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Abstract

Small, faint meteors (with masses between 10−7 and 10−4 kg) were once part of an asteroid

or comet, and collide with Earth’s atmosphere daily. Studying meteors is an effective way to

survey the physical properties of their parent bodies. Meteor light curves and orbital infor-

mation is easily obtained from wide-field observations, from which meteoroid structure can

be inferred through meteoroid ablation modelling. A high-resolution narrow-field camera can

provide much more detail about the poorly understood ablation processes and physical proper-

ties of the meteoroid. The goal of this thesis is to better understand the physical properties of

meteors using high-resolution optical observations.

In the first part of this work, wide-field and narrow-field optical observations of faint me-

teors were combined to determine what relationships, if any, exist between meteor light curve

shapes, orbits, and fragmentation behaviour. Most meteors were found to have symmetric light

curves, show fragmentation in the form of a long trail, and come from cometary bodies. More

than 90% of meteors observed with the high-resolution camera system showed some form of

fragmentation. Unexpectedly, the dynamically asteroidal meteoroids fragmented as often as

the dynamically cometary meteoroids, suggestive of dynamical mixing or contamination.

In the second part of this work, the luminous efficiency (the fraction of kinetic energy used

for visible light production) of meteors was investigated. It is crucial for determining meteoroid

mass, and past results vary by up to two orders of magnitude. An attempt at determining lumi-

nous efficiency through the classical ablation equations was made, and verified on simulated

meteor data, while quantifying the uncertainty in the method. This was then applied to fifteen

real meteor events, observed with the Canadian Automated Meteor Observatory. This is the

first study which compares photometric and dynamic meteoroid masses to determine luminous

efficiency, with modern high-resolution observations. Twelve of the meteors had luminous ef-
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ficiency values less than 1% (agreeing with the lower end results of past studies), and there

was no obvious trend with speed. A weak negative trend was observed with meteoroid mass,

implying that smaller meteoroids radiate more efficiently.

Keywords: meteors, meteoroids, optical observations, meteor fragmentation, asteroids,

comets, meteor masses
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Chapter 1

Introduction

1.1 Motivation

The goal of this thesis is to investigate the physical properties of faint meteors through optical

observations. Small objects called meteoroids travel through the Solar system and may intersect

the Earth’s orbit. The plasma surrounding the meteoroid as it ablates, or loses mass, in the

atmosphere is called a meteor. Most meteors are too small to survive ablation and reach the

ground, which means that to study them, we need to either visit the objects in space, or observe

their ablation and extract information. It is more cost efficient to study these objects from

the ground, but simultaneously more difficult to extract information from observations that

typically last less than one second, and do not produce an object that can be studied in a

lab. These small objects hold valuable information about the conditions in the early Solar

system: coming from comets and asteroids, meteoritic material is unprocessed and primitive,

and allows us to study comets and asteroids remotely. In a practical sense, understanding

meteoroids (their motion and physical properties) allows us to better protect our satellites, on

which we rely heavily for daily life: being able to predict the timing of meteor outbursts can be

used to schedule maintenance for spacecraft, and understanding how meteoroids behave upon

impact can be used to improve material shielding, for both satellites/spacecraft, and astronauts.

1



2 Chapter 1. Introduction

Table 1.1: A few major meteor showers, taken from the IMO Meteor Shower Calendar 2017.
All parent bodies are comets except for Phaethon, which is an asteroid.

Meteor Shower Active Peak Parent Body Speed (km/s)

Quadrantids Dec 28 - Jan 12 Jan 3 96P/Machholz 41

Perseids Jul 17 - Aug 24 Aug 12 109P/Swift-Tuttle 59

Orionids Oct 2 - Nov 7 Oct 21 1P/Halley 66

Leonids Nov 6 - 30 Nov 17 55P/Tempel-Tuttle 71

Geminids Dec 4 - 17 Dec 14 3200 Phaethon 35

1.2 Meteor Physics

Meteoroids hit the Earth’s atmosphere with speeds between 11 and 72 km/s, with the limits cor-

responding to the object either hitting the Earth head-on at maximum bound speed, or ‘catching

up’ to the Earth in a similar orbit. Once in the atmosphere, meteoroids begin to ablate as they

encounter more atmospheric particles. As the meteoroid moves through the atmosphere, in-

elastic collisions between atmospheric molecules and vaporised meteoroid molecules cause

the particles to become ionised and/or excited. Visible radiation is emitted by these meteoritic

and atmospheric particles, and results in a meteor. Faint meteors are produced by meteoroids

that are typically less than a millimetre in size, have peak magnitudes fainter than +2, and

will completely ablate in the atmosphere, often in less than one second. The position in the

sky where a meteor appears to originate from is called the radiant, and meteors belonging to

a shower will all have the same radiant. Table 1.1 lists a few strong meteor showers. Meteor

showers are observed when the Earth’s orbit intersects a meteoroid stream, which is a group

of meteoroid particles orbiting the Sun in orbits similar to their parent body (the object in

space from which they detached). Meteor showers are named for the constellation in which the

radiant lies.

Meteors not associated with any particular meteor shower are called sporadic meteors, and
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may originate from any part of the sky, but tend to be part of broad radiant groups. Sporadic

meteors are far more numerous than shower meteors (Campbell-Brown, 2007), and were once

part of meteoroid streams, but their orbits have dispersed enough since the initial separation

from their parent body that they cannot be associated with any particular stream. Often the

Tisserand parameter is used to determine whether a meteoroid came from an asteroid, a long

period comet, or a short period comet; the Tisserand parameter is based on the orbital param-

eters of that meteor. The three principal orbital parameters of an object are the semi-major

axis, which is the average of the minimum and maximum heliocentric distances; the inclina-

tion, which describes how inclined the orbit is relative to the ecliptic plane1 (can range from 0

to 180◦); and the eccentricity, which describes how elliptical the orbit is (an eccentricity of 0

describes a circle, between 0 and 1 describes an ellipse, and a value greater than 1 describes a

hyperbolic orbit). The line formed by the intersection of the orbital plane and the ecliptic plane

is called the line of nodes, and there are two locations where the meteoroid orbit passes through

the ecliptic plane. These are called the ascending and descending nodes. Three other orbital

elements are required to uniquely determine the location of an object in its orbit. The longitude

of the ascending node is the angle from a fixed direction in the ecliptic plane to the direction

of the ascending node; the argument of perihelion is the angle between the ascending node and

perihelion (the point in the meteoroid orbit that is closest to the Sun)2 and the true anomaly

describes the angle between the meteoroid’s perihelion and instantaneous location. Some of

these orbital elements and parameters are illustrated in Figure 1.1. The Tisserand parameter

relative to Jupiter (e.g. de Pater & Lissauer, 2010) is defined as:

TJ =
aJ

a
+ 2

[
(1 − e2)

a
aJ

]1/2

cos(i) (1.1)

where a parameter without a subscript is the heliocentric orbital element of the object, and a

subscript of J means belonging to Jupiter. The Tisserand parameter assumes that the Sun and

1The ecliptic plane is the plane in which Earth orbits the Sun.
2A value of 0 for the argument of perihelion means the meteoroid will be closest to the Sun at the same time

it crosses the ecliptic plane.
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inclination

i

meteoroid orbit

Ecliptic plane

perihelion

instantaneous

position

f

ω

Ω

reference

direction

semi-major axis

a

perihelion

distance

qper

aphelion 

distance

qaph

meteoroid orbit

Figure 1.1: The orbital elements for a meteoroid. The figure on the left is a top down view
showing the semi-major axis. The aphelion distance and perihelion distance are labelled, and
are the distances farthest away and closest to the Sun respectively. The figure on the right
shows the inclination i, the longitude of the ascending node Ω, the argument of perihelion ω,
and the true anomaly f . The ecliptic plane is in grey, and the meteoroid orbit is white.

Jupiter are on circular orbits; that the meteoroid is only affected by perturbations by Jupiter;

and that the mass of the meteoroid is negligible relative to Jupiter. The Tisserand parameter

remains constant despite perturbations from Jupiter, and allows the meteoroid to be associated

with a class of Solar system bodies. Values greater than 3 describe objects with asteroidal

origins; 2 < TJ ≤ 3 describe objects originally from Jupiter family comets; and values less

than or equal to 2 describe Halley-type orbits. The Tisserand parameter of an object can be

altered through encounters with other planets and radiation forces, however it is a useful proxy

for meteoroid origin. Knowing the meteoroid parent body, or even the class of parent body

can help with inferring meteoroid properties, since the location in the Solar system where the

object formed will define the structure of the body.

1.2.1 Parent Bodies

Meteoroids are released from comets and asteroids, either through outgassing, collisions, rota-

tional bursting after spin-up from YORP3, or thermal disruption. When the meteoroid’s orbit

brings it into Earth’s atmosphere, we can study it as it ablates and learn about the object it

originally came from.

3The YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect can change the rotation state of a small Solar
system body through thermal torques (reflection and re-emission of solar radiation).
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Comets and asteroids are primitive bodies and the material of which they are composed

can be thought of as a snapshot of the conditions of the early Solar system. Comets are formed

in the outer regions of the Solar system (in the Oort Cloud and Kuiper Belt), and make their

way towards the inner Solar system on elliptical orbits. The icy comet model proposed by

Whipple (1950, 1951) suggests that comets are clusters of icy material, volatile molecules,

and meteoritic material, and are fragile and porous. Asteroids are rocky objects that are mainly

found in orbit between Mars and Jupiter. These primitive pieces of rock were unable to coalesce

into larger objects due to the gravitational pull of Jupiter.

The first material to be collected in situ and studied on Earth from a known object (not

including the Moon) came from comet 81P/Wild 2 during the Stardust mission (Brownlee et al.,

2006). Material was captured onto low-density aerogel at a relative speed of 6.1 km/s, and the

different types of cometary material showed different behaviour upon impact with the gel.

Non-fragmenting particles showed long carrot shaped streaks in the gel, while particles that

fragmented showed bulbs with many roots (Brownlee et al., 2006). A major finding from the

Stardust mission was evidence for the movement of material from the inner to the outer regions

of the Solar system during the formation of comet 81P/Wild 2. The collected material contained

minerals that require high temperatures to form; this is suggestive of radial mixing in the early

Solar system (Brownlee et al., 2006). The Rosetta mission visited comet 67P/Churyumov-

Gerasimenko and released a robotic lander (Philae) onto the surface in 2014 – this was the

first soft landing of a spacecraft on a comet nucleus. The Grain Impact Analyzer and Dust

Accumulator (GIADA) instrument on Rosetta collected millimetre-sized particles that were

found to be either compact processed particles with bulk densities between 800 and 3000 kg/m3

(Rotundi et al., 2015), or fluffy aggregates of submicron grains with bulk densities less than 1

kg/m3 (Fulle et al., 2015). The particles analysed by GIADA were collected at very low speeds

(typically a few metres per second), and some particles (with sizes up to 225 µm) were used

for chemical analysis by the COmetary Secondary Ion Mass Analyser (COSIMA) instrument

(Hilchenbach et al., 2016). The non-fragmenting particles captured during the Stardust mission
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may be similar to the compact particles collected with GIADA, while the fragmenting particles

that left bulbous tracks may be the same as the low density fluffy particles. These results are

indicative of comets being composed of material of differing strengths. However, the particles

analysed by Rosetta were recently ejected, and their properties may change over time as they

are subjected to processes such as collisions, or sublimation because of solar radiation.

Asteroidal material has also been collected from space and returned to Earth with the

Hyabusa mission in 2010. The returned particles had diameters between 3 and 10 µm, and

results indicated that the most commonly found type of meteorite (ordinary chondrites), come

from silicaceous type asteroids (Nakamura et al., 2011). Chondrites contain both chondrules

and calcium-aluminium inclusions (CAIs), which contain refractory minerals, which would

have formed in high-temperature environments, embedded in a fine grained matrix. At least

one particle from the Stardust mission was mineralogically and isotopically linked to CAIs,

and is taken as evidence for the movement of material from the inner to the outer Solar system

(Brownlee et al., 2006).

In 1958 Ceplecha defined the Kb parameter, given in Equation 1.2:

Kb = log ρb + 2.5 log v∞ − 0.5 log cos(zR) (1.2)

where ρb is the atmospheric density at the beginning of the luminous path; v∞ is the pre-

atmospheric velocity; and zR is the zenithal angle of the radiant. This parameter attempts to

classify meteoroids by their strength, or composition, and is often used to determine meteoroid

densities.

The Kb parameter classifies meteors into five main groups: A, B, C, D, and asteroidal,

and each group is associated with a different type of material. The Kb parameter assumes that

meteoroids begin to be luminous at the same surface temperature, meaning the meteoroid begin

height is strongly related to the meteoroid composition4. The groups refer to meteoroids in the

4A meteoroid composed of pure iron will require more energy (and thus will travel deeper into the atmosphere)
to become luminous relative to a meteoroid composed of a more volatile material.
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Table 1.2: Classification of meteors by their Kb parameter. The bulk density values are from
Ceplecha (1988). Group C can be further divided into three groups depending on orbital pa-
rameters.

Group Kb Bulk density (kg/m3)

Asteroidal > 8 3700

A 7.3 - 8 2000

B 7.1 - 7.3 1000

C 6.6 - 7.1 750

D < 6.6 270

millimetre to centimetre size range, with their values given in Table 1.2.

The Kb parameter depends on the meteoroid begin height, and is thus sensitive to the sen-

sitivity of the camera used for observations. This means that an offset may need to be applied

to Kb parameters depending on the system sensitivity. Researchers have attempted to relate the

meteoroid density with the Kb parameter, and there is disagreement between results regarding

which densities belong in each group (Kikwaya et al., 2011; Bellot Rubio et al., 2002; Ceplecha

et al., 1998).

1.2.2 Meteor light curves

Meteors emit visible radiation which is due to excited meteoritic and atmospheric molecules

and atoms. The observed brightness I (in units of radiant power, watts) can be converted to an

apparent photometric magnitude mph, with Equation 1.3, where C is a calibration constant.

mph = −2.5log10I + C (1.3)

Because magnitudes are defined through a negative logarithmic scale, brighter objects have

smaller or more negative magnitudes, and fainter objects have larger positive magnitudes. The

apparent meteor magnitude, which depends on the location of the observer, is often not used.

Instead, the meteor absolute magnitude is used; it is the magnitude the meteor would have if
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placed at a height of 100 km at the zenith. Mathematically, this conversion can be determined

through Equation 1.4, and takes into account the distance R, of the meteor to the instrument.

Mabs = mph + 5log10
(100 km)

R
(1.4)

The observed meteor brightness as a function of time or height is called the light curve. Meteor

light curves show a variety of profiles. The relative position of the maximum brightness to the

length of the entire light curve can be described by the F parameter, given in Equation 1.5,

F =
hbeg − hmax

hbeg − hend
(1.5)

where hbeg and hend refer to the beginning and ending heights of the observed meteoroid ab-

lation, and hmax is the height at which maximum brightness is observed. The F parameter is

a normalized value, where a value of 0.5 describes a symmetric light curve; values greater

than 0.5 describe a late peaked light curve; and values less than 0.5 describe early peaked light

curves. Jacchia (1955) noted that faint meteors, recorded by the Baker Super-Schmidt cam-

eras at Harvard University in the early 1950s, showed light curve shapes that differed from

those predicted by classical meteoroid ablation theory. Classical meteoroid theory suggests

that solid, single-bodied objects that do not fragment will produce light curves with late peaks.

Studies of both sporadic and shower meteors found that faint meteors typically have symmetric

light curves, and that even within a meteor shower, meteors have a variety of F parameter val-

ues (Murray et al., 1999; Koten & Borovička, 2001). Fleming et al. (1993) studied 34 double

station meteors and analysed the light curves by determining points up to 3 magnitudes fainter

than the maximum and finding the F parameter. For magnitude differences of 1.0 and 2.0, the

average F parameter was 0.51. Early, symmetric, and late-peaked are not the only possible

meteor light curve shapes – Vaubaillon et al. (2015) reported unexpectedly flat light curves for

around 80 Draconids (and those that did show an obvious peak, had an average F parameter

of 0.5). Examples of these studied light curve shapes are illustrated in Figure 1.2. The shape
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Figure 1.2: Illustrations of different types of observed light curve shapes. In each plot, the
height is increasing to the left.

of the light curve is often used to infer whether the meteoroid fragmented (and when) during

its ablation. Classical light curves are produced by objects that ablate as self-similar bodies

and do not fragment. The late peak is due to the competition between the atmospheric density

increase and the cross-sectional area decrease with height (more details are found in Section

1.2.3). However, if a meteoroid fragments, its cross-sectional area will increase, causing the

meteoroid rate of ablation to increase, which in turn causes the meteor brightness to increase.

This leads to an early peaked light curve if the fragmentation occurs early in the ablation pro-

cess.

1.2.3 Classical Model

Modelling a meteor observation can be an effective method for determining physical properties

of that particular event. The simplest ablation model assumes that the object does not fragment.

While this is not an accurate assumption for the majority of meteoroids, it is an appropriate first

step in modelling these complicated objects. The classical meteoroid ablation model is derived

for an object that is solid and non-fragmenting, and is based on conservation of momentum and

energy. There are four equations that form the basis of the classical model, which are derived

below (Bronshten, 1983).

If we assume the meteoroid is a solid spherical body with cross-sectional area S , moving

with a velocity v, in an atmosphere with a mass density of ρatm, within a time dt, the meteoroid

will carve out a volume V equivalent to V = S v dt, illustrated in Figure 1.3. The mass of the
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S = �r
2

v

ρatm

l = vdt

Figure 1.3: Illustration of a meteoroid (with radius r and cross-sectional area S ) interacting
with atmospheric particles. l is the distance travelled in time step dt.

atmospheric particles encountered in that volume is simply:

matm = ρatmV

= ρatmS v dt .
(1.6)

The atmospheric particles are approximately stationary compared to the meteoroid5. We

now switch the reference frame such that the meteoroid is stationary and the initial velocity

of the atmospheric particles can be given as vatm,i = −v. Momentum is conserved and there

are two end cases for the final velocity of an atmospheric particle following a collision with

a meteoroid: either the collision is totally elastic, and vatm, f = +v, or the collision is totally

inelastic, and vatm, f = 0. The elasticity of the collision is given by the drag coefficient, Γ, which

has a range between 0 and 2, where a value of 2 represents a totally elastic collision, and a

value of 1 represents a totally inelastic collision6. The final velocity of the atmospheric particle

5The atmospheric particles have speeds <1 km/s, compared to meteor speeds which range from 11 - 72 km/s.
6A value less than 1 represents the situation in which atmospheric particles deflect off the side of the meteoroid

without transferring momentum.
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can thus be given as vatm, f = (Γ − 1)v. We can now consider conservation of momentum:

∆pm = −∆patm

= −(matm(Γ − 1)v − matm(−v))

= −Γmatmv

= −ρatmS v∆tΓv

= −ρatmS v2Γ∆t

(1.7)

The force on the meteoroid is

F =
∆pm

∆t
(1.8)

from which the deceleration can be found7.

dv
dt

=
F
m

= −
ρatmS v2Γ

m
(1.9)

Conservation of energy may be considered for determining the mass loss equation for me-

teoroid ablation, which is derived here in the frame of reference where the meteoroid is at rest

and the atmospheric particles have vatm,i = −v. The energy imparted to the meteoroid by the

atmospheric particles is given by:

∆Em = −∆Eatm

= −

(
1
2

matmv2
atm, f −

1
2

matmv2
atm,i

)
= −

(
1
2

matm ((Γ − 1)v)2
−

1
2

matm(−v)2
)

=
1
2

matmv2(Γ(2 − Γ))

=
1
2
ρatmS v3Γ(2 − Γ)∆t.

(1.10)

7There is a v dm
dt term in the expansion of Equation 1.8 when looking at the force on the meteoroid, however

we are only interested in the deceleration of the meteoroid. The lost mass is moving at the same speed as the
meteoroid, and does not cause a change in the meteoroid velocity.
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The power is then P = ∆Em/∆t = 1
2ρatmS v3Γ(2 − Γ). This is the energy used for increas-

ing the temperature of the meteoroid and ablating (evaporating or sublimating) the meteoritic

material in time dt. Some fraction ψ of this incoming energy ablates the meteoroid. The en-

ergy needed to ablate the meteoroid mass in time dt is given by L dm
dt , where L is the heat of

ablation (energy needed to ablate a unit of mass), which includes the heat of fusion and heat of

vaporisation. The meteoroid mass loss can be described with:

dm
dt

= −
ψ

L
dE
dt

= −
ψρatmS v3Γ(2 − Γ)

2L

= −
ΛρatmS v3

2L

(1.11)

where the heat transfer coefficient Λ has been introduced to simplify the expression. Equation

1.11 shows that the rate of ablation is proportional to the cross-sectional area of the meteoroid

and the atmospheric density. The interaction between the two variables is the reason late peaked

light curves occur in the classical model: the atmospheric density increases more quickly than

the cross-sectional area decreases when the meteoroid begins ablating (causing a slow increase

in brightness), but as the meteoroid mass approaches zero, the cross-sectional area decreases

much more quickly, causing the drop at the end of the light curve. If a meteoroid fragments,

its cross-sectional area will increase much faster, increasing the rate of ablation (mass loss),

and thus the brightness. This can cause an early peak, or a flare, depending on when the

fragmentation occurs.

