Transformations 

2.7.1 E. coli Transformations 

A rubidium chloride procedure (Renzette, 2011) was used to prepare 

chemically competent DH5α E. coli cells. These cells were transformed with 

plasmid DNA using a heat shock method (Sambrook and Russell, 2001) and all 

liquid cultures were grown in non-selective media for 1-1.5 h immediately after. 

Cells were then plated on solid LB media containing the appropriate antibiotics for 

selection of transformants and grown overnight. The next day, cells were picked 

with a toothpick and grown overnight in 5 mL liquid LB with appropriate antibiotics 

to generate liquid cultures for storage.  

 

2.7.2 A. tumefaciens Transformations 

Electro-competent GV3101 A. tumefaciens cells were prepared using the 

protocol outlined by Weise (2013). These cells were transformed with plasmid 

DNA using an electroporation method (Weise, 2013), and all liquid cultures were 

grown without selection in SOC media at for 1.5 h immediately after 

electroporation to recover. Cells were then plated on solid LB media containing 

appropriate antibiotics for selection of the PKGWFS7,0 vector and pMP90 helper 

plasmid. Plates were placed at 30°C for 48 h, and successful colonies were picked 

and grown in 5 mL LB liquid selective media overnight to generate liquid cultures 

for storage, and used to generate starter cultures for plant transformations. 
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Figure 6. Gateway Cloning Procedure.  
After PCR amplification and addition of att sites, the sequence is 

recombined into the donor vector through a BP reaction using BP 

Clonase™. This reaction results in the displacement of the ccdB gene, 

and replacement with the sequence of interest. The final products of the 

BP reaction are an entry vector containing the sequence of interest, and 

the ccdB gene fragment as a by-product. The attL sites flanking the 

sequence in the donor vector are then recognizable by the attR sites 

flanking the ccdB gene in the destination vector.  

 

In the LR reaction, the sequence of interest is recombined into the 

destination vector, again replacing the ccdB gene using LR Clonase™. 

The final products of the LR reaction are an expression vector containing 

the sequence of interest, and the donor vector containing the ccdB gene 

as a by-product.  

 

Blue: sequence of interest 

Yellow: ccdB gene 

 

Adapted from Invitrogen Gateway Manual (2003). 
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2.7.3 N. benthamiana Transformations  
Agroinfiltration (Yang et al. 2000) was used for all N. benthamiana 

transformations. Five days prior to infiltration, freezer stocks of A. tumefaciens 

containing the ADT promoter constructs were streaked out on LB plates with 

appropriate antibiotics and grown for 2 days. A single colony from each plate was 

used to inoculate a 3 mL feeder culture of liquid LB media with appropriate 

antibiotics, and grown overnight. The next day, 10 µL of each feeder culture was 

used to inoculate 10 mL of LB media containing appropriate antibiotics. This 10 mL 

culture was grown until cells were in log phase (OD600= 0.7-0.9). The cultures were 

then centrifuged at 3000 RPM for 30 minutes and the pelleted cells were 

resuspended in 10 mL of Gamborg’s solution at an OD600= 1.0, and incubated at 

room temperature for 1 hour at 220 RPM. Undersides of the leaves of 6-week-old 

N. benthamiana plants were inoculated with these final cultures using a blunt-

ended syringe. Inoculated plants were placed back into standard growth 

conditions, and reporter gene expression was analyzed after 4-5 d.  

 

2.7.4 A. thaliana Transformations  
A floral dip method was used for all stable transformations of A. 

thaliana (Zhang et al., 2006). Feeder cultures of A. tumefaciens were 

prepared as in section 2.7.3. The entire feeder culture was used to inoculate a 

500 mL liquid LB culture with appropriate antibiotics which was grown for 16-24 h. 

Cells were then collected by centrifugation at 3000 RPM for 30 min, and then 

resuspended in 500 mL of freshly made 5% (wt/vol) sucrose solution in a 1 L 

beaker. 100 µL of Silwet L-77 was added to the 500 mL solution and swirled to 

mix. Inflorescences of potted wild type plants were dipped into the A. tumefaciens 

cell suspension for 10 s with gentle agitation, and drained for 3-5 s so that a visible 

film of the solution could be seen coating the plants. Three plants were dipped for 

each construct to generate three separate lines of independent stable 

transformants. All dipped plants were placed laying on their sides, still potted, in 

separate clear plastic bags and an elastic band was used to close the opening 

below the pot and maintain high humidity. Plants inside plastic bags were placed 
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laying down in the dark for 16-24 h. They were then removed from the plastic and 

placed back into standard growth conditions for one month.  

 

2.8 Seed Collection, Sterilization and Storage 

Once siliques of transformed plants started to turn brown, watering was 

withheld and Arabidopsis plants were allowed to dry out. After one month, when 

completely dry, plants were removed from the growth chamber and bolts were 

trimmed below the lowest siliques. The bundle of bolts was laid flat on a piece of 

cheese cloth over a fresh sheet of white paper. The cheese cloth was folded tightly 

around the bundle and seeds were sloughed off onto the white paper to be sorted 

into labelled 1.5 mL microcentrifuge tubes. Seeds were sterilized using the bleach 

method (Zhang et al., 2006), where they were first soaked in 70% ethanol for 1 

minute, and then in seed sterilization solution with vigorous vortexing for 2-5 min. 

Seeds were then rinsed three times with ddH2O before being plated. All seeds 

were stored in the dark at room temperature.  

 

2.9 Histochemical Detection of GUS 

N. benthamiana Leaves that had been inoculated 3 days prior, or tissues of 

stably transformed A. thaliana were removed from the plants and cut into 1 cm
2
 

pieces to fit into 12-well tissue culture plates. Leaf pieces were immersed in 1 mL 

fresh GUS staining solution, vacuum infiltrated for 15 minutes and then incubated 

overnight at 37°C in the dark. GUS staining solution was then removed and leaves 

were rinsed with ddH2O and repeated washes of 90% ethanol until tissue turned 

clear and select cells were visibly blue. An un-infiltrated or WT leaf was used as a 

negative control for each assay.  

 

2.10 Confocal Microscopy 

Confocal images were generated using an Olympus Fluoview FV1200 

confocal laser scanning microscope at Agriculture and Agri-food Canada (London, 

ON). Slides were prepared by putting a single drop of water per sample in the 

middle of the slide, and lining the perimeter with Vaseline. Leaf samples 
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approximately 3 mm
2
 in size were cut out of leaves using a razor and placed on 

the water droplet. A cover slide was placed on top and pressed down lightly to 

create a tight seal around the leaf. A 63X water immersion objective lens was used 

for all imaging. A 488 nm laser was used to excite eGFP and emission was 

collected at 509 nm. For chloroplast autofluorescence, a 559 nm laser was used to 

excite dsRED2 and emission was collected between 640 and 700 nm.  

 

2.11 In Silico Methods 

2.11.1 Sequence Analyses 

To find sequence similarities and differences, the program Geneious® 8.0.5 

was used to compare all six ADTs at the nucleotide level. Global sequence 

alignments were performed using the default settings under the built-in Geneious 

Alignment algorithm. Coding and promoter sequences were compared using free 

end gaps.  

 

2.11.2 Motif Pattern Analysis 

The “Cistome” feature on the BAR Database (Austin et al., 2016) was used 

to analyze the 1 kb region preceding each ADT translational start site (TrSS). 

Cistome detects the presence of regulatory motifs in promoter sequences using 

published microarray data. Motifs were found from the list of All PLACE Elements 

based on position-specific scoring matrices (PSSMs). The suggested functional 

depth cut-off of 0.7 was used for all analyses in this research to ensure 

consistency and accuracy.  

To determine whether the motifs present in each promoter were unique, or 

less commonly seen in high numbers or at all in other Arabidopsis promoters, the 

default settings (Ze cutoff of 3.0 and expected proportion of 0.5) were used for all 

analyses when conducting the PSSM motif analysis as described. Motifs yielded 

from this search are considered “significantly enriched”.  
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2.11.3 Co-expression Analysis 

The “Expression Angler” feature on the BAR Database (Austin et al., 2016) 

was used to identify genes with the most similar expression patterns compared to 

ADTs. The “top 25 most similar” expression profiles option was chosen to find 

similar patterns during development, chemical stress, abiotic stress and for root 

expression, as these treatments were described in detail and biotic stress was not 

being tested. For each condition and each ADT, genes with one or more of the 

following criteria were selected to be included in this analysis to narrow down the 

total number of genes and reduce irrelevant information: it is a transcription factor, 

it is relative to ADT function or intracellular communication, it is involved in 

metabolism or the phenylpropanoid pathway, it has a correlation coefficient of at 

least 0.9. 
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3 RESULTS 
3.1 In Silico Results  

 Cis regulatory motifs and the transcription factors that bind to them provide 

specificity and precise control of transcription. This is particularly important in gene 

families, where nucleotide sequences and protein functions are similar, but 

expression levels or secondary roles can vary. Since the ADT family members are 

very similar in protein sequence, their promoters are thought to be the reason for 

their varying levels of expression and specific involvement in distinct biological 

processes (Bross et al., 2017; Corea et al., 2012; Para et al., 2016). To further 

understand this differential regulation, the promoter sequences of all six ADTs 

were analyzed using Cistome (Austin et al., 2016) to identify regulatory motif 

patterns based on those documented in the PLACE database. A co-expression 

analysis was also conducted to determine whether any transcription factors that 

recognized those motifs had similar expression patterns when compared to ADTs. 

Co-expression data were analyzed using Expression Angler (Austin et al., 2016) 

and compared to motif data to identify patterns and potential networks of motifs 

and other genes. Together, these data will provide a better understanding of the 

role of promoters and transcriptional regulatory networks in the differential 

regulation of ADTs.  

 

3.1.1 Sequence Analyses 

Since there are six members of the ADT family, nucleotide coding 

sequences were first compared, and can be viewed as a phylogenetic tree (Figure 

7A). Using MEGA7 software, a Maximum Likelihood tree diagram was assembled 

using ADT nucleotide coding sequences. As expected, the nucleotide alignment 

data were consistent with previous amino acid sequence alignments (Bross et al., 

2011). All six nucleotide coding sequences are at least 50% similar to each other 

(Figure 7B). The most similar sequences are ADT3 and ADT6 (74.4%), and ADT4 

and ADT5 (72.9%), and all pairwise comparisons except those involving ADT1 and 

ADT2 were above 65% similarity. All comparisons between ADT1 or ADT2 and 

another ADT were around 55% similarity.  
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Figure 7. Comparisons of ADT Nucleotide and Promoter Sequences. 
A. ADT nucleotide coding sequences were used to generate a Maximum 

Likelihood rooted phylogenetic tree with a bootstrap of 1000 using 

MEGA7 software. The numbers on branches indicate bootstrapping 

values, and the horizontal scale represents sequence divergence.  

 

B+C: Pairwise sequence alignments were performed using Geneious® 

8.0.5 software. Similarities based on the default settings under the built-

in Geneious Alignment algorithm were used for all alignments. Numbers 

represent the % of identical sites based on the shorter of the two 

sequences being compared.  

B: Complete nucleotide coding sequences. 

Accession Numbers for Nucleotide Coding Sequences: AY081528 

(ADT1), AY113967 (ADT2), BT025989 (ADT3), BT008862 (ADT4), 

AY090235 (ADT5), AY056290 (ADT6). 
 

C: Promoter sequences are the 1 kb region preceding each ADT TrSS 

from chromosome sequences in the TAIR database (ADT1: At1g11790, 

ADT2: At3g07630, ADT3: At2g27820, ADT4: At3g44720, ADT5: 

At5g22630, ADT6: At1g08250). 

 

Blue colours are a continuous scale from dark (higher % similarity) to 

light (lower % similarity) used to show similarity patterns.  
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To determine how similar ADT promoters are, all six promoter sequences 

were aligned (Figure 7C). Sequences aligned were the 1 kb region preceding the 

TrSS, including any UTRs, and these were used for all in silico analyses in this 

study. All six sequences were at least 33% similar to each other. The most similar 

promoters were ADT4 and ADT5 (45.9%) followed by ADT1 and ADT4 (41.2%). All 

other pairs shared less than 40% similarity.  

These sequence similarities indicate that ADT promoter sequences show 

different patterns of sequence similarity than their respective nucleotide coding 

sequences, and sequence conservation is lower, allowing room for distinct 

promoter elements. To better understand how these differences contribute to 

differential ADT expression, an analysis of regulatory motifs for each sequence 

was performed. 

 

3.1.2 Regulatory Motif Categories 

To identify transcription factors that bind to ADT promoters, and ultimately 

make predictions about the functions of individual ADTs, a data mining approach 

was used to search among known, previously documented motifs in the PLACE 

database (Higo et al., 1999). The Cistome feature within the BAR database (Austin 

et al., 2016) was used to identify a total of 121 motifs, each one present in at least 

one ADT promoter. Figure 8 shows the distribution of these 121 motifs (each motif 

was given a color by the program, hence colors used in this figure are different 

from the colors used to identify functional categories in all later images). The figure 

shows that the motifs are found throughout the 1 kb region, with no discernible 

pattern for any given ADT promoter. 

As a first step to characterizing the motifs further, motifs were placed into 

different categories based on their function in Arabidopsis (Appendix A). The 

function of a motif was determined using information found in primary literature. 

Seven categories were used for sorting: Abiotic Stress (AS), Biotic Stress (BS), 

Development (D), Stress and Development (SD), Light Response (L), 

Phenylpropanoid-Related (PR), and General Responses (GR). The AS category  
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Figure 8. General Distribution of Motifs Present in ADT Promoters. 
Between 45 and 65 unique motifs were identified in each ADT promoter 

for a total of 121 motifs. This image was generated by Cistome after 

inputting all 6 ADTs as query. The region shown represents the 1 kb 

region preceding the TrSS. Beige rectangles represent 5’ UTRs of ADTs 

and the 3’ UTR of the gene upstream from ADT3. Small coloured 

rectangles represent the locations of motifs identified from the PLACE 

database, where each different colour represents a different motif, and 

the recurrence of one colour indicates the recurrence of that motif. 

These colours have been randomly assigned by Cistome and are 

independent of the colours used to differentiate each category in motif 

analyses in this study.  
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includes motifs which have been associated with stress conditions such as high or 

low temperature, salinity, flooding or drought, restricted nutrient availability, or 

those involved in general abiotic stress responses. Motifs were placed into the BS 

category if they were involved in pathogen or herbivore responses, wounding 

(although this type of stress can be caused by abiotic factors such as wind, in this 

study this type of damage was most often a result of herbivory), or general biotic 

stress responses. Motifs involved in hormone signalling were either placed into the 

AS or BS category, depending on the cause/initiation of hormone signalling. In the 

D category are motifs with specific roles in cell division or differentiation, organ or 

tissue development, reproduction, and growth. The SD category contains motifs 

that have multiple roles, either in abiotic and biotic stress responses, or in one or 

more stress responses in addition to a role in development. The L category 

contains motifs that mediate response to light, including responses to changes in 

light intensity or quality (regardless if the changes were stressful or not), circadian 

rhythms or changes in seasonal cues, and phytochrome signaling. The PR 

category contains motifs that are only found in the promoters of phenylpropanoid-

related genes. To make this category more stringent, motifs were not placed here 

if they interact with transcription factors that have other roles in stresses or 

development. The GR category contains core promoter elements, and motifs with 

general roles in transcriptional regulation, mRNA editing, and tissue-specific 

expression. 

Every motif was only assigned to one category which was not always 

straightforward, especially if motifs were associated with more than one function. 

The SD category is somewhat an exception, as it requires that a motif was 

involved either in biotic and abiotic stress, or in a stress response in combination 

with a developmental role. In each case, a conservative approach was taken when 

assigning a motif to a category. For example, if a motif was described to be 

required for pollen-specific expression, it was not assumed that this motif was 

involved in pollen development. Hence, it was placed into the GR category rather 

than the D category.  
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3.1.3 Proportions of Motif Categories in Each Promoter 
Each promoter had motifs from at least 6 of the 7 categories in a unique 

proportion (Figure 9, Table 3). The only two promoters that contained motifs from  

all categories were ADT1 and ADT4. The other 4 promoters (ADT2, ADT3, ADT5, 

ADT6) did not contain any motifs from the PR category. It is not surprising that the 

ADT1 and ADT4 promoters have similar proportions, as they had the highest 

similarity in the pairwise sequence alignment (Figure 6C). However, it is somewhat 

surprising that all 6 promoters did not contain PR motifs, as all ADTs provide Phe 

to the phenylpropanoid pathway.  

ADT2, ADT3 and ADT5 promoters were most similar to each other, as over 

50% of their total motifs belonged to only 3 categories: GR, AS, and BS (Figure 9, 

Table 3). The ADT6 promoter was unique as it contained the highest number of L 

motifs. A complete list of all motifs and category assignments can be found in 

Appendix A. 

After defining the composition of motifs by broad categories, motifs were 

analyzed in more detail by defining which ones were found in all ADT promoters, 

which ones were unique to one promoter, and which ones were significantly 

enriched in a promoter.  

 

3.1.4 Motifs Common to all Promoters 

A total of 12 motifs were present in all six ADT promoters (Table 4). The 

largest number of these motifs belonged to the SD category (5 out of 12). Two 

motifs in this category, MYCCONSENSUSAT and EBOXBNNAPA, have the same 

consensus sequence (CATATG), but are recognized by two different members of 

the bHLH transcription factor family (Toledo-Ortiz et al., 2003). The other SD 

motifs are involved in multiple abiotic and biotic signaling pathways, including 

pathogen response, touch and wound response, cold and drought response, or 

senescence.  

The second most prominent category was GR (3 out of 12) and all 3 were 

involved in tissue-specific expression. One of these motifs is specifically involved 
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Figure 9. Categories of Motifs Identified in Each ADT Promoter. 
Pie charts showing how the total number of motifs are distributed among 

the 7 categories. Primary data used for generating the pie charts are 

located in Table 1.  
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Table 3. Primary Data Used to Generate Pie Charts. 

1AB= abiotic stress, BS= biotic stress, D= development, SD= stress and development, L= light response, PR= 
phenylpropanoid-related, GR= general response. 
2Percentages represent the proportion of a specific category of motifs out of the total number of all motifs.  
Data are shown as: number (% of total).  
  

ADT AB BS D SD L PR GR Total 

1 7 (12%) 8 (14%) 10 (17%) 10 (17%) 5 (8%) 5 (8%) 14 (24%) 59 

2 13 (25%) 6 (12%) 11 (22%) 8 (16%) 4 (8%) -- 9 (18%) 51 

3 10 (21%) 6 (13%) 7 (15%) 8 (17%) 6 (13%) -- 11 (23%) 48 

4 11 (19%) 4 (7%) 10 (18%) 7 (12%) 11 (19%) 1 (2%) 13 (23%) 57 

5 16 (25%) 12 (18%) 7 (11%) 8 (12%) 7 (11%) -- 15 (23%) 65 

6 8 (17%) 5 (11%) 9 (20%) 7 (15%) 11 (24%) -- 6 (13%) 46 
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Table 4. Motifs Present in all Six ADT Promoters 

   

Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

ARR1AT NGATT ARR1 (Arabidopsis response 

regulator 1) 

Bacterial response (Sakai et al., 

2000) 

POLLEN1LELAT52 AGAAA WRKY34* Pollen development (Guan et al., 

2014) 

DOFCOREZM 

 

AAAG DOF (DNA binding with one finger) Positive or negative regulator 

in numerous signaling 

pathways 

(Yanagisawa, 

2004) 

RAV1AAT 

 

CAACA RAV1-A (also ERF4; ethylene 

response DNA binding factor 4) 

Drought/cold stress, touch 

response, senescence 

(Kagaya et al., 

1999) 

MYCCONSENSUSAT CATATG bHLH (basic helix-loop-helix family) JA-induced wound response (Abe et al., 

2003) 

EBOXBNNAPA 

 

 

CATATG bHLH (basic helix-loop-helix family) Light responsive and tissue-

specific activation of 

phenylpropanoid genes* 

(Yadav et al., 

2005) 

GT1GMSCAM4 GAAAAA GT-3b (GT-1-like transcription 

factor) 

Pathogen and salt stress 

response 

(Park et al., 

2004) 

GATABOX GATA GATA (Type IV zinc finger family) Light-regulated expression (Reyes et al., 

2004) 
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1Colours of boxes indicate the predicted function of that motif (purple: biotic stress, green: development, orange: stress and 
development, yellow: light response, grey: general response).  
2Motif IDs are the names of each motif from the PLACE database.  
3Functions are predicted based on the indicated reference. 
* indicates that transcription factor or its function is predicted in literature and has not been confirmed experimentally. 

Table 4. Continued. 

Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

GT1CONSENSUS GRAAAW GT-1 (trihelix DNA binding protein 

similar to GATA) 

Light-regulated expression (Nagata et al., 

2010) 

CACTFTPPCA1 

 

TACT MEM1 (mesophyll expression 

module 1) 

Mesophyll-specific expression (Gowik et al., 

2017) 

GTGANTG10 GTGA Pollen-specific element Pollen-specific transcription (Rogers et al., 

2001) 

CAATBOX1 CAAT Sequence for tissue-specific 

expression 

Tissue-specific expression (Fauteux and 

Strömvik, 2009) 
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in mesophyll expression, which is not surprising, as all six ADTs are localized to 

chloroplasts (Bross et al., 2017), most of which are found in mesophyll cells. A 

second motif for tissue specificity is involved in regulating pollen-specific 

transcription. This compliments the only D motif common to all 6 promoters 

(POLLEN1LELAT52), which is predicted to be a recognition site for WRKY34, and 

also required for pollen development (Guan et al., 2014). It is also interesting that 

two L motifs were present in all 6 promoters, and were either a GATA or GATA-like 

motif. GATA motifs are commonly found in eukaryotic promoters for regulation of 

various types of genes, however, in plants they regulate photosynthetic processes 

through light cues (Reyes et al., 2004). This is not surprising, as ADTs are 

metabolic enzymes, and plants are more metabolically active during daylight. The 

remaining category is BS, from which only one motif was present in all 6 

promoters. This motif is involved in pathogenic bacterial response, which is again 

not surprising, as some products of the phenylpropanoid pathway in plants are 

antimicrobials (Vogt, 2010).  

Overall, 7 out of 12 total motifs belonged to one of the BS, D, or SD 

categories, indicating all six ADTs are involved to some degree in development 

and stress response.  

 

3.1.5 Unique Motifs 

One of the goals of this study was to identify regulatory motifs that are 

unique to only one ADT promoter (Table 5), as these might help to predict 

specialized roles for ADTs. 

The ADT1 promoter had the highest total number of unique motifs (11), and 

was the only promoter with unique PR motifs. Two of these PR motifs are PAL 

boxes, which are tripartite sequences found upstream of phenylpropanoid-related 

genes (Huang et al., 2010; Olsen et al., 2008). There were also two MYB 

recognition sites, one of which is specifically involved in flavonoid biosynthesis.  

There were 4 unique motifs identified in the ADT2 promoter, and 2 of these 

belong to the AS category, both of which are involved in drought stress response. 
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Table 5. Motifs Present in Only One ADT Promoter. 

ADT Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

1 ELRECOREPCRP1 

 

TTGACC WRKY Elicitor response (Schluttenhofer 

and Yuan, 2015) 

 SEF3MOTIFGM 

 

AACCCA SEF3 (soybean embryo 

factor 3) 

Embryo development (Fauteux and 

Strömvik, 2009) 

 TGACGTVMAMY 

 

TGACGT Sequence required for alpha-

amylase expression 

Seed development (Yamauchi, 2001) 

 GCN4OSGLUB1 

 

TGAGTCA bZIP Endosperm expression, 

environmental response 

(Jakoby et al., 

2002) 

 GLMHVCHORD 

 

ATGAGTCAT bZIP Endosperm expression, 

Environmental response 

(Jakoby et al., 

2002) 

 TATCCACHVAL21 

 

 

TATCCAC Part of GA response 

complex (GARC) 

Development in response to 

environmental cues 

(Isabel-

LaMoneda et al., 

2003) 

 MYBPLANT 

 

CACCAACC MYB Phenylpropanoid-related 

gene regulation 

(Liu et al., 2015a) 

 MYBPZM 

 

CCAACC MYB Phenylpropanoid-related 

gene regulation 

(Liu et al., 2015a) 

 PALBOXLPC TCTCACCAACC Box- L (one of 3 cis 

elements) 

Elicitor and light-responsive 

regulation 

(Olsen et al., 

2008) 
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Table 5. Continued. 

ADT Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

1 PALBOXPPC TTCTCACCAAC 

CCC 

Box- P (one of 3 cis 

elements) 
Elicitor and light-responsive 

regulation 

(Olsen et al., 

2008) 
 -300MOTIFZMZEIN 

 
ATGAGTCAT Enhancer element Endosperm expression (Thomas and 

Flavell, 1990) 

2 ABRELATERD1 

 
ACGTG  ABRE-like sequence Drought stress response 

 
(Nakashima et 

al., 2009) 
 MYB2AT TAACTG MYB2 Drought stress response (Abe et al., 2003) 
 T/GBOXATPIN2 AACGTG MYC (bHLH family) Jasmonate and wound 

response 
(Appel et al., 

2014) 
 SBOXATRBCS CACCTCCA S-box; ABI4 (ABA intensive 

4) 
Light- and sugar-responsive 

ABA signaling 
(Baxter et al., 

2012) 

3 CARGNCAT 

 

CCWWWWWW 

WWGG 

AGL15 (bZIP family) Gibberellin response and 

metabolism 

(Hill et al., 2008) 

 MRNASTA2CRPSBD 

 

TGAGTTG mRNA stability determinant mRNA stabilty and 

processing 

(Nickelsen, 2000) 

4 P1BS GCATATTC MYB Phosphate starvation 

response 

(Dubos et al., 

2010) 
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Table 5. Continued 

ADT Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

4 HDZIP2ATATHB2 TAATAATTA ATHB-2 (Arabidopsis 

thaliana homeobox protein) 

Auxin response and cell 

proliferation 

(Ohgishi et al., 

2001) 

 
RHERPATEXPA7 

 

TCACGT Root hair-specific element Root hair distribution (Zhiming et al., 

2011) 

 REBETALGLHCB21 CGGATA GATA-like sequence Phytochrome signaling (Kawoosa and 

Gahlan, 2014) 

 SORLREP3AT TGTATATAT Sequence found upstream 

of light-induced genes 

PhyA/ light response (Teakle et al., 

2002) 

 TATABOX2 TATAAAT TATA-like motif Transcription initiation (Yukawa et al., 

2000) 

 TATAPVTRNALEU TTTATATA TATA-like motif Transcription initiation (Yukawa et al. 

2000) 

5 ANAERO2CONSEN 

SUS 

AGCAGC In promoters of 

anaerobically-induced 

genes 

Hypoxia response in 

submerged plants 

(Mohanty et al., 

2005) 

 
DRE1COREZMRAB 

17 

ACCGAGA DRE1 core found upstream 

of ABA responsive genes 

ABA responsive signaling (Busk et al., 

1997) 

 
PREATPRODH ACTCAT Hypo-osmolarity response 

element 

Hypo-osmolarity response (Satoh et al., 

2002) 
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Table 5. Continued.  

ADT    Motif ID1,2 Consensus  TF/Name      Predicted Function Ref.3 

5 ACGTTBOX AACGTT bZIP Stimulus-dependent gene 

activation 

(Alves et al., 

2013) 

 AMYBOX2 TATCCAT Amylase box Sugar starvation response (Loreti et al., 

2003) 

 SP8BFIBSP8BIB TACTATT SPF1 (WRKY family) Sucrose- or polygalacturonic-

acid-induced expression 

(Ishiguro and 

Nakamura, 

1994) 

 RYREPEATVFLEB4 CATGCATG FUS3 (RY- repeat motif) Embryogenesis (Wang et al., 

2014) 

 MARTBOX TTTTTTTTTT T-box found upstream of 

light-regulated genes 

Light-response (Yukawa et 

al., 2000) 

 
SORLIP1AT GCCAC Sequence found upstream 

of light-induced genes 

PhyA/ light response (Kawoosa and 

Gahlan, 2014) 

 
NAPINMOTIFBN TACACAT Sequence identified 

upstream of Napin genes 

*Seed-specific expression (Ericson et al., 

1991) 

6 LTRE1HVBLT49 CCGAAA LTRE (low temperature 

response element) 

Low temperature response (Catalá et al., 

2011) 
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1Colours of boxes indicate the predicted function of that motif (blue: abiotic stress, purple: biotic stress, green:  development, orange: 
stress and development, yellow: light response, pink: phenylpropanoid-related, grey: general response). 
2Motif IDs are the names of each motif from the PLACE database.  
3Functions are predicted based on the indicated reference. 
ABA: abscisic acid, GA: gibberellic acid, TF: transcription factor 

Table 5. Continued. 

ADT Motif ID1,2 Consensus TF/Name Predicted Function Ref.3 

6 LTRECOREATCOR15 CCGAC LTRE (low temperature 

response element) 

Low temperature response (Catalá et al., 

2011) 

 SEBFCONSSTPR10A TTGTCTC SEBF (silencing element 

binding factor) 

Silences PR-10a pathogen 

defense gene 

(Boyle and 

Brisson, 2001) 

 E2FCONSENSUS ATTCCCCC E2F 

 

Cell cycle regulation (Ramirez-Parra 

et al., 2003) 

 ARFAT TGTCTC ARF1 (auxin response factor 

1) 

Auxin signaling response 

 

(Ulmasov, 

1997) 

 
IBOX GATAAG MYB Light-regulated activation 

 

(Hartmann et 

al., 2005) 

 
PRECONSCRHSP70A 

 

CCGATTATGAC-

ACTCCACCAAGAG 

PRE (plastid response 

element) 

Acts as a light-responsive 

enhancer 

(von Gromoff et 

al., 2006) 

 TBOXATGAPB ACTTTG GAP box  Light-regulated expression (Chan et al., 

2001) 
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There was also 1 BS and 1 SD motif specific to this promoter, and both have 

changes in activity in response to different plant hormones.  

The ADT3 promoter had only 2 unique motifs, which is the lowest number 

out of all 6 promoters. One of these motifs is recognized by the AGAMOUS-LIKE 

15 (AGL15) transcription factor, which is part of the MADS family, and is highly 

expressed during embryogenesis and floral organ development (Becker and 

Theissen, 2003). AGL15 can act as a transcriptional activator or repressor, and its 

activity is thought to be controlled by binding to other proteins to form regulatory 

complexes (Hill et al., 2008). The other is an mRNA stability determinant, and is 

involved in mRNA processing and steady-state cycling (Nickelsen, 2000).  

For ADT4, there were 7 unique motifs, including 2 different types of TATA 

boxes. There were 5 total types of TATA boxes identified in ADT promoters 

(Appendix A), and each promoter had at least one TATA box, but ADT4 was the 

only one that had any that were unique to it. ADT4 was also the only promoter that 

contained a root hair-specific motif for root hair morphogenesis that is recognized 

by EXPANSIN A7 (EXPA7) (Kim et al., 2006; Zhiming et al., 2011).  

The ADT5 promoter had 10 unique motifs, with 3 in each of the AS and BS 

categories. An unexpected motif found in the ADT5 promoter was 

ANAERO2CONSENSUS, which is typically found upstream of genes involved in 

response to very low levels or absence of oxygen. This commonly occurs when 

soil is waterlogged and the diffusion of oxygen into roots is too slow to meet the 

needs of respiration during dark, wet conditions (Mohanty et al., 2005).  

Figure 9 showed that ADT6 has the highest proportion of light-response 

motifs, so it is not surprising that it also contains the highest number of unique 

light-response motifs. The light response motifs are not specifically involved in light 

stress responses, but have roles in light-regulated activation and expression 

(circadian or daylight changes). It also contains 2 low temperature response 

elements, which are the only temperature-specific motifs from Table 5.  

There were three clear patterns from the unique motif analysis. The first is 

that the ADT1 promoter contained the highest number of unique motifs, with a 

large portion of them having roles in environmental interactions, including elicitor 



58 

 

response and flavonoid biosynthesis. The second is that the ADT5 promoter 

contained the highest number of stress response motifs from both the AS and BS 

categories. The third is that the ADT6 promoter contained the highest number of L 

category motifs. Although this gives some indication as to what specialized roles 

these three ADTs might have, the roles of the remaining three are still unclear.  

 

3.1.6 Significantly Enriched Motifs 

This study also aimed to determine which of the motifs in ADT promoters 

are not commonly seen in other Arabidopsis promoters, as these might set ADT 

promoters apart. An analysis of significantly enriched motifs (motifs that are not 

usually found in high numbers or at all in other Arabidopsis promoters) was 

therefore conducted (Table 6). Since all 6 ADTs are predicted to be involved to 

some extent in development and stress response, it was expected that each one 

might have a select few motifs from the AS, BS, D or SD categories that were 

significantly enriched.  

There were no motifs that were significantly enriched in all 6 promoters. 

However, the CARGCW8GAT motif, which is recognized by the AGL15 

(AGAMOUS-LIKE15) transcription factor (Section 3.1.5), was significantly enriched 

in 5 out of 6 promoters (all but ADT5, in which it was absent)(Appendix A).  

Another interesting result is that the ROOTMOTIFTAPOX1 motif occurred 

25 times in the ADT4 promoter. This motif is involved in root elongation and 

vascular tissue-specific expression (Pastore et al., 2011). Its consensus sequence 

is ATATT, and all 25 occurrences are evenly spread throughout the intergenic 

region, are found in roughly the same number on the forward and reverse strands, 

but are not found in the 5’ UTR. Three of these motifs overlap with instances of 

SEF1MOTIF, a motif involved in flowering time (March-Diaz et al., 2007) with the 

consensus sequence ATATTTAWW. There are also 5 TATABOX2 motifs present 

in the ADT4 promoter, and although all ADT promoters contain at least one type of 

TATA box (Appendix A), ADT4 is the only one that has the TATABOX2 motif, or 

any that are significantly enriched (Section 3.1.5). The next highest occurrence 

after ROOTMOTIFTAPOX1 was the MYCCONSENSUSAT/EBOXBNNAPA motif  
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Table 6. Significantly Enriched Motifs Present in Each ADT Promoter. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

1 CARGCW8GAT >  CTATWTATWG CTATTTATTG 335 326 3 
  <  CTATWTATWG CTATATATAG 765 774 3 
  >  CTATWTATWG CTATATATAG 774 765 3 
 BOXLCOREDCPAL >  ACCWWCC ACCAACC 105 99 2 
  >  ACCWWCC ACCTTCC 171 165 2 
 CGCGBOXAT <  ACGCGT  344 349 2 
  >  ACGCGT  349 344 2 
 INRNTPSADB >  TTCARTYC TTCAGTCC 33 26 1 

 MYBPLANT >  CACCAACC  106 99 1 

 PALBOXLPC >  TCTCACCAACC  109 99 1 

 ABRERATCAL >  CACGCGT  350 344 1 

 TRANSINITDICOTS >  AATATGGC  387 380 1 

 -300MOTIFZMZEIN >  ATGAGTCAT  509 501 1 

 GLMHVCHORD >  ATGAGTCAT  509 501 1 

2 SITEIIATCYTC <  TGGGCC  64 69 4 

  >  TGGGCC  120 115 4 

  <  TGGGCC  171 176 4 

  >  TGGGCC  178 173 4 
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Table 6. Continued. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

2 SORLIP2AT <  GGGCC  65 69 4 
  >  GGGCC  119 115 4 
  <  GGGCC  172 176 4 
  >  GGGCC  177 173 4 
 TATCCAOSAMY <  TATCCA  153 158 3 
  <  TATCCA  638 643 3 
  >  TATCCA  881 876 3 
 CARGCW8GAT >  CWAAWWAAAG CAAAAAAAAG 311 302 2 

  >  CWAAWWAAAG CTAATTAAAG 373 364 2 

 SBOXATRBCS >  CACCTCCA  56 49 1 

 TRANSINITDICOTS >  AAAATGGC  545 538 1 

 DPBFCOREDCDC3 >  ACACTGG  700 694 1 

3 EBOXBNNAPA/ >  CANWTG CAAATG 140 135 9 

 MYCCONSENSUSAT >  CANWTG CAAATG 435 430 9 

  >  CANWTG CAAATG 595 590 9 

  <  CANWTG CAATTG 663 668 9 

  >  CANWTG CAATTG 668 663 9 

  >  CANWTG CAGATG 781 776 9 



61 

 

Table 6. Continued. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

3 EBOXBNNAPA/ <  CANWTG CAAATG 821 826 9 
 MYCCONSENSUSAT >  CANWTG CAAATG 838 833 9 
  >  CANWTG CAGATG 847 842 9 
 CARGCW8GAT >  CWWTTATWTG CTTTTATATG 336 327 2 
  >  CWWTTATWTG CAATTATTTG 414 405 2 
 EECCRCAH1 >  GAGTTGC  276 270 1 
 TRANSINITDICOTS >  ACAATGGC  807 800 1 
 CGCGBOXAT >  ACGCGG  943 938 1 
 ABRERATCAL >  AACGCGG  944 938 1 

4 ROOTMOTIFTAPOX1 >  ATATT  298 294 25 
  <  ATATT  302 306 25 
  <  ATATT  326 330 25 
  >  ATATT  402 398 25 
  <  ATATT  463 467 25 
  >  ATATT  466 462 25 
  <  ATATT  594 598 25 
  >  ATATT  595 591 25 
  <  ATATT  655 659 25 
  >  ATATT  658 654 25 
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Table 6. Continued. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

4 POLASIG3 >  AATAAT  647 642 9 
  >  AATAAT  697 692 9 
  >  AATAAT  700 695 9 
  >  AATAAT  750 745 9 
  >  AATAAT  839 834 9 
  >  AATAAT  997 992 9 
 TATABOX2 >  TATAAAT  62 56 5 
  <  TATAAAT  729 735 5 
  >  TATAAAT  812 806 5 
  <  TATAAAT  858 864 5 
  >  TATAAAT  861 855 5 
 S1FBOXSORPS1L21 <  ATGGTA  13 18 3 
  >  ATGGTA  356 351 3 
  <  ATGGTA  434 439 3 
 SEF1MOTIF >  ATATTTAWW ATATTTAAT 727 719 3 
  >  ATATTTAWW ATATTTATA 737 729 3 
  <  ATATTTAWW ATATTTATA 804 812 3 
 P1BS <  GAATATTC  461 468 2 
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Table 6. Continued. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

4 P1BS >  GAATATTC  468 461 2 
 SORLREP3AT >  TGTATATAT  484 476 2 
  <  TGTATATAT  487 495 2 
 CIACADIANLELHC >  CAACAATATC  310 301 1 
 BOXLCOREDCPAL >  ACCATCC  438 432 1 
 DPBFCOREDCDC3 >  ACACAGG  641 635 1 
 CARGCW8GAT >  CTTAATATAG  970 961 1 

5 SREATMSD >  TTATCC  453 448 3 
  <  TTATCC  559 564 3 
  >  TTATCC  832 827 3 
 AMYBOX2 >  TATCCAT  452 446 2 
  <  TATCCAT  988 994 2 
 NAPINMOTIFBN >  TACACAT  627 621 2 
  <  TACACAT  770 776 2 
 PROLAMINBOXOSGLUB1 >  TGCAAAG  478 472 2 
  <  TGCAAAG  980 986 2 
 RYREPEATGMGY2 <  CATGCAT  801 807 2 
  >  CATGCAT  808 802 2 
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1Colours of boxes indicate the predicted function of that motif (purple: biotic stress, green: growth and development, orange: stress 
and development, yellow: light response, grey: environmentally-independent). See appendix for details of motif function. 
2Motif IDs are the names of each motif from the PLACE database. 
3> indicates forward strand, < indicates reverse strannd. 
4W= A or T, R= purine, Y= pyrimidine, N= any nucleotide. 
5Match represents the actual sequence from a promoter for comparison to the consensus if consensus has ambiguous nucleotides. 
6Start and end sites indicate the position upstream from the TrSS.  
7Instances represents the total number of that motif identified in that promoter sequence. 
 

Table 6. Continued. 

ADT Motif ID1,2 Strand3 Consensus4 Match5 Start6 End Instances7 

6 E2FCONSENSUS > TTTCCCGC  528 521 1 
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(9 times in the ADT3 promoter)(Section 3.1.4), and the POLASIG3 motif (9 times in 

the ADT4 promoter). The POLASIG3 motif is a plant polyadenylation signal (Ashraf 

et al., 2014) that is found in the ADT1, ADT2, ADT4 and ADT5 promoters, but only 

significantly enriched in the ADT4 promoter. All occurrences of this motif were also 

evenly distributed in the ADT4 promoter. Another observation is that ADT6 is the 

only promoter significantly enriched in the LTRECOREATCOR15 motif, which is a 

low temperature response element that regulates cold-induced genes involved in 

anthocyanin biosynthesis (Catalá et al., 2011).   

All six promoters contained significantly enriched motifs from the D 

category, indicating a role for all ADTs in development. All promoters also 

contained some combination of AS, BS or SD motifs, reiterating the idea that ADTs 

may be involved in various stress responses. However, there were no clear 

patterns pointing to one single role for each ADT, suggesting that they may all be 

involved in developmental and stress response networks to some extent. There 

were also no correlations in terms of the area of a promoter that a specific motif 

was enriched in, and each occurrence in a different promoter always occurred in a 

different spot. Overall, it is clear from this analysis that the ADT4 promoter is very 

AT-rich, and few significantly enriched motifs are found in 5’ UTRs of any 

promoters.  

