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THE DUALS OF ∗-OPERATOR FRAMES FOR End∗A(H)

A. BOUROUIHIYA2, M. ROSSAFI1∗, H. LABRIGUI 1 and A. TOURI1

Abstract. Frames play significant role in signal and image processing, which
leads to many applications in differents fields. In this paper we define the
dual of ∗-operator frames and we show their propreties obtained in Hilbert
A-modules and we establish some results.

Frame theory is recently an active research area in mathematics, computer
science, and engineering with many exciting applications in a variety of different
fields. They are generalizations of bases in Hilbert spaces. Frames for Hilbert
spaces were first introduced in 1952 by Duffin and Schaeffer [5] for study of
nonharmonic Fourier series. They were reintroduced and developed in 1986 by
Daubechies, Grossmann and Meyer [4], and popularized from then on. Hilbert
C∗-modules is a generalization of Hilbert spaces by allowing the inner product to
take values in a C∗-algebra rather than in the eld of complex numbers. The aim
of this papers is to study the dual of ∗-operator frames.

The paper is organized as follows:
In section 2, we briefly recall the definitions and basic properties of operator

frame and ∗-operator frame in Hilbert C∗-modules.
In section 3, we introduce the dual ∗-operator frame, the ∗-operator frame

transform and the ∗-frame operator.
In section 4, we investigate tensor product of Hilbert C∗-modules, we show

that tensor product of dual ∗-operator frames for Hilbert C∗-modules H and K,
present a dual ∗-operator frames for H⊗K.

1. Preliminaries

Let I be a countable index set. In this section we briefly recall the definitions
and basic properties of C∗-algebra, Hilbert C∗-modules, frame, ∗-frame in Hilbert
C∗-modules. For information about frames in Hilbert spaces we refer to [1]. Our
reference for C∗-algebras is [3, 2]. For a C∗-algebra A, an element a ∈ A is
positive (a ≥ 0) if a = a∗ and sp(a) ⊂ R+. A+ denotes the set of positive
elements of A.

Definition 1.1. [6] .
A family of adjointable operators {Ti}i∈I on a Hilbert A-moduleH over a unital

C∗-algebra is said to be an operator frame for End∗A(H), if there exist positive
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constants A,B > 0 such that

A〈x, x〉A ≤
∑

i∈I

〈Tix, Tix〉A ≤ B〈x, x〉A, ∀x ∈ H. (1.1)

The numbers A and B are called lower and upper bound of the operator frame,
respectively. If A = B = λ, the operator frame is λ-tight. If A = B = 1, it is
called a normalized tight operator frame or a Parseval operator frame.

Definition 1.2. [6].
A family of adjointable operators {Ti}i∈I on a Hilbert A-module H over a

unital C∗-algebra is said to be an ∗-operator frame for End∗A(H), if there exists
two strictly nonzero elements A and B in A such that

A〈x, x〉AA
∗ ≤

∑

i∈I

〈Tix, Tix〉A ≤ B〈x, x〉AB
∗, ∀x ∈ H. (1.2)

The elements A and B are called lower and upper bounds of the ∗-operator
frame, respectively. If A = B = λ, the ∗-operator frame is λ-tight. If A =
B = 1A, it is called a normalized tight ∗-operator frame or a Parseval ∗-operator
frame. If only upper inequality of hold, then {Ti}i∈i is called an ∗-operator Bessel
sequence for End∗A(H).

If the sum in the middle of (2.1) is convergent in norm, the operator frame is
called standard. If only upper inequality of (2.1) hold, then {Ti}i∈I is called an
operator Bessel sequence for End∗A(H).

2. Dual of ∗-operator Frame for End∗A(H)

We begin this section with the following definition.

Definition 2.1. .
Let {Ti}i∈I ⊂ End∗A(H) be an ∗-operator frame for H. If there exists an

∗-operator frame {Λi}i∈I such that x =
∑

i∈I T
∗
i Λix for all x ∈ H. then the

∗-operator frames {Λi}i∈I is called the duals ∗-operator frames of {Ti}i∈I .

Example 2.2. .
Let A be a Hilbert A-module over itself, let {fj}j∈J be an ∗-frame for A.
We define the adjointable A-module map Λfj : A → A by Λfjf = 〈f, fj〉.

Clearly, that {Λfj}j∈J is an ∗-operator frame for A.

Theorem 2.3. .

Every ∗-operator frame for End∗A(H) has a dual ∗-operator frame.

Proof. .
Let {Ti}i∈I ⊂ End∗A(H) be an ∗-operator for End∗A(H), with ∗-operator S.
We see that {TiS

−1}i∈I is an ∗-operator frame.
Or, ∀x ∈ H we have :

Sx =
∑

i∈I

T ∗
i Tix

then
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x =
∑

i∈I

T ∗
i TiS

−1x

hence {TiS
−1}i∈I is a dual ∗-operator frame of {Ti}i∈I .

