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ABSTRACT 

The fracture toughness resistance curve (e.g. J-R curve) is widely used in integrity 

assessment and strain-based design of oil and gas pipelines with respect to planar defects 

(i.e. cracks). This thesis includes two-dimensional (2D) and three-dimensional (3D) finite 

element analyses (FEA) of ductile crack growth of X80-grade pipeline steel based on the 

Gurson-Tvergaard-Needleman (GTN) constitutive model, and investigation of the 

normalization (NM) method to generate the J-R curve for the single-edge tension (SE(T)) 

specimen. 

First, the GTN model implemented in the computational cell is adopted in the commercial 

software ABAQUS to calibrate the micromechanical parameters for the pipeline steel. 

Subsequently, the stable fracture process of six SE(T) and four single-edge bend (SE(B)) 

specimens tested are simulated in 3D and 2D FEA. Results have shown that the GTN model 

is a viable tool to predict the fracture behavior of the specimens, in terms of predicting the 

load-displacement curve, J-R curve and crack front profile of the fracture specimen. In 

addition, the stress field near the crack-tip as well as various constraint parameters are 

examined.  

Second, based on the calibrated micromechanical parameters, a series of SE(T) specimens 

with various geometric configurations are modelled. The applicability of the NM method 

to generate J-R curves for SE(T) specimens is investigated, followed by the proposal of the 

so-called ‘k factor-based NM method’ based on the J-CMOD relationship, to improve the 

computational efficiency of the conventional NM method.  

The outcomes of this study will facilitate and improve the evaluation of J-R curves for the 

SE(T) specimen using the NM method.  

Keywords 

Pipeline; Fracture toughness; J-R curve; GTN model; Finite element analysis; Stress field; 

Constraint parameter; SE(T) specimen; (k factor-based) normalization method 
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Chapter 1 Introduction 

1.1 Background 

Canada has been endowed with an abundance of hydrocarbon natural resources [1]. Among 

all transportation modes, steel transmission pipelines are one of the safest and most 

efficient modes for transporting hydrocarbons with a massive volume over a long distance. 

The development of the Canadian oil and gas pipeline system started nearly 60 years ago, 

and today the system contains about 112,000 kilometers of federally-regulated pipelines.  

Although rare, failures of oil and gas pipelines do occur and can have severe consequences 

in terms of the human safety, environmental damage and economic loss [2].  Planar defects 

in the pipe base metal and weldments can pose a significant threat to the structural integrity 

of pipelines. Planar defects, in contrast to blunt or three-dimensional defects, are cracks or 

crack-like flaws that result from various causes such as stress corrosion cracking, fatigue, 

welding, and interference by excavation equipment. The fitness-for-service (FFS) 

assessment of pipelines containing planar defects relies heavily on the theory and 

application of fracture mechanics. A brief introduction of the fundamentals of fracture 

mechanics is provided in the following sections.   

1.2 Fundamentals of fracture mechanics 

1.2.1 Overview 

Fracture mechanics can be divided into linear elastic fracture mechanics (LEFM) and 

elastic plastic fracture mechanics (EPFM) [3]. LEFM describes the fracture behavior of a 

material when the non-linear plastic deformation is restricted within a small region 

surrounding the crack tip, known as the small-scale yielding (SSY) condition. EPFM 

applies to the large-scale yielding (LSY) condition, which corresponds to significant plastic 

deformation near the crack tip. Both LEFM and EPFM are applied extensively in pipeline 

integrity assessment. 
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In terms of the direction of the loading relative to the crack, three different loading modes 

are classified in fracture mechanics, namely the opening (Mode I), in-plane shearing (Mode 

II), and out-of-plane shearing modes (Mode III) (see Fig. 1.1, in which x, y and z represent 

a Cartesian coordinate system). The deformation near the crack tip in any analysis can be 

treated as one or a combination of these three local displacement modes. Also, the stress 

field in the vicinity of the crack tip can be treated as one or a combination of these three 

types of stress fields. Since the opening mode is most relevant to the pipeline integrity 

assessment, the remainder of this thesis is focused on this loading mode.  

 

 (a) Mode I: opening mode (b) Mode II: in-plane (c) Mode III: out-of-plane 

                                                           shearing mode         shearing mode 

Fig. 1.1 Three loading modes in fracture mechanics 

1.2.2 Fracture mechanisms 

Fracture can be categorised into brittle and ductile fracture, depending on the extent of the 

plastic deformation before the onset of crack initiation or propagation. Materials (e.g. 

ceramic) exhibiting brittle fracture behavior absorb little energy prior to fracture.  Figure 

1.2(a) shows the mechanism of brittle fracture: it results from the splitting apart of the 

atomic planes of the material, and is often accompanied by a shiny, flat fracture surface [3].  

Materials failing by ductile fracture undergo significant plastic deformation in the vicinity 

of the planar defect before fracture failure [4]. For instance, failure associated with leakage 

or rupture of high-toughness pipeline steels is usually preceded by ductile fracture, where 

crack grows slowly and stably [5]. Figure 1.2(b) shows the mechanism of ductile fracture. 

As is shown, two populations of different sized impurities (i.e. large inclusions and small 

carbides) typically exist in the steel. The ductile fracture is proceeded by the nucleation, 
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growth and coalescence of micro-voids, which form at the locations of the impurities. 

Modern pipeline steels typically have high fracture toughness and are operated at 

temperatures above the nil-ductility transition (NDT) temperature; therefore, most fracture 

problems in pipelines belong to the ductile fracture domain. This is the focus of this thesis.  

 

(a) Brittle fracture 

 

(b) Ductile fracture 

Fig. 1.2 Mechanism of brittle and ductile facture 

1.2.3 Linear elastic fracture mechanics 

The fundamental concept of LEFM is that the stress field near the crack tip can be 

characterized by a single parameter- the stress intensity factor KI (where the subscript ‘I’ 

denotes the Mode I loading). Consider an arbitrary-shaped two-dimensional (2D) body 

containing a crack subjected to the Mode I loading (see Fig. 1.3), where 2D means that the 

shape of the body does not change in the z-direction (perpendicular to the x-y plane).  
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Fig. 1.3 Stress field near the crack tip 

If the dimension of the body in the z-direction is very large compared with the dimensions 

in the x- and y-direction, then it is a plane strain problem. If the dimension of the body in 

the z-direction is very small compared with the dimensions in the x- and y-direction, then 

it is a plane stress problem. The stress field at the crack tip can be expressed as [4]: 

lim
𝑟→0

𝜎𝑖𝑗 = (
𝐾𝐼

√2𝜋𝑟
) 𝑓𝑖𝑗(𝜃) (1.1) 

where 

σij is the stress tensor, in which i and j are the subscripts of tensors; 

r and θ are coordinates in the polar coordinate system originated from the crack tip; 

fij is a dimensionless function of θ; 

KI is the stress intensity factor in the unit of force/area×(length)0.5. 

Based on the stress field solution in Eq. (1.1), the stresses and displacements near the crack 

tip can be completely determined by the stress intensity factor KI, which is a function of 

the external loading and geometry of the cracked body. This is the so-called single 

parameter characterization. The equation for calculating KI is given as follows: 
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𝐾𝐼 = 𝑌𝜎√𝜋𝑎 (1.2) 

where  

σ is the nominal stress in the uncracked section or the far-field stress; 

a is the crack length; 

Y is the geometry factor, which depends on the configuration and boundary condition of 

the cracked body. The values of Y for various configurations can be found in fracture 

mechanics handbooks [4]. 

According to Eq. (1.1), the stresses increase as r decreases. At r = 0, the stresses become 

infinite, which is the so-called 1/r0.5 singularity. The singularity is due to the sharp crack 

tip. For ductile fracture, however, yielding occurs when the stresses exceed the yielding 

limit, and a plastic zone forms ahead of the crack tip. The size of the plastic zone, rp, can 

be approximately calculated as follows [6]: 

𝑟𝑝 =

{
 
 

 
 1

3𝜋
(
𝐾𝐼
𝜎𝑌𝑆

)
2

(Plane strain)

1

𝜋
(
𝐾𝐼
𝜎𝑌𝑆

)
2

(Plane stress)

 (1.3) 

where 

σYS is the yield strength. 

As long as the plastic zone is sufficiently small compared with the relevant local geometry 

such as the crack length or remaining ligament length, i.e. the SSY condition holds, Eq. 

(1.1) is applicable within an annulus ring, which is the so-called K-dominated zone and is 

defined by: 

𝑟𝑝 ≤ 𝑟 < (0.1 − 0.2)𝑎 (1.4) 
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Under SSY, the energy release rate G, defined as the rate of decrease in the potential energy 

with a unit increase in the crack area, can be related to KI as follows: 

𝐺 =
𝐾𝐼
2

𝐸2𝐷
 (1.5) 

where 

E2D is the elastic modulus in the 2D analysis and defined as: 

𝐸2𝐷 = {
𝐸 (Plane strain)

𝐸′ =
𝐸

1 − 𝜈2
(Plane stress)

 (1.6) 

where 

E is Young’s modulus; 

ν is Poisson’s ratio. 

The critical stress intensity factor, KIC, is the value of KI at which fracture occurs and 

defined as the fracture toughness.  KIC is a material property at a given temperature.  

1.2.4 Elastic plastic fracture mechanics 

For LEFM to be applicable, the SSY condition must hold. If the plastic zone becomes too 

large, the K-dominated zone will lose validity, and KI is no longer suitable to characterize 

the crack-tip stress fields. Elastic-plastic fracture mechanics (EPFM) is introduced to 

overcome this limitation. In EPFM, the J-integral proposed by Rice [7] and the crack tip 

opening displacement (CTOD) proposed by Wells [8] are the two most important concepts. 

i) J-integral: 

Figure 1.4 shows the uniaxial stress-strain relationship for elastic plastic and nonlinear 

elastic materials. The difference between them is the unloading paths. If the stress in each 

material increases monotonically and no unloading occurs, there is no difference between 
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these two stress-strain relationships. It follows the deformation theory of plasticity, which 

relates the total stress to total strain, and is equivalent to the nonlinear elastic theory under 

the monotonic loading condition. 

 

Fig. 1.4 Elastic plastic and nonlinear elastic stress-strain relationships 

By applying the small-strain deformation theory of plasticity (i.e. small-strain nonlinear 

elastic theory) and considering a cracked homogeneous 2D body of linear or nonlinear 

elastic material subjected to a monotonic loading as shown in Fig. 1.5, the J-integral is 

defined as: 

𝐽 = ∫ (𝑤𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠)
Γ

 (1.7) 

𝑤 = 𝑤(𝑥, 𝑦) = 𝑤(𝜀𝑖𝑗) = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀𝑖𝑗

0

 (1.8) 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗 (1.9) 

where 

Γ is an arbitrary counter-clockwise path surrounding the crack tip; 

ui is the components of the displacement vector; 
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Ti is the component of the traction vector on the contour Γ; 

w is the strain energy density per unit volume; 

ds is the infinitesimal arc length along the contour Γ; 

ɛij (i, j = 1, 2, or 3) is the strain tensor; 

nj is the component of the unit normal vector to Γ. 

 

Fig. 1.5 Schematic of J-integral 

Rice [7] showed that the value of J-integral is independent of the integration path Γ around 

the crack tip. It was further shown that J is also equivalent to the energy release rate for the 

nonlinear elastic cracked body, and reduces to G for a linear elastic crack body. Similar to 

the stress intensity factor, J-integral is also an intensity parameter characterizing the stress 

fields near the crack tip.  

Consider a 2D (i.e. plane strain or plane stress) cracked body characterized by the 

deformation theory of plasticity and a Ramberg-Osgood stress-strain relationship as follow: 

𝜀

𝜀0
=
𝜎

𝜎0
+ 𝛼𝑅−𝑂 (

𝜎

𝜎0
)
𝑛𝑅−𝑂

 (1.10) 

where 



9 

 

σ0 is the reference stress and typically set equal to the yield strength; 

ɛ0 = σ0/E is the corresponding reference strain; 

αR-O and nR-O are parameters of the Ramberg-Osgood stress-strain relationship and nR-O is 

commonly known as the strain-hardening exponent. 

Hutchinson [9] as well as Rice and Rosengren [10] independently showed that the stress 

and strain fields near the crack tip can be calculated by J at distances where the elastic 

strain is negligible compared to the plastic strain as follows: 

(𝜎𝑖𝑗)𝐻𝑅𝑅 = 𝜎0 (
𝐸𝐽

𝛼𝑅−𝑂𝜎0
2𝐼𝑛𝑟

)

1
𝑛𝑅−𝑂+1

𝜎̃𝑖𝑗(𝑛, 𝜃) 
(1.11) 

(𝜀𝑖𝑗)𝐻𝑅𝑅 =
𝛼𝜎0
𝐸
(

𝐸𝐽

𝛼𝑅−𝑂𝜎0
2𝐼𝑛𝑟

)

1
𝑛𝑅−𝑂+1

𝜀𝑖̃𝑗(𝑛, 𝜃) 
(1.12) 

where 

In is an integration constant that depends only on nR-O;  

𝜎̃𝑖𝑗 and 𝜀𝑖̃𝑗 are the dimensionless functions of nR-O and θ, and stress state (plane strain or 

plane stress). 

Equations (1.11) and (1.12) are the so-called HRR solutions (singularity). Note that the 

HRR solutions are only valid at locations where the elastic strain is negligible compared 

with the plastic strain and where the small strain assumption is still valid.  Such locations 

are represented by an annulus ring, known as the J-dominated zone, surrounding the crack 

tip.  Figure 1.6 shows the K- and J- dominated zones under SSY condition. 
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Fig. 1.6 Effect of plasticity on the crack-tip stress fields under SSY 

It should be also noted that the HRR field becomes invalid under the LSY condition, when 

the finite strain zone becomes as large as the plastic zone. However, under this condition, 

the J-integral can still be calculated, though it does not uniquely characterize the crack-tip 

stress and strain fields. In this case, the J-integral is a characterizing parameter that 

quantifies the severity of the crack-tip fields. For ductile material, analogous to KI and KIC, 

when the crack driving force J reaches the critical toughness value JIC, the stable crack 

growth initiates. 

ii) CTOD: 

In EPFM, a parameter alternative to the J-integral for characterizing the stress field near 

the crack tip is the crack tip opening displacement (CTOD), also often denoted as δ. Stable 

fracture occurs when CTOD reaches a critical value δIC. Two most commonly used 

definitions for CTOD are the displacement at the original crack tip and the 45-degree 

intercept from the current (blunted) crack tip (see Figs. 1.7(a) and (b), respectively). It is 

found that for materials with high toughness, the initial sharp crack tip is blunted before 

subsequent ductile tearing. If a semicircle (blunted) crack tip is assumed, these two 

definitions are essentially equivalent.  
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(a) Displacement at the original crack tip (b) Intersection of a 90-degree vertex 

Fig. 1.7 Schematic of CTOD definitions 

CTOD can be related to KI in LEFM and J in EPFM as follows: 

𝛿 =

{
  
 

  
 
(1 − 𝜈2)𝐾𝐼

2

2𝐸𝜎0
(Plane strain, LEFM)

𝐾𝐼
2

𝐸𝜎0
(Plane stress, LEFM)

𝐽

𝑚𝜎0
(EPFM)

 (1.13) 

where 

m is a dimensionless constraint parameter that is approximately 1 for plane stress condition 

and 2 for plane strain condition [11]. In the EPFM, typical range for m values is between 

1.5 and 2 and m is strongly dependent on the strain hardening exponent.  

1.2.5 Fracture toughness resistance curve 

The relationship between the fracture toughness and crack extension (denoted by ‘Δa’) 

under stable crack growth is defined as the fracture toughness resistance curve (the so-

called R-curve). Materials with high toughness typically do not fail suddenly at a particular 

J or CTOD. The fracture toughness increases with the crack growth. The fracture toughness 

resistance curve is a key input to the FFS assessment of modern high-toughness steel 

pipelines. Figure 1.8 shows a typical J-R curve for a ductile material. At initial stages of 

the deformation, the J-R curve rises rapidly due to the small amount of crack blunting. 

Once JI reaches JIC, crack growth initiates. Afterwards, the crack grows stably with the 
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increase of the load. The load-carrying capacity of the structure increases with the rise of 

the J-R curve. 

 

Fig. 1.8 Schematic J-R curve for a ductile material 

In practice, the R-curve tests are conducted using small-scale laboratory specimens, such 

as single edge notched bending (SE(B)), compact tension (C(T)), single edge notched 

tension (SE(T)) specimens. In order to experimentally evaluate the R-curve for these 

specimens, the load versus load line displacement (P-LLD) curve or the load versus crack 

mouth opening displacement (P-CMOD) curve is needed. Figures 1.9(a) to (c) illustrate 

the plane-sided SE(B), C(T), and SE(T) specimens as well as LLD and CMOD (also 

denoted as ‘V’).  Note that B, BN, S, W, H and a denote the specimen thickness, net thickness, 

span, width, daylight distance between grips and crack length, respectively. Side-grooving 

is a common practice in fracture toughness tests to promote a straight crack front during 

the stable crack growth [12] (see Fig. 1.9(d)). 

 

(a) Plain-sided SE(B) specimen 
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(b) Plain-sided C(T) specimen 

 

(c) Plain-sided clamped SE(T) specimen 

 

(d) Schematic of side grooves 

Fig. 1.9 Schematic of small-scale specimens 
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1.2.6 Resistance curve test methods 

The single-specimen technique is commonly used to experimentally determine the 

resistance curve from a single small-scale lab specimen, e.g. SE(B) or C(T) specimen [12]. 

The single-specimen technique can be further classified into three different methods.  The 

first one is the elastic unloading compliance (UC) method, which has been adopted as a 

standard practice and widely used to measure the resistance curve. The second one is the 

direct current potential drop (DCPD) method. However, for both methods, either repeated 

loading-unloading procedures or complicated testing equipment are involved in the test. 

The third one is the normalization (NM) method, which reduces the complexity involved 

in the measurements during the test and is suitable to generate resistance curves under high 

temperatures, high loading rates or aggressive testing environments when it is not possible 

to measure crack extension directly. The application of the NM method to the SE(T) 

specimen is studied in this thesis.  

1.2.7 Constraint effects  

The crack tip constraint is defined as a measure of the resistance to plastic deformation [13] 

(see Fig. 1.10). The specimen geometric configuration (i.e. crack depth ratio a/W, thickness 

to width ratio B/W and specimen width W) and loading configuration (i.e. bending vs. 

tension), as well as material mismatch (i.e. strength mismatch and work hardening 

mismatch) can significantly affect the R-curve due to the so-called ‘constraint effect’.  

Conventional fracture toughness testing specimens, such as deeply-cracked SE(B) and C(T) 

specimen under predominantly bending deformation are designed to guarantee high levels 

of crack-tip constraint and therefore lead to low toughness values.   

Given that planar defects on oil and gas pipelines are typically shallow and subjected to 

low constraint levels, the use of the SE(T) specimen to determine R-curve has gained much 

attention since the crack-tip stress and strain fields of SE(T) specimen are more relevant to 

those of the full-scale pipe containing surface cracks under internal pressure and 

longitudinal tension [14]. Therefore, conducting fracture toughness testing on SE(T) 

specimens can result in a more accurate assessment for the pipeline structure in terms of 
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ductile crack initiation and growth compared to SE(B) or C(T) specimens. British Standard 

Institution (BSI) [15] have standardized the use of the clamped SE(T) specimen to conduct 

fracture resistance testing.  

 

Fig. 1.10 A schematic illustration of constraint effect on fracture toughness 

1.3 Research objectives and significance 

The goals of the research reported in this thesis include numerically simulating ductile 

crack growth for clamped SE(T) specimens based on the Gurson-Tvergaard-Needleman 

(GTN) constitutive model, validating the NM method for SE(T) specimens with various 

geometric configurations in terms of developing J-R curves, and improving the 

conventional NM method based on the J-CMOD relation. The research outcome will 

facilitate the evaluation of J-R curves using an improved k factor-based NM method. The 

specific objectives of the study include: 

1). Present a comprehensive review on the mechanism and modelling approaches to ductile 

fracture, particularly on the GTN constitutive relation. 

2). Calibrate the micromechanical parameters for X80-grade pipeline steel using 

experimental results from SE(B) and SE(T) specimens based on FEA. 

3). Investigate the ability of using the computational cell methodology incorporating the 

GTN model to simulate ductile crack growth. 
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4). Describe and compare the stress field and constraint effects for SE(T) specimens based 

on FEA involving stationary and growing cracks.  

5). Validate the applicability of NM method to SE(T) specimens with various geometric 

configurations (i.e. a0/W, B/W, plane-sided (PS)/side-grooved (SG)). 

6). Propose the so-called k factor-based NM method based on the inherent J-CMOD 

relation of each fracture specimen to simplify the conventional NM method. 

1.4 Thesis format and outline 

This thesis has a monograph format and organizes chapters around a central topic: 

‘Investigation of ductile crack growth and normalization method for SE(T) specimen using 

finite element analyses’, under the regulations by Graduate and Postdoctoral Studies at 

University of Western Ontario.  

This thesis is structured as follows: 

Chapter 1: Introduce the entire thesis where a brief review of fundamentals of fracture 

mechanics is presented.  

Chapter 2: Summarise a comprehensive review of mechanism of ductile crack growth. 

Different approaches of modelling ductile crack growth are also presented. 

Chapter 3: Describe the calibration process of micromechanical parameters and 

numerically simulate the FE models for standard SE(T) specimens with various geometric 

configurations. The stress fields and constraint parameters of the GTN models are 

examined, and compared with the stationary-crack FEA. 

Chapter 4: Validate the applicability of NM method for SE(T) specimens. In addition, the 

so-called k factor-based NM method is proposed to simplify and improve the conventional 

NM method.  