   

3.1.7 Co-expression Results 

The co-expression analysis was conducted to identify any genes of interest 

(as described in section 2.11.3) that have similar expression patterns to ADTs 

(Table 7), as co-expression can be an indication of co-regulation. If any of the co-

expressed genes had functions related to ADTs, or were transcription factors that 

complimented regulatory motifs identified, they are excellent candidates for further 

investigation.  

The Expression Angler feature within the BAR database was used for the 

co-expression analysis because it contains published microarray data for co-

expressed genes under various growth and stress conditions. Since the program  
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Table 7. Select Co-expressed Genes.  

Abiotic Stress  

r-value1 ADT Name2 Location  Function3 Reference 

0.871 5 PHD 
finger 

Nucleus Binds to histones during epigenetic regulation (GR)  (Ascencio-Ibanez et 
al., 2008) 

0.869 5 TFIIS Nucleus Transcription Factor IIS, initiation of transcription (GR) (Roy and Singer, 
2015) 

0.864 5 *WRKY23 Nucleus Embryo development, auxin response, flavonol biosynthesis 
(SD)  

(Schluttenhofer and 
Yuan, 2015) 

0.860 5 BGLU15 Multiple Beta glucosidase 15; Abiotic stress response and recovery 
(AS)  

(Roepke and Bozzo, 
2015) 

0.860 5 BGLU46 Extracellular Beta glucosidase 46; Lignin biosynthesis (PR) (Escamilla-Trevin et 
al., 2006) 

0.790 1 CYP97A3 Chloroplast Carotenoid and xanthophyll biosynthesis (L, SD)  (Kim et al., 2006) 
0.769 1 

UGT78D1 Chloroplast UDP-glucosyl transferase 78D1; flavonoid biosynthesis (PR)  (Yin et al., 2012) 

0.768 4 WRKY15 Nucleus Stress response in mitochondria and chloroplasts (SD)  (Van Aken et al., 2016) 

0.766 1 *PDH1 Chloroplast Prephenate dehydrogenase; tyrosine biosynthesis (PR)  (Schenck et al., 2014) 
0.763 1 

*FTSZ2-2 Chloroplast Plastidial division protein; chloroplast organization (D)  (Johnson et al., 2015) 
0.763 1 *TIC21 Chloroplast Translocon at inner membrane of chloroplasts 21, 

homeostasis and protein import into chloroplasts (GR)  
(Teng et al., 2006) 

Chemical Stress  

0.948 2 *NRP1 Cytosol/ 
Nucleus 

Histone chaperone; nucleosome assembly and cell 
division/differentiation; root formation (D) 

(Zhu et al., 2017) 

0.934 4 MYB51 Nucleus Pathogen defense; stress response; phenylpropanoid-related 
genes (SD)  

(Gigolashvili et al., 
2007) 

0.911 4 *WRKY33 Nucleus Diverse stress responses (SD)  (Lai et al., 2011) 
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Table 7. Continued.	

Chemical Stress	

r-value1	 ADT	 Name2	 Location	 Function3	 Reference	

0.910 4 *CYP81F2 Cell 
membrane	

Hypoxia and bacterial stress response (SD) (Xu et al., 2016)	

0.753 3 *4CL2 Nucleus	 Phenylpropanoid pathway regulation; stress response (SD, 
PR)  

(Li et al., 2015)	

0.725 3 PAL1 Cytosol	 Phenylalanine ammonia lyase 1; cinnamic acid biosynthesis, 
stress response and development (SD, PR)  

(Bilgin et al., 2010)	

0.718	 6	 *4CL1	 Cytosol/ 
Nucleus	

Fungal and wounding response; phenylpropanoid pathway 
regulation (SD, PR) 	

(Li et al., 2015)	

Development 

0.902 1 *ATPREP2 Chloroplast/ 
Mitochondria 

Signal peptide degrading enzyme targeted to mitochondria 
and chloroplasts (GR)  

(Bhushan et al., 
2005) 

0.877 3 HUA1 Cytosol/ 
Nucleus 

Enhancer of AG-4 1; cell fate determination, flower 
development (D)  

(Xu et al., 2016) 

0.861 1 LPA66 Chloropalst Low PSII Accumulation 66; RNA modification of chloroplast 
genes (GR)  

(Cai et al., 2009) 

0.854 2 GAS41 Nucleus/ 
Chloroplast 

Histone acetylation; flowering and development in response 
to light cues (D)  

(Su et al., 2017) 

0.851 1 ATECB2 Chloroplast Early chloroplast biogenesis, growth and response to light 
stimulus (D)  

(Yu et al., 2009) 

0.851 3 ARID/ 
BRIGHT 

Nucleus Regulates cell cycle and development, glucosinolate 
metabolism (D)  

(Webb et al., 2011) 
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Table 7. Continued. 

Development 

r-value1 ADT Name2 Location Function 3 Reference 

0.844 3 FH6 Nucleus/ 
Spindle 

Actin cytoskeleton, cell component organization; pathogen 
response (SD) 

(Favery et al., 2004) 

0.844 3 DDB1 Nucleus Damaged DNA binding; embryo development; protein 
ubiquitination and stress-induced germination (SD) 

(Fernando and 
Schroeder, 2016) 

0.843 2 *GUN1 Chloroplast/ 
Nucleus 

Nuclear gene regulation and chloroplast- & mitochondrial-
nuclear signaling (GR) 

(Colombo et al., 2016) 

0.843 3 *DYNLL1 Cytosol Microtubule motor activity; microtubule-based processes 
(GR) 

(Filatov et al., 2006) 

0.842 3 PGM Stromule Phosphoglucomutase involved in carbohydrate metabolism, 
detection of gravity and cold response (SD) 

(Hoermiller et al., 2017) 

0.819 2 *SSN2 Nucleus Bacterial response and homologous recombination (SD) (Song et al., 2011b) 
0.807 2 *RSW7 Kinesin 

complex 
Microtubule-based movement, cytokinesis, mitotic spindle 
organization, involved in cell wall patterning (D) 

(Gillmor et al., 2016) 

0.802 2 *ATORC2 Nucleus Target of E2F, involved in origin recognition for DNA 
replication (GR) 

(Ascencio-Ibanez et al., 
2008) 

0.794 2 *ROXY2 Cytosol, 
Nucleus 

Transcriptional repressor, controls anther development; 
redox homeostasis (D) 

(Wang et al., 2012) 

0.750 4 *MYB15 Nucleus Cell differentiation, hormone response, multiple stress 
responses (SD) 

(Kim et al., 2017) 

0.730 6 JAR1 Cytosol, 
Nucleus 

Jasmonate and hormone signaling; phytochrome A 
signaling and regulation of ROS, pathogen and wound 
response (SD) 

(Nie et al., 2017) 

0.729 5 RAP2.4 Nucleus ERF/AP2 transcription factor; light and ethylene 
signaling(SD) 

(Iwase et al., 2017) 

0.723 6 C4H Membrane; Cinnamate-4-hydroxylase: phenylpropanoid metabolism,  
development, stress response (PR, SD) 

(Zhou et al., 2017) 
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Table 7. Continued. 

Development 

r-value1 ADT Name2 Location Function3 Reference 

0.721 5 *ATSZF2 Nucleus Salt-inducible zinc finger; fungal defense; salt and cold 
stress response (SD)  

(Sun et al., 2007) 

0.720 5 BGLU46 Extracellular Beta glucosidase 46; Lignin biosynthesis (PR) (Escamilla-Trevin et al., 
2006) 

0.720 5 ORA47 Nucleus DREB subfamily; cell division, wounding and insect 
defense (SD)  

(Chen et al., 2016a) 

0.709 4 ADT5 Chloroplast Arogenate dehydratase 5 (PR)   

0.709 5 *ADT4 Chloroplast Arogenate dehydratase 4 (PR)  
0.706 5 *RRFT1 Nucleus Redox-responsive, member of ERF family, fungal defense, 

cell division, ethylene signaling (SD)  
(Matsuo et al., 2015) 

0.703 4 *JAZ5 Nucleus Regulates jasmonic acid signaling via protein binding as a 
co-repressor, pathogen defense, wound response (BS)  

(de Torres Zabala et al., 
2016) 

Root 

0.896 5 *4CL5 Cytosol/ 
Nucleus 

Lignin and flavonoid biosynthesis (PR) (Li et al., 2015) 

0.883 4 C4H Cell 
membrane 

Cinnamate-4-hydroxylase: phenylpropanoid metabolism, 
development, stress response (PR, SD) 

(Zhou et al., 2017) 

0.881 3 *LysoPL2 Chloroplast, 
Plasma 

Membrane 

Lysophospholipase 2; lignin biosynthesis, ROS response 
(PR) 

(Gao et al., 2010) 

0.881 5 CAD5 Cytosol Lignin biosynthesis and redox processes (PR) (Tronchet et al., 2010) 
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Table 7. Continued. 

Root 

r-value1 ADT  Name2 Location Function3 Reference 

0.880 3 UGT89C1 Nucleus, 
Membrane 

Flavonol biosynthesis (PR) (Kuhn et al., 2016) 

0.871 3 PAT1 Nucleus, 
Cytosol 

Phytochrome A signaling, photomorphogenesis (SD) (Torres-Galea et al., 
2006) 

0.871 3 *NF-YA3 Nucleus CCAAT-binding complex, embryogenesis (D)  (Zhao et al., 2017a) 

0.860 5 *NAC062 Nucleus Cold, defense and chitin response (SD)  (Seo and Park, 2010) 

0.850 5 *MYB15 Nucleus Cell differentiation, hormone response, multiple stress 
responses (SD) 

(Kim et al., 2017) 

0.841 4 *OMT1 Cytosol, 
Nucleus, 

Membrane 

Lignin and flavonol biosynthesis (PR)  (Byeon et al., 2014) 

0.833 2 RACK1 Cytosol, 
Nucleus, 

Membrane 

Germination, protein complex scaffold activity, hormone 
signaling (SD) 

(Su et al., 2015) 

0.819 4 *ZF3 Nucleus Cold and salt stress and chitin response (SD) (Ding et al., 2013) 
0.810 4 *4CL5 Cytosol, 

Nucleus 
Lignin and flavonoid biosynthesis (PR)  (Li et al., 2015) 

0.809 4 *MYB63 Nucleus Lignin biosynthesis, cell differentiation, hormone signaling 
(SD)  

(Ehlting et al., 2005) 

0.809 4 *TOM1 Golgi stack Protein transporter activity (GR)  (Yamanaka et al., 2000) 

0.808 4 *F6’H1 Cytosol Coumarin and phenylpropanoid biosynthesis, redox 
reactions (PR)  

(Schmid et al., 2014) 

0.793 6 *LSH9 Nucleus Light response and floral development (L, D)  (Schmid et al., 2014) 
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1Correlation coefficients above 0.9 are highlighted in yellow.  
2A * indicates that the CARGCW8GAT motif is significantly enriched in that promoter. 
3Locations and functions are predicted using literature from the TAIR or NCBI database. Transcription factors are highlighted in blue, 
and genes involved in the phenylpropanoid pathway or related processes are highlighted in purple. AS: abiotic stress, BS: biotic 
stress, D: development, SD: stress and development, L: light response, PR: phenylpropanoid-related, GR: general response 
 

Table 7. Continued 

Root 

r-value1 ADT Name2 Location Function3 Reference 

0.768 6 *ADT4 Chloroplast Arogenate dehydratase 4 (PR)  
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was limited to only four conditions, these were the groups of co-expressed genes. 

The groups for the co-expression analysis are: Abiotic Stress, Chemical Stress, 

Development, and Root. The Abiotic Stress group contains data from plants that 

were analyzed under various abiotic stress conditions, including cold, heat, 

drought and salt stress. In the Chemical Stress group are genes co-expressed with 

ADTs in plants that were treated with various chemicals to inhibit or up-regulate 

various hormones or signaling mechanisms. The Development group contains 

data from all stages of development from 1 through 12 weeks (senescence). The 

Root group contains co-expression data from the various root cell types. Since the 

correlation coefficients are representative of all treatments combined, and to 

ensure the co-expression groups were somewhat consistent with the motif 

categories, changes in ADT expression under the specific treatments for each 

category are not shown, but are located in Appendix B for reference. Since groups 

varied, the colour scheme for the co-expression analysis is independent from the 

motif analysis. See Appendix C for co-expressed genes sorted into the categories 

from Section 3.1.2.  

 In the Abiotic Stress co-expression group there were 11 genes in total: five 

with ADT5, five with ADT1, and one with ADT4. The 5 genes with the most highly 

correlated expression patterns in this group all belonged to ADT5. Two WRKY 

transcription factors were also identified, one co-expressed with ADT4 and one 

with ADT5. WRKY23 (co-expressed with ADT5) is involved in development and 

flavonoid biosynthesis, and WRKY15 (co-expressed with ADT4) is involved in 

stress response in mitochondria and chloroplasts, which is not surprising again 

given the chloroplast localization of ADTs. There were also two genes involved in 

flavonoid or lignin biosynthesis, which are two downstream phenylpropanoid-

related processes, correlated with ADT5 and ADT1. The most intriguing gene in 

this category was FTSZ2-2, which is a component of chloroplast division 

machinery. It is interesting that it was highly co-expressed with ADT1, as previous 

research has only identified ADT2 as possibly having a role in chloroplast division 

(Section 1.4.1; Bross et al., 2017). 
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Four out of the five highest overall correlation coefficients belonged to 

genes in the Chemical Stress group. Three out of those four were with ADT4, 

suggesting a possible role in hormone or chemical signaling networks for stress 

response in Arabidopsis. Two out of the seven total Chemical Stress genes were 

MYB51 (defense and stress response through phenylpropanoid-related genes) 

and WRKY33 (general stress response). The remaining co-expressed genes in the 

Chemical Stress group were PAL1, and two 4-coumarate:CoA ligases, which are 

involved in the very first step of the general phenylpropanoid pathway and the very 

last step, respectively (Huang et al., 2010; Li et al., 2015; Olsen et al., 2008).  

The 5th highest overall correlation coefficient was between ADT1 and 

AtPreP2 during Development. AtPreP2 is a signal peptide-degrading enzyme 

targeted to mitochondria and chloroplasts (Bhushan et al., 2005). Since all six 

ADTs are localized to chloroplasts, it is interesting that only ADT1 is highly 

correlated with AtPrep2. Aside from containing one of the 5 highest correlation 

coefficients, the Development group was the largest with 26 members. There were 

few surprising results in this group, as most of the genes are involved in cell 

division, DNA replication, or other growth and developmental processes. One 

interesting result was GUN1 (correlated with ADT2), a protein involved in 

chloroplast- and mitochondria-nucleus retrograde signaling. Also, in the 

Development group, C4H is co-expressed with ADT6, and in the Root group C4H 

is co-expressed with ADT4, suggesting a more important role for ADT4 in the 

phenylpropanoid pathway in roots. In the Development group ADT4 and ADT5 are 

also co-expressed with each other. This is not surprising considering the 

similarities between ADT4 and ADT5 in terms of sequence and function (Corea et 

al., 2012; Sections 1.4 and 3.1.1).  

There were several interesting results in the Root co-expression group. 

Firstly, another coumarate-CoA ligase (4CL5) was highly co-expressed with ADT4 

and also ADT5. Additionally, ADT4 and ADT6 expression is correlated in roots. It is 

also interesting that half (9 out of 18) members of the Root co-expression group 

have roles in phenylpropanoid metabolism.  
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The promoters of genes with correlation coefficients of at least 0.9 were 

further analyzed using Cistome to determine whether they shared any common 

motifs with ADT promoters. The most notable result of this analysis was that 4 out 

of the 5 promoters of the most highly co-expressed genes were found to contain 

the CARGCW8GAT (MADS box) motif, and it was significantly enriched in all 4. 

After this finding, promoters of the other co-expressed genes were further 

analyzed using Cistome to check for the presence of this motif. Of all 62 genes 

listed in the co-expression analysis, 34 of them contained this motif (55%), and it 

was significantly enriched in all 34 (Table 6). The CARGCW8GAT motif was 

identified before as being recognized by the AGL15 transcription factor (Section 

3.1.5).  

Overall, there is ample evidence from the in silico analysis that each ADT 

might have a more specified role in the cell, whether it be an alternate function 

(Section 1.4.1) or a particular end use for Phe (ie. flavonoid biosynthesis for UV 

protection versus antifungal compound). It is also possible that ADTs might have 

overlapping secondary roles, and that they work together in networks or in dimers 

to respond to environmental cues. There was also overlap between some 

transcription factor families in the co-expression analysis with certain motifs 

identified, making them excellent candidates for future study. 

 

3.2 Cloning and Expression of ADT Promoter-Reporter Constructs. 
The other goal of this study was to generate stably transformed Arabidopsis 

plants in which ADT promoters control eGFP/GUS reporter gene expression. 

Although transient transformations are fast and show expression in leaves, they 

cannot be used for multiple experiments over time and cannot show expression in 

different tissues. Though generation of stable transformants takes much longer, 

seeds can be grown under different environmental conditions, and expression in all 

tissues can be analyzed at any given time.  
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Figure 10. Promoter Region Map Showing Sequences Amplified from gDNA  
                  and Cloned 

The region amplified included the 5’ UTR of an ADT and the 5’ 

intergenic region, as well as the 3’ UTR of the upstream gene if it 

existed. The ADT is indicated by the label on the left, orange arrows 

represent the primers used for amplification, and blue arrows represent 

the upstream genes. If the blue arrow points to the left, that ADT 

promoter is a putative bidirectional promoter. Dark purple blocks 

represent exons/coding sequences, and thick light purple lines 

represent introns. The translational start site (TrSS) is indicated by the 

vertical dotted line.  

Since ADT1 and ADT2 are the only ADTs that have introns, the first 

introns were amplified as well since they could contain regulatory 

elements. For these two ADTs, a second reverse primer was designed 

to amplify the first intron.  

ADT2 and ADT3 sequences had a high AT content, so primers were 

designed to be complimentary to sites inside the coding sequences of 

the upstream gene and the ADT itself to ensure the whole promoter 

region was properly amplified. ADT4 also had a high AT content, so 

primers were designed to be outside the 1 kb region as the upstream 

gene was much further away.  

The ADT5 promoter is not included in this part of the study because it 

has already been characterized in planta by another student in the lab.  

 

Sequence lengths: ADT1 600 bp, ADT1i 2.2 kb, ADT2 550 bp, ADT2i 1 

kb, ADT3 990 bp, ADT4 1.2 kb, ADT6 750 bp  

 

TAIR Loci: ADT1: At1g11790, ADT2: At3g07630, ADT3: At2g27820, 

ADT4: At3g44720, ADT5: At5g22630, ADT6: At1g08250. 
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3.2.1 Promoter Sequence Amplification from gDNA 
The first step in generating stable transformants is the amplification of each 

promoter sequence from gDNA. Since all in silico analyses were completed using 

the 1 kb region upstream of the TrSS, the promoter sequences that were amplified 

for use in planta were kept as close to this length as possible for consistency. 

However, since ADT promoter sequences are extremely AT rich, and the upstream 

genes often extend into the 1 kb region, adjustments were made (Figure 10). For 

ADT1, ADT2, ADT3 and also ADT6, the upstream gene coding sequence was 

within the 1 kb region upstream of the TrSS, the promoter sequences that were 

amplified for use in planta were kept as close to this length as possible for 

consistency. However, since ADT promoter sequences are extremely AT rich, and 

the upstream genes often extend into the 1 kb region, adjustments were made 

(Figure 10). For ADT1, ADT2, ADT3 and also ADT6, the upstream gene coding 

sequence was within the 1 kb ADT region, so these sequences are shorter than 1 

kb to ensure only the intergenic regions and UTRs were cloned. For ADT4, the 

next upstream gene was around 5.4 kb away. Since the sequence is highly AT-

rich, primers were designed to amplify a sequence approximately 1.2 kb in length 

to avoid amplification issues.  

ADT1 and ADT2 are the only ADTs with introns (Figure 10), and introns 

have been shown to play a role in gene regulation through regulatory motifs 

(Section 1.5). Since this study aims to determine the roles of regulatory motifs in 

differential expression of ADTs, the first intron of ADT1 and ADT2 coding 

sequences were also amplified to see whether this has an effect on expression. 

All promoter sequences were PCR amplified from WT Arabidopsis Col-0 

gDNA as template. To ensure the sequences amplified were the right size, gel 

electrophoresis was used to compare band sizes to the expected promoter 

sequence sizes from Figure 10. Fragments of the correct size (data not shown) 

were excised, purified, and recombined into the Gateway® donor vector.  
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3.2.2 Construct Confirmation 

After recombination into the donor vector, inserts were sequenced using 

M13 primers to ensure there were no errors made during PCR amplification. 