It is called the canonique dual ∗-operator frame of {Ti}i∈I . �

Remark 2.4. .
Assume that T = {Ti}i∈I is an ∗-operator frame for End∗A(H) with analytic

operator RT and T̃ = {T̃i}i∈I is a dual ∗-operator frame of T with analytic
operator RT , then for any x ∈ H we have:

x =
∑

i∈I

T ∗
i T̃ix = R∗

TRT̃x

this show that every element of H can be reconstructed with a ∗-operator frame
for End∗A(H) and its dual.

Theorem 2.5. .

Let {Λi}i∈I be an ∗-operator frame for End∗A(H) with ∗-operator frame trans-

form θ, the ∗-operator frame S and the canonical dual ∗-operator frames {Λ̃i}i∈J.
Let {Ωi}i∈I be an arbitrary dual ∗-operator frame of {Λi}i∈I with the ∗-operator

frame transform η; then the folowing statements are true:

(1) θ∗η = I.

(2) Ωi = Πiη for all i ∈ I.

(3) If η
′

: H 7−→ l2(H) is any adjointable right inverse of θ∗ then {Πiη
′

}i∈I is

a dual ∗-operator frame of {Λ}i∈I with the operator frames transform η
′

.

(4) The ∗-operator frame SΩ of {Ωi}i∈I is equal to S−1 + η∗(I − θS−1θ∗)η.
(5) Every adjointable right inverse η

′

of θ∗ is the forme :

η
′

= θS−1 + (I − θS−1θ∗)ψ for some adjointable map ψ : H 7−→ l2(H)
and vice versa.

(6) There exist a ∗-bessel operator {∆j}j∈J ∈ End∗A(H) {∆}i∈I whose ∗-
operator frame transform is η and yields is η and yields

Ωj = Λ̃j +∆j −
∑

k∈J Λ̃jΛ
∗
k∆k, ∀j ∈ J

Proof. .

(1) For f, g ∈ H we have :

〈θ∗ηf, g〉 = 〈ηf, θg〉

= 〈
∑

i∈I

Ωif,
∑

i∈I

Λig〉

=
∑

i∈I

〈Ωif,Λig〉 =
∑

i∈I

〈Λ∗Ωif, g〉

= 〈
∑

i∈I

Λ∗Ωif, g〉 = 〈f, g〉

then θ∗η = I.
(2) The proof is clear from the definition
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(3) Since η
′

is adjointable, it follows from prop3.1 that {Πiη
′

}i∈I is a ∗-bessel
sequence in H.
Also, since (η

′

)∗θ = I; (η
′

)∗ is surjective, by lemme 2.7, for f ∈ H we
have:

||(η
′

)∗η)−1||−1〈f, f〉 ≤ 〈η
′

f, η′f〉 =
∑

i∈I

〈πiη
′f, πiη

′f〉

clearly, η
′

is the pre-frame ∗-operator frame transform {Πiη
′

}i∈I
(4)

SΩ = η∗η

= η∗θS−1 + η∗η − η∗θS−1

= η∗θS−1 + η∗η − η∗θS−1θ∗η

= η∗θS−1 + η∗(I − θS−1θ∗)η

(5) If η
′

is such a right inverse of θ, then

θS−1 + (I − θS−1θ∗)η
′

= θS−1 + η′ − θS−1θ∗η
′

= θS−1 + η′ − θS−1I = η′

(6) Let {∆i}i∈I be an ∗-operator bessel sequence for End∗A(H) with the pre-

frame operator η. For i ∈ I, let Ωi = Λ̃i+∆i−
∑

k∈I Λ̃iΛ
∗
k∆k Let S and θ

be the ∗-frame operator and the preframe operator of {∆i}i∈I , resp. we
define the linear operator ψ : H 7−→ l2(H) by ψf = (Ωif)i∈I . clearly, ψ is
adjointable, for every i ∈ I, we have

πiψ = Ωi

= ΛiS
−1 +∆i − ΛiS

−1
∑

k∈I

Λ∗
k∆k

= ΛiS
−1 + πiη −

∑

k∈I

Λ∗
k∆k

= πiθS
−1 + πiη − πiθS

−1θ∗η

= πi(θS
−1 + η − θS−1θ∗η)

then

ψ = θS−1 + η − θS−1θ∗η

by parts (3) and (5) of the theorem; {Ωi}i∈I becomes a dual of ∗-operator
{Λi}i∈I

�

Example 2.6. .
Let A be a Hilbert A-module over itself, let {fj}j∈J ⊂ A.
We define the adjointable A-module map Λfj : A → A with Λfj .f = 〈f, fj〉,

clearly {fj}j∈J is a ∗-frame in A if and only if {Λfj}j∈J is a ∗-operator frame in
A.

In the folowing, we study the duals of such ∗-operator frame.
(a) Let {gj}j∈J ⊂ A for all f ∈ A :
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∑

j∈J

Λ∗
gj
Λfjf =

∑

j∈J

〈f, fj〉gj =
∑

j∈J

〈f, gj〉fj =
∑

j∈J

Λ∗
fj
Λgjf.