Chapter 5: Summary, conclusions and recommendations for future research. 
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Chapter 2 Literature Review: Mechanism and modelling of ductile 

fracture 

2.1 Approaches to analyze ductile fracture 

2.1.1 Global approach 

One of the engineering approaches for crack-like defect assessment of energy pipelines is 

based on the fracture toughness input (i.e. J-integral fracture parameter by Rice [7]). This 

elastic-plastic (non-linear) fracture mechanics approach is categorized as ‘global approach 

[16]’ (also termed as ‘global failure criterion’). The global approach applies the crack 

growth resistance curves (i.e. J-R curve) tested from small laboratory specimens to the 

actual surface defects in pipelines and has been extensively studied in the past. However, 

it has been shown that the fracture toughness is dependent on the specimen geometry, 

specimen size, crack depth and loading mode. This is known as the ‘constraint effect’.  

The reason for the ‘constraint effect’ lies in that, the stress state near the crack-tip region 

deviates from the HRR singularity solutions [4] as plastic deformation increases. This led 

to the development of two-parameter approaches (e.g. K-T approach [17], J-Q approach 

[18, 19], J-A2 approach [20, 21], J-h approach [22], J-TZ approach [23-25]). Note that the 

J-integral also has the limitation to be applied to weld joints or heat affected zones (HAZ) 

due to the complex geometry, residual stress, and plastic mismatching of material in those 

regions. This limitation led to the proposal of three-parameter approaches (i.e. J-Q-M 

approach [26], J-Tg-Tm approach [27]). Moreover, the J-integral method can only deal with 

pre-existing cracks and is not able to model crack initiation or extension [16]. The above-

mentioned limitations associated with the global approach prompted the development of a 

more physical-based approach, i.e. the local approach, to describe ductile fracture. 

2.1.2 Local approach 

The local approach [28] takes into account the physical microstructural process during 

ductile fracture. This approach has been developed extensively during the past four decades. 
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It has the advantages of being able to simulate fracture tests that are difficult to carry out, 

and most importantly, capturing the failure initiation and subsequent crack growth [29]. 

Various local approach-based models can be classified into uncoupled and coupled models 

[30]. The uncoupled model assumes that the local effect (i.e. damage due to micro-voids 

nucleation, growth and coalescence in material matrix) is not significant and does not take 

into account the effect of void growth on material behavior (i.e. softening). The onset of 

coalescence is post-processed using node release technique based on certain critical 

fracture criterion (e.g. critical void growth ratio (R/R0)C in [31], critical cohesive energy 

(Γ0)C in [32, 33] and critical void damage variable (VD)C in [34, 35]). Typical uncoupled 

models include the void growth models proposed by Rice et al. [31], McClintock et al. [36], 

Thomason [37], Tai et al. [34, 35], and cohesive zone models developed by Scheider et al. 

[32] and Cornec et al. [33]. 

The coupled model, on the other hand, considers a non-negligible micromechanical effect 

during fracture initiation and damage process. The void volume fraction is incorporated 

into the constitutive model in the local approach, and the crack extension is automatically 

captured by element extinction at the crack tip. Two typical coupled models are the 

Rousselier [38] and Gurson models [39, 40]. The Rousselier model simulates the micro-

void evolution by introducing a state variable into the constitutive relationships, while the 

Gurson model proposes a yield potential based on cell studies with a concentric spherical 

void.  

The categorization of approaches to analyze ductile fracture is schematically shown in Fig. 

2.1. Note that the GTN model, complete Gurson model (CGM) and traction-separation 

model are three improved versions of the original Gurson model. In this thesis, the GTN 

model is used to describe the progressive void growth and subsequent macroscopic material 

softening within computational cells. The Gurson constitutive model for dilatant plasticity 

and the computational cell methodology will be described in Sections 2.3 and 2.4, 

respectively. 
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Fig. 2.1 Engineering approaches and models for ductile fracture 

2.2 Physical damage mechanism of ductile material 

Date back to late 1940’s evolved the early understanding of the physical damage 

mechanism of ductile materials on microstructural level. In 1948, Tipper [41] suggested 

that micro-void initiation occurs by fracture of non-metallic inclusions and by de-cohesion 

of the inclusion-matrix interface, which was subsequently verified by Puttick [42] and 

Rogers [43] in their tensile bar experiments. Gurland et al. [44] suggested that ductile 

fracture is proceeded by voids formation at inclusions, growth and internal striction. Goods 

et al. [45] later found that the nucleation strain increases with particle size, particle volume 

fraction, particle shape and temperature effect. It was also suggested that the nucleation 

strain can be predicted quantitatively if a critical stress is assumed when the interface 

breaks. Hahn et al. [46] studied the effect of grain size and fracture toughness of alloy 

sheets, and concluded that the linking-up of voids is accomplished by the rupture of the 

intervening ligaments.  

All the above-mentioned studies showed the evidence that voids/pores exist in all metallic 

materials, at any stages of fracture. For very pure single crystal materials (such as quartz 

and gemstones), micro-void formation is observed at dislocation cell walls [47]. For most 

practical materials, two idealized populations of different sized inclusions exist and micro-

voids nucleate at these locations, including large inclusions (e.g. MnS and Al2O3) and small 

inclusions (e.g. iron carbides) (see Fig. 1.2(b)). A large number of experimental results 

have shown that the macroscopic ductile fracture process is related to the nucleation, 

growth and coalescence of micro-voids [36, 48]. This process is briefly described as 

follows:  
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The existence of inclusions weakens the bonding strength with surrounding matrix material 

and thus, make de-bonding much easier due to the non-synchronized increase of stress and 

transformation. In this way, nucleation starts from fracture of the inclusions and/or de-

cohesion (also termed as ‘de-bonding’) within the steel matrix (see Figs. 2.2(a) and 2.2(b)), 

and subsequently, forms micro-voids. Note that micro-voids may also pre-exist in materials. 

As the applied stress and strain level increases, these micro-voids consistently grow larger 

(see Fig. 2.2(c)). At the final stage, micro-voids coalesce due to internal necking (large 

primary voids coalesce at high stress triaxiality), or micro-void sheeting (coalescence of 

secondary voids along inter-void ligaments while primary voids remain small at low stress 

triaxiality) (see Figs. 2.2(d) and 2.2(e), respectively), and result in ductile fracture in the 

fracture process zone (FPZ). 

 

(a) Initial state  (b) Void nucleation  (c)Void growth 

 

                 (d) Internal necking    (e) Void sheeting 

Fig. 2.2 Schematic of the micro-mechanisms of ductile fracture 
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2.3 GTN model for dilatant plasticity 

2.3.1 Yield condition and flow rule 

Based on a rigid plastic material behavior and upper bound solution for spherically 

symmetric deformations of a single spherical void, Gurson [39, 40] in 1979 proposed the 

following yield condition for material with a single spherical void:  

Φ(𝜎𝑒, 𝜎𝑚, 𝜎𝑓 , 𝑓) = (
𝜎𝑒
𝜎𝑓
)

2

+ 2𝑓 cosh (
3𝜎𝑚
2𝜎𝑓

) − 1 − 𝑓2 = 0 (2.1) 

𝜎𝑒 = √
1

2
[(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2 + 6(𝜎12
2 + 𝜎23

2 + 𝜎31
2 )2] (2.2) 

𝜎𝑚 =
1

3
(𝜎11 + 𝜎22 + 𝜎33) (2.3) 

where  

σ11, σ22, σ33, σ12, σ23, σ31 are the stress components of stress tensor σij, in which i, j = 1, 2, 3; 

σe is the effective von Mises stress;  

σm is the mean stress (i.e. ‘hydrostatic stress’);  

σf is the flow stress of the matrix material as a function of the equivalent plastic strain;  

f is the current void volume fraction (VVF) in the material, and is defined as Vvoid/Vmatrix, 

in which Vvoid is the void volume and Vmatrix is the volume of the matrix material cell. In Eq. 

(2.1), if f = 0, the material is fully dense, and the Gurson yield condition reduces to the 

classic von Mises yield condition. If f = 1, the material is completely voided and has no 

stress-carrying capacity.  

The most significant difference between the Gurson model and other conventional plastic 

models (i.e. the von Mises plasticity theory) lies in that the hydrostatic stress and void 

volume fraction are included in the Gurson yield condition. However, note that the material 
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in the Gurson model is idealized to be simply rigid-plastic and the yield function is the 

approximate solution resulting from the upper bound theorem of plasticity.  

In 1981, the Gurson model was modified by Tvergaard [49] (the so-called ‘GT model’) by 

taking into account the void interaction effects for periodic arrays of cylindrical and 

spherical voids. Three q-parameters were introduced into the Gurson model: 

Φ(𝜎𝑒 , 𝜎𝑚, 𝜎𝑓 , 𝑓) = (
𝜎𝑒
𝜎𝑓
)

2

+ 2𝑞1𝑓 cosh (
3𝑞2𝜎𝑚
2𝜎𝑓

) − 1 − 𝑞3𝑓
2 = 0 (2.4) 

where 

the q-parameters are coefficients related to the void volume fraction and pressure terms. q1 

= 1.5, q2 = 1.5 and q3 = q1
2 were proposed to match the numerical studies of ‘ordered’ 

voided materials in plane strain tensile fields well with experimental results [49]. Note that 

the original Gurson model can be recovered by setting q1 = q2 = q3 = 1. 

Figure 2.3 shows the yield surfaces for different levels of porosity in the σe/σf -|σm|/σf plane 

of the GT model. Note that when f = q3
-0.5, the yield surface shrinks into a point and the 

stress-carrying capacity of the material vanishes. The straight line shows the case when f = 

0, and the yield surface turns into that for a von Mises solid, i.e. yielding is independent of 

the hydrostatic stress. 

 

Fig. 2.3 Yield surface dependence on the hydrostatic tension and porosity 
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The Gurson model itself cannot predict the void coalescence or capture the sudden loss of 

load-carrying capacity at the onset of micro-void coalescence [50]. Tvergaard and 

Needleman [51] took into account the void growth rate acceleration when a critical void 

volume fraction fC is exceeded and proposed the ‘Gurson-Tvergaard-Needleman model’ 

(termed as ‘GTN model’ henceforth in this thesis). The corresponding yield condition and 

modified void volume fraction are given by: 

Φ(𝜎𝑒, 𝜎𝑚, 𝜎𝑓 , 𝑓
∗) = (

𝜎𝑒
𝜎𝑓
)

2

+ 2𝑞1𝑓
∗ cosh (

3𝑞2𝜎𝑚
2𝜎𝑓

) − 1 − 𝑞3𝑓
∗2 = 0 (2.5) 

in which 

𝑓∗ = {

𝑓 (𝑓 ≤ 𝑓𝐶)

𝑓𝐶 + 𝛿𝑎(𝑓 − 𝑓𝐶) (𝑓𝐶 < 𝑓 < 𝑓𝐹)
𝑓𝑢
∗ (𝑓 ≥ 𝑓𝐶)

 (2.6) 

𝛿𝑎 =
𝑓𝑢
∗ − 𝑓𝐶
𝑓𝐹 − 𝑓𝐶

 (2.7) 

𝑓𝑢
∗ =

𝑞1 +√𝑞1
2 − 𝑞3

𝑞3
=
1

𝑞1
 (2.8) 

where  

f* is the modified void volume fraction; 

fu
* is the ultimate value of the damage parameter f* and has no physical meaning. Note that 

the product fu
*q1 is not necessarily 1 in practical applications to keep numerical stability 

[52]; 

δa is the accelerating factor. 

The flow rule in the GTN model is derived from the plastic potential, which is the same as 

the yield condition Φ according to the associated flow rule [3]. The evolution of the 
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equivalent plastic strain, which controls matrix hardening is described by setting the plastic 

work rate equal to the matrix plastic work rate. 

2.3.2 Void nucleation 

The change of void volume fraction is partly due to the growth of existing voids and to a 

less extent, due to the nucleation of new voids: 

𝑓̇ = 𝑓𝑛̇𝑢𝑐𝑙 + 𝑓𝑔̇𝑟 (2.9) 

where 

𝑓𝑛̇𝑢𝑐𝑙 represents the change of void volume fraction due to the nucleation of new voids; 

𝑓𝑔̇𝑟 represents the change of void volume fraction due to the growth of existing voids. 

The nucleation of larger inclusions commonly occurs at a relatively low stress state at the 

beginning stage of the plastic deformation [26], well below the peak stress state that 

develops in front of the crack tip [53, 54]. Therefore, it is a common practice to assign an 

initial void volume fraction f0 to replace large particles without significantly impacting the 

prediction of material toughness.  

As for the evolution of f due to the nucleation of secondary small voids, it is a common 

practice to relate it to an increment of strain and an increment of stress [52], described by 

[55]: 

𝑓𝑛̇𝑢𝑐𝑙 = 𝐴𝑁1𝜀𝑒̇𝑞
𝑝 + 𝐴𝑁2(𝜎̇𝑓 + 𝜎̇𝑚) (2.10) 

where  

AN1 and AN2 are the nucleation intensities due to equivalent plastic strain increment and 

stress increment, respectively, both of which are dependent on deformation and hydrostatic 

stress history [56]; 

𝜀𝑒̇𝑞
𝑝

 represents the equivalent plastic strain increment; 
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𝜎̇𝑓 represents the flow stress increment; 

𝜎̇𝑚 represents the hydrostatic stress increment. 

Three nucleation criteria can be further categorized based on Eq. (2.10):  

i) Plastic strain-controlled nucleation criterion: 

𝐴𝑁1 =
𝑓𝑁𝜀

𝑠𝑁√2𝜋
exp [−

1

2
(
𝜀𝑒𝑞
𝑝 − 𝜀𝑁

𝑠𝑁
)

2

] (2.11) 

while  

AN2 = 0 in Eq. (2.10); 

 fNɛ is the void volume fraction of nucleated voids. It is determined so that the total void 

volume nucleated is consistent with the volume fraction of particles. 

Plastic strain-controlled nucleation criterion makes an idealization that there is a mean 

equivalent plastic strain for nucleation (i.e. ɛN, also termed as mean void nucleation strain), 

and the nucleation process follows a normal distribution about ɛN. sN is the corresponding 

standard deviation of the normal distribution. 

ii) Stress-controlled nucleation criterion: 

𝐴𝑁2 =
𝑓𝑁𝜎

𝑠𝑁𝜎𝑌𝑆√2𝜋
exp [−

1

2
(
𝜎𝑓 + 𝜎𝑚 − 𝜎𝑁

𝑠𝑁𝜎𝑌𝑆
)
2

] (2.12) 

while  

AN1 = 0 in Eq. (2.10); 

fNσ is the void volume fraction of nucleated voids. It is determined so that the total void 

volume nucleated is consistent with the volume fraction of particles; 

σYS is the 0.2%-offset yield strength of the material. 
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Stress-controlled nucleation criterion assumes that the nucleation criterion only depends 

on the maximum stress transmitted across the particle-matrix interface. The nucleation 

stress distributes in a normal fashion about σN. 

iii) Mixed nucleation criterion: 

AN1 ≠ 0 and AN2 ≠ 0 in the mixed nucleation criterion. The nucleation is controlled by a 

combination of the strain- and stress-controlled nucleation criteria, i.e. AN1 ≠ 0 and AN2 ≠ 0 

in Eq. (2.10). In practice, inclusions and particles with different sizes and shapes exist non-

uniformly in the material and the actual nucleation process is dependent on the intrinsic 

properties of the material. The stress is small at the beginning stage of nucleation and 

micro-voids nucleate at larger inclusions, following the stress-controlled nucleation 

criterion. At the intermediate or final stage of nucleation, micro-voids nucleate at the 

particles with smaller sizes, following the plastic strain-controlled criterion. Thus, the 

mixed nucleation criterion is more representative of general cases. 

2.3.3 Void growth 

In practical modeling of the void growth, the increase in f is treated as one entire large void 

growth as illustrated in Fig. 2.4. At the i th loading increment (see Fig. 2.4(a)), the void 

volume fraction is f0. At the next (i+1) th loading increment, the void volume fraction is f0 

+ fgr + fnucl (see Fig. 2.4(b)) and is equivalent to a homogenized f (see Fig. 2.4(c)). 

 

(a) i th loading increment   (b) (i+1) th loading increment 
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(c) Equivalent (i+1) th loading increment 

Fig. 2.4 Homogenization treatment of void growth 

The evolution of f due to the void growth is described by the law of conservation of mass 

and plastic incompressibility of the matrix material, expressed as: 

𝑓̇𝑔𝑟 = (1 − 𝑓)(𝜀1̇1
𝑝𝑙 + 𝜀2̇2

𝑝𝑙 + 𝜀3̇3
𝑝𝑙) (2.13) 

where  

𝜀1̇1
𝑝𝑙
+ 𝜀2̇2

𝑝𝑙
+ 𝜀3̇3

𝑝𝑙
 is the rate of the change of plastic hydrostatic strain; 

𝜀1̇1
𝑝𝑙

, 𝜀2̇2
𝑝𝑙

, 𝜀3̇3
𝑝𝑙

 are the rate of the change of three components of plastic strain tensors. 

2.3.4 Void coalescence 

As the plastic strain increases with loading, a second population of much smaller inclusions, 

such as iron carbides assist the final stage of coalescence through localization of plastic 

flow between the voids. Note that they do not nucleate until large plastic strains present 

and therefore do not strongly affect the peak stress capacity of the material. The void 

coalescence is a relatively rapid process with large void volume fraction increases at the 

end of the localization of plastic flow between micro-voids. The original Gurson model 

does not intrinsically include a coalescence criterion to model the joining between micro-

voids after extensive damage. Currently there are three coalescence criteria: the critical 
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void volume fraction, Thomason’s plastic limit load, and traction-separation model criteria. 

They are briefly described in the following: 

The critical void volume fraction criterion was proposed by Tvergaard and Needleman [51] 

(see Eqs. (2.6), (2.7) and (2.8)). It considers the acceleration of void volume growth rate 

and rapid load-carrying capacity drop once a critical value fC is reached (see Fig. 2.5(a)). 

At this point, coalescence occurs. When f reaches the void volume fraction at failure fF 

(also denoted as fE, see Fig. 2.5(b)), the failure at the material point occurs. Figure 2.6 

depicts the relation between f* and f. In ABAQUS, fC and fF are user-defined parameters.  

Figures. 2.7(a) and 2.7(b) respectively show the comparison results of void volume fraction 

(VVF) increase verses crack mouth opening displacement (CMOD) and the load-carrying 

capacity verses CMOD for two materials with different fC values conducted in a 2D plain 

strain FEA of SE(B) specimen with a0/W = 0.5 using ABAQUS. The details about FEA 

will be introduced in Chapter 3. Here, Material #1 has a property of: f0 = 0.0001, fC = 0.02 

and fF = 0.1, while Material #2 has a property of: f0 = 0.0001, fC = fF = 0.1. As can be 

observed, the critical value fC marks the onset of a significant drop of the load-carrying 

capacity. 

 

(a) f = fC    (b) f = fF 

Fig. 2.5 Schematic illustration of void coalescence 
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Fig. 2.6 Relation between f* and f 

  

(a) P-CMOD curves    (b) f-CMOD curves 

Fig. 2.7 Schematic illustration of Eqs. (2.6), (2.7) and (2.8) (from 2D FEA) 

According to the plastic limit load criterion proposed by Thomason [37], the coalescence 

between micro-voids results from the plastic limit load (microscopic internal necking) of 

the matrix between them. At the beginning of deformation, micro-voids are small and the 

stress follows a homogenous deformation state during nucleation and growth. As VVF 

increases and the plastic deformation develops, the stress needed for localized deformation 

decreases and a bifurcation is reached at this point [50]. The localized deformation of 

micro-voids is very different from the homogenous deformation of micro-voids and both 
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need to be considered during coalescence. The plastic limit load criterion at a specific 

loading level is given by: 

{
 
 

 
 𝜎1
𝜎𝑓
< [𝛼𝑐𝑜𝑎𝑙 (

1

𝑟𝑝𝑙𝑙
− 1)

2

+
𝛽𝑐𝑜𝑎𝑙

√𝑟𝑝𝑙𝑙
] (1 − 𝜋𝑟𝑝𝑙𝑙

2) (No coalescence)

𝜎1
𝜎𝑓
= [𝛼𝑐𝑜𝑎𝑙 (

1

𝑟𝑝𝑙𝑙
− 1)

2

+
𝛽𝑐𝑜𝑎𝑙

√𝑟𝑝𝑙𝑙
] (1 − 𝜋𝑟𝑝𝑙𝑙

2)  (Coalescence)

 (2.14) 

𝑟𝑝𝑙𝑙 =
2√(

3𝑓
4𝜋) 𝑒

𝜀1+𝜀2+𝜀3
3

√𝑒𝜀2+𝜀3
 

(2.15) 

 

where 

σ1 is the maximum principle stress; 

rpll is the void space ratio; 

ɛ1 is the maximum principle strain, ɛ2 and ɛ3 are the other two principle strains; 

αcoal = 0.1 and βcoal = 0.12 are the fitting coefficients for non-hardening materials; αcoal(nR-

O) = 0.12 + 1.68(nR-O) and βcoal = 0.12 for hardening materials in Thomason’s model. For 

cases where void shape, hardening and initial void volume fraction are varied, αcoal(nR-O) = 

0.1 + 0.217 nR-O + 4.83 nR-O
2 (0 ≤ n ≤ 0.3) and βcoal = 0.124 improved by Pardoen et al. [57], 

where nR-O is the hardening exponent in Ramberg-Osgood fit. 

Zhang et al. [50] took into account these two competing modes of deformation and 

proposed the CGM based on the GT model. In CGM, the value of fC is the material response 

to coalescence (the so-called field quantity), which is automatically determined, rather than 

a material constant. It was found that only for small f0 as a first approximation, can fC be 

approximated as a constant. The CGM has been implemented in ABAQUS using a user 

material subroutine UMAT developed by Zhang et al. [58, 59]. The model has been shown 
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to be accurate for any level of stress triaxiality, as well as for non-hardening and hardening 

materials. Numerous studies have adopted this coalescence model, including [26, 60-62]. 