The meteoroid brightness is related to the mass loss of the object. As the meteoroid ablates,

it loses energy and some fraction of that energy is used to produce light. The proportionality

constant between the light produced and the rate of kinetic energy lost is called the luminous

efficiency, denoted τ; it is poorly understood (e.g. Verniani, 1965; Ceplecha et al., 1998; Weryk
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& Brown, 2013). The meteoroid intensity (the radiated luminous power) can be described by

I = −τ
dEk

dt

= −τ
d
dt

(
mv2

2

)
= −τ

(
v2

2
dm
dt

+ mv
dv
dt

)
.

(1.12)

The right side of the equation is negative because both the mass loss and deceleration terms are

negative. Often, the deceleration term (the second term) is discarded and a simplified version

(given below) is used for meteoroid ablation modelling:

I = −
τv2

2
dm
dt
. (1.13)

The deceleration term is equal in importance to the mass loss term for low speed meteors

(around 7 km/s)8, but decreases rapidly in importance as speed increases.

The temperature equation can also be derived using conservation of energy. There are three

effects to consider: the energy gained from the atmosphere; the energy used for ablation; and

the energy emitted as blackbody radiation. The energy gained from the atmosphere in time dt

is given by:

dEk

dt
=

ΛρatmS v3

2
. (1.14)

The energy used for ablation is L dm
dt . The energy emitted by the meteoroid as radiation is given

by

dER

dt
= 4σε(T 4

m − T 4
a )S (1.15)

where σ is the Stefan-Boltzmann constant; ε is the emissivity of the meteoroid; Tm is the

8Meteoroids will not enter Earth’s atmosphere with speeds less than 11 km/s, but will slow down as they
encounter more atmospheric particles, allowing for these low speeds.
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meteoroid temperature; and Ta is the atmospheric temperature.

The change in meteoroid temperature can be calculated as the change in energy with dTm =

dE
cm , where c is the specific heat of the meteoroid, and m is the meteoroid mass affected by the

heating. Combining the heating and cooling effects gives the temperature equation.

dT
dt

=
1

cm

(
ΛρatmS v3

2
− 4σε(T 4

m − T 4
a )S − L

dm
dt

)
(1.16)

Ablation models either use the temperature equation for ablation until the boiling temper-

ature is reached, at which point the mass loss equation is used, or the temperature equation is

used simultaneously with the mass loss equation.

These four equations (given in Equations 1.17 to 1.20) describing meteoroid deceleration,

mass loss, intensity, and temperature, are the basis of many meteoroid ablation models and

together describe what is called a classical meteor.

dv
dt

= −
ρatmS v2∆tΓ

m
(1.17)

dm
dt

= −
ΛρatmS v3

2L
(1.18)

.

I = −τ

(
v2

2
dm
dt

+ mv
dv
dt

)
(1.19)

dT
dt

=
1

cm

(
ΛρatmS v3

2
− 4σε(T 4

m − T 4
a )S − L

dm
dt

)
(1.20)

The variables in these equations do not always describe equivalent properties of a mete-

oroid. In Equation 1.17, the m variable defines the dynamic mass, which (if a meteoroid is

fragmenting) is the largest and brightest piece of the meteoroid. In Equation 1.19, the m vari-

able refers to the photometric mass, which is based on the light produced by all pieces of the

meteoroid that are radiating light. In the classical model, the meteoroid does not fragment, and

in that case, the photometric and dynamic masses are equivalent. However, most meteoroids
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fragment so researchers must be careful in equating the two. A meteoroid following these

equations will show a late peaked light curve (sometimes referred to as a classical light curve),

but as discussed in Section 1.2.2, this is often not what is observed.

1.2.4 Fragmentation

Early studies assumed that meteoroids did not fragment and that they ablated as self similar

objects, but as observational systems improved, it became clear that fragmentation is a com-

monly occurring process. Meteoroids can fragment in two ways, either by gross fragmentation,

in which significant pieces break off during the meteoroid ablation, or continuous fragmenta-

tion, in which meteoritic particles are smoothly sloughed off the main body, as shown in Figure

1.4. The classical ablation model gained support from observations of bright meteors prior to

the 1950s (McKinley, 1961); objects seemed to ablate as solid, non-fragmenting bodies. Frag-

mentation was suggested following a study of faint meteors by Jacchia (1955) (although he

notes that he is not the first to suggest it), which found many anomalies between the observa-

tions and the theoretical classical predictions. Jacchia noted that the faint meteors recorded by

the Harvard Super Schmidt cameras ablated more quickly than theory predicted; the deceler-

ations occurred much faster than expected; and the meteors showed non-classical, symmetric

light curves. He proposed that meteoroids undergo progressive fragmentation, in line with the

icy-comet model put forth by Whipple (1950, 1951). Jacchia (1955) suggested that meteoroids

are porous objects which are quite fragile, and that fragmentation is not a rare occurrence.

1.2.5 Ablation models

The dustball structure proposed by Jacchia (1955) was explained quantitatively by Hawkes &

Jones (1975) in their dustball model. The model assumes that meteoroids are conglomerates of

grains held together by a ‘glue’. The glue is a volatile matrix with a lower boiling temperature

than the grains. Once the boiling temperature is reached, the glue vaporises, the grains are

released, and each grain ablates according to the classical model. No luminosity is attributed
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height

continuous fragmentation gross fragmentation single body ablation

Figure 1.4: Illustration of different types of meteoroid fragmentation. The first example is of
continuous fragmentation, where fragments smaller than the meteoroid are constantly removed,
and contribute to the observed meteor light. The second example is of gross fragmentation,
where the meteoroid fragments a number of times into pieces large enough that they can be
distinguished with high-resolution systems. The third example is of single-body ablation, in
which the meteoroid does not fragment at all.
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to the heating and vaporisation of the glue. Hawkes & Jones (1975) found that their model was

successful in reproducing the shorter light curves seen by Jacchia (1955), as well as the shape

of the observed light curves.

A modified version of the dustball model was implemented by Campbell-Brown & Koschny

(2004) that included a thermal disruption component. In this, the grains are released when the

meteoroid surface reaches a specified temperature; typically, all fragments are released early

on. Rather than using the classical mass loss equation (Equation 1.18), Campbell-Brown &

Koschny (2004) use the Knudsen-Langmuir formula with the Clausius-Clapeyron equation.

The Knudsen-Langmuir formula determines the mass loss due to evaporation and the Clausius-

Clapeyron equation gives the saturation vapour pressure. These are used because meteoroid

mass loss begins prior to the surface reaching the boiling temperature. Another modification to

the original dustball model is that the grains have a mass distribution, rather than a single value.

Changing the type of distribution gives different shaped light curves. The Campbell-Brown &

Koschny (2004) model was successfully tested on three Leonid meteors.

A thermal erosion dustball model was introduced by Borovička et al. (2007), in which

grains are continuously detaching from the main body. This model uses the classical ablation

equations; however, the mass loss equation has an additional term for the mass lost due to ero-

sion. The grains in the eroded mass ablate classically. Seven Draconid meteors were modelled

with this implementation of the dustball model.

Campbell-Brown et al. (2013) applied these two variations of the dustball model on ten

meteors observed with the Canadian Automated Meteor Observatory. The thermal erosion

model was more successful at reproducing the observed meteor light curves and deceleration

curves than the thermal disruption model. However neither model was particularly successful

at reproducing the observed brightness in the high-resolution system. This work showed two

models reproducing wide-field observations using different fragmentation processes, but nei-

ther truly describing the mass loss processes occurring. Additionally, changing the size and

mass distribution of grains, as well as the timing of the meteoroid fragmentation can create a
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variety of meteor light curve shapes. As there are many parameters that can be adjusted in any

given ablation model, an increase in the number and type of observations will only improve our

understanding of meteoroid ablation processes and meteoroid physical properties by providing

new constraints for ablation parameters.

1.3 Luminous efficiency

The luminous efficiency factor, given in Equation 1.19, is the fraction of meteoroid kinetic en-

ergy used for visible light production. If this value is well known the meteoroid mass may be

computed. Many authors have utilised various methods for determining luminous efficiency,

and the results do not agree well with one another. The lack of understanding of the luminous

efficiency is the main limitation to extracting meteoroid masses from optical observations. The

difficulty in determining the meteoroid luminous efficiency is that it may depend on many fac-

tors: the spectral range of the camera; the meteoroid speed and composition; the atmospheric

composition; and possibly the meteoroid mass. The meteoroid composition and speed will

determine which spectral lines will be emitted, and the spectral response of the camera will

determine which lines will be seen (which will determine the intensity of observed light). The

poor grasp on meteoroid masses is a large problem even for those strictly outside the field of

meteor physics – those who design and build spacecraft need an accurate idea of the dangers

their products will face. Anyone who depends on a satellite for day to day activities (internet,

cell phone, GPS, precision timers, weather trackers, etc) can be seriously inconvenienced if a

satellite is damaged due to a meteoroid impact, and though rare, this has happened in the past

(Caswell et al., 1995).

Early studies regarding luminous efficiency tended towards theoretical calculations involv-

ing atomic collisions and their subsequent radiation. A great deal of work was put forth by Öpik

(1933, 1955); however, the results have been called into question and are almost exclusively

listed in papers for historical completion. Verniani (1965) states that the number of assump-
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tions made by Opik make determining the uncertainty in his results impossible, and Thomas &

Whipple (1951) dismiss the work due to a number of theoretical errors.

The Harvard Photographic Meteor Project began in 1936 (Jacchia & Whipple, 1956) and

produced some of the highest quality meteor observations of the twentieth century. A pair of

large cameras (Baker-Super-Schmidt cameras, which were used in the 1950s) photographed

3500 double station meteors over a period of two years. A set of 413 meteors recorded through

this program were selected (those with the longest and brightest trails to ensure the highest

quality speed and deceleration results) and reduced by Jacchia & Whipple (1961). From this

data set, Verniani (1965) determined the luminous efficiency using the drag equation (1.17) and

the luminous intensity equation (1.19). He disregarded the second term in the luminous inten-

sity equation (as many authors have done), claiming that there is no light contribution from the

deceleration of the meteoroid (other authors state that the deceleration term is negligible com-

pared to the mass loss term). By equating the dynamic and photometric masses, Verniani was

able to determine the luminous efficiency. This equality explicitly assumes that the meteoroid

does not fragment, and ablates as a single body. Because most of the meteors observed with

the Super-Schmidt cameras show fragmentation, Verniani takes this into account and corrects

his results.

Assuming that the luminous efficiency is proportional to a constant τ0 multiplied by the

meteoroid speed to some exponent, n, as shown in Equation 1.21, Verniani (1965) found that for

one non-fragmenting meteor, assumed to be asteroidal in origin, in the photographic bandpass,

log10 τ0 = −4.37 ± 0.08 for n = 1.

τ = τ0vn (1.21)

The non-fragmenting event was studied by Cook et al. (1963), who suggested the asteroidal

origin, and of the six position measurements taken, Verniani (1965) used four to determine his

results. The Verniani (1965) results form the basis of many meteor studies today (e.g. Ceplecha

& McCrosky, 1976), despite numerous criticisms (e.g Ceplecha, 1966).
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Rather than using observations (from which many parameters need to be assumed due to

lack of knowledge), some researchers proposed recreating meteoroid ablation in a laboratory.

Small conducting particles are charged and accelerated, and detectors measure the speed, mass,

radius, and charge. Particles with undesirable parameters are discarded, and the remaining par-

ticles enter a differential pumping system which leads to a gas filled chamber held at some

pressure, depending on the experiment, in which the particles ablate. Many experiments were

completed in the sixties and seventies (Slattery & Friichtenicht, 1967; Friichtenicht et al., 1968;

Becker & Friichtenicht, 1971) using submicron-sized particles that ablated in gaseous targets.

The particles were able to reach speeds of up to 50 km/s (Becker & Friichtenicht, 1971). A

main difficulty with reproducing meteoroid ablation in a lab is being able to accurately re-

produce atmospheric compositions and conditions – faint meteors ablate under free-molecular

flow conditions, in which the molecular mean free path is much larger than the dimensions of

the body. Another limitation that older studies encountered was the inability to reach meteor

speeds greater than 50 km/s; however, modern studies are able to cover speeds between 1 -

100 km/s (Thomas et al., 2016). These experiments provide a method for studying meteors

without having to wait for them to occur naturally, and with the prior knowledge of their mass,

composition, and speed. However, these submicron-sized particles typically consisted of a

single element (copper, iron, magnesium, silicon, aluminium), ablating in gases that were not

necessarily accurate representations of the true atmosphere. Another similar method of study-

ing the luminous efficiency, that eliminates the uncertainty of atmospheric conditions, is to use

artificial meteoroids. Objects of known mass and composition are launched on rockets into the

atmosphere where they are fired back at Earth and observed as they ablate. Ayers et al. (1970)

studied iron and nickel projectiles, materials which were chosen due to their presence in many

meteor spectra. The artificial meteoroids were shaped as either cones or disks, with masses be-

tween 0.64 and 5.66 g. The observed brightness and speeds, combined with the known masses,

allowed the authors to determine the luminous efficiency of each object using Equation 1.13.

Combining their results with those of Friichtenicht et al. (1968), and another artificial iron
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meteoroid study by McCrosky & Soberman (1963), Ayers et al. (1970) produced a best guess

curve for iron meteors, which they extended to meteoroids with stony compositions, assuming

most of the light from the latter comes from iron lines. A modified result from Ayers et al.

(1970) was used by Ceplecha & McCrosky (1976) to study fireballs.

A comparison of simultaneous radar and optical observations of meteors has been used

to determine the luminous efficiency by both Saidov & Simek (1989) and Weryk & Brown

(2013). By combining the ionisation equation (discussed below) with the simplified luminous

intensity equation, it is possible to determine the luminous efficiency with parameters that

are measurable from simultaneous radar/optical observations. The only term that needs to be

assumed is the ionisation coefficient. The advantage to using this method is that all atoms

produce detectable electrons; not all atoms produce visible light in the bandpass of a given

detector.

As a meteoroid ablates in the atmosphere, the collisions between atmospheric atoms and

vaporised meteoritic atoms leave a trail of ionised atoms in its wake. Radio waves can reflect

off this trail of ionisation, providing information about the meteoroid. Meteor theory proposes

that the amount of ionisation produced, q, is proportional to the rate of mass loss, as given in

Equation 1.22

q = −
β

µv
dm
dt

(1.22)

where q is the electron line density (that is, the ionisation produced per metre along the tra-

jectory), β is the ionisation coefficient, representing the average number of electrons produced

during a collision, µ is the atomic mass of a meteoritic atom, and v is the meteor speed.

Combining Equation 1.22 and the simplified version of Equation 1.19 allows the luminous

efficiency to be determined from simultaneous radar and optical observations, given an esti-

mate for β. This is the approach taken by both Saidov & Simek (1989) and Weryk & Brown

(2013). The study by Saidov & Simek used simultaneous radar, visual, and telescopic obser-

vations taken in 1972 and 1973 by Znojil et al. (1985) to determine the luminous efficiency.

A similar approach was taken by Weryk & Brown (2013) using the Canadian Meteor Orbit



22 Chapter 1. Introduction

Radar (and several optical systems including the Canadian Automated Meteor Observatory).

A simple ratio of the ionisation and luminous efficiencies can be determined based on mea-

surable quantities (shown in Equation 1.23). Jones (1997) used a combination of theory and

observations to determine an expression for β, which was used by Weryk & Brown (2013) to

determine the luminous efficiency.
β

τ
=
µv3q
2I

(1.23)

Figure 1.5 shows some of the luminous efficiency studies mentioned above. However, it is

important to note that each study is unique and it is difficult to directly compare the results

for luminous efficiency. Each study is specific to a certain bandpass (since luminous efficiency

depends on the spectral range of the system used to observe the meteors); some studies require

non-fragmenting meteoroids, such as Verniani (1965), but technology at the time made it diffi-

cult to ensure that was the case and corrections needed to be made (which were not necessarily

correct); some studies used meteoroids that may have fragmented, which did not affect their

results (e.g. artificial meteoroid studies used the known mass, or simultaneous radar/optical

studies); in-lab studies were completed for specific individual elemental particles, and meteor

spectra show a range of elements.

1.4 Meteor observations

1.4.1 Visual

Visual observation of meteors is the oldest method for studying meteors, but is useful only

for certain particular measurements due to the lack of accuracy. Visual observations can be

done without any equipment, and experienced observers can record approximate meteor radi-

ants, magnitudes, and duration. While visual observations are uncommon today in scientific

studies, visual activity curves for meteor showers are sometimes used due to the large num-

ber of consistent observations over a range of longitudes, and visual observations are valuable
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Figure 1.5: Past studies of luminous efficiency as a function of speed.

when meteor networks fail to capture meteor events. Moser (2017) found that visual meteor

observations are reliable when at least 75 eyewitness curves are reported.

1.4.2 Photographic

Photographic meteor observations have been used since 1885 (Ceplecha et al., 1998), and be-

cause photographic plates typically have very high resolution (slightly better than typical video

systems today), meteoroid orbits, structure, and physical properties have been studied in the

past using this technique. Rotating shutters allowed Whipple (1938) to study meteor speeds,

decelerations, radiants, heights, and velocities. A major study conducted at the Ondr̆ejov Ob-

servatory in Czechoslovakia in the 1950s was the first to photograph a recovered fireball, and

was the motivation for other photographic fireball networks (Ceplecha et al., 1998). Super-

Schmidt cameras were used in the early 1950s at Harvard, and detailed studies of 413 very

precisely recorded meteors were completed (Jacchia & Whipple, 1961; Ceplecha, 1967). The

Harvard Super-Schmidt cameras were able to observe down to +3 magnitude, and showed
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many anomalies relative to brighter meteors, such as shorter ablation durations; meteors that

decelerate faster than theory predicts; and light curves that increase suddenly at the onset of

visible ablation. These observations led to the proposal of progressive fragmentation (Jac-

chia, 1955), which describes meteoroids as porous and fragile objects. Further evidence for

fragmentation led to the dustball model, put forth by (Hawkes & Jones, 1975).

1.4.3 Video

Video observations have greater timing resolution compared to photographic observations, and

the addition of image intensifiers to video systems allows much fainter objects to be observed.

Multi-camera image-intensified video systems are commonly used today, and are able to collect

meteor light curves, orbits, and fluxes – useful information for determining meteoroid struc-

ture, physical properties, and when considering shielding for satellites and spacecraft. Personal

video cameras have been found to be quite useful, specifically in the study of the Chelyabinsk

fireball – personal videos such as dashcams and security cameras were used to determine the

orbit and trajectory of this large daytime bolide (Borovička et al., 2013). Orbits can be deter-

mined from two-station video camera systems, as described in Figure 1.6: the observed meteor

start and end positions combined with the camera position define a plane, for each camera

station. The line of intersection for the two planes is the trajectory of the meteoroid, and can

be used to determine the orbit of the object. Currently typical multi-station video systems can

detect meteors down to +6.5M (Weryk et al., 2013), however with modifications some systems

can get down to +9M.

1.4.4 Spectral

Meteors emit light mostly in atomic emission lines (with a small portion coming from molec-

ular bands and continuum radiation, and no more than 3% coming from atmospheric con-

stituents) and by studying meteor spectroscopy, one can determine some elemental components

of a meteoroid. Commonly identified species include iron, magnesium, sodium, calcium, and
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Figure 1.6: Two-station observations of meteors can be used to determine the trajectory of
the object. Two observations from each station create two intersecting planes, with the line of
intersection defining the meteoroid trajectory. The subscript S refers to the initial observation
and E refers to the final observation.

silicon (Bronshten, 1983). An example of a meteor spectrum is shown in Figure 1.7. The

classical ablation model assumes that the meteoroid ablates uniformly as a self similar object;

however, meteor spectra have shown that differential ablation occurs frequently (e.g. Borovika,

2005; Bloxam & Campbell-Brown, 2017), and that more volatile atoms (e.g. sodium) ablate

earlier than the more refractory ones (e.g. calcium)9. Meteor spectroscopy studies can model

line emissions to determine the ratio of one element to another, but is difficult to do as ioni-

sation and excitation conditions need to be known, and for simplicity, thermal equilibrium is

assumed10.

1.5 Thesis Goals

The primary goal of this thesis is to use high-resolution optical observations to determine (or

better constrain) physical properties of faint meteors. A better understanding of meteoroid

9Differential ablation can cause non-classical light curve shapes without fragmentation, if the meteoroid is not
homogeneous. The volatile components will ablate quickly, while the more refractory components will ablate at
a slower rate.

10Thermal equilibrium is unlikely since at meteor heights the atmospheric temperature is much less than that
of the meteoritic material. The atmospheric density is also low which makes it difficult to quantify a temperature.
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Figure 1.7: Meteor spectrum of a Geminid, corrected for the spectral response of the detector,
with some prominent lines labelled. Figure adapted from Vojáček et al. (2015). The spectrum
consists of the continuum, and lines from both the heated atmosphere and evaporated meteoritic
material.

properties provides information about the small bodies in our Solar system, and can be used to

protect spacecraft and satellites with regards to shielding.

The specific goals of this work are to examine current ideas of meteor behaviour with dif-

ferent observations to determine which are valid, and to determine meteor luminous efficiency

values in a more thorough manner than has previously been attempted.

