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     There is a tradeoff between the availability and consistency properties of any distributed 

replication system. Optimistic replication favors high availability over strong consistency 

so that the replication system can support disconnected replicas as well as high network 

latency between replicas. Optimistic replication improves the availability of these systems 

by allowing data updates to be committed at their originating replicas first before they are 

asynchronously replicated out and committed later at the rest of the replicas. This leads the 

whole system to suffer from a relaxed data consistency. This is due to the lack of any 

locking mechanism to synchronize access to the replicated data resources in order to 

mutually exclude one another. 

     When consistency is relaxed, there is a potential of reading from stale data as well as 

introducing data conflicts due to the concurrent data updates that might have been 

introduced at different replicas. These issues could be ameliorated if the optimistic 

replication system is aggressively propagating the data updates at times of good network 

connectivity between replicas. However, aggressive propagation for data updates does not 

scale well in write intensive environments and leads to communication overhead in order 

to keep all replicas in sync. 

     In pursuance of a solution to mitigate the relaxed consistency drawback, a new 

technique has been developed that improves the consistency of optimistic replication 

systems without sacrificing its availability and with minimal communication overhead. 

This new methodology is based on applying the concurrency control technique of leasing 

in an optimistic way. The optimistic lease technique is built on top of a replication 

framework that prioritizes metadata replication over data replication. The framework treats 

the lease requests as replication metadata updates and replicates them aggressively in order 

to optimistically acquire leases on replicated data resources. The technique is 

demonstrating a best effort semi-locking semantics that improves the overall system 

consistency while avoiding any locking issues that could arise in optimistic replication 

systems. 
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Chapter 1 

Introduction 

 

 

     The tradeoff between consistency and availability of optimistic replication systems has 

been studied quite extensively in the literature (Saito and Shapiro, 2005). Earlier optimistic 

replication research attempted to improve the consistency level of these systems but they 

either introduced other problems such as the communication overhead in Pangaea (Saito, 

Karamonolis, Karlsson, and Mahalingam, 2002) or provided a good substrate with an 

incomplete solution such as Partial Replication, Arbitrary Consistency, Topology 

Independent (PRACTI) replication framework (Belaramani, Dahlin, Gao, Nayate, 

Venkataramani, Yalagandula, and Zheng, 2006). This research demonstrates a new 

technique that builds on PRACTI’s solution in order to achieve a higher consistency level 

for replication systems without sacrificing their high availability while controlling the 

communication overhead. 

     The newly introduced technique is based on optimistic concurrency (Kung and 

Robinson, 1981) and leasing (Cary and David, 1989) in order to allow replicas to have 

semi-mutually exclusive access to their data resources by applying the leases optimistically 

as a best effort. This capability is an extension to the PRACTI replication framework 

(Belaramani et al., 2006), which separates the metadata replication from the data 

replication, so that lease requests can be propagated as metadata. The replicas receiving the 

lease request metadata lock their copy of the replicated data resource for the lease owner 

replica. The replicated data resources will stay locked until the lease owner replica sends 
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out a lease release request or the replicas receiving the lease request forcefully break the 

lease. 

     This new methodology is also leveraging the aggressive propagation methodology of 

Pangaea (Saito et al., 2002) in order to propagate the metadata aggressively so that lease 

requests are accelerated to all replicas. Since leases are applied optimistically, accelerating 

their propagation increases the likelihood of mutually excluding any data resources that are 

concurrently updated and lowering the possibility of reading stale data and introducing data 

inconsistency. 

     This research studies and analyzes this novel optimistic leasing approach in the context 

of object store replication. However, it can be applied to systems that optimistically 

replicate objects, files, or database records. The remainder of this paper is organized as 

follows. The rest of this chapter, which is “Introduction”, is divided into 5 subsections. The 

first subsection gives a background overview about replication systems and their different 

types. The second subsection elaborates on the data consistency problem in optimistic 

replication systems. It’s followed by the “Goal” subsection that outlines the approach 

pursued in order to mitigate the rise of data inconsistency in these systems. The fourth 

subsection demonstrates the significance of this research and its impact on improving the 

data consistency of these systems. The fifth subsection is the “Delimitations” subsection. 

It identifies the imposed constraints on the scope of the study in order to make it 

manageable. 

     Chapter two, which is “Review of the Literature”, supports the context of the problem, 

the goal, and the significance of this research by reviewing early studies from the literature 

on replication systems. The third chapter “Methodology” focuses on the approach and the 
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leveraged methodologies used in order to tackle the problem and achieve the desired goal. 

It gives more details about the architecture and design of the solution. The fourth chapter 

“Results” describes the testing and evaluation metrics of the approach followed by the 

outcome of this research and the experiments’ results. The paper is then concluded with 

the fifth chapter “Conclusions, Implications, Recommendations, and Summary”. The 

chapter is concluding the research with an emphasis on the effectiveness of optimistic 

leases and its impact on optimistic replication systems. The chapter then identifies future 

research recommendations that build on optimistic leasing and is concluded with a full 

summary for the paper. 
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Background 

     Replication has been adopted in many distributed storage systems as a form of data 

redundancy to improve the storage availability and performance (Baker, Bond, Corbett, 

Furman, Khorlin, Larson, Leon, Li, Lloyd, and Yushprakh, 2011). Availability is improved 

by keeping the data accessible in the presence of some replica failures while performance 

is enhanced through reduced latency and increased throughput (Saito et al., 2005). Reduced 

latency is attained based on spatial locality by allowing users to access nearby replicas; 

increased throughput is achieved by having all replicas provide the same data 

simultaneously to multiple users (Saito et al., 2005). However, based on the following 

properties: consistency (C), availability (A) and tolerance to network partitions (P), the 

CAP theorem (Brewer, 2000) demonstrates a tradeoff between consistency and availability 

since network partitions is inevitable.  

     According to the CAP theorem, when two partitions are disconnected, replicas 

belonging to each partition can be made accessible during replica updates. The updates 

could forfeit the consistency property when they modify the same data on disconnected 

replicas. Likewise, if consistency needs to be preserved, then only one replica or a quorum 

of replicas could be made accessible for write operations in order to accept data updates, 

thus forfeiting the availability property. Therefore, data replication systems are 

implemented with either strong consistency and lowered availability or relaxed consistency 

and higher availability (Yu and Vahdat, 2006). 

     Data replication strategies have been divided into eager replication and lazy replication 

(Gray, Helland, O’Neil, and Shasha, 1996). The former requires all of its replicas to be 

synchronized so that any data update is propagated as an atomic transaction while the latter 
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has its replicas sending their data updates asynchronously (Saito et al., 2005). Eager 

replication is sometimes referred to as pessimistic replication because the techniques used 

in implementing its systems prevent read and write access to all replicas that are not up to 

date (Davidson, Garcia-Molina, and Skeen, 1985). 

     Pessimistic replication systems have a tradeoff in terms of reduced availability and 

scalability due to the coordination required across replicas in order to achieve strong 

consistency for replicated data with no concurrency anomalies (Saito et al., 2005). In these 

systems, replica updates over wide area networks incur high latency due to the coordination 

required in order to achieve strong consistency (Shankaranarayanan, Sivakumar, Rao, & 

Tawarmalani, 2014). This is due to the communication overhead required to maintain 

consistency across replicas by using consensus or even quorum protocols 

(Shankaranarayanan et al., 2014). 

     On the contrary, lazy replication achieves higher availability in the presence of network 

outages and increased latency. Lazy replication offers eventual consistency for the data 

through a communication mechanism that works in the background to propagate the data 

updates in order to get all replicas to converge (Demers, Greene, Hauser, Irish, and Larson, 

1987). The eventual consistency is accomplished by using techniques, such as Direct mail, 

Anti-entropy or Rumor mongering (Demers et al., 1987). These techniques eventually drive 

all replicas toward a consistent state when the updated replicas propagate their updated 

metadata and data to all other replicas. This can take place at any time in the future based 

on replication schedule, network latency or when network connectivity is restored in case 

of network disruption. 
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     When networks are partitioned or replicas are disconnected, lazy replication still allows 

data read and write access at every individual replica; hence achieving higher availability 

(Davidson et al., 1985). Lazy replication is also known as optimistic replication due to its 

optimistic approach for concurrency control which assumes all replicas can be updated 

simultaneously without locking their data resources (Kung and Robinson, 1981).  
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Problem Statement 

     Optimistic replication system faces two costs due to the lack of resource locking; 

reading of stale data and producing conflicting versions of the same data object (Demmer, 

Du, and Brewer, 2008), (Heidemann, Goel, and Popek, 1995) and (Yu et al., 2006). 

Locking in distributed systems can be accomplished through a distributed locking service, 

such as Google’s Chubby system (Burrows, 2006) and Microsoft’s Boxwood 

(Maccormick, Murphy, Najork, Thekkath, and Zhou, 2004), or a coordination service, such 

as Yahoo’s ZooKeeper (Hunt, Konar, Junqueira, and Reed, 2010). These systems use the 

Paxos protocol (Lamport, 1998) for asynchronous consensus in order to elect a leader from 

a pool of servers. Once a leader is elected, clients can contact the leader to coordinate 

access to their shared resources. 

     Nevertheless, leveraging distributed locking or coordination services in optimistic 

replication systems will violate the asynchrony and autonomy of these systems (Saito et 

al., 2005). For instance, the elected leader will become the bottleneck of the replication 

system since all replicas have to contact it first before proceeding with their operations. 

This will have a negative impact on both the availability and the latency of the replication 

system. The availability will be impacted if the network is partitioned and the leader node 

is unreachable to coordinate access to the replicated resources while the latency can be 

affected if replicas are geographically dispersed and distantly located from the leader. 

     These distributed locking issues are due to the fact that there is a tradeoff between the 

availability and consistency properties of any distributed replication system (Brewer, 

2000). Optimistic replication favors high availability over strong consistency so that the 

replication system can support disconnected replicas as well as high network latency 
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between replicas (Saito et al., 2005). Optimistic replication improves the availability of 

these systems by maximizing the number of writes accepted by its replicas relative to the 

number of writes submitted by its clients (Yu et al., 2006).  

     Consequently, the highest replica availability is attained by imposing an update anytime 

policy on every replica, even if the replica is disconnected from the rest of the system (Saito 

et al., 2005). This update policy relies on the asynchronous replication methodology used 

by optimistic replication in order to bring all replicas back in sync when network 

connectivity is restored. However, this leads the whole system to suffer from a relaxed data 

consistency due to the lack of any locking mechanism to synchronize access to the 

replicated data resources and mutually exclude one another (Saito et al., 2005). 

     When consistency is relaxed, there is a potential of introducing mutual inconsistencies 

that would arise when the same data object is updated on multiple replicas without mutually 

excluding one another. These mutual inconsistencies are considered conflicts even if the 

same modified data objects have the same changes (Parker, Popek, Rudisin, Stoughton, 

Walker, Walton, Chow, Edwards, Kiser, and Kline, 1983). This is due to the conflict 

detection algorithm that is based on logical clocks (Lamport, 1978) to capture causality 

between different versions of the same object. 

     The conflict detection algorithm flags any concurrent changes modifying the same data 

object on different replicas (Parker et al., 1983). For instance, if two data objects are 

modified on two different replicas, the conflict detection algorithm does not have the 

syntactic knowledge of the data objects or the semantic operations that were done on them 

in order to identify the differences between them (Parker et al., 1983). Therefore, resolving 
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these mutual inconsistencies is a complex problem whether it is done manually or 

automatically (Parker et al., 1983). 

     To manually fix the conflicting updates, the time consuming process would usually 

involve multiple users who updated the replicas with conflicting data along with a 

reintegration process (Kawell, Beckhart, Halvorsen, Ozzie and Greif, 1988). Other 

replication systems proposed automatic conflict resolution, such as Ficus (Heidemann et 

al., 1995), Coda (Kumar and Satyanarayanan, 1995), and Bayou (Terry, Theimer, Petersen, 

Demers, Spreitzer, and Hauser, 1995). These systems usually require writing complex 

application specific resolvers that are capable of understanding the syntax of the replicated 

data objects in order to automatically fix their conflicting data (Reiher, Heidemann, Ratner, 

Skinner, and Popek, 1994).  

     It is expected that the number of conflicting updates is on the rise as it was found that 

the Write access patterns have increased significantly relative to the Read patterns based 

on a study by Leung et al. (Leung, Pasupathy, Goodson, and Miller, 2008). This is due to 

the increase of actively changing document files when compared to system data objects 

that were used for sequential read access in the past (Baker, Hartmart, Kupfer, Shirriff, and 

Ousterhout, 1991), (Ellard, Ledlie, Malkani, Seltzer, 2003), and (Roselli, Lorch, and 

Anderson, 2000). 