The linear traction-separation model was proposed by Ruggieri et al. [53] and Gullerud et 

al. [63], and has been implemented in WARP3D, an open source code for 3D nonlinear 

finite element analysis of solids. This model implements a failure criterion of f in the GT 

model: when the value of f reaches fF, the cell element starts to be extinct and the remaining 

fraction of the internal nodal force reduces to zero in a linear fashion. The linear traction-

separation model is an extension of GT model, and typically does not include the critical 

void volume fraction fC (see [5, 53, 64-66]). 

2.4 Computational cell methodology 

The computational cell methodology (CCM) was originally proposed by Xia and Shih [67, 

68] in a 2D configuration, and later extended to the 3D configuration by Ruggieri et al. [53] 

and Gao et al. [65]. Figure 2.8(a) simplifies the void-containing FPZ in Fig. 1.2(b) by 

replacing the FPZ with one layer of computational cells.  

 

(a) Simplified computational cell model 

 

(b) Cell element on one side of the FPZ within FE framework 

Fig. 2.8 Modelling of ductile crack growth using CCM 



32 

 

CCM contains a realistic void nucleation-growth-coalescence mechanism, as well as a 

microstructural length scale D which is physically coupled to the height of the FPZ. Here, 

D roughly represents the mean spacing between the voids nucleated from large inclusions 

[53, 68]. The FPZ layer consists of two layers of cubical cell elements on each side with a 

linear dimension of D/2 and thus, each computational cell is sub-divided into four 

computational cell elements (see Fig. 2.8(b)). Each cell element contains an initial 

(smeared) void volume fraction f0, which equals the initial void volume divided by the 

entire cell volume. f0 is related to the metallurgical features of the material. Within the thin 

layers that are symmetrically located about the crack plane, ductile crack extends through 

void growth and coalescence, that is, as the initial void volume ratio f0 grows to a critical 

void volume ratio fC, and till the extinction void volume fraction at failure fF, the surface 

traction exerted by the FPZ on its surroundings increases first and finally reduces to zero, 

which characterizes the crack propagation along the crack surface. Elsewhere, the 

background material obeys the conventional J2 flow theory of plasticity with no damage 

by micro-voids and does not affect the macroscopic toughness appreciably [53]. In this 

way, the growth and coalescence of voids and the interaction between FPZ and the 

background metal is modelled using CCM. 

Numerous studies have applied CCM to model ductile fracture and predict resistance in 

structures with crack-like defect. Faleskog et al. [69], Gao et al. [65] and Ruggieri et al. 

[53] studied the calibration process of the GT model parameters based on CCM. Qian [64] 

studied the out-of-plane length scale of the computational cells using FEM code WARP3D. 

Within CCM framework, Gullerud et al. [63] investigated computational load step size, 

procedures to remove cells with high porosity and the porosity for cell deletion. Ruggieri 

et al. [70, 71] and Chen et al. [62] extended the applicability of CCM from laboratory 

specimens to pipe sections. Bolinder [72] numerically simulated the ductile crack growth 

in residual stress fields. Based on these previous studies, CCM are applied in this thesis. 
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2.5 Micromechanical parameters 

2.5.1 Overview 

The micromechanical parameters CCM include nine GTN parameters and two length scale 

parameters as summarized in Fig. 2.9. 

 

Fig. 2.9 Micromechanical parameters 

Among these eleven parameters, the in-plane length scale D and the initial void volume 

fraction f0 are two key parameters that affect ductile fracture behavior significantly. 

Ruggieri et al. [53] suggested to select D first and then determine a suitable value for f0 

since each change of D consumes much more effort than changing f0. In their study, it was 

confirmed that the less costly, plane strain analysis of SE(B) specimens could predict 

adequately the in-plane constraint effect in terms of R-curve before conducting extensive 

3D FEA. However, the non-uniqueness problem has been a limitation of the CCM, which 

has been reported in many pervious studies [30, 73]. Qian [64] found that the calibrated f0 

increases with the in-plane length scale D. Zhang et al. [50] fit fC from tensile tests and 

found an infinite number of pairs of (f0, fC) that gave identical predictions. They attributed 

this to the failure of Gurson model to automatically predict void coalescence. Oh et al. [74] 

found two sets of parameters that could well present σ-ɛ relation for a smooth tensile bar. 

This problem was discussed by Kiran et al. [30] and Benseddiq et al. [73]. Li et al. [75] 

pointed out that the non-uniqueness problem could be a fundamental feature of all damage 

theories involving tunable internal damage parameters. However, up to now, the limitation 

of non-uniqueness has not been well addressed due to the number of parameters and the 

great complexity involved during calibration.  
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2.5.2 q-parameters 

The q-parameters are categorised as ‘constitutive parameters’ and depend on the yield 

strength and strain hardening properties of the material. Tvergaard et al. [76, 77] first 

suggested q1 = 1.5, q2 = 1 and q3 = 2.25 for a moderately strain-hardening material based 

on micromechanical studies on periodically distributed voids. These values have become 

the most common option for subsequent studies (see Table A.1 in APPENDIX A). 

Koplik et al. [78] compared the stress-strain numerically obtained by the cell model study 

and that obtained by void growth response with the Gurson model. q1 = 1.25 and q2 = 1 

were found to achieve better agreement.  

Perrin et al. [79] suggested that q1 can be expressed as a function of VVF and that q1 = 1.47 

for VVF = 0. Note that this value is close to q1 = 1.5 as suggested by Tvergaard. 

Faleskog et al. [69] conducted extensive 3D FEA of discrete cell models containing a 

spherical void, covering a wide range of material hardening and strength properties. They 

improved the values of q-parameters by introducing an optimal table as well as optimal 

graphs for common structural steels. Subsequent studies such as [44, 80] have adopted this 

recommendation. Benseddiq et al. [73] further concluded that q = q1 × q2 is approximately 

constant. 

2.5.3 In-plane length scale D 

It is well known that the in-plane length scale D (the dimension in the crack advancement 

direction) of the computational cell affects the numerical results using local approach [38, 

73, 81, 82], which is the so-called element size dependent problem. The reason for this 

problem is related to the microstructural length scale (e.g. the average spacing of inclusions 

or voids for ductile fracture) of the material, which couples the physical length with 

computational model [54].  

Roy et al. [83] adopted the intercept method [80] and defined the mean center-to-center 

particle spacing λs as: 
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𝜆𝑠 = 𝐷 =
1

2
𝑑√

3

2
√
𝜋

𝑓𝑣
 (2.16) 

in which 

𝑑 = √
3

2
𝑙𝑚 (2.17) 

𝑓𝑣 = 𝑁𝑣 ∙ 𝑑 (2.18) 

where  

d is the mean particle diameter; 

lm is the mean linear intercept; 

fv is the volume fraction of particle; 

Nv is the number of carbides per unit length. 

A rough estimate of fracture process zone size was made by Devaux et al. [81]: 

𝐷 ≈
2

√𝑁𝑣
3

 (2.19) 

where 

Nv is the number of inclusions per unit volume. 

Another approximate estimate was made from JIC measurement, which is valid only for 

small-scale yielding (SSY) [81] or elastic solids (e.g. fatigue or brittle rupture) [16]: 

𝐽𝐼𝐶 = 𝜒 ln (
𝑅

𝑅0
)
𝐶

𝐷𝜎0 (2.20) 
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where 

JIC is the J integral value at the beginning stage of material crack growth resistance 

development; 

χ is a numerical constant which depends on the mesh configuration of the crack tip. For 

square meshing and reduced Gauss integration, χ = 4; 

(R/R0)C is the critical void growth ratio in the uncoupled model [31], and R is the radius of 

the cavity. 

Shih [84] concluded that the calibrated D should be comparable to the experimentally 

measured value for CTOD at the initiation of ductile tearing, and proposed the following 

equation to determine CTOD at crack initiation: 

𝐷 ≈ 𝛿𝐼𝐶 ≈ 𝑑𝑛
𝐽𝐼𝐶
𝜎𝑌

 (2.21) 

where 

δIC is the critical CTOD value corresponding to JIC; 

dn is a non-dimensional constant ranging from 0.3 to 0.6. 

Gao et al. [65] subsequently measured the CTOD at fracture initiation to be around 0.3 mm. 

Thus, D = 0.3 mm was adopted in his study. 

Østby et al. [85] compared the stress fields ahead of the crack tip from initially square-

shaped elements and elements with an aspect ratio (the ratio of element dimension parallel 

to the crack surface and element dimension perpendicular to the crack surface) of 2 in 2D 

FEA. The former case presented strong oscillations in the stress field due to the additional 

constraint and fast void growth rate, and resulted in significant numerical problems. On the 

other hand, the latter case showed a much smoother result and thus was recommended for 

constructing 2D FE models. This recommendation has been adopted in numerous studies 

[17, 60, 61, 86, 87].  
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2.5.4 Initial VVF f0 

In 1969, Franklin proposed the following equation for estimating f0 [88]: 

𝑓𝑣 = 0.054 (S(wt.%) −
0.001

Mn(wt.%)
) (2.22) 

𝑓0 = 𝑓𝑣
√𝑑𝑥𝑑𝑦

𝑑𝑧
 (2.23) 

where  

fv is the volume fraction of manganese sulfide inclusions (MnS); 

S(wt.%) and Mn(wt.%) represent the mass fraction of sulphur and manganese in the 

manganese sulfide inclusions, respectively; 

dx, dy, dz are average dimensions of the inclusion in tension direction, and in two 

perpendicular directions. For a spherical inclusion, it is assumed that f0 = fV. 

Another method for estimating f0 is the so-called ‘quantitative microscopic optical 

technique’ based on direct observation. This method has been adopted by Sun et al. [89], 

Penuelas et al. [26] and Nonn et al. [90]. The size, shape, and distance of both inclusions 

and developing voids were quantitatively evaluated using a fully automatic image 

processing technique. They found that f0 lies in the range of 0.00015 to 0.00057.  

The most common way to determine f0 is by calibration with experimental results. Han et 

al. [91] conducted a sensitivity analysis of the effect of f0 on CMOD-∆a curve for SE(B) 

specimen made of X65-grade steel and determined f0 = 0.00015. Ruggieri et al. [70] 

calibrated f0 based on the J - R curve tested from an X70-grade steel at room temperature 

using standard, deeply-cracked C(T) specimen. Qian [64], Zhang et al. [50] and Bolinder 

[72] focused on matching the numerical load-displacement records with the experimental 

ones and respectively adopted 0.00035, 0.0008, and 0.0065 for f0. 
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2.5.5 Critical VVF fC 

The critical VVF fC signifies the onset of coalescence and governs the accelerated void 

volume growth. fC was found to be weakly dependant on stress triaxiality and matrix strain 

hardening and strongly dependant on f0 by Koplik et al. [78]. In their study, it was assumed 

that fC depends on f0 only, which led to fC = 0.3 and 0.055 for f0 = 0.0013 and 0.0104, 

respectively. These values are consistent with those determined by Becker et al. [92], that 

fC = 0.12, 0.06 and 0.04 for f0 = 0.07, 0.026 and 0.004, respectively. Note that these fC 

values are smaller than 0.15 as suggested by Tvergaard et al. [51]. 

According to Zhang et al. [93], fC is not a constant parameter, but decreases with increasing 

stress triaxiality and should be determined by fitting. This was later supported by Steglich 

et al. [54], who found that fC decreases with increasing triaxiality based on numerical study. 

It was also supported by the experimental studies conducted by Guillemer et al. [94], in 

which fC was evolved as a function of h, the stress triaxiality state: 

𝑓𝐶 = 0.255 − 0.145ℎ (2.24) 

A logarithm relation between fC and f0 was obtained by Benseddiq et al. [73]: 

𝑓𝐶 = 0.0186 ln 𝑓0 + 0.1508 (2.25) 

In their study, they found for small values of f0, fC varied little between 0.02 and 0.04. 

However, it was shown that fC could not be treated as a constant for large f0 value (i.e. f0 ≥ 

1%).  

A unique combination of fC and fF values that best match the experimental load-

displacement history was obtained by Kiran et al. [30]. 36 possible combinations (i.e. fC ϵ 

[0.02, 0.45] and fF ϵ [0.1, 0.5]) with fixed nucleation parameters were conducted and the 

best prediction was fC = 0.03 and fF = 0.5. In most recent studies, Dybwad et al. [95] and 

Han et al. [91] employed fC = 0.13 to numerically simulate the ductile tearing process of 

X65-grade steel. 
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2.5.6 VVF at failure fF 

The VVF value at failure governs the final failure of the material. Tvergaard et al. [51] first 

suggested that fF is not much larger than 0.2, and can be set at 0.25. Subsequently, Gao et 

al. [65] conducted numerical simulations of cell models and suggested that the value of fF 

is only weakly dependent on constraint or matrix strain hardening, but is strongly 

dependent on f0. A large value of fF from 0.15 to 0.2 was suggested. 

Zhang et al. [50] suggested using the following equation to estimate fF:  

𝑓𝐹 = 0.15 + 2𝑓0 (2.26) 

Equation (2.26) implies that fF can be taken as 0.15 for a low f0 value as a first 

approximation. Other empirical equations from 2D analysis based on CGM were obtained 

by Xu et al. [60] as: 

𝑓𝐹 = 0.2 + 2𝑓0 (2.27) 

and by Li et al. [61] as: 

𝑓𝐹 = 0.2 + 𝑓0 (2.28) 

Benseddiq et al. [73] rearranged Eq. (2.6) and (2.7) as follows: 

𝑓𝐹 = 𝑓𝐶 +
1/𝑞1 − 𝑓𝐶

𝛿𝑎
 (2.29) 

They demonstrated that fF could be calculated if the values of q1, fC and δa are known. If 

the value of fC is small, a first approximation of fF could be given as: 

𝑓𝐹 =
1

𝛿𝑎𝑞1
 (2.30) 

δa was suggested to be a small value between 1 and 2. 
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Kiran et al. [30] found that fF is the most sensitive one to the mesh size among all 

micromechanical parameters. A power-law relation between fF and D/2 was proposed: 

𝑓𝐹 = 0.041(𝐷/2)−0.88 (2.31) 

Bolinder et al. [72] concluded as long as fC and fF are within the range of [0.15, 0.2], they 

would not present a significant impact on J-R curve. 

2.5.7 Nucleation strain εN 

In plastic strain-controlled nucleation criterion, the nucleation strain εN controls the plastic 

strain level at which the secondary voids nucleate. In general, εN varies between 0.3 and 

0.9 in previous studies (see Table A.1 in APPENDIX A). A small value of εN initiates the 

fracture at an early deformation level, whereas a large value of εN postpones the fracture to 

a large deformation level [64].  

Kiran et al. [30] demonstrated the effect of εN based on an analysis of uniaxial tensile 

loading on a unit cube (i.e. 8-node brick element with reduced integration) carried out in 

ABAQUS. It was concluded that the behavior of the cube before the onset of εN is 

equivalent to that of a J2 plasticity model. The authors further illustrated the non-

uniqueness problem of (εN , fN) parameter pair: early nucleation (i.e. low εN value) and small 

number of voids growth (i.e. low fN value) has the same effect with late nucleation (i.e. 

high εN value) and large number of voids growth (i.e. high fN value). 

Tensile tests were carried out and εN was measured experimentally using scanning electron 

microscopy (SEM) by Le Roy et al. [83], Kwon et al. [96] and Qiu et al. [97]. Observation 

of high deformation value to nucleate a significant number of micro-voids at the second 

phase particles was made. The areal density of voids NA was measured at different plastic 

strains and were denoted as NA - ɛpl. The mean void nucleation strain was determined when 

rapid increase of areal density was observed. 

The elastic-plastic response of a single cell under uniaxial strain was analysed by Ruggieri 

et al. [53]. It was found that at a plastic strain of ɛpl = 0.3εN – 0.4εN, the void grows rapidly 
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and the macroscopic stress falls sharply. Thus, εN is determined as a relatively large value 

(i.e. εN = 0.75) to make the acceleration process well beyond the plastic strain where the 

peak stress develops.  

2.5.8 Void volume fraction of nucleated voids fN 

The parameter fN controls the amplitude of the accelerated growth rate. Generally, fN can 

be evaluated by microscopic examination of the undamaged material [73]. Ruggieri et al. 

[53] suggested using a pair of (sN , fN) with large values to produce an accelerated and 

smooth reduction of the stress-carrying capacity and void acceleration process. 

Another way to determine fN is calibration with experiments. Ishikawa et al. [98] conducted 

tensile test and calibrated fN using load-displacement record. When fN = 0.005, a sudden 

load drop that led to ductile fracture was captured in the GT model. It was also found that 

the load drop occurred earlier with an increasing fN value. 

Cuesta et al. [82] suggested that ɛN and fN govern the shape of the load-displacement curve 

at the pure plastic stage of a punch test. Given an almost linear behavior, the curve was 

adjusted to a straight line: 

𝑃 = 𝑚1∆𝑙 + 𝑚2 (2.32) 

where  

𝑚1 = 𝑔1(𝜀𝑁, 𝑓𝑁) (2.33) 

𝑚2 = 𝑔2(𝜀𝑁 , 𝑓𝑁) (2.34) 

in which  

g1(ɛN ,  fN) and g2(ɛN ,  fN)  are postulated as quadratic models of the form: 

𝑔(𝜀𝑁, 𝑓𝑁) = 𝑙0 + 𝑙1𝜀𝑁 + 𝑙2𝑓𝑁 + 𝑙11𝜀𝑁
2 + 𝑙22𝑓𝑁

2 + 𝑙12𝜀𝑁𝑓𝑁 (2.35) 

where 
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∆l is the punch displacement; 

m1 and m2 are the line parameters; 

g1 and g2 are the quadratic functions; 

l0, l1, l2, l11, l22, l12 are the fitting coefficients. 

In their study, a desirability study and the Pareto front method were used to address the 

multi-objective problem in order to obtain ɛN and fN. The desirability study involved a 

desirability function which was a previous weighting of individual objectives, while the 

Pareto front method represented the entirety of the optimum solutions for each of those 

objectives. Results showed that the error of the Pareto Front method was small and thus ɛN 

= 0.1979, fN = 0.0292. 

2.5.9 Standard deviation of nucleation strain sN 

The parameter sN controls the rate of nucleation. The nucleation function A1/fN of plastic-

strain controlled nucleation criterion is shown in Fig. 2.10. For fixed values of ɛN and fN, a 

larger value of sN enlarges the nucleation of new voids to a wider range of plastic strain, 

whereas a smaller value of sN narrows the nucleation of new voids to a narrower range of 

plastic strain. A small value (i.e. sN = 0.01) was suggested for homogeneous material by 

Cuesta et al. [82], whereas Ruggieri et al. [53] selected a larger value of sN = 0.01 for 

A533B steel and A516-70 steel to achieve smooth stress reduction in both high and low 

constraint cell analysis. 

 

Fig. 2.10 Nucleation function A1/fN 
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2.5.10 Out-of-plane length scale DZ 

The out-of-plane mesh (the dimension along the crack front) configuration was found to 

affect the predicted crack-front profile strongly because the varying stress and strain fields 

over the crack-front initiate varying void growth rates. Ruggieri et al. [53] assigned various 

numbers of elements in the thickness direction with the thinnest layers defined at the side 

groove. Layers of nine were adopted with satisfaction. However, a coarse mesh with seven 

uniform thickness layers was found insufficient to match the experimental result at the side 

grooves. 

A systematic study of out-of-plane length scale of the computational cell was conducted 

by Qian [64]. It was found that fracture resistance and crack extension are highly dependent 

on the element thickness in the out-of-plane direction. Conclusions were drawn that for PS 

specimen, DZ near the free surface need to be smaller than 2D, whereas for SG specimen, 

DZ near the side grooves need to be smaller than D to achieve the convergence of J-R curve 

and crack-front profile. 

The micromechanical parameters in literature are reviewed and tabulated in Table A.1 in 

APPENDIX A. 

2.6 Application of the Gurson model 

The application of the Gurson type constitutive model is summarised as follows:  

i). Constraint effect: 

Fracture toughness is usually not a material constant but is geometry, loading mode and 

stress-state dependant [91]. A high constraint level in the crack-tip region corresponds to 

high stress triaxiality and thus leads to low fracture toughness, as discussed at the beginning 

of this chapter. Numerous studies [85-87, 91, 98-101] have employed the Gurson type 

constitutive model to investigate the crack-tip constraint effect. For example, Han et al. [91] 

proposed a quantitative relation between stress triaxiality and CTOD value for X65-grade 

steel. Betegón et al. [99] investigated the crack-tip constraint effect by examining the J-R 

curve and equivalent plastic strain contour. 
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ii) Material mismatch: 

The microstructural properties of crack-like defects located at weld joint or HAZ are altered 

by the heat during welding or cutting operations. The change of microstructural properties 

then introduces material mismatch and impacts the local fracture resistance behaviour. The 

Gurson type model has been applied to investigate material mismatch in previous studies 

[26, 85, 102-104]. For example, Rakin et al. [103] investigated the effect of strength 

mismatch and effect of width of welded joints on the load-displacement history of SE(B) 

specimen. Fan et al. [105] developed J-R curve and triaxiality contour for SE(B) specimen 

made of bi-materials with various geometry and material constraints. Østby et al. [85] 

studied the effect of hardening mismatch and strength mismatch by examining the J-R 

curve of SE(B) and SE(T) specimens, crack tip opening stress, and crack growth direction. 