Plasmids carrying the correct ADT promoter sequence were recombined into the 

destination vector through an LR reaction. To ensure the entire sequence was 

present and correct, sequences were PCR amplified from isolated destination 

vector DNA and compared to the same predicted lengths (Compare Figure 10 and  

Figure 11). The same DNA was also sequenced (data not shown) to double check 

that there were no errors before transforming the destination vector into A. 

tumefaciens.  

 

3.2.3 Transient Expression by ADT Promoter Sequences 

To check whether the amplified promoter sequences were sufficient to drive 

expression of eGFP/GUS, transformed Agrobacterium was used to inoculate 

leaves of N. benthamiana. Three negative controls were used for transient 

transformations. The controls were an un-infiltrated WT leaf, a leaf inoculated with 

the empty PKGWFS7 vector only, and a leaf inoculated with the p19 vector only 

(Figure 12A). It is clear that no eGFP expression is visible for any of the negative 

controls. Figure 12B shows the characteristic puzzle piece shape of WT leaf 

epidermal cells from N. benthamiana for reference. A pattern of eGFP signal in this 

shape indicates cytosolic expression.  

Following transient transformations with Agrobacterium strains carrying ADT 

promoter constructs, eGFP reporter gene expression in planta was visualized 

using confocal microscopy. All eGFP expression caused by ADT promoter 

sequences was detected in the cytosol and nuclei of leaf epidermal cells, as the 

patterns in Figure 13 show the same puzzle piece shape as in Figure 11B. Higher 

magnification images show eGFP expression is localized around the edges of 

chloroplasts, but not within (far right columns of Figure 13). These results were as 

expected. For ADT1i and ADT2i, the first exon between the promoter region and 

the first intron (Figure 10) encodes the transit peptide domain of the active ADT 
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Figure 11. Confirmation of Promoter Sequences in Expression Vector. 
Once promoter sequences were recombined into the PKGWFS7 

expression vector, they were PCR amplified again from isolated plasmid 

DNA using the same primers from initial promoter amplification to 

ensure the full sequence of known size was properly cloned. ADT5 is 

not included in this part of the study because it has already been 

characterized by a previous student.  

The ADT is indicated by the number at the top of its respective lane. 

The ladder, L, and the 500 bp, 1 and 2 Kb ladder markers are labelled. 

An i beside a number indicates the presence of an intron in that 

construct.  
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Figure 12. Negative Controls for Transient Expression in Tobacco Leaves. 

Undersides of 6 week-old N. benthamiana leaves were either un-

infiltrated, or inoculated with the p19 vector only, or inoculated with an 

empty pKGWFS7 expression vector as negative controls for all transient 

transformations. No eGFP expression is visible for any of the control 

infiltrations. Images are taken 4 dpi with an Olympus Fluoview FV1200 

confocal laser scanning microscope. eGFP emission was collected from 

470-520 nm (left column), and chlorophyll autofluorescence was 

collected as dsRed2 from 640-700 nm (middle column). A merge image 

is shown in the right column.  

A. U: Un-infiltrated tobacco leaf, PKGWFS7: tobacco leaf inoculated 

with empty pKGWFS7 expression vector, p19: Tobacco leaf inoculated 

with p19 vector only. 

B. Light microscope images of N. benthamiana epidermal cells. The 

black box highlights the presence of guard cells in the epidermis.  
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Figure 13. Fluorescence Images of eGFP Expression Driven by ADT  
                  Promoters. 

The undersides of 6-week-old N. benthamiana leaves were inoculated 

with A. tumefaciens carrying the expression vectors for each ADT. 

Expression was viewed with an Olympus Fluoview FV1200 confocal 

laser scanning microscope 4 dpi for all ADTs except ADT3 (3 dpi). 

eGFP emission was collected from 470-520 nm (far left), and 

chlorophyll autofluorescence was collected as dsRed2 from 640-700 nm 

(middle left). For all images, the area in the Zoom Merge column (far 

right) is the area indicated by the white arrow in the original Merge 

image (middle right). Expression for all ADT promoter constructs is 

visible in cytosol and nuclei. Green: eGFP, red: chlorophyll 

autofluorescence.  

A. ADT1  

B. ADT2  

C. ADT3  

D. ADT4  

E. ADT6  
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Figure 14. eGFP Fluorescence Driven by Intron-Containing Constructs. 

The undersides of 6-week-old N. benthamiana leaves were inoculated 

with A. tumefaciens carrying the expression vectors for each ADTi. 

Expression was viewed with an Olympus Fluoview FV1200 confocal 

laser scanning microscope 4 dpi. eGFP emission was collected from 

470-520 nm, and chlorophyll autofluorescence was collected as dsRed2 

from 640-700 nm. Green: eGFP, red: chlorophyll autofluorescence, 

yellow: overlap.  

A: ADT1i  

B: ADT2i  
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protein, and is responsible for localization in chloroplasts. This exon was included 

in the ADTi sequences, leading to expression of the eGFP protein containing the 

transit peptide. As a result, localization of eGFP was almost exclusively in 

chloroplasts (Figure 14), seen as yellow in the Merge images. It is evident that the 

transit peptide sequences are necessary and sufficient for localization of eGFP to 

chloroplasts.  

Compared to the other ADT constructs, expression of eGFP by the ADT3 

promoter was relatively low. All other constructs were viewed 4 dpi, whereas an 

image for ADT3 could only be generated after 3 dpi, indicating a faster turnover 

rate. Nonetheless, all promoter constructs amplified in this study are sufficient to 

drive eGFP expression in planta.  

 

3.2.4 Stable Transformations of Arabidopsis 

            Seven transgenic Arabidopsis lines were generated by stable 

transformation (ADT1, ADT1i, ADT2, ADT2i, ADT3, ADT4 and ADT6) and seeds 

were collected and stored. Three independent transformations were performed for 

each ADT to generate three independent lines. This is necessary to ensure 

expression changes are not due to position effects. Histochemical GUS assays 

were performed on one leaf from a transformant to view GUS reporter gene 

expression and confirm the presence of the transgene (Figure 15). Figure 15B 

represents a stable transformant. GUS reporter gene expression is visible as blue, 

and shows a specific pattern where it is more highly expressed in leaf veins and in 

the distal (far with respect to stem) end of the leaf rather than near the petiole. Due 

to time constraints, only one stable line (ADT2i) was successfully selected after 2 

generations, and is ready for use in expression analyses.  
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Figure 15. Stable Expression of GUS in Arabidopsis Leaves. 

To use them for expression analyses, stable transformants need to be 

at least 2 generations old (T2) to ensure expression of eGFP and GUS 

is high enough to make accurate conclusions.  

A. Flow chart illustrating the process of stable transformation of 

Arabidopsis. Transformants generated are all still only one 

generation old. However, each stable line exists and seeds can be 

harvested for future studies.  

B. One stable replicate line of ADT2i is in its 2nd generation (T2) and 

one leaf was stained with GUS staining solution to determine that is 

was a stable transformant. The seeds from this plant can be used 

immediately for expression analysis.  
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4 DISCUSSION 

This study is the first to characterize promoter sequences of all six members 

of the Arabidopsis ADT gene family. To accomplish this, two approaches were 

used. The first approach was an in silico analysis to determine putative regulatory 

motif patterns for each ADT promoter. All motifs identified are known and 

described in the PLACE database, so it was possible to determine which 

transcription factors might control ADT expression. To compliment the motif 

analysis, a co-expression analysis was conducted to determine whether any of the 

transcription factors identified have similar expression patterns to ADTs, as this 

might indicate co-regulation. The second approach was the isolation and cloning of 

each promoter sequence, and generation of stable Arabidopsis transgenic plants 

using ADT promoter-eGFP/GUS reporter constructs. Overall, multiple candidate 

motifs and transcription factors were identified, and seven stable transgenic 

Arabidopsis lines were generated. 

 

4.1 ADT Regulation and Alternative Roles 

Transcription is the most common stage of gene regulation, not only 

because it is the first step in synthesizing a protein, but also because it allows 

modification of expression levels in response to internal and external 

environmental cues (Novina and Roy, 1996; Vedel and Scotti, 2011). The ability to 

alter expression of a gene under any circumstance is essential to every living 

organism, whether it be for a certain stage of development, or response to a 

certain stressor. Transcriptional regulation is especially important for plants 

because they are sessile, and cannot move to avoid stresses or threats, and are 

constantly competing with their neighbours for resources (Gundel et al., 2014). If a 

plant lacked proper response mechanisms to everyday fluctuating conditions, 

survival would be difficult in virtually all environments.  

Sequence analyses showed that each ADT nucleotide coding sequence is 

relatively similar (all comparisons above 50% similarity), but promoter sequences 

are far more distinct (all comparisons below 50% similarity; Figure 7). In all six 

ADT promoters, a TATA box was identified (Appendix A). However, only two TATA 
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boxes were present in the expected location of 50 to 100 bp upstream: one in the 

ADT1 promoter and one in the ADT4 promoter (data not shown). All other TATA 

boxes were much further upstream from the TSS (data not shown). This might be 

explained by the idea of focused versus dispersed transcription (Kadonaga, 2012), 

where some genes either have multiple weaker recognition sites for transcription 

initiation (dispersed), one strong site (focused), or some combination of both. 

However, since the TATA boxes identified in the other ADT promoters are further 

than 500 bp upstream, they may be false hits. Since so little is known about the 

functions of the other core promoter types (Y-patch, GA, CA, coreless)(Yamamoto 

et al., 2009, 2011), it is difficult to connect the core promoter type present in a 

given ADT promoter with that ADT’s specific role in channelling Phe to a specific 

pathway.  

 

4.1.1 Do all ADTs have a role in development? 

Although the core promoter type can be indicative for some genes or 

organisms, the remaining regulatory motifs that are present in a promoter can 

suggest more specific functions for a protein. Based on both the motif analysis and 

the co-expression analysis, where they were expressed embryonically, it is likely 

that each ADT has some role in development. For instance, the 

POLLEN1LELAT52 motif is found in all 6 ADT promoters (Table 4), and is involved 

in pollen development (Guan et al., 2014). The GTGANTG10 motif is involved in 

pollen-specific expression (Rogers et al., 2001), and is also found in all 6 

promoters (Table 4). This leads to the prediction that each ADT might be important 

for pollen development. This would not be surprising, as flavonoid-deficient pollen 

fails to produce a proper pollen tube for its transport to the ovule, rendering it 

unable to fertilize any eggs (Cheynier et al., 2013). Also, at least one type of D 

motif involved in at least one stage of development was significantly enriched in 

each promoter, including CARGCW8GAT, which was significantly enriched in all 

promoters but ADT5 (Table 6). The CARGCW8GAT motif is classified by its CARG 

sequence, which is recognized by MADS box transcription factors, in this case 

AGL15 (Airoldi and Davies, 2012). Members of the MADS family of transcription 
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factors have diverse roles in organogenesis and flowering time, and some MADS 

protein mutants have late flowering times or abnormal flower morphology (Ng and 

Yanofsky, 2001; Pastore et al., 2011). For instance, the apatela1/cauliflower 

(MADS) double mutant is responsible for the “cauliflower” phenotype of 

Arabidopsis, where flowers resemble tiny heads of cauliflower (Ng and Yanofsky, 

2001). The CARGCW8GAT motif was also significantly enriched in over half of the 

co-expressed gene promoters (Table 7). The common occurrence of this motif 

suggests that ADTs may be part of a complex signaling network that regulates 

multiple developmental decisions. 

Overall, as they are expressed in multiple stages of development, it is likely 

that all six ADTs are important for multiple stages of development, in particular for 

organogenesis and pollen tube formation, as well as floral organ development and 

flowering time. More specific roles for ADTs will now be discussed.  

 

4.1.2 A role for ADT1 in flavonoid biosynthesis 

It has been shown that ADT1 plays a role in the synthesis and accumulation 

of anthocyanins, which are flavonoid-derived pigments (Chen et al., 2016b). The 

ADT1 promoter contains the highest number of phenylpropanoid-specific motifs 

(Appendix A, Figure 9, Tables 3, 5 and 6). These sequences are all variations of 

PAL boxes, and involved in elicitor and light response, and in flavonoid 

biosynthesis (Olsen et al., 2008). Compounds derived from flavonoid metabolism 

are involved in both positive and negative environmental responses (Cheynier et 

al., 2013; Liu and Murray, 2016; Mierziak et al., 2014; Ng and Yanofsky, 2001; 

Winkel-Shirley, 2001), which suggests that ADT1 may be up-regulated when the 

need for flavonoid biosynthesis increases, for instance if the plant is under 

pathogen attack, is recruiting symbionts, or if light intensity is too high. In 

combination with the phenylpropanoid-specific motifs, the ADT1 promoter also 

contains a number of unique elicitor response, light response, and developmental 

motifs (Table 5). As such, ADT1 may be involved in regulating developmental 

processes that are sensitive to the environment, such as flowering time, or the 

changing of leaf colour, which requires Phe synthesis. Accumulation of 
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anthocyanins is responsible for the change in leaf colour from green to red during 

the fall (Cheynier et al., 2013). The build-up of these pigments is thought to 

alleviate the effects of ROS when temperatures drop but there is still ample light, 

and energy supply is too high for the plant to use efficiently. Leaf colour is also 

thought to act as a warning sign to herbivores that leaf quality is low, which has 

potentially facilitated the coevolution of migrating insects (Cheynier et al., 2013). 

Since migrating insects prefer to feed on green leaves, the change from green to 

red signifies that it is time to relocate and find new green trees. This also 

somewhat coincides with ADT1 having three different motifs involved in elicitor 

response. Additionally, the heat map in Figure 3 indicates higher expression of 

ADT1 than all the other ADTs in leaves, especially during the last two weeks 

before senescence. Accordingly, I predict that ADT1 plays a role in flavonoid 

biosynthesis in a manner that is also indicative of the health status of a plant as it 

approaches senescence, or if conditions are poor.  

 

4.1.3 ADT2: mediator of chloroplast homeostasis? 

ADT2 is slightly different from the other ADTs in that it possibly acts as a 

moonlighting protein, and might play a supplementary role in chloroplast division 

(Section 1.3.1, Bross et al., 2017) in addition to its role in Phe synthesis. The ADT2 

promoter was significantly enriched in the SORLIP2 light-response motif. This 

motif is involved in circadian regulation of gene expression (Kawoosa and Gahlan, 

2014), which is essential for regulating photosynthetic activity. ADT2 is also co-

expressed with a number of genes that are localized to the nucleus and 

chloroplast, in particular GUN1. GUN1 has been described as a “jack of all trades” 

in chloroplast homeostasis and signaling (Colombo et al., 2016), as it is involved in 

processes ranging from chloroplast gene translation, to protein import into 

chloroplasts, to mediating redox processes. ADT2 is also co-expressed with 

ATORC7, a part of the kinesin complex, involved in microtubule-based movement 

away from the nucleus. Together, these data provide a potential indication that 

ADT2 may be involved in chloroplast-nucleus communication, possibly mediated 

by GUN1. This signaling might be in response to abiotic stress (the ADT2 promoter 
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does have 2 motifs involved in drought stress response), or in responding to light 

cues in chloroplasts, and translating photoperiod or redox information between the 

nucleus and chloroplasts. It is possible that ADT2 is also a “jack of all trades” 

protein, and aside from chloroplast division, it may be responsible for acting upon 

received signals from the nucleus to adjust photosynthetic activities under some 

conditions.  

 

4.1.4 A supportive role in stress and development for ADT3 
It has been shown that ADT3 plays a role in ROS homeostasis and 

cotyledon development (Para et al., 2016), and also in anthocyanin biosynthesis 

(Chen et al., 2016b). Although no specific motifs involved in any of these 

processes were identified in the ADT3 promoter, ADT3 was co-expressed with 

LYSOPHOSPHOLIPASE 2 (LysoPL2) during development, which is involved in 

ROS response (Gao et al., 2010). Furthermore, ADT3 was also co-expressed with 

DAMAGED DNA BINDING PROTEIN 1 (DDB1) (involved in stress-induced 

germination), and PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) 

(involved in phytochrome A signaling and photomorphogenesis). Together, these 

data agree with a role for ADT3 in ROS response, and might suggest involvement 

in developmental processes that are regulated by environmental cues. However, 

this is only a speculation, and there is no strong indication that ADT3 is specifically 

involved in any one process. 

Some sequences are not recognized by specialized transcription factors, 

but can be involved in mRNA stability or polyadenylation, and may be important for 

ribosomal or microRNA attachment, or mRNA editing in different tissues 

(D’haeseleer, 2006). The MRNASTA2CRPSBD motif, which was specific to the 

ADT3 promoter, is involved in mRNA stability and processing (Table 5). The ADT3 

promoter generated lower eGFP expression compared to all other ADT promoters 

(Section 3.2.3), and an image could only be taken 3 dpi rather than 4 dpi (Figure 

13), before the signal faded. This suggests that the ADT3 transcript has a higher 

turnover rate or is less stable than those of the other ADTs. In a study of the 

MRNASTA2CRPSBD motif in Chlamydomonas, it was found to play a role in 
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allowing a gene transcript to accumulate rather than be degraded (Nickelsen et al., 

1999), suggesting that ADT3 may be less stable. It is possible that instead of 

channeling Phe into a specific use by the phenylpropanoid pathway, ADT3 plays a 

supportive role in maintaining ROS homeostasis or anthocyanin biosynthesis. The 

activity of many proteins is controlled by dimerization with another protein to 

enhance or reduce activity (Marianayagam et al., 2004). Since ADT3 has been 

shown to play a role in anthocyanin biosynthesis, it is possible that it forms a dimer 

with ADT1 to enhance anthocyanin accumulation. Overall, it is still difficult to 

speculate about a more specific role for ADT3, but due to its low expression, it is 

likely that ADT3 is involved in supportive roles in developmental processes and 

stress responses.  

 

4.1.5 ADT4 and ADT5: leading role in structure and stress response? 

It has been shown that ADT4 and ADT5 play a role in lignin biosynthesis 

(Corea et al., 2012), and motifs identified in both promoters supported this finding. 

Firstly, the ADT4 promoter was significantly enriched in the ROOTMOTIFTAPOX1 

motif. This motif is involved in vascular development and root elongation (Pastore 

et al., 2011). The ADT4 promoter was also the only promoter aside from ADT1 that 

had PR (phenylpropanoid-related) category motifs, and it has been shown that 

multiple phenylpropanoid-related genes are highly expressed in roots. This is 

supported by the fact that roots lignify, and that other metabolites from this 

pathway are required in roots for defense against soil pathogens, drought stress, 

nutrient signaling, and recruitment of symbiotic organisms (Cheynier et al., 2013; 

Hemm et al., 2004). It is possible that ADT4 has a role in the formation and 

lignification of roots. The ADT4 promoter also contained a number of hormone-

responsive, AS, and BS motifs. Therefore, one can predict that ADT4 expression 

would be highest in roots during any kind of below-ground stress, or hormone 

signaling to notify the rest of the plant that roots are under stress.  

Over half of the motifs unique to the ADT5 promoter were either AS (abiotic 

stress) or BS (biotic stress) category motifs, and the five highest correlation 

coefficients under Abiotic Stress were with ADT5, indicating a potential role for 
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ADT5 in stress response. It has been proposed that ADT5 may be a moonlighting 

protein that has a role as a transcription factor in the nucleus (Bross et al., 2017). It 

is possible that abiotic or biotic stress can increase ADT5 expression, and the 

secondary function can be initiated in the nucleus to bring forward a complete 

stress response. Additionally, ADT5 was co-expressed with β-GLUCOSIDASE 46 

(BLGU46) in two different groups- Abiotic Stress and Development. BGLU46 is a 

stem-specific enzyme involved in lignin biosynthesis (Escamilla-trevin et al., 2006). 

Unpublished data from our lab indicates higher expression of ADT5 in stems than 

other ADTs (Rad, 2017)(data not shown). Expression data on the BAR database 

eFP browser (data not shown) also indicates higher ADT5 expression in stems 

under standard conditions. This is usually the part of the plant with the highest 

lignin content (Zhao, 2016), so one can expect ADT5 to be more highly expressed 

in stems. Furthermore, lignins play a role in response to mechanical damage and 

pathogen attack (Bhuiyan et al., 2009). Therefore, it is easy to speculate about the 

involvement of ADT5 in stress-induced lignin biosynthesis. 

Overall, I predict that both ADT4 and ADT5 are involved in lignin 

biosynthesis that is modulated by both abiotic and biotic stress response.  