     Therefore, the higher rates of Write access patterns will increase the likelihood of 

producing more conflicts that could impact the usability of optimistic replication systems 

(Gray et al., 1996). Consequently, it will lower the quality of service (QoS) of these systems 

due to the increase in conflicting updates and data staleness which are factors in evaluating 

their QoS (Kuenning, Bagrodia, Guy, Popek, Reiher, and Wang, 1998). 
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     It was demonstrated that lowering the conflicting updates and data staleness can be 

achieved by aggressively propagating the data updates (Yu et al., 2006). When data updates 

are aggressively propagated, replicas will synchronize more rapidly; hence lowering any 

possibility of reading stale data or conflicting with other updates. For instance, if a 

replication system has a data object that is modified by a client on one replica and then 

replicated to the other replicas as soon as the data object updates are committed, other 

replicas will update the most recent updated data object and lower the chance of introducing 

a conflict. However, this does not scale well in write intensive environments because 

replicas have to go through some catch up time that is proportional to the size of the 

replicated data objects even if just the modified data chunks are replicated instead of the 

data objects in their entirety (Saito et al., 2005). 

     There is also a communication cost incurred when doing aggressive propagation. Some 

replication systems try to save on the network bandwidth by holding their modified data 

object replication for some time assuming that it may get modified again later; hence it is 

going to be replicated only once for multiple modifications (Saito et al., 2005) and (Yu et 

al., 2006). On the contrary, aggressive replication requires the updates to be sent out to 

other replicas instantaneously and that will negatively impact the optimistic replication 

protocol’s ability to amortize the communication cost. For instance, the percentage of file 

reopens that are temporally related to the previous close and could occur in less than one 

minute can be as high as 71.1% (Leung et al., 2008). According to the same study, the ratio 

of write:read is 2:1 which implies that a bit over 47% of reopened files will be modified in 

less than a minute; hence, modified data will be replicated again if aggressive replication 

is used. 
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     PRACTI replication framework (Belaramani et al., 2006) separated data replication 

from metadata replication so that it can perform partial replication and reduce the 

communication cost. Partial replication enabled PRACTI to replicate modified data 

object’s metadata first in order to mark the data objects themselves as invalid on other 

replicas and then replicate the actual data lazily or on demand. By holding off the 

instantaneous data replication, the communication cost is amortized since the replication 

metadata is usually considered negligible when compared to the actual replicated data 

(Wang, Alvisi, and Dahlin, 2012). For instance, the communication cost for a data object 

that is frequently modified but marked for replication on demand is going to be just 

proportional to the size of its replication metadata multiplied by the number of 

modifications it incurred. 

     Belaramani et al. also claim that the PRACTI framework is capable of providing a 

tunable consistency that can be weakened or strengthened (Belaramani et al., 2006). 

However, the acclaimed strong consistency that can be achieved by this framework has its 

own limitations. For instance, when a client opens a file for write with strong consistency, 

the replica will block the write so that it synchronizes the write operation with other 

replicas. This implies that every replica has to communicate with at least a quorum of its 

peer replicas; hence, rendering the whole system to be limited in scalability and 

availability. 

     Consequently, in a cloud deployment, object stores avoid strong consistency for objects 

that are replicated across multiple geographical regions due to the increased latency 

(Shankaranarayanan et al., 2014). For instance, SCFS (Bessani, Mendes, Oliveira, Neves, 

Correia, Pasin, & Verissimo, 2014) proposed a cloud of clouds backed file system that 
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provides strong consistency by using a coordination service that Bessani et al. called it the 

consistency anchor. However, the latency of file create, open and close operations was 

almost four orders of magnitude higher due to the extra communication with the 

consistency anchor in order to coordinate between different clients to operate on shared 

files. 

     On the contrary, latency was not an issue in BlueSky (Vrable, Savage, & Voelker, 2012) 

due to the lack of coordination between the different proxies accessing the same file; hence, 

leading to potential update conflicts. BlueSky is a network file system that is backed by 

cloud storage providers such as Amazon S3 (“Amazon S3”, n.d.) and Microsoft Azure 

(“Microsoft Azure”, n.d.) where clients may access the files on the cloud storage through 

a proxy. Similarly, the cloud based file system Coral (Chang, Sun, and Chen, 2016) favored 

the low latency and high availability over data consistency and uses the latest-version-wins 

mechanism (Thomas, 1979) to resolve conflicts. 

     Therefore, strong consistency was either considered to be complex to achieve in 

BlueSky as stated by Vrable et al. (Vrable et al., 2012) or will affect the performance and 

availability of Coral as stated by Chang et al. (Chang et al., 2016). This became apparent 

in SFCS (Bessani et al., 2014) as the latency was negatively impacted by the consistency 

anchor. Therefore, these shortcomings paved the way to explore and introduce a novel 

locking mechanism that improves the consistency level of optimistically replicated object 

stores that have a reliable network connectivity to be as close as possible to strong 

consistency without sacrificing its high availability and low latency. 
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Goal 

     Objects in a replication system are concurrently accessed from multiple replicas and a 

mutual exclusion mechanism is required in order to achieve strong consistency. However, 

mutual exclusion has a negative impact on the availability and the latency of these systems 

as explained earlier. Therefore, the main goal of this research is to introduce a new 

technique for optimistic replication systems that improves their consistency level without 

compromising their availability and latency. 

     The new technique is based on optimistic concurrency (Kung et al., 1981) and leasing 

(Cary et al., 1989) in order to acquire a lease on data objects by optimistically replicating 

the lease request; hence, the technique has been called ORLease or Optimistically 

Replicated Lease. Leveraging leases to mutually exclude data objects should provide a 

locking mechanism that could be forfeited by allowing any replica to break acquired leases. 

     The lease forfeiture has the benefit of not locking a data object indefinitely if the lease’s 

owner replica is disconnected from the network since network partitioning is not 

uncommon in distributed systems. The lease is optimistically applied by asynchronously 

broadcasting the lease request to all other replicas as a metadata update without waiting for 

leasing acknowledgments from them. This allows an optimistic lease to achieve a best 

effort locking semantics without compromising the latency and availability of the 

replication system.  

     In order to propagate the lease request, the object’s replication metadata needs to be 

separated from its data similar to what has been accomplished in PRACTI (Belaramani et 

al., 2006) and Gnothi (Wang et al., 2012). The metadata separation allows lease requests 

to be sent out as metadata similar to the replication metadata being exchanged between 
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replicas as explained in further details in chapter 3 “Methodology”. The lease metadata can 

then be aggressively propagated similar to Pangaea (Saito et al., 2002) so that the acquired 

leases are accelerated to all replicas. Accelerated leases are required to minimize the 

window gap that might give a chance to other replicas to acquire leases on the same data 

object leading to potential conflicts. 

     PRACTI (Belaramani et al., 2006) has already demonstrated that the metadata 

separation allows the metadata of changes to propagate aggressively leading to improved 

consistency. However, the metadata is propagated after the object has been updated similar 

to all optimistic replication systems (Saito et al., 2005). Since leases in ORLease are 

optimistically issued when objects are opened with the intent to update but before changes 

are committed, accelerating the lease propagation increases the likelihood of mutually 

excluding objects from being concurrently updated from other replicas and lowering the 

possibility of introducing data inconsistency. Thus, ORLease demonstrates a better 

consistency improvement over PRACTI (Belaramani et al., 2006) for systems with larger 

window of time between requesting object updates and committing them. 

     The accelerated lease requests that are sent out as metadata updates have a minimal 

communication overhead for two reasons. First, the lease requests are going to be 

considered as control messages (Belaramani et al., 2006) that are broadcasted in one 

direction with no need for acknowledgements. Secondly, the lease request is metadata that 

has negligible size when compared to the actual object data size (Wang et al., 2012). 

Consequently, the aggressive replication of the added lease requests should improve the 

consistency of connected replicas in a replication system by providing a window of 
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metadata staleness guarantees that equals to the maximum latency between any two 

replicas. 

     Objects in replication systems that separate the data and metadata are also impacted by 

data staleness. The data staleness affects the availability because its window of staleness is 

unbounded as data is asynchronously replicated on demand similar to PRACTI 

(Belaramani et al., 2006). However, the metadata replication is the one affecting the 

consistency because it allows any replica to convey the state of a modified object to other 

replicas so that they can react accordingly. Once the metadata update is received by other 

replicas, the object is considered to be logically up to data even if its data is not yet 

available. 

     ORLease’s new technique to replicate the lease request is an addition to the metadata 

update that improves its consistency over any other optimistic replication system. The 

reason is that ORLease’s lease request is broadcasted to all replicas before an object is 

accessed for modification. Other replication systems are either replicating out the data and 

metadata after the object is closed (Saito et al., 2005) or aggressively replicating out 

metadata invalidation requests after the object has been modified as in PRACTI 

(Belaramani et al., 2006). Therefore, replicating out the metadata before the object is 

modified reduces the metadata staleness window when compared to all other replication 

systems that replicate the metadata after the object has been modified and closed. 

     The addition of ORLease’s optimistic lease requests to the metadata updates does not 

change the behavior of optimistic replication systems in case optimistic leases are not 

required. For instance, ORLease systems allow concurrent reads and writes with no locking 

semantics for applications that do not require optimistic lease and the behavior should be 
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similar to other optimistic replication systems (Saito et al., 2005). However, ORLease 

provides semi-strong consistency semantics for applications that require such semantics 

(Belaramani et al., 2006) and (Yu and Vahdat, 2000). 

     ORLease’s technique allows applications to issue an optimistic lease in a best effort to 

lease the object for read or write operations. The optimistic leases would attempt to grab 

leases on replicated objects so that applications that are accessing the objects for read or 

write operations can have a consistent view of their data objects. The applications can also 

get notifications when they attempt to lease objects that other replicas are holding 

optimistic leases against them. This allows applications to either cancel their lease request 

or revoke other replicas’ leases. Revoking the leases of other replicas is necessary in the 

case of network partitioning so that leases are not held indefinitely by disconnected 

replicas. However, revoking leases have the potential of introducing conflicts if data 

objects are modified by both the leasing replicas and the lease revoking replicas. 

     Estimating the window of stale access for data objects in ORLease has been very crucial 

in order to evaluate its success. Stale access gives information about the replication system 

divergence time from the ideal semantics when all replicas are in sync. The divergence 

time starts from the time an object is opened to be modified and not when it is committed. 

For instance, if an object is opened on a storage system for update at time t, modifications 

committed to storage at time t+x, replicated out and reached the furthest replica at time t+y, 

then the stale access time is y and not (y - x) where y > x. 

     Therefore, the evaluation has been based on a modified version of the stale-access 

metric. The stale-access metric is considered as one of the proper quality of service metrics 

for optimistic replication systems (Kuenning et al., 1998). The modified metric has been 
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identified in this research as the leased stale-access metric. The stale-access metric is the 

difference in time between two replicas when an update is started at one replica and when 

the updated object is available at the other replica (Bermbach and Kuhlenkamp, 2013). 

However, the leased stale-access metric is the difference in time when a replica receives a 

lease for an object, that has been leased by another replica, and when the object is updated 

and available at the same replica. The metric name is prefixed with the word leased because 

it identifies a portion of the stale-access period where the object is leased for a specific 

replica and is protected from being modified by other replicas. Even though the object is 

still stale during that period of time, it cannot be modified by any replica other than the 

lease owner. 

     The optimistic replication systems that are enhanced with the optimistic lease technique 

have reduced their window of stale-access of data objects by excluding the leased stale-

access period of time from it. This is due to the fact that the opening of the object with the 

intent to update it triggers an optimistic lease request in ORLease. This request is then 

honored by all replicas which in turn locks the object from being modified by them. Hence, 

it allows replicas to maintain an optimistic consistent view of the metadata using the 

optimistic leases but without having all of the objects’ data contents. 

     PRACTI (Belaramani et al., 2006) was successful in reducing the stale-access by 

replicating the metadata of the update once the object is updated and committed.  ORLease 

has reduced the window of stale-access even further by replicating the metadata for 

optimistic leases when the replica opens a data object with the intention to update it. 

However, ORLease’s effectiveness in reducing stale access should be better demonstrated 

in replication systems that has their data objects updated over a large window of time such 
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as the replication of files in Distributed File System Replication (“Microsoft Distributed 

File System Replication (DFSR)”, n.d.) and Azure File Sync (“Microsoft Azure File Sync 

(AFS)”, n.d.). Files in DFSR and AFS can be opened for hours before changes are 

committed and replicated. Otherwise, if the difference between the object start update time 

and update committed time is close to zero, then PRACTI should demonstrate a better 

performance because it does not need to broadcast metadata updates for leasing its data 

objects. 
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Relevance and Significance 

     Optimistic replication is widely used in different types of products, including wide area 

applications, mobile device applications, data distribution and data collaboration (Saito et 

al., 2005). It is implemented in some well-known systems for high availability and fault 

tolerance, such as the internet Domain Name Service DNS (Mockapetris and Dunlap, 

1988). DNS is the standard hierarchical distributed naming service for the internet and it 

manages the naming within its zones through a single master replication system in each 

zone. The zone’s master replica maintains the authoritative naming database that is updated 

by the system administrator and then replicated to the slave replicas. This is a highly 

available system that is capable of fulfilling query requests coming from multiple servers. 