Nègre et al. [102] studied the ductile tearing process of laser welded Al sheets based on 

GTN model.  

iii). Ductile fracture prediction: 

The ability of Gurson model to simulate the fracture behavior of laboratory fracture 

specimens and full-scale pipe sections has been well studied in the past [5, 66, 71, 100, 101, 

106]. For example, Kiran et al. [30] predicted the ductility of tension bars, plates with 

reduced section and plates with holes in terms of load-displacement curve and fracture 

initiation location. Benseddiq et al. [73] simulated the ductile tearing process of tensile 

notched round specimens and C(T) specimens. Ruggieri et al. [53] conducted 3D FE 

modelling of stable crack extension of SE(B) and CT specimens. Gao et al. [65] predicted 

the fracture behavior of SE(B) and SE(T) specimen. Peñuelas et al. [26] studies the fracture 

behavior of SE(B) specimens fabricated from welded joints. Sarzosa et al. [100, 101] 

modelled circumferentially surface cracked pipes made of X70-grade pipeline steel 

subjected to remote bending. Dotta et al. [5] described the crack growth process of pipeline 

specimens with longitudinal crack-like defect made of X60-grade steel in a 2D 

configuration. Ruggieri et al. [71] predicted the crack extension of longitudinal crack-like 

defects on a full-scale pipeline section in a 3D configuration. The experimentally measured 

burst pressure for the tested cracked pipes matched well with the FEA results. Hippert et 
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al. [106] predicted the burst pressure of a thin-walled gas pipeline containing longitudinal 

cracks with varying crack depth to thickness ratios. 

v). Dynamic fracture analysis: 

The Gurson model has also been applied to dynamic fracture analysis. Cuesta et al. [82] 

simulated small punch tests due to the lack of enough material for conducting conventional 

fracture tests. In the studies by Scheider et al. [107] and Nonn et al. [90], dynamic drop 

weight tear tests were simulated to calibrate micromechanical parameters, then followed 

by the simulation of dynamic fracture propagation in pipe sections. The effect of crack 

meandering on dynamic ductile fracture was numerically studied for a pre-cracked 

specimen subjected to impulsive tensile loading at one end by Tvergaard et al. [108, 109] 

and Mathur et al. [110]. Furthermore, Needleman et al. [111] studied the mesh sensitivity 

of dynamic fracture initiation time for cases where large-scale or small-scale voids 

dominate in the material. 

Other than the above-mentioned applications, the Gurson type models have been applied 

to investigate the plastically anisotropy and kinematic hardening of materials [33]. In the 

region of low constraint, shear-lip or mixed-mode (slant) fracture may develop [53] and 

the Gurson model was proved to be not adequate describe this region. The GTN model was 

modified by Nahshon et al. [112] and Xue et al. [113] to predict damage growth under 

shear-dominant loading conditions. In conclusion, the Gurson type and its subsequently 

modified versions have been widely applied to investigate ductile fracture mechanism and 

behavior. In addition, based on the computational cell methodology, the constitutive model 

is implemented in cell elements and enables conducting extensive 2D/3D FE. Several 

limitations of the Gurson type models still need to be addressed, including the non-

uniqueness of micromechanical parameters and the transferability validation of parameters 

between small-scale specimens and full-scale structures. 
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Chapter 3 Numerical modelling of ductile crack growth 

3.1 Previous test results 

In this chapter, numerical analyses are carried out on the fracture toughness specimens 

previously tested by Wang et al. [114]. In their study, six clamped SE(T) specimens and 

four SE(B) specimens made of X80-grade pipeline steel were tested. For clarity, the 

specimens are numbered as shown in Table 3.1, where ‘PS’ denotes plane-sided specimens, 

‘SG’ denotes side-grooved specimens, and ‘a0’ denotes the initial crack length of the 

specimen. Note that the testing results of two SE(B) specimens (SG175-01 and SG175-02) 

were not reported in [114], but are included in the table. The crack planes of all specimens 

are out-surface-notched and circumferentially-oriented (i.e. crack extending in the through-

wall thickness direction, see Fig. 3.1(a)). 

Table 3.1 Specimen number 

Specimen ID a0/W PS/SG 

SE(T)-PS05-01 0.5 PS 

SE(T)-PS05-02 0.5 PS 

SE(T)-SG05-01 0.5 SG 

SE(T)-SG05-02 0.5 SG 

SE(T)-SG25-01 0.25 SG 

SE(T)-SG25-02 0.25 SG 

SE(B)-SG175-01 0.175 SG 

SE(B)-SG175-02 0.175 SG 

SE(B)-SG25-01 0.25 SG 

SE(B)-SG25-01 0.25 SG 

All the specimens in Table 3.1 have B = W = 20 mm (see Figs. 3.1(b) and (c)).  The SE(T) 

specimens have a daylight-to-width ratio of H/W = 10 (see Fig. 3.1(b)). The two shallow-

cracked SE(T) specimens (a0/W = 0.25) are side-grooved, with the side groove depth on 

each side equal to 7.5%B. For those four deeply-cracked SE(T) (a0/W = 0.5) specimens, 

two are side-grooved and two are plane-sided. The SE(B) specimens have a span-to-width 

of S/W = 4 (see Fig. 3.1(c)). All four SE(B) specimens are shallow-cracked (a0/W = 0.25 

and 0.175) and side-grooved with the depth of the side groove on each side equal to 10%B. 

The integral knife edge is adopted to assist the measurement of the crack mouth opening 

displacement (CMOD) using a clip-on gauge. The initial fatigue pre-crack is introduced by 
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using a three-point bend apparatus for all specimens. Side grooves are then fabricated after 

fatigue pre-cracking to promote uniform crack growth over the thickness direction, if 

needed.  

 

(a) Orientation of SE(T) and SE(B) specimens 

  

(b) Clamped SE(T) specimen (H/W = 10) 

 

(c) Three-point bend SE(B) specimen (S/W = 4) 

Fig. 3.1 Geometric information of fracture specimens 
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The experiments were conducted using an INSTRON 8804 servo-hydraulic testing system 

at room temperature. For the SE(T) specimens, the two ends of the specimen were clamped 

by the hydraulic grips. For the SE(B) specimens, the three-point bend load was applied 

through upper and lower rollers. During the tests, the system output load-line displacement 

(LLD), CMOD, and load P simultaneously. After the tests, the specimens were broken up 

to expose the crack plane for measuring the crack length. The physical initial crack length 

a0 and final crack length af were measured using the 9-point average technique in 

accordance with the recommendation in ASTM E1820-17 [12]. More details about the 

testing procedures and results can be found in [114].  

3.2 Material property 

The values of Young’s modulus E, 0.2%-offset yield strength σYS and ultimate strength σTS 

of the pipe steel used to fabricate the SE(T) and SE(B) specimens are 207 GPa, 520 MPa 

and 710 MPa, respectively. The density and Poisson’s ratio are 7800kg/m3 and 0.3, 

respectively. The stress-strain relationship of the X80-grade steel is determined using two 

tensile coupon tests in accordance with ASTM E8/E8M [115]. The tensile coupons are 

extracted in the pipe’s longitudinal direction such that the obtained stress-strain 

relationship is representative of those of SE(T) and SE(B) specimens. The engineering 

stress-strain curves obtained from the two coupons are shown in Fig. 3.2(a), and the 

corresponding true stress-logarithmic strain curves are shown in Fig. 3.2(b).  

  

(a) Engineering stress-strain curves  (b) True stress-strain curves 

Fig. 3.2 Stress-strain curves 
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In addition to the above-mentioned material properties, damage parameters are also 

required for the material of GTN plastic flow law in FEA. A review of the micromechanical 

parameters has been presented in Table A.1 and the detailed calibration process is discussed 

in Section 3.4. 

3.3 Finite element model and numerical procedure 

3.3.1 Finite element model 

The commercial finite element software ABAQUS 6.13 [116] is used to simulate the 

ductile crack extension for both SE(B) and SE(T) specimens. These FE models are 

established for the purpose of calibrating micromechanical parameters as well as 

investigating the crack-tip stress fields during the ductile crack growth. According to [65, 

93], the 2D plane strain analysis of shallow-cracked SE(B) specimens gives a good estimate 

of the thickness average feature of the fracture response, in terms of the load-displacement 

history and the J-R curve. Thus, in this study the SE(B) specimens are analyzed by 2D FEA, 

while the SE(T) specimens are modelled using 3D elements to capture the crack plane 

profile. In this section, the 2D SE(B) FE model is first described, followed by 3D SE(T) 

FE models. 

i). 2D FE model of SE(B) specimen: 

For 2D SE(B) specimens in the plain strain condition, only half of the specimen is modelled 

due to the symmetry in the y-axis direction. A typical FE model (a0/W = 0.25, B/W = 1, 

S/W = 4) is shown in Fig. 3.3(a), containing a row of 100 computational cells along the 

initial remaining ligament b0 within the FPZ. Note that only the elements in this row are 

assigned with the GTN material property. The base metal (i.e. the region outside the FPZ) 

remains undamaged by void growth and the elastic-plastic constitutive law follows the J2 

flow theory with conventional von Mises plasticity. 

The initially blunted crack tip (see Fig. 3.3(b)) accommodates the initiation of stable crack 

growth with blunted notch radius which equals to half of in-plane length scale D/2. This 
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arrangement is proved to simulate the blunting process of the crack tip well as suggested 

by Østby et al. [85], Han et al. [91] and Sarzosa et al. [66].  

The dimension of the computational cell element equals 0.15 mm × 0.15 mm. This 

dimension is found to be able to provide adequate resolution of the stress-strain fields near 

the crack tip and hold true for the resistance prediction after sensitivity analysis. The 

elements with this uniform dimension extends to 4.5 mm away from the symmetrical plane, 

with convergence validated. The element type is CPE4R. A half-symmetric model for 2D 

plane strain analysis shown in the figure has 4579 nodes and 4469 elements approximately. 

Note that the 2D SE(B) specimens with a0/W = 0.175 have a similar mesh configuration. 

Two contact rollers are defined to simulate the rollers supporting and loading the specimen. 

A smooth ramping amplitude of loading is applied through the upper roller, while the lower 

roller remains fixed. The load is displacement-controlled to ensure a smooth force-

displacement increment. In all analyses, the ABAQUS/Explicit solver, in which the GTN 

failure criteria is implemented. The crack growth procedure is automatically captured by 

the element extinction by choosing the output ‘STATUS’ option. 

       

(a) Half of SE(B) specimen  
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(b) Close-up view of the region near crack tip 

Fig. 3.3 2D plane strain FE model of SE(B) specimen (a0/W = 0.25) 

ii). 3D FE model of SE(T) specimen: 

Figure 3.4 shows the 3D FE model of a representative SE(T) specimen, SE(T)-SG25-01/02. 

Only a quarter of the specimen is established due to the symmetry in the x-axis and z-axis 

directions (see Fig. 3.4(a)). Appropriate constraint conditions are assigned to the symmetry 

planes accordingly. The PS specimen has no thickness reduction, whereas for SG specimen, 

the side groove is modelled as a sharp V-notch with a side groove angle equal to 45° and a 

root radius of D/2. Here, D = 300 mm is the in-plane length scale, same as that used in 2D 

FEA.  

As for the meshing arrangement in the thickness direction, the model for the PS specimen 

is divided into 20 layers, with a bias ratio of 4. Note that the thickest layer is defined at the 

mid-thickness plane and the thinnest layer is defined at the free surface. For the SG 

specimen, 4 uniform layers of elements are constructed in the groove region, and 20-layer 

arrangement are assigned in the inner region with a bias ratio of 4, which is same as the PS 

specimen. The thinner elements are for capturing the details of crack growth near the root 

of the side groove or free surface. Note that these arrangements are consistent with the 

recommendations for the out-of-plane length scale given by Qian [64].  
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A structured transitional meshing pattern is assigned to the transitional part between the 

coarse mesh away from the crack tip and the fine mesh near the crack tip. The meshing 

refinement is identical throughout the thickness direction using the sweeping technique. 

The 8-node solid elements with the reduced integration (i.e. C3D8R elements) are used in 

the analysis. Note that specimens with different initial crack length or thickness have a 

similar meshing configuration as described here. A quarter model for the 3D analysis 

shown in the figure has 95049 nodes and 87636 elements. Similar to the 2D plane strain 

analysis, a smooth loading step is applied to the model through a remote clamping load, 

which is displacement-controlled. The non-linear large deformation analysis is chosen due 

to the large plastic ductile fracture behavior using the ABAQUS/Explicit solver.  

              

(a) A quarter of the SE(T) specimen 

     

(b) Close-up view of the side groove and crack tip 
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(c) Deformed mid-plane of the SE(T) specimen 

Fig. 3.4 3D FE model of SE(T) specimen (SG, a0/W = 0.35, B/W = 1)  

3.3.2 Evolution of P, CMOD, CTOD, ∆a, and J-integral 

In FEA, the load P is output by summing up all reaction forces to a reference point on the 

remote surface of the SE(T) specimen. This reference point applies rigid constraint to the 

clamping surfaces by the constraint option in ABAQUS. For SE(B) specimen, the load P 

is output by extracting the reaction force at the roller. 

  

Fig. 3.5 Determination of CMOD and CTOD 
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The determination of CMOD and CTOD are shown in Fig. 3.5. It is a common practice to 

extract the CTOD value from a fixed node in front of the initial crack tip [60, 61, 81] and 

then multiply the value by 2. 

Stable crack extension ∆a is taken as the addition of the crack advance due to ductile tearing 

and crack blunting, approximated by one half of the measured CTOD, as recommended in 

[26, 86, 87, 105]: 

∆𝑎 = ∆𝑎𝑑 + ∆𝑎𝑏 = ∆𝑎𝑑 +
1

2
𝛿 (3.1) 

where  

∆ad is the crack extension due to ductile tearing; 

∆ab is the crack advance due to blunting correction. 

The crack extension due to ductile tearing is calculated by multiplying the original element 

length by the number of damaged elements [60, 61] and the element is assumed to fail 

when VVF reaches fF. 

Since ABAQUS/Explicit solver does not allow the J-integral calculation in a domain 

integral procedure [105], the ηpl-method (elastic unloading compliance (UC) method) is 

used instead to develop J-R curves. The detailed procedure of the ηpl-method for the SE(B) 

specimen is described in ASTM E1820-17 [12], in which the corresponding equations (i.e. 

equations for the calculation of K, C and ηpl) for SE(B) specimen can be found. While the 

equations for SE(T) specimen are summarized in APPENDIX B.  
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3.4 Calibration of micromechanical parameters 

3.4.1 Calibration using 2D model of SE(B) specimen 

The two-step scheme [65, 93] suggests that the 2D plane strain analysis of shallow- cracked 

SE(B) specimens gives a good estimate of the thickness average feature of the response, in 

terms of the load-displacement history and J-R curve. Thus, in order to calibrate the 

micromechanical parameters of the computational cell elements, two SE(B) specimens 

with a0/W = 0.175 (i.e. SE(B)-SG175-01 and SE(B)-SG175-02) are considered in a 2D 

plane strain configuration to save calculation time and calibrate damage parameters.  

In the analysis, the q-parameters are chosen as the most commonly used values (i.e. q1 = 

1.5; q2 = 1; q3 = 2.25). Since D/2 and f0 strongly impact the resistance curve behavior as 

discussed in Chapter 2, a 3×3 analysis matrix (i.e. D/2 = 0.1; 0.15; 0.2 and f0 = 0.00015; 

0.00075; 0.0015) is selected to find the best combination to match the experimental results. 

fF is determined from the empirical equation (see Eq. (2.26)) by Zhang et al. [50]. Since fC 

does not impact the fracture behavior strongly as long as it is within the range of [0.1,0.2], 

it is fixed at 0.13 according to [91]. For simplicity, the nucleation parameters are not 

considered in the current study.  

 

(a) P-CMOD curves    (b) J-R curves 

Fig. 3.6 P-CMOD curves and J-R curves for 2D SE(B) specimens with a0/W = 0.175  
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Figure 3.6 shows the P-CMOD curves and J-R curves for the SE(B) specimens and FE 

models used for the calibration. For the purpose of clearly showing the figure, only three 

FEA results are plotted. As is observed in Fig. 3.6(a), the load-displacement history 

resulting from different models with different D/2 values are almost identical, which 

indicates that D/2 = 0.20 mm is adequate to capture the global behavior of the specimen. 

For models with different f0 values, the load-displacement history is identical in the initial 

part, and slightly deviate afterwards, which indicates that a higher initial void volume ratio 

yields a lower load-carrying capacity. 

It is shown in Fig. 3.6(b) that a larger D/2 value corresponds to a higher J-R curve. The 

figure also shows that the J-R curve scales almost proportionally with D/2, given that all 

the other parameters are fixed, which is consistent with the result reported in [53]. This can 

be explained by that a thicker layer requires more work to reach critical conditions. The 

smaller mesh size predicts earlier failure initiation and accelerated subsequent failure [74]. 

On the other hand, the resistance curves also indicate a significant role of f0, which is 

consistent with the argument by Xia et al. [117], that an order of magnitude change in f0 

has a significant effect on the computed J-R curve. It is the cell strength which is governed 

by the initial porosity f0 that plays the dominant role in characterizing the fracture toughness 

[53]. It is worth noting that the J-R curves present a ‘step-like’ behavior. This is because in 

2D analysis, an individual element extinction at a step extends the crack length by one 

element size in a discreet manner, which is consistent with the results given in [50, 118]. 

Based on the calibration results, D/2 = 0.15 mm and f0 = 0.00015 gives the best match. In 

such way, the micromechanical parameters are chosen as listed in Table 3.2, and will be 

further validated using other test specimens in the following section. 

Table 3.2 Calibrated micromechanical parameters 

D/2 q1 q2 q3 f0 fC fF Nucleation  

0.15 mm 1.5 1 2.25 0.00015 0.13 0.1503 Not applied 
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3.4.2 Validation of calibrated micromechanical parameters 

In this section, the calibrated micromechanical parameters (see Table 3.2) based on 2D 

FEA of SE(B) specimens with a0/W = 0.175 are validated using the other two SE(B) 

specimens and six SE(T) specimens.  

Figure 3.7 shows that both P-CMOD curves and J-R curves predicted from 2D plane strain 

FEA match reasonably well with those obtained from experiments for SE(B) specimens 

with a0/W = 0.25.  

 

(a) P-CMOD curves for a0/W = 0.25 (b) J-R curves for a0/W = 0.25 

Fig. 3.7 P-CMOD curves and J-R curves for 2D SE(B) specimens with a0/W = 0.25 

Figure 3.8 shows the P-CMOD and J-R curves for 3D SE(T) specimens. As can be seen in 

Fig. 3.8(a), the P-CMOD curves obtained from FE models are in good agreement with 

those obtained from experiments, especially for the PS specimens with a0/W = 0.5. Some 

discrepancies exist in SG specimens with a0/W = 0.5 and SG specimens with a0/W = 0.25, 

but generally less than 10%. This is partly due to the anisotropic property of the material 

and the curvature of the initial crack front, neither of which is considered in the current FE 

models [62].  

As for the J-R curve, good agreement is achieved in all cases. It is worth pointing out that 

given a certain CMOD value, slightly higher P-CMOD curves yet almost identical J-R 
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curves are developed (see Figs. 3.8(b) and (c)). The reason can be explained as: in current 

FEA, a same CMOD value results in a slightly larger crack extension than that in real case, 

which leads to an almost identical resistance curve. In addition, different ∆a correspond to 

different unloading compliance C, which affects the area under the P-CMOD curve. Many 

attempts have been made to achieve higher synchronized accuracy, however, current 

results are shown to be the best. 

 

(a) PS specimens with a0/W = 0.5 

 

(b) SG specimens with a0/W = 0.5 
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(c) SG specimens with a0/W = 0.25 

Fig. 3.8 P-CMOD curves and J-R curves for 3D SE(T) specimens 

Figure 3.9 shows the comparison of the post-test measured and predicted crack front 

profiles. Note that the numerical models use perfectly flat initial crack fronts. The predicted 

crack extension at each location on the crack front in the thickness direction are then added 

to the initial crack front to construct the final crack front. It is clearly demonstrated that the 

3D FE models are capable of simulating the tunneling effect in PS specimens (see Fig. 

3.9(b)) and the reverse tunneling effect in SG specimens (see Figs. 3.9(a) and (c)). The 

results for SG specimens with a0/W = 0.5 predicted by FE model (see Fig. 3.9(c)) is in 

excellent agreement with experimental results. However, for those SG specimens with 

a0/W = 0.25 and PS specimens with a0/W = 0.5, the FE models generally give a good 

prediction of the crack front, except for the region near free surface or side groove, as 

shown in Figs. 3.9(a) and (b). This is due to the limitation of the GTN model 

underestimating the void growth at low stress triaxiality (e.g. h ≤ 0.3, where h is the stress 

triaxiality, which will be introduced in Section 3.7) [53, 72]. In general, the 9-point average 

technique measured crack length match quite well with the experimental results for all 

cases. 
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(a) SG specimens with a0/W = 0.25  (b) PS specimens with a0/W = 0.5 

 

(c) SG specimens with a0/W = 0.5 

Fig. 3.9 Comparison of post-test measured and predicted crack front profiles 

 

  



61 

 

3.5 Numerical results and initiation toughness JIC 

In this section, a total of 21 SE(T) specimens with various geometry configurations (i.e. 

a0/W = 0.2, 0.25, 0.3, 0.35, 0.4,0.45 and 0.5 per BSI standard [15], SG for B/W = 1 and PS 

for B/W = 0.5 and 1), are modelled based on the calibration results in Table 3.2, for the 

purpose of examining the varying stress-strain fields and constraint parameters over the 

crack front in a growing crack analysis (see Section 3.6 and 3.7), as well as validating and 

improving the NM method (see Chapter 4). Note that all SE(T) specimens established in 

this section have similar geometric configurations as discussed in Section 3.3.1. 