Chapter 3 (published as Subasinghe et al. (2016)) combines high-resolution narrow-field

observations with more typical wide-field observations to investigate meteoroid strength, ori-

gin, and structure. Chapter 4 (published as Subasinghe et al. (2017)) investigates meteor lu-

minous efficiency, in particular, the uncertainty associated with equating the dynamic and pho-

tometric meteoroid masses to determine luminous efficiency for meteors observed with the

Canadian Automated Meteor Observatory (which will be discussed in Chapter 2). Chapter 5

extends that work by applying that method to fifteen observed non-fragmenting meteor events.

This is the first study to use photometric and dynamic masses with modern high-resolution
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observations. This thesis work is summarised in Chapter 6 and future work is discussed.
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Brownlee, D., Tsou, P., Aléon, J., et al. 2006, Science, 314, 1711

Campbell-Brown, M. 2007, Dust in Planetary Systems, 643, 11
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Chapter 2

Equipment and Data Reduction

2.1 The Canadian Automated Meteor Observatory

The Canadian Automated Meteor Observatory (CAMO) is a two-station, image-intensified

video system used for faint meteor studies. This is a fully automated system that operates

under certain conditions (Moon position, cloud cover, and weather are taken into account).

The CAMO guided system is able to observe meteors at resolutions up to 3 metres per pixel

at a range of 100 km, from which meteor fragmentation behaviour can be determined. The

two-station system means that meteor orbits can be determined, as shown in Figure 1.6.

One of the two stations is located in Tavistock, Ontario, Canada (43.265◦N, 80.772◦W), and

the other is approximately 45 km away in Elginfield, Ontario, Canada (43.193◦N, 81.316◦W),

with their locations shown in Figure 2.1. Complete details of the system can be found in Weryk

et al. (2013).

The CAMO guided system was used for all parts of this work. The guided system consists

of two cameras at each station: a wide-field camera (28◦ field of view), and a narrow-field

camera (1.5◦ field of view); the cameras are identical at the two-stations. The objective lens of

the narrow-field camera is a refracting telescope, which provides high-resolution observations.

The detection and tracking software used (described below) determines if a meteor is in the

32
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Figure 2.1: Map from Google showing southern Ontario, Canada, with the locations of the
Elginfield and Tavistock stations indicated.

wide-field field of view, and if so, will direct the meteor light with a pair of mirrors into the

narrow-field camera. Details of the wide and narrow-field cameras are given in Table 2.1. An

example of the resolution obtained with the CAMO guided system is shown in Figure 2.2.

The CAMO system has image intensifiers which allow fainter meteors to be observed. As

mentioned in Section 1.3, luminous efficiency studies depend on the bandpass of the equipment

used for the experiment or observations, and the spectral response of the intensifiers used with

CAMO is shown in Figure 2.3, compared to Johnson-Cousins R, V, and I bands. This is the

bandpass in which the results of Chapter 5 are calculated. Because the CAMO Gen III image

intensifiers match the Johnson-Cousins R band best, all photometric calibrations (discussed

below) are done in the R band.

The cameras are enclosed in a shed, with a roof that opens automatically under certain con-

ditions. A weather station provides information about temperature, wind speed, and humidity.

An image of the shed and cameras is shown in Figure 2.4a.
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Table 2.1: Specifications of the CAMO guided system cameras.The wide-field observations are
used for trajectories and meteor light curves. The narrow-field camera provides information on
meteor fragmentation behaviour because of its high spatial resolution.

Wide-field Narrow-field

Field of View 28◦ 1.5◦

Frame Rate 80 fps 100 fps

Limiting Stellar magnitude +7.5 +7

Limiting Meteor magnitude +5.5 <+5

Precision (at 100 km range) 71 m/pixel 3.2 m/pixel

Objective lens 25 mm f/0.85 545 mm f/11

wide-field narrow-field

Figure 2.2: Two views of the same meteor taken at the same time as seen from the two cameras
of the CAMO guided system. The scale bar in each frame is 250 metres, and the meteor is at
a height of 85 km. The wide-field meteor image is smeared due to the motion of the meteor,
while the narrow-field, which smoothly tracks the meteor, is not smeared. The images are
inverted to show details.
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Figure 2.3: The spectral response of the Gen III image intensifiers used with CAMO compared
to the Johnson-Cousins R, V, and I bands.
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wide-field camera

narrow-field camera

 opening

(a) The CAMO system at Elginfield seen inside the shed, with
the retractable roof.

(b) The CAMO system seen without the cover. The telescope
is a William Optics Zenithstar 80 II ED APO f/6.8 refractor.
The mirrors reduce the aperture (from 80 mm to 50 mm) giv-
ing the narrow-field camera an effective focal ratio of f/11.

Figure 2.4: The CAMO guided system.
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2.2 ASGARD

The software used to detect meteors in real time in the wide-field camera is called ASGARD

(All Sky and Guided Automatic Realtime Detection) (Weryk et al., 2008). The software com-

pares frames by going through each pixel and finding where the intensity exceeds five standard

deviations above the mean background. At least six pixels in an 8 X 8 pixel region greater than

the set threshold is considered a meteor, as long as this occurs in at least 3 consecutive frames.

Weryk et al. (2013) found that a 5σ threshold detects 67% of meteors. Lowering this threshold

will increase the number of meteors detected, however fainter meteors will not be well tracked

in that case. If a meteor is detected, galvanometers will move two orthogonal mirrors such that

they direct meteor light into the telescope attached to the narrow-field camera. Most meteors

are tracked smoothly, since the galvanometers are updated at 2000 Hz and have a slew rate of

2000◦ per second. The entire meteoroid ablation profile may be fully captured in the wide-field

camera, but is not fully captured in the narrow-field camera: it takes between 4 - 7 frames

of observation in the wide-field camera before the mirrors are focused on the meteor in the

narrow-field camera, and it typically takes a few frames before the meteor is tracked smoothly.

Generally, once the meteor is being tracked in the narrow-field camera, the meteor appears

stationary.

Meteor events recorded with the wide-field camera are automatically reduced using AS-

GARD, which provides a meteor trajectory (and orbit), and a light curve. A user will pick a

minimum of 10 stars (typically 20 or more are selected), which will determine the astrometric

and photometric plates. The stellar positions and brightnesses are calibrated against those from

the Sky2000v4 catalogue (Myers et al., 2001). A flat needs to be applied to the frames before

the photometric plate can be computed. The flat is computed by taking the median value for

each pixel from a stack of frames recorded over the night. This will correct for differences in

pixel sensitivity over the field of view and vignetting in the lens. The flat is only background

and does not include stars as they move during the night. The photometric offset is determined

by fitting a line between the instrumental magnitude and the R-band magnitude, setting the
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Figure 2.5: The photometric plate for the Elginfield wide-field camera on March 29, 2017. The
photometric offset is the intercept of the line and is -12.53 ± 0.10. Forty stars of various stellar
types are plotted here

slope to one, as shown in Figure 2.5.

The intercept is the photometric offset and is used to convert between the two magnitudes.

The photometric plate then allows meteor photometry to be calibrated against the stellar pho-

tometry. The astrometric plate is created by selecting stars in the wide-field camera (giving the

(x,y) pixel location) and calibrating against the positions of those stars in the catalogue. The

celestial coordinates of the stars from the catalogue are converted to local zenith and azimuth

coordinates (θ,φ). These celestial coordinates are projected onto a flat plane which represents

the field of view of each station, and the projected pixel coordinates (p,q) can be compared to

the manually selected positions (x,y). A third order polynomial fit is used to convert between

the projected coordinates and the manually selected coordinates.

The pixel location of the meteor is selected automatically through centroiding, but the soft-

ware may make errors due to transient bright pixels, or nearby stars. ASGARD determines

the meteor trajectory with a program called MILIG (Borovicka, 1990), which uses the least

squares method. For the photometric analysis, any pixels above the background threshold in

the group of pixels that make up the meteor are masked out. Those pixels are used to calculate

the log of the sum of the meteor pixel brightness, which can be converted into an apparent
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meteor brightness using the photometric offset, and then converted to an absolute meteor mag-

nitude using the range to the meteor. The uncertainty in the photometry for these automated

reductions is around 0.5 mag (Subasinghe et al., 2016). More refined meteor trajectories and

light curves can be obtained through manual reductions, but the automated reductions provide

a large survey of meteor events for analysis.

2.3 METAL

Wide-field meteor events can be reduced manually with a program called METAL (METeor

AnaLysis) (Weryk & Brown, 2012). Rather than common astrometric and photometric plates

being used for all events, plates are made by the user for each meteor being studied. The user

picks a minimum of 10 stars for calibration against the Sky2000v4 catalogue (Myers et al.,

2001) (which are used to create photometric and astrometric plates), and then picks the head

of the meteor in each frame for both stations. From these position picks, the meteor trajectory

is determined using MILIG. Meteor photometry can be determined by masking out pixels

containing meteor light and taking the log of the sum of the pixels. This gives the apparent

meteor magnitude, which can be converted to an absolute meteor magnitude using Equation

1.4.

2.4 mirfit

Narrow-field meteor observations can be analysed in a software program called mirfit. Unlike

METAL, photometric and astrometric plates cannot be made in mirfit due to the small field of

view. The field of view for the narrow-field camera is also moving as observations are collected,

and this movement needs to be considered when determining the meteor position. The mirror

positions (hx, hy) are recorded every 0.5 ms. The offset between the centre of the narrow-field

image and the position of the meteor is converted into an offset in mirror encoder coordinates

(∆hx,∆hy): this quantifies how much the mirrors should be moved such that the meteor is in
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the centre of the field of view. A change of 3 mirror encoder units will shift the narrow-field

image by 1 pixel. This offset is then added to the mirror position, which is mapped to celestial

coordinates (θ,φ). Determining the offset from the centre of the image is done with a scale

plate. Every two hours the mirrors are pointed at stars to update the calibration. This can also

be calibrated by deliberately moving the stars off the centre of the field of view. The mirror

encoder coordinates are transformed to celestial coordinates using what is called an exact plate.

When analysing a meteor event in mirfit, the user makes selections for the position of the

meteor (centroiding works well for non-fragmenting meteors). As in METAL, bright pixels

due to the luminosity of the meteor can be masked out to determine the meteor photometry.

The narrow-field meteor photometry can be determined by comparing the stellar calibrated

wide-field meteor photometry with the narrow-field apparent meteor magnitude.

2.5 Determining Luminous Efficiency

In this thesis, the luminous efficiency of meteors was determined by equating the dynamic and

photometric masses, which were each calculated using the classical ablation equations. This

method requires meteors that do not fragment. The selected meteors were reduced in both

METAL and mirfit to obtain orbital information, photometric information, and in particular,

high-precision position measurements from mirfit. The deceleration and intensity equations

(given in Equations 1.17 and 1.19) require deceleration values to calculate their respective

masses. The precise position measurements can be converted to lag measurements (how far a

meteoroid falls behind an object travelling at a constant speed), and the second derivative of

this lag gives the deceleration. Despite the high precision provided by the narrow-field cam-

eras, taking two derivatives (through finite differencing) introduces significant noise. Different

functional fits were tested by Subasinghe et al. (2017) on simulated meteor data and a two-term

exponential fit to the simulated meteor lag was found to provide reasonably good results. Be-

cause the atmospheric density decreases exponentially with increasing height, an exponential
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function is most meaningful, with a higher order fitting the data better (but not necessarily pro-

viding a more physical model). Because real meteor data is noisy (unlike the simulated data

used in Subasinghe et al. (2017)), a simplification was made in Subasinghe & Campbell-Brown

(2017) to a single-term exponential function. From the fit parameters a meteoroid deceleration

profile can be found. The meteoroid photometry (from mirfit, but calibrated with METAL

meteoroid photometry, described below), atmospheric density profile (from NRLMSISE-00

(Picone et al., 2002)), and speed and deceleration profiles based on the fit parameters, com-

bined with best guess values for other parameters (drag coefficient; shape factor; meteoroid

density), allow the luminous efficiency to be calculated for a meteoroid.

The meteoroid photometry can be determined in mirfit; however, as no photometric plate

is made for mirfit, the meteoroid photometry cannot be calibrated against stars observed in the

narrow-field camera. The narrow-field observations show very few stars, making it difficult

to do a direct comparison, the way ASGARD does in METAL. To calibrate the photometry

in mirfit, pixels are masked out, and the log of the sum of pixel (lsp) brightness is calculated,

which is the instrumental apparent brightness. By comparing these lsp values with the absolute

magnitude of the meteor determined in METAL, a correction can be found to determine the

absolute meteor magnitude in the narrow-field camera. For meteors that showed a leading

fragment (a piece of a meteor that has separated from the main body and shows little to no

fragmentation: see Figure 5.4a for an example), the photometry calibration has an extra step

– the first step calibrates the METAL photometry with the entire meteoroid observed in mirfit,

and the second uses that calibration offset on the photometry of just the leading fragment

observed in mirfit. This provides the photometry of only the relevant part of the meteoroid.

For meteoroids that show single-body ablation (see Figure 5.4b), only the first step is required

for calibrating the meteoroid photometry.

Despite the low number of visible stars in the narrow-field camera field of view, it is possi-

ble to use those stars to calibrate the meteoroid photometry. The average instrumental apparent

magnitude needs to be determined for each visible star. The offset from the Sky2000v4 cat-
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alogue (Myers et al., 2001) R magnitude can be added to the instrumental apparent meteor

magnitude to correct the values to apparent meteor magnitudes. Using the range of the meteor

to the observing station, the absolute meteor magnitude can be determined. An analysis of me-

teor photometry based on wide-field stellar photometry compared to narrow-field stellar pho-

tometry was done in Subasinghe & Campbell-Brown (2017): the average difference between

the determined meteor magnitude calculated using the narrow-field and wide-field visible stars

was found to be -0.3098 and -0.2666 magnitude, for Tavistock and Elginfield respectively.
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Chapter 3

Classifying Meteors

A version of this chapter has been published as:

Subasinghe, D; Campbell-Brown, M.D., & Stokan, E. (2016). Physical charac-

teristics of faint meteors by light curve and high-resolution observations, and the

implications for parent bodies. Monthly Notices of the Royal Astronomical Soci-

ety, 457, 1289

3.1 Introduction

Characterising the meteoroids that impact the Earth each day is of the utmost importance for

spacecraft, satellites, and life on Earth. While most of these bodies are too small to survive

ablation and reach the ground, objects in the millimetre to centimetre size range are capable of

damaging satellites (Drolshagen, 2008). These faint meteors [masses between 10−7 and 10−4

kg, based on luminous efficiency values from Weryk & Brown (2013)] may be studied as they

ablate in the atmosphere, and understanding their physical properties helps us understand those

of their parent bodies: asteroids and comets.

Determining the physical properties of meteoroids is useful. In a practical sense, estimates

of meteoroid penetration and spacecraft damage may be improved by determining more ac-

43
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curate values of meteoroid density and structure. Scientifically, differences between asteroids

and comets can be deduced by observing how meteoroids from each parent body ablate and

fragment in the atmosphere. Current models of Solar system formation suggest that asteroids

and comets should differ significantly in their fundamental composition and constituents due

to their formation at different distances from the Sun; in particular, comets should be lacking

in refractory elements which condensed into particles at high temperatures in the inner So-

lar system. Calling this into question, in 2004, the Stardust probe flew by comet Wild 2 and

collected thousands of particles containing refractory material believed to have formed in the

inner Solar system (Brownlee et al., 2006). These observations suggested similarities in com-

position between asteroids and comets, and large scale mixing in the solar nebula. The Stardust

mission collected samples between 1 and 300 µm in size: no millimetre-sized particles from

comets or asteroids have ever been collected, apart from meteorites. Additionally, the presence

of large refractory meteorite components such as chondrules and calcium-aluminium inclu-

sions in comets, which are too large to have been collected during the Stardust mission, are of

interest to Solar system formation modellers. For these reasons, observing faint meteors and

modelling their ablation are important for studying the composition and structure of cometary

and asteroidal particles in this size range.

Meteoroid ablation models vary, but are based on the same assumptions: energy and mo-

mentum are conserved, and the observed brightness is proportional to the lost kinetic energy.

There are up to four equations that make up the classical model: the deceleration equation,

which describes the momentum transferred from the meteor to the intercepted air column; the

mass loss equation, which describes the energy needed to ablate the meteoroid; the luminos-

ity equation, which describes the energy used to produce visible light; and the temperature

equation, which is based on conservation of energy. These equations have many coefficients

and make various assumptions. Three important coefficients are the drag coefficient, which

describes what fraction of the meteoroid’s momentum is transferred to the air column; the heat

transfer coefficient, which describes what fraction of kinetic energy is used for ablating the
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meteoroid; and the luminous efficiency, which is the fraction of kinetic energy which produces

light. The meteoroid is assumed to be spherical and uniform in composition; and the object is

a solid, single body that is non-fragmenting. As the meteoroid descends, interactions between

it and the exponentially thickening atmosphere heat it up and result in a late-peaked light curve

(the variation in observed brightness as a function of time). This is often called a classical light

curve.

The relative position of the maximum brightness of a meteor during ablation can be de-

scribed by the F parameter, by which single peaked light curves are often classified (Fleming

et al., 1993). The F parameter (which ranges from 0 to 1) describes the ratio of the position of

maximum brightness to the length of the entire light curve, and is expressed as:

F =
hbeg − hmax

hbeg − hend
(3.1)

where hbeg is the beginning height, hmax is the height at which the maximum brightness occurs,

and hend is the end height of the light curve. The beginning and ending heights are related to

the meteor limiting magnitude of the system used. For this work, this value is +5 mag. An F

parameter value of 0.5 corresponds to a symmetric light curve; a value less than 0.5 describes

an early peaked light curve; and a value greater than 0.5 is associated with a late-peaked light

curve (classical light curves are late peaked by definition, but non classical models are also

able to produce late-peaked curves).

The classical, non-fragmenting ablation model was accepted for lack of evidence to the

contrary until Jacchia (1955) noted that the model did not agree with the behaviour of faint

meteors observed with Super-Schmidt cameras. He found that the photometric masses of faint

meteors (calculated from the light they produce) were much larger than the dynamic masses

(determined by deceleration), and concluded that faint meteors fragment during their descent

through the atmosphere. He also found that many of the faint light curves had their peak

brightness near the beginning of the trajectory, and the length of the light curves (i.e. the
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difference between the beginning and ending height) tended to be smaller than predicted by

classical ablation theory. The classical light curve shape (a steady rise to a maximum brightness

followed by a steep drop) is not typical of faint meteors, which show a wide variety of light

curve shapes (Fleming et al., 1993; Murray et al., 1999; Koten & Borovička, 2001; Beech &

Murray, 2003). Within a single meteor shower different light curve shapes have been measured,

and year to year differences in meteor shower families can also be seen (Murray et al., 2000).

A study by Faloon et al. (2004) found no statistically significant differences in the F parameter

between shower and sporadic meteor light curves, suggesting similar structures for the two

groups of meteors. Similarly, Koten & Borovička (2001) found meteor light curves to have, on

average, symmetric shapes, and large variation within individual meteor showers.

Fragmentation and the quantitative dustball model presented by Hawkes & Jones (1975)

are able to explain the anomalous features observed in faint meteor light curves. The dust-

ball model suggests that meteoroids are comprised of grains with a high boiling point held

together by a material (a ‘glue’) with a lower boiling point. When the boiling temperature

of the glue is reached during ablation, the glue is vaporised and the stony or metallic grains

being held together are released. Once they reach their boiling temperature, each grain ab-

lates classically, and the light produced is assumed to be the summed light production from

each grain. The glue does not contribute to the observed brightness. This model suggests that

small (millimetre-sized) meteoroids will have approximately constant begin, end, and maxi-

mum brightness heights, with respect to mass. The heights are set by the physical properties

chosen for the grains. The dustball model has been used as the basis of recent numerical mete-

oroid ablation models somewhat successfully (Campbell-Brown & Koschny, 2004; Borovička

et al., 2007). The models by Campbell-Brown & Koschny (2004) and Borovička et al. (2007)

were able to reproduce meteor light curves and observed decelerations (using two different

fragmentation methods), but neither was able to simultaneously reproduce the high-resolution

behaviour of the meteoroids. Both models predicted longer and brighter wakes than observed

with the high-resolution (metre scale) cameras (Campbell-Brown et al., 2013). A shorter or
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fainter predicted wake would be acceptable and the difference between observed and predicted

wake may be explained through light emission by atoms in the trail. These high-resolution

observations represent a new constraint for modellers and a new source of information on me-

teoroids.

Some meteors can be linked to specific parent bodies (shower meteors), but most meteors

are sporadic (Wiegert et al., 2009) and their parent bodies are unknown. These sporadic mete-

ors can be linked to classes of parent bodies using the Tisserand parameter, which can be used

to determine whether an orbit is consistent with that of an asteroid or comet. The Tisserand

parameter is typically calculated with respect to Jupiter and derived from the restricted 3 body

problem, in which it is invariant. The assumptions made with this parameter are: the Sun and

Jupiter travel on circular orbits about their common center of mass; the meteoroid’s orbit is only

affected by perturbations from Jupiter; and the mass of the meteoroid is negligible compared

to Jupiter. In this case, the Tisserand parameter will remain constant even after perturbations

from Jupiter, which allows meteoroids to be associated with asteroidal (main belt) or cometary

parent bodies. The Tisserand parameter is given by Equation 3.2, where the variables a, e, i are

the semi-major axis, eccentricity, and inclination of the meteoroid, and aJ is the semi-major

axis of Jupiter.