However, the master replica is the only one that can be updated in order to avoid 

introducing any conflicting data. 

      Another well-known system that leveraged optimistic replication is the wide area 

bulletin board system Usenet (Lin et al., 1999). It is a system that replicates articles between 

its sites so that users can read the articles from their nearest neighboring site. It is a multi-

master optimistic replication system that was designed to be conflict free. It used the 

simplest approach for resolving conflicts based on Thomas’s write rule (Thomas, 1979) 

which is the last writer wins. Users might have found it confusing to find articles 

disappearing after they have been updated or resurfacing after they have been deleted due 

to the side effect of applying Thomas’s writer rule (Thomas, 1979). However, it was a 

reasonable cost in exchange of the system high availability (Saito et al., 2005). 

     The design of DNS (Mockapetris et al., 1988) and Usenet (Lin et al., 1999) systems 

realized that the adoption of optimistic replication systems brings some interesting 
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challenges for replica consistency. These systems avoided dealing with conflicts by either 

implementing a single master replication as in DNS or by adopting Thomas’s writer rule 

(Thomas, 1979) for conflict resolution as in Usenet. To completely prevent conflicts from 

happening, a recent study (Shapiro, Pregui_ca, Baquero, and Zawirski, 2011) leveraged 

simple mathematical properties, such as commutativity. For instance, a counter data type, 

which can be incremented or decremented, will converge because its increment and 

decrement operations commute. However, this requires building new systems and 

applications based on these data types which is not practical for replication systems that 

replicates generic data objects.  

     Unfortunately, stale reads and conflicting updates are not uncommon in other optimistic 

replication systems because coordination between replicas is done asynchronously in the 

background to propagate the data updates (Saito et al., 2005) and (Yu et al., 2006). 

Conflicting updates is an accepted cost in some commercial environments, such as banks’ 

ATM machines and airline reservation systems, because the availability and performance 

of these systems outweigh the need for strong consistency (Heidemann et al., 1995). 

Nevertheless, the number of conflicting updates in optimistic replication systems affects 

its quality of service. This led to implementing systems with pluggable modules to resolve 

conflicts such as Ficus (Reiher et al., 1994) and Coda (Kumar et al., 1995). Other systems, 

such as TACT (Yu et al., 2000) and PRACTI (Belaramani et al., 2006), incorporated some 

techniques into their replication framework in order to reduce stale access and lower the 

number of conflicts. 

     Coda file system (Kumar et al., 1995) and the Ficus file system (Reiher et al., 1994) 

considered conflicts as rare events and provided automated conflict resolvers. For instance, 
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Coda has provided a framework that invokes application-specific resolvers (ASRs) (Kumar 

et al., 1995) to handle the conflict resolution process. Conflicts will then get resolved 

automatically for applications that have an implemented ASR and the rest will require user 

intervention. However, these conflict resolver are complex to implement because they have 

to understand the syntax of replicated files in order to automatically fix their conflicting 

data (Reiher et al., 1994). 

     TACT (Yu et al., 2000) and PRACTI (Belaramani et al., 2006) attempted to lower 

conflicting updates by incorporating different technique that ties to the system replication 

framework. For instance, TACT implemented a middleware layer that controls client 

read/write access to replicas as well as the data propagation between replicas based on 

some defined consistency bounds that can be targeted for certain applications. The authors 

of the TACT framework also demonstrated in a later study that aggressive write 

propagation can achieve the highest levels of consistency for replication systems (Yu et al., 

2006). However, aggressive propagation does not scale well in write intensive 

environments because replicas have to go through some catch up time that is proportional 

to the data size even if modified data object chunks are replicated instead of data objects 

in their entirety (Saito et al., 2005). Aggressive propagation also incur a communication 

cost as explained earlier in the “Problem Statement” subsection. 

     To overcome the aggressive propagation issues, the PRACTI replication framework 

(Belaramani et al., 2006) separated the data replication from the metadata replication so 

that it can perform partial replication. Partial replication enabled PRACTI to replicate out 

the modified file’s metadata first in order to mark the data objects as invalid on other 

replicas and then replicates the actual data lazily or on demand. Therefore metadata 
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replication can be replicated aggressively while the communication cost is amortized since 

the replication metadata is usually considered negligible when compared to the actual 

replicated data (Wang et al., 2012). 

     All this strongly suggests that the aggressive replication of replica knowledge or 

metadata should get the replica consistency to be closer to strong consistency since the 

metadata is negligible in size (Wang et al., 2012). The availability of the system is slightly 

affected since the communication overhead is minimal. The replicas are brought in sync 

faster since the metadata is quicker to propagate (Wang et al., 2012). However, this 

approach is missing the locking semantics that could potentially reduce the staleness 

window dramatically. 

     Consequently, ORLease introduced a semi-locking methodology by leveraging the 

existing system’s communication methodology and causality capturing techniques. It 

optimistically broadcasts lease requests by utilizing the same metadata replication channels 

that are already used by optimistic replication systems in order to achieve semi-locking for 

the replicated objects. It is considered a continuation for PRACTI as it decreases the 

staleness window by removing the system dependency on the replicated object size and its 

commit time. It reduces the factors that affect the staleness window to only the network 

latency and replica connectivity. 
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Delimitations 

     This research focused on leveraging the newly introduced technique ORLease in 

optimistic replication systems in order to enhance their consistency. The focal point was to 

optimistically broadcast the lease requests of replicated objects in these replication systems 

through their metadata replication mechanism in order to shorten their window of 

inconsistency (Bailis and Ghodsi, 2013). Therefore, a few simplifications have been 

undertaken in order to expedite the research outcome and to simplify its evaluation process. 

     The first simplification was to evaluate the ORLease replication technique in a 

replicated object store that is based on a flat namespace with no directories or 

subdirectories. This is similar to the simulation framework developed by Wang et al. 

(Wang, Reiher, and Bagrodia, 1997) in order to evaluate their optimistic replication system. 

Their system was based on a flat namespace instead of a hierarchical one in order to 

simplify their prototype implementation and its evaluation process. 

     The second simplification was to have a coarse lease and replication granularity where 

data objects in the replicated object store are leased in their whole entirety. The modified 

data objects are then replicated lazily as a whole instead of replicating just the modified 

parts of the object similar to some replication systems (Yu et al., 2006). In order to support 

partial replication of objects, different replicas will have to optimistically lease different 

parts of the same object. However, this approach will just complicate the implementation 

and evaluation process and was considered an enhancement to be deferred for future work. 

     The third simplification was to conduct the ORLease experiments on a single machine. 

Consequently, all replication processes and their replicated object stores coexisted on the 

same machine. Since Simulation frameworks have been previously developed to simplify 
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the evaluation of optimistic replication systems (Wang et al., 1997), the network latency 

has been simulated between the replication processes. Therefore, latency could be 

simulated in the communication between the replication processes in order to reflect the 

actual measured delay between regions (“LAN performance on the WAN”, n.d.) and 

(Shankaranarayanan et al., 2014). 

     The fourth simplification was to evaluate ORLease for a limited number of object store 

operations since the optimistically replicated lease is considered a semi-locking operation 

itself that precedes all object’s data read or write operations. An optimistic lease is 

replicated out before the actual read or write operation is executed and then released when 

the operation is complete. Therefore, the evaluation was based only on object creation 

operations while other operations such as object read, update, delete and rename have not 

been implemented or evaluated as part of this research due to their similarities in their lease 

requirements to the create operations. 

     The fifth simplification was to optimistically replicate leases without prioritizing the 

data replication for the incomplete objects. As explained later in the “Methodology” 

chapter, an object can be marked as incomplete similar to PRACTI (Belaramani et al., 

2006) because of the metadata replication prioritization and the object can still be 

optimistically leased by any replica. The optimistically replicated lease request can trigger 

data replication prioritization from replicas that have the complete data objects. However, 

this was considered an enhancement that will not provide additional value to this research 

and has not been evaluated. Therefore, this research has implemented and evaluated 

ORLease based on holding the lease on the object until the data is fully downloaded and 

available. It then releases the lease instead of depending on the data replication 
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prioritization to block any new incoming request if data is not yet available until it is fully 

downloaded and available. 
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Chapter 2 

Review of the Literature 

 

Overview 

     This chapter elaborates on the major areas that build the foundation of this research.  

The first subsection discusses the replicated data stores and their different levels of 

consistency. The second subsection discusses the significance of optimistic replication 

systems and their need due to the advancement of mobile systems. The third subsection 

describes the mechanism used for tracking changes and detecting conflicts in optimistic 

replication systems. The fourth subsection will then elaborate on the conflict detection and 

mitigation techniques leveraged by related studies in order to alleviate the conflicted 

updates problem in these systems. The fifth subsection is a summary for the techniques 

leveraged by this research in order to improve its overall consistency.  
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Replicated Data Stores and Consistency Levels 

     Data stores are repositories that persist and manage collections of data which can be 

organized in the form of a complex relational database or as simple as a collection of files. 

The data can then be stored on single node or more than one node in order to have a 

distributed data store for fault tolerance and high availability. In these distributed data 

stores, the data is replicated between the nodes either synchronously or asynchronously 

(Saito et al., 2005). The replication methodology used determines how the replica state and 

data get updated and how the clients subsequently observe these updates; hence, dictating 

the consistency of the replicated data. 

     One important aspect of any replicated data store is the consistency level guarantees 

that it provides to its clients (Saito et al., 2005). Different systems provide different 

consistency levels in order to manage different latency and availability requirements. For 

instance, a system might provide a strong consistency guarantees to its client so that all 

clients always have a consistent view of the data objects. However, strong consistency 

levels require coordination between the replicas for the execution of operations which can 

lead to higher latency. Therefore, systems may relax these guarantees in order to have better 

availability and lower latency.  

     There are two different perspectives on consistency; data-centric and client-centric 

(Bermbach et al., 2013). These perspectives are based on how the data state of the 

replicated store is internally viewed or externally observed. The data-centric consistency 

perspective views the internal data of the system based on the synchronization protocol 

used between its replicas while the client-centric perspective is the externally observed 

consistency behavior of such system. 
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     Both data-centric and client-centric consistency perspectives have two dimensions for 

the consistency guarantees; staleness and ordering (Yu and Vahdat, 2002). Staleness 

describes how much a given replica is lagging behind for a specific update while ordering 

describes how many requests executing on a secondary replica have deviated from the 

chronological order of requests that are being executed on the primary replica. Based on 

those two perspectives and their two consistency dimensions, there are various consistency 

models that can be provided by the replicated data store (Coulouris, Dollimore, Kindberg, 

and Blair, 2011). 

     The data-centric consistency perspective describes the consistency level of the 

replicated data storage based on the synchronization algorithms that are internally used 

(Bermbach et al., 2013). The most common consistency levels provided by a distributed 

replicated storage system are either strong consistency (Bermbach et al., 2013), per-object 

sequential consistency (Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon, 

Jacobsen, Puz, Weaver, and Yerneni, 2008), causal consistency (Ahamad, Neiger, Burns, 

Kohli, and Hutto, 1995), or eventual consistency (Saito et al., 2006). 

     The strictest consistency level to be provided to a client is the strong consistency level 

as it provides clients with a consistent view for all objects at all times (Coulouris et al, 

2011). It is known as single copy consistency because it provides clients with replica views 

as if there is only a single server in the distributed storage system. There are two semantics 

for strong consistency; linearizability and serializability (or sequentially consistent) 

(Coulouris et al, 2011). Linearizability ensures that any interleaved sequence of operations 

from different clients are executed in the same order as if they were executed on one replica 

and the order of operations are consistent with the real times at which the operations 
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executed (Herlihy, and Wing, 1990) and (Coulouris et al, 2011). Similarly, serializability 

guarantees the same order of execution but without appealing to real time (Coulouris et al, 

2011). 

     The aforementioned consistency levels suffer from high latency issues and do not scale 

in geographically replicated systems (Shankaranarayanan et al., 2014). Therefore, these 

consistency levels were relaxed in order to avoid global ordering of clients operations as 

in the per-object sequential consistency level. It guarantees serializability just at an object 

level; hence, it ensures that clients operations are serialized and ordered per object (Cooper 

et al., 2008). Its synchronization algorithm guarantees that each replica applies the same 

updates in the same order for every object in the system. However, its algorithm has no 

guarantees for global or even partial ordering of clients operations across multiple objects. 