Figure 3.10 displays all P-CMOD and J-R curves for 21 SE(T) FE models. As shown in 

Figs. 3.10(a), (c) and (e), the load-carrying capacity decreases dramatically as the initial 

crack length increases from 4 mm to 10 mm. Take the PS SE(T) models with B/W = 1 as 

an example, the maximum load-carrying capacity is about 235 kN for a0/W = 0.2, whereas 

reduces to 140 kN for a0/W = 0.5. On the other hand, it is clearly shown that the specimens 

with a deeper initial crack yields a lower J-R curve after crack initiation. This is explained 

by the in-plane constraint effect that shallow-cracked specimen has lower constraint near 

the crack tip, which leads to higher fracture toughness. Note that due to the CTOD/2 

blunting correction applied to each specimen, the initial portion of the J-R curves are almost 

identical as shown in Figs. 3.10(b), (d) and (f). 

Numerous studies have been focusing on characterizing the initiation fracture toughness 

JIC in the past. JIC is the J-integral value that marks the beginning stage of material crack 

growth resistance development. The procedure to determine JIC is standardized in ASTM 

E1820-17 ANNEXES A8 and A9 [12]. The key point is to construct a 0.2 mm-offset line 

in accordance with the following equation on the J-R regression plot: 

𝐽 = 2𝜎𝑌∆𝑎 (3.2) 

𝜎𝑌 =
𝜎𝑌𝑆 + 𝜎𝑇𝑆

2
 (3.3) 

where 
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σY is the effective yield strength and defined as the average of the ultimate tensile strength 

σTS and 0.2%-offset yield strength σYS.  

The intersection of the regression line and the offset line is denoted as JQ. And JQ is further 

qualified as JIC, a size-independent value of fracture toughness if additional requirements 

in A9.1, A9.9 and A9.10 are all satisfied.  

In current study, the initiation fracture toughness JIC can be characterized as the toughness 

value at the time when the first computational cell element fails due to the void growth and 

is deleted. The JIC values for all specimens are shown in Fig. 3.11. For comparison, the 

fracture toughness at crack extension ∆a = 1 mm (denoted as J1mm) and ∆a = 1.5 mm 

(denoted as J1.5mm) are also plotted in the figure. 

Figure 3.11 shows that JIC, J1mm and J1.5mm are more or less dependent on initial crack 

length, and decrease approximately linearly with the increase of a0/W. The fitted straight-

line and corresponding coefficient of determination R2 are also indicated in the figure. 

Relatively speaking, J1mm and J1.5mm are strongly dependent on the constraint, which is 

consistent with the results in [60, 119]. In contrast, JIC is weakly dependent on a0/W, which 

is consistent with the experimental results by Nyhus et al. [120], that the fracture toughness 

of SE(T) specimen is not sensitive to the initial crack depth. The weak dependence of JIC 

on initial crack depth can be further explained by the discussion by Xu et al. [60]. In their 

study, 2D plain strain FEA of SE(T) specimens shows that for small SE(T) specimens (i.e. 

W = 10 mm), the corresponding Q constraint parameter (see the definition of Q in Section 

3.7) are highly negative and do not change significantly with different a0/W. Thus, the 

crack-tip constraint is quite low and similar, and therefore the crack depth has a minor 

effect on the fracture resistance. However, for larger specimens (i.e. W = 30 mm and W = 

50 mm), CTOD decreases considerably with the considerable increase of Q. Since the SE(T) 

specimens modelled in current study are medium-sized (i.e. W = 20 mm), the JIC value does 

have an non-negligible dependent on crack size, yet very weak. 
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(a) P-CMOD curves for PS B/W = 1 (b) J-R curves for PS B/W = 1 

 

(c) P-CMOD curves for SG B/W = 1 (d) J-R curves for SG B/W = 1 

  

(e) P-CMOD curves for PS B/W = 0.5 (f) J-R curves for PS B/W = 0.5 

Fig. 3.10 P-CMOD and J-R curves for FE models 
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(a) PS models with B/W = 1  (b) SG models with B/W = 1 

 

(c) PS models with B/W = 0.5 

Fig. 3.11 Variation of fracture toughness (JIC /J1mm/ J1.5mm) with a0/W 

3.6 Crack-tip stress fields 

3.6.1 Overview 

Under evolving stress states, the micro-voids in the steel matrix constantly nucleate, grow 

and coalescence, and finally lead to ductile fracture. All these three stages are strongly 

influenced by the state of stress near the crack tip. On the other hand, the constraint effect 

arises as the loss of the stress triaxiality in the crack front region increases due to LSY. The 
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constraint effect can be interpreted as the ability of deforming plastically under increasing 

loading level, which is strongly related to the micro-structural features of the material. 

In this section, the crack-tip stress fields of the GTN-based FE models described in the 

previous sections are examined.  The investigation is focused on the distributions of the 

opening stress, σθθ, ahead of the crack tip at different crack front locations. Previously, 

similar work has been conducted by Wang et al. [121], in which stationary-crack analyses 

were considered, and by Xu et al. [60], in which growing-crack analyses based on the 

complete Gurson model were considered. However, as far as the author is aware, there is 

no literature focusing on the comparison of stationary-crack analysis and growing-crack 

analysis in terms of crack-tip stress fields. To this end, the same FE models are run as 

stationary models by simply depriving the GTN property of the computational cell 

elements.  

3.6.2 Opening stress distribution 

The nodal stress component σθθ along the crack plane (i.e. θ = 0°) is output to examine the 

stress field. Here the opening stress σθθ is normalized by a reference stress σ0, which can 

be taken as the 0.2%-offset yield strength of the material. Figures 3.12 and 3.13 show the 

distributions of the normalized opening stress σθθ/σ0 at the mid-plane ahead of the crack tip 

at different loading levels (characterized by J/(b0σ0), note that the initial remaining 

ligament b0 is used in both stationary-crack and growing-crack analysis) as a function of 

the normalized distance from the crack tip (characterized by rσ0/J) for PS models with B/W 

= 1, a0/W = 0.2, 0.35 and 0.5, in stationary-crack and growing-crack analysis, respectively. 

The values of σθθ/σ0 obtained by the HRR solutions are also shown in the figures.  

From Figs. 3.12 and 3.13, it can be observed that the distribution of σθθ/σ0 at the mid-plane 

ahead of the crack tip is dependent on a0/W ratio and loading level. For deeply-cracked 

specimen (i.e. a0/W = 0.5), the distribution of σθθ/σ0 is approximately linear for rσ0/J > 1 

when J/(b0σ0) > 0.174. This is due to the strong bending effect caused by the eccentricity 

between the applied load and centroid of the remaining ligament, on the crack-tip field. As 

a0/W decreases from 0.5 to 0.2, the bending effect on σθθ/σ0 becomes less pronounced, 
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suggesting that the deeply-cracked SE(T) specimen behaves similarly as bend-type 

specimens [122].  

As for growing-crack analysis, the instantaneous crack extension is indicated in Figs. 

3.13(a), (b) and (c). Note that the crack extension includes blunting and actual crack 

extension. Since at lower loading levels (i.e. J/bσ0 = 0.060 and 0.113), the crack initiation 

has not yet started, the distribution of σθθ/σ0 in the stationary-crack and growing-crack 

analysis are almost identical. At the loading level of J/bσ0 = 0.174, crack initiation has 

started, which resulted in that σθθ/σ0 in growing-crack analysis distributes slightly lower 

than that in stationary-crack analysis. 

  

(a) a0/W = 0.2     (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.12 Distribution of σθθ/σ0 versus distance from initial crack tip at the mid-plane 

in stationary-crack analysis (PS, B/W = 1, a0/W = 0.2, 0.35 and 0.5) 
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(a) a0/W = 0.2    (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.13 Distribution of σθθ/σ0 versus distance from instantaneous crack tip at the 

mid-plane in growing-crack analysis (PS, B/W = 1, a0/W = 0.2, 0.35 and 0.5) 

Figure 3.14 shows the distributions of σθθ/σ0 ahead of the crack tip for the PS SE(T) model 

with B/W = 1 and a0/W = 0.2 at five different crack front locations in the thickness direction 

(characterized by 2z/B, with z = 0 representing mid-plane and z = B/2 representing free 

surface) at different loading levels in stationary-crack analysis.  It is indicated that σθθ/σ0 

decreases from the mid-plane to free surface at a certain given loading level. Due to the 

increase in the size of the crack-tip plastic zone and presence of the diffuse necking near 
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the free surface, σθθ/σ0 at 2z/B = 1 is markedly lower than those at 2z/B = 0, 0.398, 0.675 

and 0.867 [121]. At a given through-thickness location that is not too close to the free 

surface (e.g. 0 ≤ 2z/B ≤ 0.867) and a given normalized crack-tip distance (e.g. 1 ≤ rσ0/J ≤ 

5), σθθ/σ0 decreases with the increase of the applied load. At regions close to the free surface, 

σθθ/σ0 distributes uniformly along most part of the remaining ligament. Figure 3.14 suggests 

that there is little difference between the σθθ/σ0 distributions corresponding to the 

stationary-crack and growing-crack analyses. 

 

(a) Stationary-crack analysis 

 

(b) Growing-crack analysis 

Fig. 3.14 Distribution of σθθ/σ0 in the crack plane (PS, a0/W = 0.2, B/W = 1) 
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Figure 3.15 shows the distribution of σθθ/σ0 at rσ0/J = 2 for PS models with a0/W = 0.2, 0.35 

and 0.5, at different loading levels in stationary-crack and growing-crack analysis. It is 

indicated that σθθ/σ0 at the mid-plane is the maximum value along the crack front and 

gradually decreases from mid-plane to free surface. Also, the distribution of σθθ/σ0 is 

dependent on a0/W ratio. With a smaller a0/W ratio, the opening stress is lower than that of 

a larger a0/W ratio throughout the entire thickness direction. In addition, as the loading 

level increases, σθθ/σ0 becomes smaller. Figure 3.15 suggests that the distribution of σθθ/σ0 

along the crack front for the station-crack analysis is similar to that for the growing-crack 

analysis.    

 

(a) Stationary-crack analysis  (b) Growing-crack analysis 

Fig. 3.15 Distribution of σθθ/σ0 at rσ0/J = 2 along the crack front for PS specimens  
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3.7 Crack-tip constraint parameters 

3.7.1 Overview 

As introduced in Chapter 1, the fracture toughness transferability issue is highly related to 

the constraint effect, and can be addressed by investigating the crack-tip stress field and 

the crack-tip constraint level characterized by constraint parameters. Therefore, detailed 

examinations of the crack-tip constraint parameters using the stationary-crack and GTN-

based growing-crack FE models are presented in this section. The constraint parameters 

considered are Q [18, 19], A2 [20, 21], h [22], and TZ [23-25]. 

The Q parameter is defined as the normalized difference between the crack-tip stress field 

and HRR solution: 

𝜎𝑖𝑗 = (𝜎𝑖𝑗)𝐻𝑅𝑅 +𝑄𝜎0𝛿𝑖𝑗     at   𝑟 >
𝐽

𝜎0
     |𝜃| <

𝜋

2
 (3.4) 

where 

δij is the Kronecker delta. 

For stationary-crack analysis, the Q parameter is evaluated from the crack opening stress 

at θ = 0° and a specific distance from the crack tip (i.e. r = 2J/σ0), while for the growing 

crack analysis, the Q parameter is evaluated from the crack opening stress at θ = 0° and a 

specific distance from the instantaneous crack tip (i.e. also r = 2J/σ0). This also applies to 

A2, h and Tz parameters. 

The A2 parameter is evaluated as the value of smaller root of the following quadratic 

equation with respect to A2: 

𝜎𝑖𝑗

𝜎0
= 𝐴1 [(

𝑟

𝑙
)
𝑠1
𝜎̃𝑖𝑗
(1)(𝜃, 𝑛) + 𝐴2 (

𝑟

𝑙
)
𝑠2
𝜎̃𝑖𝑗
(2)(𝜃, 𝑛) + 𝐴2

2 (
𝑟

𝑙
)
𝑠3
𝜎̃𝑖𝑗
(3)(𝜃, 𝑛)] (3.5) 

𝐴1 = (
𝐽

𝛼𝜀0𝜎0𝐼𝑛𝑙
)
−𝑠1

 (3.6) 
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𝑠1 = −
1

𝑛 + 1
 (3.7) 

where 

A1 is the amplitude factor from the HRR stress field; 

l is a characteristic length parameter which can be simply set as 1 mm;  

The angular functions 𝜎̃𝑖𝑗
(𝑘) (k = 1, 2 and 3) and the stress power exponents s1, s2 and s3 

are functions of the hardening exponent nR-O. The values of 𝜎̃𝑖𝑗
(𝑘) , s1, s2 and s3 

corresponding to the plane strain and plane stress conditions are tabulated in [123]. Since 

the plane strain condition prevail through the thickness direction of the fracture specimens, 

in current study, the above-mentioned values correspond to the plane strain condition. 

The parameter h is the stress triaxiality defined as the ratio of hydrostatic stress to von 

Mises stress: 

ℎ =
𝜎𝑚
𝜎𝑒

 (3.8) 

The parameter TZ is defined as the ratio of the out-of-plane normal stress to sum of the in-

plane normal stresses: 

𝑇𝑍 =
𝜎𝑧𝑧

𝜎𝑥𝑥 + 𝜎𝑦𝑦
 (3.9) 

3.7.2 Constraint distribution ahead of the crack tip 

Figures 3.16 to 3.19 show the distributions of Q, A2, h and TZ at 0 < r/(J/σ0) < 5 at the mid-

plane of PS model with a0/W = 0.2, 0.35 and 0.5, B/W = 1 at different loading levels, for 

stationary-crack and growing-crack analysis. Figures 3.16, 3.18 and 3.19 indicate that Q, h 

and TZ parameters decreases markedly as the loading level and/or r increases. Figure 3.17 

shows that A2 parameter is almost independent of the loading level and r. These 

observations are consistent with the results reported in previous studies [124]. Note that 
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the distributions of Q, A2, h and TZ at 0 < r/(J/σ0) < 5 at the mid-plane of SG specimens are 

almost identical to those of PS specimens, hence are not shown for brevity. 

Figures 3.16, 3.18 and 3.19 also indicate that for the loading level of J/(bσ0) < 0.113, the 

constraint parameters Q, h and Tz in stationary-crack and growing-crack analysis distribute 

almost identically along the mid-plane. Under the loading level of J/(bσ0) > 0.113, the 

distributions of the constraint parameters start to present some deviations, especially for 

shallow-cracked specimens.  

  

(a) a0/W = 0.2    (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.16 Distribution of Q in the mid-plane for PS model (a0/W = 0.2, 0.35 and 0.5, 

B/W = 1) at different loading levels (stationary-crack and growing-crack analyses) 
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Another observation from Figs. 3.16 to 3.19 is that, as the initial crack length a0/W ratio 

increases from 0.2 to 0.5, the decrease in constraint parameters with the increasing loading 

level becomes more pronounced, which means that the distribution of the constraint 

parameters by the loading level is influenced by the initial crack length, for both stationary-

crack and growing-crack analysis. 

  

(a) a0/W = 0.2    (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.17 Distribution of A2 in the mid-plane for PS model (a0/W = 0.2, 0.35 and 0.5, 

B/W = 1) at different loading levels (stationary-crack and growing-crack analyses) 
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(a) a0/W = 0.2    (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.18 Distribution of h in the mid-plane for PS model (a0/W = 0.2, 0.35 and 0.5, 

B/W = 1) at different loading levels (stationary-crack and growing-crack analyses) 
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(a) a0/W = 0.2    (b) a0/W = 0.35 

 

(c) a0/W = 0.5 

Fig. 3.19 Distribution of Tz in the mid-plane for PS model (a0/W = 0.2, 0.35 and 0.5, 

B/W = 1) at different loading levels (stationary-crack and growing-crack analyses) 

3.7.3 Through-thickness constraint distribution 

i). Q parameter: 

Figure 3.20 shows the through-thickness distribution of Q at different loading levels for PS 

specimens with a0/W = 0.2, 0.35 and 0.5 and B/W = 1, where Q is evaluated at a normalized 

distance of r/(J/σ0) = 2 away from the crack tip. Note that in stationary-crack analysis, the 

crack tip is the original one, whereas in growing-crack analysis, the crack tip is the 
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instantaneous one. It is shown that as loading level increases, the constraint parameters at 

a given crack front location decreases markedly. At a certain loading level, as a0/W 

increases, the corresponding Q parameter at the same given crack front location increases, 

which can be interpreted by the in-plane constraint effect.  

The above-mentioned constraint effect is more clearly shown in Fig. 3.21, in which the Q 

parameter at the mid-plane of PS models with a0/W = 0.2-0.5 and B/W = 1 are plotted 

against a0/W.  

  

(a) Stationary-crack analysis (b) Growing-crack analysis 

Fig. 3.20 Through-thickness distribution of Q for PS models 

 

Fig. 3.21 Variation of Q parameter at mid-plane with a0/W (PS, B/W = 1) 
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ii). A2 parameter:  

Figure 3.22 shows the through-thickness distribution of A2 at different loading levels for 

the PS specimens with a0/W = 0.2, 0.35 and 0.5; B/W = 1, where A2 is evaluated at r/(J/σ0) 

= 2. The figure indicates that A2 is almost independent of the loading level and r. The figure 

also shows that for a given loading level, A2 does not change much with a0/W ratio. This 

may be due to that the currently considered loading levels are all high (i.e. 1.1 < P/PY < 

1.3). Figure 3.23 shows that the value of A2 slightly increases with the increase of a0/W, 

which is consistent with the results reported in [124]. 

 

(a) Stationary-crack analysis (b) Growing-crack analysis 

Fig. 3.22 Through-thickness distribution of A2 for PS models 

 

Fig. 3.23 Variation of A2 parameter at mid-plane with a0/W (PS, B/W = 1) 
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iii). h parameter:  

Figure 3.24 shows the through-thickness distribution of h at different loading levels for PS 

specimens with a0/W = 0.2, 0.35 and 0.5 and B/W = 1, where h is evaluated at a normalized 

distance of r/(J/σ0) = 2 away from the crack tip. Similar to the Q parameter, h decreases 

markedly as loading level increases. Figure 3.25 indicates that the growing-crack analysis 

at lower loading levels (i.e. J/bσ0 = 0.060 and 0.113) presents slightly stronger in-plane 

constraint effect. 

 

(a) Stationary-crack analysis (b) Growing-crack analysis 

Fig. 3.24 Through-thickness distribution of h for PS models 

 

Fig. 3.25 Variation of h parameter at mid-plane with a0/W (PS, B/W = 1) 
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iv). TZ parameter:  

Figure 3.26 shows the through-thickness distribution of Tz at different loading levels for 

PS specimens with a0/W = 0.2, 0.35 and 0.5 and B/W = 1, where Tz is evaluated at a 

normalized distance of r/(J/σ0) = 2 away from the crack tip. It is shown that TZ decreases 

markedly as loading level increases, especially for shallow-cracked specimens. As shown 

in Fig. 3.27, under higher loading level (i.e. J/bσ0 = 0.174), a visible deviation of Tz at the 

mid-plane in stationary-crack and growing-crack analysis is captured, especially for 

shallow-cracked specimen with a0/W = 0.2. 

  

(a) Stationary-crack analysis (b) Growing-crack analysis 

Fig. 3.26 Through-thickness distribution of Tz for PS models 

 

 

Fig. 3.27 Variation of Tz parameter at mid-plane with a0/W (PS, B/W = 1) 
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3.7.4 Relation between constraint parameters 

The relations between constraint parameters are examined in this section. The parameters 

are all evaluated at the mid-plane from the crack tip at three different loading levels. The 

FE models considered have an initial crack length of a0/W = 0.2 and B/W = 1 in both 

stationary-crack and growing-crack analyses. Figure 3.28 to 3.31 depict the relations 

between Q-h, Q-TZ, A2-h and A2-TZ, respectively.  

Figure 3.28 indicates that Q and h parameters are well correlated for SE(T) models in both 

stationary-crack and growing-crack analyses in terms of characterizing the crack-tip 

constraint. As can be observed in the figure, for each curve, as the distance from the crack 

tip r/(J/σ0) increases from 0 to a certain value, an inflection point forms. Take the case of 

the stationary-crack model at a loading level of J/(bσ0) = 0.060 as an example, as the 

distance from the crack tip increases, the Q and h parameters are correlated almost linearly. 

When r/(J/σ0) reaches 1.02, an inflection point forms and another linear correlation presents. 

In this study, the distance at the inflection point is named as ‘inflection point distance’. 

Another observation is that the ‘inflection point distance’ decreases as loading level 

increases. In addition, it is observed that the ‘inflection point distance’ in growing-crack 

analysis is markedly smaller than that in stationary-crack analysis for the high loading level 

of J/(bσ0) = 0.174. Note that the above-mentioned observations also apply to FE models 

with other a0/W ratios. 

 

Fig. 3.28 Relation between Q-h 
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Figure 3.29 shows the relation between Q and TZ parameters. Similar to the Q-h relation, 

the inflection points characterized by certain distances r/(J/σ0) from the crack tip are 

captured at different loading levels in both stationary-crack and growing-crack analyses. 

The TZ parameter is essentially independent of the Q parameter near the crack-tip region. 

As the inflection point distance reaches a certain value, TZ becomes correlated to Q, and 

this correlation first becomes stronger and then weaker as the distance r/(J/σ0) increases. 

 

Fig. 3.29 Relation between Q-TZ 

 

Fig. 3.30 Relation between A2-h 
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Fig. 3.31 Relation between A2-TZ 

Figures 3.30 and 3.31 show the relations between A2-h as well as A2-TZ, respectively. 