TJ =
aJ

a
+ 2

[
(1 − e2)

a
aJ

]1/2

cos(i) (3.2)

If TJ ≤ 2, the meteoroid had a Halley-type orbit. Values greater than 2, but less than

or equal to 3 suggest meteoroids from Jupiter family comets, and Tisserand values greater

than three are associated with asteroids. These boundaries are not absolute: objects on aster-

oidal orbits can show cometary features (e.g. comet Encke), and asteroidal objects can have

cometary Tisserand values (e.g. near Earth objects). The Tisserand parameter can be changed

by close encounters with any of the planets other than Jupiter, and by radiation forces, which

are particularly important for millimetre-sized objects. Nevertheless, the Tisserand parameter

can separate meteoroids into three broad origin groups: asteroids, Jupiter family comets, and
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long period comets. For this work, we will be using the Tisserand parameter as a proxy for the

origin of observed meteor events.

The structure of a meteoroid depends on the properties of the region of the Solar system

in which it formed. Cometary meteoroids are porous, fragile objects, according to Whipple’s

icy-comet model (Whipple, 1950, 1951), and this is consistent with studies of cometary mete-

oroid density and strength. Borovička et al. (2007) found that the Draconids, a Jupiter family

meteor shower, have low mechanical strength, between 5 - 20 kPa. Borovička (2007) reports

bulk densities around 300 kg/m3 for Jupiter family meteoroids (inferred from studies of the

Draconids). He also reports that Halley-type meteoroids have densities around 800 kg/m3 (in-

ferred from studies of the Perseids and Leonids), which agrees with Kikwaya et al. (2011),

who find densities between 360 - 1510 kg/m3. Kikwaya et al. (2011) also find that asteroidal

meteors have an average bulk density of 4700 kg/m3, and Borovička (2007) suggests strengths

between 100 - 5000 kPa for the same class of meteoroids. The general trend from these data is

that cometary meteoroids are soft, porous, fragile objects that crumble easily, while asteroidal

meteoroids are stronger objects that do not fragment as readily.

The Kb parameter defined by Ceplecha (1958) is a classification based on meteoroid begin

height, pre-atmospheric velocity, and entry angle. This parameter, given in Equation 3.3, as-

sumes that all meteoroids will begin to be luminous at the same surface temperature, and so

the meteoroid begin height will be strongly related to its composition.

Kb = log ρb + 2.5 log v∞ − 0.5 log cos(zR) (3.3)

In Equation 3.3, ρb is the atmospheric density at the beginning of the luminous path; v∞ is

the pre-atmospheric velocity; and zR is the zenithal angle of the radiant. Ceplecha (1988) used

the Kb parameter to classify meteors into five main groups: asteroidal, A, B, C, and D. The

groups refer to mm-cm sized meteoroids and are associated with different types of material,

as described in Table 3.1. The Kb parameter cannot distinguish between the effects of density,

fragmentation, and volatility.
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Table 3.1: Classification and description of meteors according to their Kb parameter. The bulk
density values are from Ceplecha (1988).

Group Kb Description Bulk density (g/cm3)

Asteroidal > 8 ordinary chondrites 3.7

A 7.3 - 8 carbonaceous chondrites 2.0

B 7.1 - 7.3 dense cometary material 1.0

C 6.6 - 7.1 regular cometary material 0.75

D < 6.6 weak cometary material 0.27

High-resolution video observations are able to provide strong constraints for meteoroid

ablation models, which improves our understanding of both meteor-atmosphere interactions,

and the physical properties (strength, density, mass) of meteoroids and their parent bodies

(Campbell-Brown et al., 2013). In this work, we combine analysis of meteor light curves with

high-resolution observations of meteor wake (or morphology) and the meteoroid orbit to infer

the properties of parent bodies. Our questions include how often and in what way do cometary

and asteroidal meteoroids appear to fragment? Do meteors from Jupiter family comets, long

period comets, and asteroids show similar light curve shapes? Do single body meteors (which

we have defined as those showing very short wake, implying negligible fragmentation) show

classical light curve shapes, and can the shape of light curves indicate the strength or fragmen-

tation mode of meteoroids in general?

3.2 Equipment

The data used for this analysis were collected with the Canadian Automated Meteor Obser-

vatory (CAMO) (Weryk et al., 2013). Each night, weather and moon permitting, the two

station system automatically collects meteor observations. The two stations are located 45 km

from each other, in Elginfield, Ontario, Canada (43.193◦N, 81.316◦ W) and Tavistock, Ontario,

Canada (43.265◦ N, 80.772◦ W). The guided system has two intensified cameras: a wide-field

camera with a 28◦ field of view, used to collect the meteor light curve and compute its orbit,
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and a narrow-field 1.5◦ field of view camera that tracks the meteoroid in flight and provides

high-resolution observations. Both cameras have resolutions of 640 × 480, and have 12 bit

image depth to decrease the chances of image saturation. The wide-field cameras run at 80

frames per second and the narrow-field at 110 frames per second. The narrow-field camera is

able to resolve 3 metres per pixel at a range of 100 km.

The wide-field camera detects meteors in real time with the All-Sky and Guided Automatic

Real-time Detection (ASGARD) software (Weryk et al., 2008). This software guides a pair

of mirror-mounted galvanometers to track the meteor and direct the light into the narrow-field

camera. For each frame of the wide-field video, ASGARD searches for pixels above a threshold

set at five standard deviations above the mean background. If at least 6 pixels in any 8 × 8 pixel

region are brighter than the threshold, it is flagged as a meteor, provided the detection occurs

in at least three consecutive frames. A 5σ threshold detects 67 per cent of all meteors (Weryk

et al., 2013).

The two station light curve observations were collected between 2010 April 21, and 2014

May 11, and 3561 observations were recorded in total. The high-resolution video observations

were collected between 2010 October 10, and 2014 May 11, and 2041 high quality videos were

collected. The discrepancy in collection dates is due to a few factors: the narrow-field cameras

were not operational until late 2010; occasionally hardware failures occur (e.g. failure of the

mirror control card; shifts of the wide-field plate); and sometimes the tracking is incomplete

and the meteor moves out of the field of view.

3.3 Method and Classification

The first task was to classify both the light curve shapes and narrow-field morphologies in our

sample. By combining these observations with the meteor’s Tisserand parameter, we can inves-

tigate the physical properties of different classes of meteoroids, and the relationship between

the light curve shape and the fragmentation behaviour.
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Because the height, brightness, and orbits of meteors are obtained automatically, errors can

occur: ASGARD may mistakenly pick a nearby star or a transient bright pixel instead of the

meteor, resulting in erroneous calculated trajectories, orbits, and light curves, or an error in the

flat correction can affect the determined brightness values. As a result, the first goal was to

examine each of the automated reductions and select the ones with fewest errors for additional

analysis.

Our filter was run on all 3561 meteor light curves. 18 per cent of these events belong to

meteor showers (the majority being North Taurids, South Taurids, Geminids, and Orionids).

As a first filter, any meteors that began or ended off of the field of view were removed from

consideration, since accurate calculation of the F parameter requires the beginning and ending

heights. These events made up 55 per cent of our original 3561 meteor events.

Next, we plotted the light curve (in terms of absolute magnitude, which is the magnitude

the meteor would have if placed at a range of 100 km) as recorded from each station, and

generated a smooth curve with low pass filter interpolation. Three interpolated light curves

were generated: one from each station, and one that considered data from both stations. A

filter based on light curve coverage and agreement between stations was then implemented in

two steps:

1. At heights where there was overlap between the stations, the light curves were compared

to verify that there was a variance of less than 0.5 mag for at least 50 per cent of the

overlapping heights.

2. The overlapping height interval of light curves from each station was verified to span at

least 70 per cent of the combined light curve derived from both stations.

The purpose of this filtering was to improve confidence in the ASGARD-generated light

curves and trajectories by ensuring that there was good coverage and agreement of each me-

teor’s light curve from both stations. The filters as applied to a sample meteor event are shown

in Figure 3.1 Varying sky conditions from each station and spurious ASGARD picks could
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Figure 3.1: The two filters applied to the collected data set ensured that the two station ob-
servations agreed with each other. The black diamonds indicate where light curves from both
stations (Tavistock is Station 01 and Elginfield is Station 02) begin and end their height overlap.

cause differences in the photometry from each station. In manual reductions of the data, un-

certainties are typically of the order of 0.2 mag, but are closer to 0.5 mag for the automated

reductions.

After this filtering, the initial set of 3561 meteors was reduced to 891 high-quality obser-

vations. The remaining combined meteor light curves were then classified. Light curves with

a single peak were classified according to the F parameter. Other shapes seen include double

peaked and flat curves, and are shown in Figure 3.2.

There are a few variations on flat light curves that were observed: the entire curve may

have a small range of measured brightness; the curve may increase in brightness and remain

almost constant at its maximum intensity for the remainder of the observation; or it may begin

and remain near a maximum intensity before decreasing. For this work, flat meant that at least

50 per cent of the light curve on both sides of the point of maximum brightness was within 0.5

magnitudes of the maximum brightness. For meteor light curves that fall into this category, it

is not informative to calculate an F parameter because the majority of the curve is within the

estimated uncertainty of the maximum point. The light curve shape classifications are thus:
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early peaked (F < 0.35); symmetric (0.35 ≤ F ≤ 0.65); late peaked (F > 0.65); double peaked;

and flat. We expect classical light curves to fall into the late peaked category.

The next step was to classify the high-resolution narrow-field video observations. These

observations offer a new way to study meteoroid ablation, as development of the wake and any

fragmentation can be observed directly. These videos were classified manually based on the

dominant morphology of the head and wake of the meteor and the fragmentation mode (see

Figure 3.3). The morphology of the meteor wake and the head of the meteor are intertwined.

A meteoroid experiencing continuous fragmentation is expected to show a long trail and a

smeared head due to the differential deceleration of grains of assorted sizes. The meteoroid

is crumbling apart as predicted by the dustball model, and may be made of weak material.

A meteoroid experiencing negligible fragmentation, on the other hand, may indicate strong

material, and will show a rounded head and little to no wake, indicating that very little solid

material is being shed by the meteoroid. Meteors that show gross fragmentation, either along

the line of motion or transversely, are poorly understood at the heights of the meteoroids being

examined in this study (typically h > 90 km). The mechanism that allows a meteoroid to

disrupt into similarly sized portions is unknown: for large meteoroids, pressure is the cause,

but pressure is negligible at the heights at which these faint meteors ablate (Stokan & Campbell-

Brown, 2014). The video classifications are listed in Table 3.2 and illustrated in Figure 3.3.

Some meteors (545) clearly showed multiple consecutive morphologies during their abla-

tion; they were not included in this analysis and will be studied in a future work. In total 1496

high-resolution single-morphology video observations were classified.

A sample of long- and short-trailed meteors were measured to determine the average length

in metres for the two categories. The length of the meteor was measured as the distance be-

tween the head and the portion of the trail that exhibited brightness below the mean background

brightness plus two standard deviations. Meteors classified as having long trails were found

to be on average, 195 m in length, whereas those classified as having short trails were 90

m. These lengths took into account the range to each meteoroid, as well as a correction for
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the perspective angle (the angle between the meteoroid velocity vector and the camera line of

sight).

The meteors that made up our final data set had two station observations in agreement with

each other, were well tracked, had high-resolution video observations that began and ended on

screen, and showed only one dominant morphology.

After classifying the high-resolution narrow-field videos our final data set was made up of

295 meteor events. The range of meteor maximum absolute magnitudes for this set of events

is -2.7 to 3.1 mag.
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Figure 3.2: Interpolated combined curves of CAMO meteor events showing the different light
curve shapes used for the classification. The top three figures are single peaked curves (early,
symmetric, late), the bottom left is a double peaked light curve, and the bottom right is a flat
light curve.

3.4 Results

3.4.1 High-Resolution Video Morphologies

Over the data collection period for narrow-field video observations, 27 per cent of the videos

collected showed multiple morphologies. These events show various combinations of the mor-
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(a)

(b)

(c) (d)

Figure 3.3: The different morphologies used to classify meteor events. The scale bar in
each figure corresponds to 100 m. (a) shows a distinct trail (continuous fragmentation) and
a smeared head, (b) shows a meteor with a short trail (negligible fragmentation) and a round
head, (c) shows a meteor experiencing gross fragmentation, and (d) is a meteor showing trans-
verse fragmentation.



56 Chapter 3. ClassifyingMeteors

Table 3.2: Classification categories used for the high-resolution video observations collected
from CAMO.

Description

Smeared head; distinct wake; no distinct fragments

Round head; little to no wake; no distinct fragments

One or more noticeable fragments

One or more fragments showing transverse speed

phologies described in Table 3.2. For example, many meteors initially show a short trail, and

then a long, distinct trail, and then finally gross fragmentation. Others show long distinct trails

and then fragmentation either along the line of motion or transversely. These meteor events

will be discussed in a future work.

The 1496 single-morphology meteor events are shown in Figure 3.4. Meteors that show

distinct trails make up the majority of events seen by CAMO. The surprising proportions of

each parent class described by each narrow-field morphology is also indicated on Figure 3.4.

Contrary to expectations based on predicted meteoroid strengths, there is equal probability for

a meteoroid showing a distinct trail as originating from an asteroid or cometary parent body.

Similarly, this also applies to meteoroids showing short trails or gross fragmentation.

3.4.2 Light Curve and Tisserand Parameter Data Distribution

Each of the 891 high-quality light curve meteor observations were classified according to light

curve shape. For most events, this meant a description based on the F parameter value. The

distribution of all single-peaked, non-flat light curves is shown in Figure 3.5. Flat light curves

made up 15 per cent of the classified light curve shapes and double-peaked curves made up

18 per cent (but in reality, the contribution is much less). As described previously, classifying

flat light curves according to the F parameter was avoided as at least 50 per cent of the light

curve on both sides of the maximum brightness value are within 0.5 mag, the uncertainty in

magnitude for light curves computed by ASGARD. The mean F parameter value is 0.49, and
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Figure 3.4: All 1496 single-morphology, high-resolution videos, collected between October
10, 2010 and May 11, 2014, according to Tisserand parameter. There are 1296 meteor events
that were classified as having distinct trails; 135 meteor events that showed short trails; and 65
events that showed gross fragmentation.

based on Figure 3.5, most single-peaked light curves are symmetric in shape.

Figure 3.6 shows the distribution of meteor events by Tisserand parameter. Values greater

than three describe objects with asteroidal orbits: 37 per cent of meteor events fall into this

category. Values less than or equal to three but greater than two describe Jupiter family comets,

and values less than or equal to two describe long period comets. These make up 14 per cent

and 49 per cent of our data set, respectively.

3.4.3 Video morphology subsets

Each video morphology is associated with an expected light curve shape and origin. For ex-

ample, we would expect asteroidal meteoroids to exhibit high material strength compared to

cometary bodies, and thus show less fragmentation, corresponding to short trails in the high-

resolution video, and late-peaked light curves. Conversely, we would expect cometary mete-

oroids to fragment, showing either distinguishable fragments or long trails, and producing a
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Figure 3.5: Of 891 meteor events, 599 were single peaked. The mean F parameter value is 0.49.
Fourteen per cent of the 891 events were early peaked; forty-two per cent were symmetric; and
eleven per cent were late-peaked.
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Figure 3.6: Meteor events with Tisserand parameter values between zero and four. The dashed
vertical lines indicate the distinction between the parent classes: TJ less than or equal to two
describe long period comets; TJ less than or equal to three, but greater than two describe Jupiter
family comets; and TJ greater than three describe asteroids.
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Figure 3.7: Histograms of meteor events according to their light curve shapes. Figure 3.7a
shows meteors with distinct trails, and Figure 3.7b shows meteors that show negligible trails.

variety of light curve shapes. Sorting the data by morphology and plotting it as a histogram ac-

cording to the light curve shape, and divided by parent class contribution allows us to verify or

refute these expectations. Figure 3.7 shows the two most commonly seen video morphologies:

meteors with distinct trails, and meteors with short trails. Both subsets unexpectedly show very

similar distributions of light curve shape (mostly symmetric in both cases), and contributions

by parent classes. It should be reiterated that this result is unexpected as meteoroid ablation

models predict that meteors with short trails (interpreted to undergo negligible fragmentation)

should produce late-peaked light curves, which was not the case here.

3.4.4 Parent class subsets

To evaluate predictions of differential ablation and fragmentation behaviour between asteroidal

and cometary meteoroids, the data set was sorted by Tisserand parameter into two groups

(asteroidal origin and cometary origin), and histograms were plotted according to the light

curve shape and divided by high-resolution video morphology. These are shown in Figure 3.8.

Asteroidal and cometary meteoroids show similar properties, evidenced by similar distributions

in Figure 3.8. Asteroidal meteors, which we expect to be stronger than those originating from
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Figure 3.8: Meteor events segregated by their Tisserand parameter, and then by their light
curve shape. Figure 3.8a shows the distribution of asteroidal meteors, and Figure 3.8b shows
the distribution of cometary meteors.

comets, were expected to show mostly late-peaked curves, and negligible fragmentation.

3.4.5 Kb parameter

The Kb parameter can be used as a measure of the strength of meteoroids, so one would expect

that meteors with long trails, which are crumbling, would have lower strength than meteors

which fragment into a few pieces, while non-fragmenting meteors should be strongest. In

Figure 3.9, the meteor events are sorted by video morphology and the distributions of Kb for

each morphology are plotted. The different Kb groups are listed in the top panel of the figure.

This allows us to evaluate the strength and volatility of the events according to their observed

morphology. Meteors showing long trails are expected to be weak, and to have low Kb val-

ues, whereas those showing gross fragmentation are expected to be strong, fracture into large

objects, and have high Kb values.
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Figure 3.9: Kb histograms for the three morphologies. The groups defined by Ceplecha (1988)
are given in the top panel, and the red dashed lines define those boundaries.

3.4.6 Orbital elements

As discussed below, the Tisserand parameter is not always a reliable indicator of origin. Incli-

nation, on the other hand, is not affected by radiative forces, so low or high inclination should

reliably divide long period cometary material from asteroidal or Jupiter family comet material.

Meteor events were analysed according to their orbital elements to see if any further relation-

ships exist. Events with inclination uncertainties greater than five degrees, were removed, as

were those with unrealistic velocities and poor convergence angles. A plot of inclination ver-

sus eccentricity is shown in Figure 3.10, with the narrow-field video morphologies shown in

different colours. Objects of asteroidal origin are expected to have low inclinations and low

eccentricities, as are objects that show little to no fragmentation.



62 Chapter 3. ClassifyingMeteors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eccentricity

0

20

40

60

80

100

120

140

160

180

In
c
lin

a
ti
o
n
 [
d
e
g
re

e
s
]

Long trail

Short trail

Gross fragmentation

Figure 3.10: This figure includes all events with acceptable convergence angles and velocities,
that end onscreen. The remaining events with inclination uncertainties greater than 5 degrees,
were removed. The blue dashed line marks the boundary between prograde and retrograde
objects, and the red dashed line marks the boundary between low and high inclination objects.

3.5 Discussion

Figure 3.4 shows that most of the meteors observed by CAMO have distinct trails, consistent

with continuous fragmentation. This supports the dustball model, implying that most mete-

oroids are made of loosely bound grains which separate when the meteoroid heats up. A study

by Weryk et al. (2013) found that 75 per cent of all tracked, multistation events showed frag-

mentation in some form. We find that approximately 90 per cent of our full data set (1496

video classifications) show fragmentation (continuous or gross). This discrepancy may be due

to a few factors: different data sets were used for the two studies and the threshold criteria for

fragmentation may have been different. The Weryk et al. (2013) study considered multistation

events, whereas this study did not require that narrow-field observations be recorded at both

sites as long as there were two station wide-field observations to calculate the meteor trajec-

tory and light curve. The mean F parameter value for our light curve data set of 891 meteors

is 0.49, and this is consistent with other studies on faint meteor light curves: Fleming et al.
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(1993) studied 34 meteors, mainly sporadic meteors, and found an average F value of 0.51

for curves 1 and 2 magnitudes below the peak magnitude; Beech & Murray (2003) analysed

Leonid light curves from 1998 - 2001, and found a range of F values from 0.487 to 0.652, for

light curves measured 1.25 mag below the peak magnitude. In this work, the mean F parameter

for cometary meteors was 0.49, and for asteroidal meteors was 0.48, which is essentially the

same.

The ranges used for the F parameter (early peaked [F < 0.35]; symmetric [0.35 ≤ F ≤ 0.65];

late peaked [F > 0.65]) were chosen such that the symmetric range would have a smaller range

than early peaked and late peaked, to ensure that only truly symmetric curves would be se-

lected. However, this is subjective. To assess how the results would change if we implemented

a stricter range for the symmetric category, we reclassified meteor events, allowing the sym-

metric category to hold only those events with 0.4 ≤ F ≤ 0.6. We found that both cometary and

asteroidal groups of meteors kept approximately the same fraction of events that show distinct

trails, short trails, and gross fragmentation, in spite of the different F range used for symmet-

ric light curves. With a narrower range, symmetric light curves are still the most frequently

seen, but late peaked light curves become a larger portion of the overall distribution. A nar-

rower range for symmetric light curves changes the proportion of events in each F parameter

category, but does not change the overall results of our study.