     Another weaker consistency than sequential consistency is the causal consistency. It 

guarantees that clients operations are always executed after the execution of earlier client 

operations which they are causally dependent on. Its algorithms ensure partial ordering 

between causally dependent clients operations (Ahamad et al., 1995). Both the per-object 

sequential consistency and causal consistency guarantees partial ordering of operations. 

The former guarantees partial ordering of all clients operations per object while the latter 

guarantees partial ordering for causally dependent clients operations across objects. 

     The weakest consistency level of all previously introduced consistency levels is the 

eventual consistency level. The reason is that eventual consistency does not have a formal 

definition for the order of its clients operations. An eventually consistent system is relaxed 

in terms of concurrency control and the only guarantees it provides to its clients is that all 

replicas will eventually converge. Its clients would have inconsistent views of the system 
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and stale data at times when replicas are disconnected or when they suffer from high 

latency connections between themselves. Therefore, it is leveraged by optimistic 

replication systems because they do not block client access when data are inconsistent or 

stale (Saito et al., 2005).  

     Aside from the strong consistency algorithms, each of the weak consistency 

synchronization algorithms might have a different client-centric perspective consistency 

level. The client-centric consistency levels were proposed as session guarantees for 

application in order to manage the weakly consistent replicated data in their replicated 

storage systems (Terry, Demers, Petersen, Spreitzer, Theimer, and Welch, 1994). A session 

is an abstraction used to represent the application’s view for a sequence of read and write 

requests that are performed during the execution of the application. It has four different 

consistency models; Monotonic Read Consistency (MRC), Read Your Writes Consistency 

(RYWC), Monotonic Writes Consistency (MWC), and Write Follows Read Consistency 

(WFRC) (Terry et al., 1994), (Vogels, 2008) and (Bermbach et al., 2013). 

     The first model, Monotonic read consistency (MRC), guarantees that if a client reads 

version n of an object, it will thereafter always read versions greater than or equal to n for 

the same object. Basically, if a client reads a certain version of an object from a specific 

replica, it will not go back in time reading older versions for the same object from any 

replica. Similarly, the second model or Read Your Writes Consistency (RYWC), guarantees 

that if a client updates an object to be of version n on a specific replica, then it will always 

read versions that at least equal to version n for the same object from any replica. It ensures 

that a client will not go back in time reading older versions than its latest object update 

even if the read operation is taking place on any of the peer replicas. 
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     The third model; Monotonic Writes Consistency (MWC), guarantees that multiple 

updates from the same client to the same object are serialized in order. Basically, if updates 

are taking place on different replicas, then a subsequent write operation will only be 

allowed to execute on replicas that have the latest preceding write operation. Similarly, the 

fourth model or Write Follows Read Consistency (WFRC), guarantees that an update 

following a read of version n will only execute at replicas that have at least version n of the 

object being updated. 
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Optimistic Replication Systems 

     Pessimistic replication systems tend to have strong consistency guarantees; hence, they 

require reliable connections and low latency between their replicas in order to manage the 

synchronously exchanged messages during data updates (Zhao, 2014). On the contrary, 

optimistic replication systems allow data updates to be applied at the local replica and 

asynchronously schedule the required messages in order to replicate out its updates to its 

peer replicas; hence, providing clients with weaker consistency levels (Saito et al., 2005). 

Nevertheless, optimistic replication systems are driven by the need for data replication over 

the internet and wide area networks because they do not require reliable connections or low 

latency networks. They are becoming increasingly popular due to advancement of mobile 

computers and the need to handle their intermittent connectivity (Zhao, 2014) and 

(Coulouris et al., 2011). 

     Optimistic replication systems achieve higher availability than their pessimistic 

counterpart in the presence of network outages and increased latency (Saito et al., 2005). 

The asynchronous nature of propagating data updates between their replicas ensures that 

disconnected replicas are reconciled with the rest of the system when network is restored 

back (Saito et al., 2005). Their replicas will eventually converge and reach a consistent 

state because of their epidemic communication mechanism; however, the convergence 

process could take some time (Demers et al., 1987). 

     The convergence time depends on factors such as the replication schedule of each 

replica and the network latency between replicas. Less frequent replica schedule and higher 

network latency implies a longer stale window; hence, more potential write conflicts and 

stale reads that could occur in an optimistic replication system with multi-master replicas. 
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For instance, it has been demonstrated by one of the file system studies (Leung et al., 2008) 

that more than 55% of shared opens from different clients occur within one minute of each 

other. Therefore, it is expected that delaying the propagation of data updates will increase 

the likelihood of reading stale data and introducing conflicted updates in optimistic 

replication systems. This is due to the increased chance of shared opens between different 

clients and the lack of locks to mutually exclude one another. 
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Tracking Changes and Conflict Detection 

     Tracking changes in distributed systems relies on logical clocks (Lamport, 1978) in 

order to capture causality between different versions of the same object. Vector clocks are 

used in distributed environments to order events based on a logical clock that captures the 

relations between distributed events (Lamport, 1978). Even though there could be a time 

gap between two distributed events and one of them happens-before the other, they could 

still be considered concurrent events. This would be the case if both events occur on two 

different replicas but cannot be related to a third event in order to correlate their event 

ordering (Lamport, 1978) and (Saito et al., 2005). Similar to Vector clocks, version vectors 

(VV) captures relations among distributed replicas to relate replica states instead of replica 

events. They were introduced by that name to track object’s modification history in 

LOCUS (Parker et al., 1983). 

     LOCUS assigns each replica a unique identifier and a counter that acts as a logical clock 

and keeps incrementing with every object change. When an object is modified on multiple 

replicas, its version is assigned the replica’s unique identifier and the current counter value. 

For example, if an object is replicated between 3 different replicas R1, R2 and R3, the 

version vector of the object would take the form of (R1: i, R2: j, R3: k) where i, j, and k 

are the last update number that R1, R2, and R3 have applied to the object respectively. 

Therefore, the version vector is of variable length depending on the number of replicas in 

the system. It can be represented as N number of (replica id, last update number) pairs 

where N is the number of replicas that have updated the object. 

     Subsequently, when two replicas R1 and R2 exchange their version vectors VV1 and 

VV2, it is said that both version are compatible if one version vector dominates the other. 
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For example, if VV1 is (R1: 7, R2: 5) and VV2 is (R1: 4, R2: 5), then VV1 dominates VV2 

because R1 was the last replica to apply an update to the object. Therefore, VV1 and VV2 

are not conflicting because Thomas’s write rule can be applied in order to copy R1’s object 

to R2 and make both R1 and R2 consistent. On the contrary, a conflict could be detected if 

neither of the version vectors is dominating the other. From the previous example, if VV1 

is (R1: 7, R2: 5) but VV2 is (R1: 4, R2: 6), then neither VV1 is dominating VV2 nor VV2 

is dominating VV1 and a conflict would occur if Thomas’s write rule is used to copy the 

object either from R1 to R2 or vice versa. Hence, R1 and R2 are not consistent and in order 

to manually or automatically reconcile them, objects have to be merged or one of the 

objects has to be picked to win the conflict. 
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Conflict Mitigation 

     Many studies and systems have focused on the conflict detection algorithms as 

explained earlier in order to manually or automatically resolve conflicts (Heidemann et al., 

1995), (Wang and Amza, 2009), (Saito et al., 2005), Coda (Satyanarayanan, Kistler, 

Kumar, Okasaki, Siegel, & Steere, 1990), Dynamo (DeCandia et al., 2007), Ficus (Reiher 

et al., 1994), and Bayou (Terry et al., 1995). There were also other studies that focused on 

improving the consistency of optimistic replication systems either by enforcing read/write 

ordering (Terry et al., 1994), by bounding replica divergence (Yu et al., 2000), by 

leveraging aggressive propagation (Saito et al., 2002), by using probabilistic techniques 

(Lawrence, Rowstron, Bishop, and Taylor, 2002), or by separating the data and metadata 

(Belaramani et al., 2006). 

     Improving the consistency of optimistic replication systems is a reaction to the eventual 

consistency drawbacks. Users of such systems used to sometimes see older replicated 

objects after they have already updated them as if the objects were going back in time. This 

problem was addressed by enforcing the read and write ordering of objects based on some 

predefined policies using session guarantees (Terry et al., 1994). The policies used were 

based on the four consistency models observed by clients; Monotonic Read Consistency 

(MRC), Read Your Writes Consistency (RYWC), Monotonic Writes Consistency (MWC), 

and Write Follows Read Consistency (WFRC) (Terry et al., 1994), (Vogels, 2008) and 

(Bermbach et al., 2013). 

     Session guarantees were implemented using a session object carried by each user (Terry 

et al., 1994) and (Saito et al., 2005). The session object has two kinds of information; write-

set and read-set, represented in a compact form as a version vector (Saito et al., 2005). The 
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gwrite-set preserves the past objects versions of the write operations submitted by the user 

and the read-set preserves the past objects versions read by the same user. This information 

is used to ensure that; for example, the Read Your Writes Consistency (RYWC) policy is 

enforced and the user would always read his last written information. 

     Another way improve the consistency of optimistic replication systems was to bound 

the replica divergence as demonstrated by TACT (Yu et al., 2000). TACT implemented a 

middleware layer that controls client read and write access to replicas as well as the data 

propagation between replicas based on some defined consistency bounds that are user 

specified. For instance, a replica would stop accepting updates from clients once it detects 

that the number of its uncommitted operations on the site exceeds the user specified limit 

(Saito et al., 2005). TACT used to deduce the number of uncommitted operations by 

exchanging metadata with peer replicas and calculating the difference. 

     Improving the consistency in optimistic replication systems has also been demonstrated 

by the aggressive propagation of data updates in the Pangaea file system (Saito et al., 2002). 

The aggressive propagation has also been evaluated by a later study (Yu et al., 2006) that 

corroborated the aggressive propagation effect on achieving the highest availability and 

consistency for optimistic replication systems; thus, leading to lower conflicting updates 

and reduced staleness. However, it was concluded that these techniques do not scale well 

in write intensive environments (Saito et al., 2005). Replicas will have to go through some 

catch up time that is proportional to the data size even for divided data objects (Saito et al., 

2005). In addition, there is a communication cost that is a result of the traffic incurred to 

aggressively propagate the data (Yu and Vahdat, 2001). 
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     To overcome the communication cost in replication, both the Gnothi system (Wang et 

al., 2012) and the PRACTI replication framework (Belaramani et al., 2006) separated the 

metadata from the actual replicated data in order to propagate the metadata first. Gnothi, 

which is a pessimistic replication system, leveraged this approach to ensure that the latest 

data updates are synchronized amongst all replicas by replicating the metadata to all 

replicas while replicating the actual data to only a subset of the replicas. This improves the 

recovery speed of the Gnothi system and maximizes its I/O throughput because it executes 

the write operations on subsets of replicas. For instance, the random I/O performance of 

write operations in Gnothi is 40 to 64% faster than Gaios (Bolosky, Bradshaw, Haagens, 

Kusters, and Li, 2011) when using 3 replicas because Gnothi writes data to only 2 replicas 

while Gaios writes to all 3 replicas like any other pessimistic replication system. 

     Gnothi is considered a pessimistic replication system that requires all data to be 

synchronized before any data update can take place. However, allowing data updates for a 

subset of the replicas has also improved the overall system availability because it shortened 

the period of time the system would take in order to be ready to accept data updates from 

clients. Even replicas with incomplete data could participate in replication with other 

replicas while some of its data blocks are not available and are being lazily downloaded. 

This was accomplished by including a complete/incomplete metadata flag that is set when 

the data is available and fully downloaded; otherwise the flag is not set. In addition to the 

complete/incomplete flag, there is a data block version that determines whether the data is 

stale or not. 

     PRACTI replication framework (Belaramani et al., 2006) has also leveraged the 

metadata separation technique for optimistic replication systems in order to do partial 



39 

 

replication. Partial replication enabled PRACTI to replicate out the modified file’s 

metadata first in order to mark the data objects as invalid on other replicas and then it 

replicates the actual data lazily or on demand. This reduced PRACTI’s communication cost 

and improved its availability; however, PRACTI came short in addressing the consistency 

problems by leveraging a distributed locking mechanism. 

     It is well understood that data locking and synchronization is not a property of optimistic 

replication systems; otherwise, these systems will lose their availability edge over 

pessimistic replication systems (Saito et al., 2005). However, it is postulated that 

leveraging locks to be acquired optimistically (Kung et al., 1981) reduces the conflicting 

updates even though they will not be completely eliminated due to concurrent updates and 

disconnected replicas. 
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Summary 

     Optimistic concurrency (Kung et al., 1981) has been used in database systems. It 

assumes that concurrent database transactions can complete without conflicting with each 

other. Based on that assumption, optimistically concurrent transactions use the database 

resources without acquiring locks. However, before optimistic transactions are committed, 

they verify whether the data they modified has been updated by other transactions or not. 