Similar to the Q-h and Q-TZ relations, inflection points are captured at different loading 

levels in both stationary-crack and growing-crack analyses. In Fig. 3.30, as the distance 

from the crack tip increases, the A2 and h parameters are correlated almost linearly. Before 

r/(J/σ0) reaches a certain value, the A2-h relation are almost linear, and after that certain 

value, these two constraint parameters present a new correlation. Figure 3.31 shows the 

relation between A2 and TZ parameters. Similar to the Q-TZ relation, inflection points are 

captured at different loading levels in both stationary-crack and growing-crack analyses. 

The TZ parameter is essentially independent on A2 parameter near the crack-tip region. As 

the distance r/(J/σ0) becomes greater than the inflection point distance, the TZ parameter 

becomes almost linearly correlated to the A2 parameter, especially for lower loading level. 

  



83 

 

Chapter 4 Normalization method for SE(T) specimen 

4.1 Overview 

The normalization (NM) method (also known as the normalization data reduction 

technique) is standardized in ASTM E1820-17 [12] as an alternative method to develop the 

J-R curves for deeply-cracked (i.e. 0.45 ≤ a0/W ≤ 0.70) SE(B) and C(T) specimens for 

testing cases where the unloading compliance method becomes unfeasible or impractical 

(e.g. tests involving high loading rates, extreme temperatures or aggressive environments). 

The NM method does not require measurements of the crack growth during the J-R curve 

testing. It only requires recording the load-displacement history (i.e. P-LLD or P-CMOD 

curve), initial crack length (a0) and finial crack length (af) [125]. The crack growth path 

from a0 to af is inferred iteratively by forcing the normalized load, normalized plastic 

displacement, and crack length to be on a fitted normalized calibration curve for a given 

specimen after the test has been completed.  

As describe in Section 4.2, the NM method as standardized in ASTM E1820-17 [12] 

involves somewhat tedious computation of the J-integral.  The research reported in this 

chapter is aimed at improving the computational efficiency of the NM method with respect 

to its application to the J-R curve evaluation for the SE(T) specimen. To this end, a so-

called k factor-based NM method is developed, in which the J value is directly evaluated 

using the k factor.  In the following sections, a review of the NM method is first presented 

followed by the description of the development of the k factor method.   

4.2 Review of NM method 

4.2.1 Procedure of NM method 

The procedure of NM method for SE(B) or C(T) specimens has been standardized in 

ASTM E1820-17 [12] and is summarized as follows.  

1) During the toughness testing of the fracture specimen, a load-CMOD curve should be 

recorded (see Fig. 4.1 for an illustration), together with the initial and final crack length 
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(i.e. a0 and af) measured using the 9-point average technique as specified in ASTM E1820-

17 [12] by breaking up the specimen after the completion of the test.  

 

Fig. 4.1 Load-CMOD curve 

2) Each load point Pi up to, but excluding the maximum load Pmax, on the load-CMOD 

curve is normalized using the following equation: 

𝑃𝑁𝑖 =
𝑃𝑖

𝐵𝑊 (1 −
𝑎𝑏𝑖
𝑊)

𝜂𝑝𝑙
 (4.1) 

where 

PNi is the normalized load at the i-th loading step (i = 1, 2, …) (note that PNi has the same 

unit as stress);  

ηpl is the so-called plastic eta factor, which relates the plastic area under the load-CMOD 

curve to J and is typically a function of the crack length [126]. The equations for evaluating 

ηpl for SE(B) and C(T) specimens are specified in ASTM E1820-17 [12]. 

abi is the blunting corrected crack length at the i-th loading step and given by: 
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𝑎𝑏𝑖 = 𝑎0 +
𝐽𝑖
2𝜎𝑌

 (4.2) 

with Ji being the J-integral at the i-th loading step and calculated from: 

𝐽𝑖 =
𝐾𝑖
2(1 − 𝜈2)

𝐸
+ 𝐽𝑝𝑙𝑖 (4.3) 

where 

Ki is the stress intensity factor at the i-th loading step; 

Jpli is the plastic component of Ji and can be calculated using the following equation:  

𝐽𝑝𝑙𝑖 = [𝐽𝑝𝑙(𝑖−1) + (
𝜂𝑝𝑙(𝑖−1)

𝑏(𝑖−1)
) (
𝐴𝑝𝑙𝑖 − 𝐴𝑝𝑙(𝑖−1)

𝐵𝑁
)] [1 −

𝛾𝐿𝐿𝐷(𝑖−1)(𝑎𝑖 − 𝑎(𝑖−1))

𝑏(𝑖−1)
] (4.4) 

in which  

γLLD is a plastic parameter and typically a function of the crack length [127].  Since the 

crack length ai (i = 1, 2, …) is unknown at this step, the values of Ki, Jpli and ηpl are 

calculated using the initial crack size a0.   

3) The plastic component of CMOD (normalized by W) at the i-th step, Vpli/W, is obtained 

by: 

𝑉𝑝𝑙𝑖

𝑊
=
𝑉𝑖 − 𝑃𝑖𝐶𝑖
𝑊

 (4.5) 

where  

Ci is the CMOD-based compliance of the test specimen, which is a function of the crack 

length [128].  At this step, the blunting corrected crack size abi as given by Eq. (4.2) is used 

to estimate Ci. 
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4) The load and CMOD corresponding to the last point on the load-CMOD curve are 

normalized using Eqs. (4.1) and (4.5), respectively, except that af (without blunting 

correction) is used in Eq. (4.1) and to evaluate the compliance of the specimen.  Figure 4.2 

illustrates the final normalized load-CMOD curve, whereby the final point markedly differs 

from the rest of the curve because of the normalization based on af.   

  

Fig. 4.2 Normalized load versus normalized CMOD 

5) The normalized load-CMOD pairs (PNi, Vpli/W) with Vpli/W > 0.001 up to, but excluding 

the maximum load, as well as the final normalized pair, are fitted by using the following 

so-called ‘NM function’ (see Fig. 4.3 for an illustration): 

𝑃𝑁 =
𝐿 +𝑀 ∙ (

𝑉𝑝𝑙
𝑊)+ 𝑁 ∙ (

𝑉𝑝𝑙
𝑊)

2

𝑂 + (
𝑉𝑝𝑙
𝑊)

 (4.6) 

where  

L, M, N, and O are fitting coefficients to be determined, e.g. using the least squares 

technique.  
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Fig. 4.3 Normalization function shown fitted to the normalization data 

 

Fig. 4.4 Data adjusted to place all points on the analytical NM function 

6) Starting at the first data point with Vpli/W > 0.002, an iterative procedure is used to force 

PNi, Vpli/W and ai data at each loading point to lie on the curve described by Eq. (4.6) by 

adjusting the crack size ai (see Fig. 4.4). 

7) Now that the crack size at each loading step is obtained, Eqs. (4.3) and (4.4) are used to 

evaluate the J value at each load point. 
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8) The J-R curve (schematically shown in Fig. 4.5) is generated by plotting Ji(ai) obtained 

in step 7) against the crack extension ai = ai – a0. 

 

Fig. 4.5 The resulting J-R curve 

In summary, the NM method involves normalizing the load-CMOD pairs, fitting the NM 

function, calculating the crack size at each loading step through an iterative procedure, 

calculating the J-integral and plotting the J-R curve. Note that the difference between the 

application of the NM method for the SE(T) specimen and that for the SE(B) or C(T) 

specimen only lies in the specific equations used to evaluate Ki, Ci, ηpl and γLLD. 

4.2.2 Evolution of NM method 

The NM method evolves from early studies of the ‘key curve’ (also called ‘F1 function’) 

method and principle of load separation developed in the late 1970s [129-131]. Ernst et al. 

[129] conducted dimensional analyses of the relationships among the load, crack length 

and normalized plastic displacement, and proposed the following equation: 

𝑃 =
𝑏2

𝑊
𝐹1 (

𝑉𝑝𝑙

𝑊
,
𝑎

𝑊
,
𝐵

𝑊
) (4.7) 

where 

F1 is the key curve function, which is a function of Vpl/W, a/W and B/W. 
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Equation (4.7) indicates that the function F1 represents the load-plastic displacement 

relationship. Note that F1 presents the early form of the plastic function H, which will be 

introduced in Eq. (4.16).  

The work in [129] and [130] led to the concept of load separation [131]. In the test of a 

precracked specimen, the load, the displacement V can be separated into the elastic (Vel) 

and plastic (Vpl) components: 

𝑉 = 𝑉𝑒𝑙 + 𝑉𝑝𝑙 (4.9) 

where 

𝑉𝑒𝑙 = 𝑃𝐶 (
𝑎

𝑊
) (4.10) 

The load P is assumed to be a function of a/W and Vpl/W by two multiplicative functions: 

𝑃 = 𝐺 (
𝑎

𝑊
)𝐻 (

𝑉𝑝𝑙

𝑊
) (4.11) 

Rearranging Eq. (4.11) results in the normalized load PN as follows: 

𝑃𝑁 =
𝑃

𝐺 (
𝑎
𝑊)

= 𝐻 (
𝑉𝑝𝑙

𝑊
) (4.12) 

where 

G is a geometry function that depends on the crack length only, and H is the plasticity 

function (or calibration function), which depends on the plastic component of the 

displacement only.  

Sharobeam et al. [132] proposed G(a/W) to be 

𝐺 (
𝑎

𝑊
) =

𝐵𝑏2

𝑊
 (4.13) 

for the SE(B) specimen, and  
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𝐺 (
𝑎

𝑊
) =

𝐵𝑏2

𝑊
𝑒0.522(

𝑏
𝑊
)
 (4.14) 

for the C(T) specimen.  

Joyce [133] proposed the following geometry function for SE(B) and C(T) specimens: 

𝐺 (
𝑎

𝑊
) = 𝐵𝑊 (1 −

𝑎𝑏𝑖
𝑊
)
𝜂𝑝𝑙

 (4.15) 

The earliest form of the H function was proposed by Landes et al. [134] and Herrera et al. 

[135] to be a power-law function as follows: 

𝐻 (
𝑉𝑝𝑙

𝑊
) = 𝑃𝑁 = (

𝑉𝑝𝑙

𝑊𝜍
)
1/𝑛

 (4.16) 

where  

ς is the fitting coefficient to be determined;  

n is the strain-hardening exponent in the Ramberg-Osgood stress-strain relationship. 

Equation (4.16) implies that only one point on the load-displacement curve (e.g. the final 

displacement and corresponding load) is needed to determine the constants ς and then the 

entire calibration curve.  

The following two-branch function consisting of a power-law function and a linear function 

was later proposed in [136] to improve Eq. (4.16).  

𝑃𝑁 =

{
 
 

 
 

(
𝑉𝑝𝑙

𝑊𝜍
)
1/𝑛

𝑉𝑝𝑙 > 0.1

𝐷1 + 𝐷2 (
𝑉𝑝𝑙

𝑊
) 𝑉𝑝𝑙 ≤ 0.1

 (4.17) 

where  

D1 and D2 are the fitting coefficients.  
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The so-called ‘LMN’ function, based on the work of Orange [137], was proposed by Landes 

et al. [138]: 

𝑃𝑁 = [
𝐿 +𝑀 ∙ (

𝑉𝑝𝑙
𝑊)

𝑁 + (
𝑉𝑝𝑙
𝑊)

] (
𝑉𝑝𝑙

𝑊
) (4.18) 

where  

L, M and N are the fitting coefficients.  

Equation (4.18) represents a power-law relationship between PN and Vpl/W for small values 

of Vpl/W, and an approximately linear relationship between PN and Vpl/W for large values 

of Vpl/W. Experimental results of 67 different-sized C(T) specimens made of six different 

materials in [138] showed that the ‘LMN’ function markedly improved the accuracy of the 

J-R curve compared with Eq. (4.17).  

In 2001, the NM method was standardized in the ASTM E1820-01 standard for the J-R 

curve testing under high loading rates. A slightly revised ‘LMN’ function, i.e. the ‘LMNO’ 

function was adopted in the standard: 

𝑃𝑁 =
𝐿 +𝑀 ∙ (

𝑉𝑝𝑙
𝑊)+ 𝑁 ∙ (

𝑉𝑝𝑙
𝑊)

2

𝑂 + (
𝑉𝑝𝑙
𝑊)

 (4.19) 

where  

L, M, N, and O are the fitting coefficients.  

Zhu et al. [119] developed J-R curves for standard and non-standard SE(B) specimens 

(0.135 ≤ a0/W ≤ 0.83) made of HY80 steel using the NM method.  They found that the 

developed J-R curves are in good agreement with those obtained by the UC method.  Their 

study suggests that the NM method is applicable to both standard and non-standard SE(B) 

specimens.  Zhu et al. [166] further employed the NM method to develop J-R curves for 
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pin-loaded deeply-cracked side-grooved SE(T) specimens of X60-grade steel.  It was 

shown that the J-R curve developed from the NM method agreed well with that obtained 

from the UC method.  

Fortes et al. [139] showed that the NM method employing the ‘LMN’ function leads to J-

R curves that agree well with those obtained from the UC method for side-grooved SE(B) 

specimens tested at four different temperatures. Scibetta et al. [118] validated the NM 

method based on numerical simulation of 2D FEA of SE(B) and C(T) specimens made of 

typical low and high toughness ferritic steels. The numerical validation results showed that 

the NM method is very accurate in terms of predicting the J-R curves in all cases. 

Kong et al. [140] recently proposed a modified NM method in which the normalized load 

PN was further normalized by the yield strength σYS to become dimensionless. The CTOD-

R curves for three SE(T) specimens fabricated from a section of X90-grade pipeline 

segment were obtained from the modified NM and UC methods.  It was observed that the 

CTOD-R curves obtained from these two methods agree well.  

4.3 Validation of NM method for SE(T) specimens 

Although the application of the NM method to the SE(T) specimen-based J-R curve testing 

has been studied in previous studies, there is a lack of a systematic investigation of the 

adequacy of the NM method with respect to the SE(T) specimen. To this end, the NM 

method was employed to determine J-R curves for six SE(T) specimens tested by Wang et 

al. [114] (see Section 3.1 for details of these specimens) and 21 SE(T) specimens analyzed 

using the GTN model and computational cell methodology (see Section 3.5 for details of 

these models). The equations of J-integral calculation (i.e. equations for the calculation of 

K, C and ηpl) for SE(T) specimen are given in APPENDIX B. The J-R curves determined 

from the NM method are then compared with those determined from the UC method to 

systematically investigate the adequacy of the NM method for SE(T) specimens. The fitting 

coefficients (i.e. L, M, N and O) of the NM function (see Eq. (4.6)) for six test specimens 

are listed in Table C.1 of APPENDIX C. 
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i) Validation using six test specimens: 

Figure 4.6 compares the J-R curves obtained from the NM and UC methods for all 6 test 

specimens. According to ASTM E1820-17 [12], the J-R curves are fitted in the following 

power-law form: 

𝐽 = 𝐶1 ∙ ∆𝑎
𝐶2 (4.20) 

where 

C1 and C2 are coefficients of the power-law function determined from curve fitting the J-

a data points.  

Table 4.1 shows the comparison of crack lengths obtained from the 9-point average 

technique and UC method for six specimens. The errors of initial crack length, final crack 

length, and crack extension between the two methods are respectively defined as follows: 

𝑒𝑎1 =
𝑎0NM − 𝑎0UC

𝑎0UC
× 100% (4.21) 

𝑒𝑎2 =
𝑎𝑓NM − 𝑎𝑓UC

𝑎𝑓UC
× 100% (4.22) 

𝑒𝑎3 =
𝑎∆𝑎NM − 𝑎∆𝑎UC

𝑎∆𝑎UC
× 100% (4.23) 

Table 4.1 Crack lengths obtained from 9-point average technique and UC method 

Specimen Number 
9-point UC Error (%) 

a0 (mm) af (mm) ∆a (mm) a0 (mm) af (mm) ∆a (mm) ea1 ea2 ea3 

SE(T)-SG05-01 10.151 12.886 2.735 10.312 13.649 3.337 1.6 5.9 22.0 

SE(T)-SG05-02 10.447 12.730 2.283 10.367 12.532 2.165 -0.8 -1.6 -5.2 

SE(T)-PS05-01 11.221 14.264 3.043 10.667 12.309 1.642 -4.9 -13.7 -46.0 

SE(T)-PS05-02 11.492 14.270 2.778 10.376 12.516 2.141 -9.7 -12.3 -22.9 

SE(T)-SG25-01 5.165 8.421 3.256 5.218 8.404 3.186 1.0 -0.2 -2.1 

SE(T)-SG25-02 5.233 8.741 3.508 5.290 8.677 3.387 1.1 -0.7 -3.5 
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Figure 4.6 indicates that for the SG05 and SG25 SE(T) specimens, the fitted J-R curves 

obtained by the UC and NM methods agree reasonably well. However, for the two PS05 

specimens, non-negligible deviations exist between the fitted lines. This is due to the 

inaccurate estimation of the crack lengths performed by the UC method (i.e. the maximum 

error of ∆a is about 46%). As indicated in Table 4.1, the initial crack lengths of SE(T)-

PS05-01 and SE(T)-PS05-02 specimens are underestimated by the UC method by 4.9% 

and 9.7%, respectively, while the final crack lengths are underestimated by the UC method 

by 46.0% and 22.9%, respectively. 

It is worth pointing out that the J-R curves determined from the NM method tend to 

inaccurate for small crack extensions (less than about 0.2 mm) [118]. This is due to the 

high sensitivity of the crack length to the normalized load, whereby relatively small 

changes in the normalized load can result in large changes in the estimated crack length. 

The oscillations are not shown in current figures by eliminating the portion before the crack 

extension of ∆a = 0.2 mm and replacing with a straight-line between the origin and the 

point corresponding to the crack extension of ∆a = 0.2 mm. 

In order to quantify the adequacy of the NM method in terms of generating J-R curves for 

the SE(T) specimen, the relative error, eJ1, is defined as: 

𝑒𝐽1 =
𝐽NM − 𝐽UC
𝐽UC

× 100% (4.24) 

where 

JNM and JUC denote the J values at a given crack extension ∆a in the fitted J-R curves 

corresponding to the UC and NM methods, respectively. 

Table 4.2 lists the error of J values determined from the NM method compared with those 

determined from the UC method, at selected values of the crack extension. The table 

indicates that |eJ1| in general decreases as ∆a increases.  The difference between JNM and 

JUC is the smallest for SG05 specimens among all the specimens (|eJ1| < 10%). The largest 

difference between JNM and JUC occurs for the SE(T)-PS05-01 specimen, with |eJ1| being 

as large as over 20%. As discussed previously, this is due to the inaccurate estimation of 

the crack lengths performed by the UC method. 
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(a) SE(T)-SG05-01   (b) SE(T)-SG05-02 

  

(c) SE(T)-PS05-01   (d) SE(T)-PS05-02 

 

(e) SE(T)-SG25-01   (f) SE(T)-SG25-02 

Fig. 4.6 Comparison of J-R curves obtained from UC method and NM method 
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Table 4.2 Error of the predicted J-R curves using NM method for six test specimens 

Specimen Number 

Error eJ1 (%) 

∆a=0.2 

(mm) 

∆a=0.5 

(mm) 

∆a=1.0 

(mm) 

∆a=1.5 

(mm) 

∆a=2.0 

(mm) 

∆a=2.5 

(mm) 

SE(T)-SG05-01 9.7 4.5 0.7 -1.5 -3.0 -4.1 

SE(T)-SG05-02 6.2 0.8 -3.2 -5.4 -6.9 -8.1 

SE(T)-PS05-01 -26.5 -24.5 -22.9 -21.9 -21.3 -20.7 

SE(T)-PS05-02 -12.2 -12.6 -13.0 -13.1 -13.3 -13.4 

SE(T)-SG25-01 -27.5 -22.9 -19.3 -17.0 -15.4 -14.1 

SE(T)-SG25-02 -21.3 -16.3 -12.3 -9.9 -8.1 -6.8 

 

ii) Validation using 21 growing-crack FE models: 

Figure 4.7 compares the J-R curves obtained from the NM and UC methods for the 21 FE 

models described in Section 3.3.1. The fitting coefficients (i.e. L, M, N and O) of the NM 

function (see Eq. (4.6)) for 21 GTN-based FE models are listed in Table C.2 of APPENDIX 

C. For simplicity, only fitted curves are shown in Fig. 4.7. It can be observed that the results 

obtained from the NM method agree reasonably well with those obtained from the UC 

method for all cases, especially for deeply-cracked FE models. 

 

     (a) PS specimens with B/W = 1 
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(b) SG specimens with B/W = 1  

 

 (c) PS specimens with B/W = 0.5 

Fig. 4.7 J-R curves obtained from UC method and NM method for 21 FE models 

Table 4.3 lists the values of eJ1 at selected crack extensions for all FE models. For all cases 

at relatively small crack extensions (e.g. ∆a ≤ 1.0 mm), the J values evaluated using the 

NM method are smaller than those evaluated using the UC method. As the crack extension 

increases, the value of eJ1 becomes smaller. At the crack extension of ∆a = 2.5 mm, the 

relative error for all SG specimens are within 6%, and the relative error for intermediate to 

deeply-cracked (e.g. a0/W ≥ 0.3) specimens are also small, within 8%. However, for PS 
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specimens with relatively shallow cracks (i.e. a0/W ≤ 0.25), the relative error can be as high 

as -13%. 