The most surprising result to come out of this work are the proportions shown in Figure 3.4.

We expected that most cometary meteors would show continuous fragmentation (long distinct

trails), while asteroidal meteoroids would show fragmentation less frequently (short, negligible

trails). As seen in Figure 3.4, this was not the case. The fact that the proportions are almost

equal suggests that the fragmentation mode [distinct trail (dustball fragmentation) vs negligible

trail (single-body ablation) vs gross fragmentation] is not an indicator of the object’s origin.

This implies either (1) that cometary and asteroidal meteors may be more similar in structure

than previously believed. This agrees well with studies of comet Wild 2 (on particles smaller

than those in our data set) that suggest large-scale radial mixing occurred in the early Solar



64 Chapter 3. ClassifyingMeteors

System (Brownlee et al., 2012). Or (2) that sporadic meteors on asteroidal orbits may have

originated from cometary parent bodies, but had their orbits slowly circularised by radiative

forces, pushing them across the dynamic boundary.

The majority of meteors observed in this study are cometary in origin, as shown in Fig-

ure 3.6. However, the Tisserand parameter is a constant only under the restricted three-body

problem. It is important to note that we only see the current orbit in our analysis. Objects

that appear to be on asteroidal orbits may have had their originally cometary orbits perturbed

by radiative forces. Overlap between categories is a possibility, and has been previously ob-

served (comet 2P/Encke has an asteroidal orbit, for example). This means that the distribution

of meteor events shown in Figure 3.6 may not accurately describe the observed objects: be-

cause Poynting Robertson drag will increase the Tisserand parameter, the particles found to be

asteroidal in origin may actually come from Jupiter family comets. To assess the likelihood of

contamination between dynamic groups, we considered dynamic and collisional lifetimes of

small particles. Simulations done by P. Pokorny (private communication) of millimetre-sized

particles show that within 50 000 years, objects on Jupiter family comet orbits are able to

change their Tisserand parameters to values greater than 3, suggesting that contamination of

asteroidal objects by decaying cometary meteoroids is likely. This may explain the similarities

found in this study between dynamically asteroidal and cometary particles.

The orbital elements of our meteor events were examined to better understand how their

Tisserand parameters relate to their orbital elements. From Figure 3.10, we find that there are

almost no events with low inclinations and low eccentricities, where we would expect most

asteroidal objects to belong. Interestingly, we find that by colouring the events by their video

morphology, it becomes apparent that many of the short trailed objects are in retrograde orbits

(7 vs 5 in prograde orbits). The difference is greater when the events are divided into groups

with inclination greater than and less than 60◦ (the red dashed line): we see that there are more

high inclination short trailed objects than low inclination (8 vs 4). While there are very few

short trailed objects that end onscreen in total, these results are lower limits. We were cautious
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in flagging events as ending onscreen: both wide-field observations needed to end onscreen,

or the event was flagged as ending offscreen. When we recreate Figure 3.10 with events that

end both on and offscreen, the same trend is seen (short trailed events are highly inclined), but

in greater numbers (39 retrograde vs 27 prograde; 49 high inclination vs 17 low inclination).

Objects that show minimal amounts of fragmentation are expected to have low inclinations and

eccentricities, which is contrary to our results. While it is possible to change the inclination of

a particle dramatically through a planetary interaction, it is very unlikely to change a prograde

orbit to a retrograde orbit, so most of these non-fragmenting objects are likely cometary in

origin.

Figure 3.7 shows that the majority of meteors observed by CAMO are cometary meteoroids

with symmetric light curves. We expected meteors with asteroidal origins to show minimal

amounts of fragmentation (little to no wake in the high-resolution video), and we expected

meteors with negligible fragmentation to have late peaked light curves, consistent with single

body ablation. Figure 3.8a shows that our data do not support those predictions. Instead the

majority of dynamically asteroidal meteors observed with CAMO show symmetric light curves

(indicative of a distribution of grain sizes) and long trails, like the cometary meteoroids. These

objects were expected to ablate as single bodies, and the lack of classically shaped light curves

is unexpected, but may be due to non-uniform compositions or densities, or non-spherical

shapes. Pockets of volatiles may be present. This does not explain the observed trails, however.

From Figure 3.7b, we see that meteors with short trails show mainly non-classical light

curves. This may also be indicative of differential ablation. We find that meteor light curves

are unable to predict the fragmentation behaviour of the meteoroid.

The Kb parameter, when plotted for sporadic meteors, shows two distinct maxima (Ce-

plecha, 1967). The distribution of our meteor events, when sorted by video morphology, is

shown in Figure 3.9. Non-fragmenting meteors (those that show short trails) are expected to

be strongest; the crumbling meteors that show long trails are expected to be the weakest; and

those that show gross fragmentation are somewhere in between. The Kb parameter is also
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a measure of volatility: a strong meteoroid with pockets of volatiles will have a high begin

height. Meteors which do not fragment but have higher than expected begin heights (low Kb

parameter) may be like this. We find that meteors that show long trails (crumbling meteors)

are predominantly weak; meteors that show short trails (non-fragmenting) can be either weak

or strong, surprisingly; and meteors that show gross fragmentation are strong.

3.6 Conclusions and Future Work

In this work, we classified and compared faint meteors on asteroidal and cometary orbits by

combining high-resolution video observations, light curve shape, and the computed meteoroid

orbit. We find that the majority of meteors observed with the Canadian Automated Meteor Ob-

servatory have cometary orbits (TJ ≤ 3) and show long distinct trails in high-resolution video

(pixel scale ∼3 m at 100 km). We observed that dynamically asteroidal meteors tended to frag-

ment as often as their cometary counterparts. This contradicts the expectation that asteroidal

objects are stronger and less susceptible to fragmentation, and may mean that the particles on

asteroidal orbits are actually cometary.

The two most commonly seen morphologies, distinct trails and short trails, show the same

trend, unexpectedly: whether a meteoroid experiences continuous fragmentation or not, it is

likely to show a symmetric light curve. This is not what we predicted: meteoroids that show

negligible fragmentation (i.e. a short trail) were expected to show a late peaked light curve.

As a result, ablation of a non-homogeneous object, or differential ablation, may have to be

considered for these cases. Light curve shape should not be considered a reliable sign of a

meteoroid’s fragmentation behaviour. When the dataset is analysed in terms of the Tisserand

parameter, we see that dynamically asteroidal meteors show remarkably similar proportions

and properties to cometary meteors.

With our large data set, there are a few next steps to consider. In this work, we did not

separate out shower meteors. Doing so will allow us to compare our results to similar studies
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of double-station video observations of meteors, such as work by Štork et al. (2002) or Koten

et al. (2004). The goal of that work would be to do the same kind of analysis as done in this

study (i.e. study light curve and fragmentation behaviour to infer strength and structure), but

to control the parent body more strictly.

From our original video data set of 2041 observations, we removed 545 events that showed

multiple morphologies. Objects that we observe beginning with no trail which then develop one

may allow for detailed modelling of fragmentation and determination of physical properties,

since we are seeing the onset of fragmentation. Conversely, meteoroids that show a trail that

vanishes, may be objects with a unique grain size distribution, with a superposition of a certain

conventional profile (e.g. power law) and a single large refractory grain. Finally, we have

a number of meteor events that show gross fragmentation with both transverse dispersion of

fragments and dispersion along the direction of motion. As the mechanism responsible for

the transverse spread of fragments at these heights (h > 90 km) is poorly understood, this set

of events may be able to provide some strong constraints for new models of small meteoroid

fragmentation.
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Chapter 4

Luminous Efficiency -I

A version of this chapter has been published as:

Subasinghe, D; Campbell-Brown, M.D., & Stokan, E. (2017). Luminous efficiency

estimates of Meteors -I. Uncertainty Analysis. Planetary and Space Science, 143,

71

4.1 Introduction

Determining the mass of a meteoroid, a basic property, is currently very difficult to do. Because

most meteoroids are too small to reach the ground, meteoroid mass needs to be determined

through observations. The simplest method is to use the total luminous energy emitted during

ablation. The large uncertainty associated with mass is due to many unknown variables, such

as the bulk density, shape, and luminous efficiency, and their (possible) changes during abla-

tion. Spacecraft hazard estimates rely on accurate meteoroid masses: while rare, collisions and

damage to satellites by meteoroids have occurred (Caswell et al., 1995).

There are two coupled differential equations in classical meteor physics that describe the

state of the meteoroid and allow mass to be determined: the luminous intensity equation and

the drag equation. The luminous intensity, given in Equation 4.1, assumes the brightness (or

70



4.1. Introduction 71

luminous intensity, I) of a meteor is proportional to the change in kinetic energy.

I = −τ
dEk

dt
= −τ

(
v2

2
dm
dt

+ mv
dv
dt

)
(4.1)

The proportionality constant, τ, is the luminous efficiency, the fraction of kinetic energy

dissipated as meteor light. The m refers to the total instantaneous meteoroid mass, including

any fragments. Despite their small masses (< 10−4 kg), the majority of small meteoroids do

fragment (Subasinghe et al., 2016), and that light is taken into account when calculating the

photometric mass.

Equation 4.1 may be rearranged to solve for the photometric mass, but there is typically a

large associated uncertainty, due to the vast range in luminous efficiency values. The second

term in Equation 4.1 is often neglected, as the deceleration for fast, faint meteors is negligible,

relative to the first term. Using typical values, it can be shown that for slow meteors the

deceleration term is almost equal in importance to the mass loss term, but becomes significantly

less important at higher speeds (i.e. the deceleration term is about 40% of the mass loss term

for a meteor moving at 11 km/s, but only 1% for a meteor travelling at 70 km/s).

The drag equation given in Equation 4.2, can also be used to determine the mass of a

meteoroid, and is derived through conservation of momentum.

dv
dt

= −
Γρatmv2A

m
1
3ρ

2
3
m

(4.2)

The mass in this equation is called the dynamic mass, as it is based on the deceleration of

the largest, brightest fragment (or group of similarly sized fragments). The other variables in

Equation 4.2 are the drag coefficient Γ, the atmospheric density ρatm, the velocity v, the shape

factor A, and the meteoroid density ρm. Previous studies have found that the dynamic mass

of faint meteors is consistently smaller than the photometric mass, and is thus not an accurate

measure of the true meteoroid mass for fragmenting meteors (Verniani, 1965). Again, this is

because the photometric mass considers the mass of all light producing fragments, and the
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dynamic mass only considers the largest, brightest fragment.

Since most meteoroids do fragment, it is therefore useful to better understand the lumi-

nous efficiency to determine the meteoroid mass through the luminous intensity equation. The

goal of this study is ultimately to examine faint meteoroids that do not appear to fragment, to

determine their luminous efficiencies. In those cases, the dynamic mass, found by the deceler-

ation, is equivalent to the photometric mass, and we can solve for the luminous efficiency. This

luminous efficiency can then be used to find the masses of other meteoroids, even those that

fragment. It has been suggested that the luminous efficiency depends on meteoroid speed and

height, camera spectral response (an iron-rich meteoroid may emit strongly in the blue portion

of the visible spectrum, but may not be detected if the camera system is not sensitive to that

range), meteoroid and atmospheric composition, and possibly meteoroid mass, among other

factors, but the extent to which it depends on each variable is unknown (Ceplecha et al., 1998).

4.1.1 Previous luminous efficiency studies

As a meteoroid enters the atmosphere, it heats up through collisions with atmospheric atoms

and molecules. This results in meteoroid ablation and the release of meteoritic atoms and

molecules into the atmosphere. Evaporated meteoritic material interacts with atmospheric

molecules or other ablated atoms, leading to the excitation of the meteoritic and atmospheric

species. The luminosity observed is due to the decay of these excited states and is emitted in

spectral lines.

Many of the early luminous efficiency studies were done by Opik, who used a theoretical

approach to determine luminous efficiencies for various atoms. Uncertainty in the approach

used led to questions of the validity of his work: he is mentioned here for completeness. Ver-

niani (1965) combined the drag equation with the luminous intensity equation to solve for the

luminous efficiency. This method explicitly equates the photometric mass with the dynamic

mass, which is problematic since these masses are not equivalent for meteoroids that fragment,

and studies have shown that the majority of observed meteoroids show fragmentation (Subas-
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inghe et al., 2016; Weryk et al., 2013). Verniani (1965) attempted to correct for fragmentation,

and assumed that luminous efficiency can be described as shown in Equation 4.3, with lumi-

nous efficiency proportional to speed raised to some power.

τ = τ0vn (4.3)

He found for the 413 Super-Schmidt meteors he studied, that n = 1.01 ± 0.15 and 1.24 ± 0.22

for fragmenting and non-fragmenting meteors respectively. He further investigated whether

luminous efficiency depends on mass (he found that it does not), and found that luminous

efficiency does not depend on the atmospheric density. He used a single non-fragmenting

meteor, suggested to be asteroidal in origin (based on orbital characteristics), to conclude that

in the photographic band pass, the constant τ0 in Equation 4.3, is log10 τ0 = −4.37 ± 0.08 for n

= 1. These results, along with the following studies, are illustrated in Figure 4.1.

Many lab experiments were performed in the sixties and seventies, with the obvious ad-

vantage of being able to control many aspects of the ablation process such as the mass and

composition of the ablating particles, and the gas density in which the particles ablate. One of

the limitations of lab experiments for luminous efficiency estimates is the difficulty in reach-

ing all valid meteor speeds – Friichtenicht et al. (1968) reached speeds between 15 - 40 km/s,

while Becker & Friichtenicht (1971) explored speeds between 11 - 47 km/s. The experimental

lab set up involved charging and accelerating particles in a Van deGraaf generator (detectors

measured the charge and velocity), and then observing as the particles ablated in a gas region

meant to simulate free molecular flow (13.3 Pa). Becker & Friichtenicht (1971) used 167 iron

and 120 copper spherical simulated meteors, with diameters between 0.05 and 1 micron, and

their results are shown in Figure 4.1. Becker & Slattery (1973) used essentially the same meth-

ods as Becker & Friichtenicht (1971), but studied silicon and aluminium particles with similar

diameters, as they ablated in a gas region of air, nitrogen, or oxygen, at a pressure around 27

Pa. These results are not applicable to optical meteors directly, as these lab studies used par-

ticles much smaller than the millimetre sized objects that most optical cameras observe, and
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the pressures at which the micron sized particles ablated correspond to heights much lower

(between 55 - 65 km) than those at which optical cameras typically observe (around 90 - 110

km).

Artificial meteoroids are another method of determining the luminous efficiency. In this

method, objects of known mass and composition are subjected to atmospheric re-entry, and

observed as they ablate. Ayers et al. (1970) used iron and nickel objects, launched between

1962 and 1967, observing a total of ten artificial meteors. These artificial meteoroids had ei-

ther a disk or cone shape, and their masses ranged between 0.64 - 5.66 grams. The average

begin and end heights were 76 and 66 km, respectively. These artificial meteoroids were ob-

served optically, and the luminous intensity and velocity were collected. Combined with the

measured initial meteoroid mass, the luminous efficiency was calculated using a simplified ver-

sion of Equation 4.1, in which the second term (related to the deceleration) is ignored. Ayers

et al. (1970) found that n = 1.9 ± 0.4 in Equation 4.3 for four artificial meteoroids, including

one from McCrosky & Soberman (1963). Ayers et al. (1970) also formulated a luminous ef-

ficiency relationship for meteoroids of stony composition, assuming that 15% of the mass is

iron, which is the main emitter in their blue sensitive cameras: that between 20 and 30 km/s,

the luminous efficiency increases monotonically; and that above 30 km/s, n = 1. This may not

be applicable to other more red-sensitive optical systems. They noted that this work was a first

approximation. A slight reworking of the Ayers et al. (1970) results was done by Ceplecha &

McCrosky (1976), who increased the proportion of iron by weight from 15% to 28%. The lu-

minous efficiency suggested by Ceplecha & McCrosky (1976) is a piece-wise function (shown

in Figure 4.1), and was used for fireball analysis.

Jones & Halliday (2001) defined an excitation coefficient, which is the average number of

times a meteoritic atom is excited during ablation. In combining theory and lab measurements,

they found that their primary excitation probability is unphysical beyond 42 km/s (they as-

sumed ionised atoms are unavailable for excitation). They referred to scattering and diffusion

cross-sections to describe the excitation coefficient, but found that the values were higher than
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Figure 4.1: Some of the past work done on luminous efficiency using various methods (lab ex-
periments; artificial meteors; radar and optical observations). Note that the luminous efficiency
values (given as a percentage) are shown on a log scale: the large discrepancies between lumi-
nous efficiency values for a given meteor speed cause large uncertainties in the derived mass.
The constant 0.7% luminous efficiency corresponds to the value used in this study for the sim-
ulated meteor events.

experimental values suggested.

Simultaneous optical and radar observations of meteors were used by Weryk & Brown

(2013) to determine the luminous efficiency for the band pass of their GEN-III image intensi-

fiers. The ratio of the ionisation coefficient β (the number of electrons produced per ablating

atom) to the luminous efficiency τ can be determined through radar and video measurements,

and assuming a value for either β or τ allows the other to be determined. Jones (1997) deter-

mined an expression for β using both theory and observations, which Weryk & Brown (2013)

used to determine a peak bolometric value of τ = 5.9% at 41 km/s, for their Gen-III band pass

(470 - 850 nm).
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4.2 Method

The purpose of this work is to develop a method, using simulated data, to calculate luminous

efficiency from non-fragmenting meteors observed with a high-resolution optical system, and

to investigate the sensitivity of the method to the various assumed parameters. Equating the

dynamic and photometric masses is appropriate, provided the meteoroid does not fragment,

and allows for the determination of the luminous efficiency. The classical meteoroid ablation

equations apply to a solid, single, non-fragmenting body. The Canadian Automated Meteor

Observatory (CAMO; discussed below) has at best, a resolution of 3 metres per pixel in its

narrow-field optical camera, which means it can confirm that the meteor events collected do not

significantly fragment on that scale. The dynamic mass can then be equated to the photometric

mass to solve for the luminous efficiency: rearranging Equations 4.1 and 4.2 gives us:

m = −
Γ3ρ3

atmv6A3

ρ2
m( dv

dt )
3

(4.4)

τ = −
I

v2

2
dm
dt + mv dv

dt

(4.5)

Assumptions must be made for certain parameters: the drag coefficient Γ, which can range

from 0 - 2; the shape factor A, given by cross−sectional area

volume
2
3

; and the meteoroid density ρm, which

can range from 1000 - 8000 kg/m3. For the drag coefficient and the shape factor, typical values

were used (Γ = 1; A = 1.21 (sphere)). An atmospheric density profile was taken from the

NRLMSISE-00 model (Picone et al., 2002).

4.2.1 Future application to real data

The Canadian Automated Meteor Observatory is a two station, image intensified video system,

located in Ontario, Canada (Weryk et al., 2013). The two stations are approximately 45 km

apart, with one station in Tavistock, Ontario, Canada (43.265◦N, 80.772◦W), and the other
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in Elginfield, Ontario, Canada (43.193◦N, 81.316◦W). Sky conditions permitting, the camera

systems run each night. The guided system, used for data collection, consists of two cameras: a

wide-field camera, with a field of view of 28◦, and a narrow-field camera, with a field of view of

1.5◦. The wide-field cameras, which run at 80 frames per second, allow for orbit determination,

as well as light curve measurements; and the narrow-field cameras, which run at 110 frames

per second, provide high-resolution observations of the meteoroid. To reduce the possibility of

image saturation, the cameras each have 12 bit image depth.

Meteors are detected in the wide-field camera in real time with the All Sky and Guided Au-

tomatic Realtime Detection (ASGARD) software (Weryk et al., 2008), and ASGARD directs

a pair of mirrors to track the meteor and direct the image into the narrow-field camera.

With the high-resolution narrow-field cameras, meteors that appear to show single-body

ablation can be selected and studied to determine their luminous efficiencies. In a future work,

we will analyse a number of events and apply this luminous efficiency determination method

to them. The meteor events will be reduced using mirfit: software designed to process meteor

events recorded with the CAMO tracking system, and provide high-precision position mea-

surements (sub-metre scale).

4.3 Sensitivity Analysis

One of the main difficulties in solving for luminous efficiency is determining the measured

deceleration of the meteor, needed for both the dynamic mass (Equation 4.4) and the luminous

efficiency (Equation 4.5). Small uncertainties in the measured position result in large point-to-

point errors in the speed, and very large scatter in the deceleration. To test the sensitivity of

our technique to the assumptions made and the fitting techniques used, we simulated meteors

using the model of Campbell-Brown & Koschny (2004). We used the classical ablation model

to investigate different smoothing and fitting algorithms. The lag is the distance that the me-

teoroid falls behind an object with a constant velocity (equal to the initial meteoroid velocity,
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which is determined by fitting the first half of the distance-time data), and requires a mono-

tonically increasing form. As a first attempt, we expect an exponential relationship between

the meteoroid lag and time, based on the atmospheric density encountered by the meteoroid

increasingly roughly exponentially with time. A two-term exponential will provide a better fit

than a single-term exponential (more terms and/or higher order terms will fit the data better,

but it is important to note that adding more terms will eventually overfit the data and does not

have any physical justification).