 

4.1.6 Does ADT6 have a role in cold acclimatization? 

The ADT6 promoter had the highest number of light response motifs (Table 5). All 

four of these motifs are involved in regulating expression in response to light cues, 

but not necessarily light stress. The ADT6 promoter also contained the only low 

temperature response elements (LTREs). Temperate plants, including 

Arabidopsis, generally experience 4 seasons in a given year. In turn, they have 

adopted low-temperature or freezing tolerance mechanisms to survive adverse low 

temperatures. It has been shown that light is essential to the regulation of proper 

cold tolerance mechanisms in temperate plants (Catalá et al., 2011). Specifically, 

light enhances the expression of transcription factors and hormones involved in 

cold stress response signaling, and also the expression of ROS scavenging 

proteins (Soitamo et al., 2008). Without light, low temperature would not be as 

stressful since both the energy source and consumption of energy are decreased. 



99 

 

However, when energy is being provided but metabolism is too slow to use it all, 

the balance is lost and the plant becomes more stressed (Flügge et al., 2016). 

Considering the ADT6 promoter has the most L category motifs, and also the only 

LTRE motifs, it is possible that ADT6 is involved in cold acclimatization and gene 

expression during seasonal temperature and daylight changes.  

Figure 16 is a summary of the predictions of specialized roles of each ADT. 

Although the in silico analysis did not uncover many obvious connections between 

an ADT and a specific need for Phe, it was still possible to get a better idea of the 

reasons for differential ADT expression, and make predictions about ADT activity 

for future experiments.  

 

4.2 Candidate Transcription Factor Gene Families Identified by in silico  
       Analyses 

Throughout the in silico analyses, several members of the same 

transcription factor families were repeatedly identified, including bHLH, WRKY, 

bZIP and MYB. The bHLH (basic helix-loop-helix) family consists of at least 147 

members with diverse roles in Arabidopsis (Toledo-Ortiz et al., 2003), including all 

stages of development, phytochrome signaling, and some phenylpropanoid-related 

processes (Toledo-Ortiz et al., 2003). The WRKY family of transcription factors is 

specific to plants, and there are likely up to 100 members in Arabidopsis (Eulgem 

et al., 2000). This family is known to be involved in a number of defense 

responses, and has recently been recognized as a regulator of secondary 

metabolic processes and development (Eulgem et al., 2000). The bZIP (basic 

leucine zipper) family is made up of 75 distinct members in Arabidopsis that 

regulate diverse processes including pathogen defense, light response and 

development (Jakoby et al., 2002). The MYB family is present in all eukaryotes, 

and is made up of over 250 members in Arabidopsis (Ambawat et al., 2013; Dubos 

et al., 2010) with diverse functions from stress response, to cell cycle control, to 

phenylpropanoid gene regulation in plants (Ambawat et al., 2013).  

 

 



100 

 

Figure 16. Summary of Predicted Roles for Each ADT 

Functions for each ADT were predicted based on the motif and co-

expression analyses. All ADTs are predicted to have a role in 

development.  

ADT1: Biotic Interactions and Flavonoid Biosynthesis  

ADT2: Light Response (in particular chloroplast processes), Abiotic 

Stress 

ADT3: General Stress and Development  

ADT4: Abiotic and Biotic Stress, Root Expression and Lignin Synthesis  

ADT5: Abiotic and Biotic Stress, Root Expression and Lignin Synthesis 

ADT6: Light Response and Abiotic Stress 
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It is not surprising that these four families (bHLH, WRKY, bZIP and MYB) 

were identified multiple times in the in silico analyses. Each one has been shown 

to play a role in plant specialized metabolism by interacting with each other in 

complex regulatory networks (Chezem and Clay, 2016; Liu et al., 2015b; Matus, 

2016; Schluttenhofer and Yuan, 2015). Phylogenetic analyses suggest that the 

oldest functions of some bHLH and MYB proteins were in anthocyanin and 

proanthocyanin production (Chezem and Clay, 2016). In maize, the MYB protein 

COLOURLESS (C1) interacts with the bHLH protein RED (R). This interaction is 

necessary and sufficient for initiating anthocyanin production through binding to 

promoters of genes specifically involved in anythocyanin biosynthesis (Chezem 

and Clay, 2016). The amino acid sequences in the interaction sites of these two 

proteins, and of other proteins in both families, are also conserved in other species 

(Zimmermann et al., 2004), suggesting these interactions occurred in an early 

ancestor of land plants. There are two bHLH motifs present in all six ADT 

promoters, and two MYB binding sites unique to the ADT1 promoter. It is possible 

that MYB-bHLH complexes regulate ADT expression. Specifically, since ADT1 is 

predicted to have a role in flavonoid (and anthocyanin) biosynthesis, MYB-bHLH 

complexes similar to the C1-R complex might regulate ADT1 expression.  

MYB transcription factors have also been shown to interact with members of 

the bZIP family. It has been shown in Arabidopsis that MYB7 is a negative 

regulator of the bZIP gene AB15 (Kim et al., 2015). The AB15 transcription factor 

is essential for seed germination, and is negatively regulated by MYB7 during 

unfavourable conditions (Kim et al., 2015). It has also been shown that promoters 

of WRKY transcription factor genes contain recognition sites for MYB transcription 

factors (Yang et al., 2013). This suggests a hierarchy for transcriptional control, 

where MYB and bHLH transcription factors are master regulators of other genes 

with roles in specialized metabolism (Chezem and Clay, 2016).  

The drawback to identifying these large, well-known transcription factor 

families is that they are likely to be involved in regulating a multitude of specialized 

metabolic processes and stress responses. This could mean that regulating ADT 

expression is only a side job for some of these transcription factors, so studying 
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their roles in ADT regulation could yield few results. That being said, they are still 

well-characterized and are a good stepping stone for beginning to understand 

differential ADT regulation.  

 

4.3 Role of Promoter Organization and Introns in Gene Regulation 

Motif patterns identified in this study are putative, and their biological 

relevance is not determined. Therefore, it was important that the patterns seen in 

ADT promoters were representative of biologically relevant motif patterns from 

other genes or organisms. Non-uniformity in motif distribution is a good indicator 

that a motif pattern in a given promoter or family of gene promoters is biologically 

relevant (Casimiro et al., 2008). There was no easily identified distribution pattern 

in ADT promoters, as common motifs were not usually found in the same location, 

nor the same number in different promoters. This lack of uniformity in distribution 

and number is an indication that the putative motif patterns found in this study are 

likely to be representative of a biologically relevant promoter sequence.  

Identifying promoter sequences is becoming easier with new sequencing 

and annotation technologies, and can be accomplished in model organisms by 

looking at the sequences immediately upstream of a TrSS or TSS (Vedel and 

Scotti, 2011). Since the Arabidopsis genome is sequenced and annotated, and the 

PLACE, TAIR and NCBI (among others) databases contain information regarding 

functions of specific genes and motifs, the proximal promoter region is the easiest 

to characterize. In turn, characterizing this region is an obvious first step towards 

understanding ADT gene family regulation. Although it was possible with this 

approach to get a better idea of the known signaling pathways ADTs can respond 

to, the proximal promoter alone does not encompass the entire picture of gene 

regulation.  

There is evidence in literature that introns have a positive effect on gene 

expression. Removing intron sequences can completely eliminate gene 

expression, and adding them to an intron-less gene can increase expression 

(Gallegos and Rose, 2015; Rose et al., 2016). In the case of ADT1 and ADT2, 

promoter-driven eGFP expression was high enough to visualize, but since 
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expression is localized to chloroplasts because of the transit peptide, it is difficult to 

tell whether it is actually higher with the intron than without. The method of intron-

enhanced transcription is poorly understood, but believed to involve enhancer 

elements found within the intron sequence (Rose et al., 2016). It is not clear why 

ADT1 and ADT2 are the only ADTs with introns, but considering the effects of 

introns on gene expression, it is possible that the presence of introns in these gene 

sequences are not random.  

Promoter length can also contribute to the level of expression of a gene and 

its ability to respond to the environment (Kristiansson et al., 2009). Specifically, 

longer promoters are thought to be more capable of responding to signaling 

cascades involved in stress response, as they have a greater range of motifs for 

transcription factors to recognize. The length of a promoter is also under heavy 

selection, as a smaller genome can be advantageous when it comes to the speed 

of replication, and an intergenic region may better sustain variation than a coding 

sequence (Kristiansson et al., 2009). Generally, the regions between ADT1 and 

ADT2 and their respective upstream gene are shorter than the other ADTs (Figure 

10). It is possible that the introns in these sequences are advantageous because 

there is less selection on intron length than there is on promoter length, so the 

intron sequences might make up for some of the lost promoter length. This might 

make ADT1 and ADT2 more responsive to signaling pathways involved in 

environmental or stress response than they otherwise would be.  

 

4.4 The Role of Promoters in Gene Family Evolution 

Gene families are a common occurrence in complex organisms, most often 

arising through single gene or WGD events (Wendel et al., 2009). When multiple 

copies of a gene are present, functions of these genes become redundant, and 

through neutral or beneficial mutations or interactions, new functions may arise. It 

has been shown that genes involved upstream of branched metabolic pathways 

incur fewer substitutions (Rausher, 2012) which may explain, to some extent, the 

nucleotide sequence similarities observed between ADTs (Figure 6), and the 

retention of the original dehydratase activity in all six members. This suggests that 
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the rate of ADT evolution might be relatively slow. This also suggests that 

mutations in coding sequences of genes which control the flux of a substrate into a 

metabolic pathway are under heavy selection (Rausher, 2012).  

It is possible that differential ADT expression and channeling of Phe into 

different end uses of the phenylpropanoid pathway is due to mutations in non-

coding regions, specifically promoters, enhancers or introns. If WGD was the 

reason for the diversification of the ADT family, promoter sequences would have 

been duplicated as well. It was clear that ADT promoters are all different despite 

being similar in coding sequence (Figure 7), suggesting that the rate of mutation in 

promoters is higher than the rate in coding sequences. It has been shown that only 

a few changes to regulatory regions can affect gene regulation so much that 

phenotypes can be modified in few (under 100) generations (Vedel and Scotti, 

2011). For example, in Drosophila biarmipes, the YELLOW (Y) gene controls wing 

pigmentation and is expressed throughout the wing at low levels. A mutation in the 

cis regulatory region around 1 kb upstream from the yellow TSS was shown to 

cause over-expression of the gene in one area of the wing, creating a spot of dark 

pigmentation on wings of adult males (Gompel et al., 2005). This trait is passed on 

to male offspring, and plays a role in sexual selection. The y phenotype is 

therefore an example of how mutations in cis regulatory regions can accelerate 

neo-functionalization over few generations, in this case affecting sexual selection 

(Gompel et al., 2005).  

Promoters are thought to be drivers of rapid adaptation (as in the Y gene) 

because they can harbour more variation than coding sequences without any 

negative effects. This is because increasing the number of instances of a motif 

passed a certain point often has no effect, as long as there are still enough 

functional copies of that motif (Vedel and Scotti, 2011). Additionally, some 

transcription factors can still recognize a motif if it contains some variability in 

nucleotides. This variability in motif sequences can also lead to the creation of new 

recognition sites for different transcription factors, causing changes in the 

expression pattern of that gene under different conditions. In turn, promoters are a 

reservoir of neutral variation, or seemingly unnoticeable changes in tissue-specific 
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or condition-specific expression, until selection pressure is applied and expression 

effects become advantageous (Vedel and Scotti, 2011). Therefore, it is possible 

that promoter variation has been a driving force in allowing differential expression 

and neo-functionalization of ADTs.  

 

4.5 Cloning and Expression Analysis Results 
The generation of one stable transgenic line of Arabidopsis plants takes 

several months to complete. To avoid wasting time, it was necessary to determine 

whether the promoter sequences amplified were sufficient to generate eGFP 

expression in planta before following through with stable transformations. It was 

shown that all seven ADT promoter-reporter constructs were sufficient to drive 

eGFP expression in N. benthamiana leaves (Figures 13 and 14). Since the 

amplified promoter sequences were sufficient to generate a reporter signal in 

tobacco leaves, they are expected to do the same in all tissues of stable 

Arabidopsis transformants. The advantage of having stable transgenic Arabidopsis 

plants is that they can be grown under varying environmental conditions, and 

expression levels can be determined for all tissues. This is opposed to transient 

transformations, where reporter gene expression can only be determined for 

leaves. These stable transgenic plants can be used for a multitude of future 

studies determining the effects of certain parameters on ADT expression in every 

tissue.  

 

4.6 Limitations and Future Work 

An issue that comes with in silico analysis of motifs is the inability to 

determine which individual motifs are biologically relevant. Matches are 

determined theoretically based on PSSMs. This means only the consensus 

sequence is considered and there is no experimental evidence that the motif is not 

a false hit. It is also possible that a motif is recognized by more than one 

transcription factor, or that its sequence overlaps with another motif. This is 

especially important for short motifs (4 to 6 bp long) as they may often fall within 

other motif consensus sequences by chance, or can be ambiguous. The program 
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used in this analysis also does not consider functional relevance of location within 

the sequence, nor does it incorporate information from any of the motifs identified 

together as a group. However, now that promoter sequences have been 

characterized in silico, future studies in planta using the transgenic plants 

generated may provide concrete evidence for some motifs. Since it is more likely 

that there is an over-representation of motifs present in ADT promoters rather than 

an under-representation, there is now enough information available to begin to 

decipher functional trends, and to facilitate future studies. 

Although promoter sequences are imperative for proper gene expression, 

as mentioned above, enhancer and intron sequences also contain regulatory 

motifs. Due to limitations of the program, only the region 1 kb upstream of the 

translational start site could be analyzed for motifs, so any motifs located in introns 

have yet to be characterized. Since enhancers can occur thousands of base pairs 

upstream from a given transcriptional start site, it would be near impossible to 

determine a definite location for an enhancer specific to an ADT with an in silico 

analysis alone.  

Limitations aside, this study is the first stepping stone to a number of future 

studies. Stable transformants that were generated should be grown under varying 

environmental conditions, and expression checked using confocal microscopy or 

GUS assay to determine the changes in ADT expression. This should first be done 

to determine any differences in expression between promoter-only and intron-

containing constructs. Since there were multiple occurrences of temperature, 

drought, light-related and pathogen-response motifs, the stress conditions in future 

studies should reflect these. In particular, since there is no co-expression data 

available for root cells in response to soil pathogens, ADT4 and ADT5 expression 

should be measured in the roots of stable transformants under these conditions.  

To compliment the in planta research, it would be helpful to test interactions 

of motifs and transcription factors using a yeast one-hybrid assay or a chromatin IP 

(ChIP) assay. This could identify specific transcription factors for further studies 

that, in the future, could be inhibited or over-expressed, and enhance the plant’s 

response to a particular threat. A good start for this type of study would be to 
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determine whether any of the MYB, WRKY, bZIP or bHLH motifs identified are 

recognized by any of the same families of transcription factors identified in the co-

expression analysis. These are well-known protein families, and there would likely 

be a multitude of resources to continue with overexpression or knockdown studies 

of those transcription factors. The concepts learned here could be applied in the 

future to crop biotechnology, where synthetic promoters or overexpression of 

transcription factors could enhance crop survivability in Northern climates, or 

generally unfavourable environments.  
 

4.7 Conclusions  
To date, it is unknown why Arabidopsis, and many other plants (Cho et al., 

2007; El-Azaz et al., 2016; Maeda et al., 2010) require more than one ADT. 

Although it has been shown that all are differentially expressed (Cho et al., 2007) 

and may have neo-functionalized roles (Bross et al., 2017), the ADT family in 

Arabidopsis is still poorly understood. This research is the first in-depth analysis of 

Arabidopsis ADT promoter sequences. Each ADT promoter sequence was 

successfully isolated, and reporter genes were expressed transiently in N. 

benthamiana, and stably in A. thaliana. Seeds of stable A. thaliana transgenic lines 

can be grown in future studies under standard and stressful conditions to 

determine the changes in ADT expression in planta. Paired with the motif pattern 

and co-expression data, these in planta experiments can provide a well-rounded 

approach to understanding more about ADTs and gene family regulation in plants. 

This study is also an example of how a data mining approach can be used to 

analyze existing motif data to compliment an in planta analysis, and provide a 

more complete understanding of how promoters control gene expression.  

 



109 

 

5 REFERENCES 

Abe, H., Urao, T., Ito, T., Seki, M., and Shinozaki, K. (2003). Arabidopsis 
AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in 
abscisic acid signaling. Plant Cell 15, 63–78. 
Airoldi, C.A., and Davies, B. (2012). Gene duplication and the evolution of plant 
MADS-box transcription factors. J. Genet. Genomics 39, 157–165. 
Van Aken, O., De Clercq, I., Ivanova, A., Law, S.R., Van Breusegem, F., Millar, 
A.H., and Whelan, J. (2016). Mitochondrial and chloroplast stress responses are 
modulated in distinct touch and chemical inhibition phases. Plant Physiol. 171, 
2150–2165. 
Alves, M.S., Dadalto, S.P., Gonzalves, A.B., De Souza, G.B., Barros, V.A., and 
Fietto, L.G. (2013). Plant bZIP transcription factors responsive to pathogens: A 
review. Int. J. Mol. Sci. 14, 7815–7828. 
Ambawat, S., Sharma, P., Yadav, N.R., and Yadav, R.C. (2013). MYB 
transcription factor genes as regulators for plant responses: An overview. Physiol. 
Mol. Biol. Plants 19, 307–321. 
Appel, H.M., Maqbool, S.B., Raina, S., Jagadeeswaran, G., Acharya, B.R., 
Hanley, J.C., Miller, K.P., Hearnes, L., Jones, A.D., Raina, R., and Schultz, J.C. 
(2014). Transcriptional and metabolic signatures of Arabidopsis responses to 
chewing damage by an insect herbivore and bacterial infection and the 
consequences of their interaction. Front. Plant Sci. 5, 1-12. 
Ascencio-Ibanez, J.T., Sozzani, R., Lee, T.-J., Chu, T.-M., Wolfinger, R.D., 
Cella, R., and Hanley-Bowdoin, L. (2008). Global analysis of Arabidopsis gene 
expression uncovers a complex array of changes impacting pathogen response 
and cell cycle during geminivirus infection. Plant Physiol. 148, 436–454. 
Ashraf, M.A., Shahid, A.A., Rao, A.Q., Bajwa, K.S., and Husnain, T. (2014). 
Functional characterization of a bidirectional plant promoter from cotton leaf curl 
burewala virus using an Agrobacterium-mediated transient assay. Viruses 6, 223–
242. 
Austin, R.S., Hiu, S., Waese, J., Ierullo, M., Pasha, A., Wang, T.T., Fan, J., 
Foong, C., Breit, R., Desveaux, D., Moses, A., and Provart, N.J. (2016). New 
BAR tools for mining expression data and exploring cis-elements in Arabidopsis 
thaliana. Plant J. 88, 490–504. 
Babbitt, C.C., Haygood, R., Nielsen, W.J., and Wray, G.A. (2017). Gene 
expression and adaptive noncoding changes during human evolution. BMC 
Genomics 18, 1–11. 
Banerjee, J., Sahoo, D.K., Dey, N., Houtz, R.L., and Maiti, I.B. (2013). An 
intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a 
tissue specific and stress inducible bidirectional promoter analyzed in transgenic 
Arabidopsis and tobacco plants. PLoS One 8, 1-17. 
Baranowskij, N., Frohberg, C., Prat, S., and Willmitzer, L. (1994). A novel DNA 
binding protein with homology to Myb oncoproteins containing only one repeat can 
function as a transcriptional activator. EMBO J. 13, 5383–5392. 
Baumann, K. (1999). The DNA binding site of the Dof protein NtBBF1 is essential 
for tissue-specific and Auxin-regulated expression of the rolB oncogene in plants. 
Plant Cell 11, 323–334. 