Table 4.3 Error of the predicted J-R curves using NM method for 21 FE models 

(a) PS specimens with B/W = 1 

a0/W 

Error eJ1 (%) 

∆a=0.2 

mm 

∆a=0.5 

mm 

∆a=1.0 

mm 

∆a=1.5 

mm 

∆a=2.0 

mm 

∆a=2.5 

mm 

0.2 -16.5 -15.3 -14.3 -13.7 -13.3 -13.0 

0.25 -21.5 -18.2 -15.6 -14.1 -12.9 -12.1 

0.3 -22.7 -14.6 -8.0 -3.8 -0.8 1.6 

0.35 -25.2 -16.3 -8.9 -4.3 -0.9 1.9 

0.4 -23.5 -14.9 -7.7 -3.2 0.1 2.7 

0.45 -22.7 -12.9 -4.6 0.6 4.4 7.5 

0.5 -18.3 -12.0 -6.8 -3.7 -1.4 0.4 

 (b) PS specimens with B/W = 0.5 

a0/W 

Error eJ1 (%) 

∆a=0.2 

mm 

∆a=0.5 

mm 

∆a=1.0 

mm 

∆a=1.5 

mm 

∆a=2.0 

mm 

∆a=2.5 

mm 

0.2 -17.5 -16.0 -14.8 -14.0 -13.5 -13.1 

0.25 -16.3 -13.4 -11.2 -9.9 -8.9 -8.2 

0.3 -14.3 -11.0 -8.4 -6.9 -5.8 -4.9 

0.35 -12.4 -9.3 -6.8 -5.4 -4.3 -3.5 

0.4 -9.7 -7.3 -5.4 -4.2 -3.4 -2.8 

0.45 -9.1 -6.8 -4.9 -3.8 -3.0 -2.4 

0.5 -8.6 -7.5 -6.5 -6.0 -5.6 -5.3 

(c) SG specimens with B/W = 1 

a0/W 

Error eJ1 (%) 

∆a=0.2 

mm 

∆a=0.5 

mm 

∆a=1.0 

mm 

∆a=1.5 

mm 

∆a=2.0 

mm 

∆a=2.5 

mm 

0.2 -31.6 -20.8 -11.5 -5.5 -1.1 2.5 

0.25 -32.4 -20.4 -10.0 -3.3 1.8 5.9 

0.3 -31.7 -20.1 -10.1 -3.7 1.2 5.1 

0.35 -33.5 -22.7 -13.3 -7.3 -2.8 0.9 

0.4 -30.3 -20.4 -12.0 -6.7 -2.7 0.5 

0.45 -24.5 -16.7 -10.3 -6.3 -3.4 -1.0 

0.5 -21.4 -13.8 -7.6 -3.7 -0.9 1.4 
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4.4 J-CMOD relationship 

4.4.1 J-CMOD relationship for test specimens 

Let JN and VN denote the normalized J and CMOD values, respectively. The following 

equations are used to define JN and VN, respectively: 

𝐽𝑁 =
𝐽

𝑏0𝜎𝑌
 (4.25) 

𝑉𝑁 =
𝑉

𝑎0
 (4.26) 

where 

σY is the effective yield strength and is calculated as the average of ultimate tensile strength 

σTS and 0.2%-offset yield strength σYS, (see Eq. (3.3)). 

 

Fig. 4.8 JN-VN relationship for test specimens 

Figure 4.8 shows the relationship between JN and VN for the SE(T) specimens tested by 

Wang et al. [114] (see Chapter 3). As can be observed, the JN-VN relationship is 

approximately linear (and close to power-law for some specimens). This observation is 

consistent with the observation made by Bolinder et al. [72, 141] for notched bend type 

specimens with different crack depths, with or without residual stresses. The approximate 

linear relationships between the material resistance and displacement (i.e. CTOD, CMOD 
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and the rotational angle of the crack plane) for SE(B) or SE(T) specimens have also been 

reported in other studies [101, 142-144]. 

4.4.2 J-CMOD relationship for growing-crack FE models 

Figure 4.9 shows the JN-VN relationship for the 21 GTN-based FE models described in 

Chapter 3. As can be observed, the JN-VN relationship is approximately linear for some 

specimens and close to power-law for the other.  

  

          (a) PS FE models with B/W = 1 (b) SG FE models with B/W = 1              

 

 (c) PS FE models with B/W = 0.5 

Fig. 4.9 JN-VN relationship for GTN models with growing crack 



101 

 

4.4.3 J-CMOD relationship for stationary-crack FE models 

Huang et al. [145] studied the J-CTOD relationship for the SE(T) specimen by carrying 

out FEA of a series of SE(T) models with wide ranges of geometric configurations and 

material properties, i.e. a0/W = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7; B/W = 1 and 2; PS/SG; n = 5, 

8.5, 10, 15 and 20, where n is the strain hardening exponent. The stationary-crack 

assumption was adopted in their analysis. Figure 4.10 shows the JN-VN relationships for the 

PS SE(T) models with B/W = 1 analyzed by Huang et al. [145]. As can be observed, the 

JN-VN relationship is similar to that shown in Figs. 4.8 and 4.9. The JN-VN relationships for 

the other models analyzed by Huang et al. [145] are similar to those shown in Fig. 4.10 and 

therefore not shown for the sake of brevity.  

Figures 4.8 through 4.10 suggest that the approximate linear/power-law relationship 

between JN and VN can be exploited to develop an empirical equation to evaluate J directly 

from CMOD, which markedly simplifies the procedure for the J evaluation currently 

employed in the NM method.  Because the FE SE(T) models analyzed by Huang et al. [145] 

cover wide ranges of specimen configurations and material properties, and because the 

virtual crack extension method used to evaluate J in Huang et al.’s study is considered the 

exact method for the J evaluation (the η factor- based method used to evaluate J for the test 

specimens and GTN-based FE models is considered an approximate approach), the JN-VN 

results obtained by Huang et al. were used to develop the empirical equation to evaluate J, 

whereas the JN-VN results corresponding to the test specimens and GTN models are used to 

validate the developed empirical equation.  

  

(a) n = 5    (b) n = 8.5 
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(c) n = 10    (d) n = 15 

 

(e) n = 20 

Fig. 4.10 JN-VN relationship for stationary-crack PS FE models with B/W = 1 

4.5 Evaluation of J using CMOD and k  

Given Figs. 4.8 through 4.10, it is proposed that the following empirical equation be used 

to evaluate J: 

𝐽𝑁 = 𝑘𝑉𝑁 (4.27) 

where  
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k is the empirical factor that relates VN to JN. Note that Eq. (4.27) is inspired by the 

commonly-used J-CTOD relationship as follows: 

𝐽

𝜎𝑌𝑆
= 𝑚𝛿 (4.28) 

where  

m is known as the constraint factor, which relates J to CTOD. 

As indicated in Section 4.4.3, the JN and VN results corresponding to the SE(T) specimens 

analyzed by Huang et al. [145] are used to develop the empirical equation for evaluating k.  

To this end, the values of k (obtained from JN/VN) for PS SE(T) specimens with B/W = 1 

analyzed by Huang et al. are depicted in Figs. 4.11. The figure indicates that k is an 

increasing function of VN.  The value of k increases approximately linearly with VN for 

relatively small values of VN, say, VN ≤ 0.02; however, as VN further increases, k increases 

slowly with VN.  Figure 4.12 shows the impact of the strain hardening exponent n on the 

value of k by re-plotting the results shown in Fig. 4.11 in terms of a0/W and n. Figure 4.12 

indicates that for given a0/W ratio and loading level, k generally decreases as n increases.  

However, for n > 8.5, k is weakly dependent on n. Note that the above-mentioned 

observations are also applicable to the other SE(T) specimens analyzed by Huang et al., i.e. 

PS specimens with B/W = 2, and SG specimens with B/W = 1 and 2.  For brevity, these 

results are not shown.  

Figure 4.13 depicts the k values as a function of VN for PS and SG specimens with B/W = 

1 and 2 and n = 10. The figure suggests that the B/W ratio has a negligible impact on k.  On 

the other hand, Fig. 4.13 suggests that side-grooving has a non-negligible impact on k. The 

values of k for the SG specimens are generally 12%-14% higher than those for the PS 

specimens, all the other relevant parameters being the same. The above observations may 

be explained by the fact that side-grooving makes the plane-strain (as opposed to the plane-

stress) condition more prevalent along the crack front, which tends to increase the k value.  

This is similar to the fact that the m value in the J-CTOD relationship as expressed in Eq. 

(4.26) is higher for the plane-strain condition than that for the plane-stress condition.  
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(a)      (b) 

   

(c)      (d) 

 

(e) 

Fig. 4.11 Variation of k with VN for various a0/W for PS FE models with B/W = 1 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Fig. 4.12 Variation of k with VN for various n for PS FE models with B/W = 1 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Fig. 4.13 Variation of k with VN for FE models with n = 10, various B/W and PS/SG 
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4.6 k equation 

Based on the observations made from Figs. 4.11 through 4.13, the following empirical 

equation is proposed to evaluate k.  

𝑘 =

{
 
 

 
 𝛼 ∙ 0.02𝛽−1 ∙ (

𝑉

𝑎0
)

𝑉

𝑎0
≤ 0.02

𝛼 ∙ (
𝑉

𝑎0
)
𝛽 𝑉

𝑎0
> 0.02

 (4.29) 

where  

α and β are fitting coefficients that depend on a0/W, n and whether the specimen is plane-

sided or side-grooved.   

The values of α and β obtained using the least squares technique for different values of 

a0/W and n are tabulated in Table 4.4.  Note that the values of α and β for a0/W and n values 

that are not listed in Table 4.4 but within the corresponding ranges (i.e. 0.2 < a0/W < 0.7 

and 5 < n < 20) can be evaluated using the linear interpolation.  

Table 4.4 Coefficients α and β 

(a) Plane-sided SE(T) specimen  

PS 
B/W = 1 or 2 

a0/W = 0.2 a0/W = 0.3 a0/W = 0.4 a0/W = 0.5 a0/W = 0.6 a0/W = 0.7 

α 

n = 5 0.411 0.682 1.065 1.619 2.420 4.325 

n = 8.5 0.286 0.477 0.813 1.263 2.032 4.589 

n = 10 0.267 0.487 0.772 1.203 2.000 4.879 

n = 15 0.242 0.433 0.700 1.120 2.034 5.350 

n = 20 0.221 0.404 0.660 1.090 2.065 5.330 

β 

n = 5 0.232 0.244 0.273 0.316 0.360 0.463 

n = 8.5 0.133 0.130 0.207 0.257 0.323 0.498 

n = 10 0.116 0.160 0.195 0.246 0.322 0.521 

n = 15 0.093 0.130 0.173 0.231 0.337 0.555 

n = 20 0.066 0.111 0.158 0.228 0.346 0.555 
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(b) Side-grooved SE(T) specimen  

SG 
B/W = 1 or 2 

a0/W = 0.2 a0/W = 0.3 a0/W = 0.4 a0/W = 0.5 a0/W = 0.6 a0/W = 0.7 

α 

n = 5 0.492 0.798 1.294 1.988 2.801 5.219 

n = 8.5 0.349 0.582 0.987 1.561 2.387 5.955 

n = 10 0.320 0.567 0.929 1.481 2.352 6.277 

n = 15 0.278 0.481 0.827 1.349 2.347 6.793 

n = 20 0.247 0.474 0.790 1.293 2.406 6.957 

β 

n = 5 0.248 0.252 0.296 0.344 0.371 0.485 

n = 8.5 0.158 0.170 0.230 0.287 0.340 0.542 

n = 10 0.133 0.167 0.215 0.275 0.3396 0.561 

n = 15 0.097 0.121 0.186 0.253 0.347 0.590 

n = 20 0.058 0.122 0.177 0.244 0.359 0.600 

 

4.7 Validation of proposed k equation 

The proposed k equation, i.e. Eq. (4.29), is first validated using the results obtained from 

the GTN-based FE models described in Chapter 3. Figure 4.14 shows the comparison of J-

CMOD curves obtained from the η factor- and k factor-based methods for the PS and SG 

specimens with a0/W = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5, and B/W = 1. The figure 

indicates that for all cases considered, the J-CMOD curves obtained from the k factor-based 

method agree well with those obtained from the η factor-based method. To quantify the 

differences between the results of the two methods, the relative error eJ2 is defined as 

follows: 

𝑒𝐽2 =
𝐽𝑘 − 𝐽𝜂

𝐽𝜂
× 100% (4.30) 

where 

Jη and Jk are the J-integral values determined by the η factor- and k factor-based methods, 

respectively.  
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Figure 4.15 shows the variation of eJ2 with CMOD. The figure indicates that |eJ2| is in 

general less than about 11% for V > 0.5 mm.  At CMOD around 0.2 mm, which corresponds 

to the initial crack blunting, eJ2 can be as high as 40%.  Furthermore, Jk values tend to agree 

with Jη somewhat better for the SG specimens than for the PS specimens.  

  

(a) PS models with B/W = 1   (b) SG models with B/W = 1 

Fig. 4.14 Comparison of J-CMOD curves determined using η factor- and k factor-

based methods for GTN models 

    

(a) PS models with B/W = 1   (b) SG models with B/W = 1 

Fig. 4.15 Variation of relative error eJ2 with CMOD 
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The results for the six SE(T) specimens tested by Wang et al. [114] are also used to validate 

the proposed k factor-based method for evaluating J. The J-CMOD curves obtained from 

the η factor- and k factor-based methods for the six specimens are compared in Fig. 4.16. 

It is observed that for deeply-cracked SG SE(T) specimens, the two methods yield 

essentially the same J-CMOD curves, whereas for shallow-cracked SG and deeply-cracked 

PS SE(T) specimens, the J values obtained from the k factor-based method are generally 

higher than those corresponding to the η factor-based method at high CMOD values.  

  

(a) PS SE(T) specimens with a0/W = 0.5 (b) SG SE(T) specimens with a0/W = 0.5 

 

(c) SG SE(T) specimens with a0/W = 0.25 

Fig. 4.16 J-CMOD curves determined by the η factor- and k factor-based methods 

for test specimens 



111 

 

4.8 k factor-based NM method 

The k factor-based method for evaluating J can be incorporated into the NM method to 

markedly simplify the J evaluation procedure involved in the NM method for the SE(T) 

specimen. The steps involved in the k factor-based NM method are the same as those 

described in Section 4.2.1, except that Eq. (4.4) for evaluating Ji is replaced by the 

following equation in step 2) and 7) as demonstrated in Section 4.2.1:  

𝐽𝑖 =
𝑘𝑖𝑉𝑖𝑏0𝜎𝑌
𝑎0

 (4.31) 

in which 

k equation is given as Eq. (4.29). 

4.9 Evaluation of J-R Curve Using k factor-based NM method 

The six SE(T) specimens tested by Wang et al. [114] are used to illustrate the application 

of the proposed k factor-based NM method in this section. The X80-grade pipeline steel 

corresponds with σYS/σTS = 0.732 and n = 8.5 in the stationary-crack FEA. The 

corresponding α and β coefficients are interpolated from Table 4.4 given n = 8.5 as well as 

a0/W listed in Table 4.5. The fitting coefficients C1 and C2 are also tabulated in the table. 

The initial crack length, final crack length and crack extension obtained from 9-point 

average measurement technique and UC method, as well as the corresponding errors are 

already tabulated in Table 4.1. Figure 4.17 presents the comparison results of J-R curves 

obtained from the UC, conventional NM and k factor-based NM method. It is worth noting 

that the J-R curves obtained from the k factor-based NM methods also present obvious 

oscillations at the beginning part, which has been discussed in Section 4.3 for the 

conventional NM method. The oscillations are not shown in current figures by eliminating 

the portion before the crack extension of ∆a = 0.2 mm and replacing with a straight-line 

between the origin and the point corresponding to the crack extension of ∆a = 0.2 mm. 
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Table 4.5 Values for k factor-based NM method 

Specimen Number 
k factor-based method Fitting coefficients 

a0/W α β C1 C2 

SE(T)-SG05-01 0.508 1.626 0.291 1050 0.485 

SE(T)-SG05-02 0.522 1.742 0.298 1063 0.553 

SE(T)-PS05-01 0.561 1.732 0.297 958 0.468 

SE(T)-PS05-02 0.575 1.840 0.307 1028 0.489 

SE(T)-SG25-01 0.258 0.484 0.165 1270 0.731 

SE(T)-SG25-02 0.262 0.494 0.165 1328 0.682 

 

(a) SE(T)-SG05-01   (b) SE(T)-SG05-02 

 

(c) SE(T)-PS05-01   (d) SE(T)-PS05-02 
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(e) SE(T)-SG25-01   (f) SE(T)-SG25-02 

Fig. 4.17 J-R curves determined by UC method, conventional NM method and k 

factor-based NM method 

For the two SG05 SE(T) specimens, the J-R curves obtained from the UC and k factor-

based NM methods are almost identical. For the two SG25 SE(T) specimens, the J-R curves 

determined by the k factor-based NM method are slightly more conservative compared 

with those determined by the UC method. However, for the two PS05 SE(T) specimens, 

especially SE(T)-PS05-01, non-negligible deviation exists between the UC and 

conventional NM as well as k factor-based NM methods. This is due to the inaccurate 

estimation of the crack lengths performed by the UC method (e.g. the maximum error of 

∆a is about 46%, see Table 4.1).  

Another observation is that the conventional NM method tends to generate a more 

conservative J-integral value than that obtained from the proposed k-based NM method for 

deeply-cracked specimens (i.e. a0/W = 0.5), which is also observed from the validation 

results of the GTN models. In current analyses, the k factor-based NM method reduces the 

conservatism of the conventional NM method. 

Therefore, the above results suggest that the k factor-based NM method is effective and 

can be regarded as a viable alternative method to the UC as well as the conventional NM 

methods in terms of developing J-R curves for SE(T) specimens. 
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Chapter 5 Summary, conclusions and recommendations 

5.1 Summary 

The fracture toughness resistance curve (e.g. J-R curve) of pipeline steel is a key input to 

the integrity assessment and strain-based design of oil and gas pipelines with respect to 

planar defects (i.e. cracks). The SE(T) specimen is becoming more popular for developing 

the fracture toughness resistance curve in the pipeline industry since the crack-tip stress 

and strain fields of the SE(T) specimen are more relevant to those of the full-scale pipe 

containing surface cracks under internal pressure and longitudinal tension. The NM method 

is an alternative method to develop the J-R curves for testing cases where the UC method 

becomes unfeasible or impractical (e.g. tests involving high loading rates or extreme 

temperatures or aggressive environments). 

In Chapter 2, a comprehensive review of the mechanism of ductile crack growth is 

presented. The review focuses on the GTN dilatant plasticity model for voided material, 

which belongs to the category of coupled model as a local approach. The hydrostatic stress 

and void volume fraction are included in the Gurson yield condition. Nine GTN parameters 

and two length scale parameters are used to model the nucleation-growth-coalescence of 

the micro-void in the material. These micromechanical parameters adopted in previous 

literatures are tabulated in Table A.1.  

In Chapter 3, 2D and 3D FEA, in which the GTN dilatant plasticity model is implemented 

is conducted to study the ductile fracture process for SE(B) and SE(T) specimens made of 

X80-grade pipeline steel. To this end, the calibration process of the micromechanical 

parameters is performed. The initiation toughness JIC as well as J1mm and J1.5mm are plotted 

against a0/W ratio to study the in-plane constraint effect. On top of that, the stress fields 

near the crack tip and four constraint parameters (i.e. Q, A2, h, TZ) are examined based on 

both stationary-crack and growing-crack analyses.  

In Chapter 4, the development of the conventional NM method is first reviewed. As a 

standardized method to develop J-R curves for SE(B) and C(T) specimens, the applicability 

of NM method for SE(T) specimen is subsequently examined. Next, the so-called ‘k factor-
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based’ NM method is proposed based on the J-CMOD relationship to improve the 

efficiency of the conventional NM method. As for the application of the proposed ‘k factor-

based’ NM method, an empirical k equation is derived for SE(T) specimens with various 

geometric configurations and hardening properties. 

5.2 Conclusions 

The main conclusions in this thesis are highlighted and listed as follow: 

1). The load-CMOD histories from the GTN models with different D and f0 values are 

almost identical.  D and f0 have significant impacts on the J-R curve. A larger D and/or a 

smaller f0 value corresponds to an elevated J-R curve. fF has a negligible impact on the J-

R curve. D/2 = 0.15 and f0 = 0.00015 are found to give the best match with the experiments. 

2). The GTN damage model, in which the calibrated micromechanical parameters are used, 

is adequate for modelling the ductile fracture process of SE(B) and SE(T) specimens made 

of X80-grade pipeline steel, in terms of predicting the load-displacement history, J-R curve, 

and crack plane profile. 

3). JIC, J1mm and J1.5mm are all dependent on initial crack length, and decrease linearly with 

the increase of a0/W. Relatively speaking, J1mm and J1.5mm are strongly dependent on the in-

plane constraint level. In contrast, JIC is only weakly dependent on a0/W. 

4). The distribution of σθθ/σ0 at the mid-plane ahead of the crack tip is dependent on a0/W 

and loading level. For deeply-cracked specimens, the distribution of σθθ/σ0 is approximately 

linear at a distance of rσ0/J > 1 ahead of the crack tip, due to the strong bending effect 

caused by the eccentricity between the applied load and the centroid of the remaining 

ligament on the crack-tip field.  

5). The distribution of σθθ/σ0 versus distance from the crack tip (original crack tip in 

stationary-crack analysis and instantaneous crack tip in growing-crack analysis) at the mid-

plane decreases from the mid-plane to free surface at a certain loading level. The stationary-

crack and growing-crack analyses result in similar distribution of σθθ/σ0.  
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6). Q, h and TZ parameters decreases markedly as the loading level and/or the distance from 

the crack tip increases, while A2 parameter is almost independent of the loading level and 

distance from the crack tip. The distribution of the constraint parameters along 1 < r/(J/σ0) 

< 5 becomes more sensitive to the loading level as a0/W increases. As the loading level 

increases, the distribution of the constraint parameters in growing-crack analysis deviates  

from that in the stationary-crack analysis. 