A classically modelled meteor with the following parameters was investigated for fitting:

mass of 10−5 kg, density of 2000 kg/m3, and initial speed of 30 km/s. Because meteors show

very little deceleration at the beginning of their ablation, a comparison of fitting the lag from

the full curve versus the second half of the lag was done and the results are shown in Figure

4.2.

Fitting only the second half of the lag curve gives smaller residuals (relative to the model

lag), and is more accurate at later times, when the meteoroid deceleration is more apparent and

easier to fit. The RMSE value for fitting the entire lag profile was 3.4861, and for fitting only the

second half of the lag profile was 0.0179. Because meteoroid ablation can last from less than

a second to a few seconds, the decision was made to fit the second half of the ablation profile,

rather than the last second, or half second. A comparison of the derived deceleration (based

on the second derivative of the two-term exponential fit to the lag) to the model deceleration

was also done, and is shown in Figure 4.3. When fitting the entire lag profile, the derived

deceleration matches the simulated deceleration well towards the beginning of the ablation

profile, but the magnitude of the relative error is large towards the end where deceleration is

greatest, and which is of greatest interest for finding luminous efficiency. In Figure 4.3b, only

the second half of the lag data was fit, but the fit was extended backwards for comparison

purposes. The relative percentage error is smaller when the deceleration is greatest, compared

to when the entire lag is fit, as shown in Figure 4.3a.

Based on Figures 4.2 and 4.3, a two-term exponential fit y = aebx + cedx to the second half
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Figure 4.2: Residual plots for fitting the entire lag (shown in the upper two plots, (a)) compared
to fitting only the second half of the lag (shown in the bottom two plots, (b)), with a two-term
exponential. For the bottom two plots, the fit has been applied to the entire ablation time period
for comparison.
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Figure 4.3: A comparison of the relative percent error in deceleration, when fitting a two-term
exponential to the entire modelled meteoroid lag, versus fitting only the second half of the
lag. The red points correspond to the fitted points, and the blue solid line shows the simulated
deceleration.
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Figure 4.4: The variation of luminous efficiency with the variables assumed to be constants
during ablation. The red asterisk in each figure indicates the luminous efficiency value of 0.7%
used in the standard event. (a) shows the change in calculated luminous efficiency as a function
of meteoroid density – keeping all parameters identical and varying only the meteoroid density
can cause the calculated luminous efficiency to range from 0.7% at a density of 2000 kg/m3, to
11% at a density of 8000 kg/m3. Similar changes are seen in (b) and (c), for drag coefficient
and shape factor.

of the lag data is able to visually reproduce a classically modelled meteoroid reasonably well.

To investigate this method for other parameters, a set of simulated meteors were created,

each with different parameters (speed, mass, shape factor, meteoroid density, drag coefficient)

and tested to see if the luminous efficiency used to simulate the meteor could be extracted

from simulated observations with this method. The simulated meteors were generated with the

ablation model of Campbell-Brown & Koschny (2004). Calculation of the luminous efficiency

was done blind, with no knowledge of the value used in the simulation until the analysis was

complete.

There are three variables in Equations 4.4 and 4.5 that are assumed to be constant with

time: the drag coefficient, the shape factor, and the meteoroid density. These variables cannot

be measured and values must be assumed. A representative event was simulated with the

following parameters: initial speed 30 km/s; shape factor 1.21 (sphere); drag coefficient 1;

meteoroid density 2000 kg/m3, and a mass of 10−5 kg. Any difference between an assumed

constant term and the simulated value will change the luminous efficiency by a scaling factor,

and the variation and uncertainty in the calculated luminous efficiency (for a range of physically

possible values) is shown in Figure 4.4.

A more complicated parameter to deal with is the atmospheric density. Each of the simu-
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lated meteor events used the same atmospheric density profile, not specific to any date or loca-

tion. However, with real meteor events, the atmospheric density on that day, at that time and

location needs to be used. To investigate the variation in luminous efficiency due to variations

in atmospheric density, four days of data (each from a different season) from the NRLMSISE-

00 Atmosphere Model (Picone et al., 2002) were compared. The four days of modelled data

and the simulated atmospheric density are shown in Figure 4.5a, and the resulting luminous

efficiency estimates (keeping everything the same except for the atmospheric density profile)

are shown in Figure 4.5b. The resulting luminous efficiency profiles show values that range

from 0.2% up to 1%. However, not all luminous efficiency profiles have valid solutions at all

heights: when the atmospheric density used in calculating the luminous efficiency is lower than

the modelled atmospheric density, we end up with a nonphysical situation where the meteoroid

is gaining rather than losing energy as it ablates, and a singularity appears in our luminous

efficiency profile.

After investigating our simulated representative meteor to determine how meteoroid den-

sity, drag coefficient, shape factor, and atmospheric density model affect our calculated lumi-

nous efficiency values, the full parameter space of mass, speed, meteoroid density, zenith angle,

and shape factor, was explored. Fifty meteors were simulated for each mass - speed group. The

simulated meteors had a mass of 10−4, 10−5, or 10−6 kg. The speeds used were 11, 20, 30, 40,

50, 60, and 70 km/s. This meant there were 21 possible groups; however some of the low mass

- low speed groups did not produce enough light that they would be detected by the CAMO

optical system. This reduced the number of mass - speed groups to 18. The luminous efficiency

for each meteor in this set of simulated meteors was 0.7%, constant over time.

To investigate how sensitive our results are to the chosen two-term exponential fit of the

meteoroid lag, we analysed each meteor in our mass - speed groups according to our method:

the simulated position was used to determine the lag, which was fit by a two-term exponential

function. This function was then numerically differentiated (i.e. finite differenced) to determine

the deceleration. By using all values (drag coefficient; atmospheric density; velocity; shape
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(a) Four days of atmospheric density data taken from the NRLMSISE-00
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(b) The resulting luminous efficiencies for the four different atmospheric den-
sity models, and the model from the simulation. All parameters were kept
constant except for the atmospheric density model. A luminous efficiency
value of 0.7% was used in the standard event. Note that this method is unable
to reproduce the exact luminous efficiency used (0.7% constant over time)
even when using the same atmospheric density model used in the simulation.

Figure 4.5: Atmospheric density variations over 2015 and their effect on derived luminous
efficiency.
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Table 4.1: Mean luminous efficiency value (percentage) and standard deviation for each mass
- speed group of simulated meteor events. Each group initially contained 50 meteors, but some
events were removed from consideration because nonphysical luminous efficiency values were
obtained, or due to errors in the simulated data that prevented luminous efficiency values from
being determined. The luminous efficiency value used for each simulated meteor was 0.7%.

10−4 kg 10−5 kg 10−6 kg

11 km/s 0.30 ±0.11 ... ...

20 km/s 0.57 ±0.15 0.51 ±0.07 ...

30 km/s 0.64 ±0.18 0.84 ±0.21 0.50 ±0.14

40 km/s 0.68 ±0.27 0.86 ±0.26 0.89 ±0.33

50 km/s 0.60 ±0.26 0.80 ±0.28 0.90 ±0.29

60 km/s 0.60 ±0.27 0.76 ±0.29 0.91 ±0.32

70 km/s 0.58 ±0.27 0.69 ±0.28 0.92 ±0.34

factor; meteoroid density; intensity) directly from the simulation, with the exception of the

determined lag, we were able to see how sensitive our derived luminous efficiency values were

to our fit to the meteoroid lag. Our derived luminous efficiencies did not come out as constant

values over the ablation due to the sensitivity of this method to small variations in deceleration.

The mean and standard deviation for the luminous efficiency of each meteor was determined,

and the average of those values in each mass - speed group are given in Table 4.1. Fitting a

two-term exponential to the lag, to find the deceleration and the luminous efficiency seems to

work for most mass - speed groups. Table 4.1 shows that almost all of the mass - speed groups

investigated show luminous efficiency ranges that include the true value of 0.7%. This is not

the case for high-mass, low-velocity meteors (11 km/s). In fact, for each mass group, the lowest

speed that produces a luminous efficiency profile does not produce a mean luminous efficiency

range that includes the value that was used in the simulation.

A comparison of the fitted lag, the corresponding deceleration, and the resulting luminous

efficiency profile of a typical event are shown in Figure 4.6. While the simulated lag appears to

be fit well by the two-term exponential, the resulting deceleration from the fit deviates from the

simulated deceleration. This may be due to numerical temperature fluctuations in the ablation
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model. The luminous efficiency derived using only the ablation model output is unable to

produce the exact luminous efficiency (constant 0.7% over the ablation period) used in the

simulation, as shown in Figure 4.6.

4.4 Discussion

Our method for determining the luminous efficiency uses only the luminous intensity and drag

equations, while the ablation model by Campbell-Brown & Koschny (2004) is more sophis-

ticated. Campbell-Brown & Koschny (2004) use the classical form of the drag equation, but

their mass loss equation is not classical: they instead use the Knudsen-Langmuir formula with

the Clausius-Clapeyron equation to simulate the meteoroid ablating as soon as it begins heating

up. When the meteoroid becomes very hot, a spallation term is included (to account for mass

loss of pieces). The third differential equation used in the Campbell-Brown & Koschny (2004)

model is the temperature equation, which describes the energy gained (through collisions with

the atmospheric atoms) and lost (through radiation and evaporation of material).

As seen in the previous figures, uncertainties in each of the variables of Equations 4.4 and

4.5 yield corresponding variances in the computed luminous efficiency. Figures 4.4b and 4.4c

were created assuming the drag coefficient and shape factor are constant over the ablation. This

is not necessarily true for real meteor events, but for simplicity, was assumed for this work, both

in the modelling and analysis. If a real meteor event has a constant drag coefficient or shape

factor, but an incorrect value is assumed in the analysis, the difference will be a simple scaling

factor; if the value changes over the course of the flight the luminous efficiency will be off by

an amount proportional to the difference in the assumed value and the average of the true value.

It is obvious that variations in the atmospheric density over the course of a year (even as

much as a factor of two) can change the derived luminous efficiency profile. The solid red line

in Figure 4.5b indicates the calculated luminous efficiency using the same atmospheric density

model that was used in the simulation. A constant luminous efficiency of 0.7% was used in
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Figure 4.6: A comparison of the output from a simulated meteoroid to fitted equivalents based
on a two-term exponential fit to the simulated lag. (a) shows the simulated lag fit with a two-
term exponential function. (b) shows in red the deceleration produced by the simulation com-
pared to the blue dots produced by taking the second derivative of the fit to the lag. (c) shows in
red, the luminous efficiency determined using only parameters output from the ablation model,
while the blue line shows the luminous efficiency derived using identical parameters aside from
the deceleration, which was derived from the fit shown in the top panel.
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the simulation, but this method is unable to exactly reproduce that: the calculated luminous

efficiency is quite close to, but not exactly, a constant 0.7%. We find that small rounding errors

in the ablation model cause the small variations we see in the luminous efficiency.

One of the most challenging aspects of this work is determining which functional form to

fit to the lag; while more complex functional forms are able to fit the lag better (a combination

of an exponential with a polynomial, for example), they do not necessarily provide a better fit

to the deceleration, to which the luminous efficiency is very sensitive. Various combinations

of exponential fits with polynomials (lag = aebx2+cx+d; lag = aebx + cx + d; lag = aebx + ecx +

dx + f; etc.) were tried. Much better results were obtained when the modelled deceleration

was fit directly, but this approach will not work for real data. Even very precise observations

from CAMO have enough noise in the measured lag that finite differencing produces wildly

oscillating decelerations. A smooth fit to the lag is crucial in order to obtain a useful second

derivative.

We found that the luminous efficiency calculated by fitting the lag with a two-term expo-

nential did not reproduce the model’s constant 0.7% (see Table 4.1). On average, this fitting

method does return the correct luminous efficiency, except in the lowest speed groups. In par-

ticular, high mass (10−4 kg) meteors with initial speeds of 11 km/s had a much lower mean

luminous efficiency, because there was poor agreement between the simulated lag and the two-

term exponential functional fits by visual inspection. Visual inspection also determined that

visually good fits to the lag data may or may not produce a good match to the simulated decel-

eration.

4.5 Conclusion

An attempt at quantifying the uncertainty in using the classical meteoroid ablation equations

to determine the luminous efficiency of meteors has been made. Certain parameters (drag

coefficient; meteoroid density; shape factor) were assumed to be constant. The wrong drag
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coefficient could produce errors of roughly a factor of 2; the meteoroid density can vary by

a factor of 8, but is much more likely to be within a range of a factor of 2; and the shape

factor may be different from a sphere, but is not very likely to be as extreme as the end values

modelled here, which correspond to an oriented needle and a disk with its largest dimension

oriented to the airstream. It’s much more likely that the shape factor will be within a factor of 2

of a sphere, and therefore these three parameters together are each a small random effect on the

luminous efficiency. The atmospheric density over the course of a year changes by a factor of 2

in the height range that meteors are detected with our optical system, and these variations cause

similar factor-of-2 discrepancies in the luminous efficiency computed for simulated events.

The possibility of using radar echo decay measurements to verify atmospheric density profiles

at the location of the optical cameras is being investigated. Simulated meteor events were

studied by examining how different functional fits to the simulated meteoroid lag and derived

deceleration affected the luminous efficiency computed for each simulated meteor. A simple

two-term exponential fit to the lag provides reasonable decelerations, which in turn provide

an average luminous efficiency value close to what was used in the simulation. This method

however, was only tested on simulated events that were free of noise. In a future work, we

will test the method with noise that approximates the noise observed with the CAMO optical

system, and then on actual meteor events recorded by CAMO that show single-body ablation.

Measuring luminous efficiencies requires precise measurements and a thorough knowledge of

the sources of uncertainty. The high-resolution CAMO tracking system will allow luminous

efficiencies to be calculated much more accurately than previous observational attempts, and

should be able to reveal the order of magnitude of the luminous efficiency and any trend in

luminous efficiency with speed.
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Chapter 5

Luminous Efficiency -II

A version of this chapter has been accepted for publication as:

Subasinghe, D, & Campbell-Brown, M.D. (2017). Luminous efficiency estimates

of meteors -II. Application to Canadian Automated Meteor Observatory meteor

events. Astronomical Journal, in press.

5.1 Introduction

Meteoroid masses are poorly constrained. Various studies have used different experimental and

observational techniques in the past to determine meteoroid masses from the light they emit,

but results vary by up to two orders of magnitude for a given meteoroid speed. This can have

consequences for meteoroid flux estimates, which can affect satellites and spacecraft in orbit

around Earth (National Research Council, 2011). Because all small meteoroids ablate com-

pletely in the atmosphere, mass estimates need to be made based on observations which are

typically less than one second long. There are many unknown parameters which affect calcu-

lations of the mass of a meteoroid, such as its shape and density. Assuming the meteoroid is a

solid, non-fragmenting object, its mass can be determined with either of a pair of coupled dif-

ferential equations that describe the mass loss and deceleration of the meteoroid. The luminous

90
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intensity equation (shown in Equation 5.1) allows one to determine the mass of a meteoroid m

from the change in its kinetic energy Ek, given the speed v and brightness I.

I = −τ
dEk

dt
= −τ

(
v2

2
dm
dt

+ mv
dv
dt

)
(5.1)

A value must be chosen for the proportionality constant τ, the luminous efficiency - a

measure of how much of the kinetic energy lost by the meteoroid is used for visible light

production. The mass given in Equation 5.1 is the photometric mass and includes the mass of

all fragments if the meteoroid has broken up. There is a large uncertainty associated with the

photometric mass due to the uncertainty in the luminous efficiency.

The deceleration of the meteor is described by Equation 5.2, the drag equation, derived

from conservation of momentum.
dv
dt

= −
Γρatmv2A

m
1
3ρ

2
3
m

(5.2)

It provides a second way to determine the meteoroid mass. In this equation, the mass m is

the dynamic mass and describes the leading (usually largest and brightest) fragment; Γ is the

drag coefficient and describes the efficiency of momentum transfer between the atmosphere

and meteoroid; ρatm is the atmospheric density; ρm is the meteoroid density; and A is the shape

factor, defined as the cross sectional area divided by the object volume to the exponent 2/3.

Often, the drag coefficient, the meteoroid density, and the shape factor are assumed to be

constant.

Because most meteoroids fragment (Subasinghe et al., 2016), it is more practical to deter-

mine the meteoroid mass through the luminous intensity equation, assuming a suitable value

can be found for the luminous efficiency.

The uncertainty in the luminous efficiency is large since it may depend on many factors:

meteoroid speed and height; meteoroid and atmospheric composition; the spectral response of

the detector; and possibly mass (Ceplecha et al., 1998). Whether each factor has an effect, and

its effect on the luminous efficiency, is unknown.
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The luminous efficiency of meteors has been investigated with numerous methods in the

past. A theoretical approach was first taken by Öpik (1933), but has been disregarded by many

researchers due to theoretical considerations (such as not knowing how quantum states are

populated) (Thomas & Whipple, 1951; Verniani, 1965), and a modern theoretical approach

was taken by Jones & Halliday (2001), using excitation cross-sections to predict the light pro-

duced (however they assumed that ionised atoms were unavailable for excitation). Verniani

(1965) determined the luminous efficiency by equating the dynamic and photometric masses

of Super-Schmidt meteors; this study is still the source of luminous efficiencies commonly in

use (e.g. Ceplecha & McCrosky, 1976). Verniani (1965) assumed that luminous efficiency is

proportional to meteoroid speed to some constant exponent (τ ∝ vn), which his data found to

be n = 1. Verniani (1965) made an effort to correct his results for fragmentation as it was well

known that many of the Super-Schmidt meteors crumbled during ablation, but his calibration

for τ is based on a single non-fragmenting asteroidal meteor at low altitude. Lab experiments

entail charging and accelerating tiny metal particles in a Van deGraaf generator and observing

as they ablate in a low-pressure air chamber. A common difficulty in completing these lab

studies is accurately recreating atmospheric compositions and conditions. A number of studies

were carried out in the late sixties and early seventies (see Friichtenicht et al., 1968; Becker

& Friichtenicht, 1971; Becker & Slattery, 1973), and work in this area has recently been re-

vived, though no results for luminous efficiency have been published yet (Thomas et al., 2016).

Another method of determining luminous efficiency is to use artificial meteoroids, in which

objects of known mass, composition, and density are launched into the atmosphere and ob-

served as they ablate. This was done by Ayers et al. (1970) for iron and nickel projectiles, at

relatively low speeds compared to meteors. Simultaneous radar and optical studies, which use

the ionisation efficiency to determine the luminous efficiency, were carried out by Saidov &

Simek (1989) (who assumed the optical data was more correct) and Weryk & Brown (2013)

(who assumed the radar data was more correct), but the results of the two studies do not agree.

A combination of theoretical and lab work was analysed by Hill et al. (2005), and the result
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(corrected for bandpass and composition) is presented in Weryk & Brown (2013).

Many of these studies are summarised in Subasinghe et al. (2017), who investigated the

precision of using the dynamic mass to determine the photometric mass using meteor data sim-

ulated with the ablation model of Campbell-Brown & Koschny (2004). Data with sub-metre

scale resolution from the Canadian Automated Meteor Observatory (CAMO) has the potential

to redo the work of Verniani much more accurately. In testing the method, we found that uncer-

tainties in the meteoroid density (which cannot be uniquely determined from observations) and

atmospheric density account for a factor of two uncertainty, each, in the calculated luminous

efficiency. A similar factor of two uncertainty was found when investigating simulated meteors

of different masses and speeds. Good agreement was found between the luminous efficiency

value used in the simulations and the derived values for all of the mass-speed groups except

for the lowest speed group for each of the three masses, which had slightly poorer agreement.

Subasinghe et al. (2017) used simulated data free from measurement noise, so the effects of

observed noise were not considered, or the possibility that parameters in Equation 5.2 may not

be constant over time.

In this work, we continue that investigation by applying a modified method to real meteor

events recorded with the high-precision Canadian Automated Meteor Observatory.

5.2 Method Refinement

The simulated data used in Subasinghe et al. (2017) was free of noise, which is unrealistic,

but made it easy to evaluate various functional fits to the meteor lag, or distance by which the

meteor lags behind an object travelling at constant speed. That study found that a two-term

exponential fit to the lag matched the luminous efficiency most closely. The real data used in

this study have residuals in position of about 2 m: we added scatter of this order to the positions

generated by the ablation model, and again tried to recover the luminous efficiency used in the

model. A simplification from the two-term exponential (lag = aebx + cedx) to a single-term
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exponential (lag = aebx) was necessary, because when noise was added to the model the two-

term exponential produced unphysical values of the speed and deceleration. A single-term

exponential is a relatively poor fit for the full lag curve, but does well when fitting only the

last half of the curve, which is where the deceleration is high enough to calculate a meaningful

luminous efficiency. The final method used in this work fits a single-term exponential to the

second half of the meteor lag data, and uses the fit parameters to determine the speed and

deceleration profiles used for the luminous efficiency determination.