If a data update is detected, they rollback their transaction and restart. 

     The same analogy of optimistic concurrency is applied to optimistic replication systems 

in order to improve their consistency level. ORLease’s idea is about optimistically 

replicating leases (Cary et al., 1989) as metadata updates in order to achieve a semi locking 

semantics for the replicated data. The leasing metadata is aggressively replicated out in 

order to ensure that objects can be leased quickly. This reduces the staleness dimension of 

its eventual consistency level even though the data is not replicated out along with the lease 

metadata. The reason is due to the leased objects being blocked by other clients from read 

and/or write until the lease is over. Blocking other clients’ reads avoid reading stale data 

and blocking their writes is a safeguard against introducing conflicts. 

     For instance, if a client attempts to open a data object for a write operation on one of 

the system replicas, the client request then triggers the replica to send out a lease request 

to the other replicas in the system in order to lock the data object as a best effort. Once the 

lease is received by the peer replicas, the object is considered locked and the peer replicas 

can block clients from accessing the leased object. Therefore, if the lease request conflicts 

with other lease requests coming from other replicas, the optimistic replication system will 

allow the data resources to be modified by multiple replicas. Even though the number of 
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conflicted updates should be lowered when using ORLease, a conflict resolution 

mechanism is still required in order to resolve the conflict as explained later in the 

“Methodology” chapter. 
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Chapter 3 

Methodology 

 

Overview 

     This section elaborates on the architecture and design of the ORLease framework. The 

first subsection gives an overview about the PRACTI replication system (Belaramani et 

al., 2006) since it is considered the baseline for this research. The second subsection gives 

an overview about ORLease and its functionality. The third subsection demonstrates 

ORLease’s architecture showing its key design elements and main building blocks. The 

fourth subsection shows how metadata replication is leveraged to optimistically replicate 

leases. The fifth subsection demonstrates the ORLease runtime and how all the building 

blocks interact together to achieve a semi locking semantics for replicated data objects. 

Finally, the sixth subsection elaborates on the application model and the effect of updating 

and leasing the data objects that are being replicated by the ORLease replication 

framework. 
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PRACTI Overview 

     PRACTI (Belaramani et al., 2006) is a replication architecture that separates the data 

and metadata replication in order to replicate the metadata first. This makes PRACTI 

capable of doing Partial Replication by replicating the metadata of all of its data objects 

while replicating just a subset of the data itself. It maintains a flag in its metadata to indicate 

whether the data is VALID or INVALID. If it is INVALID and there is an attempt to read or 

write to an INVALID data object, then it goes through the process of blocking the request 

until it retrieves the data from other replicas. Once the data is retrieved, it marks the data 

object as VALID and allows the request to go through. This helps in getting the replicas to 

converge sooner because the metadata is negligible in size when compared to the actual 

object data size (Wang et al., 2012). 

     PRACTI also provides Arbitrary Consistency that allows a range of consistency 

guarantees to the caller by providing a control interface to specify the consistency 

requirements for the read and write operations. It provides a continuous range of 

consistency guarantees such as sequential consistency (Coulouris et al, 2011) or eventual 

consistency (Saito et al., 2006). For instance, a data read request will not block unless the 

caller specifies that it requires sequential consistency. The level of consistency would 

require the replica to gather more updates from other replicas before it can proceed with 

the read in order to ensure that the read operation satisfies the sequential consistency 

requirement. Similarly, all write requests will be applied right away unless the caller 

requests a sequential consistency. 

     PRACTI’s Partial Replication and Arbitrary Consistency are provided in a Topology 

Independent environment where each replica can exchange its data and metadata with any 
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other replica. All these features provides a replication framework that can fit the needs of 

any large-scale replication system. However, PRACTI’s range of consistency is lacking 

semi-locking as a feature that should improve the eventual consistency guarantee level. 

ORLease’s semi-locking is provided as optimistically replicated leases that shorten the 

window of stale access which is one of the two dimensions of consistency guarantees (Yu 

et al., 2002). Semi-locking neither needs synchronization between replicas as in pessimistic 

replication nor it needs to gather more metadata from peer replicas in order to satisfy some 

session guaranteed consistency levels such as Monotonic Read Consistency (Terry et al., 

1994) 
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ORLease Overview 

     The ORLease framework replicates data objects optimistically between multiple 

replicas where any replica is permitted to share updates with any other replica. Each 

participating replica has an object store and runs two services; a replication service and an 

object store frontend service. Both services are cooperating in order to manage the 

replicated object stores and is implemented as Windows platform executables (“Microsoft 

Windows Executable Files”, n.d.). However, ORLease’s framework is not limited to any 

specific implementation and can be incorporated into any replication framework that can 

separate and prioritize its metadata replication such as PRACTI (Belaramani et al., 2006). 

     The replication service manages replicating the object store updates to its peer replicas 

while the object store frontend manages uploading and downloading the data objects to and 

from the object store. Its object store frontend provides a local interface for applications to 

read, write, delete and lease the data objects as depicted in Figure 1 below. The application 

interface is similar to the PRACTI interface (Belaramani et al., 2006) that provides read, 

write and delete functionality for the data objects. However, ORLease also provides a lease 

interface for making explicit optimistic lease requests on its data objects. Additionally, it 

provides implicit optimistic leasing capabilities for the read and write operations on its data 

objects that can be configured based on the consistency requirements of the replication 

system. 
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Figure 1 

 

     The ability to acquire optimistic leases on data objects, whether explicitly or implicitly, 

as a semi-locking mechanism distinguishes the ORLease framework from its optimistic 

replication framework counterparts. The lease functionality gives applications the ability 

to acquire a lease in an optimistically replicated fashion. If the data object is not marked in 

the replicated object store as leased by any other replica, then the replication service grants 

the lease request and sends it out in the form of a data object metadata update to other 

replicas as explained in more details later in the “Metadata” subsection. However, if the 

data object is marked as leased by another replica, then the replication service denies the 

request but then provides the calling application the ability to break the lease in case the 

lease owning replica is offline. This is explained in further details in the “Application 

Model” subsection. 

 

 

 



47 

 

ORLease Architecture 

     The ORLease framework is composed of a frontend object store service and a 

replication service as was depicted earlier in Figure 1. The frontend object store service 

communicates with the application through a well-defined interface as explained earlier. 

The object store will then relay the message to the replication service in the form of 

metadata through its metadata transport which is depicted in Figure 2 below as the Store 

Metadata Transport. 
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     All data and metadata in ORLease are transferred through its transport layers. Each 

transport layer implements both the sender and receiver functionalities on each side of the 

communicating components. ORLease has two transport layers; one between the object 

store and the replication service and the other is between the replication service and its peer 

replication service. For instance, the Store Data Transport layer has two participating 

components; the object store and the replication service. If the object store is writing to an 
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object then the Store Metadata Transport on the object store side will act first as the 

metadata sender and the Store Metadata Transport on the replication service side will act 

as the receiver. Once the object’s metadata is received by the replication service, the Store 

Data Transport on the object store side will act as the data sender and the Store Data 

Transport on the replication service side will act as the receiver. 

     Assuming that the application making a request to create a new object in the object 

store. The object store will then forward the request to the replication service through the 

Store Metadata Transport which will then check and update the replica’s Metadata Store. 

Since the object is newly created and not leased, the Metadata Store will get updated and 

will allow the create operation to go through. This will trigger the Replica Metadata 

Transport to send out the lease request for this object to its peer replica. It will also create 

a thread (“Microsoft Windows Threads”, n.d.) that will handle the data upload request 

through the Store Data Transport into a temporary location.  

     When the sending replica sends out the lease request through Replica Metadata 

Transport, the receiving Replica Metadata Transport adds the objects metadata to the 

Metadata Store. This prevents any application on the receiving replica from accessing the 

object because it is marked as leased. Once the object is fully uploaded on the sending 

replica, it then moves the object into its final destination in the replicated object store. The 

moving of the object into the replicated object store triggers the Activity Monitor to create 

a thread to handle the completion of uploading the object. This in turn updates the Metadata 

Store which will trigger the Replica Metadata Transport to send out metadata updates to 

its peer replica to release the leased object. Once the metadata is sent out, another thread 
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will be created in order to get the Replica Data Transport to transfer the data 

asynchronously from the data store to its peer replica. 

     When the sending replica sends out the release request for the leased object through the 

Replica Metadata Transport, the receiving replica will then remove the lease of the object 

from its Metadata store but will keep the object marked as not available because its data is 

not fully downloaded yet. Also, when the sending replica creates a thread to get the Data 

Transport to transfer the data asynchronously from the sending replica’s data store to its 

peer replica, the receiving replica will in turn create a thread to receive the data. Once the 

data is fully downloaded and transferred into the receiving replica’s replicated data store, 

the object will then be marked as available in its metadata store. 
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Metadata 

     The replication service provides a metadata store similar to PRACTI (Belaramani et al., 

2006). The data store is used to store the objects’ data while the metadata store is used to 

store the objects’ versions, their lease versions, and their states. The data store organizes 

the objects’ data as files on the file system while the objects’ metadata should be stored 

separately in a database1. This gives the replication service control over the data access 

based on the metadata state. 

    There are two types of metadata that are associated with the actual data being replicated 

in optimistic replication systems; one describes the object’s version while the other 

describes the replica’s knowledge state (Parker et al., 1983). The former will be referred to 

as the data object’s metadata and the latter as the replica’s metadata. The data object’s 

metadata represents the data object’s version and its lease version at the replica that it is 

residing on while the replica’s metadata represents a collection of all data objects’ versions 

and their lease versions for a specific replica in the form of version vectors (Parker et al., 

1983), (Saito et al., 2005) and (Wang et al., 2009). 

     Each object in the object store is represented with a metadata object in the metadata 

store and has the following data structure: 

 

 WCHAR   ObjectName[MAX_PATH]; 

 DWORD   ReplicaId; 

 DWORD   Version; 

 DWORD   LeaseReplicaId; 

      DWORD   LeaseVersion; 

 BOOL    Lease; 

 BOOL    Available; 

 DWORD   Action; 

 HANDLE  Handle; 

 

                                                           
1 The metadata store is currently stored in memory and not persisted in a database. 
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    The ObjectName represents the name of the stored object while the ReplicaId and 

Version are both used to represent the object’s version. Similarly the LeaseReplicaId and 

the LeaseVersion are both used to represent the object’s lease version and owner. The 

Lease flag is used to identify whether the object is leased or not. For instance, assuming 

two replicas, replica A and replica B, and an application is running on replica A requested 

a lease on a data object named “F1”. The lease request will replicate out to replica B and 

will be stored in its metadata store. The LeaseReplicaId will then be set to A, the lease 

version will be set to the version provided by replica A, and the Lease flag will be set to 

TRUE. If another application running on replica B requests a lease on “F1” or tries to write 

to it, it will get access denied from the replication service because the metadata store will 

indicate that it is already leased to replica A. 

     The Available flag is used to identify whether the object is VALID and available or not. 

This is similar to PRACTI’s VALID flag and is set to false once the object is available to 

be updated or read. For instance, assuming two replicas, replica A and replica B, and an 

application is running on replica A leased a data object named “F1” to update it. Replica 

A will then send a metadata update that will set the Lease flag on replica B for object “F1” 

to TRUE. Once the write operation is complete on replica A, it will remove the lease and 

will send a metadata update to replica B which will set the Lease flag to FALSE and the 

VALID flag to FALSE because the object is not leased anymore but has been updated on 

replica A and the data did not reach replica B yet. 

     Data replication in optimistic replication system is downloaded asynchronously (Saito 

et al., 2005). Therefore, the Action and Handle variables are used as part of the replication 

service in order to keep track of the object activities and its asynchronous replication 
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mechanism with other replicas. The Action variable determines the current activity on the 

object and triggers the proper replication activity with other replicas while the Handle 

object is to manage the data replication with another replica. Once the object is downloaded 

by the peer replica, the Available flag will be set to TRUE and the handle will be reset. 