7). Q and h parameters are well correlated for SE(T) models. As the distance from the crack 

tip increases, the Q and h parameters are correlated almost linearly. When r/(J/σ0) reaches 

an ‘inflection point’, a new linear correlation presents. The TZ parameter is essentially 

independent of the Q parameter near the crack-tip region. As r/(J/σ0) reaches an ‘inflection 

point’, TZ becomes linearly correlated to the Q parameter. Similar to the Q-h and Q-TZ 

relations, inflection points characterized by certain distances from the crack tip are captured 

for A2-h and A2-TZ relations. After the ‘inflection point’ presents, the Q-h and Q-TZ relations 

are dependent on the loading level. 

8). The NM method is validated to be effective to develop J-R curves for SE(T) specimens 

with various geometric configurations. Error analyses of the test specimens show that for 

both shallow-cracked and deeply-cracked SG specimens at the crack extension of ∆a ≥ 2.0 

mm, eJ1 is within 15%, while for deeply-cracked PS specimens, eJ1 can be over 20% 

because of the inaccurate crack length estimation performed by the UC method. Error 

analyses of the GTN models show that at the crack extension of ∆a ≥ 1.0 mm, eJ1 is 

generally small. For shallow-cracked models (i.e. a0/W < 0.3), eJ1 is within 15%. For 

deeply-cracked models (i.e. a0/W > 0.3), eJ1 is within 8%. 

9). A so-called ‘k factor-based’ NM method is proposed to overcome the cumbersome 

integrative procedure required to normalize load-CMOD pairs and the inaccuracy involved 

when evaluating the instantaneous compliance. For the application of the k factor-based 

NM method, the k equation and Table 4.4 are applied for SE(T) specimens with various 

geometric configurations and hardening properties. 
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10). The conventional NM method tends to yield a more conservative J-integral value than 

that derived from the proposed k-based NM method for deeply-cracked specimens. In 

current analyses, the k factor-based NM method reduces the conservatism of the J-R curves 

obtained from the conventional NM method. The k factor-based NM method obtained from 

the stationary-crack analysis is proved to be effective, and can be regarded as an alternative 

method to the UC method as well as the conventional NM method. 

5.3 Recommendations 

Some of the limitations and corresponding recommendations for future research are listed 

as follows: 

1). For other types of material (i.e. different grades of steels and alloys) as well as other 

specimens (e.g. SE(B) and C(T) specimens), the k factor-based NM method needs to be 

verified. Also, the fitting coefficients α and β for other types of materials and specimens 

considering a0/W, n, and PS/SG need to be found. In addition, the proposed k factor-based 

NM method needs additional experiments to verify. A suitable series of experimental 

studies need to be conducted in the future. 

2). In the current study, only homogeneous material is considered. However, pipelines 

installed in seismic or permafrost regions need to possess sufficient material resistance 

against buckling or weld fracture caused by large ground movements [98]. The regions 

near the girth weld joints with surface notch in the weld metal or HAZ are prone to form 

local strain concentration, ductile fracture initiation and growth, as well as plastic 

instability and even brittle cleavage due to the non-homogeneous nature of the material. In 

this case, the material constraint can be characterized by the strength mismatch ratio 

(σM1/σM2, where σM1 and σM2 denotes the yield strength of material 1 and 2, respectively) 

and the hardening mismatch deviation (nM1- nM2, where nM1 and nM2 denotes the hardening 

exponent of material 1 and 2, respectively). Further study can be focused on calibrating the 

micromechanical parameters and modelling the fracture process for bi-material specimens 

with non-homogeneous nature. 
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3). Constraint effect on the upper-shelf, mode I fracture toughness of ferritic steels is a key 

issue for the safety assessment of pipeline [53].  The geometry constraint (i.e. crack depth 

a/W, specimen thickness B, specimen width W, specimen size, loading mode (e.g. bending 

or tension) and material mismatch (i.e. strength mismatch and work hardening mismatch) 

can individually as well as correlatively [85, 87, 146] pose effect on the fracture toughness. 

In addition, the micromechanical effect may also be involved [60]. In future study, the in-

plane and out-of-plane constraint effects based on a more comprehensive set of 3D GTN 

models need to be investigated on both global and local aspects. 

4). 3D FEA was previously conducted by Huang et al. [122] to develop the constraint-

corrected J-R curves for the X80-grade pipeline steels. A given J-R curve was associated 

with a given value of the constraint parameter through correlating the power-law 

coefficients C1 and C2 with the constraint parameter. Throughout their study, stationary-

crack analysis was adopted and only SE(B) specimens were considered. In future study, 

with the application of the current GTN models, the constraint-corrected J-R curves by 

incorporating the experimentally determined J-R curves and constraint parameters for 

SE(T) specimens as well as real pipe sections can be developed based on growing-crack 

analysis. 

5). Existing empirical m-factor equation (which correlates J-integral and CTOD) for SE(T) 

specimen can be found in the studies by Shen el al. [147], Ruggieri [148], Huang et al. [145] 

and Sarzosa et al. [101]. Some preliminary analyses have shown that for current GTN 

models, after a transitional behavior early in the loading (which is most likely associated 

with the intense crack-tip blunting), the m value for shallow-cracked specimens (e.g. a0/W 

≤ 0.35) attains an essentially constant value independent of the loading level, which is 

consistent with the result in [101]. In addition, it is found that the m-equation proposed in 

[145] gives an asymptotic result for deeply-cracked specimens at a higher loading level, 

and predicts better results than those given in any other studies. Future study will be 

focused on the systematic comparison of the m-factor equations in the above-mentioned 

studies based on the current GTN-based FE models. 
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Appendix A 

Table A. 1 Micromechanical parameters from literature 

Reference Specimen Material D/2 [mm] q1 q2 q3 f0 fC fF ɛN sN fN Dimension 

[5] 

C(T); pipe 

specimens with 

different crack 

sizes and depths 

X60  0.1 1.43 0.83 2.0449 0.008 - 0.2 - - - 2D 

[26] SE(B) 

Two base 

materials 

MB1 MB2; 

weld material 

0.1 1.5 1 2.25 0.0001 CGM 0.15 0.3 0.1 0.004 2D; 3D 

[30] 
Notched tensile 

specimen 
A992 steel 0.075 1.5 1 2.25 0 0.03 0.5 0.45 0.05 0.02 3D 

[50] 

Smooth tensile 

specimen;  

unit cell under 

biaxial tension 

X65                         

Al-4.3%Si 

Alloy 

0.1 1.25 1 1.5625 
0.002    

0.0008 
- 0.15 - - - 2D 

[51] Round tensile bar Copper - 1.5 1 2.25 0 0.15 0.25 0.3 0.1 0.04 2D 

[53] SE(B); C(T) 
A533B                 

A516-70 

0.1        

0.125 
1.5 1 2.25 

0.0035    

0.002 
- 0.15 0.75 0.05 0.5 2D; 3D 

[54] 

Unit cell with 

different void 

shapes 

GGG40/1AZ       

GGG40/3AZ 

0.3 × 0.4     

0.6 × 0.8 
1.2 1 1.44 

0.114     

0.12 
0.175 0.235 - - - 2D 

[60] SE(B); SE(T) 
Power law 

hardening 
0.1 × 0.05 1.5 1 2.25 

0.005   

0.0005 
CGM 

0.21   

0.201 
- - - 2D 

[61] SE(T) X100 0.1 × 0.05 1.5 1 2.25 0.0005 CGM 0.20005 - - - 2D 

[62, 149] 

Surface-cracked 

wide tension 

plate; SE(T) 

X70 
0.25         

0.1 
1.43 0.95 2.0449 0.002 CGM 0.19 0.3 0.1 0.00018 3D 
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Reference Specimen Material D/2 [mm] q1 q2 q3 f0 fC fF ɛN sN fN Dimension 

[64] Notched  

tension bar 

X65 [0.05,0.15] 1.508 0.913 2.2741 
[0.0025, 

0.005] 
- 0.15 0.9 

[0.01,

0.05] 
[0.04,0.1] 

2D SSY; 

3D 

[65] SE(B); SE(T) 214Cr1Mo 0.15 2 0.77 4 0.0035 - [0.1,0.2] - - - 3D 

[66] 

Medium curved 

wide plate; 

SE(T);  

SE(B) 

Base metal 

X65; Girth 

weld metal 

X80 GMAW 

0.1 
1.517   

1.386 

0.916   

0.972 

2.3      

1.92 
0.0001 - 0.15 - - - 3D 

[71] 

C(T); pipe 

specimen with 

external/ internal 

longitudinal 

flaws 

X60  0.1 1.47 0.94 2.1609 0.02 - 0.2 - - - 2D; 3D 

[72] 

(non)preloaded 

SE(B); notched 

test specimen 

A533B-1 0.125 1.64 0.87 2.6896 0.0065 0.1 0.2 - - - 3D 

[73] 

Tensile notched 

round specimen; 

C(T) 

NiCr steel 

(12NC6) 
0.2 1.5 1 2.25 0.00001 0.004 0.335 A1=0.001 2D 

[74] 

Smooth and 

notched tensile 

bars with 

different notch 

radii; SE(B); 

plate specimen 

X65 0.15 1.5 1 2.25 

0.000125   

0.00014   

0.0002 

0.015 0.25 0.3 0.1 0.0008 2D; 3D 

[82] 

Square plate 

specimen; tensile 

coupon 

Grade A 

(Lloyd's) 

steel 

0.05 1.5 1 2.25 0 0.07 0.1 0.1979 0.01 0.0294 2D; 3D 

[85] SE(B); SE(T) 
Power law 

hardening 
0.1 × 0.05 1.5 1 2.25 0.002 CGM - - - - 2D 

[86, 87] 
SE(B); SE(T); 

C(T); CCT 

Low-alloy 

steel A508 

0.1 × 0.05 

0.1 × 0.1 
1.5 1 2.25 0.0002 0.04 0.17 0.3 0.1 0.002 2D; 3D 
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Reference Specimen Material D/2 [mm] q1 q2 q3 f0 fC fF ɛN sN fN Dimension 

[90, 107] 

DET specimen; 

pipe section; 

SE(B); SE(T) 

X65                     

X80                    

X100 

0.25         

0.25           

0.2 

1.5 1 2.25 0.00015 0.02 - 0.3 0.1 

0.0005    

0.00015   

0.005 

3D 

[91] SE(B); SE(T) X65 0.125 1.5 1 2.25 0.00015 0.13 0.1503 - - - 3D 

[92] 
U-notched 

tension bar 

Iron with 

equiaxed 

grains 

- 1.25 0.95 1.5625 

0.06      

0.026   

0.004 

0.12    

0.07   

0.04 

0.25 - - - 2D 

[98] 

Wide plate 

specimen; 

notched  

round bar 

X100                     

X80                     

X80 girth 

weld 

0.05 1.5 1 2.25 

0.0002    

0.0002    

0.004 

0.045   

0.08    

0.025 

- 

0.24       

0.3       

0.3 

0.1 

0.002    

0.005    

0.005 

2D; 3D 

[99] SE(B) 

Ductile 

medium 

strength steel 

0.1 1.5 1 2.25 0.00015 0.035 0.15 0.3 0.1 0.00085 2D 

[100, 

101] 

SE(B); SE(T); 

pipe specimen 

with external 

circumferential 

crack 

X70 0.1 1.43 0.97 2.0449 0.0005 - 0.15 - - - 2D; 3D 

[102] C(T) 

BM                               

FZ                             

Al-Mg-Si 

alloy 

0.15     

0.035 
1.5 

1.0       

1.5 
2.25 

0.0115   

0.035 

0.0195   

0.16 

0.14893   

0.23522 
- - - 3D 

[103] SE(B) 

High-strength 

low-alloyed 

steel; over 

/under-

matching 

filler 

0.15 1.5 1 2.25 0.002 

0.0188    

0.0173   

0.0238 

0.0188    

0.0173   

0.0238 

- - 0 2D 
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Reference Specimen Material D/2 [mm] q1 q2 q3 f0 fC fF ɛN sN fN Dimension 

[104] SE(B) 

BM                              

HAZ                               

WM 

0.578    

0.497   

0.202 

1.6 1 2.56 

0.0094   

0.0086   

0.0194 

CGM 

0.1688   

0.1672   

0.1888    

0.3 0.1 

0.014748 

0.014748 

0.010685 

2D 

[105] SE(B) 
A508/ 

A508-N 
0.1 × 0.05 1.5 1 2.25 0.00008 0.04 0.25 0.3 0.1 0.002 2D 

[106] 

MT; SE(B); 

SE(T); C(T); 

pipe section 

DIN StE 460 0.1 1.5 1 2.25 0.000675 - - 0.5 0.05 0.5 2D 

[113] Tensile bar; C(T) DH36 0.05 1.5 1 2.25 0.001 0.15 0.25 - - - 3D 

[150] C(T); SE(T) C-Mn steel 0.2 1.5 1 2.25 0.002 0.004 - - - - 2D 

[151] Cylindrical cell 
22 

NiMoCr37 
- 1.15 1 1.3225 0.002 0.033 0.15 0.3 0.1 0.004 3D 

[152] 

Axisymmetric 

notched 

specimen 

C-Mn steel 0.25 1.5 1 2.25 0.0023 0.004 - - - - 2D 

[153] C(T) 

GGG40 

ferritic cast 

iron 

0.1 1.5 1 2.25 0.077 0.12 0.2 - - - 2D; 3D 

[154] 

Round bar; 

circumferentially 

notched 

specimen 

C-Mn Alloy 0.1 1 1.25 1 
[0.0015, 

0.005] 
- [0.15,0.2] - - - 3D 

[155] SE(B) 

A580            

Alloy52Mb           

Alloy52Mw          

316L 

0.1 × 0.05 1.5 1 2.25 

0.00008 

0.000001 

0.00015 

0.000001 

0.04 0.25 0.3 0.1 0.02 2D 

[156] 
Notch tip and 

hole 

Power law 

hardening 
- 1.5 1 2.25 - 0.15 0.25 0.3 0.1 0.04 2D 

[157] 

Tensile 

specimen;  

SE(B) 

Al-Al3Ti 

composite 

0.186 × 

0.213 
1.5 1 2.25 

0.08          

0               

0               

0 

0.15     

0.02      

0.2      

0.15 

0.28     

0.34     

0.32     

0.28 

0            

0.5       

0.05       

0.025 

0            

0.2       

0.02       

0.02

5 

0            

0.04       

0.4       

0.08 

2D 
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Reference Specimen Material D/2 [mm] q1 q2 q3 f0 fC fF ɛN sN fN Dimension 

[158] Unit cell  

Porous 

ductile 

material 

- 1.5 1 2.25 0 0.04 0.195 0.3 0.1 0.008 3D 

[159] SE(B) 

20MnMoNi5

5 base 

material; 

HAZ; 

cladding 

0.1 1.5 1 2.25 0 

0.06              

0.04         

0.03 

0.212     

0.197     

0.189 

0.3 0.1 

0.002    

0.002     

0.012 

2D; 3D 

[160] 
C(T); middle 

tension (MT) 
StE460 0.1 1.5 1 2.25 0.0025 0.02 0.02747 0.3 0.1 0.02 2D 

[161] 

Flat plate 

buttwelded at 

midsection 

St52-3N 

(CMn) 
0.033 1.25 1 2.25 0.00033 0.026 0.15 0.3 0.1 0.006 3D 

[162] 

Smooth/notched 

round tension 

bars; C(T) 

A710 0.075 1.5 1 2.25 0.00057 0.03 0.15 0.3 0.1 0.004 2D 

[163] SE(B) 

A508                   

Alloy 82                  

Alloy 182                    

316L 

0.1 × 0.05 1.5 1 2.25 

0.005    

0.004    

0.001    

0.000001 

0.05 0.3 0.3 0.1 

0.008       

0        

0.008       

0.0055 

2D 

[164] 

SE(B); double 

edge notched 

tension panel; 

center cracked 

panel 

A533B 0.1 1.25 1 1.5625 0.005 - 0.2 0.04 0.01 0.001 2D 

[165] 

Smooth tensile 

specimen; center 

cracked tensile 

panel 

22 

NiMoCr37 
0.125 1.5 1 2.25 

[0.0005, 

0.002] 

[0.0019,

0.0145] 
0.2 0.3 0.1 

[0.00075,

0.003] 
2D 
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Appendix B 

Equations of K, C, Fr, ηpl and γLLD for SE(T) specimen 

1. Stress intensity factor K: 

𝐾𝑖 = [
𝑃𝑖√𝜋𝑎

𝑊√𝐵𝐵𝑁
] 𝐺 (

𝑎𝑖
𝑊
) (B.1) 

where  

𝐺 (
𝑎

𝑊
) =∑𝑡𝑖 (

𝑎

𝑊
)
𝑖−1

12

𝑖=1

 (B.2) 

The parameters ti (i = 1 to 12) are tabulated in Table B.1. 

2. Compliance C: 

𝐶𝑖 =

2𝑎𝑖
𝑊 𝐹 (

𝑎𝑖
𝑊)

𝐵𝐸 (1 −
𝑎𝑖
𝑊)

2 (B.3) 

where  

𝐹 (
𝑎

𝑊
) =∑𝑢𝑖 (

𝑎

𝑊
)
𝑖−1

7

𝑖=1

 (B.4) 

The parameters ui (i = 1 to 7) are tabulated in Table B.2. Note that for SG specimens, the 

effective thickness Be should be used, where Be is given as: 

𝐵𝑒 = 𝐵 −
(𝐵 − 𝐵𝑁)

2

𝐵
 (B.5) 

where 

BN denoting the net thickness. 
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3. Rotation correction factor Fr: 

𝐹𝑟 =
𝐶0
𝐶𝑖
=

1

1 − 0.165
𝑎
𝑊 (

𝑃
𝑃𝑌
)
 

(B.6) 

where 

C0 is the compliance of the un-deformed specimen; 

Ci is the compliance of the deformed specimen; 

PY is the limit load for the specimen given as: 

𝑃𝑌 = 𝐵𝑁(𝑊 − 𝑎)𝜎𝑌 (B.7) 

4. Plastic factor ηpl: 

𝜂𝑝𝑙 =∑𝑞𝑖 (
𝑎

𝑊
)
𝑖

2

𝑖=0

 (B.8) 

where 

𝑞𝑖 =∑𝑁𝑖𝑗 (
𝜎𝑌𝑆
𝜎𝑇𝑆

)
𝑗

3

𝑗=0

 (B.9) 

The parameters Nij (i = 0 to 2; j = 0 to 3) are tabulated in Table B.3. 

5. Plastic factor γLLD: 

𝛾𝐿𝐿𝐷 = 1 − 𝜂𝐿𝐿𝐷 − (1 −
𝑎

𝑊
)
𝜂𝐿𝐿𝐷
′

𝜂𝐿𝐿𝐷
 (B.10) 

where 
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𝜂𝐿𝐿𝐷 =∑𝜓𝑖 (
𝑎

𝑊
)
𝑖

10

𝑖=0

 (B.11) 

𝜂𝐿𝐿𝐷
′ =∑𝑖𝜓𝑖 (

𝑎

𝑊
)
𝑖−1

10

𝑖=1

 (B.12) 

The parameters ψi (i = 0 to 10) are tabulated in Table B.4. 

Table B. 1 Coefficients ti for Ki 

i 1 2 3 4 5 6 

ti 1.197 -2.133 23.886 -69.051 100.462 -41.397 

i 7 8 9 10 11 12 

ti -36.137 51.215 -6.607 52.3222 18.574 19.465 

Table B. 2 Coefficients ui for Ci 

i 1 2 3 4 5 6 7 

ui 2.9086 -5.8808 20.3409 -53.8231 96.017 -101.172 41.6725 

Table B. 3 Coefficients Nij for ηpl 

  j = 3 j = 2 j = 1 j = 0 

Plane-sided i = 2 19.164 -42.000 29.053 -6.982 

 i = 1 -10.250 22.285 -14.340 2.533 

 i = 0 -1.282 2.815 -2.474 1.708 

Side-grooved i = 2 25.040 -42.248 20.037 -3.196 

 i = 1 -23.177 36.942 -15.685 1.261 

 i = 0 4.645 -6.629 2.244 0.946 

Table B. 4 Coefficients ψi for γLLD 

i 0 1 2 3 4 5 6 7 8 9 10 

ψi -0.880 15.190 -35.440 18.644 18.399 -1.273 -12.756 -12.202 -4.447 5.397 14.187 
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Appendix C 

Table C. 1 Coefficients of NM function for test SE(T) specimens 

Specimen ID 
SE(T)- 

PS05-01 

SE(T)- 

PS05-02 

SE(T)- 

SG05-01 

SE(T)- 

SG05-02 

SE(T)- 

SG25-01 

SE(T)- 

SG25-02 

L 3.986 3.622 5.260 5.258 2.717 2.416 

M 675.811 679.875 723.904 709.151 727.981 730.981 

N -587.808 -627.556 -227.084 -390.020 363.435 361.833 

O 0.017 0.014 0.017 0.019 0.008 0.007 

 

Table C. 2 Coefficients of NM function for GTN-based FE SE(T) models 

PS B/W=1 

a0/W 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

L 1.042 1.284 2.678 2.497 4.371 5.519 7.603 

M 762.863 750.795 748.659 719.553 732.975 736.662 757.929 

N 638.295 756.145 797.289 1024.875 878.173 734.944 497.230 

O 0.004 0.004 0.008 0.007 0.012 0.015 0.020 

SG B/W=1 

a0/W 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

L 3.668 5.727 7.270 9.693 11.923 12.054 13.660 

M 831.841 860.454 859.536 873.374 896.489 888.834 907.959 

N -234.486 -394.157 -304.560 -358.425 -587.067 -662.263 -1174.445 

O 0.009 0.013 0.017 0.023 0.029 0.030 0.036 

PS B/W=0.5 

a0/W 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

L 1.734 2.695 5.095 6.959 9.171 10.758 8.932 

M 748.115 748.892 761.996 775.012 800.618 824.953 786.079 

N 418.968 422.115 365.740 287.412 77.270 -193.765 -52.231 

O 0.005 0.008 0.013 0.018 0.024 0.029 0.026 
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