Therefore, {gj}j∈J is a dual ∗-frame of {fj}j∈J if and only if {Λgj}j∈J ; is a dual
∗-operator of {Λfj}j∈J

(b) Let S and SΛ be the ∗-frame operators of {fj}j∈J and {Λfj ,A}j∈J respec-
tively.

For all f ∈ A we have:

∑

j∈J

〈f, fj〉fj =
∑

j∈J

ff ∗
j fj =

∑

j∈J

〈〈f, fj〉, f
∗
j 〉 =

∑

j∈J

Λ∗
fj
Λfjf.

It follows that S = SΛ

(c) It is clearly to see that {hj}j∈J ⊂ A is an ∗-bessel sequence if and only if
{Λhj

,A}j∈J is an ∗-bessel operator.
(d) for a ∗-bessel sequence {hj}j∈J we define

gj = S−1fj + hj −
∑

k∈J

〈S−1fj, fk〉hk

then the sequence {gj}j∈J is a dual ∗-frame of {fj}j∈J .
By the last theorem, the sequence {Γj}j∈J is a dual ∗-operator frame of {Λfj}j∈J ,

where

Γj = Λ̃fj + Λhj
+
∑

k∈J

Λ̃fjΛ
∗
fk
Λhk

, ∀j ∈ J

now we clain that Γj = Λgj
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In fact, ∀f ∈ A we have

Γjf = Λ̃fjf + Λhj
f −

∑

k∈J

Λ̃fjΛ
∗
fk
Λhk

f

= ΛfjS
−1f + Λhj

f −
∑

k∈J

ΛfjS
−1Λ∗

fk
〈f, hk〉

= 〈S−1f, fj〉+ 〈f, hj〉 −
∑

k∈J

〈S−1Λ∗
fk
〈f, hk〉, fj〉

= 〈S−1f, fj〉+ 〈f, hj〉 −
∑

k∈J

〈S−1Λ∗
fk
Λhk

f, fj〉

= 〈S−1f, fj〉+ 〈f, hj〉 −
∑

k∈J

〈S−1Λhk
ffk, fj〉

= 〈S−1f, fj〉+ 〈f, hj〉 −
∑

k∈J

〈S−1fh∗kfk, fj〉

= 〈f, S−1fj〉+ 〈f, hj〉 −
∑

k∈J

〈fh∗kfk, S
−1fj〉

= 〈f, S−1fj + hj〉 −
∑

k∈J

〈f, f ∗
khkS

−1fj〉

= 〈f, S−1fj + hj −
∑

k∈J

〈S−1fj , fk〉hk〉

= 〈f, gj〉 = Λgjf.

therefore, every ∗-operator frame of {Λfj}j∈J has the form :

Λ̃fj + Λhj
−

∑

k∈J

Λ̃fjΛ
∗
fk
Λhk

where {hj}j∈J is a ∗-bessel sequence in A.

3. Tensor product

In this section, we study the tensor product of the duals ∗-operator frames.

Theorem 3.1. .

Let H and K are two Hilbert C∗-modules over unitary C∗-Algebras A and B
respectively, let {Λi}i∈I ⊂ End∗A(H) and {Γj}j∈J ⊂ End∗B(K) are an ∗-operators
frames.

If {Λ̃i}i∈I is a dual of {Λi}i∈I and {Γ̃j}j∈J is a dual of {Γj}j∈J
then {Λ̃i ⊗ Γ̃j}i∈I,j∈J is a dual ∗-operator frame of {Λi ⊗ Γj}i∈I,j∈J.

Proof. .
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Let x ∈ H and y ∈ K, we have :
∑

i∈I,j∈J

(Λi ⊗ Γj)
∗(Λ̃i ⊗ Γ̃j)(x⊗ y) =

∑

i∈I,j∈J

(Λ∗
i ⊗ Γ∗

j )(Λ̃ix⊗ Γ̃jy)

=
∑

i∈I,j∈J

(Λ∗
i Λ̃ix⊗ Γ∗

j Γ̃jy)

=
∑

i∈I

Λ∗
i Λ̃ix⊗

∑

j∈J

Γ∗
j Γ̃jy

= x⊗ y

then ∑

i∈I,j∈J

(Λi ⊗ Γj)
∗(Λ̃i ⊗ Γ̃j) = I

hence {Λ̃i ⊗ Γ̃j}i∈I,j∈J is a dual ∗-operator frames of {Λi ⊗ Γj}i∈I,j∈J . �

Corollary 3.2. .

Let (Λij)0≤i≤n;j∈J be a family of ∗-operator and (Λ̃ij)0≤i≤n;j∈J its their dual,

then (Λ̃0j ⊗ Λ̃1j ⊗ ...⊗ Λ̃nj)j∈J is a dual of (Λ0j ⊗ Λ1j ⊗ ...⊗ Λnj)j∈J .
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