     When the ORLease’s framework updates the data object metadata to reflect a data 

update or a lease request, it updates the replica metadata based on version vectors similar 

to other replication systems (Parker et al., 1983) and (Saito et al., 2005). For example, 

assuming two replicas A and B started to replicate with each other. If a data object “F1” is 

created on replica A, the object’s metadata will be updated to have a new object for “F1” 

that has the following information: 

 

 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = A; 

 LeaseVersion   = 1; 

 Lease          = TRUE; 

 Available      = FALSE; 

 Action         = OBJECT_ACTION_LEASE; 

 Handle         = INVALID_HANDLE_VALUE; 

 

     The replica ID is set to A and the version is going to be 1 since it is the first change on 

replica A. Similarly, the lease replica ID will be set to A and its version to 1. This implies 

an object metadata version of {A-1} and lease version of {A-1}; hence, the replica 

metadata will get assigned a VV of {A-1} and a lease VV of {A-1}. Replica A will then 

notify its peer replica B that it has a replica metadata update. This will trigger the metadata 

of object F1 to be replicated out to replica B and both its VV and lease VV will stay as {A-

1}. However, its Available flag on B will be set to false until all of the data object’s data is 

received from replica A. The object metadata on replica B will be initially set to be: 
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 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = A; 

 LeaseVersion   = 1; 

 Lease          = TRUE; 

 Available      = FALSE; 

 Action         = OBJECT_ACTION_LEASE; 

 Handle         = INVALID_HANDLE_VALUE; 

 

Once the “F1” object is fully created on replica A, its metadata object will be updated to 

be the following: 

 

 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = A; 

 LeaseVersion   = 2; 

 Lease          = FALSE; 

 Available      = TRUE; 

 Action         = OBJECT_ACTION_RELEASE; 

 Handle         = INVALID_HANDLE_VALUE; 

 

     This will implicitly update the replica metadata to have a lease VV of {A-2}; however, 

the object’s VV stays the same as {A-1} because it has not changed. The Lease flag will 

be dropped to FALSE and Action will be set to OBJECT_ACTION_RELEASE since 

replica A is not leasing or accessing the object anymore. The Available flag will be set to 

TRUE since the object is fully created. Updating the replica metadata on A will trigger the 

exchange of VV with replica B. Replica B’s metadata has the VV of {A-1} and a lease VV 

of {A-2}; hence, replica B will realize that it needs to get the lease change of {A-2}. The 

lease update indicates the release of the object’s lease. Once replica B gets the metadata 

changes, it will release the object and update its metadata object to be: 

 

 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = A; 

 LeaseVersion   = 2; 

 Lease          = FALSE; 
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 Available      = FALSE; 

 Action         = OBJECT_ACTION_RELEASE; 

 Handle         = REPLICA_A_HANDLE; 

 

     Since the data is not yet fully downloaded on replica B, its Available flag will still be set 

to FALSE. However, replica B establishes a data connection with replica A in order to 

download the data locally. The connection is controlled by the handle value which is given 

the pseudo value above as Replica_A_Handle. 

     When “F1” is opened later to be modified on replica B, it will have a lease VV of {A-

2, B-1} and replica B metadata is going have its lease version updated to {B-1}: 

 

 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = B; 

 LeaseVersion   = 1; 

 Lease          = TRUE; 

 Available      = FALSE; 

 Action         = OBJECT_ACTION_LEASE; 

 Handle         = REPLICA_A_HANDLE; 

 

     This will trigger metadata replication to replica A which will then lease the object to 

replica B. However, the application opening the data object will be blocked until F1 is fully 

downloaded. Once downloaded, its Available flag will be set to TRUE and the data handle 

will be set to INVALID_HANDLE_VALUE because it is fully downloaded and no need 

to keep a communication handle with replica A. At this point, the data object can then be 

modified by the application and the metadata will be set to the following: 

 

 ObjectName     = “F1”; 

 ReplicaId      = A; 

 Version        = 1; 

 LeaseReplicaId = B; 

 LeaseVersion   = 1; 

 Lease          = TRUE; 

 Available      = TRUE; 

 Action         = OBJECT_ACTION_LEASE; 

 Handle         = INVALID_HANDLE_VALUE; 
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     Once the object is fully modified by the application, it will then release the object’s 

lease. The object’s version will be updated to {B-1} and the lease version will be updated 

to {B-2}. This implies that the VV will be updated to {A-1, B-1} and the lease VV will be 

updated to {A-2, B-2}. The object’s metadata will also have the Lease flag set to FALSE 

and Action set to OBJECT_ACTION_RELEASE. The object’s metadata will be updated 

to be as follow: 

 

 ObjectName     = “F1”; 

 ReplicaId      = B; 

 Version        = 1; 

 LeaseReplicaId = B; 

 LeaseVersion   = 2; 

 Lease          = FALSE; 

 Available      = TRUE; 

 Action         = OBJECT_ACTION_RELEASE; 

 Handle         = INVALID_HANDLE_VALUE; 

 

     As demonstrated in the previous example, ORLease introduced two metadata version 

updates in order to propagate lease acquire and release. Once a lease acquire request is sent 

out, every replica receiving the request will honor the lease. The lease on the data object 

will stay indefinitely until the lease owner replica sends a lease release request. However, 

leases should not be held indefinitely on any data object in case the lease owner’s replica 

gets disconnected from the other replicas and never connect back again. 

     Therefore, ORLease also introduced the concept of a third metadata version update in 

order to propagate a lease break request. This request is considered a lease acquisition 

request that is expected to introduce a lease conflict and a possible data conflict if the lease 

owner updates the object. This lease break request can be sent out by any replica in order 

to take the lease ownership of any leased object in its metadata store. 

     The lease acquisition, release and break process is depicted in Figure 3 with two 

replicas; replica A and replica B. When a data object is created on replica A, it gets assigned 
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a lease VV of {AL-1} and a data VV of {AD-1}; where the letter “L” and “D” are appended 

to the replica ID to just distinguish between a lease VV and a data VV respectively. The 

{AL-1} indicates a lease acquisition request and the {AD-1} indicates a data change which 

is the creation of a new object. Both VVs are replicated right away to replica B as metadata 

to ensure that replica B does not create a similar data object with the same name. Once 

replica A finishes updating the object’s data, it creates a lease VV of {AL-2} that indicates 

a lease release request which will get replicated to replica B. The data will then be 

replicated asynchronously from replica A to replica B. 
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Figure 3 

 

     Assuming replica A will then open the object again which will create a lease VV of 

{AL-3} that indicates a lease acquisition request. Now if replica B decides to open the 
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same data object, its open request will get denied because of the lease request sent out by 

replica A as lease VV of {AL-3}. The VV of {AL-3} received by replica B should have 

updated its metadata store to indicate that object is leased for replica A. However, if replica 

A gets disconnected from the network, the availability of the object will go down due to 

the lease that is being held by its peer replica in response to the lease VV of {AL-3} sent 

out by replica A. Therefore, in order to avoid the situation of having the object being 

blocked indefinitely due to a disconnected replica, replica B can issue a lease break request. 

It updates the lease VV to be {AL-3, BL-1} and then proceed with accessing and updating 

the object. 

     Another lease break scenario is depicted in Figure 4 below between two replicas; A and 

B. In this example, replica A is still connected to replica B but starts updating the data 

object. This will generate a data VV of {AD-2}; however, replica B decides to break the 

lease and open the object for modification. Replica B sends a lease acquisition to replica A 

which will lead replica A to detect the request as a lease break. Replica A will then honor 

the lease break and update the lease owner to be replica B and will update its lease VV to 

be {AL-3, BL-1}. 

     Replica A then decides to close the object which will update the lease VV to {AL-4, 

BL-1}. When Replica B receives the lease VV update, it will just update its object lease 

metadata to be {AL-4, BL-1}. However, the object will still be leased to replica B since it 

forced breaking the lease with its explicit object lease VV update of {BL-1}. Replica A 

will then send out its object data update which has the data VV as {AD-2}; however, replica 

B will initially reject the update because the file is still opened by replica B. It will then 
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conflict with the data update on replica B which will have the data VV of {BD-1} after the 

object is closed. 

Replica A Replica B

Open attempt

 Open Denied

Received lease update AL-2.

Object not leased and not 

available

New Object

AL-1

Force open

AL-3, BL-1

Close Object

AL-2

AD-1

Open Object

AL-3

Received lease update AL-1.

Object leased for A and not 

available

Received lease update AL-3

Object leased for A and not 

available

New Lease

Lease release and 

data available

Data

New Lease

Lease break 

detected

AL-3, BL-1

Object data available

AD-1

Close Object

AL-4, BL-1

AD-2

Lease break

Lease release and 

data available

Conflict detected. Data 

update is rejected but 

data VV is updated:

AL-4, BL-2

AD-2, BD-2

Lease release

Close Object

AL-4, BL-2

AD-1, BD-1

Write data

Write data

Write data

Send object 

data update

AD-1

Send object 

data update

AD-2

Received lease release 

update AL-4, BL-1 but AD-2 

can’t be applied because 

object not closed

Received lease

release AL-4, BL-2

But reject the VV 

update because it’s 

conflicted and has 

to be resolved by 

the winner replica B

Data update

Send object data 

and metadata 

update

Received Metadata 

and data updates:

AL-4, BL-2

AD-2, BD-2

Figure 4 



59 

 

     The conflict will be resolved and will result in replica B winning the conflict because 

replica B is the last object writer based on Thomas write rule (Thomas, 1979). The data 

VV will be updated to reflect the conflict reconciliation to ensure that the new VV is 

compatible and include all previous VV (Zhao, 2014). The data VV will also have replica 

B’s VV count incremented by 1 from BD-1 to BD-2 so that its data VV represents a new 

version that will include the replica A’s VV of {AD-2} and have its own data VV update 

of {BD-2} (Zhao, 2014). The new data VV will then be {AD-2, BD-2} which will 

dominate replica A’s data VV of {AD-2, BD-1} and that will trigger data replication of the 

winning object from replica B to replica A. 

     Replica A should have also received replica B’s data VV update of {BD-1} earlier 

before replica B detected and resolved the conflict. The conflict would have also been 

detected on replica A but will be not be reconciled because the winning replica is the only 

replica responsible for the object reconciliation. If more than one replica is reconciling the 

object, then the replication system could suffer from multiple conflicts because each 

reconciling replica is creating a new version of its own by incrementing its version counter 

(Zhao, 2014); hence, newly created data VV will conflict with each other resulting in more 

reconciliation and more conflicts. 

     Another conflicting scenario is depicted in Figure 5 below where two replicas A and B 

were forced to lease an object and make updates to an object because the replicas were 

disconnected. A data object is concurrently leased and updated by both Replica A and B 

but the network was down during the lease acquisition request, data update request and the 

lease release request. Therefore, each replica updated its replica knowledge according to 

its own changes while being unaware of the other replica’s changes. 
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     When both replicas get their network connection restored back and start to exchange 

their version vectors, they will both detect that the same data object has different lease and 

data versions leading to a detected conflict. Since the conflict resolution in ORLease is 

based on Thomas’s write rule (Thomas, 1979), which is the last writer wins, the data object 

with the latest data VV update will win the conflict. For instance, in the flow diagram of 
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Figure 5, replica B closes the object and release the lease after replica A. Therefore, when 

network connectivity is restored between the replicas, the data object of replica A loses the 

conflict. 

     The conflict will be resolved on the winning replica which will generate a new version 

for both the lease VV and data VV as explained earlier. Therefore, the lease VV will 

become {AL-2, BL-3} instead of just {AL-2, BL-2} because the winning replica has to 

generate a new version (Zhao, 2014). Similarly, the data VV will become {AD-1, BD-2} 

instead of just {AD-1, BD-1}. The winning replica B will then send out the metadata update 

along with the data update to replica A. This would complete both replica reconciliation 

and replica A would then move its conflicting object out of the replication folder. The 

conflicting object can be preserved in a special location in the object store in case it should 

be accessed later for a manual merge or override by the end user. 
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ORLease Runtime Service 

     Once the replication service starts, it registers its Replica Transport layer for both data 

and metadata with its peer replicas’ Transport layers. As explained earlier, the Replica 

Transport layer is used to transfer the data and metadata to and from its peer replica(s) 

asynchronously similar to PRACTI’s core module functionality (Belaramani et al., 2006). 

The replication service then starts monitoring for two types of metadata updates; local 

updates and peer replica updates as depicted in the following flowchart in Figure 6. 
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     For the local updates, the service checks first whether it is a protected request that 

requires leasing or not. If it is not protected and the object is available, then the request 

goes through with data access. Otherwise, if the object is not available, then the request is 
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in a pending state until the data object is completely downloaded and available. However, 

if it is an optimistically protected read/write operation, the replication engine will have to 

check first whether the data object is leased by another replica or not. If it is leased, then 

the request is denied unless it is an explicit lease operation as depicted in Figure 7 below. 

Explicit lease requests are used to override an existing lease as explained earlier so that a 

data object is not locked indefinitely if the lease’s owner replica is disconnected from the 

network since network partitioning is not uncommon in distributed systems. 
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     If the object is not leased, then the requested object operation is checked. It can either 

be a lease/release operation or a protected read/write operation. Other operations are not 

supported in this research as mentioned earlier in the “Delimitations” section. If the 

requested operations is an optimistically protected read/write operation, then an implicit 

lease is acquired in order to optimistically lease the object while the read/write operation 

is in flight. Once the operation is complete, the lease is implicitly released as depicted in 

both Figure 6 and 7.      