110 

 

Baxter, L., Jironkin, A., Hickman, R., Moore, J., Barrington, C., Krusche, P., 
Dyer, N.P., Buchanan-wollaston, V., Tiskin, A., Beynon, J., and Denby, K. 
(2012). Conserved Noncoding Sequences Highlight Shared Components of 
Regulatory Networks in Dicotyledonous Plants. Plant Cell 24, 3949–3965. 
Becker, A., and Theissen, G. (2003). The major clades of MADS-box genes and 
their role in the development and evolution of flowering plants. Mol. Phylogenet. 
Evol. 29, 464–489. 
Bhuiyan, N.H., Selvaraj, G., Wei, Y., and King, J. (2009). Role of lignification in 
plant defense. Plant Signal. Behav. 4, 158–159. 
Bhushan, S., Ståhl, A., Nilsson, S., Lefebvre, B., Seki, M., Roth, C., McWilliam, 
D., Wright, S.J., Liberles, D.A., Shinozaki, K., Bruce, B.D., Boutry, M., and 
Glaser, E. (2005). Catalysis, subcellular localization, expression and evolution of 
the targeting peptides degrading protease, AtPreP2. Plant Cell Physiol. 46, 985–
996. 
Bilgin, D.D., Zavala, J.A., Zhu, J., Clough, S.J., Ort, D.R., and Delucia, E.H. 
(2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell 
Environ. 33, 1597–1613. 
Boeger, H., Griesenbeck, J., Strattan, J.S., and Kornberg, R.D. (2003). 
Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell. 
11, 1587–1598. 
Boerjan, W., Ralph, J., and Baucher, M. (2003). Lignin biosynthesis. Ann. Rev. 
Plant Biol. 54, 519–546. 
Boyle, B., and Brisson, N. (2001). Repression of the defense gene PR-10a by 
the single-stranded DNA binding protein SEBF. Plant Cell 13, 2525–2537. 
Bross, C.D., Corea, O.R.A., Kaldis, A., Menassa, R., Bernards, M.A., and 
Kohalmi, S.E. (2011). Complementation of the pha2 yeast mutant suggests 
functional differences for arogenate dehydratases from Arabidopsis thaliana. Plant 
Physiol. Biochem. 49, 882–890. 
Bross, C.D., Howes, T.R., Abolhassani Rad, S., Kljakic, O., and Kohalmi, S.E. 
(2017). Subcellular localization of Arabidopsis arogenate dehydratases suggests 
novel and non-enzymatic roles. J. Exp. Bot. 68, 1425–1440. 
Busk, P.K., Jensen, A.B., and Pages, M. (1997). Regulatory elements in vivo in 
the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 11, 
1285–1295. 
Byeon, Y., Lee, H.Y., Lee, K., and Back, K. (2014). Caffeic acid O-
methyltransferase is involved in the synthesis of melatonin by methylating N-
acetylserotonin in Arabidopsis. J. Pineal Res. 57, 219–227. 
Cai, W., Ji, D., Peng, L., Guo, J., Ma, J., Zou, M., Lu, C., and Zhang, L. (2009). 
LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant 
Physiol. 150, 1260–1271. 
Casimiro, A.C., Vinga, S., Freitas, A.T., and Oliveira, A.L. (2008). An analysis of 
the positional distribution of DNA motifs in promoter regions and its biological 
relevance. BMC Bioinformatics 9, 1-13. 
Catalá, R., Medina, J., and Salinas, J. (2011). Integration of low temperature and 
light signaling during cold acclimation response in Arabidopsis. PNAS 108, 16475–
16480. 



111 

 

 
Cercós, M., Gómez-Cadenas, A., and Ho, T.H.D. (1999). Hormonal regulation of 
a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting 
elements involved in the co-ordinated gene expression regulated by gibberellins 
and abscisic acid. Plant J. 19, 107–118. 
Chan, C.S., Guo, L., and Shih, M.C. (2001). Promoter analysis of the nuclear 
gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B 
subunit of Arabidopsis thaliana. Plant Mol. Biol. 46, 131–141. 
Chen, H.Y., Hsieh, E.J., Cheng, M.C., Chen, C.Y., Hwang, S.Y., and Lin, T.P. 
(2016). ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 
47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through 
binding to a novel cis-element. New Phytol. 211, 599–613. 
Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., and Martens, S. (2013). 
Plant phenolics : Recent advances on their biosynthesis, genetics, and 
ecophysiology. Plant Physiol. Biochem. 72, 1–20. 
Chezem, W.R., and Clay, N.K. (2016). Regulation of plant secondary metabolism 
and associated specialized cell development by MYBs and bHLHs. Phytochemistry 
131, 26–43. 
Cho, M.H., Corea, O.R.A., Yang, H., Bedgar, D.L., Laskar, D.D., Anterola, A.M., 
Moog-Anterola, F.A., Hood, R.L., Kohalmi, S.E., Bernards, M.A., Kang, CL., 
Davin, L.B., and Lewis, N.G. (2007). Phenylalanine biosynthesis in Arabidopsis 
thaliana: identification and characterization of arogenate dehydratases. J. Biol. 
Chem. 282, 30827–30835. 
Cohen, B.E., Elbuluk, N., Mu, E.W., and Orlow, S.J. (2015). Alternative systemic 
treatments for vitiligo: a review. Am. J. Clin. Dermatol. 16, 463–474. 
Colombo, M., Tadini, L., Peracchio, C., Ferrari, R., and Pesaresi, P. (2016). 
GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. 
Front. Plant Sci. 7, 1–14. 
Corea, O.R.A., Ki, C., Cardenas, C.L., Kim, S.J., Brewer, S.E., Patten, A.M., 
Davin, L.B., and Lewis, N.G. (2012). Arogenate dehydratase isoenzymes 
profoundly and differentially modulate carbon flux into lignins. J. Biol. Chem. 287, 
11446–11459. 
D’haeseleer, P. (2006). What are DNA sequence motifs? Nat. Biotech. 24, 423–
425. 
Danino, Y.M., Even, D., Ideses, D., and Juven-gershon, T. (2015). The core 
promoter : at the heart of gene expression. BBA Gene Reg. Mech. 1849, 1116–
1131. 
Ding, Y., Liu, N., Virlouvet, L., Riethoven, J.-J., Fromm, M., and Avramova, Z. 
(2013). Four distinct types of dehydration stress memory genes in Arabidopsis 
thaliana. BMC Plant Biol. 13, 229. 
Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, 
L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581. 
Edger, P.P., and Pires, J.C. (2009). Gene and genome duplications: the impact of 
dosage-sensitivity on the fate of nuclear genes. Chromosom. Res. 17, 699–717. 
 
 



112 

 

 
Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E., Hamberger, B., Cullis, I.F., 
Zhuang, J., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., and Douglas, 
C.J. (2005). Global transcript profiling of primary stems from Arabidopsis thaliana 
identifies candidate genes for missing links in lignin biosynthesis and 
transcriptional regulators of fiber differentiation. Plant J. 42, 618–640. 
El-Azaz, J., Torre, F. De, and Francisco, M.C. (2016). Identification of a small 
protein domain present in all plant lineages that confers high prephenate 
dehydratase activity. Plant J. 87, 215–229. 
Ellerström, M., Stalberg, K., Ezcurra, I., and Rask, L. (1996). Functional 
dissection of a napin gene promoter: identification of promoter elements requried 
for embryo and endosperm-specific transcription. Plant Mol. Biol. 32, 1019–1027. 
Ericson, M.L., Muren, E., Gustavsson, H., Josefsson, L., and Rask, L. (1991). 
Analysis of the promoter region of napin genes from Brassica napus demonstrates 
binding of nuclear protein in vitro to a conserved sequence motif. Eur. J. Biochem. 
197, 741–746. 
Escamilla-trevin, L.L., Chen, W., Card, M.L., Shih, M., Cheng, C., and Poulton, 
J.E. (2006). Arabidopsis thaliana b-glucosidases BGLU45 and BGLU46 hydrolyse 
monolignol glucosides. Phytochemistry 67, 1651–1660. 
Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY 
superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206. 
Ezcurra, I., Ellerström, M., Wycliffe, P., Stålberg, K., and Rask, L. (1999). 
Interaction between composite elements in the napA promoter: Both the B-box 
ABA-responsive complex and the RY/G complex are necessary for seed-specific 
expression. Plant Mol. Biol. 40, 699–709. 
Fauteux, F., and Strömvik, M.V. (2009). Seed storage protein gene promoters 
contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC 
Plant Biol. 9, 1–11. 
Favery, B., Chelysheva, L.A., Lebris, M., Jammes, F., Marmagne, A., Almeida-
Engler, J. de, Lecomte, P., Vaury, C., Arkowitz, R.A., and Abada, P. (2004). 
Arabidopsis Formin AtFH6 Is a Plasma Membrane-Associated Protein Upregulated 
in Giant Cells Induced by Parasitic Nematodes. Plant Cell Online 16, 2529–2540. 
Fernstrom, J.D., and Fernstrom, M.H. (2007). Tyrosine, phenylalanine, and 
catecholamine synthesis and function in the brain. J. Nutr. 137, 1539–1547. 
Filatov, V., Dowdle, J., Smirnoff, N., Ford-Lloyd, B., Newbury, H.J., and 
MacNair, M.R. (2006). Comparison of gene expression in segregating families 
identifies genes and genomic regions involved in a novel adaptation, zinc 
hyperaccumulation. Mol. Ecol. 15, 3045–3059. 
Flügge, U., Westhoff, P., and Leister, D. (2016). Recent advances in 
understanding photosynthesis. F1000 Res. 5, 1–10. 
Gagniuc, P., and Ionescu-Tirgoviste, C. (2012). Eukaryotic genomes may exhibit 
up to 10 generic classes of gene promoters. BMC Genomics 13, 1. 
Gallegos, J.E., and Rose, A.B. (2015). The enduring mystery of intron-mediated 
enhancement. Plant Sci. 237, 8–15. 
Gao, W., Li, H., Xiao, S., Chye, M., Road, P., and Kong, H. (2010). Acyl-CoA-
binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to 



113 

 

cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J. 62, 989–
1003. 
Gigolashvili, T., Berger, B., Mock, H.P., Müller, C., Weisshaar, B., and Flügge, 
U.I. (2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate 
biosynthesis in Arabidopsis thaliana. Plant J. 50, 886–901. 
Gillmor, C.S., Roeder, A.H.K., Sieber, P., Somerville, C., and Lukowitz, W. 
(2016). A genetic screen for mutations affecting cell division in the Arabidopsis 
thaliana embryo identifies seven loci required for cytokinesis. PLoS One 11, 1–21. 
Gompel, N., Prud, B., Wittkopp, P.J., Kassner, V.A., and Carroll, S.B. (2005). 
Chance caught on the wing: cis -regulatory evolution and the origin of pigment 
patterns in Drosophila. Nature 433, 481–487. 
Gowik, U., Schulze, S., Saladié, M., Rolland, V., Tanz, S.K., Westhoff, P., and 
Ludwig, M. (2017). A MEM1-like motif directs mesophyll cell-specific expression of 
the gene encoding the C4 carbonic anhydrase in Flaveria. J. Exp. Bot. 68, 311–
320. 
von Gromoff, E.D., Schroda, M., Oster, U., and Beck, C.F. (2006). Identification 
of a plastid response element that acts as an enhancer within the Chlamydomonas 
HSP70A promoter. Nucleic Acids Res. 34, 4767–4779. 
Guan, Y., Meng, X., Khanna, R., Lamontagne, E., Liu, Y., and Zhang, S. (2014). 
Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen 
Development and Function in Arabidopsis. PLOS Genet. 10, 1–12. 
Gubler, F., Raventos, D., Keys, M., Watts, R., Mundy, J., and Jacobsen, J. V. 
(1999). Target genes and regulatory domains of the GAMYB transcriptional 
activator in cereal aleurone. Plant J. 17, 1–9. 
Gundel, P.E., Pierik, R., Mommer, L., and Ballaré, C.L. (2014). Competing 
neighbors : light perception and root function. Oecologia 176, 1–10. 
Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. 
(2005). Differential combinatorial interactions of cis-acting elements recognized by 
R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific 
activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57, 155–171. 
van Heerden, P.S., Towers, G.H.N., and Lewis, N.G. (1996). Nitrogen 
Metabolism in Lignifying Pinus taeda Cell Cultures. J. Biol. Chem. 271, 12350–
12355. 
Hellens*, R., Mullineaux*, P., and Klee, H. (2000). A guide to Agrobacterium 
binary Ti vectors. Trends Plant Sci. 5, 1360-1385. 
Hemm, M.R., Rider, S.D., Ogas, J., Murry, D.J., and Chapple, C. (2004). Light 
induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 38, 765–778. 
Herrmann, K.M., and Weaver, L.M. (1999). The shikimate pathway. Annu Rev 
Plant Physiol Plant Mol Biol 50, 473–503. 
Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting 
regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–
300. 
Hill, K., Wang, H., and Perry, S.E. (2008). A transcriptional repression motif in the 
MADS factor AGL15 is involved in recruitment of histone deacetylase complex 
components. Plant J. 53, 172–185. 
Hnisz, D., Day, D.S., and Young, R.A. (2016). Insulated Neighborhoods : 



114 

 

Structural and Functional Units of Mammalian Gene Control. Cell 167, 1188–1200. 
Hoermiller, I.I., Naegele, T., Augustin, H., Stutz, S., Weckwerth, W., and Heyer, 
A.G. (2017). Subcellular reprogramming of metabolism during cold acclimation in 
Arabidopsis thaliana. Plant, Cell Environ. 40, 602–610. 
Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.-Q., and Chen, Z. 
(2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, 
development, and response to environmental stress. Plant Physiol. 153, 1526–
1538. 
Invitrogen (2003). Gateway ® Technology: A universal technology to clone DNA 
sequences for functional analysis and expression in multiple systems. User 
Manual 1–60. 
Isabel-LaMoneda, I., Diaz, I., Martinez, M., Mena, M., and Carbonero, P. (2003). 
SAD: A new DOF protein from barley that activates transcription of a cathepsin B-
like thiol protease gene in the aleurone of germinating seeds. Plant J. 33, 329–
340. 
Ishiguro, S., and Nakamura, K. (1994). Characterization of a cDNA encoding a 
novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ 
upstream regions of genes coding for sporamin and β-amylase from sweet potato. 
Mol. Gen. Genet. 244, 563–571. 
Iwase, A., Harashima, H., Ikeuchi, M., Rymen, B., Ohnuma, M., Komaki, S., 
Morohashi, K., Kurata, T., Nakata, M., Ohme-Takagi, M., Grotewold, E., and 
Sugimoto, K. (2017). WIND1 Promotes Shoot Regeneration through 
Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in 
Arabidopsis. Plant Cell 29, 54–69. 
Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., 
Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in 
Arabidopsis. Trends Plant Sci. 7, 106–111. 
Jeffery, C.J. (2015). Why study moonlighting proteins? Front. in Genetics. 6, 1-5.  
Johnson, C.B., Shaik, R., Abdallah, R., Vitha, S., and Holzenburg, A. (2015). 
FtsZ1/FtsZ2 turnover in chloroplasts and the role of ARC3. Microsc. Microanal. 21, 
313–323. 
Jung, E., Zamir, L.O., and Jensen, R. (1986). Chloroplasts of higher plants 
synthesize L-phenylalanine via L-arogenate. Proc. Natl. Acad. Sci. U.S.A. 83, 
7231–7235. 
Kadonaga, J.T. (2012). Perspectives on the RNA polymerase II core promoter. 
WIREs Dev. Biol. 1, 40–51. 
Kagaya, Y., Ohmiya, K., and Hattori, T. (1999). RAV1, a novel DNA-binding 
protein, binds to bipartite recognition sequence through two distinct DNA-binding 
domains uniquely found in higher plants. Nucleic Acids Res. 27, 470–478. 
Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., 
and Nakamichi, N. (2016). Direct repression of evening genes by CIRCADIAN 
CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell 28, 696–
711. 
Kaplan, B., Davydov, O., Knight, H., Galon, Y., Knight, M.R., Fluhr, R., and 
Fromm, H. (2006). Rapid transcriptome changes induced by cytosolic Ca2+ 
transients reveal ABRE-related sequences as Ca2+-responsive cis elements in 



115 

 

Arabidopsis. Plant Cell 18, 2733–2748. 
Kawoosa, T., and Gahlan, P. (2014). The GATA and SORLIP motifs in the 3-
hydroxy- 3-methylglutaryl-CoA reductase promoter of Picrorhiza kurrooa for the 
control of light-mediated expression. Funct. Integr. Genomics 14, 191–203. 
Kim, J., and DellaPenna, D. (2006). Defining the primary route for lutein synthesis 
in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc. 
Natl. Acad. Sci. 103, 3474–3479. 
Kim, D.W., Lee, S.H., Choi, S., Won, S., Heo, Y., Cho, M., Park, Y., and Cho, H. 
(2006). Functional conservation of a root hair cell-specific cis-element in 
angiosperms with different root hair distribution patterns. Plant Cell 18, 2958–2970. 
Kim, J.H., Hyun, W.Y., Nguyen, H.N., Jeong, C.Y., Xiong, L., Hong, S., and 
Lee, H. (2015). AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-
induced inhibition of seed germination by blocking the expression of the bZIP 
transcription factor ABI5. Plant, Cell Environ. 38, 559–571. 
Kim, S.H., Kim, H.S., Bahk, S., An, J., Yoo, Y., Kim, J., and Chung, W.S. 
(2017). Phosphorylation of the transcriptional repressor MYB15 by mitogen-
activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic 
Acids Res. 45, 6613–6627. 
Korku, P., Schippers, J.H.M., and Walther, D. (2014). Characterization and 
identification of cis-regulatory elements in Arabidopsis based on single-nucleotide 
polymorphism information. Plant Physiol. 164, 181–200. 
Kornberg, R.D. (2007). The molecular basis of eukaryotic transcription. PNAS 
104, 12955–12961. 
Kristiansson, E., Thorsen, M., Tama, M.J., and Nerman, O. (2009). Evolutionary 
forces act on promoter length: identification of enriched cis-regulatory elements. 
Mol. Biol. Evol. 26, 1299–1307. 
Kuhn, B.M., Errafi, S., Bucher, R., Dobrev, P., Geisler, M., Bigler, L., 
Zazímalová, E., and Ringli, C. (2016). 7-Rhamnosylated Flavonols modulate 
homeostasis of the plant hormone auxin and affect plant development. J. Biol. 
Chem. 291, 5385–5395. 
Kumar, S., Asif, M.H., Chakrabarty, D., Tripathi, R.D., and Dubey, R.S. (2015). 
Comprehensive analysis of regulatory elements of the promoters of rice sulfate 
transporter gene family and functional characterization of OsSul1 ;1 promoter 
under different metal stress. Plant Signal. Behav. 10, 1–6. 
Lai, Z., Li, Y., Wang, F., Cheng, Y., Fan, B., Yu, J.-Q., and Chen, Z. (2011). 
Arabidopsis sigma factor binding proteins are activators of the WRKY33 
transcription factor in plant defense. Plant Cell 23, 3824–3841. 
Landry, L.C., Clint, C., Chapple, S., and Last, R. (1995). Arabidopsis mutants 
lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative 
damage. Plant Physiol. 109, 1159-1166. 
Larch, Y., Lapointe, J.W., and Kornberg, R.D. (1987). Nucleosomes inhibit the 
initiation of transcription but allow chain elongation with the displacement of 
histones. 49, 203–210. 
Li, Y., Liu, Z.-B., Shi, X., Hagen, G., and Guilfoyle, T.J. (1994). An auxin-
inducible element in soybean SAUR promoters. Plant Physiol. 106, 37–43. 
Li, Y., Kim, J.I., Pysh, L., and Chapple, C. (2015). Four isoforms of Arabidopsis 



116 

 

thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in 
phenylpropanoid metabolism. Plant Physiol. 169, 2409-2421. 
Liu, C., and Murray, J.D. (2016). The role of flavonoids in nodulation host-range 
specificity: an update. Plants 5, 1–13. 
Liu, J., Osbourn, A., and Ma, P. (2015). MYB Transcription Factors as Regulators 
of Phenylpropanoid Metabolism in Plants. Mol. Plant 8, 689–708. 
Loreti, E., Yamaguchi, J., Alpi, A., and Perata, P. (2003). Sugar modulation of 
alpha-amylase genes under anoxia. Ann. Bot. 91, 143–148. 
Luo, H., Song, F., Goodman, R.M., and Zheng, Z. (2005). Up-regulation of 
OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in 
disease resistance responses. Plant Biol. 7, 459–468. 
Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of 
duplicate genes. Science. 290, 1151–1156. 
Maeda, H., Shasany, A.K., Schnepp, J., Orlova, I., Taguchi, G., Cooper, B.R., 
Rhodes, D., Pichersky, E., and Dudareva, N. (2010). RNAi suppression of 
Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly 
via the arogenate pathway in petunia petals. Plant Cell 22, 832–849. 
March-Diaz, R., Garcia-Dominguez, M., Florencio, F.J., and Reyes, J.C. (2007). 
SEF, a new protein required for flowering repression in Arabidopsis, interacts with 
PIE1 and ARP6 1. Plant Physiol. 143, 893–901. 
Marianayagam, N.J., Sunde, M., and Matthews, J.M. (2004). The power of two: 
protein dimerization in biology. Trends Biochem. Sci. 29, 618–625. 
Maruyama-Nakashita, A., Nakamura, Y., Watanabe-Takahashi, A., Inoue, E., 
Yamaya, T., and Takahashi, H. (2005). Identification of a novel cis-acting element 
conferring sulfur deficiency response in Arabidopsis roots. Plant J. 42, 305–314. 
Matsuo, M., Johnson, J.M., Hieno, A., Tokizawa, M., Nomoto, M., Tada, Y., 
Godfrey, R., Obokata, J., Sherameti, I., Yamamoto, Y.Y., Bohmer, F.D., and 
Oelmuller, R. (2015). High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 
Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana 
Shoots and Roots. Mol. Plant 8, 1253–1273. 
Matus, J.T. (2016). Transcriptomic and metabolomic networks in the grape berry 
illustrate that it takes more than flavonoids to fight against ultraviolet radiation. 
Front. Plant Sci. 7, 1–8. 
Mierziak, J., Kostyn, K., and Kulma, A. (2014). Flavonoids as important 
molecules of plant interactions with the environment. Molecules 16240–16265. 
Mikami, K., Tabata, T., Kawata, T., Nakayama, T., and Iwabuchi, M. (1987). 
Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated 
to regulate transcription of wheat histone genes. FEBS Lett. 223, 273–278. 
Mohanty, B., Krishnan, S.P.T., Swarup, S., and Bajic, V.B. (2005). Detection 
and preliminary analysis of motifs in promoters of anaerobically induced genes of 
different plant species. Ann. Bot. 96, 669–681. 
Molina, C., and Grotewold, E. (2005). Genome wide analysis of Arabidopsis core 
promoters. BMC Genomics 6, 25. 
Nagata, T., Niyada, E., Fujimoto, N., Nagasaki, Y., Noto, K., Miyanoiri, Y., 
Murata, J., Hiratsuka, K., and Katahira, M. (2010). Solution structures of the 
trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of 