To illustrate the process, we present a standard, non-fragmenting simulated event (with the

parameters given in Table 5.1) run through our method, and the resulting luminous efficiency

profile. The event was simulated using the meteoroid ablation model of Campbell-Brown &

Koschny (2004) with an assumed luminous efficiency of 0.7%, constant over the entire ablation

time. The derived luminous efficiency was calculated using Equations 4.1 and 4.2, with values

for the drag coefficient Γ, meteoroid density ρm, shape factor A, and atmospheric density ρatm

coming from the simulation (for real events, these will be estimates except for the atmospheric

density which will come from a model). A single-term exponential (given in Equation 5.3)

was fit to the second half of the lag data of the standard event, and the fitted parameters were

a = 1.112 and b = 6.84.

lag = aebx (5.3)

The speed and deceleration values are based on these fitted parameters. The fit to the lag is

shown in Figure 5.1, and the corresponding speed and deceleration plots are shown in Figure

5.2, with the simulated values plotted against the curves based on the fit parameters from the

lag.

Using the speed and deceleration profiles based on the lag fit, and all other values taken

from the simulation, we find the luminous efficiency profile shown in Figure 5.3. Recall that

in the simulation, a constant luminous efficiency of 0.7% was used. Figure 5.3 shows two

profiles: the blue asterisks show the luminous efficiency determined using all the simulation
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Table 5.1: Standard event parameters. These are the parameters used in the Campbell-Brown
& Koschny (2004) ablation model to simulate our standard event for testing purposes.

Initial Speed Initial Mass Shape Factor Drag Coefficient Meteoroid Density Zenith Angle

(km/s) (kg) (kg/m3) (degrees)

30 10−5 1.21 1 2000 30

0 0.2 0.4 0.6 0.8 1

Time, seconds

-100

0

100

200

300

400

500

600

L
a

g
, 

m
e

tr
e

s

data

fitted curve

Figure 5.1: The second half of the lag (from 0.45 seconds onward) was fit with a single-term
exponential. The fit has been plotted over the entire lag profile (shown as blue dots). The
negative lag points are due to the method used to determine the lag – if we fit fewer than 50%
of the meteor position points to determine the initial speed, there would be no negative lag
values.
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Figure 5.2: The speed profile of the standard simulated event, with the simulated data shown as
blue asterisks, and the velocity based on the lag fit shown as a solid red line is on the left. On
the right is the deceleration profile for both the simulated data and the data based on the lag fit,
shown with blue asterisks and a solid red line respectively. In both plots, only the second half of
the simulated meteor data is shown, as that was all that was fit by the single-term exponential.
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Figure 5.3: The luminous efficiency profile for the simulated meteor based on the simulated
speed and deceleration profiles is shown with blue asterisks, and the luminous efficiency profile
based on the speed and deceleration derived from the fitted lag is shown with a solid red line.
To quantify the luminous efficiency for each profile, the mean value was used, based on the
second half of the meteoroid ablation data.

parameters, including the simulated deceleration and simulated speed. The red line shows the

luminous efficiency found using the speed and deceleration profiles based on the single-term

exponential fit to the lag. The resulting profile from the simulated data is not able to perfectly

reproduce the constant 0.7% luminous efficiency used in the simulation due to the simplicity

of this method compared to the physics in the ablation model that was used. The average

luminous efficiency of the profile based on the fitted lag is 0.60%, and 0.70% for the profile

resulting from using all the simulated data. Subasinghe et al. (2017) explored the deviation

from an assumed luminous efficiency due to different functional fits and each parameter in the

drag and luminous intensity equations.

5.3 Equipment and Data Reduction

5.3.1 Equipment

The meteor events in this study were recorded by the Canadian Automated Meteor Observa-

tory (CAMO), which is located in Ontario, Canada. CAMO is a two-station image intensified
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optical system which records meteors nightly, under appropriate weather conditions. One sta-

tion is located in Tavistock, Ontario, Canada (43.265◦N, 80.772◦W), and the other is about 45

km away in Elginfield, Ontario, Canada (43.193◦N, 81.316◦W). For our work we are using

the guided system which is a two-part system, consisting of a wide-field camera (with a field

of view of 28◦) and a narrow-field camera (1.5◦ FOV). The wide-field camera detects meteors

in real time with the All Sky and Guided Automatic Realtime Detection (ASGARD) software

(Weryk et al., 2008) which guides a pair of mirrors to direct the meteor light into the narrow-

field camera. The cameras run at different frame rates (80 and 110 fps for the wide-field and

narrow-field, respectively), and each camera is used for different science goals. The wide-field

camera typically captures the full meteoroid ablation profile, which allows for light curve cal-

culation, as well as orbit determination. The narrow-field camera does not capture the entire

meteoroid ablation profile as collection only begins after the meteor has been detected in the

wide-field camera over 4 to 7 frames, and it typically takes a few frames of observation in

the narrow-field camera before the meteor is tracked smoothly by the mirrors. However, the

narrow-field camera is a high-resolution camera able to resolve up to 3 m per pixel at 100 km

range, which allows the fragmentation behaviour of the object to be observed. These observa-

tions allow us to find objects that show single-body ablation, which is required when using the

classical ablation equations, and to measure the deceleration very precisely. More details about

the cameras can be found in Weryk et al. (2013).

5.3.2 Data Reduction

CAMO records meteors each night if certain sky conditions are met, and has been in operation

since 2007 (Weryk et al., 2013). This large database of meteors was searched for meteor events

recorded at both stations in the narrow-field cameras that showed either single-body ablation,

or a leading fragment with no wake. The classical meteoroid ablation equations apply to ob-

jects that are solid, single-bodies that do not fragment. Any object which does fragment will

have a smaller dynamic mass (this is the mass of the largest and brightest fragment) than the
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photometric mass (this is the mass of the entire meteoroid), and therefore an artificially large

luminous efficiency. Despite CAMO having recorded thousands of meteor events, finding me-

teors that showed next to no fragmentation proved to be a difficult task, as more than 90%

of CAMO meteors show some form of fragmentation in the form of wake (Subasinghe et al.,

2016). A meteor with a leading fragment is a special case where a fragment of the main body

decelerates less than the others, and this piece shows little to no fragmentation. Examples of

these non-fragmenting morphologies are shown in Figure 5.4. Meteors that met the require-

ments of showing single-body ablation (either the entire body, or a leading fragment) were then

analysed with two software packages: METAL (Weryk & Brown, 2012) and mirfit.

METAL allows for orbit determination and light curve analysis of a meteor in the wide-field

camera. Astrometric and photometric plates are computed using a minimum of 10 stars from

each station: each stellar pixel centroid and brightness are calibrated against those from the

SKY2000v4 catalogue. Once this is complete, the head of the meteor is picked in each frame,

for both stations, for which the entire meteor is visible, and a trajectory solution is determined

using an implementation of the least squares method (Borovicka, 1990) called MILIG. By

masking out pixels containing light from the meteor, the meteor apparent magnitude can be

determined, and converted to an absolute magnitude using the photometric calibration plate

and meteor range.

The software package mirfit allows video observations taken with the high-resolution narrow-

field cameras to be analysed. Because the field of view is so small (1.5◦) compared to video

taken with the wide-field cameras (28◦), stellar astrometric plates cannot be done due to the

lack of visible stars; in addition, the field of view is moving during the observations. To deter-

mine meteor positions in the narrow-field cameras, the mirror positions need to be taken into

account. These are recorded every 0.5 ms, so the position of the centre of the field at the be-

ginning of the exposure can be interpolated. Then, the distance (or offset) between the position

of the meteor on the narrow-field image and the image centre is determined, and converted

into an offset in mirror encoder coordinates. This offset is then added to the mirror position at
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(a) Leading fragment

(b) Single-body ablation

Figure 5.4: Examples of a meteor with a leading fragment and another showing single-body
ablation. Each image is from an individual frame, with the meteor cropped, rotated, and stacked
such that time increases downwards. The images are inverted to show detail. The image on the
left has the leading fragment centered (clearly showing the deceleration of the rest of the body
behind it), while the meteor on the right has the entire object centered. The 100 m scale bar for
the leading fragment example is for a height of 80 km, and for the single-body example, is for
a height of 85 km.
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that time, and mapped onto the celestial sphere. This is done using two plates: a scale plate

which determines the offset and converts pixel position to mirror encoder coordinates; and an

exact plate which maps the mirror encoder coordinates into celestial coordinates. A calibration

for the exact plate is done at the beginning of any night’s observations, and every two hours

through the night.

If the program that creates the exact plate calibration makes an error, for example by at-

tempting to calibrate a star in the field of view with a different star in the catalogue, errors with

the plates can occur, so plates are verified prior to meteor analysis, since bad calibration data

cannot be replaced. Stars visible in the field of view will be trailed across each frame, with the

predicted location of the initial position indicated by the software. If the plates are functioning

correctly, the predicted star positions will not drift across the star trails, but will have the same

position relative to the star streak in each frame. The method we are using to determine meteor

luminous efficiency is very sensitive to the position measurements (as deceleration values are

needed), which means for the most reliable results, we should only use meteor events with

accurate plates. The number of useful meteors is then restricted not only to the few meteors

which show no fragmentation, but to those non-fragmenting meteors which also have accurate

plates. Meteor events that pass both of these requirements are then analysed in mirfit. The me-

teor astrometry is done through centroiding for each frame, in both stations; centroiding works

particularly well on meteors with no visible wake. Photometry was also done for each meteor.

mirfit is not able to calibrate the meteor brightness because of the lack of calibration stars in

the field, but can calculate the log of the sum of the brightness of the meteor pixels, which

is proportional to the meteor magnitude. This relative light curve is then calibrated using the

photometry for the meteor in the wide-field camera.

Data reduction was completed for thirteen meteors showing a leading fragment, and two

meteors showing single-body ablation. A single frame from each meteor is shown in Figure 5.5.

Five fragmenting meteors were also analysed for comparison, though the luminous efficiencies

calculated for those meteors must be upper limits: the dynamic masses will be less than the
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photometric masses, leading to larger derived luminous efficiency values. The mirfit analysis

provides high-precision meteor positions, with an average random position uncertainty of 1.6 m

for the fifteen non-fragmenting events (with a maximum uncertainty of 2.5 m, and a minimum

of 0.9 m). The position data was turned into lag values (i.e. the distance the meteoroid would

fall behind an identical object moving with a constant speed). The speed used was the initial

meteoroid speed, found by fitting the first half of the distance-time data, though the exact

value is not important since only derivatives of the lag are used. The second half of this lag

was fit by a single-term exponential function, and the derivatives were used for the speed and

deceleration profiles. Typical values were used for the drag coefficient (Γ = 1); shape factor (A

= 1.21); meteoroid density (values taken from either Kikwaya et al. (2011) or Kikwaya Eluo

(2011)); and the atmospheric density profile was taken for the event date from the NRLMSISE-

00 Atmosphere model (Picone et al., 2002). An analysis of how sensitive this method is to each

of the parameters can be found in Subasinghe et al. (2017).

5.4 Results

5.4.1 Noise analysis

Prior to evaluating the luminous efficiency for each of our fifteen events, we investigated the ef-

fect that noise has on our method. In Subasinghe et al. (2017) we investigated a set of simulated

meteor events that covered the entire physical phase space of mass, speed, meteoroid density,

zenith angle, and shape factor. There were 21 mass-speed groups (three different masses and

seven different meteor speeds), each of which had 50 possible meteors (all combinations of five

possible meteoroid densities, two possible zenith angles, and five possible shape factor values;

the possible values are given in Table 5.2); however, not all meteors produced enough light

that the CAMO optical system would detect it. This left 18 mass-speed groups, with up to 50

meteors, to study. Each meteor was simulated with a luminous efficiency of 0.7%, constant

over time. Five uncertainty levels (standard deviations of 0.1, 0.5, 1, 2, 5 m) were selected to
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Figure 5.5: A single frame from the analysed meteor events. The scale bar in each frame
corresponds to 100 m. In frames showing multiple fragments, the fragment of interest is the
front most one. Images have been inverted to show detail.
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Table 5.2: Parameters used to simulate meteors.

Mass Speed Meteoroid density Zenith angle Shape factor

(kg) (km/s) (kg/m3) (degrees)

10−4 11 1000 30 0.5

10−5 20 2000 60 0.8

10−6 30 3000 ... 1.21

... 40 5000 ... 2

... 50 8000 ... 4

... 60 ... ... ...

... 70 ... ... ...

showcase the effect that position precision would have on the results, with the 2 m uncertainty

being closest to our measured uncertainties. Noise was randomly added 500 times at each un-

certainty level to each meteor in the 18 mass-speed groups, and the luminous efficiency was

calculated. The mean value of each profile was found, and the 500 mean luminous efficiency

values for each event were averaged. These results are presented in Figure 5.6, separated by

mass.

5.4.2 Atmospheric density variations

As an extension to the work presented in Subasinghe et al. (2017), we investigated the influ-

ence of atmospheric density changes on derived luminous efficiency values. It was found that

changes in the model atmospheric density profiles over the course of one year could affect de-

rived luminous efficiency values by at most a factor of two (with the model atmospheric density

profiles varying at different heights by at most a factor of 2). Figure 5.7 shows in the top panel

how seasonal variations over the course of 2016 would affect the derived luminous efficiency

profile of our standard event. Everything was identical in each run except for the atmospheric

profile used; in the standard profile for comparison, the atmospheric density profile used in the

simulation was used to find luminous efficiency. All other values (meteoroid density and so
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Figure 5.6: Different amounts of uncertainty were added to simulated meteor position picks,
and the resulting derived averaged luminous efficiencies are shown for three different mass
groups. Each meteor was simulated with a constant luminous efficiency of 0.7%, shown as a
solid blue line. The different coloured points indicate the position uncertainty.



5.4. Results 105

86889092949698100102
0

1

2
Seasonal 2016

Feb

Aug

Nov

May (standard)

86889092949698100102
0

1

2
May 17

2006

2009

2012

2015

standard (20160517)

86889092949698100102

Height, km

0

1

2
November 17 2006

2009

2012

2015

standard (20160517)

L
u

m
in

o
u

s
 E

ff
ic

ie
n

c
y
, 

p
e

rc
e

n
t

Figure 5.7: Atmospheric density variations on a simulated meteor event. The top panel shows
seasonal changes over 2016. The middle and bottom panels show solar cycle changes. All
values for the derived luminous efficiency profiles came from the simulation, except for the
seasonal and yearly atmospheric density models. There are minimal differences in derived lu-
minous efficiency profiles over the solar cycle, which may be due to a lack of data at meteoroid
ablation heights.

on) matched those used in the simulation. The middle and bottom panels instead show how the

solar cycle affects the luminous efficiency for two dates over the course of 2006 - 2012. At the

time of writing, the NRLMSISE-00 model provides data up to April 17 2017. However, some

of our meteor events were recorded in July and August 2017. The results of Figure 5.7 indicate

that atmospheric density data from the same day but different years will result in very similar

derived luminous efficiency results: the May 17 derived mean luminous efficiency results vary

at most by a factor of 1.4, and the Nov 17 derived mean luminous efficiency values vary at

most by a factor of 1.3. Therefore, for our meteor events recorded in July and August 2017,

atmospheric density profiles from the previous year were used.
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5.4.3 Photometry calibration

When determining the luminous efficiency with the drag and luminous intensity equations, the

meteoroid brightness is needed, as seen in Equation 4.1. This information can be obtained from

both the narrow-field and wide-field cameras; however, if the fragment of interest is a leading

fragment, the wide-field photometry will include the brightness of all fragments (the resolution

is not high enough to separate the fragment brightness from the rest of the object). Thus, the

narrow-field photometry is necessary for determining the luminous efficiency of the relevant

fragment only. The method of obtaining the meteor photometry from both the wide-field and

narrow-field cameras is described below.

The calibration of meteor photometry for meteors observed with the CAMO guided wide-

field system was discussed in Weryk et al. (2013). As we are using positions derived from

the narrow-field analysis, we investigated the possibility of calibrating the narrow-field meteor

photometry with stars observed in the narrow-field camera, to eliminate the need for the wide-

field cameras in this work. In METAL, pixels are masked out in each frame to select the light

from the meteor (giving the instrumental apparent magnitude), and converted to the absolute

magnitude using both the previously determined photometric plate and range to the meteor in

each frame. The uncertainty in METAL photometry is close to 0.2 mag (Subasinghe et al.,

2016). Similarly, in mirfit, pixels can be masked out in each frame to give the instrumental

apparent magnitude from the log of the sum of the pixel values (lsp); however, there is no

photometric plate due to the small number of visible stars in the small field of view.

To calibrate the narrow-field instrumental apparent magnitudes, we compared those log-

sum-pixel values to the absolute magnitudes determined in the wide-field observations and

used them as a calibration to determine the absolute magnitude of the meteor in the narrow-

field camera. To verify these narrow-field absolute magnitudes, we investigated the method of

calibrating against stars visible in the narrow-field camera, in spite of their small number.

Photometry calibrations were investigated for seven of the meteor events in our dataset

(four events had no visible stars, and nine events were added after this investigation was com-
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pleted). Each investigated event had at least one visible star, but no more than two – more

than two visible stars occurred multiple times, but stars were eliminated from the study if they

were only visible for a few frames, or if they were binary stars. The average instrumental ap-

parent magnitude of each star was determined, and the offset from the SKY2000v4 catalogue

R magnitude was found. This offset was applied to the meteor lsp values to correct them to

apparent magnitude values. If a station had two visible stars the average offset was applied to

the meteor log sum pixel values to correct them to an apparent magnitude. The average dif-

ference between the mirfit calibrated photometry and the METAL calibrated photometry was

-0.3098 and -0.2666 magnitude, for Tavistock and Elginfield respectively. For our luminous

efficiency analysis, we used the METAL calibrations simply because there are many more stars

to calibrate against, but our result here indicates that there is only a minor difference between

the METAL and mirfit brightness calibrations which are typically based on two stars.

Equation 4.1 uses the meteor intensity, rather than the meteor magnitude. To convert be-

tween magnitude and intensity, we use the results of Weryk & Brown (2013) who determined

that for the Gen III image intensified video cameras we are using, a zero magnitude meteor

emits 820 W.

5.4.4 Meteoroid density

One parameter we have control over in our analysis is the initial meteoroid density. In our study

we assume for simplicity that this density is constant over time. The density for each meteoroid

was determined using the results from Kikwaya et al. (2011) and Kikwaya Eluo (2011), in

which meteoroid densities were found after searching the entire parameter space in an attempt

to match each meteor deceleration and light curve shape using the ablation model of Campbell-

Brown & Koschny (2004). Kikwaya et al. (2011) used the classification of Borovička et al.

(2005), which considers meteoroid physical composition, in their meteoroid density analysis,

and uses not only the meteoroid Tisserand parameter, but individual orbital elements to help

classify objects. The Tisserand parameter with respect to Jupiter is based on an object’s orbital
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Table 5.3: Meteoroid densities based on Tisserand parameter values. The first two columns are
from Borovička et al. (2005), and the associated meteoroid densities are based on work from
Kikwaya Eluo (2011) and Kikwaya et al. (2011).

Orbit type Orbital element and Tisserand parameter Density

(kg/m3)

Sun-approaching q < 0.2 AU 3206

Ecliptic shower e.g. Northern Iota Aquariids 3200

Halley type TJ < 2 or 2 < TJ < 3 and i > 45◦ 890

Jupiter family 2 < TJ < 3 and i < 45◦ and Q > 4.5 AU 3190

Asteroidal-chondritic TJ > 3 or Q < 4.5 AU 4200

elements, and is given by:

TJ =
aJ

a
+ 2

√
a
aJ

(1 − e2) cos(i) (5.4)

Where a, e, and i are the semimajor axis, eccentricity, and inclination of the meteoroid,

respectively, and a subscript J indicates an orbital element belonging to Jupiter. A Tisserand

parameter greater than 3 suggests that an object has an asteroidal orbit; between 2 and 3 is

associated with Jupiter-family comets; and TJ less than 2 describes a Halley-type orbit.

The meteoroid orbit classification described by Borovička et al. (2005) and the associated

meteoroid densities from Kikwaya et al. (2011) used in this work is given in Table 5.3 (note: q

is the perihelion distance and Q is the aphelion distance).

In our set of non-fragmenting meteor events we have eight meteors with Halley type or-

bits, five with Jupiter family orbits, and two with asteroidal-chondritic orbits. Of our five

fragmenting meteor events, two are Halley-type, one has a Jupiter family orbit, and two have

asteroidal-chondritic orbits. Kikwaya et al. (2011) give a mean density for objects with Jupiter

family orbits and objects with asteroidal-chondritic orbits. They give a minimum and maxi-

mum density for objects on Halley type orbits: the mean density for Halley type objects comes

from the raw data in Kikwaya Eluo (2011).
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5.4.5 Error analysis

In Table 5.4 we present the luminous efficiency values determined for each of the twenty events.

Each luminous efficiency value is presented with an associated uncertainty which takes into

account the uncertainty from assuming the drag coefficient, meteoroid density, shape factor,

and random errors in the position. A random error of up to half a pixel was added to each

analysed position pick, one hundred times. Half a pixel corresponds to approximately 2 m at a

range of 110 km, which was found to be closest to the average error in our measured positions.

The entire parameter space of drag coefficient, meteoroid density, and shape factor was then

tested with each of those one hundred variations, and the luminous efficiency was found. Table

5.4 presents the mean luminous efficiency and corresponding standard deviation. The range

of drag coefficient values tested was from 0.8 to 1.2 (with 1.0 being an inelastic collision);

shape factor varied from 0.71 to 1.71 (with 1.21 being a sphere); and meteoroid density taken

from Kikwaya et al. (2011) with an uncertainty of ± 500 kg/m3. The distribution of luminous

efficiency values spanning the entire parameter space was more skewed than normal, however

Table 5.4 presents the mean, median, and standard deviation values.