     In addition to the implicitly requested leases during the protected read/write operations, 

the ORLease framework also provides explicit leasing. A client can request a lease on the 

data object and the replication engine will check whether the data object is leased and 

available or not. Whether the object is leased or not, the lease will be granted right away 
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and the data object’s lease version vector will be updated in the metadata store triggering 

a metadata replication with the replica’s peers. If the data object is not available, then any 

following read/write request will be in a pending state until the data object is completely 

downloaded and available.  

     For the second type of updates, which is the peer replica update, the replication service 

follows the flowchart path referenced by the circled number 1 as depicted in Figure 6. The 

continuation of this flowchart is depicted in Figure 8 and represents two types of peer 

replica metadata update; data VV update and lease VV update. For the first type of peer 

metadata update, which is data VV update, the replication service compares the received 

data VV in order to check whether the object is currently in a conflict or not. If there is no 

conflict detected, then the local object’s data VV will be updated which in turn will trigger 

the object’s data to be replicated if data VV difference is due to a data update. However, if 

a conflict is detected, then it will be reported and resolved only on the replica that most 

recently updated the object as explained earlier. A conflict could have occurred due to 

concurrent optimistic lease requests and write operations by multiple replicas when the 

replicas were disconnected. 

     For the second type of peer metadata update, which is lease VV update, a lease request 

can be a new lease, release lease or an override lease request that got propagated from peer 

replica. All lease operations add the lease VV of the request to the replica knowledge and 

take the proper actions based on the lease operation type. The new lease request; whether 

it is an explicit lease request or an implicit request acquired during an optimistically 

protected read or write operation, will set the metadata Lease flag to TRUE and the 

LeaseReplicaId to the Id of the replica owner of the lease. The lease release request does 
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the opposite as it sets the metadata Lease flag to FALSE and reset the LeaseReplicaId to 

NULL since the object is not leased and no replica owns any lease on the object. Finally, 

the lease break request keeps the Lease flag set to TRUE but changes the LeaseReplicaId 

to the Id of the last lease replica owner set in the metadata request. 
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Application Model 

     The ORLease framework provides a programming model which empowers the 

application developers to handle conflicts in their replicated data stores. This is similar to 

MDCC or Multi-Data Center Consistency (Kraska, Pang, Franklin, Madden, and Fekete, 

2013) which is a wide area replication system that also provided a programming model to 

handle long and unpredictable latencies caused by the inter-data center communication. 

The interface provides read, write and delete methods for reading and modifying the data. 

This is similar to the PRACTI interface (Belaramani et al., 2006); however, ORLease’s 

methods acquires implicit leases and the interface also provide an extra lease method. The 

lease method can be used by the applications in order to acquire an explicit lease on the 

data object that is being replicated. 

     The write and delete methods provide an implicit lease functionality as explained earlier 

in order to achieve the semi locking semantics for the replicated data. If the object is leased 

by another replica, these operations will fail and the application will get an error that the 

object is already leased. However, the application can explicitly lease an object to override 

the leased object. The application developers will need to show the proper error message 

to the end user when a write or delete operation fails. They could also provide the proper 

methodology that allows the end user to issue an explicit lease on the leased object in order 

to break the existing lease and complete the write or delete operation. 

     Therefore, conflicts in ORLease will not be uncommon due to the optimistic nature of 

its replication framework. Conflicts will still occur due to disconnected replicas, explicit 

lease override as well as the concurrent lease acquisition. In order to mitigate this issue, an 

application can also register to receive notifications when conflicts are detected at the lease 
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level as explained earlier. Conflicts in PRACTI (Belaramani et al., 2006) are detected when 

the metadata is exchanged after the data object has been updated. However, ORLease can 

detect conflicts even before data is committed because conflicts can be detected when lease 

metadata requests are exchanged. 

     For instance, assuming two replicas A and B are issuing a write operation with an 

implicit lease on the same object at the same time. The lease requests will result in a conflict 

that will be detected on both replicas. When a conflict is detected, the application developer 

could raise a warning to the end users on both replicas. The warning could identify the 

conflicting replicas since the LeaseReplicaId in the metadata store is holding this 

information. This would give the end users the proper information to the end users in order 

to communicate with each other and orchestrate a conflict resolution. 
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Chapter 4 

Results 

 

Testing and Evaluation 

     The ORLease framework has been evaluated based on the modified stale-access metrics 

(Kuenning et al., 1998) as explained earlier. The leased stale-access metric is the difference 

in time when a replica receives a lease for an object that has been leased by another replica, 

and when it receives a lease release or a lease break. The stale-access has been evaluated 

based on an external (client-centric) or internal (data-centric) methodology (Kuenning et 

al., 1998) and (Bermbach et al., 2013). The external evaluation methodology is achieved 

by using external data writers and readers in order to detect the propagation time of 

individual updates between replicas. It is leveraged in cases where it is hard to have access 

to the source code or its detailed logging as in the evaluation of Amazon’s S3 (“Amazon 

S3”, n.d.) that was attempted by Bermbach et al. (Bermbach and Tai, 2014).  

     On the contrary, the internal evaluation methodology is leveraged when source code is 

accessible or detailed logging is available. It is based on calculating the difference of 

timestamps logged by replicas for propagated updates in order to detect the propagation 

time. This is the methodology that ORLease followed since the evaluation of staleness has 

been extracted from the logs generated and displayed in the command window by the 

replication services and the frontend applications communicating with them. For instance, 

when an object (obj1) is added to one replica (replica A), the logs shows the time when the 

object is initially added to the replication store and completely uploaded: 

 

The object (obj1) metadata is added at: 19:52:16.316 
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.. 

The object (c:\RF1\obj1) data is added at: 19:52:16.414 

 

Then the log for the remote replica will display when the remote replica got the object’s 

lease, the object’s metadata and when the object was completely downloaded: 

 

The object (obj1) is leased and metadata is added at: 19:52:16.320 

.. 

The object (obj1) metadata is updated at: 19:52:16.430 

.. 

The object (c:\RF2\obj1) data is added at: 19:52:16.555 

 

     ORLease’s prototype has been implemented in order to evaluate ORLease and compare 

its results against other common replication techniques that have been simulated by the 

same prototype. The prototype provided the proper logging that showed the timestamps at 

which both the source replica A and the destination replica B are reacting to different events 

as shown in the previous logging snippets. For instance, the logging of the destination 

replica B showed different timestamps at which a lease is applied, replicated object’s 

metadata is received and replicated object’s data is received. 

     These three logging events were very crucial in evaluating ORLease because the first 

one shows the timestamp when the destination replica B receives and applies the lease 

metadata for a potentially replicated object. This lease metadata is used by ORLease in 

order to block the receiving replicas from accessing the object; hence reducing the stale-

access time window. The second logging event indicates the receiving of the object’s 

creation or update metadata. That metadata is used by PRACTI (Belaramani et al., 2006) 

in order to determine if an object is created or updated. It also reduces the stale-access time 

window because the receiving replicas will block object access until the object’s data is 

fully downloaded. The third logging event indicates the completion of the object’s data 
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download to the destination replica B. This is used by most replication systems (Saito et 

al., 2005) to indicate that an object has been created or updated and ready to be accessed. 

     As a measure of success, the optimistic replication system that is enhanced with the 

optimistic lease technique showed a reduction in the stale-access time window by the 

leased stale-access time. This is due to the fact that ORLease will allow replicas to maintain 

an optimistically consistent view of an object’s metadata using the optimistic lease’s 

metadata but without necessarily having other object’s replication metadata or its data 

contents available. Additionally, the semi-locking lease ensures that the leasing replica will 

optimistically have a lease to the object even before the data is modified. This is what gives 

ORLease an edge over other replication systems that replicate metadata after the objects 

are modified (Saito et al., 2005) and (Belaramani et al., 2006). However, if the source 

replica fails or aborts the object update or creation, then the replication system would have 

incurred an extra metadata request for leasing that is unnecessary. 

     In the previous logging snippets, the stale access period is the difference in time 

between the time when obj1 got uploaded and added to replica 1 and the time when it is 

fully downloaded and received by replica B which is 19:52:16.316 – 19:52:16.555 = 239 

millisecond. However, the leased stale access period is the difference in time between the 

time when obj1 lease is received by replica B and the time when it is fully downloaded 

which is 19:52:16.320 – 19:52:16.555 = 235 millisecond. The difference in time between 

stale access and leased stale access is just 4 milliseconds. Therefore, a conflict will only 

occur if replica B adds an object that is named (obj1) during this time window. 

     PRACTI improved the consistency by reducing the window of inconsistency to be the 

difference in time between receiving the object metadata on replica B after it is committed 
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on replica A and when the data is received which is 19:52:16.430 – 19:52:16.555 = 125 

millisecond. Therefore, by comparing ORLease to PRACTI, the stale-access window for 

introducing conflicts will be reduced from 239 milliseconds in common replication systems 

such as Coda (Kumar et al., 1995) to 125 milliseconds in systems such as PRACTI 

(Belaramani et al., 2006) to just 4 millisecond in ORLease. 
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Experiments 

     To evaluate the efficacy of ORLease, the proper experiments have been conducted in 

order to evaluate the stale access of replicated objects for different object sizes. ORLease’s 

results have been compared against the expected results of replication systems that keep 

their replicated objects stale until the objects are committed. Once an object is committed 

on any replica, it is replicated to its peer replicas and the object will still be stale until the 

whole object’s data is available at the peer replicas in systems such as Coda (Kumar et al., 

1995) or just until the object’s metadata is available at the peer replicas in systems such as 

PRACTI (Belaramani et al., 2006). 

     The evaluation was conducted on a single machine that has been configured to have two 

replication folders; RF1 and RF2. Each replication folder had a replication service instance 

that is responsible of monitoring changes in its replication folder. Each replication folder 

also had a store service that communicates with the replication service acting as a client 

that uploads objects to the replication folder. When the store service uploads a file to the 

replication folder, it does that by making a request to the replication service which in turn 

issues a lease request to its peer replication service. Once the lease is received by the peer 

replica, the object is considered leased and locked for the originating replica until the object 

is fully replicated and the lease is dropped. 

     The replication service is a prototype that has been developed in order to evaluate the 

expected stale access of replicated objects in ORLease, PRACTI (Belaramani et al., 2006) 

and other common replication systems such as Ficus (Reiher et al., 1994) and Coda (Kumar 

et al., 1995). The prototype is capable of mimicking the different replication approaches 

while emitting the proper logging information for evaluation as mentioned earlier. It is 
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capable of communicating with other instances of the replication service as well as clients 

that create and modify different objects. 

     The goal of the experiments was to demonstrate ORLease’s reduction in stale access 

which implicitly lowers the replication system’s conflict rate (Saito et al., 2005). The 

experiments were conducted in the absence of network partition since ORLease systems 

do not function when replicas are disconnected from the network. Nevertheless, ORLease’s 

behavior due to network partitioning faults and its recovery by breaking leases was left for 

future work. 

     ORLease’s experimental results were in line with the expectations. It was expected that 

ORLease will have a smaller constant stale window access when compared to other 

systems such as PRACTI (Belaramani et al., 2006) and Coda (Kumar et al., 1995). Its 

metadata propagation latency results were almost constant and negligible for different 

objects’ sizes. This is due to the fact that ORLease sends the lease metadata right when the 

object is created or opened for update and the metadata is negligible in size when compared 

to the data size (Wang et al., 2012). 

     On the contrary, PRACTI (Belaramani et al., 2006) sends its metadata right after the 

object is committed on the sending replica while Coda (Kumar et al., 1995) does that when 

the object is committed at the receiving replica. Therefore, both PRACTI (Belaramani et 

al., 2006) and Coda (Kumar et al., 1995) depends on the object’s committing time which 

can take hours or even days depending on the users as in DFSR (“Microsoft Distributed 

File System Replication (DFSR)”, n.d.). In addition, replication systems such as DFSR 

depends on the data propagation latency which grows proportionally relative to the size of 

the object’s update. 
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     Consequently, few experiments have been conducted using the ORLease prototype in 

order to evaluate the data and metadata propagation latency for newly created objects. The 

setup for this experiment had 2 replicas (replica R1 and replica R2) running on the same 

machine as 2 different processes. Then different objects sizes (1k, 100k, 1MB, 4MB, 

10MB, 113MB, 1GB, 2.4GB, and 14GB) have been uploaded from the frontend application 

to replica 1 which in turn replicated them to replica 2. 

     Based on the conducted experiments, the results have been reported in table 1 below. 

The table rows represent the different object sizes while the table columns represents 

collected log data as well as the calculated stale access window for ORLease, systems 

similar to PRACTI (Belaramani et al., 2006) and systems similar to Coda (Kumar et al., 

1995). The first two columns represents the timestamps from the logs for when the object 

was opened or created and then closed on replica 1 (R1). The following three columns 

represents the timestamps from the logs for when the object is leased, has its metadata 

added and data added on replica 2 (R2). 