117 

 

Arabidopsis GT-1: Mechanism for an increase in DNA-binding affinity through 
phosphorylation. Proteins Struct. Funct. Bioinf.. 78, 3033–3047. 
Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009). Transcriptional 
regulatory networks in response to abiotic stresses in Arabidopsis and grasses. 
Plant Physiol. 149, 88–95. 
Ng, M., and Yanofsky, M.F. (2001). Function and evolution of the plant MADS-
box gene family. Nat. Rev. Genet. 2, 186–195. 
Nickelsen, J. (2000). Mutations at three different nuclear loci of Chlamydomonas 
suppress a defect in chloroplast psbD mRNA accumulation. Curr. Genet. 37, 136–
142. 
Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M., and Rochaix, J. 
(1999). Identification of cis-acting RNA leader elements required for chloroplast 
psbD gene expression in Chlamydomonas. Plant Cell 11, 957–970. 
Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., and Niu, D. (2017). Induced systemic 
resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and 
NPR1-dependent signaling pathway and activates PAMP-triggered immunity in 
Arabidopsis. Front. Plant Sci. 8, 1–12. 
Nishihara, M., and Nakatsuka, T. (2011). Genetic engineering of flavonoid 
pigments to modify flower color in floricultural plants. Biotech. Lett. 33, 433–441. 
Nishiuchi, T., Shinshi, H., and Suzuki, K. (2004). Rapid and transient activation 
of transcription of the ERF3 gene by wounding in tobacco leaves: Possible 
involvement of NtWRKYs and autorepression. J. Biol. Chem. 279, 55355–55361. 
Novina, C.D., and Roy, A.L. (1996). Core promoters and transcriptional control. 
Trends Genet. 12, 351–355. 
Ohgishi, M., Oka, A., Morelli, G., Ruberti, I., and Aoyama, T. (2001). Negative 
autoregulation of the Arabidopsis homeobox gene ATHB-2. Plant J. 25, 389–398. 
Olsen, K.M., Lea, U.S., Slimestad, R., Verheul, M., and Lillo, C. (2008). 
Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have 
functional specialization in abiotic environmental-triggered flavonoid synthesis. J. 
Plant Physiol. 165, 1491–1499. 
Para, A., Muhammad, D., Orozco-Nunnelly, D.A., Memishi, R., Alvarez, S., 
Naldrett, M.J., and Warpeha, K. (2016). The dehydratase ADT3 affects ROS 
homeostasis and cotyledon development. Plant Physiol. 172, 1045–1060. 
Park, H.C., Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C., Park, C.Y., 
Jeong, J.C., Moon, B.C., Lee, J.H., Yoon, H.W., Lee, S.H., Chung, W.S., Lim, 
C.O., Lee, S.Y., Hong, J.C. and Cho, M.J. (2004). Pathogen- and NaCl-induced 
expression of the SCaM-4 promoter is mediated in part by a GT-1 box that 
interacts with a GT-1-like transcription factor. Plant Physiol. 135, 2150–2161. 
Pastore, J.J., Limpuangthip, A., Yamaguchi, N., Wu, M.-F., Sang, Y., Han, S.-
K., Malaspina, L., Chavdaroff, N., Yamaguchi, A., and Wagner, D. (2011). 
LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. 
Development 138, 3189–3198. 
Pichersky, E., and Lewinsohn, E. (2011). Convergent evolution in plant 
specialized metabolism. Ann. Rev. Plant Biol. 62, 549–566. 
Piechulla, B., Merforth, N., and Rudolph, B. (1998). Identification of tomato Lhc 
promoter regions necessary for circadian expression. Plant Mol. Biol. 38, 655–-



118 

 

662. 
Planchais, S., Perennes, C., Glab, N., Mironov, V., Inzé, D., and Bergounioux, 
C. (2002). Characterization of cis-acting element involved in cell cycle phase-
independent activation of Arath;CycB1;1 transcription and identification of putative 
regulatory proteins. Plant Mol. Biol. 50, 111–127. 
Plesch, G., Ehrhardt, T., and Mueller-Roeber, B. (2001). Involvement of TAAAG 
elements suggests a role for Dof transcription factors in guard cell-specific gene 
expression. Plant J. 28, 455–464. 
Quinn, J.M., Barraco, P., Eriksson, M., and Merchant, S. (2000). Coordinate 
Copper- and Oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is 
mediated by the same element. J. Biol. Chem. 275, 6080–6089. 
Ramirez-Parra, E., Fründt, C., and Gutierrez, C. (2003). A genome-wide 
identification of E2F-regulated genes in Arabidopsis. Plant J. 33, 801–811. 
Rausher, M.D. (2012). The evolution of genes in branched metabolic pathways. 
Evolution 67, 34–48. 
Renault, H., Alber, A., Horst, N.A., Lopes, A.B., Fich, E.A., Kriegshauser, L., 
Wiedemann, G., Ullmann, P., Herrgott, L., Erhardt, M., Pineau, E., Ehlting, J., 
Schmitt, M., Rose, J.K.C., Reski, R., and Werck-Reichhart, D. (2017). A phenol-
enriched cuticle is anestral to lignin evolution in land plants. Nat. Commun. 8, 1–8. 
Renzette, N. (2011). Generation of transformation competent E. coli. Curr. Protoc. 
Microbiol. Appendix 1.  
Reyes, J.C., Muro-Pastor, M.I., and Florencio, F.J. (2004). The GATA family of 
transcription factors in Arabidopsis and rice. Plant Physiol. 134, 1718–1732. 
Rippert, P., Puyaubert, J., Grisollet, D., Derrier, L., and Matringe, M. (2009). 
Tyrosine and Phenylalanine Are Synthesized within the Plastids in Arabidopsis. 
Plant Physiol. 149, 1251–1260. 
Roepke, J., and Bozzo, G.G. (2015). Arabidopsis thaliana beta-glucosidase 
BGLU15 attacks flavonol 3-O-beta-glucoside-7-O-alpha-rhamnosides. 
Phytochemistry 109, 14–24. 
Rogers, H.J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., 
Lonsdale, D.M., and Twell, D. (2001). Functional analysis of cis-regulatory 
elements within the promoter of the tobacco late pollen gene g10. Plant Mol. Biol. 
45, 577–585. 
Rose, A.B., Carter, A., Korf, I., and Kojima, N. (2016). Intron sequences that 
stimulate gene expression in Arabidopsis. Plant Mol. Biol. 92, 337–346. 
Roy, S. (2015). Function of MYB domain transcription factors in abiotic stress and 
epigenetic control of stress response in plant genome. Plant Signal. Behav. 2324, 
165-171.  
Roy, A.L., and Singer, D.S. (2015). Core promoters in transcription: old problem, 
new insights. Trends Biochem. Sci. 40, 165–171. 
Sainsbury, S., Bernecky, C., and Cramer, P. (2015). Structural basis of 
transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143. 
Sakai, H., Aoyama, T., and Oka, A. (2000). Arabidopsis ARR1 and ARR2 
response regulators operate as transcriptional activators. Plant J. 24, 703–711. 
Sambrook J., and Russell, D. (2001) Molecular Cloning: a Laboratory Manual. ed 
3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 



119 

 

Sandal, N.N., Bojsen, K., and Marcker, K.A. (1987). A small family of nodule 
specific genes from soybean. Nucleic Acids Res. 15, 1507–1519. 
Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, 
K. (2002). ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-
responsive expression of the ProDH gene encoding proline dehydrogenase in 
Arabidopsis. Plant Physiol. 130, 709–719. 
Schenck, C.A., Chen, S., Siehl, D.L., and Maeda, H.A. (2014). Non-plastidic, 
tyrosine-insensitive prephenate dehydrogenases from legumes. Nat. Chem. Biol. 
11, 52–57. 
Schluttenhofer, C., and Yuan, L. (2015). Regulation of specialized metabolism by 
WRKY transcription factors. Plant Physiol. 167, 295–306. 
Schmid, N.B., Giehl, R.F.H., Doll, S., Mock, H.-P., Strehmel, N., Scheel, D., 
Kong, X., Hider, R.C., and von Wiren, N. (2014). Feruloyl-CoA 6’-Hydroxylase1-
dependent coumarins mediate iron acquisition from alkaline substrates in 
Arabidopsis. Plant Physiol. 164, 160–172. 
Seo, P.J., and Park, C.M. (2010). A membrane-bound NAC transcription factor as 
an integrator of biotic and abiotic stress signals. Plant Signal. Behav. 5, 481–483. 
Silhavy, D., Molnár, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., and 
Burgyán, J. (2002). A viral protein suppresses RNA silencing and binds silencing-
generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080. 
Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., and 
Yamaguchi-Shinozaki, K. (2003). Two different novel cis -acting elements of erd1 
, a clpA homologous Arabidopsis gene function in induction by dehydration stress 
and dark-induced senescence. Plant J. 33, 259–270. 
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., and Sochor, J. 
(2015). Bioactive Compounds and Antioxidant Activity in Different Types of 
Berries. Int. J. Mol. Sci. 16, 24673–24706. 
Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients 
5, 1417–1435. 
Sohrabi, M., Zebarjadi, A., Najaphy, A., and Kahrizi, D. (2015). Isolation and 
sequence analysis of napin seed specific promoter from Iranian Rapeseed 
(Brassica napus L.). Gene 563, 160–164. 
Soitamo, A.J., Piippo, M., Allahverdiyeva, Y., Battchikova, N., and Aro, E. 
(2008). Light has a specific role in modulating Arabidopsis gene expression at low 
temperature. BMC Plant Biol. 8, 1–20. 
Song, J., Durrant, W.E., Wang, S., Yan, S., Tan, E.H., and Dong, X. (2011a). 
DNA repair proteins are directly involved in regulation of gene expression during 
plant immune response. Cell Host Microbe 9, 115–124. 
Srivastava, V.K., Raikwar, S., and Tuteja, N. (2014). Cloning and functional 
characterization of the promoter of PsSEOF1 gene from Pisum sativum under 
different stress conditions using Agrobacterium-mediated transient assay. Plant 
Signal. Behav. 9, 1-10.  
Su, J., Xu, J., and Zhang, S. (2015). RACK1, scaffolding a heterotrimeric G 
protein and a MAPK cascade. Trends Plant Sci. 20, 405–407. 
Su, Y., Wang, S., Zhang, F., Zheng, H., Liu, Y., Huang, T., and Ding, Y. (2017). 
Phosphorylation of Histone H2A at Serine 95: A plant-specific mark involved in 



120 

 

flowering time regulation and H2A.Z deposition. Plant Cell 29, 1–37. 
Sun, C., Palmqvist, S., Olsson, H., Borén, M., Ahlandsberg, S., and Jansson, 
C. (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar 
signaling in barley by binding to the sugar-responsive elements of the iso1 
promoter. Plant Cell Online 15, 2076–2092. 
Sun, J., Jiang, H., Xu, Y., Li, H., Wu, X., Xie, Q., and Li, C. (2007). The CCCH-
type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in 
Arabidopsis. Plant Cell Physiol. 48, 1148–1158. 
Teakle, G.R., Manfield, I.W., Graham, J.F., and Gilmartin, P.M. (2002). 
Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding 
characteristics. Plant Mol. Biol. 50, 43–57. 
Teng, Y.-S., Su, Y.-S., Chen, L.-J., Lee, Y., Hwang, I., and Li, H.-M. (2006). 
Tic21 is an essential translocon component for protein translocation across the 
chloroplast inner envelope membrane. Plant Cell Online 18, 2247–2257. 
Thakur, M., and Sohal, B.S. (2013). Role of elicitors in inducing resistance in 
plants against pathogen infection: A review. ISRN Biochem. 2013, 1-10.  
Thomas, M.S., and Flavell, R.B. (1990). Identification of an enhancer element for 
the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2, 
1171–1180. 
Thum, K.E., Kim, M., Morishige, D.T., Eibl, C., Koop, H.U., and Mullet, J.E. 
(2001). Analysis of barley chloroplast psbD light-responsive promoter elements in 
transplastomic tobacco. Plant Mol. Biol. 47, 353–366. 
Toledo-Ortiz, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis Basic / Helix-
Loop-Helix transcription factor family. Plant Cell 15, 1749–1770. 
Torres-Galea, P., Huang, L.F., Chua, N.H., and Bolle, C. (2006). The GRAS 
protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, 
but can also modulate phytochrome A responses. Mol. Genet. Genomics 276, 13–
30. 
de Torres Zabala, M., Zhai, B., Jayaraman, S., Eleftheriadou, G., Winsbury, R., 
Yang, R., Truman, W., Tang, S., Smirnoff, N., and Grant, M. (2016). Novel JAZ 
co-operativity and unexpected JA dynamics underpin Arabidopsis defence 
responses to Pseudomonas syringae infection. New Phytol. 209, 1120–1134. 
Toyofuku, K., Umemura, T., and Yamaguchi, J. (1998). Promoter elements 
required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. 
FEBS Lett. 428, 275–280. 
Tronchet, M., BalaguÉ, C., Kroj, T., Jouanin, L., and Roby, D. (2010). Cinnamyl 
alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an 
essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11, 83–92. 
Tzin, V., and Galili, G. (2010). The biosynthetic pathways for shikimate and 
aromatic amino acids in Arabidopsis thaliana. Arab. B. 8, 1–18. 
Ulmasov, T. (1997). ARF1, a Transcription Factor That Binds to Auxin Response 
Elements. Science. 276, 1865–1868. 
Fernando V.C.D. and Schroeder, D.F. (2016). Arabidopsis DDB1-CUL4 E3 ligase 
complexes in det1 salt/osmotic stress resistant germination. Plant Signal. Behav. 
11, 225–231. 
Vedel, V., and Scotti, I. (2011). Promoting the promoter. Plant Sci. 180, 182–189. 



121 

 

van der Velden, A.W., and Thomas, A.A.M. (1999). The role of the 5’ 
untranslated region of an mRNA in translation regulation during development. Int. 
J. Biochem. Cell Biol. 31, 87–106. 
Vieweg, M.F., Frühling, M., Quandt, H.-J., Heim, U., Bäumlein, H., Pühler, A., 
Küster, H., and Perlick, A.M. (2004). The Promoter of the Vicia faba L. 
Leghemoglobin gene VfLb29 is specifically activated in the infected cells of root 
nodules and in the arbuscule-containing cells of mycorrhizal roots from different 
legume and nonlegume plants. Mol. Plant-Microbe Interact. 17, 62–69. 
Vitha, S., Mcandrew, R.S., and Osteryoung, K.W. (2001). FtsZ ring formation at 
the chloroplast division site in plants. J. Cell Biol. 153, 111–119. 
Vogt, T. (2010). Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20. 
Wang, X.T., Yuan, C., Yuan, T.T., and Cui, S.J. (2012). The arabidopsis LFR 
gene is required for the formation of anther cell layers and normal expression of 
key regulatory genes. Mol. Plant 5, 993–1000. 
Wang, Z., Chen, M., Chen, T., Xuan, L., Li, Z., Du, X., Zhou, L., Zhang, G., and 
Jiang, L. (2014). TRANSPARENT TESTA2 regulates embryonic fatty acid 
biosynthesis by targeting FUSCA3 during the early developmental stage of 
Arabidopsis seeds. Plant J. 77, 757–769. 
Webb, C.F., Bryant, J., Popowski, M., Allred, L., Kim, D., Harriss, J., Schmidt, 
C., Miner, C.A., Rose, K., Cheng, H.-L., Griffin, C., and Tucker, P.W. (2011). 
The ARID Family Transcription Factor Bright Is Required for both Hematopoietic 
Stem Cell and B Lineage Development. Mol. Cell. Biol. 31, 1041–1053. 
Weise, S. (2013). Agrobacterium transformation and competent cell preparation. 
28–30. 
Welchen, E., and Gonzalez, D.H. (2005). Differential expression of the 
Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement 
of TCP-domain protein-binding elements in anther- and meristem-specific 
expression of the Cytc-1 gene. Plant Physiol. 139, 88–100. 
Wendel, J.F., Flagel, L.E., and Wendel, J.F. (2009). Gene duplication and 
evolutionary novelty in plants. New Phytol. 183, 557–564. 
Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., 
and Coupland, G. (2006). CONSTANS and the CCAAT box binding complex 
share a functionally important domain and interact to regulate flowering of 
Arabidopsis. Plant Cell Online 18, 2971–2984. 
Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, 
biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493. 
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V, and Provart, N.J. 
(2007). An “Electronic Fluorescent Pictograph” browser for exploring and analyzing 
large-scale biological data sets. PLoS One 1–12. 
Xu, J., Meng, J., Meng, X., Zhao, Y., Liu, J., Sun, T., Liu, Y., Wang, Q., and 
Zhang, S. (2016). Pathogen-responsive MPK3 and MPK6 reprogram the 
biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. 
Plant Cell 28, 1144–1162. 
Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S. 
(2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a 
repressor of blue light-mediated photomorphogenic growth. Plant Cell 17, 1953–



122 

 

1966. 
Yamada, T., Matsuda, F., Kasai, K., Fukuoka, S., Kitamura, K., Tozawa, Y., 
Miyagawa, H., and Wakasa, K. (2008). Mutation of a rice gene encoding a 
phenylalanine biosynthetic enzyme results in accumulation of Phenylalanine and 
Tryptophan. Plant Cell 20, 1316–1329. 
Yamamoto, Y.Y., Yoshitsugu, T., Sakurai, T., Seki, M., Shinozaki, K., and 
Obokata, J. (2009). Heterogeneity of Arabidopsis core promoters revealed by 
high-density TSS analysis. Plant J. 60, 350–362. 
Yamamoto, Y.Y., Yoshioka, Y., Hyakumachi, M., and Obokata, J. (2011). 
Characteristics of core promoter types with respect to gene structure and 
expression in Arabidopsis thaliana. DNA Res 333–342. 
Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T., Schmidt, R., Dean, C., Naito, 
S., and Ishikawa, M. (2000). TOM1, an Arabidopsis gene required for efficient 
multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. 
Natl. Acad. Sci. U.S.A. 97, 10107–10112. 
Yamauchi, D. (2001). A TGACGT motif in the 5’-upstream region of alpha-
amylase gene from Vigna mungo is a cis-element for expression in cotyledons of 
germinated seeds. Plant Cell Physiol. 42, 635–641. 
Yanagisawa, S. (2004). Dof Domain Proteins: plant-specific transcription Factors 
associated with diverse processes. Plant Cell Physiol. 45, 386–391. 
Yang, T., and Poovaiah, B.W. (2002). A calmodulin-binding/CGCG box DNA-
binding protein family involved in multiple signaling pathways in plants. J. Biol. 
Chem. 277, 45049–45058. 
Yang, Y., Li, R., and Qi, M. (2000). In vivo analysis of plant promoters and 
transcription factors by agroinfiltration of tobacco leaves. Plant J. 22, 543–551. 
Yang, Z., Patra, B., Li, R., Pattanaik, S., and Yuan, L. (2013). Promoter analysis 
reveals cis�regulatory motifs associated with the expression of the WRKY 
transcription factor CrWRKY1 in Catharanthus roseus. Planta 238, 1039–1049. 
Yin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, 
M.R., Von Saint Paul, V., Heller, W., and Schäffner, A.R. (2012). Feedback 
inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon 
a compromised flavonol-3-O-glycosylation. J. Exp. Bot. 63, 2465–2478. 
Yoshioka, S. (2004). The novel Myb transcription factor LCR1 regulates the CO2-
responsive gene Cah1, encoding a periplasmic carbonic anhydrase in 
Chlamydomonas reinhardtii. Plant Cell Online 16, 1466–1477. 
Yu, D., Chen, C., and Chen, Z. (2001). Evidence for an important role of WRKY 
DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13, 
1527–1539. 
Yu, Q.B., Jiang, Y., Chong, K., and Yang, Z.N. (2009). AtECB2, a 
pentatricopeptide repeat protein, is required for chloroplast transcript accd rna 
editing and early chloroplast biogenesis in arabidopsis thaliana. Plant J. 59, 1011–
1023. 
Yukawa, Y., Sugita, M., Choisne, N., Small, I., and Sugiura, M. (2000). The 
TATA motif, the CAA motif and the poly(T) transcription termination motif are all 
important for transcription re-initiation on plant tRNA genes. Plant J. 22, 439–447. 
 