5.4.6 Meteor event 20161009 064237

In Figure 5.8 we present the analysis of one event, from fitting the lag, to the final determined

luminous efficiency profile. To reduce the noise that comes from finite differencing the values,

we smoothed the speed and deceleration values by finite differencing over larger separations.

Despite this, there is still considerable scatter in the speed and deceleration points, emphasising

the importance of both precise position measurements for this work, and using a suitable fit for

the meteor lag. The lag fit parameters for this event are a = 0.8908 and b = 23.82, and the

following parameters were assumed: meteoroid density of 3190 kg/m3; drag coefficient of 1;

and shape factor of 1.21. The fitted parameters are based on the original data analysis: they

do not take into account searching the parameter space, or the uncertainty of half a pixel in

position. The average luminous efficiency over the second half of this meteoroid’s ablation
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Table 5.4: Parameters for the twenty meteor events analysed for this work. The initial speed is
based on the entire meteoroid ablation profile, and not just the second half of the meteor data.
The orbit classification and meteoroid density determination is described in Section 5.4.4. The
Origin column labels the meteors as either sporadic (SPO), or by their meteor shower code. The
initial mass and luminous efficiency values were found after searching the entire phase space
of meteoroid density, shape factor, and drag coefficient, and are mean values unless specified.
Under NOTE, events with an asterisk describe meteors that were found to be sensitive to posi-
tion picks, and SB refers to meteors showing single-body ablation, while LF describes leading
fragment events, and F describes those that show long distinct trails.

Event vi TJ Orbit type Origin ρm mi τ (mean) τ (median) Note

(km/s) (kg/m3) (10−6 kg) (per cent) (per cent)

20160902 074008 68.9 -0.2 HT SPO 890 0.81±1.18 0.30±0.43 0.15 LF

20160906 065905 62.4 -0.8 HT SPO 890 56.86±470.80 0.08±0.20 0.02 LF

20161009 064237 32.5 2.7 JF SPO 3190 3.47±3.16 0.10±0.11 0.06 LF

20161022 023854 54.0 1.2 HT SPO 890 1.94±3.06 0.22±0.33 0.11 LF

20161023 022857 39.9 1 HT CTA 890 17.41±27.58 0.05±0.07 0.02 LF

20161026 023039 25.4 3.8 AC SPO 4200 0.03±0.03 18.71±9.68 18.70 LF*

20161105 084501 65.2 -0.6 HT ORI 890 1.31±1.93 0.13±0.19 0.06 LF

20170228 092048 63.5 1.1 HT SPO 890 13.73±97.20 0.04±0.06 0.01 LF

20170329 022149 13.0 3.1 AC SPO 4200 17.89±22.97 0.10±0.14 0.06 LF

20170329 044039 26.7 2.9 JF SPO 3190 0.22±0.22 0.28±0.34 0.16 LF

20170729 075956 42.2 2.2 JF SDA 3190 13.73±26.24 0.28±0.31 0.16 LF

20170730 075821 41.0 2.4 JF SDA 3190 0.28±0.26 0.39±0.44 0.23 LF

20170803 075755 40.2 2.4 JF SDA 3190 0.07±0.06 2.77±3.01 1.62 LF*

20150716 052934 41.7 2.9 HT SPO 890 0.65±1.95 0.85±1.35 0.38 SB

20150915 084106 68.8 0.6 HT SPO 890 0.80±7.62 27.84±22.38 22.66 SB*

20160709 042521 15.3 3.0 JF SPO 3190 0.03±0.03 47.27±15.71 43.34 F*

20160710 065147 41.6 1.9 HT NZC 890 1.15±1.66 6.18±4.42 5.65 F*

20160803 073937 19.3 3.5 AC SPO 4200 0.16±0.14 31.98±9.59 29.88 F*

20161105 030709 28.8 3.2 AC NTA 4200 0.02±0.01 39.10±15.61 33.94 F

20170323 070356 57.0 3.0 HT SPO 890 0.68±0.98 9.35±8.71 6.45 F*
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was 0.101±0.111%.

5.4.7 Final Meteor results

The calculated luminous efficiency values for each meteor event analysed, as a function of ini-

tial speed, are presented in Figure 5.9, plotted over a few past studies for comparison. The error

bars are based on searching the entire parameter space of appropriate meteoroid density, drag

coefficient, and shape factor, and the downward arrows indicate that the determined luminous

efficiency values are upper limits (due to fragmentation), or that the lower bound of the lumi-

nous efficiency is less than zero. Some meteor events moved out of the narrow-field camera’s

field of view at one station: these events are plotted as either blue squares or red diamonds

in Figure 5.9. The single-term exponential was fit to single station data rather than two sta-

tion data in those cases; however, data from both stations was used to calculate the meteoroid

trajectory.

5.4.8 Luminous Efficiency and mass

It has been suggested that while the calculated meteoroid mass depends on luminous efficiency,

the luminous efficiency may depend on mass according to fireball studies (Halliday et al., 1981;

Ceplecha et al., 1998). To investigate this, Figure 5.10 illustrates the relationship between the

average initial mass and luminous efficiency of each meteor. It is worth noting that these initial

masses are smaller than the true initial mass of the meteoroid: this is the dynamic mass at

the beginning of the second half of the trajectory, and in some cases the mass of the leading

fragment instead of the whole meteoroid. As with the above results, these initial masses are an

average determined after searching through the entire parameter space. The meteor events are

coloured by initial speed.
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Figure 5.8: Meteor event 20161009 064237. The top plot shows the second half of the meteor
lag data (with the data points coloured by station), fit with a single-term exponential. The
second plot shows the speed curve derived from the fitted lag. The cyan points are lag data
points finite differenced over a larger separation to reduce the scatter. The third plot shows
the deceleration curve and the finite differenced values (also over a larger separation to reduce
scatter). The bottom plot shows the resulting luminous efficiency profile, based on the speed
and deceleration curves, with an initial meteoroid density of 3190 kg/m3; drag coefficient 1;
shape factor 1.21.
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Figure 5.9: Luminous efficiency as a function of initial speed. Note that the initial meteor speed
is based on the entire meteoroid ablation profile, and not where the single-term exponential
begins. The curves showing other studies have not been corrected to a particular bandpass.
The instruments used in the Weryk & Brown (2013) study are the same ones used in this study,
but their results are bolometric values.
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Figure 5.10: Luminous efficiency as a function of initial mass for non-fragmenting events.
Each meteor event is coloured according to its initial speed, with the scale given in the colour-
bar. The upper figure includes all leading fragment and single-body events (and the line of best
fit has a slope of -0.6578 and an intercept of -4.2303 in log-log space), while the lower figure
excluded events from that set that were sensitive to position picks (and has a slope of -0.3647
and an intercept of -2.7994, in log-log space).
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5.4.9 Fragmentation

Five meteors showing obvious fragmentation (long distinct trails) were analysed with this

method. These events served as a sanity check to see whether meteors showing fragmenta-

tion will result in unphysical luminous efficiencies, much greater than 100%. To be able to plot

these results, we ignored luminous efficiency values greater than 100% when computing the

average. A clear distinction between the fragmenting and non-fragmenting meteor events can

be seen in Figure 5.9.

5.5 Discussion

As discussed in Subasinghe et al. (2017), our method involves fitting the second half of the

lag because the luminous efficiency can only be calculated in the part of the trajectory with

maximum deceleration. For ideal data, the change in functional fit from a two-term exponential

to a single exponent worsened the agreement of values given in Table 1 of Subasinghe et al.

(2017) with the 0.7% constant luminous efficiency used to simulate the events. In spite of this,

the single-term exponential is a better choice for real data with noise.

To test the effect of the fit on the derived luminous efficiency values, and as an extension of

the work done in Subasinghe et al. (2017), a simple polynomial (lag = ax3 + bx2 + cx + d, which

gives a linear deceleration) was fit to meteor event 20161009 064237. The polynomial could

not be of order two or less, as that resulted in a constant deceleration, meaning the dynamic

mass was not changing. The luminous efficiency was also determined using a simple point

to point method, in which the mean deceleration was determined for two different sections of

the meteor data near the end of ablation (resulting in two deceleration values). These were

used to find a dynamic mass, compared to the photometric mass lost between those points and

used to calculate the luminous efficiency. These two methods found luminous efficiency values

that were within a factor of three of the value determined by fitting a single-term exponential

function to the second half of the meteor lag data. The exponential fit was used for this analysis



116 Chapter 5. Luminous Efficiency -II

as it best describes the atmospheric density that is encountered by the meteoroid.

We analysed fifteen non-fragmenting meteors, which is a very small fraction of the thou-

sands recorded by CAMO. However, as seen in Figure 5.5, the images for the thirteen leading

fragment events show very little to no wake, suggesting fragmentation is not important and

that they can be treated as single bodies validating our method and results. Two of the meteor

events (20150716 052934 and 20150915 084106) analysed show single-body ablation (but are

not leading fragment events); however, they are likely undergoing fragmentation on a scale that

we cannot resolve, as with the CAMO meteor in Campbell-Brown (2017) which appeared to

have negligible wake but could only be modelled with significant fragmentation. Thus those

two results should be considered upper limits on the luminous efficiency for those events - the

determined dynamic mass (which considers only the largest fragment) will be less than the pho-

tometric mass (which considers light production from all fragments), and for the same amount

of light production, this would cause the luminous efficiency to be artificially increased.

Our simulated noise analysis shows that for low (10−6 kg), mid (10−5 kg), and high-mass

meteors (10−4 kg), low speed meteors are most likely to produce luminous efficiency results

closest to the value used in the simulation. This is likely because slower meteors decelerate

more, so uncertainties affect the dynamic mass less than for fast meteors which ablate before

they significantly decelerate. For the entire range of meteor speeds, our method tends to under-

estimate the luminous efficiency of meteors.

We used meteoroid bulk density values from Kikwaya et al. (2011) based on the Tisserand

parameters of our meteor events. The results from Kikwaya et al. (2011) assumed a luminous

efficiency value. To eliminate any bias this assumed luminous efficiency value may have had

on our derived luminous efficiency results, we present the derived luminous efficiency results

with meteoroid density 1000 kg/m3 and 3000 kg/m3 for each event, in Figure 5.11. Assum-

ing a density of 1000 kg/m3 has the effect of decreasing the calculated luminous efficiencies

for slow meteors, while not significantly changing those of faster meteors, while assuming a

density of 3000 kg/m3 increases the calculated luminous efficiencies of fast meteors, while not
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significantly changing those of slower meteors. Both assumed densities show an increase in

calculated luminous efficiency with speed, while the density values from Kikwaya et al. (2011)

and Kikwaya Eluo (2011) show a constant relationship with speed.

The main results of this work are presented in Figures 5.9 and 5.10. Our results are typically

consistent with lower values of luminous efficiency from previous studies, and seem to rule out

the highest luminous efficiencies. It is difficult to directly compare our results to others because

several past studies knew the composition of their meteoroids (in the case of lab meteoroids,

or artificial meteoroids). We attempt to account for this by exploring a large range of possible

meteoroid densities.

Figure 5.10 shows that there is a relationship between luminous efficiency and initial mass,

which is not related to meteoroid speed. Unexpectedly, it shows that meteoroids with smaller

mass radiate light more efficiently than more massive meteoroids. The first plot in Figure 5.10

shows the linear fit (in log-log space) when including all the analysed meteor events, and the

second figure excludes the three events that were found to be very sensitive to meteor position

picks. The entire parameter space of drag coefficient, meteoroid density, shape factor, and

random errors in position was searched, with random errors of up to half a pixel being added.

Three of the fifteen events were found to be very sensitive to these position pick variations,

leading to wildly different luminous efficiencies for similar position picks. Even when these

three events are removed, a negative linear trend is still apparent in the luminous efficiency-

mass plot. The uncertainty in each point is large, however, and more meteor events may cause

this to change.

It is important to keep in mind the low number of meteor events studied here. While Figure

5.10 shows negative linear trends, these events are not necessarily representative of the entire

population of meteors observed with the CAMO system. There are no meteors in the low

luminous efficiency - low mass area of the plots in Figure 5.10: it is unlikely that the CAMO

system could observe such faint meteors. However, there are also no high luminous efficiency

- high mass meteors: the CAMO system should be able to see these bright meteors. One matter
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of great interest is the dependence of luminous efficiency on speed, since some previous studies

predict an increase (e.g. Verniani, 1965), and some a decrease with speed (e.g Hill et al., 2005).

Our results using the densities of Kikwaya et al. (2011) show no clear trend with speed, while

using a constant density there is a weak increase with speed. At low speeds, our results are

even less conclusive; we have a single meteor event with an initial speed less than 20 km/s,

which does not allow us to corroborate or reject the steep increase in luminous efficiency at

low speeds typically found in past studies. The error in each event is typically greater than

the derived luminous efficiency value, which makes it unreasonable to draw lower bounds on

the luminous efficiency value with this study. This is indicated by downward pointing arrows.

It is not unreasonable to assume that the trend in luminous efficiency with speed depends on

the composition, with some atoms radiating more effectively at higher collision energies, and

some less effectively. In this case, any trend will be masked if the meteoroids have different

compositions.

An important note is that thirteen of our fifteen meteor events were leading (or terminal)

fragments. These fragments were composed of the strongest material in the meteoroid, which

is implied by the fact that they continued to ablate after most of the meteoroid had ablated.

These fragments may have had a different composition (and therefore spectrum) from the rest

of the meteoroid, which means they may have a different luminous efficiency than their par-

ent meteoroid. It is therefore difficult to compare these leading fragment meteor events to

other studies. For example, if the leading fragments contain little volatile sodium, they would

produce less light than sodium-rich parts of the meteoroid.

5.6 Conclusion

This paper presents the most recent study of modern high-resolution meteor observations used

to determine luminous efficiency, by comparing the dynamic and photometric masses. The

second half of the observed meteor lag is fit with a single-term exponential, and the resulting
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Figure 5.11: Luminous efficiency as a function of initial speed, assuming each meteoroid has
a bulk density of 3000 kg/m3 (upper plot), or 1000 kg/m3 (lower plot).
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speed and deceleration curves are used in conjunction with best fit values for meteoroid den-

sity, shape factor, and drag coefficient. To determine uncertainties, the entire phase space of

potential values for the above parameters was searched. Fifteen meteor events were observed,

thirteen of which displayed leading fragment behaviour (a fragment that persisted after the ma-

jority of the meteoroid had ablated, and showed essentially no fragmentation), and two which

show as close to single-body ablation as we could find. While there is no obvious relationship

found between luminous efficiency and initial meteor speed, this may be due to the variability

of meteoroid compositions, on which we have gathered no information for this study. It is also

difficult to directly compare our results to past studies (artificial meteoroids, lab studies, si-

multaneous radar/optical studies) as our leading fragment events are composed of the strongest

material in each meteoroid, which may not necessarily be represented in past studies. There

seems to be an unexpected negative linear relationship between luminous efficiency and ini-

tial meteoroid mass; however, as there are only fifteen events, this may not be meaningful. In

the future, we will add spectral capabilities to the CAMO system and collect more data with

the necessary high-resolution calibrations. This may cause relationships between luminous

efficiency and other parameters (such as mass and speed) to reveal themselves.
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Thomas, E., Horányi, M., Janches, D., et al. 2016, Geophysical Research Letters, 43, 3645

Thomas, R. N., & Whipple, F. L. 1951, Astrophysical Journal, 114, 448

Verniani, F. 1965, Smithsonian Contributions to Astrophysics, 8, 141

Weryk, R. J., & Brown, P. G. 2012, Planetary and Space Science, 62, 132

—. 2013, Planetary and Space Science, 81, 32

Weryk, R. J., Brown, P. G., Domokos, A., et al. 2008, Earth Moon and Planets, 102, 241

Weryk, R. J., Campbell-Brown, M. D., Wiegert, P. A., et al. 2013, Icarus, 225, 614



Chapter 6

Conclusion

6.1 Thesis summary

The main goal of this thesis was to improve our understanding of the physical properties of

faint meteors. As discussed in Chapter 1, it is difficult to study meteors because they ablate

so quickly. A better understanding of these primitive bodies will provide information on not

only the physical properties of asteroids and comets, but on the conditions in the early Solar

system that allowed those bodies to form. To investigate current beliefs of meteor properties,

high-resolution optical observations were combined with commonly used wide-field optical

observations to explore fragmentation, strength, and origin. The feasibility of using the classi-

cal meteoroid ablation equations to determine the luminous efficiency was also studied. These

equations were then applied to real meteor data, to determine the luminous efficiency values of

each of the fifteen observed meteor events.

In Chapter 3, optical observations from narrow-field and wide-field cameras were combined

in a survey on faint meteors. A total of 891 wide-field observations were analysed, and 1496

observations were studied with the narrow-field camera. Based on the observed light curve

data, a smooth curve was interpolated based on the two station data, and classified according to

its F parameter. The narrow-field data was manually classified according to the observed frag-
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mentation behaviour, whether that was continuous fragmentation, negligible fragmentation,

or gross fragmentation. A mean F parameter value of 0.49 was found for the 891 wide-field

observations, which is in line with many other studies on light curves of faint meteors. The

fragmentation mode was not found to be indicative of meteoroid origin: while comets might

be expected to have some stronger material (Fulle et al., 2015), it is surprising that asteroidal

material is just as weak. This may suggest that dynamical mixing has occurred, meaning that

meteoroids classified as asteroidal actually come from Jupiter family comets, or that the Solar

system is actually well mixed and our ideas on asteroids are biased because only the strongest

material survives as meteorites. Meteors that showed little to no wake showed non-classical

light curves, and this may imply that they are actually fragmenting: Campbell-Brown (2017)

successfully modelled a CAMO observed meteor which showed minimal wake with an ablation

model in which the object fragmented in many small bursts.

The luminous efficiency of meteors is poorly understood and past studies have suggested

values that span two orders of magnitude. This leads to large uncertainties in meteoroid mass

determinations. Chapter 4 presents an uncertainty analysis for the determination of luminous

efficiency by equating dynamic and photometric masses. While this approach has been at-

tempted in the past, it requires meteors that show no fragmentation and very precise position

measurements, conditions that have only been properly met now. This method was found to

be appropriate when applied to simulated meteor data, as the uncertainty in each parameter

causes at most, a factor of two difference from the luminous efficiency used in the simulations.

Precise deceleration values are needed to determine the luminous efficiency, and a thorough

analysis of fits to the position data to determine deceleration found that an exponential fit is

most appropriate, as it best represents the change in atmospheric density, and works best.

In Chapter 5 fifteen meteor events observed with the Canadian Automated Meteor Obser-

vatory were analysed, and their luminous efficiencies determined using this method. A single-

term exponential was fit to the second half of the observed meteor lag, and the fit parameters

were used to determine the deceleration. Combined with most likely values for other required
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parameters, this allowed the luminous efficiency to be found. By exploring the parameter space

of each variable, upper limits were placed on the results. Twelve of the fifteen meteor events

were found to have luminous efficiency values of less than 1%, which agrees with lower re-

sults from past studies. However, no obvious relationship with speed was found. Most of the

meteors observed in this study are comprised of the strongest material in the meteoroid, and

because their compositions and spectra may differ from typical meteors, it is difficult to directly

compare the results.

6.2 Future Work

Despite decades of meteoroid research, the physical properties of these small Solar system

bodies are not well known. Studies that combine various types of observations (such as those

described in Chapter 3) will continue to advance our knowledge. In particular, using high-

resolution observations can improve our understanding of meteoroid ablation processes by

providing new constraints for ablation models. As many studies have shown (e.g. Weryk et al.,

2013; Subasinghe et al., 2017), meteor fragmentation is very common; however, within the

broad category of fragmentation, there are different ways meteors can fragment (transversely

vs along the line of motion; gross vs continuous) and further studies should investigate these to

determine physical properties and to explore the physical processes that lead to fragmentation.

The study described in Chapter 3 found that fewer than 20% of meteor light curves studied

showed double peaked shapes, and 15% showed flat light curves. A further investigation into

these unusual light curve shapes should be attempted in the future, similar to work done by

Roberts et al. (2014): including the high-resolution narrow-field observations may shed light

on how these objects fragment, which would be crucial to accurately modelling them, and

correctly determining physical properties like density.

While the high-resolution observations are valuable on their own, a spectral system would

greatly improve the scientific output of CAMO by collecting information on meteoroid com-
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positions. Because CAMO observes dozens of meteors each night, within a few months, a

spectral system would provide data for a large survey of meteor compositions, which could be

combined with observations of trajectories, light curve shapes, and fragmentation behaviour.

Additionally, a study on meteor luminous efficiency would be greatly enhanced with in-

formation about meteor compositions, or relative abundances of certain elements. Past studies

were undertaken for known compositions (when studied in the lab, or with artificial mete-

oroids), and a spectral system would allow for a more direct comparison with these studies.

In particular, having spectral line measurements for each part of a fragmenting meteor would

determine whether leading fragments have the same or different luminous efficiencies from the

bulk of the meteoroid, and might turn up the dependence on velocity of particular emission

lines.
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