     Regardless of the object size being uploaded to the ORLease replica, the metadata 

propagation time stayed constant as expected. The results are also depicted on two charts; 

one for small objects as shown in Figure 9 and the other for medium to large objects as 

shown in Figure 10. The results for all object sizes could be presented on one chart but the 

chart was not clearly showing the difference between the stale access of ORLease, PRACTI 

and regular replication systems for small objects. 
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Object size Open object 

time (R1) 

mm:ss.ms 

Close object 

time (R1) 

mm:ss.ms 

Lease 

Added (R2)     

mm:ss.ms 

Metadata 

Added (R2) 

mm:ss.ms 

Full data 

received (R2) 

mm:ss.ms 

ORLease 

Stale Access 

mm:ss.ms 

PRACTI 

Stale Access 

mm:ss.ms 

Stale 

Access 

mm:ss.ms 

1 KB 13:15.537 13:15.566 13:15.549 13:15.569 13:15.574 00:00.12 00:00.32 00:00.37 

100 KB 19:50.790 19:50.856 19:50.804 19:50.858 19:50.914 00:00.14 00:00.72 00:00.124 

1 MB 52:10.061 52:10.158 52:10.076 52:10.161 52:10.224 00:00.15 00:00.100 00:00.163 

4 MB 18:50.950 18:51.095 18:50.959 18:51.096 18:51.160 00:00.9 00:00.146 00:00.210 

10 MB 21:31.485 21:32.388 21:31.500 21:32.397 21:32.548 00:00.15 00:00.912 00:01.063 

133 MB 25:21.467 25:23.288 25:21.479 25:23.294 25:24.693 00:00.12 00:01.827 00:03.226 

1 GB 29:33.271 29:42.367 29:33.282 29:42.368 29:46.922 00:00.11 00:09.097 00:13.651 

2.4 GB 33:11.042 33:33.098 33:11.060 33:33.099 33:56.368 00:00.18 00:22.057 00:45.326 

14 GB 37:41.403 40:05.101 37:41.410 40:05.101 42:40.461 00:00.7 02:23.698 04:59.058 

 

Table 1 
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Figure 9 

 

 

 

Figure 10 
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Chapter 5 

Conclusions, Implications, Recommendations and Summary 

 

Conclusions 

     Optimistic replication systems that are enhanced with ORLease’s optimistic lease 

technique demonstrate a reduction in the stale-access time window by the leased stale-

access time. It has been demonstrated that ORLease’s stale-access doesn’t depend on the 

replicated object size and the time taken to commit an object similar to PRACTI 

(Belaramani et al., 2006) and Coda (Kumar et al., 1995). ORLease’s evaluation showed 

constant time in stale access that only depends on the network latency and its connectivity 

between replicas.  

     Consequently, ORLease is about conflict reduction and not conflict prevention because 

it provides a best effort leasing and requires a well-connected network between its 

participating replicas. Therefore, conflicts will occur if the network latency between two 

replicas of a replication system is T milliseconds and the time difference of opening an 

object on both replicas is less than T. Conflicts will also occur if the network is partitioned 

and same objects are modified on multiple replicas at the same time. Conflicts should then 

be resolved either manually or automatically as demonstrated in the optimistic replication 

survey by Saito and Shapiro (Saito et al., 2005). 

     ORLease’s current implementation had few simplifications in order to expedite its 

implementation and attenuate the evaluation process. These simplifications did not 

influence ORLease’s expected successful outcome. For instance, ORLease’s prototype was 

based on a flat namespace with no directories or subdirectories similar to the simulation 
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framework developed by Wang et al. (Wang, Reiher, and Bagrodia, 1997). Their system 

was also based on a flat namespace instead of a hierarchical one in order to simplify their 

prototype implementation and its evaluation process. 

     Another simplification was to have ORLease’s prototype operations limited to just the 

object creation operation. The optimistically replicated lease is considered a semi-locking 

operation that precedes all object’s operations and is applied similarly to all of them; hence, 

evaluating one operation should suffice. The objects were also leased, created, and 

replicated in their whole entirety. The lease is then released when the object is fully created 

and replicated without depending on the metadata replication prioritization to do partial 

replication on demand. These simplifications were necessary in order to accelerate the 

implementation process and they are left for future research. 
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Implications 

     ORLease introduced an innovative technique to achieve semi-locking of data objects in 

optimistic replication systems by leveraging the existing system’s communication 

methodology and causality capturing techniques. It has been demonstrated that the object 

size and its commit time did not have an impact on staleness in optimistic replication 

systems that are enhanced with ORLease. Network latency and connectivity are the only 

factors that affects staleness in these systems. 

     Optimistic replication systems that are augmented with the optimistic lease technique 

should reduce their window of stale-access for data objects by the leased stale-access time 

that was introduced with ORLease’s lease acquisition. PRACTI (Belaramani et al., 2006) 

was successful in reducing the stale-access by replicating the metadata of the update once 

the object is committed. ORLease has reduced the window of stale-access even further by 

replicating the metadata for optimistic leases when the replica opens a data object with the 

intention to create it or update it. 

     However, ORLease’s effectiveness in reducing stale access is better demonstrated in 

replication systems that have their data objects updated over a large window of time such 

as the replication of distributed file systems’ files in DFSR (“Microsoft Distributed File 

System Replication (DFSR)”, n.d.) and Azure File Sync (“Microsoft Azure File Sync 

(AFS)”, n.d.). Files in DFSR and AFS can be opened for hours or even days before changes 

are committed and replicated. 
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Recommendations 

     This research focuses on leveraging the newly introduced technique ORLease in 

optimistic replication systems in order to enhance their consistency. The focal point is to 

optimistically broadcast the lease requests of replicated objects in these replication systems 

through their metadata replication mechanism in order to shorten their window of 

inconsistency (Bailis and Ghodsi, 2013). Therefore, a few simplifications have been 

undertaken in order to expedite the research outcome and its evaluation process. 

     ORLease’s implementation was limited to handle object creation due to time constraints 

but not for technical reasons. It was also based on a flat namespace instead of a hierarchical 

one in order to simplify the prototype implementation and its evaluation process. 

Therefore, a more extensive study is required in order to validate ORLease’s functionality 

for all file operations in a multi-master distributed replication system. The study should 

also evaluate hierarchical namespaces and the move operations of files and folders between 

different folders. 

     The prototype was also implemented as a very primitive platform executable 

(“Microsoft Windows Executable Files”, n.d.) that leveraged named pipes (“Microsoft 

Windows Named Pipes”, n.d.) as the data transport layer. It utilized the Windows directory 

management functions (“Microsoft NTFS file system directory management functions”, 

n.d.) in order to detect the file system modifications. Therefore, other technologies are also 

worth the investigation like using RPC (“Microsoft Windows Remote Procedure Call 

(RPC)”, n.d.) instead of named pipes and leveraging the Update Sequence Number (USN) 

change journal of the Microsoft NTFS file system (“Microsoft NTFS file system Update 

Sequence Number (USN) change journal”, n.d.) instead of using the Microsoft directory 
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management functions (“Microsoft NTFS file system directory management functions”, 

n.d.). 

     ORLease should be capable of handling objects that are marked as incomplete similar 

to PRACTI (Belaramani et al., 2006) because of the metadata replication prioritization. 

Incomplete objects can still be optimistically leased by the replicas that have them marked 

as incomplete. The optimistically replicated lease request can then trigger data replication 

prioritization from replicas that have the complete data objects. However, this was 

considered an enhancement that has not been evaluated and should be considered for future 

research. Therefore, this research has implemented and evaluated ORLease based on 

holding the lease on the object until the data is fully downloaded and available. It then 

releases the lease instead of depending on the data replication prioritization to block any 

new incoming request for any object until it is fully downloaded and available. 

     Another area that has not been explored is the breaking of leases held by disconnected 

replicas. Disconnected replicas are key aspect of optimistic replication systems (Saito et 

al., 2005). For instance, Coda (Satyanarayanan, & Kistler, 1990) focused on the 

disconnected replicas and their reconciliation with the replication system. ORLease’s semi-

locking mechanism is in the form of an infinite lease that is optimistically replicated out 

from the lease requesting replica to all other participating replicas. The leasing mechanism 

introduced the concept of a lease break request so that any replica can attempt to break the 

lease and ensure that any leased object is not locked indefinitely in case the lease owner’s 

replica gets disconnected. However, the impact of disconnected replicas and side effect of 

breaking leases on ORLease is a pivotal topic that should be addressed in future research. 
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     Consequently, the study of disconnected replicas and its side effect on the lease behavior 

should pave the way for further research around the application model of applications that 

are interacting with ORLease. The application model should encompass the handling of 

conflicts in their replicated data stores and the lease break operations. Other replication 

systems have studied application models for their system such as MDCC or Multi-Data 

Center Consistency (Kraska et al., 2013). MDCC provided a programming model to handle 

long and unpredictable latencies caused by the inter-data center communication. 
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Summary 

     Optimistic replication favors high availability for its replicas at the cost of stale reads 

and potential conflicts that could occur due to concurrent update requests from different 

replicas for the same data object. The conflicts happen due to the lack of a mutual exclusion 

mechanism between replicas to serialize the update requests. However, enforcing mutual 

exclusion will defeat the purpose of optimistic replication because it either requires 

synchronization between replicas similar to Paxos protocol (Lamport, 1998) or 

communicating with a resource locking entities similar to Yahoo’s ZooKeeper (Hunt et al.,  

2010) which are key aspects of pessimistic replication. 

     ORLease introduced a semi-locking mechanism between the different replicas. It is an 

extension to optimistic replication systems where conflicts are not uncommon. ORLease’s 

methodology is based on optimistic concurrency (Kung and Robinson, 1981) and leasing 

(Cary and David, 1989) in order to allow replicas to have semi-mutual exclusive access to 

their data objects. It is leveraging the aggressive propagation methodology of Pangaea 

(Saito et al., 2002) in order to accelerate the lease requests to all replicas. It also leverages 

logical clocks (Lamport, 1978) in order to exchange the lease metadata between replicas 

similar to the exchanged metadata of optimistic replication system to reconcile their data 

objects. 

     ORLease’s semi-locking requests are piggybacked on the already existing metadata 

exchanging mechanism of the optimistic replication system. This semi-locking mechanism 

is in the form of an infinite lease that is optimistically replicated out from the lease 

requestor replica to all other participating replicas. The leasing mechanism also introduces 

a lease break request so that any replica can attempt to break the lease and ensure that any 
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leased object is not locked indefinitely in case the lease owner’s replica gets disconnected 

or becomes unavailable. 

     The semi-locking mechanism does not completely eliminate conflicts since the lock 

acquisition of any data object is not synchronized between replicas. It also requires replicas 

to be fully connected and the metadata to be instantaneously replicated in order to reduce 

the possibility of introducing conflicts. A conflict will still occur if two lease requests are 

placed by two different replicas for the same data object within a period of time that is 

smaller than the time it takes to propagate and apply the lease request from one of the lease 

requesting replicas to the other. Therefore, a conflict resolution mechanism, whether it’s 

done manually or automatically (Parker et al., 1983), is still required in order to resolve 

conflicts that might occur. 

     ORLease’s framework is not limited to a specific implementation and can be 

incorporated into any replication framework that can separate and prioritize its metadata 

replication such as PRACTI (Belaramani et al., 2006). Its framework is capable of 

optimistically locking data objects while the replication framework is replicating the data 

objects optimistically between multiple replicas. It is also topology independent where any 

replica is permitted to share updates with other replicas while maintaining optimistic locks 

during updates. 

     The current ORLease implementation has each participating replica configured with an 

object store and running two services; a replication service and an object store frontend 

service. Both services are cooperating in order to manage the replicated object stores and 

is implemented as Windows platform executables (“Microsoft Windows Executable Files”, 

n.d.). The replication service manages replicating the object store updates to its peer 
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replicas while the object store frontend manages uploading and downloading the data 

objects to and from the object store. Its object store frontend provides an interface similar 

to the PRACTI interface (Belaramani et al., 2006) that provides read, write and delete 

functionality for the data objects. However, ORLease also provides a lease interface for 

making explicit optimistic lease requests on its data objects. Additionally, it provides 

implicit optimistic leasing capabilities for the read and write operations on its data objects 

that can be configured based on the consistency requirements of the replication system. 

     ORLease’s experimental results showed smaller constant stale window access when 

compared to other systems such as PRACTI (Belaramani et al., 2006) and Coda (Kumar et 

al., 1995). PRACTI (Belaramani et al., 2006) sends its metadata right after the object is 

committed on the sending replica while Coda (Kumar et al., 1995) does that when the 

object is committed at the receiving replica. Therefore, both PRACTI (Belaramani et al., 

2006) and Coda (Kumar et al., 1995) depends on the object’s committing time which can 

take a long period of time depending on the replication system. 
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