123 

 

Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., and Chua, N.-H. (2006). 
Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip 
method. Nat. Protoc. 1, 641–646. 
Zhao, Q. (2016). Lignification: flexibility, biosynthesis and regulation. Trends Plant 
Sci. 21, 713–721. 
Zhao, H., Wu, D., Kong, F., Lin, K., Zhang, H., and Li, G. (2017a). The 
Arabidopsis thaliana nuclear factor Y transcription factors. Front. Plant Sci. 7, 1–
11. 
Zhao, L., Feng, C., Wu, K., Chen, W., Chen, Y., Hao, X., and Wu, Y. (2017b). 
Advances and prospects in biogenic substances against plant virus: A review. 
Pestic. Biochem. Physiol. 135, 15–26. 
Zhiming, Y., Bo, K., Xiaowei, H., Shaolei, L., Youhuang, B., Wona, D., Ming, 
C., Hyung-taeg, C., and Ping, W. (2011). Root hair-specific expansins modulate 
root hair elongation in rice. Plant J. 66, 725–734. 
Zhou, M., Zhang, K., Sun, Z., Yan, M., Chen, C., Zhang, X., Tang, Y., and Wu, 
Y. (2017). LNK1 and LNK2 corepressors interact with the MYB3 transcription 
factor in phenylpropanoid biosynthesis. Plant Physiol. 174, 1348–1358. 
Zhu, B., Zhang, W., Zhang, T., Liu, B., and Jiang, J. (2015). Genome-wide 
prediction and validation of intergenic enhancers in Arabidopsis using open 
chromatin signatures. Plant Cell 27, 2415-2426.  
Zhu, Q., Ordiz, M.I., Dabi, T., Beachy, R.N., and Lamb, C. (2002). Rice TATA 
binding protein interacts functionally with transcription factor IIB and the RF2a bZIP 
transcriptional activator in an enhanced plant in vitro transcription system. Plant 
Cell 14, 795–803. 
Zhu, Y., Rong, L., Luo, Q., Wang, B., Zhou, N., Yang, Y., Zhang, C., Feng, H., 
Zheng, L., Shen, W.-H., Ma, J., and Dong, A. (2017). The histone chaperone 
NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair 
development. Plant Cell 29, 260–276. 
Zimmermann, I.M., Heim, M.A., Weisshaar, B., and Uhrig, J.F. (2004). 
Comprehensive identification of Arabidopsis thaliana MYB transcription factors 
interacting with R / B-like BHLH proteins. Plant J. 40, 22–34. 
 



124 

 

6 APPENDICES 
  



125 

 

Appendix A. List of all cis Regulatory Motifs: Abiotic Stress1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

ABRELATERD1 ACGTG  +     ABRE-like sequence; dehydration stress (Nakashima et al., 2009) 

ABRERATCAL CACGCGT +  +    ABRE-related sequence; responsive to Ca2+ (Kaplan et al., 2006) 

ACGTABOX TACGTA +  +    A-box recognized by bZIP transcription factors (Jakoby et al., 
2002) 

ACGTATERD1 ACGT + + + + +  Etiolation response (Simpson et al., 2003) 

ACGTTBOX AACGTT     +  T-box; bZIP; stimulus-dependent activation (Alves et al., 2013) 

ANAERO1CONSENSUS AAACAAA +  + +  + Hypoxia/anaerobically-induced expression (Mohanty et al. 2005) 

ANAERO2CONSENSUS AGCAGC     +  Hypoxia/anaerobically-induced expression (Mohanty et al., 2005) 

CCAATBOX1 CCAAT  + + + + + Found in promoters of heat shock proteins (Wenkel et al., 2006) 

CURECORECR GTAC  +  + +  CuRE (copper response element) (Quinn et al., 2000) 

DRE1COREZMRAB17 ACCGAGA     +  DRE1 core; ABA responsive (Busk et al., 1997) 

EECCRCAH1 GAATTAC +  + + +  EEC consensus; MYB (Yoshioka, 2004) 

GAREAT TAACAAA    + + + Recognized by MYB97, MYB101 and MYB120 (Roy, 2015) 

LTRE1HVBLT49 CCGAAA      + Low temperature response element (Catalá et al., 2011) 

LTRECOREATCOR15 CCGAC      + Low-temperature response element (Catalá et al., 2011) 
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Appendix A. Continued: Abiotic Stress1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

MYB1AT AAACCA  + + + + + MYB; ABA-inducible expression/drought stress (Abe et al. 2003) 

MYB2AT TAACTG  +     AtMYB2; dehydration stress response (Abe et al., 2003) 

MYBCORE CTGTTG + + +   + MYB; drought stress; flavonoid biosynthesis (Liu et al., 2015a) 

MYBCOREATCYCB1 AACGG  + +    MYB; cell cycle phase-independent activation of transcription 
(Planchais et al., 2002) 

MYBGAHV TAACAAA    + +  MYB; GA response complex (GARC) (Gubler et al., 1999) 

MYBST1 GGATA  +  + +  MYBSt1 binding site (Baranowskij et al., 1994) 

MYCATRD22 CACATG  +   +  Recognized by MYC rd22BP1; dehydration and ABA response 
(Simpson et al., 2003) 

P1BS GCATATTC    +   MYB; phosphate starvation response (Dubos et al., 2010) 

PREATPRODH ACTCAT     +  Hypoosmolarity responsive element (Satoh et al., 2002) 

RYREPEATBNNAPA CATGCA  +   +  RY repeat; ABA response; seed-specific expression (Ezcurra et 
al., 1999) 

SREATMSD TTATCC    + +  SRE (sugar responsive element); response to main stem 
decapitation (Yadav et al., 2005) 

SURECOREATSULTR11 GAGAC + + +  + + Sulfur response element (SURE); sulfate deficient response in 
roots (Maruyama-Nakashita et al., 2005) 
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Appendix A. Continued: Biotic Stress1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

ARR1AT NGATT + + + + + + ARR1; bacterial response (Sakai et al., 2000) 
AMYBOX1 TAACAGA    + +  Amylase box; sugar starvation response (Loreti et al., 2003) 

AMYBOX2 TATCCAT     +  Amylase box, sugar starvation response (Loreti et al., 2003) 

ELRECOREPCRP1 TTGACC +      EIRE; elicitor response element ; WRKY (Schluttenhofer and 
Yuan, 2015) 

NODCON1GM AAAGAT  + +  +  One of two nodulin consensus sequences (Sandal et al., 1987) 

NODCON2GM CTCTT + + + + +  One of two nodulin consensus sequences (Sandal et al., 1987) 

OSE1ROOTNODULE AAAGAT  + +  +  Organ specific element (OSE); root infection (Vieweg et al., 2004) 

OSE2ROOTNODULE CTCTT + + + + +  Organ specific element (OSE); root infection (Vieweg et al., 2004) 

SEBFCONSSTPR10A TTGTCTC      + SEBF; repressor of pathogen response (Boyle and Brisson, 
2001) 

SP8BFIBSP8BIB TACTATT     +  SPF1 (WRKY); polygalacturonic acid-induced expression 
(Ishiguro and Nakamura, 1994) 

T/GBOXATPIN2 AACGTG  +     Recognized by MYC (bHLH) for jasmonate and wound response 
(Appel et al., 2014) 

WBOXATNPR1 TTGAC +    +  W-box; WRKY; SA signaling (Yu et al., 2001) 

WBOXHVISO1 TGACT +    + + W-box; SUSIBA2 (WRKY) (Sun et al., 2003) 
WBOXNTERF3 TGACY +    + + W-box found in promoter of ERF3  (Nishiuchi et al., 2004) 
WRKY71OS TGAC + + +  + + Core of TGAC-containing W-box, WRKY71  
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Appendix A. Continued: Development1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

BIHD1OS TGTCA + + + +   Recognized by BELL homeodomain transcription factor in rice 
(Luo et al., 2005) 

CANBNNAPA CTAACAC +   +  + Core of (CA)n element in storage protein gene promoters 
(Ellerström et al., 1996) 

CARGCW8GAT CTATWTAT 
WG 

+ + + +  + Variant of CArG box with longer A/T rich core; recognized by 
AGL15 transcription factor (Airoldi and Davies, 2012) 

CARGNCAT CCWWWW 
WWWWGG 

  +    Response to AGL15; involved in gibberellin metabolism (Hill et al., 
2008) 

E2FANTRNR TTTCCCGC      + E2Fb recognition site; G1 to S phase transition in cell cycle 
progression (Ramirez-Parra et al., 2003) 

E2FCONSENSUS ATTCCCCC      + E2F recognition site; cell cycle regulation (Ramirez-Parra et al., 
2003) 

HDZIP2ATATHB2 TAATAATTA    +   Recognized by homeobox gene ATHB-2; auxin response and cell 
proliferation (Ohgishi et al. 2001) 

POLLEN1LELAT52 AGAAA + + + + + + 1 of 2 co-dependent regulatory elements responsible for pollen-
specific activation (Guan et al., 2014) 

PYRIMIDINEBOXHV 
EPB1 

TTTTTTCC  +  + +  Pyrimidine box; coordinates gene expression in response to 
gibberellins and ABA (Cercós et al., 1999) 

PYRIMIDINEBOXOSR 
AMY1A 

CCTTTT + +     Pyrimidine box; upstream of sugar-repressed alpha amylase 
gene; gibberellin reponse (Cercós et al., 1999) 

ROOTMOTIFTAPOX1 ATATT + +  + + + Root hair growth and elongation (Pastore et al., 2011) 
RHERPATEXPA7 TCACGT    +   Root-hair-specific cis element for root distribution (Zhiming et al., 

2011) 
RYREPEATGMGY2 CATGCAT  +   +  RY repeat; regulates expression of glycinin genes (Fauteux and 

Strömvik, 2009) 
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Appendix A. Continued: Development1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

RYREPEATLEGUMINBOX CATGCAT  +   +  RY repeat or legumin box found in seed-storage protein genes 
in legumes (Ezcurra et al., 1999) 

RYREPEATVFLEB4 CATGCATG     +  RY-repeat motif; recognized by FUS3 transcription factor; 
embryogenesis (Ezcurra et al., 1999) 

SEF1MOTIF ATATTTATA    +  + Soybean embryo factor; embryo development (Fauteux and 
Strömvik, 2009) 

SEF3MOTIFGM AACCCA +      Soybean embryo factor; embryo development (Fauteux and 
Strömvik, 2009) 

SEF4MOTIFGM7S RTTTTTG +  + +  + Soybean embryo factor; embryo development (Fauteux and 
Strömvik, 2009) 

SITEIIATCYTC TGGGCC  + +   + Site II element; upstream of genes for oxidative 
phosphorylation (Welchen and Gonzalez, 2005) 

TATCCAOSAMY TATCCA + + +  +  Recognized by MYB family; hormone regulation of alpha-
amylase gene expression (Yamauchi, 2001) 

TGACGTVMAMY TGACGT +      Required for high expression of alpha-amylase; seed 
development (Yamauchi, 2001) 

Stress and Development 

ASF1MOTIFCAMV TGACG +    +  Recognized by ASF-1; auxin/SA responsive transcription 
(Banerjee et al., 2013) 

CGCGBOXAT ACGCGT +  +   + CGCG box; recognized by SR1-6 signal response element; 
calmodulin binding site; signal transduction (Yang and 
Poovaiah, 2002) 
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Appendix A. Continued: Stress and Development1,2 

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

DOFCOREZM AAAG + + + + + + Required for Dof binding (Yanagisawa, 2002) 

DPBFCOREDCDC3 ACACTGG  +  + +  Recognized by bZIP transcription factors involved in ABA-
response and embryo-specification (Kamioka et al., 2016) 

EBOXBNNAPA CATATG + + + + + + bHLH recognition site (Yadav et al., 2005) 
GCN4OSGLUB1 TGAGTCA +      Recognized by bZIP transcription factors; endosperm 

development (Jakoby et al., 2002) 

GLMHVCHORD ATGAGTCAT +      Recognized by bZIP transcription factors; nitrogen response 
and endosperm expression (Jakoby et al., 2002) 

GT1GMSCAM4 GAAAAA + + + + + + GT-1 motif found in promoter of soy CaM isoform (Park et al. 
2004) 

MYCCONSENSUSAT CATATG + + + + + + bHLH recognition site (Abe et al. 2003) 

NTBBF1ARROLB ACTTTA   +  +  Tobacco Dof protein binding site found in Agrobacterium 
rhizogenes (Baumann, 1999) 

RAV1AAT CAACA + + + + + + Recognized by RAV1-A transcription factor; development and 
drought/salinity stress (Kagaya et al. 1999) 

SBOXATRBCS CACCTCCA  +     S-box; recognized by ABI4 transcription factor; connects light- 
and sugar-responsive signalling pathways (Baxter et al., 2012) 

TAAAGSTKST1 TAAAG  + + +  + Found in promoter of KST1 gene; recognized by Dof 
transcription factors (Plesch et al., 2001) 

TATCCACHVAL21 TATCCAC +      GARC response complex; one of three sequence motifs 
responsible for GA response (Isabel- LaMoneda et al. 2003) 
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Appendix A. Continued: Light Response1,2  

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

-10PEHVPSBD TATTCT +  + +    - 10 promoter element found in promoters controlling genes in 
response to light (Thum et al., 2001) 

ARFAT TGTCTC      + Recognized by ARF1 (auxin response factor 1) (Ulmasov et al. 
1999) 

CATATGGMSAUR CATATG +   + +  Sequence found in NDE element in soy SAUR 15A promoter; 
auxin response (Li et al., 1994) 

CCA1ATLHCB1 AAAAATCT +   +  + CCA1 recognition site (MYB-related); regulated by 
phytochrome (Yoshioka, 2004) 

CIACADIANLELHC CAACTTTATC    +  + Region necessary for circadian expression (Piechulla et al., 
1998) 

GATABOX GATA + + + + + + GATA box important for light-regulated expression (Reyes et 
al., 2004) 

GT1CONSENSUS GRAAAW + + + + + + GT-1 binding site found in light regulated genes (Nagata et al., 
2010) 

IBOX GATAAG      + Upstream of light-regulated genes; recognized by MYB 
transcription factors (Hartmann et al., 2005) 

IBOXCORE GATAA  + + + + + Upstream of light-regulated genes; recognized by MYB 
transcription factors (Hartmann et al., 2005) 

MARTBOX TTTTTTTTTT     +  T-box; upstream of light-regulated genes (Yukawa et al., 2000) 

PRECONSCRHSP70A CCGATTATGAC
ACTCCACCAAG
AG 

     + Plastid response element; acts as a light-responsive enhancer 
(von Gromoff et al., 2006) 
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Appendix A. Continued: Light Response1,2  

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

REBETALGLHCB21 CGGATA    +   GATA-like sequence; phytochrome signaling (Nagata et al., 
2010) 

S1FBOXSORPS1L21 ATGGTA   + +   S1F box; involved in regulation of plastid-related genes 
(Simpson et al., 2003) 

SORLIP1AT GCCAC     +  "Sequences over-represented in light-induced promoters"; 
PhyA-regulated (Kawoosa and Gahlan, 2014) 

SORLIP2AT GGGCC  +    + "Sequences over-represented in light-induced promoters"; 
PhyA-regulated (Kawoosa and Gahlan, 2014) 

SORLREP3AT TGTATATAT    +   "Sequences over-represented in light-induced promoters"; 
PhyA-regulated (Kawoosa and Gahlan, 2014) 

TBOXATGAPB ACTTTG      + T-box; light-activated transcription (Chan et al., 2001) 

Phenylpropanoid-Related 

BOXLCOREDCPAL ACCWWCC +   +   Core of BoxL in PAL1 promoter; recognized by MYB1 in 
response to environmental cues (Maeda et al. 2005) 

MYBPLANT CACCAACC +      MYB recognition site; in promoters of phenylpropanoid-
related genes (Liu et al., 2015a) 

MYBPZM CCAACC +      MYB homolog recognition site; flavonoid biosynthesis (Liu et 
al., 2015a) 

PALBOXLPC TCTCACCA 
ACC 

+      Box L; 1/3 cis elements; necessary but not sufficient for 
elicitor- or light-mediated activation (Olsen et al., 2008) 
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Appendix A. Continued: Phenylpropanoid-Related1,2  

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

PALBOXPPC TTCTCACCAA 
CCCC 

+      Box L; one of 3 cis elements; necessary but not sufficient 
for elicitor- or light-mediated activation (Olsen et al., 2008) 

General Response 

-300ELEMENT TGMAAARK + + +  +  Endosperm-specific expression- ZEIN gene promoter 
(Thomas and Flavell, 1990) 

-300MOTIFZMZEIN ATGAGTCAT +      Enhancer element for endosperm expression (Thomas and 
Flavell, 1990) 

AACACOREOSGLUB1 AACAAAC +   +  + Motifs in rice glutenin gene promoter; minimal elements 
required for endosperm expression (Thomas and Flavell, 
1990) 

BOXIINTPATPB ATAGAA  +  + +  Box II; found in tobacco plastid atpB promoter (Reyes et 
al., 2004) 

CAATBOX1 CAAT + + + + + + CAAT promoter sequence for tissue-specific expression 
(Fauteux and Strömvik, 2009) 

CACTFTPPCA1 TACT + + + + + + MEM1 (mesophyll expression module 1) motif for 
mesophyll-specific expression (Gowik et al., 2017) 

GTGANTG10 GTGA + + + + + + Pollen specific element for pollen-specific expression 
(Rogers et al. 2001) 

HEXMOTIFTAH3H4 ACGTCA    + +  Hexamer motif found in wheat promoter of histone H3 and 
H4 genes (Mikami et al., 1987) 

INRNTPSADB TTCARTYC +  + + + + Initiator element found in tobacco psaDb gene promoter 
without a TATA box (Novina and Roy, 1996) 
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Appendix A. Continued: General Response1,2  

MOTIF ID CONSENSUS ADT TF/FUNCTION 

  1 2 3 4 5 6  

MARABOX1 AATAAATAAA   +  +  A-box found in SAR (scaffold arrangement region) (Gasser 
et al. 1989) 

MRNASTA2CRPSBD TGAGTTG   +    mRNA stability determinant  (Nickelsen, 2000) 
NAPINMOTIFBN TACACAT     +  Sequene found in 5' upstream region of napin gene; seed-

specific expression (Ericson et al., 1991) 
POLASIG1 AATAAA + + + + +  Cis-acting Poly-A signal mediating polyadenylation (Ashraf 

et al., 2014) 
POLASIG3 AATAAT + +  + +  PolyA signal in rice alpha amylase (Ashraf et al., 2014) 

PROLAMINBOXOSGLUB1 TGCAAAG +    +  Prolamin box found in rice GluB-1 gene promoter (Wu et al. 
2000) 

TATABOX2 TATAAAT    +   TATA- like sequence for transcription initiation (Yukawa et 
al. 2000) 

TATABOX4 TATATAA +  + + +  TATA- like sequence for transcription initiation (Yukawa et 
al. 2000) 

TATABOX5 TTATTT +  +  +  TATA- like sequence for transcription intiation (Yukawa et 
al. 2000) 

TATABOXOSPAL TATTTAA  +  +  + TATA binding protein binding site (Zhu et al., 2002) 
TATAPVTRNALEU TTTATATA    +   TATA- like sequence for transcription initiation (Yukawa et 

al. 2000) 
TATCCAYMOTIFOSRAMY3D TATCCAC +    +  Required for sugar-repression of RAmy3D in rice 

(Toyofuku et al., 1998) 
TRANSINITDICOTS AATATGGC + + +    Translation initiation context sequence from dicots (Novina 

and Roy, 1996) 
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1A + sign indicates the presence of that motif in that promoter. 
2Yellow=significantly enriched, green= common to at least 5 out of 6 promoters, pink= unique to one promoter 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 

 

 

 

 

1AB= abiotic stress, BS= biotic stress, D= development, SD= stress and development, L= light response, PR= phenylpropanoid-
related, GR= general response. 
2Data are the total number of genes from the co-expression analysis belonging to each category described in Section 3.1.2.  

 

 

  

Appendix B. Co-expressed Gene Totals for Each Category1,2  

ADT AB BS D SD L PR GR 

1 -- -- 2 1 1 2 3 

2 -- -- 4 2 -- -- 2 

3 -- -- 3 5 1 4 1 

4 -- 1 -- 8 -- 5 1 

5 1 -- -- 7 -- 5 2 

6 -- -- 1 3 1 3 -- 
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